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Abstract 

The objective of this thesis is the design of software sensors for an urban wastewater 
system. The dynamic behaviour of urban wastewater systems are typically described 
by highly non-linear deterministic models. These non-linearities are mainly caused 
by important variations in the influent flow rate. In addition, there is a clear lack of 
instrumentation and automation systems. Therefore, this thesis contains a thorough 
discussion of software sensors, with applications to urban wastewater treatment 
systems and a special emphasis on the wastewater treatment plant. 

Since the original activated sludge process model utilised in this work is not 
observable, three reduced order models, based on the activated sludge model no. 1, 
are proposed. A linear piece-wise observability analysis based on the Kalman rank 
theory is investigated on each of the reduced models, prior to non-linear 
observability analyses based on the Lie derivative. Furthermore, a procedure to 
remove the unobservable modes and to design software sensors in the presence of 
disturbances is proposed. 

The main objective of the work on state observers and parameter estimators design is 
to achieve on-line estimation of non-measurable concentrations and parameters based 
on extended Kalman filters. Initially, on-line monitoring of abnormal substrate 
concentrations is proposed. The designed state observer can detect substrate shock 
loads with a reasonable response time. Then, as on-line measurements of the 
biomasses concentrations are not available in real wastewater treatment plants, on- 
line monitoring of the heterotrophic biomass and autotrophic biomass concentrations 
is proposed. Finally, a joint state and parameter estimation application is presented, 
where the reduced model is augmented with an additional state variable. The main 
objective aims at demonstrating the parametric estimation difficulties when 
designing software sensors on such complex augmented non-linear model. 

The work on robust non-linear filtering is motivated by the fact that the extended 
Kalman filters presented significant drawbacks. Applications based on H,,, filtering, 
in which the model describing the activated sludge process is corrupted by 
significant process noise is presented. A comparative study between both types of 
software sensors is performed. The final contribution of this work is toward software 
sensing applications on an integrated urban wastewater system. A software sensor is 
implemented on the treatment plant and the sewer network effect on the estimated 
concentrations is demonstrated through simulation studies. 
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Chapter I 

Introduction 

Water is the most important and precious natural resource in the world, since without it there 

would be no life on Earth. Between 70 and 75 percent of the Earth's surface is water-covered 
but only 0.3% of it is available for human necessities. A person can survive several days 

without food, but on the contrary, the absence of water in an organism can have fatal 

consequences within days. Therefore, the presence of a safe and reliable source of water has 

always been a precondition for the establishment of a stable community. 

All societies, from the time of early civilisations, had to face problems related to the 

provision of safe drinking water, flood protection, drainage and sanitation (Chocat et aL, 
2001). Depending on the geographical location of inhabitants, water related difficulties 

remain unsolved and others are currently arising. For instance, insufficient drinking water in 

Africa is leading to a migration of their inhabitants to Europe. It is not surprising that water 

sources have been the cause of numerous conflicts over centuries. Even in areas of 

abundance of water, crises in water supplies have emerged due to the effects of human, 

industries and agricultural wastes upon the environment (Tebbutt, 2002). For instance, 

untreated industrial wastewater can have drastic consequences on the aquatic life of the 

receiving water, which may lead to negative impacts on the fishing industry. 

Prior to modern society, water was purified naturally with the hydrologic cycle. However, 

the growing demands of water resources necessitated the introduction and operation of 

municipal drainage systems. The main objectives were (1) to maintain public hygiene in 
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order to avoid disease causing bacteria and viruses (e. g. Typhoid, Cholera, Dysentery, Polio, 

and Hepatitis), which were of a real threat to human health and (2), to prevent flooding. In 

certain countries, downstream use involving human contact is still a real threat, as some of 
the bacteria or diseases remain in the water (Tebbutt, 2002). The introduction of wastewater 
treatment plant facilities was initially proposed to enhance the natural cycle and improve the 

water quality in order to avoid environmental damages. However, it is an individual 
approach that is not often sufficient to prevent the menace of the polluted water. Therefore, 

today's challenge is to move from this individual consideration to an integrated management 

of the urban wastewater system. Consequently, the consideration of an Integrated Urban 

Wastewater System (IUWS), as presented in Figure (L 1), is an essential step in reducing the 

pollution level of the receiving body (also called receiving water). 

RIVERCEIVING 
WATER 

EFFLUENT 

e. .,, 

.............................................. 

Storrn tank 
Domestic WW & rainfall Aeration tank Clarifier 

o 
o oo o oo o 

. 00. INFLUENT ý'O 0 0 00 00 

Industrial &agricultural wastewater 
SEWER SYSTEM WWTP 

----------------------------------------------- 

Figure 1.1 A simplified integrated urban wastewater system including the 

sewer network, a storm tank utilised for combined sewer 

overflows, the wastewater treatment plant and the recipient (also 

called receiving water/body), which in this case assumed to be a 

river. Note that certain parts of the global water system such as the 

raw water source, water purification plant, rural streams, 

groundwater, agricultural runoff and seas will not be considered in 

this thesis for the reasons of simplification. 

The main difficulty with an integrated approach is the high complexity involved in the 

prediction of the system's behaviour. Appropriate numerical tools, which involve 

mathematical modelling, remain probably the best solution to describe the dynamic 
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Chapter 1: Introduction 

behaviour of such complex systems. In addition, they are also important in the design of 

monitoring and control strategies, and in assessing their effectiveness. The modelling stage is 

probably the most critical phase in the solution of estimation and control problems 
(Jeppsson, 1996), due to high nonlinearities together with important uncertainties and 
disturbances. Furthermore, any advanced (or simple) monitoring strategies are based on 

models that must carefully describe the dynamics of the systems. Within the bioprocess 

industry, even if the basic principles are known (Lijklema et al., 1993), the complete systems 
behaviours are not clearly understood and are still undergoing intensive research. 

Even if integrated urban wastewater systems remain complex, it is probably a suitable 

solution to enhance the quality of the receiving water in order to comply with the recently 

adopted Water Framework Directive (WFD) of the European Union (EU). This directive 

stipulates that the recipient should be 'good' in term of ecological status and chemical quality 
(Council of the European Communities, 2000). Consequently, the monitoring aspects of an 
integrated urban wastewater system have been investigated and presented in this work, with 

a special emphasise on the wastewater treatment plant. 

1.1 MOTIVATION 

In most industries, monitoring of processes is performed to improve and optimise the system 

performance. Different levels of monitoring are implemented in different fields. State of the 

art monitoring technologies are often developed for the nuclear, petrochemical and 

pharmaceutical industries. Wastewater treatment industries cannot be considered as pioneers 
in the monitoring field and are still far from being the most diligent and systematic users of 

such technologies. However, the enforcement of governmental regulations or those of other 

authorities has forced industries to consider more than few keys influent qualities in order to 

improve the quality of discharged wastewater (Rosen, 200 1). 

Water has become one of the sectors with the most widespread coverage in EU 

environmental regulation. This has been motivated by European inhabitants, who believe 

that wastewater issues should be prioritised by governmental institutions. Therefore, water 

directives characterise the different stages of environmental policy regulation with an 

emphasis on public health protection, environmental protection, "end of pipe" solutions, and 

preventative and integrated management approaches. The recently adopted WFD of the EU, 

initiated a new area in EU environmental policy, setting common approaches and goals for 
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Chapter I: Introduction 

the management of water in 27 countries that should conform in the long-term with 
community law. 

Ecosystem-based objectives and planning processes at the level of the river basin are 
institutional i sed by the WFD, which set a fundamental objective of 'good' overall river 
quality. However, the challenges in reaching this goal within the time-scale are immense. 

For instance, a significant progress has been made regarding point source pollution while 
there has been less achievement with the abatement of dispersed pollution. In fact, scientific 

questions have emerged concerning the precise qualitative and quantitative understanding of 
how dispersed pollution deteriorates the ultimate receiving water (Johnson et al., 2001). 

Significant changes are also undergoing regarding the industry aspects of the urban cycle 
(water-wastewater-river-basin). In many countries, localised and fragmented organisations 

are often selected in the industry to work in a unified operational framework. In some cases, 

creations of the necessary corporate infrastructures for holistic control of water and 

wastewater resources are merged between public bodies and companies. Therefore, these 

practices, which are often slow moving, require new organisational working methods to be 

established. Thus, integrated computer system operations on a regional river basin scale are a 

pre-requisite for an industry, which is traditionally passive, and often rely on manual control 

systems (Johnson et aL, 200 1). 

Regional management of the water and wastewater resources on river basin level can be seen 

as a large-scale geographically distributed control system problem. The level of difficulty is 

technologically comparable to the management of a nation's high voltage transmission 

network, or any other of the high-tech utility networks that support urbanisation. Comparing 

these well-supported networks with regional wastewater treatment and river basin water 

quality control, a clear insufficient investment in control infrastructure or basic research has 

emerged. If regional river basin and energy efficient wastewater treatment process is to be a 

success, a clear understanding of the system dynamics and an efficient development of 

systems engineering is required (Johnson et al., 200 1). 

Thus, a European Network named 'WWT & SYSENG', which is in collaboration between 

seven institutions of the EU (University of Strathclyde, Lund University, Technical 

University of Denmark, Imperial College, Universitat Autonoma de Barcelona, University of 

Pavia, Technical University of Crete), has been created in 2001. The WWT&SYSENG 
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Chapter 1: Introduction 

project, which is an abbreviation for 'Getting Systems Engineering into Regional 

Wastewater Treatment Strategies', was initiated and financed by the European Commission 

in order to develop tools and concepts required to investigate some of the following 

questions: 

" How can the regionally integrated sewer systems, wastewater treatment plants 

and the receiving water system be modelled and simulated? 

" What is the importance of diffuse pollution sources, and to what extent are they 

controllable? 

" What large-scale control systems are needed to achieve the EU regulatory 

requirements? How would these large-scale control systems be implemented? 

" What is the impact of Internet technologies on the operation of the control 

system? 

" How should individual wastewater treatment plants and sewer systems be run 
inside this large-scale control system framework? 

Not all key aspects of the above mentioned targets are covered in this thesis. It is the 

objective of all 'young researchers' of the WWT&SYSENG network, as a group, to tackle 

these problems. 

An IUWS approach alone would not be sufficient in contribution to the fulfilment of the 

Yv'FD. Other established practices related to Instrumentation Control and Automation (ICA) 

need to be incorporated within the entire system. However, within the last three decades, the 

use of ICA in WWTP for instance, is still considered as minimal. The main reasons for this 

lack of process control is summarised as follow (Beck, 1986; Olsson, 1994; Vanrolleghem, 

1994): 

"A lack of a clear understanding of the treatment processes 

" Inadequate and insufficient instrumentation 

" Plant constraints (e. g. insufficient possibilities to act on the processes) 

" Economic motivation (ICA does not directly lead to increased profit) 

" Lack of education/training of the operators and engineers 

" Insufficient communication between operators, designers, equipment suppliers, 

researchers and government regulatory agents. 
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Even when ICA is considered within certain WWTPs and/or the entire urban wastewater 
treatment system, other problems arise due to the complexity of the processes. A particular 

issue is related to the monitoring and control strategies that are designed for processes. A 

schematic representation of a typical computerised control chain is represented in Figure 

(1.2). 

_r. 
Keyboard 

Monitoring 

screen 

Influent "'...... : Control 
....... 1........ % 

Software algorithm 
1 ................ 

Sensor Computer 

Actuators 
1 

PLANT 

(disturbances) 

Sensor 

Effluent 

Figure 1.2 A typical computerised control chain for WWTPs. The physical 

sensors feed the software sensor, which contribute in governing the 

quality of the control algorithm. 

For instance, some of the obstacles that must be overcome when monitoring urban 

wastewater systems can be described as follow: 

" High non-linearties and complexities in the models 

" Stochastic properties of the models 

" Large disturbances in the influent flow 

" Sensors failures, time delays and measurement noise 

" Multiple time scale (very slow and fast dynamics) 

Coupling of the state variables describing the processes 

Lack of flexible actuators 

Furthermore, some of the available models that describe the plant behaviour are not 

observable and identifiable. For instance, the model considered as state of the art for the 

modeling of Activated Sludge Processes (ASP, e. g. the ASM1), which has been developed 
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by the International Water Association (IWA, Henze et al., 2000), is not observable. In 

addition, the most common control strategies implemented in WWTPs, which are developed 

with simple Proportional Integral Derivative (PID) controllers, are commonly based on 
Single-Input Single-Output (SISO) design. Consequently, it is extremely difficult to 

guarantee the robustness of the proposed control strategies. Hence, the use of Multiple-Input 

Multiple-Output (MIMO) design is a pre-requisite for improving the above-mentioned 

monitoring and control aspect of urban wastewater systems. 

A robust MIMO structure generally requires the knowledge of most of the state variables 
that describes the processes. Access to such information is not a trivial task and can be 

achieved by designing software sensors. This type of computer-based sensor, which is also 

called a state observer or a parameter estimator is crucial in the development of monitoring 

equipment and control strategies, as it can estimate on-line non-measurable state variables 

and parameters. Consequently, the produced estimated data could be used to monitor toxic 

concentrations for instance, or could even be utilised in the same manner as other data (e. g. 
from physical sensor) to feed the control algorithm with the necessary information. The main 
drawback when designing such estimators relies on the accuracy of the estimates, which is 

clearly dependent on the quality of the available measurements and mathematical models 

that describe the ASP behaviour. The design of state observer and software sensors, which is 

a key issue in the monitoring of urban wastewater systems, has been investigated, with a 

special emphasis on the WWTP, and will be presented in this work. 

1.2 OBJECTIVES 

Increasingly, scientific arguments are presented stating the importance of considering the 

IUWS as one system rather than regarding it as different sub-systems if cost-effective quality 

of the receiving water is to be achieved (Lijklema et al., 1993; Rauch et al., 1998; Schilling 

et al., 1997; Meirlan, 2002). Furthermore, an IUWS approach could also be utilised for the 

design of control strategies, which could be a promising approach to achieve the water 

quality standards (Rauch and Harremods, 1999). As a result of this, and since it is impossible 

or extremely expensive to directly monitor all discharges into the receiving water (Combined 

Sewer Overflows (CSOs), WWTP effluents, storm water outfalls), an integrated approach 

has been selected to investigate the monitoring aspects of urban wastewater systems, with a 

special focus on the wastewater treatment plant. 

7 



Chapter 1: Introduction 

More precisely, the specific purpose of this work is related to the development of monitoring 

equipment that will allow an accurate or approximate estimation of concentrations that 

cannot be measured in real urban wastewater systems. The main technique that is used to 

achieve such goals is the design of advanced and robust non-linear filtering and estimation 

techniques. This type of approach has been investigated to overcome the lack of 
instrumentation. Gaining access to such data could provide a better understanding of urban 

wastewater systems behaviour. As a result of this work, robust control strategies could 

eventually be considered and an adjustment of the plant's operational strategy could also be 

performed to improve the plant effluent quality, or to reduce the pollutant impact of the 

receiving water and offer cost reductions of operation of the IUWS. 

1.3 OUTLINE OF THE THESIS 

in order to make the content more comprehensible, and also to make it easier for the reader 

to locate areas related to his/her special interests, this thesis is organised in three different 

parts. 

0 Part I (Chapters 1,11 and 111): General introduction to problems related to 

wastewater treatment, followed by a descriptions of the elements composing the 

IUWS, as well as definitions and derivations of the theories behind software 

sensors; 

0 Part 11 (Chapters IV, V and Vl): Main contributions of the thesis, related to 

linear piece-wise and non-linear observability, the development of observable 

reduced-order models and the design of state observer and software sensors 
based-Extended Kalman Filter (EKF) and Extended H-infinity Filter (EHF) on 

various WWTPs and an IUWS; 

0 Part III (Chapters VII): Conclusions and future works. 

The seven Chapters are organised in the following way: 

Chapter 11: The integrated urban wastewater system 
In Chapter 11, a brief introduction to the main elements that form the IUWS is provided. This 

includes the sewer system, wastewater treatment plant and receiving water. A review of 

state-of-art in monitoring and sensing for all sub-processes and the IUWS itself is also 

provided. Then, the Chapter includes a discussion of the mathematical models that have been 
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selected for describing the sewer, WWTP and river, as well as the interactions issues within 

all sub-systems. Simulations studies are proposed to illustrate the CSOs flow effects on the 

river. A summary of the aforementioned topics ends this Chapter. 

Chapter III: Non-linear state andparameter estimation 
Chapter III provides the theoretical background used throughout the thesis, selected to 

perform joint state and parameter estimation. A brief historical review of the most common 
linear and non-linear filtering techniques is initially proposed. Then, the selected linear and 

non-linear observability theories are presented. Subsequently, the algorithms for the linear 

and extended Kalman and H. filters are introduced, prior to a brief discussion on parameter 
identifiability. Finally, two examples based on an ASP model are proposed for on-line 

monitoring of the concentrations and some model parameter estimations based on the 

extended Kalman and H,,, filters. The proposed results aim at illustrating the multiple- 

parametric estimation problems, the drawbacks of the EKF with a stochastic model, as well 

as the measurement noise effect on the parametric estimation. This Chapter ends with a brief 

summary of the Chapter content and its results. 

Chapter IV: Non-linear Observability of WWTP models 

In Chapter IV, three reduced-order models based on the original ASMI, which is first 

introduced, are proposed. Initially, the simplifying assumptions in producing these reduced 

models are described, as well as their dynamics behaviour compared with the original ASM I 

model. Following this, piece-wise linear observability analyses are performed on each of the 

reduced models. Subsequently, non-linear observability analyses are performed, based on 

Lie-derivatives, and the results are compared with the piece-wise approach, yielding 

interesting results. Finally, a general procedure for model reduction and software sensor 

implementation is proposed. This Chapter ends with a conclusion of this study and its 

simulations results. 

Chapter V: Non-linearfiltering based-extendedKalmanfilters 

Chapter V presents three case studies with a focus on the WWTP. These applications aim at 

providing estimates of concentrations and parameters that cannot be measured on-line in real 

VvrWTPs. The initial case study emphasises the general procedure proposed in Chapter IV. A 
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state observer with unknown input concentrations, also called disturbances, is implemented. 

The method that is selected is based on an augmented model were the unknown inputs are 

modelled with I" order and 2 nd order transfer functions, fast Fourier transform and spectral 

analyses. Furthermore, particulate nitrogen estimation is achieved based on fractions of the 

slowly biodegradable substrate (Xs). The subsequent case study proposes a new approach for 

on-line monitoring and detection of abnormal readily biodegradable substrate (SS) and 

slowly biodegradable substrate (Xs) concentrations, for example due to influent substrate 

shock load. Considering that off-line measurements of Ss and Xs concentrations are not 

available in real WWTPs, the SslXs state observer provided significant results as it can detect 

these abnormal substrate concentrations with a fast response time. The final application, 

separated into two cases, first illustrates a state estimation application were the heterotrophic 

and autotrophic biomasses concentrations are estimated on-line, using fraction of the TSS 

concentration. This case study also yielded interesting results as on-line monitoring of XB, H 
andXB, Aconcentrations is not available on WWTPs, since no specific on-line sensors exist 
for these concentrations. Finally, the last case illustrates a joint state and parameter 

estimation algorithm, where the heterotrophic yield is estimated on-line by a software sensor 
based-EKF. It demonstrates the parametric estimation difficulties when applied to a complex 

non-linear reduced model, as well as the need for a robust non-linear filtering technique. The 

Chapter concludes with a conclusion of the main results. 

Chapter VI: Robust non-linearfiltering based-extended H,, filters 

In Chapter VI, a robust non-linear filtering technique, based on extended H., filter, is 

investigated. The first application concentrates on illustrating the observers' robustness 

properties with a stochastic ASMI model (e. g. corrupted by unknown process noise source 

statistics). The convergence and tracking performances of the state observer are also 
investigated when disturbances are considered and results are compared with the standard 

extended Kalman filter. It is demonstrated that robust estimation can be achieved with 

stochastic models when an extended H,,, filtering technique is considered. In the second 

application, the robustness properties of the EHF are investigated, and compared with the 

EKF, when joint state and parameter estimation is considered. Furthermore, the software 

sensor performances are investigated when sudden variations in a selected stoichiometric 

parameter occur. The final application concentrates on state observers based-EKF and EHF 

when applied to the integrated urban wastewater system. The main objective, which is to 

illustrate the impact of the sewer system on the WWTP estimated concentrations, is 
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demonstrated through simulation results. Finally, the Chapter ends with a conclusion of these 

comparative studies and its simulations results. 

Chapter VII: Conclusions and future works 

In Chapter VII, general conclusions and direction for further work concerning the proposed 
results are discussed. 

1.4 CONTRIBUTIONS 

The major contributions are in the areas of (in order of appearance in the thesis): 

Development of reduced-order ASM1 models 
In Chapter IV, three reduced-order models are developed based on the original activated 

sludge model no. 1. The simplifying assumptions are clearly stated and their dynamics are 

compared with the original ASMI model. These reduced models present the advantages of 
being accurate enough for the proposed monitoring applications. Furthen-nore, their 

performances are compared with well established IWAXOST benchmark simulation model 

no. 1. 

Linear piece-wise and non-linear observability analyses comparison 

In Chapter IV, a linear piece-wise approach is investigated for the proposed reduced models. 

This approach is compared with a non-linear observability analysis method, based on the Lie 

derivatives. This comparison revealed that the linear piece-wise approach can be applied, to 

a certain extent, to non-linear systems. 

General procedure for model reduction and software sensor implementation 

A general procedure for model reduction and software sensor design has been proposed. It is 

based on a six steps procedure, which provides methods for model reduction, observability 

analyses, modelling disturbances and finally, joint state and parameter estimation algorithm 
implementation. 

State observer and software sensors for bioprocesses 

In Chapter V, various state observers and software sensors are applied on the WWTP. This 

work contributes in the development of monitoring equipment that are currently not 
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available in the market. The main applications are proposed to overcome the lack of 

monitoring equipment. Firstly, a new SSJXS state observer, which can detect abnormal 

substrate concentrations within the WWTP, is proposed. Secondly, a novel approach for 

heterotrophic and autotrophic biomass concentrations monitoring based on total suspended 

solid measurements is investigated. Finally, joint sate and parameter estimation are 
demonstrated, where the heterotrophic yield is estimated online. 

Robust non-linear filtering for bioprocesses 

In Chapter VI, robust nonlinear filters based on extended H. filtering theory are developed. 

This approach is particularly useful with stochastic biological systems, as the noise source 

statistics are unknown. A comparative study between the EKF and EHF is performed to 

demonstrate: (1) the failure of the EKF when the mathematical model describing the plant 
behaviour is stochastic, and (2) the tracking and robustness performances of the EHF with 

similar stochastic properties. 

1.5 Publications 

Several parts of the work presented in this thesis have previously been presented at 
international / national conferences and workshops. A list of the references is given below. 

Several parts of the work might also lead to international journal publications in the coming 
future. However, these have been excluded from the following list. 

2003 

Benazzi, F., Katebi, R. and Wilkie, J. (2003). Application of Extended Kahnan Filter to 

Activated Sludge Process. 2 nd WWT&SySENG Workshop, EU Research Training Network, 

HPRN-CT-2001-00200, September 17-20 2003, Copenhagen, Dem-nark. 

2004 

Benazzi, F. and Katebi, R. (2004). Software Sensor Based-Extended Kalman Filter Applied 

to Activated sludge Process. 3dWWT&SYSENG Workshop, EU Research Training Network, 

HPRN-CT-2001-00200, September 5-11 2004, Pavia, Italy. 
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2005 

Benazzi, F. and Katebi, R. (2005). Nonlinear Observability of Activated Sludge Process 

Models. In Proc. 16 th IFAC World Congress, July 4-8 2005, Prague, Czech Republic. 
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Chapter II 

The Integrated Urban Wastewater System 
In this Chapter, the simplified integrated urban wastewater system displayed in Figure (L 1), 

which is composed of a sewer system, WWTP, and receiving waters as its main element, is 

presented. Firstly, a short introduction of the physical elements that compose the IUWS is 

provided, in addition to the common monitoring equipment and actuators available within 

each sub-process. Secondly, the modelling aspect of the IUWS is presented with a simplified 

mathematical description of the sewer network and river. The ASM models are also 
introduced with a special emphasis on the IWA/COST Simulation Benchmark No. I (BSM 1), 

which is the principal WWTP configuration utilised throughout this thesis. Finally, a 

simulation study is performed to provide an insight into the IUWS model where some 
impacts of combined sewer overflows are illustrated. 

2.1) INTRODUCTION 

Many of the urban wastewater systems that can be found in practice are operated with little 

or no control (SchUtze et al., 2004). This can be explained by the fact that on-line monitoring 

equipment within the area are very poor. Very few advanced case studies can be found in 

literature (Schilling, 1989; Meirlaen et al., 2001; Meirlaen and Vanrolleghem, 2002; SchUtze 

et al., 2003; Schiitze et al., 2004). An explicit state of the art review of Real Time Control 

(RTC) of urban wastewater systems is proposed by Schfitze et al., (2004). The author and 

co-workers discussed the importance in the development of sensors, which also include 

software sensors, in achieving successful control strategies on IUWS. Nevertheless, prior to 
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any design or implementation of software sensors, a clear understanding of the system is 

necessary. Consequently, the following description of the IUWS is provided for a better 

understanding of the selected urban wastewater system. 

2.2) PHYCAL DESCRIPTION OF THE INTEGRATED SYSTEM 

As mentioned previously in Chapter 1, the global water system is linked with other parts such 

as drinking water production, groundwater, rural streams, agricultural runoff and seas. 
However, the focus of this work lies in state observer and software sensor design and its 

implementation upon an urban wastewater system. Therefore, only the corresponding 

subsystems are discussed. 

The sewer system 

According to Smith and Scott (2002), waterbome sewage systems existed in India around 
4500 Before Christ (BC) and near Baghdad about 2500 years BC. Modem urban sewerage 

and drainage concepts date back some 200 years (Harremods, 2002). Today's sewer system 
technologies, which are used to transport both rainwater and wastewater from the urban area 

until the WWTP or receiving waters, mainly consists of interconnecting pipes. These pipes, 

which constitute the main elements of the sewer systems, are either combined, separated or 

partially separated systems. These types of sewer systems still form the majority of modem 

sewer systems all over the world (Brombach et aL, 2005). A schematic overview of 

combined and separate sewer systems is displayed in Figure (2.1). A brief description of 

each type of sewer pipes is provided, as follows: 

The combined sewer system: It has a unique pipe where stormwater, domestic 

wastewater and industrial effluents are transported and mixed together. The main 

advantage of the combined sewer system is only cost related, as only one pipe is 

needed. However, this technology presents disadvantages by reducing the efficiency 

of the treatment plant during periods of heavy rains. When the flow to the treatment 

plant increases, whilst the pollutants are diluted, the flow in the sewer system 
becomes higher than the hydraulic capacity of the pipes or the WWTP. 

Consequently, combined sewers are generally supplied with combined CSOs that 

divert excess wastewater flow down a stormwater sewer and thence into the nearest 
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receiving water (Smith and Scott, 2002). However, CSOs structures do not avoid 

critical pollution at discharge points. 
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Figure 2.1 Combined and separate sewer systems including CSO structures 

and the VvWTP (from Brombach et al., 2005) 

Some of the common solutions that can be used in reducing the number of CSOs are 

related to ICA implementation, stormwater infiltration and building (or increasing if 

basins are already available) storm tanks. However, such approaches requires a clear 

understanding of the current wastewater treatment facilities in order to avoid drastic 

expenses without systematically reducing the pollution peaks at the discharged 

points. Furthermore, throughout western societies, sustainable urban drainage 

methods are becoming a driving force (Chocat et al., 2001). This consists of 

incorporating permeable surfaces, ponds, swales and other infiltration devices, for a 

maximum infiltration of the wastewater into the soil and for the recharging of the 

ground water (Smith and Scott, 2002). These types of drainage techniques, 

introduced in the late 1980s (Chocat et al., 2001) are more and more used in urban 

areas such as in France, for instance, with the advantage of not requiring any 

downstream drainage network (Barraud, 2002). 

emergency overflow 
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The separate sewer system: Also called the rigidly separate system, this is composed 

of two different pipes, one conveying the stormwater, the other transporting the 
domestic wastewater and industrial effluents towards the treatment facility. As a 

result, the stormwater is discharged directly into the receiving water and should not 

cause pollution, in comparison to the combined systems (Smith and Scott, 2002). 

However, separate systems have major drawbacks, as they are likely to be (1) 

expensive (because of the two pipes required to avoid mixing processes), (2) sudden 

and strong hydraulic impact to rivers can occur, (3) there are risks of misconnection 
between pipes and (4) higher heavy metal load to the receiving water can arise 
(Meirlaen, 2002). Nevertheless, separate systems will overcome the peak pollution 
discharge problem during high rainy periods that can occur from CSOs. 

The partially separated sewer system: This is a system in which each street has two 

sets of sewer, one for stormwater and one foul sewer. In other words, it consists of 
two separate networks, as for the separate system, but rainwater from the back yard 

and house back roofs is drained off into the foul sewer and rainwater from the roads 
into the surface water sewer. However, this type of sewer is not common due to its 

high cost requiring two network pipes. 

Nowadays, the most common sewer systems are of the combined despite the fact that they 

are regarded as causing high pollution and hygienic risks. However, there is a strong 

worldwide trend (at least in industrialised nation) toward separated systems regardless of the 
high construction and maintenance costs. In the United States, for instance, the Water Act of 
1972 (WEF, 1997) recommends separate systems. On the other hand, Brombach et aL, 
(2005) concluded that the cost-benefit ratio of a separate sewer system is unfavourable when 

compared with that of the combined system. Therefore, an alternative approach in reducing 
CSOs impacts upon the receiving water remains the implementation of monitoring tools (e. g. 

software sensors). Such techniques are undoubtedly dependent on sensors, which are 

generally expensive and sometimes not reliable, and still remain a challenging solution in the 

wastewater industry. Sensor technologies could offer particular advantages for early warning 

systems, process control and on-line monitoring of the sewer system (Alcock, 2002), which 

could contribute in reducing peak pollutions discharges into the receiving water. Indeed, 

perfect reliability of the results within the sewer facilities is not ensured because of the 

measurement state conditions (Piatyszek, 2002). Therefore, access to on-line concentrations 

of the pollutants, rather than obtaining data only during a particular event, could be more 
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beneficial in ensuring that results accurately represent the state conditions. Furthermore, such 

approach could lead in a long-ten-n basis in the investigation and implementation of robust 

control strategies. 

Monitoring 

Sensors are mainly used for three different purposes: (1) for monitoring (operator support), 
(2) in automatic control systems and (3) as tools for plant auditing/ optimisation /modelling 

of consultant (Vanrolleghem and Lee, 2003). They can provide an added value in monitoring 

pollution in wastewater (Alcock, 2004; Dominguez and Alcock, 2002) and are crucial for the 

control of urban wastewater systems. They can govern the accuracy and reliability of the 

proposed controlled processes. Access to data from instrumentation is also essential for the 
design of control strategies. In addition, it could be useful in practice to obtain accurate data 

for a number of reasons that include: 

0 Inspection by governmental enforcement agencies of compliance with source 

measurement requirement 

9 As a legal evidence of compliance 

0 Health and property protection for both workers and public at large 

On-line monitoring of pollutant concentrations in the sewer system remains a challenging 

area. Nowadays, it is mainly perfon-ned via sample analysis within laboratories (Bertrand- 

Krajewski, 2004). Piatyszek (2002) stated that measurement devices are widespread within 

the sewer system. On the other hand, the growing demand for sensing technologies is still of 

significant interest and there is still a strong need in the conception of applications. Few 

attempts have been made to overcome this lack of instrumentation. Hansen and Carstensen 

(1997), successfully performed an on-line monitoring investigation of the sewer system of 

Copenhagen during four years. A total of nine monitoring stations were used, where 

measurements of water levels, flows, rainfalls, pumping activity and gates positions were 

collected. In addition, an ultrasonic and pressure transducer and two different type of 

ultrasonic transmitter were utilised. However, it was concluded that RTC systems are 

vulnerable to failures in the on-line monitoring system. Gudjonsson et al., (2002), measured 

continuously (upstream and downstream) during two months the Dissolved Oxygen (DO) in 

an intercepting sewer. However they failed to predicted short-term variations due to the 

insufficient knowledge of the variability of the wastewater composition. 
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State of the art sensing 

State of art sensing for sewer systems has found very few successful applications, of which 
those few are mainly achieved through laboratories or pilot systems. Bertrand-Krajewski 

(2004), performed a Total Suspended Solid (TSS) concentration estimation in a sewer from 

turbidity measurements. This study compared this approach with a sample concentration 

measurement technique and obtained satisfactory results. The research concluded by 

suggesting that turbidity measurements could replace traditional samples. Stumw6hrer et aL, 
(2003), investigated the applicability of Ultraviolet (UV)-absorption measurements at CSOs, 

under different storm water conditions. This work demonstrated that the applicability of this 

type of spectrometer for the control of storm water is questionable. Horoshenkov et aL, 
(2003), determined the sewer roughness and sediment properties using acoustic techniques. 
Results from pilot scale model experiments demonstrated that the proposed acoustic method 
is very sensitive to the variation in the boundary conditions of an air-filled pipe. 

Actuators 

Some of the aforementioned applications would have been impossible without the use of 

actuators. Indeed, the development of sensors for the purpose of control strategy design 

involves the integration of actuators in the control chain. Actuators (also called regulators) 

play an important role in urban wastewater treatment because they can operate or activate the 
final control element. The most common actuators (electrical, pneumatic or hydraulic) 

employed are: flow regulators (control valves, position regulators) weirs, gate, dumper, 

motor, heater and blowers. For a detailed review about actuators, the reader can refer to 
Marinaki et al., (2003), or Metcalf and Eddy (2003). 

The wastewater treatment plant 

The wastewater collected in the sewer system is directly transported to the treatment plant. 
The WWTP is at the heart of the process dealing with domestic, industrial and agricultural 

waste. A suitable introduction in the field of municipal wastewater treatment is found in 

Metcalf and Eddy (2003), Henze et al., (1995), or Andrews (1992). A schematic overview of 

a typical municipal WWTP configuration is proposed in Figure (2.2). The main objective of 
domestic wastewater treatment, which is 99% water, is the removal of the 1% pollutants as 

economically as possible (Smith, 2002). More precisely, WWTPs are about reducing 
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nitrogen, phosphorous, organic matter and suspended solids. In most countries and cities, the 

wastewater is treated in biological treatments plants rather than receiving physical treatment 
(like sedimentation or filtration) or chemical treatment (like precipitation or flocculation), as 
detailed by Metcalf and Eddy (2003). 
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Figure 2.2 Schematic outline of the main detachment in a municipal 

wastewater treatment plant. 

Furthermore, different plant layout can be designed depending upon effluent quality 

specifications from local authorities. However, one of the common system configurations 

consists of unit processes like activated sludge systems, anaerobic systems, b1ofilters in 

combination with one or more physical or chemical treatment processes. A brief review of 

the most common technologies and processes that can be found within the WWTP follows. 

This description emphasises on the activated sludge process, as the software sensors 

presented in this work are mainly implemented on this specific unit process. 

The preliminary treatment: Also called mechanical treatment, this allows removal 

and reduction of various types of suspended solids, generally aimed at protecting 

equipment in later treatment. These mainly consist of the removal of large solids 

(tyres, Christmas trees, etc. ), grit chambers (to separate sand and gravel from the 

wastewater), rags and grit by screens (for separating materials into sizes), 

cornminutors (for cutting up the solids caught on the screen) and grit channel (for 

extracting grit from wastewater). 

The primary treatment: Also called primary sedimentation, it is the first major 

treatment process that immediately follows grit removal. It consists of releasing 

settled wastewater for biological treatment and removes organic solids as sludge. 
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The design is often based on the surface loading rate, where radial flow 

sedimentation tanks or horizontal flow sedimentation tanks are normally used. To 

ensure 50 to 70% removal of suspended solids and about 30% removal of Biological 

Oxygen Demand (BOD), which is a measure of the amount of biodegradable organic 

substances in water, from domestic water, a rate of 30 to 45m 3 M-2 d-' at maximum 
flow is a prerequisite (Smith, 2002). 

The secondary treatment: It typically follows the primary treatment and is 

commonly composed of an aerobic biological treatment. It allows removal of 

organic solids (not removed in primary treatment) together with the 90% or more of 
the dissolved organics (Smith, 2002). Nitrification and biological phosphorus 

removal are also parts of the secondary treatment. The most common types of 
biological treatment that can be employed during this phase are: 

Aerobic processes: Based on aeration of the wastewater, this treatment 

process results in oxidation of the carbonaceous and nutrient material 
(substrate) by chemical reactions initiated when the biomass utilises these 

components for biological growth. The carbonaceous material is oxidised to 

carbon dioxide (C02) and the nutrients to more benign forms of the 

compound (Henze, 1997). 

o Anaerobic processes: This treatment process occurs in the absence of free 

oxygen or nitrate. The microorganisms breakdown the complex organic 

material by hydrolysis to smaller molecules. Acid-forming bacteria break 

these protein, fat and carbohydrate molecules into long-chained amino acid 

and fatty acids, amongst other. The products of this process are formic acid, 

acetic acid, methanol and ethanol, which are further broken down intoC02 

and methane (CH4). To successfully perform the degradation stages, this 

process requires a number of different types of bacteria, which are sensitive 
to factors such as pH, temperature, toxicity or even oxygen (Henze, 1997). 

o Anoxic processes: This treatment process occurs in the absence of free 

oxygen but in the presence of nitrate, which provides a source of oxygen for 

denitrifying bacteria. 

The principle of activated sludge plant is that of a mass flow of wastewater kept in 

continuous motion through the plant by gravity, mixing, aeration and pumping. Such 

approaches lead to a treatment that is performed in an effective and controllable 
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manner. However, it is essential to maintain the biology in the secondary phase long 

enough for biomass growth through contact with the substrate and the subsequent 

associated reactions. The length of time that the biomass remains in the secondary 
treatment is known as the sludge age. A balance between the sludge age and the 
hydraulic retention time (HRT) is necessary so that the process kinetics can take 

place. The Return Activated Sludge (RAS) feedback loop recycles sludge from the 

secondary clarifier to the aeration tank in order to maintain the sludge concentration. 
Excess sludge, which is wasted from the secondary clarifier, is treated separately 

with sludge collect from the primary clarifier. Sometimes, to supplement the nitrate 

concentration in the anoxic zone, an internal nitrate recycle may also be used. 
Typically, the anoxic zone (denitrification) is situated prior to the aeration 
(nitrification) tank. The internal recycle is a loop between the end of the aeration 
tank and the inlet to the anoxic zone. Various wastewater treatments also involve the 

addition of chemicals to allow removal of the phosphorus. The chemical treatment 

process consists of mixing a chemical (typically an iron or aluminium salts) that 
binds phosphate molecule and forrns floc that can be removed by sedimentation. It 

also contribute to pH adjustment; disinfection by chlorine or ozone; precipitation of 
heavy metals, often as hydroxides; precipitation of phosphate; conditioning of 

sludge; water softening, etc. (Smith, 2002). 

The tertiary treatment: Also known as effluent polishing or advanced treatment, it is 

implemented in few plants to further improve the wastewater quality discharged 

from the WWTP. This last treatment is often considered in the plant design when the 

treated wastewater has to be immediately reused for industrial or semi-industrial 

purposes (i. e. fanning). Otherwise, this solution can also be adopted if the receiving 

water has a relatively small flow and consequently low dilution. Basically, it consists 

of removing the fine suspended matter that remains in the effluent (i. e. after aerobic 
biological treatment) with a consequent reduction in BOD. Tertiary processes also 
include aquatic based natural treatment systems, maturation ponds, microstrainers, 

rapid gravity filters, slow and filter. Wastewater disinfection is also sometimes 

considered as tertiary treatment (Smith, 2002). 

Most of the monitoring and control strategies are centred in the secondary treatment, which 
is where most of the biological treatment occurs. Therefore, sensing technologies within this 
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treatment is of the main interest as the quality of the estimation provided by software sensors 
is directly dependent on the available instrumentation. 

Monitoring 

At present, and at most treatment plants, there is an infrequent monitoring of wastewater 

quality. When compared with other process industries, the automation of wastewater systems 
is not as developed as it should be. This is mainly caused by the hostile environment in 

which sensors must to be located (Bourgeois et al., 2001). Furthermore, widespread 

acceptance of sensors is complicated as many of the original WWTP are not designed to 

further be updates with ICA. 

A widespread perception is that sensors represent the weakest link for implementing on-line 

process control of WWTPs (Harremods et al., 1993; Vanrolleghem and Lee, 2003). On the 

other hand, during the last decade, the performance and reliability of many on-line sensors 
(e. g. nutrient sensors, respirometers) has improved remarkably and can be used directly in 

many different control strategies (Jeppsson et aL, 2002), or for on-line monitoring. Hence, 

the use of new monitoring equipment should be regarded as a valuable alternative to 

increasing reactor volumes for outdated treatment plants that require considerable investment 

in upgrading (Vanrolleghem and Lee, 2003). Ingildsen (2002), Bourgeois et aL, (2001) and 
Vanrolleghem and Lee (2003), provided detailed state of the art reviews of on-line 

monitoring equipment for wastewater treatment processes. The latter of these classified 

sensors in two basic types, surnmarised as follow: 

i) Simple, reliable and low maintenance 

ii) Advanced, high maintenance and mainly used in auditing, model calibration and 

optimisation. 

The most common sensors, in addition to the most advanced, are described in Table (2.1), 

reproduced (with permission from the lead author) from Vanrolleghem and Lee (2003). The 

ma . or contribution of the work proposed in this thesis is in application upon activated sludge 

processes. Therefore, a more detailed description of sensor characteristics follows. For 

further infon-nation about sensors in anaerobic digestion, nutrient removal and 

sedimentation, the reader is referred to Bourgeois et aL, (2001), Vanrolleghem and Lee 

(2003). 
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Physical measurements Physico-chemical measurements (Blo-) chemical measurements 
Variable Process Range Variable Process Range Variable Process Range 

Temperature G IV pH G V Respirometry 2,3 V 
Pressure G IV Conductivity G V Toxicity 2,3 V 
Liquid level G V Oxygen concentration 2,3 IV BODst 2,3 V 
Flow rates G V Fluorescence 2,3 3 COD 1,2,3 0 
Suspended solids G 3 Redox 1,3 tv TOC 1,2,3 IV 
Sludge blanket 4 3 NH4+ (ISE) 3 IV NH4+ 3 't/ý 
Sludgevolume 4 3 N03- (ISE) 3 3 N03- 3 V 
Settling velocity 4 0 Digester gas 1 3 Micro-scale NOx 3 V 
Sludge morphology G 0 (CH4, H2S, H2)CO2 1,2,3 'tý P04 3- 3 3 
Calorimetry 1 , 2,3 0 Bicarbonate 

alkalinity 1,3 3 
UV absorption G 3 VFA 1,3 0 

Process: Unit process in wastewater treatment plants where the sensor can be implemented 1: Anaerobic 
Digestion; 2: Activated Sludge; 3: Nutrient Removal; 4: Sedimentation; G: All processes. Applicability 
Range: V: State of the Technology; 3: Application in certain cases; 0: Requires development work 

Table 2.1 State of art on-line monitoring equipment for WWT processes 

(from Vanrolleghem and Lee, 2003) 

Sensors characteristics for activated sludge 

The DO sensor is probably the most widespread instrument within WWTPs. It is considered 

reliable and accurate but care is pre-requisite for proper location installation and for fouling 

prevention (Watts et al., 1990; Harremods et al., 1993). In activated sludge processes and the 

associated aeration cost, oxygen plays a key role that account for up to 40% of the running 

costs (Healey, 1989). This sensor is actively implemented for both the control strategies 

design, as proposed by Holmberg et al. (1989), Demuynck et al. (1994) and for monitoring 

of the central process of any activated sludge system (Vanrolleghem and Lee, 2003). 

Respirometry, which is an interpretation of the respiration rate of activated sludge, is 

frequently used in the description of wastewater and activated sludge kinetics. It is defined as 

the amount of oxygen per unit of volume and time that is consumed by the microorganisms 

in the activated sludge. Respirometers can be classified with two criteria: (1) the phase where 

oxygen is measured, and (2) the flow regime of both the gas and liquid phase, which is either 

flowing or static (Spanjers et aL, 1998). For details concerning respirometry, the reader can 

refer to Spanjers et al., (1998a), Spanjers et al., (1998b), Copp and Spanjers, (1999). 

The most widely used parameter of the biodegradable component of wastewater, which is 

measured off-line, is the standard 5-days Biological Oxygen demand (BOD5)- It is defined as 

a measure of the DO used by microorganisms for the biochemical oxidation of organic 
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matter in five days from the time when the test sample is seeded with a microbial system 
(Bourgeois et al., 200 1; Metcalf and Eddy, 2003). Further details about BOD can be found in 
Brookman, (1997), An et al., (1998) and Qian and Tan, (1998). The Chemical Oxygen 
Demand (COD) is one of the most intensively monitored variables in WWTPs. It is defined 
as a means of measuring the organic strength of domestic and industrial wastewater 
(Bourgeois et al., 2001). It is often implemented as batch systems and flow-through 
continuous COD monitors. Further details on these automated laboratory procedures can be 
found in Ademoroti, (1986), Korenaga et al., (1990) and Meredith, (1990). 

The Total Organic Carbon (TOC) measurement has become more common since its 

appearance in the seventies (Bourgeois et al., 2001). It is usually utilised for the conversion 
of organic carbon to carbon dioxide and measuring this product in the evolving gas phase, 
generally with an infrared off-gas analyser (Vanrolleghern and Lee, 2003). An interesting 

comparison between TOC, BOD and COD tests, in obtaining infon-nation about the kinetic 

processes in a rotating biological contactor system, is performed by Wilson (1997). UV- 

absorbance measurements were introduced in the early fifties to assess the quality of an 
effluent (Dobbs et al., 1972). It consists of an interaction of light with a sample and can be 

classified in two categories (Bourgeois et al., 200 1): 

1) Light absorption measurements (UltravioletNisible (UVNIS) spectrophotometry, 
Infra Red (IR) spectrometry. 

2) Fluorescence (spectrofluorometry). 

The most common technology is based on optical methods, despite the significant progress 
fibre optic technology has made in the last decade. Bourgeois et al., (2001) and 
Vanrolleghem and Lee (2003), provided a detailed review of these technologies. 

State of the art sensing 

State-of-art sensing is moving toward new tools such as infrared optical sensors for water 

quality monitoring, which are a promising concept with regards to continuous assessment of 

pollution levels in the liquid and gas phase (Mizaikoff, 2003). Moreover, microelectrode 

array sensors for water quality monitoring have been developed and applications including 

dissolved oxygen in activated sludge and preliminary measurements of trace arsenic are 

available (Gobet et al., 2003). New chalcogenide glass chemical sensors for Sulphide (S2-) 
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and dissolved hydrogen sulphide (H2S) monitoring are proposed by Miloshova et aL (2003), 
to allow reliable process control of the natural potential of hydrogen (PH) of wastewaters. 
Furthermore, a submersible UVNIS spectrometer for in-situ real time measurement has been 
developed to simultaneously measure the COD, filtered COD, TSS and nitrate with just a 
single instrument (Langergraber et al., 2003a). Russell et al. (2003), demonstrated through 
laboratory analysis that non-contact measurement of wastewater suspended solids and 
organic load based on measurements of light scatter and fluorescence is a viable method. 

To monitor the activated sludge activity on which the performance of the treatment plants 
depends, an integrated sensor has been developed. This last one is shown to successfully 

monitor and provide in-depth insight into nitrification, denitrification and carbon source 
degradation processes occurring in Biological Nutrient Removal (BNR) plants (Sin et al., 
2003). Even if respirometry is considered reliable, it is not employed as a standard tool for 

monitoring due to the long experimental time that is required. Therefore, Langergraber et al. 
(2003b) proposed a rapid automated detection to measure on-line the nitrification kinetics 

and nitrification inhibition. Alex et al. (2003a) successfully studied the advantages and 

practical applicability of a wireless communication tool. The author and co-workers 

proposed on-line measurement data of wastewater systems via Wireless Application Protocol 

(WAP) mobile phones for the use in remote facilities where no staff are available. 

Information concerning progress in sensor technology for activated sludge systems is given 
by Rieger et al. (2003) and Alex et al. (2003b). Challenges and solutions required for 

multivariate online monitoring of modem WWT operation are discussed in details in Rosen 

et al. (2003). 

Actuators 

For a description of actuator technology that is commonly used in WWTPs, the reader can 

refer to Section (2.2, e. g. motors, pump, flow etc. ) and/or to Marinaki et al. (2003) and 

Metcalf and Eddy (2003). Indeed, actuators are similar for sewer systems and WWTPs. 

The receiving water 

The receiving water considered within this thesis is a river, as this is the most common 

discharge point for effluent from the WWTP and since the CSOs typically spill into rivers, 
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stream or brooks. Wastewater discharged impacts on the receiving water are generally 
grouped into chemical, bio-chemical, physical, hydraulic, hydrologic, hygienic and aesthetic 
impacts (Rauch et al., 1998). Urban rivers are commonly associated with other functions 

such as fishing, drinking water production, transport, recreation, irrigation and habitat for 

aquatic fauna. Combination of the quality and quantity of the water in the river is a key point 
for achieving "good" quality, in terms of ecological status and chemical quality, of the 

receiving waters. In other words, the effluent quality and quantity from the WWTP will 

govern the existence or extinction of the aforementioned functions. 

The sewer and the WWTP are not the only inputs to the system that can govern the water 

quality of the receiving water. Processes taking place in the receiving water (i. e. bacteria) 

should also be considered as they play an important role in the conversion processes. The 

water quality of the receiving water can be judged on the basis of several parameters that are 

usually classified as (Meirlaen, 2002): 

- Physical: Temperature, conductivity and turbidity. 

- Chemical: DO, BOD or COD, pH, alkalinity, hardness, nutrients (nitrogen and 

phosphorous), toxic compounds and organic volatile compounds. 

- Biological/ecological: Biocenosis of bacteria, coliforrn bacteria, plants and 

animals, and variety and complexity of the food chain. 

It should be emphasised that these parameters all interact between each other and are crucial 

for providing information on the quality of the receiving water. 

Monitoring 

Over the past decade, the advance in monitoring of water quality in the receiving waters has 

been growing steadily (Butterworth et al., 2002), as a consequence of the general progresses 

made in the field of environmental monitoring. Gunatilaka and Dreher (2003), and 

Butterworth et al., (2002) review these developments related to robust chemical and 

biological sensors. The progresses in micro-electronics in the past two decades contributed to 

the advancement of sensor technology for real-time monitoring, data collection and data 

transmission (Gunatilaka. and Dreher, 2003). However, sensors are still the weakest part of 

the monitoring and control chain (Lynggaard-Jensen et al., 1996). 
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The physical-chemical parameters that are typically continuously measured are: pH, 
temperature, molecular dioxygen (02) concentration, turbidity and conductivity. The most 
commonly measured concentration is the DO, depletion of which can be caused mainly by 
the degradation of soluble organic matter and chemical oxidation of reduced pollutants. Low 
DO concentrations can drastically affect the aquatic life of the receiving body (e. g. river). 
Therefore it is important to maintain its concentrations within thresholds to allow a self- 
purification power of the receiving water. Detection and monitoring of micropollutants such 
as pesticides and industrial pollutants occurred only with the sophistication of the chemical 
technology. It should be emphasised that the on-line sensors developed for the receiving 
body differ slightly from the ones commonly used in WWTPs. Indeed, to satisfy the 

environmental regulators for natural water investigations, lower detection limits are required. 

State of the art sensing technologies 

A consistent review of novel on-line sensors such as screen-printed biosensors, lateral flow 

devices, protein microarray technology etc., which are quite promising and differ from 

conventional sensors, are reviewed in Butterworth et al., (2002). The development of 

sensitive and specialised biosensors has been possible since power tools from biochemistry, 

molecular biology and genetics are available (Janata et al., 1998; Nielsen et al., 2000; 

Wilderer et al., 2002). Mietzel et al., (2003), proposed a quick way to predict bacteria 

contamination by observing different on-line parameters such as flow, conductivity or 

spectral absorption coefficient. The author and co-workers concluded that exceeding the 

bathing water standard for bacteria can be predicted by evaluating the spectral absorption 

coefficient with an acceptable accuracy (e. g. only after several days). Such results are 

promising as the main parameter to monitor the quality of bathing waters (e. g. urban river) is 

known as the fecal coliforin bacteria, which so far, cannot be rapidly monitored (e. g. twice a 

year). 

Marini and Weilguni (2003), proposed an hydrological information system based on an on- 

line monitoring telemetry network. The preliminary results of their system (implemented in 

the Brantas, river basin, East Java, Indonesia) illustrated the possibility of continuous 

measurements of indicative parameters (e. g. water temperature, conductivity, pH, DO, 

turbidity and nutrients) for early warning, control and polluter identification. Operational 

problems and experiences of collecting data over a period of one year are presented in Pressl 

et aL, (2004). The author and co-workers implemented in-line sensors in the Danube River to 
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measure long time behaviour as well as spot-events (e. g. CSOs). However, they concluded 
that the proposed sensors required supervision by a controlling concept, as the automatic 

calibration of their analyser was non-existent. 

Actuators 

There are very few actuators implemented in the receiving water. For instance, design of 

control strategies with respect to the river are quasi non-existent. However, moveable weirs 

and gates are some of the only actuators available in river control. In addition, it is also 

suggested by Schutze et al., (2003) that no important developments will occur in the field of 

actuators as exiting ones could be utilised in a more creative way and objective drive. As the 

focus of in-river conditions is becoming of main interest, developments of applications 

including actuators in the river (e. g. aeration, flow regulation) might become a solution in the 

next future. 

The aforementioned review of monitoring equipment motivates the need to further improve 

the instrumentation toward IUWSs. This progress can be achieved by designing new 

approaches based on mathematical models that can describe the urban wastewater system. 

Indeed, modelling plays a key role in the development of monitoring equipment as it can 

contribute in providing technical solutions at a minimum price. 

2.3) MODELLING OF THE IUWS SYSTEM 

As for many industrial processes, models have always played an important role in the 

process design. Jepsson (1996), defined mathematical models as follow: 

'Mathematical models are an excellent method of conceptualising knowledge about a 

process and to convey it to other people. Models are also useful for formulating hypotheses 

andfor incorporating new ideas that can later be verified (or discard) in reality'. 

The challenges in mathematical modelling lie in the aspect of describing complex systems 

using sets of differential equations. This task could be straightforward in an ideal world but 

unfortunately; our world is different in reality. A good and consistent introduction to 
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mathematical modelling can be found in Jeppsson (1996). The reader is also referred to 
Murthy et al., (1990), for further information on fundamental mathematical modelling. 

Integrated modelling of an urban wastewater system can be seen as an approach of 
modelling the interconnection between all sub-systems (e. g. the sewer system, the WWTP 
and the receiving water). Therefore, the following description is intended at describing the 
models utilised in representing the integrated system as well as providing simulation studies 
of the full-scale model. A schematic overview of the integrated model under study in this 
thesis is displayed in Figure (2.3). The sewer model, proposed by Linblom, is detailed in 
Linblom et al., (2005a), while the river model, based on the River Water Quality Model 
No. 1 (RWQMI, Reichert et al., 2001a), is partially illustrated in Linblom et al., (2005b). 
Note that the IUWS is still under development and validation by the last author. The WWTP 
considered is the IWA/COST Benchmark Simulation Model No. I (BSM I, Copp, 2002). 

Influent modelling 

The provision of influent data as sewer input is a prerequisite for modelling the urban 
systems dynamics. The influent model structure of the sewer system considered in this thesis 
is that presented, and provided by Gernaey et al., (2006). 

Wastewater Eq. Trunk Eq 
Primary Activated 
clarifier sludge basin 1 sewer basin 2 

IN 

Stounwater CS01 CS02 
IDES 

Baseflow 

River 

Secortdary 
clarifier 

0>\ 

- "-/ 
EFF 

T 
SES 

Figure 2.3 The integrated urban wastewater system model. EFF - Effluent. 

PES - Primary Excess Sludge. SES - Secondary Excess Sludge. 

It is based on phenomenological models (not mechanistic as they do not contain the detailed 

process knowledge of specific processes), which reproduce typical phenomena observed in 

the influent of full-scale Vv'WTPs, with a minimum number of parameters (Gemaey et aL, 
2006). More precisely, it consists of 360 days of influent data that includes diurnal, weekend, 
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seasonal (e. g. temperature) and holiday effects, as well as rainfall. Further details on the 
modelling aspect of the influent wastewater data are available in Gernaey et al., (2005). 

The trunk sewer 

The influent data enters the sewer through equalisation basins. The water motion in a sewer 
network is generally modelled utilising an application of the unsteady open channel flow 

model, based on the Saint Venant equations. This approach allows an accurate description of 
the hydraulic effects, to an extent that 'if the simulation does not fit the data very well, then 
the information about the system may be faulty, rather than the model itself' (Harremods and 
Rauch, 1999). In order to make the St. Venant equations applicable for surcharged flows, 
Preissmann (1961), introduced the concept of hypothetical open slot at the top of the pipe. 
However, flow routing models have been developed since the solution of the St Venant 

equations (or their approximation) is computationally demanding. This underlying concept, 

which consists of cascaded reservoir in series with the water being routed downstream, is 

considered here. This approach has been initially selected because it allows rapid 

simulations. On the other hand, effects such as pressurised flow and backwater cannot be 

(directly) simulated. 

The modelling approach that is commonly used to describe the sewer processes involves the 

use of the SOBEK and Mouse models. These packages include the studies of CSOs, sanitary 

sewer overflow, design of new site developments, RTC schemes development, analysis, etc. 
(Zacharof et al., 2003). However, these models are not considered in this thesis mainly 
because they do not include a WWTP. The selected model for biological transformations in 

the trunk sewer, which is based on the same terminology as the ASM I model, was developed 

by Vollertsen and Hvitved-Jacobsen (2000). 

Hydraulics and dimensions 

The trunk sewer, detailed in Figure (2.4), is a conduit that transports wastewater from the 

first equalisation basin to the second equalisation basin, located just ahead of the WWTP. 

The length (L=2000 meter) of the pipe is modelled as a series of sixteen completely mixed 

reactors (n=16) with variable volumes. The pipe, geometrically a sequence of identical 

cylinder stretches, is characterised by a maximum flow rate obtained when the pipe is 
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completely full due to gravity, an inner pipe diameter and a total length (Linblom et al., 
2005a). 

d 

W, (Q 

kg Li 
w-- 0. 

Figure 2.4 The concept of the trunk sewer model. It is composed of a series of 
16 completely mixed reactors (n=16) with a the length of pipe 
being L=2000 meters 

The hydraulic capacity of the trunk sewer is assumed to be twice the hydraulic capacity of 

the WWTP, 5000 M3 /h, corresponding to a diameter of d=1 m and a slope of 3 min/m. No 

sedimentation is assumed to take place in the trunk sewer pipe. The hydraulic mass balance 

for each stretch is given by: 

dulAaj (t) I 
dt = Lln 

( Qj-, (t) - Qj (t) 

where Aj(t) Is the water filled cross-sectional area of segment stretch j (M2 ) and Qj-, (t) and 

Qj(t) are the influent and effluent flow rates of stretchj, respectively. The outflow depends 

on the fill factor (h(t)ld) and is calculated according to an empirical equation derived by 

Bretting ( 194 1 ): 

Qfull = 0.46-0.5cos /7 d+0.04 - cos IT 
d 

(2.2) 

where hj(t) is the water level height and Qf,,,, is the flow rate when the pipe is completely full 

due to gravity. The biological and chemical processes in the trunk sewer are modelled with 

fourteen state variables, which are described in Table B. I of Appendix B, and can be divided 

into COD and nitrogen components, and finally a state describing the sewer stretch volume. 

in much, the process model follows Hvitved-Jacobsen et al. (1998). 
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Process reactions and model parameters 

Eight processes are considered to describe the biological reactions as described: 

1. Reaeration 

2. Aerobic growth in bulk water 
3. Biofilm biomass growth 
4. Maintenance energy requirements. 
5. Aerobic hydrolysis, fast. 

6. Aerobic hydrolysis, slow. 
7. Hydrolysis of entrapped organic nitrogen 
8. Ammonification 

Processes one to six are based on the process model derived in Vollertsen and Hvitved- 

Jacobsen (2000). The kinetic and stoichiometric parameters are also adopted from this paper. 
The implementation of the fourth process is not identical to the one in its original paper. The 

formulation here requires that the readily biodegradable substrate (Ss) is always present and 
that the heterotrophic active biomass in the water phase (XBw) does not support maintenance 

energy (endogenous respiration). To fulfil nitrogen balances, the sixth and seventh processes 

are implemented similarly to the ASMI model. However, anoxic processes are not 

considered since an absence of autotrophs is assumed. Furthermore, the re-aeration process 

requires an abundance of hydraulic and geometrical parameters to be calculated which lead 

to a large number of outputs (Linblom et aL, 2005a). 

Equalisation basins 

At the beginning and end of the trunk sewer, overflow structures allow water to be 

discharged directly to the recipient if the flow rate exceeds the hydraulic capacity of the 

system. The two-equalisation basins are modelled as completely mixed 1000 m' variable 

volume reactors with an outflow that is proportional to the actual volume: 

Q(t) - 
Qmax V(t) 
Vmax 

(2.3) 

where Q(t) is the equalisation basin effluent, Qma,, denotes the capacity of the downstream 

unit (in this case the trunk sewer or WWTP) and V,,, a,, the volume capacity of the equalisation 
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basin. When the basin is full, the maximum flow rate is passed on to the downstream pipe 
while the remainder is discharged as a combined sewer overflow: 

Qoverflow (t) Qin (t) - Q(t) -V if V(t) max and Qj,, (t) > Q(t) 
Qoverflow (t) 0 

(2.4) 

else, the hydraulic mass balance for the equalisation becomes: 

dV 
-, - -": Qin (t) - Q(t) - Qoverflow (t) (2.5) dt 

The equalisation basin model does not describe settling, and no distinctions are made 
between dissolved and suspended components. The biological model for the equalisation 
basin is the same as for the trunk sewer with one exception: reaeration is not modelled. The 
inputs to the equalisation model block mimic the ones to the sewer trunk (Linblom et al., 
2005a). 

Modelling of the activated sludge process 

Wastewater treatment processes are generally described by complex nonlinear systems that 
include biological, physicochemical and biochemical processes. The model considered state 

of the art for modelling biological nitrogen removal processes is the ASMI model of the 

International Water Association (IWA, Henze et al., 2000). This model, which describes 

carbon removal and nitrification-denitrification processes, is used intensively since it was 
first been introduced in the 1980s. It is a complex non-linear model due to multiple time 

scale dynamics, large perturbation in flow and load, together with uncertainties concerning 

the composition of the incoming wastewater (Alex et al., 1999). The state variables 
description is displayed in Table B. 2 of Appendix B. The eight processes that are considered 
in the description of the biological reactions of the ASMI model are listed in Chapter IV, 

Section (4.1). 

In 1995, the Activated Sludge Model No. 2 (ASM2), which is more complex than the ASMI 

model, was introduced to describe nitrogen removal and biological phosphorous removal. At 

this time, the role of denitrification in relation to biological phosphorous removal was still 

unclear and was not described by the model. However, in 1994, the development in research 
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was fast enough to expand the ASM2 model to the Activated Sludge Model No. 2d (ASM2d) 

where Phosphorous-Accumulating Organism (PAOs) were included for improved modelling 
of the processes (Henze et al., 1999). 

In 1998, the ASM3 model was developed to: (1) create a tool for use in the next generation 
of activated sludge models (Henze et al., 2000), and (2) overcome some defects in the ASM I 

model which became evident when intensive research was performed on the basis of the 
ASMI. The ASM3 model was initially developed for biological nitrogen removal, with 
principally the same goal as the ASM I (Gernaey et al., 2003) but its main objectives remain 
to correct a number of defects that have appeared during the intensive usage of the ASMI 
(GuJer et al., 1999). 

In this thesis, the original benchmark simulation model no. I (Copp, 2002) is considered as a 
description of the real WWTP. The ASM I model is selected to describe the biological 

processes in the activated sludge reactors. This selection is motivated since the BSM1 model 
is extensively used in the industry. Furthermore, according to Jeppsson and Pons (2004), the 

benchmark plant is a success as more than hundred scientific publications, in which the 

model is fully or partially considered (influent files, plant performances evaluations), can be 

found in literature. In other words, the advantage of using the benchmark plant is that any 

researcher can perform a comparative study based on the finding. Therefore, the work 

provided in this thesis could be eventually utilised by others or lead to further investigations. 

IWAXOST Benchmark Simulation Model No. 1 (BSM1) 

The original benchmark plant, as displayed in Figure (2.5), consists of 5 activated sludge 

tanks in series (2 anoxic ones +3 aerobic ones), followed by a secondary settler. 

Anoxic; Anoxic; Aerobic; Aerobic; erob1c; 
Influent V= V= v- 

4 
V= V 

4 

1000 M3 1000 M3 333 M3 1 1333 M3 1 333 M3 

Reactor I Reactor 2 Reactor 3 Reactor 4 Reactor 5 

Seftler 
Effluent 

Internal recycle 

Sludge recycle 

Figure 2.5 Original benchmark plant considered in the thesis. 

Waste sludge 

36 



Chapter 11: The Integrated Urban Wastewater System 

There are two recycle streams, one for transport of nitrate rich mixed liquor from the last 
aerated tank to the first anoxic tank, and one for transport of concentrated sludge from the 
bottom of the settler to the first anoxic tank. The ASMI model (Henze et al., 2000), is 

selected to describe the biological processes in the activated sludge reactors. A ten-layer one- 
dimensional settler model applying the double -exponential settling velocity function 

proposed by Takdcs et al. (1991) is chosen to describe the settling process. All simulations 
are performed on a Matlab/Simulink platfonn, based on the open-loop benchmark 

configuration. Figure (2.6) display the three different influent files, which contain 14 days of 
influent data at 15-minutes intervals, available with the benchmark plant. The constant 
influent wastewater data file is not represented here for reason of simplifications. 

X 104 Influent wastewater data prmAded with the fWA/COST BSM1 plant 

dry-weather influent data 
4 

ol 

X 104 

6 
rain-weather influent data 

4 

2 

0 

104 

6 

storm-weather influent data 

4 
co E 

02 

ol IIIII 
0268 10 12 

time (days) 

Figure 2.6 Dry, rain and storm influent wastewater data available within the 

IWA/COST benchmark simulation model no. 1. 

14 

These influent wastewater data mimic real wastewater characteristics typical for a plant of 

the chosen size and are defined as follow (Copp, 2002): 
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The 'dry weather' file represents a set of data equivalent to normal diurnal variations 
in flow and COD load. 

The 'ston-n influent' is a variation of the 'dry weather' file added with two different 

storm event. The first one is of high intensity and short duration and is expected to 
flush the sewer of particulate material, and the second one assumes that the sewer is 

cleared of particulate matter during the first storm event. Therefore, a small increase 
in the COD load can be observed during the second storm. 

The rain influent represents a long event where the influent flow does not reach the 
level attained during the ston-n events, and where the increase flow is sustained for a 
longer period of time. 

The flow-weighted average concentrations of the influent components for the three different 

influent files are displayed in Table (2.2). 

Components dry weather stonn influent rain influent Units 
S, 30 28.03 25.96 g COD rn-3 
ss 69.50 64.93 60.13 g COD IW3 

X, 51.20 51.9 44.30 g COD M-3 

xs 202.3 193.32 175.05 g COD M-3 

XB, H 28.17 27.25 24.37 g COD M-3 

SNH 31.56 28.48 27.30 gN M-3 

SND 6.95 6.49 6.01 gN M-3 

XND 10.59 10.24 9.16 gN M-3 

Q 18446 19745 21320 m3 day-' 

Table 2.2 Flow-weighted average influent composition in the influent files. 

(source: Copp, 2002) 

The dry and storm influent wastewater data presented in Figure (2.6) are selected for the 

work presented in Chapters IV to VI. Indeed, when the benchmark plant is not run within the 

IUWS, theses files are essential to mimic the influent of the WWTP. For the final case study 

presented in Chapter VI, where the IUWS is considered, the influent file presented in 

Gernaey et aL, (2006) and discussed in Section (2.3) is considered. 
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Sensors available with the BSM1 model 

The common sensors that are available with the IWA/COST benchmark plant, as well as an 
example of their characteristics, which are mainly considered in this work, are summarised 
in Table (2.3). The benchmark plant is in constant development and the most updated 
information are available on the COST Action 624 benchmark web site 
(http: //www. ensic. u. nancy. fr/ COSTWWTP/). 

Delay 
(minutes) 

Low-level 
detection limit 

Sampling time 
(minutes) 

Oxygen (So) - 0.1 continuous 
Nitrate and nitrite nitrogen (SNo) 10 0.1 10 

NH4+ +NH3 nitrogen (SNH) 10 0.2 10 
Total suspended solids JSS) - - continuous 
Influent (= effluent) flow rate (Q) - - continuous 

------ - - - Readily biodegradable substrate (Ss) ------- ------- 30 ---------- ---------- 0.1 ---- ----- ----------- 30 
Slowly biodegradable substrate (Xs) 30 0.1 30 

Table 2.3 Typical on-line measurements and off-line analyses (Ss and Xs) 

coefficients that are considered (non-exhaustive) within the BSM1 

plant configuration. 

Sensor location is not investigated in the scope of this work. For further inforination on the 

plant, sensors and control strategies, the reader should refer to Copp (2002). 

Modelling of the river system 

Water quality changes in rivers are mainly caused by physical transport and exchange 

processes (e. g. diffusion/dispersion), and biological, biochemical or physical conversion 

processes (Zacharof et al., 2003). The historical development of oxygen, nitrogen and 

phosphorous models, which has become increasingly complex, was initiated with the 

pioneering work of Streeter and Phelps in 1925. This work contributed to development of the 

Enhanced Stream Water Quality Model (QUAL2E), which is widely used (Reichert et al., 

2001a), and includes nutrient cycling and algae. However, even though the fundamental 

conversion processes in surface water are similar to the ones in WWT, the model description 

is incompatible with the ASM models (e. g. ASMI, ASM2, ASM2d, ASM3; Henze et al., 

2000), which has severe implication when defining interfaces. 
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Therefore, the IWA (formerly IWAQ) formed a Task Group on River Water Quality 
Modelling in 1997 to mainly overcome this compatibility limitation and others defects that 

are described in Shanahan et al., (1998) and Reichert et al., (200 1 a). The fundamentals of the 

model as well as guidelines for selecting the appropriate model structure and hydraulic 
formulation can be found in Shanahan et al., (2001); Reichert et al., (2001b) and 
Vanrolleghem et al., (200 1). 

River characteristics 

The river that is selected for this work is 2560 meters (in) long with a maximum depth H= 

10m. The inputs to the river are a constant base flow, the two combined sewer overflows and 
the WWTP effluent. The constant base flow increases from the beginning of the river and 
down stream as 0.1728. L, where L is the length position. The river is divided into 9 reaches 
in which uniform flow is assumed. A truly uniform flow is one in which the velocity is the 

same in both magnitude and direction at a given instant at every point in the fluid. Each 

reach is characterised by a constant cross section, as represented in Figure (2.7), and length. 

'i-hn 
Hh 

b 

Figure 2.7 Cross section profile of a river reach. 

m 

1 

The most widely used equation for describing the uniform flow in open channels is the 

Manning formula, which is given by: 

Q(t) =1 A(t)Rh (t)213soII2 

n 
(2-6) 

where A(t) is the water filled cross sectional area, n is the friction factor, Rh is the hydraulic 

radius (A(t)IP(t)) and So is the bed slope. According to Figure (2.7), the water filled cross 

sectional area (A) is given by: 

A(t) = bh(t) + mh(t)2 = (b + mh(t))h(t) (2.7) 
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where m is section side slope given by: 

T-b 
2H (2.8) 

The wetted parameter P is given by: 

P(t) =b+ 2ý(l (2.9) 

If the slope and friction factor are assumed to be constant, it can be shown that the flow rate 
is given uniquely by the water level height h(t) as represented in Figure (2-8). 

Figure 2.8 Flow rate dependence on the water level height 

The differential equation for one river reach becomes: 

dV(t) 
Qin - Q:::: Qin- cLA(t)R 

(t)2/3 (2.10) 
dt H 

where a=(m/RH)O Similarly to that of the sewer, the question is how the height is related to 

the volume? This can be achieved with 

A(t) =V (t)l L= bh(t) + mh(t 
)2 

_> (2.11) 

h(t )2 +bh (t L(-t) 
--> h(t) 

b+b2+ V(t) 
(2.12) 

m Lm 2m 4M2 Lm 

Thus, for each change in volume, a new water level height is calculated followed by a new 

outflow, using Equation (2.6). The state variables considered in the river model are displayed 

in Table B. 3 of Appendix B. 
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Process reactions 

Thirteen processes are considered to describe the biological reactions as described: 

1. Aerobic growth of heterotrophs with NH4 

2. Aerobic growth of heterotrophs with N03 

3. Aerobic endogenous respiration of heterotrophs 

4. Anoxic growth of heterotrophs with N03 

5. Anoxic growth of heterotrophs with N02 

6. Anoxic endogenous respiration of heterotrophs 

7. Growth of first stage nitrifiers 
8. Aerobic endogenous respiration of first stage nitrifiers 
9. Growth of second stage nitrifiers 
10. Aerobic endogenous respiration of second stage nitrifiers 
11. Hydrolysis 

12. Adsorption of phosphate 
13. Desorption of phosphate 

For further information about the above-mentioned processes, the reader can refer to 

Reichert et al., (200 1 b). 

Interactions between the sewer, WWTP and river 

There are several interactions between the sewer system, the WWTP and the receiving water. 

These interactions are important and it is essential to simulate any control strategies on the 

full-scale urban wastewater system rather than concentrating the efforts individually on each 

element. The impact of these interactions, such as combined sewer overflow spill or the 

quality of the effluent from the WWTP, can create harmful levels of pollutants in the 

receiving water. The first element that interacts with the urban wastewater system is the 

sewer, which clearly affects the WWTP effluent quality, dependent upon the wastewater 

quality of the incoming water. Subsequently, a single CSO event, which depends upon the 

dilution capacity of the receiving water, can contribute to an increase in the pollutant 

concentration in the river. Furthermore, CSOs play an important role in increasing the 

oxygen demand in the river, primarily responsible for a decrease in oxygen concentration, 

which leads to toxic compounds in the receiving water (Meirlaen, 2002). The CSOs now 

impact on the receiving water is detailed in next section through a simulation study. 
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Simulation study 

The IUWS simulations are performed using the Matlab/Simulink platform with a dynamic 
influent wastewater data (Gernaey et al., 2005). It is initially simulated during 130 days, so 
that constant daily average loads are established. This approach allows sediments to be 

concurrently accumulated until reaching equilibrium (i. e. the amount that settles in the 

sediment storage equals the amount that is resuspended). Wastewater passes through the 

trunk sewer without any discharges via the two combined sewer overflows. The CSOs effect 

on the river is displayed in Figure (2.9). A Simulink block diagram representation of the full- 

scale model is displayed in Figure (2.10) (Linblom et al., 2005a; 2005b). 

x 10 5 CSOs and flow effects on the river 
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Figure 2.9 CSOs and flow effects on the river model - (dotted line) dynamic 

influent wastewater data to the sewer network - (dashed line) 

CSOI occurring when the I" equalisation basin is full - 

(dotted/dashed line) CS02 occurring when the 2 nd equalisation 

basin is full - (solid line) effluent at the 4" reach of the river 

model. 
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It can be observed from the simulation results presented in Figure (2.9) that the dry influent 
flows, entering the sewer network, augment after two days, before increasing intensively to 
reach its maximum peak after about five days. The CSOs from the second equalisation basin 
start occurring (after 2.5 days) before the one from the first equalisation basin (after 2.8 
days). This is due the capacity of the storage tanks from the 2 nd equalisation basin, which is 
less important than the first one. The CSO spill out the untreated wastewater directly into the 
river and an increase of the river flow is observed. The effects in the river will lead to 
oxygen depletion, and increases in levels of ammonia. Further details on the IUWS system 
are presented in Linblom et al., (2005a; 2005b), as well as some model responses. However, 

at current time, this model is not further investigated, as the above authors are in the 

validating phase of the IUWS. 

2.4) SUMMARY 

This Chapter has provided a brief introduction to the integrated urban wastewater system 

composed of the sewer network, the WWTP and the river. The most common technology 

utilised in the design of sewer network is the combined one, even taught it is regarded as 

causing high pollution and hygienic risks. To treat the wastewater entering the plant from the 

sewer network four stages are generally required: preliminary, primary, secondary and 
tertiary treatments. The main objective is the reduction of nitrogen, phosphorous, organic 

matter and suspended solids. The secondary treatment, particularly the activated sludge 

process, is the most widespread treatment. This aerobic biological treatment is utilised as a 

culture of bacteria suspended in the wastewater in an aeration tank to absorb, absorb and 
biodegrade the organic pollutant. Therefore, a particular attention will be devoted to the 

design of state observer and software sensors on the activated sludge model no. l. The 

receiving water that is considered in this work is a river, as this is the most common 
discharge point for effluent from the WWTP and as the CSOs typically spill into rivers. A 

state of the art review in sensing technologies is also provided for each sub-system, as well 

as a brief discussion on actuators. 

The selected IUWS model is described in this Chapter and concentrates on the sewer 

network, WWTP and river models. Firstly, the selected influent wastewater data entering the 

trunk sewer, which reproduces typical phenomena observed in the influent of full-scale 

WWTPs, is briefly discussed. Secondly, the hydraulics and dimensions, and processes that 

that are considered for the trunk sewer and the equalisation basins are provided. Thirdly, the 

45 



Cha Urban Wastewater System 

COST simulation benchmark, which is selected as the real plant in this work, as well as the 

typical sensors that can be eventually modelled, is briefly discussed. Fourthly, the river 

characteristics and process reactions of the RWQMl model are described, as it is selected to 

describe the receiving waters. The interactions between all sub-systems are also briefly 

discussed. Finally, a simulation study is proposed to illustrate the CSOs flow effects on the 

river. 
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Chapter III 

Non-linear State and Parameter estimation 

In this chapter, some theories behind non-linear state and parameter estimation are presented. 
The historical review of the most common software sensors is initially proposed. The choice 

of selecting Kalman and H filtering as the basis for this work is explained as well as the 

advantages and drawbacks of these techniques. Then, the theories associated with linear and 

non-linear observability are derived as it represents the fundamental of observer designs. 

Subsequently, the linear and extended Kalman and H,,,, filters are derived as well as the 

parameter identification algorithms. These types of software sensors are generally considered 

as the main tools in achieving joint state and parameter estimation to bioprocesses. 

Therefore, two examples of activated sludge processes are proposed where on-line observers 
based-EKF and EHF are applied on simple and augmented models. Results are illustrated 

through simulation studies. The advantages and drawback of the proposed software sensors 

are discussed. Parts of the material in this chapter are covered in Benazzi et al., (2003); 

Benazzi and Katebi, (2004); Benazzi et al., (2005c); Benazzi and Katebi, (2006). 

3.1) HISTORICAL REVIEW 

Estimation problems can be regarded as a subset of the class of approximation problems. The 

approximation problem can be stated as being the approximation of an unknown quantity 

from a combination of known quantities. The theory behind estimation date backs since 1632 

and is attributed to Galileo Galilei (Wilson, 1972). Methods based on time averaging, which 
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is generally referred to as a least square estimation method, are essentially deterministic. 
Even though Legendre, in 18 10, first published the least squared method (Legendre, 18 10), it 
is generally attributed to Gauss who, according to Kaillath (1974), first employed the 
technique in 1795 for the planetary motion estimation problem. The pioneers in the 

application of the least squares technique to stochastic processes are Kolmogorov (1939, 
194 1) and Wiener (1949). 

Kolmogorov provided a comprehensive treatment of the prediction problem for discrete-time 

stationary processes (i. e. inexistent time variations of the statistic properties of the random 
process) but however, didn't develop an explicit formula for the optimum linear predictor. 
On the other hand, Wiener, who was working independently on anti-aircraft fire-control 

problems, derived an equation for continuous time. It is known as the Wiener-Hopf integral 

equation, which is based on a spectral factorisation method. Many extensions and 

generalisations followed Wiener's work based on stationary cases (e. g. Zadeh and Ragazzini, 

1950; Bode and Shannon, 1950) prior to the development of solutions for non-stationary 

processes (e. g. Darlington, 1958; Shinbrot, 1958). Unfortunately, the application of Wiener's 

filtering technique is faced by several difficulties, which are summarised as follow (Elsayed, 

1988): 

1) The Wiener filter is only valid for stationary cases, as non-stationary processes 

require a new derivation of the integral equation, which is not straightforward. 

2) Only the solution to single variable systems is considered with the Wiener filtering 

approach. Even if generalisation to multivariable cases has been made, new analysis 

is required and the procedure remains complex. 

3) The derivation of the Wiener-Hopf integral equation is not transparent and 

inappropriate for machine computation from a mathematical viewpoint. 

In 1960, R. E. Kalman presented a new approach to the prediction and filtering problem 

(Kalman, 1960) based on the solution to the Minimum Mean-Square Error (MMSE). Many 

authors regard Kalman filtering theory as the most significant contribution to the filtering 

and prediction theory since Wiener' work. Indeed, most of drawbacks encountered with the 

Wiener filter were eliminated with Kalman's theory. These are summarised as follow 

(Elsayed, 1988): 
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1) The linear dynamic system is described by state space form, which makes machine 

computation and MIMO applications easier. 
2) Both stationary and non-stationary random processes, and single-variables and 

multiple -variables, are treated in a unified framework. 

From this time and due to a large evolution in digital computing, research has focused on this 

filter and its applications, particularly in the area of ships, spacecraft, aircraft and navigation 

systems. These types of computer-based sensors are called software sensors when 

perfon-ning joint state and parameter estimation on-line. The term 'observer' (or state 

observer) is sometimes utilised when performing state variables estimation only and 
'parameter estimator' when internal model parameter estimation is performed (Bastin and 
Dochain, 1990). 

The extended Kalman filter, which is an extension of the KF originally developed for linear 

model, is widely utilised to perform state and/or parameter estimations on non-linear 

dynamic systems. This particular type of algorithm, which is presented later in this chapter, 

consists of linearised versions (e. g. the linearised tangent model) of the process dynamics, 

which are computed from Taylor's series expansions of a state space model around some 

equilibrium points. With such an approach, the linear observer theory can be applied (Bastin 

and Dochain, 1990). The extended Kalman filter has found applications in (bio)chen-&al 

processes (e. g. Stephanopoulos and San, 1984; Caminal et al., 1987; Tsobanakis et al., 1992; 

Jeppsson, 1996). The success of the extended Kalman filter is the ease of implementation 

since the algorithm can be directly derived from the state space model. However, it is based 

on a linearised model, which means that the stability and convergence properties are 

essentially local and valid around an equilibrium point. Therefore, is it difficult to guarantee 

its stability over wide ranges of operation. Furthermore, the derivation of the extended 

Kalman filter is based on some stochastic assumptions on the measurement and process 

noises, which might be questionable in practice (Perrier et al., 2000). 

Kalman filtering also presents a major drawback. For instance, when implemented on 

bioprocess systems, the accuracy of the estimated concentrations and/or parameter can be 

very poor. The main reason is illustrated within this thesis but it is assumed that the noise 

source statistics are known and it is the "average" estimation error that is minimized. What 

would happen if the process noise source statistic were unknown and/or if the interest would 

be in minimising the worst-case estimation error? These limitations gave rise to the H. 
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filtering, also known as "minimax" filtering. The 'H. ' symbol stands for H-infinity and will 
be utilised in the sequel. 

H. filtering is an advanced and robust estimation technique that minimizes the worst 

possible effects of the modelling errors and additive noise on the signal estimation errors by 

introducing uncertainties in the models. Furthermore, it can deal with nonlinearities through 

the Extended H. Filter (EHF) feature, from local linearisation occurring at each iteration. In 

addition, parametric uncertainties can also be accommodated through parameter estimation 

using an augmented filter, as presented later in this chapter. 

Even if H. optimisation can be found in Helton (1976), Zames (1981) is the pioneer in 

proposing a solution to the feedback controller problem, which consists of minimisation of 

the effect of a disturbance on the plant output, subject to the constraint of internal stability of 

the close-loop system. In this theory, the H. -norm (maximum modulus) of a weighted 

sensitivity is minimised in an attempt to reduce the energy of the plant output for the worst 

disturbances. In Zames (1981) and Zames and Francis (1983), it is argued that the H. -norm, 

as opposed to the H2-norm (square root of the integral of the square of the modulus) of the 

Wiener-Hopf approach, is ideal for dealing with uncertainties in the plant's frequency 

response or in the frequency spectrum of the exogenous signal. Different techniques can be 

employed for the determination of the H. optimal weighted sensitivity function. For further 

details on these various theories, the reader can refer to Zames and Francis (1983), Francis 

and Zames (1984), Francis et al. (1984), Grimble (1985,1886). The authors and their 

respective co-workers implemented H. theory for controller design purposes. A similar 

theory, based on an extended feature, is employed in this thesis to deal with the design of an 

optimal non-linear estimator based on H,,,, optimisation. In this case, the main objective is to 

design an optimal estimator, which minimises the maximum error spectrum (or worst case 

error) of the error difference between the desired and the estimated signals subject to the 

constraint of the filter. 

This review on filtering has motivated the work presented on Chapter V and VI, where both 

EKF and EHF are applied to the ASMI model. However, prior to the design of an observer, 

it is imperative to investigate if the system under study possesses the observability 

properties. Indeed, in order to guarantee the exponential convergence of the observer, the 

process must be locally observable, i. e. the linearised tangent model must be observable and 

fulfil the classical rank condition. 
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3.2) OBSERVABILITY 

Observability is an important structural property of dynamic systems defined as the 
possibility to infer the state of the system from examining its input and output behaviour. 
The conditions of observability can govern the existence of a full solution to the monitoring 
and/or control system design problem. In other words, a system is said to be observable if 

every of its state variable are influencing some of the process variables. Only in this case, it 
is possible to design an observer that is able to theoretically reconstruct the time evolution of 
the unmeasured state variables, after a fine arbitrarily chosen time (Dochain and 
Vanrolleghem, 2001). 

On the other hand, if a system is not observable (also called unobservable), solutions to solve 
the monitoring and/or control system design may not exist. During the last four decades, this 

property has continued to be examined since it was first discovered and studied by Kalman 
in 1960 and later by Kalman et al., in 1962 (Franklin, 2002). Sontag (1979), introduced the 

concept of algebraic observability for n-dimensional polynomial systems. This theory 
implies the existence of a polynomial expression of the state variables in terms of a finite 

number of derivatives of the output function. Isidori (1985) developed differential geometric 

methods in the synthesis of feedback laws for non-linear systems and contributed to 

outstanding design problems such as feedback linearisation, control, disturbance decoupling, 

and model matching. 

Observer designs are often based on linear observability theory, which affects the 

acceptability of the proposed results. Only few attempts have been proved on very simple 

non-linear bioprocess systems, based on reduced models that describe non-linear growth 

reactions. Delattre et al., (2002), performed an observability analysis of a non-linear tubular 

reactor that involves one non-linear growth reaction and proved that a finite number of 
dominant modes are observable under certain conditions. Anguelova (2004), compared two 

different approaches (differential geometric and algebraic) to test the observability of a 
kinetic model for S. cerevisiae and concluded that there is an upper bound derived for the 

number of Lie derivatives (for the algebraic approach) that have to be considered in the test 

for rational systems. Furthennore, Dochain and Vanrolleghem (2001), performed a 

successful local observability analysis on a two-step nitrification process, and on a simple 

microbial growth process composed of three state variables. Additionally, Bogaerts and 
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Vande Wouwer (2004), successfully investigated the global observability properties of a 

non-linear system (a fed-batch bioprocess) based on the observability map theory. 

The ASMI model, which is composed of thirteen state variables, as originally developed is 

unobservable. This is explained by the fact that not all state variables influence some of the 

process variables (e. g. soluble and particulate inert organic matter). Hence many researchers 
have reformulated or reduced the model based on their understanding of the process without 

systematically checking the observability properties. Therefore, as observability analysis of 

reduced-order ASM I models is investigated in the next chapter, it is important to present the 

concept of linear and nonlinear observability based on the observability map (Isidori, 1985; 

Nijmeijer and Van der Schaft, 1990). For further details on this subject, the reader can also 

refer to Gauthier and Kupka (1994), Dochain and Vanrolleghem (2001), Bastin and Dochain 

(1990), and Bogaerts and Vande Wouwer (2004). 

Linear observability: the Kalman rank test 

The following definitions and results given here for observability of linear systems can be 

found in standard books (e. g. Gopal, 1993; Tewari, 2002). Throughout this section, the 

following class of discrete time invariant linear system is considered: 

i(t) = Ax(t) + Bu(t) 

Y(t) = Cx(t) 
(3.1) 

where i is the state variable at time t, u(t) the control input, y(t) is the observation vector 

(also called output vector), A is the system matrix (also called state evolution matrix), B the 

control gain matrix (also called input vector), and C the output matrix. In the time variant 

case, A, B and C are matrix functions of time with constant parameters. Note that the 

following linear observability description, also called the Kalman rank test, is also applicable 

to discrete time systems. 

The linear system describe by Equation (3.1) is said to be observable at time step to if, for a 

state x(to), there is a finite tj > to such that knowledge of the output y from to to tj are 

sufficient to determine the state to. On the other hand, a system is said to be unobservable 

when the values of some elements in the state vector at time to may not be determined from 

examining the system outputs regardless of the number of measurements (or observation). 
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Though, and when possible, additional observations may allow the full state information to 
be accumulated in order to obtain a complete observable system. The linear time variant 
system described by Equation (3.1), with state vector x of dimension N, is said to be 

observable if the observability matrix 0, with 

C 

CA 

0 CA' (3.2) 

_CA 
N-1 

is full rank. The proof of this test (Gopal, 1993) utilises Equation (3.1) to detennine the value 
of y(t) for 0 :5t :S N- I in terms of x(O) and the known control input u(t) during that time 

period. In other words, the linear stationary system is observable only if 

rank(O) = N. (3.3) 

This test is only valid for the type of linear systems of the form of Equations (3.1). For non- 
linear systems, two types of solutions remain possible to solve the observability problem. 
The first consists of the performance of a non-linear observability analysis and is presented 
later in this chapter. The last, an alternative solution that is often employed within complex 

non-linear systems, is the piece-wise linear method. 

Piece-wise linear observability 

This approach, which is often used in control engineering to check the observability of non- 

linear models, consists of using the linear observability theory, piece-wise in time. In other 

words, one can assume that the non-linear system under study is composed of a linear model 

at each sampling point. Under this assumption, the Kalman rank test ([C CA ... CA n- I ]') for 

observability of linear systems can be applied piece-wise in time (at each sampling point). 

This type of approach is investigated through simulation results in Chapter IV. However, 

applying the linear theory on non-linear models usually affects the acceptability of the 

proposed results. Therefore, when deterministic models are not too complex, it is important 

to perform non-linear observability analyses, for instance based on the Lie derivatives (also 

called observability map), prior non-linear observer designs and implementations. 
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Non-linear observability: the Lie derivatives 

Observability is a critical issue in dynamical systems (Dochain and Vanrolleghem, 200 1) and 

particularly with bioprocesses applications. For instance, the implementation of Kalman 

filters for bioreactors is based on the a priori knowledge of the observability of the process. 
Unfortunately, observability analysis remains very complex in bioprocesses due to the non- 
linear aspects of their dynamics. Furthermore, there are large uncertainties in the kinetics of 

the biochemical reactions and analytical expressions descriptions usually employed make 

such an approach even more difficult. Very few applications, in which the observability of 

non-linear biochemical processes is attempted, are available (Dochain and Vanrolleghem, 

2001). Consequently, the purpose of this subsection is to provide sufficient theoretical 

conditions to determine if a system possesses whether or not the local distinguishability 

property by the so-called "observability rank condition" as established by Hermann and 

Krener (1977). The following theory is based on Hermann and Krener (1977), Isidori, 

(1985), and Bogaerts and Vande Wouwer (2004). 

Throughout this section, the following class of non-linear systems with outputs (or 

measurements) is considered 

i= (x, u), with x(0) = x� (3.4) 

Yi = hi (X), 1: 5:, i: 9 P, (3.5) 

where x is the state vector with n states xl,... x,, u is the input vector with m inputs ul,..., u., 

and y is the output vector or measurements with p outputs yl,..., vp. It is assumed that xEX, 

U EU, yEY, where X, U and Y are open subsets of R", R", /?, respectively. The map h: 

X-> Y corresponds to the vector of p measurements (observation), where hi e C(X), for 1: 5 i 

:5p and h= (hl,. - -hp 
)T. It is also assumed that the system is complete for every bounded 

measurable input u(t) and for every xo (=- X there exists a solution to the system (Equation 

(3.4)) such that x(O) = xo and x(t) EX for all teR. 

The observability property is related to the distinguishability of the initial states location, 

given only measurements of outputs (and possibly their derivatives) and inputs. Using the 
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general state space model given by Equations (3.4) and (3.5), the observation space (or 
observability map), denoted w, is given by 

( 
wl (x) 

w(x) = 
W, (x) 

w` 

. 

(X)ý 

with 

'ý (r hi (x) 
Yi 

r hi (x) 
wl (X) f3 

Ji 
(k-1) 

xf 

and 

p 
k=Zki, ký! n, (3.6) 

k 
where L jhi is the kth Lie derivative along the vector field f (with k assimilated to the number 

of state variables for this specific case), which is defined as 

k1 

rf hi (x) - 
(Ei 

'. -f (X, u), k>1, 
ax 

with 

L? f hi (x) = h, (x) - (3.7) 

Following this introduction, the non-linear observability definitions as well as the conditions 

that must be satisfied for that property are now presented following Hermann and Krener, 

(1977): 
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Definition 1. The non-linear system given by Equations (3.4) and (3.5) is globally 
observable if all initial conditions, xo, can be detennined uniquely from y(t) and u(t) in the 
whole domain of definition xO r= X, Vu EU (Hermann and Krener, 1977). 

This concept can be further supported if the state trajectories progress in a local 
neighbourhood, leading to local observability property. But on the other hand, the notion of 
global observability can be seen as weakened by requiring that a given initial state is only 
distinguishable from its neighbours, leading to the weakly observability property. Finally, 
restricting trajectories to lie in a local neighbourhood can further support the last notion: 

Definition Z The non-linear system given by Equations (3.4) and (3.5) is locally weakly 
observable at xO if all initial conditions in a neighbourhood, V, of xO, which lead to state 
trajectories remaining in some open neighbourhood U at xo under control action u, can be 

uniquely determined from y(t) and u(t) (Hermann and Krener, 1977). 

It is important to observe that these definitions are equivalent for linear systems and in 

addition, it is worth noting that the linear results are independent of the input trajectory. 
Finally, we give the conditions for evaluating two of the forms of non-linear observability as 
follows: 

Condition 1. The non-linear system given by Equations (3.4) and (3.5) is globally 

observable if wl(x) is uniquely invertible with respect to x in the whole domain of definition 

(Hermann and Krener, 1977). 

Condition 2. The non-linear system given by Equations (3.4) and (3.5) is locally weakly 

observable if the Jacobian of w(x) has full rank in the whole domain of definition (Hermann 

and Krener, 1977). 

As defined in Condition (1), the system is said globally observable if the inverse wl(x) of the 

observation space exist everywhere (in the state and input space). However, as the solution 

of Equation (3.6) is not a trivial problem, global observability can be difficult to consider in 

practice (Bogaerts and Vande Wouwer, 2004). Therefore, the local weak observability 

theory is mainly considered in chapter IV, which leads to study the local invertibility of the 

observability map, in the neighbourhood of a point x. Hence, the system is said locally 

weakly observable if its 
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rank 0 (x)= n with O(x) 0'W(X) (3.8) 
öx 

and n, being the order of the system under consideration. On the other hand, if ax) :An, 
then, the system is said (locally) unobservable. There are different reasons for 

unobservability, which are almost the same as uncontrollability, and can be stated as follows 

(Tewari, 2002): 

0 The use of superfluous state variables in the state space model. 

0 Pole-zero cancellation in the system transfer matrix. 

9 Too much symmetry (i. e. infinitely many trajectories for the control system that 

cannot be distinguished from each other by observing the input-output map). 

0 Physical unobservability (i. e. selection of an output vector which is physically 

unaffected by one or more state variables). 

If the sub-systems which cause unobservability are stable (capability of a system to come 

near one of its equilibrium points once displaced from it), it is possible to securely disregard 

those state variables that do not contribute to the outputs, and design an observer based on 

the residual state variables. 

Global observability analysis of non-linear systems is possible through the introduction of 

canonical forms. These guarantee the invertibility of the observability map and hence, the 

global observability of the system. This implies that the system can be written in the 

following form (Gautier and Kupka, 1994, Bogaerts and Vande Wouwer, 2004): 

il If '(x', x', u) 

i=I 
ii I=I 

i w-1 f w-1 (XI 
, ... 

x W, 
u) 

iw f 
W(X 1 

..., 
x 

w 

lu) 
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4 (x�) 
h2 (x, ' 

ý4) 

11 
Xnl 

where 

W), Xi E=- 93', n, ý! n2 n, 1: ni =n 

and 

n 
c9hj 0, Vj E= 
ax, 

V, E= w 

i 

V(x, u) E: - 91" x 91': rank Of,. (x'u) 
ýn axi+I 

(3.9) 

(3.10) 

(3.11) 

By Conditions (3.10), it is implied that the first state variables (n 1) can be inferred from the 

measurements, while Conditions (3.11) guarantee the detection in the measurement of any 
differences in the state trajectory. In other words, by considering two different initial states 

x(O) and x'(0), which differ only by the components X2 (0) and X2'(0), the first state variable 

given in Equation (3.9) show that the state trajectories x(t) and x"(t), provided that 

Condition (3.11) is satisfied for i=1. As it is possible to reconstruct the components of x'(t) 

through inversion of the measurement operator h(x) utilising Condition (3.10), the deviation 

between the trajectories x1(t) and xl'(t) will be observable in the output. Similarly, identical 

reasoning holds for any couple x'(t) and x"(t) from one set of equations to the preceding one 

described by the system given in Equation (3.9). For convenience, Condition (3.11) can be 

rewritten in terms of the square matrices Mi(x, u) 

V(x, u)E=- 93" x 91': rank Mi (x, u)=ni, I- (3.12) 

with 

gf i (X, U) 
mi (X 

9U)= 

O'f i (X, u) 0 
E-= 91 ni, 1 X 91 ni, l. (3.13) 

axi+I axi+I 
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The above-mentioned conditions are sufficient to state whether or not a non-linear system 
possesses the local weak or global observability properties. Once verified, it is possible to 
design a state observer or software sensor for state and parameter estimation, respectively. 
However, it should be kept in mind that the observability conditions are restrictive to many 
practical applications and may account for the failure of software sensors (e. g. extended 
Kalman filter) to find widespread application. 

3-3) KALMAN AND H,,,, FILTERING TECHNIQUES 

As mentioned previously, non-linear filtering techniques consist of an algorithm for the on- 
line estimation of the state variables and parameters, which are not measured in real-time, on 
the basis of related measurements that are more easily accessible (Bastin and Dochain, 
1990). For further details on linear and non-linear filtering, the reader can refer to Bastin and 
Dochain (1990), Dochain and Vanrolleghem (2001), Welch and Bishop (2002), Brown and 
Hwang (1997), Katebi and Grimble (1998), and Nagpal and Khargonekar (199 1). 

Kalman filtering 

Since Kalman published a solution for the Minimum Mean-Square Error (MMSE), which is 

described by a state space formulation, the KF provides a recursive solution to the linear 

optimal filtering problem. The solution is recursive, which means that each update estimate 

of the state is calculated from the previous estimate and the new input data. Therefore, only 
the previous estimate value needs to be stored instead of storing the entire past observed 
data. As a result, the KF is also convenient for online real-time processing because of the 

minimal storage data required. 

One of the ma or problems in the area of linear systems is called the observer design 

problem. It consists of determining (or estimating) the internal states of a linear system, 

having an access only to the measurements (or outputs). In others words, it is the same as 

having a "black box" where access to the inputs and outputs is available, without having the 

ability to observe what's inside the box. One of the approaches to this problem is based on 

state space model, which can be described by the following linear stochastic difference 

equation: 
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Xk = (DXk-I + %PUk + Wk-I (3.14) 

In addition, the outputs of the system, which illustrate the relationship between the process 

state and the measurements, are generally represented by the following linear equation: 

Yk : =: 
HXk + Vk (3.15) 

where (D = A, y=B and H=C are the terms similar to those presented in Equation (3.1), 

within the previous section discussing observability. In addition, Wk and Vk are random 

variables representing the process and measurement noise with noise sequences of zero 

means and covariance Q and R, respectively. Note that for the entire process model 

considered in this work, the white noise will be generated utilising the Gaussian random 

number function (normal distribution) under Matlab/Simulink. This block generates 

regularly distributed random numbers over a specific interval, corresponding to the sampling 

time, with zero mean and the following variance noise and covariance: 

Eýww'I=Q 

EýWý =R (3.16) 

E ýwv'l = NN = 0. 

Hence, the process covariance matrix, which is tuned by trial and errors, and the 

measurement noise vector considered in the rest of the thesis are defined as follows: 

pctq. X 

0 

0 

pctq. X"-'_ 

and 

pctr. X 

R 

, _pctr 
Xn-I 

(3.17) 
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with 'pctq' and 'pctr' representing percentage values with range in a range between 2 to 20% 

of the steady state concentrations (e. g. the state variable) under study (X). To illustrate the 

magnitude of the chosen noise distribution added to the (measured) state variables of the 
ASP model presented in Section (3.4), the dissolved oxygen and substrate corrupted 

measurements are shown in Figure (3.1). 

6.8 

6.6- 

6.4. - 

i=E-" P: Z L 
6.2 

6- 

5.8 
05 10 15 20 25 30 35 40 45 50 

Substrate measurement 
48-- --- 

...... corrupted 

S 
noise free 

46 U. 

441 
E 

421, :W 

40' 
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time [hours] 

Figure 3.1 Illustration example of the magnitude utilised for the noise 

distribution of the dissolved oxygen and substrate measurements, 

with the ASP model presented in Section (3.4). 

The on-line measurements are corrupted by an additive white Gaussian signal with a mean 

value of zero and a standard deviation that is 10% of the actual value of the state variable. It 

also illustrates the possible difficulty the identification algorithm has to deal with when a 

parametric estimation is performed. Furthermore, real measurements are often affected by 

noise with non-zero mean and changing variance, trends, outliers, sensor failures etc. 

However, these extra difficulties are not considered in this thesis. 

61 

Dissolved oxygen measurement 



Chapter III: Non-linear State and Parameter Estimation 

The Kalman filter derivation requires the definition of the estimated state ik EW (the 'super 

minus') defined as the a priori state estimate at time step k, given knowledge of the process 

prior to step k, and i, r=- IN" to be the a posteriori state estimate at time step k given 

measurements Yk , The a priori and a posteriori error are given by (Welch and Bishop, 

2002) 

e-xd ek = k=k- Xk . an _xk -Xk5 

with the a priori and a posteriori estimate error covariance are given by 

-T ], P E[e-e Pk- = E[e T], (3.19) kkk kek 

respectively. 

The main objective when deriving the Kalman observer algorithm is to find an equation that 

compute the a posteriori state estimate ik and a weighted difference between the actual 

measurement Yk and the measurement prediction HXk I as presented in the following 

equation, with 

'k = 'k + K(Yk - H'k (3.20) 

where the difference (Y k-Mk )is called the residual (or measurement innovation) and the 

nxm matrix K is the Kalman gain (also called the blending factor) that minimizes the a 

posteriori error covariance given in Equation (3.15). One form of the equation that is 

required in minimizing the error is given by (Welch and Bishop, 2002) 

HTkHT+ R)-', (3.21) Kk = Pk- (Hp 

where P is the solution of the following Riccati equation 

p- = (D p (jDT (3.22) 
kk k-I k+ 

Qk 

The computation of the discrete Kah-nan algorithm is surnmarised in Figure (3.2). It is 

differentiated in two groups of equations: (1) the time update equations (prediction) and (2) 
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the measurement update equations (correction). This representation, proposed by Brown et 
al., (1997), is given in a loop fon-n, which can be seen as a computer algorithm. 

--------------------------------------------------------- --- ------------ -- ------------ 

Compute the Kalman Gain: io- and Pý 
f- Kk Pk HT (HPýH T+ R) -1 

YO, Y1--- 

Project ahead Update estimate with 

measurement Yk i"k = 4kik-1 +'Fuk 
T+ K(y, Hi. Pk ý OkPk-lOk + Qk xk kk 

Compute error covariance 
for update estimate: 

Prediction Pk ý (I - KkHk)lý Correction 

----------------------------------- : 
------------------------------------------------------------------------- 

Figure 3.2 Kalman Filter loop including the prediction and correction phases 
(source: Brown and Hwang, 1997) 

Note that both the discrete and continuous filters are implemented in this work. The 

continuous KF is proposed in Figure (3.3). 

Time-variable gain generator 

Solve the P equation: 

P= AP+ PAT_ pCT R-1CP + BQBT 
P(O) = PO 

matfix 
mWtiplier 

T Gain C R-1 1 
0. 

K= PC7R-1 

Figure 3.3 The Kalman Gain Generator for the continuous case where the 

matrix coefficient A, B, and C are equivalent to (D, T and H in the 

discrete case, respectively (source: Brown and Hwang, 1997) 

It has a similar structure to that of the discrete case, however the solution to the Riccati 

equation (P) and the blending factor (K) differs slightly. The proof of this algorithm can be 

found in Brown and Hwang, (1997). The linear KF is limited to linear systems. In addition, it 

can provide an estimate of non-linear state variables if the inputs of the system are constant 
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or slightly perturbed. However, with such approach and for the proposed ASP model ending 
this chapter, the convergence of the estimate toward the true state is not guarantee if the 
inputs are perturbed for more than 25% from their original values. The implementation of an 
extended feature remains the best solution (to a certain extent) to overcome the non-linearity 
problems generated for instance by the influent wastewater entering the treatment plant. 

The extended Kalman filter 

Most of physical systems are described by non-linear equations, with a non-linear continuous 
(or discrete) state space model of the form 

i(t) =f (x, t) + G(t)w(t) (3.23) 

Y(t) = Qx, t) + V(t) (3.24) 

where x r= R", w (-= IV, D c= IT ' ', v and y Ez- ff, and f and C are non-linear functions, of 

appropriate dimension, replacing the linear system described by Equation (3.14) and the 

measurement model given by Equation (3.15). Similar assumptions as that proposed in the 

case of the linear Kalman filter are made about the process and measurement noises statistic. 

One of the solutions to successfully utilise the above-mentioned Kalman filtering theory is 

the removal of the non-linearities of the dynamic equations describing the system and the 

output equations. This can be achieved with a small change model of the non-linear 
differential equations by linearising the system about the state trajectory. The linearised 

Kalman filter has the advantage that the filter gains are independent of the states and can be 

computed a priori based on a nominal solution to the non-linear differential equation. 

However, significant model error and filter divergence can occur, especially in bioprocesses 

applications where the influent wastewater data are highly non-linear. The EKF can often 

(but not always) prevent this divergence by estimating the state variables on-line. This 

approach consists of linearising around the most recent estimates in the attempt to minin-ýise 

the covariance of the estimation error, assuming that the system under consideration is 

exactly known, as well as the noise source statistics. A summary of the EKF algorithm is 

presented in Table (3.1), which serve as a basis for the various applications presented in 

Chapter V and VI. The full derivation of the extended Kalman filter is provided in Appendix 

C. 
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Steps I Equations 

System model 
Measurement model 

Initial conditions 

Estimator (observer) 

Covariance matrix 
Gain Matrix 

Linearised system 
matrix 

i(t) =f (x, t) +G (t)w (t) 
y(t) = C(X, t) + v(t) 

E[x(O)] = i(0) 

cov [(X(0) 
- -i(0» - (X(0) - -i(0»] = P(O) 

i(t) =f (x, t) + K(t) [y(t) - C(t)i(t)] 
FP(t) + P(t)F T (t) + D(t)Q(t)D T (t) 

- K(t)R(t)K T (t) 

K(t) = p(t)CT (t)R-'(t) 

X=i 
F=- and C= 

ac 

ax X=i ax 

Table 3.1 Summary of the continuous extended Kalman filter algorithm 

utilised to perform state estimation. 

Parameter estimation with an extended Kalman filter 

The extended Kalman filter can be utilised either for state estimation, parameter estimation 

or joint state and parameter estimation (Dochain and Vanrolleghem, 2001; Bastin and 

Dochain, 1990, Jeppsson, 1996). Parameter estimation can only be achieved with the aid of 

experimental data, which contributes in determining the "optimum" values of the parameters 

that arise in a mathematical description, assuming that the relationships between the 

variables and the parameters are explicitly known. 

Various conventional techniques (e. g. Bayesian, maximum likelihood, weighted least 

squares and least square estimations) are generally used for parameter estimation and it is 

important to initially conduct certain analyses in selecting the identifiable linear or non- 

linear subset of parameters. For instance, structural, practical and sensitivity analyses are key 

tools for the parametric estimation problems. These criteria, which are clearly presented in 

Jeppsson (1996) and Dochain and Vanrolleghem (200 1), are not investigated in this work for 

two reasons: (1) parameter estimation has been extensively covered within the bioprocess 

(including the ASMI model) research community and (2) because real or experimental data, 

which are the basis for parameter identification, are not available at current time. 

Successful applications are presented in Jeppsson (1996), Weijers (2000), Dochain and 

Vanrolleghem (2001), Bastin and Dochain, (1990), Ayesa et al. (1991) and Kabouris and 

Georgakakos (1995). However, the corresponding authors and co-workers investigations 

remain theoretical as unrealistic assumptions are sometimes considered. For instance, Ayesa 
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et al., (1991) and Kabouris and Georgakakos (1995) performed parameter and state 
estimations of an ASP model assuming that all state variables (nine and eleven, respectively) 
were measured. Farza et al., (1997), proposed on-line estimation of the kinetic growth rate in 

a fermentation process where both major state variables (biomass and substrate) were 
assumed to be measured. Jeppsson (1996), assumed on-line measurements of the 
heterotrophic and autotrophic biomass concentrations, which is a theoretical approach due to 

the fact that such measurements are (still) not available on-line. All these theoretical 

approaches are defendable because the parametric estimation with biological system is still 

an open problem for practical applicability, as stated by Bastin and Dochain (1990): 

"Unfortunately, numerous studies devoted to parameter estimation in biological models have 

shown that, in practice, the identifiability of the kinetic coefficients is far from being 

guaranteed and may even be an insuperable difficulty in most applications" 

In addition to the realistic parametric estimation problems, they also concluded that the 

stability and convergence properties of the EKF algorithm are extremely difficult to analyse, 

and remain an open problem. Furthermore, Ljung (1979) concluded that an EKF estimator 

may give bias estimates or may even diverge if not properly initialised. Therefore, the 

selected parameters that are considered in this thesis (e. g. chapter V and VI) are similar to 

the one studied by Jeppsson (1996), in which a successful identifiability analysis on the 

ASMI model has been already perfonned. The difference with Jeppsson is that the 

estimation of the selected parameters is performed with both an EKF feature and a robust 

non-linear filter, namely, the EHF. For further information on system identification and 

parameter estimation, the reader can refer to Jeppsson (1996), Ljung (1989) and Bohlin 

(1991). 

The augmented algorithm (augmented with the additional parameters) selected for the 

estimation is now presented. Considering the following discrete augmented state space 

model: 

i(t) =f (t)(x(t), u(t), 0) + G(t)(x(t), 0)W(t) (3.25) 

y(t) = h(t)(X(t), 0) + v(t» (3.26) 
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where the usual assumptions about the noise statistics must be made as for the linear and 
extended Kalman filters. In order to estimate on-line the vector parameter 0, an augmented 
model is designed, in which 0 is augmented to the initial state vectorXk- Consequently, the 
non-linear model described by Equations (3.25) and (3.26) is rewritten in the following form: 

f(t)(X(t), u(t), O)]+[G(t)(x(t), O) 0 w(t) (3.27) O(t) 0 1110)] 

y (t) =h (t) (X (t), 0) +v (t) (3.28) 

where I is an identity matrix, O(t) is considered as a random constant vector (6(t) = O(t) + 

jt)) and jt) is a white Gaussian noise sequence with zero mean and uncorrelated with w(t) 
(Chui and Chen, 1991). The adaptive capabilities of the filter are achieved with the 

covariance of the signal jt) and the identification of the selected parameters requires an 
initialisation of the augmented covariance matrix PO, which is similar to the one described in 

Table (3.1). The only difference is that an augmented system is considered, rather than the 

standard one. The augmented state variables and process noise vectors can be written in the 

following form 

i(t) =I 
x(t) 

and O(t)l 
rw(t)] 
Lý; (OJ 

(3.29) 

respectively. The model described by equations (3.25) and (3.26) can be written in the 

following form: 

f (t)(i(t), ii(t)) + G(t)(i(t))*(t) (3.30) 

h(t)(i(t)) + v(t) (3.31) 

The augmented model described by equations (3.30) and (3.3 1) has an identical structure to 

the standard model given by Equations (3-23) and (3.24). However, with an augmented 

system, an accurate initial guess of the parameter vector O(t) and the initial augmented state 

vector i(t) must be supplied to the algorithm. As stated previously, this initial guess must 
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be as close as possible from the real value (at least for biological applications), which may 
not be possible in practice. However, for grey box model, the initial guess for the states and 
parameters are usually available, which make the identification procedure relatively easy in 

comparison to that for black-box identification. Furthennore, the measurement noise 
covariance, usually supplied by the sensor manufacture, and the process noise covariance, 

which reflect the confidence in the model structure accuracy, must be known. This 

covariance adjustment is often perfon-ned by trial and error, which can be time consuming 
because of the high number of experiments that need to be performed. 

Extended H-infinity filtering 

As stated previously, the KF and EKF present disadvantages (e. g. requirements of an 
accurate initialisation, stability and convergence properties not guaranteed, knowledge of the 

noise source properties is required), which can lead to unsuccessful applications when 

applied upon biological processes (and within other fields). Therefore, the extended H. 

filtering algorithm, which is a pre-requisite to overcome these drawbacks, is presented in the 

following section. The design of H. filters can be considered as a dual problem to the design 

of H controllers. Therefore, a similar philosophy used in the controller design proposed by 

Katebi and Grimble (1998), and Nagpal and Khargonekar (1991) is followed here but in the 

case of the estimator design. Consider the following class of linear system given by: 

i(t) = A(t)x(t) + B(t)u(t) + G, (t)w(t) 

y(t) = C, (t)x(t) + G2 (t) V(t) (3.32) 
Z(t) = C2 (t)X(t) 

where x, u and y are similar to those described by Equation (3.4) and (3.5), and z is the 

estimated output vector with q outputs (q 1, ..., qv )T 
- 
GI(t)w(k) and G2V(t) represent the process 

and measurement noise with noise sequences of zero means and covariance Q and R, 

respectively. The filtering problem is thus one of finding an estimate i(t) of z(t) using the 

measurements y(t). The filter has to minimize the following cost function (Nagpal and 

Khargonekar, 199 1): 
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WE= 

sup 
141 

< Y, (3.33) L, 
2[0,00] 

IIWI12 
2 

with 

i (t) =zW-i (t) and for y >0, (3.34) 

where gamma (y) is the pre-specified H,, performance. Considering the following 

assumptions (Doyle et al., 1989) 

(A, B) is stabilisable and (Cj, A) is detectable 

(A, GI) is stabilisable and(C2, A) is detectable 
, 

the solution of the following H,,, Riccati equation (Doyle et al., 1989; Nagpal and 
TIF I- Khargonekar, 1991): 

A(t)P(t) + P(t)A T (t) 
_ p(t)(7-2C 

2T 
(t)C 

2 
(t) 

- 
(3.35) 

cl T (t)R-'(t)C, (t))P(k) + G, (t)QG T(t) 
= 0, 

I 

must be solved in order to calculate the H,,, filter gain given by 

T Kh 
= P(t)CI (t)R-l (t). (3.36) 

The filtering problem can be stated as minimising the cost function J in Equation (3.33) for a 
known value of y>0. For the time invariant systems, the optimal value of y can be found by 

selecting a large value of y and solving the algebraic Riccati equation in Equation (3.35) in 

order to calculate the filter gain given by Equation (3.36). The value of 7 can then be reduced 
in the usual manner until one of the eigenvalues of the system becomes imaginary or 

negative (Katebi and Grimble, 1998). 

The extended H,,,, filter is an extension of the linear H. filter. The EHF is used to estimate the 

states of the non-linear reduced-order system, by linearising the system equations around a 

nominal operating point. Consider the class of non-linear systems defined by 
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i(t) =f (X(t), t) + K(x(t), t) + G(x(t), t)w(t) 
(3.37) y(t) = h(x(t), t) + v(t) 

and assuming that the conditional -mean estimate i(i) is known and used to expand the 

system and measurement models in a Taylor series about x(t) = i(i). The state space system 
described by Equation (3.32) is a linearised system with matrices defined by (Katebi and 
Grimble, 1998) 

afli(0,01 A(t) = A(t) , 

G, (t)=Gl [i(t), t)] C2 (t) = 
ah[i(l), t)] 

ai(t) 
(3.38) 

The determination of the H,,,, Riccati equation and filter gain are similar to Equations (3.35) 

and (3.36), respectively. The extended H. filter is surninarised in Table (3.2) 

Step I Equations 

Initial conditions 
System matrices 

Filter algorithm 
Filter gain 

Estimated states 
H,,,, error variance 

i(t,, ) = Xý, P(t,, ) =0 
A(t) = 

af li(t), Ol 
B(t)=K[i(t), t)] 

ai(t) 

GI (t)=G I[ i(t), t)] ) 
C2 (t) ah[i(t), t)] 

0 N(t) 

i(t) = A(t)i(t) + B(t)u(t) + Kh 1Y(t) - C2 (t)'(t)] 

Kh = P(OCI (t)R-l(t) 

Z(t) = C2(t) 

A(t)P(t) + P(t)A T (t) _ p(t)(Y-2 C2 T WC2 (t) 

CT (t)R-1 (t)C, (t))P(k) + G, (t)QG T(t) 
=0 11 

Table 3.2 A summary of the continuous extended H. filter algorithm utilised 

to perfonn state estimation (Katebi and Grimble, 1998). 

The state vector may be partitioned so that the parameter can be simultaneously estimated. 

This is achieved by augmented the state space model, which is of the form: 

i(t) = [X(t) O(t)] (3.39) 
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In addition, 

(x, t) = 
fl (0, t) 0 

(3.40) 00 

1- [X] 

and 

d, =, t, = [c, 0] (3.41) 
[ 

GO] 

The proposed extended H,,,, filter for the augmented system can now be defined, as presented 
in Table (3.3). Similar to the augmented extended Kalman filter algorithm presented above, 
the parameters are modelled as integrators that are driven by white noise and augmented to 
the system states. 

Steps I Equations 

Initial conditions i(to) io, P(t,, ) =0 
System matrices f] (0) (1) 

12 
1 

C9X 

100 

where (1), 
2 C9 

aX2 X=1 

Filter algorithm i(t) =f (i, t) + Kh [Y(t) - C2 i(01 

---T -1 Filter gain Kh=P (t) CI (t) R (t), 
Estimated states '(0 = 

t2X(t) 

H,., error variance (t) (D (t) p (t) +P (t)(D T (t) (t)(., -2 tT 
'Y 2 

Wt2 (t) 

tT 
+ 4ý1 T0 

Table 3.3 A summary of the continuous augmented extended H. filter 

algorithm utilised to perform joint state and parameter estimation 

(Katebi and Grimble, 1998). 
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3.4) SOFTWARE SENSORS EXAMPLES BASED KALMAN 

AND H. FILTERING 

In order to exemplify a few of the problems discussed in the previous sections, two examples 

are presented. The first one aims at demonstrating both the extended Kalman filter 

performances and drawbacks when applied to a simple bioprocess. The second illustrates the 

extended H. filter performances when applied to a stochastic model. The biological system 
is an activated sludge process model, which consists of a series of activated sludge tanks in 

which different conditions (anaerobic, anoxic and aerobic) are used to promote the nutrient 

removal process. The ASPs allow removal of pollutants from the wastewater, principally 

those that are in soluble form and those that are biodegradable in a period that is 

technologically acceptable. As displayed in Figure (3.4), it comprises an aeration tank and a 

secondary clarifier that is necessary for the settling of the biomass and its recycling. 

Influent 

Sing Xing Qin 

Aerati- 
on tank 
S, X, V. 

S, x� 1 Q, 

2 nd 

S, X, Q Qý\, 
- 

clarifier 

SC9 XC9 

Q-QW 

S, x" 1 QI+Qlll 

Srq Xri Qw 

Figure 3.4 Activated sludge reactor used for joint state and parameter 

estimation. 

where Q represents the secondary influent flow rate; Q, the return sludge flow rate; Qw the 

waste activated-sludge flow rate and X,, the effluent suspended solids. The mass balance on 

the aerator and the settler are described by the set of non-linear differential Equations (3.42) 

to (3.45), similar to Nej ari et al., (1999): 

-k(t) = gt)X(t) - DQXI + r)X(t) + rD(t)Xr (t) (3.42) 

S(t) X(t) - D(t)(I + r)S(t) + D(t)Si., (3.43) 
y 
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(ý(t) =- 
Kop(t)X(t) 

y - D(t)(I + r)C(t) + KLa(Cs - C(t)) + D(t)C,,, (3.44) 

-kr (t) = D(t). (l + r). X(t) - D(t). (, 8 + r)Xr (t) (3.45) 

where X(t), S(t), c(t) and X, (t) are the states representing the biomass, the substrate, the 
dissolved oxygen and the recycled biomass concentrations, respectively. The parameters r 
(r--QWQ) and 8 (, O--Q, /Q; with Q, Q, and Q, ) represent the ratio of recycled flow to influent 
flow and the ratio of waste flow to the influent flow, respectively. Si,, corresponds to the 

substrate in the feed stream. The biomass growth is described by the specific growth rate, [t 
(p=rg/X) and the yield of cell mass, Y. The constants Cs, and KLa, represent the dissolved 

oxygen saturation concentration and the oxygen transfer rate coefficient (KLa = a. W with 

a>O and W=air flow rate), and Ko is a switching constant (DO switch). The kinetic model is 

similar to one proposed by Olsson (1976) with: 

S(t) C(t) 
Ks + S(t) Kc + C(t) 

(3.46) 

where p .. a,, is the maximum specific growth rate, Ks the affinity constant and Kc, the 

saturation constant. For ftirther details on the model description, the reader is referred to 

Nejari et al., (1999). 

Software sensor based-EKF 

The software sensor implementation is based on an EKF structure. Two measurements (e. g. 

substrate and dissolved oxygen), which are corrupted by 2% white Gaussian noise, are 

considered as inputs of the software sensor, as well as the air flow rate (90 and the dilution 

rate (D). The dynamic augmented observer utilised for the joint state and parameter 

estimation example is of the form 

X(t) = A(t)X(t) + B(t)d(t) + Kf (y(t) - i(t)) 

Y(t) = C(t)X(t) + V(t) 

i(t) = Qt), k(t) 
(3.47) 
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The additional state variables (e. g. X, S, C and X, ) are augmented to the initial model to 

estimate some model parameters. The augmented state vector and inputs given in Equation 

(3.47) are of the form 

k(l)=[X(l) S(t) C(t) X,. (t) Ks(l) Kc(t)T, 

fi(t)=[Di, (I) Wi,, (t) ý2.,,, (t) ý3,,,, (t)] 
T) 

(3.48) 

(3.49) 

respectively, where ý1, ý2 and ý3 are white Gaussian noise sequences with zero mean and 

uncorrelated from each other, where the adaptive capabilities of the filter are achieved with 

the covariance of the signal (1,2,3(k). Note that the noise sequences are augmented to the 

initial input vector. However, in the applications presented in Chapter V and VI, these noise 

sequences will be separated from the deterministic inputs. The system output is of the form 

i (t) =[ Xef (t) ý, f 
(t) (ýf (t) Xý, 

ýf 
(t) Pmax, ef 

(t) Ký, 
ef 

(t) Ký,, f 
(t)]T 

and the system matrices are define by 

af ck (t), 0 (t» A(t) 
Ä(t) = k(t) 

[ 

ÖO(t) 

1: 

k=x 
1 

(3.50) 

-B (t) 0- 

... ... ... [C(t) (3.51) 

0 

Simulations results are presented in Figure (3.5) where it appears that the software sensor 

converges toward the real state with good tracking performances. This type of configuration, 

which presents great advantages, allows the augmented observer to (1) estimate on-line the 

concentrations that are hypothetically measured on-line (e. g. dissolved oxygen and substrate) 

at the same time as filtering the measurement noise created by the physical sensors, (2) to 

estimate the state variables that are not available in real WWTPs (e. g. biomass and recycled 

biomass), and (3) to estimate some model parameters. 
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Figure 3.5 Comparison between the state variables resulting from simulation 

with the ASP model and the state variables estimated by the 

software sensor based-EKF. On-line measurement (S and C) are 

corrupted by an additive white Gaussian signal with a standard 

deviation that is 2% of the actual value of the state variable. 

Furthermore, 2% of process noise is also considered. 

In this particular case, the main benefit is to estimate the biomasses (X and X, ) on-line as it 

provides an idea of the total weight of the living microorganisms. However, the biomasses 

estimation presented in Figure (3.5) are 10 to 20 times lower than one would expect in a true 

process. This is mainly due to the high simplicity of the model and can be overcome by 

considering the ASM I model for instance, as presented in Chapter V. The error between the 
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estimate and the real state is not further investigated in this case because the main objective 
is to demonstrate the capabilities of the observer to estimate on-line the non-measurable 
concentrations, which are typically not available in real WWTPs. 

By estimating all model parameters simultaneously, the augmented Kalman gain (k) cannot 
converge using the Kalman function under Matlab/Simulink because the system is unstable 
at the initialisation time. One of the solutions to overcome this problem is to eventually 
compute the Kalman gain (and tune it) without involving the Matlab command 'kalman'. 

However, great caution should be employed as bias estimation can be achieved with this 

method. An alternative solution consists of estimating all four state variables and a single 

parameter while the other two are assumed constant as presented in Figure (3.6). 
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It can observed from these last simulation results that the profiles show the reaction to 
changes due to abrupt jumps of the kinetic parameters of the plant. Changes of 50% and 40% 
occur after fifty hours for the saturation constant, the affinity constant and the maximum 
specific growth rate, respectively. The estimation algorithm converges toward the true 
parameters in less than twenty hours and shows good tracking performances when two of the 
parameters are known. The convergence performances of the estimated parameters towards 
the real ones can be tuned with the covariance of the signal C(t) described in Equation (3.27). 

The proposed configuration is not realistic, since in real WWTPs models parameters are 

rarely constant. Therefore, a cascaded software sensors configuration is proposed to 

overcome the convergence estimation bias when estimating simultaneously all model 

parameters. 
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It consists of three local software sensors that individually estimate a single and distinct 

parameters that are forwarded to a master filter, which is composed on the input of three 
unknown parameters (Kc, Kc and ýt ..... ), two measurements (S and C) and two manipulated 
inputs (D and W), utilised for the multiple-parameters estimation. Simulation results are 
presented in Figure (3.7) where the kinetic parameters converge to biased values. This is due 

to (1) the correlation between each parameter in the Monod model, which is a formulation of 
the growth of bacterial cultures that is extensively applied to ASPs, described in Equation 
(3.46), and (2) the insufficient persistent excitation of the system even though a 
Pseudorandom Random Binary Signal (PRBS) was used to excite the system inputs. 

Furthermore, such design requires knowledge of the parameters at the initialisation time 
1%), which can be difficult in practice. 

The bias result from Figure (3.7) clearly illustrates the difficulty when estimating multiple 

parameters. In addition, it should be kept in mind that the above-described ASP model is 

considered to be a simplified case. Another difficulty that occurs when performing 

parametric estimation is related to the quality of the available measurements. The previous 

simulation results presented in Figure (3.6) and (3.7) have been computed assuming that the 

measurements were ideal (not corrupted by white Gaussian noise). However, this is 

unrealistic and even if the selected parameters are assumed identifiable, it is not possible to 

guarantee that the estimation algorithm will converge toward the true parameter if realistic 

measurements are considered. This is mainly due to the noise that corrupted the data, which 

makes it impossible to accurately calculate the derivatives used in eventual analytical 

analyses. 

Simulation results presented in Figure (3.8) exemplify the difficulty of the observer in 

accurately estimating the saturation constant when only 2% of measurement noise is 

considered. Furthermore, the process noise is almost neglected (10-4) for this particular 

example, as it would have a major negative impact on the estimation algorithm. In addition, 

sensors delays are not considered even though they will be incorporated in the simulation 

models of chapter V and VI. One could propose to filter the measured data in order to 

improve the identification algorithm. However, it is eventually possible (i. e. low-pass filter 

with exactly zero-phase distortion to overcome undesired time lag effects) if the outputs are 

manipulated off-line. Unfortunately, this ideal type of filter cannot be physically 

implemented and any real time filter will produce poorer results (Jeppsson, 1996). 
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This case study demonstrated some of the difficulties when performing joint state and 
parameter estimation online based on an EKF algorithm. it is now possible with this example 
to draw an idea of some of the difficulties that need to be overcome in the non-linear filtering 

of bioprocesses applications. Furthermore, it also motivates the need to develop robust 
estimation algorithm. Therefore, the second example concentrates on software sensor based 

extended H. filter. 
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Software sensor based-EHF 

The main objective of this example is the presentation of a comparative study between 

observers based on extended Kalman filtering and extended H. filtering approaches. These 
observers are implemented on the activated sludge process presented previously and their 
performances are compared when performing state and joint state and parameter estimations 
where the EHF algorithm is similar to the EKF one. The difference between both software 
sensors are in the solution of the Riccati equation, which are displayed in Table (3.1) and 
(3.3), respectively, with the inclusion of the pre-specified H,,, perforinance. 

In order to compare the performance of the EHF with the EKF ones, the initial conditions of 
the system are assumed to be known. The differential Equations (3.42) to (3.45), describing 
the ASP dynamic behaviour, are corrupted by 0.2% process noise and the on-line sensors 
(e. g. S and Q, by 2% measurement noise. Results are presented in Figure (3.9) for the 

substrate, biomass, dissolved oxygen and recycled biomass where it can be observed that the 
EHF provides better tracking performances compared with the EKF. Indeed, the estimated 
variables are more robust, especially for the biomass and recycled biomass concentrations. 

The standard deviations of both filters are displayed in Table (3.4) and the errors between the 
EKF and EHF are about 1.5%, 0.46%, 1.36% and 0.89%, for the biomass, substrate, 
dissolved oxygen and recycled biomass, respectively. The difference between both filters is 

not important when the process noise applied to the ASP model is 0.2%. As stated 

previously, the EKF presents limitations when the statistics of the noise sources and system 

uncertainties are not exactly known. 

Xsc Xr 
(mg I-) (mg I-) (mg I-) (mg 1-') 

Extended Kalman filter 2.042 0.648 0.0147 4.47 
Extended H,,, filter 2.013 0.645 0.0145 4.43 

Table 3.4 Comparison of the standard deviations between the EKF and the 

EHF for X, S, C and X, concentrations when the model is corrupted 

with 0.2% process noise and 2% measurement noise. 

Therefore, the process noise of the system is increased to 0.5% in order to compare the filters 

responses. Results are presented in Figure (3.10), where it can be seen that the EKF scarcely 

tracked the concentrations. As displayed in Table (3.5) with the standard deviations, the EHF 
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produced more accurate and robust tracking performance when comparing with the EKF. 
This time, the errors between the EKF and EHF are about 10%, 2.2%, 14.2% and 12%, for 
the biomass, substrate, dissolved oxygen and recycled biomass, respectively. 
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Figure 3.9 State estimation comparisons of the original ASP model with the 

ASP model corrupted by 0.2% process noise, the EKF and the EHF 

algorithms. 

This failure from the EKF to produce better tracking performances is related to the 0.5% 

process noise sources. This confirms that the EHF is more robust than the EKF when dealing 

with systems without exact knowledge of process noise signals and uncertainties. Simulation 
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results also illustrated that the EKF and EHF produced similar tracking performances when 
estimating the measured concentrations (e. g. S and Q. 
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XscX, 

(mg I-) (mg l-') (mg I-) (mg -, ) 
Extended Kalman filter 1.99 0.645 0.014 4.51 
Extended H filter 1.79 0.631 0.012 3.97 

Table 3.5 Comparison of the standard deviations between the EKF and the 

EHF for X, S, C and X, concentrations when the model is corrupted 

with 0.5% process noise and 2% measurement noise. 
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To check the convergence properties of the EHF, the initial conditions are not assumed to be 

exactly known. Results are presented in Figure (3.11) where it can be observed that the EHF 

converges toward the real state in approximately less than 500 hours. Furthermore, when the 
EKF is initialised similarly to the EHF, the convergence properties toward the real state are 

achieved in less than 80 hours in the best case (e. g. dissolved oxygen concentration). In this 

specific application the EKF is around 85% time faster than the EHF. However, the 

perforinance of the EHF can be improved by increasing gamma (7), the pre-specified H,, 

performance. On the other hand, such an approach will lead to an H2 filtering approach 

rather than an H,,,, one. 
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The performances of the EHF are also tested and compared with the EKF by applying pulses 
on the inputs of the system (e. g. dilution rate and air flow rate). Note that for clarity reasons, 
the process noise is almost neglected (10-4) in this application. Results are presented in 

Figure (3.12) where it can be seen that the EHF, when estimating the unmeasured states (e. g. 
biomass and recycled biomass), provides closer tracking performances toward the true state 

with a standard deviation of 2.55 mg. l-' for the biomass and 2.74 mg. 1-1 for the recycled 
biomass, while the EKF demonstrates poorer tracking performances with standard deviations 

of 2.65 mg. l-' and 3.29 mg. 1-1, respectively. 
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When the concentrations are measured on-line (DO and S), similar and accurate tracking 

performances toward the real states are achieved with both observers. Therefore, their 

standard deviations errors, which are neglectable, are not presented here. 

For the final example, a joint state and parameter estimation algorithm is produced in order 
to check the observer perfon-nances when the system parameters are augmented as additional 

states to the system's state vector describe by Equations (3.42) to (3.45). The EHF algorithm 
is similar to the EKF one, given by Equations (3.47) to (3.5 1). Results are presented in 

Figure (3.13) where it can be observed that the extended H,,, filter provides better tracking 

and robust performances when compared with the extended Kalman filter. The standard 
deviations of both filters are display in Table (3.6). 
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Kc Ks Pmax 
(Mg., -) 

. 
(-Mg. l-, ) (h-) 

- Extended Kalman filter 0.572 25.12 0.02742 
Extended H,,, filter 0.539 24.72 0.02704 

Table 3.6 Comparison of the standard deviations between the EKF and the 
EHF for Kc, Ks and model parameters when the system is 

corrupted with 0.2% process noise and 2% measurement noise. 

The errors, as presented in the above table, in terms of standard deviations, between the 
extended Kalman filter and the extended H,,, filter, are improved by 5.8%, 1.6% and 1.4% for 
the saturation constant, affinity constant and maximum specific growth rate parameters, 
respectively, with the EFIF feature. 

These examples clearly illustrated that the EHF demonstrated better overall tracking 

performances than the extended Kalman filter on this specific ASP model. A minor 
drawback of the extended H,,, filter when compared with the EKF is the convergence speed 
toward the true state variables. Even if the EHF convergence performances could be speed- 

up by tuning 7, great caution should be employed. Indeed, an large y value will lead to an H2 

filter rather than an H,,,, one, which means that the filter will lose its robustness properties. 

Discussion 

The above simulation results based-EHF are slightly improved (with known initial 

conditions) when compared with the EKF. However, the differences are not significant and 

the advantage of selecting an EHF feature can be motivated if the estimated concentrations 

are utilised to feed an eventual control algorithm. Indeed, the estimated states and parameters 

obtained with an EKF, from a corrupted non-linear model (important process noise), are to 

biased to feed a control algorithm. An alternative solution to take advantage of both types of 

non-linear filters is the design of a hybrid system based-EKF and EHF. Using a switching 

technique, an eventual EKF could provide fast convergence and tracking performances 

toward the true states before switching on an EHF, which could take over the EKF for 

control purposes. 
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3.5) SUMMARY 

This chapter has provided a brief historical review of the most common linear and non-linear 
filtering techniques. The choice for selecting the Kalman and H. filtering features, as the 
basis for this work, is motivated by the many drawbacks the Wiener filter presented (e. g. 
only valid for stationary cases, application to multivariable systems remain complex, the 
derivation of Wiener-Hopf integral is not transparent). The Kalman filter overcomes most of 
these problems and is suitable in many engineering applications as well as its extended 
feature, which is mainly employed with non-linear systems. The EKF is extensively utilised 
and further investigated in Chapter V and VI. However, it cannot be considered as the 

perfect filter when applied to bioprocesses, as the noise source statistics and the initial 

parameters values must be known. Furthermore, the convergence and stability properties are 
not guaranteed and still remain an open problem. All these drawbacks have motivated the 

choice of selecting the H. filtering technique, which is further investigated in the Chapter 

V1. 

The proposed examples pointed out a few of the problems discussed in this Chapter. It has 

consisted of applying software sensors based-EKF and EHF on an ASP model. The proposed 

simulations studies demonstrated the multiple-parametric estimation problems in addition to 

the measurement noise effect on the estimation. The robustness performances of the EHF 

were also illustrated through simulation studies, and compared with the standard EKF. The 

uncertainty of any estimated results from a true process is not guaranteed if it is taken into 

account that models used to describe WWT processes are much more complex. Furthermore, 

the model parameters are usually time varying and functions of temperature, pH (which are 

considered in the BSMI model) etc., measurements are not often continuously available and 

many of the state variables are not measurable at all. As the ASMI model is too complex to 

design efficient software sensors, an attempt to reduce it is proposed in the next chapter, 

where various reduced-order models are proposed even if some model parameters may be 

lost. 
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Chapter IV 

Non-linear observability of WWTP models 
The original ASM1 model developed by the IWA task group is not fully observable and its 

parameters are not all identifiable. The objective of this Chapter is to develop a set of 
observable reduced models and to study their properties. The differential equations of the 

original ASMI model are first introduced as a reminder of its complexity. Three reduced- 

order models for the activated sludge process are presented, as well as the simplifying 

assumptions. A comparison of the dynamic behaviour of these reduced models with the 
ASMl model is performed. The linear piece-wise observability property is investigated prior 
to the non-linear observability theory. Both methodologies are compared with each other. 
Finally, a general procedure for model reduction and software sensor implementation is 

proposed. Parts of the material in this Chapter are covered in Benazzi and Katebi (2005), 

Benazzi et al., (2005a, 2005b, 2005c, 2005d, 2005e), Benazzi et al., (2006) 

4.1 SIMPLIFICATION OF THE ASM1 MODEL 

As mentioned in Section (2.3), the WWTP considered in this work is the IWA/COST 

benchmark simulation model No. 1. Within this plant configuration, the ASM I model (Henze 

et al., 2000) is selected to describe the biological processes in the activated sludge reactors. 

This complex model, initially developed by the International Association on Water Quality 

(IWAQ, formerly IAWPRC), is represented in a matrix format, as displayed in Appendix D. 

it is composed of thirteen state variables, nineteen parameters and incorporates eight 

processes, as described in Henze et al., (2000). The model complexity is often hidden when 
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using the matrix format, which illustrates the stoichiometric relationships that relate the state 
variables to the process rate equations. Therefore, to emphasise on these complexities, the 
full set of differential equations describing the ASMI model and utilised in the sequel, is 
discussed and fonnulated in the following subsections. 

Initial ASM1 model formulation 

The ASMI model is extensively utilised to describe carbon removal and nitrification- 
denitrification processes. The full descriptions of the ASMI model, as well as the processes 
that are involved, are given in (Henze et al., 2000). The ASMI is composed of 13 

components or state variables that are listed (with their associated symbols and state variable 

units) in Table B2 of Appendix B. The different processes included in the ASM I model are 

PI: Aerobic growth of heterotrophs; 

P2: Anoxic growth of heterotrophs; 

P3: Aerobic growth of autotrophs; 

P4: Decay of heterotrophs; 

P5: Decay of autotrophs; 

P6: Arnrnonification of soluble organic nitrogen; 

P7: Hydrolysis of entrapped organic materials; 

P8: Hydrolysis of entrapped organic nitrogen. 

The matrix representation showing the process kinetics and stoichiometric relationship that 

relate the state variables to the process rate equations is displayed in Appendix D. The 

stoichiometric and kinetic parameters (as well as their corresponding values) are given in 

Appendix B, Tables B2.1 and B2.2. From the matrix notation, it is possible to obtain the 

complete set of differential equations for all 13 state variables. The basic equation for a mass 

balance within any system boundary (e. g. a completely mixed reactor) is of the form: 

Input - Output + Reaction = Accumulation. 
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The input and output tenns, which are considered as transport terms, depend upon the 

physical characteristics of the system that is modelled (e. g. the flow and the volume of the 
tank). The reaction term is obtained by summing the process rate expression and the product 
of the stoichiometric coefficients provided with the matrix notation (Appendix D). For the 
following differential equations describing the original ASMI model, the mass balance 
formula of Equation (4.1) is utilised for the first aerobic tank for each of the 13 

concentrations (or accumulations). Note that this mass balance will be slightly different for 

the first anoxic tank as the internal recycled flow would be included. However, it is not 
incorporated in the following differential equations description as the study concentrates on 

aerobic conditions. 

The soluble inert organic matter (SI) and particulate inert organic matter (XI) mass balances 

are not presented here because they are not involved in any reaction process. Therefore, only 
11 of the differential equations are presented instead of the original 13. Furthermore, the 

restrictions, simplifications and assumptions (e. g. the system operates at constant 

temperature, changes in the wastewater character cannot be properly handled by the model, 

etc. ) associated with the ASMI model are provided in details in Henze et al., (2000) and 

summarised in Jeppsson (1996). 

The dynamic behaviour of the readily biodegradable substrate concentration, which is 

removed by growth of heterotrophic bacteria (either in aerobic or anoxic condition) and 

could be increased by hydrolysis of slowly biodegradable substrate, is described by: 

dSs 
=Q 

SS'itl 
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SS 
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X Ks + Ss 

x[ KO, 
H + So 

+ 17g 

KO, 
H 

SNO 
+ K, x 

xý/X., 

KO, 
H + So Kvo+ SNO 

Kx + x/ ýs 

XB, H 

S. 
+ Tlh X 

KO, 
H 

SNO 

xx B, H (4.2) 
Ko, 

H 
+SO Ko, 

H 
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The term V and Q (with Qj, = Qf) from Equation (4.2) to (4.12), denote the volume 

(assumed constant to a level of 1333 M) of the first aerobic compartment and the flow, 

respectively. The Ss reaction from the mass balance of Equation (4.1) involves three 
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processes: aerobic growth of heterotrophs (PI), anoxic growth of heterotrophs (P2) and 
hydrolysis of entrapped organic materials (PA 

The concentration of slowly biodegradable substrate is removed by hydrolysis and formed 
by decay of both the heterotrophic and autotrophic biomass according to 

dXs Q 
XS, 

in - 
XS 

+ ('-fp) 
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The Xs reaction from the mass balance of Equation (4.1) involves three processes: decay of 
heterotrophs (PA decay of autotrophs (P5) and the hydrolysis of entrapped organic materials 
(P7)- 

The active heterotrophic biomass concentration, which is formed by growth under either an 

aerobic or anoxic condition, is given by 

dXB, 
H 

Q 
XB, 

H, in - 
XB, 

H + 
ss ), 

dt v Ks + Ss 

so 
+n 

KO, 
H 

SNO ]-bH 
Xx B, H (4.4) 

Ko, 
H +SO 9X Ko, 

H 
+SO) KNO + SNO 

TheXB, Hreaction from the mass balance of Equation (4.1) involves three processes: aerobic 

growth of heterotrophs (PI), anoxic growth of heterotrophs (P2) and decay of heterotrophs 

(P4)- 

The description of the active autotrophic biomass concentration, which is much simpler since 

the autotrophs growth only occurs under aerobic conditions, is described by the following 

differential equation 
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dyB, 
A 

=Q 
XB, 

&in - 
XB, 

A 
+ P. A X 

SNH s0 

xX (4.5) dt v KNH + SNH KO, 
H 

+SO B, A 

TheXB, Areaction from the mass balance of Equation (4.1) involves two processes: aerobic 
growth of autotrophs (P3) and decay of autotrophs (P5). 

The inert particulate product arising from biomass decay is formed by decay of both the 
heterotrophic and autotrophic biomass, according to 

17 dAp XP, 
in - 

XP 

- 
dt = C? 

v. 
+ fp (bH 

XXB, H) X 
(bAXXB, 

A) (4.6) 

The Xp reaction from the mass balance of Equation (4.1) involves two processes: decay of 
heterotrophs (P4) and decay of autotrophs (Ps). 

The concentration of dissolved oxygen in the wastewater is associated only with aerobic 

growth of the heterotrophic and autotrophic biomass. The dynamic equation describing this 
is given by 

dSo 
Q SO, in - SO ý -dUmH X( 

so 

X XB, 
H - PmA X 

dt v YH KS +SS KO, 
H +SO 

)x 

K 

SNH 

Ko 
X XBA + KLa. (SO, 

SAT -SO) (4.7) 
YA 

NH + SNH 

)A 

+SO 

The So reaction from the mass balance of Equation (4.1) involves two processes: aerobic 

growth of heterotrophs (PI) and aerobic growth of autotrophs (P2). The value 4.57 in the 

stoichiometric expression for aerobic growth of autotrophs is the theoretical oxygen demand 

associated with the oxidation of ammonia nitrogen to nitrate nitrogen. KLa is the oxygen 

transfer function (assumed to be linear), which is supposed constant to a level of 10 hf 1 in 

the first aerated tank, and is dependent on the airflow that is produced by the aeration 

blowers. The oxygen saturation concentration(SO, SAT) is set to a level of 8902 M-3. 

The concentration of nitrate is produced by aerobic growth of the autotrophic bacteria and 

removed during anoxic growth of the heterotrophic biomass, according to 
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dSNO 
Q 

SNO, 
in - 

SNO 
+ _PmH 77g x 

KO, 
H 

SNO 

x dt v 2.86. YH Ks + Ss KO H +SO 

( 

KNO + SNO 

) 

XB, 
H + 

AnA SNH so 
X XB, 

A (4.8) Y, 4 KNH + SNH KO, 
A +SO 

The SNo reaction from the mass balance of Equation (4.1) involves two processes: anoxic 
growth of heterotrophs (P2) and aerobic growth of autotrophs (N. The 2.86 factor in the 

stoichiometric expression for anoxic growth of heterotrophic biomass, which is included to 

maintain consistent unit on a COD basis, is the oxygen equivalence for conversion of nitrate 

nitrogen to nitrogen gas. 

The ammonia concentration, which is assumed to be the sum of the ionised (ammonium) and 

un-ionised (ammonia) forms, decreases as a result of the nitrification process and increases 

as a result of ammonification of soluble organic nitrogen. The dynamic equation describing 

this is given by 

dSNH 
Q 

SNH, 
in - 

SNH 
+ -'XBPmH X 

so 
+ng 

dt v KS + Ss KO, 
H +SO 

KO, 
H 

x 

SNO 

+ k,, X SND X XB, 
H _PmA 'XB +, 

Ko, 
H 

+SO KNO + SNO 

] 

YA 

SNH 
xx BA KNH + SNH 

) 

KO, 
A +SO 

(4.9) 

The SNH reaction from the mass balance of Equation (4.1) involves three processes: aerobic 

growth of heterotrophs (PI), anoxic growth of heterotrophs (P2) and aerobic growth of 

autotrophs (P3)- 

The soluble biodegradable organic nitrogen concentration, which is converted to ammonia 

nitrogen by ammonification and formed by hydrolysis of particulate organic nitrogen, is 

given by 

dSND 

Q 
SND, 

in - 
SND 

+ I-kA XSND 

dt v 

X 
NY 

X 

+Kh X, 
B, H 

Kx +(X 
/ 

B, H) 

ýs 

x 
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so 
+17h XK0, 

H 
SNO 

X XB, 
H (4.10) Ko, 

H 
+SO Ko, 

H 
+so KNO + SNO 

] 

The SND reaction from the mass balance of Equation (4.1) involves two processes: 
ammonification of soluble organic nitrogen (PO and hydrolysis of entrapped organic 
nitrogen (P8)- 

The particulate biodegradable organic nitrogen concentration is increased from decay of both 

the heterotrophic and autotrophic biomass and decreased by the hydrolysis process. The 
dynamic differential equation describing this is given by 

X 
Ný/ 

dXND 

=Q 

XND, 
in - 

XND 
+ (iX8-fpx'XP)(bH 

XXB, H) * (bAXXB, 
A)-Kh X' 

XB, 
H 

dt 
Kx X ) 

XB, H 

so 
+ qh x 

KO, 
H 

SNO 
]X 

XB, 
H (4.11) 

KO, 
H +SO KO, 

H 
+SO KNO + SNO 

TheXNDreaction from the mass balance of Equation (4.1) involves three processes: decay of 
heterotrophs (PA decay of autotrophs (P5) and hydrolysis of entrapped organic nitrogen (P8)- 

The alkalinity, which provides information by which undue changes in pH can be predicted, 

is given by 

dSALK 
Q 

SALK, 
in - SALK 

+1x ka x SND + PmH XX 

[_ 
'XB 

x 
so 

dt v 14 Ks +Ss 14 Ko, 
H +SO 

+n 9.1- 

YH 

__ 

'18 Ko, 
H 

SNO 

']X 
XB, 

H 
14 x 2.86 x 

YH 14 Ko, 
H 

+SO KNO + SNO 

PmA x 

ilo 
+I 

SNH so 
X XB, 

A (4.12) 
14 7xYA KNH + SNH Ko, 

A +SO 

TheSALKreaction from the mass balance of Equation (4.1) involves four processes: aerobic 

growth of heterotrophs (PI), anoxic growth of heterotrophs (PA aerobic growth of 

autotrophs (P3) and ammonification of soluble organic nitrogen (PO. The nitrification rate, 
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which has the largest impact on alkalinity, can decrease if the pH level is too low) meaning 
that corrosive, aggressive effluent and bulking problems can occur. 

The differential Equations (4.2) to (4.12) clearly illustrate the complex mass balance 
descriptions of the original ASMI model, which is not obvious within the matrix format 

presented in Appendix D. A simplified schematic representation of the original ASMI 

model, which is considered with the benchmark plant, is proposed in Figure (4.1). 

ASM1 model within the benchmark plant 

Q+ reaction S, v 
SSJn s- ss S" 

SS Qý-Sin 
v+ reaction 

*il 11, IF * 

-� - 

--------- * ... --------- 

_ 

SALK, in 
, 

SALK, 
in - 

SALK 

+ reaction 
SALK, 

ef 
P- SALK, 

in --": 
Qv 

Pý 
TSSj. TSS = 0.75(Xs, f+ 

XB, 
H, ef 

+ XB, 
A, ef 

+ XP, 
ef 

+ Xl, 
ef) 

Qi. 
I 

Qill = Qlf 

KLai,, 

Figure 4.1 Simplified schematic representation of the ASM I model composed 

of 13 state variable, 15 inputs and 16 outputs, within the 

benchmark plant configuration. 

The Total Suspended Solid (TSS) concentration is obtained by a surnming fraction of Xs, 

XB, Hý XB, A5 Xp and X, concentrations. Note that influent and effluent flows are identical. 

Furthermore, it should be emphasised that the activated sludge process model considered 

within the benchmark plant (BSMI), is the ASMI model described by Equation (4.2) to 

(4.12) added with S, and X, concentrations. The benchmark plant consists of 5 activated 

sludge tanks (also called reactor) in series (2 anoxic ones +3 aerobic ones). The entire work 

presented in the sequel concentrate on the I" aerobic reactor. The choice of this specific 

location is motivated by two points: (1) aerobic conditions are of main interest, and (2) the 

non-linearities of the plant are at a maximum at this location, which is a prerequisite when 
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implementing software sensors. Indeed, non-linear filtering algorithm performances are 
improved when the excitement of the system is significant. The description of the original 
ASMI model in term of state variables, inputs, eventual state variables that can be directly 

measured, etc. are detailed in Table (4.1). 

State variables (13) 1 SI) SSý X19 XSi XB, Hi XB, A) XP) SOý SNO9 SNH) SND5 XND5 SALK 

Inputs (16) 

Outputs (15) 

Parameters (19) 

Processes involved (8) 

Eventual measurements 

SI, ing SS, in5 X1, in, XS, in5 XB, H, in5 XB, A, in, XP, in, SO, im SNO, in, 

SNH, in, SND, ing XNDjn5 SALK, im TSSin, Qin, KLaj" 

SI, 
cf5 

SS, 
cfg 

X1, 
cf, 

XS, 
cfg 

XB, H, cf, 
XB, A, cf3 

XP, 
ef, 

SO, 
c6 

SNO, 
cf, 

, f, TSSýf, Qýf SNH, 
cf) 

SND, 
cfg 

XND, 
ef, 

SALK, 
c 

PmH9 KS) KOH, KNog bH, 77gg 77hq Kh, Kxq jUmA) 
KNH, bA, KOA, 

k,,, YA, YH, fp, iXB 
5 

iXP 

P13 P2, P3ý P4, P5) P6, P7) P8 

Q5 SO) SNO3 SNHi SALK, TSS (on-line) 

Ss5 Xs (off-line, via respirometer) 

Table 4.1 Original ASMI model description associated the benchmark plant. 

The state variables and parameters definitions are presented in 

Appendix B, Table B. 2, B2.1 and B2.2. 

A brief description of the BSM I plant configuration is proposed in Chapter 11 and for further 

information on the plant the reader should refer to Copp (2002). Following this introduction 

of the original ASM I model, a reduced-order model formulation is now proposed. 

Reduced-order models formulation 

The original ASM I model considers state variables that are measurable (So, SNO, SNH) SALK) 

as well as those that are not accessible in real wastewater treatment plants (e. g. SI, Ss, XI, Xs, 

XB, Hý XB, A) XP, SNDandXND). Therefore, it is important to produce observable reduced order 

models prior to the implementation of the software sensors, in order to (1) reduce the model 

complexity for on-line monitoring purposes, (2) utilise the estimated concentrations to feed 

an eventual control algorithm, and (3) enhance the practical applicability of the proposed 

applications. Consequently, three reduced models are derived for various case studies 

presented in Chapter V and VI. The reducing techniques are based on a matrix decoupling 

method, which is detailed in Section (4.3), and personal experience. The considerations 
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required in order to produce the reduced models, using the ASM I as a starting point, are also 
discussed for each case. Therefore, all comparisons between the reduced models and the 
ASMl model are performed with the benchmark plant described in Chapter 11. Prior to the 
presentation of the reduced-order models, it is important to briefly discuss the simulation 
procedure, which is identical for all the applications proposed in the sequel. 

Simulation procedure 

All simulations are executed within the Matlab/Simulink platform, based on the defined 

open-loop benchmark configuration. Furthennore, the default benchmark plant physical 
values, given in Copp (2002), are selected (e. g. the volume of the I't aerated reactor (V3) and 
the air flow rate (KLa) are set to 1333 M3 and 10 hr-', respectively). In order to guarantee a 

reliable application of the ASMI and to ensure that similar analyses are done on the output 
data; a two-step simulation procedure involving simulations to steady state followed by 

dynamic simulations using the different influent files (presented in Chapter 11) is required 
(Copp, 2002). 

The steady state simulation procedure involves the simulation of the system under study (for 

200 days) using an influent of constant flow and composition. Note that dynamic simulations 

should always follow a steady state simulation to ensure a consistent starting point and to 

eliminate the influence of starting conditions on the generated dynamics outputs (Copp, 

2002). The dynamic simulations should be lead by a steady state simulation. Then, using the 

dry weather influent file as dynamic input, another simulation has to be run for 14 days and 

the resulting state variable must be saved. The starting point for evaluating the dynamic 

response of the plant to each of the influent disturbances files will be those last (saved) state 

variables. From these dynamic simulations, only the data generated during the last 7 days are 

of interest (Copp, 2002). 

Table (4.2) summarises the simulation procedure that is applied prior any reduced model 

implementation, in order to compare the dynamics outputs with those available in benchmark 

manual. Simulation results should be presented for a period of 7 days, between the 7 th and 

14'h day (Copp, 2002) to include variations in the design hydraulic loading during a 

weekend. However, for simplification reasons, simulation results are eventually presented 

for a single day or two to three days (from the 7 th day) in the sequel. 
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steady state simulation dry weather corresponding units (constant influent file) simulation influent file 
Dry Weather (DW) 200 14 (DW) 14 days 
Ston-n Influent (SI) 200 14 (ST) 14 days 
Rain Influent (RI) 200 14 (RI) 14 days 

Table 4.2 Simulation procedure to perform with the benchmark plant. The 
data of interest correspond the last seven days of the simulation 
procedure. 

Reduced-order 'Model A' 

The main objective in the development of the following model (named 'Model A') is to 

estimate on-line the autotrophic biomass concentration and the heterotrophic biomass 

concentration, as presented in Chapter V. To do so, it is not necessary to consider the full- 

scale ASMI model. Therefore, the following considerations were required in order to 

produce the reduced-order 'Model A'. Soluble inert organic matter (S) contributes to the 

effluent chemical oxygen demand (COD), and particulate inert organic matter (XI) becomes a 

component of the total suspended solids in the Activated Sludge System (ASS). In other 

words, the S, fraction passes through the ASS without resulting in any effects, whilst X, is 

utilised to predict the total amount of sludge in the system, which contributes in 

detennination of the waste and recirculation rates. Therefore, both S, and X, are excluded 
from the reduced model because they do not contribute to any other reactions and are not 

actively involved in any conversion processes. 

Inclusion of the particulate products arising from biomass decay (Xp) in the ASMI is an 

approach to account for the fact that not all biomass in the activated sludge system is active 

(Henze et aL, 2000). Description of alkalinity (SALK) in the ASM I is not essential (no impact 

on biological transformations), although its incorporation is sometimes advantageous 

because it provides information by which excessive change in pH can be predicted (Henze et 

aL, 2000). Therefore, these two components are also excluded from the reduced models. The 

soluble biodegradable organic nitrogen (SND) and particulate biodegradable organic nitrogen 

(XND) are also neglected even though, indirectly, they will slightly affect some concentrations 

estimated by the software sensors. However, this model will be employed to design 

observers that can estimate the heterotrophic biomass (XB, H) and the autotrophic biomass 

(XB, A)concentrations, and later, the heterotrophic yield (YH), which are not directly correlated 

with SND andXND. The readily biodegradable substrate (Ss) and the ammonia (SNH) 
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concentrations are assumed constant to a steady state level (given in Copp, 2002) of 1.5 g 
COD M-3 and 5.548 gN M-3 , respectively. Because the Ss concentration is assumed constant, 
the hydrolysis mechanism cannot occur, which means that the Xs concentration is also 

removed from the system. Note that Ss andSNDconcentrations are assumed constant because 

if removed from the reduced model, the system correlation between the four state variables 
describing the reduced model would not exist. In other words, there would exist no 
dependence between each state variable, which would lead to an incorrect reduced-model. 

Consequently, the reduced-order 'Model A', which includes four state variables, which are: 
XB, HandXB, A, dissolved oxygen (So) and nitrate and nitrite nitrogen (SNo) concentrations, is 

of the fonn 

dXB, 
H 

=Q 
XB, 

H, in - 
XB, 

H +ý 
IU. h x0.13 x dt v 

S Ko, 
H 

SNO 

Ko 
,+ ng . Ko K +S 

]-bH 
X XB, 

H (4.13) 
,H 

+SO H 
+SO NO NO 

dXB, 
A 

XB, 
Ain - 

XB, 
A 

s2 

-= Q+ PmA x 0.85 x- -bA 
XBA (4.14) 

dt v KO, 
H 

+ SO 

dS0 
=Q 

SO. 
in - 

SO 
+ 

JUmH 
Xx0.13 x 

SO 
xxB, H - ßmA X 

dt v YH KO, 
H +SO YA 

0.85 x 
so )xx 

B, A + KL L7' (SO, 
SAT -SO) (4.15) 

KO, 
A 

+SO 

=Q 
SNO, 

in - 
SNO 

+- PmH 77g xx0.13 x 

KO, 
H 

x 

SNO 

x 

dt v 2.86 xY Ko +SK HH0 NO + SNO 

XB, 
H + dUmA 

x 0.85 x 
so 

X XB, 
A (4.16) 

YA, KO, 
A 

+SO 

The description of the reduced 'Model A' in term of state variables, inputs, processes etc. is 

detailed in Table (4-3). 

100 



IV: Non-Itilear Observability of WWTP Models 

State variables (4) XB, 
Hq XB, 

Aq S05 SNO 

Inputs (6) XB, 
HJm XB, 

A, im SO, ini SNO, iný Qin, KLain 
Outputs (4) XB, 

H, efi 
XB, 

A, cfi 
S0, 

ef, 
SNO, 

ef 

Parameters (10) PrnHq KOHý KNo, bHý 77gg PmA, bAýKOA 
9 

YA 
i 

YH 

Processes involved (5) PIi P2, P35 P45 P5 

Eventual measurements (2) SO, SNO, TSS (on-line) 

Table 4.3 Reduced-order 'Model A' description. The state variables and 
parameter definitions are presented in Appendix B, Table B. 2, B2.1 

and B2.2. 

To enhance the understanding of the dynamic behaviour of any reduced model, it is 

important to compare it wit the original one (e. g. the ASMI). Therefore, the reduced 
'Model A' is implemented in parallel with the benchmark plant, as presented in Figure (4.2). 

---------------------------------------------- 
Selected Reactors from the Benchmark Simulation Model No. 1 

-------------- 
inputs 2 nd reactor 16 Preactor 15 4 th reactor outputs 

Anoxic Aerobic Aerobic 
reactor reactor reactor 

------------- 
-------------- --- ------------------------------- 6 -, - II 

SO, i- Reduced- s 
SNO, in order s 

/-I Model A 

I KLaj, 
_I 

Figure 4.2 Schematic representation of the 'Model A', implemented in 

parallel with the benchmark plant. 

Note that even If XB, H, in and XB, A, i, are not physically available on the influent of the 3 rd 

reactor, they are considered in the reduced model, similar to the original ASM1 model. For 

the state observer applications, these influent concentrations will be considered either 

constant or available from fractions of TSS measurement. This work, which is not covered 

within this Chapter, is presented in Chapter V. The dry influent wastewater data file, which 

is available with the benchmark plant, is used to characterize the influent wastewater for the 
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models. The dynamic behaviours of the influent concentrations with the reduced 'Model A' 

are presented in Figure (4.3). KLain, which is set to a constant level of 10 hr-' for this model 
and in the sequel, is not illustrated. 

CýT- 
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0.5 

lp OA 

Influent to the reactor 3 from reduced model A 

vj 7 

E 
Z5 

0 

C-5-- 
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0 

130- 

120--- 
7 

E 2800- 

2600 0 
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2200 
7 'K 
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E, 9j 

81-- 
7 

8 

8 

B 

8 
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10 11 12 13 14 

9 
I--- -- - 10 12 13 14 

12 13 14 89 
I-- -- I 

10 1 
time (days) 

Figure 4.3 SO, 
in5 

SNO, 
in3 

XB, 
A, in3 XB, 

H, i,,, and Qj, influent concentrations to reactor 

3 resulting from simulation with the 'Model A'. 

The effect of variation in the design of hydraulic loading during the weekend is clearly 

illustrated between the 12 th and 14 th day. The daily period of the expected trends in weekly 

data is represented for the dissolved oxygen concentration, which motivates the previous 

discussion on displaying the data during I to 3 days. Furthermore, the DO influent variations 

are close to zero because it corresponds to the effluent of the anoxic reactor (oxygen free). 

Simulation results from the effluent of the reduced 'Model A' and the corresponding 

concentrations from the original ASM1 model are presented in Figure (4.4). It is obvious 

from the graph that the behaviour Of SNOi XB, A andXB, H concentrations resulting from the 

reduced 'Model A' are similar to the ASM 1 model. 
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Effluent from reactor 3 of the reduced model A and the ASMJ model 
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Figure 4.4 SO, 
efi 

SNO, 
ef, XB, A, cfandXB, H, cfconcentrations from reactor 3 resulting 

from simulations with the ASMI model (dashed line), and So,, f, 
SNO, 

ef) 
XB, 

A,, f andXB, H, ef concentrations resulting from 'Model A' 

(solid line), respectively. 

1 
14 

14 

14 

14 

However, important biases occur for the dissolved oxygen, which is probably caused by two 

reasons. Firstly, the DO is not affected by the hydrolysis process of entrapped organics 

materials (Ss assumed constant and Xs removed from the reduced model) and entrapped 

organic nitrogen (SND and XND are excluded from the reduced model). Secondly, the 

ammonia (SNH), which increases as a result of ammonification of soluble biodegradable 

organic nitrogen (SND excluded), is also removed from the reduced model. 

The differences between the selected outputs resulting from simulations with the benchmark 

plant and the reduced 'Model A' are expressed in terms of absolute errors. For each 

concentration, the standard deviations, means and maximum biases are obtained with the 

data statistic tools provided within Matlab. Then, the absolute errors between the original 

ASMI model and the reduced model are calculated in percentage for each concentration. 

Results are summarised in Table (4.4) where it can be observed that the maximum disparities 
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between the selected outputs from the benchmark plant and the 'Model A' occur for the 
dissolved oxygen. Hence, the tracking performances of an eventual state observer might be 

erroneous for the DO concentrations. 

so SNO XB. 
H XB, 

A 
Standard Deviation 68.6 3.7 1.7 0.5 

Mean (%) II<0.1 < 0.1 
Maximum Bias 27.3 5.9 < 0.1 < 0.1 

Table 4.4 Comparison of the absolute errors in term of standard deviation, 

mean and maximum bias (in percentage), between the original 
ASM I and the 'Models A'. 

However, the 'Model A' is primarily employed in estimating the on-line sludge activity. 
Furthermore, DO measurements are available in most WWTPs and are often controlled to a 

constant level in closed loop systems. In addition, the DO sensor is regarded as the most 

reliable on-line instrument for activated sludge processes (Jeppsson, 1996). Consequently, 

the reduced 'Model A' is considered sufficiently precise to estimate the sludge activity on- 
line. It is reminded that prior to the implementation of the state observer, observability 

analysis of this reduced model is required. For simplification reasons, this work is presented 

in next section, as the reduced-order 'Model B' and 'Model C' are introduced. 

Reduced-order 'Model B" 

The main objective in producing a reduced-order model (separated into two similar models 

named 'Model Ba' and 'Model Bb') is (1) to perform on-line estimation and detection of 

abnonnal substrate concentration in WWTPs using a software sensor based-EKF (based on 

'Model Ba') and (2) to present a joint state and parameter estimation application where a 

software sensor based-EKF is implemented to estimate on-line the biomass concentrations 

and the heterotrophic yield (based on 'Model Bb'). The only difference between these 

models is that in the 'Model Ba', the heterotrophic and autotrophic biomass concentrations 

are assumed constant, while in 'Model Bb', the differential equations describing the biomass 

activity are included in the reduced model. 

'Model Ba' 

The assumption of constant biomasses is similar to that proposed by Ingildsen (2002), who 

assumed the slowly changing variables to be constant. Therefore, the XB, jj andXB, A 
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concentrations are kept constant in the reduced model, as the variations in the amount of 

sludge in the system is a slow process. Consequently, theXND concentration, which is 

generated from decay of bothXB, H andXB, A, andSND concentrations, which is formed by 

hydrolysis Of XND, is also neglected in the 'Model Ba'. Identical assumptions as those 

presented for 'Model A' hold for S1, X1, Xp andSALKconcentrations for the following reduced 

models (including the 'Model Wand 'Model C'). Therefore, the 'Model Ba' includes five 

state variables of the form 

so KO, 
H dSs Q+_ JUmH 

x. 

[+ 

ilg .x 

dt v YH Ks + Ss KO, 
H 

+SO KO, 
H 

+SO 

Sx KO, 
H NO 

-+ 
Kh x 

Y2561 

X[ 
so 

+ 11h Xx 

KNO + SNO 
Kx +( Xý 

2/5 6 1) 
Ko, 

H +SO Ko, 
H 

+SO 

SNO 

x 2561 
KNO + SNO 

]I 

dXs 
=QXS, 

in - 
XS 

+ (1-fp) x (bHx256 1) x (bxl 35) - 
Kh X- 

Xý/2561 
x 

dt v Kx + 
(X/256 

1) 

(4.17) 

so 
+17h X 

KO, 
H 

SNO 

-]x 2561 (4.18) 
Ko, 

H 
+SO KO, 

H + So Ko, 
H + SNO 

dSo 
=Q + -PmH x Ks +Ss Ko 

s0s 
x2561-p, x 

dt v YH H+0 

xK 

SNH 

K +S 
x135 +KLax(SO, SAT - 

SO) (4.19) 
YA 

NH + SNH 
0, A 0 

dSNO 
Q 

SNO, 
in - 

SNO 
+- PmH X l7g x 

KO, 
H 

K 

SNO 
x 

dt v 2.86 x 
YH Ks + Ss Ko, 

H +SO NO + SNO 

2561+ 
PmA 

x 

SNH so 

x 135 (4.20) 
YK +S A KNH + SNH 

O, A 0 
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dSNH 

=Q 
SNH, 

in - 
SNH 

+ -iXBPmH X 

SO 

+n dt v Ks + Ss 

[ 
KO, 

H +SO 9 

KO, 
H 

SNO 

+k x 2561 'XB + KO, 
H +S0x KNO + SNO ax 

SND PmA 
y 

SNH 

x 135 
KNH + SNH KO, 

A +SO 
(4.21) 

Note thatXB, HandXB, Aconcentrations are assumed constant to a level 2561 and 135 g COD 

m -3 , respectively. These biomasses levels represent the steady state values of the theoretical 
data available with the BSMI model. The description of the 'Model Ba' in term of state 

variables, inputs, processes etc. is detailed in Table (4.5). Its dynamic behaviour is compared 

with the ASM I model, as presented in the schematic overview of Figure (4.5). 

State variables (5) 1 SS) XS5 S05 SNO5 SNH 

Inputs (7) 

Outputs (5) 

Parameters (18) 

Processes involved (7) 

Measurements (5) 

SS, im XS, in) SO, im SNO, in) SNH, in3 Qin, KLain 
SS, 

cf) 
XS, 

cf) 
SO, 

c6 
SNO, 

cf) 
SNH, 

ef 

Pmffi & KOH) KNo, bH) 77gg 77h) Khq&ý PmA) KNH, bA2KOA 
3 

ka 
2 

YA) YH) 

fp 
ý 

ixB 

PI) P2, P35 P45 P5) P61 P7 

SO, SNO, SNH (on-line) I Ss, Xs (off-line) 

Table 4.5 Reduced 'Model Ba' description. The state variables, parameter 

etc., are displayed in Appendix B, Table B. 2, B2.1 and B2.2. 

Similar to the 'Model A', the dry influent wastewater data are used to characterize the 

influent wastewater for the models. The dynamic behaviours of the influent concentrations to 

the 'Model Ba' are presented in Figure (4.6) forSS, ing XS, in andSNH, in concentrations. So, in, 

SNO, i,, and Qjn influent concentrations are not illustrated here because they are identical to 

those presented in Figure (4.3). 
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r----------------------------------------------- 
Selected Reactors from the Benchmark Simulation Model No. 1 

------------- II nd rd th inputs 2 reactor 16 3 reactor 15 4 reactor outputs 
Anoxic Aerobic Aerobic 
reactor \ Pr 

reactor reactor 
IL ------------- III 

----------------------------------------------- 7 -, J II SS, 
in Ss'ef 

xs, i2 Reduced- XS, cf --. o. 
SO i order S 

, n O"f 
Model Ba SNO SNO, 

cf 

SNH' 

Qi 
XB, 

Aand XBJI 

n are assumed 
KLai,, 

_I 
constant 

Figure 4.5 Schematic representation of the 'Model Ba', implemented in 

parallel with the benclunark plant. 

Influent to the reactor 3 from the reduced model Ba 
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Figure 4.6 SS, inq XS, ini SNH, in influent concentrations to reactor 3 resulting from 

simulation with the reduced-order 'Model Ba'. 

107 



Chapter IV: Non-linear Observability of WWTP Models 

Simulation results from the effluent of the 'Model Ba' and the corresponding concentrations 
from the original ASMI model are presented in Figure (4.7). It is clear from the graph that 
the behaviour of Ss, Xs and SNO concentrations resulting from the 'Model Ba' are similar to 
the ASM I model. The dissolved oxygen is over estimated during the high intensity events. 
This is most likely due to the fact that (1) the hydrolysis process of entrapped organic 
nitrogen is not considered (SND andXND concentrations are excluded from the reduced 
model), and (2) biomass activities are kept constant. Furthermore, SNHconcentration is under 
estimated trough the entire period of time, when compared withSNH concentration resulting 
from the ASM I model. 

C6- 
E 
0 
0 

7 

E loo. 
0 
0 

r 
50 

7 
4 

E 
o 3) 

8 
22 

01 
C/) 7 

.E 10- 
0j 

8 5- 

7 

E 
z 10'- 

(n 0- 
7 

Effluent from reactor 3 of the reduced model Ba and the ASM1 model 

10 11 12 13 14 

10 12 13 14 

9 10 12 13 14 

10 11 12 13 14 
time (days) 

Figure 4.7 Ss, Xs, So, SNO andSNHconcentrations from reactor 3 resulting from 

simulations with the ASM I model (dashed line) and Ss, Xs, So, SNO 

and SNH concentrations resulting from 'Model Ba' (solid line), 

respectively. 

This phenomena is most likely due to the constant levels Of XBA and XB, H concentrations 

considered in the reduced model. Indeed, by keeping the heterotrophic biomass and 
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autotrophic biomass concentrations constant, the anoxic growth of heterotrophs and aerobic 
growth of autotrophs processes cannot occur. 

Similarly to 'Model A', the absolute errors between the original ASMI model and the 
'Model Ba' are calculated in terms of standard deviations, means and maximum biases, for 

each concentration. Results are summarised in Table (4.6) were it can be observed that the 

maximum discrepancies occur for Ss, So, SNO and SNH concentrations with a maximum 

standard deviation error occurring for the dissolved oxygen (30.8%) for the reasons 

explained earlier. 

ss Xs so SNO SNH 

Standard Deviation 9 < 0.1 30.8 6.84 9.75 
Mean (%) 0.81 < 0.1 5 1.96 18.4 

Maximum Bias 6.35 < 0.1 15.6 5.82 12 

Table 4.6 Comparison of the absolute errors in terms of standard deviations, 

means and maximum biases (in percentage), between the original 

ASM I and the reduced 'Model Ba'. 

Furthen-nore, the ammonia nitrogen disparities between the 'Model Ba'and the ASMl model 

are acceptable with the knowledge that SNH concentration is measured on-line in the 

corresponding application presented in Chapter V. Therefore, similar to the case in 'Model 

A', these differences in the models will be considered as acceptable for the monitoring 

applications that follow in Chapters V and VI. 

'Model Bb' 

Within the 'Model Bb', the heterotrophic and autrophic biomass concentrations are 

considered. Its differential equations, describing its dynamic behaviour, are identical to 

Equations (4.2) to (4.5) and Equations (4.7) to (4.9), respectively. The description of the 

'Model Bb' in term of state variables, inputs, processes etc. is detailed in Table (4.7). Its 

dynamic behaviour is compared with the ASMI model, as presented in the schematic 

overview of Figure (4.8). 

Similar to the 'Model A' and 'Model Ba', the dry influent wastewater data are used to 

characterize the influent wastewater for the models. The dynamic behaviours of the influent 

concentrations to the 'Model Bb' are not represented here because they are identical to those 

displayed in Figure (4-3) and (4.6). 
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SSi XS9 XB, 

H5 XB, 
Aq S09 SNOý SNH 

SS, in5 XS, iný XB, H, ini XB, A, in) SO, in, SNO, in5 SNH, in5 Qin, KLain 

SS, 
cfq 

XS, 
cf5 

XB, H, cfi 
XB, A, ef, 

SO, 
cf5 

SNO, 
ef3 

SNH, 
cf 

AnH5 Ks5 KoH, KNo, bH, 77g5 77h5 Kh5 KX5 PmAq KNH5 bA5 KOA5 

k, YAi YH5fp5 iXB 

PI) P2, P31 P4ý P55 P61 P7 

S05SNO, SNH (on-line) 

Ss5 Xs (off-line) 

Table 4.7 Reduced-order 'Model Bb' description. The state variables and 
parameter definitions are presented in Appendix B, Table B. 2, 

B2.1 and B2.2. 

State variables (7) 

Inputs (9) 

Outputs (7) 

Parameters (18) 

Processes involved (7) 

Eventual measurements (5) 

r----------------------------------------------- 
Selected Reactors from the Benchmark Simulation Model No. 1 

------------- 
inputs 2 nd reactor 16 Preactor 15 4 th reactor outputs 

-4 ----- Anoxic Aerobic Aerobic ------ 40. 
reactor reactor reactor 

------------- 
-------------- --- ------------------------------- 9 -,, 1 1 -1 SS, in SS, 

ef 

Xs"f 

XB, H, in XB, H, ei 

XB, L"2 Reduced- 
XB, 

A, ei 
-. o 

Soo., order SO"f 
SNO, 

in 
Model Bb SNO 

ef 

SNH, 
in 

Qin 
KLain 

Figure 4.8 Schematic representation of the 'Model Bb', implemented in 

parallel with the benchmark plant. 

The difference between the original ASM I and the 'Model Bb' are presented in Figure (4.9). 

Comparing these results with the ones presented in Figure (4.7), it can be observed that the 

constant biomasses levels do not affect the slowly biodegradable substrate. Furthermore, Ss, 

So, SNO andSNH concentrations are closer to the original ASMI model in comparison to the 

reduced 'Model Ba'. 
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Effluent from reactor 3 of the reduced model Bb and the ASM1 model 
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Figure 4.9 SSi XSi XB, 
Hi 

XBAý So, SNO andSNH concentrations from reactor 3 

resulting from simulations with the ASMI model (dashed line) and 
SS5 XSý XB, 

Hý 
XB, 

A5 
So, SNo andSNH concentrations resulting from 

'Model Bb' (solid line), respectively. 
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However, hypothetical access of the heterotrophic and autotrophic biomass concentrations 
on the influent of the models (or as measurements) is not realistic at this stage. Nevertheless 
this drawback is overcome by the implementation of a state observer, as presented in Chapter 
V. 

The absolute errors between the original ASM I model and the reduced 'Model Bb' are 
calculated in terms of standard deviations, means and maximum biases, for each 
concentration. Results are summarised in Table (4.8) where it can be observed that the most 
important disparities occur for So, SNO andSNH concentrations with a maximum standard 
deviation difference occurring for the DO. 

ss Xs XB. 
H XBA so SNO SNH 

Standard Deviation < 0.1 < 0.1 < 0.1 < 0.1 23.5 4.90 7.24 
Mean (%) < 0.1 < 0.1 < 0.1 < 0.1 5.64 2.14 18.24 

Maximum Bias < 0.1 < 0.1 < 0.1 < 0.1 14.7 5.43 10.62 

Table 4.8 Comparison of the absolute standard deviation, mean and maximum 
bias, in percentage, between the original ASMI and the 'Model 

Bb'. 

The discrepancies are drastically minimised when comparing with Table (4.6), especially for 

the readily biodegradable substrate, which has percentage errors of less than 0.1 %. This is 

explained by the addition of the differential equations, which describe the sludge activities, 

within the reduced 'Model Bb'. Therefore, similar to the 'Model Ba', such difference in the 

models will be considered as acceptable for the monitoring applications that follow in 

Chapters V. 

Reduce d-order 'Model C' 

The final reduced-order model (named 'Model C') is mainly utilised to estimate a maximum 

of concentrations (excluding biomass concentrations) with a minimum of hypothetical 

available measurements. Therefore, the same assumptions as the 'Model Ba' are held but the 

particulate biodegradable organic nitrogen (XND) and soluble biodegradable organic nitrogen 

(SND) concentrations are also included in the reduced model. The differential equations 

describing the reduced 'Model C' are identical to the 'Model Ba' ones, which is described by 

Equations (4.17) to (4.21). Note thatXB, H andXB, A concentrations are kept constant. In 

addition the following two differential equations are also considered: 
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A 
dSND 

2. 
SND, 

in - 
SND XNýl 

dt Qv+ -ka x SND+Kh 
X 

Kx 

2561 

+ 
(Xý 

2/561) 

SO 
+)7h - 

Ko, 
H 

SNO 

x 135 (4.22) Ko, 
H +SO KO, 

H+ So KNO + SNO 

] 

2. dX x XND XNýl 

ND =Q 
ND, in A 

dt v+ 
l(iXB-fpxiXP) (bHx25 6 1) x (b, A3 5) -Khx 

Kx 

2561 

+ 
(XY256 

1) 

so 
+17h X 

KO, 
H 

SNO 

x 2561 (4.23) KO, 
H +SO KO, 

H+ So Kvo+ SNO 

] 

The description of the 'Model C' in term of state variables, inputs, processes etc. is detailed 
in Table (4.9). It can be observed that seven state variables and outputs are considered, while 
five measurements (two on-line and three off-line sensors) can hypothetically be available 

with this specific configuration. 

State variables (7) 1 SS9 XS5 S09 SNOý SNH9 SND5 XND 

Inputs (9) 

Outputs (7) 

Parameters (19) 

Processes involved (8) 

Measurements (5) 

SS, im XS, im SO, in) SNOjn5 SNH, in) SND, in) XND, im Qin, KLain 

SS, 
c6 

XS, 
efg 

SO, 
c6 

SNO, 
ef, 

SNH, 
ef) 

SND, 
cfq 

XND, 
ef 

, "mH) KS3 KOHi KNo, bHq 17p 77h5 Khq KX) PmA) 

KNH, bA3 KOAý kaý YA3 YH)fp) iXB5 iXP 

PI) P2, P3ý P43 P5) P6 P7) P8 

S09 SNO, SNH(on-line) I Ss, Xs (off-line) 

Table 4.9 Reduced-order 'Model C' description. The state variables and 

parameter definitions are presented in Appendix B, Table B-2, 

B2.1 and B2.2. 

Its dynamic behaviour is compared with the ASMI model, as presented in the schematic 

overview of Figure (4.10). Similarly to the case of the reduced 'Model A' and the 'Model B', 

the dry influent wastewater data file is used to characterize the influent wastewater for the 

models. 
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r ----------------------------------------------- 
Selected Reactors from the Benchmark Simulation Model No. 1 

------------- inputs 2 n' 
reactor 16 3 rd 

reactor 15 4" reactor I outputs 
1ý Anoxic Aerobic Aerobic 

\ Pr ------- III. reactor reactor reactor 
------------- 

------------------------------------------------ 
SS, in -1 

-1 
Sý, -, f 

x 
-'- 10 

SNOý! 
ý 

Reduced- 

order 

_UICI - SNO, 
ef ý 

SNH, 
Ln Model C SNH, 

ef __, 
SND, 

in _ 
SND, 

ef 
- 

XN2112 
AB, H and XB, A 

are assumed 
_0 

Qin 
- 

constant 

KLain 

Figure 4.10 Schematic representation of the reduced-order 'Model C', 

implemented in parallel with the benchmark plant. 

The dynamic behaviours of the influent concentrations to the 'Model C' are presented in 

Figure (4.11) forSND, 
in andXND, inconcentrations. 

Influent to the reactor 3 from the reduced '[Vbdel C' 

1.2- 
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7 
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24 01 
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89 10 12 13 14 

89 10 11 12 13 14 

time (days) 

Figure 4.11 SND, iný and XND, in5 influent concentrations to reactor 3 resulting from 

simulation with the reduced-order 'Model C'. 
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SO, in) SNO, 

inand Qi., influent concentrations and the flow, respectively, are not illustrated here 
because they are identical to those presented in Figure (4.3) while Ssjný XSjn andSNHjn 

concentrations are identical to those displayed in Figure (4.6). 

The difference between the original ASMI and the 'Model C' is presented in Figure (4.12) 

with the dry influent wastewater data and in Figure (4.13) with the storm events. It is clear 
from the Figure (4.12) that the behaviour Of SNH concentration resulting from the reduced 
model C is almost similar to the ASMI model when compared with the previous reduced 
models. This improvement confirms the consideration of the hydrolysis process of entrapped 
organic nitrogen in the system, as SND andXND concentrations are included within the 

reduced model. Comparing these results with those presented in Figure (4.7) and (4.9), an 
overall improvement is achieved with the 'Model C'. 

Similarly to the 'Model A' and 'Model B', the absolute errors between the original ASMI 

model and the 'Model C' are presented in terms of standard deviations, means and maximum 
biases, for each concentration. Results are summarised in Table (4.10) where it can be 

observed that the maximum discrepancy still occurs for So. 

Ss XS SO SNO SNH SNQ XNQ 

Standard Deviation 9 < 0.1 14.6 2.56 1.7 10.3 < 0.1 
Mean (%) 0.81 < 0.1 0.53 < 0.1 < 0.1 <0.1 < 0.1 

Maximum Bias 6.35 < 0.1 9.8 3.29 5 6.5 < 0.1 

Table 4.10 Comparison of the absolute standard deviation, mean and 

maximum bias, in percentage, between the original ASM I and the 

'Model C'. 

Comparing the above results with the ones from Table (4.6) ('Model Ba' excludingSNDand 

XN D concentrations) it appears that the organic nitrogen fractions SND andXND do not 

influence the biodegradable fraction Ss and Xs, as identical results are obtained. On the 

contrary, the standard deviations differences are improved by 51 %, 62 % and 82 % for the 

dissolved oxygen, nitrate and ammonia concentrations, respectively. Similar improvements 

are achieved with the means and maximum biases. 

Hypothetical accesses to nitrogen and ammonia concentrations on the influent of the models 

(or as measurements) are not realistic at this stage. 
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Effluent from reactor 3 of the reduced model C and the ASM1 model 
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Figur e 4.12 Ss, Xs, SO, SNOý SNHý SND and XND concentrations from reactor 3 

resulting from simulations with the ASM1 model (dashed line) and 

SS, Xs, So, SNO, SNHi SND and XND conce ntrations resulting from 

'Model C' (solid line), respectively. The dry influent wastewater 

data are considered. 
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Effluent from reactor 3 of the reduced model C and the ASM1 model 
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This drawback is overcome by the implementation of a state observer, as presented in 
Chapter V. Consequently, the reduced 'Model C' is considered sufficiently precise 
monitoring purposes. 

Similarly to the corresponding state observer application, based on the 'Model C' and 
presented in Chapter V, the storm influent wastewater data are used to characterise the 
influent wastewater in Figure (4.13). A mismatch between the ASM I and the reduced model 
for Ss, So andSND concentrations can be observed, similar to Figure (4.12), but of larger 

amplitude. It occurs during the first stonn event, which is of short duration and flush the 

sewer of particulate materials. 

The proposed reduced model is more accurate when compared with the 'Model Ba'. 

Therefore, the proposed 'Model C' is considered as suitable for monitoring application, 

when storm events are considered. It is now crucial to check if the observability properties 

presented in Chapter III (section 2.2) are satisfied in order to guarantee the existences of 

solutions for the state observer and software sensors that are presented in Chapter V and VI. 

4.2 NON-LINEAR OBSERVABILITY ANALYSES 

The purpose of this section is the application of the non-linear observability theory presented 

in Chapter 111, on the various reduced-order models. Results are compared with the linear 

piece-wise observability method. The on-line and off-line measurements characteristics that 

are considered for this study are presented in Table (2.2). Cost, sensitivity and accuracy of 

the measurements are not considered in this work. Even if these points are of great 

importance, they are neglected at this stage because the fundamental acceptability of the 

proposed reduced model must be validated with real data. 

Computational burden in non-linear observability 

The non-linear local observability theory described in Chapter 111, Section (3.2), is only 

applied on the reduced models A and B 1. For the non-linear systems described by more than 

five to six differential equations (e. g. reduced 'Model Bb' and 'Model C'), the amount of 

physical memory required by the computational calculation is so excessive that the Lie 

derivative test could not be performed. A first endeavour in solving Equations (3.6) to (3.8) 
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has been unsuccessfully attempted with Matlab, using a symbolic form of the ASMI model. 
A simple calculation, based on single Lie derivatives workspace memory storage, clearly 
confirmed that for a ninth order system, 20OGB of memory would be required. 

This significant memory requirement has motivated the use of Maple, which is more 
efficient for such symbolic calculations. However, a similar problem occurred for sixth order 

non-linear systems. This computational burden is due to each Lie derivatives calculation, 

which requires storage of the previous calculations in the memory when computing the 

observation space w(x) given in Equation (3.6). Furthennore, a symbolic form of the 

expressions is initially required before substituting the numerical operating conditions in the 

model. Therefore, even with a4 GHz processor equipped with 2GB of memory and 4095MB 

of virtual memory, the computational analysis of the observation space and the rank failed. 

Consequently, the adopted solution for investigating the observability of the reduced 'Model 

Bb' and 'Model C', is the piece-wise linear approach. This technique as been briefly 

discussed in Chapter 11 and further investigated in this Chapter. 

Observability analysis of 'Model A' 

Linear piece-wise observability analysis 

The 'Model A' under study, which is defined in the form of Equations (3.4) and (3.5), is 

assumed stable. The linear piece-wise approach, presented in Chapter 111, is initially 

investigated. The dynamic non-linear system described by Equations (4.12) to (4.15) is 

assumed to be composed of a linear model at each sampling point. Under this assumption, 

the Kalman rank test ([C CA ... 
CAn-1]') for observability of linear systems is applied piece- 

wise in time at each sampling point (also called operating points or conditions in this work). 

Results are presented in Figure (4-14) were it can be observed that the rank (rk) test 

succeeded at all operating points (e. g. 43673) when So is considered as the only 

measurement. All operating conditions are obtained by running the reduced model in parallel 

with the benchmark plant over a fourteen days period. To confirm these results, the non- 

linear observability theory, also presented in Chapter 111, is investigated. 
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Linear piece-wise observability analysis of reduced model A 

Je 
c M, 

ist 
... 43673rd 

operating conditions 

lece Figure 4.14 Linear pi -wise observability analysis applied on the reduced 
'Model A', achieved with a single measurement (SO). 

Non-linear observability analysis 

The non-linear reduced 'Model A' is selected to perform the non-linear observability 
analysis. The observation space given by Equation (3.6) has been initially computed, up to 
k--4 (e. g. the order of the system). This computation involved Lie derivatives along the 
vector field f described by Equation (3.7). The implicit observability map is of the form 

(YHx(Ks+1.5)x(Ko,,, +So)) (Y4 x (KNH+ 5.548) x (K 0, A 
+ S. )) 

1.5x PH X 
so 

+ ngxKO, H XS NO 

1.5X PH X('-YH)X SOX - 

KO, 
H 

+ SO (Ko, 
H + SO) x (KNO + SNO) 

_ 
bH XXB, 11 Ks + 1.5 

(YHx (Ks + 1.5)) x 
(Ko, 

H 
+ SO) 

W(X) =I 

-1.5 X PH X (1 YH) X So xXB, ll 5.548xu, x(4.47-Y, )xSoxX,,, 

(YHx (Ks + 1.5)) x (Ko H+ 
SO) 

3x1.5 X PH XQ- YH)_ 
+ 

1.5 X PH XQ- YH)SO 

(YHx (Ks + 1.5)) x (K,,, H 
+ SO) (YHx (Ks + 1.5)) x (Ko, 

H 
+SO)2 

(YHx (Ks + 1.5)) x (Ko H+ 
SO) 

Iý 

(4.24) 

Note that for simplification reasons the transport terms of Equation (4.1), the entire 

observation space as well as its invertibility matrix (Q(x)) are not represented here. Then, the 

computation of the local invertibility of the observability map has been computed, which is 

given by Q(x) of the implicit fonn given by 

1.5 x PH X 
SO 

+ ngxKO, H xS NO 

1.5 X PH X0- YH) X SO X 
KO, 

H 
+So (KO, H+ SO) x (KNO + SNO) 

_ 
bH xXB, 11 Ks + 1.5 
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(4.25) 

Finally, based on the observation space and the local invertibility of the observability map, 

the rank of the reduced model has been investigated in the neighbourhood of various 

operating points. 

Simulation results presented in Figure (4.15) are achieved at each of the operating conditions 
displayed in Table (4.11). Again, for abbreviation reasons, the entire table is not displayed. 

The selected points, for which the dry influent wastewater data are used to characterize the 

influent wastewater for the reduced-order model, cover a period of twenty-four hours 

between the seventh and eighth days of the benchmark plant output data. It can be observed 

from Figure (4.15) that a single measurement (So) is also sufficient to achieve the local 

observability properties around the neighbourhood of the ten operating conditions. 

However, caution should be considered, as the non-linear properties have been investigated 

only for few operating points. 
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Non-linear observability analysis of reduced model A 

5', 
4 

c cu 3 
lý 

lst 2nd 3rd 4th 5th 6th 
operating points 

Figure 4.15 Non-linear observability analyses based on the Lie derivative, 

achieved with a single measurement (So). The three first and last 

operating points are displayed in Table (4.11) 

Over a period of 24 hours, there are more than three thousand operating conditions, while for 

a 14 days simulation period, these increases to about 44,000, as displayed on the x-axis on 
Figure (4.14). To be consistent, the non-linear observability properties should be investigated 
(if possible) for the whole domain of definition, similarly to the linear piece-wise case, to 

guarantee the local observability. 

oc 
In. Out. 

1 2 3 
... ... 

8 9 10 

Qin=ef 95251 93754 86886 ... ... 
93284 95899 99122 

XB, H, in 2498.5 2500.4 2579.9 ... ... 
2480.8 2456.6 2442.6 

XB, H 2499.4 2499.4 2593.3 2475.9 2487.9 2451.5 
XB, A, in 141 146.04 146.6 ... ... 137 135.1 133.7 
XB, A 141.4 146.54 147.6 137.3 137.3 134.7 
SO, in le -4 le -4 2e -4 

... ... 4e -5 4e -5 3e -5 

so 1.84 1.705 1.74 1.92 1.90 1.95 
SNO, in 4.43 1.143 6.75 ... ... 

1.02 1.27 0.79 
SNO 7.16 5.96 9.43 3.71 3.97 3.43 

Table 4.11 Operating conditions (OC), which represent the x-axis of Figure 

(4.15), used to investigate the non-linear observability of the 

reduced-order 'Model A'. The y-axis (Q: M3 /d unit; from XB, H to 

SO: g COD M-3 units; and SNO gN M-3 units) represent the inputs 

(1n. ) and outputs of the reduced 'Model A' (Out. ). 

In other words, the rank test should be perfon-ned at all possible times (smaller than the time 

step from the solver) rather than for a few operating conditions. The proposed results 

demonstrated similarities between the linear piece-wise approach and the non-linear one. 
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Therefore, the reduced 'Model A' is considered locally observable in the whole domain of 
definition. 

Concerning the global observability, it is important to bear in mind that the solution of 
Equation (3.6) is difficult to consider in practice (Bogaerts and Vande Wouwer, 2004), 

especially with such complicated models. Therefore, the observability analyses presented in 
this thesis is limited to a local one rather than a global one, due to the complexity of the 

reduced models. It should also be emphasised that global observability, which is not often 
considered, is mainly performed on simple second order model. 

Observability analysis of model B (Ba and Bb) 

Model Ba: Linear piece-wise observability analysis 

The reduced 'Model Ba' under study, which is described by Equations (4.16) to (4.20), is 

assumed stable. A similar linear piece-wise observability, as the one performed for 'Model 

A', has been investigated. Simulation results are presented in Figure (4.16) where it can be 

observed that the rank (denoted rk) test failed (rk = 4) at a set of operating points (e. g. the 

41514 th) when So was considered as the only measurement. The system matrix of the linear 

model at the 41514 th point, where a loss of observability occurred, is of the form 

-1305.45 21.976 -0.0209 -0.00128 0 

0 -21.976 -3.551 -0.217 0 

A -413.28 0 -18.645 0 -333.56 (4.26) 

-6.1247 0 4.4786 -0.0252 77.0346 

0 -3.4209 -0.0117 -78.5136 . 

This matrix is singular (A. A-' -ý 1) and has a non zero determinant (close to zero: 8.2e-10). 

This implies that all columns (and/or rows) are not independent, which results in a non- 

observable system (rk: ý 5 instead of rk = 5). Consequently, the linear model, at the selected 

operating condition, is not valid when the dissolved oxygen measurement is considered. The 

set of operating conditions causing the lost of observability is presented in the next 

subsection. Note that all operating points (e. g. 43648 th ) are obtained by running the reduced 

model in parallel with the benchmark plant over a fourteen days period. 
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61 
Linear piece-wise observability 

I 
analysis of reduced model Bla 
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lst 

6-- 

5 

4 
lst 

43648th 

43648th 

operating conditions 

Figure 4.16 Linear piece-wise observability analysis applied on the 'Model 

Ba'. (top plot) So measurement is considered. (bottom plot) So and 
SNo measurements are considered. 

By increasing the (hypothetically) available sensors number to two (e. g. So andSNo), the 

rank of the reduced model is equivalent to the order of the non-linear system (rk = 5). 

Therefore, the linear piece-wise analysis, which is applied over a fourteen days period at 

every sampling point (e. g. 43618 points), demonstrated that the reduced 'Model Ba' is 

observable in the whole domain of definition with two measurments. To confirm these 

results, a non-linear observability analysis is investigated. 

Model Ba: non-linear observability analysis 

The non-linear reduced 'Model Ba' is selected to perforrn the non-linear observability 

analysis. The observation space given by Equation (3.6) has been initially computed, up to 

k--5 (e. g. the order of the system). This computation involved Lie derivatives along the 

vector field f described by Equation (3.7). The implicit observability map and its invertibility 

are presented in Equation (4.27) and (4.28), respectively. Similarly to the reduced 'Model 

A', the transport terrns of Equation (4.1), the entire observation space as well as its 

invertibility matrix (Q(x)) are not represented here. 
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(4.27) 

The local invertibility of the observability map (Q(x)), is employed to investigate the rank of 

the non-linear model at the selected operating conditions displayed in Table (4.12). 

Simulation results are presented Figure (4.17) where it can be observed that a single 

measurement (SO) is sufficient to achieve the local observability properties around the 

neighbourhood of the operating conditions. Indeed, the rank of the system is equal to five, 

the order of the model, at the selected operating conditions. 
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(4.28) 

Furthermore, the 9th operating condition, displayed in Table (4.12), which created a loss of 

observability concerning the linear model described by the system matrix in Equation (4.26), 

has been successfully computed with the non-linear observability theory. These results imply 

that the proposed reduced-order 'Model Ba' is locally observable with a single measurement 
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and that there is no requirement in increasing the number of available sensors to two, as 
demonstrated by the linear piece-wise approach. However, the same conclusion as that 
discussed for 'Model A' should be applied regarding the application of the rank test at all 
possible times rather than for a few operating conditions. 

oc 
In. Out. 

1 2 3 ... ... 8 9 10 

Qin=ef 95237 90180 86886 
... ... 93287 85621 99111 

SS, in 1.48 1.43 1.03 
... ... 1.97 0.846 2.21 

ss 1.12 1.16 0.9 1.5 0.75 1.43 
XS, in 75.24 76.2 56.12 

... ... 102.5 46.27 97.32 
xs 63.27 65.52 49.91 87.89 41.22 81.34 
SO, in le -4 le -4 2e -4 

... ... 
4e-5 8.49e -4 3e -5 

so 1.96 1.93 2.69 1.55 3.58 1.56 
SNO, in 4.32 4.16 6.62 

... ... 
0.97 7.97 0.73 

SNO 6.94 6.77 8.76 3.51 9.66 3.35 
SNH, in 9 9.49 5.02 ... ... 11.79 3.47 13.35 
SNH 5.19 5.35 1.91 7.46 0.81 8.83 

Table 4.12 Operating conditions (OC), which represent selected operating 

points from the x-axis of Figure (4.17), used to test the non-linear 

weak observability of the reduced-order 'Model Ba' during dry 

weather conditions. The y-axis (Q: m3 /d unit; from Ss to SO: g COD 

M-3 units; and SNO gN M-3 units) represents the inputs (In. ) and 

outputs (Out. ) of the reduced 'Model Ba'. 

Non-linear observability analysis of reduced model B1 a 
IITI 

6 
mmm -ii. ' 

lst 2nd 3rd 4th 5th 6th 
operating points 

9th 1 Oth 

Figure 4.17 Non-linear observability analyses based on the Lie derivative, 

achieved with a single measurement (So). 
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Model Bb 

The reduced 'Model Bb' under study, which is described by Equations (4.1) to (4.4) and 
(4.6) to (4.8), is also assumed stable. The linear piece-wise observability approach has been 

successfully investigated. Simulation results are displayed in Figure (4.18). 
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5 

_NC C: 4 
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Ss, XS &SO 

1st ... 
43648th 
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_ýe 
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LO ------ x --- x __ &S 
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6- 

43648th 
1st ... 

operating conditions 

Figure 4.18 Linear piece-wise observability theory analysis applied on the 

reduced 'Model Bb'. 
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This graph demonstrates that 'Model Bb' is not observable in the whole domain of definition 

when the DO sensor is exclusively assumed available. Increasing the number of hypothetical 

available measurements to two (So and SNo) or even three (SO, SNO andSNH) is still not 
sufficient in obtaining the local observability properties for the reduced model. However, 

whenSO, XB, HandXB, Ameasurements are assumed available on-line (which is not physically 
possible for the two latter variables), the system is observable in the entire domain of 
definition, over a period of 14 day and at each operating condition. This result implies that 
by increasing the number of measurements, it is important to carefully select the right 

sensors, which contain sufficient information (in this caseXB, H andXB, A) to obtain the 

observability conditions in the whole domain of definition. The non-linear observability is 

not investigated for Model Bb and C because of the computational requirements. 

As explained previously in the section relating to computational burden, the non-linear 

observability analysis based on the Lie derivatives is not presented here. The memory 

requirements made it impossible to obtain successful computational results for the 'Model 

Bb'. Conclusively, the proposed 'Model Bb' is observable in the whole domain of definition 

when access to three on-line measurements 
(SO, XB, 

HandXB, A) is considered. 

Observability analysis of model C 

The reduced 'Model C' under study, which is described by Equations (4.17) to (4.2 1) added 

by Equations (4.22) and (4.23), is also assumed stable. The linear piece-wise observability 

approach has been successfully investigated. It is reminded that the storm influent 

wastewater data file is used to characterise the influent wastewater for the reduced 'Model 

C', similar to the state observer application proposed in Chapters V and VI. Simulation 

results, which are displayed in Figure (4.19), demonstrate that the 'Model C' is not 

observable in the whole domain of definition when So is uniquely assumed available (rank = 

4). Increasing the number of hypothetically available sensors to two (e. g. So and SNO) is not 

sufficient for the reduced model to be observable in the whole domain of definition (rank 

variations between 6 and 7). Increasing the number of available measurements to (So, SNo 

andSNH) is sufficient to obtain the observability properties for the reduced model, over a 

period of 14 day and at each of the operating conditions. 

Similar to the previous case (e. g. reduced 'Model Bb'), the non-linear observability analysis 

based on the Lie derivatives is not performed here. The memory requirements made it 
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impossible to obtain successful computational results for the reduced 'Model C'. 
Consequently, the proposed reduced-order 'Model C' is observable in the whole domain of 
definition when access to three on-line measurements (So, SNo andSNH) is considered. 

C 

5 

3 

Linear piece-wise observability analysis of reduced model C 

lst 
... 43824th 

7L 

6 L---J L---J L--J 

lst 

s0&s 
NO 

43824th 

so, s &S 
NO NH 

6- 

lst 

operating conditions 
43824th 

Figure 4.19 Linear piece-wise observability theory analysis applied on the 

reduced 'Model C'. (bottom plot) So, SNo andSNHmeasurements 

are considered to achieve linear piece-wise observability in the 

whole domain of definition. 

4.3 GENERAL PROCEDURE FOR OBSERVERS DESIGN 

This section alms at providing a general procedure for model reduction and software sensor 

design for WWTPs. However, discussion and results based on software sensor 

implementation are further demonstrated through simulation studies in the next Chapter. 
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Design procedure 

The flow chart diagram presented in Figure (4.20) illustrates the general procedure for model 
reduction and software sensor design of activated sludge processes. With reference to the 
numbers given in the blocks of this figure, the procedure is detailed as follows: 

Covered in Chanter 1\1 

YES 

Figure 4.20 General procedure for model reduction and to design software 

sensor(s) based on an EKF and/or EHF. The left section is covered 

in Chapter IV while the right section of the procedure is covered in 

Chapter V. 

Select an appropriate ASM model (initialise and calibrate it) and evaluate the 

effluent quality goal to be achieved. 

2. Is the model globally observable (all initial conditions must be determined uniquely 

from the output(s) and input(s) in the whole domain of definition)? Or 

Is the model locally weakly observable (full rank in the whole domain of definition)? 

If not, then: 

2.1 Reduce the ASM following one of the two different techniques: 
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2.1 a Use a matrix decoupling technique, which allows the user to identify 
which component(s) is/are not affecting the model. 

2.1b Remove non-essential state variable(s) that is/are not relevant within 
the specific process (based on experience). 

3. Are all plant inputs accessible? If not, model the unknown input(s) (also called 
disturbances within this work) using the following technique: 
3.1 Use FFT analysis on the disturbance(s) data to produce the disturbance 

spectrum. 
3.2 Design/fit a/some filter(s) (low pass and/or band-pass), which approximates 

the frequency spectrum of the disturbance(s). 
3.3 Augment the disturbance(s) state-space model to the main state observer(s) 

/software sensor(s). 

4. Apply EKF/EHF (or other) algorithms to compute joint state and parameter 
estimations. 

5. Expected quality goal achieved? If not, then: 
5.1 Remove component(s) that are not relevant to the process. 
5.2 Evaluate alternative solution(s) (e. g. is the augmented model observable? If 

not, go to Step 1). 

6. Validate the model using real data. 

In step 1, it is required that the model be initialised and calibrated. This work is not presented 
here but has been performed for the benchmark plant to ensure consistent comparison of 

process behaviour and when applicable, consistent comparison of control strategies. It is 

important to duplicate the steady states and dynamics (and obtain the same results) given 

within the benchmark manual to make sure that the simulator is tuned in an appropriate way, 

as proposed by Copp, (2002). 

In step 2, a procedure to reduce the model is described. The model reduction technique that 

has been employed previously is based on step 2.1b. The method described by step 2.1a 

consists of decoupling a linear model through investigation of the coupling system matrix 

(denoted A), which for instance is of the form of Equation (4.29). The zero coefficients are 
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denoted by X in Equation (4.29) and the vector x represents the thirteen state variables of the 
original ASM 1. Even if this model is highly non-linear, it is possible to obtain a linear model 
at a random operating point. The decoupling technique consists of studying the coefficient of 
the system matrix. Since each coefficient represents the level of correlation between the 
different states, this gives a qualified indication of which states can be left out of the system 
description. For instance, the system matrix A clearly illustrates that SI, X, andSALK are 
decoupled from the rest of the system, as their coupling coefficients are zeros. 

Ax=l 

a,, x x x x x x x x x x x x 
X a 22 

X a 24 a 25 a 26 
X a 28 a 29 a 210 a 211 a 212 

x 

X X a 33 
x x x x x x x x x x 

X a 42 
X a 44 a 45 a 46 

X a4, a4g a4lo a 411 
a4,2 x 

X a 52 
X a 54 a 55 

0 X a,, a 59 a5lo a,,, a,, 2 x 
x a62 X a64 a 65 

a66 X a 68 a6g a 610 a 611 
a6,2 x 

X X X X a 75 a 76 a 77 
x x x x x x 

X a 82 
X a 84 

a,, a 86 
X a 88 a 89 a8lo a 811 a 812 

x 

X a 92 
X a 94 a 95 a96 X a 98 a 99 a 910 a 911 a 912 
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X a 102 
X a 104 a 105 a 106 

X a, 08 a 109 alolo aloll a 1012 
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X a 112 
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4 a,,, a, 6 X a, , a,, 9 alllo a,,,, a 1112 
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X a 122 
X a 124 a 125 a 126 

X a 128 a 129 a 1210 a 1211 a 1212 
x 
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S, 

SS 

X, 

XS 

X8,1, 

XS, 
A 
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SNO 

SN, 
l 

SND 

XND 

SALK 

(4.29) 

This technique can also provide information as to which states have the strongest influence 

upon the model (e. g. Ss, Xs) by investigating the values of the coefficients. However, this 

method can only give a rough idea of the relationship between the state variables. 

Furthermore, the best technique of model reduction still remains the personal experience of 

the researcher/engineer. 

The remainder of the procedure (e. g. step 3 to 6), which is based on solutions for modelling 

unknown inputs based on Fast Fourier Transform (FFT) and software sensor design for joint 

state and parameter estimation, is detailed in next Chapter. 

4.4 CONCLUSIONS 

The proposed reduced-order models (e. g. 'Model A', 'Model Ba', 'Model Bb' and 'Model 

C'), which are considered sufficiently accurate for the monitoring applications proposed in 
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Chapters V and VI, have been compared with the original ASMI model. The linear piece- 
wise and non-linear observability theories applied to the reduced 'Model A' demonstrated 
similar successful results. Therefore, a state observer can be designed with this specific 
reduced model assuming access only to the dissolved oxygen measurement. 

The reduced 'Model Ba' is observable with (1) two measurements (e. g. So and SNO) when 
applying the linear piece-wise approach, and (2) a single measurement (e. g. So) when 
applying the non-linear observability theory. These results implied the existence of a linear 

reduced model, which is not valid, when applying the rank condition in the whole domain of 
definition. However, from the non-linear observability approach, the non-linear reduced 
'Model Ba' is observable at the selected operating conditions. Consequently, the use of two 

measurements should be considered as a safe solution in this case, when designing software 

sensors, which are often based on linearised models (e. g. the extended Kalman filter). The 

observability of the reduced 'Model Bb' and 'Model C' is achieved with three 

measurements, which areXB, H, XBAý So and So, SNOý SNH, respectively, based on the linear 

piece-wise approach. Note that even ifxB, H andXB, Ameasurements are not physically 

available, a state observer is proposed in Chapter V to overcome this drawback. 

The non-linear approach is not investigated for the two latter reduced models because of the 

computational burden involved. The Lie derivative technique is probably most reliable when 

applied to non-linear systems, but however, the memory and time requirements in 

performing such analysis are significant for models of order greater than fifth order. It can be 

concluded that for highly complex non-linear systems, the linear piece-wise approach 

remains probably the best solution to ensure the local observability of the reduced models on 

the whole domain of definition. A general procedure for model reduction and software 

sensor design is proposed to end this Chapter and is further investigated in Chapter V. 
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Non-linear filtering based-extended Kalman 

filters 

In this Chapter, three software sensor applications, based on the extended Kalman filter, are 
demonstrated to overcome the lack of instrumentation in WWTPs. Initially, the design of an 

augmented state observer is proposed, in estimating the concentrations based on the reduced 
'Model C'. The disturbances are modelled using fast Fourier transform and spectral analysis. 
Subsequently, a state observer is designed to detect abnormal substrate concentrations in 

Vv'WTPs, due for instance to substrate shock load. Finally, the last sensor is designed for 

monitoring the sludge activity in WWTPs. Two case studies are proposed to (1) realistically 

estimate on-line the heterotrophic biomass and autotrophic biomass concentrations, and (2) 

estimate on-line the heterotrophic yield, based on a joint state and parameter estimator. 

Simulation results are presented to demonstrate the performance of the proposed software 

sensors. Parts of the material in this Chapter are covered in Benazzi et al., (2005a, 2005b. 

2005c, 2005d, 2005e). 

5.1) MODELLING THE DISTURBANCES THROUGH AN 

AUGMENTED OBSERVER 

This application, which is based on the reduced-order 'Model C' presented in Chapter IV, 

Section (4.1), is first introduced in further expansion of Step 3 to 6 of the general procedure 

presented in Chapter IV. The augmented state observer that follows present the advantage of 
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modelling the disturbances (also called unknown inputs) in the frequency domain, using fast 
Fourier transform (FFT) and spectral analysis. The term 'augmented' is employed because 
the original reduced 'Model C' is supplemented by extra states variables, which recreates the 

unknown concentrations. On-line monitoring of activated sludge processes is proposed 
during wet-weather conditions (storm events), which correspond to the 'worst' scenario 
available with the benchmark plant. 

It is not always possible, and often difficult, to design an estimation algorithm that converges 

quickly and accurately towards the true values of the process variables. The convergence rate 
depends on the available knowledge about the process, the data quality and the sampling 
frequency from the available sensors (or measurements). Mathematical models are key tools 

in defining the performance of software sensors, because they describe the implicit 

knowledge, quality and validity of the process (Ch6ruy, 1996). However, even in the 

presence of reliable and accurate mathematical models, other complications may arise. For 

instance, all inputs of the models are not often physically available. In other words, the 

historic data of the influent substrate (and others) is not physically accessible in practice. In 

this case, it is possible to model theses disturbances using spectral analysis, as briefly 

discussed in Step 3 of the general procedure presented in Chapter IV. 

Augmented observer based EKF for state estimation 

The unknown inputs are analysed using FFT and spectral analysis techniques prior to the 

state observer implementation. This method is based on designing filter(s), which cover the 

frequency spectrum of the disturbances. A typical data for the analysis is shown in Figure 

(5.1 a). Firstly, SND concentration profiles are obtained in the time domain by simulating the 

benchmark plant for a period of seven days, as displayed in Figure (5.1a). Note that only a 

period of one day is required to capture the diurnal influent wastewater data dynamics. 

Secondly, on the resulting influent data (into the first aerobic reactor), FFT is used to convert 

the set of uniform space points from the time domain to the frequency domain in order to 

obtain the spectral content of the signal, and to design the appropriate filter. It consists of 

designing a first-order transfer function and properly tuned it, to cover the energy Of SND 

concentration. The first order transfer function is of the form 

HSND (8) 
- 

SND 4SND) withTSND ": - 
'rSNDS +I Coc, SND 
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By substitutingTSNDin Equation (5.1 ), the first order transfer function is of the forin 

aý, SND HSND (S)=KSND 

S+ 0) 
c, SND 

. 
ýSND (5.2) 

where KSND is the gain (KSND ý_- 100)5 TSND the time constant (CSND :: ý 3.92), (0c, SND the cut-off 
frequency((t)c, SND= 0.255) and(SNDthe input, which is a white Gaussian noise sequence with 
a variance ((TSND) equal to 0.01. Then, the transfer function given in Equation (5.2) is 
converted to the state space fon-n, which is given by 

-a 
XSND(t)""': [ 

9c, SND]XSNI)(t)+; SND(t) 
(5.3) 

YSND (t) 
: -- 

[KSNDojc, 
SND 

] XSND (t) 

where the system coefficient of the state space model given by Equation (5.3) are used as 
augmented state of the 'Model C'. The output coefficient of Equation (5.3) is utilised only to 
tune the V order transfer function, which cover the energySNHconcentration, as displayed in 
Figure (5.1 b). Note that the cut-off frequency is obtained by trial and error. The frequency 

response in the semilog Cartesian coordinate system of the transfer function given by 
Equation (5.3) is displayed in Figure (5.2). 

For the following application results, the above-described technique is also utilised for the Ss 

concentration. The first order state space transfer function is of the form 

A [-(O"ss I xss + ýss 
yss (t) [Kssco,, 

ss 
] XSs (t) 

(5.4) 

with Kss = 100, -rss z 3.84, w,, ss = 0.260 and (ss is a white Gaussian noise sequence with a 

variance (uss) equal to 0.01. The profile of Ss concentration, the I" order transfer function 

and the frequency response in the semilog Cartesian coordinate system are not represented 

here, as they are similar to Figure (5.1 a), (5.1 b) and (5.2), respectively. 
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Figure 5.2 Frequency responses in the semilog Cartesian coordinate system of 

the 1" order transfer function given by Equation (5.3). 

10 

The dynamic augmented observer algorithm utilised for the state estimation case study is 

given by: 

X(t) f (x(t), u(t)) + A(t)X(t) + B(t)u(t) + K(y(t) - i(t)) + D(t)d(t) 

Y(t) C(t)X(t) + V(t) (5.5) 

i(t) = t(t)i(t) 

where v(t) is the measurement noise and k is the Kalman gain deduced from the properties 

of the augmented state space model to minimise the variance of the estimation error. Note 

that the Kalman filter is a linear observer and therefore, the extended model must be 

linearised with respect to augmented states, as described in Chapter 111. i(x(t), u(t)) is the 

linearised system, which is described by the differential Equations (4.17) to (4.22). However, 

it is reminded that the influent concentrations Ss, i,, and SND, i,, are replaced in 'Model C' by the 

additional state variables XSs and XSND, respectively. 
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The augmented state vector given in Equation (5.5) is of the form 

ISS XS SO SNO 

SNH SND XND XSND 

xss T 
(5.6) 

With XSss andXSSND representing the augmented state used to estimate Ss and SND 
concentrations. The estimated system output, input and disturbance vectors are of the form 

'(t) = 
[SS, 

ef 
(t) XS, 

cf 
(t) SO, 

cf 
(t) SNO, 

cf 
(t) SNH, 

cf 
(t) SND, 

ef 
(t) XND, 

cf 
(t)]T (5.7) 

U(t) = 
[XS. 

in(t) 
SO, 

in(l) 
SNO, 

in(t) 
SNH, 

in(t) 'ýXNDXS, in(t) 
Qin KLain ]T 

d(t) :- 
[ýSND (t) ýSS (t)]T 

, 

(5.8) 

(5.9) 

respectively. AXND represents a ratio of 6.2% of the influent slowly biodegradable substrate 

(AXND = 0.062), utilised to estimate the particulate organic nitrogen concentration. Indeed, 

one of the objectives of the proposed application is to estimate non-measurable 

concentrations based on fractions of those measurable concentrations. CSND and Css are 

uncorrelated white Gaussian noise sequences (e. g. GSND = 0.01 and ass = 0.01), which are 

used to excite the inputs of their respective transfer functions. D(k) is the disturbance matrix, 

which is of the form 

- [0 0I1 O1T 
D(t)=I [0 ".. 001 

(5.10) 

The system, input and output matrices, which are proposed in Equation (5.5), are defined by 

A(t) 00B 
(t) 0 

... ... ... ... A(t) = B(t) ... ... ... 0 -CO�ss 01 
L0 00 _O)c, SND 

Ü(k) = [C(k) 10 0] (5.12) 
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Note that the input matrices are not represented in the sequel because this work concentrate 
on monitoring application based on an open-loop model. 

The characteristics of the selected model are described in Table (5.1), in terms of inputs, 
disturbances and selected measurements. A schematic overview of the state observer 
implementation is presented in Figure (5.3). 

Selected model 'Model C' +2 state variable(XSS, XSSND) 

Inputs (8) XS, in5 SO, ini SNO, in, SNH, in, Qin, KLain, CSS9 CSND 

Disturbances (2) SSi SND 

Measurements (3) SO, SNO9 SNH 

Table 5.1 Model description, which is utilised by the state observer based on 

the 'Model C', described in Chapter IV. 

------------------------------------------------ 
Reactors from the benchmark simulation model No. 1 

------------- 
inputs 2d reactor 16 3 rd reactor 15 4 th reactor outputs 

Anoxic Aerobic Aerobic 
------ 

reactor reactor reactor 

------------- 3 
--------------------------------------- --------- 

6*v 
I sensors 

Xs, i. 
State observer 

SO, in 
SS, 

ef 

SNO, 
in 

Xs"f 

SNH, in 

ýXND 
SO, 

cf 

3SND, i, 
SNO, 

( X 

,V XND, in 
SNH, 

( 
CSS, 

in 

---------------- 

CLSSN 
D, in 

XND, 
cf ND, in Augmented 

Qin Reduced-order 
Model C KLain 

Figure 5.3 State observer design. Ss and SND concentrations (the disturbances) 

are analysed using FFT and spectral analysis techniques prior to 

the state observer design. 
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It includes all concentrations estimated by the state observer, including state variables that 
are measured on-line as well as state variables that are not available (e. g. Ss9 SND). This 
configuration has been successfully implemented within Matlab/Simulink platform, in 
parallel with the benchmark plant. On-line measurements are corrupted by an additive noisy 
signal with a variance equal to 10% of the corrupted concentrations (e. g. steady state value 
available in COST benchmark manual). Characteristics of the on-line measurements and off- 
line analysis are described in Table (5.2) 

Variance 
((Y) 

Delay 
(min. ) 

Low-level 
detec. limit 

Sampling 
time (min. ) 

Oxygen (So, f) 0.172 - 0.1 continuous 
Nitrate and nitrite nitrogen (SNo,, f) 0.654 10 0.1 10 
NH4+ +NH3nitrqgen 

--- - _ __ _ ̀  
0.5 55 10 0,2 10 

- ----- §fj,; ly b i o. substrate (Xs, i,, ) . ---- ----- ---- ---- 30 ------ ------ 0.1 ------- ------- 30 

Table 5.2 On-line (SO, SNO and SNH) and off-line (Xs) measurements 

characteristics, which are utilised by the state observer. 

The Xs concentration is assumed available from a hypothetical respirometer with a delay of 
30 minutes between each analysis, supposing that the concentration remains constant 
between two measurements. The state observer estimated Ss and Xs and their respective 

concentrations were used on-line in the reduced-order 'Model C'. 

Simulation results are presented in Figure (5.4) where So, SNO and SNH concentrations are 

estimated on-line by the state observer, with a standard deviation of 0.48,2.2 and 3.56 gN 

M-3, respectively, obtained over a five days period (e. g. from the 7 th to the 1 lth) . It can also be 

seen that the measurement noise is entirely filtered by the state observer. Therefore, results 

show that realistic control strategies, where dissolved oxygen and/or nitrogen and/or 

ammonia concentrations are corrupted by white Gaussian noise, can be implemented using 

the estimation from the state observer as feedback for PID and/or predictive control. 

Note that delays within the benchmark plant are considered but they are not modelled within 

the software sensors in the sequel. The aim of this is the investigation of the robustness of 

the proposed algorithms against delays in the system. The estimated filtered outputs are not 

presented in the remaining applications, as the main benefit in designing observers remains 

the estimation of non-measurable state variable. To do so, as mentioned earlier, particulate 

nitrogen estimation was obtained assuming a ratioOf XNDto Xs of 6.2%. 
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Figure 5.4 Comparison between SO, SNO andSNHconcentrations resulting from 

simulations with the ASMI model corrupted by white Gaussian 

noise and So, SNo andSNH estimated by the state observer based 

EKF. 

Results displayed in Figure (5.5) show that all concentrations from the reduced 'Model C' 

are estimated considering three on-line sensors and a hypothetical respirometer. It can be 

observed that the proposed extended Kalman filter is sufficiently robust against delays in the 

system. Furthermore, in particular, Ss, SNDandXND concentrations are estimated on-line by 

the state observer with absolute errors in term of standard deviation of 20%, 12.8% and 18.2 

% from the 7 th until the I Ith days, and maximum bias of 54.1 %, I I% and 16.9 % occurring 

during the high intensity event, respectively. 

So concentration is under estimated with an absolute mean error of 59.9 %, which is 

probably caused by the Ss concentration mismatch. The state observer also successfully 

estimated the remaining concentrations (e. g. Xs, SNo and SNH), similar to the response in 

Figure (4.13), which correspond to the reduced model outputs. 
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Figure 5.5 Comparison between the concentrations resulting from simulations 

with the ASM I model and the concentrations estimated by the state 

observer based EKF. 
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The delay between the true state values and the state observer estimates are attributed to off- 
line analysis and on-line measurements delay coefficients introduced in the simulation 
parameters (see Table 5.2), and the reduced model mismatches (detailed in Chapter IV). This 
type of state observer can also be implemented on the other aerobic tanks of the benchmark 
plant, with minor changes. A similar design is also possible within the anoxic reactors but 
the reduced-order model mass balance equations and state observer would be of a different 
form. 

It can also be concluded from this study that the FFT and spectral analysis approaches have 
been successfully applied. It is possible to accurately estimate the selected disturbances (e. g. 
Ss andSND) using simulated data from the benchmark plant. However, the dynamic of the 

reduced model is highly non-linear and therefore, the spectral analysis and transfer function 

coefficients computations should be adaptive (performed at each sampling time) in order to 
be valid. Though, the proposed application remains a simulation study and the non-adaptive 
technique is sufficiently accurate for the specific purpose of this case study. Adaptive filter 

should be employed if the designed state observer is implemented in practice. 

Results show that on-line monitoring Of SND andXND concentrations is achieved when 

dynamic input data are used to characterize the influent wastewater for the model. It is 

important to estimateSND andXNDon-line in order to: (1) include these concentrations in 

the process and obtain accurate information (e. g. of ammonia) and (2) develop robust control 

strategies in order to achieve efficient plant operation. 

Step 3 from the general procedure introduced joint state and parameter estimation. Prior to 

presenting such software sensor structure in the last case study of this Chapter, an additional 

state observer application is presented, which detects abnormal substrate concentrations. 

5.2) ON-LINE MONITORING OF ABNORMAL SUBSTRATE 

CONCENTRATIONS 

This application concentrates on a new approach for the on-line monitoring and detection of 

abnormal readily biodegradable substrate (Ss) and slowly biodegradable substrate (Xs) 

concentrations, for example due to the input of toxic loads from the sewer, or due to 
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substrate shock load. Off-line measurements of Ss and Xs in the activated sludge tanks are 
not available in a real WWTP. Therefore, the SslXs sensor presented in this case study is 
designed to detect these abnormal substrate concentrations and eventually activate an alarm 
with a fast response time. 

Plant layout 

'Model Ba', described in Chapter IV, is selected to represent the biological process. The 

original benchmark plant is considered to be the real plant and the state observer is 
implemented on the first aerated reactor. A general overview of the state observer location is 

given in Figure (5.6). A detailed schematic of the Ss[Xs state observer implementation is 

presented in Figure (5.13). 

Three case studies are described in the following subsections. The first illustrates the fast and 

accurate convergence of the EKF algorithm, as well as the estimated concentration from the 

reduced 'Model Ba'. The second depicts the difficulties to estimate Xs when off-line analysis 
is not available. The final demonstrates the SslXs state observer performances when no 

measurements of Ss and Xs are available. 

Influent 
Anoxic; 

1000 M3 
Reactor I 

V= 
1000 M3 

Reactor 2 

Aerobic; Aerobic; erobic; 
V V v V 

1333 M3 1333 M3 1333 M3 

Reactor 3 Reactor 4 Reactor 5 

Ss SSI 
7r: 
S 

Sensor xS 

Settler 
Effluent 

Internal recycle (55338 m3id) 

Sludge recycle (18446 m'/d) 

Waste sludge 
(385 m'/d) 

Figure 5.6 Original benchmark plant including the SslXs state observer 

implemented in parallel of the I" aerobic reactor. 

Case (5.2a): Ss I Xs sensor when off-line analyses are available 

In the first case study, simulations are performed to check the convergence of the algorithm 

and the performance of the state observer, which is given by: 
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i(t) = A(t)X(t) + B(t)u(t) + K(y(t) - z(t)) 
Y(t) = C(t)X(t) + V(t) (5.13) 
Z(t) = C(t)X(t) 

with the state and input vectors of the fonn 

X(t)"--ISS(l) XSW SOW SNOW SNH(')T 

u(t)=[SS, in(t) 
XS, 

in(t) 
SO, 

in(t) 
SNO, 

in(t) 
SNH, 

in(t) 
Qin KLain 

]T 
(5.15) 

The estimated system output, which is identical to the output vector y(t) given in Equation 

(5.13), without the added measurement noise signal v(t), is of the form 

Z(t) = 
[SS, 

ef 
(t) x 

S, ef 
(1) SO, 

ef 
(t) SNO, 

ef 
(t) SNH, 

ef 
(0]' 

The system and output matrices of Equation (5.13) are of the form: 

c9ss ass ()SS (t) 
ass axs C9SSNH (t) 

A(t)X(t) 

aSSNH 

ass (t) 

C(t)X(t) 

L9SSNH 

aSSNH 

ss 

0 xs 
Ix SSO (t) 

. .- SSO (t) 
_SSNH 

(t) 

ss 

xs 
x s") 

SSO (t) 
SSNH (t) 

(5.16) 

(5.17) 

(5.18) 

Note that the input matrices are not represented in the sequel because this work concentrates 

on the monitoring application based on an open-loop model. Therefore, the manipulated 

inputs do not affect the estimated concentrations. The characteristics of the selected model 

are described in Table (5.3). 
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Selected model 'Model Ba' 
inputs (-/) SS, in5 XS, in) SOjn3 SNO, in) SNH, im Qin, KLain 
Disturbances (0) 

_ 
Measurements (3) So (on-line), Ss, Xq (off line) 

Table 5.3 Model description, which is utilised by the state observer. The 
dynamics are presented in Chapter IV, Section (4.1). 

Characteristics of the on-line measurement and off-line analysis are described in Table (5.4). 
The on-line measurement is corrupted by an additive noisy signal with a variance equal to 
10% of the corrupted concentrations. 

Variance Delay Low-level Sampling time 
(CF) (min. ) detection limit (min. ) 

0en0.35 - 0.1 continuous 
------------------------------- ---------- ------------------------------------------- Readily biodegradable substrate (Ss) - 30 0.1 30 

Slowly biodegradable substrate (Xs) 30 0.1 30 

Table 5.4 On-line measurements (selected from the effluent of the l't aerated 

tank) and off line analyses (Ss and Xs) coefficients that are 

considered for this specific case study. 

A single on-line measurement (SO) is assumed available and off-line analyses of Ss and Xs 

are also (hypothetically) assumed to be known (from respirometer), at the influent of the 

reduced model. A delay of 30 minutes between each analysis, assuming that the 

concentrations are constant between two measurements, is considered. 

Simulation results are presented in Figure (5.7) for Ss and Xs concentrations. It can be 

observed that the respective concentrations converge toward their true state values in about 

two hours. Satisfactory tracking results are also obtained even if the estimated state variables 

from the state observer are underestimated during periods of high concentration and 

overestimated when low concentration occur, with maximum biases of 7% and 3%, and 

standard deviations of 0.29 and 18.7 g COD/M3 , respectively. Note that the biases occured 

after half a day and that the standard deviations are obtained over a single days period (e. g. 

from the 7 th to the 8 th days). The biases are caused by the simplifying assumptions that are 

considered to produce the reduced model. For instance, it's interesting to compare the 

estimated concentration from Figure (5.7) with results from the reduced model displayed in 

Figure (4.7), as it confirms that the biases (e. g. Ss and Xs concentrations) are due to the 

mismatch between the reduced-order model and the original ASM I model. 
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Figure 5.7 Tracking and convergence performances of the EKF towards the 

real concentrations resulting from simulation with the ASMI 

model. 

Delays between the true state values and the state observer estimates are attributed to Off-line 

and on-line measurements delay coefficients introduced in the simulation parameters. It 

demonstrates that the proposed extended Kalman filter is sufficiently robust against delays in 

the system. The remaining concentrations (So, SNo andSNH) estimated by the software sensor 

are presented in Figure (5.8). It can be observed, as expected when comparing with Figure 

(4.7) from Chapter IV (e. g. So, SNO andSNH concentrations), that the algorithm based-EKF 

converges accurately toward the real states. 

The biases between the real concentrations and the estimation are also due to the simplifying 

assumptions detailed in Chapter IV. This case study illustrates the state observer 

performance assuming Ss and Xs on the influent of the reduced model. However, such 

assumption implies the use of a respirometer, which can be relatively expensive. Therefore, 

it is important to consider applications were Ss and/or Xs are not available at the influent of 

the observer, as proposed in the following case study. 

Slowly biodegradable substrate 
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Figure 5.8 Comparison between the concentrations resulting from simulations 

with the ASM I model and the concentrations estimated by the state 

observer based EKF. 

Case (5.2b): Ss and Xs correlation 

In the second case study, two different models ('Model Ba. F and 'Model BaT) are 

implemented to investigate the correlation between Ss and Xs concentrations. 

Model Ba. 1 

In 'Model Ba. 1', it is assumed that measurements of Xs concentration are available (from 

off-line analysis) and a state estimation of Ss concentration, based on disturbance modelling, 

is performed. The disturbances are analysed using FFT and spectral analysis techniques, 

prior to the state observer implementation. Dynamic Ss concentrations profiles are obtained 

in the time domain by simulating the benchmark plant, as presented in Figure (5.9a). On the 

resulting influent data, FFTs are applied to obtain the spectral content of the signal, and to 

design the appropriate transfer functions. The difference in applying this technique when 

compared with the previous application in Section (5.1) is that a2 nd order transfer function is 

considered to cover the energy of the theoretical data (Ss) in the frequency domain, instead 

of aI" order transfer function. Note that when a second order transfer function design is 
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performed, the mean value of the theoretical data (also called DC component) is not 
considered in the design. The second order transfer function is of the form 

HSs (s) =2 
Kss 

*o)B, ss, s 
-x ; 

ss s+ (t) B, SS -s 
+ wo'ss 

(5.19) 

where Kss is the gain 5 COB, SS is the bandwidth 
, a)o, ss is the centre frequency and CSS the input, 

which is a white Gaussian noise sequence . The transfer function given in Equation (5.19) is 
converted in a state space form, which is of the form 

[ xiýs 

-': 

[021 XASS 

x ý; Ss 
W A, 

'21((tt))]: ' 
-COO, SS COB, SS 

]X [XSS, 

2 

+[ 
10] 

ýss(t)=[O Kss 'COB, SS 
]X 

xss, 
I (t) 

(5.20) 

XSS, 
2 

(t) 

The system coefficient of the state space model given by Equation (5.20) are used as 

augmented state of the 'Model Ba. l', with Kss = 18, (OB, SS =I-13 O)O, SS =I and a variance 
(ass) equal to 0.001. The output coefficients of Equation (5.20) are only utilised to tune the 

2 nd order transfer function, which covers the energy of the Ss concentration, as displayed in 

Figure (5.9b). Note that the bandwidth and centre frequency are obtained by trial and error. 
The frequency response in the semilog Cartesian coordinate system of the transfer function 

given by Equation (5.20) is displayed in Figure (5.10). These results demonstrate that this 

technique slightly differs from the one presented in Figure (5. lb) and Figure (5.3b). 

The observer algorithm structure is identical to that described by Equations (5.5), with an 

augmented state vector of the form 

X(t)=[SS(t) XS(t) SOW SNOW SNH(t) XSS, 
I(t) 

XSS, 
2 

(t)]T (5.21) 

with XSs, I andXSS, 2from Equation (5.21) representing the augmented state used to estimate 

the Ss concentration. The estimated output vector is of the fon-n 

T [SS, 

ef 
(t) Xs, 

ef 
(t) SO, 

ef 
(t) SNO, 

ef 
(t) SNH, 

ef 
(0] (5.22) 
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Figure 5.9 (5.9a) Ss concentration on the influent of the first aerobic tank of 

the benchmark plant resulting from simulations with the ASMI 

model. (5.9b) Disturbances filter design using FFT technique. 

The input and disturbances vectors are of the form 

U(t) = 
IXS, 

in 
W SO, 

in 
(1) SNO, 

in 
(1) SNHJn W Qin KLa in 

T 

(5.23) 

D(t)d(t) = [0 ... 0,0 lf ; 
SS 

(1 )S, (5.24) 
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respectively, with Css being a white Gaussian noise sequences (e. g. Cvss = 0.001), which is 
used to excite the input of the transfer function given in Equation (5.20). 

30 

20 

co 
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'D 

EL 
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10. 

Bode ýI ; i(It iii Ii (A t N, -; piwc trims I (! i I um. tion givon by EqUa (ion (5,20) 

10 10 10 

frequency (rad/s) 

Figure 5.10 Frequency responses in the semilog Cartesian coordinate system of 

the 2 nd order transfer function given by Equation (5.20). 

The system and output matrices, which are proposed in Equation (5.5), are defined by 

A(t) 

A(t) 
0 
0 

00 

0 
2 

_O)O, SS COB, SS 

C(t) = [C(t) :0 01 

10 

(5.25) 

(5.26) 

The characteristics of the selected model are described in Table (5.5). A single on-line 

measurement (So) is assumed available and off-line analyses of Xs are also (hypothetically) 
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assumed to be known (from respirometer), at the influent of the reduced model. All the 
remaining assumptions (e. g. on-line and off-line measurement characteristics) are identical 
to the previous case (5.2a). 

Selected model 'MOdf-. 1 RI? Qtqfr- 
Inputs (7) 
Disturbances (1) 
Measurements (2 

XS, in5 SO, ini SNO, in5 SNH, in5 Qin, KLain) CSS 
ss 

on-line), Xs (off line: ever, 

and XS. 

30 minutes 

Table 5.5 Model description, which is utilised by the state observer. The 
dynamics are presented in Chapter IV, Section (4.1). 

Simulation results are presented in Figure (5.11) for Ss and Xs concentrations. It can be 

observed that the state observer successfully converges toward the real states and 
demonstrated good tracking perforinances when Ss is modelled as a disturbance. SS and XS 

concentrations are closely tracked with a standard deviation of 0.28 and 18.87 g COD/m' 

(obtained from the 7 th to the II th day), and maximum biases of 15 and 2% occurring during 

the high intensity event, respectively. 
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7.5 8.5 9 9. b 

time (days) 

Figure 5.11 Concentrations comparison resulting from simulation with the 

original benchmark plant (dotted line) the state observer, based on 

an EKF, were Ssj, is modelled as a disturbance. 

10 

This clearly implies that: (1) Ss concentration can be estimated by the state observer when Xs 

concentration is available from off-line analysis and (2) further development can be 

considered for on-line monitoring purposes. Note that So, SNO and SNH concentrations are not 

represented here because they are identical to those presented in Figure (5.8). 
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The objective of the following case is to check if whether or not similar assumptions can be 
considered when Xs concentration is modelled as a disturbance and Ss measurements 
available trough a hypothetical respirometer. 

Model Ba. 2 

In 'Model Ba. 2% the inverse assumption is made: measurements of Ss concentration are 
assumed available and the Xs concentration is modelled as a disturbance. Similarly to the 

previous application, the disturbances are analysed using FFT and spectral analysis 
techniques. Dynamic Xs concentrations profiles are obtained in the time domain by 

simulating the benchmark plant, similar to results presented in Figure (5.9a). On the resulting 
influent data, FFTs are applied to obtain the spectral content of the signal, and to design the 

appropriate filters. The second order transfer function is of the form 

HX, (s) -, 

Kxs*(t)B, 
XS *S 

x ýxs 

S+ O-)B, XS'S + Ct)O, XS 

(5.27) 

with Kxs = 1320, (0B, XS = 1.09, o)o, xs =I and the variance of the noisy input Cxs is: (Yxs = 0.1. 

The state space form transfer function given in Equation (5.27) is of the form 

01 rxxs,, (t)]+[, x ýxs (t) XkS, 
21 

((tt)) 

-)O, XS 
2 

WB, XS 

X[ 
XXS, 

2 
(t) 

(5.28) 
xx I (t) 

ýxs (t) 0 Kxs*COB, 
XS 

]XI 

XXSS,, 
2 

(t) 

where the system coefficient of the state space model given by Equation (5.28) are used as 

augmented state of the 'Model Ba. 2'. The output coefficients of Equation (5.28) are only 

utilised to tune the 2 nd order transfer function, which cover the energy Xs concentration in the 

frequency domain. The profile of Xs concentration, the 2 nd order transfer function and the 

frequency response in the semilog Cartesian coordinate system are not represented here, as 

they are similar to Figure (5.9a), (5.9b) and (5.10), respectively. The observer algorithm 

structure is identical to the one described by Equations (5.5), with an augmented state vector 

given by 

k(t)-ý--[Sjt) XS(t) SOW SNOW SNH(t) XXs, 
l(t) 

"S, 
2 

(t)]T 
, (5.29) 

155 



V: Non-linear Filtering Based Extended Kalman Filter 
with XXs, I andXXS, 2 representing the augmented state used to estimate Xs concentration. The 
estimated output vector is of the form 

i(t) = 
[ss, 

cf 
(1) XS, 

cf 
(t) SO, 

-f 
W SNO, 

cf 
(t) SNH, 

cf 
(O]T (5.30) 

The input and disturbances vectors are of the fonn 

u(t)=[SS, in(t) 
SO, 

in(t) 
SNO, 

in(t) 
SNH, 

in(t) 
Qin KLain 

]T 
(5.31) 

6(t)d(t) = [0 ... 0 10 jf , ýXS(t) 
. (5.32) 

The system and output matrices, which are proposed in Equation (5.5), are defined by 

A(t) 00 

... ... ... ... A(t) 
001 

(t) = [C(t) :0 0] (5.33) 

02 oj0, xs a)B, xs 

The characteristics of the selected model are described in Table (5.6). A single on-line 
measurement (SO) is assumed available and off-line analyses of Ss are also (hypothetically) 

assumed available (from respirometer), at the influent of the reduced model. All the 

remaining assumptions (e. g. on-line and off-line measurement characteristics) are also 
identical to the previous case (5.2a) 

Selected model I 'Model Ba' +2 state variable (XXxs., andXXXS. 2) 

Inputs (7) SS, im SO, in) SNO, im SNHjnq Qin, KLain) Cxs 
Disturbances (1) xS 
Measurements (2) So (on-line), Ss (off line: every 30 minutes) 

Table 5.6 Model description, which is utilised by the state observer. The 

dynamics of the reduced-model are presented in Chapter IV, 

Section (4.1). 

Simulation results from 'Model Ba. 2', displayed in Figure (5.12), show poor estimate and 

tracking results even though the possibility of off-line analysis of Ss is considered. The 

absolute errors between the original ASMI model and the modified reduced 'Model Ba. 2' 
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are calculated in terrns of standard deviations, means and maximum biases, for each 
concentration, over a period of 3 days. 

Readily biodegradable substrate 
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Figure 5.12 Concentrations comparison resulting from simulation with the 

original benchmark plant and the state observer based on a EKF, 

where Xs, in is modelled as a disturbance. 

Results are summarised in Table (5.7) where it can be observed that the maximum 

discrepancies occur for Ss and Xs concentrations with maximum standard deviation errors of 

about 80%. This significant estimation bias is probably attributed to the original 

mathematical description of the ASMI model. Indeed, it is based on a circular (growth- 

decay-growth) relationship, also called the death-regeneration concept (Henze et al., 2000), 
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where the slowly biodegradable substrate is removed by hydrolysis (and formed by decay of 
both heterotrophic and autotrophic biomass). Therefore, Xs is a crucial variable primarily 
responsible for the attainment of realistic space-time and real time dependent electron 
acceptor profiles (Henze et al., 2000). Consequently, if this concentration is removed from 

the model, accurate estimation from the state observer cannot be achieved, due to the lack of 
excitation of the process. 

ss Xs so SNO SNH 

Standard Deviation 81.9 79.8 5.7 12.4 6 
Mean (%) 56.8 63 28.1 4.8 11.7 

Maximum Bias 39.6 40.4 20.2 4 8.9 

Table 5.7 Comparison of the absolute errors in terrns of standard deviations, 

means and maximum biases (in percentage), between the original 
ASM I and the reduced 'Model B 1', over a period of 3 days. 

In addition, it should be kept in mind that the biodegradable fraction Ss and Xs are of the 

highest significance in describing biological reactions. Ss is assumed directly available for 

the microorganisms while Xs has to be enzymatically broken into Ss (the hydrolysis 

mechanism) before the organisms can use it for metabolism. However, the hydrolysis 

process is still not very well understood (Jeppsson, 1996). A possible solution to the state 

observer bias problems could be the use of the ASM3 (Henze et al., 2000) as a process 

model rather than the ASM1, since ASM3 does not include the death-regeneration concept. 

However, this work is beyond the scope this thesis, as it will require a benchmark plant 

based on the ASM3 model, for comparison purposes. 

Case (5.2c): Toxic input detection 

From the previous case study (5.2b), it can be concluded that accurate estimation of slowly 

biodegradable substrate cannot be achieved using the proposed methodology without 

available off-line analysis (at least every hour) of Xs concentration. However, toxic inputs 

from the sewer can sufficiently excite the process to be detected by the state observer. 

Therefore, in this third case study, it is assumed (similar to the situation on a full-scale 

system) that neither Ss nor Xs are available from off-line analyses, and the state observer 

response time is checked. The characteristics of the selected model are described in Table 

(5.8). Only a single on-line measurement (SO) is assumed available at the influent of the 

reduced model. 
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Selected model I 'Model B F+ 4 state variables (XS,, - XS- Vy- VY-) 
Inputs (7) SO, ini SNO, ini SNH, in5Qi,,, KLain, CSS5 (SND 

Disturbances (2) SS, xS 
Measurement (1) So (on-line) 

Table 5.8 Model description, which is utilised by the state observer. 

The implementation of the state observer, including concentrations that are measured on-line 
as well as state variables that are not available (e. g. Ss and Xs), is presented in Figure (5.13). 
All the remaining assumptions (e. g. on-line measurement characteristic) are also identical to 

the previous case (5.2a and 5.2b). 

I----------------------------i Waming system 

--------------------------------------------------- -- 
r--------- ---------------------------------------- 

DISTURBANCES FILTER DESIGN ss, 111 I ------ ------- ------------- 
01 Low-pass filter design 

I FFT 
Spectral ------------- 

I xs, 111 I analysis L -0i LF ------------ 
_01 -01 Band-pass filter design r L-----L------------------ 

Influent 1 

u, On-line 
measurements 

SNO, 
in 

SN11, 
in 

Qin V'Lai,, Selected inputs 0 
SNc 

IWA/ COST from reactor 3 (to reactor 3) 
Benchmark 

plant Yt Ss Xs SENSOR soxf 

measurment 
noise added MODEL B1 10 XM 

L ...... - ------ _ _j - __+ prediction phase' 
(7 state variables) 

ESTIMATOR 

White ............ I .................................. I ...................... 'Correction 
0 

ýS(t) 
TATES C ED ' Gaussian xs S AUGMENT : phase 

random x 2'd order transfer function xs(t) E 
4 additional state variables) noise 1, xs ,,,, s 

tt Upda-, -d values x 

--------- --------------- 

Figure 5.13 State observer design utillsed to estimate Ss and Xs concentrations 

on-line. 

The observer algorithm has a similar structure from the one described by Equations (5.5), 

with an augmented state vector of the fon-n 

X(t)-: ": 
[SS(t) XS(t) SOW SNOW 

SNH(t) XSS, 
I(t) 

XSS, 
2(t) 

XXS, 
I(t) 'US, 2(t)] 

T (5.34) 

With XSs,,, XSS, 27XXs,,, andXXS, 2 representing the augmented state used to estimate Ss and 

Xs concentrations, respectively. The estimated output vector is of the form 
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With XSs,,, XSS, 

29 -Us, 1, andXXS, 2 representing the augmented state used to estiýmatess and Xs concentrations, respectively. The estimated output vector is of the form 

i(l) = 
[ss, 

cf 
(t) XS'lf (1) soxf (1) s 

NO, cf 
(') SNH, 

cf 
(t)]T (5.35) 

The input and disturbances vectors are of the fonn 

U(I) = 
[SO, 

in 
(t) SNO, 

in 
(') SNH, 

in 
(t) Qin KLaj., 

]T 
(5.36) 

f)(t)d(t) 
=0... 

0110T. [ 4, 
SS(O], (5.37) 

10 

... 010 1] ý;, s (t) 

The system and output matrices, which are given in Equation (5.5), are defined by 

A(t) 

... ... 

0 0 0 0 

Ä(t) 

0 

... 
0 

2 

... 
1 

... 
0 

... 
0 

(5.38) 
0-)0, SS Ct)B, SS 

0 0 

0 0 0 
XS2 a)o 

0 0 0 W]3, XS 

ü(t) = [C(t) : 00 o 0] (5.39) 

Instead of reducing the growth rate of the microorganisms, which will not sufficiently excite 
the plant behaviour, an airflow failure to simulate a toxic event is provoked. The failure 

occurs after 10.5 days, lasting for half a day, as reflected in Figure (5.14) with the DO 

concentration. The effect of the airflow failure on SNO andSNH concentrations can also be 

observed from this graph. Simulation results presenting the detection of abnormally high 

substrate concentrations are presented in Figure (5.15a) and (5.15b) for Ss and Xs 

concentrations, respectively. The limit detection level set points, which are marked by dash- 

dot lines, are set to 0.70 g COD/M3 and 30 g COD/m 3 for Ss and Xs, respectively. It is seen 

that the state observer successfully detected: (1) abnormal readily biodegradable substrate 

after approximately 90 minutes, which corresponds to a level of 3g COD/M3 in the ASM I 

model and (2) abnormal slowly biodegradable substrate concentrations after approximately 

60 minutes, which corresponds to a level of I 10 g COD/M3 in the ASM I model. 
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Figure 5.14 Airflow failure effect on the estimated concentrations resulting 
from simulation with the original benchmark plant and resulting 

from simulations with the state observer based-EKF. 

It can be concluded that when Ss and Xs concentrations are available from off-line analyses 
in a WWTP, the state observer converges toward the true state values in about two hours and 

demonstrates good tracking performances, as presented in case (5.2a). It was also shown that 

the Ss concentration can be estimated by the state observer when Xs measurements are 

available and further development can be considered for control application purposes. 

However, as presented in case (5.2b), it is not possible to use the described technique for 

estimation of Xs when off-line analysis is not available. It is proposed that this problem is 

due to the circular structure of the ASM1, i. e. the death -regeneration concept. From 

simulation results presented in case (5.2c), it can be observed that the SslXs state observer 

detects abnon-nally high substrate concentrations, for example due to influent substrate shock 

loads, in 60 and 90 minutes, respectively. However, caution should be considered when 

implementing the state observer presented in case (5.2c), as it is possible that the observer 

detect an airflow failure instead of abnormal substrate concentrations. At this stage, a deeper 
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Figure 5.15 (5.15a) and (5.15b) Ss and Xs concentrations resulting from 

simulations with the benchmark plant compared with Ss and Xs 

concentrations resulting from the state observer based-EKF, 

respectively. The detection arrow indicates the hypothetical alarm 

activation zones. 
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5.3) ON-LINE MONITORING OF THE SLUDGE ACTIVITY 

The final application is presented with two objectives. The first one illustrates a state 
estimation algorithm, with known and constant kinetic and stoichiometric parameters, where 
the heterotrophic and autotrophic biomass concentrations are estimated on-line by a state 
observer. The second objective is to develop a joint state and parameter estimation algorithm 
where the heterotrophic yield is estimated on-line by the software sensor. 

Case 5.3a: Heterotrophic and autotrophic biomass concentrations 

estimations 

When considering the reduced-order 'Model A', which is described by Equations (4.13) to 

(4.16) in Chapter IV, it is not realistic to assume that the heterotrophic biomass (XB, H) and 

autotrophic biomass (XB, A) concentrations are available at the influent of the reduced model. 

On-line monitoring0f XB, HandXB, Ais usually not available on a WWTP, since no specific 

on-line sensors exist for these two concentrations. Of course, the presence of, for example, 

sufficient autotrophic biomass is a prerequisite to enable efficient nitrogen removal on a 

treatment plant. Undoubtedly, availability of on-line information on XB, H andXB, Acould be 

useful in practice. As an alternative to on-line measurements, an observer providing the 

capability for on-line estimation of these concentrations could be an essential first step on the 

way to further implementation of a joint state and parameter estimation algorithm for 

activated sludge wastewater treatment plants 

One of the solution presented in this case study is to utilised fractions of Total Suspended 

Solid JSS) measurements, which contain the sludge activity information (e. g. Xs)XB, H5 XB, A) 

Xp, XI), at the influent of the state observer, as displayed in Figure (5.16). Assuming that no 

biological reactions take place in the activated sludge reactors, a mass balance for TSS, 

given by Equation (5.40) to (5.44), over each of the five reactors for the benchmark plant 

configuration is performed. This mass balance enables a fairly good approximation of the 

TSS concentration in each activated sludge tank, on the condition that a number of 

assumptions are fulfilled: 1) An on-line measurement of the TSS concentration in the 

influent and the return sludge line is available; 2) An on-line measurement of the influent, 

the return sludge and the internal recirculation flow rate is available. 

163 



V: Non-linear Filtering Based Extended Kalman Filter 
---------------------------------------------- 
Reactors from the benchmark simulation model No. 1 
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----------------- 

Figure 5.16 State observer design utilised to estimate XB, 
H and XB, 

A 

concentrations on-line, using fractions of the total suspended solid. 

)ýTs 
S, I=Ix (Qi,, x TSSi,, + Q, x TSSret + Qintr X XTSS, 

5 VOLI 

( Qin + Qrct + Qintr )X XTSS, I) (5.40) 

XTSS, 
2 X (Qu, + Qet + Qi. 

t, 
)X (XTSS, 

l - XTSS, 2 (5.41) 
VOL2 

1 (5.42) XTSS, 3 ý-X( Q11, + Qret + Qintr )X( XTSS, 2 - 
XTSS, 3 VOL3 

XTSS, 
4 X( Qin + Qret + QintT 

)X (XTSS, 
3 - 

XTSS, 
4) (5.43) 

VOL4 

XTSS, 
5 X+ Qret + Qintr )X (XTSS, 

4 - XTSS, 5 
(5.44) 

VOL5 

with Qi,,, Q,,, and Qi,,,, being the influent, the return sludge and the internal recirculation flow 

rate, respectively. VOL (I to 5), TSSi,, and TSSr,, represent the volume of the reactors (1 to 

5), TSS concentration in the influent and the return sludge line, respectively. The result of 

applying TSS mass balances to the activated sludge reactors is illustrated in Figure (5.17) at 

the effluent at the 2d anoxic tank. 
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Figure 5.17 Comparison between TSS concentrations resulting from 

simulations with the ASMI model and TSS concentration 

estimates resulting from TSS mass balances of the benchmark 

plant. 

The difference between TSS concentrations obtained from simulations with the benchmark 

plant model (ASMI) and the TSS mass balances is about 1%. Applying TSS mass balances 

results in a slight overestimation of the TSS concentrations since hydrolysis processes lead to 

a TSS decrease in the ASM I model. Note that the remaining mass balances are not presented 

here because the following case study focuses on TSS at the effluent of the 2 nd anoxic 

reactor. 

The proposed state observer, which is based on the 'Model A' presented in Chapter IV, 

Section (4.1), is identical to the linearised one presented in Equation (5.13). However, the 

state and input and output vectors are of the fonn 

X(t) = 
[SS(t) XS(t) XB, 

H(t) 
X13, 

A(t) 

(t)]T 
(5.45) 

SOW SNOW SNH 

U(t) = 
[SS, 

in 
(t) XS, 

in 
(t) ý1TSS2, 

in 
(t) 

'ý2TSS2, in 
(t) 

]T 
(5.46) 

SO, 
in 

(t) SNO, 
in 

(t) SNH, 
in 

(t) 

where ki TSS2jn andA2TSS2, i,, correspond to two fractions (with AIýZO. 78 and 
k2z 0.04) of the 

TSS concentrations, respectively, obtained from the above TSS mass balances results. 
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Z(t) = 
[SS, 

ef 
(t) XS,, 

f 
(t) XB, 

H, ef 
(t) XB, 

A, ef 
(t) 

SO, 
ef 

(t) SNO, 
cf 

(t) SNH, 
ef 

(0] 
T 

The system, input and output matrices given by Equation (5.13) are of the form: 

ass ass ass (t) - 
ass axs aSSNH 

A(t) 

aSSNH (t) aSNH (t) aSSNH (t) 
L aSs (t) axs (t) aSSNH (t) 

C(t)X(t) 

aSS, in ass, in (t) 

aQ(t) L9KLa(t) 

B(t) 

'SNH, in (t) aSNH, in (t) 

aQ(t) aKLa(t) 

X(t) 

(5.47) 

5 

(5.48) 

The characteristics of the selected model are described in Table (5.9). Two on-line 

measurements (So and TSS) are assumed available at the effluent and influent of the reduced 

model, respectively. 

Selected model I 'Model A' 
Inputs (7) 51O, in) 

SNO, 
inq 

SNH, in) Qin, KLain) X1 TSS2, in) A2TSS2, in 

Disturbances (0) - 
Measurement (1) So (on-line), TSS (from mass balance equations) 

Table 5.9 Model description, which is utilised by the state observer. 

Simulations results are presented in Figure (5.18) where it can be observed that the state 

observer failed in converging toward the real state for So concentration. However, this result 

was expected since the reduced 'Model A' is not accurate in describing the dynamic 

behaviour of the dissolved oxygen (detailed are discuss in Chapter IV). The SNO 

concentration is estimated by the state observer with good tracking perfon-nances. The 

absolute error, in terms of the standard deviation, mean and a maximum bias, is displayed in 

Table (5.10). Note that the standard deviations and means are obtained over a period of 7 

days. Comparing these mismatches, for SNO concentration, with the one presented in Table 

(4.4) of Chapter IV, an increase of the absolute error in term of standard deviation (+86 %) 

and mean (+57 %) has occurred. 
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Figure 5.18 Comparison between the concentrations at the effluent of the third 

reactor resulting from simulations with the ASMI model and the 

state observer based-EKF. 

so SNO XB, H 
XB, A 

Standard Deviation 27 26.2 2.1 
Mean (%) 2.4 0.7 2.2 

Maximum Bias 4.7 0.2 3.6 

Table 5.10 Comparison of the absolute errors in term of standard deviation, 

mean and maximum bias (in percentage), between the ASMI 

model and the estimated concentrations from the observer. 

On the other hand, the maximum bias decreased by 20 % when compared with the original 

reduced 'Model A'. This is explained by the influent biomass concentrations (e. g. XB, H, in and 
XB, 

A, in)5which are replaced by fractions of the TSS concentration from mass balances. 

As stated previously it is important to estimate XB, H andXB, A concentrations to enable 

efficient nitrogen removal. Furthermore, The state observer demonstrated good tracking 
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performances for XB, HandXB, Aconcentrations. The absolute errors presented in Table (5.10) 
have increased when comparing with those from Table (4.4), in Chapter IV. However, these 
results are considered as satisfactory knowing thatXB, H andXB, Ameasurements are not 
available in real WWTPs. 

Biomass concentrations are known as slow changing variables with significant effects 
occurring on monthly scales. Therefore, to further investigate the proposed state observer 

performances, the waste sludge flow rate is suddenly increased by 97.5% between the I Oth 

and the 14t' days. This abrupt change is necessary to sufficiently excite the treatment plant 
within a short period of time (e. g. I day). It can be seen from Figure (5.19), that the state 

observer demonstrated good tracking performances over 14 days. Note that the remaining 

concentrations (e. g. So andSNO) are not presented here because they are not affect by this 

abrupt biomass change, which means that they are similar to those presented in Figure 

(5.18). 

Great caution should be employed if implementing this type of state observer in a real 

treatment plant. Long-term runs including temperature variations should be performed. For 

instance, the Long-Tenn BSMI model (BSMI_LT) proposed by (Gernaey et al., 2006) 

could be of great interest in monitoring of the sludge activity. 
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Figure 5.19 Comparison betweenXB, Aand XB, Hconcentrations at the effluent of 

the third reactor resulting from simulations with the ASM I model 

and the estimates resulting from the state observer. 
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In addition, the solid retention time could be decreased (e. g. to 10- 13 days) in order to check 
the software sensor response. However, such investigation is beyond the scope of this work, 
due to the computational burden that will be generated if running the BSMI-LT for a period 
of I year. 

Case 5.3b: joint state and parameter estimation 

Parameter estimation aims at providing values for the parameters in the model, depending on 
the quality of the experimental data set available. For instance, the initial benchmark plant 
has been designed assuming that all kinetic and stoichiometric coefficients are constants, 
which is not obvious in a real wastewater treatment plant where for example seasonal 
changes in influent temperature will have a severe influence on the process kinetics. The first 

type of parameters that can be estimated are those contained in the system matrix of the 

reduced state space model describing the dynamic behaviour of the plant. However, they are 

not presented in this work because they represent non-linear combinations of some 
traditional model parameters. They typically give an idea of how some amalgamated model 

parameters influence the process dynamic, and are not relevant with the selected ASP. The 

second type of parameters that can be estimated, which are of interest in this case, are the 

stoichiometric and/or kinetic parameters described in Appendix B. 

Therefore, the objective of this case study is to propose an observer for joint state and 

parameter estimation. The focus of this application is upon the estimation of a stoichiometric 

parameter: the heterotrophic yield (YH). Constant and dry influent wastewater data are used 

to characterize the influent wastewater for the reduced-order model. The characteristics of 

the selected model are described in Table (5.11). 

Selected model I 'Model B I. b' +I state variable ý 
Inputs (10) 

Disturbances (0) 
Measurements L", 

SS, iný XS, iný XB, H, in, XB, A, in) SO, in) SNO, in) SNH, in) Qin, KLain) 

CYH, i, 

x on-line 

Table 5.11 Model description, which is utilised by the software sensor. 

As some of the ASMI model parameters are non-identifiable, on-line measurements of Ss, 

XB, Hý XB, Aq So and SNo are considered to improve the estimation algorithm response. This 

specific case study remains theoretical and is performed to obtain the profiles parameters on 

169 



Chapter V: Non-linear Filtering Based Extended Kalman Filter 

the BSMI model. Therefore, on-line measurements are also assumed noise free and sensors 
delays are not considered. 

On-line measurements Of XB, H andXB, A can be justified by the results presented in the 
previous case study (5.3a). In other terms, one can assume that the heterotrophic and 
autotrophic biomass can be estimated on-line by a state observer using fractions of the TSS 

concentrations. Furthermore, Ss can also be estimated by the software sensor if the readily 
biodegradable substrate is assumed available every thirty minutes via respirometer as 
proposed in the case study (5.2b). Then, the resulting estimated concentrations could be used 
as measurements in an independent observer in order to accurately estimate some model 

parameters. However, caution should be considered with such techniques, as propagation of 
the errors between the state observer and the parameter estimator might occur. 

The continuous state space model, augmented with an extra state variable(OYH) to the initial 

state vector is of the fonn 

i(t) =f (t)(x(t), u(t), Oy,, (t)) + G(t)(x(t), O.,, (t))w(t) (5.49) 

Y(t) =h (t)(X(t)1 OYH (t» + V(t)1 (5.50) 

with Equation (5.49) corresponding to 

X(t) =f (t) + G(t) W(t) (5.51) 
[4; 

YH 
(t 

which is also equivalent to 

[ i(t))] 

= 

[f (t)(X(t))U(t))OYH (0) 

+ 
[G(t)(x(t), OYH (0) 0 W(t) 

)], 
(5.52) 

dYH (t OYH (t) 0 1][ ý; YH 
(t 

withOYH(t) considered as a random constant vector( 
dYH Wý OYH W+ CYO)), andCY H(t) a 

white Gaussian noise sequence with zero mean and uncorrelated with w(t), similar to Chui 

and Chen (199 1). The linearised augmented software sensor is identical to that introduced by 

Equation (5.5) with an augmented state vector given by 
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x(t)=[S, (t) X, (t) x", (t) X,,,,, (, ) 
s0 (t) SNO (t) SNH (t) OYH (t)]T 

, 

(5.53) 

with OyHintroduced as the augmented state variable. The augmented estimated output vector 
of Equation (5.5) is given by 

i(t) = 
[ss, 

cf 
(t) XS, 

ef 
(t) XB, 

H, ef 
(t) XB, 

A, ef 
(t) 

So, 
ef 

(t) s 
NO, ef 

(t) SNH, 
ef 

(t) YH (0] 
T. (5.54) 

The linearised augmented state, input and output matrices are of the form 

t9yH 

A(t) B(t) 0 
aSSNH (t) 

... ... ... 
t9yH 0 

0 0 

t(t) 
= 

[C(t) Of. (5.55) 

Further details about the observer algorithm, are presented in Perrier et al. (2000), Dochain 

(2003). 

Simulations results are presented in Figure (5.20) where the state variables and the 

heterotrophic yield (YH), which is of main interest, are estimated on-line by the software 

sensor when constant influent wastewater data are considered. It can be observed that the 

algorithm converge toward the real parameter in less than twelve days with a maximum bias 

less than 0.1%, when the software sensor is initialised at 0.62 9 XB, HCOD formed per g 

substrate COD. The heterotrophic yield estimation from the software sensor using dry 

influent wastewater data is proposed in Figure (5.21). The observer, which is initialised to 

0.70g XB, HCOD formed per g substrate COD, can detect the heterotrophic yield variations 

/ 3gX, H with a standard deviation of 0.009 g CODM B COD formed per g substrate COD. 
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Figure 5.20 Joint state and parameter estimation comparison between the 

ASM I model and the software sensor, with a constant influent. 
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Great caution should be employed in the reduction of the number of measurements, as the 
estimation is clearly dependent on the data quality and quanti . For instance, if XB, Aand X, H tY B 
measurements are removed from the reduced model, the software sensor will fail in 
convergence toward the true parameter. In addition, by including sensor noise in the reduced 
model, the same failure will occur. Furthermore, similar on-line monitoring of kinetic 
parameters (e. g. maximum specific growth rate) could be eventually performed to detect 
inhibition or toxics in WWTPs, or to control the sludge age in the WWTP. However, even if 
this area requires further investigation to enhance practical applicability, it is beyond the 
scope of this work for the reason mentioned in Page 65 and 66 of Chapter 111. 

Results from this study demonstrated that the heterotrophic yield can be estimated online by 

the software sensor with good tracking performances. Multiple parametric estimation, 
similar to that presented in Chapter 111, is not investigated due to (1) the complexity of the 

reduced model as well as the above-mentioned simplifying assumptions, and (2) the 

extensive unsuccessful research that has already been given within the area, as explained in 

Chapter 111. The main reason for implementing a joint state and parameter estimation 

algorithm is the ability to perform a comparative study between the proposed results, based 

on EKF algorithm, and a robust non-linear filter: the extended H,,, filter. 

5.4) CONCLUSIONS 

The examples presented in this Chapter demonstrate the dynamic behaviour of the reduced 

model presented in Chapter IV during on-line state and joint state and parameter estimation 

based on extended Kalman filtering. The first application, considering the reduced 'Model 

C', demonstrated that the influent disturbances can successfully be modelled with spectral 

analysis and fast Fourier transform, prior to the state observer design. However, to be 

consistent, this technique should be adaptive. The successful response from the state 

observer can be utilised to feed a control algorithm to obtain accurate information (e. g. of 

ammonia), which could lead to development of robust control strategies. 

In the second application, based on the reduced 'Model Ba', a new approach for on-line 

monitoring and detection of abnormal readily biodegradable substrate and slowly 

biodegradable substrate concentrations, due to substrate shock load is proposed. The main 

advantage in designing such algorithm is that toxicity, which depends on substrate 

concentrations, can now be detected on-line with the proposed observer. However, the 
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performances of the algorithm should be further investigated in presence of a valid toxic 
event. Indeed, the proposed solution is based on an airflow failure to simulate such event, as 
toxicity has not been yet developed with the benchmark plant. Furthermore, toxicity is still 
not clearly understood. 

The first case study of the last application demonstrated that it is possible to estimate on-line 
the active heterotrophic biomass and the active autotrophic biomass concentrations, with a 

state observer based on the reduced 'Model A'. Mass balances are initially proposed and 

enable a relatively accurate approximation of the total suspended solid concentration in each 

activated sludge tank. Using fractions of these approximations as input to the state observer 

provided an accurate estimateOf XB, HandXB, A Concentrations. However, the proposed results 

are only guaranteed with the selected configuration. In other words, if the ASM2d or ASM3 

models, for instance, are selected to describe the dynamic behaviour of the ASP, an accurate 

estimation of the biomasses is not guarantee, as the selected fractions might differ from one 

model to another. Furthermore, the observer performances should be investigated on a 

monthly scale, as the biomass is known as slow changing variable. The last case study 

illustrated a joint state and parameter estimation where the heterotrophic yield is estimated 

on-line. The measurement noise is not considered in this application because it generates a 

loss of information, which leads to a biased estimate of the parameter. Furthermore, five on- 

line measurements (noise free without delays) are considered to successfully achieve good 

tracking performances. However, further development should be considered to enhance 

practical applicability of the proposed results. For instance, process noise should be 

considered within the original ASM I model, as proposed in the following Chapter. 

The study from this Chapter also demonstrated that the software sensors need to be robust 

against modelling errors and parameter variations. This has motivated the applications of 

extended H. filter in the next Chapter. 
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Robust non-linear filtering based-extended 

Hoo filters 

In this chapter, three applications based on extended H filtering are developed and their 

performances are compared with state observers and software sensors based upon extended 
Kalman filtering. Initially, the design of a state observer based on the 'Model C' is 

presented, where disturbances and sensor delays are not considered. The filter gain and 

convergence properties are compared with the EKF in the presence of significant process 

noise, before introducing unknown inputs and measurement delays into the system. The 

second application aims at confin-nation of the finding by realising a similar study on the 

augmented 'Model Bb', including parametric uncertainties. Lastly, the final case study 

concentrates on investigating the responses of the software sensors when the sewer system 

and river are connected to the treatment plant. Parts of the material in this chapter are 

covered in Benazzi et al., (2005a), Benazzi and Katebi (2006), Benazzi et al., (2006). 

6.1) STATE OBSERVER BASED EXTENDED H. FILTER 

The main purpose of the following application is to apply the robust non-linear theory 

detailed in Chapter III on the 'Model C' described in Chapter IV. In other words, an 

extended H. filter algorithm is implemented on the 'Model C' and its performances are 

compared with the standard extended Kalman filter. The state observers and software sensors 

presented in Chapter V minimise the covariance of the estimation errors, assuming that the 
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system under consideration is exactly known, as well as the statistical properties of the noise 
sources. Unfortunately, in real applications, these assumptions are unrealistic as the noise 
sources statistics are not exactly known. Furthermore, uncertainties in the model are 
unavoidable, which limits the scope of application of the linear and/or extended Kalman 
filtering approach and fail to guarantee the robustness of such filters. In the following work, 
the robustness is defined as the ability of the observer algorithm and/or software sensor to 
converge toward the real states and parameters of the plant when the model is corrupted by 

process noise. In other words, a software sensor is robust if it possesses the ability to 
maintain good tracking performances, measured for example in terms of its tracking 

accuracy, given that modeling errors exists within the system dynamics. 

Therefore, in the following application, a robust estimation technique is proposed. It consist 
in minimising the worst possible effects of the modelling errors and additive noise on the 

signal estimation errors by introducing uncertainties in the models. It can deal with 

nonlinearities through the Extended H,,, Filter (EHF) feature, from local linearisation 

occurring at each iteration, as presented in Chapter 111. 

Observer based EHF for state estimation 

The linearised H. filter algorithm, which is identical to the KF algorithm with the exception 

of the resolution of the Riccati equation, is given by 

i(t) = A(t)X(t) + B(t)u(t) + G, w(t) + Kh (y (t) -Z 
(0) 

y (t) = C, (t) X(t) + G2V(t) (6.1) 

Z (t) =C2 (t) X(t) 

where the H. gain Kh is deduced from the properties of the state space model to minimise 

the worst possible effects of the modelling errors and additive noise on the signal estimation. 

z is the estimated output vector, Gjw(t) and G2V(t) represent the process and measurement 

noise with noise sequences of zero means and covariance Q and R, respectively. Similar to 

the Kalman filter, which is a linear observer, the extended model must be linearised with 

respect to augmented states, as described in Chapter 111. The state, input and system output 

vectors are of the form (Nagpal and Khargonekar, 1991; Katebi and Grimble, 1998) 

X(t)=[SS(t) XS(t) SO(t) SNO(t) SNH(t) SND(t) XND(t)T (6.2) 
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U(t)=[SS, 

in(') 
XS, 

in(t) 
SO, 

in(t) 
SNO, 

in(t) 
SNH, 

in(t) 

SND, 
in(t) 

XND, 
in(t) 

Qin KLain ]T (6.3) 

Z(t) = 
[SS, 

ef 
(t) XS'lf (t) Soxf (t) s 

NO, ef 
(t) SNH, 

ef 
(t) SND, 

ef 
(t) XND, 

ef 
(0] T 

(6.4) 

The system (A), input (B), system output (C 1) and estimated outputs (C2) matrices of Equation (6.1), are of the form: 

ass 
-ass ()SS (t) 
US 

L9XND (t) 

A(t) B(t) 

aXND 

... 
aXND 

ass (t) aXND 

Cl C2 

ass (t) c9ss (t) 
IDQ(t) aKLa(t) 

C9XND (t) C9XND (t) 

13Q(t) aKL a(t) 

(6.5) 

The filter minimises the following cost function (Nagpal and Khargonekar, 199 1): 

2 

sup 

142 

_<72 
WC=I. 2ý0,001 

IIWI12 

2 

(6.6) 

with i(t) = z(t) - i(t) and for v >0, where gamma (y) is the pre-specified H. performance 

based on the following assumptions (Doyle et al., 1989) 

(A, B) is stabilisable and (C,, A) is detectable 

(A, GI) is stabilisable and(C2, A) is detectable , 

The filtering problem is stated as the minimisation of the cost function J in Equation (6.6) for 

a known value of y>0. For the time invariant systems, the optimal value of y is found by 

selecting a large value of y and solving the algebraic Riccati equation given by (Doyle et aL, 

1989; Nagpal and Khargonekar, 1991) 
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A(t)P(t) + P(t)A T (t) 
_ p(t)(7-2C 

2T 
(t)C 

2 
(t) 

- 

CTT (t) 0 
(6.7) 

I (t)R-'(t)C, (t))P(t)+G, (t)QGI 

in order to calculate the H,,, filter gain (Kh)given by 

T Kh = P(t)C, (t)R-1(1). (6.8) 

The value of ;v is reduced in the usual manner until one of the eigenvalues of the reduced 

model becomes imaginary or negative. However, because the reduced model is time varying, 
the value of y should be found at each time instant. This will impose a high level of 

computational load on the filter and make it impractical in real applications. Therefore, an 

alternative scheme, utilised in this work, is the use of a time decreasing exponential function 

for y starting from a large value, i. e. (Katebi and Grimble, 1998) 

)1(t) = ; vmaxe -at + )/min (6.9) 

The rate of decay of the exponential can be set to 3 to 4 times the plant dominant time 

constants. The scalar Ymin depends on the weighting functions used to design the filter, as 

illustrated in Figure (6.1). The filter gain is similar to the KF gain when y is large (H2). As 

decreases, the filter converges to the optimal H., filter. 

Calcdation of gamma 
)"rrax 

)"ryin 

Figure 6.1 Calculation of gamma ()/), which is the pre-specified H. 

perfonnance. 
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The y,, ýjn should be usually set to an optimal value to ensure a viable solution to the Riccati 
equations. This procedure significantly reduces the computational burden and ensures that 
the filter is stable over the estimation horizon (Katebi and Grimble, 1998). 

State observers application based-EHF 

The characteristics of selected model are described in Table (6.1), in terms of inputs and 
selected measurements. The sensors characteristics are detailed in Table (6.2). 

_ 
Selected model I 'Model C' (presented in Chapter IV) 
Inputs (8) SS, in) XS, in3 SO, in) SNO, in3 SNH, in) SND, in) Qin, KLain 

Disturbances (0) 
Measurements (3) SO, SNn, SNH 

Table 6.1 Model description of the state observer application based-EHF. 

It can be observed from Table (6.2) that three on-line measurements are considered, in which 

sensor delays are neglected. Furthermore, SNO and SNH measurements are sampled 

continuously instead of being available every 10 minutes. The on-line measurements are 

corrupted by an additive noisy signal with a variance equal to 10% of the corrupted 

concentrations. 

Variance Delay Low-level Sampling 
((Y) (min. ) detec. limit time (min. ) 

Oxygen (So, f) 0.172 0.1 continuous 
Nitrate and nitrite nitrogen (SNo,, f) 0.654 0.1 continuous 
NH4+ +NH3 nitrogen (SNH, 

ef) 0.555 0.2 continuous 

Table 6.2 On-line (So, SNo and SNH) measurements characteristics, which are 

included in the simulation parameters. 

A schematic overview of the design is presented in Figure (6.2) where it can be observed that 

the disturbances are not considered. Indeed, for a better comparison of performances, all the 

inputs of the reduced model are initially assumed to be known. However, an application 

including disturbances modelling is investigated later in this section. Each of the differential 

Equations (4.2) to (4.3) and (4.7) to (4.11), describing the dynamic behaviour of the original 

ASMI model, are corrupted by uncorrelated white Gaussian noise sequences, with a 

corresponding covariance matrix (Q) given in Equation (6.10). 
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8464 

1.514 x 10' 

29515 

106961 
0 

0 

(6.10) 
196993.9 

1718.1 
15462.9 

Note that only the first aerobic tank is corrupted by process noise, as the software sensor 
applications are based on this specific reactor. It is possible to corrupt the entire benchmark 

plant and apply state observers and/or software sensors on each of the reactor but this work 
is however beyond the scope of this thesis. 

------------------------------------------------ 
Reactors from the benchmark simulation model No. 1 

-------------- 
inputs 2 nd reactor 16 3 rd reactor 15 4 th reactor outputs 

Anoxic Aerobic Aerobic 
------ 

reactor reactor + reactor 
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------------- 3 
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Figure 6.2 State observer design based extended H,,, filter and extended 

Kalman filter. Disturbances are not considered and a inputs are 

assumed available. Three on-line measurements are considered, 

which are: SO, SNOand SNH- 
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Simulation results are presented in Figure (6.3), where the storm wastewater data are 
selected to characterise the influent for the model. Both EHF and EKF minimisation errors 
between the estimated and the true concentrations are represented in the frequency domain 
through a power spectral analysis. It can be observed that for each of the estimated variables, 
the error is significantly improved with the EHF feature when compared with the EKF. In 
particular, for Xs andXNDconcentrations5 the error is quasi non-existent between the real and 
the estimated concentrations with the EHF feature. Therefore, it can be concluded that the 

sate observer based-extended H,, filter is more robust than the extended Kalman filter in 

terms of minimising the error between the real and the estimated concentrations, in the 
frequency domain. 

Simulation results that are presented in Figure (6.4) illustrate the state observer responses 
from both the EKF and the EHF, in the time domain. These results concentrate only upon a 
duration of a single day (from 8.5 th to 9.5 th day) rather than seven days (from 7 th to 14 th day) 

for the purposes of clarity. Furthermore, it is during this time that the storm event, which is 

of high intensity, occurs. The absolute errors between the original ASMI model and the 

reduced 'Model C' for both the EHF and the EKF are presented in terms of standard 

deviations, means and maximum biases, for each concentration in Table (6.3), over a period 

of 7 days. It can be observed from this table and Figure (6.4) that the EHF produced better 

tracking performances for Ss, Xs andXNDconcentrations when compared with the extended 

Kalman filter. However, SO, SNO, SNHandSNDconcentrations are better estimated by the EKF 

when compared with the extended H. filter. 

EHF Ss Xs So SNO SNH SND XND 

Standard Deviation 
Mean (%) 

Maximum Bias 

16.6 
9.87 
20.6 

0.15 
0.89 
0.80 

5.21 
33.73 
21.1 

4.35 
20 

22.8 

2.06 
6.54 
4.98 

10-52 
4.49 
12.37 

0.13 
0.53 
0.25 

EKF 
Standard Deviation /6) 

Mean (%) 
Maximum Bias 

22.5 
35.2 
31 

13.5 
31.6 
17.98 

12.4 
10.1 
4.15 

3 
7.8 
8.66 

3.91 
0.47 
2.2 

0.8 
0.14 
1.23 

4.92 
4.09 
4.49 

Table 6.3 Comparison of the absolute standard deviation, mean and 

maximum bias, in percentage, between the original ASMI and the 

EHF and EKF estimation based on the 'Model C'. The best 

performances are emphasised. 
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Figure 6.3 FFT of the relative estimation errors between the estimated 

concentrations from both the EKF and EHF and the corrupted 
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ASM 1 model. Disturbances are not considered and y= 1-52* 10- 
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Figure 6.4 State observer performances based-EHF and EKF compared with 

the original and corrupted ASMI models. The initial conditions of 

the algorithms are assumed to be known. Disturbances are not 

considered and y=1.5 2* 10-8. 
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Even if the tracking performances of the EKF are enhanced when compared with the EHF 
for So, SNO3 SNH andSND concentrations, in the time domain, the robustness properties can 
only be compared in the frequency domain. Furthermore, the main objective is to design an 
optimal estimator, which minimises the maximum error spectrum (or worst case error) of the 
difference between the desired and the estimated signals subject to the constraint of the filter. 
Therefore, the EHF is more robust than the EKF, since the changes in the variance of the 
process noise only slightly affect the EFIF feature. 

Disturbance modelling based-EHF 

The original 'Model C' is supplemented by extra states variables, which recreate the missing 
concentrations from disturbances. The characteristics of the selected model are described in 

Table (6.4), in terms of inputs, disturbances and selected measurements. 

Selected model I Augmented 'Model C' (presented in Chapter V) 

Inputs (8) XS, ini SO, in) SNO, iný SNH, inq Qjn, KLaim CSS, in) CSND, in 

Disturbances (2) SS5SND 

Measurements (3) S05SNOýSNH 

Table 6.4 Model description, which is utilised by the state observers based- 

EHF and EKF, when disturbances are considered. 

Ss andSND disturbances are modelled with FFT, spectral analysis and I" order transfer 

function filters. Because this technique is identical that proposed in Chapter V, Section (2.1), 

the disturbance modelling method and algorithms are not presented here. The augmented 

observer based-EHF is similar to that presented in Equation (5.1) to (5.5), apart from the 

solution of the Riccati equation and H,,, gain, which are given in Equations (6.7) and (6.8), 

respectively. 

The sensor characteristics, including delays and sampling time, are detailed in Table (6.5). 

Comparing with the previous application (e. g. sensor characteristics from Table 6.2), SNO and 

SNHmeasurements are sampled every ten minutes instead of being available continuously. 

Furthermore, Xs influent concentration is assumed available from the second reactor every 

thirty minutes with thirty minutes delays. The on-line measurements are corrupted by an 

additive noisy signal with a variance equal to 10% of the corrupted concentrations. 
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Variance 
((Y) 

Delay 
(min. ) 

Low-level 
detec. limit 

Sampling 
time (min. ) 

Oxygen (So, f) 0.172 - 0.1 continuous 
Nitrate and nitrite nitrogen (SNo,, f) 0.654 10 0.1 10 

: "f), 
NH4+ +NH3nitrogen 

_(,! 
ýN! j - ------ - --- - - ' - - - - 

0.555 
----- - 

10 0.2 10 
§fj, ýly bi o. -s u b st ra te (Xs, i,, ) 

- -------- ---- ------ 30 ----------------- 0.1 ----------------- 30 

Table 6.5 On-line (So, SNO and SNH) measurements characteristics included in 

the simulation parameters when disturbances are considered. 

A schematic overview of the design implementation is presented in Figure (6.5) where the 
disturbances inclusions are clearly illustrated. Similarly to the previous case, each of the 
differential Equations (4.2) to (4.3) and (4.7) to (4.11), describing the dynamic behaviour of 
the original ASM1 model, are corrupted by uncorrelated white Gaussian noise sequences, 

with the covariance matrix given in Equation (6.10). Simulation results are presented in 

Figure (6.6), where the storm wastewater data are also selected to characterise the influent 

for the model. Both EHF and EKF minimisation errors between the estimated and the true 

concentrations are represented in the frequency domain through a power spectral analysis. 

The error is significantly improved with the EHF feature when compared with the EKF- 

These results confirm the robustness properties of the EHF even when disturbances are 

considered within the augmented 'Model C', in the frequency domain. 

To further demonstrate the finding presented in Chapter 111, Section (3.4), the convergence 

properties of the extended H. filter are illustrated in the time domain. In other words, the 

initial conditions of the 'Model C' are not assumed to be exactly known. Results are 

presented in Figure (6.7) where it can be observed that the EHF converges toward the real 

state in approximately one hour for all concentrations. Furthermore, when the EKF is 

initialised similarly to the EHF, the convergence properties toward the real state are achieved 

in approximately 15 minutes for all concentrations. In this specific application the EKF is 4 

times faster than the EHF. The performance of the EHF could be eventually improved by 

increasing gamma (; v), but the robustness properties of the extended H. filter would be lost 

(e. g. leading to an H2 filter). The proposed results confirm that the EKF convergence 

properties are improved when compared with the EHF. 

In simulation results presented in Figure (6.8), it can be observed that the extended H. filter 

I., tracking performances are improved when compared with the extended Kalman filter, in till. 

time domain. 
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The proposed results are illustrated for a single day (from 8.5 th to 9.5 th day) rather than seven 
days (from 7 th to 14 th day) for the purposes of clarity. The absolute errors between the 
original ASMI model and the augmented 'Model C' for both the EHF and the EKF are 
presented in terms of standard deviations, means and maximum biases, for each 
concentration in Table (6.6) over a period of 7 days. It can be observed that the EHF 

produced better tracking performances for SS, XS, SNH5 SND andXND concentrations when 
compared with the EKF. 

--------------------------------------------------- 
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reactor 16 3" reactor 15 4 reactor 
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I -------------- 3 
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Figure 6.5 State observer design based extended H,,, filter and extended 

Kalman filter. Ss and SND concentrations are modelled as 

disturbances with FFT, spectral analysis and I" order filters. So, 

SNo and SNH measurements are considered within the 'sensors' box. 
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Figure 6.6 FFT of the relative estimation errors between the estimated 

concentrations from both the EKF and EHF and the corrupted 
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ASMI model. Disturbances are not considered and y= 1-52*10- 
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, 
EHF 

- 
SS SNH SND XND 

Standard Deviation 39 2.1 48.8 8.8 6.35 25 6.96 Mean (%) 14.8 6 51.5 45.9 10.6 7.2 1.80 Maxim. um Bias 43 0.48 50.8 46.5 10.7 16 17.2 
EKF _ 

Standard Deviation 35 6.48 9.67 6.8 20.6 28 10.65 
Mean (%) 53.3 43.4 11.34 5.2 11-11 10.98 3.5 

Maximum Bias 
__52 

11-77 3.29 15.4 18.3 63 20.46 

Table 6.6 Comparison of the absolute standard deviation, mean and 
maximum bias, in percentage, between the original ASMI and the 
EHH and EKF estimation based on the augmented 'Model C'. The 
best performances are emphasised. 

The robustness properties of the extended H,,, filter are clearly illustrated for all the estimated 
concentrations determined by the state observer based on the augmented 'Model C'. Indeed, 

the state variables are almost unaffected by the changes in the variance of the process noise. 
However, the EHF underestimated the So concentration and overestimated the SNo 

concentration, which is probably due to the fact that the dissolved oxygen and nitrogen have 

the fastest dynamics in the system. It can be concluded from this application that the EHF 

demonstrated improved tracking perfortriance of the slow dynamics when compared with the 

extended Kalman filter, when modelling errors are introduced within the system. 

Furthermore, it can also be concluded that the H. filtering technique provided poorer 

estimates (in the time domain) of the fast dynamics, when compared with the standard 

extended Kalman filter. Besides, the EHF demonstrated improved robustness properties 

when compared with the EKF for the proposed state observer application. To confirm these 

findings, a deeper investigation based on joint state and parameter estimation is proposed. 

6.2) JOINT STATE AND PARAMETER ESTIMATION 

BASED-EHF 

It is not sufficient to develop state observers without including parametric uncertainties in 

the model. Indeed, to verify the robustness of software sensor, it is important to also perform 

parameter estimation. Therefore, the main objective of this application is to perform joint 

state and parameter estimation, where the heterotrophic yield is estimated online and the 

results are compared with the standard extended Kalman filter. 
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YH is modelled as an integrator that is driven by white noise and augmented to the initial 

reduced-order 'Model Bb' where constant and dry influent wastewater data are used to 

characterize the influent wastewater for the reduced model. The characteristics of the 

selected model are described in Table (6.7). 

Selected model Augmented 'Model Bb' (presented in Chapter V) 
Inputs (10) SS, iný XS, in3 XB, H, in5 XB, A, in5 SO, iný SNO, in) SNH, iný Qin, KLaiw 

CYH, in 

Disturbances (0) 
Measurements (. ' 

Table 6.7 Model description, which is utilised by the software sensor. 

As some of the ASM I model parameters are non-identifiable, on-line measurements of Ss, 

XB, H) XB, Ai So and SNo are considered to improve the estimation algorithm response. Similar 

to the application presented in Chapter V, this specific case study remains theoretical and is 

perfon-ned to compare the profiles parameters on the BSMI model between the EHF and 

EKF. A schematic overview of the design implementation is presented in Figure (6.9). On- 

line measurements are also assumed noise free and sensors delays are not considered. The 

extended H., filter algorithm is not presented here, as it is similar to the one given by 

Equations (5.49) to (5.55), introduced in Chapter V. The computation of the augmented H. 

gain and Riccati equations, which differ from the standard EKF ones, are of the form of 

Equations (6.7) and (6.8), respectively. 

Simulation results are presented in Figure (6.10) where the constant wastewater data file is 

selected to characterise the influent for the model. Both EHF and EKF minimisation errors 

between the estimated and the true concentrations are represented in the frequency domain 

through a spectral analysis. For each of the estimated concentrations, it is obvious that the 

error is significantly improved and quasi non-existent with the EHF feature when compared 

with the EKF. However, the FFT of the minimisation error between the estimated and the 

true parameter YHis similar, but still improved with the EHF, when compared to the EKF 

one. This is explained by the fact that gamma, the pre-specified H. performance, is not set to 

its optimum value. In other words, if r is set to 6.25 * 10-8 (e. g. the optimum value) for which 

the eigenvalues of the reduced model becomes imaginary, the augmented software sensor 

fails to converge toward the true parameter. Therefore, v is set to I* 10-3 to guarantee the 

algorithm convergence. 

.,, 
XR 

iA. 
XRA. So. Smn (on-line Ss, 
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Figure 6.9 State observer design based extended H,,, filter and extended 
Kalman filter. YH is modelled as an integrator that is driven by 

white noise and augmented to the original 'Model Bb' presented in 

Chapter IV. 

Simulation results that are presented in Figure (6.11) illustrate the software sensor responses 

for both the EKF and the EHF, in the time domain. Results concentrate on the software 

sensors convergence properties toward the real states, when the initial estimates are assumed 

unknown. It can be observed that the extended H filter converges toward the real states and 

parameter as fast as the software sensor based EKF. The fastest convergence speed, which is 

about I hour and 10 minutes, is obtained forXB, H concentration while the slowest, which is 

about 5 days, is obtained for the heterotrophic yield. The simulation results also illustrated 

that both the EHF and EKF failed to converge toward SNH concentration, which is explained 

by the simplifying assumptions made to produce the 'Model Bb'. For further details on this 

reduced model, the reader can refer to Chapter IV, Section (4.1). 
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The similarities in convergence for the extended H,,, and Kalman filters are not a result of the 
choice of gamma, which is not optimum in the above-mentioned case. Indeed, the 
convergence properties have been investigated with an optimum pre-specified H"' criterion, 
which returned similar results as the one presented in Figure (6.11). Therefore, the estimated 
outputs from these filters are not presented here for reasons of simplification. On the other 
hand, as explained previously, when )/ is optimum (e. g. 6.25*10-8), the EHF failed to 
converge toward the real parameter. This is illustrated in Figure (6.12), which implies that 

great caution should be considered when tuning ; v, as the EHF convergence can fall. 

YH estimate 

0.9 

...... ASMI 

>ý-- 0.8 --- EHF 
EKF 

0.7 
-------------- ----------------- --------------------- 

................. ............................... 
. 

......................... 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

time (days) 

Figure 6.12 Convergence properties comparison between the software sensors 

and the original ASM I model (constant influent and y == 6.25*10-8). 

To further investigate the response of the software sensors, a ramp is applied on the original 

ASMI model parameter where the constant influent wastewater data file is selected. Note 

that the steady state values of the system are non-nally reached within 150 days (Copp, 

2002). However, to avoid computational burden the generated ramp is initiated after 30 days, 

with a coefficient slope of 0.1 for a period of 12 hours, after which the parameter remains 

constant for an additional 12 hours and finally decreases (with a similar but negative 

coefficient slope) until attaining its initial value. The ramp is illustrated in Figure (6.14) for 

the heterotrophic yield (YH). 

Simulation results concentrated within the frequency domain are not represented for all 

concentrations for simpli ity reasons. Indeed, as illustrated previously, the EHF robustness c 

properties are improved when compared with the EKF. In other words, the minimisation 

errors between the estimated and the real concentrations are close to zero with the extended 

H,,, filter. However, it is not the case for SNH concentration and the estimated heterotrophic 

yield, as displayed in Figure (6.13). The EHF power spectrums are improved by 86% and 

5% for SHN concentration and YH, respectively, in the frequency domain. 
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The software sensors responses in the time domain are presented in Figure (6.14) where it 
can be observed that both the EHF and EHF provided good tracking performances for Xs, 
XB, Hi XBA, and SNo concentrations. Furthen-nore, the algorithms also produced good tracking 
perfon-nances f6rSNH concentration, even though a bias between the real and the estimated 
variables occurred. This bias is generated by the simplifying assumptions selected to produce 
the augmented 'Model Bb'. It can also be observed from Figure (6.14) that Ss, So 

concentrations and the heterotrophic yield are poorly estimated by the extended H. filter, 

when compared to the extended Kalman filter. 

FFT of the relative estimation errors for S 
NH concentration 

1000 
EHF 
EKF 

500- 

E 

01 . ........... ....... . ............... 
FIFT of the relative estimation errors for the parameter YH 

15- EHF 
EKF 

10 

5- 

................... ...... 0' -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

cycles/day 

Figure 6.13 FFT of the relative estimation errors between the estimated 

concentrations from both the EKF and EHF, based on the 

augmented 'Model Bb'. 

It appears for Ss concentrations and the heterotrophic yield that the software sensors 

converged toward the true variables with a maximum bias of 8.4% and 6.5% for the EHF 

and 3.8%, and 0.91% for the EKF, respectively. In addition, the abrupt changes of the 

dissolved oxygen are tracked with a maximum bias of 7% for the extended Kalman filter and 

less than 1% for the extended H,,, filter. This improved tracking performance in the case of 

the EHF is explained by the fact that the system had not reached its steady state values. In 

other words, if the ramp is generated after 130 days, which guarantee that the system has 

reach its steady states conditions, the tracking performances of the DO concentration should 

be better for the EKY when compared with the EHF. 
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Simulation results presented in Figure (6.14) also demonstrate that the extended Kalman and 
H. filters, converged back toward to their original steady state values in approximately less 
than I day and 3.5 days, for Ss and YH, respectively. These results are opposed to the finding 
illustrated in Chapter 111, where it was concluded that the EHF tracking performances are 
improved when compared with the EKF when joint state and parameter estimation is 
considered. However, a deeper investigation is necessary when the dry influent wastewater 
data file is selected in characterising the influent of the model. Therefore, for the following 

application, the identical plant configuration as proposed previously holds. 

Simulation results are presented in Figure (6.15) where both EHF and EKF minimisation 
errors between the estimated and the true concentrations are represented in the frequency 
domain through a spectral analysis. For each of the estimated concentrations, it is clear that 

the error is significantly improved (close to zero) with the EHF feature when compared with 
the EKF. However, the FFT of the minimisation error, between the estimated and the real 
heterotrophic yield, is significantly improved with the EHF feature. The extended H, " filter 

power spectral is improved by 92% for YH, in the frequency domain, when compared with 

the standard extended Kalman filter. 

Simulation results that are presented in Figure (6.16) illustrate the responses of the software 

sensors for both the EKF and the EHF, in the time domain. it can be observed that accurate 

and similar tracking performances are achieved for all the demonstrated concentrations, for 

both algorithms. However, the So concentration is overestimated during the high intensity 

events and SNH concentration is underestimated, with both the EHF and EKF. This is 

explained by the simplifying assumptions made to produce the 'Model Bb', which are 

detailed in Chapter 1V, Section (4.1). 

Both the extended H,, and Kalman filters converged toward the real parameter with a 

standard deviation of 0.0056 and 0.009, respectively. Furthermore, the bias between the true 

parameter and that of estimated parameter is about 0.75% and 3% for the EHF and EKF, 

respectively, occurring during the high intensity event. These last results demonstrate that 

the extended H. filter is more robust than the extended Kalman filter when dry influent 

wastewater data are selected. 
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based on the augmented 'Model Bb', and the ASMI model, with 
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Figure 6.16 Convergence properties comparison between the software sensors 

and the ASM I model with the dry influent wastewater data. 
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The final investigation with respect to responses to joint state and parameter estimation is 
performed when the original ASMI model is corrupted by significant process noise. The 
schematic overview of the design implementation is identical to that presented in Figure 
(6.9). Each of the differential Equations (4.2) to (4.3) and (4.7) to (4.11), describing the 
dynamic behaviour of the original ASMI model, are corrupted by uncorrelated white 
Gaussian noise sequences, with a covariance matrix of the form 

7.4 x 103 

2.3 x 107 

6.5 x 108 

2.2 x 106 

3.6 x 103 

0 

0 

1.2 x 105 

1.7 x 105 

4.6 x 107 

(6.11) 

Note that similarly to the application in Section (6.1), only the first aerobic tank is corrupted 
by process noise. Simulation results are presented in Figure (6.17), where the dry wastewater 
data file is selected to characterise the influent for the model. Both EHF and EKF 

minimisation errors between the estimated and the true concentrations are represented only 

for the ammonia and the heterotrophic yield. For simplification reasons, the remaining errors 

are not presented here, as they are close to zero with the EHF feature. 

The minimisation error of the estimated heterotrophic yield is similar for both the extended 

H,,,, and Kalman filters. This phenomenon is further illustrated by the simulation results 

presented in Figure (6.18), in the time domain. Note that for clarity reasons, the proposed 

software sensors responses concentrate during a single day (from 7 th until the 8 th day) rather 

than seven days, except in the case of the parameter YH. It can be observed that both EHF 

and EKF failed to converge toward the real parameter (e. g. 0.67) within seven simulation 

days, with a maximum bias of 1.35% and 1.36%, respectively. This is caused by the 

modelling errors introduced within the ASMI model, which are described by the covariance 

matrix given by Equation (6.11). 
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Figure 6.17 FFT of the relative estimation errors between the software sensors, 

and the corrupted A SM 1 model. 

The absolute errors between the original ASM I model and the reduced 'Model Bb' for both 

the EHF and the EKF are presented in ten-ns of standard deviations, means and maximum 
biases, for each concentration in Table (6.8), over a period of 7 days. It can be observed that 

the EHF perfon-nances are generally improved when compared with the EKF, apart from the 

SNH concentration, which is due to robustness properties of the EHF. It can also be concluded 

from this last case that both the augmented software sensors based-EHF and EKF failed to 

converge toward the real parameter when the model is corrupted by process noise. 

EHF Ss XS XB, 
H 

XB, 
A 

SO SNO SNH 

Standard Deviation >0.1 0.42 15.2 21.9 6.22 5.4 5 
Mean (%) 0.16 1.4 2.7 0.88 3.07 0.18 15.02 

Maximum Bias 0.63 0.47 4.6 2.95 6.92 7.2 12 

EKF 
Standard Deviation 0.4 >0.1 16 22.3 7.12 6.1 4 

Mean (%) 1.14 0.2 2.8 0.81 0.5 0.48 3.87 
Maximum Bias 0.78 2.2 5.4 3.34 2.97 8.8 2.7 

Table 6.8 Comparison of the absolute standard deviation, mean and 

maximum bias, in percentage, between the original ASMI and the 

EHH and EKF estimation based on the reduced 'Model Bb'. The 

best performances are emphasised. 
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Furthermore, the EHF is more robust than the EKF in term of minimising the error between 

the real and the estimated concentrations, in the frequency domain. In addition, in the time 
domain, the performances of the EHF are improved when estimating the slow dynamics (e. g. 
XB, H andXH, A concentrations) when compared with the EKF. Finally the extended Kalman 
filter provided closest tracking performances toward the real states for the fast dynamics (e. g. 
So concentration), but however the estimated concentrations are not robust enough to feed an 
eventual control algorithm. 

6.3) STATE OBSERVER APPLICATION TO THE IUWS 

The final application, given in two case studies, concentrates on the application of software 

sensors on the WWTP, when the sewer system and river are connected to the system. The 

river (Shanahan et al., 200 1; Reichert et al., 200 1 b; Vanrolleghem et al., 200 1) does not have 

any direct impact on the treatment plant. The river model (Linblom et al., 2005a; Linblom et 

al., 2005b) is described in Chapter 11, Section (2.3). The WWTP is only affected by its 

influent: the sewer network. The full description of the sewer model (Vollertsen and 

Hvitved-Jacobsen, 2000) is proposed in Section (2.3) in Chapter 11. The influent data 

(Gernaey et al., 2006) to the sewer network is based on phenomenological models, which 

reproduces typical phenomena observed in the influent of full-scale WWTPs, with a 

minimum number of parameters (Gernaey et al., 2006). All simulations are executed using 

the Matlab/Simulink platfonn, based on the defined open-loop benchmark configuration 

(Copp, 2002), in addition to the sewer system and river. Furthermore, the default benchmark 

plant physical values, given in Copp (2002), are selected. The schematic overview of the 

IUWS under study is displayed in Figure (2.10). The extended H,,, filter and extended 

Kalman filter algorithms are not presented in the sequel, as they are identical to those ones 

proposed in Section (6.1) in Chapter VI and Section (5.1) in Chapter V, respectively. 

Disturbance modelling based-EHF and EHF on the IUWS 

In the first case study, the augmented observers presented in Section (6-1) are implemented 

upon the treatment plant, where both performances of the extended H,,,, and Kalman filters 

are investigated. The main difference with the application proposed in Section (6.1) is that 

the sewer model and river are connected to the treatment plant. The inclusion of the former 

aims at investigation of the effect of diurnal variations of the influent from the sewer 
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network rather than the available influent files provided with the original benchmark 
configuration. In other words, the software sensors tracking and convergence performances 
are investigated from a more realistic viewpoint, as the sewer system is integrated into the 
full scale-system. A general schematic overview of the software sensors implementation 
within the urban wastewater system is presented in Figure (6.19). It can be observed that 
both state observers are still implemented in parallel to the Is' aerobic reactor (e. g. 3 rd tank). 

Wastewater F- ----* ---------------------------------- 
influent Benchmark simulation model No. 1 

................... ............................ ... ... ......... ................. .... ................ .................. ...... ....................................... I ................ ---------- 4. 

Settler Sewer St nd rd th th 2345r- 
system reactor 

Wastage, sludge 

Sensors 
IF Effluent 

EKF EHF to 
River 

algorithm algorithm 
................................................ ............................................... Augmented Augmented 

Model C Model C 
.............................................. ............................................... 

ESTIMATED CONCENTRATIONS 

Figure 6.19 Schematic representation of the software sensor implementation on 

the urban wastewater system composed of the sewer network, 

wastewater treatment plant and river. Three on-line measurements 

are considered, which are: So, SNO and 
SNH. 

The selected sensors (So, SNo andSNHmeasurements) are assumed noise free and sensor 

delays are not included within the design. The steady state simulation procedure involves the 

simulation of the system under study (for 130 days) using an influent of constant flow and 

composition. This is performed to ensure a consistent starting point and get rid of the 

influence of starting conditions on the generated dynamics outputs. The starting point for 

evaluating the dynamic response of the plant to the influent disturbances file is that of the 
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last (saved) state variables. The dynamic influent weather file is different from that one 
initially utilised with the benchmark plant (Chapter IV, V, and VI). 

Simulation results are presented in Figure (6.20), where both EHF and EKF minimisation 
errors between the estimated and the true concentrations are represented in the frequency 
domain. Note that the optimum ganu-na is tuned to a level of 1.52* 10-8 and the initial 

conditions of the system are assumed to be known. It can be observed that EHF minimisation 
errors are improved for Ss, Xs, SNH andXNDconcentrations, when compared with the EKF. 
However So, SNO andSND estimation errors are only improved by 0.3%, 11% and 7.9%, 

respectively, in the magnitude of the power spectral. This lack of the properties of robustness 
could be in part due to the fast dynamics of the above-mentioned concentrations. However, 
the state observer based-extended H,,, filter still possesses improved robustness properties 
when compared with the extended Kalman filter, in the frequency domain, when 
implemented on the urban wastewater system. 

Simulation results that are presented in Figure (6.2 1) illustrate the state observer responses 
from both the EKF and the EHF, in the time domain. These results concentrate during seven 
days on the inclusion of variations in the design hydraulic loading during a weekend. The 

absolute errors between the original ASM I model and the augmented 'Model C' for both the 

ERF and the EKF are presented in terms of standard deviations, means and maximum biases 

(e. g. over a period of 7 days) in Table (6.9). It can be observed from this table that the EHF 

performances are only improved for Ss, Xs andSNDconcentrations when compared with the 

EKF. 

EHF Ss Xs So SNO SNH SND XNQ 

Standard Deviation 
Mean (%) 

Maximum Bias 

65.1 
47.6 
75.3 

4.1 
1 

1.5 

3 
20.5 
46.6 

6.1 
14.3 
62.8 

2.3 
2.6 
2.6 

16.8 
6.4 

23.8 

41.4 
28.8 
36.9 

EKF 
Standard Deviation 

Mean (%) 
Maximum Bias 

66.2 
57.9 
76.8 

9 
16.8 
8.1 

2 
6.4 
15.3 

2 
13.7 
27.4 

0.7 
1.5 
0.3 

19.1 
5.1 

24.5 

40.5 
27.6 
36.5 

Table 6.9 Comparison of the absolute standard deviation, mean and 

maximum bias, in percentage, between the original ASMI and the 

EHH and EKF estimation based on the augmented 'Model C', 

within the urban wastewater system. The best performances are 

emphasised. 
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SO, SNO, SNHandXNDconcentrations estimated by the state observer based extended Kalman 
filter are enhanced when compared with the EHF, as illustrated in Figure (6.21) and Table 
(6.9). Overall, the extended H,,, filter provided poorer tracking performances when compared 
with the EKF, in application to the urban wastewater system. Therefore, it is important to 
further investigate the convergence properties of both software sensors as follows. 

Simulation results displayed in Figure (6.22) concentrate on the state observers convergence 
properties toward the real states, when the initial estimates are assumed unknown. It can be 

observed that the EHF converges toward the real states as fast as the EKF for Ss, Xs, SNDand 
XND concentrations. However, the extended Kalman filter demonstrated faster tracking 

performances for SNO andSNH concentrations, when compared with the extended H. filter. 

The fastest convergence speeds, which are about 15 minutes (e. g. 0.24 hours), are obtained 
for the nitrogen and ammonia concentrations, with the EKF. The slowest one, which is about 
8 days (e. g. 468 hours), is obtained for the particulate organic nitrogen. The convergence 

times are surnmarised in Table (6.10), where in general, it can be observed that the extended 
Kalman filter demonstrated faster tracking performances when compared with the extended 

H,,, filter. 

Ss xs SO SNO SNH SND XND 

EHF (hours) 
EKF (hours) 

1 
216 
216 

288 
288 

1.08 
1.08 

1.2 
0.24 

16.8 
0.24 

6 
6 

468 
468 

Table 6.10 Comparison of the convergence properties toward the real states, 

between the EHF and EKF, based on the 'Model C', when 

implemented on the urban wastewater system. The best 

perfonnances are emphasised. 

It can be concluded from this study that the state observer based extended Kalman filter 

demonstrated enhanced performances when compared with the extended H, "' filter, when 

applied upon the urban wastewater system. However, due to the complexity of the full-scale 

system, it is reminded that the proposed simulation results do not include process noise 

corruption of the system. Furthermore, a deeper investigation, where joint state and 

parameter estimation are performed on-line on the integrated system, is proposed. 
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Software sensors based-EHF and EHF on the IUWS 

The final case study concentrates on software sensors based-extended H. and Kalman 
filtering on the treatment plant, in order to investigate the sewer impact on the estimated 
concentrations and parameter. A Simulink block diagram overview of the sewer network 
(Linblorn et al., 2005a; Linblom et al., 2005b), which is the input of the benchmark plant, is 
presented in Figure (6.23a) while the software sensors implementation within the treatment 
plant (Copp, 2002) is presented in Figure (6.23b). It can be observed that both software 
sensors are implemented on the I" aerobic reactor. The software sensors are presented in 
Figure (6.9) while the model description is proposed in Table (6.7). The extended H,,, filter 
algorithm is not presented here, as it is similar to that given by Equations (5.26) to (5.36). 
The computation of the augmented H,,, gain and Riccati equations, which differ from the 
standard extended Kalman filter ones, are of the form of Equations (6.7) and (6.8), 

respectively. 

The selected sensors (SS, XB, H5 XH, Aý So and SNo measurements) are assumed noise free and 

sensor delays are not included within the design. Furthermore, due to the bias results 

obtained in Section (6.2) when performing joint state and parameter estimation, the process 

noise corruption of the system is not considered here. In other words, if modelling errors are 

introduced within the WWTP, it is likely that the software sensors will fail in converging 

toward the real parameter, similar to the case presented in Section (6.2). 

Simulation results are presented in Figure (6.24) where both EHF and EKF minimisation 

errors between the estimated and the true concentrations are represented in the frequency 

domain through a power spectral analysis. For each of the estimated concentrations, it is 

obvious that the error is significantly improved (close to zero) with the EHF feature when 

compared with the EKF. However, the FFT of the minimisation error between the estimated 

and the real heterotrophic yield is similar between the EHF and EKF. The extended H. filter 

power spectral is only improved by 1.7% for YH, in the frequency domain, when compared 

with the standard extended Kalman filter. It is reminded that the EHF power spectral is 

enhanced by 92% for YH, when compared with the EKF in the similar application presented 

in Section (6.2). Therefore, when the extended H. filter is implemented into the urban 

wastewater, its performance decreases by 98%, with the proposed configuration, when 

compared with the EKF application presented in Section (6-2). 

212 



LLJ 

cc 
0 LU 

U) 
I 

CL 4u 

cr- cc 
CL 

CL. 

CL 

18 C) 

E 
'A 

ILP cl: 
zr_ 

r m 04 LIJ 

> l cn Ci - 

tn C14 CL 
5 I= 

"I 0 I LU 

3: CD, 

LLJ C3, (f) 

C) 
B 

LLJ 
LLJ 

C11- 

6 i 
L) 
< 

(j) 
< 0 

lw v; 
CL 
I !5 -t- C14 

> 
LLJ IW 

LLJ Cý 39 

ý U j 
C3 

. P. M I. - 
CD 

CA: E 

W m 
41, 

0 

Q) "e 

"0 

ýo 2 4n 

CD -M 

N_ý ný 

0 

ý-4 M 

ce 

0 

.2 44 

2 (L) 

rn 

u 
ý71 

cn 



Co 

cu 

A 

ri 
aöpnls PalsLm m 

1 

0 1 
0 cn CD- 

IUI luen64a dJ. pý 

. - 
ý - U 

0 -3 

: 

1 
0 

>, 0 
a10Ä0au SV 

Z 
W3 

Z Lu 
UJ c2. 

.> 
e e 

k4 w 

cu 

LO 

ce ce 

wm 
%A 

vý w 
C, 2 cn 

u 

13 E m 
Zi 

E 

.2 
w W A "0 u Z 1 

m 
a 1 u E ý= 0 

Ln Q) 

L£. Lý rZ ký 

w 
ti 

4-1 71 

"r- CU 
: CD« C, 4 9) u 0-.. i 

5 
0 '5 L 4-4 F 2 

.. -.. -.. -. - - -- - - 0 . 
c .4 

Z In 

m 
0 u 1< 14-11 E Z ce u 0 

Z 
2 u U c cu 5 

.0 
ý 
C> > 

CD 

m JD Z 
E 

c4 
E 

+ý 

0 
zul -4 1 :j .ý kr) r. 

e. ;. 0 
LU W 

: 

N 



Chapter VI: Robust Non-linear Filtering Based Extended H,, Filter 

Error spectrum: Ss concentration 

400 
EKF] 

300 

c3) 200 t m 

100 

................ 
: 

................. 
0, 

-2 -1 01 

Error spectrum: X BH concentration 
250 

EHF 
200- ...... EKF 

150 

c 9 100 E 

50, 

....... .... 0 
-2 -1 012 

250, 

2001 

Error spectrum: So concentration 

EHF 
EKF 

150 

100 E 

50 
............... ............... 

0 
-2 -1 012 

Error spectrum: SNH concentration 

400, EHF 

...... EKF 

300, 
'D 

200, 
M E 

100, 

0 
-4 -2 024 

cycles/day 

Error spectrum: Xs concentration 

400 

300 

200 

1001 

0 
-2 

EHF 
EKF 

............... 

-1 
Error spectrum: X RA concentration 

250, 

EHF 
2001 EKF 

150 

Co 100 

501 
/\ 

o -. 
-. 

-2 -1 01 

Error spectrum: S NO concentration 

100. EHF 

...... EKF 

80 

60 
-E 

E 40 

20 

1.5 

1 

Zi 
c 

E 0.5 

2 

2 

6 

Figure 6.24 FFT of the relative estimation errors between the estimated 

concentrations from both the EKF and EHF and the ASM1 model 

215 

within the urban wastewater system, based on 'Model Bb'. 

0 
cycles/day 

0 
-6 -2 02 

Error spectrum: YH 



Chapter VI: Robust Non-linear Filtering Based Extended H. Filter 

Simulation results that are presented in Figure (6.25) illustrate the software sensors responses 
from both the EKF and the EHF, in the time domain, within the urban wastewater system. It 

can be observed that good and similar tracking performances are achieved for all the 
illustrated concentrations, with both algorithms. The absolute errors between the original 
ASM I model and the augmented 'Model Bb' for both the EHF and the EKF are presented in 
terms of standard deviations, means and maximum biases (e. g. over a period of 7 days) in 
Table (6.11). 

EHF Ss Xs XB, H XB, A SO SNO SNH 

Standard Deviation 0.25 0.1 0 <0.1 6.99 2.2 5.20 
Mean (%) 6 0 0 <0.1 3.1 4.47 13 

Maximum Bias 0.5 0.12 0 <0.1 0.62 2.76 5.4 
EKF 

Standard Deviation 0.17 0.1 0 <0.1 6.91 2.2 5.17 
Mean (%) 5.6 0 0 <0.1 3.1 4.43 13 

Maximum Bias 0.4 0.18 0 <0.1 0.60 2.76 5.4 

Table 6.11 Comparison of the absolute standard deviation, mean and 

maximum bias, in percentage, between the original ASMI and the 

EHH and EKF estimation based on the augmented 'Model Bb', 

within the urban wastewater system. The best performances are 

emphasised. 

These good performances are mainly due to the consequent number of measurements 

assumed available. However, the extended Kalman performances are slightly enhanced when 

compared with the extended H. filter. Furthermore, both the EHF and EKF converged 

toward the real parameter with a standard deviation of 0.0028 and 0.0033 and a maximum 

bias of 0.44% and 0.29%, respectively, occurring after 133 days. These results demonstrate 

that the extended H. filter is more robust than the extended Kalman filter, in the frequency 

domain, when implemented within the urban wastewater system. On the other hand, the 

tracking performances in the time domain are similar for both types of software sensors. 

Simulation results displayed in Figure (6.26) concentrate on the software sensors 

convergence properties toward the real states and parameter, when the initial estimates are 

assumed unknown. The convergence times are summarised in Table (6.12), where it can be 

observed that the software sensors both demonstrated similar convergence performances. 
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The fastest convergence speeds, which are achieved within 1.2 hours, are obtained for the 
readily biodegradable substrate and the anunonia concentrations. The slowest one, which is 
about 144 days, is obtained for the heterotrophic yield. 

Ss xS 
--So - 

SNO SNH SND Xm D YH 
EHF (hours) 

1 
54 1.2 1.44 1.44 12 24 1.2 144 

EKF (hours) 54 1.2 1.44 1.44 12 24 1.2 144 

Table 6.12 Comparison of the convergence properties toward the real states 
and parameter, between the EHF and EKF, based on the 
augmented 'Model Bb', when implemented on the urban 
wastewater system. 

It can be concluded from this study that the software sensor based extended H. filter is more 
robust in the frequency domain, when compared with the extended Kalman filter. In the time 
domain, the EKF performances are similar to the EHF, where both algorithms converged 
toward the real parameter with a maximum bias of less than 0.5%. 

An attempt to modify the parameters from the sewer, which could lead to significant 

variations of the concentrations within the treatment plant and river, has been unsuccessfully 
investigated. For instance, by provoking a substrate shock load within the sewer network, 

similar to one presented in Chapter V (e. g. on the influent of the I't aerobic tank), the effect 

of this is unseen at the effluent of the first aerobic reactor due to the substrate removal effect 

of the anoxic conditions. In addition, by decreasing the airflow transfer function within the 

sewer, the effect is also invisible at the effluent of the lst aerobic tank (e. g. location where 

the software sensors are implemented) due to the airflow inputs considered at the influent of 

each of the aerobic reactor. These variations were first intended to relate the estimated 

concentrations from the software sensors to the concentrations from the river (e. g. dissolved 

oxygen). An alternative approach remains the implementation of state observer within the 

receiving water (if possible, due to the lack of instrumentation within the receiving body). 

6.4) CONCLUSIONS 

The software sensor application presented in this chapter demonstrated the dynamic 

behaviour of the reduced 'Model C' and 'Model Bb', presented in Chapter IV, based on 

extended H. and Kalman filtering techniques. The first application, based on the augmented 
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'Model C', demonstrated the EFIF robustness performances when minimising the error 
criterion between the estimated concentrations and the real ones from the benchmark plant. 
Furthermore, it was also illustrated that the extended H. filter enhanced the tracking 
performances of the disturbances when compared with the EKF. In addition, the faster 
convergence performances from the extended Kalman filter, when compared with the ERF, 
were demonstrated through simulation studies. These results implied that the extended H. 
filtering enhance the tracking performance when modelling errors are introduced within the 
benchmark plant model. 

The second application, based on the augmented 'Model Bb', illustrated the robustness 
perfon-nances of the EHF, through FFT of the minimisation errors, when performing joint 

state and parameter estimation. When designing the parameter estimator based-EIIF, the pre- 

specified H,,,, performance, gamma, cannot be set to its optimal value, since this results in the 
failure of the algorithm to converge toward the real parameter. However the EHF 

demonstrated enhanced tracking performances of the parameter (e. g. when properly tuned by 

trial and error) when compared to the extended Kalman filter. In addition, when parametric 

uncertainties are included within the model, both software sensors converge toward the real 

parameter with approximately similar performances. Even though the EKF estimation was 

improved overall, the selection of an extended H,,,, filtering technique is recommended for 

such an approach, as the stability properties of the extended Kalman filter, which is (at this 

current date) an open problem, are not guaranteed. Furthennore, due to its robustness 

properties, an ERF feature could probably improve the overall performances of an eventual 

control algorithm if the estimated concentrations are utilised to feed this last. 

The final case study illustrated the extended H,, filter performances when implemented on 

the urban wastewater system. Interesting results were proposed where the robustness 

performances of the EHF and the enhanced convergence properties of the EKF were 

demonstrated trough simulation studies, when a state observer was considered. Furthermore, 

when performing joint state and parameter estimation, both algorithms converged toward the 

real states and parameter with similar performances. The convergence toward the 

heterotrophic yield was achieved within six days when the urban wastewater system was 

selected and within a single day when the design was performed on the benchmark plant 

only. This finding clearly emphasised the importance of considering an integrated approach 

rather than an independent unit (e. g. the WWTP). 
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Chapter VII 

Conclusions and future work 
The aim of the work presented in this thesis is the design of software sensors for urban 
wastewater system with a special emphasis on the wastewater treatment plant. This has been 

motivated by the clear lack of instrumentation and automation systems within the wastewater 
industry, and also by the recently adopted water framework directive, which sets a 
fundamental objective of 'good' overall river quality. Therefore, the main objectives of this 

thesis are summarised as follows: 

1. The development of software sensors for monitoring purposes in order to overcome 

the lack of instrumentation. 

2. The inclusion of disturbances and process noise sources statistics to enhance 

practical applicability of the algorithms. 

3. The investigation of the proposed solutions within a full scale urban wastewater 

system. 

The work presented in this thesis has successfully achieved all the objectives by proposing: 

1. The development of three reduced order models based on the activated sludge model 

No. I- 
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2. The investigation of the linear and non-linear observability properties of each of the 
reduced models based on the Kalman rank test and the Lie derivatives, respectively. 

3. The development of software sensors including disturbances in the design, which are 
modelled by spectral analyses and augmented models. 

4. The development and investigation of a non-linear robust technique, which is based 
on extended H,,,, filtering. 

5. The investigation of the software sensors responses within an integrated urban 
wastewater system. 

The proposed results indicate that there is a potential in the use of non-linear filtering 
algorithms for monitoring of wastewater systems. However, it has also revealed that the 
development of an appropriate observable mathematical model and the selection of sufficient 
physical sensors are a prerequisite to enhance satisfactory tracking and convergence 
performances of the algorithms. 

The main achievements are towards the development of locally observable reduced-order 
model based on the well established ASMI model. In addition, a new state observer is 

proposed to detect abnormally high substrate concentrations within the wastewater treatment 

plant. The proposed results still require a deeper investigation (e. g. validation with real data) 
but are the first step in the detection of toxicity, which is directly related to substrate 

concentrations levels. Furthermore, a solution to provide on-line monitoring of the 
heterotrophic and autotrophic biomass concentrations, which is currently not available in real 
WWTP, is proposed. Moreover, the implementation of extended H. filter algorithms is also 

a major achievement due to the inclusion of unknown noise source statistic within the 

models describing the dynamic behaviour of the treatment plant. The following sections 

summarise and comment the findings, and provide future lines of work. 

7.1 SUMMARY OF RESULTS 

Development of three reduced-order models based on the original ASN11 for 

monitoring purposes of the substrate, biomass and ammonia concentrations. The 

'Model A' is reduced to four state variables and is accurate for monitoring purposes of the 

heterotrophic and autotrophic biomass concentrations within the IWA/COST benchmark 
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simulation No. 1. However, the dissolved oxygen concentration provided significant 
mismatches when compared with the original model. This is not crucial as the DO sensor is 
the most widespread measurements in WWTP. The 'Model B' is initially reduced to five 

state variables ('Model Ba') to include the dynamic behaviour of the readily and slowly 
biodegradable substrates concentrations. The proposed model is accurate with respect to the 
purpose it is designed for, which consist of the estimation of the substrate activities within 
the WWTP. The 'Model Bb', which is similar to the Ba, includes two extra state variables 
(e. g. the heterotrophic and autrophic biomass concentrations) and is mainly developed for 
joint state and parameter estimation investigations. The seventh order 'Model C', which is 

also accurate in describing the dynamics of the selected concentrations, is intensively used 
when designing augmented observers for modelling the disturbances and estimating the 

ammonia concentration. 

Investigation of the linear piece-wise and non-linear local observability properties, 

based on the Kalman rank test and the Lie derivatives theories, respectively, of each of 

the proposed reduced-order models ('A', 'Ba', 'Bb', Q. The studies demonstrated that 

the 'Model A' is linearly piece-wise observable assuming a single measurement: the 

dissolved oxygen. When performing the non-linear observability analysis, similar results are 

obtained at the selected operating conditions. The 'Model Ba' is observable with two 

measurements (So and SNO) when performing the piece-wise approach and a single (So) with 

the non-linear method. However, great caution should be considered regarding the results 

based on the Lie derivatives. To be consistent, this theory should be investigated (if possible) 

for the whole domain of definition, similarly to the linear piece-wise approach, to guarantee 

the local observability of the proposed reduced model. In addition these studies also revealed 

that for models greater than a fifth order, computational burden occur when applying the 

non-linear theory based on the Lie derivative. Therefore, the observability analyses of the 

'Model Bb' and 'Model C' are based on the piece-wise approach. Results illustrated that 

both models are linearly observable with three measurements. The 'Model B2' requires the 

assumption of the DO, the heterotrophic and autotrophic biomass measurements while for 

the 'Model C', the dissolved oxygen, nitrogen and ammonia sensors are necessary in 

achieving the observability conditions. it is not consistent to assume measurements of the 

biomass concentrations since these types of sensors are not available. However, a new 

approach is proposed in this thesis to overcome this major problem. 
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Modelling the disturbances through spectral analysis, FFT, I" order and 2"d order 
transfer functions and augmented systems driven by white Gaussian noise sequences. 
The major drawback of the original ASMI model for monitoring purposes is related to the 
significant amount of disturbances that are considered. Therefore, results from this thesis 
illustrated the possibility of inclusion of some of these disturbances when designing of state 
observers. The method consists of analysing the theoretical data available with the 
benchmark plant, in the frequency domain with FFT and spectral analysis, and design I" 

and/or 2" order transfer functions that can cover the spectral energy of the disturbances. 
Once constructed, the initial software sensors are augmented with additional sate variables, 
which are excited by white Gaussian random sequences. These techniques demonstrated that 
the readily biodegradable substrate and particulate organic nitrogen can be successfully 
estimated when measurements of the readily biodegradable substrate is assumed available 
from respirometer, at least every 30 minutes. However, if such technique is to be 
implemented for practical application, the spectral analysis and transfer function coefficients 

computations should be adaptive (performed at each sampling time) in order to be consistent. 

Development of three new state observers based extended Kalman filtering to monitor 

abnormal substrate concentrations, biomass activities and the particulate organic 

nitrogen within the benchmark simulation model No. l. Firstly, a new state observer is 

presented in this thesis, which has the ability to detect abnormally high substrate 

concentrations within the first aerobic reactor of the benchmark plant. Since currently it is 

possible to obtain substrate measurement only through laboratory analysis, this observer is a 

major step in the monitoring of toxicity events contained in the wastewater. The design 

consists in considering the readily and slowly biodegradable substrate concentrations as 

disturbances. Therefore, an augmented state observer based on disturbance modelling is 

proposed, in which the dissolved oxygen measurements are assumed available. Due to the 

successful algorithms responses, real-time control strategies with on-line monitoring of 

abnormal substrate concentrations can be implemented. The warning detection system could 

also be further enhanced to send signals to a mobile phone to alert the operator on duty, and 

allow for a rapid response by modifying the plant's operational strategy. Furthermore, the 

detection limit is important because it could assist operators for instance to: modify the 

dissolved oxygen set point, to decrease the wastage sludge flow rate, or to increase the 

sludge recirculation flow rate to improve the overall perforinance of the plant when such 

toxic events or substrate overloads occur. Naturally, the next step in the developments 

described in this thesis is to try applying the state observer to full-scale systems. However, a 
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deeper investigation is necessary to validate the proposed algorithm since the substrate shock 
load is provoked by an air flow rate shut down. Consequently, it is not obvious whether or 
not the proposed state observer detects the substrate increased or the air flow failure. 
Therefore, the modelling of toxicity events is currently under research and if successful, it 
might provide an answer to this open problem. Secondly, a state observer with the capability 
to monitor the heterotrophic and autotrophic biomass concentrations is proposed. This is also 
a motivating approach since it is not possible to measure the biomass activity in the real 
WWTP. This approach, with is based on fractions of the total suspended solid measurements 
at the influent of the I't aerobic reactor of the benchmark plant, demonstrated successful 
tracking perforinances. The next step to valid this work consists in investigating the state 
observer response with the Benchmark Simulation Model No. I Long-Terin (BSM1_LT), 

which included 360 days of data and temperature variations since the biomass is known as a 
slow changing variable (e. g. monthly scale). Thirdly, a new state observer is proposed to 

monitor the particulate organic nitrogen, which is also not available in WWTP at current 
time. The design, which is based on a fraction of the slowly biodegradable substrate 

concentration, also presented successful tracking performances. Such an approach leaded 

motivating results since it could provide further information on the particulate nitrogen 

concentration dynamic behaviour, which could lead to a more robust control strategy of the 

nitrogen, correlated and dependent onSNDconcentration. However, this algorithm requires a 

validation step (e. g. with real data) if it is considered for practical applications. 

Development of software sensors based on a robust non-linear filtering technique: the 

extended H. filter. This work is motivated by the fact that: (1) the software sensors need to 

be robust against modelling errors and parameter variations, and (2), the extended Kalman 

filter presents drawbacks in term of poor tracking performances in the presence of unknown 

noise source statistics. Various algorithms are proposed in this thesis to demonstrate the 

robustness capabilities of the extended H,,, filter in the frequency domain, when compared 

with the standard extended Kalman filter. Furthen-nore the successful performances of the 

EHF in the time domain and in the presence of disturbances are also demonstrated through 

simulation studies. Results also illustrated the slow convergence properties of the EHF 

toward the real states and parameter when it is not properly initialised. The poor convergence 

and tracking performances of both software sensors is also established when the original 

benchmark plant is corrupted by significant process noise. This work also presented 

insightful results in term of the convergence failure of the EHF when the pre-specified H. 

performance is set to its optimal value. A trade off between the extended H. filtering and 

226 



Chapter VIL Conclusions and Future Work 

extended Kalman filtering in terms of robustness performances and fast convergence 
properties exist. The selection of an appropriate filtering technique is clearly dependent upon 
the main objectives of the application. The extended H,,,, filter is probably more appropriate 
for parametric estimation cases, since the convergences properties of the EKF are not 
guaranteed. On the other hand, the extended Kalman filter is most likely to be a suitable 
solution when designing state observers, in comparison with the EHF. 

Development of a General procedure for model reduction and software sensor 
implementation. A general procedure for model reduction and for the design of observable 
software sensors is proposed in this thesis. It is based on a six steps procedure, which 
provides methods for model reduction, observability analyses, modelling disturbances and 
finally, joint state and parameter estimation algorithm implementation. This procedure is 

exemplified through the thesis by all the proposed applications. 

Development of state observers and software sensors simulated on an integrated urban 

wastewater system. The initial application based on the 'Model C', demonstrated the poor 

performances of both the EHF and EKF when the sewer system is connected to the 

wastewater treatment plant. The enhanced robustness properties in the frequency domain of 

the extended H filter when compared with the extended Kalman filter were demonstrated 

through simulation studies. Furthermore the EKF demonstrated improved tracking 

perfon-nances in the time domain when compared with the EHF. The final application, based 

on the augmented 'Model B I. b', illustrated the good tracking performances of both software 

sensors when the initial conditions of the system are assumed to be known. On the contrary, 

both algorithms converged toward bias values when not carefully initialised. This finding 

clearly emphasises the importance of considering an integrated model rather than an 

independent unit such as the wastewater treatment plant, as the convergence and tracking 

performances of an estimator are drastically affected by the selection of the model. 

7.2 TOPICS FOR FUTURE RESEARCH 

In the course of the work presented in this thesis, several types of problems and question that 

deserve future attention have been encountered. In relation to the results that have been 

presented, a number of important issues and extensions can be defined. Some of them are 

summarised below 
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Chapter VII: Conclusions and Future Work 

An interesting approach would be to perform a similar study but using the activated sludge 
model No. 3 to further investigate the toxicity application findings. Of course, this would 
include the development of new reduced observable models with similar capabilities as those 

proposed within this thesis. In addition, the design should be investigated within an 
integrated urban wastewater system. 

Concerning the observability of the proposed reduced model, similar analyses could be 

performed with the rain and storm weather influent wastewater data available with the 
benchmark plant to confirm the proposed results on non-linear observability. In addition, the 
local and global observability of the reduced-order ASMI models, augmented with 

additional state variables (e. g. for parameter estimation and FFT used for disturbances 

modelling) could be performed. 

With regards to the proposed software sensors, a similar design as that proposed in Chapter 

V to VI could be performed, but on the closed loop benchmark plant configuration. 

However, the proposed reduced models should be slightly modified to include the fact that 

the dissolved oxygen is assumed constant in the closed loop benchmark plant configuration. 

An attempt to design software sensors within the river and sewer system to develop a 

decentralised non-linear filtering technique could probably be valuable. Last but not least, 

the proposed software sensors should be validated with real data. 
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Appendix A 

List of Abbreviations 

ASM1/2/2d/3 Activated Sludge Model no. 1/2/2d/3 

ASP Activated Sludge Process 

ASS Activated Sludge System 

BC Before Christ 

BNR Biological Nutrient Removal 

BOD Biological Oxygen Demand 

BSM1 Benchmark Simulation Model No. 1 

COD Chemical Oxygen Demand 

COST European Co-Operation in the field of Scientific and Technical Research 

CS0 Combined Sewer Overflows 

DO Dissolved Oxygen 

DW Dry Weather 

EC European Commission 

EFF Effluent 

EHF Extended H. Filter 

EKF Extended Kalman Filter 

EMSS European Modelling and Simulation Symposium 

EU European Union 

FFT Fast Fourier Transform 

HRT Hydraulic Retention Time 

ICA Instrumentation Control and Automation 



Appendix A: List of Abbreviations 

ICUD International Conference on Urban Drainage 

IFAC International Federation of Automatic Control 
IR Infra Red 

1UWS Integrated Urban Wastewater System 

IWA International Water Association 

IWAQ International Association on Water Quality (formerly IAWPRC) 
KF Kalman Filter 

MIMO Multiple-Input Multiple-Output 

MMSE Minimum Mean Square Error 

PAO Phosphorous Accumulating Organism 

PES Primary Excess Sludge 

PID Proportional Integral Derivative 

R1 Rain Influent 

PRBS PseudoRandom Binary Sequence 

QUAL2E Enhanced Stream Water Quality Model 

RWQMI River Water Quality Model No. I 

RAS Return Activated Sludge 

RTC Real Time Control 

SES Secondary Excess Sludge 

S1 Storm Influent 

SISO Single-Input Single-Output 

STIC Sciences et Techniques de I'Information et de la Communication 

TSS Total Suspended Solid 

TOC Total Organic Carbon 

UKACC United Kingdom Automatic Control Council 

UV Ultra Violet 

VIS Visible 

WAP Wireless Application Protocol 

WFD Water Framework Directive 

WWT Wastewater Treatment 

WWTP Wastewater Treatment Plant 

WWW-YES World Wide Workshop for Young Environmental Scientists 
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Appendix B 

List of State Variables and Parameters 

Table BI. State variables considered in the trunk sewer model 

State variable description Symbol Units 

Soluble inert organic matter S, mg COD U 
Readily biodegradable substrate Ss mg COD L-1 
Particulate inert organic material X, mg COD L-1 
Hydrolysable substrate, fast biodegradable XS I mg COD L-1 
Hydrolysable substrate, slowly biodegradable XS2 mg COD L-1 
Heterotrophic active biomass in the water phase XBW mg COD LI-1 
Heterotrophic active biomass in the biofilm phase XB F mg COD L-1 
Oxygen so mg COD L-1 
Nitrate + nitrite nitrogen 

SNO mg N L-1 
NH4-NH3nitrogen SNH mg N L-1 
Soluble biodegradable organic nitrogen 

SND mg N L-1 
Particulate biodegradable nitrogen 

XN D mg N L-1 
Alkalinity 
Soluble xenobiotic compound 

SALK 

SX0C 
mol L-' 

mg XOC L- 
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Table B2. The State variables of the ASM1 model (Copp, 2002). 

State variable Description Symbol Units 

Soluble inert organic matter S, g COD M-3 

Readily biodegradable substrate Ss g COD M-3 

Particulate inert organic matter X, g COD M-3 

Slowly biodegradable substrate Xs g COD m-1 
Activated heterotrophic biomass XB, H g COD M-3 

Activated autotrophic biomass XBA 
g COD M-3 

Particulate products arising from biomass decay XP g COD M-3 

Oxygen so g COD M-3 

Nitrate and nitrite nitrogen SNO g Nm-3 
NH4+ + NH3 nitrogen SNH g N M-3 

Soluble biodegradable organic nitrogen SND g N M-3 

Particulate biodegradable organic nitrogen XND 
g N M-3 

Alkalinity SALK mol L-' 

Table B2.1. Kinetic parameters used for the ASMI (Copp, 2002). 

Parameter description Sym. Value Units 

Maximum heterotrophic growth rate PmH 4.0 day-' 
Half-saturation (hetero. growth) Ks 10.0 g COD m-1 
Half-saturation (hetero. oxygen) KOH 0.2 902 M-3 

Half-saturation (nitrate) KNo 0.5 M-3 g N03-N 
Heterotrophic decay rate bH 0.3 day-' 
Anoxic growth rate correction factor q9 0.8 dimensionless 
Anoxic hydrolysis rate correction factor 77h 0.8 dimensionless 
Maximum specific hydrolysis rate Kh 3.0 9 XS (9 XB, HCOD day) 
Half saturation (hydrolysis) Kx 0.1 9 XS (9 XB, HCOD) 

Maximum autotrophic growth rate PmA 0.5 day-' 
Half-saturation (auto. growth) KNH 1-0 g NH3-N m-1 
Autotrophic decay rate 

bA 0.05 day-' 
Half-saturation (auto. oxygen) KoA 0.4 902M 

Ammonification rate k,, 0.05 M3 (g COD day) 

Table B2.2. Stoichiometric parameters used for the ASM1 (Copp, 2002) 

Parameter description Sym. Value Units 

Autotrophic yield YA 0.24 9 XB, A COD formed (g N utilised) I 

Heterotrophic yield YH 0.67 9 XB, H COD formed (g COD utilised)-l 
Fraction of biomass to part. products fp 0.08 dimensionless 

Fraction nitrogen in biomass ix, 6 0.08 gN (g COD) in biomass 

Fraction nitrogen in particulate products ixp 0.06 gN (g COD) in Xp 
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Appendix B: List of State Variables and Parameters 

Table B3. State variables in the river model. 

State variable description 

Readily biodegradable substrate 
Soluble inert organic matter 
Ammonium 
Nitrite 
Nitrate 
Part of inorganic dissolved phosphorus 
Oxygen 
Organisms oxidising ammonia to nitrite 
Heterotrophic organisms 
Organisms oxidising nitrite to nitrate 
Particulate inert organic material 

Symbol Units 
ss mg COD L-1 
si mg COD L-1 
SNH4 mg N L-1 
SN02 mg L-1 
SN03 mg L-1 
SHP04 mg P L-1 
so mg COD L-1 
XN 1 mg COD L-1 
XN 2 mg COD L-1 
xs mg COD L-1 
x, mg COD L-1 

Particulate products arising from biomass decay XP g COD in-' 
Soluble xenobiotic compound Sxoc mg XOC L-1 
Sorbed xenobiotic compound Xxoc mg XOC L-' 
Specific active XOC degraders XBZ mg L-1 
Volume of river stretch I VRIVJ m3 
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Appendix C 

The Extended Kalman Filter 
The extended Kalman filters (EKF), which is derived from the linear Kalman filters, is 
computed for the case where the system dynamics vary with operating and control points . 
This type of non-linear systems are usually described by non-linear equations, with a non- 
linear state space model of the form 

(k + 1) =f (x (k), u (k)) +G (k)w (k) 
(C. 1) 

(k) =h (x (k)) +v (k) 

where x E=- R", w E=- R', DE /-? " ', v and y E=- /-?, and f and h are general non-linear 

functions, of appropriate dimension. G(k)w(k) and v(k) represent the process and 

measurement noise with noise sequences of zero means and covariance Q and R, 

respectively, which are of the forrn 

E jww'j = Q, Efvv')=R (C. 2) 

The method to compute the EKF algorithm is to use a linearisation of the process dynamics 

in order to minimize the effect of process and measurement noise. Such linearisation 

technique is performed on-line, around the current state estimates. As was described in 

Chapter 111, Section (3.3), the calculations are often divided in a prediction and a correction 

phase. The predictor phase includes the following calculations (Jeppsson, 1996): 
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i(k +Ilk) =f (i(klk), u(k)) (C. 3) 

P(k +Ilk)= F(k)P(kik)F T (k) +Q (C. 4) 

and the corrector phase calculations include 

i(k+llk+l)= x^(k+ Ilk)+ K(k+ I)[y(k+I)-h(i(k+Ilk))] (C. 5) 

P(k+llk +1)= P(k +Ilk)-K(k +I)H(k+I)P(k+llk) (C. 6) 

K(k+l)=P(k+llk)H T (k+l)[H(k+I)P(k +Ilk)H T (k+l)+R]-' (C. 7) 

where F(k) and H(k), which corresponds to the Jacobian matrices of J(-) and h(-), 

respectively are defined as 

F (k) = 
af (x (k), u (k» 

x(k)=i(k) (C. 8) 
öx (k) 

1 

H (k) = 
ah (x (k)) I 

x(k)=i(k) 
(C. 9) 

o'x (k) 

This approach was used in the study presented in Chapters III and V. The methods presented 

in this appendix not only hold for state estimation but also for simultaneously state and 

parameter estimation. The equations given are still valid although the estimated states 

becomes a generalized state vector which includes both the unknown state variables and the 

uncertain model parameters, as presented in Chapter 111. 
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Appendix D 

ASM1 Matrix Representation 
The model considered state of the art for modelling biological nitrogen removal processes is 
the ASMI model of the International Water Association (IWA, Henze et al., 2000). This 
model, which describes carbon removal and nitrification-denitrification processes, was first 
introduced in 1987 (Henze et al., 2000) as a result of the work by the 'Task Group on 
Mathematical Modelling for Design and Operation of Biological Wastewater Treatment 
Systems' formed by the International Association on Water Quality (IAWQ) in 1983. The 

major goal of this group was to review existing models and reach a consensus regarding the 

simplest model having the capability of realistic predictions of the performance of single- 
sludge systems carrying out carbon oxidation, nitrification and denitrification (Jeppsson, 

1996). The ASMI model is highly mechanistic where the major components of relevance 

and the most important biological processes are considered. It is usually presented in the 

matrix format suggested by Peterson (1965) using the notation recommended by Grau et al. 
(1982). This matrix representation allows rapid and easy recognition of the fate of each 

component. Indeed, by moving down a column for a specific component, the full differential 

equation with all the biological processes can be directly formulated and by moving across 

the matrix, the continuity of the model can be checked by calculating the sum of the 

stoichiometric coefficients. 

Table D. 1 (Next two pages) Matrix representation of the process kinetics and 

stoichiometry for carbon oxidation, nitrification and denitrification, 

according to the IAWQ ASMI model (Henze et al., 2000). 



Appendix D: ASMI Matrix Representation 

Component 1 2 3 4 5 6 7 a 9 

-Ocess S, Ss ly, -YS . 
1, Bxf IVB,. i, XF so 

Aerobic, growth 1-yr 
of beterotz-oplis 

Y, --- 

Anoxic growth 
of hLeterotrophs Y. 2-86YIj 

Aerobic growth 57 4 
of autotrophs +1 - 

4 , Dec av- " of 
heterorrophs f? 

I 

Z: - Decay o. - 
-1 f? 

A . -mmonific-ation ýýf 
6 sol-al0le organic, 

nitrogen 

'Hvdrelysis' 0--' 
entrapped orgamcs 

Hydro 2y&i s' of 
8 entrapped organic, 

nitrogen 
Observed Conversion r, 
Rates F-ML 3' 

Stoichiometric 
Parameters: 

Heterotrophic 
vield: YE 

Autotropbic 
yield-- YA 

Fraction o" 74 z 
yielding particuLate 
producft: fr 

Maavr, COD 
in biomass: ixF, 

Ma,, ss N,, Mavs COD E 
in pro&cu from 

' biomass,: )o 
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Appendix D: ASMI Matrix Representation 

10 11 12 13 

S'Nlmll SN. -D XND 
Rate. 

. p;, [ML-3, T-'] 

iým 

14 
fi 

F. I 
so 

BX 
'( 

'- . . Kr +S 
I- YH ss 1ý0 

H 

4 1-2.36Yj S, 
SNO 

7 K,, jo + 
JX5 

NNH ( 
"A 

A KN 
E, A6 

+ S,,, F K. Cj NA +SO 

14 
T-1 

s -Y 5 so, 2-1 ý kh 
I K F +s Kx + fly 

S ý"X 5 H 
51 

0 
. , , 

KO, H 
B. H. Kc,. H+So KN7.0+Sx, 

IV 

Kinetic, Parameters: 
Heterotrophic grinvth and decay: 

K; K b! I H, 7E 

h. ie and decay: p bA 

Conection factur for ano-Mic: 
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Hydrolysis: ký KA 
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hydrolyu!, r: Rý-- 
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