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Abstract

Numerical methods are developed for the study of cell migration and chemotaxis with

specific focus on reaction-diffusion based models on moving domains. This thesis focuses

building on the previous model of cell migration and chemotaxis introduced by Neilson

et al [105]. It does this by introducing new and discussing existing numerical methods

in a cell migration and chemotaxis context.

A new approach to the solution of forced mean curvature flow is introduced in the

form of a moving mesh partial differential equation (MMPDE). This MMPDE is split

into two partial differential algebraic equations: one for the normal velocity and one for

the tangential velocity. We examine curves moving with a prescribed normal velocity

and this decoupling of the velocity components allows mesh adaption to be considered

along the tangential component by means of a mesh adaption monitor function. This

new method is not restricted to cell migration models and could be used in other

contexts where mesh adaption of an evolving curve domain would be desired.

A second-order conservative ALE-FEM scheme is also introduced for the solutions

of reaction-diffusion equations on an evolving curve boundary and is subsequently used

to derive the concentrations of various chemicals which lay on the model of the cell’s

membrane. The cell migration model is also extended to higher dimensions using a sec-

ond ALE-FEM scheme which couples the solutions of reactions taking place on different

domains together by means of a flux boundary condition and a two-dimensional mesh

movement strategy which complements the new one-dimensional MMPDE approach

for curves.

This scheme is used to model diffusion of ligand molecules in the region exterior

to the moving cell. Simulations are presented of this new two-dimensional model in-
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dicating the effect of cell movement and receptor-ligand binding dynamics on the cell

micro-environment and research is currently underway to use this model to investigate

biological theories [84, 86].
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Chapter 1

Introduction

1.1 Cell migration and chemotaxis

1.1.1 Motivation

The study of cell migration and chemotaxis is a vast and active area of biology. Chemo-

taxis is a sub-branch of cell migration where cells move along or away from a gradient

of a chemical concentration in the cell’s detectable environment. There are many situ-

ations where cells’ mechanism to chemotax prove vitally important. In wound healing,

white blood cells travel towards damaged tissue by migrating up a gradient of platelet-

derived growth factor which is released around the wound [4], [32]. This allows the

white blood cells to be poised in a vulnerable area to fight incoming foreign bodies,

infection and diseases as they arrive through the damaged tissue. Spermatozoa also

migrate using a gradient emitted from the oocyte which provides the cells arriving in

the womb with a strong directional path to follow [45].

Cancerous cells also spread the disease by means of chemotaxis [122]. When can-

cerous cells metastasise, they migrate away from the original tumour and travel to

different parts of the body. Melanoma cells are seen to do this in a chamber-based

experiment [100], for instance, where the cells migrate up gradient of lysophosphatidic

acid which is broken down by the cells as they move off, thus forming a gradient away

from the initial tumour which drives the cancerous cells dispersal.

There is thus considerable interest in understanding the mechanisms responsible for
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directed cell migration but the exact processes involved are not fully understood and

different types of cells also exhibit different forms of locomotion.

1.1.2 Existing biological models

Zebrafish primordial germ cells, for example, migrate using bleb-like protrusions of

cytoplasmic flow which extend outward from the cell [21]. These cells migrate by

positioning myosin, a protein which has strong ties to cell membrane [150], close to the

perceived lowest concentration of background signal thereby loosely defining the rear of

the cell. A front is then formed by the combined effects of hydrostatic pressure within

the cell, tension and elevated calcium along the leading edge.

Eukaryotic cells like Dictyostelium discoideum, on the other hand, generally move

in a manner akin to crawling. They do this by forming pseudopods, a network of

filamentous or F-actin formed from polymerisation of monomers of G-actin (globular

actin), close to the direction in which the cell wishes to travel [133, 135, 143, 146]. These

protrusions form a strong attachment to the substrate the cell is travelling on. The

cell is then presumed to make progress by releasing some of the earlier attachments at

the trailing edge. This, coupled with hydrostatic pressure [18] and tension forces which

maintain the cell’s constant volume results in the cell gradually progressing forward.

This process of pseudopod formation and movement occurs naturally in Dictyostelium

cells even when there is no obvious food source for the cells to migrate towards. When

a food source, such as cyclic-AMP is present in the cells’ immediate surrounding how-

ever, Dictyostelium can sense which direction the higher concentration is present by

means of a number of small receptors which are embedded in the membrane. It is

thought that when these receptors bind to free-ligand molecules they bias the position

of pseudopod growth such that the pseudopods gradually move closer to the area of

highest concentration.

There are many constraints placed on biologists’ ability to study cell migration

directly. For instance, the inability to observe exactly how all proteins interact with

each other and consequently the cell to produce movement leads to assumptions being

made on which proteins are most relevant in determining how the cell responds to
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chemotactic gradients and other stimuli. Mathematical modelling of cell migration has

become a popular tool for observing cell migration as models potentially offer a facility

to fill some of these observational gaps with insight which, in many cases, can then be

experimentally validated.

1.1.3 Existing mathematical models

In perhaps the first published conceptual model of cell migration, in 1980 Abercombie

put forth a model set of circumstances for metazoan cell movement based on intuitive

assumptions gained by experimentation and observations [1]. This conceptual model

broke the metazon cell migration process into a four component cycle consisting of act-

ing growth protrusion, frontal adhesion formation, rear adhesion release and unilateral

contraction of the cytoplasm by means of actin-myosin proteins. This relatively high

level model had all the necessary components to generate the net effect of cell move-

ment but the fundamental assumptions could not be verified at the time. It was not

until years later when the technology became available that the assumptions made by

Abercombie could actually be verified by improved microscopy techniques and empirical

data.

More recently, with the increase in computational power, numerical methods have

been incorporated into the modelling process as a modern tool for visualisation and

deriving quantitative results which can be compared with experimental data. DiMilla

et al. [36], for instance, put forth a mathematical description of what the ideal strength

characteristics for the cells adhesions should be for optimal cell motility. In doing so

they made a number of assumptions about the concentration of integrin receptors,

which facilitate the linking between the cell cytoskeleton and the substrate on which

it travels. The assumptions were in fact verified years later by [55] and [119] when

the technology to do so became available and this helped to strengthen the use of

mathematical models in the study of cell motility.

It can often be easier to infer cell movement as a collective and conduct experiments

and studies accordingly. As such, many models exist which encapsulate cell migration

as a group of cell interactions rather than a single cell model. Models such as [99] and
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[138] demonstrate how cells migrating at the front of a steep slope of chemoattractant

degrade the field as they move and cause the trailing cells to stagnate while at the same

time the leading cells deposit exopodia which act as beacons that the trailing cells may

follow. Similar scale approaches have been used to model complex cell proliferation in

wound healing sites [70, 110]. Such agent or “rule-based” models are incredibly useful

to derive collective cell migration behaviours and often times postulates made with

such models are easily verified experimentally. The drawback, however, of this scale

of model is that often little can be said about the specific proteins and concentrations

within the cells themselves. To gain a more accurate model of cell migration, each cell

has to in turn be accurately modelled.

In recent years there have been a number of different approaches to modelling

chemotaxis at the single cell level. For instance, [67], [74] and [112] favour a “compass

like” approach whereby the cell picks up on the external chemoattractant source and

migrates immediately up the steepest path using a biased excitable network. This

model treats the activation of the actin protein as an excitable media using Fitzhugh-

Nagumo dynamics [53] to model the patterns of spot to wave actin activation which

is observed in Dictyostelium cells [147]. By itself, this model has trouble adapting

to significant changes in background concentrations but when combined with a local

excited, globally inhibited mechanism for the cell receptor activation [151], this model

does a good job of predicting cell motility and chemotaxis. In simulated backgrounds

of cyclic-AMP, the cells are able to correctly migrate in gradient differences of as little

as 1%.

Models such as these are intuitive and would be in line with much of what we would

expect any organism to do when presented with more resources in a particular direction.

However, there are notable issues handling zero background where we know cells do

in fact still migrate, albeit in a somewhat random fashion. There is also a drawback

from an experimental observational viewpoint where cells in fact can relocate slowly

up the gradient rather than rapidly when responding to a significant gradient change.

This type of behaviour is harder to encapsulate within compass-like models but can

naturally develop as part of models which use receptors to bias the movement of the
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cell rather than to define a front.

At the subcellular level, there have been attempts to model the interactions of spe-

cific proteins. In [57, 115], a “ratchet” model describes the motion of the filaments of

actin within the cell and how various mechanical forces which occur naturally through

energy minimisations within the cell lead to the translocation of actin and the defor-

mation of the cell membrane. Experimentally testable results from this approach have

provided a deeper understanding of exactly how all the mechanisms involved in cell

migration may interact within the cell and the ways in which various proteins naturally

form complex mechanical structures.

This model does a good job of representing the interactions between the actin

cytoskeleton and the cell substrate however a model which also takes account of the

other proteins involved in cell migration and links the them all together would be more

advantageous. Unfortunately a full biological account of exactly what proteins and cell

systems are involved in the cell migration process is unknown.

This means that while the protein actin is widely considered a driver protein for

cell motility, see for example [69], it is known that other proteins can also affect the

cell migration process in different ways. The protein myosin, for example, can also

contribute to the overall movement of cells [75]. Thus, although there is high demand

for models which are explicit in their description, there is also not enough biological

knowledge to develop models with such fidelity as yet. Models which remain slightly

more general can be useful to develop assumptions about the various proteins involved

in the migration process. These are excellent tools for developing understanding and

testing assumptions until more is understood about the biology of cell migration first.

For example in [105], the independent proteins aren’t strongly identified but the model

produces realistic simulations of cell migration. These models could eventually be tied

down to various proteins as the technology and knowledge becomes available and in

the meantime offer useful insight by speculating on what various concentrations could

represent. In some cases, speculations made on models such as these could even be

tested to find new results.

More recent models of cell migration incorporate growing domains of different di-
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mensionality with the exchange of information between the different domains being

mediated through flux boundary conditions building on some of the work conducted

by Elliott et al. [46] and Madzvamuse et al. [87, 88, 89, 90, 91, 92, 93]. In [48] and

[84] for instance, the receptor occupancy of the cell is modelled using a shared flux

boundary term between the cell local environment and the cell membrane. This is

used to produces a more physiologically realistic model of the binding and unbinding

of free-ligand which takes place to and from receptors on the cell membrane and the

cell environment.

In such models, the cell interface must also be tracked using specialist numerical

methods. While there exist many cell models which fix the position of the cell membrane

[78, 95, 107], a more realistic approach is to allow the position of the membrane to

change and evolve over time. A number of techniques exist which facilite such interface

tracking of the free boundary model, either by explicitly tracking the evolving interface

front or by tracking the front implicitly.

Phase field methods [98, 130] for instance, track the interface implicitly as the

level-set of an evolving phase field function, φ say, embedded in R2 or R3. At the

cell boundary there is a phase transition between the cell interior, where φ = −1 for

instance, and the micro-environment surrounding the cell, where φ = 1. A smooth

transition occurs between these two constants using the solution of a phase field equa-

tion with a width parameter, W say, to describe how fast the transition takes place.

The membrane is identified with the φ = 0 contour. This technique has been used in

[129] to model the effects of intracellular actin-flow, cell adhesions and morphology on

cell motility and in [19] and [39] to model vesicle membranes within the cell. However,

to predict accurately the membrane position, the parameter W has to be small and for

efficiency the computational grid must be refined close to the interface and this requires

much additional computational expense.

Level set methods (LSM) [109, 127] work similarly to phase field methods in that

they both require calculation of a larger area in which the interface is embedded and

both evolve the curve implicitly using a velocity equation to describe the motion of

the interface. On the other hand, LSM use a different set of equations to do this from

6



phase field methods, using instead convection-diffusion to describe the motion of the

moving interface as a propagating wavefront in R2 or R3 space. This makes them a

more intuitive method for handling sharp front problems and discontinuous domains

although more care must be taken to solve these equations as the convection-diffusion

problem is less stable than the reaction-diffusion problem. LSM have been used in the

past to model cell migration; in [105] and [152] for instance, they are used to evolve

the boundary and model the shape changes which happen at the cell membrane.

Point clouds [79, 83] have also been used to calculate solutions of reaction-diffusion

models with some applications in modelling cell biology [81]. The point cloud solutions

to reaction-diffusion systems can also be used to develop implicit interface tracking

methods [52, 77, 82] which have certain computational advantages over traditional

level set methods and phase field methods because the particles in the point clouds can

be rearranged to more optimally capture the solution of the implicit level set function

close to the interface boundary and thus less grid nodes or particles are required to

properly track the interface front.

In each of the implicit methods above, a mesh triangulation algorithm must be

used to resolve the interface and find the level-set. Usually this will be some form of

marching cubes [80] but this additional step is not necessary with explicit methods.

In explicit front tracking methods, the triangulation for the domain itself is evolved.

A notable disadvantage is the additional complexity required to capture topological

changes. However, explicit methods tend to have a computational advantage as only

the mesh itself need be used and not any addition grids in R2 or R3 making them

potentially more efficient to calculate.

There exist many explicit methods which move a numerical mesh forward. The

MATLAB toolbox DistMesh [113, 114] for instance can evolve a numerical mesh by

discretely recomputing new triangulations for the grid as the boundary changes over

time. A more efficient way of evolving an explicit mesh however makes use of properties

of certain variational problems. In [65], many different variational formulations are

looked at for mesh movement. These problems typically take a similar form with

differing monitor matrix to produce different effects within the mesh movement, usually
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with the aim to enhance the quality of the mesh in specific areas where that may be

advantageous. The variational problems are solvable using Galerkin finite element

methods which allows the choice of initial grid to be non-regular.

Recently, numerical methods have been developed to evolve meshes on surfaces. In

[41], [44], [47] and [49] for instance, a variational moving mesh finite element method is

developed which is able to deform and move surface meshes according to a prescribed

mesh normal velocity while keeping an overall good quality triangulation through an

arbitrary tangential velocity. Some work has already been done to incorporate this tech-

nique into cell biology [9] with applications which could potentially include accurately

modelling the cell membrane during chemotaxis in future.

1.1.4 New approaches

In this thesis we will look initially at a top-down approach of modelling cell migration

and chemotaxis processes based on earlier work conducted by Neilson et al [105]. They

have proposed a mathematical model which naturally encapsulates much of the be-

haviour and characteristics observed by Dictyostelium cells which we wish to emulate.

We will then look at extending their model by utilising different numerical methods

and approaches, some of which are newly developed as part of this thesis.

Their approach is based on solving a reaction-diffusion equation on a moving bound-

ary domain which represents the cell membrane. They do this using an arbitrary

Lagrangian-Eulerian finite element method (ALEFEM) with a semi-implicit IMEX

scheme for the temporal integration. In this way, the diffusive and convective term

are treated implicitly using a Backward-Euler approach whereas the non-linear reac-

tion terms are treated explicitly using the forward Euler method. They do this because

the reaction terms are non-stiff and so do not require an excessively small time-step to

maintain stability. In this way an IMEX scheme in [105] provides good accuracy with

minimal computation through large time-steps. Such schemes are often used to solve

reaction-diffusion equations or ODEs which have a stiff and non-stiff component for the

increased computational efficiency (in [5, 16, 28, 54] or [59], for example).

In this thesis we will develop improvements on this scheme by modifying it with a
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Crank-Nicolson approach to obtain second order temporal accuracy for use with the

cell model later on. In addition to this, Neilson et al have chosen to use a level set

method approach in [105]. We will also discuss improvements to the computational

efficiency of their model by means of a newly developed explicit moving mesh scheme.

The methods that are to be introduced in this thesis however are not restricted solely

to cell migration and chemotaxis models. The moving mesh methods can be used to

investigate computational fluid dynamics problems or geometry related problems where

there is a need for a mesh which evolves in time, for instance in solving problems relating

to such as Willmore flow [123, 148] and anisotropic mean curvature flow [134]. The

reaction-diffusion methods that are to also be introduced can also be used to investigate

other chemical phenomenon non specific to the cell migration model such as pattern

formation on domains with growth: in models described in [101, 102] and [103] for

example.

1.2 An introduction to current research

1.2.1 A description of the membrane

It is helpful to define certain variables in this section and the cell migration model

which will be used extensively throughout the text which we build from the work done

in [104], [105] and [106]. The model presented in these publications operates at the

single cellular level. The cell is represented as an evolving simple closed curve interface

prescribed by the position of a moving domain Γ(t) where Γ(t) ⊂ R2 which is changing

with respect to time t ∈ I = [0, T ], (T > 0).

Specifically, Γ(t) will frequently represent the cell membrane’s position in two-

dimensional space and by definition shall be a simple closed curve with non-zero en-

compassing area. This means that any vector x ∈ Γ(t) can be written in terms of a

parameterisation at time t where

x(s, t) = (x(s, t), y(s, t))T , (1.1)

and where 0 ≤ s < 1.
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A natural description of Γ(t) then follows from the zero level set,

Γ(t) = {x ∈ R2 : dΓ(t)(x, t) = 0}, (1.2)

where dΓ(t) is the signed distance function which is zero at the cell membrane and

positive for x on the exterior of the cell and negative otherwise. This allows us to also

quite straightforwardly define the outward facing normal vector

n(x, t) =
∇dΓ(t)(x, t)

|∇dΓ(t)(x, t)|
. (1.3)

It is important to note that by definition Γ(t) is a simple closed curve with non-zero

area and no topological changes or discontinuities and so n(x, t) will always exist and

be well defined for x ∈ Γ(t). We can now precisiely define some concepts, notation and

variables which will be useful throughout this text.

Let Γ(t) be a smooth closed curve in R2 where Γ0 = Γ(0) and Γ(t) has time-

dependent material configurations. A particle P defined on Γ(t) has velocity Ẋp(t)

therefore, we assume that a velocity field u exists such that points on Γ(t) evolve with

a velocity field Ẋp(t) = u(Xp(t), t). It follows from (1.1) that the material velocity u

can be given by

u =

(
∂x

∂t
,
∂y

∂t

)∣∣∣∣
s

=
∂x

∂t

∣∣∣
s
, (1.4)

where ·|s denotes that we view the derivative of x in this case with respect to the

particle’s material position. This distinction is important as there are a number of

different ways in which the time derivative on x can be derived as will be seen when

utilising the arbitrary Lagrangian-Eulerian frame for numerical calculations in later

sections.

The arc-length parameterisation of curve Γ(t) is also used extensively throughout

the text and can be derived from the spatial derivative in x(s, t) where

η(s, t) =

∫ s

0

∣∣∣∣∂x∂s (s̄, t)

∣∣∣∣ds̃, ηs =
∂η

∂s
=

∣∣∣∣∂x∂s (s̄, t)

∣∣∣∣ , (1.5)
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and where ∣∣∣∣∂x∂s (s̄, t)

∣∣∣∣ =

√(
∂x

∂s
(s̄, t)

)2

+

(
∂y

∂s
(s̄, t)

)2

(1.6)

is the standard discrete L2 norm. It is also worth noting that the temporal rate of

change of the arc-length is

∂ηs
∂t

∣∣∣
s

=

 ∂

∂t

√(
∂x

∂s

)2

+

(
∂y

∂s

)2
∣∣∣∣∣∣

s

=

 ∂x
∂s

∂
∂t
∂x
∂s + ∂y

∂s
∂
∂t
∂y
∂s√(

∂x
∂s

)2
+
(
∂y
∂s

)2


∣∣∣∣∣∣∣∣
s

=
xs
|xs|
· ∂xs
∂t

∣∣∣
s

=
xs · us
ηs

,

(1.7)

where · denotes the standard discrete L2 inner-product which will be used extensively

throughout the text. Definition (1.7) will be used in later chapters to derive a numerical

procedure for solving reaction-diffusion models on evolving curves.

1.2.2 A description of the cell model

The cell migration model itself is based on a continuous version of the three-equation

reaction-diffusion system posed by Hans Meinhardt [94],

ȧ+∇Γ(t) · (au) = Da∆Γ(t)a+
(a2/b+ ba)%

(sc + c)(1 + saa2)
− raa,

ḃ+∇Γ(t) · (bu) = Db∆Γ(t)b− rbb+
rb
|Γ(t)|

∮
Γ(t)

adx,

ċ+∇Γ(t) · (cu) = Dc∆Γ(t)c+ bca− rcc,

(1.8)

where

ȧ =
∂a

∂t

∣∣∣
s
, ḃ =

∂b

∂t

∣∣∣
s
, ċ =

∂c

∂t

∣∣∣
s
,

are the temporal derivatives for the chemical substances with respect to the fixed spatial

reference parameter s.
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The Laplace-Beltrami operator on Γ(t) is defined as

∆Γ(t)α = ∇Γ(t) · (∇Γ(t)α) (1.9)

and is the tangential divergence of the tangential gradient where the tangential gradient

∇Γ(t)α = ∇α− (∇α · n)n (1.10)

and where · denotes the discrete L2 inner product and ∇c denotes the Euclidean gra-

dient on R2 and the normal vector field perpendicular to Γ(t) as given in (1.3).

The temporally invariant Laplace-Beltrami operator on Γ(t) (1.9) can be written

more explicitly as

∆Γ(t)a =
1

ηs

∂

∂s

(
a

ηs

)
∆Γ(t)b =

1

ηs

∂

∂s

(
b

ηs

)
∆Γ(t)c =

1

ηs

∂

∂s

(
c

ηs

)
when Γ(t) takes the form stated above: a simple closed curve with non-zero area defined

on R2 space with a parameter s. It is important to note that this is operator on Γ(t)

is temporally invariant while the spatial dimension of Γ(t) is, in general, changing with

respect to time t.

The functions a, b and c represent the local activator, global inhibitor and local

inhibitor respectively and hence Da < Dc < Db. The saturation coefficients are sa, sc

and ra, rb, rc are the linear decay coefficients. Basal creation coefficients are given by

ba, bc and finally, % represents a signalling term which biases the auto-catalytic creation

of the activator a. The values for these parameters are given in later chapters.

The output from the local activator a is fed into a simple mechanical model which

prescribes the motion of the cell in the normal direction and hence also the domain

Γ(t) movement,

V = ẋ · n = Kprota− f(κ), (1.11)
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where V is the velocity of the cell in the normal direction, Kprot is a constant and f(κ)

is a function dependent on the local curvature of the cell used to control the area of

the cell approximation.

Notice that this model does not explicitly specify which proteins or chemicals the

activator and inhibitors correspond to. Instead an underlying assumption is made that

the a, b and c concentrations will encompass a variety of different proteins and their

interactions. With this generality, the resulting model still produces very natural and

realistic looking morphologies [105] which exhibit similar characteristics found in cells

such as Dictyostelium. Most notably is the protrusions, known a pseudopods, which

form generally in pairs around the cell’s leading edge. Generally one of these protrusions

will be retracted back into the cell and the net motion from the surviving protrusion

coupled by hydrostatic pressure and tension to retract the trailing edge gives the cell

model its full motility.

The direction in which the cell chooses to migrate is biased by the signalling term s.

Consequently where there is higher degree of signal, there will be a higher chance of the

activator rising and generating a pseudopod, although if this is in a significantly different

location from where the last pseudopod was formed, then the cell will not usually change

its direction immediately. Instead, the pseudopods will gradually relocate to orientate

the cell in the direction of the highest concentration of free-ligand, the food source.

This gradual movement towards higher concentrations rather than rapid relocation is

what is also witnessed in nature [3].

Initially, in Chapter 3, we introduce a procedure for approximating this signal term

by using a stochastic modelling process and various assumptions which provide a good

approximation for the cell’s fractional receptor occupancy. This model is later improved

upon after new methods are introduced in Chapter 4, leading to a higher dimensional

cell model which takes account of the cell’s motion through the environment and how

the movement of the cell actually affects the free-ligand concentration.
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1.2.3 Common notation

Throughout this text we will often use subscript notation to denote a particular frame of

reference or concept. For instance Ωc will generally denote a reference configuration for

the domain Ω. The reference concept will be introduced when looking at the arbitrary

Lagrangian-Eulerian approach in the next section. We will also use a subscript h,

for instance ch to denote a linear approximation to a function c, or to a domain: for

instance Ωh is used to denote a piecewise linear approximation to Ω which is composed of

a neighbourhood of joined finite elements. These two subscripts may also be combined,

where Ωc,h for instance denotes a triangulation of the domain Ωc which is a reference

domain for Ω.

When viewed as a subscript, the variables ξ, η and t will always refer to a derivative,

in other words cξ will never refer to anything other than

cξ ≡
∂c

∂ξ
(1.12)

however this should not be confused with, for instance,

∂c

∂t

∣∣∣
ξ

(1.13)

where the evaluation line symbol and subscript of ξ here denote (similar to (1.4)) that

the temporal derivative of c is being evaluated under the ξ parameterisation for the

domain.

A subscript of ·0 will always mean that the temporal variable t will be fixed at t = 0,

for example

c0 ≡ c(x, t)
∣∣∣
t=0
≡ c(x, 0). (1.14)

1.3 The arbitrary Lagrangian-Eulerian approach

In both instances of curves and general surfaces in high dimensions, there are two

velocities that need to be considered to fully model the underlying system, namely

the material velocity of the substance or substances which are being modelled and
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(a) Movement of the numerical mesh by hav-
ing grid nodes follow the material velocity.

(b) Movement of the numerical mesh by hav-
ing grid nodes follow an arbitrary ALE veloc-
ity.

Figure 1.1: An illustration depicting the difference between a Lagrangian approach in
(a) and the ALE approach in (b). On the left, the mesh points move with the same
velocity as the material points which leads to grid entanglement in two places. On the
right, a reference domain is used instead to move the mesh points in an arbitrary way
so as to avoid the entanglement seen in (a).

the velocity of the underlying numerical mesh upon which the solutions are being

approximated. Conventionally, there are three approaches to modelling on surfaces

which are themselves evolving.

In the Lagrangian frame, the model is formulated naturally and the particles are

the mesh points themselves, for example see Figure 1.1 (a). This approach may be well

suited to some applications but in the specific case of the cell problem, because of the

nature of the way in which the domain moves to emulate cell morphology and from the

corresponding material velocity of the particles, eventually grid entanglement as shown

in Figure 1.1 (a) will occur and the underlying numerical methods will then fail. For

this reason it would be preferred to not have the mesh move with the same velocity as

the particles, or the material velocity u.

The Eulerian frame sees the mesh held fixed and the model reformulated so that an

additional convective term is introduced. This convective term accounts for the now

existing disparity between the mesh node positions and the particle positions. This

formulation has the advantage of being more robust in instances where the material

velocity could be unpredictable or lead to badly defined meshes. It does however

bring in a convective term which may be large as the particles move further from

the mesh points. This could mean numerical methods such as up-winding schemes and

discontinuous Galerkin FEM for example would have to be employed to ensure stability

[7, 27, 58, 76].
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The arbitrary Lagrangian-Eulerian (ALE ) approach attempts to combine the ad-

vantages of both the Lagrangian and Eulerian frame [37, 38, 49, 58]. It does this by

reformulating a problem given in the physical domain, defined by the material move-

ment of the particles, to one which is defined on a reference domain whose evolution we

may arbitrary control. By doing this we can select a better domain on which to per-

form our numerical methods: better in the sense that we may control the distribution

of the mesh points through this reference domain and avoid any mesh entanglement

(such as illustrated in 1.1 (a) where Ωc(t) is the corresponding ALE reference domain)

that would otherwise arise in a purely Lagrangian setting. In this way the solution can

be calculated with the same efficiency of using the Lagrangian frame but also with the

same well conditioned meshes of the Eulerian frame.

Much of the understanding and definitions used here are similar in form to [38]. Let

us suppose that we are given a problem for which the unknown is g(x, t) and x is the

physical coordinate and the solution of g(x, t) is defined in some form of the temporal-

derivate in the Lagrangian frame, that is to say that we can express the unknown g(x, t)

in a form where

∂g(x, t)

∂t
= f(x, t, g), ((x, t) ∈ Ω(t)× I) ,

g(x0, 0) = g0(x), (x0 ∈ Ω(0)) .

(1.15)

Notice that x ∈ Ω(t)1, as in the solution to g is defined in terms of the domain where

Ω(t) is actually also evolving in time. In this frame x follows the material position of

the particles. This means to say that given a particular x0 ∈ Ω(0) we can trace the

path that the particle makes through physical space by following the velocity of Ω(t),

in other words, we suppose that there exists a mapping, B say, such that

x ∈ Ω(t) ⇐⇒ ∃ x0 ∈ Ω(0) : x = Bt(x0). (1.16)

1Note that while Ω(t) will often be used in this text to denote a domain of two spatial dimensions,
the formulation here is actually generalised to no fixed spatial dimensions and Γ(t), the cell membrane
domain, could also be substituted into the argument in place of Ω(t). What matters is that there exists
bijective mapping functions between the material, physical and referential domains.
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In this way we can also define the material velocity of the particles x as

u : Ω(0)× I → R2,

u(x0, t) =
∂x(x0, t)

∂t
=
∂Bt(x0)

∂t
.

(1.17)

The mapping Bt is defined by the movement of the physical particles and this may

not lead to a smooth or desirable mapping for a numerical procedure. Instead let us

suppose that we have a smoother and more desirable mapping which would produce a

better numerical mesh and let us define this mapping with ξ as the coordinate system

where

ξ = At(x0), (x0 ∈ Ω(0)) ,

ξ ∈ Ωc(t) ⇐⇒ ∃ x0 ∈ Ω(0) : ξ = At(x0).
(1.18)

In this sense it would be advantageous to have an expression for g defined on the more

desirable mapping function A, in other words under the ξ coordinate system, however

we will not in general be provided with such a problem. There is however a way to take

the fundamental physical defined in the physical space (1.15) and make it one defined

on the reference space Ωc(t).

Suppose we have three equivalent forms of g, namely

g(x, t) : (Ω(t), t)→ R,

g∗(ξ, t) : (Ωc(t), t)→ R,

g∗∗(X, t) : (Ω(0), t)→ R,

(1.19)

and these are related through the mapping functions above whereby

X ∈ Ω(0), g∗∗(X, t) = g(Bt(X), t), g∗∗(X, t) = g∗(At(X), t). (1.20)

We may now start to derive the problem (1.15) in terms of g∗, the reference space and

hence numerical mesh:

ξ ∈ Ωc(t),

∂g∗

∂t
(ξ, t) =

∂g∗∗

∂t
(A−1

t (ξ), t) =
∂g

∂t
(Bt(A−1

t (ξ)), t)
(1.21)

17



or suppose (ξ, t) = Ct(x) = Bt(A−1
t (ξ)),

ξ ∈ Ωc(t),

∂g∗

∂(ξ, t)
(ξ, t) =

∂g

∂(ξ, t)
(Bt(A−1

t (ξ))t)

=
∂g

∂(x, t)

∂(x, t)

∂C(x, t)

=
∂g

∂(x, t)

∂(x, t)

∂(ξ, t)
,

(1.22)

from which we obtain expressions for the spatial and temporal gradient operator on g∗,

∂g∗

∂ξ
(ξ, t) =

∂g

∂x
(x, t)

∂x

∂ξ
(x, t) (1.23)

∂g∗

∂t
(ξ, t) =

∂g

∂x
(x, t)

∂x

∂ξ
(x, t) +

∂g

∂t
(x, t), (1.24)

respectively. The term
∂g

∂x
(x, t)

∂x

∂ξ
(x, t) (1.25)

in (1.24) is a convection-like addition which is brought in through the relative change

of velocities between the physical Ω(t) and reference Ωc(t) domains. Notice that we

can set g∗ = x(ξ, t) in (1.24) so that

∂x∗

∂t
(ξ, t) =

∂x

∂x
(x, t)

∂x

∂ξ
(x, t) +

∂x

∂t
(x, t) (1.26)

from which it follows that the convection-like term can be written as the difference

between the reference and physical domain velocity,

∂x

∂ξ
(x, t) =

∂x∗

∂t
(ξ, t)− ∂x

∂t
(x, t). (1.27)

For convenience, throughout this thesis we will often denote concentrations on the

physical configuration by an x subscript and concentrations on the reference configu-

ration by a ξ subscript, dropping the asterisks on the function g we will use the forms

∂g

∂t
(x, t) ≡ ∂g

∂t

∣∣∣
x

and
∂g∗

∂t
(ξ, t) ≡ ∂g

∂t

∣∣∣
ξ

and (1.28)
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as short-hand. It follows that (1.24) can now be written more compactly as

∂g

∂t

∣∣∣
ξ

= ∇g · (w − u) +
∂g

∂t

∣∣∣
x
, (1.29)

where u is given by (1.4) or, more generally, by

u =
∂x

∂t

∣∣∣
x
, (1.30)

and w is the ALE velocity which comes from the referential domain,

w =
∂x

∂t

∣∣∣
ξ
. (1.31)

Equation (1.29) relates the change of g at the reference configuration (numerical

mesh in our case) to the physical configuration as given in (1.15) through the additional

convection term and thus problems defined on Ω(t) can now be defined on Ωc(t) through

the equivalent mapping (1.29).

1.4 Moving mesh methods for curves

Moving the mesh points in the normal direction will often lead to problems involving

grid crossover and will not generally give a good quality mesh (where, for instance,

the nodes equidistribute arc-length). To overcome this, the numerical mesh for the

cell membrane Γ(t) in [104] is evolved using the parameterised finite element method

(PFEM) [10] which is a method to evolve parameterised meshes according to functions

of curvature or surface diffusion. This procedure has allowed problems involving various

growing domains to be investigated [11, 12, 48]. The method works by making use of

the geometric identity

∆Γ(t)x = κn, (1.32)

where x parameterises the domain Γ(t), ∆Γ(t) is the Laplace-Beltrami operator on

Γ(t) and κ the local curvature of the domain; n is the outward pointing normal. The
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geometric identity (1.32) is combined with the normal velocity equation

ẋ · n = f(κ), (1.33)

where ẋ is the domain velocity and f(κ) is a real-valued function which may depend

on local curvature.

The PFEM generates a uniform arc-length mesh at each time-step which is useful

and often desirable for many applications. There is a caveat which is that the tangential

velocity of the mesh is not controllable with PFEM and is calculated intrinsically. A

controllable tangential mesh would be desirable because it would allow the relocation

of mesh nodes to areas where the underlying numerics would favour more resolution for

example. A further caveat is that PFEM’s tangential velocity, to maintain the uniform

arc-length property of the mesh, can be relatively large when a smaller tangential

velocity would suffice. This makes it less favourable for use in applications where the

mesh is to be linked to a larger domain as is the case in higher dimensions where the

movement of the interface dictates how the higher dimensional meshes should evolve

too. A large tangential velocity on the boundary would introduce shearing into the

higher dimensional mesh resulting in a need for frequent re-meshing and thus massively

increasing computational time.

Pan and Wetton [111] introduce an alternative method which produces meshes

similar in quality to PFEM. They make use of a finite difference based scheme for

moving the mesh points of a growing domain for which the normal velocity component

is the same as (1.33) but the tangential velocity component is prescribed by means of

the constraint

xη · xηη = 0, (1.34)

where η is the arc-length parameterisation of x and thus ensures a uniform arc-length

distribution of mesh points. Equations (1.33) and (1.34) are solved simultaneously for

the nodal positions of the evolving mesh.

Following from Pan and Wetton, we look to evolve a curve by mean curvature

motion. Given a curve x parameterised by some variable ξ, curvature of x can be related
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to the vector given by second derivative of x with respect to arc-length. Namely, if

arc-length is denoted as s and mean curvature as κ then κ = xηη ·n. With this identity

in mind, we are interested in specifying the mean curvature motion solely in the normal

direction to the interface, the tangential velocity has been set up such that |xη|η = 0

which follows from the solution of the system,

ẋ · n = κ, xξ · xξξ = 0.

In order to solve this system, Pan and Wetton used both implicit and explicit time

integration with a finite difference spatial discretisation.

PFEM and Pan and Wetton’s method both generate a smooth evolving uniform

mesh which can be used to model reaction-diffusion equations on the cell’s membrane.

However, the tangential velocity in both these methods are intrinsic and not easily

manipulated. We later introduce an adaptive method which allows us to alter the

tangential velocity to bring in mesh adaption along the evolving mesh.

1.5 Moving mesh methods for higher dimensions

We so far have been predominantly looking at the cell membrane as a two-dimensional

curve with a single spatial dimension. This is in essnse a one-dimensional model but

in reality of course cell in life have more dimensions.

In later chapters, a two-dimensional cell model which more accurately models the

behaviour of the cell than the single dimensional counterpart will be introduced. Some

models exist already in literature for cell modelling in two dimenions such as the surface-

based approach in [48] which views the cell membrane as a two-dimensional surface. The

to be introduced here however will take the view of extending the current framework,

which views the cell membrane Γ(t) as a curve, and augmenting it with a more accurate

model for the free-ligand molecules which the cells’ receptors respond to within its

environment. In light of this, we must first discuss procedures for generating the mesh

which will be used to model the environment of the cell.

DistMesh [113, 114] is a mesh generating procedure which makes use of Hooke’s
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law to reposition grid nodes in an ideal fashion such as to satisfy a mesh density

specification for the grid. It is used in many applications, for instance in wound healing

models [73] and in mathematical modelling of brain tumours [117] . It is robust to

different geometries but can be quite slow for moving domains.

The method generates an initial approximation for the mesh and then gradually

refines the mesh based on an iterative process of mechanical relaxation for each edge

in the mesh until an ideal mesh is generated which has the correct length constraint,

that is to say that no edge within the mesh is greater than a specified tolerance hmax in

length. It does this in a discrete setting which can often introduce large computational

overheads making it a less desirable option for continuous mesh movement. As such, it

is an excellent method for generating an initial mesh for other methods.

There exist other mesh generation strategies to evolve the meshes continuously be-

tween time-steps which are more desirable. Cao et al.’s [29] moving mesh finite element

method (MMPDE) for example is one such method. Their method is derived from a

variational problem I[ξ] which they have used to define a coordinate transformation

from domain to another. In this way they have a computational domain Ωc with a co-

ordinate system ξ = (ξ, η) ∈ Ωc and a physical domain Ω(t) with a coordinate system

x = (x, y) ∈ Ω(t). To obtain the physical mesh which is moving in time using their

method, a grid must already exist on Ωc with known mesh points ξi ∈ Ωc say, where i

denotes the ith mesh point of the grid. The unknown physical grid is then found as a

result of the mapping xi(t) = I(ξi).

In this way, the connectivity of the moving mesh is identical to the connectivity of

the mesh on Ωc and, in addition, the mesh connectivity is maintained at each time-

step which reduces computational overheads. Another advantage of this methods is

that mesh quality control and solution adaption can straightforwardly be incorporated

into an elliptic mesh generation system which is formed from a variational approach.

Further, unlike algebraic grid generators, the mesh produced by an elliptic system will

have desirable smoothness characteristics.

Exactly how to select the variational I[ξ] remains a subject of ongoing study [61]
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but the mapping considered in this thesis though will take the general form

I[ξ] =
1

2

∫
Ω(t)

(
(∇ξ)TG−1(∇ξ) + (∇η)TG−1(∇η)

)
dx, (1.35)

where G is a 2× 2 symmetric positive definite matrix. In particular G is often referred

to as the monitor matrix for its ability to control the size, shape and orientation of the

resulting physical mesh [65].

Having the ability to control the physical mesh through a parameter in the varia-

tional form is highly convenient. Generating adapted grids would normally be a com-

putationally more epensive operation but here it comes naturally coupled as part of the

moving mesh PDE solution. By selecting an appropriate G monitor matrix, we have

the capacity to refine the mesh in particular area, perhaps where there is a numerical

shock which requires more mesh points to properly resolve; or if there is an artefact

in the solution we wish to look at in closer detail, a vortex for example. Likewise, by

selecting a different G we could also chose to speed up computation by relocating mesh

points away from areas where we are not interested in but while still maintaining a

high level of accuracy in areas where we are.

The choice of G is really problem specific but in general it will be chosen in such

a way that the underlying numerical method, for which the mesh is being created for,

will have enhanced accuracy in regions of interest. A number of different methods

for choosing a monitor matrix which assist the underlying numerical methods have

been proposed and, in fact, monitor selection and exactly how to chose an appropriate

monitor matrix to minimise a given norm remains an active area of research.

The Hessian as the monitor matrix is a popular choice (see for example [22], [23] and

[30]) motivated in large part by D’Azevedo [33] and Simpson [34]. This specific choice

has a provable a priori upper bound for the error which is useful in problems where

mesh generation is very expensive and it would be prudent to know before calculation

if a single time-step of a grid evolving procedure is going to be enough or whether the

simulation should re-mesh first.
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Free-ligand molecules,

Cell interior

Figure 1.2: An illustration of the free-ligand receptor binding/unbinding process which
takes place at the cell membrane. Here, the external free-ligand field L is made up of
small free-ligand molecules which exist on Ω(t) which is the domain on the exterior of
the cell Γ(t). Some of these molecules may bind with receptors on the cell membrane
to form the receptor-bound complex concentration Lm.

1.6 Coupled bulk-surface problems

There are instances where multiple processes are taking place on different domains,

and even different dimensions. For instance coupling the process which happens at

the membrane between the free-ligand chemoattractant on the exterior of the cell and

the receptors which are attached to the membrane. An illustration of this biological

process is shown in Figure 1.2. Modelling this process accurately is a crucial step in

understanding chemotaxis. The binding and unbinding of the free-ligand molecules

onto and off of the receptors can be modelled as a flux boundary condition between the

bulk exterior domain Ω(t) and a surface model for the receptor occupancy. We will see

in later chapters that this can be modelled with the advection-diffusion problem

∂L

∂t

∣∣∣
x

+∇Ω(t) · (Lu) = DL∆Ω(t)L,

−DL
∂L

∂n

∣∣∣
Γ(t)
− [(u · n)]L

∣∣∣
Γ(t)

= k1(Nr − Lm)L
∣∣∣
Γ(t)
− k−1Lm,

∂Lm
∂t

∣∣∣
x

+∇Γ(t) · (Lmus) = Ds∆Γ(t)Lm + k1(Nr − Lm)L
∣∣∣
Γ(t)
− k−1Lm,

(1.36)
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where L is the concentration of free-ligand in the environment exterior to the cell;

and Lm is the concentration of receptor-ligand complex that exists on the membrane

Γ(t). The diffusivity coefficient of the free-ligand is DL, u is the material velocity of

the free-ligand in the bulk, us and Ds is the diffusivity are the material velocity and

diffusivity of the bound ligand-receptors on the membrane respectively; k1 and k−1 are

the binding and unbinding rates of the free-ligand to and from the receptors; Nr is the

local concentration of receptors.

The [(u·n)]L
∣∣∣
Γ(t)

term represents an advective flux and is dependent on the jump in

the normal velocity at the boundary. Here [(u ·n)] = u+ −u, and u+ = limx→Γ(t)+ u.

Thus at the leading edge of the cell, [(u ·n)] < 0 so the free-ligand will advect onto Γ(t),

whereas at the trailing edge [(u · n)] > 0 so the free-ligand will advect off Γ(t). This

generates what is known as a wind-shield effect and produces a more realistic model of

receptor-ligand binding process which is not encapsulated in the original model given

in [105].

1.7 Thesis overview

In the next chapter, numerical methods will be introduced which will be used to model

cell migration and chemotaxis. In particular, we investigate a conservative arbitrary

Lagrangian-Eulerian finite element method for solving reaction-diffusion equations on

evolving simple closed curves. We then introduce an adaptive moving mesh method for

forced mean curvature flow.

In chapter three, both of these methods will be combined to solve reaction-diffusion

equations on evolving domains. Using a continuous model of the Meinhardt reaction-

diffusion system, the methods combine to generate convincing simulations of cell mi-

gration and chemotaxis. In the fourth chapter, the methods of the previous chapters

are extended to two dimensions. These are subsequently used in the fifth chapter to

improve upon the original cell migration model. Finally, there is a short discussion of

the significant points outlined in this thesis as well as suggestions for further work.
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Chapter 2

Finite element solution of

reaction-diffusion equations on evolving

1D domains

In the cell migration model to come, we will seek solutions of reaction-diffusion problems

which exist on the moving cell membrane. These chemical concentrations will be used

to motivate the protrusion mechanisms and therefore to move the cell. To do this we

must first derive a method for computing solutions to reaction-diffusion problems on

moving curves in general and a method for moving the cell interface correctly.

2.1 Derivation of a reaction-diffusion problem on an evolving curve

Consider a chemical species, c, which is evolving on the domain Γ(t), which is the

cell membrane domain given in (1.2). We will suppose that c : Γ(t) × I → R diffuses

according to Fick’s law and therefore the total concentration of c adheres to the mass

conservation constraint

∂

∂t

∫
Γ(t)

c(x(t), t) dΓ(t) =

∫
Γ(t)

(∇ · (µ∇c) + f(c)) dΓ(t). (2.1)

By noting (1.7), Fick’s law and a reaction term f(c) can be expressed in terms of the
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s physical coordinate parameterisation as

d

dt

∫ s2

s1

c(x(s̃, t), t)ηs(s̃, t) ds̃ =

∫ s2

s1

(
µ
∂

∂s

(
cs(s̃, t)

ηs(s̃, t)

)
+ f(c)ηs(s̃, t)

)
ds̃,

where µ is the diffusivity of the chemical species and ηs is introduced as a result of the

domain movement. Since the limits of integration do not depend on t, the derivative

on the left can be taken inside the integral to give

∫ s2

s1

(
∂c

∂t

∣∣∣
s
ηs +

(
xs · us
ηs

)
c

)
ds̃ =

∫ s2

s1

(
µ
∂

∂s

(
cs
ηs

)
+ f(c)ηs

)
ds̃,

where the substitution for ∂ηs
∂t

∣∣∣
s

has been taken from (1.7). Finally, letting s2 → s1 and

dividing through by ηs we arrive at the point-wise conversion law

∂c

∂t

∣∣∣
s

+

(
xs · us
η2
s

)
c =

µ

ηs

∂

∂s

(
cs
ηs

)
+ f(c), (2.2)

which is defined for all x ∈ Γ(t). The evolving curve Γ(t) is closed so there are no

boundary conditions.

2.2 Arbitrary Lagrangian Eulerian formulation

To derive the ALE formulation, we make use of the change of variable discussed in

Section 1.3 which allows us to re-write (2.2) in terms of a referential domain, which

will be parameterised by ξ, by noting that

∂c

∂t

∣∣∣
ξ

= ∇c · (w − u) +
∂c

∂t

∣∣∣
s

where w is the ALE velocity (1.31).

We may re-write the spatial gradient in terms of the ALE coordinate so that

∇c = J−1∇ξc (2.3)

where J is the time-dependent Jacobi of the mapping from the physical domain Γ(t)
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to the reference domain Γc

J(t) =
∂x

∂ξ
(t), (2.4)

and ∇ξ simply means the corresponding spatial gradient under the ALE mapping

∇ξc =
∂c

∂ξ
(ξ, t) ≡ cξ. (2.5)

The inverse of (2.4) in terms of the physical coordinate can be found by noting that

J−1 =
∂ξ

∂x
=

ξx
ξy

 =
1

|J |

|J |ξx
|J |ξy

 =
1

|J |

(xξ)
2ξx + (yξ)

2ξx

(xξ)
2ξy + (yξ)

2ξy

 =
1

|J |

xξ
yξ

 =
1

|J |
∂x

∂ξ
,

(2.6)

where

|J | = det (J(t)) = x2
ξ + y2

ξ = η2
ξ . (2.7)

It therefore follows that

∇c =
xξ
|J |

cξ =
xξ
η2
ξ

cξ, (2.8)

and that

∂c

∂t

∣∣∣
s

=
∂c

∂t

∣∣∣
ξ

+

(
(u−w) · xξ

η2
ξ

)
cξ,

so we may write (2.2) in terms of the ALE coordinate frame as

∂c

∂t

∣∣∣
ξ

+

(
(u−w) · xξ

η2
ξ

)
cξ +

(
xξ · uξ
η2
ξ

)
c =

µ

ηξ

∂

∂ξ

(
cξ
ηξ

)
+ f(c), (2.9)

with corresponding ALE boundary conditions

c(ξ, t)
∣∣
ξ=0

= c(ξ, t)
∣∣
ξ=1

, c(ξ, 0) = c0(ξ), ξ = A−1
t (x). (2.10)
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2.3 Weak ALE formulation

Define the ALE mapping test space H1(Γ(t)) as

H1(Γ(t)) = {v : Γ(t)→ R : v = v̂ ◦ A−1
t , v̂ ∈ H1(Γc)}, t ∈ I,

in other words, the set of real value functions v defined on Γ(t) which have a correspond-

ing function v̂ defined on the ALE reference frame Γc. The weak solution for c(ξ, t) is

then derived by multiplying (2.9) through by suitable test function v ∈ H1(Γ(t)), and

integrating over Γ(t),

∫ 1

0

(
∂c

∂t

∣∣∣
ξ
v +

(
(u−w) · xξ

η2
ξ

)
cξv +

(
xξ · uξ
η2
ξ

)
cv

)
dξ =

∫ 1

0

(
µ

ηξ

∂

∂ξ

(
cξ
ηξ

)
v + f(c)v

)
dξ.

Noticing that

(u−w) · xξ cξ
η2
ξ

+
xξ · uξ c
η2
ξ

−
wξ · xξ c

η2
ξ

≡
((u−w)c)ξ · xξ

η2
ξ

,

we have

∫ 1

0

(
∂c

∂t

∣∣∣
ξ
v +

(
((u−w)c)ξ · xξ

η2
ξ

)
v +

(
xξ ·wξ

η2
ξ

)
cv

)
dξ =

∫ 1

0

(
µ

ηξ

∂

∂ξ

(
cξ
ηξ

)
v + f(c)v

)
dξ.

Since v does not depend on t by definition, then

d

dt

∫ 1

0
vψ dξ =

∫ 1

0
v

(
∂ψ

∂t

∣∣∣
ξ

+ ψ
xξ ·wξ

ηξ

)
dξ,

from which it follows that substituting in ψ = c and integrating the right-hand integral

using parts that the weak form is: find c ∈ H1(Γ(t)) where

d

dt

∫ 1

0
cvηξ dξ +

∫ 1

0

((u−w)c)ξ · xξ
ηξ

v dξ +

∫ 1

0
µ
cξvξ
ηξ

dξ =

∫ 1

0
f(c)vηξ dξ (2.11)

for all v ∈ H1(Γ(t)).

One desirable characteristic of the ALEFEM scheme is conservation. As we will
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see later, a discretisation of the formulation given in (2.11) is not guaranteed to be

conservative. However, it is possible to modify the weak formulation and obtain a

conservative numerical approximation. We first note that

(
(u−w)c · xξ

ηξ

)
ξ

=
((u−w)c)ξ · xξ

ηξ
+ (u−w)c ·

(
xξ
ηξ

)
ξ

.

Because the velocity (u−w) is tangent to the curve and

(
xξ
ηξ

)
ξ

= (xη)ξ

= xηηηξ

= κηξn,

where η denotes the arc-length parameterisation, it follows that (u − w) ·
(
xξ
ηξ

)
ξ

= 0

and hence, on a continuous level, (2.11) and: find c ∈ H1(Γ(t)) such that

d

dt

∫ 1

0
cvηξ dξ +

∫ 1

0

(
(u−w) · xξc

ηξ

)
ξ

v dξ +

∫ 1

0
µ
cξvξ
ηξ

dξ =

∫ 1

0
f(c)vηξ dξ (2.12)

for all v ∈ H1(Γ(t)) are equivalent. We will present numerical experiments later to

show that the finite discretisation of (2.12), derived in the next section, is conservative

at the discrete level, whereas the discretisation of (2.11) is non-conservative.

2.4 Finite element discretisation

2.4.1 Spatial discretisation

If Γ(t) is reasonably smooth, then it can be approximated well using continuous piece-

wise linear segments. Let Γh(t) be the piecewise linear curve which approximates Γ(t)

with nodes defined at positions {xi(t)}N+1
i=1 at time t so that Γh(t) = ∪K∈ThK, where

K is the straight edge element connecting each neighbouring nodes in the triangula-

tion Th. There exists a corresponding approximation for Γc, Γc,h say, given by the

piecewise linear triangulation Tc,h connecting {ξi}N+1
i=1 . The nodes {xi(t)}N+1

i=1 and the
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corresponding nodes {ξi}N+1
i=1 on Tc,h will come from moving mesh methods which will

be introduced in the proceeding sections.

The finite element test space is then defined as

L1(Γc,h) = {vh ∈ H1(Γc,h) : v
∣∣∣
K
∈ P1(K),∀K ∈ Tc,h}.

It then follows that any function ψ ∈ L1(Γc,h) can be written as

ψ(ξ) =

N+1∑
i=1

ψiφ̂i(ξ),

where φ̂i is the piecewise linear hat function which satisfies φ̂i(ξj) = δij (the Kronecker

delta). Further, define the test space

L(Γh(t)) =
{
vh : Γh(t)→ R : vh = v̂h ◦ A−1

h,t , v̂h ∈ L
1(Γc,h)

}
,

the space of real valued piecewise linear functions vh defined on Γh(t) which have

corresponding piecewise linear functions v̂h defined on the finite element ALE frame

Γc,h. The FEM spatial discretisation for the weak formulation (2.12) is then given by:

find ch ∈ L(Γh(t)) such that

d

dt

∫ 1

0
chvhηξ dξ +

∫ 1

0

(
(u−w) · xξch

ηξ

)
ξ

vh dξ +

∫ 1

0
µ
chξv

h
ξ

ηξ
dξ =

∫ 1

0
f(ch)vhηξ dξ

(2.13)

for all vh ∈ L(Γh(t)). Let C(t) = {ci}Ni=1 be the vector of unknowns, then (2.13) can

be written as

d

dt
(M(t)C(t)) + µH(t)C(t) +A(t)C(t) = M(t)F (C(t)), (2.14)

where

[M(t)]ij =

∫ 1

0
φ̂i(t)φ̂j(t)ηξ dξ
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is the time-dependent mass matrix,

[H(t)]ij =

∫ 1

0

(φ̂i)ξ(φ̂j)ξ
ηξ

dξ

is the stiffness matrix and

[A(t)]ij =

∫ 1

0

(u−w) · xξφ̂i
(
φ̂j

)
ξ

ηξ
dξ (2.15)

is a convection-like term which is brought in by the difference between the ALE and

material velocity. The load vector for the reaction term has entries

[F (C(t))]i = f(Ci(t)).

The semi-discretisation of the non-conservative weak formulation gives rise to the same

system of equations as (2.14),

d

dt
(M(t)C(t)) + µH(t)C(t) +A(t)C(t) = M(t)F (C(t)), (2.16)

with M(t) and H(t) as above but the ALE matrix has entries

[A(t)]ij =

∫ 1

0

φ̂i

(
(u−w)φ̂j

)
ξ
· xξ

ηξ
dξ. (2.17)

2.4.2 Temporal Discretisation

We will use the h suffix to denote that the temporal mapping At corresponds to the

piecewise continuous domain Γh(t) rather than to the continuous domain Γ(t). In

other words, we have that for any point ξ on Γc, the reference domain, there exists a

corresponding point on Γh(t) such that x(ξ, t) = Ah,t(ξ).

A temporal discretisation of (2.14) is obtained by assuming that the moving domain

Γ(t) evolves smoothly enough that it can be interpolated linearly between time points

{tn}NTi=1 where tn = n∆t and ∆t = T/NT .
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That is to say, if Ah,tn(ξ) and Ah,tn+1(ξ) exist and are well defined then

Ah,∆t(ξ, t) =
t− tn

∆t
Ah,tn+1(ξ) +

tn+1 − t
∆t

Ah,tn(ξ), t ∈ [tn, tn+1),

from which the grid velocity ŵn+1
h,∆t in the ALE frame is given by

wn+1
h,∆t(x, t) = ŵn+1

h,∆t(ξ) ◦ A
−1
h,∆t(x), where

ŵn+1
h,∆t(ξ, t) =

Ah,tn+1(ξ, t)−Ah,tn(ξ, t)

∆t
, t ∈ [tn, tn+1),

which is piecewise constant with respect to t.

Following from (2.14) we derive a semi-implicit IMEX scheme for the the integration

of the derivative. For conviencene, let

Mn = M(tn), Hn = H(tn), An = A(tn)

and

Z(t) = −µH(t)C(t)−A(t)C(t).

It follows that (2.14) can be written as

d

dt
(M(t)C(t)) = Z(t) +M(t)F (C(t)). (2.18)

A Crank-Nicolson approach can be used to integrate the derivative and the Z(t) func-

tion while the non-linear reaction term is calculated explicitly at the tn time-step so

that
Mn+1Cn+1 −MnCn

∆t
=
Z(tn+1) + Z(tn)

2
+MnF (Cn), (2.19)

where

Z(tn) = −µHnCn −AnCn and Z(tn+1) = −µHn+1Cn+1 −An+1Cn+1.

A semi-implicit set of linear equations is thus derived for the full discretisation of

(2.14), whereby the linear diffusion and mesh movement terms are evaluated at the
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time level tn+1 with the non-linear reaction term treated explicitly at time level tn

which results in the second order IMEX scheme

(Mn+1 +
1

2
∆tµHn+1 +

1

2
∆tAn+1)Cn+1 = (Mn − 1

2
∆tµHn − 1

2
∆tAn)Cn + ∆tMnF (Cn).

(2.20)

Test problems and applications considered here have reasonably smooth non-linear

reaction terms so the time step ∆t does not have to become too small due to numerical

stiffness constraints. The above procedure however can be extended for non-uniform

∆t if required when reaction terms are more stiff.

2.5 Numerical experiments

2.5.1 Diffusion around circles

To investigate the order of convergence of (2.13), we first consider the problem

∂c

∂t

∣∣∣
s

=
1

ηs

∂

∂s

(
cs
ηs

)
, 0 < t ≤ T = 1,

c(s, 0) = sin(2πs), 0 ≤ s ≤ 1,

(2.21)

on the unit circle

x(s, t) = cos(2πs),

y(s, t) = sin(2πs).
(2.22)

The analytical solution for this problem is c(s, t) = e−t sin(2πs). The numerical mesh

is selected such that

∆ξ = 1/N, ξi = i∆ξ, i = 0 , . . . , N

x(ξ, t) = cos(2πξ + αt), xi(t) = x(ξi, t),

y(ξ, t) = sin(2πξ + αt), yi(t) = y(ξi, t),

where α is a constant parameter that indicates a rotation of the mesh. Problem (2.21)

is solved using ALEFEM scheme (2.20). The estimated order of convergence (EOC) is
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then calculated to be

EOC = log2

(
||eN ||L∞
||e2N ||L∞

)
,

where

||eN ||L∞ = max
0≤i≤N

∣∣∣∣∣∣ci(T )− c
(
ξi +

α

2π
T, T

) ∣∣∣∣∣∣
is the maximum nodal error at the final time T .

Uniform mesh Non-uniform mesh

N ||eN ||L∞ EOC ||eN ||L∞ EOC

32 2.361e-03 7.213e-03

64 5.886e-04 2.004 1.801e-03 2.002

128 1.454e-04 2.017 4.484e-04 2.006

256 3.460e-05 2.071 1.104e-04 2.023

Table 2.1: Estimated order of spatial convergence results using (2.20) to solve (2.21)
on a fixed circular mesh. The mesh is tested both with mesh points distributed evenly
around the circle and with mesh points distributed according to (2.23). The time-step
is fixed with ∆t = 3.906× 10−3. Results suggest method (2.20) converges with second
order accuracy spatially.

The mesh is also selected such that

xi(t) = cos(2πξ2
i ), ξi = i/N,

yi(t) = sin(2πξ2
i ),

(2.23)

for which the grid is no longer equidistributed according to arc-length.

Table 2.1 and Table 2.2 show the results for the test problem for various values

of N and time-step dt and with meshes which are uniformly distributed according to

arc-length, and with meshes which have nodes distributred according to (2.23). Table
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Uniform mesh Non-uniform mesh

∆t ||eN ||L∞ EOC ||eN ||L∞ EOC

3.125e-02 1.469e-04 1.469e-04

1.563e-02 3.693e-05 1.991 3.694e-05 1.991

7.813e-03 9.168e-06 2.010 9.173e-06 2.010

3.906e-03 2.189e-06 2.066 2.195e-06 2.063

Table 2.2: Estimated order of temporal convergence results using (2.20) to solve (2.21)
on a fixed circular mesh. The mesh is tested both with mesh points distributed evenly
around the circle and with mesh points distributed according to (2.23). The number of
elements in the mesh is fixed with N = 4096. Results suggest method (2.20) converges
with second order accuracy in time.

2.1 uses a fixed time-step and shows the estimated spatial convergences of the problem

to be second-order. Similarly, Table 2.2 uses a fixed number of elements to determine

the estimated rate of convergence in time. The results in this table suggest this to be

also second order.

If the mesh is rotated by setting α = 0.5, then a tangential velocity is introduced

which is accounted for by the ALE term. Tables 2.3 and 2.4 show that the estimated

order of convergence for this experiment does not change and continue to demonstrate

that the order of accuracy remains second-order both spatially and temporally, respec-

tively.

Finally, we consider a circular domain which is shrinking at a constant rate β, such

that the domain is given by

x(s, t) = (1− βt) cos(2πs), 0 ≤ s ≤ 1,

y(s, t) = (1− βt) sin(2πs).
(2.24)

Assuming the initial condition c(s, 0) = sin(2πs), the analytical solution for c(s, t) can

be derived using separation of variables as follows. Notice that when the domain is
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Uniform mesh Non-uniform mesh

N ||eN ||L∞ EOC ||eN ||L∞ EOC

32 2.433e-03 7.723e-03

64 6.074e-04 2.002 1.931e-03 1.999

128 1.509e-04 2.009 4.814e-04 2.004

256 3.679e-05 2.036 1.190e-04 2.016

Table 2.3: Estimated order of spatial convergence results using (2.20) to solve (2.21)
on a circular mesh with a constant angular velocity (α = 0.5). The mesh is tested both
with mesh points distributed evenly around the circle and with mesh points distributed
according to (2.23). The time-step is fixed with ∆t = 3.906 × 10−3. Results suggest
method (2.20) converges with second order accuracy spatially.

evolving isotropically the diffusion equation takes the form

∂c

∂t

∣∣∣
s

=
css
η2
s

− ṙ

r
c, (2.25)

where r(t) = 1 − βt is the radius and ηs = 2π(1 − βt) is the arc-length of the circle

domain. Let c(s, t) = f(s)h(t) then substituting into (2.25) we have

fht =
fssh

η2
s

− ṙ

r
fh

=⇒
(
ht
h

+
ṙ

r

)
η2
s =

fss
f
≡ −K,

where K is constant, independent of s and t. Re-ordering the left hand term gives

ht +

(
ṙ

r
+
K

η2
s

)
h = 0,
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Uniform mesh Non-uniform mesh

∆t ||eN ||L∞ EOC ||eN ||L∞ EOC

3.125e-02 1.903e-04 1.903e-04

1.563e-02 4.792e-05 1.989 4.792e-05 1.989

7.813e-03 1.198e-05 2.000 1.198e-05 2.000

3.906e-03 2.954e-06 2.020 2.958e-06 2.018

Table 2.4: Estimated order of temporal convergence results using (2.20) to solve (2.21)
on a circular mesh with a constant angular velocity (α = 0.5). The mesh is tested both
with mesh points distributed evenly around the circle and with mesh points distributed
according to (2.23). The number of elements in the mesh is fixed with N = 4096.
Results suggest method (2.20) converges with second order accuracy in time.

which is a first order differential equation in t for which the solution is

h(t) = A exp

(
−
∫ (

ṙ

r
+
K

η2
s

)
dt

)
= A exp

(
−
∫ (

−β
1− βt

+
K

(2π)2(1− βt)2

)
dt

)
= A exp

(
− ln(1− βt)− Kt

(2π)2(1− βt)

)
,

=
A

1− βt
exp

(
− Kt

(2π)2(1− βt)

)
.

Furthermore,

fss +Kf = 0 =⇒ f(s) = B sin(
√
Ks) + C cos(

√
Ks).

Since c(s, 0) = sin(2πs), then C = 0 and
√
K = 2π must be used and therefore

c(s, t) =
sin(2πs)

1− βt
exp

(
− t

(1− βt)

)
.

The results for β = 0.5 using the second-order scheme (2.20) are given in Table 2.5 and
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Uniform mesh Non-uniform mesh

N ||eN ||L∞ EOC ||eN ||L∞ EOC

32 3.466e-03 1.264e-02

64 8.678e-04 1.998 3.169e-03 1.996

128 2.163e-04 2.004 7.921e-04 2.000

256 5.328e-05 2.021 1.973e-04 2.006

Table 2.5: Estimated order of spatial convergence results using (2.20) to solve (2.21)
on a circular mesh with a constant shrinkage factor (β = 0.5). The mesh is tested both
with mesh points distributed evenly around the circle and with mesh points distributed
according to (2.23). The time-step is fixed with ∆t = 3.906 × 10−3. Results suggest
method (2.20) converges with second order accuracy spatially.

Table 2.6. These tables show that the method continues to converge with a second order

estimated rate of convergence for the given problem in space and time, respectively.

To demonstrate the conservation property of this scheme with convection-like term

(2.15), and lack of conservation in the alternative form for discretizing the convection-

like term (2.17), the non-uniform initial unit circle mesh is rotated and shrunk where

α = 1 and β = 0.5. The total concentration of ch(ξ, t) is then given by

T hc (t) =
1

2

N∑
i=1

||xi+1(t)− xi(t)||(ci+1(t) + ci(t)).

Figure 2.1 shows T hc (t) for t ∈ [0, 1]. The total amount of ch can be seen decreasing in

the non-conservative scheme by up to as much as T hc (t) = −8.604e − 04 which occurs

when t = 1. The conservative scheme however satisfies |T hc (t)| < 10−14 during the

same interval. Over even longer time-scales, the non-conservative scheme will introduce

large errors due to fictitious concentration which is brought in or lost through domain

movement.
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Figure 2.1: The total amount of ch for the conserved (2.14) and non-
conserved (2.16) ALEFEM schemes. Non-uniform circle mesh used with
domain shrinking and rotating at constant rate (α = 1, β = 0.5, N = 64,
∆t = 1.563e− 02).
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Uniform mesh Non-uniform mesh

∆t ||eN ||L∞ EOC ||eN ||L∞ EOC

3.125e-02 6.914e-05 6.928e-05

1.563e-02 1.699e-05 2.025 1.713e-05 2.016

7.813e-03 4.072e-06 2.061 4.208e-06 2.025

3.906e-03 8.567e-07 2.249 9.938e-07 2.082

Table 2.6: Estimated order of temporal convergence results using (2.20) to solve (2.21)
on a circular mesh with a constant shrinkage factor (β = 0.5). The mesh is tested both
with mesh points distributed evenly around the circle and with mesh points distributed
according to (2.23). The number of elements in the mesh is fixed with N = 4096.
Results suggest method (2.20) converges with second order accuracy in time.

2.5.2 Diffusion around ellipses

We now consider solving the diffusion equation (2.21) on the stationary ellipse

x(s, t) = 2 cos(2πs), 0 ≤ s ≤ 1,

y(s, t) = sin(2πs).
(2.26)

The exact analytical solution of (2.21) using this parameterisation for the ellipse domain

is non-obvious as ηs = 2π
√

4 sin2(2πs) + cos2(2πs) and hence ηs depends non-trivially

on s. Finding a separable solution using this parameterisation is therefore difficult.

Instead, a normalised unit arc-length parameterisation, u, is used, where

η(u) = uη(1), 0 ≤ u ≤ 1.

Using this parameterisation we have ηu = η(1) and hence we can find a separable

solution of (2.21). If the initial condition is c(u, 0) = sin(2πu), then the solution is

c(u, t) = e−At sin(2πu), where A = (2π/η(1))2. The equidistributing arc-length mesh

points are found by finding the polar parameter values satisfying the non-linear scalar
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equations

η(si) =
i

N
η(1),

where

η(s) =

∫ s

0
2π

√
4 sin2(2πω) + cos2(2πω) dω.

These are solved using Newton iteration.

Uniform mesh Non-uniform mesh

N ||eN ||L∞ EOC ||eN ||L∞ EOC

16 7.783e-03 2.231e-02

32 2.058e-03 1.919 5.182e-03 2.106

64 5.155e-04 1.997 1.490e-03 1.798

128 1.291e-04 1.997 3.434e-04 2.117

Table 2.7: Estimated order of spatial convergence results using (2.20) to solve (2.21) on
an stationary ellipse mesh. The mesh is tested both with mesh points distributed evenly
around the circle and with mesh points distributed according to (2.23). The time-step
is fixed at ∆t = 1 × 104. Results suggest method (2.20) converges with second order
accuracy in space for the test problem.

Table 2.7 and 2.8 show that the estimated order of spatial and temporal convergence

continues to be second-order accurate, respectively. This is true when the mesh points

are distributed evenly around the curve and when they are re-distributed according to

(2.23). This is a good indication that more obscure geometries, which will be looked

at later on, will not affect the accuracy of this scheme. In a later chapter, experiments

will be done solving reaction-diffusion equations on non-uniform moving meshes with

complex geometries using this method. These results give a degree of confidence that

the numerical meshes used will not contaminate the PDE solutions.
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Uniform mesh Non-uniform mesh

∆t ||eN ||L∞ EOC ||eN ||L∞ EOC

5.000e-02 1.018e-05 1.018e-05

2.500e-02 2.546e-06 1.999 2.548e-06 1.998

1.250e-02 6.373e-07 1.998 6.392e-07 1.995

6.250e-03 1.601e-07 1.993 1.621e-07 1.979

Table 2.8: Estimated order of temporal convergence results using (2.20) to solve (2.21)
on an stationary ellipse mesh. The mesh is tested both with mesh points distributed
evenly around the circle and with mesh points distributed according to (2.23). The
number of elements in the mesh is fixed with N = 4 × 104. Results suggest method
(2.20) converges with second order accuracy in time for the test problem.

2.6 An adapted moving mesh PDE for evolving curves

To evolve the numerical domain a moving mesh PDE (MMPDE) is used. There are

instances where a uniform arc-length distribution of grid points is less than ideal and

where some adaptivity could be used to improve accuracy. For instance, where the

solution to a PDE on the evolving curve is not smooth or has a sharp moving wave

front, some degree of solution adaptivity could potentially improve speed and accuracy

of the result. Further, geometric adaptivity could be used to maintain features along

the domain that can become lost when the mesh is smoothed by equidistributing the

nodes; these features (which may amount to a bump or protrusion in the domain) would

only be recoverable with a finer grid when no adaptivity is used.

The method of Pan and Wetton [111] generates an arc-length uniformly distributed

grid using finite differences to solve the underlying coupled algebraic system of PDEs.

We introduce an evolving adaptive moving mesh PDE for curves by building from

their framework. Pan and Wetton’s method, as proposed for the case where a curve is

evolved by mean curvature, makes use of the basic geometric identity xηη = κn, where
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η is the arc-length parameter. We will assume that the curve x is simple and closed

and that the first and second derivative exist and are continuous at all points along the

curve will and make use of the period boundary conditions x(1) = x(0). Therefore, for

a general parameterisation ξ, it follows that since

xξ = xηηξ (2.27)

then

xξξ = xηξηξ + xηηξξ = xηηη
2
ξ + xηηξξ. (2.28)

Since xη = t, it follows that

xξξ · n = (xηη · n)η2
ξ , (2.29)

and hence

κ =
xξξ
η2
ξ

· n =
xξξ
||xξ||2

· n. (2.30)

For mean curvature flow the normal velocity can therefore be expressed as

ẋ · n = κ =
xξξ
||xξ||2

· n. (2.31)

As we have seen from Section 1.5, to maintain a uniform distribution of mesh points in

terms of arc-length we must impose the algebraic constraint ||xξ||ξ = 0. Equivalently,

we have

xξ · xξξ = 0. (2.32)

Pan and Wetton’s method therefore amounts to the simultaneous solution to the differ-

ential algebraic system (2.31) and (2.32). We augmented their method for our purposes
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such that now

ẋ · n = α
xξξ
||xξ||2

· n+ β, (2.33)

and

||Mxξ||ξ = 0 =⇒ xξ · xξξ = −
Mξ

M
||xξ||2.

Here, M is a positive monitor function which controls the spacing between each node

in such a way that, when integrated between any two consecutive nodes, the monitor

function multiplied by the arc-length should remain constant. This has the effect

of condensing the grid where M is large and expanding it where M is small. The

coupled partial differential algebraic equations (PDAEs) are then discretised using finite

differences and solved by iterating to convergence. This system works but is very

sensitive to changes in M .

To improve robustness, MMPDE5 from [65] is used to derive a new expression for

the tangential velocity component

ẋ · t =
P

τ
||Mxξ||ξ, (2.34)

where τ > 0 is a temporal smoothing parameter which helps to reduce spatial-temporal

oscillations and a spatial-balancing function P which helps to ensure that the coeffi-

cients of the linear system are balanced evenly over the domain. The choice of P and

τ are problem specific but in the cell simulations which follow in this thesis the value

of P = 1 and τ = 10−3 are chosen which have been seen to have good robustness

characteristics for the cell problem in all simulations we’ve conducted. Ideally P/τ

will be small enough to allow a mesh to quickly adapt to the change in the adaptivity

function M but large enough to dampen any oscillations which may occur due to the
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rapid relocation of mesh points. Notice that (2.34) can be expanded such that

τ

P
ẋ · t = ||Mxξ||ξ

=
MMξxξ · xξ +M2xξξ · xξ

||Mxξ||

=
Mξxξ · xξ
||xξ||

+
Mxξξ · xξ
||xξ||

= (Mξxξ +Mxξξ) · t,

(2.35)

where the last step is obtained by noting that t =
xξ
||xξ|| . It therefore follows that

( τ
P
ẋ−Mξxξ −Mxξξ

)
· xξ = 0 (2.36)

or

xξξ · xξ = −
Mξ

M
||xξ||2 +

τ

MP
ẋ · xξ. (2.37)

It is interesting to note that as τ → 0 the equidistribution condition ||Mxξ||ξ = 0 is

recovered.

While much of this thesis makes use of finite element methods, Pan and Wetton’s

approach for grid generation makes use of finite differences and since we intend to aug-

ment their method with a mesh adaption quality, we will attempt to do this in finite

differences. It is worth noting however that attempt were initially made to generate an

adaptive finite element method for grid generation based on extensions to the Parame-

terised Finite Element Method [11, 12, 48] spoken of earlier but there were issues with

robustness of this method. The non-uniqueness of the grid generated by PFEM was

thought to be the cause for these problems and this approach was therefore abandoned

in favour of the finite difference method presented here now.
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A numerical approximation for (2.33) can be found using central differences

xξξ(ξi, t
n) ≈

xni−1 − 2xni + xni+1

(∆ξ)2
, (2.38)

xξ(ξi, t
n) ≈

xni+1 − xni−1

2∆ξ
, (2.39)

Mn
ξ ≈

Mn
i+1 −Mn

i−1

2∆ξ
, (2.40)

where Mn
i = M(ξi, t

n). In most instances the monitor function M will depend on the

underlying PDE being solved or the geometry of the domain itself. In some situations

Mξ may already be known in which case the last approximation will not be required

and the exact function Mξ can be substituted instead to give a more accurate result.

Finally, as tni = xξ
n
i /||xξ

n
i || = (tn(1)i, t

n
(2)i) then we set nni = (−tn(2)i, t

n
(1)i) and a

numerical approximation of (2.33) is as follows

(
−αixn+1

i−1 +

(
γni
∆t

+ 2αi

)
xn+1
i − αixn+1

i+1

)
· nni = γni

(
xni · nni

∆t
+ βi

)
, i = 1, . . . , N − 1,

(2.41)

where γni = ||xni+1 − xni−1||2/4 and the periodic boundary condition is enforced by

xnN = xn1 . Similarly, using central differences again, a numerical approximation for

(2.37) is as follows

(
−xn+1

i−1 +

(
−τ∆ξ2

Pi∆t
+ 2

)
xn+1
i − xn+1

i+1

)
·
(
xni+1 − xni−1

)
= −

Mn
i+1 −Mn

i−1

Mn
i

γni − xni ·
(
xni+1 − xni−1

) τ∆ξ2

Mn
i Pi∆t

. (2.42)

Because this scheme uses a coupled non-linear system to find both x and y components

of the curve, certain care must be taken. For instance, a single solve may not be close

enough to the desired solution. It has been seen that a sequence of iterations will

usually converge to the desired curve. The final iterative numerical approximation is
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as follows(
−αix[n+1,m+1]

i−1 +

(
γ

[n,m]
i

∆t
+ 2αi

)
x

[n+1,m+1]
i − αix[n+1,m+1]

i+1

)
· n[n,m]

i

= γ
[n,m]
i

(
x

[n,0]
i · nni

∆t
+ βi

)
,(

−x[n+1,m+1]
i−1 +

(
− τ∆ξ2

PiMn
i ∆t

+ 2

)
x

[n+1,m+1]
i − x[n+1,m+1]

i+1

)
·
(
x

[n,m]
i+1 − x

[n,m]
i−1

)
= −

Mn
i+1 −Mn

i−1

Mn
i

γ
[n,m]
i + x

[n,0]
i ·

(
x

[n,m]
i+1 − x

[n,m]
i−1

) τ∆ξ2

Mn
i Pi∆t

,

(2.43)

where x
[n,m]
i denotes the approximation to xni after m iterations. Further, a degree

of under relaxing has been seen to improve robustness of the method and indeed lead

to a faster convergence over fewer iterations. Therefore, the numerical procedure is as

follows:

1. Select appropriate τ and P for the problem. We will always select τ = 10−3 and

P = 1/M unless specified otherwise. We take P = 1/M because this slows down

the mesh point movement and has desirable improved stability characteristics.

2. Let xni and yni be the current node positions at time n. Set ui = xni , vi = yni and

set TOL = 10−8.

3. Do until convergence criteria given in (j) is met

(a) Set Dx
i = ui+1 − ui−1, Dy

i = vi+1 − vi−1 and Si =
√
Dx
i

2 +Dy
i

2
.

(b) Set Nx
i = −Dy

i /Si and Ny
i = Dx

i /Si.

(c) Set µi = τ/(Mn
i P

n
i ∆t).

(d) Set up linear system for normal velocity approximation (both x and y) ac-

cording to

Ax
i,i−1 = αiN

x
i , Ay

i,i−1 = αiN
y
i ,

Ax
i,i =

(
−2αi + S2

i /(4∆t)
)
Nx
i , Ay

i,i =
(
−2αi + S2

i /(4∆t)
)
Ny
i ,

Ax
i,i+1 = αiN

x
i , Ay

i,i+1 = αiN
y
i .
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(e) Set up linear system for algebraic constraint/tangential velocity (both x and

y) according to

Bx
i,i−1 = Dx

i , By
i,i−1 = Dy

i ,

Bx
i,i = −

(
2 + µi∆ξ

2
)
Dx
i , By

i,i = −
(
2 + µi∆ξ

2
)
Dy
i ,

Bx
i,i+1 = Dx

i , By
i,i+1 = Dy

i .

(f) Set up RHS for normal velocity approximation according to

Fi = S2
i (β + (Nx

i x
n
i +Ny

i y
n
i )/∆t) /4.

(g) Set up RHS for tangential velocity approximation according to

Gi = −((Mn
i+1 −Mn

i−1)/(4Mn
i ))S2

i − µi(xni Dx
i + yni D

y
i )∆ξ2.

(h) Set uo = u and vo = v.

(i) Solve the system  Ax Ay

Bx By

 u
v

 =

 F
G

 .1
(j) If max

1≤i≤N+1
||(ui, vi)− (uoi , v

o
i )||2 < TOL, then go to 4.

(k) Under relaxing step: set u = u/2 + uo/2 and v = v/2 + vo/2.

(l) Go to step (a).

4. End: new nodal positions at time n+1 are now given by xn+1
i = ui and yn+1

i = vi.

The first order discretisation given above is simple and easier to implement for

researchers looking to use the MMPDE1D method quickly and without stringent mesh

accuracy requirements. From a mathematical perspective however it is more desirable

to derive a higher order method for increased accuracy.

1The resulting system of (i) is sparse and each of the sub-matricies Ax, Ay, Bx and By have a
tridiagonal structure so a direct solve is carried out using the Matlab backslash operator which is
optimized to find solutions for sparse matrices efficiently and accurately using variant methods of
Gaussian elimination.
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An attempt initially was made to increase the order of the scheme by more accu-

rately calculating the temporal integration of both components: the tangential move-

ment along the curve; and the normal movement perpendicular to the curve. A Crank-

Nicolson integration was used simultaneously by both components for this, however,

many stability issues were observed during the testing of this method so it was aban-

doned in favour of a hybrid approach which appeared to offer the same level of accuracy

without the stability problems.

The alternative discretisation which offers second-order temporal accuracy is similar

to the first order method outlined above but derived using a Crank-Nicolson temporal

discretisation for the normal component only. The tangential component is discretised

in time using the backward Euler scheme similar to before however the time-step is

now halved. Doing this appears to provide considerable increases in stability as when

the tangential component is disretised using Crank-Nicolson τ must be chosen several

orders of magnitude larger to prevent instabilities from developing. This is not ideal

because the added adaption will then be slowed down several orders of magnitude.

Care must be taken to ensure that the normal component is taken at the correct

half-way temporal point. The finite difference scheme for MMPDE1D is now given as:(
−1

2
αix

[n+1,m+1]
i−1 +

(
γ

[n,m]
i

4∆t
+ αi

)
x

[n+1,m+1]
i − αix[n+1,m+1]

i+1

)
· n̂ni

= γ
[n,m]
i

(
x

[n,0]
i · n̂n

∆t
+ βi

)
−
γ

[n,m]
i

γ
[n,0]
i

(
−1

2
αix

[n,0]
i−1 + αix

[n,0]
i − 1

2
αix

[n,0]
i+1

)
· n̂ni ,(

1

2
x

[n+1,m+1]
i−1 −

(
τ∆ξ2

PiMn
i ∆t

+ 1

)
x

[n+1,m+1]
i +

1

2
x

[n+1,m+1]
i+1

)
· t̂ni

= −
Mn
i+1 −Mn

i−1

Mn
i

γ
[n,m]
i + x

[n,0]
i ·

(
x

[n,m]
i+1 − x

[n,m]
i−1

) τ∆ξ2

Mn
i Pi∆t

.

(2.44)

where n̂ni = (n
[n+1,m]
i + nni )/2, t̂

n
i = (t

[n+1,m]
i + tni )/2 and t

[n,m]
i = x

[n,m]
i+1 − x

[n,m]
i−1 . In

this form, the algorithm is similar to before.

1. Select appropriate τ and P for the problem.

2. Let xni and yni be the current node positions at time n. Set ui = xni , vi = yni and

set TOL = 1e− 8.
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3. Set D̄x
i = ui+1 − ui−1, D̄y

i = vi+1 − vi−1 and S̄i =
√

(D̄x
i )2 + (D̄y

i )2.

4. Set N̄x
i = −D̄y

i /S̄i and N̄y
i = D̄x

i /S̄i.

5. Do until convergence criteria given in (l) is met

(a) Set Dx
i = ui+1 − ui−1, Dy

i = vi+1 − vi−1 and Si =
√
Dx
i

2 +Dy
i

2
.

(b) Set Ŝi = (Si + S̄i)/2.

(c) Set Nx
i = −Dy

i /Si and Ny
i = Dx

i /Si.

(d) Set N̂x
i = (Nx

i + N̄x
i )/2 and N̂y

i = (Ny
i + N̄y

i )/2.

(e) Set µi = τ/(Mn
i P

n
i ∆t).

(f) Set up linear system for normal velocity approximation (both x and y) ac-

cording to

Ax
i,i−1 = αiN̂

x
i /2, Ay

i,i−1 = αiN̂
y
i /2,

Ax
i,i =

(
−αi + S2

i /(4∆t)
)
N̂x
i , Ay

i,i =
(
−αi + S2

i /(4∆t)
)
N̂y
i ,

Ax
i,i+1 = αiN̂

x
i /2, Ay

i,i+1 = αiN̂
y
i /2.

(g) Set up linear system for algebraic constraint/tangential velocity (both x and

y) according to

Bx
i,i−1 = Dx

i , By
i,i−1 = Dy

i ,

Bx
i,i = −

(
2 + µi∆ξ

2
)
Dx
i , By

i,i = −
(
2 + µi∆ξ

2
)
Dy
i ,

Bx
i,i+1 = Dx

i , By
i,i+1 = Dy

i .

(h) Set up RHS for normal velocity approximation according to

Fi = S2
i

(
β + (N̂x

i x
n
i + N̂y

i y
n
i )/∆t

)
/4−

(
S2
i /S̄

2
i

) (
αiN̂

x
i x

n
i−1/2− αiN̂x

i x
n
i + αiN̂

x
i x

n
i+1/2

+ αiN̂
y
i y

n
i−1/2− αiN̂

y
i y

n
i + αiN̂

y
i y

n
i+1/2

)
.
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(i) Set up RHS for tangential velocity approximation according to

Gi = −((Mn
i+1 −Mn

i−1)/(4Mn
i ))S2

i − µi(xni Dx
i + yni D

y
i )∆ξ2.

(j) Set uo = u and vo = v.

(k) Solve the system  Ax Ay

Bx By

 u
v

 =

 F
G

 .
(l) If max

1≤i≤N+1
||(ui, vi)− (uoi , v

o
i )||2 < TOL then go to 6.

(m) Under relaxing step: set u = u/2 + uo/2 and v = v/2 + vo/2.

(n) Go to step (a).

6. End: new nodal positions at time n+1 are now given by xn+1
i = ui and yn+1

i = vi.

2.7 The de Boor algorithm for parametric curves

To initiate the moving mesh method, it is important to be able to generate a starting

mesh that equidistributes the monitor function. This ensures a smooth initial evolution

of the mesh points and improves solution accuracy and stability. If we assume the

initial curve is given parametrically in the form x(s) = [x(s), y(s)], we need to generate

a partition {si}Ni=1 such that

∫ si

0
M(t)

∣∣∣∣dηds
∣∣∣∣ ds =

i

N

∫ 1

0
M(t)

∣∣∣∣dηds
∣∣∣∣ ds, i = 1, . . . , N.

To generate an approximation of the equidistribution mesh we will use an adaption of

the so-called de Boor algorithm [35]. We assume M and |dη/ds| can be evaluated on an

arbitrary background partition {soldi }Ni=1 and the function M(t)|dη/ds| approximated
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by the piecewise constant function

ρ(s) =



M(s1/2)|dη/ds|s1/2 , s ∈ [s1, s2]

M(s3/2)|dη/ds|s3/2 , s ∈ (s2, s3]
...

...

M(sN−1/2)|dη/ds|sN−1/2
, s ∈ (sN−1, sN ],

where si+1/2 = (si+si+1)/2, i = 1, . . . , N−1. A new partition {snewi }Ni=1, which exactly

equidistributes ρ(s), can be found using inverse linear interpolation (algorithmic details

can be found in [6] and [62]). The new partition of course only equidistributes ρ over

the old partition and hence iteration is used to update the partition further by simply

setting the old partition to be the new partition and repeating the de Boor step. A

sequence of partitions can then be generated which eventually converges to the final

approximately equidistributed partition of the parameterised domain. The physical

mesh point locations {x(si), y(si)}Ni=1 are obtained from the parametric map of the

final converged partition {si}Ni=1.

2.8 Numerical experiments

In the experiments that follow, given the analytical description of the curve, we can

measure the error in the approximation of the evolving area enclosed by the curve and

its radius. Similarly to what is done in [8], the error in the area is measured as

||eN(A)|| =

√√√√NT∑
n=1

(
AnN −A(n∆t)

)2
∆t,

where the area for a polygon is

AnN =
1

2

N∑
i=1

(
xni y

n
i+1 − xni+1y

n
i

)
.
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The error for the radius is given as

||eN(r)|| =

√√√√NT∑
n=1

∆t
N∑
i=1

(rni − r(n∆t))2 h
n
i + hni+1

2
,

where rni = ||xni || is the radius of node i at time step n, r(n∆t) is the exact radius, and

hni = ||xni − xni−1|| is the arc-length between node i− 1 and i.

2.8.1 Uniform arc-length experiments

We first consider the initial domain given by the circle centred at the origin

x(s, 0) = cos(2πs), 0 ≤ s ≤ 1,

y(s, 0) = sin(2πs),

evolving according to the evolution equation ẋ ·n = −1 up to the finial time T = 0.95.

The exact solution of this model problem, at time t, is a circle centred on the origin of

radius r(t) = 1−t. The experiment is conducted with a uniform arc-length distribution

of mesh nodes, M = 1, and the estimated orders of convergence using (2.43) are given

in Table 2.9. The method produces results which are tending towards second-order

accuracy in the area error norm as expected. The error results using the second-order

temporal scheme (2.44) are shown in Table 2.10; they show that this scheme is tending

towards second-order accuracy in time. Interestingly, the norms of the error in the

radius are machine zero because in this particular case the scheme gives the exact

solution for the radius. To see why this is the case, take

xni = (1 + βtn) (cos(2πξi), sin(2πξi))
T .

It follows that

nni = (cos(2πξi), sin(2πξi))
T ,
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and therefore xni · nni = 1 + βtn and

xn+1
i · nni = 1 + βtn+1 = 1 + βtn + β∆t.

It follows that

xn+1
i · nni = xni + β∆t.

Notice that, when α = 0, the normal components of (2.43) and (2.44) reduce simply to

x
[n+1,m+1]
i · n[n,m]

i = x
[n,0]
i · n[n,m]

i + ∆tβ.

Therefore, because the initial mesh is selected to be

x0
i = (cos(2πξi), sin(2πξi))

T ,

it follows that the normal velocity is exact using (2.43) and (2.44).

N ∆t ||eN(A)|| EOC ||eN(r)||

16 5.000e-03 3.561e-02 7.378e-16

32 1.250e-03 8.996e-03 1.985 1.868e-15

64 3.125e-04 2.255e-03 1.996 3.656e-15

128 7.813e-05 5.641e-04 1.999 8.644e-15

256 1.953e-05 1.410e-04 2.000 5.315e-14

Table 2.9: Estimated order of convergence and error results for uniform arc-length
circle mesh shrinking at a constant rate using (2.43).

A second experiment is conducted whereby the domain evolves now according to

mean curvature flow ẋ · n = −κ. If the circle has initial radius r0, centred at the

origin, the exact solution is a circle centred on the origin of radius r(t) =
√
r2

0 − 2t.
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N ∆t ||eN(A)|| EOC ||eN(r)||

16 5.000e-03 3.561e-02 8.145e-16

32 2.500e-03 8.982e-03 1.987 1.259e-15

64 1.250e-03 2.252e-03 1.996 1.564e-15

128 6.250e-04 5.637e-04 1.998 3.034e-15

256 3.125e-04 1.410e-04 1.999 3.507e-15

Table 2.10: Estimated order of convergence and error results for uniform arc-length cir-
cle mesh shrinking at a constant rate using (2.44). Here the time-steps are reduced only
by a factor of two in comparison with Table 2.9 showing that the estimated temporal
convergence rate for (2.44) is second order.

We take r0 = 1.67332005307 so that r(T ) = 1 with T = 0.9. The estimated orders

of convergence for a uniform arc-length mesh evolved with (2.43) and (2.44) are given

in Tables 2.11 and 2.12, respectively. The results demonstrate MMPDE1D converging

with second-order accuracy in both area and radius error norms now. Further, Table

2.12 shows the scheme (2.44) tending towards second-order accuracy in time.

The final experiment of this section uses the initial ellipse domain given by

x(s, 0) = 2 cos(2πs), 0 ≤ s ≤ 1,

y(s, 0) = sin(2πs).
(2.45)

The domain evolves according to ẋ ·n = −κ to the final time T = 0.9. Unfortunately it

is not clear what the extreme radius values are for the ellipse case as it evolves, so the

||eN(r)|| error norm will not be used here. Instead we make use of the fact that, from

the divergence theorem, it can be shown that any simple closed curve which shrinks

according to mean curvature has exact area given by

A(t) = A(0)− 2πt,
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N ∆t ||eN(A)|| EOC ||eN(r)|| EOC

16 5.000e-03 2.534e-01 1.773e-02

32 1.250e-03 6.330e-02 2.001 4.242e-03 2.063

64 3.125e-04 1.582e-02 2.000 1.049e-03 2.015

128 7.813e-05 3.955e-03 2.000 2.616e-04 2.004

256 1.953e-05 9.887e-04 2.000 6.535e-05 2.001

Table 2.11: Estimated order of convergence and error results for uniform arc-length
circle mesh shrinking according to mean curvature using (2.43).

which allows us to calculate ||eN(A)|| for the ellipse domain. The results of the estimated

order of convergence for ||eN(A)|| are given in Table 2.13 and 2.14 and again show

second-order spatial accuracy as well as second-order temporal accuracy for (2.44).

2.8.2 Experiments with mesh adaption

We now consider some experiments using a non-constant monitor function. We in-

troduce an arbitrary adaption for the evolving meshes based on the time dependent

monitor function

M(x, y, t) = 1 + sech((x+ 4t− 2.5)/0.2). (2.46)

This monitor function should refine mesh points around the x = 2.5− 4t axis.

The first experiment from the uniform arc-length section, whereby the initially unit

circle centred at the origin shrinks according to ẋ · n = −1 is now repeated using

the monitor function (2.46). The results of the estimated order of convergence for the

first-order temporal scheme are shown in Table 2.15. Furthermore, the results of the

second-order temporal scheme are shown in Table 2.16. Both tables demonstrate that

even with a non uniform arc-length distribution of nodes, MMPDE1D continues to
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Figure 2.2: Adaptive mesh trajectories for an initial circle according to
the evolution law ẋ · n = −κ. Mesh has N = 32 points and the monitor
function used is (2.46).
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N ∆t ||eN(A)|| EOC ||eN(r)|| EOC

16 5.000e-03 2.498e-01 1.711e-02

32 2.500e-03 6.251e-02 1.998 4.123e-03 2.053

64 1.250e-03 1.562e-02 2.000 1.019e-03 2.016

128 6.250e-04 3.904e-03 2.000 2.538e-04 2.006

256 3.125e-04 9.758e-04 2.000 6.335e-05 2.002

Table 2.12: Estimated order of convergence and error results for uniform arc-length
circle mesh shrinking according to mean curvature using (2.44). Here the time-steps
are reduced only by a factor of two in comparison with Table 2.11 showing that the
estimated temporal convergence rate for (2.44) is second order.

converge with second-order accuracy in the area and radius error norms.

Likewise, the second experiment whereby an initial circle evolves according to mean

curvature now with the new monitor function (2.46) shows a similar result in the

estimated order of convergence. With the temporally first-order scheme, the second-

order spatial accuracy is verified by Table 2.17. The second-order temporal scheme

shows similar results and confirms second-order accuracy in time; results are given in

Table 2.18. The trajectories of each mesh point can be seen in Figure 2.2. It is easy

to trace out the adaption wave-front in the figure; as the circle shrinks, the wave-front

gradually moves from right to left through the domain. This can be seen in the plot

of the normalised arc-length, Figure 2.3, by the clustering together of the nodes as the

domain is evolved.

The evolving ellipse experiment (2.45) is reproduced using the adapting monitor

function (2.46). The results, are given in Table 2.19, also indicate second-order spatial

convergence. Results for the temporally second-order scheme are presented in Table

2.20. The mesh generated for the evolving ellipse domain is shown in Figure 2.4 at times

t = 0.31 and t = 0.62. The black line shows the position of the adapting wave-front

moving through the domain around which the mesh points are clustered. The node
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Figure 2.3: Evolution of the normalised arc-length with respect to time as adapted
wave-front advances through shrinking circle domain. The trajectories here show how
the mesh points move on the circular boundary to contract and relax as the simulation
progresses. The mesh points start uniformly spaced at t = 0 and bunching can be seen
as the wave begins to pass through the interface from 0.2 < t < 0.8 where it exits and
the mesh begins to relax again as witnessed by the mesh points beginning to distribute
uniformly for t > 0.8.
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N ∆t ||eN(A)|| EOC

16 5.000e-03 2.388e-01

32 1.250e-03 6.266e-02 1.930

64 3.125e-04 1.597e-02 1.972

128 7.813e-05 4.019e-03 1.991

256 1.953e-05 1.007e-03 1.997

Table 2.13: Estimated order of convergence and error results for uniform arc-length
ellipse mesh shrinking by mean curvature using (2.43).

clustering is more apparent in Figure 2.5, where the normalised arc-length trajectories

of the nodes can be seen evolving with respect to time. As the wave-front passes

through, the trajectories bunch closer together.

Note that the value of ||Mxξ||ξ approaches zero as the accuracy of the numerical

mesh in approximating the given adaptivity constraint imposed by the monitor function

M improves. Therefore, to check how well the moving mesh method equidistributes

the monitor function, Figure 2.6 shows a plot of

E(tn) = max
1≤i≤N

∣∣∣Mn
i+1 +Mn

i

2N2
||xni+1 − xni || −

Mn
i +Mn

i−1

2N2
||xni − xni−1||

∣∣∣, (2.47)

which is a measure of ||Mxξ||ξ. It is interesting to note that there are oscillations in

E(t) as the wave-front passes through. It may be possible to improve the results here

further by decreasing the temporal smoothing parameter τ , but this has the potential

drawback of decreasing the stability of the method.

For our purposes though, we have demonstrated that MMPDE1D does a good job

of not only accurately approximating the position of simple evolving domains but also

accurately allowing grid points to relocate along the tangent to the domain according

an arbitrary monitor function.
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Figure 2.4: The ellipse mesh being used at t = 0.31 and t = 0.62; black lines show
where the peak in M is for given time.
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Figure 2.5: Normalised arc-length changing with respect to time as adapted wave-front
advances through shrinking ellipse domain.
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Figure 2.6: Plot of E(t), a measure of how well the constraint ||Mxξ||ξ = 0 is satisfied,
on the evolving ellipse domains with an adapting wave front progressing through the
evolving domains using (2.43). If ||Mxξ|| = 0 then the mesh points will equidistribute
the monitor function (2.46) exactly.
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N ∆t ||eN(A)|| EOC

16 5.000e-03 2.476e-01

32 2.500e-03 6.340e-02 1.965

64 1.250e-03 1.594e-02 1.992

128 6.250e-04 3.990e-03 1.998

256 3.125e-04 9.977e-04 2.000

Table 2.14: Estimated order of convergence and error results for uniform arc-length
ellipse mesh shrinking by mean curvature using (2.44). Here the time-steps are reduced
only by a factor of two in comparison with Table 2.13 showing that the estimated
temporal convergence rate for (2.44) is second order.

2.8.3 Geometry-based adaption

As well as being able to adapt the mesh to areas of numerical difficulty in relation

to the underlying PDEs being solved on the domain, the use of an adaptive moving

mesh approach presents us with the opportunity to redistribute mesh points so that

the domain geometry is well described. This may assist greatly in problems where the

domain evolves in time in terms of a geometric evolution law and where the domain

has localised regions of high curvature.

In the absence of a reliable error estimate for the approximation Γh(t) of an evolving

curve Γ(t), we will base our analysis of a suitable monitor function on a study of

interpolation error. Therefore, the aim is to find a monitor function which, when

equidistributed, results in a distribution of mesh points that minimises an appropriate

measure of the difference between a smooth curve Γ and its linear polygonal interpolant

Γh. Here we focus on the minimisation of the maximal distance between Γ and Γh. In

Figure 2.7 we show the segment Γi of Γ with end points xi and xi+1. Also shown is

the linear approximation Γh,i of Γi. For each x ∈ Γi, we define the distance, d(x), from

x to Γh,i as the distance between x and x∗ ∈ Γh,i, where the line through x and x∗ is
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N ∆t ||eN(A)|| EOC ||eN(r)|| EOC

16 5.000e-03 3.582e-02 1.926e-03

32 1.250e-03 9.059e-03 1.983 5.468e-04 1.816

64 3.125e-04 2.271e-03 1.996 1.411e-04 1.954

128 7.813e-05 5.683e-04 1.999 3.554e-05 1.989

256 1.953e-05 1.421e-04 2.000 8.899e-06 1.998

Table 2.15: Estimated order of convergence and error results for non-uniform circle
mesh shrinking at a constant rate using (2.43).

perpendicular to Γh,i. To simplify the analysis, we note that the distance between Γi

and Γh,i is invariant to a coordinate rotation and translation. We therefore translate

coordinates so that xi maps to the origin and rotate coordinates such that the line

segment between xi and xi+1 is parallel to the positive x̄ axis, as shown in Fig. 2.7.

Finding the maximal distance between Γi and Γh,i is therefore equivalent to finding the

maximum absolute value of the transformed graph Γ̄(x̄) for 0 ≤ x̄ ≤ |xi+1 − xi|, and

this can be estimated using a standard argument from linear interpolation theory.

Without loss of generality, let’s assume that the maximum of Γ̄ occurs at x̄∗ and

assume x̄∗ is closer to x̄ = 0 than x̄ = hi ≡ |xi+1−xi|. Using a Taylor series expansion

of Γ̄ about x̄ = 0, and noting that Γ̄(0) = 0 and Γ̄′(x̄∗) = 0, we have

Γ̄(x̄∗) =
x̄2
∗

2
Γ̄′′(x̄∗) +O(x̄∗)

3.

The curvature κ of Γ̄ is

|κ̄| = |Γ̄′′|
(1 + (Γ̄′)2)3/2

,
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N ∆t ||eN(A)|| EOC ||eN(r)|| EOC

16 5.000e-03 3.553e-02 1.912e-03

32 2.500e-03 8.959e-03 1.988 5.419e-04 1.819

64 1.250e-03 2.246e-03 1.996 1.398e-04 1.954

128 6.250e-04 5.622e-04 1.998 3.524e-05 1.989

256 3.125e-04 1.406e-04 1.999 8.828e-06 1.997

Table 2.16: Estimated order of convergence and error results for non-uniform circle
mesh shrinking at a constant rate using (2.44). Here the time-steps are reduced only
by a factor of two in comparison with Table 2.15 showing that the estimated temporal
convergence rate for (2.44) is second order.

and since Γ̄′(x̄∗) = 0, it follows that |Γ̄′′(x̄∗)| = |κ̄(x̄∗)|. Therefore, we find that

max
x̄∈(0,hi)

|Γ̄(x̄)| =
x̄2
∗

2
|Γ̄′′(x̄∗)|+O(x̄∗)

3

≤ h2
i

8
|κ̄(x̄∗)|+O(hi)

3. (2.48)

The curvature of Γi is clearly invariant to the translation and rotation mapping above

and hence an approximately optimal distribution of mesh points {xi}Ni=1, which min-

imises the maximal error over all segments, is obtained when

h2
i |κi| = h2

i+1|κi+1|, i = 1, . . . , N − 1, (2.49)

where κi = maxx∈Γi |κ(x)|. It therefore follows that the quantity hi|κi|1/2 is constant in

each segment and this suggests that a suitable monitor function for curve approximation

should be based on equidistribution of |κ|1/2.

Alternative monitor functions can be derived to minimise different error measures

between Γ and Γh. For example, it has been shown that equidistribution of |κ|1/3

leads to an interpolatory linear polygonal curve that minimises the discrepancy in the
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N ∆t ||eN(A)|| EOC ||eN(r)|| EOC

16 5.000e-03 2.583e-01 1.761e-02

32 1.250e-03 6.408e-02 2.011 4.100e-03 2.103

64 3.125e-04 1.616e-02 1.988 1.018e-03 2.010

128 7.813e-05 4.186e-03 1.948 2.653e-04 1.940

256 1.953e-05 1.111e-03 1.913 7.194e-05 1.883

Table 2.17: Estimated order of convergence and error results for non-uniform circle
mesh shrinking according to mean curvature using (2.43).

enclosed area of the closed curves Γ and Γh. Equidistribution of |κ|2/3 minimises the

total length discrepancy [128].

Since κ can potentially be zero along a curve, it is important to include a positive

floor on the monitor function to ensure that no areas of the curve become starved of

mesh points and this is clearly essential if a PDE is being approximated on the curve

using the same mesh. A simple curvature-based monitor function therefore takes the

form

M = Mfloor + |κ|1/2, (2.50)

where Mfloor is a positive parameter which we can use to modulate the intensity of the

|κ|1/2 adaption. For example, we consider the monitor function

M = 1 + |κ|1/2 (2.51)

in results which follow. For evolutionary curves however, it may be difficult to a priori

choose an appropriate value for Mfloor. We will therefore consider the time-dependent
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N ∆t ||eN(A)|| EOC ||eN(r)|| EOC

16 5.000e-03 2.416e-01 1.543e-02

32 2.500e-03 5.947e-02 2.022 3.590e-03 2.104

64 1.250e-03 1.477e-02 2.010 8.757e-04 2.035

128 6.250e-04 3.684e-03 2.003 2.173e-04 2.011

256 3.125e-04 9.204e-04 2.001 5.419e-05 2.003

Table 2.18: Estimated order of convergence and error results for non-uniform circle
mesh shrinking according to mean curvature using (2.44). Here the time-steps are re-
duced only by a factor of two in comparison with Table 2.17 showing that the estimated
temporal convergence rate for (2.44) is second order.

floor

Mfloor(t) =
1

|Γ(t)|

∫
Γ(t)
|κ|1/2dη. (2.52)

A similar floor on the monitor function has been used to great effect in [14] and [15]

for the adaptive solution of PDEs in one dimension. A major potential advantage of

the floor (2.52) is that it does not require any a priori choice of parameters and adapts

to the length of the evolving curve.

To implement the monitor functions (2.51) and (2.50) in the MMPDE1D method

(2.34) requires the evaluation of the monitor function at (ξi, t
n). To this end, we use a

central difference approximation of the curvature given by

κni =
(xni−1 − 2xni + xni+1) · nni
||xni+1 − xni−1||2/4

, (2.53)

and nni given by

nni =

(
−

yni+1 − yni−1

||xni+1 − xni−1||
,
xni+1 − xni−1

||xni+1 − xni−1||

)
, (2.54)
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N ∆t ||eN(A)|| EOC

16 5.000e-03 2.315e-01

32 1.250e-03 5.942e-02 1.962

64 3.125e-04 1.502e-02 1.984

128 7.813e-05 3.769e-03 1.994

256 1.953e-05 9.437e-04 1.998

Table 2.19: Estimated order of convergence and error results for non-uniform ellipse
mesh shrinking according to mean curvature using (2.43).

where

Sni = ||xni+1 − xni ||.

For the time dependent floor (2.52) we use a simple quadrature approximation

Mn
i =

1

|Γh(tn)|

N∑
j=1

(
|κnj+1|1/2 + |κnj |1/2

2

)
Snj + |κni |1/2,

where

|Γh(tn)| =
N∑
j=1

Snj .

To enhance the robustness of the adaptive grid procedure, the monitor function can

be smoothed using a spatial averaging technique [?, 65, 118]

M̃i+1/2 =

∑i+p
k=i−pMk+1/2(q/(q + 1))|k−i|∑i+p

k=i−p(q/(q + 1))|k−i|
, (2.55)

where q is a positive real number and p is a non-negative integer. For the simulations

presented next we fix p = 2 and q = 3.
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Figure 2.7: (Left) Segment of a smooth curve Γi and interpolating linear approximation
Γh,i between mesh points xi and xi+1. The distance between the curves at point x is
the distance from x to x∗. (Right) Translated and rotated segment is transformed to
the graph Γ̄(x̄). The maximal distance between Γi and Γh,i is equal to the absolute
maximum value Γ̄(x̄∗).
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Figure 2.8: The non-convex initial domain used to test geometry-based mesh adap-
tion.
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N ∆t ||eN(A)|| EOC

16 5.000e-03 2.377e-01

32 2.500e-03 5.975e-02 1.992

64 1.250e-03 1.493e-02 2.001

128 6.250e-04 3.745e-03 1.995

256 3.125e-04 9.497e-04 1.979

Table 2.20: Estimated order of convergence and error results for non-uniform ellipse
mesh shrinking according to mean curvature using (2.44). Here the time-steps are re-
duced only by a factor of two in comparison with Table 2.19 showing that the estimated
temporal convergence rate for (2.44) is second order.

To compare the performance of the uniform arc-length monitor function M = 1, and

the curvature-based monitor functions (2.51) and (2.50), we consider mean-curvature

flow (α = 1, β = 0 in (2.33)) of the non-convex initial curve

x(s, 0) = cos(2πs), (0 ≤ s ≤ 1),

y(s, 0) = 0.5 sin(2πs) + sin(cos(2πs)) + sin(2πs)
(
0.2 + sin(2πs) sin2(6πs)

)
,

(2.56)

which is shown in Figure 2.8. This example has also been used in [96] and [128] to test

alternative tangentially stabilised curve evolution algorithms.

The mesh obtained using the uniform partition si = i/N , i = 0, . . . , N is shown in

Figure 2.9. We can see that the distribution of points is far from ideal in representing

the initial curve with some areas of high curvature not having sufficient resolution. The

initial meshes produced using the de Boor algorithm and the monitor functions M = 1

and M = Mfloor + |κ|1/2 are also shown in Figure 2.9. We can see that the uniform arc-

length mesh obtained using M = 1 is also poor at resolving the areas of high curvature.

The best initial mesh is obtained using the curvature-based monitor function (2.50),

and we can observe a nice balance of mesh points towards high-curvature regions and
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areas of low curvature. The mesh trajectories using each of the three monitor functions

are shown in Figure 2.10. We can see that, in all cases, the grid trajectories evolve

smoothly in time, and those obtained with the curvature-based monitors are clustered

towards areas of high curvature. This can be seen more easily in Figure 2.11, where the

grid nodes obtained with M = Mfloor + |κ|1/2 at various time intervals are compared

to a fine grid solution. To plotting accuracy we can see very good agreement. Area

error results and estimated orders of convergence using the three monitor functions are

given in Table 2.21. We can see that we achieve second-order convergence using all

three monitor functions. The same data is plotted in Figure 2.12 and it is clear that

the best monitor function from the three is (2.50). The evolution of the area error

using the three monitor functions is shown in Figure 2.13. Again we can see that the

improvement in the resolution of the initial curve is maintained over time using the

curvature-based monitor functions and that (2.50) results in a lower overall error. All

of the simulations of the initial meshes are evolved using MMPDE1D using the three

monitor functions considered with temporal smoothing parameter τ = 1 to account for

the greater difficulty evolving this geometry than the ellipse and circle cases.

M = 1 M = 1 +
√
|κ| M = Mfloor +

√
|κ|

N ∆t ||eN(A)|| EOC ||eN(A)|| EOC ||eN(A)|| EOC

16 1.000e-04 8.497e-02 8.369e-02 8.204e-02

32 5.000e-05 4.397e-02 0.951 4.267e-02 0.972 4.113e-02 0.996

64 2.500e-05 1.301e-02 1.757 1.227e-02 1.798 1.140e-02 1.851

128 1.250e-05 2.932e-03 2.150 2.481e-03 2.306 2.045e-03 2.479

256 6.250e-06 7.629e-04 1.942 6.154e-04 2.011 4.653e-04 2.136

Table 2.21: Error in the approximated area and estimated orders of convergence for
a non-convex initial geometry (2.56), evolved according to mean curvature flow using
MMPDE1D with three different monitor functions.
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Figure 2.9: Initial meshes for the non-convex curve (2.56) using N = 128
points. On the left is the mesh generated by the uniform partitioning of the
parameter s. In the middle is the mesh generated by uniformly partitioning
the arc-length. On the right, the mesh is generated using the adapting
monitor function (2.50) with (2.52).
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Figure 2.10: Mesh trajectories for mean curvature flow of a non-convex
initial curve with monitor function M = 1 on the left, M = 1 + |κ|1/2 in the
middle and M = Mfloor + |κ|1/2 on the right. (N = 128, ∆t = 10−4)
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Figure 2.11: Snapshots of non-convex initial domain evolving by mean curvature flow
at various times. Red line plots fine mesh solution (N = 512, ∆t = 1.9525e − 7).
Nodes for coarse solution (N = 128, ∆t = 1.562e − 06) are shown in black. The
monitor function M = Mfloor + |κ|1/2 is used. Mesh nodes cluster around areas of
high curvature initially and gradually become more equidistributed as the domain, and
hence curvature, becomes smoother.
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Figure 2.12: The error in the approximate area decreases with respect to the increasing
number of nodes at a rate of second-order accuracy. The approximations generated
with adaptivity (blue and black) have smaller error than the uniform arc-length case
(red).
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non-convex initial curve (2.56) evolved by mean curvature flow; mesh points
adapted by monitor functions M = 1 (red), M = 1 + |κ|1/2 (blue) and M =

Mfloor + |κ|1/2 (black). Here τ = 1, N = 64 and ∆t = 2.5e− 5.
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2.9 Conclusions

In conclusion:

• This chapter has introduced an ALEFEM scheme which can be used to solve

reaction-diffusion equations on evolving curves with numerical experiments sug-

gesting that the method is second-order accurate. This method can now be used

to conduct simulations with the cell model introduced in Section 1.2.2. This will

be the subject of study at in the following chapter.

• A modification of the parameterised form of the governing equations of the scheme

was shown to be necessary to ensure a conservative numerical approximation. An

example was presented showing this conservation property. However a proof has

not yet been formalised to show that the ALEFEM scheme is conserved for every

case.

• A novel adaptive moving mesh PDE method for numerically evolving a curve

under forced mean-curvature flow has been introduced. This method features a

novel approach to control mesh points movement in the tangential direction, while

simultaneously evolving a curve with the correct normal velocity making it highly

desirable in applications where a high level of control over the mesh is warranted;

for example as boundary conditions in higher dimension mesh generation schemes

as we shall use it for in later chapters.

• A novel curvature-based monitor function was developed to drive tangential mesh

movement to resolve high curvature regions for evolving curves. This new monitor

function has been shown to dramatically improve solution accuracy compared to

a uniform arc-length mesh in the examples presented.

The methods introduced here are not restricted to cell migration and chemotaxis

models and can in fact be used in a great variety of research where there is a need

to calculate some form of reaction-diffusion on an evolving curve domain or a need to
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resolve a numerical curve mesh with adaption. In the next Chapter however, the work

presented here will be looked at in the cell migration and chemotaxis context which is

the original purpose for the development of these methods.
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Chapter 3

Cell migration using a reaction-diffusion

model on an evolving curve

3.1 A modified Meinhardt reaction-diffusion system for cell migration

Cell migration can be modelled using reaction-diffusion equations and a model of the

mechanical mechanism which links chemical concentrations to membrane growth. The

three equation reaction-diffusion model of Meinhardt [94] is selected for this purpose be-

cause the behaviour of the solutions of the system has desirable cell-like characteristics.

For instance, travelling waves and out of phase oscillations of chemical concentrations

are known to happen along cell membranes and in the solutions to the Meinhardt

system [72]. Also, the solution is very sensitive to perturbations of nutrients in the

environment. This means that, unlike many other reaction-diffusion systems, the so-

lution for this model does not go towards a steady state solution easily. It is clearly

apparent that this is a desirable characteristic for cells wishing to migrate.

The model posed by Meinhardt was augmented by Neilson et al. [105] to be spa-

tially continuous with non-zero diffusive terms. This augmented model is calculated on

a time-dependent evolving simple closed curve Γ(t), which henceforth represents the
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membrane domain. A non-dimensional mathematical description of the model is

ȧ+∇Γ(t) · (au) = Da∆Γ(t)a+
(a2/b+ ba)%

(sc + c)(1 + saa2)
− raa,

ḃ+∇Γ(t) · (bu) = Db∆Γ(t)b− rbb+
rb
|Γ(t)|

∮
Γ(t)

adx,

ċ+∇Γ(t) · (cu) = Dc∆Γ(t)c+ bca− rcc,

(3.1)

where a, b and c are the concentrations of the activator, global inhibitor and local

inhibitor, respectively. The diffusivities of each concentration are Da, Db and Dc,

where Da < Dc < Db, ∆Γ(t) is the diffusion operator along the interface Γ(t) defined

in (1.9) and ∇Γ(t) is the tangential gradient operator given in (1.10).

The position of the interface is given by x with the material velocity being u.

The signal term, which is related to the concentration of nutrients that the cell can

sense in its environment, is %. The ∇Γ(t) · u term represents a focusing/dilution of

the concentration brought about by the local changes in the geometry of Γ(t). The

constants ba and bc are the basal rate of production of a and c, while ra, rb and rc

are the corresponding linear decay rates. The last two constants sa and sc control

the saturation of the activator with respect to a and c. The parameters used in the

simulations which follow are based on values taken from [94, 105] and are given in Table

3.1.

The signal term is a measure of fractional receptor occupancy. Receptor occupancy

is found by a binding-unbinding process of the ligand concentration on the cell exterior

to the receptors. The receptors are assumed to be able to sense a gradient of chemoat-

tractant surrounding the membrane. This gradient is obtained through a diffusive

chemoattractant source exterior to the cell which we will represent as

∂L

∂t

∣∣∣
x

= DL∆Ω(t)L, (3.2)

−DL
∂L

∂n

∣∣∣
Γ(t)
− [(u · n)]L

∣∣∣
Γ(t)

= k1 (Nr − Lm)L|Γ(t) − k−1Lm, (3.3)

where L is the free-ligand concentration and DL is the diffusivity of the chemoat-

tractant in the cell’s environment and Ω(t) is the domain exterior to the cell. The
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Quantity Symbol Value

Decay rate of activator ra 2 × 10−2

Basic production rate of activator ba 1 × 10−1

Saturation of activator autocatalysis sa 5 × 10−4

Diffusion coefficient of activator Da 4 × 10−7

Production & decay rate of global inhibitor rb 3 × 10−2

Diffusion coefficient of global inhibitor Db 4 × 10−5

Production rate of local inhibitor bc 7 × 10−3

Decay rate of local inhibitor rc 1.3 × 10−2

Diffusion coefficient of local inhibitor Dc 2.8 × 10−6

Michaelis-Menten constant sc 2 × 10−1

Table 3.1: Non-dimensional parameter values for cell migration simulations model
(3.1). These values taken from existing research conducted by Neilson et al. [94, 105].

interaction between the membrane and the extracellular environment is modelled using

the boundary flux condition (3.3) where [(u · n)]L
∣∣∣
Γ(t)

is the advective flux term, u is

the material velocity for the receptors, k1 is the free-ligand to receptor binding rate and

k−1 the corresponding unbinding rate. Equation (3.2) is not explicitly solved here and

is instead approximated by means of a stochastic differential equation and a number of

assumptions to give an approximation for the fractional receptor occupancy on the cell

membrane and the ligand concentration on the exterior of the cell. However methods

will be introduced in proceeding chapters to calculate (3.2) explicitly as part of the two

dimensional cell model which will also be introduced in later chapters.

A law of mass action equation is used to model the kinetics of the receptor-ligand

complex. The membrane is assumed to have Rtot receptors which are assumed to be
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uniformly distributed along the membrane. As such, the receptor-ligand complex is

assumed to evolve according to

∂Lm
∂t

+∇Γ(t) · (Lmu) = Ds∆Γ(t)Lm + k1 (Nr − Lm)L|Γ(t) − k−1Lm, (3.4)

where Nr is the local concentration of receptors and Lm is the local concentration of

receptor-ligand complex on the membrane.

If we assume that there is little or negligible diffusion of the receptors-bound complex

along the membrane and also that the receptors are in a fixed position relative to the

membrane movement so that u = 0, then

dLm
dt

= k1 (Nr − Lm)L
∣∣∣
Γ(t)
− k−1Lm, (3.5)

where Nr − Lm is the local concentration of unoccupied receptors. Note that (3.5)

has no boundary condition. Also notice that the local concentration of receptor bound

ligand Lm varies between zero, when no receptors are bound and Nr, when all receptors

are bound. It follows that the local fractional receptor occupancy is

Ro =
Lm
Nr

. (3.6)

Cells move randomly in the absence of any external directional information [24, 25,

68, 141]. As such the signal term is a combination of an intrinsic noise component η

and the fractional receptor occupancy. This will also make the signal to noise ratio

non-zero and more realistic and will more faithfully emulate what the cell will sense in

a background with little to no background gradient. The combined effects of the noisy

external signal and random intrinsic noise is thus modelled by the signal term

% = ra (η +Ro) ,

which feeds in multiplicatively to the autocatalytic reaction term of the local activator

equation of (3.1).

The local activator a is coupled with a simple mechanical model for the relocation
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of the cell membrane,

V = ẋ · n = Kprota(x)− λκ(x), (3.7)

where λ is a cortical tension coefficient and κ(x) is local surface curvature. It is expected

that actin polymerization creates a protrusive pressure at the cell membrane which

develops into pseudopodia and that the local activator a will represent or relate to the

local concentration of actin in some way [105]. The coefficient Kprot is a protrusive

velocity scaling parameter and is taken to be

Kprot = 1 × 10−5. (3.8)

The cortical tension factor λ is calculated using a shell-liquid drop model [31, 42,

43, 105] such that the cell volume is conserved and the cell will maintain a spherical

shape when not migrating which is observed in nature. Specifically λ evolves temporally

according to

dλ

dt
=
λ0λ(A−A0 + dA/dt)

A0(λ+ λ0)
− βλ, (3.9)

where λ0 and β are positive parameters and A0 = |Γ(0)| is the initial prescribed area of

the cell. The net effect of both the protrusive and retractive components of the normal

velocity creates realistic cell morphologies and migration. Subsequent simulations and

numerical experiments use β = 2 × 10−2.

3.2 Simulating cell migration

The cell membrane domain Γ(t) is approximated as a series of N = 200 connecting line

segments which is initially a circle of radius r0 = 0.1 centred at the origin. This choice

for the cell radius is also used by Neilson et al. [105] and was originally chosen such

that the Meinhardt model gives a fair representation of cell motility and morphology

found in Dictyostelium cells.

The fractional receptor occupancy will have the same rates of change as Lm (3.5),

and hence the change in fractional receptor occupancy with respect to time can be
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written as
dRo

dt
= k1 (1−Ro)L

∣∣∣
Γ(t)
− k−1R

o

= k1L
∣∣∣
Γ(t)
−
(
k1L

∣∣∣
Γ(t)

+ k−1

)
Ro

= (k1L
∣∣∣
Γ(t)

+ k−1)

 k1L
∣∣∣
Γ(t)

k1L
∣∣∣
Γ(t)

+ k−1

−Ro

 ,

(3.10)

which is a Michaelis-Menten equation which has a maximum saturation concentration

of Ro = 1.

A temporal noise model based on an Ornstein-Uhlenbeck process [20] is used to

model the fractional receptor occupancy (3.10) whereby

dRo = θ (µ−Ro) dt+ σdW t
m, (3.11)

where W t
m denotes the Weiner process and θ > 0, µ, and σ > 0 are the parameters

for the Ornstein-Uhlenbeck process. Here θ = k1L
∣∣∣
Γ(t)

+ k−1 and µ =
k1L

∣∣∣
Γ(t)

k−1+k1L

∣∣∣
Γ(t)

.

The Ornstein-Uhlenbeck process parameter for variance is asymptotically related to

the variance of the probability distribution in that

σ =
√

2θVar(Ro). (3.12)

The binding of individual receptors by ligands is reasonably assumed to be stochas-

tically independent and so the binding process can be modelled with a binomial dis-

tribution. At each time-step an equilibrium is assumed to have been reached between

the binding and unbinding processes of the free-ligand and receptors at the membrane,

thus we use the fractional receptor occupancy at steady state,

R̄o =

k1L
∣∣∣
Γ(t)

k−1 + k1L
∣∣∣
Γ(t)

=

L
∣∣∣
Γ(t)

Kd + L
∣∣∣
Γ(t)

, (3.13)

where Kd = k−1/k1. Now at every time-step each of the Nr receptors will have a
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p = 1− R̄o chance of binding with a free-ligand in the cell exterior and so the variance

of the receptor-ligand binding process is

Var(Lm) = Nrp(1− p) = Nr(1− R̄o)R̄o =

NrKdL
∣∣∣
Γ(t)(

Kd + L
∣∣∣
Γ(t)

)2 , (3.14)

from which we get the variance of the fractional receptor-ligand binding process as

Var(Ro) = Var

(
Lm
Nr

)
=

1

N2
r

Var(Lm) =

KdL
∣∣∣
Γ(t)

Nr

(
Kd + L

∣∣∣
Γ(t)

)2 =

KdL
∣∣∣
Γ(t)

Nr(θ/k1)2
. (3.15)

It follows that (3.11) will model the fractional receptor occupancy with realistic

stochasticity if

σ =
√

2θVar(Ro) =

√√√√2θKdL
∣∣∣
Γ(t)

Nr(θ/k1)2
=

√
2k−1R̄o

Nr
,

(3.16)

and hence the complete Ornstein-Uhlenbeck process for modelling fractional local re-

ceptor occupancy is

dRo =

(
k1L

∣∣∣
Γ(t)

+ k−1

)(
R̄o −Ro

)
dt+

√
2k−1R̄o

Nr
dW t

m. (3.17)

If the receptors are uniformly distributed around the membrane then the natural choice

for the local number of receptors is

Nr =
Rtot

N
, (3.18)

where the total number of receptors in Dictyostelium is found to be of the order Rtot =

7× 104 [71]. The binding-unbinding rates of receptor-ligand complex is also measured

[142] from which we chose k1 = 1/30, k−1 = 1. It must be noted that while the values

for Rtot, k1 and k−1 are dimensionally accurate, the rest of the model is not but a

proper non-dimensionalisation of the entire model will be looked at in Chapter 5 using
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these parameters as a starting point.

The intrinsic noise component, which emulates what the cell will sense in a back-

ground with little to no discernible gradient, is assumed to satisfy a similar process of

the form (3.11), where the parameters µ, θ and σ are user-chosen. Here we use

dη = (1− η) dt+
0.1

Nm
dW t. (3.19)

The combined effects of the noisy external signal and random intrinsic noise is therefore

modelled by

%(x, t) = ra (η +Ro) ,

which feeds in multiplicatively to the autocatalytic reaction term of the local activator

equation of (3.1).

The approximate area conservation differential equation (3.9) is integrated using a

backward-Euler scheme where

dA

dt
=
An −An−1

∆t
, (3.20)

and

λn+1 = λn +
λnλ0(∆t(An −A0) + (An −An−1))

A0(λn + λ0)
−∆tβλn. (3.21)

The initial conditions for local activator a, global inhibitor b and local inhibitor c

are derived from small perturbations about their respective homogeneous steady states

in (3.1). By noticing that the term 1
|Γ(t)|

∮
Γ(t) adx = a for a homogeneous, it follows

that the homogeneous steady state is such that

s(a∗2/b∗ + ba)

(sc + c∗)(1 + saa∗2)
− raa∗ = 0,

−rbb∗ + rba
∗ = 0,

bca
∗ − rcc∗ = 0.

(3.22)

The equation for the steady state local activator a∗ can be found by re-arranging to
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Figure 3.1: The homogeneous steady state solution of the Meinhardt system (3.1) as
the fractional receptor occupancy, Ro, is varied. The homogeneous steady state for the
local activator a∗ is given in red, the global inhibitor b∗ is given in blue and the local
inhibitor c∗ in green.

obtain a quartic equation

bcsaa
∗4 + rcsasca

∗3 + bca
∗2 + rc (sc − (1 +Ro)) a

∗ − barc(1 +Ro) = 0, (3.23)

and b∗ = a∗, c∗ = bc
rc
a∗. The real positive solution for a∗ in (3.23) will always exist and

be unique for any choice of positive reaction kinetics parameters and fractional receptor

occupancy Ro. This follows from Descartes’ rule of signs [103] whereby because the

polynomial (3.23) has exactly one sign change in the coefficients between the a∗2 and

a∗ terms, then there exists exactly one positive root for the polynomial. Figure 3.1

shows the variation in the value of a∗ as a function of the fractional receptor occupancy

Ro, where the other parameters in the model are given in Table 3.1. Using the kinetic

parameters in Table 3.1, it follows that a∗ ' 1.599.

The initial conditions for the cortical tension equation (3.9) are given by

A0 = π(r0)2, λ0 = Kprotr0a
∗. (3.24)

The mechanical model depends on the solution of the activator but the solution
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of the reaction-diffusion system depends on the domain position. Rather than solving

one large coupled non-linear system, the reaction-diffusion and mechanical systems are

solved separately, linearised by the results of the previous time-step. A small time-step,

∆t = 0.1, is taken to ensure that this linearisation still gives an accurate representation

of the solution. The Meinhardt system (3.1) is solved using the ALEFEM1D scheme and

the computational mesh is evolved using MMPDE1D both introduced in the previous

chapter.

The complete cell migration algorithm is thus as follows:

1. Set initial parameters.

2. Do until end of simulation.

(a) Calculate receptor occupancy Ro from free-ligand concentration L
∣∣∣
Γ(t)

using

Ornstein-Uhlenbeck process (3.11).

(b) Calculate intrinsic noise term η using Ornstein-Uhlenbeck process (3.19)

(c) Solve Meinhardt system (3.1) for local activator, global and local inhibitor

using ALEFEM1D.

(d) Use MMPDE1D to move membrane interface using the local activator a and

λ (3.21).

(e) Save and render result as needed.

3. Repeat until completion.

Algorithm 3.1: The complete algorithm for the one dimensional cell migration model.

To model the effect of a chemotactic background on the cell, a gradient varying

parameter ρ is used whereby

ρ =
R̄of − R̄ob

2r0
, (3.25)

where R̄of denotes the expected receptor occupancy for receptors in the highest con-

centration of gradient (in some sense the front or leading edge of the cell) and R̄ob the

lowest concentration (the back or trailing edge). In the examples which follow, lack of
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gradient (ρ = 0) is modelled by having fractional receptor occupancy around the cell

being R̄o = 0.15, whereas a strong chemotactic gradient of 20% (for which ρ = 0.2) is

modelled with R̄of = 0.19 and R̄ob = 0.15. To achieve such a gradient, we align the peak

concentration vertically so that the chemotactic source of free-ligands is given as

L(x, y) = 5.2941, (3.26)

for the zero gradient case and

L(x, y) = 8.7146y + 6.1656, (3.27)

for the non-zero case ρ = 0.2.

In the case of no gradient, the cells do not migrate in any one particular direction

as shown in Figure 3.2. Each cell does though select a direction of its own choosing and

persist well with migrating in that direction until it decides to select a new direction.

Whereas by contrast in the 20% chemotactant gradient case, which is shown in Figure

3.3, the cells are directed strongly to go in the +y direction by the perceived increase

in free-ligands along this path.

Trajectories for the centroids of cells generated using various other values for ρ are

shown in Figure 3.4. This shows a clear relationship between the free-ligand gradi-

ent and the average direction of chemotaxis for the group of cells. As the gradient

is increased, the cells become more polarised in the direction of increasing gradient.

Whereas by contrast, as the gradient is decreased, the cells become less polarised and

begin to follow a random migration pattern. This mimics what real cells do to seek out

alternative sources of food and not become trapped when the gradient is small.

A single cell simulation is shown at various time-steps in Figure 3.5 with corre-

sponding solutions of the Meinhardt system given in Figure 3.6. For the zero gradient

test case (3.26), the fractional receptor occupancy on the cell quickly reaches a quasi

steady state where Ro ≈ 0.15 with very minute perturbations to Ro being introduced

through the noise term in the Ornstein-Uhlenbeck process. The corresponding figures

for the linear gradient case (3.27) are given in Figure 3.7 and Figure 3.9. The results
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for the Meinhardt system are given in Figure 3.8 showing the peak splitting behaviour

which eventually leads to the pseudopods forming. It is interesting to note that in

general two peaks will take form initially but one of them will usually die out and a

pseudopod will begin to form near the location of the dominant peak. Despite the

larger gradient in the cells’ environment, the cells’ morphology remains invariant which

is ideal as the higher gradient concentration should not alter the cells’ ability to migrate

and chemotax.
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Figure 3.2: Snapshots of evolving cells and corresponding trajectory plots at various
times. In the figures there is one cell, with the set of parameters as defined in Table
3.1, which has been simulated six times with various starting conditions. The cells
are generated independently and do not interact with each other. The plots show the
superimposed trajectories from these different simulations with ρ = 0.
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Figure 3.3: Snapshots of evolving cells and corresponding trajectory plots at various
times. (ρ = 0.2)
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Figure 3.4: Trajectory plots of a small sample of cells moving towards a high con-
centration of chemoattractant source which illustrates the chemotactic response of the
simulated cells to changes in background chemotactic gradient. Notice the gradual in-
clination to move towards the higher concentration (along the +y axis). Cells in lower
gradients are more reluctant to move in the direction of perceived attractant. As the
gradient is increased that reluctance is reduced but does not disappear completely as
witnessed by the spread of the cells in (e) and (f).
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Figure 3.5: An example of a cell migrating in a homogeneous background at various
time-steps. The protrusions coincide with regions of high activator as shown in Figure
3.6.
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Figure 3.6: The corresponding solutions to the Meinhardt system for the cell simulation
shown in Figure 3.5(e) where t = 4800. Here the activator a is in red, the global
inhibitor b green and the local inhibitor c blue. The solutions of the Meinhardt system
between t = 4200 and t = 5400 are of a very similar form.
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Figure 3.7: An example of a cell migrating in an inhomogeneous background at various
time-steps. (ρ = 0.2)
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Figure 3.8: The corresponding solutions to the Meinhardt system for the cell simulation
shown in Figure 3.7. Here the activator a is in red, the global inhibitor b green and the
local inhibitor c blue. (ρ = 0.2)
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(c) t = 4500
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(e) t = 4800
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(f) t = 4950
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(g) t = 5100
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(h) t = 5250
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Figure 3.9: The corresponding fractional receptor occupancy and free-ligand concen-
tration for the cell simulation shown in Figure 3.7. With a chemotactic gradient of
ρ = 0.2, in the red plot we can see the range of the free-ligand concentration at the cell
membrane and in the blue, the fractional receptor occupancy on the membrane. It is
interesting to note that the peaks in free-ligand do not necessarily always coincide with
the pseudopods in Figure 3.7 however, we can see with reference to Figure 3.8 that
generally the peaks in activator which form near to the peak of the free-ligand field will
be more likely to generate a psuedopod.

100



3.3 Comparison of adapted moving meshes with the cell migration

model

Although the MMPDE1D method was originally developed to help the two-dimensional

methods with the use of τ to slow the rate of tangential movement which led to skewing

of the bulk mesh, it can also be used to adapt the mesh points along the cell membrane.

Often uniform arc-length distributed mesh points are ideal. In the cell migration

model presented here however this is not the case. As evident by Figure 3.6 and Figure

3.8, the solution of the activator and local inhibitor of the Meinhardt system is mostly

zero except in small intervals where there are steep peaks. This suggests that a mesh

with nodes refined around the activator peaks and coarsened where the solution is

constant may give more accurate results; possibly with fewer mesh points, leading to a

computationally more efficient simulation. However, care must also be taken to ensure

the domain geometry itself is also preserved. If too many nodes are removed where

the solution is constant, then the mesh may not approximate the correct domain if the

curvature of the domain is high.

It is hard to know what monitor function would provide an optimal combination

for both preserving the underlying curve domain and providing the most efficient mesh

on which to solve the Meinhardt system. Three monitor functions will be looked at

here. One refines the mesh on the basis of geometric features of the cell membrane, the

second refines the mesh based on the solution to the activator equation and the third

is a linear combination of the first two.

To quantify the differences between each mesh, a closest point metric is used. Specif-

ically the Hausdorff distance [121] given as

||e (Ωh(t),Ω∗(t)) || = max

{
max

y ∈Ω∗(t)

{
min

x∈Ωh(t)
||x− y||

}
, max
x∈Ωh(t)

{
min
y∈Ω∗(t)

||x− y||
}}

(3.28)

which is the maximum closest Euclidean distance between what will be the computa-

tionally generated mesh Ωh(t), and Ω∗(t), which will act as the the model solution and
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be calculated using Nmodel = 1000 nodes with no adaption.

As was seen in the previous chapter, using a monitor function which varies the

mesh node density depending on the curvature can improve the approximation of the

numerical domain. Because of the nature of the cell migration model, improving the

accuracy of the numerical domain is tantamount to improving the accuracy of the model

itself. Using MMPDE1D in the cell migration model can produce mesh refinement

specifically in high curvature areas which correspond to areas where cell pseudopods

form. This will also be where the the activator of the Meinhardt equations forms, or

has formed, a peak which suggests that a geometry based feedback for mesh adaption

may also improve the accuracy of the underlying PDE solver. A monitor matrix of the

form

M = |κ|1/2 +
1

|Γ(t)|

∫
Γ(t)
|κ|1/2 dl, (3.29)

refines the mesh in areas of high curvature. A demonstration of a cell fixed at time

t = 4100 is shown in Figure 3.10 (a), (d) and (g) with no adaption. By contrast, Figure

3.101 (b), (e) and (h) show the same cell using the monitor matrix (3.29). There is a

noticeable improvement in accuracy using the curvature-based adaption over the cell

generated with the uniform mesh when compared to the model solution given as the

blue lines in Figure 3.10 (d) and (e). The model solution is taken from the cell model

generated with Nmodel = 1000 uniformly distributed mesh points whereas the adaption

examples have N = 200.

If the objective were to improve the accuracy of the solutions to the Meinhardt

system (3.1) rather than to better resolve the numerical domain, an alternative monitor

function might involve solutions of the PDEs themselves. Consider the monitor function

M = |∇Γ(t)a|1/2 +
1

|Γ(t)|

∫
Γ(t)
|∇Γ(t)a|1/2 dl, (3.30)

where the activator solution is now used to refine the numerical mesh. This choice of

1Note that there is an appearance that the solutions have been shifted although this is not the case.
The peaks in the solutions of the Meinhardt system are in almost identical positions with respect to
the physical coordinate x and it is only because the nodes themselves are moving that, when plotting
with respect to scaled arc-length ξ, the physical coordinate for ξ = 0, x(ξ, t), is not guranteed to be
identical in each curve.
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monitor function which depends only on the activator, and not on the global or local

inhibitor, is justified by noting that the global inhibitor is roughly constant for the

Meinhardt system due to its high diffusivity; and because the local inhibitor closely

follows the activator, therefore changes in the activator dictate changes to the local

inhibitor and global inhibitor equations by design. In areas where a is small, there will

be little movement of the mesh points, however the mesh points will clump together

close to areas where the solution is rapidly changing, specifically close to where the

peaks in the activator form. This is seen in Figure 3.10 (c), (f) and (i), where there

is a definite clumping of the mesh points taking place along the areas where the cell

has formed pseudopods, and hence areas of high activity in a. However, it is easily

noticed by Figure 3.10 (i) that (3.30) has reduced the accuracy of the solution to this

cell and this becomes progressively worse as the simulation continues. This is because

the mesh points away from the pseudopods are being coarsened and this is affecting

the solution on the domain as a whole. For instance, we can see that while there is very

good definition made by curvature based adaption in Figure 3.10 (b) at the trailing

edge (+y) of the cell and even in Figure 3.10 (a), the no adaption case, there is a

loss of resolution at the rear of the cell in Figure 3.10 (c) caused by the mesh points

moving away from this area. One solution might be to reduce the range of the (3.30)

using some sort of modulation coefficient or to combine (3.30) and (3.29) to obtain an

adaption method which tries to encapsulate the behaviours of both monitor functions.

To account for both the complexity of the geometry and the roughness of the solu-

tion of underlying PDEs, it is not immediately obvious how to combine both forms of

adaptivity in a way which is optimal. One way is easily understood and modified is a

linear combination of the two,

M = µ1|κ|1/2 + µ2|∇Γ(t)a|1/2 +
1

|Γ(t)|

∫
Γ(t)

(
µ1|κ|1/2 + µ2|∇Γ(t)a|1/2

)
dl, (3.31)

where µ1 and µ2 are user specified scaling parameters.

Let

||e (Ωh,Ω
∗) || = 1

T

∫ T

0
||e (Ωh(t),Ω∗(t)) || dt (3.32)
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be the total average error for the entire run, where T = 5000. Let {xi(t)}Nmodel
i=1 be the

mesh points which make up Ω∗(t) and {xhj(t)}Nj=1 be the mesh points which make up

Ωh(t). Due to the dense nature of the Ω∗(t) mesh, (3.28) and (3.32) are approximately

||e (Ωh(t),Ω∗(t)) || ' max

{
max

1≤j≤N

{
min

1≤i≤Nmodel

||xi(t)− xhj(t)||
}
,

max
1≤i≤Nmodel

{
min

1≤j≤N
||xi(t)− xhj(t)||

}}
,

(3.33)

and

||e (Ωh,Ω
∗) || ' 1

NT

NT∑
n=1

||e (Ωh(tn),Ω∗(tn)) ||, (3.34)

where NT = 50000 since ∆t = 0.1.

The results for each of the cases in Figure 3.10 are given in Table 3.2 and show

the activator based monitor function (3.30) as being a better alternative to the mesh

generation computed without any adaption by the measure of the distance function

||e (Ωh,Ω
∗) ||. Table 3.3 shows the results using monitor function (3.31) with the various

values of µ1 and µ2 corresponding to Figure 3.11. The improvement using the monitor

functions (3.29) and (3.30) are apparent if only slight. It is therefore expected that a

proper investigation of the choice of monitor function for the cell problem could produce

greater numerical improvements however that is beyond the scope of this text. The

main reason that MMPDE1D was developed is to allow a natural and robust means

of extending the cell model to higher dimensions without the shearing of mesh points

along the boundary which happens in some other methods such as PFEM and to that

end MMPDE1D does an excellent job as will be seen in the proceeding chapters.

104



Description ||e (Ωh(t),Ω∗(t)) ||
∣∣∣
t=4100

||e (Ωh,Ω
∗) ||

No adaption (M = 1) 4.286e-03 2.824e-03

Curvature based adaption (3.29) 2.843e-03 2.346e-03

Activator based adaption (3.30) 2.765e-03 2.829e-03

Table 3.2: The error between the numerical approximation Ωh(t) for the cell membrane
using various different monitor functions to relocate the N = 200 mesh points and the
exact solution as calculated by a model result Ω∗(t) made from Nmodel = 1000 mesh
points without adaption.

µ1 µ2 ||e (Ωh,Ω
∗) ||

1.000e-01 2.000e-01 2.520e-03

5.000e-02 1.000e-01 2.607e-03

8.000e-02 6.000e-02 2.538e-03

Table 3.3: The error between the numerical approximation Ωh(t) for the cell membrane
using the monitor function (3.31) with different values of µ1 and µ2 to relocate the
N = 200 mesh points and the exact solution as calculated by a model result Ω∗(t)
made from Nmodel = 1000 mesh points without adaption.
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(i) Activator based adaption

Figure 3.10: An example of adaption using MMPDE1D applied to the cell model
problem. Here the cell profiles, as shown in (a), (b) and (c) for the particular case of
t = 4100, have N = 200 mesh points. Figures (a), (d) and (g) show the case without
adaption. Figures (b), (e) and (h) use curvature based monitor matrix (3.29). Figures
(c), (f) and (i) use a monitor matrix based on the solution of the activator (3.30).
Figures (d), (e) and (f) are an enlargement of (a), (b) and (c), respectively with the
blue line representing the model solution Ω∗(t). Figures (g), (h) and (i) show the
solutions to the Meinhardt equations for this particular time-step with the activator a
in red, global inhibitor b in green and local inhibitor c in blue.
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(f) µ = 8e− 02, µ2 = 6e− 02
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(h) µ1 = 5e− 02, µ2 = 1e− 01
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(i) µ = 8e− 02, µ2 = 6e− 02

Figure 3.11: An example of adaption using MMPDE1D with (3.31) applied to the cell
model problem for various values of µ1 and µ2. Here the cell profiles, as shown in (a),
(b) and (c) for the particular case of t = 4100, have N = 200 mesh points. Figures
(d), (e) and (f) are an enlargement of (a), (b) and (c) respectively with the blue line
representing the model solution Ω∗(t). Figures (g), (h) and (i) show the solutions to
the Meinhardt equations for this particular time-step with the activator a in red, global
inhibitor b in green and local inhibitor c in blue.
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3.4 Conclusions

In conclusion:

• The methods which were introduced in Chapter 2 have been, in this chapter, ap-

plied to an existing model of cell migration and chemotaxis which uses a reaction-

diffusion based model which is solved on an evolving domain. The reaction-

diffusion model is based on an earlier system by Hans Meinhardt for modelling

patterns that appear in biology. This is the first time the MMPDE1D method

introduced in Chapter 2 has been used in an application of cell migration and

chemotaxis research and the results presented show the method to produce cell

simulations with results comparable to the PFEM and level-set method originally

used by Neilson et al [104, 105].

• A receptor-ligand model is used to simulate the binding and unbinding of the free-

ligand molecules in the cell environment to the membrane. A quasi-steady state

solution is discussed from which the fractional receptor occupancy is then fed into

the Meinhardt system by means of the signalling term coupled with an intrinsic

noise term. The activator solution develops peaks near to the high concentration

of bound receptors. The activator is then used to drive the cell migration and

is fed into a simple mechanical model as a protrusive pressure term combined

with an area conserving term. The net effect gives the domain growth cell-like

behaviours.

• A brief study was conducted to test the effectiveness of various adaption monitor

functions applied to the cell mesh using the novel method MMPDE1D introduced

in the previous Chapter. There were suggestions that different monitor functions

could improve the overall accuracy of the simulation in different ways and that

many of the choices could potentially increase overall computational efficiency.

The model of cell migration in this chapter does a fair job but is limited. In one

way, it cannot fully interact with the environment and certain assumptions are made
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about the free-ligand background field as being approximated by quasi-steady state

solution of receptor-ligand binding kinetics in a background concentration which is

linear and unaffected by the presence of the migrating cell when in truth the cell will

be perturbing the field and altering the concentration such that the limitations on this

model may prove to be inaccurate. To properly model such interactions, new methods

must first be introduced to extend the model and cope with problems introduced in

higher dimensions.
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Chapter 4

Finite element solution of

reaction-diffusion equations on evolving

2D domains

4.1 Introduction

We have focused so far on the generation of a model which simulates the evolving

membrane of a cell. However, many mechanisms which contribute to cell migration

take place in the intracellular and extracellular environment which interact with the

membrane. Processes which are of particular interest include the treatment of focal

adhesions, actin polymerization close to the leading edge and actin waves throughout

the cell. To model these processes higher dimensional techniques have to be introduced.

4.2 Reaction-diffusion on an evolving 2D planar domain

This section introduces an ALEFEM scheme for the solution of reaction-diffusion PDEs

on evolving domains in R2. Let c(x, t) be a chemical substance which exists on an

evolving domain Ω(t) ⊂ R2, where (x, t) = ((x, y), t) ∈ R2 × I, I = [0, T ], T > 0; and

let the particles which make up the substance be defined by the position vector field

X(x0, t) = (X(x0, t), Y (x0, t)) : Ω(0) × I → Ω(t) and evolve according to a material
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velocity field u : Ω(t)× I → R2, where

u(x, t) = u(X(x0, t), t) =

(
∂X

∂t

∣∣∣
x0

,
∂Y

∂t

∣∣∣
x0

)
. (4.1)

The general reaction-diffusion equation is then

∂c

∂t

∣∣∣
x
− µ∆c+∇ · (uc) = f(c), (4.2)

where ∂c
∂t

∣∣∣
x

is the time derivative of c(x, t) at time t and at the physical coordinate

x ∈ Ω(t) in the Eulerian frame, the diffusivity of the chemical is µ and the reaction

term is f(c).

To model information transference between bulk and surface domains, non-zero flux

flow boundary conditions are defined

−µ∇c
∣∣∣
∂Ω(t)

· n+ (u · n)c
∣∣∣
∂Ω(t)

= g

(
c
∣∣∣
∂Ω(t)

, cs

)
, (4.3)

where the second term accounts for the advective component of flux on the moving

boundary; g is the reaction term on the boundary which also depends on a second

surface-bound chemical species cs
1, and n is the outward facing unit normal vector to

the domain. Let the boundary chemical cs be modelled similarly to the one-dimensional

reaction-diffusion equations introduced in earlier chapters,

∂cs
∂t

∣∣∣
x

+∇Γ · (ucs) = Ds∆Γcs + g

(
c
∣∣∣
∂Ω(t)

, cs

)
+ h(cs), (4.4)

where ∆Γ is the Laplace-Beltrami operator on ∂Ω(t) defined in (1.9), Ds is the diffu-

sivity of cs and h(cs) is the surface reaction term.

Recall the terminology and definitions introduced in Section 1.3 which allow us to

change the problem (4.2), expressed in the physical domain, to one which is expressed

in a reference ALE domain. It follows from there that (4.2) can be re-written in the

1Note that s is a subscript to represent that cs is a surface-bound species and is not short hand
partial derivative notation.
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ALE frame as

∂c

∂t

∣∣∣
ξ
−w · ∇c− µ∆c+∇ · (uc) = f(c), (4.5)

or, as ∇ · (uc) = c(∇ · u) + u · ∇c,

∂c

∂t

∣∣∣
ξ
− µ∆c+ (u−w) · ∇c+ (∇ · u)c = f(c). (4.6)

Since

c∇ ·w +∇ · ((u−w)c) = c∇ ·w +∇ · (uc)−∇ · (wc)

= c∇ ·w +∇ · (uc)−w · ∇c− c∇ ·w

= ∇ · (uc)−w · ∇c,

then (4.5) can also be re-written as

∂c

∂t

∣∣∣
ξ
− µ∆c+ c∇ ·w +∇ · ((u−w)c) = f(c). (4.7)

In an analogous manner to the bulk, the evolution of surface-based species can also be

rewritten as

∂cs
∂t

∣∣∣
ξ

+∇Γ · (ucs)−w · ∇Γc = Ds∆Γ + g

(
c
∣∣∣
∂Ω(t)

, cs

)
+ h(cs). (4.8)

4.2.1 Weak ALE formulation

To define a weak formulation for (4.7) we consider test functions v̂ ∈ H1(Ωc) and the

corresponding test function space on the ALE frame is then

H(Ω(t)) =
{
v : Ω(t)→ R : v = v̂ ◦ A−1

t , v̂ ∈ H1(Ωc)
}

for the bulk species and

Hs(∂Ω(t)) =
{
vs : ∂Ω(t)→ R : vs = v̂s ◦ A−1

t , v̂s ∈ H1(∂Ωc)
}
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for the surface-bound species.

Reynolds transport formula states that if ψ(x, t) is a function defined on Ω(t), and

Vt ⊆ Ω(t) such that Vt = At(Vc) with Vc ⊆ Ωc, then

d

dt

∫
Ω(t)

vψ dx =

∫
Ω(t)

(
∂ψ

∂t

∣∣∣
ξ

+ ψ∇ ·w
)
v dx. (4.9)

If (4.7) is multiplied by test function v ∈ H(Ω(t)) and integrated over the current

physical domain Ω(t) then

∫
Ω(t)

(
∂c

∂t

∣∣∣
ξ

+ c∇ ·w +∇ · ((u−w)c)− µ∆c

)
v dx =

∫
Ω(t)

f(c)v dx,

from which, using (4.9) and integrating by parts, it follows that

d

dt

∫
Ω(t)

cv dx+

∫
Ω(t)

(∇ · ((u−w)c))v dx+

∫
Ω(t)

µ∇c · ∇v dx

=

∫
Ω(t)

f(c)v dx+

∫
∂Ω(t)

(
µ∇c

∣∣∣
∂Ωt
· n
)

ds.

(4.10)

Inserting condition (4.3) and collecting terms, (4.10) becomes

d

dt

∫
Ω(t)

cv dx−
∫

Ω(t)
((u−w)c) · ∇v dx+

∫
Ω(t)

µ∇c · ∇v dx

=

∫
Ω(t)

f(c)v dx−
∫
∂Ω(t)

(((u−w)c) · n)v ds

+

∫
∂Ω(t)

(
g

(
c
∣∣∣
∂Ω(t)

, cs

)
− (u · n)c

∣∣∣
∂Ω(t)

)
v ds, ∀ v ∈ H(Ω(t)).

(4.11)

The boundary species has a similar weak ALE form where

d

dt

∫
∂Ω(t)

csvs ds+

∫
∂Ω(t)

(∇Γ · ((u−w)cs)) vs ds

+Ds

∫
∂Ω(t)

∇Γcs · ∇Γvs ds =

∫
∂Ω(t)

(g + h)vs ds, ∀ vs ∈ Hs(∂Ω(t)).

(4.12)

4.2.2 Finite element discretisation

We will assume that, for each t ∈ [0, T ], the physical and reference domains Ω(t)

and Ωc are approximated by polygonal domains Ωh(t) and Ωc,h, respectively. We will
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assume that Ωc,h is covered by a fixed triangulation Tc,h with straight edges, so that

Ωc,h = ∪K∈Tc,hK. The approximation of the boundary domain ∂Ωh(t) is chosen to be

simply the boundary of Ωh(t). The total number of vertices in Tc,h will be denoted N .

The number of vertices on the boundary will be denoted by Ns. The Lagrangian finite

element spaces for the bulk and surface species respectively are thus defined as

L1 (Ωc,h) =
{
v̂h ∈ H1 (Ωc,h) : v̂h|K ∈ P1(K), ∀K ∈ Tc,h

}
,

L1
0 (Ωc,h) =

{
v̂h ∈ L1 (Ωc,h) : v̂h = 0, ξ ∈ ∂Ωc,h

}
,

(4.13)

and

L1 (∂Ωc,h) =
{
v̂s,h ∈ H1 (∂Ωc,h) : v̂s,h|K ∈ P1(e), ∀e ∈ E(∂Ωc,h)

}
; (4.14)

where P1(K) denotes the space of piecewise linear real-valued functions defined on

the triangular element K and P1(e) denotes the piecewise linear real-valued functions

defined on the edge e ∈ E (∂Ωc,h) with

E (∂Ωc,h) = {{xi,xj} : there exists an edge between xi and xj on ∂Ωc,h } (4.15)

being the set of straight line segments which make up the polygonal boundary of Ωc,h.

A temporal discretisation of (4.12) is first obtained by subdividing [0, T ] into Nt

equal time intervals of size ∆t = T/Nt and denoting tn = n∆t, n = 0, 1, . . . , Nt. The

ALE mapping is discretised using linear interpolation between time levels such that

Ah,∆t(ξ, t) =
t− tn

∆t
Ah,tn+1(ξ) +

tn+1 − t
∆t

Ah,tn(ξ), t ∈ [tn, tn+1), (4.16)

whereAh,t is the piecewise linear map at time t. The mesh velocity is therefore piecewise

constant in time and is given by

wn+1
h,∆t(ξ) =

Ah,tn+1 −Ah,tn
∆t

, t ∈ [tn, tn+1),

wn+1
h,∆t(x) = wn+1

h,∆t(ξ) ◦ A−1
h,∆t(x).

(4.17)
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Let the test space of admissible piecewise linear functions on Ωh(t) be defined as

Hh (Ωh(t)) =
{
vh : Ωh(t)→ R : vh = v̂h ◦ A−1

h,t , v̂ ∈ L
1 (Ωc,h)

}
, (4.18)

and

Hs,h (∂Ωh(t)) =
{
vh : Ωh(t)→ R : vh = v̂h ◦ A−1

h,t , v̂ ∈ L
1 (∂Ωc,h)

}
, (4.19)

for the bulk and surface species respectively. The discrete problem is then: find ch ∈

Hh (Ωh(t)) such that

d

dt

∫
Ωh(t)

chvh dx−
∫

Ωh(t)
((u−wh)ch) · ∇vh dx+

∫
Ωh(t)

µ∇ch · ∇vh dx

=

∫
Ωh(t)

f(ch)vh dx−
∫
∂Ωh(t)

(((u−wh)ch) · n)vh ds

+

∫
∂Ωh(t)

(
g

(
ch

∣∣∣
∂Ωh(t)

, cs

)
− (u · n)ch

∣∣∣
∂Ωh(t)

)
vh ds,

(4.20)

for all vh ∈ Hh (Ωh(t)), for the bulk species, and simultaneously find cs,h ∈ Hs,h(∂Ω(t))

such that

d

dt

∫
∂Ωh(t)

cs,hvs,h ds+

∫
∂Ωh(t)

(∇Γ · ((u−wh)cs,h))vs,h ds+Ds

∫
Ωh(t)

∇Γcs,h · ∇Γvs,h ds

=

∫
∂Ωh(t)

(g + h)vs,h ds

(4.21)

for all vs,h ∈ Hs,h(∂Ω(t)), for the surface-bound species.

If C(t) = {ci(t)}Ni=1 and Cs(t) = {cs,i(t)}Nsi=1 denote the vectors of nodal unknowns

for the approximations ch and cs,h respectively, where

ch(x, t) =

N∑
j=1

cj(t)φj(x, t), cs,h(x, t) =

Ns∑
j=1

cs,i(t)φj(x, t), (4.22)

and wh denotes the nodal mesh velocities, where

wh(x, t) =

N∑
j=1

ẋj(t)φj(x, t), (4.23)
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then (4.20) is discretised spatially into the system of ODEs

d

dt
(M(t)C(t)) + [K(t) +A(t,wh)−B(t,wh)]C(t) +D(t, C(t)) = F (C(t)). (4.24)

Here

[M(t)]ij =

∫
Ωh(t)

φi(t)φj(t) dx (4.25)

is the time-dependent mass matrix, while

[K(t)]ij = µ

∫
Ωh(t)

(∇φj(t) · ∇φi(t)) dx,

[A(t,wh)]ij =

∫
∂Ωh(t)

[(u−wh) · n]φi(t)φj(t) ds,

[B(t,wh)]ij =

∫
Ωh(t)

[(u−wh) · ∇φj(t)]φi dx,

[D(t, C(t), Cs(t))]i =

∫
∂Ωh(t)

[g(ch(t), cs,h(t))− (u · n)ch(t))]φi(t) ds,

and the load vector

[F (C(t))]i =

∫
Ωh(t)

f(ch(t))φi(t) dx.

On the boundary, the spatial discretisation of (4.21) results in a similar system of ODEs

d

dt
(Ms(t)Cs(t)) + [Ks(t) +As(t,wh(t))]Cs(t) = Ds (C(t), Cs(t)) +H(Cs(t)), (4.26)

where

[Ms(t)]ij =

∫
∂Ωh(t)

φj(t)φi(t) ds,

[Ks(t)]ij = µs

∫
∂Ωh(t)

∇Γφj(t) · ∇Γφi(t) ds,

[As(t)]ij =

∫
∂Ωh(t)

(u · n)φi(t)φj(t) ds,

and

[H(Cns )]i =

∫
∂Ωh(t)

h(cs,h(t))φi(t) ds. (4.27)

In order to solve the coupled system (4.24) and (4.26), the boundary concentration
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C̃n+1
s is first predicted using a semi-implicit backward Euler method, where the linear

diffusion and mesh movement terms are treated implicitly, and the non-linear reac-

tion coupling terms are treated explicitly. The predicted boundary solution therefore

satisfies the linear system

[Mn+1
s + ∆t(Kn+1

s +An+1
s )]C̃n+1

s = Mn
s C

n
s + ∆t[D(Cn, Cns ) +H(Cns )], (4.28)

To achieve a second order accuracy and minimise any error that will be introduced

in the coupling of the two systems, the bulk approximation is then updated using a

Crank-Nicolson approximation for the time derivative in (4.24) in a manner similar to

(2.19):

[Mn+1 +
1

2
∆t(Kn+1 +An+1 +Bn+1)]Cn+1 = [Mn − 1

2
∆t(Kn +An +Bn)]Cn

+
1

2
∆t[F (Cn+1) + F (Cn)−D(Cn+1, C̃n+1

s )−D(Cn, Cns )].

(4.29)

Also, to address the non-linear terms, note that (4.29) can be written as

ω(Cn+1) = 0 where ω(c) = E(c)− 1

2
∆tF (c)− 1

2
∆tD(c, C̃n+1

s )− σ. (4.30)

Here

E(c) =

[
Mn+1 +

1

2
∆t(Kn+1 +An+1 +Bn+1)

]
c (4.31)

and

σ =

[
Mn − 1

2
∆t(Kn +An +Bn)

]
Cn +

1

2
∆t (F (Cn)−D(Cn, Cns )) . (4.32)

Using Newton’s method, Cn+1 may be found by iterating to sufficient convergence,

J
∣∣
c=C[n+1,i](C

[n+1,i+1] − C [n+1,i]) = −ω(C [n+1,i]), i = 1, 2, . . . , Nits, (4.33)

where C [n+1,i] denotes the approximation for Cn+1 at the ith iteration, Nits is the
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number of iterations and J is the Jacobian of ω(c)

J =
dω

dc
= Mn+1 +

1

2
∆t(Kn+1 +An+1 +Bn+1)− 1

2
∆t

∂F

∂c
− 1

2
∆t

∂D

∂c
, (4.34)

where [
∂F

∂c

]
ij

=
∂Fi
∂cj

and

[
∂D

∂c

]
ij

=
∂Di

∂cj
(4.35)

depends on the definition of g. It is worth noting that when dg
dc = g0 is constant then

[
∂D

∂c

]
ij

= g0

∫
∂Ωh(t)

φiφj ds−
∫
∂Ωh(t)

φiφj(u · n)bφb ds

=⇒ ∂D

∂c
= g0M

n+1
s −Bn+1

s ,

(4.36)

where [
Bn+1
s

]
ij

=

∫
∂Ω̂(t)

φiφj(u · n)bφb ds (4.37)

and

J = Mn+1 +
1

2
∆t(Kn+1 +An+1 +Bn+1)− 1

2
∆t

∂F

∂c
− 1

2
∆t
(
g0M

n+1
s −Bn+1

s

)
. (4.38)

Many physical problems take g(c, cs) and f(c) to be linear with respect to c and cs.

In these instances Cn+1 can be computed directly as the solution of(
Mn+1 +

1

2
∆t(Kn+1 +An+1 −Bn+1)

)
Cn+1 +

1

2
∆t
(
Mn+1
s g(Cn+1, Cn+1

s )−Bn+1
s Cn+1

)
= MnCn − 1

2
∆t (Kn +An −Bn)Cn +

1

2
∆t
(
F (Cn+1) + F (Cn)

)
− 1

2
∆tD(Cn, Cns )

(4.39)

without the need for Newton iteration.

Finally, a Crank-Nicolson correction step ensures that the boundary solution is

second-order in time whereby

[Mn+1
s +

1

2
∆t(Kn+1

s +An+1
s )]Cn+1

s = [Mn
s −

1

2
∆t(Kn

s +Ans )]Cns

+
1

2
∆t[D(Cn+1, C̃n+1

s ) +D(Cn, Cns ) +H(C̃n+1
s ) +H(Cns )].

(4.40)
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Note that the correction step only requires the solution of a linear system of equations

even if the reaction terms on the surface, c and cs are non-linearly coupled together.

The linear systems arising above are solved using the iterative method BiCGSTAB

[56, 140] and an incomplete LU (ILU) factorization as a pre-conditioner.

4.3 Numerical examples

4.3.1 Diffusion on an isotropically growing 2D disc with zero flux boundary condi-

tions

To test the spatial and temporal order of convergence of the ALEFEM scheme (4.29),

we first consider the solution of the diffusion equation on an isotropically growing disc

domain,

x(ξ, t) = (1 + βt)ξ, (4.41)

where ξ ∈ Ωc, the unit circle centred on the origin, and β > 0 is a constant growth

rate. For this case we will assume that the material velocity

u =
dx

dt

∣∣∣
ξ

= βξ. (4.42)

On this growing domain we consider the diffusion problem

∂c

∂t

∣∣∣
x
− µ∆c+∇ · (uc) = 0,

∂c

∂n

∣∣∣
∂Ω(t)

= 0,
(4.43)

where Ω(t) = {x ∈ R2 : ||x||2 < 1 + βt, t > 0, β ∈ R+}. We can make use of results

by Plaza et al. [116] to transform the isotropically growing disc diffusion problem (4.43)

on the time-dependent physical domain into a problem using the stationary coordinate

system ξ. The standard formulation for the Laplacian in polar coordinates can then
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be used to rewrite (4.43) in terms of an equivalent function c∗(θ, r, t), where

∂c∗

∂t

∣∣∣
ξ

=
µ

ρ2

(
c∗rr +

1

r2
c∗θθ +

1

r
c∗r

)
− 2ρ̇

ρ
c∗, (4.44)

∂c∗

∂r

∣∣∣
r=1

= 0,

and where ρ(t) = 1+βt is the linear growth function. The 2ρ̇
ρ c
∗ term in (4.44) accounts

for the effect that the change in size of the domain has on the total concentration. We

will only consider initial conditions that give rise to radially symmetric solutions where

c∗θθ = 0. Separable solutions are found by assuming that c∗(r, t) = f(r)h(t), from which

(4.44) gives us

ḣf =
µ

ρ2

(
hf ′′ +

1

r
hf ′
)
− 2ρ̇

ρ
hf

=⇒ ḣ

h
=

µ

ρ2

(
f ′′

f
+

1

r

f ′

f

)
− 2ρ̇

ρ

=⇒

(
ḣ

h
+

2ρ̇

ρ

)
ρ2

µ
=
f ′′

f
+

1

r

f ′

f
.

Since the left hand side is independent of r and the right hand side is independent of

t, it follows that (
ḣ

h
+

2ρ̇

ρ

)
ρ2

µ
= K, (4.45)

and

f ′′

f
+

1

r

f ′

f
= K, (4.46)

for a fixed constant K. Re-writing (4.45), we note that

ḣ+

(
2ρ̇

ρ
− µK

ρ2

)
h = 0 (4.47)
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is a linear differential equation in t and hence

h(t) = A exp

(∫ t(
−2ρ̇

ρ
+
µK

ρ2

)
dt∗
)

(4.48)

=
A

ρ2
exp

(∫ t(µK
ρ2

)
dt∗
)
. (4.49)

Since ρ(t) = 1 + βt then

h(t) =
A

(1 + βt)2 exp

(∫ t( µK

(1 + βt∗)2

)
dt∗
)

(4.50)

=
A

(1 + βt)2 exp

(
−µK

β(1 + βt)

)
. (4.51)

Now, from (4.46),

r2f ′′ + rf ′ −Kr2f = 0. (4.52)

Making the change of variable s =
√
−Kr (K < 0), it then follows that

f ′ = fssr =
√
−Kfs and f ′′ = fsss

2
r + fssrr = −Kfss. (4.53)

Therefore we can rewrite (4.52) as

r2 (−Kfss) + r
(√
−Kfs

)
−Kr2f = 0 (4.54)

and hence

s2fss + sfs + s2f = 0. (4.55)

Equation (4.55) is a Bessel equation of order zero which has the general solution

f(s) = ÃJ0(s) + B̃Y0(s), (4.56)

where J0 and Y0 are the zero order Bessel functions of the first and second kind,

respectively. Using the homogeneous Neumann boundary condition we have f ′(1) = 0
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and hence
√
−Kfs(

√
−K) = 0. Therefore

Ã
dJ0

ds

∣∣∣
s=
√
−K

+ B̃
dY0

ds

∣∣∣
s=
√
−K

= 0, (4.57)

and, by noting that

dJ0(s)

ds
= −J1(s) and

dY0(s)

ds
= −Y1(s), (4.58)

(4.57) can be simplified to

ÃJ1(
√
−K) + B̃Y1(

√
−K) = 0, (4.59)

where J1 and Y1 are the first-order Bessel functions of the first and second kind respec-

tively. The general solution is therefore

c∗(θ, r, t) ≡ c∗(r, t) =
AÃJ0(

√
−Kr) +AB̃Y0(

√
−Kr)

(1 + βt)2 exp

(
−µK

β(1 + βt)

)
, (4.60)

such that K satisfies (4.59). It follows that the solution in physical variables is

c(x, t) =
AÃJ0(

√
−K||x||2) +AB̃Y0(

√
−K||x||2)

(1 + βt)2 exp

(
−µK

β(1 + βt)

)
. (4.61)

The specific solution used in the numerical experiments is obtained by setting B̃ = 0

and AÃ = exp(µK/β) so that

c(x, t) =
J0(
√
−K||x||2)

(1 + βt)2
exp

(
−µK

β(1 + βt)
+
µK

β

)
, (4.62)

where K = −14.681971 and β = 1.

A numerical mesh is generated using DistMesh [113, 114] such that all edges in the

triangulation are no longer than hmax. The subsequent domain growth is simulated by

isotropically rescaling the initial DistMesh mesh to match the linear growth function,

in other words

xi(t
n) = ρ(tn)xi(0), i = 1, 2 · · · , N. (4.63)
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In doing so, the connectivity between mesh nodes is unchanged at each time-step and

the ALE velocity is equal to the material velocity. Problem (4.43) can be integrated

up to T = 1 using (4.29) without a surface species (taking F = D = 0). The error in

the numerical solution is calculated using an approximation for the L2 norm, namely

||eh(T )||L2 =

(∫ T

0

∫
Ωh(t)

|ch(x, t)− c(x, t)|2 dx dt

)1/2

≈

Nt−1∑
m=0

∑
χ∈Th(tm+1/2)

|ch(xχ, t
m+1/2)− c(xχ, tm+1/2)|2 |χ|∆t

1/2

,

(4.64)

where N t = T/∆t, Th(tm+1/2) is the set of elements belonging to the triangulation of

Ωh(tm+1/2), the midpoint domain between Ωh(tm) and Ωh(tm+1), and xχ is the centre

of mass for element χ. The initial approximation is given exactly at t = 0, where

ch(x, 0) = c(x, 0) using (4.62).

Snapshots at three time points of the approximate solution, the analytical solution

and the error are shown in Figure 4.1. We can see that the rapid growth of the domain

has resulted in the global redistribution of the initial profile. Results for this experiment

demonstrate second-order temporal and spatial convergence which are shown in Tables

4.1 and 4.2. Here N is the number of mesh points or degrees of freedom for the

numerical approximation ch; NE is the number of elements and hmax is the longest

edge length between two adjacent mesh points.
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∆t ||eh(T )||L2 EOC

2.000e-1 2.522e-02

1.000e-1 6.986e-03 1.852

5.000e-2 1.833e-03 1.930

2.500e-2 4.690e-04 1.967

Table 4.1: Estimated order of temporal convergence and error results for a disc growing
at a constant rate where hmax is the longest possible edge within each mesh. (µ = 10−6,
β = 1, N = 145106, NE = 288944 and hmax = 5× 10−3)

N NE hmax ||eh(T )||L2 EOC

2270 4382 4.000e-02 2.519e-04

9065 17818 2.000e-02 6.497e-05 1.955

36271 71908 1.000e-02 1.562e-05 2.056

145106 288944 5.000e-03 3.805e-06 2.037

Table 4.2: Estimated order of spatial convergence and error results for a disc growing
at a constant rate where hmax is the longest possible edge within each mesh. (∆t =
1× 10−5)
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(a) t = 0 (b) t = 0.5 (c) t = 1

(d) t = 0 (e) t = 0.5 (f) t = 1

(g) t = 0 (h) t = 0.5 (i) t = 1

Figure 4.1: Solution of the diffusion problem (4.43) on an expanding disc domain.
The first row shows the approximation ch(x, t). The second row shows the analytical
solution c(x, t). The third row shows the difference between approximation and ana-
lytical solution |eh(x, t)| = |ch(x, t) − c(x, t)|. Here µ = 10−6, β = 1, N = 145106,
NE = 288944, hmax = 5× 10−3 and ∆t = 2.5× 10−2.
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4.3.2 A coupled bulk-surface problem

We next consider the coupled diffusion problem

∂c

∂t

∣∣∣
x

= ∆c, 0 < t ≤ T = 1, x ∈ Ω,

∂c

∂n

∣∣∣
∂Ω

= cs − c, x ∈ ∂Ω,

∂cs
∂t

= ∆Γcs − cs + c, x ∈ ∂Ω,

(4.65)

where Ω = {x ∈ R2 : ||x||2 < 1}. On this stationary circular domain the bulk and

surface Laplacian operators can be re-written in terms of polar coordinates (θ, r) like

before giving
∂c∗
∂t

= crr +
1

r2
cθθ +

1

r
cr,

∂c∗
∂r

∣∣∣
r=1

= c∗s − c∗
∣∣∣
r=1

,

∂c∗s
∂t

=
∂2c∗s
∂θ2

− c∗s + c∗
∣∣∣
r=1

.

(4.66)

Similarly to Novak et al. [108], we assume a solution of the form

c∗s(θ, t) = Ae−k
2t cos θ,

c∗(r, θ, t) = f(r)c∗s(θ, t).
(4.67)

Since

c∗
∣∣∣
r=1
− c∗s = f(1)c∗s(θ, t)− c∗s(θ, t) = (f(1)− 1)c∗s(θ, t), (4.68)

then
∂c∗s
∂t

=
∂2c∗s
∂θ2

+ (f(1)− 1)c∗s(θ, t). (4.69)

Now
∂c∗s
∂t

= −k2Ae−k
2t cos θ,

∂2c∗s
∂θ2

= −Ae−k2t cos θ = −c∗s.
(4.70)
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Therefore

−k2Ae−k
2t cos θ = −Ae−k2t cos θ + (f(1)− 1)Ae−k

2t cos θ

=⇒ −k2 = −1 + (f(1)− 1)

=⇒ f(1) = 2− k2. (4.71)

Subsituting c∗ = f(r)c∗s into (4.70) we get

f(r)
∂c∗s
∂t

= f ′′(c∗s) +
1

r
f ′(r)c∗s +

1

r2
f(c∗s)θθ

=⇒ −k2f = f ′′ +
1

r
f ′ − 1

r2
f

=⇒ f ′′ +
1

r
f ′ +

(
k2 − 1

r2

)
f = 0

=⇒ r2f ′′ + rf ′ +
(
(rk)2 − 1

)
f = 0. (4.72)

We now make the change of variable s = rk which substituting into (4.72) gives

s2

k2
(k2f̈) +

s

k
kḟ + (s2 − 1)f = 0

=⇒ s2f̈ + sḟ + (s2 − 1)f = 0.

This is a Bessel equation of order one. The general solution is

f(s) = ÂJ1(s) + B̂Y1(s), (4.73)

where J1 and Y1 are Bessel functions of order one of the first kind and second kind,

respectively and Â and B̂ are constants to be determined. As Y1(s) is not finite at

s = 0, then B̂ = 0. From (4.71) we have

f(k) + k2 − 2 = 0

=⇒ ÂJ1(k) + k2 − 2 = 0. (4.74)
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From the flux boundary condition

f ′c∗s = (1− f(1))c∗s

=⇒ f ′(1) + f(1) = 1.

As f ′ = kḟ then

kÂJ̇1(k) + ÂJ1(k) = 1 (4.75)

=⇒ kÂJ̇1(k) = k2 − 1 (4.76)

by using (4.74). Equations (4.74) and (4.76) form a system of two equations for the

two unknowns k and Â. We can eliminate Â by taking (k2 − 2) to the right hand side

of (4.74) and then dividing into (4.76) so that

k
J̇1(k)

J1(k)
=
k2 − 1

2− k2
(4.77)

=⇒ (2− k2)kJ̇1(k) + (1− k2)J1(k) = 0. (4.78)

Using the identity J̇1 = 1
2 (J0 − J2), k can be determined by solving the non-linear

algebraic equation

(2− k2)k

(
1

2
(J0(k)− J2(k)) + (1− k2)J1(k)

)
= 0. (4.79)

The Matlab function fsolve can be used to find numerical solutions for (4.79). Once a

particular value for k is calculated then

Â =
2− k2

J1(k)
, (4.80)

and so the full solution is as follows,

c∗(r, θ, t) = ÂJ1(rk)Ae−k
2t cos θ. (4.81)
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For simplicity we can take

A =
1

Â
=

J1(k)

2− k2
(4.82)

so that

c∗(r, θ, t) = J1(rk)e−k
2t cos θ,

c∗s(θ, t) =
J1(k)

2− k2
e−k

2t cos θ,
(4.83)

and hence

c(x, t) = J1(||x||2k)e−k
2t cos θ,

cs(x, t) =
J1(k)

2− k2
e−k

2t cos θ.
(4.84)

The numerical experiments are conducted using the exact solution (4.84) with k =

1.177706027 with the L2 error on the surface solution being defined similarly as to the

bulk, where

||es,h(T )||L2 =

√√√√∆t

2

Nt−1∑
n=0

(
||es,h(tn)||2L2

+ ||es,h(tn+1)||2L2

)
,

||es,h(tn)||L2 =

√√√√ ∑
{xi,xj}∈E(∂Ωh(tn))

1

2
||xi − xj ||

(
||es,h(xi, tn)||2L2

+ ||es,h(xj , tn)||2L2

)
,

es,h(xi, t
n) = cs,h(xi, t

n)− cs(xi, tn),

(4.85)

and

E (∂Ωh(tn)) = {{xi,xj} : there exists an edge between xi and xj on ∂Ωh(tn) } ,

(4.86)

is the set of edges which make up the mesh boundary. Plots of the numerical solution,

exact solution and corresponding errors are given in Figure 4.2 and Figure 4.3 at various

times on the bulk Ω(t) and boundary ∂Ω(t), respectively. The results shown in Table

4.3 and 4.4 demonstrate the estimated order of convergence of the method to be second-

order accurate both spatially and temporally, respectively, for bulk and surface species.
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N NE hmax ||eh(T )||L2 EOC ||es,h(T )||L2 EOC

2270 4382 4.000e-02 4.637e-05 1.011e-04

9065 17818 2.000e-02 1.085e-05 2.095 2.459e-05 2.040

36271 71908 1.000e-02 2.543e-06 2.093 5.864e-06 2.068

145106 288944 5.000e-03 6.299e-07 2.013 1.458e-06 2.008

Table 4.3: Estimated order of spatial convergence and error results for coupled bulk-
surface reaction-diffusion systems. (∆t = 1× 10−5)

∆t ||eh(T )||L2 EOC ||es,h(T )||L2 EOC

2.000e-01 6.169e-04 4.133e-03

1.000e-01 1.460e-04 2.079 1.042e-03 1.988

5.000e-02 3.609e-05 2.016 2.631e-04 1.986

2.500e-02 9.000e-06 2.004 6.710e-05 1.971

Table 4.4: Estimated order of temporal convergence and error results for coupled bulk-
surface reaction-diffusion systems. (N = 145106, NE = 288944, hmax = 5× 10−3)
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(a) t = 0 (b) t = 0.5 (c) t = 1

(d) t = 0 (e) t = 0.5 (f) t = 1

(g) t = 0 (h) t = 0.5 (i) t = 1

Figure 4.2: Solution of the bulk in the coupled bulk-surface model problem. The first
row shows the approximation ch(x, t). The second row shows analytical solution c(x, t).
The third row shows the difference between approximation and analytical solution
|eh(x, t)| = |ch(x, t) − c(x, t)|. Here N = 145106, NE = 288944, hmax = 5 × 10−3 and
∆t = 1× 10−2.
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Figure 4.3: Solution on the surface in the coupled bulk-surface model problem. The
first row shows the approximation cs,h(x, t) in red and the analytical solution cs(x, t)
in black. The second row shows the difference between the two eh(x, t) = cs,h(x, t) −
ch(x, t). Here N = 145106, NE = 288944, hmax = 5× 10−3 and ∆t = 1× 10−2.
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4.4 Two-dimensional grid generation

It is possible to extend the numerical schemes developed in this and previous chapters

to higher dimensions but before doing so a method for generating robust computational

meshes which evolve with time must be developed. There currently exist a number of

well known mesh generation strategies for two-dimensional domains (for example in [51,

65, 136, 137, 144, 145]). The DistMesh algorithm ([113] and [114]) is one such procedure

for generating static meshes for domains defined implicitly in two or three dimensions.

DistMesh generates an initial approximation for the mesh and then gradually refines

the mesh based on an iterative process of mechanical relaxation for each edge in the

mesh until an ideal mesh is generated which has the correct length constraint, that

is to say that no edge within the mesh is greater than a specified tolerance hmax in

length. However, DistMesh is a comparatively slow algorithm and there exist other

mesh generation strategies to evolve the meshes continuously between time steps.

Another strategy for mesh generation is to use a variational formulation. One

advantage over other methods is that mesh quality control and solution adaption can

straightforwardly be incorporated into an elliptic mesh generation system which is

formed from a variational approach. Further, unlike algebraic grid generators, the

mesh produced by an elliptic system will have desirable smoothness characteristics.

One disadvantage of variational mappings however is that a solution may not exist

or be unique and the domains over which they are applied to need to have should

be continuous in order to make use of transformation relations key to the mapping

processes. This limits their use in, for instance, problems with topology changes which

would introduce discontinuities in the mapping.

The moving mesh FEM approach of Cao et al. [29] is a variational mapping tech-

nique and can be seen in Figure 4.4 to generate a mesh for the evolving domain of the

moving cell. The mapping is found which maps from a reference domain Ωc ⊂ R2 to

the physical domain Ω(t) ⊂ R2 at time t as demonstrated in Figure 4.4. A natural

choice for the reference domain is often Ωc = Ω(0).
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Figure 4.4: On the left hand side, the domain Ωc = {ξ ∈ R2×R : 0.1 < ||ξ|| < 0.3} is
triangulated using DistMesh. The resulting mesh is mapped onto a physical domain in
the environment of the cell using (4.113). The interior boundary points of the physical
domain are found from the mechanical model of the cell membrane introduced in the
previous chapter where Ω(t) = {x ∈ R2 × R : 0 < dΓ(t)(x) and ||x − cm|| < 0.3},
where cm is the centre of mass for the cell.

Meshes from MMPDEs can however become inaccurate when integrated over large

timescales. To address this, usually a re-meshing step is computed to remove any de-

generated triangles and smooth the mesh using the same technique which was employed

to develop the initial computational mesh. From the point in time where a re-mesh has

taken place, t = t∗ say, the new computational mesh should be such that Ωc = Ω(t∗).

Given a coordinate system ξ = (ξ, η) in the reference domain Ωc, there exists a

corresponding coordinate system x = (x, y) in the physical domain Ω(t) which is found

as the mapping of the mesh on the reference domain through the functional

I[ξ] =
1

2

∫
Ω(t)

(
(∇ξ)TG−1(∇ξ) + (∇η)TG−1(∇η)

)
dx, (4.87)

where G is a 2× 2 symmetric positive definite monitor matrix which controls the den-

sity of the mesh points allowing areas of high interest to be more accurately resolved

or to address numerical difficulties (for example, areas where there are large solution

gradients). When Dirichlet boundary conditions are specified, the solution ξ(x) which
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minimizes the functional I[ξ] must also solve the corresponding Euler-Lagrange equa-

tion

−∇ · (G−1∇ξ) = 0. (4.88)

For an arbitrary differentiable real-valued function Ψ on Ω(t), it follows that

∇ξΨ = J∇Ψ, ∇Ψ = J−1∇ξΨ, (4.89)

where J is the Jacobian of the mapping x(ξ),

J =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

 , J−1 =
1

|J |

 ∂y
∂η −∂y

∂ξ

−∂x
∂η

∂x
∂ξ

 , and ∇ξ =

 ∂
∂ξ

∂
∂η

 . (4.90)

Coordinate transformation relations found by substituting Ψ = ξ and Ψ = η into (4.89)

can be used to compute the inverse mapping of ξ(x) for the physical coordinate system

x(ξ), namely

∇ξ =
1

|J |

 yη

−xη

 =
Sxη
|J |

and ∇η =
1

|J |

−yξ
xξ

 = −
Sxξ
|J |

, (4.91)

where |J | = xξyη − yξxη = xTξ Sxη and

S =

 0 1

−1 0

 . (4.92)

Furthermore,

(∇ξ)TG−1∇ξ =

(
Sxη
|J |

)T
G−1

(
Sxη
|J |

)
=

1

|J |2
xTη
(
STG−1S

)
xη

=
1

|J |2g
xTηGxη,

(4.93)

where g = det(G) and the last step has been derived by noting that

STG−1S =
1

|G|
GT =

1

|G|
G,
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since G is symmetric. Similarily

(∇η)TG−1(∇η) =
1

|J |2g
xTξ Gxξ. (4.94)

Thus we make the substitution

I[x] =
1

2

∫
Ωc

(
1

|J |2g
xTηGxη +

1

|J |2g
xTξ Gxξ

)
|J | dξ (4.95)

for which it can be shown that the function x(ξ) which minimises I[x] subject to

Dirichlet boundary conditions must also solve the corresponding Euler-Lagrange equa-

tion [149]

(
∂

∂ξ

∂

∂xξ
+

∂

∂ξ

∂

∂yξ
+

∂

∂η

∂

∂xη
+

∂

∂η

∂

∂yη

)(
xTηGxη

2xTξ Sxηg
+

xTξ Gxξ

2xTξ Sxηg

)
= 0. (4.96)

Russell and Huang demonstrate in [65] and [60] (see also [64], [26] and [149]) that (4.96)

can be further simplified to

∂

∂ξ

(
xTηGxη

Jg

)
− ∂

∂η

(
xTξ Gxη

Jg

)
= 0,

− ∂

∂ξ

(
xTηGxξ

Jg

)
+

∂

∂η

(
xTξ Gxξ

Jg

)
= 0.

(4.97)

To facilitate the smooth movement of the evolving mapping an augmented gradient

flow equation of the functional I[x] is used whereby

∂ξ

∂t
=

P

τ
√
g
∇ · (G−1∇ξ), (4.98)

where τ > 0 is a user defined temporal smoothing parameter and P : Ω(t) × I → R+

is a spatial balancing function chosen such that the mesh movement has a spatially

uniform scale [60, 15]. Throughout the following chapters we use P = J2 which has

desirable smoothness characteristics for the underlying numerical system. In general,

τ = 1× 10−3 will be used which is also used for other applications in [13] and [85].

In actuality, independent and dependent variables are interchanged so that the

136



MMPDE (4.98) is given explicitly in x,

∂x

∂t
=−

Pxξ
τ |J |√g

{
∂

∂ξ

(
xTηGxη

|J |g

)
− ∂

∂η

(
xTξ Gxη

|J |g

)}

− Pxη
τ |J |√g

{
− ∂

∂ξ

(
xTηGxξ

|J |g

)
+

∂

∂η

(
xTξ Gxξ

|J |g

)}
.

(4.99)

Further, to make the problem of finding the mapping x(ξ) easier to solve with current

numerical methods and techniques, (4.99) can actually be expanded and re-written in

parabolic form whereby

∂x

∂t
=
P

τ
(Axξξ +Bxξη + Cxηη +Dxξ + Exη) , (4.100)

with

A =
1

J3g3/2

(
−
(
xTηGxη

)
xξx

T
η S + Jxηx

T
ηG+

(
xTηGxξ

)
xηx

T
η S
)
,

B =
1

J3g3/2

((
xTηGxη

)
xξx

T
ξ S − JxξxTηG+

(
xTξ Gxη

)
xξx

T
η S
)

+

1

J3g3/2

(
−
(
xTξ Gxξ

)
xηx

T
η S − JxηxTξ G−

(
xTηGxξ

)
xηx

T
ξ S
)
,

C =
1

J3g3/2

((
xTξ Gxξ

)
xηx

T
ξ S + Jxξx

T
ξ G+

(
xTξ Gxη

)
xξx

T
ξ S
)
,

D =
1

J3g1/2

(
−xTη

∂

∂ξ

(
G

g

)
xη + xTξ

∂

∂η

(
G

g

)
xη

)
,

E =
1

J3g1/2

(
xTη

∂

∂ξ

(
G

g

)
xξ − xTξ

∂

∂η

(
G

g

)
xξ

)
.

(4.101)

Equation (4.100) can be further simplified depending on the selection of the monitor

matrix G. For our purposes only the monitor matrix proposed by Winslow [149] will

be used, namely

G = ω(x, t)I2×2 (4.102)

where ω(x, t) is a positive weight monitor function and I2×2 is the 2×2 identity matrix.
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The coefficients in (4.101) then simplify to

A =
xTη xη

ωJ2
,

B = −
2(xTη xξ)

ωJ2
,

C =
xTξ xξ

ωJ2
,

D =
ωξx

T
η xη − ωηxTη xξ

(ωJ)2
,

E =
−ωξxTη xξ + ωηx

T
ξ xξ

(ωJ)2
.

(4.103)

4.4.1 Finite element discretisation

Similar to before, let Ωc,h =
⋃
K∈Tc,h K denote a polygonal approximation of the domain

Ωc with nodes ξi, i = 1, 2, . . . , N , where N is the number of mesh points and Tc,h the

set of elements which make up the approximation. The corresponding approximation

for the physical domain Ω(t) is given by the mapping Ωh(t) = x(Ωc,h, t) or, equivalently,

xi(t) = x(ξi, t), where x satisfies (4.100) with coefficients (4.103) and the corresponding

triangulation is denoted by Th(t).

An approximate solution of x(ξ, t) is found using the finite element method. In

terms of linear basis functions, function v(ξ) ∈
(
L1(Ωc,h)

)2
can be written as

v(ξ) =

N∑
i=1

viφ̂i(ξ), vi ∈ R2×1, i = 1, 2, · · · , N. (4.104)

The L2 inner product on Ωc,h is denoted

(u,v) =

∫
Ωc,h

(u · v) dξ. (4.105)

To address the non-linearity in (4.100) a semi-implicit backward Euler temporal dis-

cretisation is used where the coefficients (A, B, C, D, E) are evaluated at the time-step
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t = tn giving the linear parabolic semi-discretised form

xn+1 − xn

tn+1 − tn
=
P

τ

(
Anxn+1

ξξ +Bnxn+1
ξη + Cnxn+1

ηη +Dnxn+1
ξ + Enxn+1

η

)
. (4.106)

Equation (4.106) is multiplied by test function v ∈
(
L1

0(Ωc,h)
)2

and integrated over

Ωc,h to obtain the fully discretised weak formulation: find x̂ ∈
(
L1(Ωc,h)

)2
such that

τ

P

(
x̂n+1 − x̂n

tn+1 − tn
, v

)
= −(Anx̂n+1

ξ ,vξ)−
1

2
(Bnx̂n+1

ξ ,vη)−
1

2
(Bnx̂n+1

η ,vξ)

− (Cnx̂n+1
η ,vη) + (Dnx̂n+1

ξ ,v) + (Enx̂η,v),

(4.107)

for all v ∈
(
L1

0(Ωc,h)
)2

. Let X̂(tn) = {X̂i(t
n)}Ni=1 = {xh,i(tn), yh,i(t

n)}Ni=1 be the set of

nodal unkowns for x̂n, in other words

x̂n =
N∑
i=1

X̂i(t
n)φ̂i(ξ), (4.108)

and

xnh =
N∑
i=1

xh,i(t
n)φ̂i(ξ), ynh =

N∑
i=1

yh,i(t
n)φ̂i(ξ). (4.109)

Equation (4.107) can be expressed as

M (
xn+1
h − xnh

)
M
(
yn+1
h − ynh

)
 =

(
tn+1 − tn

)
P

τ

K(X̂(tn))xn+1
h

K(X̂(tn))yn+1
h

 , (4.110)

where

[M ]ij = (φ̂i, φ̂j) (4.111)

and

[K(x)]ij = −(A(x)φ̂iξ, φ̂jξ)−
1

2
(B(x)φ̂iξ, φ̂jη)−

1

2
(B(x)φ̂iη, φ̂jξ)

− (C(x)φ̂iη, φ̂jη) + (D(x)φ̂iξ, φ̂j) + (E(x)φ̂iη, φ̂j).

(4.112)

In this thesis uniform time-steps are used, tn+1−tn = ∆t, for which the fully discretised
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system is Mxn+1
h − ∆tP

τ K(X̂
n
)xn+1

h

Mxn+1
h − ∆tP

τ K(X̂
n
)yn+1

h

 =

Mxnh
Mynh

 , (4.113)

where X̂
n
i = X̂i(t

n) and X̂
n+1
i = X̂i(t

n+1). Let the set of boundary nodes indices be

denoted

R∂Ωc,h = {i ∈ 1, 2, · · · , N : ξi ∈ ∂Ωc,h}. (4.114)

The bulk mesh moves according to Dirichlet boundary conditions where at the bound-

ary nodes of the physical domain ∂Ω(t), it is assumed the mesh position is known.

The complete two-dimensional moving mesh method (MMPDE2D) is thus obtained by

solving (4.113) in conjunction with the Dirichlet boundary condition

X̂
n+1
i = x̂(ξi, t

n+1), (i ∈ R∂Ωc,h). (4.115)

System (4.113) is a 2N × 2N set of linear equations but can be decoupled into two

separate N ×N systems for the x and y components separately whereby

Q(X̂
n
)xn+1

h = Mxnh and Q(X̂
n
)yn+1

h = Mynh, (4.116)

where

Q(X̂
n
) = M − P∆t

τ
K(X̂

n
). (4.117)

To compute solutions to (4.116), an incomplete LU factorization [124],

Q(X̂
n
) ≈ L(X̂

n
)U(X̂

n
), (4.118)

is calculated at each time-step and is used to precondition a BiCGSTAB [56, 140]

iterative solver for both components.

A mesh generated for modelling cell movement is shown in Figure 4.4. Here, the

physical boundary is found using the cell model introduced earlier by Alorithm 3.1,

more specifically by the xi mesh points which are taken directly from the MMPDE1D

method. The reference grid was generated using DistMesh such that the number of
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nodes along the inner boundary matched the number of nodes, 200, being used to

model the cell membrane. Doing this provides a natural extension of the existing

curve mesh being generated from MMPDE1D into the higher dimension mesh without

overlap or need to interpolate from one mesh to the other. The mesh in Figure 4.4 does

not use adaptivity through the monitor matrix term; instead adaptivity is generated

in the initial triangulation and this ensures that the mesh is denser close to the cell

membrane to capture activity going on in that area with a higher resolution. In the

next chapter we look at how a cell may interact with the environment and chemical

background which it perceives. Keeping the mesh density sparse further away from the

cell membrane allows us a more efficient computation for this kind of modelling.

An example of MMPDE2D (4.113) to evolve a mesh which adaptively resolves the

travelling wave profile g(x, t) = 1+2sech2((1.1+x−5t)/0.04) without any re-meshing is

shown in Figure 4.5. In Figures 4.5 (a), (b), (c) the boundary conditions are fixed and

only the interior mesh points are being relocated. This leads to the triangles close to the

boundaries becoming skewed and undesirable. To mitigate this problem, MMPDE1D

introduced in Chapter 2, can be used to relocate the mesh points along the boundary

without changing the curve which the mesh points are sitting on. The MMPDE1D

method is used to derive the mesh points of the ellipse on the interior and makes use of

the same adaptivity function for which the bulk mesh is being adapted to. The mesh

points generated are at each time-step initially calculated along the boundary and then

for the interior with the boundary points found by MMPDE1D feeding then into the

MMPDE2D boundary conditions. This is seen in Figures 4.5 (d), (e), (f), where in

Figure 4.5 (f) there is noticibly less skewing occuring than in 4.5 (c). A comparison

using MMPDE1D when the boundary conditions are simultaneously evolving as well is

shown in Figures 4.5 (g), (h), (i).

The quality of a triangle can be measured using the area-length ratio [51]

q(ρ) =
4√
3

Aρ∑3
k=1 lρ

2
k/3

, (4.119)

where ρ denotes the triangle, with Aρ the corresponding area of the triangle and lρk

the lengths of each of the triangle’s edges. The quality measure qρ will be one when
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the triangle ρ is equilateral and reduces to zero when ρ is degenerate. Thus the mean

and minimum quality of Th(t), the triangulation of Ωh(t), is calculated with

qa(Th(t)) =
1

NE

∑
ρ∈Th(t)

q(ρ) and qm(Th(t)) = min
ρ∈Th(t)

q(ρ), (4.120)

respectively and where NE denotes the number of elements in the triangulation Th(t).

Table 4.5 shows the mean and minimum triangle quality for the meshes shown in

Figure 4.5. Here, it is easy to notice that the average quality for the mesh remains

the same between the two test cases; however, the worst triangles of the mesh are

improved markedly by including adaption along the boundary using MMPDE1D. This

is of course because the most degenerate triangles from the mesh are those close to and

on the boundary itself. By using MMPDE1D we can reduce the skewing that occurs

between the bulk and boundary meshes. This consequently reduces the number of re-

meshing operations required throughout the cell simulations in the next chapter and

improves the accuracy of the underlying numerics by having triangles which are more

isotropic. In cell simulations where the parameterised finite element method was used

to evolve the mesh for the cell membrane, often a re-mesh operation would be required

within no more than 100 time-steps due to the skewing that the PFEM introduced.

With MMPDE1D being used to evolve the cell mesh this is reduced now to a re-mesh

on average every 1000 steps which is significantly faster.
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Figure 4.5: Example of a mesh with interior ellipse boundary evolved using MMPDE2D
and adapting wave-front function g(x, t) = 1 + 2sech2((1.1 +x− 5t)/0.04). Figures (a),
(b) and (c) demonstrate MMPDE2D adaption on the interior with fixed boundary con-
ditions. Figures (d), (e) and (f) show MMPDE2D adaption coupled with MMPDE1D
being used to simultaneously adapt the mesh points along the boundary. In Figures
(g), (h) and (i), the boundary conditions are along evolved so that the ellipse shrinks
according to mean curvature flow. (N = 2260, NE = 4294, hmax = 1.5× 10−2)
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Without MMPDE1D adaption With MMPDE1D adaption

t qa(Th(t)) qm(Th(t)) qa(Th(t)) qm(Th(t))

0.135 4.414e-01 1.742e-02 4.578e-01 2.691e-02

0.225 4.460e-01 3.741e-02 4.603e-01 5.561e-02

0.320 4.115e-01 3.166e-02 4.178e-01 6.323e-02

Table 4.5: A comparison of triangle quality between the two meshes generated in Figure
4.5 (a), (b), (c) and (d), (e), (f) using MMPDE1D with adaption to move the mesh
nodes on the boundary. (N = 2260, NE = 4294, hmax = 1.5× 10−2)

4.5 Picard iteration

When applied to cell migration problems, MMPDE2D (4.106) will only go so far and

eventually the computational and physical mesh will need to be regenerated from points

where the current physical mesh has been integrated too far from the original reference

mesh. In these instances a re-gridding step is needed and can be implemented using

DistMesh again to derive a fresh reference and physical mesh. It is possible to extend

the period over which re-gridding is not necessary by more accurately solving (4.100).

We can use a simple Picard iteration scheme to greatly improve the accuracy of the

mesh at each time-step, whereby

X̂
[n+1,0]

= X̂
n
,Q(X̂

[n+1,m]
) 0

0 Q(X̂
[n+1,m]

)

 X̂ [n+1,m+1]
=

M 0

0 M

 X̂n
,

m = 0, . . . , Nits − 1,

(4.121)

where X̂
[n+1,m]

denotes the mth iteration for X̂
n+1

and X̂
n+1

= X̂
[n+1,Nits]

.

We can see how this iteration scheme improves accuracy in a simple example. The

domain Ω(0) = {x ∈ R2 : ||x||L2 < 1} is triangulated using DistMesh and translated
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such that Ω(t) = {(x, y) ∈ R2 : (x − t)2 + y2 < 1}, 0 ≤ t ≤ T , T = 1. The error is

measured using an the average and maximum displacement from the exact solution for

each of the mesh nodes,

||e(t)||a =
1

N

N∑
i=1

√
(xi(t)− xexact

i (t))2 + (yi(t)− yexact
i (t))2,

||e(t)||m = max
1≤i≤N

√
(xi(t)− xexact

i (t))2 + (yi(t)− yexact
i (t))2.

(4.122)

The error ||e(t)||a gives a measure of the average Euclidean distance between each mesh

point calculated using MMPDE2D with Picard iterations (4.121) and the known exact

position, the ||e(t)||m error is then the measure of the maximum of these distances.

Results, shown in Table 4.6, demonstrate the improved accuracy by using the Picard

iteration scheme with Nits iterations. As the number of iterations increases, the average

and maximum displacement error is reduced and the mesh quality is improved.

Nits ||e(T )||m ||e(T )||a |qa(Th(T ))− qa(Th(0))| |qm(Th(T ))− qm(Th(0))|

1 4.996e-04 2.381e-04 8.252e-05 8.121e-05

2 1.669e-04 7.955e-05 2.756e-05 2.713e-05

4 3.358e-05 1.599e-05 5.528e-06 5.451e-06

8 2.016e-06 9.529e-07 3.161e-07 3.172e-07

16 5.684e-08 1.963e-08 1.022e-08 7.413e-09

Table 4.6: Comparison of Picard iteration for MMPDE2D using a different number of
iterations. The model solution is a translating disc mesh generated with DistMesh and
with other parameters T = 1, N = 1455, NE = 2782, hmax = 5 × 10−2. Here ∆t =
5× 10−2. qa(Th(0)) and qm(Th(0)) denote the quality of the initial DistMesh generated
meshes. It is worth noting that qa(Th(0)) = 3.982×10−1 and qm(Th(0)) = 3.830×10−1.

The final gridding algorithm in the cell problem, MMPDE2D-Picard, is thus as

follows:
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1. Set m = 0, X̂
[n+1,m]

= X̂
n
.

2. Do until convergence criteria is met:

(a) Solve

Q(X̂
[n+1,m]

) 0

0 Q(X̂
[n+1,m]

)

 X̂ [n+1,m+1]
=

M 0

0 M

 X̂n
.

This can be done in a number of ways but for efficiency the systemQ(X̂
[n+1,m]

)

can be decomposed using an incomplete LU decomposition which can then

be used as a pre-conditioner to speed up two separate BiCGSTAB [56, 140]

calculations to obtain solutions for x and y components of the system sepa-

rately.

(b) If qm(T [m+1]
h (tn+1)) > 0.15 then set X̂

n+1
= X̂

[n+1,m+1]
and go to 4, other-

wise set m = m+ 1.

(c) If m = Nits then perform a re-mesh using DistMesh, re-interpolate any

numerical variables which rely on the mesh and go to 4.

3. Go to 2.

4. Finish, return Xn+1 as new grid.

The MMPDE2D-Picard method iterates until the mesh quality is good enough, as de-

fined by qm(T [m+1]
h (tn+1)), where T [m+1]

h (tn+1) is the intermediate mesh for Th(tn+1)

at the m+ 1th iteration. The value of Nits = 10 has been found to work well experi-

mentally within the context of the cell problems given in the next chapter. However,

if a grid of sufficient quality is not found within Nits iterations, then DistMesh is used

to generate a new grid.

The mesh points along the boundary xn+1 ∈ ∂Ωh(tn+1) form a polygon which is

used by the DistMesh function dpoly to generate an implicit signed distance function

which can then be used as the input into distmesh2d to generate the new grid Th(tn+1).

In order to prevent any unintended movement of the boundary nodes by the implicit
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grid generation algorithm, the new grid has its boundary defined explicitly by the

polygon xn+1 ∈ ∂Ωh(tn+1) using the pfix parameter of distmesh2d and ensuring the

DistMesh edge length constraint parameter h0 is consistent near the boundary between

time-steps.

Once DistMesh has been used to generate a mesh, the number of elements and

position of the mesh points will change so any variables which are defined on the

old mesh Th(tn) must be interpolated onto the new mesh. On the interior this is

straightforwardly done by evaluating the function on the newly generated mesh, in other

words for a given quantity u
Ωh(tn)
h (x) which is defined on Ωh(tn), the corresponding

quantity u
Ωh(tn+1)
h (x) on Ω(tn+1) is

u
Ω(tn+1)
h (xn+1) = u

Ω(tn)
h (xn+1), xn+1 ∈ Ωh(tn+1). (4.123)

This will work so long as no newly generated interior mesh points move outside of

Ωh(tn). For nodes on the boundary ∂Ωh(tn+1) which will have been positioned outside

of the old domain Ωh(tn), a linear projection is used to determine new values for

quantities at these points such that

u
Ω(tn+1)
h (xn+1) = u

Ω(tn)
h (x∗), xn+1 ∈ ∂Ωh(tn+1), (4.124)

where

||xn+1 − x∗||L2 ≤ ||xn+1 − χ||L2 , ∀ χ ∈ ∂Ωh(tn). (4.125)

This introduces a small interpolation error which is dependent on the mesh velocity at

the boundary. In the cell migration problem, the membrane velocity is sufficiently slow

that this error is O(∆t) and since the underlying PDEs of the Meinhardt system are

being solved using a Backward-Euler FEM solver, the interpolation error introduced

is minor by comparison to the error in the numerical methods. This being said, there

have been recent developments by Anderson et al. [2] using an intermediate reference

domain and ALE based convection problem formulation to more accurately reduce

interpolation errors for similar re-meshing problems.
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4.6 Conclusions

In conclusion:

• A second-order accurate arbitrary Lagrangian-Eulerian finite element method

which can be used to solve reaction-diffusion problems on growing domains of

different dimensionality (curves in R and surfaces in R2) while simultaneously

coupling the solutions of each together through a flux boundary condition term

is discussed.

• Numerical experiments are presented which show the method converging with

second order accuracy both temporally and spatially. This is a non-trivial re-

alisation as one of the experiments showing second order accuracy is actually

composed of two systems being simultaneously solved on domains with different

dimensionality.

• The moving mesh approach of Cao, Huang and Russell [29] is discussed. This

is a variational approach to mesh generation which has some advantages making

it a natural choice for mesh generation in the cell problem. Their approach is

improved upon for the modelling of cell migration and chemotaxis by generalising

the method using an iterative scheme. A method is created which uses a Picard-

style iterative scheme for the preposed movement of the mesh in the cell problem.

We now look to use these new methods and the methods of the other chapters to

develope the cell migration and chemotaxis model.
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Chapter 5

A two-dimensional model for cell

migration and chemotaxis

Finally, we get to the crux of the matter. It is time now to bring all of the methods

built in the previous chapters together to do what we have wanted to achieve from

the beginning: to develop a better model of cell migration and chemotaxis. In this

chapter we will seek to do just that. We will make use of both the one-dimensional and

two-dimensional ALEFEM solvers to find the concentrations of chemical species both

in the cells’ membrane and in the cells’ immediate environment.

We will do this by extending the model of receptor occupancy given in Chapter 3

into two dimensional whereby using methods for coupling systems of reactions-diffusion

equations introduced in Chapter 4 to properly resolve the free-ligand field (3.4) to obtain

a more accurate model.

We will then use both MMPDE methods to drive the underlying mesh movement

forward, making use of the tangential control MMPDE1D gives us to smooth out the

motion of the cell membrane and allow the MMPDE2D method to accurately generate

the corresponding mesh for the exterior of the cell without skewing or introducing

unwanted mesh degeneration.

To begin with, we derive physiologically correct parameters that we may use in the

higher dimensional model.
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5.1 Developing a cell migration model in higher dimensions

In the earlier chapter, certain assumptions are made about how the cell interacts with

the surrounding environment, as well as what the cell’s receptors perceive the free-ligand

concentration in the environment to be. The movement of the cell itself through the

environment has previously been presumed to have no effect on the ligand concentration

and this of course is not strictly true as the cell itself can perturb the environment and

affect the concentration of surrounding chemoattractant. We will thus look to use the

ALEFEM method discussed in the previous chapter (4.29) to compute the solution

to (3.4). In doing so we will improve the model we currently have by improving the

accuracy of binding and unbinding process which takes place between the free-ligand

and cells’ receptors.

We begin by doing a non-dimensionalisation of the parameters from the original cell

migration model (given by Algorithm 3.1) so that we may now find the correct values to

use for the diffusivity of free and membrane-bound ligand in a two dimensional model.

To more faithfully describe the cell-environment interaction and the receptor-free-

ligand binding-unbinding process we revisit (3.2), (3.4) and (3.3), where the membrane

receptor occupancy is modelled by the binding-unbinding cytosol-membrane coupled

problem

∂L

∂t

∣∣∣
x

+∇Ω(t) · (Lu) = D∆Ω(t)L,

−DL
∂L

∂n

∣∣∣
Γ(t)
− [(u · n)]L

∣∣∣
Γ(t)

= k1(Nr − Lm)L
∣∣∣
Γ(t)
− k−1Lm,

∂Lm
∂t

∣∣∣
x

+∇Γ(t) · (Lmus) = Ds∆Γ(t)Lm + k1(Nr − Lm)L
∣∣∣
Γ(t)
− k−1Lm,

(5.1)

where L is the concentration of free-ligand in the environment exterior to the cell and

Lm is the concentration of receptor-ligand complex that exists on the membrane Γ(t).

The diffusivity coefficient of the free-ligand is DL, u is the material velocity of the free-

ligand in the bulk, us and Ds are the material velocity and diffusivity of the bound

ligand-receptors on the membrane, respectively. In the one dimensional model, we

made the assumption that there was no lateral diffusion of bound receptor along the
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membrane but empirical evidence suggests that, while this value may be small, it is

non-zero (see [40], for example). The binding and unbinding rates of the free-ligand to

and from the receptors on the membrane are k1 and k−1, respectively. We will assume

no lateral movement of the receptors using a material velocity of us = 0. Simulations

here will be conducted without any flow in the bulk and so the material velocity for

the free-ligand is u
∣∣∣
Ω(t)\Γ(t)

= 0. On the cell membrane, however, the material velocity

should match the velocity of the interface so that u
∣∣∣
Γ(t)

= ẋ
∣∣∣
Γ(t)

.

As is done in [86], the coupled bulk-surface system problem (5.1) is non-dimensionalised

for computational reasons. Let

x̄ =
x

L∗
, L̄ =

L

l∗
, t̄ =

t

t∗
, D̄ =

D

L2
∗/t∗

(5.2)

define the non-dimensional variables where L∗ is a characteristic length scale, l∗ is a

characteristic ligand concentration, and t∗ a characteristic time scale. Since u
∣∣∣
Ω(t)\Γ(t)

=

0 in the simulations which follow, problem (5.1) can be rescaled to fit the non-dimensional

variables (5.2)
∂L̄

∂t̄
= D̄∇̄L̄, (5.3)

where ∇̄ denotes the Laplace operator with respect to the non-dimensional spatial

variables.

Similarly, let

L̄m =
Lm

(Lm)∗
, ū =

u

L∗/t∗
, D̄s =

Ds

L2
∗/t∗

,

R̄tot =
Rtot

(Lm)∗
, k̄1 =

k1

1/(t∗l∗)
, k̄−1 =

k−1

1/t∗
,

(5.4)

be the non-dimensional variables which exist on the membrane Γ(t). Here (Lm)∗ is a

characteristic concentration of the ligand-receptor complex. It follows that the concen-

tration of reaction-bound ligand in (5.1) is specified in non-dimensional form as

∂l̄s
∂t̄

+ ∇̄Γ̄(t) · (ūl̄s) + k̄1(R̄tot − l̄s)l̄
∣∣∣
x̄∈Γ̄(t)

− k̄−1 l̄s. (5.5)
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Finally, if (ls)∗ = l∗L∗, the normal flux condition can be written as

−D̄ ∂l̄

∂n

∣∣∣
Γ̄(t)
− [(ū · n)]l̄

∣∣∣
Γ̄(t)

= k̄1(R̄tot − l̄s)l̄
∣∣∣
x̄∈Γ̄(t)

− k̄−1 l̄s. (5.6)

The non-dimensional equations are therefore similar in form to the original dimensional

equations (5.1) provided (Lm)∗ = l∗L∗.

As the radius of the cell in the simulations is initially r0 = 0.1 and since a typical

Dictyostelium cell is of the order 10µm in diameter [131], it follows that the approximate

characteristic length scale is L∗ = 50µm.

The reference time scale t∗ is chosen such that the cell speed obtained from the

numerical simulations is 10µmmin−1 which is approximately the speed of a migrating

Dictyostelium cell. In the numerical experiments a reference time scale of t∗ = 1/80s

is used.

The diffusivity of cyclic-AMP, which will be our basis for the free-ligand source, is

measured to be around D̄ = 444µm2/s [40] (see also [66], [120], [125] and [126]) and so

it follows that with the characteristic length and time scales as chosen,

D̄ =
D

L2
∗/t∗

= 14.208. (5.7)

Similarly, using the physical estimate of the receptor-ligand complex D̄s = 0.1µm2/s

[139], the corresponding non-dimensional coefficient is

D̄s =
Ds

L2
∗/t∗

= 3.2× 10−4. (5.8)

The reference ligand concentration is taken to be l∗ = 1nM . For the non-dimensional

and the dimensional flux conditions to be equivalent we therefore set (Lm)∗ = l∗L∗ =

50nMµm.

As the surface area of a sphere of radius r is A(r) = 4πr2, then with r = 5µm we

have A = 100πµm2. An estimate of the total number of receptors per cell is around
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7× 104 [71] and hence the number concentration of receptors is

Rtot =
7× 104

100π
≈ 223µm−2. (5.9)

An estimate of the non-dimensional value for the total receptor concentration is there-

fore

R̄tot =
Rtot

(ls)∗
= 7.433. (5.10)

The far-field boundary of Ω(t) is moved such that it remains a disc of radius R with

its origin in the centre of the moving cell,

Ω(t) = {x ∈ R2 : 0 ≤ dΓ(t)(x), ||x− x̄|| ≤ R}, (5.11)

where x̄ is the centre of the cell, R is the radius of the far-field boundary and dΓ(t)(x)

is the signed distance function from the cell membrane Γ(t) such that dΓ(t)(x) > 0 for

x exterior to the cell. Because of the relatively low rate of diffusion of the free-ligand

molecules and the slow kinetics of the cell, a value of R = 3r0 = 0.3 was selected so

that the computational window is approximately three cell-lengths in diameter. This

prevents unnecessary calculation of the free-ligand concentration L(x) in areas far away

from the cell where there would be little or no perceived benefit in doing so. Further,

by using a smaller computational window, the solutions of the free-ligand and kinetic

processes happening close to the cell are calculated in less time.

The boundary conditions on the far-field boundary are such that the free-ligand is

assumed to be in its original unperturbed state, as such

L
∣∣
||x−x̄||=R = Lg(x). (5.12)

The free-ligand gradient functions from the earlier chapter are reused for a fair com-

parison whereby, in the case of zero gradient ρ = 0,

Lg(x) = 5.2941, (5.13)
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and

Lg((x, y)) = 8.7146y + 6.1656, (5.14)

for the linear gradient ρ = 0.2. The initial condition is taken also to be L(x)
∣∣∣
t=0

=

Lg(x).

5.2 The cell migration algorithm

The complete algorithm which makes use of methods introduced in Chapter 4 to obtain

a more precise model of cell migration is thus as follows:

1. Set initial parameters.

2. Do until end of simulation:

(a) Use ALEFEM2D with non-zero flux conditions to calculate bulk-surface re-

action terms for free-ligand and receptor-bound ligand concentrations.

(b) Calculate receptor occupancy from free-ligand concentration.

(c) Solve Meinhardt system for local activator, global and local inhibitor.

(d) Calculate membrane (normal) velocity.

(e) Use MMPDE1D to move membrane interface.

(f) Use MMPDE2D-Picard to move bulk (exterior) mesh. Adjust the far-field

boundary condition as appropriate to ensure cell is in the centre of the

moving mesh.

(g) Save and render result as needed.

3. Repeat until completion.

In the simulations which follow, grids are generated initially using DistMesh with

N = 5889 mesh points and NE = 11432 mesh elements and the simulations evolve

with a time-step of ∆t = 0.1. The intermediate movement of the mesh is done using

MMPDE1D on the boundary and MMPDE2D-Picard in the bulk. In both instances

the temporal smoothing parameter of τ = 10−3 is used to smooth out the tangential
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velocities of the membrane mesh points and thus reduce skewing and grid deformation

close to the boundary. This reduces the number of re-mesh operations done throughout

each simulation using DistMesh down to an average of approximately 1 per 1000 time-

steps. At the initial DistMesh grid generation and re-meshing steps a density function

is used such that, in the grid generated, the number of mesh points increase closer to

the cell membrane, the area of interest. Specifically the number of mesh points go from

146 on the far field boundary to 200 along Γ(t). This adaptivity from the reference

meshes is maintained by the MMPDEs in the intermediate steps using a monitor matrix

of M = I2×2 where I is the identity matrix. All of the simulations to follow are run to

T = 50, 000 (625 sec).

5.3 Numerical experiments

5.3.1 Cell migration in zero gradient background

A series of snapshots at various times of the cell migration model are shown in Figure 5.1

with the zero gradient free-ligand field (5.13). There is no cell-cell interactions taking

place and each of the cells represent a separate single cell simulation with different

initial perturbation from the homogeneous steady state. These cells can be seen to

migrate randomly in a similar fashion to the original model in Figure 3.2 however with

a slightly reduced speed.

In Figures 5.2 and 5.3, the exterior free-ligand field for two cells are shown. Here

we can see that the field is not constant close to the cell and that the cell itself is

actually influencing the concentration of free-ligand close to the membrane. This type

of non-linear behaviour is more in line with real cells but is not captured in the original

one-dimensional model. In Figure 5.6 the free-ligand field is shown in differently with

the values for L which lie along the x = 0 axis being plotted separately. This helps

to show the local depletion and local focusing of the concentration close to the cell

membrane which is brought about by the cell and may be useful to biologists looking

to conduct research into the phenomenon.

Despite this subtle but definite change in the free-ligand field, Figure 5.4 shows
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that solutions to the Meinhardt system are roughly the same as in the original model.

The concentration of receptor-bound ligand fluctuates slightly as shown in Figure 5.5,

unlike in the original model which was constant everywhere. Notice that the formation

of pseudopodia happens in much the same way that it did previously and that the

change to the receptor concentration has not impeded the cells ability to migrate or

changed the morphology of the cells. The free-ligand field close to the cell is perturbed

by the cell’s movements; this has the knock on effect of making the field non-linear in

nature. Here there can be seen a small depletion of free-ligand in the direction which

the cell is migrating and a slight increase close to the trailing edge.

This self-generated perturbation in the free-ligand background caused by the cells

own movement through the environment is generally known as the “wind-shield” effect

and is also seen in real cells and can affect the the ability of highly motile cells to

chemotax efficiently in shallow gradients unless some addition mechanisms are employed

by the cell such as surface ligand degradation or receptor internalisation [50].

To compare the original and newer model, the mean square displacement, a measure

of directionality and persistence can be used where

MSD(t) =
1

Nc

Nc∑
n=1

||x̄n(t)− x̄n(0)||2, (5.15)

and where Nc is the number of cells in the simulation and x̄n(t) is the cell centre at

time t. Plots of the trajectories for Nc = 56 cell simulations are shown in Figure 5.7.

At the end of the simulation, T = 5 × 104, the cells from the original model move an

average distance of 1.085 from the origin whereas the cells from the newer model move

an average distance of 0.746 so in general we see that the cells in the newer model are

not going as far as the original model. This is also seen in the corresponding mean

square displacements shown in Figure 5.8 where the mean square displacement can be

seen to be less persistent for the newer model with the zero gradient. As this is a

shallow (zero) gradient and there has been no surface ligand degradation or receptor

internalisation modelled then this is not unlike the behaviour described in [50].

156



-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(a) t = 0

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(b) t = 6000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(c) t = 12000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(d) t = 18000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(e) t = 24000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(f) t = 30000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(g) t = 38000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(h) t = 44000

-1 0 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(i) t = 50000

Figure 5.1: Snapshots of evolving cells and corresponding trajectory plots at various
times. Initial ligand field is homogeneous.
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(a) t = 4200 (b) t = 4350 (c) t = 4500

(d) t = 4650 (e) t = 4800 (f) t = 4950

(g) t = 5100 (h) t = 5250 (i) t = 5400

Figure 5.2: An example of a cell migrating in a zero gradient of free-ligand at various
times. The protrusions coincide with regions of high activator as shown in Figure 5.4.
The colour corresponds to the level of the free ligand concentration in the cell’s exterior
L(x, t).
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(a) t = 0 (b) t = 2000 (c) t = 4000

(d) t = 6000 (e) t = 8000 (f) t = 10000

(g) t = 12000 (h) t = 14000 (i) t = 16000

Figure 5.3: Example cell evolving with ρ = 0. The black line indicates the data used
for the plot in Figure 5.6.

159



0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(a) t = 4200

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(b) t = 4350

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(c) t = 4500

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(d) t = 4650

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(e) t = 4800

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(f) t = 4950

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(g) t = 5100

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(h) t = 5250

0 0.5 1
Scaled arc-length

0

10

20

30

40

C
on

ce
nt

ra
tio

n

(i) t = 5400

Figure 5.4: The corresponding solutions to the Meinhardt system for the cell simulation
shown in Figure 5.2. Here the activator a is in red, the global inhibitor b green and the
local inhibitor c blue.
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Figure 5.5: The corresponding fractional receptor occupancy and free-ligand concen-
tration for the cell simulation shown in Figure 5.2. Here the free-ligand concentration
in the bulk at the immediate boundary of the membrane is coloured in red, with the
corresponding fractional receptor occupancy at the same point along the membrane
given in blue.

161



-0.2 -0.1 0 0.1 0.2
y

5.25

5.3

5.35

L m

t=0
t=2000
t=4000
t=6000
t=8000
t=10000
t=12000
t=14000
t=16000

Figure 5.6: A slice through of L along the vertical line passing through the cell centre
for the cell in Figure 5.3 which shows the slight wind-shield effect induced by the
propagation of the cell through the environment.

(a) Trajectory plot of the centroids of cells
generated using the one-dimensional model
with ρ = 0.

(b) Trajectory plot of the centroids of cells
generated using the two-dimensional model
with ρ = 0.

Figure 5.7: Trajectory plots for Nc = 56 cell simulations with the zero gradient free-
ligand field with both the original one-dimensional cell model of Chapter 3 in (a) and
the new two-dimensional cell model in (b).
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(a) Mean square displacement plot for one-
dimensional cell model with ρ = 0.
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(b) Mean square displacement plot for two-
dimensional model with ρ = 0.

Figure 5.8: A comparison of the mean square displacement for Nc = 56 cell simu-
lations using the original one-dimensional cell model of Chapter 3 in (a) and newer
two-dimensional cell model in (b).
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5.3.2 Cell migration in linear background

We now examine what happens when the free-ligand concentration follows a linear gra-

dient (5.14). Figure 5.9 shows an example of six cells migrating in the ρ = 0.2 gradient

(5.14). As with the earlier model, cells modelled using the newer model chemotax quite

well up the free-ligand gradient which has its highest concentration along the +y axis.

The morphology and general behaviour of the cells appears similar to the earlier model

and we can see by Figure 5.12 that the solutions of the Meinhardt equations exhibit

the same type of peak-splitting behaviour and same order of magnitude which drove

pseudopod formation and ultimately the movement of the cell as in the original model.

In Figure 5.13 we can also see that the receptor occupancy is smoothed out slightly

now due to the modelling of the diffusive processes taking place on and near to the

receptors however it is also much more varied than the original model owing to the fact

that the cell membrane geometry and position now affects the solution.

Figures 5.10 and 5.11 show the free-ligand field L on the exterior of the cell. In the

original model L was a linear gradient in y, here, however, there is subtle but noticeable

differences in L close to the membrane where the cell is perturbing the ligand around it

both by the movement of the cell and by the binding/unbinding reactions taking place

along the membrane. In Figure 5.14, the ligand L can be seen along the y axis, where

we notice that the ligand tappers off smoothly from the trailing edge of the cell but

is concentrated along the protruding edge by the effect of the cell pulling the ligand

from the environment and onto unbound receptors. A similar phenomenon is analysed

in the modelling of zebrafish [132], where the Doppler effect is used as an analogy to

describe the relative changes of the wavelength of the ligand in the immediate vicinity

of the cell. This same form of compression and retraction of the ligand field close to the

cell is witnessed in Figure 5.14. This net effect creates a larger difference in receptor

occupancy between the protruding edge and the trailing edge and thus steepings the

perceived cell gradient.

Despite this however, cell simulations done using the newer model show these cells
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to go slower and chemotax less. Plots of the trajectories for Nc = 56 cell simulations

are shown in Figure 5.15 for both the original and newer model. The mean direction

of the cells using the new model with a linear gradient of free-ligand (5.14) can be

calculated using the Matlab Toolbox CircStat [17]. In the case of the original one

dimensional model, the mean angle of the cells in Figure 5.15 (a) is 89.543◦ with an

angular variance of 1.803◦ whereas the two-dimensional model the mean angle of the

cells in 5.15 (b) at t = 50000 is 87.854◦ with an angular variance of 17.996◦. Looking

closely at Figure 5.15 we can actually see that the one-dimensional cell cases are more

spread out compared to the two-dimensional cases but all of the cells for this case are

generally heading in the correct direction towards the higher concentration of gradient.

In the two-dimensional case, many of the cells start migrating in the correct direction

towards the higher concentration and persist along that path with narrower focus than

the one-dimensional equivalent. However, it can also be seen that there is a higher

chance of cells choosing to migrate in other directions or that take longer to get started

heading in the expected direction.

Figure 5.8 shows the mean square displacements for each case. The persistence of

the cells which set off in the expected +y direction towards the higher concentration

of background do so with slightly greater persistence in the two-dimensional model

than in the original model however the cells in this model which go in an unexpected

direction do so with a great deal of reluctance and bring the mean square displacement

of the overall simulation in the newer model to a level slightly below the original model.

This demonstrates that the larger variations and less defined peaks in the receptor

occupancy are actually having a detrimental effect on the cells’ ability to resolve the

gradient here. This newer model however does not take account of the other biological

interactions which are taking place on the membrane such as receptor internalization

and relocation and it is possible a lot of features such as persistence and chemotaxis

would be improved upon by incorporating these processes. For instance, work has taken

place to extend this model to account for enzyme degradation of extracellular ligand

fields in [86] which suggest improvements to account for enzyme degradation improve

the ability of the cell to sense the surrounding gradient and thus improve the cells’
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Figure 5.9: Snapshots of evolving cells and corresponding trajectory plots at various
times. (ρ = 0.2).

chemotactic efficiency.
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(a) t = 4200 (b) t = 4350 (c) t = 4500

(d) t = 4650 (e) t = 4800 (f) t = 4950

(g) t = 5100 (h) t = 5250 (i) t = 5400

Figure 5.10: An example of a cell migrating in a linear background at various time-
steps. The protrusions coincide with regions of high activator as shown in Figure 5.12.
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(a) t = 0 (b) t = 2000 (c) t = 4000

(d) t = 6000 (e) t = 8000 (f) t = 10000

(g) t = 12000 (h) t = 14000 (i) t = 16000

Figure 5.11: Example cell evolving with ρ = 0.2. The black line indicates the data used
for the plot in Figure 5.14.
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Figure 5.12: The corresponding solutions to the Meinhardt system for the cell simula-
tion shown in Figure 5.10. Here the activator a is in red, the global inhibitor b green
and the local inhibitor c blue.
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(b) t = 2000
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(c) t = 4000
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(d) t = 6000

0 0.5 1
Scaled arc-length

0

0.2

0.4

0.6

0.8

1

R
o

5

6

7

8

9

10

L|
(t

)

(e) t = 8000
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(f) t = 10000
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(g) t = 12000
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(h) t = 14000

0 0.5 1
Scaled arc-length

0

0.2

0.4

0.6

0.8

1

R
o

5

6

7

8

9

10

L|
(t

)

(i) t = 16000

Figure 5.13: The corresponding fractional receptor occupancy and free-ligand concen-
tration for the cell simulation shown in Figure 5.10. The free-ligand concentration in
the bulk at the immediate boundary of the membrane is coloured in red, with the cor-
responding fractional receptor occupancy at the same point along the membrane given
in blue.
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Figure 5.14: A slice through of L along the vertical line through the cell centre in Figure
5.11 which shows a more noticeable wind-shield effect induced by the propagation of
the cell through the environment.
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(a) Trajectory plot of the centroids of cells
generated using the one-dimensional model
with ρ = 0.2.

(b) Trajectory plot of the centroids of cells
generated using the two-dimensional model
with ρ = 0.2.
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(c) Upper half of polar histograms for the
trajectories of the one-dimensional cells with
ρ = 0.2.
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(d) Upper half of polar histograms for the
trajectories of the two-dimensional cells with
ρ = 0.2.

Figure 5.15: A comparison of trajectory plots for the ρ = 0 and ρ = 0.2 cases using the
one-dimensional cell model of Chapter 3 in (a) and (c) and two-dimensional cell model
in (b) and (d). The upper half of polar histograms for the ρ = 0.2 cases are shown in
(e) and (f).
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(a) Mean square displacement plot for one-
dimensional cell model with ρ = 0.2.
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(b) Mean square displacement plot for two-
dimensional model with ρ = 0.2.

Figure 5.16: A comparison of the mean square displacement for the ρ = 0 and ρ =
0.2 cases using the one-dimensional cell model of Chapter 3 in (a) and (c) and two-
dimensional cell model in (b) and (d).
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5.4 Conclusions

In conclusion:

• This chapter introduces a new model for cell migration and chemotaxis build on

an established model into two dimensions by utilising all of the methods developed

and discussed in all other Chapters.

• This new two dimensional model resolves the free-ligand field on the exterior of the

cell in order to more faithfully determine the solution to the receptor occupancy

along the membrane. It does this by coupling the solutions of the two-dimensional

convective-diffusion equation for the free-ligand chemical to the one-dimensional

model of receptor occupancy by means of the flux coupling boundary condition

in the ALEFEM2D method introduced in the chapter previous.

• The original one dimensional model is then calculated in the manner described

in Algorithm 3.1 using ALEFEM1D but with the signal term of the Meinhardt

system now being composed of the newly derived more accurately calculated

receptor occupancy.

• The membrane derived from Algorithm 3.1 is then used to generate an exterior

mesh using the MMPDE2D method for mesh generation described in the previous

chapter.

• This model takes into account one of the chemical processes occurring in the

cell’s exterior which is the evolution of the free-ligand which is in a very funda-

mental way the cell’s source of food and thus of crucial importance in modelling

chemotaxis accurately. The perturbation which the cell does itself to its own

environment in a homogeneous background gradient may also be important for

cell migration in general though further work must be done to investigate this.

• Numerical results demonstrate a small loss of chemotaxic ability in the new model

but this is not unexpected. Biologically there are many mechanisms taken place
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involving the cells’ receptors and these were not accurately investigated before

because these methods were not in place but now they are being investigated

by researchers at University of Strathclyde and the Beatson Institute and results

are already showing that certain biological mechanisms may actually be key to

helping the cell chemotax in weak environments such as enzyme degradation [86].

• The model presented in this chapter does give a more truthful representation

of what a model of cell migration should be. It is consequently already being

used in publications and collaborative work to develop new insights into cell

migration and chemotaxis by researchers at University of Strathclyde and the

Beatson Institute [86].

• The new model is more true to life as it takes account of the cell movement

through the environment. The cells travel at slower speeds and are not as easily

directed as the original model. It is thought that persistence and speed could be

improved by considering some potential biological mechanisms which take place

at the membrane to help cell environment sensing and work is already underway

to look into some of these mechanisms [86].
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Chapter 6

Conclusions and further work

6.1 Conclusions

The computational modelling of the underlying processes which drive cell motility is

a rapidly growing area of research, gaining much mainstream popularity as computa-

tional power becomes less expensive and the numerical methods which can be used

to investigate cell models become increasingly developed. The methods presented in

this thesis are intended to be made use of by modellers and future researchers to as-

sist in developing new understandings of the systems and processes underpinning cell

migration and chemotaxis.

This thesis has attempted to introduce new methods and existing methods for the

context of cell migration and chemotaxis modelling and has done this in the following

ways:

• In Chapter 2, an ALEFEM1D method was discussed for the solution to reaction-

diffusion equations on an evolving curve domains in such a way that the correct

concentrations could be extracted without the need to re-mesh or use interpola-

tion. The method was shown to be numerically second order accurate in both

time and space for a sample of numerical test experiments. Further, the method

was shown to be conservative for at least one test problem and while an analytical

proof of the conservation property in general is not presented in this thesis, it has

been since proven and is presented in up coming publications which relate to the
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content of this thesis.

• In the same chapter, the MMPDE1D method was introduced for the first time.

This method is a novel approach to mesh relocation for evolving domains which

provides control over the mesh node velocities in such a way as to bring r-adaption

into the evolving curve mesh generation process; thus potentially improving accu-

racy of the overlaying numerical methods without the need for a denser uniform

mesh. Numerical experiments were also conducted to show that the method was

second order accurate as well as various demonstrations of the adaptive property

that were presented to compare the new method with some examples used by

other methods.

• In Chapter 3, a reaction-diffusion model which builds on a biological model from

Hans Meinhardt [94] was discussed. Using the numerical methods introduced in

Chapter 2, this chapter built on the work carried out by Neilson et al. [105], who

had adapted Meinhardt’s model for the cell migration and chemotaxis problem.

In this chapter simulations reiterate their results using the new MMPDE1D ap-

proach for the moving of the mesh points and show that the new moving mesh

method was comparable with the one used by Neilson et al. The figures also

showed that the model represents well certain characteristics of real cells.

• Further to this, in the same chapter there were also experiments using the newly

created MMPDE1D method with a mesh adaption function. The improvements

were slight but did show that the simulations could potentially be made more

accurate or their computation potentially made more efficient by using the new

method. The main purpose of developing MMPDE1D for use in the cell problem

however was to introduce a degree of control over the mesh velocities which was

not there previous so that modelling in higher dimensions could be investigated.

• In Chapter 4, we begun to examine methods needed for taking the model into

higher dimensions. Here, the arbitrary Eulerian-Lagrangian approach for finding

the solutions of reaction-diffusion equations on evolving curves was examined in

two dimensions under the view of solving PDEs on planar surfaces. In addition
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to this, a semi-implicit Galerkin finite element method for coupling systems on

the external, boundary and interior through flux terms was also introduced which

facilitates the coupling of models operating on different domains.

• Numerical experiments were conducted on moving domains using the ALEFEM

method to compute solutions and compare with derived analytical solutions.

These solutions demonstrate that the ALEFEM scheme was second order accurate

in time and space for the given problems. This was a non-trivial realisation as the

method is coupling the solutions different reactions together, not only that, the

different reactions were taken place on different dimensions with the bulk species

existing in two spatial dimensions and the surface-bound species existing in only

one.

• The movement of the underlying two-dimensional mesh was also investigated in

this chapter and a method developed by Cao, et al [29] was examined and found to

have key elements thought to be highly desirable for complementing the existing

methods developed for the cell problem. For instance, the variation form of the

moving mesh PDE, on which their method was based, permits mesh adaption

through a monitor function. This could be simultaneously used with MMPDE1D

to give a smooth and natural progression from curve based mesh adaption to

bulk based mesh adaption. This property may even prove vital in future as more

complex biological systems are uncovered and demand grows for such processes

to be modelled using the methods presented here. In such instances where a

particular protein is prolific at the leading edge of the cell but virtually non

existent at the trailing edge then adaption could be utilised to ensure that the

desired accuracy is achieved without unwanted extra computation.

• In Chapter 5, the methods in all of the previous Chapters were utilised to develop

an improved model of cell migration and chemotaxis in two-dimensional space.

There, the ALEFEM2D method of Chapter 4 was used to create an enhanced

model of receptor occupancy using the simulated value for the free-ligand field on

the exterior of the cell. This field was contained within a small mesh which was
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moved using the MMPDE2D method which was also introduced in Chapter 4.

The membrane itself continued to move according to Algorithm 3.1, which was

the one-dimensional model outlined in Chapter 3 but, in the two-dimensional

model, the signal term % was composed of the more accurately derived receptor

occupancy term.

Numerical results were presented which showed the new two-dimensional model

and compared it to the original model. The results showed that the chemotactic

efficiency of the cell had decreased however it was noticed that true cells do not

rely solely on this binding/unbinding model for the receptor occupancy and so, in

a separate paper published by Mackenzie et al. [86], the two-dimensional model

given in Chapter 5 is actually further developed and the cell process of enzyme

degradation is investigated using the methods outlined in this thesis. The work

done in [86] suggests that if the degradation rate is fast enough and the rate of

extracellular diffusion is slow enough, then the moving cell displays significant

directional persistence in a homogeneous ligand field and improved chemotaxis

in shallow saturating fields. The predictions of this model are currently being

investigated using experimental data.

6.2 Further work

Much work remains to be done on the modelling of cell migration and chemotaxis. The

computational methods presented here open up new ways in which to test hypotheses.

However, there is room for further research and development into these methods and

the model presented here. For instance:

• The stability and convergence properties of the MMPDE1D method, which makes

use of Picard iteration to solve the non-linear equations, have not been fully

uncovered.

• Further to this, only isotropic curve shortening flow was investigated using the

MMPDE1D method. There remains other problems to which this method could
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be applied to, such as Willmore flow [123, 148] and anisotropic mean curvature

flow [134].

• The MMPDE1D method could also potentially be extended to the evolution of

surfaces in three dimensions based on a FEM discretisation of an approximate

system of normal and tangential velocity equations. This could provide a more

realistic representation of the cell.

• In Chapter 4, an iterative method for coupled bulk-surface problems is introduced

but an analysis of the stability and convergence characteristics of this method

remains to be carried out.

• The new computational framework for the new model could of course always

be used to model intracellular signalling pathways and the possible interaction

with the cell nucleus. The numerical techniques could also be used with more

sophisticated models of cell mechanics and the mechanical interaction of the cell

on substrates. To do this appropriate model equations will have to be solved to

supply the intracellular material velocity; such models could be viscoelastic or

poroelastic type [97].

• The numerical techniques could also be extended to model cell-cell and cell-

obstacle interactions which would be difficult to do accurately without the two-

dimensional framework. Finally, since there many different time-scales involved

in cell migration, an adaptive time-stepping approach could be developed to po-

tentially take advantage of the relatively slow kinetics of the Meinhardt model to

gain more efficient simulations.

• Finally, cells in nature have three spatial dimensions and therefore a natural

progression to the framework given here would be to develop the methods into

for three-dimensional space. In order to do this, it is expected that a surface-based

FEM implementation of MMPDE1D would be required first but the ALEFEM2D

and MMPDE2D methods are in no way limited to two-dimensional space and

could readily be adapted for modelling in higher dimensions.
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grangianEulerian Methods. John Wiley & Sons, Ltd, 2004.

[39] Q. Du, C. Liu, and X. Wang. Simulating the deformation of vesicle membranes

under elastic bending energy in three dimensions. Journal of Computational

Physics, 212(2):757–777, 2006.

[40] M. Dworkin and K. H. Keller. Solubility and diffusion coeffcient of adenosine

3’:5’-monophosphate. Journal of Biological Chemistry, 252:864–865, 1977.

[41] G. Dziuk and C. M. Elliott. Finite element methods for surface PDEs. Acta

Numerica, 22:289–396, 2013.

[42] E. Evans E and A. Yeung. Apparent viscosity and cortical tension of blood granu-

locytes determined by micropipet aspiration. Biophysical Journal, 56(1):151–160,

1989.

[43] E. Evans E and A. Yeung. Cortical shell-liquid core model for passive flow of

liquid-like spherical cells into micropipets. Biophysical Journal, 56(1):139–149,

1989.

[44] C. Eilks and C. M. Elliott. Numerical simulation of dealloying by surface disso-

lution via the evolving surface finite element method. Journal of Computational

Physics, 227(23):9727–9741, 2008.

[45] M. Eisenbach and L. C. Giojalas. Sperm guidance in mammals - an unpaved road

to the egg. Nature Reviews Molecular Cell Biology, 7:276–285, 2006.

[46] C. M. Elliott and T. Ranner. Finite element analysis for a coupled bulk-surface

partial differential equation. IMA Journal of Numerical Analysis, 33(2):377–402,

2013.

185



[47] C. M. Elliott, B. Stinner, V. Styles, and R. Welford. Numerical computation of

advection and diffusion on evolving diffuse interfaces. IMA Journal of Numerical

Analysis, 31(3):786–812, 2011.

[48] C. M. Elliott, B. Stinner, and C. Venkataraman. Modelling cell motility and

chemotaxis with evolving surface finite elements. Journal of The Royal Society

Interface, 9(76):3027–3044, 2012.

[49] C. M. Elliott and V. Styles. An ALE ESFEM for solving PDEs on evolving

surfaces. Milan Journal of Mathematics, 80(2):469–501, 2012.

[50] R. G. Endres and N. S. Wingreen. Accuracy of direct gradient sensing by single

cells. Proceedings of the National Academy of Sciences of the United States of

America, 105(41):15749–15754, 2008.

[51] D. Engwirda. Locally-orthogonal staggered unstructured grid-generation for gen-

eral circulation modelling on the sphere. Atmospheric and Oceanic Physics,

arXiv:1611.08996, 2017.

[52] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set

method for improved interface capturing. Journal of Computational Physics,

183(1):83–116, 2002.

[53] R. FitzHugh. Mathematical models of threshold phenomena in the nerve mem-

brane. The Bulletin of Mathematical Biophysics, 17:257–278, 1955.

[54] J. Frank, W. Hundsdorfer, and J. G. Verwer. On the stability of implicit-explicit

linear multistep methods. Applied Numerical Mathematics, 25(2):193–205, 1997.

Special Issue on Time Integration.

[55] S. L. Gupton and C. M. Waterman-Storer. Spatiotemporal Feedback between

Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration. Cell,

125(7):1361–1374, 2006.

[56] M. H. Gutknecht. Variants of BICGSTAB for Matrices with Complex Spectrum.

SIAM Journal on Scientific Computing, 14(5):1020–1033, 1993.

186



[57] T.L. Hill. Microfilament or microtubule assembly or disassembly against a force.

Proceedings of the National Academy of Sciences of the United States of America,

78(9):5613–5617, 1981.

[58] C.W. Hirt, A.A. Amsden, and J.L. Cook. An arbitrary Lagrangian-Eulerian com-

puting method for all flow speeds. Journal of Computational Physics, 14(3):227–

253, 1974.

[59] D. Hoff. Stability and convergence of finite difference methods for systems of

nonlinear reaction-diffusion equations. SIAM Journal on Numerical Analysis,

15(6):1161–1177, 1978.

[60] W. Huang. Practical aspects of formulation and solution of moving mesh partial

differential equations. Journal of Computational Physics, 171(2):753–775, 2001.

[61] W. Huang, L. Kamenski, and R. D. Russell. A comparative numerical study of

meshing functionals for variational mesh adaptation. Journal of Mathematical

Study, 48(2):168–186, 2015.

[62] W. Huang, Y. Ren, and R. D. Russell. Moving Mesh Partial Differential Equa-

tions (MMPDES) Based on the Equidistribution Principle. SIAM Journal on

Numerical Analysis, 31(3):709–730, 1994.

[63] W. Huang and R. D. Russell. Analysis of moving mesh partial differential equa-

tions with spatial smoothing. SIAM Journal on Numerical Analysis, 34(3):1106–

1126, 1997.

[64] W. Huang and R. D. Russell. Moving mesh strategy based on a gradient flow

equation for two-dimensional problems. SIAM Journal on Scientific Computing,

20(3):998–1015, 1998.

[65] W. Huang and R. D. Russell. Adaptive moving mesh methods. Springer, 2010.

[66] R. V. Iancu, S. W. Jones, and R. D. Harvey. Compartmentation of cAMP

Signaling in Cardiac Myocytes: A Computational Study. Biophysical Journal,

92(9):3317–3331, 2007.

187



[67] P. A. Iglesias and A. Levchenko. Modeling the cell’s guidance system. Science

Signaling, 2002(148):re12, 2002.

[68] R. H. Insall. Understanding eukaryotic chemotaxis: a pseudopod-centred view.

Nature Reviews Molecular Cell Biology, 11:453–458, 2010.

[69] R. H. Insall and L. M. Machesky. Actin dynamics at the leading edge: from simple

machinery to complex networks. Developmental Cell, 17(3):310–322, 2009.

[70] E. Javierre, F. J. Vermolen, C. Vuik, and S. van der Zwaag. A mathematical

analysis of physiological and morphological aspects of wound closure. Journal of

Mathematical Biology, 59(5):605–630, 2009.

[71] R. L. Johnson, R. A. Vaughan, M. J. Caterina, P. J. Van Haastert, and P. N.

Devreotes. Overexpression of the cAMP receptor 1 in growing Dictyostelium cells.

Biochemistry, 30(28):6982–6986, 1991.

[72] T. Killich, P. J. Plath, X. Wei, H. Bultmann, L. Rensing, and M. G. Vicker.

The locomotion, shape and pseudopodial dynamics of unstimulated Dictyostelium

cells are not random. Journal of Cell Science, 106(4):1005–1013, 1993.

[73] D. C. Koppenol, F. J. Vermolen, G. V. Koppenol-Gonzalez, F. B. Niessen, P. P. M.

van Zuijlen, and K. Vuik. A mathematical model for the simulation of the con-

traction of burns. Journal of Mathematical Biology, 75(1):1–31, 2016.

[74] B. Kutscher, R. Devreotes, and P. A. Iglesias. Local Excitation, Global Inhibi-

tion Mechanism for Gradient Sensing: An Interactive Applet. Science Signaling,

2004(219):PL3, 2004.

[75] K. Larripa and A. Mogilner. Transport of a 1D viscoelastic actin-myosin strip of

gel as a model of a crawling cell. Physica A, 372(1):113–123, 2006.

[76] P. Lesaint and P. A. Raviart. On a finite element method for solving the neutron

transport equation. Publications mathmatiques et informatique de Rennes, S4:1–

40, 1974.

188



[77] S. Leung and H. Zhao. A grid based particle method for moving interface prob-

lems. Journal of Computational Physics, 228(8):2993–3024, 2009.

[78] H. Levine, D. A. Kessler, and W-J. Rappel. Directional sensing in eukaryotic

chemotaxis: A balanced inactivation model. Proceedings of the National Academy

of Sciences of the United States of America, 103(26):9761–9766, 2006.

[79] J. Liang and H. Zhao. Solving partial differential equations on point clouds.

SIAM Journal on Scientific Computing, 35(3):1461–1486, 2013.

[80] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, 1987.

[81] C. B. Macdonald, B. Merriman, and S. J. Ruuth. Simple computation of reaction-

diffusion processes on point clouds. Proceedings of the National Academy of Sci-

ences of the United States of America, 110(23):9209–9214, 2013.

[82] C. B. Macdonald and S. J. Ruuth. Level set equations on surfaces via the closest

point method. Journal of Scientific Computing, 35(2):219–240, 2008.

[83] C. B. Macdonald and S. J. Ruuth. The implicit closest point method for the

numerical solution of partial differential equations on surfaces. SIAM Journal on

Scientific Computing, 31(6):4330–4350, 2010.

[84] G. MacDonald, J.A. Mackenzie, M. Nolan, and R.H. Insall. A computational

method for the coupled solution of reaction-diffusion equations on evolving do-

mains and manifolds: application to a model of cell migration and chemotaxis.

Journal of Computational Physics, 309:207–226, 2016.

[85] J. Mackenzie and W. R. Mekwi. On the use of moving mesh methods to solve

PDEs. Adaptive communications: theory and algorithms, 6:243–278, 2006.

[86] J. A. Mackenzie, M. Nolan, and R. H. Insall. Local modulation of chemoattrac-

tant concentrations by single cells: dissection using a bulk-surface computational

model. Interface Focus, 6(5), 2016.

189



[87] A. Madzvamuse and R. Barreira. Exhibiting cross-diffusion-induced patterns for

reaction-diffusion systems on evolving domains and surfaces. Physical Review E,

90(4):043307–043321, Oct 2014.

[88] A. Madzvamuse and A. H. W. Chung. Fully implicit time-stepping schemes and

non-linear solvers for systems of reaction-diffusion equations. Applied Mathemat-

ics and Computation, 244:361–374, 2014.

[89] A. Madzvamuse and A. H. W. Chung. The bulk-surface finite element method

for reaction-diffusion systems on stationary volumes. Finite Elements in Analysis

and Design, 108:9–21, 2016.

[90] A. Madzvamuse, A. H. W. Chung, and C. Venkataraman. Stability analysis and

simulations of coupled bulk-surface reaction–diffusion systems. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

471(2175), 2015.

[91] A. Madzvamuse, E. A. Gaffney, and P. K. Maini. Stability analysis of non-

autonomous reaction-diffusion systems: the effects of growing domains. Journal

of Mathematical Biology, 61(1):133–164, 2010.

[92] A. Madzvamuse, H. S. Ndakwo, and R. Barreira. Cross-diffusion-driven instability

for reaction-diffusion systems: analysis and simulations. Journal of Mathematical

Biology, 70(4):709–743, 2015.

[93] A. Madzvamuse, H. S. Ndakwo, and R. Barreira. Stability analysis of reaction-

diffusion models on evolving domains: The effects of cross-diffusion. Discrete and

Continuous Dynamical Systems, 36(4):2133–2170, 2016.

[94] H. Meinhardt. Orientation of chemotactic cells and growth cones: Models and

mechanisms. Journal of Cell Science, 112:2867–2874, 1999.

[95] J. Meyers, J. Craig, and D. J. Odde. Potential for control of signaling pathways

via cell size and shape. Current Biology, 16(17):1685–1693, 2006.

190
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