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por ayudarme a enfocar mi enerǵia en terminar y hacer las cosas bien.

Gracias por traer tanta motivación y felicidad a mi vida. A mi hermoso
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Abstract

Until now, natural thumb control mechanisms are lacking in the upper limb

prosthetic development. This lag is due to the complex anatomy of the

musculature of the hand making the upper limb prosthetic research a very

complicated area.

Several studies have attempted to better our understanding of the neural

control of the hand. With applications including clinical rehabilitation,

surface-Electromyography (sEMG) has been steadily improving the knowl-

edge in this area, albeit still very limited. The development of high-density

sEMG (HD-sEMG) has drastically increased the sensitivity of EMG tech-

niques. Despite this research effort, there are significant gaps in the field.

Furthermore, current data analysis is almost exclusively performed off-line

and so, neurally controlled prostheses are limited to research labs and are

not a clinically viable technology. Therefore, it is evident that new tech-

nologies are required to understand the dexterity of the human hand for

prosthetic control.

A common theme across the different hand-prosthetic developers is not to

have mechanisms to drive the thumb based on muscular contractions. Due

to the lack of intuitiveness for an amputee to operate the prosthetic device,

it requires several highly demanding training sessions between the patient

and the prosthetist. These sessions are oriented for the amputee to be able

to control in duration and magnitude, the contractions of the chosen muscles

to drive the motors of the prosthesis.

In this research, the muscle activity from the forearm is identified and cor-

related with specific hand movements leading to improve the commercially

available myoelectric transradial prosthetics. This was achieved through

the understanding of sEMG patterns related to differentiation of thumb op-

position to different fingers. The acquired signals were investigated based

on time-domain analyses (i.e. amplitude signal analysis, root-mean square

values, statistical analyses), followed by a joint time and frequency-domain

analyses (i.e. coherence estimate and cumulant analysis). Finally, unsu-

pervised machine learning techniques were applied aiming to differentiate

the different sEMG patterns during the different thumb opposition. This

differentiation leads to a better understanding with regards to prospective

controller mechanisms aiming to develop new prosthetic devices enhancing

the experience of transradial amputees with the use of their prosthetic.
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1

Introduction

After the brain, the hands are the most impressive and powerful tool of the human

body. We tend to take our hands for granted, yet they form one of the most extraor-

dinary features separating humans from animals. Hands are used to shape the brain

as active parts of our thoughts, emotions, language, etc. no other part of the human

body is so intimately related to the human behaviour as the hands are.

As a perceptual organ, hands have some advantages over the eyes, our hands can

effectively see around corners, allowing us to explore all sides of an object: weight,

compliance, slipperiness, amongst many others. The high number of degrees of freedom

and the highly developed neural control, provides the hand with tremendous dexterity,

allowing delicate and versatile manipulation.

The loss of an upper limb due to trauma, disease or congenital deficiency result-

ing in sudden loss of function, sensation and cosmesis is a far greater catastrophe for

the individual than the loss of their lower limb. Research into upper limb prosthesis

aims to develop a device that has functionality almost similar to the natural hand in

terms of control, stability, dexterity, coordination and sensory feedback as well as good

wearability, e.g. light weight, long-term usability and cosmesis.

The development of high-density sEMG (HD-sEMG) has drastically increased the

sensitivity of EMG techniques and the chances of detecting single motor unit char-

acteristics. Despite a zealous research effort, there are significant gaps in the field -

specifically with regard to knowledge of motor unit recruitment during various hand

movements. Furthermore, currently data analysis is almost exclusively performed off-

line and so neurally controlled prostheses are limited to research labs and are not a
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1.1 Research Context

clinically viable technology. It is clear that new technologies are required to under-

stand the dexterity of the human hand.

In this research, we attempt to identify and correlate the muscle activity with hand

movements leading to improve the commercially available myoelectric upper limb pros-

thetics. This will be achieved through the understanding of EMG patterns related to

differentiation of thumb opposition to different fingers. The acquired signals will be

investigated based on time-domain analysis (i.e. amplitude signal analysis; root-mean

square values; statistical analysis), followed by a joint time and frequency domain anal-

ysis (i.e. coherence estimate and cumulant analysis), as well as unsupervised machine

learning aiming to cluster the different EMG patterns during the different thumb op-

positions.

1.1 Research Context

It is important, given the multidisciplinary nature of this research, to provide the

reader with enough tools to understand the mechanisms applied throughout: i) the

motor neuroscience of large-scale electromyographic recordings; ii) upper limb amputa-

tions; iii) rehabilitation research, more specifically, mechanisms applied for interfacing

myoelectric prosthesis and amputees. This will lead to comprehensive results and their

critical appraisal and discussion.

1.1.1 Anatomy of the Hand and Forearm

All mammals and most vertebrates possess four limbs. These four limbs allow them

to walk and interact with the world around, regardless the different morphology. In

Figure 1.1, differences and similarities amongst mammals and vertebrates are depicted

in order to illustrate limb diversity.
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Figure 1.1: Comparison between the hands of some vertebrates - Fore limbs of

vertebrates showing similarity of structure . A, salamander; B, turtle; C, very young turtle;

D, adult bird; E, dog; F, man. -Davison, 1906.
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The human hand has an apparent simple structure on the outside, but the amount

of nerves (∼ 48); ligaments (∼ 123); muscles (∼ 34); bones (∼ 29)(Figure 1.2); joints

(∼ 29); and arteries (∼ 30) make it a very complex structure .

Figure 1.2: Bones in the hand and wrist - Left - Bones in the palm of the hand.

Right - Bones in the forearm and small bones of the wrist. -Copyright Active Motion

Physiotherapy. All rights reserved

The hand is able to make broad, smooth movements as well as small and fine

movements. These are achieved with thanks to its anatomy (Figure 1.3), and the large

amount of muscles in the hand (palm and forearm). The combination of the different

muscles allow the hand to perform detailed tasks .
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Figure 1.3: Anatomy of the human hand - Anatomy of the human hand. Mus-

cles, ligaments and tendons located in the palm of the hand that are in charge of finger

movement. From: Hertfordshire Orthopaedic Centre.
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The secundus digitus manus (index), digitus medius (middle finger), digitus annu-

laris (ring finger), and digitus minimus manus (pinky finger), have 4 different move-

ments; whereas the thumb has an extra gesture. The range of movement is also referred

as degrees of freedom, and this implies the amount of different movements that an ob-

ject (a finger in this case) has when seen from one reference point. The four degrees of

freedom that the 4 aforementioned fingers have are flexion, extension, abduction and

adduction. On the other hand, the thumb has the same four motions plus opposition

to the rest of the fingers, as is shown in Figure 1.4.

Figure 1.4: Degrees of Freedom of the Thumb - a. Extension; b. Flexion; c.

Opposition of little finger; d. Adduction; e. Abduction

There are no muscles in the fingers, instead, the muscles that control them are

located in the palm and in the forearm. With approximately 34 muscles in the palm of

the hand and forearm, they work together to achieve wide variety of movements. These

muscles provide the hands and fingers with flexibility, precise control, and gripping

strength necessary for a range of activities from drawing and a gentle touch, to gripping

a ball or using them as tools.

The muscles of the forearm most common separation is by compartments:

• Anterior Compartment of the Forearm [Figure 1.5]:

Superficial Muscles. Table 1.1

Deep Muscles. Table 1.2

• Posterior Compartment of the Forearm[Figure 1.6]:

Superficial Muscles Table 1.3
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Deep Muscles. Table 1.4

• Intrinsic muscles of the hand (palm):

Snuff box Table 1.5

Thenar lateral Table 1.6

Hypothenar medial Table 1.7

Intermediate area Table 1.8

Figure 1.5: Muscles in the Anterior Compartment of the Forearm - Flexor

Muscles - The muscles of the anterior compartment of the forearm are depicted in this

image from the deepest layer to the most superficial one: a. Pronator quadratus (PQ) b.

Flexor digitorium profundus (FDP) c.Flexor pollicis longus (FPL) d. Flexor digitorium

superficialis (FDS) e. Flexor carpi ulnaris (FCU) f. Palmaris longus (PL) g. Flexor carpi

radialis (FCR) h. Pronator teres (PT)
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Table 1.1: Superficial Muscles in the Anterior Compartment of the Forearm

Muscle Origin Insertion Artery Nerve Action Antagonist

Pronator

teres

Humeral

head: medial

epicondyle

of humerus

(common

flexor ten-

don). Ulnar

head: coro-

noid process

of the ulna

Radius Ulnar and

radial

artery

Median

nerve

Pronation

of forearm,

flexes elbow

Supinator

muscle

Palmaris

longus

Medial epi-

condyle of

humerus

(common

flexor tendon)

Palmar

aponeuro-

sis

Ulnar

artery

Median

nerve

Wrist flexor Extensor

carpi radi-

alis brevis,

Extensor

carpi radialis

longus, and

Extensor

carpi ulnaris

Flexor

carpi

radialis

Medial epi-

condyle of

humerus

(common

flexor tendon)

Bases of

second

and third

metacarpal

bones

Ulnar

artery

Median

nerve

Flexion and

abduction at

wrist

Extensor

carpi radi-

alis brevis,

Extensor

carpi radialis

longus

Flexor

carpi

ulnaris

Medial epi-

condyle of

humerus

(common

flexor tendon)

Pisiform Ulnar

artery

Muscular

branches

of ulnar

nerve

Flexion of

wrist

Extensor

carpi ulnaris

Flexor

digitorum

super-

ficialis

Medial epi-

condyle of

humerus

(common

flexor ten-

don), as well

as parts of

the radius

and ulna.

phalanges Ulnar

artery

Median

nerve

flexor of fin-

gers (primar-

ily at proxi-

mal interpha-

langeal joints)

Extensor digi-

torum muscle
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Table 1.2: Deep Muscles in the Anterior Compartment of the Forearm

Muscle Origin Insertion Artery Nerve Action Antagonist

Pronator

quadratus

Medial, ante-

rior surface of

the ulna

Lateral,

anterior

surface of

the radius

Anterior

in-

terosseous

artery

Median

nerve

(anterior

in-

terosseous

nerve)

Pronates the

forearm

Supinator

muscle

Flexor

digitorum

profundus

Ulna Distal

phalanges

Anterior

in-

terosseous

artery

Median

nerve

(anterior

in-

terosseous

nerve),

muscular

branches

of ulnar

muscle

flexes hand

and inter-

phalangeal

joints

Extensor digi-

torum muscle

Flexor

pollicis

longus

The middle

2/4 of the

volar sur-

face of the

radius and

the adjacent

interosseous

membrane.

(Also occa-

sionally a

small origin

slightly on

the medial

epicondyle of

the ulna.)

The base

of the

distal

phalanx of

the thumb

Anterior

in-

terosseous

artery

Anterior in-
terosseous
nerve
(branch
of median
nerve) (C8,
T1) Flexion

of the thumb

Extensor

pollicis longus

muscle, Ex-

tensor pollicis

brevis muscle
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Figure 1.6: Muscles in the Posterior Compartment of the Forearm - The muscles

of the posterior compartment of the forearm are depicted in this image moving from the

deepest to the most superficial layer: i.Extensor indicis (EI) j. Extensor pollicis longus

(EPL) k. Extensor pollicis brevis (EPB) l. Abductor pollicis longus (APL) m. Supinator

(S) n. Anconeous (A) o. Extensor carpi radialis longus (ECRl) p. Extensor carpi radialis

brevis (ECRb) q. Extensor carpi ulnaris r. Brachioradialis (B) s. Extensor digitorium

(ED) t. Extensor digiti minimi (EDM)
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Table 1.3: Superficial Muscles in the Posterior Compartment of the Forearm

Muscle Origin Insertion Artery Nerve Action Antagonist

Brachiora-

dialis

Lateral supra-

condylar

ridge of the

humerus

Distal

radius

(Radial

styloid

process)

Radial

recurrent

artery

Radial

nerve

Flexion of the

forearm

-

Extensor

carpi

radialis

longus

Lateral supra-

condylar ridge

Second

metacarpal

Radial

artery

Radial

nerve

Extensor at

the wrist

joint, abducts

the hand at

the wrist

Flexor carpi

radialis

muscle

Extensor

carpi

radialis

brevis

Humerus at

the anterior

of lateral epi-

condyle(common

extensor ten-

don)

Base of

the 3rd

metacarpal

Radial

artery

Deep

branch of

the radial

nerve

Extensor and

abductor of

the hand at

the wrist joint

Flexor carpi

radialis

muscle

Extensor

digitorum

Lateral

epicondyle

(common

extensor

tendon)

2nd

and 3rd

phalanges

Interosseous

recurrent

artery and

posterior

in-

terosseous

artery

Posterior

in-

terosseous

nerve (C7,

C8)

Extension of

hand and fin-

gers

Flexor

digitorum

superficialis

muscle,

Flexor

digitorum

profundus

muscle

Extensor

digiti

minimi

The anterior

portion of the

lateral epi-

condyle of the

humerus(common

extensor ten-

don)

Extensor

expansion,

located at

the base

of the

proximal

phalanx of

the finger

on the

dorsal side

Posterior

in-

terosseous

artery

which

originates

from the

common

in-

terosseous

artery

and more

proxi-

mally,

the ulnar

artery

Posterior

in-

terosseous

nerve (C7,

C8)

Extends the

little finger at

all joints

Flexor digiti

minimi brevis

Extensor

carpi

ulnaris

Common

extensor ten-

don (lateral

epicondyle),

ulna

5th

metacarpal

Ulnar

artery

Posterior

in-

terosseous

nerve (C7,

C8)

Extends and

adducts the

wrist

Flexor carpi

ulnaris
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Table 1.4: Deep Muscles in the Posterior Compartment of the Forearm

Muscle Origin Insertion Artery Nerve Action Antagonist

Supinator Lateral epi-

condyle of

the humerus,

supinator

crest of ulna,

radial collat-

eral ligament,

annular

ligament

Lateral

proximal

radial

shaft

Radial

recurrent

artery

Posterior

in-

terosseous

nerve

(C7,C8)

Extension of

hand and fin-

gers

Flexor

digitorum

superficialis

muscle,

Flexor

digitorum

profundus

muscle

Table 1.5: Muscles in the Anatomical Snuff Box in the Deep Posterior Part of the Forearm

Muscle Origin Insertion Artery Nerve Action Antagonist

Abductor

pollicis

longus

Ulna, ra-

dial styloid

process

First

metacarpal

Posterior

in-

terosseous

artery

Posterior

in-

terosseous

nerve

(C7,C8)

Abduction

and extension

of the thumb

Adductor pol-

licis muscle

Extensor

pollicis

brevis

Radius Thumb,

proximal

phalanx

Posterior

in-

terosseous

artery

Posterior

in-

terosseous

nerve (C7,

C8)

Extension

of thumb

at metacar-

pophalangeal

joint

Flexor pollicis

longus mus-

cle, Flexor

pollicis brevis

muscle

Extensor

pollicis

longus

Ulna Thumb,

distal

phalanx

Posterior

in-

terosseous

nerve (C7,

C8)

Extension of

the thumb

(metacar-

pophalangeal

and interpha-

langeal)

Flexor pollicis

longus mus-

cle, Flexor

pollicis brevis

muscle

Extensor

indicis

Ulna Index

finger

(extensor

hood)

Posterior

in-

terosseous

nerve (C7,

C8)

Extends index

finger, wrist
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The intrinsic muscles of the hand can be broken down into three main parts: the

thenar, which is the lateral or thumb side of the palm and are essential to the hand’s

flexibility and its ability to grip; the hypothenar, which is the medial or little finger side

of the palm and they help spreading the fingers apart, flex the pinky finger, and rotate

the fifth metacarpal pulling it anteriorly whilst opposition with the thumb; and the

intermediate or middle section of the hand, moves collectively from the second through

the fifth metacarpals and the second through fifth phalanges in a wide range of ways.

13
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Table 1.6: Muscles in the thenar lateral volar area of the hand

Muscle Origin Insertion Artery Nerve Action Antagonist

Opponens

pollicis

Trapezium

and trans-

verse carpal

ligament

Metacarpal

bone of

the thumb

on its

radial side

Median

nerve

Opposition of

the thumb

Flexor

pollicis

brevis

Trapezoid,

flexor retinac-

ulum

Thumb,

proximal

phalanx

Median

nerve,

deep

branch

of ulnar

nerve(medial

head)

Flexion of

thumb

Extensor

pollicis longus

muscle, Ex-

tensor pollicis

brevis muscle

Abductor

pollicis

brevis

Transverse

carpal lig-

ament, the

scaphoid and

trapezium

Radial

base of

proximal

phalanx

of thumb

and the

thumb

extensor

Median

nerve

Abduction of

thumb

Adductor pol-

licis muscle

Adductor

pollicis

Transverse

head: an-

terior body

of the third

metacarpal.

Oblique head:

bases of the

second and

the third

metacarpals

and the adja-

cent trapezoid

and capitate

bones

Medial

side of

the base

of the

proximal

phalanx of

the thumb

and the

ulnar

sesamoid

Deep

branch

of ulnar

nerve (T1)

Adducts

the thumb

at the car-

pometacarpal

joint

Abductor

pollicis longus

muscle, Ab-

ductor pollicis

brevis muscle
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Table 1.7: Muscles in the Hypothenar Medial Volar Area of the Hand

Muscle Action Antagonist

Palmaris brevis wrinkle skin of palm None

Abductor digiti minimi Abduction of little finger None

Flexor digiti minimi brevis Flexes little finger Extensor digiti minimi

Opponens digiti minimi Brings little finger into opposition with thumb None

Table 1.8: Muscles in the Intermediate Area of the Hand

Muscle Action Antagonist

Lumbrical flex metacarpophalangeal None

and extendinterphalangeal joints

Dorsal interosseous Abducts finger Palmar interossei

Palmar interosseous Adducts finger Dorsal interossei
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The various skeletal and muscular degrees of freedom of the hand, orchestrated by

highly developed neural control systems, allow for tremendous dexterity and variety of

movement synergies that allows for both sensitive exploration and flexible manipulation

and use of objects.

1.1.2 Human Motor System

The human motor system can be consider as a system composed by several different

sub-systems. These structures are highly interconnected and work together to achieve

function guaranteeing proper motor control (4). Voluntary movements are dominated

by the motor cortex which acts on the spinal and brain stem motor neurones as well

as extrapyramidal pathways in order to orchestrate voluntary movements. The pri-

mary motor cortex is an important source of the descending signals to execute these

movements. The brain stem and spinal cord are often viewed as regions of the central

nervous system (CNS) containing interneuronal-motoneuronal networks in charge of

the production of reflexive and rhythmic motor behaviours and supporting postural

non volitional movements (5). In Figure 1.7 a diagram of the general organisation of

the motor system in humans from the cortex and its different pathways is depicted.

As shown in Figure 1.7, the motor cortex acts on the spinal and brain stem motor

neurones to produce action upon the muscles. The motor pathways could be differ-

entiated as: i) Descending pathways - in charge of distributing the signals for the

actual movement; ii) re-entrant circuits modulating the ongoing activation, like a feed-

back control loop; and iii) cortico-cortical pathways which determine the interactions

amongst the cortical regions in the brain (5) and most likely aid in motor learning and

skill acquisition. Communication between the CNS pathways and the target muscles or

sensory receptors is the peripheral nervous system (PNS). The PNS is the link between

the CNS and the limbs and organs.
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Figure 1.7: Diagram of the General Organisation of the Motor System in Hu-

mans - Simplified organisation of the motor system in humans. All the descending tracks

originate from the cerebral cortex. The basal ganglia and the cerebellum play the role

of coordination of movement through a modulatory influence of the cortex. Movement

impulse make its way all through the spinal cord finalizing in the muscles.From (5).
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The skeletal muscle fibres in mammals are innervated each, by a single motor neu-

rone (6). In Figure 1.8, a diagram of the connection between the PNS towards the

muscular activation is shown.

Figure 1.8: Motor Unit Activation Diagram - A) PNS connecting from a ventral

horn in the spinal cord and the course of its connecting axon to the actuator (muscle); B)

Each motor neurone found in the ventral horn connects to a several muscle fibres. The

motor neurone and its connecting muscle fibres is known as motor unit. On the far right of

this figure, a cross section of the muscle and the muscle fibre distribution is shown. From

(6) - Copyright c©Sinauer Associates, Inc.
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In the motor neurone, an action potential (also referred as a nerve impulse), is

produced. This potential produces a contraction in the muscle cell which is perceived

as movement (7). The stimulation produces a wave of electrical excitation propagated

across the muscle fibre, as shown in Figure 1.9. The generation of this impulse is given

by the opening/closing of ionic channels in the membrane.

Figure 1.9: Propagation of Action Potential Across a Muscle Fibre - The impulse

generated inside the nerve cell and the ionic movement across its membrane is depicted in

this figure. Depolarization occurs when a stimulus causes the ionic channels to open causing

sodium ions to permeate into the membrane causing a depolarisation. As a reaction, the

ionic channels permeable to potassium open repolarising the cell causing the movement of

this ions to propagate along the fibre causing an AP. From (8)
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The ionic fluctuations in the membrane are classified in different ways [as shown in

Figure 1.10]: resting potentials, and potential changes due to activity. The latter can

be classified into different types of APs, e.g., transducer potential (produced across the

membrane from an external impulse caused by synapses); and the ones arising from

the previous (further response may arise if whether the magnitude exceeds the cell

threshold). If the threshold is not exceeded a non-propagating response occurs, on the

other side, an AP is produced obeying the ‘all or nothing’ law (9).

Figure 1.10: Transmembrane potentials according to Theodore H. Bullock -

Transmembrane potential can be classified into different types: 1) Pacemaker potentials, 2)

Transducer potentials, and 3)APs. For purpose of this research the only relevant potentials

are resting potentials, neuromuscular synaptic potentials, and APs. From (9)
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The resting membrane potential normally lies between -70mV and -100mV. The

negative value refers to the cell being negatively polarised on the inside compared to

the outside. AP propagation occurs rapidly when the threshold is reached resulting

in a sharp spike. Once the membrane is depolarised more commonly by the action of

acetylcholine in normal neuromuscular transmission, typically peaking at +30 mV (10),

the extracellular fields generated by the AP waveform and its propagation along the

muscle can be measured by placing a pair of electrodes within the volume conductor

containing the muscle. This is the basics of electromyography.

1.1.3 Electromyography

The study of human motor function has progressed greatly as science has evolved

throughout the years. Advances in anatomy and physiology started in late 18th century,

with sophisticated techniques of brain tissue fixation and sectioning (5), providing

more information on the structures of the brain. All muscle activity is controlled by

the nervous system, and activity generated in neural, motor and sensory structures

can be measured electrophysiologically by detecting the transient electrical signals.

Electromyography (EMG) is the method used to study and monitor the spontaneous

and voluntary activity of muscles throughout the body. The motor unit AP (MUAP)

is a spatio temporal summation of individual muscle APs. Hence, the EMG is an

algebraic summation of the MUAP and is influenced by distance from the signal source

and separation from the source. This signal as well as being a function of time, is

generally described in terms of its amplitude, frequency and phase (11). Moreover, the

EMG signal is directly dependent on the anatomical (e.g., diameter of muscle fibre) and

physiological properties of the muscles (e.g., distance between active muscle fibres and

detection site). As the signal travels through the body, it is distorted and it acquires

noise as it propagates through different tissues (i.e. adipose tissue thickness).

In general, EMG as a method can be categorised into two main types and two

main approaches: clinical and research, and surface non-invasive recordings or invasive

methods using intramuscular wires or needles. Clinically diagnostic EMG, is usually

performed by a trained specialist with focus on features related to the duration and the

amplitude of the MUAP, or the size and latency of evoked motor responses. In research

studies, not only are parameters of MUAP waveforms of interest, but so are activation

patterns across different muscle groups. This type of information form the basis for
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much of the literature about analysis of movement. This type of EMG attempts to

understand the relation between muscular functionality and the movement of parts of

the body. The EMG method is subdivided by the type of electrode used for acqui-

sition: surface or needle/inserted wire. Surface electrodes are also divided into two

categories. The first is active electrodes, which have built-in amplifiers at the electrode

site to overcome problems of amplitude impedance matching over long cables thereby

reduced artefact picked up, and also allowing gel free electrodes to be used. A com-

mon application for this type of electrodes is their incorporation into commercial upper

limb myoelectric prosthetics. The other type of electrodes are passive electrodes, that

rely on low impedance interfacing between skin and electrode materials. This type of

electrode normally is connected by long shielded cables of the amplifier system in order

to detect the muscular activity. With this form of EMG, it is critically important to

reduce the skin-electrode impedance by skin preparation and use of electro-conductive

gels.

Table 1.9: Pros and Cons of the Different Type of Electrodes

Type of Electrodes Pros Cons

∗ pain free ∗ large pick-up area, therefore:

Surface ∗ easy to apply ∗ susceptible to cross-talk

Electrodes ∗ good for movement applications ∗ tissue acts as filter

∗ prone to interference

∗ increased bandwidth and

signal amplitude ∗ requires specialised training

∗ localised pick-up area ∗ can be painful

Inserted ∗ potential ability to ∗ electrical position can

/Needle track deep muscles change during contractions

∗ isolation of specific muscles ∗ less repeatable

Wire Electrodes ∗ ability to test small muscles ∗ difficult to use in

otherwise impossible to detect strong contractions

due to cross-talk

For purpose of this research, needle/inserted electrode acquisition will be put to a

side and sEMG will be discussed further.

The sEMG signal varies from µV to mV . When sEMG is acquired, there are things
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to be considered that have a direct impact on the quality of the recordings, i.e. distance

from the active muscle area; the size of the electrodes; positioning of the electrodes;

timing and intensity of muscular contraction; tissue in between the actuator and the

electrode; and the quality of contact between the electrode and the skin (12).

Furthermore, factors such as: electrode properties (dimension, material, etc.); their

interaction with the skin; and the amplifier design are relevant in the measurement and

representation of the sEMG signal accurately. To remove common mode components

(e.g., power line) and to compensate for the filtering effect of the tissue separating the

muscle and the electrodes, the signals are commonly detected as a linear combination

of different electrodes. The most common recording is the bipolar montage, where a

pair of electrodes are used in addition to a common reference point. The aim of this

is to maximise the amplitude of the signal while minimising the noise and rejecting

commonly detected signals such as electrocardiography (EKG) and external fields.

The common sources of noise found while sEMG acquisition are:

• Ambient noise - Interference generated by electromagnetic devices. The type of

devices considered within this category are mostly the ones that are plugged into

the wall A/C current. The frequency ranges widely, however the most common

frequency is that of 50Hz (Europe) or 60Hz (America) related to the power line.

• Transducer noise - This is generated from the electrode-skin connection. The

electrodes pick up the ionic currents underlying the skin from the APs convert-

ing it into an electronic current easy to manipulate in the following stages with

electronic circuits (allowing the A/D conversion).

The skin separating the muscles from the electrodes acts as a low-pass filtering of

the actuator. Nowadays pre-amplifier design, incorporating high input impedance has

reduced the importance of measuring sEMG with a low impedance in between sources.

A common problem with sEMG, specially when targeting small muscles is that the

electrodes will not only record the activity belonging to the desired actuator, but of all

the other muscles that might be active while doing a certain task. This phenomenon

is known as cross-talk. Cross-talk can be reduced and sometimes avoided by choosing

the right size of electrode, orienting it relevant to the muscle under study, and choosing

an appropriate inter electrode distance depending on the application.

There are three main factors (Figure 1.11) that affect the sEMG signal:
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1. Causative Factors - direct impact on signal. Could be extrinsic or intrinsic,

2. Intermediate Factors - physical and physiological phenomena caused by one or

several causative factors, and

3. Deterministic Factors - caused by intermediate factors.
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In recent years, work performed by one of the leading figures in developing EMG,

Carlo De Luca and his research group has focused around spectral analysis of the EMG,

motor unit recruitment and muscle fatigue. This has created a wealth of information

relating to the properties of individual MUAPs and how they sum to create sEMG

signal (13).

In the next section, sEMG instrumentation will be explained to gain a better un-

derstanding of the available systems for acquisition and to introduce to high-density

sEMG.

1.1.3.1 sEMG Instrumentation

The acquired sEMG signal characteristics are dependent on the performance of the

amplifier used to record them and the conditioning of the signal by filters or software

algorithms. EMG distortion propagates as the field travels from the muscle within the

volume conductor enclosed by the shin from where it is measured and visualised. A

block diagram of this distortion is shown in Figure 1.12.

Figure 1.12: Block Diagram of the Distortion of the sEMG Signal During

Acquisition - Block diagram of the general aspects during signal acquisition distortion.

The muscle generates a signal that is acquired with a pair of electrodes. In between this

two blocks we find passive filters that modify the sEMG visualization.

For an appropriate signal detection, a few factors have to be considered:

i) electrode configuration - detecting the electrical potential with respect to an

isoelectric reference point situated in an electrically unrelated and inactive tissue. When

a single electrode is used for detection it is called a monopolar configuration. When a

pair of electrodes are used in addition to a common reference point, the term bipolar

configuration is used;

ii) spatial filtering - As the signal travels throughout the biological layers (tissue),

the amplitude attenuates with distance. The electrode placement with respect to the
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length of the muscle fibres is crucial (14);

iii) electrode-electrolyte interface - the contact layer between the skin and the elec-

trode forms an electrochemical bridge that behaves as a high pass filter. The amplitude

and bandwidth of the acquired signal will be affected by this junction;

iv) amplifier characteristics - it has to be designed ideally with such a configuration

that will have a minimal distortion over the acquired sEMG signal. The connecting

cables should be shielded and ideally as short as possible preventing any electromagnetic

field and avoiding any movement that might cause a change in the signal morphology

travelling through them. As it was shown by De Luca (14), these phenomena might be

reduced by applying a pre-amplifier located no more than 10cm away.

The vast majority of sEMG amplifiers have either a low gain avoiding signal satura-

tion or incorporate a high pass filter to remove it. Another important feature for these

type of amplifiers is their common mode rejection ratio (CMRR) (15). The CMRR de-

scribes the capability of the device to reject the power line voltage (mainly) and other

conveying signals detected at the sensor sites.

Although the classic sEMG electrode configuration is bipolar, recent trends are

moving towards a high-dimensionality in the electrode array. The main reason for this

is that of accurate movement tracking. When a movement is being tracked by a bipolar

recording any movement may cause the muscles under the skin (where the electrodes

are fixed) to move in relation to the electrode. For this reason, using a matrix of

electrodes results to be more effective in tracking of MUAP propagation.

1.1.3.2 High-Density Surface Electromyography

The possibilities of having different montages is one of the main features of the high-

density sEMG (HD-sEMG) and this approach follows the introduction of high density

electromyography over the past 20 years. Moreover, increasing the number of EMG

electrodes has a direct impact on the number of recording positions, providing topo-

graphical information about the distribution of the activity of the muscle(s).

Multi-channel recordings allow a more intensive study of the muscles of interest

and signal propagation shape through the muscle. By assessing the signal, one can be

able to determine muscular regions, e.g,. endplate zone, belly muscle, tendons, etc. In

Figure 1.13 some of the aforementioned regions are shown.
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Figure 1.13: Example of an Acquired Signal from a HD-sEMG Array - Bipolar

HD-sEMG montage over the biceps brachii. These signals represent 70% of MVC during

an isometric contraction, with an i.e.d. of 10cm. The end plate zone (NMT) is shown and

the propagation of the MUs is visible (‘V’ shape). It becomes clear that when an electrode

sits on top of a tendon, the amplitude of the signal changes, as it was referred to in Figure

1.11. Adapted from Farina et al. 2002 (16).

Some of the HD-sEMG applications to date are related to i) movement (dynamic

conditions); ii) ergonomics (muscles involved in joint stabilisation during working tasks);

iii) exercise and sports; iv) obstetrics (locating IZ before epistonomy) (17). With this

new technology, applications are expected to emerge specifically in the field of reha-

bilitation. In this research, HD-sEMG is applied to assess the activity patterns of the

forearm to identify EMG patterns that can infer changed thumb positions from syner-

gistic activation of muscles with no direct action on this digit. This has interest for the

creation of ways to control robotic thumb as part of a myoelectric hand.

1.1.4 EMG-EMG Coherence

Coherence between different neurophysiological signals, including EMG, is reported

to be related to factors of interest to motor control researchers and clinicians. Coherence

is a frequency domain measure of coupling that is useful in the study of co-modulation

of muscle activity, and the synchronisation of motor output directed to different muscle

groups. It is mathematically obtained by dividing the cross-spectrum between two time

series (input signals) by the root of the two spectra (similar to a correlation (18) ). The

cross-power spectrum is the fast-Fourier transform (FFT) of one of the input signals

multiplied by the complex conjugate of the other input signal. The coherence estimate
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ranges from 0 (absence of synchrony) to 1 (maximum synchrony). These values are

irrespective of their amplitudes (19).

The coherence method is also a useful tool to study the presence of common rhyth-

mic drive arising from the CNS during voluntary or involuntary movements. Farmer

(20) showed in his synchronisation studies that coherent oscillations arising from com-

mon presynaptic connections to motor neurones generate a modulation of their dis-

charges. This highlights that part of the motor drive is oscillatory in nature and

produces a certain form of motor unit coupling. Further studies on muscle synergy by

De Luca and Erim (21) introduced the concept of common drive, linking populations

of motor-units within single and co-contracted muscles. The principle of common drive

is that for co-contracting muscles, there must be a shared synaptic drive that brings a

group of muscles to activate simultaneously. This common drive can be studied using

frequency domain measures such as coherence, and time domain measures based on

cross-correlation analysis.

If the activity showed by sEMG acquisition, belongs to a group of motor units, then

the coherence or cross-correlation measures must show significant coupling between its

muscles providing detail on the timing of the co-contracting drives(22).

Coherence coupling provides information on any rhythmic features in this cou-

pling (shared drive) with the cross-correlation. The common drive concept also links

to Henneman’s size principle: ‘A relationship exists between the susceptibility of a

motoneurone to discharge and its size: the smaller the motoneurone, the higher the

susceptibility to discharge’ (23). In other words, a common drive from the CNS af-

fects motor unit recruitment patterns in different muscles in a similar way depending

on the individual motor unit propagation. An example of coherence analysis between

simulated EMG-EMG synaptic inputs is shown in Figure 1.14.

29



1.1 Research Context

Figure 1.14: Example of Coherence Analysis Amongst Simulated Synaptic In-

put - Influence of a secondary common synaptic input on EMG-EMG coherence. A: 2

simulated pools of motor neurones receive 3 sources of synaptic input. The 1st is com-

mon to all motor neurones in both pools and is a cortical input, whose power spectrum

is shown in B. The 2nd source simulates an afferent input to each motor neurone pool.

This input is assumed to be independent for the 2 motor neurone pools but common to

all motor neurones within each pool. The 3rd source of input is an input independent for

each neurone. The common afferent inputs and the independent inputs were simulated as

coloured noise processes with bandwidth 0100 Hz. Each motor neurone was simulated as a

perfect integrate-and-fire system. Each motor neurone pool innervates a different muscle.

The EMG-EMG coherence between the 2 sEMG signals of the 2 muscles was computed in

4 levels of common afferent input to 1 muscle (0, 10, 20, and 30% of total power). The

total power of the 3 sources of input to each motor neurone pool was constant for all simu-

lations and was normalized to 100%. The relative power of the cortical input was constant

across all conditions and was set equal to 70% by altering the power of the independent

inputs. For example, the 1st condition corresponded to 70% cortical input, 0% afferent

input, and 30% independent input, whereas in the 2nd condition the powers were 70, 10,

and 20%, and so on. Therefore, the strength of the common cortical input to the 2 muscles

was identical for all conditions. Despite the invariance of the common cortical input, peak

coherence ranged from 0.1 (30% afferent input) to 0.6 (0% afferent input) (C). Variation in

the afferent input to the other muscle would have similar effects and concurrent variation

of both afferent inputs would have additive effects. From Farina et al. (2014) (24).
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Coherence and cross-correlation methods are powerful tools to use in studies on try-

ing to understand the central drive muscle groups that co-activate during movements.

It is therefore a potentially useful method to use in investigating coupling of forearm

and thus muscle activation in this study.

Leading to comprehensive results in order to classify the HD-sEMG patterns, and

the synergistic behaviour between the muscles of the hand aiming to improve the con-

trol in the myoelectric-upper limb prosthetics, machine learning must be brought into

context. This method is applied in this research in means of unsupervised learning with

aims to cluster the different EMG patterns for prosthetic control.

1.1.5 Machine Learning

Learning is a distinctive feature of human intelligence and the principal way to ob-

tain knowledge. Over the last years, there has been a growth in artificial intelligence

capability and its applications. In parallel, an increasing interest in machine learning

has emerged. Machine learning is a field involved with the development of compu-

tational theories around learning processes and interconnected with building learning

machines.

Learning is an activity with others like memory; thinking; perception; feeling;

amongst others, closely related (25).

In recent years, machine learning has focused on how to use computers to simu-

late human learning activities. Computational resources have one advantage over the

humans: they do not get bored or lose attention when repeating the same task many

times; therefore, they are also used to study self-improvement methods. These self-

improvement methods are where artificial intelligence obtains new knowledge and new

skills, and with that, improve in their performance and achievements.

Arthur Samuel (1959) (26) defined machine learning as a field of study that would

give computers the capacity to learn without being programmed for a particular task.

Samuel created the checkers playing programme and ran it for over a 10,000,000 times.

After these iterations, the programme was able to learn over time, learning the predic-

tion of movements, and becoming an expert, by the end of many games, the machine

was able to beat him.

Tom Mitchell (1998) refers to machine learning as

31



1.1 Research Context

“a computer program that learns from experience E with respect to

some task T and some performance measure P, if its performance on T, as

measured by P, improves with experience E ” (27)

In Figure 1.15, the basic model of machine learning is shown. In the process of

machine learning, the quality of the information is obtained from the surroundings,

providing the system with the primary factor (27). This information is then passed

and transferred into knowledge (by the learning process); this knowledge is passed and

stored where general principles guide the implementation action.

Figure 1.15: Basic Flow Diagram of Machine Learning - Basic model of machine

learning process. In general, 4 stages can be consider: surroundings - the quality of infor-

mation is provided; Learning - the outside information is processed to knowledge; storage

- general principles are stored that guide the implementation of action; and perform - im-

plements the knowledge from the storage to complete a determined task, and feed back

the information obtained to the learning stage.

Algorithms used for this type of learning are based on mathematical and computa-

tional methods to acquire knowledge and to learn directly from the input data without

a predetermined equation as model. Having the ability to adapt and improve their

performance as the number of samples available for learning increases. This is particu-

larly relevant in this research that aims for a natural control in a myoelectric prosthetic

device to be able to direct the movement desired by means of the sEMG patterns.

Machine learning algorithms are extensively used in applications such as compu-

tational finance [(28) and (29)], energy production [(30), (31)], computational biology

[(32), (33) and (34)], natural language processing [(35) and (36)], amongst many more.

There are some inherent challenges when this algorithm is used, there is no ‘one

size fits all’ solution, on the contrary, it is an iterative approach which, depending on

the methodology applied, may becomes time consuming.

The importance of this methodology in this research, lies in the ability to clearly

identify different movements from sEMG patterns. With this patterns clearly defined,
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this is particularly of interest as a way to control and improve the communication

between man and machine (patient-myoelectric upper limb prosthetic).

Machine learning can be branched into two types of learning methodologies: i)

unsupervised learning, and ii) supervised learning. For the first one, the data are

grouped (based on some similarities or characteristics) and interpreted based only on

input data. For the latter, a predictive model is created based on both input and output

data (response variable).

1.1.5.1 Supervised Learning

For this machine learning methodology, a predictive model is developed based on both

input and output data (response variable). Expectation of factors will have an impact

on the response without much understanding between the relation in between the input

and the factors. If the response is discrete in nature, it becomes a classification process,

on the other hand, if it is continuous in nature, it is a regression process. In Figure

1.16 a generic block diagram is shown.

Figure 1.16: Generic Block Diagram for a Supervised Machine Training Al-

gorithm - In this figure two stages are depict: training and testing. For a supervised

algorithm, during the first stage, labels are introduced with the data into the machine-

learning algorithm. During the testing stage, new data is introduced into the classifier and

an output is presented.

For the purpose of this research, the supervised algorithms will not be reviewed
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but they are available from the following references: regression algorithms [(37) and

(38)], neural networks [(39) and (40)], decision trees [(41) and (42)], ensemble methods

[(43) and (44)], non-linear regression [(45) and (46)], classification algorithms [(47) and

(48)], support vector machines [(49) and (50)], discriminant analysis [(51) and (52)],

naive bayes [(53) and (54)] and nearest neighbours [(55) and (56)].

1.1.5.2 Unsupervised Learning

This machine learning methodology groups the data based on some similarity or char-

acteristic, without a priori knowledge about the grouping. The unsupervised learning

uses clustering techniques to help group data.

In an unsupervised procedure, unlabelled input data is used to estimate the param-

eter values for clustering. In Figure 1.17 a generic block diagram for an unsupervised

machine learning training algorithm is depicted. In the following sections, some clus-

tering algorithms relevant to this research will be discussed.

Figure 1.17: Generic Block Diagram for an Unsupervised Machine Training

Algorithm - Two stages can be appreciated in this figure. The first one, training, data

is presented to a machine learning algorithm and this classifies the data according to

differences in between their feature vectors. The second one, is the training, where new

data is presented and the each new feature vector is classified depending on the likelihood

found amongst the trained data and the new data.
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Clustering Algorithms

K-Means - This is an algorithm that estimates the unknown cluster centres

(a.k.a. means) M = {µ1, ..., µK} based on the input data D = {x1, ..., xN}. Aiming to

minimize

J(M) =
N∑
i=1

‖Xi − µi‖2 (1.1)

where µi is the closest cluster centre to xi.

The K-means algorithm is simple and has a local optimization algorithm; although

the cost function of J(M) may not be suitable since the different size of clusters cannot

be separated. In Figure 1.18 a random classification example of this algorithm is used.

Figure 1.18: Random KNN Classification Example - This example consists in two

variables: X1 and X2, and two classes: red and green circles. The question mark represents

a new instance in need to be classified. a 1-nearest neighbour classifies an unlabelled

instance as a green circle. A 2-nearest neighbour looks at the two closest examples these

being a red and a green circle bringing it to a tie, having to go for a 3-nearest neighbour

which would classify our unknown instance into a red circle (two reds vs. one green).

Setting k at an odd value avoids ties in the class assignment.

Principal Component Analysis - Principal component analysis (PCA) (Jolliffe,

2002) (57) is a method that can be used to reduce data with high dimensionality. To

decrease it, PCA uses a lower dimensional presentation computed in such a way that
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a minimum amount of information is lost. The task is to find an alternative mapping

from the original d-dimensional space to a k-dimensional subspace where k < d. In

addition to dimensionality reduction, PCA is widely used for other applications such

as feature extraction, data visualization, image processing, pattern recognition and

time-series prediction, as it will be seen throughout the machine learning results of this

thesis.

The most common formulation of PCA, the maximum variance formulation, defines

PCA as an orthogonal projection of the data onto a lower dimensional linear space

(a.k.a. principal subspace), in which the variance of the data is maximized, that is, the

maximum amount of information is preserved (58).

Self-Organising Feature Maps - The self-organising feature map is an unsuper-

vised artificial neural network algorithm which aims to discover underlying structure

in the input data. The SOFMs preserve topology by having an explicit neighbour-

hood function that preserves its relations between neurones. They quantize the feature

vectors (FV) from the input by defining the neighbourhood relations of the codebook

vectors.

Neurones of the SOFMs are called map units or prototypes. These map units are

seen to be a representative sample of the data (codebook vectors in vector quantisation).

Each map unit is associated with a reference vector mi. The reference vectors mi are

weighted local averages of the data associated with the given map unit in the original

data space. A graphical example is shown in Figure 1.19.
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Figure 1.19: Self-Organizing Feature Map Scheme - Organizational maps of a con-

tinuous high dimensional input. The weight in between each point of the output space is

given by de Euclidean distance in between an output point and the input space.

In this research, a two-dimensional SOFM will be used; therefore, the SOFM will

define a mapping from the input data space onto a two-dimensional plane. Every map

unit i is referenced to a parametric vector (a.k.a. model vector) mi ∈ <d, where d is

the dimension of the data.

Two different types of lattices can be used for the array of units in the neighbour-

hood, hexagonal and rectangular. To avoid any preference on the training regarding

the direction it moves in the map, an hexagonal lattice is generally preferred. In Figure

1.20, an example of an hexagonal and rectangular lattices are depicted.
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Figure 1.20: Type of Neighbourhoods for a Self-Organizing Feature Maps

Training - Discrete neighbourhood of three different sizes (0,1,and 2) and map shape.

a. Hexagonal grid, the innermost polygon corresponds to a topological neighbourhood

N(t) where t = 0,1,2., where N(2) less than N(1) less than N(0) b. Sheet map shape, each

vertex represents one feature vector

Defining a training data matrix as X ∈ <N×d where N is the sample number and

d is its dimensionality; the model vector (mi) is used to refer to the units and their

vector in the same way.

The Euclidean distance is the core of this method (equation 1.2). The unit with

the smallest Euclidean distance is referred to as the best-matching unit (BMU) of the

data vector xn (equation 1.3 ).

de(x, y) =

√
(ξ1 − η1)2 + (ξ2 − η2)2 + · · ·+ (ξn − ηn)2 (1.2)

mc(xn) = argmini ‖xn −mi‖ (1.3)

Figure 1.21 depicts how the BMU is updated towards the input x.

The SOFM updates the weight of the vector i through equation 1.4 as described by

Vesanto (2000) (59).

mi(t+ 1) = mi(t) + α(t)hci(t) [x(t)−mi(t)] (1.4)

where,

t denotes time;
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Figure 1.21: Updating The Best-Matching Unit - The BMU and its neighbours

are updated towards the input x. The black solid line corresponds to the instant before

training and the red dashed line to the instant after being updated.

x(t) is an input vector randomly drawn from the input data set at time t;

hci(t) is the neighbourhood kernel around the winner unit c,

and α(t) the learning rate at time t.

The neighbourhood kernel is a non-increasing function of time and of the distance

of unit i from the winner unit c.

The neighbourhood function is defined by the Gaussian function described in equa-

tion 1.5, where ‖rc − ri‖ is defined as the distance between the BMU: rc, and unit i

in the array; the learning-rate factor is 0 < α(t) < 1, and σ(t) is the width of the

neighbourhood kernel.

hci = α(t) · exp

{
‖rc − ri‖2

2σ2(t)

}
(1.5)

During the training, each input vector is chosen randomly, and the training updates

on each iteration using the equation 1.6:

mi =

∑
n hnixn∑
j hni

(1.6)

where,

j and n run over the vectors of data whose BMU satisfy hni > 0.
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The size of the map to be trained is a crucial part of this method. Choosing a

size randomly could have an impact in the quality of the map, as well as its accuracy.

The size of the map is indirectly proportional to the quantization error and directly

proportional to the topological error, that is, the bigger the map the quantization error

decreases but the topological error tends to increase (60). The determination of the

map size can obtained through the equation 1.7

map units = 5× dlen0.54321 (1.7)

where, dlen is the number of repetitions.

After choosing all the parameters and type of training, this information is fed into

the system and the SOFMs trains the data. Unified matrixes (Figure 1.22), also known

as U-matrix, are used as assistive visual tools to understand how the different clusterings

occur. Parameters such as sensitivity and specificity are used to asses the quality and

reliability of the training. Sensitivity gives the positive rate, i.e. the test’s ability to

identify positive results, and the specificity provided the true negative rate, i.e. the

proportion of negatives that were correctly identified as such.

For the purpose of this research, other unsupervised clustering algorithms will not

be reviewed but they are available from the following references: fuzzy c-means [(62),

and (63)], hierarchical (64), Gaussian mixture model (65), and hidden Markov model

[(66), and (67)].

Unsupervised learning, more specifically SOFMs, are effective tools to use in studies

on trying to categorise and cluster different inputs without a prior knowledge about

them. Then, in all likelihood, it is a useful method to use in investigating the different

sEMG patterns in relation to different thumb positions, relevant to this study.

The importance of machine learning algorithms in this research, is to improve the

available myoelectric upper limb prosthetics. The unsupervised nature of the method,

aims to provide dexterous control using the EMG propagation signals as input vectors.

This dexterity is expected to be achieved through the extraction of sEMG features

without giving any prior knowledge leading to improve the quality of life of an amputee.
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Figure 1.22: Generic Example of an Unified Distance Matrix - Generic example

of the unified distance matrix (U-matrix) based on an infection screening system that

uses vital signs and percutaneous oxygen saturation for influenza screening. (a) and (b)

The SOM clustering result is visualized on a 2-dimensional map using U-matrix. (c) The

SOM map created from the data obtained from a total of 109 subjects on the basis of 4

parameters including SpO2. Normal control subjects were included in the normal group

(green cluster). Five patients with influenza (circled in red) were misdiagnosed as normal

and 4 normal control subjects (circled in green) were misdiagnosed as infected. (d) The

SOM map developed on the basis of the data from the same subjects, but by using only

3 parameters, excluding SpO2. Herein, 35/45 patients with influenza were included in

the influenza group (red cluster), and 54/64 normal control subjects were included in the

normal group (green cluster). Ten patients with influenza (circled in red) were misdiagnosed

as normal and 10 normal control subjects (circled in green) were misdiagnosed as infected.

From (61)
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In the following Section, upper limb amputations will be reviewed. Furthermore,

details regarding the device abandonment, the type of prosthetics commonly used in

UK, and a brief history regarding upper limb prosthetics will be provided.

1.2 Upper Limb Amputations

The loss of an upper limb due to trauma or disease results in sudden loss of function,

sensation, and is a far greater catastrophe for the individual than the loss of their lower

limb. Furthermore, children born with congenital limb loss also suffer from loss of

function compared to normal able bodied people. Research into upper limb prosthesis

aims to develop devices that have functionality similar to the natural hand in terms

of control, stability, dexterity, coordination and sensory feedback as being comfortable,

light weight, realistic in appearance.

When an upper limb is seriously compromised due to trauma, there are various

ways that amputations can be carried out. These amputations depend on the specific

part of the limb that needs to be removed and how much of it can be saved.

According to the NHS (68) the main type of upper limb amputations performed are

finger or digit amputation; transhumeral amputation; transradial amputation; wrist

disarticulation; and elbow disarticulation. The aforementioned levels of amputation

are schematically shown in Figure 1.23. There are many factors that can determine

how much or how little of the limb is amputated. In general terms, the more remaining

limb and the more joints that are kept intact, the easier it is to be fit with and use of

a prosthetic device.
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Figure 1.23: Upper-Limb Amputation Levels - Six main levels are consider for the

upper-limb amputations: A. Shoulder Disarticulation - The shoulder blade is kept, the

collarbone may or not may be removed; B. Wrist Disarticulation- The limb is amputated

at the level of the wrist bones; C. Forequarter Amputation-Amputation where the shoulder

blade and the collarbone are removed; D. Transhumeral Amputation - Limb is amputated

somewhere in between elbow and shoulder; E. Transradial Amputation - Limb is amputated

from the elbow to the wrist; F. Partial & Partial-Hand Amputations - Finger(s), thumb or

portion of the hand below the wrist.
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1.2.1 Current Types of Upper Limb Prosthetics

With a great number of upper limb amputees all over the world each of them with

different needs, there has been a variety of prosthetic options available in the market.

The different types available are: body powered; myoelectric; passive (also known as

cosmetic); and hybrid.

Body Powered - The body powered prosthesis is operated by a harness system. This

system is controlled by a specific body movement which triggers the prosthesis to move

in a certain way. This type of device is lighter and less expensive that myoelectric

devices with adhered reduced costs and maintenance.

Myoelectric - This device is powered by a rechargeable battery system and is con-

trolled by EMG signals acquired from muscle contractions. This prosthetic offers cosme-

sis restoration as well as functionality.

Passive / Cosmetic - This type of device aims to give the same appearance as the

non-affected arm. The cosmetic prosthetic aims to provide aid in balancing.

Hybrid - The hybrid prosthetic combines both myoelectric and body powered. The

only advantage that this type of device has is the greater functionality and the costs of

maintenance are reduced.

1.2.2 Statistics about Amputation

In the UK, there is a high risk of trauma resulting in limb amputations. Deformity

or illnesses such as diabetes, gangrene, also are major causes of amputation. Approxi-

mately 5-6,000 major limb amputations are carried out in England every year (69).

Not all the amputees are suitable for a prosthetic limb and those that are, get

assessed and treated by a prosthetist, who will determine the state of the body and the

type of prosthesis that is suitable for a patient.

The United National Institute for Prosthetics & Orthotics Development (UNIPOD)

is in charge of producing a repository for the quantitative information on the UK

limbless population who are referred for prosthetic treatment. This repository includes
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data for demographic and clinical quantitative, anonymised information grouped by

cause; level; site; and side of limb absence.

In the following Sections, the demographic and clinical quantitative data will be pre-

sented according to the last available report from UNIPOD accessible online (Limbless-

statistics.org) for UK limbless population dated from 2010-2011.

1.2.2.1 Amputees registered and referred for prosthetics treatment in 2010-2011

A total of 473 upper limb amputees were referred between 2010-2011 for prosthetic

treatment. This population varies in widely in demographics (gender and age) and in

side, level of amputation and prosthesis assigned. In Figure 1.24 the data is shown

by side (left/right) according to each level of amputation registered (also depicted in

the previous Figure 1.23 ). From this graph, we can appreciate that the transhumeral,

transradial and hand digit are the most common levels of amputation and the spread

between sides is, in general, 50-50.
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Figure 1.24: Side Spread by Level of Amputation. Registered from 2010-2011

in the UK - Correlation in between the side of amputation, i.e. left or right, and the level

of amputation registered. A total of 473 amputees was examined. Data Source: UNIPOD

(70). Table 14(3-4), p.77. Version 29-04-2013.
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In Figure 1.25 the data is shown by gender (male/female) according to the afore-

mentioned levels of amputation registered. As the previous case, the transhumeral,

transradial and hand digit are the most common occurring levels of amputation and

the spread between them has a slight tendency to the male population. This tendency

might be due to the job that some males have over the female population that might im-

pact in the usage of heavy tools or machinery or to participating in high risk past-times

such as motorcycling.

Figure 1.25: Gender Spread by Level of Amputation. Registered from 2010-

2011 in the UK - Correlation in between the gender of the amputee, i.e., male or female,

and the level of amputation registered. A total of 473 amputees was examined. Data

Source: UNIPOD (70). Table 14(3-4), p.78. Version 29-04-2013.

47



1.2 Upper Limb Amputations

From all amputees that were recorded (473), 29% patients referred to prosthetic

treatment did not record the cause of amputation, from the remaining 71% amputa-

tions due to trauma and congenital are almost the same (28% and 27%, respectively),

the remaining 16% is split between different pathologies i.e. dysvascularity, infection,

neoplasia, neurological disorders and infection. This is better understood in Figure

1.26.

48



1.2 Upper Limb Amputations

Figure 1.26: Cause of Amputation vs Total Number of Amputees registered

from 2010-2011 in the UK. - From a total of 473 amputees registered across the United

Kingdom, the causes of amputation tracked were: Trauma, Dysvascularity, Infection, Neu-

rological Disorder, Neoplasia, Congenital and a last group with no data registered. The no

data is given by the absence of information in the records for those patients. Data Source:

(70) Table 21(1), p.112. Version 29-04-2013.
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The information gathered by the previous graph is better explained in Figure 1.27.

In this Figure, the spread of the cause of amputation is further detailed by level of

amputation. As stated before, the transradial, transhumeral and partial hand ampu-

tations are the most common levels of amputations. The spread of the level becomes

particularly interesting for each of the three cases. From the total of patients with a

transradial amputation, the 41% of them are congenital, 23% have no data, and 19%

are due to trauma. For the hand digit amputation, a large amount of patients have no

information detailed in their record regarding the cause (43%), the other large percent-

age is that of trauma (39%). In contrast, for transhumeral amputees, the major spread

is due to trauma (40%), and 27% have no data.
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1.2 Upper Limb Amputations

When the cause of amputation is other than congenital, the time that elapses be-

tween amputation and referral becomes important particularly when a myoelectric pros-

thetic is to be fitted. This relates to memory of actions that activate residual muscles

of the stump and ease in training patients to use a myoelectric device. In Figure 1.28

the time elapsed (in weeks) between referral and amputation are depicted.
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1.2 Upper Limb Amputations

From 1.28 is clearly seen that a great proportion of the amputees referred for a

prosthetic only do so after more than 52 weeks across all the different levels of ampu-

tation.

Another important thing to take into consideration, is the age of the patient when

they are referred. The prosthetic devices are chosen depending on the type of activity

that the amputee need to perform and his ability to learn how to use it. A child might

be easier to train on a myoelectric prosthetic hand than someone in later life; therefore,

the age must be taken into consideration as it represents an important factor. In Figure

1.29, the age of the 473 patients referred by level of amputation is depicted. Common

across amputation levels, is the age group ranging from 16 to 64 years old. This age

group represents more than 50% for the overall data. The age group that is least

referred ranges between 55 an 64 years old.
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1.2 Upper Limb Amputations

These data in itself helps us understand why different prostheses are referred to dif-

ferent patients according to their gender, age, side of limb absence, level of amputation,

and type of work (although this last one has not been reviewed in this report). In the

next section, a study case will be presented. This research was performed by Biddiss

and Chau in 2007 (71), their aim was to investigate the roles of predisposing charac-

teristics, need, and enabling resources in upper-limb prosthesis use and abandonment.

1.2.2.2 A Study Case on Device Abandonment

A study carried out by Biddiss and Chau (2007) (72), aimed to understand the critical

factors for hand prosthesis abandonment. An anonymous, completed survey was de-

signed to explore these factors. This questionnaire was available online and distributed

throughout prosthesis providers, community support groups, and one prosthetic man-

ufacturer. A total of 244 participants of a variety of and levels of upper-limb absence

completed the survey. More, no details about the geographical location distribution of

the survey was provided in this study.

In Figure 1.30 the distribution of adult and paediatric populations are shown. Fur-

thermore, these groups are separated into amputation due to trauma or congenital.

Finally, the level of amputation throughout these populations is displayed. The sur-

vey can be seen to sample predominantly patients with transradial amputation and

therefore is highly relevant to the myoelectric user community.
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1.2 Upper Limb Amputations

From the previously described population, the rejection rates (Figure 1.31) revealed

that the largest group rejecting prosthetic devices are those with congenital limb loss.

In the trauma and other groups, abandonment is greatest for high level amputees and

absent for partial low level hand amputations. The high abandonment in people with

congenital limb loss may demonstrate that they adapt to a life without a limb for better

than those who lose a limb later in life.
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1.2 Upper Limb Amputations

A summary of their findings has been summarised in Figure 1.32. The rejection

rates are categorised by prosthesis type (passive/comsetic, body-powered, electric and

no prosthetic), type of population (paediatric and adult) and their mean rejection rate.

From the paediatric population, 45% abandoned their body-powered prosthetic, where

from the adult population, 39% rejected their passive (cosmetic) hand. From the whole

population, only 16% and 20% for paediatric and adult population, respectively, decided

not to wear any type of prosthetic.

Rejection rates for the current active prosthetic devices are difficult to interpret

as no controlled trial data of any significant size exist to know whether a particular

prosthetic has a better or worse abandonment than another. Nevertheless, given the

capital and clinical support costs in providing such prosthetics abandonment rate close

to 25% is poor.
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1.2 Upper Limb Amputations

In the next section, the history of upper limb prosthetics will be provided as an

understanding on where and how this research was originated, how it has evolved and

where the field is moving to.

1.2.3 History of Upper Limb Prosthetics

From its primitive start to its highly-developed present, the evolution of upper limb

prosthetics will be detailed to gain an up-to-date understanding of its progression.

Before ancient civilization such as Greek, Roman and Egyptian emerged, upper limb

prostheses were made from materials such as wood and leather. This early devices were

developed for purely aesthetic purposes. As seen in Figure 1.33, the first prosthetic hand

found is dated to 1580. This rare hand was found in Germany, made entirely of iron.

The functionality of this prosthetic was limited to an external button that moved the

thumb and paired the fingers. In 1857, William Selvo patented a prosthetic arm which

used muscular motion from the functional, opposite arm (body powered prosthesis).

This motion activated the opening/closing of the hand. The influence of the Civil War,

in the United States, from 1861 - 1865 was of high influence in the development of

this field. With over 30,000 amputees (both upper and lower limbs), the need for limb

replacement was evident (73).

The history of upper limb prosthetics can be tracked back to the XV century, when

the first prosthetic device was found. Upper limb prosthetics can be traced back in

early 1500.
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1.2 Upper Limb Amputations

Figure 1.33: Timeline of the History of Upper Limb Prosthetics I: From 1580

- 1865 - The first found prosthetic hand is dated to 1580. The rare German hand, made

entirely of iron, furnished with a movable thumb and paired fingers with an external button

release. In 1857, William Selvo patented a prosthetic arm which used muscular motion from

the functional, opposite arm, to activate the opening/closing of this device. In 1861 - 1865,

the American Civil War took place, the need for scientific research and development for

limb replacement was evident.
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1.2 Upper Limb Amputations

In 1915, the first powered prosthesis was patented in Germany. In Figure 1.34, the

first sketches of the pneumatic hand published in Ersatzglider and Arbeitshilfen. In

later years, the design that followed Becker’s idea is shown. William McElroy patented

his design in 1930 followed by the first Becker patent in 1933. The latter is probably

one of the most common hands when talking about upper-limb prosthetics.
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1.2 Upper Limb Amputations

Figure 1.34: Timeline of the History of Upper Limb Prosthetics II: From 1915

- 1933 - The first powered prosthesis, a pneumatic hand patented in Germany. These

drawings were published in 1919 in Ersatzglider und Arbeitshilfen (Substitute Limbs and

Work Aids). The Becker hand is probably one of the most common hands when talk-

ing about upper limb prosthetics. In this image we can find what is probably what gave

Becker his idea; Mr. William McElroy patented his hand in January 7th, 1930, followed

by the first Becker patent, filed just six months after McElroy, issued to Edward La-

herty three years after, Laherty assigned 49% of Intellectual Property to Becker.Source:

http://www.openprosthetics.ning.com/ - Last accessed: 04/02/2014.
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1.2 Upper Limb Amputations

By 1938, Becker filed for his second patent. The mechanism involved in this later

design is still used in many (if not all) the mechanical hands that are still commercially

available today. The first known myoelectric prosthesis was developed during the 1940’s

by Reinhold Reiter, the system was controlled by a vacuum tube amplifier (74). After

the World War II, the Vaduz hand was developed (Figure 1.35 ) in 1953. This hand

was controlled by the muscles operated by a portable power source. This hand had a

gear mechanism to enable it to obtain higher forces for gripping. The hands now-a-days

manufactured by Otto Bock are based on this principle.
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1.2 Upper Limb Amputations

Figure 1.35: Timeline of the History of Upper Limb Prosthetics III: From 1942

- 1953 - By 1938, Becker filed for his second patent, for which hand are based the Becker

Mechanical Hands that are still sold today. The first known myoelectric prosthesis was

developed during the 1940’s by Reinhold Reiter. This system was controlled by a vacuum

tube amplifier, it was not portable. After the World War II, the Vaduz hand was developed.

The hand was controlled by the muscles operating by a portable power source. This hand

had a gear mechanism to enable it to obtain higher forces for gripping; this principle is

currently used by Otto Bock hands. Source: http://www.openprosthetics.ning.com/ and

www.oandplibrary.org - Last accessed: 04/02/2014.
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1.2 Upper Limb Amputations

In 1959, the Russian Hand was the first myoelectric with portable capabilities. This

hand had an external battery back and charger, electrode wires and suspension straps

(75). In 1965, a Swedish research group began their work on an electric hand more

adaptive and with multiple functions. This hand was able to grasp, extend and flex the

wrist, and pronate and supinate the hand. This Swedish hand was called SVEN-Hand,

it is widely used in research, specially that of muscle control (76). In 1968, the Boston

Arm became the first myoelectrically controlled elbow, later known as Boston Elbow.

The Otto Bock Electric Greifer introduced in 1970, numerous advantages: voluntary

opening and closing of the hand; wide opening; built-in wrist flexion; battery-powered;

and myoelectric operated. Nevertheless, it was a very heavy device, it was not water

resistant and there was no tension feedback (77). These devices are depicted in Figure

1.36.
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1.2 Upper Limb Amputations

Figure 1.36: Timeline of the History of Upper Limb Prosthetics IV: From

1959 - 1970 - The Russian Hand was the first myoelectric portable hand. With an

external battery back, a battery charger, electrode wires and suspension straps. From

Science Journal article by R.N. Scott, March 1966. In 1965, a Swedish research group

began their work on an electric hand more adaptive and with multiple functions, i.e.

grasp, wrist flexion-extension and hand supination-pronation. This hand was known as

SVEN-Hand, widely used in research, specifically regarding muscle control. The Boston

Arm became the first myoelectrically controlled elbow, which designed was later known

as Boston Elbow. The Otto Bock Electric Greifer introduces a number of additional ad-

vantages; voluntary opening/closing; wide opening; built-in wrist flexion; battery-powered;

myoelectric. On the downside: heavy; cannot be immerse in water; no tension feedback.

Source: http://www.amputee-coalition.org - Last accessed 04/02/2014.
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1.2 Upper Limb Amputations

In 1980, and inspired by Luke Skywalker from Starwars, Dean Kamen began a

prosthetic arm called ‘Luke arm’. In 1981, Motion controlled introduced the first Utah

Arm, whose hand had opening and closing capabilities as well as flexion and extension

of the elbow. Years later, this design was re-engineering an their electronics were made

to be the most durable and dependable myoelectric arm available for a long arm. This

device was named Utah Arm 2 (U2), in 1987. In 1993, David Gow developed a partial

hand system, this invention is now attached to Touch Bionics (78). The developments

from 1980 to 1993 are shown in Figure 1.37.

Figure 1.37: Timeline of the History of Upper Limb Prosthetics V:

From 1980 - 1993 - Dean Kamen’s “Luke arm” conception began by inspira-

tion from Star Wars. In 1981 Motion Controlled introduced the Utah Arm. Years

later, they re-engineered their electronics only to make it the most durable and de-

pendable myoelectric arm available for a long time, Utah Arm 2 (U2). David

Gow developed in 1993 (receiving international publicity until 1998) a partial hand

system. Source: http://www.utaharm.com/motion-control-company-profile.php and

www.touchbionics.com/about/history-Last accessed: 04/02/2014.
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1.2 Upper Limb Amputations

By 2004, Motion Controlled introduced the 3rd generation of their Utah Arm:

The Utah Arm 3 (Figure 1.38 ). U3 had a computer interface that allowed the pros-

thetist to fine-tune the adjustments to achieve maximum performance. A year later,

in Southampton, Paul Chappell developed the Southampton Remedi-Hand, controlled

by muscles through a processing unit controlled by small contractions of the muscles

which move the wrist. Thereafter, in 2006, Otto Bock introduced the first target muscle

re-innervation (TMR) inducing the body’s repair mechanisms.

Figure 1.38: Timeline of the History of Upper Limb Prosthetics VI: From 2004

- 2006 - In 2004, Motion Controlled introduced the Utah Arm 3, with a computer interface

that allowed the prosthetist to fine-tune the adjustments to achieve maximum performance.

One year after, Paul Chappell developed the Southampton Remedi-Hand controlled by

muscles through a processing unit controlled by small contraction of the muscles which

move the wrist. In 2006, Otto Bock introduced the target muscle re-innervation inducing

the body’s repair mechanisms. Source: www.ottobock.com/ - Last accessed: 05/02/2014.
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1.2 Upper Limb Amputations

As it is shown in Figure 1.39, in 2007, Touch Bionics launched the i-LIMB hand, the

first powered prosthetic hand incorporating articulate fingers, independently powered

through independent motors. That same year, Dean Kamen’s Luke arm was now

a project left to The Defence Advanced Research Projects Agency (DARPA). A year

later, Otto Bock released their Michelangelo hand with multiple grip functions, showing

improves in their previous version regarding speed, strength and aesthetics. In parallel,

a research center in Karlsruhe presented the Fluidhand, able to flex the joints of the

fingers through hydraulics, having a better flexibility over the motorised fingers. In

2009, TMR research gave another step with Swedish researchers, introducing the sense

of touch in their Smarthand. The sensors were surgically connected to the nerves in

the arm allowing the amputee to ‘feel’ objects within their grasp. In that same year,

Touch Bionics launched their partial hand solution for people for had partial hand

amputation, ProDigits.
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1.2 Upper Limb Amputations

Figure 1.39: Timeline of the History of Upper Limb Prosthetics VII: From 2007

- 2009 - In 2007, Touch Bionics launched the i-LIMB hand, the first powered prosthetic

hand incorporating articulate fingers, independently powered. That same year, Dean Ka-

men’s Luke arm was now a project left to The Defence Advanced Research Projects Agency

(DARPA). In 2008, Otto Bock released their Michelangelo hand with multiple grip func-

tions, showing improves in speed, strength and aesthetics. The same year, a research center

in Karlsruhe presented to the world their Fluidhand, which was able to flex the joints of

the fingers through hydraulics, having better flexibility than the motorized fingers. In

2009, Swedish researchers introduced the sense of touch in their ‘Smarthand’. The sensors

were surgically connected to the nerves in the arm allowing the amputee to ‘feel’ objects

within their grasp. That same 2009, Touch Bionics launched their partial hand solution

for people who have lost some fingers: ProDigits. Source:www.shil.co.uk/About-Us/touch-

bionics.html, www.handresearch.com and www.living-with-michelangelo.com- Last ac-

cessed: 05/02/2014
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1.2 Upper Limb Amputations

In recent years, the advances of the upper limb prosthetics have been with regards

to the controller (microchip) instead of the motor control mechanisms. In 2010, i-Limb

Pulse was introduced to the market and presented significant advantages within the

same line of Touch Bionic’s producs, additionally, this device came with BioSim, a

software that allowed prosthetists and amputees to modify the device’s configuration

through a bluetooth connection. In 2011, Touch Bionics improved the Pulse version of

their hand presenting the Ultra, with a virtual environment embedded in the software

allowing an easier training stage for both prosthetists and amputees. In parallel, Motion

Controlled upgraded their U3 arm to U3+, providing it with bluetooth communication

protocol and improved performance. Finally, in 2013, Touch Bionics launched a mobile

application for prosthetic control replacing the previous bluetooth protocol through

their BioSim.

Until now, natural control mechanisms are lacking in the upper limb prosthetic

development. This lag in its development is due to the complex anatomy of the hand. In

this study, the question regarding the possibility for a myoelectric upper-limb prosthetic

will be reviewed, specifically with regards to thumb opposition.
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1.2 Upper Limb Amputations

Figure 1.40: Timeline of the History of Upper Limb Prosthetics VIII: From

2010 - Present - In 2010 i-Limb Pulse introduction to the market presented a signif-

icant advance within the same line of Touch Bionics’ products, additionally, this device

came with BioSim, a software tool that allowed prosthetists and amputees to modify the

hand through bluetooth connection. In 2011, Touch Bionics improved the ’pulse’ creat-

ing a new device: i-Limb Ultra, with a virtual environment embedded in the software

allowing training. In parallel, Motion Controlled upgraded their own U3 arm to U3+,

providing it with bluetooth capability and improved performance. Finally, in 2013 Touch

Bionics launched a mobile application for prosthetic control.Sources: www.utaharm.com/

and www.touchbionics.com/ - Last accessed 05/02/2014.
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1.3 Thesis organisation

1.3 Thesis organisation

This thesis consists of 8 chapters. The appendices, found in chapter 8, contain im-

portant information and the reader is advised to refer to them when required. Chapter

2 contains the literature review in the related fields to the present research project. The

research statement and hypothesis are stated in chapter 3. In chapter 4, the method-

ology of this study is presented analytically. In chapter 5 and 6 the reader can find the

time and time-frequency results as well as the machine learning results, respectively.

Finally, in chapter 7 the thesis conclusions and final discussions are presented.
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2

Literature review

2.1 Summary

This review will focus mainly on how muscle synergies of the hand happen, providing

an insight into how the research in this field has been evolving to date. A brief history

behind current state of knowledge is provided to give insight into the methods, analyses

of muscular signals, the different existing techniques applied in movement studies and

a specific focus on applications for below-elbow prosthetic devices.

2.2 From Electrophysiology Principles to Electromyography

Acquisition

2.2.1 Early History of Electrophysiology

Study and interpretation of electrophysiological signals leads to a better grasp of the

mechanisms behind the control of muscle actions and their translation into movement

behaviour. The history of surface electromyography (sEMG) involves the development

of instruments and equipment necessary to be able to analyse electrical activity in

the muscles that otherwise is unseen by the observer. The development of sEMG

recordings can be traced back to 1650, when Francesco Redi experimented on electric

ray fish energy(79), and by 1773, John Walsh demonstrated the eel’s muscle tissue as

an electricity generator. Bioelectricity as a feature of movement was first described

by Luigi Galvani back in late 1700 (80) from his studies on the effects of electricity

on frog muscle (Figure 2.1). His studies demonstrated some fundamental physiological
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2.2 From Electrophysiology Principles to Electromyography Acquisition

processes such as nerve conduction and muscular contraction. More details about

Galvani’s experiments can be found in (81).

Figure 2.1: Galvani’s Frog Electrical Machine - Luigi Galvani study on the effects

of electricity on animals, particularly on a frog. Left - With the frog’s lower limb nerves

exposed in their course of the spinal cord, and a metal wire placed over the spine induc-

ing electricity stimulating the nerves. Central - Galvani’s Frog Electrical Machine with

Stormy Atmospheric Electricity, same concept as the previous but the electricity induced

was obtained from an electrical storm. Right - Galvani’s Frog Electrical Machine with

metallic arcs; Luigi Galvani study on the effects of electricity on animals. He made a frog

preparation, with the lower limb nerves exposed in their course of the spinal cord, and a

metal wire inserted across the vertebral canal. Source: Piccolino, M. (1998) (82) .

Galvani discovered a relationship between the intensity of the discharge and the

strength of the contraction of the excited muscle. This realisation lead to an under-

standing of the event now referred to as the depolarisation threshold. This threshold

represents the point at which increasing discharge beyond a certain magnitude would

not lead to a greater contraction, and reducing it would result in the disappearance of

the contraction (80). The concept of irritability was revisited back by Galvani -initially

introduced by Glisson (83)- and developed by Albrecht von Haller (84) based on the

idea that the frog’s reaction was its way of responding to the application of an exter-

nal stimulus, and the movement of the frog’s legs was the expression of its internal

functional organisation acting upon the irritation of the external excitatory stimulus.

The legacy of Galvani was soon picked up by his nephew, Giovani Aldini in early

1800 applying the Galvanic concepts on animal preparations. It was thanks to Aldini

(85) that people started becoming interested about reanimation by the of stimulating

corpses, believing that expired creatures could be revived, e.g., Mary Shelley’s Franken-

stein.

Soon after Galvani’s first experiments on frogs, Alessandro Volta gave a different

interpretation to the one hypothesised by Galvani. Volta’s comments on Galvani’s ex-
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periments were that the frogs were capable of reacting due to intrinsic electricity. Fur-

ther exploration of these arguments led Volta to various discoveries, i.e. the electrical

battery, leading to a different type of development around electricity and conductivity

(86). Volta and Galvani worked in parallel, where the first repeated some experiments

of the latter without much frog preparation, leading to the examination of different

body parts, e.g., eyes, tongue. Johannes Müller used Volta’s findings stipulating the

physiological effects of nerve stimulation applied in humans (stimulating the eyes would

lead to sudden light appearance) (87).

After Galvani’s experiments on ‘animal electricity’, scientists like Leopoldo Nobili

and Carlo Matteucci looked into similar conduction mechanisms to elicit muscular con-

traction, with the latter subsequently proving to have interpreted the results correctly:

current was of biological origin and it disappeared when the muscle was in a tetanic

state (88). Matteucci recognised in his studies the need for connecting two different

types of surfaces to be able to record what he called the ‘muscular current’ (from

(82) referring to (89)). In this study, Matteucci piled several frog thighs (prepared

using Galvani’s method) and showed that with more thighs piled together, the gal-

vanometer’s needle increased in proportion. With this experiment he was able to prove

Galvani’s ‘animal electricity’ hypothesis, proving that the measured current was due to

the muscular tissue and not the metals touching it. Furthermore, Mateucci used the

galvanometer to demonstrate the electrical potential produced between a stimulated

frog’s nerve and its damaged muscle. At this point, the existence of muscle current

was successfully demonstrated. It became clear that the muscle contraction was an

expression of a difference in the potential between internal and external compartments

of the muscular fibres.

Continuing the electrophysiological research of Matteucci, involving nerve and mus-

cular contraction, was Emile du Bois-Reymond in the 1840s. Du Bois-Reymond was

able to measure with a galvanometer, the electrical activity after the excitation of a

nerve calling it ‘the negative variation’ (‘Negative Schwanking’). Representing the first

instrumental recording of an action current (from nerve) and action potential (from

muscle) . Furthermore, he provided the first evidence of electrical activity in human

muscles during voluntary contractions. His human work consisted of placing a cloth

on the subject’s hand immersing them in separate barrels of saline solution, while con-

necting electrodes to the galvanometer. The concept of skin impedance is also tracked
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to him, when in this same study he removed a portion of the subject’s skin, replacing

the electrodes and noting a drastic increase in the magnitude of the signal during wrist

flexion (From (90) original source (91)).

2.2.2 First Documented Electromyographic Recordings

In 1917, Pratt began demonstrations of the magnitude of the energy associated with

a muscular contraction. This energy was linked to the recruitment of the individual

fibres as opposed to the size of the neural impulse (92). In the coming years, Herbert

S. Gasser and Newcomer used a cathode ray oscilloscope to show muscle propagation

(93). This work led them to win the Nobel Prize in 1944.

During the next 30 years (leading up to the 1950s), there was continuous develop-

ment to improve EMG instrumentation, using the newly developed equipment to study

normal and abnormal muscular functionality. The studies performed in 1948 by JP

Price, et al., (94) were found to be the first work to have studied clinical populations

and noting that the sEMG patterns began to shift away from the original site of injury.

Later, in 1955, Floyd and Silver were able to demonstrate through their research in the

erector spine muscles, that muscles acted in synchrony, shutting on and off depending

on the movement (flexion/extension) of the trunk (95).

In the 1960s, the technique of biofeedback emerged through John Basmajian’s work

on single motor unit training via fine-wire electrodes (rather than surface-EMG) (96).

Subsequently, this technique was widely applied in a clinical environment [(97), (98)] .

In the following years, sEMG was used to teach (99), retrain patients with neu-

romuscular deficiencies (100), to assist restoration of function in hemiplegic patients

(101), treatment of pain (102), etc.

In the early 1980s, Cram and Steger established databases to be used as clinical

guides (103). Their scanned data led to the differentiation of three different character-

istics: (i) site of activity; (ii) position; and (iii) degree of symmetry. Later, Will Taylor

measured the synergy patterns in the trapezius introducing it as a new concept (104).

With this work, other scientists like Lewis et al.(105), Middaugh et al. (106), were able

to confirm the synergy between muscular dysfunction (hyper/hypo-activity) and pain.

After a meeting organised by Basmajian, in 1965 with the intention of collecting all

the available EMG techniques and methodologies developed over the last decades, the
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International Society of Electrophysiological Kinesiology (ISEK) was formed. This soci-

ety is still active in promoting new techniques and applications of EMG (see www.isek-

online.org)

2.2.3 Current Preferences and Techniques for EMG Recordings

As mentioned in the previous section, EMG can be detected by intramuscular elec-

trodes and by surface electrodes attached onto the skin overlying the muscles of interest.

When recording muscular activity with inserted (needle) electrodes, they are positioned

as close as possible to the source of interest. The action potential deflection acquired

through this invasive method is very different to the one recorded via non-invasive

alternatives (sEMG).

Despite the fact that sEMG has been evolving significantly since Redi in late 1650,

most methodological developments have been confined to research groups which follow

their own protocol and hence, this varies between research groups. A big effort was

put into this part of the field by Hermens et al., in 1996 (107) in a EU sponsored

project called Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles

(SENIAM) . This project systematically reviewed ∼144 peer-reviewed papers with the

purpose of standardising sEMG acquisition, recording and interpretation protocols.

The main outcome of the SENIAM project was a set of European recommendations

for sEMG. These recommendations cover the essential requirements for appropriate

sEMG recordings, such as: (i) sensor placement; (ii) sensor location for 27 muscles;

(iii) recording and processing sEMG; (iv) modelling tasks for problem solving; and (v)

how to report sEMG assuring repeatability.

This project revealed the large variability in methodologies used in different Euro-

pean research facilities. The journals and literature scanned for this purpose are shown

in Table 2.1.

From this systematic review, Hermens et al. (2000) (1) stated that 91.24% reported

that bipolar configuration was the most frequently used, followed by the array/line

configuration (4.76%) and lastly, the monopolar configuration (4%). Furthermore, the

electrode shape and size information collected revealed that 78.7% used circular elec-

trodes, 17.3% rectangular/bar, 2.7% squared and the rest used oval shape electrodes.
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Table 2.1: Numbers and years of sEMG publications reviewed for the SENIAM project.

Adapted from (1)

Journal Scanned volumes Number of

publications

The Journal of Electromyography and Kinesiology 1991 - 1996 34

Electromyography in Clinical Neurophysiology 1993, 1995, 1996 20

Electroencephalography in Clinical Neurophysiology 1992 - 1996 38

The Journal of Biomechanics 1992 - 1997 13

Ergonomics 1994 6

Muscle and Nerve 1992, 1993, 1994, 1996 9

The European Journal of Applied Physiology 1995, 1996 24

Total: 144

The sensor configuration has been an important part in the sEMG recordings, particu-

larly related to this thesis as it will be reviewed when addressing the technology used.

These numbers, as well as the accepted skin impedance, are represented on Figure 2.2.
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Although the author recognises that these data are from pre-1996, the recent sEMG

advances have been around the number of electrodes to be used. Developments since

1996 have focused on creating large electrode grids (of up to 64 electrodes) combined

with the possibility of different recording configurations, e.g. monopolar, bipolar, hy-

brid. When multiple electrodes are arranged in close proximity, the electrode configura-

tion is known as high-density sEMG (HD-sEMG) and given the state of this technology,

these types of configuration are still confined to use in research groups.

2.2.4 Electromyography Signal Analysis

The sEMG signals acquire noise and attenuate while travelling through different

tissues of the body and being picked up by the sEMG electrodes(11). The acquired

surface electromyographic signals require advance processing methods for their correct

classification (depending on the application).

Amplitude and spectral analysis (time and frequency, respectively) have been used

for many years to assess muscle activation and muscular fatigue. Given the nature

of sEMG, these analyses become particularly challenging when extracting information

related to individual MUs, or to map their recruitment.

Over the years, there have been different methodologies to achieve all the previous.

In this subsection, sEMG processing techniques will be explained and classification tech-

niques will be described, leading to the sEMG application of interest in this research,

i.e. the control of powered upper limb prosthesis.

2.2.4.1 EMG Signal Processing

Signal processing techniques are used to extract information from the sEMG. Many

different approaches (some traditional, other emerging) will be discussed next.

In the time domain, the change in shape of the sEMG is related to the muscular

effort or muscle fatigue. On the other hand, the dominant changes in the frequency do-

main are seen in the signal spectrum in lower frequencies, especially when an isometric

voluntary contraction (IVC) is performed. Spectral changes can be evaluated in the

time domain with zero crossing techniques of the signal (108). The current state of the

art methods will be summarised next.
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sEMG Filtering - Noise and interference contained in the sEMG signals have to

be themselves attenuated. Failure in doing so may lead to erroneous interpretation

of the signal. According to De Luca (2010) (109), the simplest and most direct way

to increase the fidelity of the sEMG signal is to filter the maximum amount of noise

and keep as much of the sEMG signal spectrum as possible. Often, a high-pass filter

is applied to the signal (with cut-off frequency near 10-20Hz) and a low-pass filter

(cut-off frequency near 400-450Hz). These filters are used to reduce the noise and

artefacts, nevertheless, analogue notch filters are commonly used to reduce the 50 or

60Hz interference [(110),(111)], however this can be debated as there is significant

EMG spectral power at 50 Hz. The band-pass determination of the filters results in

a compromise between reducing the noise and preserving the desired information from

the sEMG signal (2). Over the past three decades, several recommendations have been

put in place, which can be found in Table 2.2.

Table 2.2: Recommendations and Standards Proposed for sEMG Filtering since 1980.

Adapted from (2)

Proposed by High-Pass Cut-off Recommendation

International Society of Electrophysiology

and Kinesiology (1980) (112) 20Hz

Standards for Reporting EMG

Data (1990) (113) 5Hz

Journal of Electromyography and

Kinesiology 10Hz

sEMG for Non-invasive Assessment

of Muscles (SENIAM) (107) 10-20Hz

van Boxtel (1998) (114)

& van Boxtel (2001) (115) 15-28Hz

(only empirical recommendation)

sEMG Amplitude Processing - For an amplitude estimation, the sEMG should

ideally be noise-free and have zero mean, which is rarely the case. According to Merletti

et al. (2005) (108), the sEMG has to undertake the following stages for an appropriate
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amplitude estimation: i) Noise and interference attenuation (the goal is to eliminate

additive noise, artefact noise and power line manifestation in the signal); ii) Whitening

(increasing the signal to noise ratio of the EMG amplitude estimate); iii-v) After ii),

the signal is assumed noise-less and uncorrelated, this stage raises the absolute value

of each sample to a power (demodulation), then the signal is smoothed (by sliding a

window forming averaging filter), and then relinearized.

This processing is of high importance when post-processing techniques are applied

to further understand different sEMG patterns and characteristics.

sEMG Information in Frequency Domain - The first observations on in the spectrum

of a sEMG signal were observed in 1912 by Piper (from (108) about (116)) when he

detected a change in the oscillations of the signal during MVC recordings (led by

muscular fatigue). In the coming years, research in the frequency domain of sEMG

signals was made using spectral descriptors:

• Mean or centroid frequency (MNF) [(117), (118)]

• Median frequency (MDF) [(119), (120)]

• High and low frequency ratio (121)

MNF and MDF provide information regarding the change of the spectral signal

versus time. Both values are found to be the same when the spectrum is symmetric

with respect to the centre line and their difference is reflected in spectral skewness

In addition to the previous descriptors, parameters obtained from the time domain

e.g., zero crossings [(122) and (123)] and spike properties (124), were proposed as other

indicators of the changes found in the spectral content (108).

After considerable efforts to investigate factors influencing sEMG spectra [(125),

(126), and (127)] underlining physiological events, conclusions were drawn by Lindstrom

and Magnusson (125). These related mostly to the effect of the spacial filter on the

power spectrum density (PSD), proving that the spectra vary as a direct consequence

of the changes of MU conduction velocity. This concept was reinforced and further

developed by Stulen et al. (128) emphasising the importance of the spectral analysis

in studies of muscular fatigue.
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The spectral analysis of sEMG signals detected during isometric voluntary con-

tractions (IVCs) tasks is generally performed nowadays using the short-time Fourier

transform (STFT) [(129), (130), (131), (132)].

The next overview will cover the latest advances in sEMG signal processing:

Wavelet Analysis - Wavelet analysis has been used as an alternative to the Fourier

transform method. The ability to extract features in the spectrum analysis and then

relating them to the relevant time points in the time domain is one of the most fun-

damental concepts in signal analysis. Wavelets can be analysed in both continuous

and discrete forms (CWT-Continuous Wavelet Transform & DWT - Discrete Wavelet

Transform). The computational time for DWT is low, nevertheless, CWT is more

consistent and less time-consuming due to the lack of a down-sampling stage. The

DWT method has been applied widely for non-stationary signals, such as sEMG but

its output is a high-dimensional feature vector (133).

High Order Statistics (HOS) - Defined as spectral representations of high order

cumulants. HOS can identify deviations from linearity, stationarity or Gaussianity in

the signal (134). These methods have been found to be important for a high-quality

neuromuscular diagnosis, to obtain information on innervation pulse trains and MUAP

characteristics (135).

Empirical Mode Decomposition (EMD) - This is a data-driven adaptive technique

introduced in 1998 by Huang et al. (136) aiming to decompose a multi-component

signal into a number of virtually mono-component intrinsic mode functions (IMFs)

plus a non-zero mean value of the residual component. For sEMG signals, EMD is

sometimes used for background activity attenuation (137). This is found to be used

occasionally in terms of high computational cost.

2.2.4.2 EMG Signal Classification

In recent years, classification (also commonly referred as machine learning) of algo-

rithms of EMG signal patterns has been a research interest across research laboratories

around the world. There are different type of classifiers and the choice of which one
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to use depends manly on the application that will use their output. Most classifica-

tion methods divide the signal into smaller segments (windows). A sliding window is

often used for real-time applications due to the minimal pre-processing that has to be

performed (138). From these windows we can extract features that will categorise the

different features from the input data. An acceptable feature set, ideally, should have

little variation between the same movement (intra-movement variability) but should

vary significantly across the different movements (inter-movement variability). If ap-

plied to upper-limb prosthetic control, the variation of the muscle propagation feature

set should ideally be different, providing a pre-defined output encouraging the device

to move in a certain way.

The complexity of the input data will determine the ideal type of feature extraction

methodology. It is important to identify the different features for effective classification

(139). A variety of methods have been employed throughout the years to discriminate

between movements, e.g., visual inspection and statistical analysis (140); correlation-

based feature selection (141); forward-backward search of features (142); fast-Fourier

transform coefficients (143). Further methods have been applied to the control of

robotic arms and upper limb prosthesis, e.g., k-NN classifiers (144); multiple-window

method (145); fuzzy classification (146); amplitude based classification (147).

Once the signal features have been derived, characterising the windows of input

data, these features are used to feed into the classification algorithms. These types of

algorithm should be able to recognise and relate the patterns in the features with each

of the different activities. The extent of complexity varies from method to method.

Regardless of the effort in the upper-limb prosthesis research, most of the classification

methods have been used to analyse dynamic activities, e.g. walking; sitting-standing;

standing-sitting; movement of the trunk compared to a limb. Some of these are:

i) Threshold-based classification - where an extracted feature is compared to a

previously set threshold to determine if the feature is relevant (or significant) or not.

This approach is mainly used to monitor day-to-day activities in conjunction with other

type of sensors (i.e. accelerometers, gyroscopes). i.e. static postures, standing, sitting

and lying [Makikawa and Iizumi (1995) (148), Busser et al (1997) (149), Bussmann et

al (1998) (150), Uiterwaal et al (1998) (151), Aminian et al (1999) (152)].

Threshold-based classification has been mainly applied to the detection of falls

(sudden postural transition).
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ii) Hierarchical methods - this method is based upon binary decision constructed

by consecutive nodes. At each node, a binary decision is made depending on the input

features; this decision is made at each node is obtained through a manual inspection

and analysis of the training data causing to be a highly time-consuming method. The

classification schemes is based on threshold rules, probabilistic methods and signal

morphology techniques [Fahrenberg et al (1996) (153), Fahrenberg et al (1997) (154),

Lee et al (2003) (155)].

iii) Decision trees - similar to the aforementioned methods but instead of being a

manual inspection of the data before its training, rigorous algorithms automate the

process creating a set of rules. This method uses the time-domain features calculated

through frequency-domain features using less computational resources [Bao and Intille

(2004) (138), Maurer et al (2006) (141), Decision trees Parkka et al (2006)].

iv) K-nearest neighbour (kNN) - for this method, a multi-dimensional feature space

is constructed, each dimension corresponds to a different feature. Classification is

determined by the majority of k-nearest neighbours corresponding to a certain activity

[Foerster et al (1999) (156), Foerster et al (2000) (157), Bao and Intille (2004) (138),

Maurer et al (2006) (141), ].

v) Artificial neural networks - often linked to mathematical functions to represent

complex relationships between the input data. As decision trees, ANN are introduced

with a set of training data, after the network is trained outputs are obtained for any

set of inputs.

ANNs is commonly referred as multi-layer feedforward neural network. The infor-

mation travels through the network controlled by the weighting of the links between

the nodes, and their transfer function. This type of network is trained iteratively to

optimise the distance between nodes [van Laerhoven et al (2004) (158), Baek et al

(2004) (159), Zhang et al (2005) (139), Parkka et al (2006) (140)].

Alternatives to this method are the probabilistic neural network and the pulsed

neural network, but unlike ANN, they require extensive training periods.

vi) Support vector machines - this algorithm finds the optimal decision separating

hyperplanes between classes with the greatest boundary between the class features.

This algorithm has been applied mainly to small number of classes [Huynh and Schiele

(2006) (160), Zhang et al (2006)(161), Zhang et al (2006) (162), Doukas et al (2008)

(163)].
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vii) Naive Bayes and Gaussian mixture models - the first classifier is based on the

estimated conditional likelihood of the signal features from each class. For the latter

one, the centres and covariances of the mixture components are obtained through the

expectation-maximization algorithm [Kern et al (2003) (164), Ravi et al (2005) (165),

Huynh and Schiele (2006) (160)] .

viii) Fuzzy logic - this classifier maps from a set of inputs to one or more outputs

through a set of if-then rules. The features are assigned as memberships through

membership functions ranging from 0 (high) to 1 (low) [Lee and Mase (2002) (166),

Salarian et al (2007) (167)].

ix) Self-organising maps (SOM) (Kohonen Maps) - patterns are identified and lo-

calised within a feature space from a number of time-domain features. The SOM is

an array of neurones that store the projections of the inputs into a lower dimension.

This classifier recognises and maintains the groupings proximity characteristics [van

Laerhoven et al (2000) (168), Krause et al (2003) (169)].

At the beginning of 2001, Duda et al (170), categorised classification techniques into

supervised and unsupervised; this was later revised by Webb (171) and Theodoridis et

al (172). Although little has been done around unsupervised techniques to classify

muscular activity, great efforts have been made by Preece et al (2009) (3) to review the

different machine learning techniques in activity classification.

All the different methodologies produce different results depending on its applica-

tion; under the same circumstances, some are more effective than others. A comparison

between classification methods used across different literatures is shown in Table 2.3;

although the data used for analysis comes from an accelerometer, it gives an idea of

the differences between methods under the same application.

The accuracy of the methods and the computational resources used are of par-

ticular importance in upper-limb prosthetics research having a direct impact in the

user-prosthetist training, the different device gestures available and how ‘natural’ a

movement can be (human-machine interface).
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2.2 From Electrophysiology Principles to Electromyography Acquisition

Table 2.3: Literature comparing different machine learning methodologies when ac-

celerometer data are used. Adapted from (3)

Publication (number Activities (number of Inter-subject classification accuracy

of subjects) activities) placements

Bao and Intille Walking, sitting, cycling, running Decision tree (84%), kNN (83%)

(2004) (138) vacuuming, folding and Naive Bayes (52%)

more (20)

Parkka et al (2006) Lying, sitting, walking, Nordic Decision tree (86%), Hierarchical

(140) (16 subjects) walking, rowing, cycling and more (82%), Neural network (82%)

(8)

Maurer et al (2006) Sitting, standing, walking, Decision tree (87%), Naive Bayes

(141) (6 subjects) ascending/descending stairs and (<87%), kNN ( 87%)

running (6)

Prittikangas et al Typing, watching TV, drinking Neural network (93%), kNN (90%)

(2006) (142) walking upstairs, cycling and more

(13 subjects) (17)

Ermes et al (2008) Lying, sitting, walking, Nordic Neural network (87%), Hierarchical

(173) (12 subjects) walking, rowing, playing football (83%) Decision tree (60%)

and more (9)

Ravi et al (2005) Standing, running, sit-ups Naive Bayes (64%) SVM (63%)

(165) (2 subjects) vacuuming, brushing teeth Decision trees (57%), kNN (50%)

walking and more (8)

Lester et al (2005) Walking, driving, jogging, Naive Bayes (67%), HMM (47%)

(174) (2 subjects) ascending/descending in an HMM and binary classifiers (95%)

escalator and more(10)

Allen et al (2006) Sitting, standing, lying, walking Gaussian mixture model (91%)

(175) (6 subjects) and four postural transitions (8) Hierarchical (71%)
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2.2 From Electrophysiology Principles to Electromyography Acquisition

The goal of using signal classifiers is to categorise the different types of activities into

different groups to be used in different types of applications. In the next subsection,

some applications will be detailed.

2.2.4.3 sEMG Applications

The specific properties that the sEMG provides can be used widely across different

fields and for different applications. The main features that can be obtained and used,

according to Stegeman et al. (2000) (176), are that of (i) source description; (ii)

motor unit structure; (iii) volume conduction; (iv) recording configurations; and (v)

recruitment and firing behaviour.

The most common sEMG applications are:

• Neurology - Disorders in the Central Nervous System (CNS) can be shown through

abnormalities in the firing rate of the sEMG and are most commonly used with

other sensors, e.g. accelerometers. The sEMG is often compared between natural

patterns and affected ones. Some examples of this application can be found in

(177) (Figure -a), (178) (Figure -b)

Figure 2.3: Examples of sEMG in Neurology - Examples for sEMG applied in

Neurology. a. Normal and abnormal sensory responses in pre and post-ganglionic lesions,

respectively. Adapted from (177), and b.Top - sEMG amplitude and force during an

isometric voluntary contraction in the first dorsal interosseous muscle; b.Bottom - Power

density spectra of the sEMG at the beginning and at the end of the contraction. Adapted

from (178).
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2.2 From Electrophysiology Principles to Electromyography Acquisition

• Ergonomics - An increased sEMG reflects an augmentation of the muscular activ-

ity possibly related to bad postures. This type of sEMG application mainly use

as a scope the muscle synergies between antagonists and agonists muscles. Some

examples can be found in (179) and (180).

• Exercise Physiology - This is used to study the variation of the motor performance

while a set of activities are carried out. It provides a description of normal muscle

function during a selected routine of movements or postures. Recent applications

in this field aim for the improvement of the performance during sports. Some

examples can be found in (181), (182) and (183).

• Movement and Gait Analysis (Biomechanics) - The fields of human motor control

and movement research analyses with sEMG acquisition. Investigations around

the mechanical effect of muscular contraction while walking have been thoroughly

studied in the past. Some examples of this application can be found in (184),

(185), and (186).-

• Rehabilitation - One of the main applications of sEMG. The fields in within

this application are vast and they focus on pain; pathologies; age-related effects;

amongst others (187). Some examples of sEMG applied in rehabilitation can be

found in (188) - Figure 2.4, and (189).
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2.2 From Electrophysiology Principles to Electromyography Acquisition

Figure 2.4: Example of sEMG applied in Rehabilitation - The sEMG is acquired

from the muscles of the shoulder to assess if there are any changes in the firing patterns

while three set of movements with the arm are performed, i.e. flexion, extension and

abduction. A. sEMG acquired before fatigue, B. Fatigued shoulder muscles after a set of

routine movements. Adapted from (188)
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2.2 From Electrophysiology Principles to Electromyography Acquisition

• Biofeedback - For this type of application, sEMG is used as a tool to show the

user a desired output. This output is based on their performance which they

will use to correct/maintain the activation levels required/exerted. According to

Cram(187) the biofeedback applications are commonly found in clinical psychol-

ogy and physical medicine. Some examples can be found in (190), (191).

• Control of Powered Upper Limb Prosthesis - For this application, the electrical

impulses from the muscles of the arm are used as input for the control of hand

prostheses. The variation of the muscular impulses collected from the amputees’

hand becomes a challenge in itself. The different amputation procedures, remain-

ing muscles, and the state of the skin in the arm come into play when a prosthetic

device is diagnosed.

To date, different methodologies have been used for upper-limb prosthetic con-

trol. The main algorithm that has had most success, and therefore, used across

different myoelectric devices, are based on the estimates of the sEMG amplitude.

These estimates are used to drive and control the myoelectric prosthesis. A flow

diagram can be found in Figure 2.5 comparing the human physiological model

paired with examples of the same model mimicked by some myoelectric hand

prosthesis. This is part of a systematic review performed on myoelectric control

from Fougner et al (2012) (192). Further to the aforementioned chart, a 3D rep-

resentation of the myoelectric control for upper limb prosthesis can be found in

Figure 2.6. In this figure, the different types of methodologies applied, as well as

the stages where the commercially available prosthesis and the prosthesis confined

to research laboratories sit are depicted.

In Figure 2.7 the citation map of the last decades is shown from 1960-2010 with

regards to machine learning techniques applied in myoelectric prosthesis. This

map depicts the main contributors to the field as well as the review papers that

have appeared throughout.

Finally, in Figure 2.8, the number of papers produced in the last decades in this

field is depicted. With that, a noticeable increment of research performed in

upper limb myoelectric prostheses is shown.
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2.3 Coherence in sEMG

2.3 Coherence in sEMG

Coherence estimates quantify the range of frequencies of common rhythmic synaptic

inputs across the motor neurone pool [Farmer et al. (1993) (198), Rosenberg (1998)

(199)].

During experiments done by Barker et al. (22) Kilner et al. (200) and Semmier

(201), dependence between specific motor tasks and the oscillatory synchronisation

were repeated during maintained steady grip (contrary to his findings for movement

phases).

Although EMG-EMG coherence has been experimentally found at 16-32 Hz [ Halli-

day et al. (1998) (202), Barker et al. (1999) (22), Kilner et al. (1999) (200)], from neu-

rophysiological signals (e.g. electroencephalograms (EEGs), magnetoencephalograms

(MEGs), and cortical neurone and motor unit discharge times), the mechanism pro-

ducing this oscillatory drive to the motoneurone pools of the synergistic muscles is still

unknown and may involve closed loop pathways, supporting this is a lack of coherence

during isotonic contribution against fixed leads resulting in no length change in the

muscle. During isometric contractions, coherence has been found present during the

beta band (15-30 Hz) (203). In a further study by Halliday et al. (1999) (204), the MU

analysis revealed coherence in two distinct frequencies for motor-unit synchronization,

1-12 Hz and 15-30 Hz.

The sEMG is influenced by many different factors [as explained in Section 1.1.3] that

are independent of muscle activity (Farina et al. (2004) (24) ). These elements have

influence in the quantity derived from the sEMG to deduce activity from the analysed

motor units. Keenan et al. (2011) (205) found that coherence measures between hand

muscles were sensitive to the electrode location (placing electrodes near the innervation

zone decreased the magnitude of coherence). In addition to this, Beck et al. (2008)

(206) and Rainoldi et al. (2004) (207), found that that these coherence differences were

also due to the variation in the sEMG amplitude.

The sEMG rectification (prior to the coherence analysis) has been found to improve

the coherence estimates [Yao (2007) (208), Halliday (2010) (209), Boonstra (2012)

(210)].

An incremental in the oscillatory drive from EMG recordings has been associated

with impaired performance. This was found during hand tasks in younger adults by
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2.3 Coherence in sEMG

Halliday et al. (1999) (204) and Kakuda (1999) (211). Furthermore, Baker et al.

(2001) (22) and Kilner et al. (1999) (212) showed that (for hand muscles) the coherence

estimates are relative to isometric grip force task undertaken.

Current literature has shown a vast range of research done in coherence analysis

regarding electrophysiological signals. As shown in Table 2.4, it has been reported in

the literature that lower frequency ranges (below 50 Hz), have been associated with

synchronous oscillatory drive to motor neurone pools.

Table 2.4: Coherence Estimates Found Across Literature Between Different Hand Mus-

cles.

Publication Methods Coherence Frequency Coherence

Range [Hz] magnitude

Kilner et al (1999) Hold task from 0.5

(212) forearm muscles 15-30

Grosse et al Symptomatic and

(2004) (213) asymptomatic px peaks at 5-10 0.8 & 0.9

with dystonia (EMG

from tibialis anterior)

Farmer et al (2007) Long and short 1-12 & 0.1 & 0.05

(202) thumb abductor muscles 16-32

Santos et al (2010) 12 hand muscles

(214) during finger 5-15 0.05 & 0.1

contraction tasks

Kisiel-Sajewicz (2011) Stroke and healthy

(215) patients muscles 0 - 11 0-0.5

from shoulder flexor

and elbow extensor

Regardless of the research efforts in this area, it is still unclear about the functional

significance that the coherence estimate has.
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3

Thesis Statement

In Section 1.1, a wide perspective on the motor neurophysiology at the actuators level

(muscles) was explored. Based on the review regarding the human motor system and

electromyographic mechanisms and processes (e.g., machine learning) to further our un-

derstanding in the motor neurophysiology and the upper limb amputations (techniques

and descriptive statistics) presented in Section 1.2, it is concluded that understanding

the electrophysiological mechanisms of the remaining muscles of the forearm is crucial

to be able to drive myoelectric upper limb prosthetics in a natural way. The nowadays

mechanisms adopted by the commercially available prosthesis were detailed in Section

2.2.4.

However, as described in Section 2.2.4.2, where signal classification techniques were

discussed thoroughly, the aforementioned techniques are mainly focused in the pat-

tern recognition analysis of the signal, provided a widely known set of movements (for

prosthetic control). These movements are the ones that the commercially available

prosthesis are able to achieve (driven by a single on/off muscular detection). These

type of mechanisms, albeit improving amputees’ quality of life, are still not driven by

natural movements of the remaining muscles, hence, new mechanisms and new studies

need to be performed to understand the electrophysiology of the muscles to be able to

drive prostheses without computational cheats.

To date, there is no commercially available prosthesis able to drive the thumb

from the muscles propagation nor muscles interaction acquired via sEMG. As it has

already been explained, the thumb represents one of the most important fingers in the

hand, making it hard for any amputee to be able to control their hand without proper
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3.1 Research Statement

thumb-driving mechanisms. To the best of the author’s understanding, techniques such

as EMG-EMG coherence and unsupervised machine learning have not been applied to

upper limb prostheses, therefore, nor studied different thumb opposition movements in

the upper limb prosthesis context.

3.1 Research Statement

It is of interest to this research to:

1. Differentiate thumb opposition grips, based on muscle activation patterns.

2. Understand the motor drive controlling the extrinsic muscles of the hand provid-

ing meaningful contrasts through different type of analyses.

3. To understand the spectral composition variation that reflects changes in the

muscle synergy while different thumb grips are executed.

4. To find a successful classification through machine learning techniques that would

cluster the different thumb grips.

5. To implement the classification methods aiming for a dexterous prosthetic control.

3.2 Research Hypotheses

The Muscular Propagation while Thumb Opposition Tasks- It is of interest whether

there are consistent signal features from the musculature of the hand associated with

different thumb opposition movements. If this hypothesis is proved, then it opens a

new possibility regarding the way upper limb prosthetics disseminate the muscular

information acquired from the forearm.

The Cortical Activity Coherence in Two sets of Pools of Muscles - It is of interest

whether there is coherence between the muscle pairs of the hand (extrinsic and intrinsic,

respectively) while performing thumb opposition tasks. If this hypothesis is proved, by

assessing the first pool of motor units it will be able to extract information about the

position of the thumb, making it possible to create new programming mechanisms to

drive upper limb prosthesis.
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3.2 Research Hypotheses

The Differentiation of Thumb Opposition Tasks - It is of interest to be able to

classify different thumb opposition tasks through unsupervised machine learning algo-

rithms, aiming for a new implementation through a controllable prosthetic thumb fro

transradial amputees.
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4

Materials and Methods

4.1 Summary

Control of high-end commercially available electric prostheses is driven by surface

electromyographic (sEMG) signals. Such sEMG are a complex superposition of many

different electrical signals that originate in the extrinsic hand muscles, i.e., the muscles

of the forearm that act on the fingers of the hand. Due to the complexity of the resultant

sEMG signals, intuitive user control of prostheses has remained elusive. A complete

characterisation of the muscles’ electrical activity is required if intuitive control is to

be realised. To further understand sEMG signals during hand control, a routine of

hand movements was established to isolate muscle activity during specific actions. The

routine was comprised of a set of four movements, the thumb executed an opposition

against the other fingers of the hand (Fig. 4.1): 1 - the secundus digitus manus (index

finger); 2 - the digitus medius (middle finger); 3 - the digitus annularis (ring finger);

and 4 - the digitus minimus manus (pinky finger). High-density sEMG (HD-sEMG)

signals were collected using a multichannel amplifier, specifically designed for acquiring

bioelectrical signals. Experiments were carried out in two stages: firstly a system

calibration was performed, using maximum voluntary contraction (MVC); secondly,

a suite of thumb opposition movements was performed while HD-sEMG signals were

obtained.

To facilitate the experimental design, a custom built device was used to stabilise

the subject’s arm and hand to help identify non-relevant electrical activity originating

in muscles controlling the wrist and elbow flexion and extension. The device contained
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4.2 Experimental Design

load sensor resistors (LSRs) acting as the opposing digits of the hand.

Figure 4.1: Thumb Opposition Against the Rest of the Digits - The 4 different

positions described in this image represent the positions considered based on thumb oppo-

sition. The test rig was designed to mimic the positions. 1) Opposition to the index finger,

2) opposition to the middle finger, 3) opposition to the ring finger, and 4) opposition to

the pinky finger. From: A. Aranceta-Garza(2013) (216)

4.2 Experimental Design

Subjects were asked to perform a set of four different thumb opposition tasks. Their

right forearm was positioned on a test-rig that stabilised the wrist and the elbow. The

fingers of the hand were fastened to the fingers holder (see Figure 4.2 ), whilst the

thumb was left free to act as the main actuator. Experiments were carried out with

the help of two graphical user interfaces (GUI). The first GUI was used to calibrate the

system according to the subject’s MVC in each of the oppositions; the second GUI was

used to assist HD-sEMG signal acquisition from the muscles of the forearm during the

thumb opposition movements, providing the subjects with instructions. The software
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4.2 Experimental Design

sequentially instructed the subjects to perform one of four randomly chosen thumb

opposition exertions and repeated the process until a total of 30 trials per position was

reached (a total of 120).

4.2.1 Research Subject/Participants

Surface-EMG data were acquired from seven healthy right-handed subjects [6 male,

1 female mean age 28.5 ± 3.7yr (mean ± SD)] with no prior history of nerve damage,

hand surgery, existing neuromuscular pain, tremor, epilepsy or Parkinson’s disease. All

subjects were provided with an information sheet along with a consent form prior to the

experiment. The experiments had been approved by the Departmental Ethics Com-

mittee of the Biomedical Engineering Department at the University of Strathclyde (a

sample of the Ethics Consent Form can be found in Appendix 8.2 ). All the procedures

complied with the Declaration of Helsinki.

4.2.2 Hardware development

To avoid any muscular contraction from the muscles responsible for flexion and

extension of the wrist and elbow, a test apparatus was designed and built (Fig. 4.2).

The built-in LSRs were used to time-stamp the signal when an opposition occurred,

and acquired the force applied by the thumb in order to be able to control the amount

of muscular contraction, and therefore avoid fatigue, during the experiment.

In preliminary experiments, force sensor resistors (FSRs) were found to be inad-

equate in normalising the sEMG data across experiments (for more information on

the use of FSRs the reader is referred to Appendix 8.3 ). Instead, load sensor resistors

(LSRs) were used for a further control in the force exerted by each subject. A simplified

diagram of the system is shown in Figure 4.3 and its experimental use is demonstrated

in Figure 4.4. The LSRs attached to the test rig’s finger holder could be moved in

the vertical axis to adapt their position to suit the different anatomical lengths of the

subject’s hand.

The LSRs were connected to a custom, electrically isolated, multichannel strain

gauge amplifier (Fig. 4.5) with a gain of 500 V/V and were calibrated with a varying

load: [0 - 581]g.
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Figure 4.2: Built Test Rig - Final Design. - Test Rig used to examine thumb op-

position; a) elbow holder: with movement in the X axis, to allow adjustment for subject

comfort, minimising muscle contractions caused by pronation, supination, flexion or ex-

tension of the forearm; b) wrist holder: fixed padded holder that avoids any flexion or

extension of the wrist, minimising the muscle activity in the forearm; and c) fingers holder:

allows freedom of movement in the X and Y axis, as well as rotational movement. It has

four load-sensor resistors (LSR) represented by the numbers 1, 2, 3 and 4, where each of

them corresponds to the 4 digits: secundus digitus manus; digitus medius; digitus annularis

and digitus minimus manus, respectively. Each LSR can be moved in the X and Y axis to

allow adjustment to each subject’s anatomical measurements.
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Figure 4.3: Dimensional Sketch Of The Construction of Load Sensor Resistors

- Left: Sketch with dimensions of the developed load sensor resistors (LSRs) and the finger

holder that was attached to the rig: a) one of the LSR with its lid (out of four built); b)

rail where the LSRs were to be attached and supported, allowing freedom of movement in

the Y axis; and c) the finger holder of the developed test-rig. Right- the test-rig apparatus

with the fingers holder circled demonstrating the final result.

Figure 4.4: Finger Holder With LSRs - The image above shows the different move-

ments that the volunteers were expected to perform. During each movement,the participant

was instructed to press an LSR with a certain amount of force. 1- Opposition to index

finger, 2- opposition to the middle finger, 3- opposition to ring finger, and 4- opposition to

the pinky finger. From: Aranceta-Garza (2013)(216)
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Figure 4.5: Custom-built Multichannel Strain Gauge Amplifier - In this image

both the fingers holder with the LSRs and the multichannel strain gauge are shown. This

amplifier was built in-house at the University of Strathclyde. The LSRs had movement in

both X and Y axis as shown by the arrows. Adapted from: Aranceta-Garza (2013)(216)
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4.2.3 Software development

To provide real-time visual feedback to the subjects, custom software was developed

using LabVIEW (National Instruments, USA). Data from each of the LSRs (See Section

4.2.2) was acquired using a single analogue channel from a data acquisition card ([NI

USB-6008], National Instruments, USA).

A separate graphical user interface (GUI) was developed for each of the two stages

of experiment: 1, MVC calibration; and 2, task-opposition of the thumb. The two GUIs

shared a common Main Menu (Fig. 4.6); the complete programming can be found in

the supplementary material provided) which fed calibration data, obtained through

MVC, to the task-opposition program. Each of the GUIs provided visual cues for the

tasks required during the experiment and the main menu contained a demo program

to allow the test subject to become familiar with the experimental tasks.

Figure 4.6: Main Menu for the Test Developed in LabVIEW - Front panel of the

main menu developed for the test. This menu called up three interfaces: 1) Calibration,

2) Demo, and 3) Thumb opposition acquisition routine.
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4.2.3.1 Calibration Graphic User Interface

To calibrate the task-opposition software, each subject was required to press each

LSR in turn as hard as possible (isometric voluntary contraction, IVC). Contractions

were maintained for three seconds and repeated three times, with a 60 second rest

periods in between exertions. For each contraction, the maximum value of each IVC

was calculated (also known as maximum voluntary contraction - MVC), and averaged

across the 3 repetitions to provide a reference calibration for each finger (MVC). The

force applied to each sensor was captured and displayed graphically on-screen, as shown

in figure 4.7 (the LabVIEW source code can be found in the supplementary material

provided, CD).

Figure 4.7: GUI For LSR Calibration According To The Subject’s MVC - Front

panel of the GUI programmed in LabVIEW. This interface calibrated the test rig’s LSRs

according to the subject’s MVC. Three trials were recorded per finger, then the MVC values

were average to give a maximum value. The subjects had a 60 seconds rest in between

exertions.
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4.2.3.2 Thumb Opposition Graphic User Interface

Following the MVC calibration, a separate GUI was developed to facilitate HD-

sEMG data acquisition during thumb opposition tasks. The force exerted by the subject

was required to be within 30-40% of their MVC obtained during calibration, with a

five second duration, to avoid muscle fatigue during data acquisition. To facilitate

this, the force exerted was displayed on screen using a coloured percentage indicator

as shown in Figure 4.8-B. Furthermore, the software provided cues for the subject to

rest in between exertions as well as providing information regarding which LSR was to

be pressed within each iteration (Fig. 4.8-A). When a total of 120 thumb oppositions

was reached (30 per position), the GUI automatically stopped. (For more details into

the LabVIEW programming of this GUI, refer to the supplementary material provided,

CD).

Figure 4.8: GUI For Thumb Opposition Using 30-40% of MVC - Graphical user

interface showing the timing diagram and the visual cues that the subject was shown. A)

Relax stage, varied from 5 - 7 seconds, the arrow indicating the LSR to be pressed changed

between trials until a total of 120 was reached (30 for each position). B) Press stage,

isometric contraction with a visual feedback prompt. The subject was asked to hold the

hand position for 5 seconds keeping an approximate of 30-40% of their maximum voluntary

contraction.
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4.2.4 Electromyographic Data Acquisition

Monopolar HD-sEMG signals were acquired using 121 channels from a multichan-

nel bioelectrical signal amplifier (EMG-USB2, OT-Bioelettronica, Italy). Samples were

acquired at a rate of 2048 per second, with a fixed gain of 1000 V/V, and a band-

width of 3-900Hz. A separate trigger input (from the LSRs) was used to time-stamp

when each thumb-opposition occurred. The electrode configuration is depicted in Fig-

ure 4.9. Silver-electrode array matrixes (ELSCH004;ELSCH008 and ELSCH064R3S,

OTBioelettronica, Italy) were used to extract information from different hand muscle

groups. Each matrix had a different inter-electrode distance (IED). For the anterior and

posterior compartments, two-64 electrode arrays (IED of 8mm) were used. Depending

on the size of the volunteer’s hand, a 4 or an 8-electrode array matrix (IED-10mm

or IED-5mm, respectively), was placed on the first dorsal interosseous (FDI) muscle;

a disposable electrode was used on the flexor pollicis brevis (FPb) muscle; and two

disposable surface electrodes (N-00-S, Ambu, Denmark) were placed on the olecranon

(as reference points).

Figure 4.9: Electrode Array Configuration Setup - Electrode array configuration

fixed onto the muscles. a) 64- electrode array on the extrinsic hand muscles, corresponding

to the posterior compartment of the forearm. 8mm IED b) 64 - electrode array on the

extrinsic hand muscles, anterior compartment of the forearm. 8mm IED c) 8-electrode

array on the FDI muscle. 5mm IED d) Low-density electrode on FPB. e) surface electrodes

used as grounding fixed onto the olecranon.

To increase electrode-skin contact and the quality of data recordings, the skin of the

forearm and the palm of the hand were cleaned using conductive abrasive paste (A1,

Spes Medica s.r.l., Italy). Electrodes were then prepared by attaching disposable pads

with conductive adhesive paste (CC1, Spes Medica s.r.l., Italy). Electrode arrays were

then positioned by palpation during thumb opposition exertion and relaxation and were
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firmly secured in place with medical tape, to avoid any movement-induced artefacts.

Once the electrodes were attached, the subject’s arm was placed on the custom-built

testing rig and the elbow, wrist and hand digits were positioned as described in Section

4.2.2 and in Figure 4.10. To ensure adequate adhesion, data were not collected until a

period of 15-20 minutes had elapsed.

Figure 4.10: Volunteer Positioned In The Test Rig With Electrodes Attached

Onto The Hand. - A volunteer positioned onto the test rig with the disposable electrodes

attached to the hand. Left: Anterior view of the hand; Right: Posterior view of the hand.

To compare data acquired with different electrode placement, and in different envi-

ronments, familiarisation trials were conducted. The HD-sEMG signals were acquired

using medical grade isolators to remove interference. The performance of different ref-

erence points was assessed. Ideally, when sEMG is acquired from the forearm, the

wrist would be the best possible place to position the reference electrodes. However,

the wrist of upper arm amputees is absent and so, three alternative placements for the

reference electrode were considered: 1, ankle; 2, biceps brachii; and 3, olecranon.

4.3 Data Analysis

121 channels of HD-sEMG plus an auxiliary (multiplexed from the LSRs) were

recorded from each subject during the study. They were subsequently analysed using

the processes described in this Section.
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4.3.1 Data Inspection

The data were exported into MATLAB (Mathworks, Natick, Massachusetts, U.S.A.) for

further analysis. MATLAB was chosen as an appropriate platform to further analyse

the sEMG data given the possibility of developing algorithms, creating models and

visualising results.

4.3.2 Importing *.otb Files into MATLAB

The software provided by the HD-sEMG manufacturer, OT BioLab, for analysis was

basic and had little possibility for further development.

The manufacturer’s software created a *.otb file containing the acquired HD-sEMG

data and configuration information. A software to decode was created and then the

data were imported into MATLAB.

4.3.2.1 Data Conditioning

The data were inspected for channels with clear noise and miss-contact, therefore

the number of channels were reduced and segmented by muscle groups: flexor muscles

- anterior compartment and extensor muscles - posterior compartment. The procedure

applied was:

• Assessment of the quality of each electrode during the overall test with regards

to noise and interference,

• Isometric voluntary contraction (IVC) separation for each position during each

task repetition considering 500 ms before and after each IVC,

• Down-sampling of the signal.

4.3.3 Creating a sEMG visual toolbox in MATLAB

The HD-sEMG data acquired had a large file size and was required a considerable

amount of computer processing power to analyse. Further techniques were required to

develop an appropriate data visualisation and inspection method. Averaged amplitude

windows of 300ms with a 50ms overlap were created. These windows allowed a better

understanding of the signal propagation in time smoothing any spontaneous noise due

to an electrode-skin false contact amongst others.
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4.3 Data Analysis

4.3.3.1 sEMG Propagation Visualisation

According to Barbero (2012)(13), each muscle produces a particular waveform, en-

abling the ability to track which muscle contributes to a particular movement. Based

on this assumption, the sEMG propagation of the summation of different motor-units

(MUs) was visualised. Propagation videos were produced in MATLAB to further the

understanding of the recorded waveforms. Each frame corresponded to one sample

(ratio 1:1) of the HD-sEMG recording. The signals were positioned in the same config-

uration as the electrode matrix arrays.

4.3.3.2 Colour Plots Visualisation

The processing of HD-sEMG signals as a topographical image was designed as an

assistive tool for visualising muscles’ propagation along the forearm. The averaged

amplitude windows were used, allowing a better understanding of the contraction in

the compartments of the forearm (i.e. flexor and extensor muscles), while sustaining

the different thumb oppositions. In order to create a smooth sEMG pattern allowing to

extract the important features in the muscle propagation, RMS values were estimated

using 300ms windows with 50ms shift overlap during the isometric voluntary contraction

(IVC) from each grid placed on the forearm.

Furthermore, in order to accentuate the differences seen in the colour plots, the

resulting windows per grid of the forearm were averaged across each repeated movement

to the four different thumb postures.

4.3.3.3 Root-Mean Square Analysis

The root-mean square (RMS) reflects the mean power of the signal, analysis is ap-

plied to the mean of each position that the thumb was opposed to. This value is known

to be the equivalent to the amount of motor units activated and their firing rate (217).

This method is widely applied for feature recognition/distribution, particularly that of

fatigue. Changes in the motor units’ central drive are estimated by the RMS value [Vi-

tasalo et al (1977) (218)]. The RMS value is, therefore, a parameter frequently chosen

because it reflects the level of the physiological activity during muscular contractions.

The quantification method recommended by Basmajian and DeLuca (12), consisted

of an RMS value calculated by squaring each data point (over 300ms windows), sum-
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ming the squares, dividing the sum by the number of observations, and taking the

square root. Therefore, each position was plotted against the remaining 3 positions per

grid of the forearm to assess the feature distribution of each thumb opposition.

4.3.4 Statistical Analysis

To evaluate the statistical significance of the distribution values for all trials through-

out the tasks, data were used 500ms before movement initiation (contraction onset),

sustained contraction, and 500ms after contraction (contraction offset).

New data windows were created based on the response time for myoelectric hands

to operate without the user being aware of a delay, i.e. less than 350ms (Englehart,

2003 (219)). An average vector was used every 300ms and compared across the differ-

ent hand movements. This average vector was also used to smooth any spontaneous

artefact noise due to electrode-skin miss-contact. Finally, the results from the statis-

tical analysis were used to assess the differences between the four thumb oppositions

throughout the time course of each movement (contraction), i.e. contraction onset,

sustained contraction, contraction offset. The signal was downsampled from 2048Hz to

1024Hz for this analysis.

4.3.4.1 One-way Analysis of Variance

To find significant statistical differences between the features of the four movements,

represented by each finger the thumb was opposed to, a parametric method was used. A

one-way ANOVA was applied to the data to compare the means of the four movements.

P-values were obtained and compared; if p < 0.05, it suggested that at least one position

of the thumb was significantly different from the others. The null hypothesis is that

all population means are equal, the alternative hypothesis is that at least one mean

is different. For a detailed description of the methodology used for ANOVA, reader is

referred to the Appendix 8.7.

The signals were separated per position creating vectors. These vectors were so that

we could perform the ANOVA analysis comparing along the profile of the movement

across thumb oppositions.
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4.3.5 Time-Frequency Analysis

Time-frequency signal analysis, i.e. inter-muscular (EMG-EMG) coherence, was

used in this thesis as an important tool to understand the muscular signals with time-

varying frequency content. The time-frequency analysis can show the variation of

the frequency content during a certain time-span. This analysis can also be used to

compared across subjects for the same set of tasks (thumb opposition).

4.3.5.1 Inter-muscular Coherence

The aim of this analysis was to investigate the effects of simultaneous activation of

the muscles of the forearm in coordination with the hand muscles, while thumb oppo-

sition tasks were performed [as described in section 4.2]. These effects were assessed

using the frequency content of the signal (coherence) and in the time domain (cross-

intensity). The energy of the signal (power), phase and coherence were investigated

and compared. The activation of the thenar muscles and the FDI muscle was studied

while the previously described tasks were performed. The muscles of the palm of the

hand were studied with the extrinsic muscles of the forearm.

Cross-correlation (time) and coherence (frequency) analyses were applied using the

methodology thoroughly described by Halliday et. al. (199). The standard practice,

which was applied to this analysis, is: i) full wave rectification, ii) hanning window

to suppress the rippling introduced by the sampling process, iii) normalisation, iv)

de-trend, and v) reduction of main frequency artefacts (50Hz).

The coherence analysis was performed between the electrode grids placed on the

the intrinsic (thenar and FDI muscles) and the extrinsic (flexor and extensor muscle

groups) hand muscles. Each available channel was cross-correlated in both time and

frequency. The channels that had clear cross-talk were disregarded and not used for

any further analysis.

The signal from the thenar muscles or FDI was used as the reference, or input,

signal. In a study by Farmer (198), two analysis were performed, the first one being a

steady condition test and a later one corresponding to a modulated condition test. The

thumb opposition task used in this study corresponded to that of modulation (subjects

would co-modulate their exertion level via the display described in section 4.2.3.2).
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Therefore, a second stage of testing, corresponding to steady contractions, was later

performed in one subject to assess the variability between conditions.

For the first testing, the modulated condition, the coherence analysis was performed

separately between each intrinsic muscle (thenar and FDI) and every channel of the

extrinsic muscles. Furthermore, each coupling was analysed per thumb opposition: i)

to secundus digitus manus; ii) to digitus medius; iii) to digitus annularis; and iv) to

digitus minimus manus.

A relation between the previously calculated RMS values of the sEMG and the area

under the curve from the coherence analysis was used to further our understanding with

regards to the amplitude of the sEMG feature distribution (different thumb oppositions)

against the coherence estimate values, for each grid placed on the forearm.

As for the second test, the steady condition, the same analysis (as the modulated

counterpart) was performed. To create a condition that corresponded to a steady-state

contraction, the subject was not attached to the test rig, therefore there was no LSR

to be pressed. The contractions were steady with a minimum exertion of force. The

exertions lasted 10 seconds with a 5 second relaxation to avoid fatigue. The order

of movement was set to 1 (secundus digitus manus), 2 (digitus medius), 3 (digitus

annularis), and 4 (digitus minimus manus); repeating the cycle 10 times. The rest

of the digits were kept in a natural relaxed position, the movements performed are

depicted in Figure 4.11.

Figure 4.11: Movements Performed for the Second Testing - Steady Conditions

- The four positions that the subject exerted are depict in this image. The positions are

numbered from 1-4 and correspond to the opposition to index finger, middle finger, ring

finger and pinky finger, respectively. Please note that Position 1 is very similar to that of

hand rest.
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4.3.6 Data Preprocessing for Machine Learning

In order to classify HD-sEMG patterns based on the thumb opposition tasks, the

dimension of the time-domain signals had to be reduced and normalised in order to

create classification vectors for feature extraction. A block diagram of the classifica-

tion process is shown in Figure 4.12. The methods used for an unsupervised feature

extraction were self-organising feature maps (SOFM) and principal component anal-

ysis (PCA). These methods were then validated through supervised methods such as

the Levenberg-Marquardt and MATLAB’s built-in neural network-pattern recognition

toolbox.

Figure 4.12: Block Diagram for HD-sEMG Feature Recognition - Block diagram

representing the process for HD-sEMG thumb position classification.

4.3.6.1 Feature Vectors Extraction

Each of the feature vectors (FV) contained the IVC of a specific channel during a

specific trial, e.g., Xposition−channel Ysample. The new matrix arrangement can be found

in Figure 4.13.
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Figure 4.13: Example Of The 2D Matrix Array Obtained - Matrix-format data

constructed from the feature vectors created, [Position − ChannelxSamples]. Position

1 refers to the opposition of the thumb against the index finger; position 2 refers to the

opposition of the thumb against the middle finger; position 3 refers to the opposition of the

thumb against the ring finger; and position 4 refers to the opposition of the thumb against

the pinky finger.
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4.3.6.2 Data Normalisation

A single-variable normalisation was used based on the algorithms developed by Ko-

honen 1982 (220). The variance was normalised to one, and its mean to zero through a

linear transformation as shown on equation 4.1, guaranteeing that no electrode (chan-

nel) had a stronger influence over the others during the clustering analysis (also called

machine learning training). For SOFMs, scaling is important because, as explained in

section 1.1.5.2, the SOFMs algorithm is based on a Euclidean metric to measure the

distances between vectors.

x′ = (x− x̄)/σx (4.1)

where,

x̄ is the mean of the variable x

σx is its standard deviation

Once the data were suitable to be analysed an unsupervised machine learning ap-

proach was taken, as it will be explained next.

4.3.7 Unsupervised Machine Learning

4.3.7.1 Self-Organising Feature Maps

Self-organising feature maps (SOFM) were used as a clustering technique. The

SOFM was applied using the SOM Toolbox for MATLAB 5 (free download in: www.cis.hut.fi)

developed by The Helsinki University of Technology (59). The mathematical notation

has been well defined by Vatanen (2012)(221) and was discussed in section 1.1.5.2.

The data acquired from the subjects were split in two groups depending on the com-

partment of the forearm that was being inspected, i.e., anterior (flexor muscles) and

posterior (extensor muscles) compartment . Therefore, the two sets of data considered

per subject were analysed separately. Finally, these sets were further separated into

two sets: 60% for training and 40% for testing.

The settings applied equally for all subjects were: i) hexagonal lattice; ii) sheet

shape map; iii) random initialisation; iv) map size of [15,15]; v) batch algorithm train-

ing; and vi) a Gaussian neighbourhood.

The networks were trained, and a number of visualisation tools were used to assess

the response. Performance measures such as sensitivity and specificity were obtained

to test the 40% test data on the already trained data.
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4.3.7.2 Principal Component Analysis

Principal component analysis (PCA) was used in this research to further reduce the

dimensionality by merging similar features. Linear combinations are more likely to be

used due to their easiness in computing and, as described by Duda (2000)(170), being

“analytically tractable”.

PCA is a linear transformation between the acquired data and a new space, also

called PC space (PCs). The new PCs is based on the distribution of the original data.

According to Jolliffe (2002)(57), a PCA transformation is considered to be the one that

provides the largest variance for the first new variable and the largest variance for the

next new variables independent from the previous new variables.

If n is the number of trials or observations and p is the number of variables or

dimensions, then the raw data matrix is denoted by Xn×p - Equation 4.2, where the rows

correspond to trials or observations and the columns are variables. The transformation

is formulated as stated in Equation :

Yn×p = Xn×pCp×p (4.2)

The transformed data Yn×p should have maximum variance across observations,

meanwhile the columns of the transformation matrix, Cp×p are orthogonally indepen-

dent vectors in the new PCs representing the maximum variance directions from the

original space. The transformation matrix used was calculated through single value

decomposition (SVD), Jolliffe (2002)(57) and based on the values of n and p.

After applying the PCA on the HD-sEMG data, the resulting PCs were plotted to

further understand the resultant clustering. Further methods were applied as a way

assessing the performance of the classifiers by means of comparison. These methods

will be explained in the following section.

4.3.7.3 Data Validation

It is essential to quantify the performance of the classifiers used. Common validation

methods are known as the ones where results are compared given a known method. In

this case, supervised algorithms were used, i.e. Levenberg-Marquardt and the Neural

Network Pattern Recognition MATLAB built-in toolbox. The methodology used by

these methods is as follows:
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Levenberg-Marquardt Validation - The Levenberg-Marquardt (LM) provides a nu-

merical solution to the problem of minimizing a function. Function fitting is the process

of training a neural network on a set of inputs in order to produce an associated set

of target outputs. Once the neural network has fit the data, it forms a generalisation

of the input-output relationship and can be used to generate outputs for inputs it was

not trained on.

(J tJ + λI)δ = J tE (4.3)

where,

J is the Jacobian matrix for the system;

λ is the Levenbergs damping factor;

δ is the weight update vector that we want to find, and

E is the error containing the output errors.

The δ tells by how much we should change our network weight to achieve a better

solution.

The LM consists of solving equation 4.3 with a different λ values until the sum of

squared error decreases. The steps followed to achieve are enlisted next:

1. Compute the Jacobian (by using finite differences or the chain rule)

2. Compute the error gradient

g = J tE (4.4)

3. Approximate the Hessian using the cross product Jacobian :

H = J tJ (4.5)

4. Solve

(H + λI)δ = g (4.6)

to find δ

5. Update the network weights w using δ

6. Recalculate the sum of squared errors using the updated weights.
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7. If the sum of squared errors has not decreased, discard the new weights, increase

λ using v and go to step 4.

8. Else decrease λ using v and stop.

For this method, the mean squared error value (MSE) was obtained between the

outputs and the targets; lower values mean greater accuracy and zero means no error.

Furthermore, the percent error was also obtained to indicate the fraction of samples

which were misclassified.

Neural Network Pattern Recognition-MATLAB Built-in Toolbox - As mentioned

previously, the Neural Network (NN) Pattern Recognition toolbox was used. First the

data were split (30% training, 35% testing, and 35% validating); next, the dimension

of the data map was obtained (according to its size); finally, the network was evaluated

using mean squared error (MSE) and confusion matrices.

The NN Pattern Recognition toolbox is based on supervised learning with two-

layer feed-forward training (as depicted on Figure 4.14). This training classified inputs

according to target classes. The feed-forward networks consist of a series of two layers:

the first one is related to the network’s input, it consists of a hidden sigmoid of the

weights and the bias; the second layer produces the network’s output and is comprised

of a layer of neurones. These layers were used to classify the vectors. Increasing the

number of hidden neurones in the hidden layer is known to increase the power of the

network, but it required more computational resources and it is more likely to produce

over fitting.

The training function applied by this method is based on the update of the weight

and the bias values according to the scaled conjugate gradient method explained by

Moller (1993) (223). The performance function used was the MSE between the network

outputs and the target outputs defined, as shown in equation 4.7:

F = MSE =
1

N

N∑
i−1

(ei)
2 =

1

N

N∑
i−1

(ti − ai)2 (4.7)
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Figure 4.14: Neural Network For Pattern Recognition Diagram - Matlab Built-

in Toolbox - A two-layers feed-forward network. The first layer is composed of a hidden

sigmoid and the second layer is composed of output neurones. The network is trained with

scaled conjugate gradient back-propagation. Source: Matlab NN Pattern Recognition

Toolbox (222)

4.4 Chapter Conclusion

In this chapter, the methodology used in this research project was explained. Firstly,

the hardware familiarisation and software development was explained in detail. Sec-

ondly, the sample population was explained. Thirdly and last, the machine learning

algorithms applied to the acquired data was detailed and justified. In the next chapter,

the results and output are presented.
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5

Time and Time-Frequency Results

5.1 Summary

This chapter describes the performance of the volunteers participating in experi-

ments designed to investigate sEMG patterns related to differentiation of thumb oppo-

sition to different fingers. The results presented initially based on time domain analysis

and later on the basis of time and a joint frequency domain analysis.

5.2 Electromyographic Data Acquisition

As explained in section 4.2.4, HD-sEMG was acquired from 7 participants performing

thumb opposition movements. Data were collected from 4 areas of interest: i) thenar

muscles (single site); ii) FDI muscles (4 or 8-electrode grid); iii) anterior musculature

of the forearm (64-electrode grid); and iv) posterior musculature of the forearm (64-

electrode grid). In Figure 5.1, the electrode grids with the aforementioned configuration

are shown (in shaded blue) as they were placed for each volunteer.
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5.2 Electromyographic Data Acquisition

In each experiment the participant opposed their thumb to each of the remaining

4 digits until a total of 120 repetitions had been completed (30 per position). As the

subjects made each grip, the force applied between the thumb and the fingers was

measured, and a target force level of 30% was set. Each contraction was timed to last

5 seconds. An example of the acquired sEMG with its corresponding force profile is

shown in Figure 5.2, during a typical test for a random volunteer. A varying resting

period (5-7 seconds) was introduced between each action. The amplifier sampling rate

was set to 2048 samples per second, which produced a data matrix of size 121 channels

x 689,000 samples per subject. The total file size (per volunteer) was between 2 and

3Gb.
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5.2 Electromyographic Data Acquisition

Figure 5.2: Example of EMG and Force Exerted During a Test - Example of

the sEMG acquisition of a random sEMG channel showing 6 repetitions of an isometric

thumb opposition. This example represents a typical subject during a typical test randomly

chosen. Top: sEMG signal in time depicting 6 periods of thumb opposition. Bottom: Force

profile exerted during each action.
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5.2 Electromyographic Data Acquisition

As high density sEMG recording is a relatively new method, care was taken to

assess the quality of the data and exclude channels contaminated by noise. Evidence of

interference and noise were frequently encountered, and channels with noisy data were

systematically discarded as described in Section 4.2.4. In Figure 5.3, typical examples

of artefact contaminated sEMG signals in time and frequency are depicted. These

interferences were present all throughout the testing, and therefore, these channels

were discarded and not included for any further analysis.

Figure 5.3: Examples of Contaminated sEMG Signals - Typical examples of artefact

contaminated sEMG signal in time (left) and frequency content (right). In A. and C. the

signals have DC offset; for these cases, high peaks of approximately 3000 mV amplitude

are evident which can be associated with strong ambient noise, these is further inspected

their corresponding spectrum, where a clear peak at 60Hz buries the muscle potential

in the sEMG signal. For B., artefact contaminant noise is shown corresponding to a 60

Hz (highest amplitude peak in the spectrum) as well as its resonant frequencies. These

interferences were present all throughout the testing, therefore no filtering was needed and

hence, the channels were discarded and not considered for any further analysis.

The spectrum of the remaining channels was inspected, based on this, a notch filter

was applied to reduce the 50Hz electromagnetic interference. A raw HD-sEMG channel

randomly chosen is shown in Figure 5.4 - A; the raw sEMG spectrum shows a prominent
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5.2 Electromyographic Data Acquisition

peak at 50Hz which can be filtered via the use of the noted filter (Figure 5.4-B) to allow

a more effective data representation to be studied (Figure 5.4-C).

Figure 5.4: Resulting Filtered Signal Spectra After Notch Filtering - A random

channel from the HD-sEMG was chosen for ease of demonstration. (A) Raw HD-sEMG

randomly chosen with a clear peak at 50Hz; (B) Magnitude and phase response of the

notch filter applied to the raw data; and (C) Data response after (B) was applied.
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5.2 Electromyographic Data Acquisition

As mentioned previously, not all the acquired channels during the whole experiment

were viable due to interference and artefact noise, the number of available channels per

subject varied. This channel variation is summarised in Table 5.1 highlighting the

number of available channels per subject by each of the 2 electrode grids placed on the

forearm. This table shows that the channel yield ranged from 45% in Participant 6 to

100% in Participant 3 for the posterior grid, and from 48% in Participant 1 to 94% in

Participant 5 for the anterior grid, as channels with appropriate sEMG signal.

Table 5.1: Available Channels for each Subject in the Compartments of the Forearm after

Noise Inspection

Participant Posterior Grid Anterior Grid Yield as % of maximum

channels (Posterior - Anterior)

1 42 31 66 - 48

2 48 53 75 - 83

3 64 48 100 - 75

4 39 53 61 - 83

5 49 60 77 - 94

6 29 54 45 - 84

7 44 55 69 - 86

In Figure 5.5, the failure rate expressed as a % for each electrode grid is shown taking

into account all the subjects. This information furthers our understanding regarding

the variability of which area of the grids are most prone to electrode artefact problems

when this type of flat film electrode grid is placed on a complex shape such as the

forearm. Figure 5.5 shows that for the posterior grid the electrode sites numbered 52

to 55 have the greatest incidence of artefact when placed on the posterior aspect of the

forearm. While for the anterior compartment grid no specific areas appear to be more

problematic than others.
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5.2 Electromyographic Data Acquisition

Once the signal was treated, the data were inspected initially through the creation

of sEMG activity propagation plots. These plots better our understanding about the

interaction between the muscle groups underlying the compartments of the forearm

while the thumb was opposed to the remaining 4 fingers. An example of these plots

is shown in Figure 5.6, during a contraction period of 400ms, for channels 13-25 of an

electrode grid placed on the forearm. This Figure shows that each electrode will pick

up local EMG signal differently in relation to the underlying activity patterns.
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5.2 Electromyographic Data Acquisition

Figure 5.6: Example of sEMG Propagation from a 64-electrode Matrix Array

- Surface-EMG section demonstrating the muscle contraction propagation acquired using

a 64-electrode matrix array positioned on the posterior compartment of the forearm. The

contraction highlighted corresponds to a random isometric voluntary contraction. Each

row represents a column of electrodes from matrix array as shown at the beginning of each

group. Each segment has a 50 ms overlap, and each row represents a channel from the

complete electrode grid.
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5.3 Amplitude Signal Analysis

5.3 Amplitude Signal Analysis

To examine the EMG patterns received from signals deemed free from artefact or

associated with poor recording, the RMS of each non-discarded sEMG channel was

measure for each IVC. The RMS values were estimated using a 300ms window with a

50ms overlap from each grid placed on the forearm. Figure 5.7 shows 11 windows from

the complete IVC for each of the thumb opposition corresponding to the anterior grid.

The values displayed represent a typical participant during a typical test. A similar

shape is shared across positions with a varying amplitude for each of them. Common to

all, is the higher amplitude proximal to the fingers of the hand and a central activation

pattern distal to the hand and towards the elbow. Greater amplitude is shown by

position 4. Similarly, RMS windows for the posterior grid shown in Figure 5.8, share

the same propagation shape across positions, but clear amplitude differences (position 1

is deemed to be the highest and position 4 the lowest amplitude). Localised augmented

exertion areas can be seen in two regions: i) left of the grid proximal to the hand, and

ii) right of the grid distal to the hand. From these activation zones we can infer that the

musculature involved during thumb opposition are mainly underlying these particular

areas.
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5.3 Amplitude Signal Analysis

From the illustrated Figures 5.7 and 5.8, it can be seen that different spatial patterns

and amplitudes of EMG are obtained when the RMS values are plotted over the 300ms

windows covering the duration of the contraction. To accentuate the differences seen

in these examples, the 11 windows per grid of the forearm are averaged across each

repeated movement to the four different thumb postures. These grand averages are

shown in Figure 5.9, by position for each grid placed on the forearm. For the Anterior

grid, a different amplitude exertion is appreciated towards the hand for each position.

Similar amplitude levels are appreciated for position 1 and 4, as well as in between

position 2 and 3. An electrode at the centre-top of these four images seems to have

a clear decremental in amplitude, this may be due to no activity on that area but

most likely, and given the smooth transitions across electrodes, it is due to an electrode

miss-contract. Similarly to the anterior grid, the posterior grid has a clear amplitude

difference appreciated across positions, from a higher amplitude in position 1, towards

the lowest amplitude for position 4. Moreover, position 4 seems to have different

exertion and muscle propagation than the rest of the positions, the amplitude is clearly

less than the rest, but two sources of exertion are found at similar levels in both

amplitude and location.
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5.3 Amplitude Signal Analysis

Figure 5.9: Averaged Windows for Feature Extraction per Position - The RMS

values obtained during 11 windows of the IVC are averaged for each position of the thumb

per grid placed on the forearm. From the anterior grid (top 4 images) a different am-

plitude exertion is appreciated towards the fingers, for the different thumb movements.

Furthermore, a central exertion is appreciated which also varies depending on the position.

An electrode at the center-top of these four images seems to have a clear decremental in

amplitude, this may be due to no activity on that area but most likely, and given the

smooth transitions across electrodes, it may be due to an electrode miss-contract. Similar

analysis can be done to the posterior grid (bottom 4 images). Clear amplitude difference

is appreciated across positions, going from high amplitude to low amplitude from position

1 to 4. Position 4 seems to have different exertion and muscles involved than the rest of

the positions, the amplitude is lessen but there are two sources of exertion at similar levels

in amplitude and location.
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5.3 Amplitude Signal Analysis

As illustrated in Figure 5.9, raw HD-sEMG showed slight differences in amplitude

for the 4 different positions, i.e. position 1-secundus digitus manus; position 2-digitus

medius; position 3-digitus annularis; and position 4-digiti minimi. To further highlight

these differences, RMS values were calculated over the average for all 30 repetitions

per position. An additional analysis was performed over the obtained RMS values to

extract the feature distribution across the positions, for each channel by grid placed on

the forearm. Each position was plotted against the remaining 3 as shown in Figure 5.10.

Each position of the thumb has been categorised into coloured clusters to facilitate the

interpretation of this feature variation. For the anterior grid, the difference between

features becomes tight for amplitudes ≥ 10. On the other side, the posterior grid has

a clearer feature separation all throughout, but position 4 seems to have little feature

variation, similar to the amplitude response found in Figure 5.9. The RMS analysis for

feature distribution for all subjects, can be found in Appendix 8.6.
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5.3 Amplitude Signal Analysis

Figure 5.10: RMS Values for Feature Distribution in the Compartments of the

Forearm - RMS values for the four different positions of the thumb. Position 1- thumb

opposition with the index finger, position 2- thumb opposition with the middle finger,

position, 3- thumb opposition with the ring finger, and position 4- thumb opposition with

the pinky finger. The different positions are shown in 2D plots. These plots show the

clustering when plotted against each other, making the variability amongst positions more

evident. For the anterior grid, the difference between features becomes tight for amplitudes

≥ 10. On the other side, the posterior grid has a clearer feature separation all throughout,

but position 4 seems to have little feature variation, similar to the amplitude response

found in Figure 5.9. The RMS analysis for feature distribution for all subjects, can be

found in Appendix 8.6
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5.3 Amplitude Signal Analysis

The RMS exertion graphs were similar all throughout the subjects. In the next

section, a statistical approach was undertaken to better our understanding regarding

the muscle propagation whilst different thumb oppositions.

5.3.1 Statistical Analysis Between the Different Thumb Oppositions

The one-way ANOVA tested the equality in the distribution of the four thumb

positions. Firstly, the ANOVA was applied throughout the IVC split into the same

windows as before (300ms with 50ms overlap). Secondly, ANOVA was applied over the

averaged RMS exertions (grand averages) to further understand the differences across

positions of the thumb.

Figure 5.11 summarises the analysis performed when the data were split into win-

dows of 300ms time. This was separated by compartment and by thumb opposition.

The sEMGs graphs during the IVC (per position) are shown in blue; furthermore, 4

windows were randomly chosen: 1st- whilst at rest (before contraction); 2nd- at the

beginning of the exertion; 3rd- at the end of the exertion; and 4th- after the contrac-

tion. Each of these windows display the ANOVA analysis and the comparison between

the obtained p-values (multiple comparison). These configuration allowed to further

understand the variability between positions. The resulting p-values obtained with this

analysis are shown in Appendix 8.8 separated by subject, grid and timed windows.
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5.3 Amplitude Signal Analysis

The p-values obtained from the windowed ANOVA analysis are shown in Table

5.2 as a % of the significance in the means by the two separate grids placed on the

forearm. The significance between the means for the posterior grid ranges from 81%

for Participant 1 to 98% for Participants 2, 3, 4, 5 and 7. Similarly, the range in the

anterior grid found is 92% for Participant 1 to 98% for Participants 2 and 4. The

distribution of the p-values across participants is found in Figure 5.12 and 5.13for

the anterior and posterior grids, respectively. The significant p-values (≤ 0.05) are

highlighted by the grey shaded area. A p-value expected to be outside the significance

range, and common for both grids, is that of the 48th window (representative to resting

period), and the means for all the positions are expected to be similar between each

other.

Table 5.2: Significant P-Values per Subject Separated by Electrode Grids Across 48 Bins

of Timed Windows (350ms each)

Participant Yield as % of significant p-values

Posterior Grid Anterior Grid

1 81 92

2 98 98

3 98 92

4 98 98

5 98 96

6 96 94

7 98 96
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5.3 Amplitude Signal Analysis

Figure 5.12: P-values for Anterior Grid per Subject - P-values obtained from the

grid placed on the anterior compartment of the forearm separated by 48 windows of 300

ms each, as well as by subject. The last 3 windows, corresponding to the last 750ms of

the IVC represent the transition of movement from contraction towards a relax position,

therefore, the last 3 timed window values are expected not to be in within the range of

significance. In shaded blue we find the statistically significant range were the p-values are

≤ 0.05. The values outside this range and between the 1st and the 45th window refers to

the impossibility to differentiate between the means of the different positions of the thumb.

The last 3 windows are associated to a section of the resting period.
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5.3 Amplitude Signal Analysis

Figure 5.13: P-values for Posterior Grid per Subject - P-values obtained from the

grid placed on the posterior compartment of the forearm separated by 48 windows of 300

ms each, as well as by subject. The last 3 windows, corresponding to the lst 750ms of

the IVC represent the transition of movement from contraction towards a relax position,

therefore, the last 3 timed window values are expected not to be in within the range of

significance. In shaded blue we find the statistically significant range were the p-values are

≤ 0.05. The values outside this range and between the 1st and the 45th window refers to

the impossibility to differentiate between the means of the different positions of the thumb.
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5.3 Amplitude Signal Analysis

The single case shown in the preceding Figure 5.9 illustrated a clear change in

the sEMG spatial activation and amplitude when a subject moves from one thumb

opposition position to another (P1 −→ P4). To explore this further across all subjects,

a second ANOVA analysis was performed over the averaged RMS exertions (grand

averages) to further understand the differences across positions of the thumb. In Figure

5.14 the ANOVA analysis on the anterior grid is presented. From Figure 5.14-A, the

ANOVA across the 4 positions is shown with a p-value of 7.26×10−6 ≤0.05, this result

is further explored in Figure 5.14-B where the multiple comparison is applied and can

be seen that the positions whose means are different in between are: i) position 1 and

4; ii) position 2 and 3; and iii) position 2 and 4. and it can be seen that and in Figure

5.15 the corresponding analysis on the posterior grid.

Figure 5.14: ANOVA Analysis Applied in Anterior Grid for the Averaged

Positions - One-way ANOVA with 95% confidence interval (0.05 significance level) applied

on the averaged RMS values obtained over 11 windows of time during each IVC for the

anterior grid. On the left, the ANOVA analysis shows the different variability in within

the amplitude of each position of the thumb with a p value of 7.26× 10−6 suggesting that

at least one mean is significantly different than the others. On the right side, a multiple

comparison was performed to fully understand how the means are different amongst each

other: the mean of position 1 is significantly different to that of position 3 and 4; position

2 is significantly different to position 4; position 3 is significantly different to position 1

and 4; and position 4 is significantly different to position 1, 2 and 3.

Similar results are found for the posterior grid shown in Figure 5.15. From Figure

5.15-A, the ANOVA across the 4 positions is shown with a p-value of 1.93×10−14 ≤0.05,

this result is further explored in Figure 5.15-B where the multiple comparison is applied
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5.4 Time-Frequency Analysis

and the variation between means are clearly seen. The position whose means are

different in between are: i) position 1 and 3; ii) position 1 and 4; iii) position 2 and 4;

and iv) position 3 and 4.

Figure 5.15: ANOVA Analysis Applied in Posterior Grid for the Averaged

Positions - One-way ANOVA with 95% confidence interval (0.05 significance level) applied

on the averaged RMS values obtained over 11 windows of time during each IVC for the

posterior grid. On the left, the ANOVA analysis shows the different variability in within

the amplitude of each position of the thumb with a p value of 1.93× 10−14 suggesting that

at least one mean is significantly different than the others. On the right side, a multiple

comparison was performed to fully understand how the means are different amongst each

other: the mean of position 1 is only significantly different to that of position 3; position

2 is significantly different to that of position 3 and 4; position 3 is significantly different to

position 1; and position 4 is significantly different to position 1 and 2.

No correction (e.g. Bonferroni correction) was applied since the data was only being

tested to one hypothesis, hence, no multiple comparison error was encountered.

The difference found for each of section of the forearm is due to the extent of activity

detected by the electrode grids. This difference in the signal propagation is related to

the anatomical differences between compartments.

5.4 Time-Frequency Analysis

In this section, the time-frequency analyses on the HD-sEMG data are shown. Co-

herence analysis (EMG-EMG) was applied which was separated into two different set

of results: First one, modulated response (due to the exerted force modulation) and
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5.4 Time-Frequency Analysis

the second one, a steady response (where no load was applied while thumb exertion

and therefore, no feedback was provided to the participant).

5.4.1 EMG-EMG Coherence

This analysis aims to highlight the synergistic behaviour in between the intrinsic and

extrinsic muscles of the hand. This information will lead to a better understanding with

regards the possibility of a neurophysiological control for prosthetic hands specifically

for thumb movement.

As described in section 4.3.5.1, the coherence analysis applied to the data collected

using the test rig led to modulations (functional task) of the signal in the frequency

content, therefore, a later acquisition from one additional (randomly chosen) subject

was used to further investigate these frequencies when a steady condition (postural task)

was met. This set of testing (modulated and steady conditions) has been previously

described by Farmer(198).

5.4.1.1 Coherence Analysis - Functional Task

The coherence analysis was performed between the electrode grids placed on the in-

trinsic (thenar and FDI muscles) and the extrinsic (flexor and extensor muscle groups)

hand muscles: i,ii) 64-electrode grid in the forearm overlying the flexor and exten-

sor muscles; iii) 8-electrode grid overlying the FDI muscle; and iv) single site on the

Thenar muscles. The available channels per subject from the grids have been previously

shown on Table 5.1. These channels were cross-correlated in both time and frequency.

Throughout this analysis, some signals showed a high level of signal cross-talk. The

results that were found to have cross-talk were characterised by a narrow central peak

in the cumulant frequency as well as a higher amplitude in the cross-intensity than the

rest. A cross-talked coherence value was considered to be ≥ 0.4, with a steady and

perfectly synchronised frequency spectra as shown in Figure 5.16.
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5.4 Time-Frequency Analysis

Figure 5.16: Example of a Cross-talked Signal Discarded For Coherence Anal-

ysis - Resulting coherence analysis between two electrode pairs from different the thenar

muscles and the extensors of the hand. It is shown that there is clear crosstalk with steady

coherence at 0.4 (left hand side) perfectly synchronised (graph on the right side). The

signals analysed that shared these characteristics were discarded for this analysis.
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5.4 Time-Frequency Analysis

As not all the acquired channels were viable for the coherence analysis due to cross-

talk, the number of available channels per subject varied. This channel variation is

summarised in Table 5.3 as well as the yield of available channels for coherence analysis.

Table 5.3: Channels without Cross-Talk Available for Coherence Analysis for each Sub-

ject, Separated by Compartments of the Forearm

Participant Posterior Grid Anterior Grid Yield as % of maximum channels

Posterior - Anterior

1 37 15 97 - 48

2 46 23 100 - 51

3 48 0 74 - 0

4 29 1 64 - 2

5 7 38 20 - 69

6 16 60 55 - 97

7 1 2 2 - 5

Although in the above table the yield of channels without the presence of cross-talk

is highlighted, this does not necessarily mean that all the channels will have significant

coherence. The rhythmic coupling between the muscles of the hand is different across

subjects, and therefore, the coherence between them will be different. The channels

that showed significant coherence values are summarised in Table 5.4
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5.4 Time-Frequency Analysis

Table 5.4: Channels Showing Significant Coherence Between Muscle Groups per Subject

- Modulated Condition

Participant Posterior Grid Anterior Grid

and FDI and Thenar Muscles and FDI and Thenar Muscles

1 - - - -

2 - - ch. 34 and FDI ch. 34

3 - - - -

4 - - - -

5 - - -

6 - - - -

7 - - - -

The results displayed in Section 5.4.1.2 show the coherence analysis in time and

frequency between the 3 sites: i) Anterior grid located superior to the flexor muscles,

and ii) The intrinsic muscles of the hand (FDI and thenar muscles). These results are

further separated by position of the thumb. As depicted in Table 5.4 only 2 pair of sites

were significant for coherence analysis during an IVC while modulating the response

targeting a determined force exertion level.

5.4.1.2 Coupling Between Flexor Muscles and Intrinsic Hand Muscles

The coherence analysis results were found to be between the channel 34 and the

complete electrode grid positioned on the FDI muscle , and the thenar muscles (Figure

5.17 ). From the anterior grid, the site underlying the coherent electrode corresponds

to the flexor pollicis longus muscle, this muscle is in charge of thumb flexion and the

only muscle from the extrinsic-anterior muscles of the hand, exclusively in charge of

thumb movement.
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5.4 Time-Frequency Analysis

The complete coherence analysis between these sites separated by positions is shown

next.

Position 1: Thumb opposed to secundus digitus manus - Figures 5.18 and 5.19

show the coherence estimate and cumulant analysis between rectified ch. 34 of the

flexor muscles (located superior to the flexor pollicis longus) and the FDI muscle while

the thumb was being opposed to the secundus digitus manus (position 1). The site

represented by the FDI muscle is composed by an 8 electrode array. From Figure

5.18, it can be appreciated that the 8 electrodes follow a similar shape with a variable

amplitude. The shape of the coherence estimate shows a tendency for low frequency

coupling (1-17Hz) with peaks at 4, 8 and 15Hz. These rhythmic coupling components

of the sEMG coherent estimate are not evident separable features, this becomes clear

when we further inspect Figure 5.19 and note the absence of the appropriate delays

(±250 ms, ±125ms, and ±66ms, respectively). The cumulant itself is dominated by a

broad central peak at 0ms and tailing off out to ±50ms. Even though the coherence

peaks appear to scale depending on the level of the FDI muscle that is being analysed,

none of these features are present in the cumulant, suggesting that the changes in

coherence estimate peaks amplitude are not simply related to changes in the sEMG

amplitude, but reflect differences in the rhythmic waves of the EMG patterns received

from spatially distributed hand sEMG recordings.
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5.4 Time-Frequency Analysis

Similarly, Figures 5.20 and 5.21 show the coherence estimate and cumulant analysis

between rectified ch. 34 of the flexor muscles (located superior to the flexor pollicis

longus) and the thenar muscles while the thumb was being opposed to the secundus

digitus manus (position 1). From Figure 5.20, it can be appreciated that in general,

this shape follows the same pattern as the ones compared between the FPl and the

FDI muscles. The shape of the coherence estimate shows a tendency for low frequency

coupling (1-11Hz) with peaks at 4 and 9Hz. These rhythmic coupling components of the

sEMG coherent estimate are not evident separable features, this becomes clear when we

further inspect Figure 5.21 and note the absence of the appropriate delays (±250 ms and

±111ms, respectively). The cumulant itself is dominated by a broad central peak at 0ms

and tailing off out to ±50ms. None of features from the coherence estimate are present

in the cumulant, suggesting that the changes in coherence estimate peaks amplitude

are not simply related to changes in the sEMG amplitude, but reflect differences in the

rhythmic waves of the sEMG patterns received from spatially distributed hand sEMG

recordings.
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5.4 Time-Frequency Analysis

Position 2: Thumb opposed to digitus medius - Figures 5.22 and 5.23 show the

coherence estimate and cumulant analysis between rectified ch. 34 of the flexor muscles

(located superior to the flexor pollicis longus) and the FDI muscle while the thumb was

being opposed to the digitus medius (position 2). The site represented by the FDI

muscle is composed by an 8 electrode array. From Figure 5.22, it can be appreciated

that the 8 electrodes follow a similar shape with a variable amplitude. A significant low

frequency (3-13)Hz coherence estimate peaking at 5Hz with a magnitude of (0.0386±
0.0028) is appreciated. These rhythmic coupling components of the sEMG coherence

estimate are not evident separable features when the cumulant is analysed in Figure

5.23 presenting a clear absence of ±200 ms delay. The cumulant itself is dominated by a

broad central peak at 0ms and tailing off out to±50ms. Even though the coherence peak

appear to scale depending on the level of the FDI muscle that is being analysed, none

of these features are present in the cumulant, suggesting that the changes in coherence

estimate peaks amplitude are not simply related to changes in the sEMG amplitude,

but reflecting differences in the rhythmic waves of the EMG patterns received from

spatially distributed hand sEMG recordings.
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5.4 Time-Frequency Analysis

Similarly, Figures 5.24 and 5.25 show the coherence estimate and cumulant analysis

between rectified ch. 34 of the flexor muscles (located superior to the flexor pollicis

longus) and the thenar muscles while the thumb was being opposed to the digitus

medius (position 2). From Figure 5.24, it can be appreciated that in general, this shape

follows the same pattern as the ones compared between the FPl and the FDI muscles.

The shape of the coherence estimate shows a tendency for low frequency coupling (3-

11)Hz with a peak at 5Hz. This rhythmic coupling component of the sEMG coherent

estimate is not an evident separable feature, becoming clear when we further inspect

Figure 5.25 and note the absence of the appropriate delay at ±200 ms. The cumulant

itself is dominated by a broad central peak at 0ms and tailing off out to ±50ms. The

peak from the coherence estimate is not present in the cumulant, suggesting that the

changes in coherence estimate peak amplitude is not simply related to changes in the

sEMG amplitude, but a reflection of the differences in the rhythmic waves of the sEMG

patterns received from spatially distributed hand sEMG recordings.
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5.4 Time-Frequency Analysis

Position 3: Thumb opposed to digitus annularis - Figures 5.26 and 5.27 show the

coherence estimate and cumulant analysis between rectified ch. 34 of the flexor muscles

(located superior to the flexor pollicis longus) and the FDI muscle while the thumb was

being opposed to the digitus annularis (position 3). The site represented by the FDI

muscle is composed by an 8 electrode array. From Figure 5.26, it can be appreciated

that the 8 electrodes follow a similar shape with a variable amplitude. A significant

low frequency (2-17)Hz coherence estimate peaking at 4 and 15Hz with a magnitude of

(0.0386 ± 0.0028) and (0.0096 ± 0.0032), respectively, is appreciated. These rhythmic

coupling components of the sEMG coherence estimate are not evident separable features

when the cumulant is analysed in Figure 5.27 presenting a clear absence of ±250ms and

±66ms delays. The cumulant itself is dominated by a broad central peak at 0ms and

tailing off out to ±50ms. Even though the coherence peaks appear to scale depending

on the level of the FDI muscle that is being analysed, none of these features are present

in the cumulant, suggesting that the changes in coherence estimate peaks amplitude

are not simply related to changes in the sEMG amplitude, but reflecting differences

in the rhythmic waves of the EMG patterns received from spatially distributed hand

sEMG recordings.

169



5.4 Time-Frequency Analysis

F
ig

u
re

5
.2

6
:

C
o
h
e
re

n
c
e

E
st

im
a
te

A
n

a
ly

si
s

B
e
tw

e
e
n

F
D

I
a
n

d
F

le
x
o
r

(C
h

.
3
4
)

M
u

sc
le

s
-

P
o
si

ti
o
n

3
-

C
o
h

er
en

ce

es
ti

m
at

e
an

al
y
si

s
re

su
lt

s
fo

r
P

os
it

io
n

3
b

et
w

ee
n

a
si

te
lo

ca
te

d
in

th
e

a
n
te

ri
o
r

g
ri

d
(c

o
rr

es
p

o
n

d
in

g
to

th
e

F
P

l
m

u
sc

le
).

C
o
m

m
o
n

to

th
e

8-
el

ec
tr

o
d

e
ar

ra
y

gr
id

on
th

e
F

D
I

m
u

sc
le

is
a

si
g
n

ifi
ca

n
t

lo
w

fr
eq

u
en

cy
ra

n
g
e

co
h

er
en

ce
o
f

[2
-1

7
]H

z
w

it
h

a
p

ea
k

a
t

4
H

z
a
n

d
a

m
ag

n
it

u
d

e
of

(0
.0

38
6
±

0
.0

02
8)

an
d

a
p

ea
k

at
15

H
z

w
it

h
m

a
g
n

it
u

d
e

o
f

(0
.0

0
9
6
±

0.
0
0
3
2
).

T
h

e
in

fo
rm

a
ti

o
n

o
b

ta
in

ed
fr

o
m

th
is

fi
g
u

re

sh
ou

ld
b

e
u

se
d

in
co

n
ju

n
ct

io
n

w
it

h
F

ig
u

re
5.

27
fo

r
th

e
rh

y
th

m
ic

co
u

p
li

n
g

to
b

e
fu

ll
y

u
n

d
er

st
o
o
d

.

170



5.4 Time-Frequency Analysis

F
ig

u
re

5
.2

7
:

C
u

m
u

la
n
t

A
n

a
ly

si
s

fr
o
m

th
e

C
o
h

e
re

n
c
e

E
st

im
a
te

B
e
tw

e
e
n

F
D

I
a
n

d
F

le
x
o
r

C
h

.
3
4

-
P

o
si

ti
o
n

3
-

T
h

e

cu
m

u
la

n
t

co
n
ta

in
s

a
ce

n
tr

al
p

ea
k

at
0m

s
an

d
a

m
a
g
n

it
u

d
e

o
f

0
.0

3
2
8

ta
il

in
g

o
ff

o
u

t
to
±

5
0
m

s.
T

h
e

p
ea

k
s

fo
u

n
d

a
t

4
a
n

d
1
5
H

z
a
re

n
ot

ev
id

en
t

in
th

is
an

al
y
si

s.
T

h
is

b
ec

om
e

cl
ea

r
b
y

th
e

a
b

se
n

ce
o
f

d
el

ay
ed

p
ea

k
s

a
t
±

2
5
0
m

s
a
n

d
±

6
6
m

s.
T

h
is

a
b

se
n

ce
su

g
g
es

ts
th

a
t

th
e

d
iff

er
en

ce
s

in
th

e
co

h
er

en
ce

p
ea

k
s

am
p

li
tu

d
es

a
re

n
o
t

si
m

p
ly

re
la

te
d

to
th

e
ch

a
n

g
es

in
sE

M
G

a
m

p
li

tu
d

es
,

b
u

t
a
ls

o
a

re
fl

ec
ti

o
n

of
th

e
d

iff
er

en
ce

s
in

th
e

rh
y
th

m
ic

w
av

es
of

th
e

sE
M

G
p

a
tt

er
n

s
fr

o
m

th
e

sp
a
ti

a
ll

y
d

is
tr

ib
u

te
d

h
a
n

d
re

co
rd

in
g
s.

171



5.4 Time-Frequency Analysis

Similarly, Figures 5.28 and 5.29 show the coherence estimate and cumulant analysis

between rectified ch. 34 of the flexor muscles (located superior to the flexor pollicis

longus) and the thenar muscles while the thumb was being opposed to the digitus

annularis (position 3). From Figure 5.28, it can be appreciated that in general, this

shape follows the same pattern as the ones compared between the FPl and the FDI

muscles. The shape of the coherence estimate shows a tendency for low frequency

coupling (2-17)Hz with a peak at 4Hz. This rhythmic coupling component of the

sEMG coherent estimate is not an evident separable feature, becoming clear when we

further inspect Figure 5.29 and note the absence of the appropriate delay at ±250 ms.

The cumulant itself is dominated by a broad central peak at 0ms and tailing off out

to ±50ms. The peak from the coherence estimate is not present in the cumulant (at

±250ms), suggesting that the changes in coherence estimate peak amplitude is not

simply related to changes in the sEMG amplitude, but a reflection of the differences

in the rhythmic waves of the sEMG patterns received from spatially distributed hand

sEMG recordings.
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5.4 Time-Frequency Analysis

Position 4: Thumb opposed to digitus minimus manus - Finally, Figures 5.30 and

5.31 show the coherence estimate and cumulant analysis between rectified ch. 34 of

the flexor muscles (located superior to the flexor pollicis longus) and the FDI muscle

while the thumb was being opposed to the digitus minimus manus (position 4). The

site represented by the FDI muscle is composed by an 8 electrode array. From Figure

5.30, it can be appreciated that the 8 electrodes follow a similar shape with a variable

amplitude. A significant low frequency (2-20)Hz coherence estimate peaking at 3, 8, 12

and 18Hz with a magnitude of (0.0193±0.0019), (0.0136±0.0015), (0.0082±0.0013) and

(0.0070± 0.0009), respectively, are appreciated. These rhythmic coupling components

in the sEMG coherence estimate are not evident separable features when the cumulant

is analysed in Figure 5.31 presenting a clear absence of ±333ms, ±125ms, ±83ms and

±55ms delays. The cumulant itself is dominated by a broad central peak at 0ms and

tailing off out to ±50ms with a peak at the top inferring a short-time synchronisation.

Even though the coherence peaks appear to scale depending on the level on the FDI

muscle that is being analysed, none of these features are present in the cumulant,

suggesting that the changes in coherence estimate peaks amplitude are not simply

related to changes in the sEMG amplitude, but reflecting differences in the rhythmic

waves of the EMG patterns received from spatially distributed hand sEMG recordings.
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5.4 Time-Frequency Analysis

Similarly, Figures 5.32 and 5.33 show the coherence estimate and cumulant analysis

between rectified ch. 34 of the flexor muscles (located superior to the flexor pollicis

longus) and the thenar muscles while the thumb was being opposed to the digitus

annularis (position 3). From Figure 5.32, it can be appreciated that in general, this

shape follows the same pattern as the ones compared between the FPl and the FDI

muscles. The shape of the coherence estimate shows a tendency for low frequency

coupling (2-14)Hz with peaks at 7 and 11Hz. These rhythmic coupling component

of the sEMG coherent estimate is not an evident separable feature, becoming clear

when we further inspect Figure 5.33 and note the absence of the appropriate delay at

±142ms and ±90ms. The cumulant itself is dominated by a broad central peak at 0ms

and tailing off out to ±50ms. The peaks from the coherence estimate are not present

in the cumulant (at ±142ms and ±90ms), suggesting that the changes in coherence

estimate peak amplitude is not simply related to changes in the sEMG amplitude, but

a reflection of the differences in the rhythmic waves of the sEMG patterns received

from spatially distributed hand sEMG recordings.
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5.4 Time-Frequency Analysis

5.4.1.3 Summary of all Positions

Finally, in Figure 5.34 and 5.35 the different positions of the thumb are shown for

the coherence analysis between the FDI muscle belly (located in the middle of the 8-

electrode grid) and channel 34 of the flexor muscles (positioned over the FPl). The

first Figure shows the coherence estimate across the positions that the thumb was

opposed to. These graphs show a similar significant low frequency range (2-20)Hz.

With regards to the shape, position 2 and 3 follow the same type of trace with different

amplitude, where position 1 and 4 share similar traces and similar amplitude peaks.

From the cumulant analysis in the latter figure, a central peak, common to all positions,

is appreciated at 0ms tailing off to ±50ms with a short-time synchronisation burst at

the top of the central peak. In Table 5.5 a summary of these differences are shown.

Table 5.5: Summary of Coherence Between FDI Muscle Belly and Flexor Pollicis Longus

(Ch. 34 of Anterior Grid)

Position Range (Hz) Peaks (Hz - magnitude)

(4 -0.0184)

1 (1-17) (8 - 0.0188)

(15 - 0.0074)

2 (3-13) (5 - 0.0386)

3 (2-17) (4 - 0.0386)

(15 - 0.0096)

(3 - 0.0193)

4 (2-20) (8 - 0.0136)

(12 - 0.0082)

(18 - 0.0070)
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5.4 Time-Frequency Analysis

In Figure 5.36 and 5.37 the different positions of the thumb are shown for the

coherence analysis between the thenar muscles and channel 34 of the flexor muscles

(positioned over the FPl). The first Figure shows the coherence estimate across the

positions that the thumb was opposed to. This graph shows similar traces across the

positions, alike significant low frequency range (2-17)Hz. With regards to the shape,

position 2 and 3 follow the same type of trace shape with different amplitude, and

position 1 and 4 share little similarities amongst them. From the cumulant analysis in

the latter Figure, a central peak, common to all positions, is appreciated at 0ms tailing

off to ±50ms with a short-time synchronisation burst at the top of the central peak,

this is particularly evident for position 3. In Table 5.6 a summary of these differences

are shown.

Table 5.6: Summary of Coherence Between Thenar Muscle and Flexor Pollicis Longus

(Ch. 34 of Anterior Grid)

Position Range (Hz) Peaks (Hz - magnitude)

1 (1-11) (4 -0.0180)

(9 - 0.0220)

2 (3-11) (5 - 0.0325)

3 (2-17) (4 - 0.0490)

4 (2-14) (7 -0.0120 )

(11 - 0.0080)
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5.4 Time-Frequency Analysis

5.4.2 Relation Between the RMS Values of the sEMG and the Area Under

the Curve Obtained from the Coherence Analysis

The RMS values obtained in Section 5.2 were related to the area under the curve

from the lower range of frequencies (approximately between 1-18Hz) of each position of

the thumb. This results help in the understanding with regards to the amplitude of the

sEMG as a feature distribution (positions) against the coherence estimate values as the

area under the curve found for each pair of muscles. On one side, the RMS values show

that the pattern of activity level is different, on the other side, the coherence analysis

shows that the patterns of coupling between muscles seem to change also in relation to

the different positions. If these two results are merge together, a further distribution

can be obtained as it is shown in Figure 5.38.
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5.4 Time-Frequency Analysis

Figure 5.38: Comparison Between RMS Values and Coherence Amplitude,

calculated as Area Under the Curve - In this figure, the RMS values obtained from

Section 5.2 and the area under the curve for each of the electrodes on the Thenar and FDI

muscles from ch. 34 from the Flexor muscles are shown.
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5.4 Time-Frequency Analysis

5.4.3 Coherence Analysis - Postural Task

As for the steady condition, the same analysis (as the modulated counterpart) was

performed, and is shown from Figures 5.40 to 5.47. This analysis was performed from

a later data acquisition (with the same setup that has been described throughout this

thesis) to further investigate the frequencies when a steady condition was met. It was

found that common for all the coherence analysis, position 1 (thumb opposed to index

finger) had a clear constant positive coherence from 1-80Hz. This steady coherence is

generally associated with cross-talk, therefore, position 1 was eliminated for the steady

contraction analysis for most of the cases. An example of this phenomena is shown

in Figure 5.39. Moreover, as it will be shown in some of the signals in time, when

position 1 is exerted, the amplitude is the same as the baseline, inferring that during

that task, there is from very little to none muscular activity. This last part might be

due to this movement being the same as the natural position of the hand. On Table

5.7, the summary of the frequency range found for the coherence analysis during the

steady contraction and the peaks found with their corresponding magnitude is shown.

Figure 5.39: Cross-talk shown for Position 1 from Coherence and Cross-

Intensity Analysis performed during a Steady Contraction for All Positions

- The red line (corresponding to Position 1) represents constant coherence from 1-80Hz.

This is more evident when compared to the other positions where the peaks vary in ampli-

tude and duration. This constant coherence for such a wide frequency range is defined as

cross-talk and, therefore, this position has been discarded for most of the steady condition

analysis.
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5.4 Time-Frequency Analysis

Figure 5.40: Signals used for Coherence Analysis between the FDI Muscle and

the Extensor Muscles During Steady Contractions - Top - Signal acquired during

the opposition tasks, from an electrode from an 8-electrode array placed on top of the FDI

muscle. Bottom - Signal acquired from an electrode of the 64-electrode array placed onto

the Extensor muscles. The numbers in both of the graphs indicate the position that was

opposed for each resulting contraction.
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5.4 Time-Frequency Analysis

Figure 5.41: Coherence Analysis Results between the FDI Muscle and the

Extensor Muscles During Steady Contractions for Different Positions of the

Thumb - Resulting coherence found in 4 electrodes placed over of the Extensor muscles:

41, 42, 43 and 44. At the top of this image, the four electrode placement is shown by

the red rectangle. Coherence was found for all the electrodes in the 64-electrode array

but the ones proximal to the wrist. The extended results of this analysis can be found in

Appendix 8.9.1. A lower frequency range of 2-18Hz and a higher of 20-40Hz are shown. At

the top right, the muscles represented in the image of the forearm are underlined; muscle

names that are in bold, are the ones that have a direct involvement on the movement of

the thumb. In most cases, these muscles are found in the deep layer of the forearm.
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5.4 Time-Frequency Analysis

Figure 5.42: Signals used for Coherence Analysis between Thenar and Extensor

Muscles During Steady Contractions - Top - Signal acquired during the opposition

tasks,from an electrode in an 8-electrode array placed over the thenar muscles. There is a

clear lack of significant muscular activity when position 1 is maintained. Bottom - Signal

acquired from an electrode of the 64-electrode array placed over the extensor muscles.

The numbers in both graphs indicate the position that was opposed for each resulting

contraction.
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5.4 Time-Frequency Analysis

Figure 5.43: Coherence Analysis Results between Thenar and Extensor Mus-

cles During Steady Contractions for the Different Positions of the Thumb -

Resulting coherence found in 4 electrodes placed on top of the Extensor muscles: 27, 28,

29 and 30. At the top of this image, the location of these electrodes is shown by the red

rectangle, furthermore, the coherence found for all the electrodes in the 64-electrode array

are shown in Appendix 8.9.2. For this coherence analysis, three frequency ranges can be

seen, particularly for position 3, the lower frequency range is found between 10-20Hz, the

middle range from 25-35Hz and the higher frequency range between 45-55Hz. The greatest

amplitude is found during the lower frequency range. At the top right, the muscles repre-

sented in the image of the forearm are underlined; muscle names that are in bold, are the

ones that have a direct involvement on the movement of the thumb. In most cases, these

muscles are found in the deep layer of the forearm.
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5.4 Time-Frequency Analysis

Figure 5.44: Signals used for Coherence Analysis between the FDI Muscle and

the Flexor Muscles During Steady Contractions - Top - Signal acquired during the

opposition tasks, from an electrode from an 8-electrode array placed over the FDI muscle.

Bottom - Signal acquired from an electrode of the 64-electrode array placed over the flexor

muscles. The numbers in both graphs indicate the position that was opposed for each

resulting contraction.
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5.4 Time-Frequency Analysis

Figure 5.45: Coherence Analysis Results between the FDI Muscle and the

Flexor Muscles During Steady Contractions for the Different Positions of the

Thumb - Resulting coherence found in 4 electrodes placed over the Flexor muscles: 31,

32, 33 and 34. At the top, the location of these electrodes is shown by the red rectangle;

the coherence results for all the electrodes in the 64-electrode array are shown in Appendix

8.9.3. For this coherence analysis, two frequency ranges can be seen, the lower frequency

range is found between 5-25Hz, the higher range from 25-45Hz. The difference between

position is clearly seen by different amplitude in within the same frequency range. At the

top left, the muscles represented in the image of the forearm are underlined; muscle names

that are in bold, are the ones that have a direct involvement on the movement of the

thumb. In most cases, these muscles are found in the deep layer of the forearm. There is

also a large central cumulant peak (bottom) indicating significant EMG-EMG coherence.
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5.4 Time-Frequency Analysis

Figure 5.46: Signals used for Coherence Analysis between Thenar and Flexor

Muscles During Steady Contractions - Top - Signal acquired during the opposition

tasks,from an electrode from an 8-electrode array placed over the thenar muscles. Bottom -

Signal acquired from an electrode of the 64-electrode array placed onto the Flexor muscles.

The numbers in both graphs indicate the position that was opposed for each resulting

contraction.
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5.4 Time-Frequency Analysis

Figure 5.47: Coherence Analysis Results between Thenar and Flexor Muscles

During Steady Contractions for the Different Positions of the Thumb - Resulting

coherence found in 4 electrodes placed over the Flexor muscles: 47, 48, 49 and 50. At the

top, the location of these electrodes is shown by the red rectangle; the coherence results

found for all the electrodes in the 64-electrode array are shown in Appendix 8.9.4. For this

coherence analysis, the top electrodes depicted in the graphs have a constant frequency

range peak for position 2, from 5-35Hz, the 15-25Hz range has a decremental in amplitude

in the bottom 2 electrodes shown here. For position 3 and 4, two frequency ranges can be

seen, the lower frequency range is found between 5-15Hz, the higher range from 25-35Hz.

The difference between position is clearly seen by different amplitude in within the same

frequency range. At the top left, the muscles represented in the image of the forearm are

underlined; muscle names that are in bold, are the ones that have a direct involvement on

the movement of the thumb. In most cases, these muscles are found in the deep layer of the

forearm. In most cases, the muscles are found in the deep layer of the forearm. There is

also a large central cumulant peak (bottom) indicating significant EMG-EMG coherence.
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5.4 Time-Frequency Analysis

Table 5.7: Coherence Range Results For All The Participants Across the Different Thumb

Oppositions - Steady condition

Position Muscle Groups Range [Hz] Peaks

[Hz-magnitude]

Thenar-Extensors cross-talk cross-talk

Thenar-Flexors cross-talk cross-talk

1 FDI - Extensors cross-talk cross-talk

FDI-Flexors cross-talk cross-talk

Thenar-Extensors 10-18 & 25-35 [12-0.13] & [28-0.07]

Thenar-Flexors 3-35 [15-0.15]

2 FDI - Extensors 5-32 [7,12 & 30 - 0.17]

FDI-Flexors 5-25 [15-(0.17± 0.036)]

Thenar-Extensors 4-7 [5-0.05]

3 Thenar-Flexors 5-10 & 20-35 [10-0.05] & [30-0.07]

FDI - Extensors 7-12 & 25.32 [10-0.05] & [32-0.07]

FDI-Flexors 18-25 [22-0.03] & [30-0.07]

Thenar-Extensors 4-7 [5-0.04]

Thenar-Flexors 5-25 [5,15-0.05]

4 FDI - Extensors 5-7 [6-0.02]

FDI-Flexors 3-15 [5-0.04] & [30-0.04]
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5.5 Chapter Conclusion

5.5 Chapter Conclusion

In this chapter the performance of the volunteers participating in experiments de-

signed to investigate sEMG patterns related to differentiation of thumb opposition to

each of the fingers was analysed. The results presented were based on time-domain

analysis and joint time and frequency-domain analysis.

Initially, electrophysiological correlation resulting from the experiments and method

for investigating the isometric exertion for thumb opposition were presented, according

to statistical and coherence analysis results.
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6

Machine Learning Results

6.1 Summary

This chapter describes the performance of the volunteers participating in experi-

ments designed to investigate sEMG patterns related to differentiation of thumb op-

position to different fingers. The results presented are based on machine learning

unsupervised methods later validated through supervised methods.

6.1.1 Self-Organising Feature Maps (SOFM)

As discussed in Section 1.1.5.2, a SOFM consists of a group of neurones (prototypes)

organised on a low-dimensional grid. All the neurones are connected to each other by

a neighbourhood relation that must be predefined to dictates the topology of the map.

The same SOFMs setup was applied across the subjects: hexagonal lattice, rectangular

sheet, and randomly initialisation.

The size of the map was obtained using the equations described in Section 1.1.5.2

through the SOM-toolbox. All the subjects had a resulting map size of 15 by 15

neurones. A batch training process was applied through a Gaussian neighbourhood

function. Finally, all the subjects were trained using 60% (randomly selected) of the

total feature vectors, the remaining 40% was used to validate the clusters made by the

first group of data (testing).

A subjective method was used to evaluate the resulting clustering, and therefore,

the performance of these algorithms was using visualisations. The initial visualisations

are provided in Figure 6.1, from a randomly selected subject. The resulting map
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6.1 Summary

topography and unified distance matrices (U-matrix) are shown for the grids placed

on the flexor (Figure 6.1-A.1,2), and extensor (Figure 6.1-B.1,2) muscles. The map

topography including the labels from the feature maps organisation is provided in

Figure 6.1-A.1 and B.1. In addition, to the right to each map topography (Figure

6.1-A.2 and B.2), the U-matrices are depicted highlighting the boundaries between the

clusters (higher values are related to longer distances between clusters) in a 3-D space.

Hit histograms are another valuable visualisation tool which can be used to analyse

the clustering relationship between FV. These histograms are based on the gray-scaled

U-matrix in 2-D. Hit histograms are markers showing the distribution of the best match-

ing unit for a given FV. In Figure 6.2, these hit histograms are provided and have been

separated by thumb opposition (with the same colour coding as the previous cases), and

by electrode grid placed on the forearm. This type of visualisation makes it possible to

compare different data sets by the distribution of their hits in the topographical map.
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6.1 Summary

Figure 6.1: Resulting Map Topography and Distance Matrices after Applying

SOFMs for Flexor and Extensor Muscles - Resulting visualisations after applying

SOFMs. A) Results from the grid positioned on the anterior compartment of the forearm

overlying the flexor muscles. A.1) Labelled and colour-circled resulting clusters shown in

the map topography. Each colour represents a position of the thumb opposition exertions.

It is clear that the 4th position (opposition to the digiti minimi) has a wider spread of

amplitudes throughout the map, therefore, two regions can be appreciated. A.2) The U-

matrix highlights in a 3-D space the boundaries between clusters where a higher amplitude

relates to a longer distance between neurones. B) Results from the grid positioned on

the posterior compartment of the forearm overlying the extensor muscles. B.1) Labelled

and colour-circled resulting clusters shown in the map topography. Each colour repre-

sents a position of the thumb opposition exertions. For this case, all the clusters seem

equally distributed throughout the map. B.2) The U-matrix highlights in a 3-D space the

boundaries between clusters where a higher amplitude relates to a longer distance between

neurones. This U-matrix has softer relations in intra-cluster and very defined boundaries

inter-clusters.
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6.1 Summary

Figure 6.2: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each grid positioned on the different muscle groups of the

forearm: A) extensors, B) flexors. Each hit was produced by the best matching unit found

for each feature vector trained. Each unified matrix (gray scale colour map) corresponds

to each position of the thumb colour coded for each muscle group. 1st position refers to

the opposition of the thumb to the secundus digitus, 2nd position to the opposition to the

digitus medius, 3rd position to the digitus annularis, 4th position to the digitus minimi.
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6.1 Summary

One method used to verify the SOFMs accuracy, was by assessing different quality

measures or error measures. The two most commonly used error measures for this algo-

rithm are the quantisation error and the topographical error. The quantisation error,

is the mean of the distance from each data vector to its best-matching unit (BMU),

while the topographical error gives the percentage of FVs for which the BMU and the

second BMU are not neighbouring map units. In other words, the topographical error

measures the segment of FVs for which the two nearest map units are not neighbours

in the array topology. As expected, if the number of neurones in the map increases

(map units), the quantisation error decreases and the topographical error increases. A

third measurement can be extracted from the previous errors. This measurement was

proposed by Kaski and Lagus (1996) (224), and is known as the combined error. This

error is computed by the sum of the aforementioned errors along with the shortest path

following the neighbourhood relations. In Table 6.1 these errors are provided across

subjects for the grids positioned in the forearm. The errors are measured in a scale

from 0-100%, where 100 means maximum possible error.
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6.1 Summary

Table 6.1: Quantisation, Topographical and Combined Errors After Training of SOFMs

Subject Quantisation Topographical Combined

(Muscle Group) Error (%) Error (%) Error (%)

S1 (Flexors) 1.04 <0.01 1.35

(Extensors) 1.08 0.04 1.68

S2 (Flexors) 0.67 0.09 1.12

(Extensors) 0.65 0.02 1.12

S3 (Flexors) 0.93 0.05 1.30

(Extensors) 0.79 0.02 1.37

S4 (Flexors) 0.70 0.10 1.06

(Extensors) 0.73 0.01 1.20

S5 (Flexors) 1.02 0.05 1.24

(Extensors) 0.78 0.05 1.05

S6 (Flexors) 0.88 0.03 1.15

(Extensors) 0.87 0.07 1.17

S7 (Flexors) 0.57 0.04 0.88

(Extensors) 0.62 0.02 1.02
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6.1 Summary

Once the maps were trained, the 40% of remaining data were tested as a mean of

validation. The validation was performed using hit histograms comparing the results of

the un-presented datasets to the already trained U-matrix. The resulting performance

measures can be found in Tables 8.11 and 8.12 for the forearm flexor and extensor

muscles for each thumb position, respectively.

Table 6.2: Performance Measures for SOFM Test data - Forearm Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 87% 4% 5% 4%

2nd Position 7% 83% 3% 7%

3rd Position 0% 8% 86% 6%

4th Position 6% 5% 6% 83%

Table 6.3: Performance Measures for SOFM Test data - Forearm Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 91% 6% 0% 3%

2nd Position 5% 82% 6% 7%

3rd Position 3% 5% 88% 4%

4th Position 1% 7% 6% 86%

The remaining of the results for the rest of the subjects are found in Appendix 8.10.
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6.1 Summary

6.1.2 Principal Component Analysis (PCA)

Another useful method to inspect the distribution of the FVs in space was performed

using Principal Component Analysis (PCA). PCA was performed over the already

trained maps created by SOFMs in order to visualise the clustering arrays in a new

space (a.k.a. PC space). Illustrated in Figure 6.3 and 6.4 the resulting PC conversion

is provided for the same random subject as in the previous results for the forearm flexor

and extensor muscles per thumb position. For the forearm flexor muscles, four very

well defined ‘clouds’ can be identified. These highlight how tight the clusters are, and

how big the cluster boundary is. For the latter, although the datasets are noticeable

to be in a wider spread, the clusters are consistent and clear boundaries are found

amongst different thumb positions. The vector projection algorithms like PCA, find

low-dimensional coordinates for a set of high-dimensional FVs preserve the clustering

as well as possible. The results for the remaining participants are given in Appendix

8.10.
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Figure 6.3: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - Forearm Flexor Muscles - PCA of the feature

vectors after SOFMs were applied to the trained data for a randomly chosen subject. As

depicted, each colour represents each position that the thumb was opposed to. The resulting

PC conversion shows tight clusters. This clustering also reflects the wide distance between

neighbourhoods.
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Figure 6.4: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - Forearm Extensor Muscles - PCA of the feature

vectors after SOFMs were applied to the trained data for a randomly chosen subject. As

depicted, each colour represents each position that the thumb was opposed to. The result-

ing PC conversion shows a wide spread within each cluster, nevertheless, the boundaries

between clusters are still well preserved.
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6.1.3 Supervised Machine Learning as SOFMs Validation

For further data validation, supervised training was applied using Matlab’s Pattern

Recognition toolbox. The sEMG data inputs were provided with labels so the the

program could recognise which cluster each of the presented FVs belonged to. The

parameter distribution for all subjects was i) training: 30%; ii) validation: 35%; and

iii) testing: 35%. The neural network performance was assessed through the values

from cross-entropy, the percentage error and the confusion matrices.

Cross-entropy is defined as the loss function in machine learning, therefore, lower

values mean a good result in classification. In Figure 6.5, the cross-entropy and the

resulting performances are shown for each grid placed on the forearm flexor (anterior)

and extensor (posterior) muscles. For the forearm flexor muscles, the best validation

performance was achieved at 111 epochs with a cross-entropy value of 0.002. For the

forearm extensor muscles, the best performance was achieved faster, at epoch 84 with

a cross-entropy value of 0.101. For both muscle groups, the cross-entropy values are

close to zero, therefore, these results yield a good classification.

Figure 6.5: Best Validation Performance found for Flexor and Extensor Mus-

cles - Best validation performance found after the unsupervised Levenberg-Marquardt

validation applied with Matlab’s feature pattern recognition toolbox. A) Resulting per-

formance from the flexor muscles of the forearm for randomly chosen subject (consistent

with the previous results), and during a typical test. The best validation performance is

found at epoch 111 with a cross-entropy of 0.0020. B) Resulting performance from the

extensor muscles of the forearm for typical subject (consistent with the previous results),

and during a typical test. The best validation performance is found at epoch 84 with a

cross-entropy of 0.1012.
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The percentage error indicates the fraction of samples which are misclassified be-

tween 0 and a maximum of 100.

As a summary of the performance measures obtained previously, in Table 6.4 and

6.5, the resulting cross-entropy and percentage error across the parameter distribution

(training, validation, and testing) and the FVs in each distribution, are shown for the

forearm flexor and extensor muscles, respectively.

Table 6.4: Parameter Distribution and Resulting Cross-Entropy and Percentage Error

from Supervised Levenberg-Marquardt Validation (Matlab Routine) - Flexor Muscles

Subject Stage Feature Cross-Entropy Percent Error

Vector

Training 1476 6.23 <0.01

1 Validation 1722 5.82 0.05

Testing 1722 58197 0.11

Training 1656 9.27 <0.01

2 Validation 1932 86217 <0.01

Testing 1932 8.62 0.05

Training 1908 1.90 17.24

3 Validation 2226 1.8104 19

Testing 2226 1.80 16.03

Training 1908 5.67 <0.01

4 Validation 2226 5.29 0.22

Testing 2226 5.26 0.17

Training 2052 5.40 0.34

5 Validation 2394 5.06 1.29

Testing 2394 5.10 1.37

Training 1656 5.72 <0.01

6 Validation 1932 5.32 0.05

Testing 1932 5.33 0.31

Training 1260 4.46 17.85

7 Validation 1470 4.20 18.02

Testing 1470 4.19 17.89
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Table 6.5: Parameter Distribution and Resulting Cross-Entropy and Percentage Error

from Supervised Levenberg-Marquardt Validation (Matlab Routine) - Extensor Muscles

Subject Stage Samples Cross-Entropy Percent Error

Training 1368 2.85 0.21

1 Validation 1596 2.70 3.94

Testing 1596 2.71 6.20

Training 1368 2.85 0.21

2 Validation 1596 2.70 3.94

Testing 1596 2.71 6.20

Training 1728 3.29 2.08

3 Validation 2016 3.10 4.31

Testing 2016 3.12 5.20

Training 1620 4.68 0.06

4 Validation 1890 4.36 0.74

Testing 1890 4.36 1.26

Training 1260 4.23 <0.01

5 Validation 1470 3.94 0.06

Testing 1470 3.93 <0.01

Training 1728 5.05 <0.01

6 Validation 2016 4.70 0.44

Testing 2016 4.70 0.24

Training 1584 4.21 6.88

7 Validation 1848 3.93 9.36

Testing 1848 3.94 7.94

212



6.1 Summary

The performance measures results for the remaining participants are given in Ap-

pendix 8.11.

The performance of these type of systems is commonly evaluated using confusion

matrices. A confusion matrix contains the information about the real and predicted

classifications performed by the neural network algorithm, in Figure 6.6 an example of

a 2x2 confusion matrix for two samples is depicted.

Figure 6.6: Example of a Two Classes Confusion Matrix - This table shows a 2

by 2 confusion matrix for two classes (positive and negatives). The accuracy represents

the proportion of the total number of correct predictions, the positive predictive value

represents the proportion of positive cases that were correctly identified, on the other side,

the negative predictive values reflect the negative cases that were correctly identified. As

for the sensitivity and specificity, the first value reflects the actual positives which are

correctly identified and the latter, the negative cases correctly identified. Adapted from:

http : //www.saedsayad.com/modelevaluationc.htm

Depicted in Figures 6.7 and 6.8, are the confusion matrices that correspond to the

same random subject during a typical test, for each muscle group separately (flexor and

extensor muscles, respectively). The entries in the confusion matrices are governed by

the different positions that the thumb was opposed to (4 classes); as with the previous

performance measures, the data was split into training, validation, testing and an

additional matrix summarising all of the previous. More, the correct predictions are

shown in green and, they are allocated diagonally. The accuracy is depicted by the

blue squares which yields the total of correct predictions as a percentage of the whole

data used in each of the different stages of the method (i.e. training).

The confusion matrix for all of the subjects can be found in Appendix 8.11.2.
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Figure 6.7: Confusion Matrix Results in the Flexor Muscles - S1 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. The accuracy of the classification is shown

for each case. For all but training, the accuracy was 99.9% with a 0.1% of classification

error. For the flexor muscles, it is not clear which position is mostly a false classification.
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Figure 6.8: Confusion Matrix Results in the Extensor Muscles - S1 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. The accuracy of the classification is shown

for each case. For the training classification, the accuracy was 99.8% with a 0.2% of

misclassification; the validation accuracy is 96.1% with the misclassification (3.9%); the test

accuracy was the least of all four stages, with a 93.8% accuracy and most misclassification

for position 2 (6.2% overall); and finally, the overall results for the extensor muscles of the

forearm was 96.4% accuracy with 3.6% of misclassification (with position 2 being the least

accurately classified).
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6.2 Chapter Conclusion

6.2 Chapter Conclusion

In this chapter the performance of the volunteers participating in experiments de-

signed to investigate sEMG patterns related to differentiation of thumb opposition to

each of the fingers was analysed. The results presented were based on machine learning

unsupervised algorithms. The movements were classified using non-supervised machine

learning methodologies in the form of self-organising feature maps and principal compo-

nent analysis. To validate these, supervised machine learning algorithms were applied

using Matlab’s pattern recognition toolbox. In the next chapter, the results are further

discussed, interpreted and compared.
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7

Discussion and Conclusions

In this chapter the relevance of results to previous muscle recording studies, inter-

pretation of results, potential impacts and limitations are summarised, reviewed and

discussed. The key findings, impact and contributions are described in Section 7.1, the

overall findings in the results are underlined in Section 7.2 and then compared to other

studies relevant to this research in Section 7.3. In Section 7.4 the considerations and

limitations are discussed. Furthermore,the interpretation of results and final discussions

are covered in Section 7.5. Finally, in Section 7.6 the future work is highlighted.

7.1 Key Findings, Contributions, and Impact

This section summarises the main contributions of this research to knowledge. To the

best of the author’s understanding, the following contributions have not been explored

nor recorded in the literature. This research has proved:

• A successful differentiation of different thumb opposition tasks, for muscle activa-

tion patterns during isometric voluntary contractions performed in time domain

using amplitude signal, RMS analyses.

• A statistically significant interpretation of sEMG amplitude changes from forearm

muscles whilst different thumb positions.

• A novel insight into motor drive controlling the extrinsic muscles of the hand

providing meaningful contrasts through statistical analysis (ANOVA).
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• Variations in the spectral composition reflect changes in the muscle synergy with

different sEMG coupling with the performance of the different thumb grips.

• The frequency ranges found for the different thumb grip postures studied (3-

42Hz) had differences in shape of the local maxima across the different positions

exerted.

• A successful classification through unsupervised machine learning algorithms, i.e.

self-organising feature maps of the different thumb grips.

• An implementation of the classification methods through a controllable prosthetic

thumb for transradial amputees.

7.2 Overview of Results

In this study, the high-density sEMG correlates of isometric contractions during

exertion of different thumb oppositions were explored. To my knowledge, this has not

been attempted before or results of such experiments published. Common and local

time frequency features of HD-sEMG signals across 7 subjects were assessed. Time and

frequency domain analysis (see Section 7.2.2) as well as machine learning algorithms (see

Section 7.2.3) applied to the HD-sEMG signals demonstrated the feasibility to classify

different thumb position based on indirect monitoring of forearm sEMG signals. This

has application for control of robotic hand that incorporate an active thumb.

7.2.1 HD-sEMG Data Acquisition

The data acquisition using a multi-channel sEMG provided with enough dimension-

ality to inspect the spatial muscle activations in the forearm, during grips made with

different thumb positions. A challenging problem encountered during the recordings,

was that of signal contamination associated with cross-talk, interference, and artefact

noise. More, the high-dimensionality made visual assessment during data acquisition

and review difficult using standard sEMG graphs (time vs. amplitude), therefore, colour

maps had to be created to assist in visualisation of data gathered during experiments.
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7.2.2 Time-Frequency Analysis

Preliminary visualisation and RMS analyses suggest significant differences between

the muscle activation patterns during isometric voluntary contractions associated with

the four thumb postures explored, and thereby provide classifiable information regard-

ing the posture of the opposed thumb position. These mainly reflect differences in the

amplitude, and therefore, the synergy and force of the effort exerted (muscles recruited)

in holding the different positions despite the actual grip force being equivalent at all

thumb positions tested. The interpretation of these sEMG amplitude changes from

muscles, with no direct action on the thumb, is that in generating a specific thumb

opposition the pattern activation of the forearm musculature also co-varies in a specific

way. This variation in activity is statistically significant.

7.2.2.1 Statistical Analysis

One-way ANOVA was performed with repeated measures on task (thumb opposition

to secundus digitus; digitus medius; digitus annularis; and digitus minimi). ANOVAs

were performed to test whether the muscular contraction varied across positions when

visual feedback was provided to regulate the force grip.

ANOVA analysis was also used to identify temporal features characterising the

differences between waveforms across conditions. A time window of 300ms was chosen

to be able to find statistical differences in within a time-span that is considered to be

shorter than the estimated reaction time (≤ 350ms). From the 48 total bins, 5 out of

7 subjects had a maximum of 8 bins statistically insignificant, with at least 2000ms

in between insignificant bins. Thus ANOVA can reveal meaningful contrasts across

different thumb positions that may not be apparent in visual inspection due to feature

size, and potentially providing novel insight into underlying neural mechanisms that

control the extrinsic muscles of the hand.

7.2.2.2 EMG-EMG Coherence Analysis

The purpose of this analysis was to use high-density surface EMG to study the

changes in the common oscillatory drive whilst the thumb was held in different grip

postures. Due to the sensitivity of spectral measures to artefacts, this analysis yielded

sensitivity issues related to the presence of ambient noise, artifact noise, interference,
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etc. thereby reducing the number of channels and reliable data sets that could be used.

In addition, the decrease in EMG-EMG coherence when the electrodes are located over

the innervation zone in the FDI muscle were apparent as a decrease amplitude of the

sEMG signal at those sites (see Keenan et al. (2012) (225) ).

Nevertheless, this analysis demonstrates that pairs of muscles (FDI proximal to the

carpals and flexor pollicis longus, and thenar and flexor pollicis longus) during isomet-

ric contractions share certain frequency components that are different in magnitude,

when different thumb grip positions are performed. The frequency range between the

thenar and flexor muscle compartment exertion was (3-12Hz) with different coherence

magnitudes occurring for each thumb posture. Coherence was greatest for position 3

(opposition to digitus annularis) with a peak @4Hz.

For the coupling between the FDI and flexor muscles, the coherence showed a wider

range (3-26Hz) than for the previous case, and greater magnitudes for coherence and

cross-intensity analysis. The larger peak was found at 9Hz, and as for higher frequen-

cies, peaks were found at a wider range (20-45Hz) but their amplitude was found to be

lower.

As for the steady condition testing (where the subject had no force modulation),

peaks were found at 12Hz with no coherence found after 35Hz. This was true for

all positions but the first one due to the similarity of the thumb opposition against

secundus digitus to the natural hand position at rest.

The experimental evidence suggests that, in addition to differences in EMG am-

plitude in forearm muscle activity during the thumb grips studied here, there are also

changes in the spectral composition of the sEMG signals. These reflecting changes in

the muscle synergy with different sEMG coupling being apparent with performance of

the different grips. The different synergies appear to be driven by changes in com-

mon drive that affect the peak coherence and the features of synchronisation between

muscles.

7.2.3 Machine Learning Analysis

Based on the visualisations including map topography, distance matrix, hit his-

tograms in the U-matrix , and PCA projections (all of them produced for every case

separately) it became clear that the cluster mechanisms all throughout the subjects
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correctly separated the different positions of the thumb. Therefore, it was expected for

supervised methodologies to successfully classify the four oppositions of the thumb.

SOFMs have intrinsic properties that make it capable of preserving topological re-

lationships allowing visualisation of complex data (such as the high-dimensionality of

the HD-sEMG). The overall performance that SOFMs when the flexor muscles were as-

sessed was 84.75% for all the positions. The best position classified was when the thumb

was opposed to the secundus digitus manus (87%) with less classification accuracy for

position 2 and 4 (opposition against digitus medius and digitus minimus manus), with

an 83% accuracy each. As for the forearm extensor muscles, the overall performance

was 86.75% with the position 1 being the most accurate with a 91% of successful clas-

sification and the position 4 as the least accurate with 86% accuracy. When compared

across subjects, the best classification accuracy rate for the flexor muscles was found

to be Subject 7 with a 88.25% accuracy, and Subject 3 for the extensor muscles with

an 87.25% accuracy.

The supervised methodologies performed using the Matlab - Pattern Recognition

toolbox based on Levenberg Marquardt algorithms yield higher classification rates for

both muscle groups. This better performance is due to the a priori knowledge that

is provided to the method, i.e. the target classes are provided before training, and

therefore, the network has higher rate for success. When compared across subjects,

the poorest classification accuracy rate was found to be Subject 7 with a 82.1% success

rate for the flexor muscles and a 91.9% for the extensor muscles. This SOFM method-

ology opens a new paradigm, where it is possible to extract information regarding the

movement of the hand, specifically thumb rotation, but a higher level of processing

is required in the commercially available below-elbow prosthesis for this process to be

immediate.

7.3 Comparison to others

7.3.1 Comparison in EMG-EMG Analysis

With regards to EMG-EMG coherence analysis, its primary use has been in the

study of motor drive in healthy subjects and patient groups(i.e. stroke, affected path-

ways, congenital motor movements, and tremor). These analyses commonly report a
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clear coherence ranges occurring at (1-12)Hz and (16-32)Hz with a local maxima of ap-

proximately 20Hz [(226) and (198)]. The results here are consistent with the frequency

ranges discovered by others. What is new is the change in peak coherence associated

with change grip postures.

A study by Farmer et al. (202) examined the EMG-EMG coherence between long

and short abductor muscles of the thumb across different subjects varying the age [based

on a similar to a study by Gibbs et al. (227)]. These studies showed clear coherence in

the frequency range of (16-32)Hz with a local maxima at 20Hz for young populations

(4-11 years old) and a range of (5-35)Hz with a local maxima at 10 and 20Hz for adult

and late-young populations (22-59 and 12-14 years old, respectively).

In this study, and to the best of the author’s knowledge, no study prior to this

one, has assessed whether different positions of the thumb yield differences in EMG-

EMG coherence or cross-intensity. The frequency ranges found for all the variables was

(3-42Hz) with a difference in shape of the local maxima across the different positions

exerted. Furthermore, there was a clear difference with regards to the magnitude of

the coherence between the flexor and extensor muscles. To understand the processes

involved a more extensive investigation will be needed. Nevertheless, the results high-

light that with changes in thumb position, there are marked changes in the EMG of

the forearm muscles despite these muscles having no action on the thumb itself.

7.3.2 Comparison in Machine Learning

Although simultaneous proportional control has been used as a preferred technique

for controlling the motors in prostheses devices, these controllers only produce very

defined prosthetic range of motions, none of them articulating the thumb. The machine

learning algorithms applied are in a vast majority through supervised algorithms in

contrast to the one proposed in this research.

Sebelius et al. (2006) (228), tested on 2 patients, a single degree of freedom of the

thumb (as well as other movements of the hand) using an in-house algorithm having

a 90% accuracy. They used the support of virtual feature classification through a

computer-animated phantom hand.

Nielsen et al. (2009) (229), used time-domain (TD) algorithms to extract four fea-

tures to control a multi-degree of freedom prosthesis, then training a multilayer percep-

tion neural network for myoelectric control task. The movements analysed were: wrist
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flexion/extension, ulnar/radial deviation and supination/pronation. The performance

across movements was 81.1 ± 5.3%

Nielsen et al. (2010) (230) trained an ANN for force estimation for bilateral mirrored

contractions for myoelectric prosthesis. Nielsen accuracy was 90 ± 2% for able-bodied

subjects and 72% for patients with congenital malformations.

Ziai and Menon (2011) (231) applied support vector machines (SVM), ANN and

locally weighted projection regression (LWPR) to study the muscle synergies while

torque was applied without finger movement. Although an initial accuracy of 97% for

SVM, 96% for ANN, and 87% for LWPR, all models were considered to be sensitive to

passage of time and electrode displacement (final accuracy was 63% - SVM; 61% ANN;

and 67% LWPR).

Silva and Farina (2012) (232), applied simultaneous and proportional estimation

through eight MLPs during mirrored movements with an accuracy in estimation of 79-

88% for four DOF (flexion/extension of wrist, radial/ulnar deviation, pronation/supination

and opening/closing the hand) in fully able-bodied subjects.

Pulliam et al. (2011) (233) applied time-delayed artificial neural networks (TDANNs)

decoding movement trajectories of seven distal degrees of freedom (pronation-supination,

wrist ulnar-radial deviation, wrist flexion-extension, thumb rotation, thumb abduction-

adduction, finger MCP flexion-extension, and finger PIP flexion-extension). Different

accuracy was found for the different movements, the best performance was that of wrist

flexion and deviation with approximately 75% and the worst performance was that of

pronation/supination with an accuracy of 65% approximately.

In contrast with all the previous and to the best of the author’s knowledge, no other

study prior to this one has analysed the different positions of the thumb while exerting

rotation reaching different positions. Furthermore, unsupervised algorithms were used

which reduce the training times and become adaptable to each case of study. The

performance accuracy for all the position across all the subjects was (88.25-91.25)±(0.5-

2.5)%. This is acceptable for use in device control but would still likely see user errors

in grip formation. Ways to improve accuracy still need to be defined and a control

system that is robust and reliable require to be implemented. This would be the focus

of future work. Moreover, the accuracy for successfully classify each position across

all the subjects was: position 1: 90.83 ± 1.6%; position 2: 89.50 ± 1.8%; position 3:
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90.17 ± 2.1%; and position 4: 88.83 ± 2.6%. On table 7.1 a comparison between the

previous methodologies, recording methods, features and accuracy rate are depicted.
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7.4 Considerations and Limitations of Study

7.4.1 Source and Nature of Observed Electromyographic Activity

While HD-sEMG provides greater spatial resolution than low density sEMG, it is

still a technology that needs to be further developed for ease of use. The electromyo-

graphic data acquired with this high-end technology was found at times to be unusable

and difficult to acquire due to sensitivity of the electrodes, to displacement and noise.

Furthermore, several algorithms had to be developed to be able to assess the signals

correctly. The appropriate signal acquisition was found to be very time consuming and

it is recommended to use these type of equipments in a dedicated environment where

all the electrical/electronic sources are controlled and shielded from mains sources.

7.5 Interpretation of Results

7.5.1 Relevance to Research Hypotheses

Until now, neural control mechanisms are lacking in the upper limb prosthetic de-

velopment. This lag is due to the complex anatomy of the human hand. When an

amputation happens, a great amount of muscles are lost and therefore, information

regarding how the fingers move starts to be missing depending on the level of amputa-

tion.

As it was explained throughout this research, the thumb is the most important finger

in the hand. Without thumb-rotating mechanisms, functional tasks are challenging for

any amputee to control their device. Moreover, common to all commercially available

prosthetic developers, is the lack of mechanisms to drive the thumb from the muscle

patterns from the forearm, making it challenging for any amputee to control their device

in a dexterous way.

Further to aim improving the control mechanisms for transradial amputees, the

difference reflecting different muscle patterns while different thumb positions found can

also be applied for partial hand amputations. In many ways, this seems to be a straight

forward implementation since most of the muscles of the hand are preserved, therefore,

a more accurate classification could be extracted from a combination between intrinsic

and extrinsic hand muscles providing a dexterous control in the device.
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7.6 Future Work

Although this research was performed using specific electrode grids, these would

not be applied to amputees. Instead, by assessing full able bodied subjects, muscular

pattern maps can be extracted highlighting the areas of localised activity in relation

to specific thumb movements and therefore, accurate location corresponding to specific

thumb positions can be extracted. The extraction of this information may also have

impact in the surgical procedure, where specific muscle groups would be likely to be

preserved while an amputation takes place.

Even though amputees would be most benefited from this research, it is not limited

to. Affections from syndromes such as Apert Syndrome, where the patients suffer from

malformations in the thumbs, amongst others, could also be benefited by applying the

different mechanisms explained throughout aiming for an alternative control of their

fingers.

7.6 Future Work

It is clear that new methodologies and new strategies most be taken into consider-

ation in order to improve and better the amputees’ involvement using such devices.

The future work suggest to improve the accuracy in the methods and to create a re-

liable robust controller to implement a thumb opposition natural gesture in the current

myoelectric transradial prostheses. Furthermore, this research can be extended to-

wards the classification of movement for each separate finger, and for their own degrees

of freedom. To apply them in amputees with the new hypothesis inferring that upper

limb prosthetics can be controlled based solely in the remaining muscles’ movement

contractions.

Furthermore, this research suggests the exploration of the motor drive oscillations

as means to modulate the force exertion levels of transradial myoelectric prostheses.

Finally, although this research successfully classifies different thumb opposition

movements from muscle propagation patterns extracted from the forearm, the ques-

tion with regards thumb classification while having movement from the fingers and/or

the wrist is still to be explored.
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8

Appendices

8.1 Summary

In this chapter all the additional information referred on the previous chapters are

shown aiming to provide the reader with a complete insight of the research carried out

throughout this study.

8.2 Ethics Consent Form
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The place of useful learning 

The University of Strathclyde is a charitable body, registered in Scotland, number SC015263 

 

 

Consent Form 

Title of the study:        Electromyography studies of upper limb 
Name of department:  Biomedical Engineering  

 

 I confirm that I have received information on the purpose of the study, what it involves and had the opportunity to  

answer any queries to my satisfaction.  

 I understand that my participation is voluntary and that I am free to withdraw from the project at any time, without 

having to give a reason and without any consequences.  

 I understand that I can withdraw my data from the study at any time.  

 I understand that any information recorded in the investigation will remain confidential and no information that 

identifies me will be made publicly available.  

 I consent to being a participant in the project 

 

In agreeing to participate in this investigation I am aware that I may be entitled to compensation for accidental bodily injury, 

including death or disease, arising out of the investigation without the need to prove fault. However, such compensation is 

subject to acceptance of the Conditions of Compensation, a copy of which is available on request. 

Yes/ No] 

(PRINT NAME) Hereby agree to take part in the above project 

Signature of Participant: 

Date 

 



8.3 Force Sensor Resistors

8.3 Force Sensor Resistors

The designed test-apparatus had some variations from its conception to its final design.

Initially, four-force sensors resistors (FSRs) were used and attached onto the rig (Fig.

8.1). This type of resistor was used with a simple circuit to guarantee the correct

output range for the HD-sEMG’s auxiliary input, i.e. ±5V. More, the output signal of

the FSRs was used to time-stamp the sEMG signals being acquired.
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8.3 Force Sensor Resistors

Figure 8.1: First Design For Test Rig Finger Sensors - Left - Simple circuit that

guaranteed the salient voltage range was in between 0 and +5 V, within the ranges of the

HD-sEMG auxiliary inputs. Middle - box that contained the circuitry described previously,

and left - FSRs that were used for a first test-rig design.
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8.4 Technical Specs of the EMG-USB2 and Electrode Arrays

8.4 Technical Specs of the EMG-USB2 and Electrode Arrays

The HD-sEMG system used was the EMG-USB2 amplifier manufactured by OT-Bioelettronica,

Italy. This amplifier has the capability of acquiring surface or intramuscular EMG sig-

nals, electroencephalography (EEG) and electrocardiography (EKG). The EMG-USB2

can acquire monopolar, bipolar or differential data from up to 256 electrodes (chan-

nels). With configurable independent or global settings, if desired. The settings that

could be applied independently for each group of 16 channels are gain, bandwidth and

acquisition type e.g. monopolar, bipolar or differential.

The technical specifications of the EMG-USB2 (fig. ??) are as follow:

• Power Supply: 90 VAC - 260 VAC and 27 Hz - 440 Hz

• Number of Channels: from 16 up to 256 EMG/EEG/EKG plus 16 auxiliary inputs

• Gain: OFF, 100, 200, 500, 1000, 2000, 5000, and 10000 V/V

• Selectable bandwidth:

High-pass cut frequency: 3, 10, 100, 200 Hz

Low-pass cut frequency: 130, 500, 900, 4400 Hz

• Sampling frequency: 512, 2048, 4096, 10240 Hz

• Noise referred to the input(RTI): < 1µVRMS

• Input resistance: > 1012Ω

• Common mode rejection ratio (CMRR):>95dB

• Output range: 0-5 VPP

The different sEMG electrode arrays that were available by the manufacturer when

this experiment was carried out can be found in figure 8.2.
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8.4 Technical Specs of the EMG-USB2 and Electrode Arrays

Figure 8.2: Adhesive Arrays Available for sEMG Acquisition with the EMG-

USB2 - From left to right: 4 electrode array with an inter-electrode distance (IED) of

10mm; 8 electrode array with an IED of 5mm; 16 electrode array with an IED of 10mm;

64 electrode array with an IED of 8mm. Source: OT Bioelettronica. (2011). Arrays &

Matrices Pin-out-Rev4. Available: OT Bioelettronica - Last accessed 1st April 2014.
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8.5 Calibration Curves for All the Load-Sensor Resistors

8.5 Calibration Curves for All the Load-Sensor Resistors

Calibration curves for the LSRs used for the thumb opposition tasks

234



Load Sensor Resistors Calibration Curves

Weight increments: 83/84 g

Fall Fall Rise Fall Rise Fall

[mV] [mV] [mV] [mV] [mV] [mV]

0 0 -0.7 0 3 0 -1 0 0

83 49 49 50 53 49 48 49 49

166 99 99 99 104 98 98 99 100

249 150 150 150 154 148 149 149 150

332 200 201 200 205 199 200 200 201

415 250 251 251 256 250 251 250 251

498 301 302 303 306 300 301 301 302

581 352 352 354 354 351 351 352 352

Weight [g] Rise [mV] Rise [mV]
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Load Sensor Resistors Calibration Curves

Weight increments: 83/84 g

Fall Fall Rise Fall Rise Fall

[mV] [mV] [mV] [mV] [mV] [mV]

0 0 0.8 0 1.3 0 1.4 0 1

83 44.5 46.2 44.5 47 44.7 47.2 45 47

166 89.4 91.8 89.6 92.8 90 93.1 91 92

249 134.9 137.2 135 138.3 135.6 138.7 136 138

332 181 183.8 181.4 184.4 182 184.7 182 183

415 226.9 229 227.4 229.5 227.6 230.2 228 229

498 273 274.3 273.2 274.7 273.4 275.6 273 274

581 319 319 319.3 319.3 320 320 319 319

Weight [g] Rise [mV] Rise [mV]
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Load Sensor Resistors Calibration Curves

Weight increments: 83/84 g

Fall Fall Rise Fall Rise Fall

[mV] [mV] [mV] [mV] [mV] [mV]

0 0 1.3 0 1.1 0 1 0 1.5

83 43.8 45.6 43.8 45.3 43.7 45.3 43.3 45.5

166 88 89.8 87.8 89.8 87.8 89.8 87 89.7

249 132 134.4 132.1 134.1 132 134.3 131 133.6

332 177.5 179.4 177.4 179.1 177.3 179.4 176 178.3

415 222 223.7 222.1 223.5 222 223.6 220.4 222.2

498 266.8 268 266.8 268 267.3 268 265.3 266.2

581 311.9 311.9 311.9 311.9 312.1 312.1 309.4 309.4

Weight [g] Rise [mV] Rise [mV]
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Load Sensor Resistors Calibration Curves

Weight increments: 83/84 g

Weight [g] Rise [mV] Fall Rise [mV] Fall Rise Fall Rise Fall

[mV] [mV] [mV] [mV] [mV] [mV]

0 0 1.3 0 1.5 0 1.3 0 1.3

83 47 48.4 47 48.9 47 48.5 47.2 48.9

166 94.1 95.8 94.3 96.3 94.2 95.8 94.6 96.8

249 141.4 143.1 141.4 143.5 141.3 143.2 142.2 144.2

332 189.3 191.2 189.4 191.6 189.4 191.1 190.7 192.5

415 237 238.4 237 238.9 237 238.4 238.5 239.9

498 285 285.9 285.1 286.4 285 285.8 286.5 287.5

581 333.1 333.1 333.4 333.4 333.1 333.1 334.7 334.7
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8.6 Root-Mean Square Values for Feature Distribution in the Forearm per
Subject.

8.6 Root-Mean Square Values for Feature Distribution in the

Forearm per Subject.
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8.7 One-way Analysis of the Variance

8.7 One-way Analysis of the Variance

In this section the ANOVA equations used are shown and explained:

In one-way ANOVA, the variation due to the interaction between the data points

is denoted SS(B) for Sum of Squares Between groups (Equation (8.6). If the sample

means are close to each other, the variation will be small. There are k samples assumed

to be involved with one data value per sample mean, so there are k-1 degrees of freedom.

The employed measure of central tendency, a.k.a arithmetic average or mean (Ȳ ), is

defined by Rutherford, 2012(234) in Equation (8.1):

Ȳ =

∑N
i−1 Yi

N
(8.1)

where Ȳi is the ith subject’s data point, and N is the total number of data points. The

subscript i indexes the individual data points and in the instance it takes the values

from 1 to N. The variance (σ2) is defined as

σ2 =

∑N
i−1(Yi − Ȳ )2

N
(8.2)

The variance reflects the average of the squared deviations from the mean. Equation

(8.2) defines the population variance. Nevertheless, this equation provides a biased

estimate due to the loss of a degree of freedom from the denominator given that the

mean (which the scores are based on), is used in this calculation. The unbiased estimate

of the sample variance (s2) is given by

s2 =

∑N
i−1(Yi − Ȳ )2

N − 1
(8.3)

Substituting (8.1) into (8.3):

s2 =

∑N
i−1 Y

2
i −

[
(
∑N

i−1 Yi)
2/N

]
N − 1

(8.4)

As a result, the standard deviation (σ) is given by the square root of the variance,

the sample standard deviation (s) is given by

s =

√√√√∑N
i−1 Y

2
i −

[
(
∑N

i−1 Yi)
2/N

]
N − 1

(8.5)
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8.7 One-way Analysis of the Variance

The total sum of squares according to Rutherford, 2012(234), is understood as the

deviation of all the observed scores from the general mean (equation (8.1)). The only

modification to the equation (8.4) is to exclude the denominator

SStotal =

N∑
i−1

Y 2
i − (

N∑
i−1

Yi)
2/N (8.6)
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8.8 ANOVA Analysis Results For All Subjects

8.8 ANOVA Analysis Results For All Subjects

8.8.1 ANOVA table for all subjects per Grid

Figure 8.3: P-values for Windowed ANOVA Analysis - Resulting p-values obtained

through one-way ANOVA analysis are shown separated by 350ms windows and by muscle

groups. Shaded in red, the values where p is greater than 0.05, implying the impossibility

of differentiating amongst positions. The first 45 windows represent the IVC, whereas the

last 3 windows are that of the resting stage.
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8.8 ANOVA Analysis Results For All Subjects
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8.8 ANOVA Analysis Results For All Subjects
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8.8 ANOVA Analysis Results For All Subjects

F
ig

u
re

8
.1

2
:

W
in

d
o
w

e
d

A
N

O
V

A
A

n
a
ly

se
s

F
o
r

T
h

e
P

o
st

e
ri

o
r

G
ri

d
D

u
ri

n
g

T
h
u

m
b

O
p

p
o
si

ti
o
n

P
o
si

ti
o
n

s
-

258
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8.9 Coherence Analysis

8.9 Coherence Analysis

8.9.1 Coherence Found Between Extensors and FDI Muscle During Steady

Contraction

Figure 8.15: Coherence Found Between Extensors and FDI Muscle During

Steady Contraction-Upper Section of the 64-electrode array - The coherence and

cross-intensity analysis are shown above. On the top right it is highlighted what section

of the forearm we are seeing in the graphs on the left. It can be seen that Position 1 has

constant cross-talk between 1-80Hz.
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8.9 Coherence Analysis

Figure 8.16: Coherence Found Between Extensors and FDI Muscle During

Steady Contraction-Lower Section of the 64-electrode array - The coherence and

cross-intensity analysis are shown above. On the top right it is highlighted what section

of the forearm we are seeing in the graphs on the left. It can be seen that Position 1 has

constant cross-talk between 1-80Hz.
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8.9 Coherence Analysis

8.9.2 Coherence Found Between Extensors and Thenar Muscles During

Steady Contraction

Figure 8.17: Coherence Found Between Extensors and Thenar Muscles During

Steady Contraction-Upper Section of the 64-electrode array - The coherence and

cross-intensity analysis are shown above. On the top right it is highlighted what section

of the forearm we are seeing in the graphs on the left. It can be seen that Position 1 has

constant cross-talk between 1-80Hz.
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8.9 Coherence Analysis

Figure 8.18: Coherence Found Between Extensors and Thenar Muscles During

Steady Contraction-Lower Section of the 64-electrode array - The coherence and

cross-intensity analysis are shown above. On the top right it is highlighted what section

of the forearm we are seeing in the graphs on the left. It can be seen that Position 1 has

constant cross-talk between 1-80Hz.
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8.9 Coherence Analysis

8.9.3 Coherence Found Between Flexors and FDI Muscle During Steady

Contraction

Figure 8.19: Coherence Found Between Flexor Muscles and FDI During Steady

Contraction-Upper Section of the 64-electrode array - The coherence and cross-

intensity analysis are shown above. On the top right it is highlighted what section of the

forearm we are seeing in the graphs on the left. For three electrodes it can be seen that

only position 3 was found to have coherence. This coherence is seen for a frequency range

between 2-15Hz. For one electrode (shown at the bottom) the four positions are shown

and position 2 is found to have a greater amplitude and a wider frequency range 5-38Hz.

Furthermore, it can be seen that Position 1 has constant cross-talk between 1-80Hz.

265



8.9 Coherence Analysis

Figure 8.20: Coherence Found Between Flexor Muscles and FDI During Steady

Contraction-Middle Section of the 64-electrode array - The coherence and cross-

intensity analysis are shown above. On the top right it is highlighted what section of the

forearm we are seeing in the graphs on the left. It can be seen that Position 1 has constant

cross-talk between 1-80Hz. As for the rest of the positions, the second one has a clear

single coherent frequency range from 2-35Hz. As for the third and the fourth, a frequency

range of 2-15Hz is shown and a later 30-40Hz is found. It is clearly seen that these two

positions have a smaller amplitude when compared to the second position.
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8.9 Coherence Analysis

Figure 8.21: Coherence Found Between Flexor Muscles and FDI During Steady

Contraction-Lower Section of the 64-electrode array - The coherence and cross-

intensity analysis are shown above. On the top right it is highlighted what section of the

forearm we are seeing in the graphs on the left. It can be seen that Position 1 has constant

cross-talk between 1-80Hz, a decrement of the amplitude is shown from electrodes 49-54,

nonetheless, it is still a constant coherence across the same frequency range as the rest.

As for the other positions, the second position has a clear single coherent frequency range

from 2-35Hz in most of the electrodes. As for the third, a frequency range of 2-15Hz is

shown and a later 30-40Hz is found. Lastly, position four has a smaller amplitude in the

peak shown in 40-45Hz.
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8.9 Coherence Analysis

8.9.4 Coherence Found Between Flexors and FDI Muscle During Steady

Contraction

Figure 8.22: Coherence Found Between Flexor and Thenar Muscles During

Steady Contraction-Upper Section of the 64-electrode array - The coherence and

cross-intensity analysis are shown above. On the top right it is highlighted what section of

the forearm we are seeing in the graphs on the left. Two things are visible for the coherence

analysis. Firstly, position 1 has a constant cross-talk between 1-80Hz. Secondly, position

3 and 4 have none coherence for these muscle pairs and these electrodes. As for position

2, a clear lower peak is found in the frequency range of 15-20Hz overall, in some electrodes

(e.g. 43,44), a second peak is found in a frequency range of 35-42Hz.
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8.9 Coherence Analysis

Figure 8.23: Coherence Found Between Flexor and Thenar Muscles During

Steady Contraction-Middle Section of the 64-electrode array - The coherence and

cross-intensity analysis are shown above. On the top right it is highlighted what section

of the forearm we are seeing in the graphs on the left. Two things are visible for the

coherence analysis. Firstly, position 1 has a constant cross-talk between 1-80Hz. Secondly,

position 3, with exception of electrode 4 that has a peak at 5Hz, and position 4 have none

coherence for these muscle pairs and these electrodes. As for position 2, a clear lower peak

is found in the frequency range of 15-20Hz and a second peak is found in a frequency range

of 35-42Hz.
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8.10 Results After Applying SOFMs For All Subjects

8.10 Results After Applying SOFMs For All Subjects

As discussed in Section 1.1.5.2, a SOFM consists of a group of neurones (prototypes)

organised on a low-dimensional grid. All the neurones are connected to each other by

a neighbourhood relation that must be predefined which dictates the topology of the

map. The same SOFMs setup was applied across the subjects: hexagonal lattice (giving

no preference in the orientation the map is trained), rectangular sheet, and randomly

initialised.

The size of the map was obtained through the equations described in Section 1.1.5.2

through the SOM-toolbox. All the subjects had a resulting map size of 15 by 15

neurones; furthermore, a batch training was applied through a Gaussian neighbourhood

function. Finally, all the subjects were trained using 60% (randomly selected) of the

total feature vectors, the remaining 40% were used to validate the clusters made by the

first group of of data (testing). The results for subjects 2:7 are shown as follow:
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8.10 Results After Applying SOFMs For All Subjects
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.25: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each muscle group of the forearm A) extensors, B) flexors.

Each hit was produced by the best matching unit found for each feature vector trained.

Each unified matrix (gray scale colour map) corresponds to each position of the thumb

colour coded for each muscle group.
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.26: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - PCA of the feature vectors after SOFMs were applied

to the trained data for a randomly chosen subject. Each position is represented by its

corresponding number.

Table 8.1: Performance Measures for SOFM Test data (S2) - Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 93% 1% 3% 3%

2nd Position 2% 91% 3% 4%

3rd Position 2% 5% 89% 4%

4th Position 3% 3% 5% 89%

Table 8.2: Performance Measures for SOFM Test data (S2) - Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 89% 4% 3% 4%

2nd Position 3% 87% 5% 5%

3rd Position 2% 6% 84% 8%

4th Position 6% 3% 8% 83%
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8.10 Results After Applying SOFMs For All Subjects
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.28: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each muscle group of the forearm A) extensors, B) flexors.

Each hit was produced by the best matching unit found for each feature vector trained.

Each unified matrix (gray scale colour map) corresponds to each position of the thumb

colour coded for each muscle group.
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.29: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - PCA of the feature vectors after SOFMs were applied

to the trained data for a randomly chosen subject. Each position is represented by its

corresponding number.

Table 8.3: Performance Measures for SOFM Test data (S3) - Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 91% 3% 3% 3%

2nd Position 4% 91% 2% 3%

3rd Position 2% 3% 92% 3%

4th Position 3% 3% 3% 91%

Table 8.4: Performance Measures for SOFM Test data (S3) - Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 86% 6% 3% 5%

2nd Position 3% 88% 4% 5%

3rd Position 4% 5% 84% 7%

4th Position 7% 1% 9% 83%
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8.10 Results After Applying SOFMs For All Subjects
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.31: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each muscle group of the forearm A) extensors, B) flexors.

Each hit was produced by the best matching unit found for each feature vector trained.

Each unified matrix (gray scale colour map) corresponds to each position of the thumb

colour coded for each muscle group.
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.32: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - PCA of the feature vectors after SOFMs were applied

to the trained data for a randomly chosen subject. Each position is represented by its

corresponding number.

Table 8.5: Performance Measures for SOFM Test data (S4) - Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 89% 4% 4% 3%

2nd Position 5% 91% 1% 3%

3rd Position 2% 3% 93% 2%

4th Position 4% 2% 2% 92%

Table 8.6: Performance Measures for SOFM Test data (S4) - Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 85% 6% 4% 5%

2nd Position 4% 88% 4% 4%

3rd Position 3% 4% 89% 4%

4th Position 8% 2% 3% 87%
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8.10 Results After Applying SOFMs For All Subjects
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.34: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each muscle group of the forearm A) extensors, B) flexors.

Each hit was produced by the best matching unit found for each feature vector trained.

Each unified matrix (gray scale colour map) corresponds to each position of the thumb

colour coded for each muscle group.

281



8.10 Results After Applying SOFMs For All Subjects

Figure 8.35: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - PCA of the feature vectors after SOFMs were applied

to the trained data for a randomly chosen subject. Each position is represented by its

corresponding number.

Table 8.7: Performance Measures for SOFM Test data (S5) - Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 92% 2% 1% 5%

2nd Position 4% 88% 3% 5%

3rd Position 2% 4% 91% 3%

4th Position 2% 6% 5% 87%

Table 8.8: Performance Measures for SOFM Test data (S5) - Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 86% 6% 4% 5%

2nd Position 4% 91% 4% 4%

3rd Position 3% 4% 87% 4%

4th Position 8% 2% 3% 89%
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8.10 Results After Applying SOFMs For All Subjects
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.37: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each muscle group of the forearm A) extensors, B) flexors.

Each hit was produced by the best matching unit found for each feature vector trained.

Each unified matrix (gray scale colour map) corresponds to each position of the thumb

colour coded for each muscle group.
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.38: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - PCA of the feature vectors after SOFMs were applied

to the trained data for a randomly chosen subject. Each position is represented by its

corresponding number.

Table 8.9: Performance Measures for SOFM Test data (S6) - Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 91% 2% 2% 5%

2nd Position 4% 89% 3% 4%

3rd Position 3% 3% 88% 6%

4th Position 2% 6% 7% 85%

Table 8.10: Performance Measures for SOFM Test data (S6) - Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 87% 6% 4% 3%

2nd Position 4% 93% 1% 2%

3rd Position 3% 1% 89% 7%

4th Position 6% 0% 6% 88%
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8.10 Results After Applying SOFMs For All Subjects
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.40: Resulting Hit Histograms Visualised in the U-Matrix - SOFM -

Resulting hit histograms for each muscle group of the forearm A) extensors, B) flexors.

Each hit was produced by the best matching unit found for each feature vector trained.

Each unified matrix (gray scale colour map) corresponds to each position of the thumb

colour coded for each muscle group.
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8.10 Results After Applying SOFMs For All Subjects

Figure 8.41: Principal Component Analysis of the Feature Vectors after Data

were Trained applying SOFM - PCA of the feature vectors after SOFMs were applied

to the trained data for a randomly chosen subject. Each position is represented by its

corresponding number.

Table 8.11: Performance Measures for SOFM Test data (S7) - Flexor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 89% 2% 4% 5%

2nd Position 4% 87% 5% 4%

3rd Position 5% 5% 88% 2%

4th Position 2% 6% 3% 89%

Table 8.12: Performance Measures for SOFM Test data (S7) - Extensor Muscles

aaaaaaaa
BMU

FV
1st Position 2nd Position 3rd Position 4th Position

1st Position 87% 6% 4% 3%

2nd Position 4% 89% 4% 3%

3rd Position 3% 3% 87% 7%

4th Position 6% 2% 5% 87%
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

8.11 Validation Results after Applying Matlab’s Pattern Recog-

nition Toolbox

8.11.1 Best Validation Performance Separated by Subject and Muscle Group

Figure 8.42: Best Validation Performance on the Anterior Compartment for S2

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the flexor muscles of the forearm for randomly chosen subject (consistent with the

previous results), and during a typical test. The best validation performance is found at

epoch 65 with a cross-entropy of 1.927e-06.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.43: Best Validation Performance on the Posterior Compartment for S2

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the extensor muscles of the forearm for typical subject (consistent with the previous

results), and during a typical test. The best validation performance is found at epoch 66

with a cross-entropy of 0.00094 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.44: Best Validation Performance on the Anterior Compartment for S3

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the flexor muscles of the forearm for randomly chosen subject (consistent with the

previous results), and during a typical test. The best validation performance is found at

epoch 94 with a cross-entropy of 0.2366 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.45: Best Validation Performance on the Posterior Compartment for S3

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the extensor muscles of the forearm for typical subject (consistent with the previous

results), and during a typical test. The best validation performance is found at epoch 84

with a cross-entropy of 0.0753 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.46: Best Validation Performance on the Anterior Compartment for S4

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the flexor muscles of the forearm for randomly chosen subject (consistent with the

previous results), and during a typical test. The best validation performance is found at

epoch 164 with a cross-entropy of 0.0087 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.47: Best Validation Performance on the Posterior Compartment for S4

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the extensor muscles of the forearm for typical subject (consistent with the previous

results), and during a typical test. The best validation performance is found at epoch 27

with a cross-entropy of 0.0122 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.48: Best Validation Performance on the Anterior Compartment for S5

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the flexor muscles of the forearm for randomly chosen subject (consistent with the

previous results), and during a typical test. The best validation performance is found at

epoch 429 with a cross-entropy of 0.0754
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.49: Best Validation Performance on the Posterior Compartment for S5

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the extensor muscles of the forearm for typical subject (consistent with the previous

results), and during a typical test. The best validation performance is found at epoch

43with a cross-entropy of 0.0033 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.50: Best Validation Performance on the Anterior Compartment for S6

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the flexor muscles of the forearm for randomly chosen subject (consistent with the

previous results), and during a typical test. The best validation performance is found at

epoch 36 with a cross-entropy of 0.00062 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.51: Best Validation Performance on the Posterior Compartment for S6

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the extensor muscles of the forearm for typical subject (consistent with the previous

results), and during a typical test. The best validation performance is found at epoch 34

with a cross-entropy of0.00619 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.52: Best Validation Performance on the Anterior Compartment for S7

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the flexor muscles of the forearm for randomly chosen subject (consistent with the

previous results), and during a typical test. The best validation performance is found at

epoch 91 with a cross-entropy of 0.2605.

299



8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.53: Best Validation Performance on the Posterior Compartment for S7

- Best validation performance found after the unsupervised Levenberg-Marquardt valida-

tion applied with Matlab’s feature pattern recognition toolbox. The resulting performance

from the extensor muscles of the forearm for typical subject (consistent with the previous

results), and during a typical test. The best validation performance is found at epoch 118

with a cross-entropy of 0.18053 .
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

8.11.2 Confusion Matrix for All Subjects by Group Muscles

Confusion matrix from the different stages of the supervised machine learning, i.e.

training; validation; testing; and the summation of all the previous. The accuracy of

the classification is shown for each case. For the training classification, the accuracy

was 93.1% with a 6.9% of misclassification; the validation accuracy is 90.6% with 9.4%

misclassification; the test accuracy was 92% accuracy and 8% misclassification; and

finally, the overall results for the extensor muscles of the forearm was 91.9% accuracy

with 8.1% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.54: Resulting Confusion Matrix in the Flexor Muscles - S2 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. The accuracy of the classification is shown

for each case. For the testing, the accuracy was 99.9% with a 0.1% of classification error.

For the flexor muscles, it is not clear which position is mostly a false classification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.55: Resulting Confusion Matrix in the Extensor Muscles - S2 - Con-

fusion matrix from the different stages of the supervised machine learning, i.e. training;

validation; testing; and the summation of all the previous. The accuracy of the classifi-

cation is shown for each case. For the validation, the accuracy was 99.9% with a 0.1%

misclassification, for the training, it was 99.7% against 0.3%.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.56: Resulting Confusion Matrix in the Flexor Muscles - S3 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. The accuracy of the classification is shown

for each case. For the training classification, the accuracy was 82.8% with a 17.2% of

misclassification; the validation accuracy is 81% with 19% of misclassification; the test

accuracy was 84% with 16% misclassification; and finally, the overall results for the flexor

muscles of the forearm was 82.6% accuracy with 17.4% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.57: Resulting Confusion Matrix in the Extensor Muscles - S3 - Con-

fusion matrix from the different stages of the supervised machine learning, i.e. training;

validation; testing; and the summation of all the previous. The accuracy of the classifica-

tion is shown for each case. For the training classification, the accuracy was 97.9% with a

2.1% of misclassification; the validation accuracy is 95.7% with 4.3% of misclassification;

the test accuracy was 94.8% with 5.2% misclassification; and finally, the overall results for

the muscles of the forearm was 96% accuracy with 4% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.58: Resulting Confusion Matrix in the Flexor Muscles - S4 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. The accuracy of the classification is shown

for each case. The accuracy of the classification is shown for each case. For the training

classification, the accuracy was 100% with no misclassification; the validation and test

accuracy were 99.8% with 0.2% of misclassification; and finally, the overall results for the

muscles of the forearm was 99.9% accuracy with 0.1% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.59: Resulting Confusion Matrix in the Extensor Muscles - S4 - Con-

fusion matrix from the different stages of the supervised machine learning, i.e. training;

validation; testing; and the summation of all the previous. The accuracy of the classifica-

tion is shown for each case. For the training classification, the accuracy was 99.9% with a

0.1% of misclassification; the validation accuracy is 99.3% with 0.7% misclassification; the

test accuracy was 98.7% accuracy and 1.3% misclassification; and finally, the overall results

for the extensor muscles of the forearm was 99.3% accuracy with 0.7% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.60: Resulting Confusion Matrix in the Flexor Muscles - S5 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. The accuracy of the classification is shown

for each case. For the training classification, the accuracy was 99.7% with a 0.3% of

misclassification; the validation accuracy is 98.7% with 1.3% misclassification; the test

accuracy was 98.6% accuracy and 1.4% misclassification; and finally, the overall results for

the extensor muscles of the forearm was 99.0% accuracy with 1.0% of misclassification.

308



8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.61: Resulting Confusion Matrix in the Extensor Muscles - S5 - Con-

fusion matrix from the different stages of the supervised machine learning, i.e. training;

validation; testing; and the summation of all the previous. The accuracy of the classifica-

tion is shown for each case. For the training and testing, the classification accuracy was

100%; the validation accuracy is 99.9% with 0.1% misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.62: Resulting Confusion Matrix in the Flexor Muscles - S6 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. For the training classification, the accuracy

was 100%; the validation accuracy is 99.9% with 0.1% misclassification; the test accuracy

was 99.7% accuracy and 0.3% misclassification; and finally, the overall results for the

extensor muscles of the forearm was 99.9% accuracy with 0.1% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.63: Resulting Confusion Matrix in the Extensor Muscles - S6 - Con-

fusion matrix from the different stages of the supervised machine learning, i.e. training;

validation; testing; and the summation of all the previous. The accuracy of the classi-

fication is shown for each case. For the training classification, the accuracy was 100%;

the validation accuracy is 99.6% with 0.4% misclassification; the test accuracy was 99.8%

accuracy and 0.2% misclassification; and finally, the overall results for the extensor muscles

of the forearm was 99.8% accuracy with 0.2% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.64: Resulting Confusion Matrix in the Flexor Muscles - S7 - Confusion

matrix from the different stages of the supervised machine learning, i.e. training; validation;

testing; and the summation of all the previous. For the training classification, the accuracy

was 82.1% with a 17.9% of misclassification; the validation accuracy is 82% with 18%

misclassification; the test accuracy was 82.1% accuracy and 17.9% misclassification; and

finally, the overall results for the extensor muscles of the forearm was 82.1% accuracy with

17.9% of misclassification.
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8.11 Validation Results after Applying Matlab’s Pattern Recognition
Toolbox

Figure 8.65: Resulting Confusion Matrix in the Extensor Muscles - S7 - Confu-

sion Matrix Results in the Extensor Muscles - S7
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Abstract— Improving our understanding of mechanisms driving 
thumb rotation could potentially advance the design of current 
upper limb prosthesis to incorporate powered thumb control 
increasing the dexterity of the device. 

This study investigates thumb rotation using high density surface 
electromyography (HD-sEMG) of extrinsic hand muscles. An 
apparatus was designed and developed to test thumb rotation. 

Relevant data were acquired during isometric voluntary 
contractions with a 20-40% of maximum voluntary contraction 
(MVC) performed by 7 healthy right-handed volunteers. Data 
were processed and analyzed. Analysis showed that, thumb 
position could be extracted using features extracted from the HD-
sEMG data recorded with high statistical significance. 

Keywords- high density surface electromyography; thumb 
rotation ; dexterous upper limb myoelectric prosthesis; 

I. INTRODUCTION 
According to a review by Biddis and Chau [1], prosthesis 

rejection rates in adult populations are 26% compared to 
pediatric populations, where the rejection rate increases up to 
45% for body-powered and electric prostheses.  

Using a prosthetic hand is a complex matter that involves 
different factors, e.g. type of prosthesis, rehabilitation training, 
time between the prosthetic fitting and amputation, among 
others and in an extensive literature review of the use of upper 
limb prosthetics with a focus on myoelectric hand conducted 
by C.W. Martin [2], it has revealed that these aforementioned 
factors are also related to prosthetic rejection. 

In this research, we focus our attention on the muscle 
synergies of the forearm while a thumb rotation/opposition 
occurs. Different positions are considered (Figure 1) based on 
the position of the rest of the digits of the hand i.e. secundus 
digitus manus (index finger), digitus medius (middle finger), 
digitus annularis (ring finger) and the digitus minimus manus 
(pinky finger).  

 
Figure 1. Different positions considered based on thumb opposition. 1) 
Opposition to the index finger, 2) opposition to the middle finger, 3) 
opposition to the ring finger, and 4) opposition to pinky finger.  

 
Our hypothesis is that if we are able to extract information 

regarding the thumb rotation through the muscles of the 
forearm, then it will be possible to create mechanisms to 
improve amputees' experience using myoelectric upper limb 
prostheses. We,  hence, in this paper focus on developing 
systems to extract signatures for thumb rotation at different 
positions to verify our hypothesis. 

The paper is organized as follows: 

In section II, we explain our experimental set up and the 
methodology in collecting and processing the recorded data. 
We also show the statistical analysis used to test our 
hypothesis. Section III depicts the results and our conclusions 
are summarized in Section IV. 

II. METHODS 

A. Experimental Setup 
The experimental set up used in this study consisted of a 

high density surface EMG (HD-sEMG) system, a test rig and a 
GUI to present the cue to the subjects. 

The HD-sEMG system we used to acquired surface EMG 
is the EMG-USB2 amplifier from OT-Bioelettronica, Italy. 
We recorded 129 channels (128 sEMG + 1 AUX). The device 
is optically isolated under the European Standards for 
biomedical instrumentation to assure patient safety.  

A. Aranceta-Garza is sponsored by CONACyT established in 
Mexico City, Mexico. 
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We designed and developed an apparatus to test thumb 
rotation. A test rig was designed to allow thumb rotation while 
preventing any movement from the muscles that control index, 
middle, ring and pinky finger, as well as preventing any 
muscle activity that might be produced by wrist and elbow 
movements. A detailed annotated illustration of the rig 
designed is shown in Figure 2.  
 

 
Figure 2. Test Rig used to test thumb rotation. The index, middle, ring and 
pinky fingers together with the wrist and elbow are fixed in the appropriate 
padded holder allowing the subject to be fixed while the hand is sitting in a 
resting position ensuring that no hand muscles are active while in rest. The 
finger holder has movement in the X and Y axis as well as  holder rotation; 
the wrist holder has a rotation movement, and finally, the elbow cup is only 
allowed to move in the X axis. All the holders have an elastic band avoiding 
any harm and  allowing constriction in the movement as desired.  

 
The rig was designed to create a uniform contraction 

across the subjects. Load-sensor transducers (LSR) were 
attached to the fingers holder (Figure 3). Each sensor 
corresponds to one of the four digits in space, mimicking a 
thumb opposition with each of the remaining fingers. This 
allows the pollex (thumb) to be the only actuator in the 
movement, inducing muscle contraction only in those muscles 
related to thumb movement, specifically thumb rotation.  

 

 
Figure 3. Load-sensor transducers (LSR) attached to the fingers holder. 1) 
First position where the LSR mimics an opposition of the index and the 
thumb, 2) second position where the LSR mimics an opposition of the middle 
finger and the thumb, 3) third position where the LSR mimics an opposition of 
the ring finger and the thumb and, 4) fourth position where the LSR mimics an 
opposition of the pinky finger and the thumb.  

 
The load-sensor transducers were connected to a 

multichannel strain gauge amplifier built in-house (visible in 
Figure 4) and calibrated  with a varying load from [0 - 581] g. 
Calibration curves for a typical transducer in a typical trial can 
be found in Table 1, alongside with its respective graph.   

 
 

  
Figure 4. Load-sensor resistors attached to the fingers holder. Each 

resistor has freedom in both, X and Y axis allowing to be set up according to 
each subject's anatomical measurements. On the back of the fingers holder, the 
multichannel strain gauge amplifier built in-house. 

 
 

TABLE 1. CALIBRATION VALUES FOR A TYPICAL LOAD-
SENSOR TRANSDUCER 

 
 
• Visual cue  
 

A graphical user interface (GUI) incorporating visual 
feedback to display the percentage of MVC exerted was 
developed in LabVIEW. The GUI presented  the subject with a 
cue to press on one of the transducers with a 20-40% of MVC 
as well as to hold until a relax cue was presented. The process 
only progressed when the relaxation or contraction stage time 
were reached. The order indicating which LSR to press was 
presented randomly by the program and to further ensure 
avoiding any predisposition from the subject towards the test, 
the relaxing stage time was also randomized. A timing diagram 
of the experiment block is shown in Figure 5. The press-relax 
phases were repeated 120 times  (30 for each different position 
i.e. transducers). 
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Figure 5. Timing diagram that shows the visual cues that the subject was 

exposed to. A) Relax stage, varied from 5 - 7 seconds, the arrow indicating the 
transducer to be pressed changed within each trial until a total of 120 was 
reached (30 for each position). B) Press stage, isometric contraction with a 
visual feedback was prompt. The subject was asked to contract for 5 seconds 
keeping an approximate of 20% of maximum voluntary contraction. 

 

B. Subjects 
Surface-EMG data were acquired from 7 healthy right-

handed subjects [6 male, 1 female mean age 28.5 ± 3.7 yr 
(mean ± SD)]. Subjects had no history of nerve damage, prior 
hand surgery, existing neuromuscular pain, nor tremor; 
epilepsy or Parkinson disease. 

 Each subject was seated on an adjustable chair, set up 
accordingly to their height and comfort. Two 64-electrode 
array matrices were fixed on the posterior and anterior 
compartment, in addition to, a one 8-electrode for male 
subjects (or 4-electrode array for the female subject) placed on 
the dorsal interosseus muscle (DOI), and one disposable, low-
density electrode on the flexor pollicis brevis muscle (FPB), 
finally, ground electrodes were fixed on the olecranon as 
depicted in figure 6. The electrodes were position based on 
palpation whilst thumb opposition-relaxation. Medical tape 
was used to secure the electrodes in place avoiding any 
motion. 

 

 
Figure 6. Electrode array matrices fixed onto the muscles. A) 64- 

electrode array on the extrinsic hand muscles,  corresponding to the anterior 
compartment of the forearm. B) 64 - electrode array on the extrinsic hand 
muscles, posterior compartment of the forearm and 8-electrode array on the 
DOI muscle. C) Low-density electrode on FPB. D) Ground electrodes fixed 
onto the olecranon. 

 
Once the electrodes were properly set, the right hand was 

fixed onto the rig (Figure 7), fixing the 4 digits and joints as 
described in the previous section. 

 

 
Figure 7. Subject attached to the test rig, performing a sustained isometric 

contraction with a 20% MVC,  visible in the screen behind him. 
C. Data 

Surface-EMG was acquired using 128 channels with the 
setup previously described, plus one more channel 
corresponding to a trigger. This trigger was used to time-stamp 
the signal every time a transducer was pressed.  

Raw sEMG signals were collected at a sample rate of 2048 
Hz. The produced data files for each subject, before any 
processing, were ~ 0.43Gb.  

Data were exported to MATLAB. A notch filter was 
applied to reduce the interference caused by the mains at 50Hz.  

The processed EMG was visualized using a customized self 
coded toolbox and differences in the averaged EMG were 
analyzed with ANOVA, to compare and asses the significance 
of any  differences within the recorded EMG across the four 
positions of the thumb.  

III. RESULTS 
 

A. Hd-sEMG Maps 
Color maps of the EMG recorded in both compartments of 

the forearm, for each thumb position were created. These maps 
are an important visual aid to shed light and enhance our 
understanding regarding the distribution of activity and 
contribution of the extrinsic muscles of the hand. 

For a detailed analysis, the mean of the sEMG amplitude 
values were obtained over 100ms window with a 50ms overlap 
of the sustained isometric contraction. These windows were 
applied to extract salient features according to the maximum 
amplitude within each electrode (Figure 8). The selection of 
different width of these windows have impact in the ANOVA 
analysis that will be explain in the next section. 
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Figure 8. Resulting color plots of a typical subject over 3 windows [(0-

100),(50-150),(100-150)]ms for each position of the thumb. A) Resulting 
windows from the posterior compartment. B) Resulting windows from the 
anterior compartment. The numbers: 1, 2, 3 and 4 correspond to the different 
positions of the thumb in relation to the index, middle, ring and pinky finger, 
respectively. 

 

B. Statistical Analysis 
 

The analysis of variance (ANOVA) of the EMG signal, 
revealed significant statistical differences in the p-values, 
across the means of the different positions of the thumb. The 
analysis was performed using  the isometric sustained 
contraction  at a 20-40% of the MVC across the different 
positions of the thumb. A typical result can be found in figure 
9.   

 

 
Figure 9. A typical result of a subject analyzed over 3 windows  [(0-

100),(50-150),(100-150)]ms. A) Posterior compartment statistical analysis 
with a 95% CI, p<<0.05. B) Anterior compartment statistical analysis with a 
95% CI, p<<0.05. The numbers: 1, 2, 3 and 4 correspond to the different 
positions of the thumb in relation to the index, middle, ring and pinky finger, 
respectively. 

IV. DISCUSSION 
Visual inspection of the color maps showed visible 

differences across different thumb rotation positions. These 
differences lie in the muscle propagation of extrinsic muscles 
of the hand. Statistical analysis ascertained the significance of 
the differences. 

These results indicate that it is potentially possible to 
extract different thumb rotation positions through sEMG 
analysis from the extrinsic muscles of the hand.  

Our future work focuses on exploring various methods to 
extract salient features to classify different thumb positions. 
Furthermore, we will be investigating cross-correlation 
between the different muscle groups. 
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