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Abstract 

Crystallisation is a fundamental aspect of chemical and pharmaceutical 

manufacturing to ensure high purity, bio-availability and desirable physical 

attributes of quality products. In this thesis, a comprehensive workflow was 

designed to enhance the efficiency of crystallisation process development through 

the utilisation of digital tools. This research aims to integrate existing knowledge in 

crystallisation thermodynamics and kinetics and quality by design (QbD) principles 

into a unified framework. 

To develop and test the workflow’s approach, two case studies were conducted 

involving the crystallisation of lamivudine and aspirin. These studies served as 

foundational experiments to first develop the workflow and second validate the 

individual components and the logical flow of the workflow. Data collected was 

inclusive of solubility, morphological characteristics, particle size, kinetic properties, 

and solid forms in a time and material-reductive way. 

The two case studies highlighted a need for a more intelligent experimental 

planning and optimisation tool, particularly when contrasted with conventional 

methodologies. To address this requirement, an Adaptive Bayesian Optimisation 

(AdBO) tool was developed and applied to the crystallisation processes of 

lamivudine and aspirin. This acceleration of the workflow demonstrated significant 

advantages when compared to traditional grid search and design of experiment 

(DoE) optimisation approaches. 

Subsequently, the generalisability of the workflow was validated by applying it to 

five additional active pharmaceutical ingredient (API) case studies, ibuprofen, 

ascorbic acid, salicylic acid, benzoic acid and D-mannitol. This evaluation, across a 

broader chemical scope, demonstrated the versatility and robustness of the 

workflows approach. 

In contrast to conventional industrial research and development methods, which 

typically operate on a scale exceeding 100 mL, consume substantial time resources, 

and necessitate a large workforce, our workflow was integrated into an industrial 

pharmaceutical facility. This integration enabled the systematic validation of the 

workflow across various stirring methods, crystallisation modes, and vessel sizes, 



iv 
 

ultimately leading to the design of a robust hybrid antisolvent-cooling 

crystallisation process. 

This thesis provides a comprehensive framework for the optimisation of 

crystallisation processes, leveraging digital tools to streamline experimentation, 

enhance efficiency and promote consistency. This is impactful to the wider 

community as the workflow and digital tools developed can seamlessly be 

integrated into existing chemical and pharmaceutical research to yield efficiencies. 

The generalisability shown by this work also allows for the expansion of similar work 

packages into areas outside of chemical and pharmaceutical manufacturing. 
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1. Introduction. 
 

1.1. Crystallisation 

1.1.1. Crystallisation in the Pharmaceutical Industry 

Crystallisation is a significant step in the development and manufacture of 

commercial pharmaceuticals and holds significance to the quality and properties 

of drug substances. The pharmaceutical industry faces unique challenges with 

crystallisation so that parameters such as crystal form and particle size distribution 

are met whilst ensuring good manufacturing practice (GMP), approval from 

regulatory boards and strict batch-to-batch consistency.1 

 

Figure 1. A schematic illustration of the many steps involved in drug manufacture. 

As shown in Figure 1 there are many steps from initial active pharmaceutical 

ingredient (API) synthesis before prescription to the patient. Crystallisation occurs 

as one of the key stages throughout the primary processing steps including 

synthesis and separation of intermediates, purification of the drug substance and 

ensuring processability in downstream manufacture. 

1.1.2. Thermodynamics 

Equilibrium solubility is the point at which a solvent is saturated with a solute at a 

specific temperature, it is denoted by the clear point line in Figure 2. Dissolution is 

the process where a solute, generally in the solid phase but can be liquid or 

gaseous, dissolves in a solvent to form a solution, this is a reversible process. 

Solubility typically varies with temperature with a positive exponential relationship. 

This is approximately described by Black’s rule that solubility doubles with every 

increase of 20 °C2 however some systems have higher or lower temperature 

dependence. It is important to consider solvent choices when designing a 

crystallisation process as a strong temperature dependence would give the best 
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yield. Differences in solubility is essential for crystallisation as the composition 

and/or temperature defines the supersaturation (i.e. thermodynamic driving force) 

which governs the crystallisation rate processes that dictate the outcome. 

 

 

Figure 2. Simple crystallisation phase diagram representative of a solute in a solvent. 

Figure 2 shows the three phases of a solute in a solvent system and is representative 

only. Above the cloud point line is the saturated area, between the cloud and clear 

point is the metastable zone width (MSZW) and below the clear point is the 

undersaturated area. 

A system can become supersaturated when the amount of dissolved solute is 

greater than the equilibrium solubility which can be achieved by cooling, changing 

the solvent composition using antisolvent and evaporation of some of the solvent. 

The highest level of supersaturation (refer to Equation 1) possible in a system is 

shown by the cloud point line in Figure 2 where if passed, the formation of solid 

particles will spontaneously occur. Supersaturation can be expressed and related 

to chemical potential by the following equations. 

Equation 1. 𝑆𝑆 =  (
𝐶𝑠𝑠

𝐶𝑒𝑞
) 

Equation 2. ∆𝜇 = 𝑙𝑛 (𝑆𝑆) 

where SS is the supersaturation ratio, Css is the supersaturated concentration, Ceq is 

the equilibrium concentration and Δµ is the change in chemical potential.3 
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A positive change in chemical potential will drive a transition towards being 

spontaneous. It is important to control supersaturation for quality assurance as 

nucleation and growth are both affected by this property. 

The MSZW is a supersaturated region where the nucleation of crystals can occur 

but will not spontaneously unless triggered by another driving force such as shear, 

agitation or seeding. Performing a crystallisation within the MSZW allows for a 

higher degree of control of the crystallisation and subsequent quality of the final 

product. 

Crystallisation in a system depends on the availability of sufficient free energy to 

facilitate crystal formation, indicated by a negative Gibbs free energy change. This 

thermodynamic driving force is met when there is a disparity between the chemical 

potential of the pure solute and the solute in solution.4  

Equation 3. 𝜇𝐿 =  𝜇𝐿
∗ + 𝑘𝑇 𝑙𝑛 𝑎 

Equation 4. 𝜇𝑆 =  𝜇𝑆
𝑒𝑞

=  𝜇𝐿
𝑒𝑞

=  𝜇𝐿
∗ + 𝑘𝑇 𝑙𝑛 𝑎𝑒𝑞 

Equation 5. ∆𝜇=  𝑘𝑇 𝑙𝑛
𝑎

𝑎𝑒𝑞
 

where µL is the chemical potential of solution, µS is the chemical potential of crystal 

compound, k is the Boltzmann constant, T is the temperature, a is the activity and 

eq refers to equilibrium. 

Hence, thermodynamics play a pivotal role as the primary driving force behind 

crystallisation. By comprehending the thermodynamic properties of the 

crystallisation system, it is possible to select the optimal crystallisation mode to 

effectively control yield and recovery. This understanding enables informed 

decisions regarding the choice of crystallisation techniques to achieve desired 

outcomes in terms of product quality and process efficiency. 

1.1.3. Kinetics 

The formation of new crystal particles from a solution occurs initially via nucleation 

and can be done by two pathways, named primary and secondary nucleation. Once 

nucleation occurs the entropy of the solute is lowered due to the formation of more 
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organized crystal structures.5 Once nucleation has occurred, the crystal nucleus can 

then grow and thus change size, shape and form6. 

Primary nucleation is the formation of new crystal nuclei from a supersaturated 

solution and can be either homogenous or heterogeneous. Homogenous primary 

nucleation is entirely dependent on the transition from a system at equilibrium to 

one that is supersaturated. Heterogenous primary nucleation occurs due to the 

presence of fine foreign material e.g., dust, impurities or blemishes on the wall of 

the reactor.7 

 

Figure 3. A schematic showing classical nucleation theory, taken from reference. 8 

The phenomenon of primary nucleation has been extensively investigated and has 

aimed to be described by a range of theories. Classical nucleation theory (CNT), as 

illustrated in Figure 3 provides a framework for understanding how molecules 

aggregate into clusters until they reach a critical size at which they can adopt the 

crystalline form and exhibit ordered geometry.5 Assuming that nucleation takes 

place with the formation of a spherical nucleus, Equation 6 can be derived by 

differentiating the change in Gibbs free energy (ΔG) with respect to the nucleus 

radius. The resulting equation represents the nucleation rate, expressed in the 

Arrhenius form.7 

Equation 6. 𝐽 =  𝐴 𝑒𝑥𝑝 [−
16 𝜋 𝛾3𝑣2

3 𝐾𝐵
3  𝑇3(𝑙𝑛 𝑆)2] 

where J is the homogenous nucleation rate, A is a pre-exponential factor, γ is 

interfacial tension, n is the single molecule volume, KB is the Boltzmann constant, T 

is the temperature and S is the supersaturation. In the context of this thesis, 
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Equation 6 shows a negative exponential relationship between nucleation kinetics 

and supersaturation and temperature. 

The derivation showed that the radius of the nucleus cluster is critical in passing the 

barrier of nucleation and some studies have shown it can be between 10 – 1000 

molecules.9 10 As CNT has been shown to not be widely applicable in practice, there 

have been other theories proposed such as the two-step mechanism which 

proposes that crystallisation proceeds through an intermediate stage.11 This is 

graphically represented in Figure 4. 

 

Figure 4. A schematic showing non-classical nucleation theory, taken from reference 8 

Secondary nucleation is the formation of new crystal nuclei caused by crystals 

already present in the system. Secondary nucleation can occur from many sources 

such as attrition, breakages and abrasion.3 Collisions can be crystal-crystal, crystal-

stirrer and crystal-vessel therefore choice over the stir rate, impellor type and vessel 

type are important considerations. Secondary nucleation occurs at much lower 

supersaturation than what is needed to cause primary nucleation. Often a system is 

seeded, which triggers secondary nucleation, and allows a crystallisation process 

to be carried out at a manageable supersaturation. 

Crystal growth occurs by the addition of solute molecules onto the organized 

structure called the unit cell which then forms a lattice structure in a layer-by-layer 

method. Crystal growth can be controlled by diffusion of solute i.e., the movement 

of solute along concentration gradient from the bulk to the surface of the crystal, 

therefore an agitated solution would have a higher growth rate. Growth can also, 

and more commonly, be controlled by limiting surface integration i.e., the inclusion 

of molecules into the crystal lattice.12 However high stir rates can cause more crystal 
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collisions therefore higher secondary nucleation which can lead to production of 

fines. Growth rate can be expressed as follows: 

Equation 7. 𝑅𝑔𝑟𝑜𝑤𝑡ℎ =  
𝛿 𝑥

𝛿 𝑡
 

where Rgrowth is the growth rate typically in µm/min, ∂x is the change in the size of the 

particle and ∂t is the change in the time taken. 

The surface structure, typology and degree of solvation and the shape of the crystal 

can affect the growth due to steric hindrance and orientation for the surface 

integration of solute. Another phenomenon of note is Ostwald ripening where 

small crystals dissolve so as to be deposited onto larger particles.13 

Fouling and oiling out can often be driven by kinetic factors and are deemed as 

unfavourable outcomes of a crystallisation process. Fouling can include 

encrustation where solid collects on the vessel walls whereas oiling out is where the 

solution splits into two layers rather than forming crystalline material.14 These 

problems are often caused by a system being excessively supersaturated. 

1.1.4. Solid state 

Solid state chemistry, in relation to API crystallography, is the study of the structure 

of drugs in the solid phase i.e., the packing of molecules to form crystals. 

Understanding the solid-state properties of APIs is crucial as different solid forms 

can exhibit distinct physical and mechanical characteristics despite being 

chemically identical.  

 

 

Figure 5. Schematic of various solid-state forms (from left to right): polymorph form I, polymorph form 

II, amorphous, solvate, salt and co-crystal. 

Polymorphs refer to crystalline forms of drugs that have identical chemical 

compositions, but are capable of organizing their molecules into distinct crystalline 

structures, resulting in more than one unique crystalline state. As depicted in the 

first two diagrams of Figure 5, the same molecule can adopt different arrangements 
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to form distinct crystalline states, which may be influenced by factors such as solvent 

choice, seeding, and growth.3 Consequently, polymorphism yields drugs with the 

same chemical composition but varying physical properties such as solubility, 

crystal habit, and melting point. 15 For instance, Ritonavir, an industrially synthesized 

drug, exhibits polymorphism wherein storage temperature changes can result in its 

conversion to form II, characterized by reduced solubility.16 Thus, polymorphism in 

drugs presents significant challenges in ensuring their efficacy, safety, and quality, 

highlighting the need for a comprehensive understanding of this phenomenon. An 

example of a molecule with lots of polymorphs is flufenamic acid.17 

Amorphous materials lack the organised lattice structure and are sometimes 

caused by fast precipitation or overprocessing, hindering the ability of molecules 

to orient into regular repeating long range ordered systems.18 This disordered 

arrangement causes them to have increased solubility over crystalline materials as 

there are fewer interactions for the solvents to break down during dissolution.19 

Amorphous materials are generally avoided due to the degree of amorphousness 

being hard to control which can lead to drugs with varied efficacies.  

Solvates are crystalline forms of drugs that, if formed in solution, can incorporate 

solvent molecules within the lattice structure. For example, drugs crystallised in 

water could form crystalline structures containing water molecules, these are 

named hydrates. Solvates are easily characterised and identified by differential 

scanning calorimetry (DSC) as the solvent is removed, often at a lower temperature 

than the API.16 An example of a molecule with a lot of solvates is Axitinib.20 

Salts are formed from the ionisation of the API during crystallisation and the 

generated charge is then balanced by a counter ion that binds within the lattice. 

Counter ions can come from the solvent and are formed due to an acid/ base 

reaction. Salts are often used in drug manufacturing as they enhance the solubility, 

dissolution and bioavailability of the API.21 An example of an API marketed as 

different salt forms for different applications is morphine.22 

Co-crystals are crystalline materials that contain two or more different molecules 

that exhibit the same structural shape, have a stoichiometric relationship and are 

uncharged. It is often the case that an API interacts with a non-API molecule, a 

coformer, by intermolecular forces such as hydrogen bonds, van-der-Waals or π- π 
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stacking.16 Co-crystals are useful in drug manufacture as they improve the 

physiochemical properties of APIs, can be used as combination therapy, and also 

expand patent portfolios.23-25 Some examples of co-crystal drugs currently on the 

market are Depakote, Entresto and Suglat.26 

1.1.5. Crystallisation Methods 

Cooling Crystallisation: 

 

Figure 6. Simple temperature profile representative of a cooling crystallisation. 

Cooling crystallisation as depicted in Figure 6 has the underlying theory that a 

solute will dissolve in solution upon heating and then when cooled will crystallise. 

The solute will remain in solution below the equilibrium solubility temperature, as 

it becomes supersaturated, up until a point where the driving force of ΔG allows for 

spontaneous nucleation to occur. The supersaturation increases as the temperature 

decreases, thus nucleation can dominate until the bulk of the API has crystallised. 

Well-designed cooling crystallisations give good control of the output quality but 

sometimes return a low yield.27 However, scaled-down studies have shown ‘well-

behaved’ cooling crystallisations with good yield.28 

A study by Black et al.27 highlighted four rules for a successful cooling crystallisation, 

with good recovery and minimal risk of impurity precipitation and fouling: 

1. The elevated temperature should exceed 60 °C. 

2. The solubility at the elevated temperature should be between 50 – 150 g/L. 

3. The working temperature range should span over 60 °C. 

4. The solubility at the low temperature should exceed 5 g/L. 
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It is important to control the rate of nucleation and the rate of growth to dictate end 

particle size and shape, where supersaturation is one of the most important factors 

(refer to Section 1.1.3.). In general: a faster cooling rate causes more 

supersaturation in the system which in turn leads to more nucleation and smaller 

particles and vice versa. 

Anti-Solvent Crystallisation: 

 

Figure 7. Simple addition profile representative of an antisolvent crystallisation. 

The addition of an anti-solvent, that is miscible with the other crystallisation solvent 

and has low solubility for the API, will cause an increase in supersaturation and thus 

cause crystallisation to occur. Fast antisolvent addition can result in very high 

nucleation of meta-stable particles which increases the risk of fouling and oiling 

out.27 Despite the potential quality and processing risks, anti-solvent crystallisation 

remains a popular method as it is fast and returns a high yield of crystalline 

products.29 

  



10 
 

Evaporative Crystallisation: 

 

Figure 8. Simple rate of solvent loss profile representative of an evaporative crystallisation. 

Evaporation of a solvent from a system that is at the equilibrium solubility point will 

result in a supersaturated solution which then has the potential to crystallise. As 

shown in Figure 8 there is a delay before crystallisation as the system builds 

supersaturation until crystallisation is feasible. This method is not often used in 

industry as the large time required and the high degree of impurity influence on 

the crystallisation product quality. However, for some systems that are not 

temperature dependent then this can be a preferred method. In general, 

evaporative crystallisation yields larger crystals than other methods as 

supersaturation is well controlled and slowly increases with solvent evaporation 

resulting in growth dominating instead of nucleation. 

Batch vs Continuous Crystallisation: 

Generally, crystallisation is performed as a batch process where reactants go in and 

products come out as distinct single steps.30 This is a simple concept and 

subsequently easy to develop and implement but comes with high power surge 

usage and extended holding time required. Continuous crystallisation however has 

a constant feed of reactant and a constant output of product so it is deemed more 

efficient and has less dependency on human interaction.31 32 Examples of 

continuous crystallisers are oscillatory baffled reactors (OBR), tubular plug flow and 

mixed-suspension mixed-product removal (MSMPR).33 
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1.2. Quality by Design 

Quality is critical in manufacturing to meet customer needs and expectations. It 

involves providing a functional product with a dependable, inexpensive, and rapid 

process, without any flaws.34 Process development is key in achieving this across 

various industries, including pharmaceuticals35, construction36, 37, and 

engineering.38 Joseph Moses Juran's pioneering work advocates forward-thinking 

in addressing quality issues.39 Quality by Design (QbD) was introduced as a pre-

emptive alternative to correctional methods. With the establishment of the Internet 

of Things (IoT)40 and Industry 4.041, 42 the growing array of available industrial digital 

technologies provides a foundation for adopting Industry 5.043 principles. Industry 

5.0 seeks to go beyond a focus on productivity and optimisation to ensure that the 

advanced technology and knowledge base enables processes to be more 

sustainable and resilient. A third key element is to ensure that the technology 

enables human operators/researchers to be more creative and effective in their 

roles, placing them at the heart of the manufacturing process. Quality by Digital 

Design (QbDD) is now possible as process and digital technologies have become 

more accessible to a wider demographic. 

 

Figure 9. Timeline of the various milestones within the industrial revolution, adapted from reference.44 

1.2.1. Quality by Design (QbD) 

Quality by Design (QbD) is a systematic framework for ensuring quality in newly 

developed products.45 Traditional QbD has been promoted by the US FDA46 and 

involves designing the product by defining its target quality profile, identifying 
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critical quality attributes, assessing risks, establishing an experimental design 

space, implementing a control strategy, and continuously improving the process.47 

This step-wise sequence is illustrated in Figure 10. QbD has been successfully 

applied in various areas, such as alcohol synthesis48, gel manufacturing49, insulin 

spray drying50, and oral drug development.51 

 

Figure 10. Quality by Design framework. 

The Food and Drug Administration (FDA) has shifted from quality by testing to QbD 

in new drug development.46 Furthermore the international conference of 

harmonization (ICH) Q8 emphasises the importance of a systematic approach to 

product development.52 Despite the advantages of QbD, only a fraction of 

marketing applications submitted to the European Union from 2014 to 2019 were 

developed using QbD principles.53 QbD implementation requires a deep 

understanding of complex guidance documentation and the submission of quality 

documents. Nonetheless, the adoption of QbD can lead to a traceable and rigorous 

method of product development, which ultimately benefits both the industry and 

the consumers.52 

Quality Target Product Profile (QTPP): 

The QTPP is documentation that defines the desired quality attributes or objectives 

of the product. It has been accepted by the FDA to be done first to allow for 

subsequent goal setting and transparency in the aims of the development.54 Typical 

descriptors listed in the QTPP documentation include concentration, intended 

usage and purity to focus on efficacy and safety. Namjoshi et al.47 highlighted many 

useful descriptors such as solubility, polymorphism and volatility in the study of 

topical creams. 
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Critical Quality Attributes (CQA) Identification: 

Identification of the CQA and critical materials attributes (CMA) is the determination 

of the factors that may alter the process if left uncontrolled. CQA documentation 

holds a requirement to detail functional operating ranges for each critical 

parameter so that consistency can be achieved in output parameters such as crystal 

size, crystal shape and yield. CMA refers to the tolerance in quality of the raw 

materials. This stage is imperative and shows the importance of marginal gains in 

optimisation and reproducibility. 34, 47  

Risk Assessment: 

To determine the critical quality attributes (CQA) that require control during the 

manufacturing process, a risk assessment is conducted by evaluating the severity 

and likelihood of potential damages.55 Prior knowledge, literature, and screening 

reactions are used to assist with this step, which leads to the identification of critical 

process parameters (CPP) that must be controlled during manufacture in order to 

assure the CQAs are achieved.56 Several methods, such as failure mode effect 

analysis (FMEA)55, hazard analysis and critical control points (HACCP)57, and 

statistical approaches58, can be used for this risk assessment. 34, 52 Although these 

methods vary in complexity, HACCP is generally the preferred option due to its 

proven effectiveness in controlling process risks. 

Experimental Design Space: 

Experimental design spaces are essential for systematically exploring the 

interactions between variables. The International Conference on Harmonization 

(ICH) Q8 guidelines52 detail regulations regarding design spaces (a 

multidimensional combination and interaction of process parameters and input 

variables), which once established must not be deviated from.59 Traditional iterative 

methods, such as one variable at a time (OVAT), are conducted by changing one 

factor at a time while maintaining all other factors constant. However, this approach 

is time-consuming and wasteful for multivariate systems as it involves many 

experiments and can miss three-dimensional interactions. On the other hand, 

statistical methods such as design of experiment (DoE), which were developed as 
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tools for early work in agriculture60 61, offer a more efficient way to explore design 

spaces.62 

 

Figure 11. Schematic showing full factorial (left) and fractional factorial (right) design space. 

DoE creates an experimental plan that aims to reduce the number of physical 

experiments while still testing all variables and their weighting on the process 

outcome. For example, factorial design dictates the number of experiments based 

on the number of increments and variables.55 Fractional factorial design, which only 

executes a select few experimental points, is regarded as the most efficient DoE 

method. The difference between the factorial designs is illustrated in Figure 11. 

Response surface methodology (RSM)63 is an adaptation of fractional factorial 

design that includes axial points and a zero point and offers an increased 

experimental scope due to the increase in data points. Taguchi design, is a more 

detailed method that involves four levels around each data point from a factorial 

design, making it a robust tool for optimization and reducing variation.64  

When executing experiments, it is important to perform them randomly to eliminate 

trends caused by uncontrolled variables such as general degradation or equipment 

errors. However, if this leads to increased experimental time, blocking can be used 

where experiments are grouped by variable change. The aim of using these 

methods is to ensure that the results achieved are reproducible and can be 

validated. 

Control Strategy & Monitoring: 

Process Analytical Technology (PAT) is used for control strategy and continuous 

improvement of manufacturing processes.65 In-line monitoring, integrated into the 

manufacturing process, offers real-time data without the wastage of sampling but 

requires expensive implementation and a large equipment footprint. Online 
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monitoring requires non-destructive analysis of sampled material, at-line requires 

physical removal of a sample for destructive analysis nearby, and offline is the 

traditional method of analysis in a centralized laboratory, despite being often 

destructive and inflexible for micro projects. Reviews66 and audits67 into PAT and the 

development of bench scale analysis tools are ongoing.68 

PAT has been used for online monitoring of particle size, shape, and count in 

crystallisation and granulation through techniques such as focused beam 

reflectance measurement (FBRM).69 Other PAT methods include acoustic resonance 

spectroscopy70, air-coupled excitation vibrational analysis71, and near-infrared 

spectroscopy72 which have been used for tablet property analysis. In addition, laser-

induced breakdown spectroscopy has been applied for the detection of salt in 

liquid phases.73 In-situ optical microscopy has also been utilised for monitoring 

biomass concentration and system changes, albeit with a limited field of view.74 

1.2.2. Quality by Digital Design (QbDD) 

QbD has been a prominent framework in the pharmaceutical industry, emphasizing 

a systematic approach to ensure product quality. With the development of 

advanced digital technology and improved accessibility of models, such as robotic 

arms, powerful computation and data analysis software respectively, an extended 

version of QbD known as Quality by Digital Design (QbDD) has emerged. QbDD 

incorporates the integration of digital technologies into the QbD framework, which 

sits predominantly within the modelling and design space sections of Figure 12. 

This includes the utilisation of statistical or mechanical models developed through 

machine learning (ML), data mining, or simulation techniques. Moreover, the 

concept of digital twins, which are virtual replicas of physical processes or systems, 

can play a crucial role in scaling up the QbDD development framework. 
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Figure 12. Proposed Quality by Digital Design framework. 

One significant technological advancement that has facilitated QbDD is the 

Internet of Things (IoT)40, which enables devices like PAT to collect and share data 

online and in real time, making information more accessible to gain insights and 

inform decisions. The IoT is part of the larger Industry 4.041 evolution, which aims to 

integrate cloud platforms, IoT, and Cyber-Physical Systems (CPS) to enhance 

manufacturing processes. CPS allows for the automation and control of 

manufacturing steps by computers, leading to a move towards autonomous design 

in manufacturing. This move has come in the form of the start of Industry 5.0.43, 75 

 

1.3. Optimisation Algorithms 

A key industrial digital technology is machine learning (ML), as referred to in Figure 

9, which are mathematical/ algorithm-based models that are used to predict or 

classify based on prior knowledge. Training data can be collected from 

experimental measurements or literature sources to identify predictive patterns in 

complex data.76 Optimisation algorithms are used to predict the best solution or 

best next experiment to a defined problem so as to either minimise or maximise 

the objective function. With the advancement of ML techniques, mathematical-

based optimisation algorithms can be integrated into process development and 

applied to complex problems. 
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Genetic Algorithm (GA): 

Genetic algorithms (GA) are based upon Darwin’s theory of evolution in which the 

survival of the fittest occurred. GA is one of the first optimisation algorithms to 

employ a population-based approach and follows the main sequence of selection, 

reproduction, crossover and mutation.77 78 Potential solutions to the optimisation 

problem are referred to as chromosomes. Figure 13 details the line-by-line 

instruction for the algorithm. 

 

Figure 13. Classical genetic algorithm sequence, taken from reference.79 

The selection step refers to the algorithm choosing the chromosomes based on 

their fitness and likeliness to be chosen as parents for the next iteration of the 

population, named a generation. These chromosomes are then reproduced to form 

a new iteration of the population. Crossover is the creation of offspring with 

combined genetic information from the parents, this introduces diversity into the 

population. Further diversity is caused by mutation, random changes to the 

genetics of the offspring, thus adding exploration to the optimisation search 

space.78 GAs can handle large optimisation search spaces, can be used for many-

objective problems and can be used for nonlinear objective problems. They have 

been successfully implemented in pharmaceutical distribution network design80, 

facility layout design81 and optimisation of a modelled crystallisation process.82 

Despite the advantages, GAs come with some limitations such as premature 
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convergence and the requirement for effective tuning of selection, crossover and 

mutation parameters.79 

Differential Evolution (DE): 

Differential evolution (DE) belongs to the evolutionary class of optimisation 

algorithms and follows a sequence of mutation, crossover and selection.83 84 DE 

operates on a population of potential solutions to the optimisation problem, named 

vectors. 

 

Figure 14. Differential evolution sequence (left) and graphical representation of a DE mutation 

scheme within a 2D search space (right), taken from references.85 86 

Mutation occurs by disrupting the vectors and adding a scaled difference vector 

between different potential solutions, illustrated in Figure 14, thus allowing diversity 

and exploration within the search space. Crossover then couples mutated and initial 

potential solutions. Selection is then done to compare and choose the best-fitted 

solutions. DE has similar advantages as GA but also exhibits robustness for 

convergence towards global optimisation.86 DE algorithms have been applied to 

the medical industry in leukocyte segmentation in tissue images87, drug synergy 

prediction88 and drug product formulation.89 
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Covariance Matrix Adaptation Evolution Strategy (CMA-ES): 

The covariance matrix adaption evolution strategy (CMA-ES) is an optimisation 

algorithm that is an evolution strategy classification and operates by maintaining 

and adapting a covariance matrix of the potential solutions.90 

 

Figure 15. Illustration of the eclipsing phenomenon of CMA-ES, taken from reference.91 

As shown in Figure 15 the algorithm dynamically adapts the sampling distribution 

and updates the covariance matrix to simultaneously explore potential solutions 

and converge towards a global optimum.92 This is performed via the two 

mechanisms of generation and selection, based on a fitness ranking, of new 

potential solutions. CMA-ES is a robust, cheap and scalable algorithm that works 

well for multimodal and multi-objective problems.92 The medical industry has 

benefited from CMA-ES algorithms with research on analytical chromatography93 

and radiographs.94 

Nelder-Mead: 

The Nelder-Mead algorithm is a direct search method that simply operates by 

iteratively transforming a simplex to explore the search space.95 The simplex is a 

polygon of n+1 vertices in n dimensions. The potential solutions, at each vertex, are 

assessed and the worst one is replaced by updating the simplex following a series 
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of operations. Figure 16 shows how the simplex be altered by reflection, expansion, 

contraction and shrinkage. 

 

Figure 16. Illustration of the Nelder-Mead simplex and the four operations, taken from reference.96 

Despite its simple and direct approach, Nelder-Mead has some limitations such as 

performance reduction for high-dimensional search spaces and the risk of 

convergence in local optima.97 Nelder-Mead algorithms have been employed in 

medical research, where some examples are relating to microreactors98, depression 

detection99 and non-invasive drug bioavailability testing from saliva.100 

Pattern Search: 

Pattern search works by iteratively exploring the search space and evaluating the 

objective function at these points.101 The direction of searching is dictated by a 

pattern, from a predefined series of vectors, where the algorithm follows the best 

potential solution. Two types of ‘move’ can be performed by the algorithm to allow 

for exploration and exploitation, as shown in Figure 17. 
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Figure 17. Illustration of the Pattern Search algorithm, taken from reference.102 

Pattern search algorithms can optimise non-smooth and non-convex objective 

functions but are limited by their efficiency in convergence due to the behaviour 

associated with choosing the step size.103 Examples of the use of pattern search in 

medical research include pharmaceutical size control in a batch dryer104 and 

pharmacophoric study in drug design.105 106 

Bayesian: 

Bayesian optimisation works by constructing a probabilistic model of the objective 

function and employs an acquisition function to iteratively suggest the next point 

of evaluation, or experiment, as illustrated in Figure 18. Gaussian processes are 

often used to construct the probabilistic surrogate model. The acquisition function 

looks to both reduce error and find the true optimum, therefore, there is a balance 

between exploration and exploitation. The most popular acquisition functions are 

maximum probability of improvement (MPI), expected improvement (EI) and upper 

confidence bound (UCB). 
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Figure 18. Graphical illustration of Bayesian optimisation using an EI acquisition function, taken from 

reference.107 

Bayesian methods can be used to incorporate prior knowledge and uncertainty 

into an optimisation problem but generally lose performance at high 

dimensionality108, 109. Bayesian optimisation has been used across many research 

focuses and industries such as robotics110, machine learning111, 112 and healthcare113, 

114. Previous studies114 utilising Bayesian optimisation in pharmaceutical 

crystallisation are promising but additional study needs to be focused on adapting 

to multiple objectives. 

Other algorithms of interest: 

Particle swarm optimisation and firefly algorithm, both swarm methods, work by 

mimicking the natural swarm behaviour of animals found in nature passing on 

shared knowledge. Simulated annealing, a trajectory-based algorithm, works by 

mimicking the physical process of where a material is heated and cooled to its 

original form in a lower energy state i.e., finding the system energy minimum.115 

 

1.4. Robotic & Autonomous Systems 

The integration of digital design into the final manufacturing stage is a rapidly 

evolving trend facilitated by CPS and its ability to control manufacturing processes, 

as highlighted in Figure 9. The incorporation of automation in operational 
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processes reduces reliance on human intervention, resulting in improved 

consistency and efficiency. However, the adoption of automation poses ethical 

considerations and requires substantial investment. 

Burger et al.116 introduced a robotic platform capable of identifying photocatalyst 

mixtures with significantly enhanced activity compared to previous materials. The 

robot exhibited autonomous mobility, operated machinery, accurately measured 

samples, and employed a Bayesian optimisation algorithm to explore the design 

space. By automating the design process, a broader range of variables could be 

considered, surpassing the limitations imposed by traditional DoE methods that 

typically restrict the scope to minimize physical experimentation. 

There are many formats and vendors of robotics but generally, they can be 

classified as XYZ117, 118, fixed-arm119 or moving base120. There is also an introduction 

of collaborative robotics with force feedback allowing the safe operation in close 

proximity to human operators.121 The use of XYZ robots and robotic arms have been 

used in drug development for nuclear magnetic resonance (NMR) and high-

powered liquid chromatography (HPLC) dispensing,122 solvent extraction123 and 

prototype chemical synthesis.124 
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2. Aims and Objectives. 

 

Standardised workflows have been widely used and developed within industrial 

sectors. The pharmaceutical industry has implemented its own workflows but this 

tends to be localised within individual companies and even sites within an 

organisation can collect data in different ways. Hence there is an absence of a 

standardised workflow accompanied with the prospect of a standardised 

crystallisation parameter database. Reliable, material reductive and fast collection 

of crystallisation data (such as solubility, fouling, nucleation and growth kinetics) will 

play a key role in cheaper and more efficient medicine manufacturing. This thesis 

aims to apply QbDD principles to intensify and accelerate a workflow for particle 

engineering and crystallisation process design that could generate such a 

database. This aim can be split into five objectives that align with the following 

individual research chapters: 

1. Developing a model-driven workflow for the digital design of small-scale 

batch cooling crystallisation with the antiviral lamivudine. This chapter aims to 

take general lab practices, research methods and previous workflows and develop 

a step-by-step logical flow for use with any API. The main difference to other 

workflows33 here will come two-fold: it will focus on unseeded crystallisation all at a 

small scale and include the introduction of model-driven experimental planning to 

accelerate experimental timelines. The main objective of this chapter is to take QbD 

principles (as set out in Section 1.2.1.) and advance them to QbDD principles (set 

out in Section 1.2.2.) to allow for predictive and quick and effective collection of 

crystallisation parameters (the importance of which was set out in Section 1.1.).  

2. High-throughput screening for large-scale data collection to inform 

medicine manufacture of aspirin. This chapter aims to present another case study 

of using the workflow to collect both quantitative and qualitative thermodynamic 

and kinetic parameter estimation data. 

3. Adaptive Bayesian optimisation of process conditions for small-scale batch 

cooling crystallisation across fast and slow kinetic parameters: a comparative 

study. This chapter aims to apply two Python optimisation libraries to address the 

highlighted need (from Chapters 4 and 5) for smarter model guided decision-
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making experimental planning focused on crystallisation kinetic parameter 

estimation. The main objective of this chapter is to take various optimisation 

algorithms (outlined in Section 1.3.), apply them to a crystallisation problem and 

compare each one's relative performance. 

4. Utilisation of the model-driven workflow for the digital design of small-

scale batch cooling crystallisation of a broader scope of the chemical space. 

This chapter aims to take the latest image analysis algorithm accompanied by the 

best (as shown in Chapter 6) experimental planning optimisation algorithm to 

collect crystallisation data on 5 APIs. The main objective of this chapter is to show 

the generalisability of the workflow to allow for future work into robotic and 

autonomous integration of the logic (as highlighted in Section 1.4.). 

5. Integration of the model-driven workflow into an industrial pharmaceutical 

facility (Pfizer): Supporting Process Development of API Crystallisation. This 

chapter aims to expand the scope of the workflow into seeded and antisolvent 

modes of crystallisation (outlined in Section 1.1.5.) and validate the workflow 

against scale-up experiments and previous industrial processes. This chapter will 

also show the integration of the workflow into an industrial setting (the importance 

of which was shown in Section 1.1.1.) 
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3. Methods and Equipment. 

The CAD drawings used in this chapter can be found at tpicks95/Chapter3 

(github.com). 

 

3.1. Crissy Platform (Zinsser Analytics) 

The Crissy platform, more colloquially referred to as the Zinsser, is an XYZ robotic 

platform that is capable of vial handling, capping and decapping, powder handling, 

liquid dosing, heating and cooling, image collection and filtration. For this project, 

it was used for preparing vials to be removed from the Zinsser for analysis 

elsewhere. 

 

Figure 19. Schematic diagram showing the Crissy Platform and the workspace layout for 

CrystallinePrep methodology (Zinsser Method Runner). 

Solvent library 

Solute library 

Capper/ decapper 

Balance 

Gripper 

https://github.com/tpicks95/Chapter3
https://github.com/tpicks95/Chapter3


27 
 

The CrystallinePrep method (software) developed externally by the vendors for this 

project follows a stepwise sequence of instructions and issues relevant commands 

to the Crissy platform (hardware). A simplified sequence is as follows: 

1. Initialise the solvent dosing arm (left) and powder handling arm (right) to 

starting positions. 

2. Import vial dosing information from a csv file detailing what solute and 

solvent are required and the quantity of each. This information is stored 

temporarily in a SQL database. 

3. The right-hand side arm picks up the gripper tool, allowing for a capped vial 

to be picked up, decapped and then moved to the balance. 

4. The right-hand side arm picks up a powder pipette tip and doses the API 

into the vial. Dosing is volume based but as the mass is recorded the SQL 

database is automatically updated to provide information on the density of 

the powder, so each powder addition iteration improves until the required 

quantity is achieved. 

5. The powder-dosed vial is moved to a holding vial. 

6. The left-hand side arm, using a needle and syringe, doses the relevant 

solvent into the vial. Solvent addition is adjusted, from the SQL database, so 

that the initial required concentration is still achieved. 

7. The solid and solvent dosed cap is returned to the balance to get the mass 

of solvent addition. 

8. The vial is then recapped and then steps 3-8 of the sequence repeat for all 

other vials. 

9. The final dosage data of each vial is returned as an export csv file. 

3.2. Crystalline (Technobis)125 

The Crystalline is a benchtop crystallisation reactor composed of eight individual 

chambers each with the ability to run its own program. Programs are designed by 

the user to set controllers for temperature, heating/ cooling rate, duration, sampling 

intervals and stirring speed. The glass vials used in the reactors have a maximum 

volume of 8 mL and a recommended working volume of 7 mL and can be equipped 

with multiple different types of lids. The lid types are as follows: Crystalline cap 

(standard), Crystalline cap (evaporation), Crystalline cap (solvent addition) and 
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Crystalline cap (basic). All caps except the basic cap utilise overhead stirring of 

either a short 3-blade impeller, long 3-blade impeller, long 3-blade double impeller 

or hook stirrer. Basic caps rely on magnetic PTFE stir bars in the bottom of the 

reactor vial. 

 

 

 

 

 

 

 

 

Figure 20. Schematic diagram showing the Crystalline. 

Two main types of experiments were performed on the Crystalline equipment: 

1. Polythermal – linear heating and cooling between a minimum and maximum 

temperature done in triplicate. The heating rate was either fixed or varied 

between repeated cycles. 

2. Isothermal – heating to dissolution, followed by rapid cooling to the 

crystallisation temperature and then an extended hold at a specified 

temperature. These were done either in triplicate or quintuplicate. 

Crystalline has in-built process analytical technology (PAT) capabilities for turbidity 

measurement and image collection. Segmentation image analysis is utilised to get 

particle shape and size data from each sampling point. In-house machine learning 

algorithms, based on a Detectron 2 model, have been developed to extract kinetic 

parameters from the isothermal experiments described above. 

3.3. EasyMax (Mettler Toledo)126 

The EasyMax is a bench-top stirred tank reactor (STR) that consists of two glass 

vessels with a working volume of 100 mL each. Each reactor can be used in parallel. 

Nitrogen supply, Communications/ 

Power, Cooling Water IN, Cooling 

Water OUT (left to right) 

High-definition camera 

(2x magnification) Individual reactors 
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Experiments can either be set up using the control panel or using IControl software. 

Experiments are designed by the user to set controllers for temperature, heating/ 

cooling rate, duration and stirring speed. A temperature probe can be inserted into 

the reaction mixture to ensure accurate control between jacket temperature and 

solution temperature. A range of PAT probes, such as FBRM, IR, PVM and Blaze127 

can be inserted into the vessel. For this project Blaze was used. 

 

 

 

 

 

 

 

 

 

Figure 21. Schematic diagram showing EasyMax. 

The two main experiments that were performed on the EasyMax equipment: 

1. Isothermal – heating to dissolution, followed by rapid cooling to the 

crystallisation temperature and then an extended hold at a specified 

temperature. These were done in quintuplicate. 

2. Cooling/ antisolvent hybrid crystallisation process – heating to dissolution, 

followed by slow cooling, the addition of seed, the addition of antisolvent 

and an extended low-temperature hold. 

3.4. D8 Discover (Bruker)128 

Powder pattern data was collected, for polymorph confirmation, using a Bruker D8 

Discover diffractometer with the below experiment setup: 

  

Communications for 

stirring mechanism and 

temperature probe 

Individual reactors 

Nitrogen flow meter 

Control panel 

Temperature probe 

Stirring mechanism 

PAT probe 
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Table 2. Experimental set-up for XRPD in the Bruker D8 Discover. 

Emission:  

Geometry Debye-Scherrer Transmission 

Source radiation Cu Kα1,2 1.540596 Å (line focus) 
  

Operating Voltage 40 kV 

Operating Current 40 mA 
Monochromator Primary focusing Goebel Mirror 
Optics 1 mm Anti-divergence slit 

10.5 mm opening 
2.5° Soller Slits 

Rotary absorber None 

 Collimation None 

Sample:  

Treatment Lightly Ground 

Stage Transmission flat plate 
Rotation Sample averaging by xy 

displacement 
Sample Holder 40-well transmission flat plate 

with sample suspended on 7.5 
microns Kapton film 

Temperature Ambient 
Anti Scatter Screen Beamstop 

Detection:  
Optics 2.5° Axial Soller Slits 

Ni low-beta filter - 1.56% 
absorption 
Secondary slit size 9.5mm 
2.45° detector opening  

Detector SSD136_2 (1D) 

 

All powder patterns were visualised and analysed using DIFFRAC.EVA version 

5.2.0.5 and then the raw data were exported as .xy files so that they could be 

plotted. 

3.5. Robotic Integration of the DataFactory Platform 

In the context of developing a robotic and autonomous platform for collecting 

crystallisation parameters, it was necessary to make specific modifications to 

hardware components to enable seamless physical hand-offs between different 

instruments. 



31 
 

3.5.1. 3D Printed Caps 

 

Figure 22. Computer-aided design (CAD) of the top side and underside of the tall cap (left) and a 

picture of a vial equipped with a polypropylene printed cap (right). 

The Crystalline reactors are situated deep within the outer case, making extracting 

vials from the hardware challenging without requiring intricate dexterity. To address 

this issue, taller caps were designed and fabricated so that a Kuka cobot could 

remove them. The caps were constructed from polypropylene to ensure chemical 

compatibility and a small rubber seal was inserted into the top of the threaded 

section to minimise solvent loss. The caps were produced with an Ultimaker 2+ 

Connect 3D printer, utilising a 0.2 mm layer height, grid infill, and 20% infill, which 

required approximately 60 minutes per cap and incurred a raw material cost of 

£0.16 per cap. 

3.5.2. Computer Numerical Control (CNC) Machined Gripper Fingers 

 

Figure 23. CAD drawing of the gripper finger (left) and a picture showing the gripper attached to a 

Zimmer Gripper connected to the Kuka IIWA (right). 

The gripper fingers were developed to emulate the gripper mechanism of the 

Crissy platform (Zinsser) to facilitate the handling of identical trays and vials. To 
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achieve this, an external contractor (Psyber-Tech 3D Printing) was commissioned to 

utilise CNC machining technology to manufacture the grippers from aluminium. 

These grippers were subsequently integrated with the Kuka IIWA via a Zimmer 

motor, allowing them to pick and place entire trays of vials and individual vials using 

a specialized Zinsser tool. 
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4. Developing a model-driven workflow for the 

digital design of small-scale batch cooling 

crystallisation with the antiviral lamivudine. 

This chapter is the peer-reviewed published work found here:  

T. Pickles, C. Mustoe, C. Boyle, J. Cardona, C. J. Brown and A. J. Florence, 

CrystEngComm, 2024 

DOI: 10.1039/D3CE00897E. 

Abstract 

We present a workflow that uses digital tools to optimise the experimental 

approach and maximise the efficiency in achieving the required process 

parameters for a desired set of crystallisation responses, kinetics and objectives. 

Model-driven small-scale experiments can contribute to reducing time and material 

waste in the development of pharmaceutical crystallisation processes. The 

workflow presented here guides the development of a small-scale batch cooling 

crystallisation process via solubility measurements, particle shape and size 

determination, form identification and preliminary kinetic parameter estimation to 

make crystals that satisfy quality target parameters (for shape, size and solubility) 

for a given active pharmaceutical ingredient (API). The case study herein follows the 

development of a crystallisation process for lamivudine, an API used in the 

preventative treatment of human immunodeficiency virus (HIV). This work identifies 

ethanol as a suitable solvent, meeting the acceptable solubility parameters for 

industrially relevant processes and yielded the biorelevant form, form I. The target 

kinetic parameters that were measured included induction time, growth rate and 

nucleation rate for lamivudine in ethanol under a range of conditions as guided by 

experimental planning models. Data was collected as part of the development of a 

DataFactory platform in which experimental optimisation can be autonomously 

implemented and all measurements stored in a crystallisation parameter database. 

This database will have further value in informing model development and 

continuous crystallisation process design and optimisation. The model objective-

driven development workflow identified the following conditions, 19.9 °C, 600 RPM 

and supersaturation of 1.70, as achieving the desired objective successfully in 80 
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polythermal and 28 isothermal experiments. Integration of the workflow alongside 

the optimisation algorithm within the automated DataFactory system will enable 

fully autonomous, rapid data collection for small-scale API crystallisation. Such 

autonomous systems could play vital roles in pharmaceutical development and 

manufacturing driving towards more efficient and sustainable practices via digital 

transformation. 
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4.1. Introduction 

Crystallisation is widely used as a fundamental purification step in the primary 

processing of active pharmaceutical ingredients (API) and many other molecular 

materials that also imparts the physical and bulk properties to the material relevant 

to subsequent processing3. The fundamental rate processes controlling 

crystallisation outcomes i.e. primary/secondary nucleation, crystal growth, 

agglomeration, phase transformations, and impurity rejection can all be measured 

using a range of established techniques33,129 but remain difficult to predict for any 

given combination of API solute, solvent system, equipment geometry and process 

parameters. Hence process development can involve extended experimental 

efforts to select the composition and process conditions under which desirable 

outcomes can be achieved and transfer this across scales.  Thus, approaches to 

enable rapid, optimised selection of conditions that provide the thermodynamic 

and kinetic control to achieve desirable size, shape and form outcomes early in the 

development cycle are of considerable interest. 

Lamivudine, a nucleoside reverse transcriptase inhibitor used as an antiviral 

medication to treat and prevent human immunodeficiency virus (HIV) and hepatitis 

B virus (HBV)130,131, is also being investigated as a potential treatment for COVID-

19132. Lamivudine is currently produced using cooling crystallisation in methanol 

and (-) Binol133. There is limited prior literature describing the solubility of 

lamivudine and no kinetic parameters have been published.  Past studies have 

shown that the dissolution rate of lamivudine is not substantially affected by 

changes in pH and that, subsequently, lamivudine exhibits good bioavailability in 

clinical usage134. Good bioavailability is determined by the biopharmaceutical 

classification system (BCS) assignment of group III, noting it is on the border of 

group I for permeability135. Lamivudine has been shown to produce three crystalline 

forms, form I, which is a 0.2 hydrate that exhibits needle geometry, and two 

anhydrous forms, form II, and III which typically adopt bipyramidal136 and needle 

morphologies, respectively137. Existing patents state that form I and form II are 

preferred in solid oral dosing138. Therefore, the objective of the crystallisation is the 

purification and management of physical attributes to ease downstream 

processing. 
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The DataFactory project at CMAC, The University of Strathclyde, involves the 

development of an autonomous data collection platform primarily focusing on API 

solubility and kinetic parameters. The work presented here lays the foundation for 

a robotic workflow that can be carried out without human supervision. The core 

experimental process will follow the steps discussed in this paper but be carried 

out robotically, i.e. by a Kuka KMR iiwa similar to the one used by Burger et al116. 

When autonomous around-the-clock experiments are possible, the DataFactory will 

have the capacity to output data up to four times faster than human-led laboratory 

work due to operational hours increasing from 8-12 hours per weekday to 24 hours 

every day. A crystallisation parameter database is being developed to support the 

development of a suite of predictive tools in the form of a crystallisation 

classification system (CCS) that will accelerate the development of robust, 

sustainable crystallisation processes. This platform aligns with the wider need for 

more structured data management and curation adhering to findable, accessible, 

interoperable, and reusable (FAIR)139 data principles to support digital 

transformation in pharmaceutical and other process industries. 

In this work, the target workflow builds on the stages and guidelines of previous 

process development workflows for pharmaceutical processes33. This workflow 

integrates predictive models, automation and robotics to improve overall 

experimental efficiency and speed. The workflow also establishes and tests the 

logic necessary to enable an autonomous robotic data-collection platform to 

undertake the key tasks towards the selected experimental objective. Such 

autonomous platforms have the potential to accelerate development timescales 

and allow rapid process design140. Autonomous development systems that can 

intelligently vary experimental conditions to achieve a target outcome based on 

real-time data also promote sustainability by reducing human error, minimizing 

waste and optimising resource utilisation, contributing towards a more efficient and 

sustainable pharmaceutical manufacturing sector141. 

 

4.2. Experimental 

In this study, images taken during the crystallisation experiments were collected 

using Technobis's Crystalline Reactor system at a rate of one image every five 
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seconds. Each of the eight reactor vials heats and cools following its own 

temperature profile, and every reactor has an HD camera focused on the lower part 

of the vial. X-ray powder diffraction (XRPD) patterns were collected using a Bruker 

D8 Discover, and the data was visualized using DIFFRAC.EVA142 software from 

Bruker. Thermogravimetric analysis (TGA) and differential scanning calorimetry 

(DSC) were performed simultaneously using a Netszch STA 449 F1 Jupiter and data 

was analysed using Proteus Analysis143. Solid and solvent dosing was carried out 

using a Zinsser Crissy GGXXL robotic platform, which recorded solid and liquid 

dosed masses with a precision of +/- 0.005 mg. The Zinsser platform was used to 

dose amounts in the range of 5 to 1000 mg of solid and 1 to 8 mL of solvent. Raman 

scans were collected using a Tornado Focused Non-Contact probe from a stirred 

suspension in 8 mL glass vials. 

The optimisation of crystallisation parameters to achieve the desired outcome was 

conducted in Modde 12.1 (Sartorius)144 following a full factorial design of 

experiment (DoE) plan with a multiple linear regression model (MLR). This model 

allows a 3-dimensional optimisation space i.e., 2 objectives and a combination of 

input parameters. Additional optimisation objectives can be added as constraints 

but will not explicitly feature as objectives of the optimisation algorithm. The 

experimental section and subsequent optimisation were performed in tandem as 

batch offline iterations. The initial DoE plan had high exploration across the whole 

design space and covered the corners, edges and centre points. Iteratively, the DoE 

experimental coverage got smaller to focus on exploiting the true optimum. 

Termination criteria for the optimisation loop was +/- 0.01 supersaturation and +/- 

1 °C between MLR recommended experiments. 

 

4.3. Workflow 

In this section, each stage of the workflow, corresponding to the boxes in Figure 24, 

is described in detail. The challenges associated with the application of this 

workflow are also discussed for each step. 
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Figure 24. Workflow for small-scale batch cooling crystallisation data collection (for more 

details refer to Table 5 in the Appendix of Chapter 4). 
*Minimum of 3-4 data points performed in triplicate must be used for reliable estimates of R2 values. For 

some solvent systems, this may not be achievable as qualitative solubility can still be used to eliminate 

potential solvents. 

**Although not explicitly discussed in the case study of this paper, if the target parameters for the study are 

not met then further study can be done to explore seeded, antisolvent and larger-scale crystallisation. 

 

4.3.1. General Considerations and Challenges  

The following section discusses the challenges associated with the generalisability 

of each step of the workflow. Each subsection corresponds to a step in the workflow.  

4.3.1.1. Define the Aim of the Study 

For the data collected using this workflow to be of use in the establishment of a 

CCS with broad applicability, the experiments need to span a varied chemical 

space in terms of physical and molecular descriptors. Consideration of scale and 

scope of experiments would benefit from standardisation so consistent information 

types and quality can inform future model development.  

4.3.1.2. Review Prior Knowledge 

Crystallisation and solubility databases are not freely available and/or do not 

present sufficiently consistent data across a wide enough chemical and process 

space, thus limiting their utility in this context. Reference solubility data may be very 
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limited and/or difficult to gather. Furthermore, APIs passing through the workflow 

may be newly developed or legally embargoed and thus very limited prior data 

may be available particularly if this workflow was applied to a commercial setting. 

FAIR139 data principles should be adopted during data collection, storage and 

curation to enable the value of all data collected to be realised during and after the 

primary project.  

4.3.1.3. Characterise Raw Material 

It is important to understand the characteristics of the raw material before any 

processing to allow for referencing after crystallisation experiments have been 

conducted. Choosing the correct analytical methods for raw material analysis poses 

unique challenges depending on what equipment is available to the researcher.  

4.3.1.4. Define Workflow-Specific Target Parameters 

Target solubility145, shape and size146 values can be estimated using 

developability147 and manufacturability148 considerations for different APIs. The 

target kinetic values, including nucleation and growth, needed to achieve these 

outcomes are not available without more detailed knowledge of the rate processes 

involved for each system. Another challenge associated with setting target 

parameters is determining the relative importance of each parameter – particularly 

when introducing data filters and machine learning (ML) models. The relative 

importance of parameters is needed as these parameters will need to be weighted 

accordingly in multi-objective optimisation. 

4.3.1.5. Solubility and Solvent Effects Study (Polythermal Global Search) 

Numerical values for solubility cannot always be measured due to equipment 

upper and lower constraints when dosing very high and low concentrations, e.g., 

the lowest concentration dose possible may still not dissolve at the highest 

temperature. In this case, qualitative solubility observations, for example, either 

anti-solvent or too soluble, are sufficient for decision-making.  

If prior solubility data is not available for a given system, initial experiments are 

conducted systematically or guided by predictive models149. When conducting 

experiments systematically, exploring concentrations at the lower and upper 

bounds of the target range allows us to generate qualitative solubility classifications 
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that guide subsequent experimental concentrations. For some APIs, the workflow-

specific target parameters may not be met using a single solvent from the library 

chosen. In this scenario, a binary solvent screen is recommended as intermolecular 

interactions in binary solvent systems can alter molecular solubilities.150 

To assess the uncertainty of the solubility data at this point, three tests could be 

performed: 

1. Was the experiment performed in triplicate to estimate the average mean 

data point? 

2. Does the data fit to the Van’t Hoff relationship with a R2 exceeding a set 

point? 

3. Was the heating rate appropriate for the difference in isothermal and kinetic 

solubility data collection? 

4.3.1.6. Off-Line Analysis 

XRPD is recommended as the main technique for polymorph determination as it is 

the gold standard for crystallisation polymorph fingerprinting and can identify 

amounts (typically down to 5%) of physical impurities151. An alternative and widely 

available fingerprinting technique for polymorph determination is Raman 

spectroscopy which can provide information on solid form changes as well as yield. 

While both techniques are non-destructive, Raman can also be implemented in situ 

via optical probes removing the need for sampling. At the same time, the 

application of Raman can be limited by low signal-to-noise ratio and interference 

from solvent signal and fluorescence152. In some cases, the desired polymorph may 

not have been isolated at this stage. If this is the case, it may be necessary to revisit 

the solvent library and perform a wider form screen with the inclusion of binary 

solvent systems. 

4.3.1.7. Solvent Ranking & Selection 

This step is typically a manual human intervention step, and, therefore, poses 

challenges for autonomous implementation. Useful solvent selection tools are 

available to aid in this key decision step. These tools include, for example, the GSK 

Solvent Selection Guide 2009153 which classifies solvents as having one of the 

following: few issues, some issues or major issues (in terms of solvent favourability 
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for use in industrial processes). These classifications are determined using physical 

properties, mainly melting point and boiling point, and a ranking of waste, 

environmental, health, safety, stability and life cycle impacts. The solvent ranking 

and selection step is important for the goal of the workflow as it can allow for the 

identification of a greener and easier-to-process solvent. Ultimately, experiments in 

this step could be limited to only those required for refining solubility predictions 

across a wide range of solvents for the API of interest.  

4.3.1.8. Kinetic Parameter Study (Isothermal Local Search) 

As the goal of this step is to determine estimates of the kinetic responses under 

representative process conditions, several approaches can be used to derive these 

from small-scale experiments154.  

The reliable measurement of the induction time of a solute in a given solution also 

requires multiple data points in order to properly sample the probability 

distribution154. The number of experiments and/or cycles required to address this 

challenge can therefore be expensive in terms of time and data storage. In this 

study, five cycles were used to reduce measurement uncertainty. Fewer cycles 

would have resulted in a higher degree of uncertainty while more cycles would 

have risked exceeding the computational and temporary data storage limits 

available for a given experiment.  

4.3.1.9. Off-Line Analysis 

Refer to Section 4.3.1.6. If unexpected fouling has occurred at this stage, certain 

countermeasures such as altering heating rate, cooling rate, dissolution 

temperature and solvent choice can be explored.155 

4.3.1.10. Optimisation 

Selecting the optimal composition and operating conditions to achieve desired 

crystallisation outcomes with respect to yield, particle size, form and/or purity 

involves optimisation of several different factors and associated uncertainties. At 

this stage, it needs to be decided whether single or multi-objective optimisation 

will suffice for the aim of the workflow, as both come with separate challenges. 

Single factor, single response optimisation is straightforward to implement but 

does not explore the impact of latent variables (such as how both temperature and 



42 
 

supersaturation alter the growth rate simultaneously) or conflicting optimisation 

objectives (such as how induction time decreases as nucleation rate increases with 

supersaturation). On the other hand, in multi-objective optimisation, each target 

parameter could be an optimisation objective resulting in the challenges and 

complexities of a multi-dimensional optimisation problem. Going above 20 

dimensions is often regarded as detrimental to many optimisation models108,109. 

Multi-objective optimisation problems come with the additional requirement of 

data normalisation and the additional challenge of weighting target parameters 

appropriately to align to the aim of the workflow. If this optimisation approach does 

not achieve the desired shape, size and/or form objectives, then seeded-cooling 

and antisolvent crystallisation routes should be explored33  (these methods are 

beyond the scope of the current case study and workflow). 

 

4.4. Results & Discussion: Workflow Case Study of Lamivudine 

In this section the individual steps of the workflow, as described in Table 5 of the 

Appendix of Chapter 4, are presented using lamivudine as a test case. The sections 

for the workflow case study are named 4.4.2.X where X refers to a specific box or 

decision from Figure 24. 

4.4.1. Materials 

Lamivudine (90 g, CAS ID: 134678-17-4) was purchased from Molekula Ltd as an 

off-white powder and Form II. Lamivudine is a suspected teratogen. Therefore, 

dosing was performed in a fume hood and samples were transferred in capped 

vials. The solvents used for the cooling crystallisation were purchased from Sigma 

Aldrich, Fisher Scientific, VWR, and Alfa Aesar or prepared in-house (deionised 

water).  
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Figure 25. Molecular structure of lamivudine. 

Lamivudine was chosen as the API of interest due to its useful pharmaceutical 

applications, and, in particular, its antiviral properties. There is also limited data in 

the literature for lamivudine solubility and crystallisation kinetics156. Contextual data 

was collated for lamivudine from the British National Formulary (BNF) and National 

Health Service of dictionary of medicines and devices (NHS dm+d)157. The BNF 

recommends a dosage of 150 mg twice daily when used as a preventative 

treatment for HIV and HBV. The BNF and NHS dm+d shows current suppliers 

include Teva, Alliance and Milpharm. The developability classification147 of 

lamivudine was calculated using BASF Zoomlab158 and assigned a classification of 

group I, meaning that solubility and permeability are not expected to influence 

bioavailability.  

The solvent library was chosen using the International Conference on 

Harmonization (ICH) residual solvent guidelines, safety, health and environment 

(SHE) ranking, cost, molecular descriptors, a principal component analysis (PCA) 

study in the literature159 and a clusterSim study in the literature160. Relative locations 

of solvents on a PC1 vs. PC2 plot159 of 272 solvents were used to ensure the diversity 

of solvents. To do this, solvents were selected from all four quadrants of the plot 

published by Diorazio et al. An online tool, from the same study, allows users to 

visualise solvents in different ICH and SHE classifications in their relevant quadrant 

of the PCA. ClusterSim160 was then used to identify solvents with similar properties 

for our study. The solvents chosen from the PCA tool159 were selected using a 

multidimensional scaling (MDS) plot which also showed similar solvents that sit 

within the same cluster160. While we ensured a diverse group of solvents was 

present in our selected solvents for this work, also choosing solvents from the same 
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clusters allows us, and future users of the data provided, to compare experimental 

results within solvent families (i.e. alcohols) not just between solvent families to 

investigate any effects on crystallisation rate processes. 

4.4.2. Key Workflow Tasks 

4.4.2.1. Define the Aim of the Study 

For this case study, the aim was to collect quantitative and qualitative solubility and 

solvent effects data and then subsequently optimise the small-scale batch cooling 

crystallisation process based on these results. The optimisation objectives were 

induction time and growth rate in response to supersaturation and isothermal 

temperature. Solvent choice in the optimisation was constrained with respect to 

solubility and shape and size parameters. 

4.4.2.2. Review Prior Knowledge 

Experimental data for lamivudine has previously been reported for a variety of 

techniques such as Raman161, IR161,162, DSC/TGA161,162, NMR130, SEM162 and 

XRPD156,163. This data is used to validate our methods and confirm that the desired 

form is present. There are entries for each of the forms in the crystal structural 

database (CSD). The only lamivudine solubility publication available in the literature 

found by the authors was a study by Jozwiakowski et al. that showed that lamivudine 

has low solubility in most organic solvents except for ethanol, methanol and 

aqueous solvents.156 The same study showed that crystallisation of lamivudine in 

methanol and water yielded needle habit. 

Previous manufacturing routes consist of purification by crystallisation in methanol. 

This purification method allowed for the separation of the pharmaceutically active 

(-)-cis isomer164.  

4.4.2.A. Are initial experiments required? 

Yes, analysis of raw materials was required (see step 4.4.2.3 below for details). 

4.4.2.3. Characterise Raw Material 

The experimental DSC data for the lamivudine raw material showed a single peak 

at a melting endotherm of 178.6 °C (see Figure 28 in the Appendix of Chapter 4), 

and the TGA data showed no mass loss during heating (Figure 29 in the Appendix 
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of Chapter 4). When compared to reference data, this data shows that the raw 

material is form II. XRPD also confirmed the presence of the most 

thermodynamically stable form, form II.137 Later data collected in this study showed 

that Form I, on the other hand, had a crystallisation exotherm at 139.1 °C  (see 

Figure 28 in the Appendix of Chapter 4) and melting endotherm at 178.8 °C with 

TGA data showing approximately 2% mass loss (Figure 29 in the Appendix of 

Chapter 4). This mass loss most likely corresponds to the removal of the 0.2 

stoichiometric water molecule. 

4.4.2.4. Define Workflow Specific Target Parameters 

The target parameters for the solubility and solvent effects study were a lamivudine 

solubility of 0.005 g/g at low temperature (5 – 10 °C) and 0.05-0.25 g/g145 at an 

elevated temperature (10 °C below boiling point) with an aspect ratio of above 

0.5146. These physical constraints were chosen to ensure a well-suspended slurry 

(i.e., the elevated temperature concentration cannot be so  high that a paste results 

at low temperatures), to promote a high crystallisation yield (i.e., the low 

temperature concentration should be sufficiently low to crystallise most of the API 

but not so low to promote potential inclusion of impurities)145, and, finally, to 

encourage  powder flowability of the resulting drug product (aspect ratio >0.5)146. 

At this stage of the workflow, yield and crystal shape are not optimised but, instead, 

used as constraints (e.g., only solvent systems that give crystals with an aspect ratio 

exceeding 0.5 are accepted) to subsequently rank possible solvent choices. 

The optimisation objectives of the kinetic parameter estimation had target values 

of an induction time of 1 hour and a growth rate of 1 µm/min. These target 

parameter values correspond to typical values that lead to operable conditions in 

larger-scale crystallisation processes.165 Additional parameter constraints were 

included in the kinetic parameter estimation including a d90 size distribution of 100 

µm to 250 µm so that the resultant powder would be free-flowing 146. 

From a bioavailability and drug product perspective, there was no targeted 

preference between form I and form II as the both forms have similar oral 

bioavailability and are both used in commercial formulations.166 Form I and form III 

exhibited needle geometry, and thus would not satisfy the aspect ratio target 

parameter. Form III is also currently not used as drug product. Form II, therefore, is 
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the most desirable crystal due to increased thermal stability and flow properties for 

downstream processing. 

4.4.2.5. Solubility and Solvent Effects Study (Polythermal Global Search) 

Known masses of lamivudine were weighed into screw-top 8 mL vials with known 

volumes of solvent added automatically using the Zinsser Crissy platform, and a 10 

mm PTFE magnetic stirrer bar was included in the vials prior to dosing. The vials 

were then placed in the Crystalline platform where each reactor had the following 

temperature profile applied: 

1. Heat to 10 °C below the solvent boiling point or 90 °C (whichever is lowest) 

at a rate of 0.5 °C/min and hold for 10 minutes. 

2. Cool to 5 °C at a rate of 0.5 °C/min and hold for 10 minutes. 

3. Repeat the cycle 2 more times. 

The heating rate in the above temperature profile was chosen to reduce the 

uncertainty of the dissolution temperature reported (refer to Figure 30 in the 

Appendix of Chapter 4). The maximum temperature was set to ensure that boiling 

solvents were not handled, thus making the experiment safe. The slow cooling rate 

was also used to reduce the error in determining the cloud point, and each sample 

vial underwent this temperature cycle three times to check for anomalous results. 

The temperature profile was the same for all experiments and the stir rate was fixed 

at 600 RPM throughout (refer to Figure 32 in the Appendix of Chapter 4 for why this 

stir rate was chosen). 

The clear point, or the time at which full dissolution occurs, was defined as the 

temperature where no particles were observed in the collected images. In the 

literature, transmission data is used to identify the clear point33. Transmissivity, 

however, often gives a clear point below the true value as transmission reached 

100% even when a few particles are still present in the images.  

Similarly, the cloud point, or the time at which primary nucleation first occurs, was 

defined as the temperature at which particles were first observed in the collected 

images rather than when transmissivity goes below 100% or a similar threshold. The 

meta-stable zone width (MSZW) is the difference between the clear and cloud 

points as defined by the image data. 
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Figure 26. The temperature-dependant solubility profile of lamivudine in 20 of the 31 solvents. 
The blue highlighted area shows solubility target parameters for low temperatures and the 

red highlighted area for high temperatures. 

The solubility and solvent effects study determined that 11 of the 31 solvents were 

antisolvents (lamivudine solubility < 0.005 g/g at elevated temperature) due to 

dissolution not being observed for vials with 0.005 g/g concentration of lamivudine. 

This concentration represents the lower limit of the Zinsser dosing platform’s 

capabilities. The solubility profiles (Figure 26) of lamivudine in the remaining 20 

solvents showed that in 4 solvents, lamivudine was too soluble (lamivudine 

solubility > 0.25 g/g at elevated temperature), in 13 solvents, lamivudine was not 

sufficiently soluble (lamivudine solubility < 0.005 g/g at elevated temperature) and 

in the 3 remaining solvents, the solubility of lamivudine satisfied the solubility 

constraints. These 3 solvents were ethylene glycol, methanol and ethanol. 
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4.4.2.6. Off-Line Analysis 

All powder product from the crystallisation experiments was filtered, and then 

XRPD was done to confirm which form was present. By comparing collected data 

to reference data, powder patterns (Figure 31 in the Appendix of Chapter 4) 

showed that form II recrystallised from ethanol and isopentyl acetate. 1-pentanol 

and chlorobenzene recrystallised only trace amounts, and large glass-like particles 

that diffract poorly grew in formamide precluding form identification. Crystallisation 

in all other solvents yielded form I, the undesired 0.2 hydrate form. The 0.2 

stoichiometric amount of water in form I is likely attributed to residual water in 

solvents. 

Small differences were observed in the powder patterns for the crystals grown in 

methanol, water and 1-pentanol. TGA and Raman was used to confirm that form I 

was present.  

No major fouling or agglomeration was observed under the crystallisation 

conditions tested in any of the solvents used with the exception of 4-methyl-2-

pentanone in which aggregates of needle crystals formed. 

4.4.2.B. Can solubility-temperature profiles be plotted with the Van’t Hoff 

relationship (R2 > 0.81) for solvents? 

Yes, refer to Table 6 in the Appendix of Chapter 4. It is important to note at this stage 

that the thermodynamic model for lamivudine in the solvent systems is an initial 

estimate aligned to a defined uncertainty of repeating data points in triplicate and 

with a suitable fit of the data whilst using a kinetic/ dynamic heating rate. 

4.4.2.7. Solvent Ranking & Selection 

The 3 successful crystallisation solvents, in terms of solubility constraints (solubility 

of 0.005 g/g at low temperature and 0.05-0.25 g/g145 at an elevated temperature), 

were methanol, ethanol and ethylene glycol. While crystallisation of lamivudine in 

ethylene glycol had a steep temperature dependence that would theoretically 

result in a high yield, ethylene glycol was still eliminated due to the solvent’s high 

viscosity and consequently slow crystallisation kinetics. Nucleation was not 
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observed for lamivudine in ethylene glycol despite cooling more than 55 °C below 

the dissolution point (i.e., the supersaturation of lamivudine will greatly exceed the 

normal threshold for inducing nucleation). Methanol was also eliminated as crystals 

were form I with needle geometry, and the resulting aspect ratio did not satisfy the 

aspect ratio target value. 

Ultimately out of 31 solvents evaluated for crystallisation of lamivudine, ethanol was 

the only system to satisfy the target parameters for shape and solubility. Specifically, 

these experiments showed that the form was II, the crystal shape was bipyramidal, 

and the solubility exceeded 50 g/L at elevated temperature meeting all the 

objectives for this step. 

4.4.2.8. Kinetic Parameter Study (Isothermal Local Search) & 4.2.9. Off-Line 

Analysis 

Similar to the solubility and solvent effects study, known masses of lamivudine were 

weighed into screw-top 8 mL vials with 2 mL volumes of ethanol added using the 

Zinsser platform, and a 10 mm PTFE magnetic stirrer bar was included in the vials 

prior to dosing. The solubility profile for lamivudine in ethanol from the solubility 

study was used to calculate the concentrations required for the relevant 

supersaturation. The vials were then placed in the Crystalline platform where each 

reactor had the following temperature profile: 

1. Heat to 68 °C at a rate of 1 °C/min and hold for 10 minutes. 

2. Cool to the experimental temperature at a rate of 10 °C/min with no stirring. 

3. Hold at the isothermal point for 6 hours. 

4. Repeat the cycle 2 more times to collect a total of 3 data points. 

The fast heating rate in the above temperature profile was chosen given that the 

dissolution point did not need to be measured; it was only necessary to ensure that 

dissolution was achieved. The maximum temperature was set at 68 °C to ensure 

that ethanol did not reach its boiling point and that solvent loss from evaporation 

was minimised. A fast crash cooling rate was used to achieve the isothermal 

temperature of interest as fast as possible to reduce the risk of nucleation occurring 

during the cooling ramp. The isothermal regime was held for 6 hours to capture 

crystallisations with longer induction times. Each sample vial underwent this 
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temperature cycle three times to check for anomalous results and to get a median 

estimate for induction time. Induction times are reported as median values of these 

three measurements to reduce the impact of outliers. The temperature profile was 

the same for all experiments to minimise the variability across experiments. The stir 

rate was fixed at 600 RPM unless otherwise stated (refer to Figure 31 in the 

Appendix of Chapter 4). 

Induction time, defined as the time between reaching isothermal conditions and 

the point at which crystals first start to nucleate, was determined using image data 

in this study, specifically using Helmli’s mean. Helmli’s mean167 is an image feature 

used in computer vision that has been found to be a good indicator of the presence 

of particles in in-line microscopy168. Here, Helmli’s mean is calculated with a window 

size of 5 pixels and thus termed HELM5. Induction time is estimated by measuring 

the time from temperature crash to where HELM5 rises above a threshold. Due to 

differences in particle habit, lighting, and solubilities, the threshold is not a fixed 

value but is chosen based on the range of HELM5 values obtained in each 

experiment. The threshold HELM5 value is taken as the 5th percentile of the range 

of values HELM5 obtained over the course of the experiment. Induction time 

estimation using HELM5 has been shown to have improved accuracies over other 

approaches168 169.  

Finally, in this study image data was also used to determine the growth rate (the 

change in the particle size, over time). These parameters were determined using 

data spanning from slightly before the induction time (to account for potential 

errors in induction time estimate) until the time when the images became too 

crowded to identify single particles. Images were analysed to detect individual 

particles using the deep learning model “Mask R-CNN”170. This model was adept at 

identifying individual objects in crowded situations and at multiple scales making it 

well-suited to the task of particle characterisation171. Versions of the Mask R-CNN 

are available pre-trained on standard datasets which can be further trained (“fine-

tuned”) to apply to new tasks. This transfer learning reduces the training time for 

new applications.  

200 images from the Crystalline platform were chosen from various experiments to 

form a training set (which included both form I and form II of lamivudine amongst 
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other APIs) based on their varied lighting conditions, particle habit, and particle 

solid loading. These images were manually annotated with annotations indicating 

the position and size of particles. These annotated images were supplied to a 

training algorithm to teach the Mask R-CNN model to detect particles on Crystalline 

images. The trained model was then applied to new images resulting in predicted 

particle locations, and a given confidence score. Predictions of confidence score 

less than 50% were discarded. The remaining particles were sized by fitting a 

rotated rectangle to the detected outline, minimising its area. The long side of this 

rectangle is referred to as particle length. Lengths were aggregated for an image 

and compiled in a histogram plot to determine the number-weighted-particle size 

distribution (PSD). Repeating across all images resulted in one PSD for every 5 

seconds of the experiment during nucleation and growth. Quantiles and mean 

values of the PSDs were tracked over time. A linear fit was made to the mean size 

over time, and the gradient of the line gave an estimate of growth rate (see Table 

3).  

An initial full factorial design screening experimental plan60 was created (Table 3). 

The experimental bounds on isothermal temperature and supersaturation (SS = 

C/C*, where SS is the supersaturation, C is the solution concentration and C* is the 

equilibrium concentration at the given temperature) were dictated only by physical 

limitations of solvent operating temperatures and industrial process solubility 

requirements to explore as large a design space as possible.  
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Table 3. Process parameters and measured median induction time and mean growth rate for initial 

kinetic parameter screening of lamivudine in ethanol with a fitted MLR model. Standard deviations of 

0.00 refer to where the image analysis only segmented one growth phase. 

Run 
Order 

Isothermal 
temperature 

(°C) 

Supersaturation Median 
induction 
time (s) 

The 
standard 

deviation** 
of 

induction 
time (s) 

Mean 
growth 

rate 
(µm/s)* 

The standard 
deviation** 
of growth 

rate (µm/s) 

Initial Screening 

1 10 1.93 2778 374 0.0355 0.0052 

2 25 1.67 3495 1073 0.0001 0.0213 

3 25 1.56 3737 1496 0.0153 0.0200 

4 40 1.84 1585 1555 0.0185 0.0173 

5 10 1.42 11380 2596 0.0263 0.0000 

6 25 1.63 1591 1008 0.0287 0.0238 

7 40 1.39 10017 8011 
  

MLR Output: SS 1.70, Temp 28.5 °C 

*Growth rate values are missing due to the image analysis being unable to detect particle growth likely due to the 

small sample size of images collected at the point of nucleation before the images became too convoluted. 

**Standard deviation reported is the uncertainty between the extracted parameters from each vial done in 

triplicate. 

 

An MLR model was fitted to the initial results and the optimizer feature in Modde 

12.1 was run with the stated target values for induction time (1 hour) and growth 

rate (1 µm/min).  The MLR model trained on the initial screening results returned 

process conditions of a supersaturation of 1.70 and an isothermal temperature of 

28.5 °C. Similarly, a partial least squares (PLS) model was fitted to the data where an 

optimisation returned similar values of a supersaturation of 1.69 and an isothermal 

temperature of 29.5 °C. 

4.4.2.C. Were the experiments free from fouling? 

Yes, there was no significant fouling experimentally observed with ethanol as the 

chosen solvent system (visually observed in Section 4.4.2.8). 

4.4.2.D. Were target parameters or algorithm convergence achieved? 

No, there was no measurement at the MLR recommended supersaturation and 

temperature therefore experimental optimisation was required. 
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4.4.2.10. Optimisation 

The subsequent (from the MLR model in Section 4.4.2.8) full factorial experimental 

plans had a higher focus on exploitation over exploration, and, therefore, an 

increasingly narrower range was used for the supersaturation (+/- 0.27 to 0.09) and 

isothermal temperature (+/- 15 to 2 °C). The experimental plan followed by the 

fitting of the MLR model was done iteratively. As there was minimal change in 

supersaturation and temperature values predicted by the third and fourth MLR 

models (+/- 0.01 for supersaturation +/- 1.0 °C for temperature), it was determined 

that convergence was achieved on the fourth MLR-trained model which returned 

process conditions of a supersaturation of 1.70 and a temperature of 19.9 °C. 
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Table 4. Process parameters and measured median induction time and mean growth rate of kinetic 

parameter optimisation iterations of lamivudine in ethanol with fitted MLR models. Standard 

deviations of 0.00 refer to where the image analysis only segmented one growth phase. 

Run 
Order 

Isothermal 
temperature 

(°C) 

Supersaturation Median 
induction 
time (s) 

The 
standard 

deviation of 
induction 
time (s) 

Mean 
growth 

rate 
(µm/s)* 

The 
standard 
deviation 

of 
growth 

rate 
(µm/s) 

Optimisation iteration 1 

1 28.5 1.78 1524 81 
  

2 30 1.77 1310 248 
  

3 28.5 1.77 615 464 0.0186 0.0088 

4 27 1.89 2000 374 0.0413 0.0309 

5 28.5 1.8 2290 2023 0.0147 0.0000 

6 30 1.68 4536 957 0.0740 0.0193 

7 27 1.73 2460 895 0.0387 0.0000 

MLR Output: SS 1.74, Temp 19.6 °C 

Optimisation Iteration 2 

1 19.5 1.75 3901 301 0.0875 0.0778 

2 18 1.74 1050 199 0.0440 0.0000 

3 18 1.64 2305 3314 0.0472 0.0414 

4 19.5 1.7 1745 564 0.0136 0.0196 

5 21 1.81 2715 1483 0.0497 0.0265 

6 21 1.68 6080 7293 0.0287 0.0000 

7 19.5 1.72 1070 458 0.0279 0.0030 

MLR Output: SS 1.70, Temp 19.5 °C 

Optimisation iteration 3 

1 21.5 1.68 2999 2132 0.0053 0.0014 

2 21.5 1.62 2021 470 0.0015 0.0007 

3 17.5 1.77 1986 803 0.0059 0.0005 

4 19.5 1.72 1787 367 0.0028 0.0007 

5 19.5 1.74 1506 986 0.0030 0.0018 

6 17.5 1.6 11552 2063 0.0020 0.0017 

7 19.5 1.71 1320 3079 0.0089 0.0077 

MLR Output: SS 1.70, Temp 19.9 °C 

*Growth rate values are missing due to the image analysis being unable to detect particle growth likely due to the 

small sample size of images collected at the point of nucleation before the images became too convoluted. 
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All samples from each iteration of the optimisation loop were fingerprinted by 

XRPD (Figure 33 in the Appendix of Chapter 4) where results confirmed that all runs 

gave the desired form, form II. No fouling or aggregation was observed through 

image or observational analysis. The D90 of crystals detected by image analysis for 

the final run (run 7, optimisation iteration 3) was 105 µm. The aspect ratio was 0.62. 

Therefore, the kinetic estimation section of the workflow was completed as all target 

parameters achieved values within the designated range. 

4.4.2.D. Were target parameters or algorithm convergence achieved? 

(Revisited) 

Yes, convergence was achieved as determined by the termination criteria. 

4.4.2.E. Are additional experiments needed? 

No. A suitable process was developed using cooling crystallisation; therefore 

seeded, antisolvent and scaled-up experiments were not required to meet the 

objectives for this study. 

4.4.2.11. Optimum Process Conditions for Small-Scale Crystallisation 

In this work, we have identified experimental conditions that yield lamivudine 

crystals with desirable physical attributes for pharmaceutical manufacture, 

specifically crystals with the biorelevant polymorphic form and an aspect ratio near 

1:1. The process conditions required for these crystal attributes were isothermal 

crystallisation from ethanol at 19.9 °C, 600 RPM and supersaturation of 1.70. The 

resulting crystals had a D90 of 105 µm and a bipyramidal crystal habit. The solubility 

of lamivudine in ethanol also satisfied all target constraints with a value of 10 g/L at 

low temperatures and a value greater than 50 g/L at elevated temperatures. This 

approach also enabled kinetic parameter estimations for lamivudine from ethanol 

under various process conditions (Table 3 and Table 4).
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Figure 27. DataFactory dashboard showing thermodynamic and kinetic crystallisation parameters for the proposed optimum lamivudine recrystallisation – 
solubility profiles (a), solvent classification (b), microscopy and crystalline images (c), DoE design space (d) and induction time (e), growth rate (f) and aspect ratio 

over time (g) for the optimum run.
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4.5. Conclusions 

Following workflows such as the one presented in this work can provide direction 

and reduce cross-researcher variability in experimental work, thus promoting 

reliable, reproducible and robust data generation. This work has demonstrated the 

usefulness of the proposed workflow to go from API selection to an optimised 

system for small-scale batch cooling crystallisation. By following the workflow, we 

have determined an alternative method to the current crystallisation process of 

lamivudine, specifically recrystallisation from methanol that results in the more 

desirable bipyramidal habit of form II. This case study yielded experimental 

parameters for lamivudine crystallisation that satisfied our target parameters for an  

operable isothermal crystallisation process from ethanol at 19.9 °C, 600 RPM and 

supersaturation of 1.70. Crystalline images and XRPD data confirmed that the 

resultant crystals were form II, the most stable form with desired downstream 

processing properties.  

This work also shows that a solubility and kinetic dataset could be generated using 

only 53 g of lamivudine and 1169 mL of solvents compared to previous methods 

that used 252 g of solute and 1448 mL of solvents33. While less material was used 

in the work presented here, the reduction in material did not result in reduced 

information content as we collected approximately 7500 high-definition images 

with extracted thermodynamic and kinetic parameters and solution and solid-state 

data. Although droplet studies would result in significantly less material use, only 

solubility and growth estimates could be achieved and as such more complex and 

agitated thermodynamic and kinetic measurements would not be possible. 

Furthermore, our contributions to the solubility and kinetic parameter literature 

data for lamivudine can also be used to inform future wet lab experiments, train and 

test improved solubility models and build kinetic population balance models for 

process development. 

Workflows such as this enable the future development of smarter experimental 

planning tools and predictive models, whereby model-driven experimental 

measurements can also be used to continuously improve models. Incorporating 

digital tools could help improve efficiency in crystallisation process development 

by reducing the amount of time and materials needed for the experimental sections 
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of the workflow. This work has shown that the individual components, such as data 

analytics, optimisation and hardware, can be integrated and linked together in the 

logical, step-by-step manner necessary for achieving successful closed-loop 

automation.  

This workflow can be applied to other APIs to identify industry-relevant, robust 

crystallisation conditions to inform the design of pharmaceutical manufacturing 

processes. Furthermore, applying this workflow to a wide range of APIs will enable 

the creation of a solubility and kinetics crystallisation parameter database that 

spans a varied chemical and crystallisation process space.  

The availability of quantitative data on solubility and kinetic parameters in a wide 

range of APIs could aid laboratory-based researchers in optimising crystallisation 

processes to improve yield and crystal quality172 via the application of ML models.146 

149 173 Such FAIR data collection for solubility and kinetic parameters can lead to the 

development of a crystallisation parameter database in a structured format 

developing benefits analogous to the CSD or the protein data bank (PDB). 

Workflows such as this will allow us to generate the standardised data that will be 

an invaluable resource for the predictive design of molecular crystallisation 

processes.  
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Appendix 

This appendix contains additional information for context and details pertaining to 

the workflow design, material characterisation, experimental method development 

and extracted data tables. 

 

Table 5. Details of each key task and decision in the workflow, listing all outputs and equipment or 

tools required to carry out the step.
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Stage Description Output Equipment/ Tools 

1. Define the 
Aim of the Study 

Determine the goal/ basis 
for undertaking the 
research i.e., full 
quantitative/ fast 
qualitative dataset. 

A clear aim for the work 
to be carried out 

User 

2. Review Prior 
Knowledge 

Collate any past 
experimental or 
calculated data or prior 
knowledge 

An understanding of 
previous studies and 
what analytical methods 
are available 

Lab notebooks, 
published work 

Decision A Are initial experiments 
required? 

YES – progress to 
‘Experimental Input’ 
NO – progress to ‘Review 
Workflow Specific Target 
Parameters’ 

Manual user check 

3. Characterise 
Raw Material 

Execute experiments to 
select analytical methods, 
analyse raw materials and 
generate reference data 
for further 
characterisation and 
phase ID 

Polymorph, physical 
properties, molecular 
analysis of raw material 

XRPD, STA, Raman, 
UV-Vis, IR 

4. Define 
Workflow-
Specific Target 
Parameters 

Set objective based on 
crystallisation process 
screening objectives 

Target particle (size, 
shape) and process 
(solubility, kinetics, yield) 
attributes for operable 
crystallisation process 
outcomes 

Literature, Quality 
Target Product 
Profile (QTPP) 

5. Solubility and 
Solvent Effects 
Study 
(Polythermal 
Global Search) 

Conduct polythermal 
experiments (3 cycles) of 
the API at varying 
concentrations in a wide 
range of solvents  

Solubility profiles, 
solvent effects, 
indications of fouling, 
kinetic estimates 
(MSZW), yield estimates 

Crystalline 
(Technobis), 8 mL 
vials, stirrers, Zinsser 
Crissy Platform 
(Zinsser Analytics) 

6. & 9. Off-Line 
Analysis 

Conduct experiments 
with other analytical 
techniques 

Solid form 
determination, 
thermodynamic data 

XRPD, STA, Raman, 
Microscopy, 
Solubility 

Decision B Can solubility-
temperature profiles be 
plotted with the Van’t Hoff 
relationship (R2 > 0.81) for 
solvents?* 

YES – progress to next 
step 
NO – loop back to secure 
more data points 

Manual user 
inspection, R-Value 
filters (coded) 

7. Solvent 
Ranking & 
Selection 

Rank solvents based on 
target parameters and 
top solvent progressed to 
next stage. Collect extra 
solubility points to give a 
more accurate 
temperature-solubility 
profile. 

Solvent choice with a 
solubility-temperature 
profile of 6-8 
experimental data points 

Crystalline 
(Technobis), 8 mL 
vials, stirrers, Zinsser 
Crissy Platform 
(Zinsser Analytics) 

8. Kinetic 
Parameter Study 
(Isothermal Local 
Search) 

Conduct isothermal 
kinetic parameter 
estimation experiments 
(3-5 cycles).  

Nucleation rate, growth 
rate, induction time, 
aspect ratio 

Crystalline 
(Technobis), 8 mL 
vials, stir bars, 
Zinsser Crissy 
Platform (Zinsser 
Analytics), Image 
analysis 

Decision C Were the experiments 
free from fouling? 

YES – progress to next 
step 
NO – change solvent and 
loop back 

User visual checks 
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Decision D Were target parameters 
or algorithm convergence 
achieved? 

YES – progress to next 
step 
NO – loop back via 
optimisation 

Manual user check 

10. Optimisation Run optimisation 
algorithms (Multiple 
Linear Regression/ Partial 
Least Squares).**  

Experimental plan for 
next best 8-16 
experiments 

Modde 12.1 
software 

Decision E Are additional 
experiments needed? 

YES – call out to 
additional workflows 
where seeding, 
antisolvent and larger 
scale can be explored*** 
NO – progress to next 
step 

Manual user check 

11. Optimum 
Process 
Conditions for 
Small-Scale 
Crystallisation 

Record and pass along 
conditions from this 
workflow to complete API 
process development. 

Optimum process 
conditions for small-scale 
batch crystallisation 

Manual user 
documentation 

Update 
Crystallisation 
Parameter 
Database**** 

Ensure data is stored in 
crystallisation parameter 
database with all 
conditions, associated 
responses and outputs 
from the workflow. 

Structured data storage: 
solute, solvent, 
concentration (all), 
dissolution temperature 
(solubility), induction 
time, aspect ratio, 
nucleation rate, growth 
rate (kinetics) 

SQL, Knowledge 
graph, ontology 

*Minimum of 3-4 data points done in triplicate must be used for reliable estimates of R2 values. Some 

solvent systems this may not be achievable as qualitative solubility can be used. 

**In current software implementation allows only 2 simultaneous optimisation objectives, sufficient for this 

study. 

***Although not explicitly discussed in the case study of this paper, if the target parameters for the study 

are not met then further study can be done to explore seeded, antisolvent and larger-scale crystallisation. 

****Although not represented in the graphical workflow diagram, it is important to note that all data from 

the experimental sections and the offline analysis is stored in a standardised data format. 

 

 

Figure 28. DSC data for raw material (Form II) and the 0.2 hydrate (Form I). 
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Figure 29. TGA data for raw material (Form II) and the 0.2 hydrate (Form I). 

 

 

Figure 30. Dissolution temperature measurement of lamivudine in 3 chosen solvents (methanol, 
ethanol and water) at different heating rates. The figure shows a large stepwise change for ethanol at 
the fastest heating rate and minimal differences across all other systems and heating rates. Therefore, 
for efficiency, whilst still maintaining accurate measurements, a heating rate of 0.5 °C/min was used 

for all experiments. 
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Table 6. Solubility parameter coefficients (m, c) for lamivudine across all solvents in which quantitative 
data was collected. Van’t Hoff relationship was applied where concentration was expressed as lnX 

(g/g solvent) and temperature expressed as 1/T (K-1) and linear regression applied. 

Solvent m c R2 

1-butanol -4520.92 9.510173 0.811304 

1-pentanol -5465.74 12.25163 0.729647 

1-propanol -2190.75 3.480024 1* 

2-pentanol -5420.37 11.1428 0.821315 

2-propanol -3951.18 8.04683 0.950545 

N,N-
dimethylformamide 

-1244.04 2.792469 0.90898 

N-
methylpyrrolidone 

-16807.2 54.29446 0.999524 

acetonitrile -3291.86 4.602571 0.976261 

ethanol -3428.49 7.130674 0.992587 

ethylene glycol -4334.9 11.63974 0.920213 

formamide -2612.22 7.363137 0.996196 

methanol -2657.61 5.603299 0.928051 

water -8918.68 27.11113 0.993517 
*Only two data points were collected due to the low solubility of lamivudine. 

 

 

Figure 31. X-ray powder diffraction patterns of lamivudine from various solvents, offset to allow for 
polymorph comparison. 
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Figure 32. Induction time measurement (8 replicates) of lamivudine in ethanol at different stir rates. 
The figure shows large statistical differences in induction time for 300 and 900 RPM likely due to slow 
mixing and magnetic stir bar bumping respectively. Therefore, a fixed stir rate of 600 RPM was used 

for all experiments in this study. 

 

  

Figure 33. X-ray powder diffraction patterns of lamivudine from ethanol (taken from the kinetic 
parameter estimation experimental) showing that the recovered solid form was form II 
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5. High-throughput screening for large-scale data 

collection to inform medicine manufacture of aspirin. 

This chapter is the peer-reviewed published work found here:  

Pickles, T. & Mustoe, C. & Brown, C. & Florence, A., (2022) “Autonomous 

DataFactory: High-throughput screening for large-scale data collection to inform 

medicine manufacture”, British Journal of Pharmacy 7(2) 

https://doi.org/10.5920/bjpharm.1128 

 

Abstract 

Using small-scale crystallisation to inform downstream processes, we can reduce 

time and material costs in medicine manufacturing. This work introduces a 

preliminary workflow for information-rich data collection of crystallisation 

parameters including solubility, induction time, growth rate, secondary nucleation 

rate, particle shape and size. The results for aspirin are presented here. Highlights 

include the identification of 24 potential alternative crystallisation solvents for 

manufacturing aspirin, all of which yield the biorelevant polymorph. Automation of 

this workflow will enable the use of robotics to further reduce time and material 

usage when conducting crystallisation experiments for future APIs. 

  

https://doi.org/10.5920/bjpharm.1128
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5.1. Introduction 

Crystallisation is an integral part of the synthesis and manufacturing processes of 

APIs. Information-rich, high-throughput data collection for small-scale 

crystallisation experiments can rapidly guide medicine manufacturing by informing 

digital models. The DataFactory at the CMAC Future Manufacturing Research Hub 

is establishing an automated crystallisation parameter collection platform that 

incorporates the following data to inform medicine manufacture. To enable this 

automation of crystallisation experiments, we present a workflow that guides 

consistent crystallisation data collection for a range of APIs and solvents under 

various process conditions. The data collected for aspirin is presented here. 

Existing patents for the crystallisation of aspirin in manufacturing174 use acetone 

and other organic solvents such as benzene. However, the use of benzene comes 

with significant health risks. In this study, we identified greener, safer and more 

sustainable crystallisation solvents for aspirin with industrially-relevant solubilities 

while also introducing a preliminary workflow to guide future autonomous data 

collection. 

 

5.2. Materials and Methods 

Aspirin was purchased from Alfa Aesar. Solvents were purchased from Sigma 

Aldrich, Fisher Scientific, VWR and Alfa Aesar. For solubility screening, vials of 

known concentrations of aspirin and solvent were thermocycled between 5 °C and 

90 °C (or 10 °C below solvent boiling point if the boiling point of the solvent used 

was below 100 °C), with a heating rate of 0.5 °C/min and a stirring rate of 600 rpm 

in the Crystalline (Technobis). For kinetics estimation, vials of known concentration 

were heated to dissolution and then crash-cooled (5 °C/min) to an isothermal hold 

with a stirring rate of 600 rpm. Crystalline images, collected at a frequency of 5s, 

were analysed using a machine learning algorithm. 
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5.3. Results & Discussion 

The simplified workflow used in this study (Figure 34) guides experimental work 

using existing knowledge and model predictions followed by the integration of 

experimental analysis into a parameter database that guides future experiments. 

 

Figure 34. Simplified workflow for crystallisation data collection 

This workflow guided the small-scale crystallisation experiments for aspirin. A 

representative group of solvents was chosen using principal component analysis of 

laboratory-grade solvents159. 

The solubility profiles (Figure 35) of aspirin showed that 24 of the solvents 

investigated have a suitable solubility range for cooling crystallisation in a 

manufacturing process145.  

 

Figure 35. Solubility- temperature profiles for aspirin in 31 solvents 
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Isolation and subsequent analysis of crystals by XRPD confirmed all successful 

crystallisations yielded only the biorelevant polymorph. Isopentyl acetate was then 

used for kinetics estimation due to its favourable aspirin solubility and relative 

safety. In isopentyl acetate, a supersaturation of 1.22 and a temperature of 28.9 °C 

gave an optimal crystallisation process with target values of induction time of 1 h, 

growth rate of 1 µm/min and secondary nucleation rate of 1 count/sec.  

These small-scale experiments (2-8 mL) can be compared to a study by Maia et al., 

where samples were circa 50 – 75 mL and heated at 0.01 °C/min. Aspirin solubility 

in ethanol in the literature175 and aspirin solubility collected by the methodology 

here yielded a value difference of only 1.4% (Table 7). This comparison suggests 

the reliability of the method used here despite each data point being collected 50 

times quicker and with a 10-fold reduction in material. Similar comparisons were 

observed for other APIs when data was available.  

Table 7. Comparison of solubility collection methods at 30 °C for aspirin in ethanol. 

Solvent Small-scalea 
(g/g solvent) 

Mid-scaleb 
(g/g 
solvent) 

Differencec 
(%) 

Ethanol  0.295 0.299 1.36 
a Values are extracted by linear regression using the Van’t Hoff relationship. 

b.175 

c the difference was calculated in respect to small scale. 

 

5.4. Conclusions 

Solubility data for aspirin in 31 solvents was collected rapidly (~ 3 weeks) using only 

62 g of API. The method was found to be reliable and on par with a method 

previously described in the literature. Kinetic parameter estimations were also 

achieved using only 9 g of API. These values will allow for the parameterisation of 

digital twin models which will, in turn, inform larger-scale medicine manufacturing. 

The workflow used here will guide autonomous robotic data collection for a range 

of APIs and solvents as part of the CMAC DataFactory. 
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Appendix 

This appendix contains additional information for context and details pertaining to 

extracted data tables. 

Table 8. Solubility parameter coefficient (m, c) for aspirin across all solvents where quantitative data 

was collected. Van’t Hoff relationship was applied where concentration was expressed as lnX (g/g 

solvent) and temperature expressed as 1/T (K-1) and linear regression applied. 

Solvent m c R2 

1-butanol -4323.63 12.07379 0.929609 

1-pentanol -3046.5 7.939335 0.935387 

2-methyltetrahydrofuran 16480.7 -57.6657 1* 

2-n-butoxyethyl acetate -2723.42 6.845822 0.998423 

2-pentanol -2849.71 7.162042 0.844134 

2-pentanone -2590.8 6.973981 0.998468 

2-propanol -6058.57 18.22854 0.966292 

3-pentanone -2021.86 4.890497 0.993043 

4-methyl-2-pentanone -2643.27 6.977208 0.987024 

acetonitrile -2011.45 5.058651 0.986104 

chlorobenzene -3085.55 7.558764 0.999814 

chloroform -2292.44 5.238838 0.979163 

cyclohexane -2376.4 4.763598 0.832443 

diethyleneglycol diethyl 
ether 

-2091.22 5.206969 0.995441 

dimethyl carbonate -2632.37 6.626194 0.997133 

ethanol -3209.63 9.405387 0.930932 

ethyl acetate -2728.73 6.75483 0.991284 

ethylene glycol -4732.85 12.69255 0.727178 

formamide -2808.14 8.038103 0.998204 

heptane -960.549 -0.73169 0.081151 

isobutyl acetate -1064.09 1.543915 0.356205 

isopentyl acetate -3713.1 9.052439 0.992751 

isopropyl acetate -2454.24 5.948659 0.996628 

methanol -2866.41 8.722827 0.987047 

N,N-dimethylformamide -588.01 1.75283 1** 

N-methylpyrrolidone -1636.35 4.242122 0.984581 

n-pentyl propionate -3535.9 8.894414 0.881268 

n-propyl propionate -1830.56 4.17541 0.999887 

tert-butyl acetate -1886.39 4.146686 0.41835 

tetralin -2314.87 4.878595 0.75667 

toluene -1894.82 2.272772 0.973644 
*Only 2 data points were recorded, the trend was opposite to what was expected (therefore can be ignored). 

**Only 2 data points were recorded. 



70 
 

6. Comparative Study on Adaptive Bayesian 

Optimization for Batch Cooling Crystallization for 

Slow and Fast Kinetic Regimes. 

This chapter is the peer-reviewed published work found here:  

Thomas Pickles, Chantal Mustoe, Cameron J. Brown, and Alastair J. Florence, 

Crystal Growth & Design 2024 24 (3), 1245-1253 

DOI: 10.1021/acs.cgd.3c01225 

The code used in this chapter can found be at tpicks95/Chapter6_PyMOO 

(github.com) and tpicks95/Chapter6_BO (github.com). 

Abstract  
Crystallisation kinetic parameter estimation is important for the classification, 

design and scale-up of pharmaceutical manufacturing processes. This study 

investigates the impact of supersaturation and temperature on induction time, 

nucleation rate, and growth rate for the compounds lamivudine (slow kinetics) and 

aspirin (fast kinetics). Adaptive Bayesian optimisation (AdBO) has been used to 

predict experimental conditions that achieve target crystallisation kinetic values for 

each of these parameters of interest.  The use of AdBO to guide the choice of the 

experimental conditions reduced material usage up to five-fold when compared to 

a more traditional statistical Design of Experiments (DoE) approach. The reduction 

in material usage demonstrates the potential of AdBO to accelerate process 

development as well as contribute to Net-Zero and green chemistry strategies. 

Implementation of AdBO can lead to reduced experimental effort and increase 

efficiency in pharmaceutical crystallisation process development. The integration of 

AdBO into the experimental development workflows for crystallisation 

development and kinetic experiments offers a promising avenue for advancing the 

field of autonomous data collection exploiting digital technologies and the 

development of sustainable chemical processes. 

 

https://github.com/tpicks95/Chapter6_PyMOO
https://github.com/tpicks95/Chapter6_PyMOO
https://github.com/tpicks95/Chapter6_BO
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6.1. Introduction 

Crystallisation is a key step in the manufacture of high-quality drug products and 

serves as a purification step to remove impurities from the crude product.176 

Understanding and controlling the crystallisation of pharmaceuticals allows us to 

design manufacturing processes that yield the desired particle shape, size, and 

polymorph without impacting the yield, purity and quality of the final product. For 

example, differences in particle shape and size affect downstream processing as 

well as the effectiveness of dissolution for human absorption.177 

As particle shape and size are dictated by the kinetics of crystallisation, these 

properties can be controlled by altering key process parameters that dictate 

supersaturation. Controlling particle shape and size relies on controlling 

nucleation, growth and agglomeration rate processes. Primary nucleation, which is 

the initial formation of new crystals in solution and can be described by induction 

time, is inherently difficult to control deterministically as it displays a stochastic 

character.154 Secondary nucleation relates to the formation of new nuclei from the 

attrition of existing crystals, and can be controlled by changes in solid loading, 

particle size, shear rate, mixing and supersaturation.178 A pharmaceutical 

crystallisation process requires nucleation and growth rates that can be maintained 

within ranges that facilitate robust and controlled operation.  Excessive nucleation 

rates lead to too many fines and/or fouling and excess particle growth can lead to 

unfavourable particle shapes, agglomeration, and reduced purification 

performance with the potential inclusion of impurities. Agglomeration, the 

aggregation of two or more particles to form larger particles, can change the final 

product's physical and chemical properties, and while it can be used to aid in 

filtering, agglomeration must be controlled to ensure consistency and tablet 

content uniformity.179, 180 Conversely, very low nucleation and growth rates can lead 

to low yield and long, uneconomic processing times. 

Various methods have been applied to develop controlled crystallisation processes 

ranging from chemical intuition181, methodical parameter investigation182 or 

machine learning approaches proposed in this work. DoE61 is a powerful statistical 

tool used to map the design space, fit models to the data, interpolate between 

known values and forms a useful component of quality by design (QbD) 

experimental planning. The use of statistical DoE for process understanding was 
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introduced initially in the agriculture industry60, 61 and in recent years has seen wide 

application in biotechnological processing,183, 184 drug discovery and medicines 

manufacture55, 185-187. DoE experimental planning aims to use the least number of 

experiments to explore the effects of changing a given number of variables across 

the whole design space. However, even with DoE methods, exploring large 

numbers of process variables still requires many experiments. For example, a full 

factorial design exploring 5 variables with 3 increments would result in a plan of 

243 experiments which, when using expensive active pharmaceutical ingredients 

(APIs), may not be necessitating using other design methods.  

In this work, we explore Bayesian optimisation188 (BO) as an alternative method to 

DoE for finding global or local minima or maxima in functions of interest. BO 

constructs a probabilistic model of the objective function, specifically the difference 

between target and experimental crystallisation kinetic parameters. It employs an 

acquisition function to iteratively suggest the next point of evaluation, or 

experiment, to either reduce uncertainty in the model by further exploration and or 

determine the global optimum by exploiting known values. Previous studies114 

utilising BO in pharmaceutical crystallisation are promising but highlight the need 

for methods to accommodate the multiple objectives required for suitable process 

design. For example, Bayesian approaches for optimisation of chemical reactions 

were shown to be efficient, taking a few hours of lab work compared to Super 

modified simplex algorithm (10+ hours per variable) and grid searches (600+ hours 

per variable).189  

This work demonstrates the application of algorithms to optimise crystallisation 

process conditions to achieve desired pharmaceutical crystallisation kinetic 

parameters. Methods including DoE and BO can be used to target specific values 

for pharmaceutical crystallisation parameters, and both methods are shown to be 

significantly more efficient than grid-search approaches. An adaptive (a varying 

exploration and exploitation model) BO experimental planner showed further 

improved performance over DoE and fixed BO methods. The exploration of two 

API case studies shows the algorithmic approach proposed may be generalisable 

to other APIs. Implementing improved decision-making algorithms such as these 

could reduce time and material use and contribute to a greener and more 

sustainable approach to process development in medicine manufacturing.  
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6.2. Materials  

Lamivudine was purchased from Molekula Ltd. as an off-white powder and aspirin 

was purchased from Alfa Aesar as a white solid. Both APIs have a purity exceeding 

99% and did not undergo further purification. Ethanol and ethyl acetate were 

purchased from VWR and have purity exceeding 99.97% so did not undergo further 

purification.  

 

6.3. Experimental Methods and Optimisation 

The optimisation loop included the following steps: vial dosing, crystallisation, 

analysis of the resulting image data, and further data analysis by an optimisation 

algorithm to recommend the next best round of experiments. A schematic to 

represent this logical flow is shown in Figure 36. 

 
Figure 36. Schematic diagram of the experimental set-up and optimisation loop consisting of the 

Zinsser Crissy platform, the Technobis Crystalline, data analysis, and optimisation algorithms (left-to-

right). 

6.3.1. Vial Dosing, Crystallisation and Image Analysis 

Sample preparation for crystallisation experiments was carried out using a Zinsser 

Analytics Crissy platform190, an XYZ robot that doses both powders and liquids. 

Crystallisation experiments were conducted using a Technobis Crystalline 

platform125, a parallel reactor system that can perform eight separate heating, 

cooling, and stirring procedures with in-built sample imaging at the 2 – 7 mL scale. 
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The experimental procedure was consistent for all experiments and involved the 

following steps: 

1. Heat the solution to a temperature 10 °C below the solvent's boiling point 

at a rate of 0.5 °C/min. 

2. Maintain the elevated temperature for 10 minutes to ensure complete 

dissolution. 

3. Cool the solution to the desired isothermal temperature at a rate of -10 

°C/min, with no stirring at this stage. 

4. Keep the solution at the isothermal temperature for three hours. 

5. Repeat steps 1-4 for a total of 5 cycles. 

The stir rate was fixed at 600 rpm throughout the experiment, except where 

specified. 

Images were captured every five seconds, and an in-house convolutional neural 

network (CNN) image analysis algorithm 191 was used to extract kinetic parameters. 

X-ray powder diffraction (XRPD) patterns were collected using a Bruker D8 

Discover128, and the data were visualized using DIFFRAC.EVA192 and Matplotlib193 

(Python). Solubility profiles were generated for each API in a solvent selected from 

previous work (Chapter 4 and Chapter 5). 

6.3.2. Optimisation: Input Parameter Bounds, Target Parameter 

Objectives and Approaches 

The objective of this optimisation problem was to minimise the difference between 

the experimentally measured values for the kinetic parameters of interest and the 

associated target values. Table 9 presents the bounds on the input parameters for 

supersaturation and isothermal experimental temperature and the target 

objectives for induction time, nucleation rate and growth rate. As this optimisation 

problem has multiple objectives it can be assumed that the optimum process 

conditions will sit on a Pareto front194 so the objective function value will be used as 

a quantifier for optimisation performance. 
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Table 9. The parameters and objectives for the optimisation problem. 

API 

Input parameter 
bounds 

Target parameter  
objectives 

Super-
saturation 

Temperature 
 (°C) 

Induction 
time (s) 

Nucleation 
rate 

(#/image/s) 

Growth 
rate 

(µm/s) 

Lamivudine 2 – 3 5 – 50 3600 0.1 0.01 

Aspirin 1.05 – 2 5 – 50 3600 0.1 0.05 

 

The input parameter bounds were varied for each API to accommodate the 

different sizes of their metastable zone width (MSZW). Lamivudine showed a broad 

MSZW (> 30 °C) and therefore was deemed unlikely to observe any nucleation at 

low supersaturations within the time constraints of the experiment. Aspirin 

displayed a narrow MSZW (mean of 16 °C) and thus nucleation was likely to be 

feasible at low supersaturations (generally below 1.2). As a larger MSZW generally 

allows higher supersaturations to be achieved before  primary nucleation occurs 

and nucleation is known to dominate growth at high supersaturations195, it was 

mechanistically assumed that, comparatively, nucleation would dominate for 

lamivudine crystallisation but growth would dominate for aspirin crystallisation. 

Thus, while the nucleation rate target was held constant for both systems, the 

growth rate target for aspirin was set to 5x the target for lamivudine. Numerical 

values for rate targets were based on initial experiments. 

6.3.2.1. Optimisation Approach 1: Design of Experiment (DoE) with Surface 

Minimisation 

For the DoE optimisation, an initial DoE screening of 28 experiments was followed 

by successive rounds of smaller screens (7 experiments/iteration) centred at the 

next predicted optimum. We refer to this method as adaptive due to the iterative 

update of the objective function and the adaption of this new objective function 

surface to guide the next round of experiments. This cycle was repeated until the 

termination of a change in temperature of less than 2 °C and a change in 

supersaturation of less than 0.02 between previous and next recommended 

experiments was achieved. 

The initial experimental screen was performed by employing a full-factorial design, 

consisting of five supersaturation levels, five temperature levels, and three central 
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points, resulting in 28 experiments. The initial DoE plan for lamivudine (Table 10) 

was centred around a supersaturation of 2.4 and an isothermal temperature of 20 

°C and for aspirin (Table 10), the DoE plan was centred around a supersaturation 

of 1.5 and a temperature of 20 °C. 

Table 10. Adaptive design of experiment plan for optimisation iterations. *If iterations continue past 3 

then the same exploitative (small scope of experimental design space) plan is followed. 

 Iteration 

Initial 1 2 3* 

Supersaturation +/- 0.4 +/- 0.2 +/- 0.1 +/- 0.05 

Temperature +/- 10 °C +/- 10 °C +/- 5 °C +/- 2 °C 

 

For the subsequent optimisation, an objective function surface could not be fitted 

directly to the kinetic parameters measured experimentally for multiple reasons. 

Firstly, as nucleation is a stochastic process dozens of experiments are required to 

sample the probability distribution of induction time values.154 Secondly, there is an 

inherent measurement uncertainty associated with the nucleation and growth rate 

parameters obtained via image analysis as only a subset of sample particles are 

sampled. Consequently, multiple data points are required to reduce uncertainties 

associated with these kinetic parameters.  

As the aim of the optimisation was to achieve convergence in as few experiments 

as possible, equations that describe the kinetics of crystallisation were fit to the 

experimental data and used to smooth the surface of the objective. To smooth the 

surface of the objective function with domain knowledge, experimental data were 

plotted for each input parameter (temperature and supersaturation) with respect 

to each objective (induction time, nucleation rate and growth rate) and equations 

1-5 (below)196 197 were fit to the data: 

 

Equation 8. 𝑡𝑖𝑛𝑑(𝑆𝑆) = 𝐴 ∗ 𝑒−𝑏∗𝑆𝑆 

Equation 9. 𝑅𝑔𝑟𝑜𝑤𝑡ℎ(𝑆𝑆) = 𝑎 ∗ 𝑆𝑆 + 𝑏 

Equation 10. 𝑅𝑔𝑟𝑜𝑤𝑡ℎ(𝑇) = 𝑎 ∗ 𝑇 + 𝑏 

Equation 11. 𝑅𝑛𝑢𝑐(𝑆𝑆) = 𝐴 ∗ 𝑒𝑏∗𝑆𝑆 
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Equation 12. 𝑅𝑛𝑢𝑐(𝑇) = 𝑎 ∗ 𝑇 + 𝑏 

where tind is induction time, Rgrowth is growth rate, Rnuc is nucleation rate at a given 

supersaturation SS (where SS = 1 at equilibrium solubility) and temperature T and a 

and b are fitted parameter coefficients. The growth rate objective was weighted by 

a factor of ten, this meant that all parameters sat within the same order of 

magnitude and thus on a comparable scale. There is no direct domain relationship 

between induction time and temperature, so this relationship was assumed as 

negligible and therefore parameters were not fitted. The parameters A, a, and b 

were obtained from the fitted equations, and the resulting fitted functions for 

induction time, nucleation rate and growth rate were then mathematically 

manipulated198 so that the minimum of each function occurs at the objective target. 

The functions transformations used are given below with Equation 13 being used 

to transform equations that feature exponential relationships between the 

objective and the input parameters (Equation 8 and Equation 11), and Equation 14 

being used to transform equations that feature linear relationships (Equation 9, 

Equation 10 and Equation 12): 

 

Equation 13. 𝐷𝑥(𝑃𝑓𝑖𝑡𝑡𝑒𝑑(𝑥)) = 𝑒|𝑙𝑜𝑔(𝑃𝑡𝑎𝑟𝑔𝑒𝑡)−𝑙𝑜𝑔(𝑃𝑓𝑖𝑡𝑡𝑒𝑑(𝑥))| 

Equation 14. 𝐷𝑥(𝑃𝑓𝑖𝑡𝑡𝑒𝑑(𝑥)) = |(𝑃𝑡𝑎𝑟𝑔𝑒𝑡) − (𝑃𝑓𝑖𝑡𝑡𝑒𝑑(𝑥))| 

where Ptarget is the target value for a given parameter, Pfitted  is the fitted equation for 

a given parameter evaluated at the input value for either supersaturation, SS, or 

temperature, T,  both here represented by x, and the difference between the target 

value Ptarget and fitted value Pfitted(x) for a given target parameter is defined as the 

function Dx(Pfitted(x)). 

 

The objective function for a given supersaturation and temperature, f(SS,T), could 

then be defined as follows: 

 

Equation 15. 𝑓(𝑆𝑆, 𝑇) =  𝐷𝑆𝑆(𝑡𝑖𝑛𝑑(𝑆𝑆)) + 𝐷𝑆𝑆(𝑅𝑛𝑢𝑐(𝑆𝑆)) + 𝐷𝑇(𝑅𝑛𝑢𝑐(𝑇)) +

𝐷𝑆𝑆(𝑅𝑔𝑟𝑜𝑤𝑡ℎ(𝑆)) + 𝐷𝑇(𝑅𝑔𝑟𝑜𝑤𝑡ℎ(𝑇)) 
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The minimum of the objective surface (within the parameter upper and lower 

bounds) was then calculated using multiple approaches: a genetic algorithm (GA), 

differential evolution (DE), covariance matrix adaptation evolution strategy (CMA-

ES), Nelder-Mead or pattern search approach. These algorithms were 

implemented in Python using the PyMOO199 library. The means of the values of 

supersaturation and temperatures corresponding to the predicted minimum from 

each algorithm were used as the centre point for the next round of experiments. A 

smaller two-level full factorial DoE (Table 10) was then performed at this 

supersaturation and temperature. Following this round of experiments, the fitted 

functions were updated, the objective function surface recalculated and a new 

average minimum predicted for the next round of experiments. This loop was 

repeated until the termination criteria were met. The subsequent DoE plans can be 

seen in  Table 10. Using multiple algorithms to predict the next best experiment 

allowed us to remove outliers (see Table 13 and Table 14). 

6.3.2.2. Optimisation Approach 2: Bayesian Optimisation 

Three centre points were taken as initial values and the difference between the 

target objectives and the experimental values for the parameters of interest were 

included in the objective function using the equation below: 

 

Equation 16. 𝐷𝑆𝑆,𝑇(𝑃𝑒𝑥𝑝@𝑆𝑆,𝑇𝑇) = |𝑙𝑜𝑔(𝑃𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑙𝑜𝑔(𝑃𝑒𝑥𝑝@𝑆𝑆,𝑇)| 

where Ptarget is the target value for a given parameter, Pexp@SS.T is the experimental 

value for a given parameter at given supersaturation, SS, and temperature, T, 

inputs, and the difference between the log target value, Ptarget, and log experimental 

value, Pexp@SS,T, for a given supersaturation and temperature is defined as the 

function DSS,T(Pexp@SS,T) where P is the parameter of interest. As stated earlier in the 

construction of Equation 15, the relationship between induction and temperature 

can be assumed to be negligible, the same can be applied in Equation 17 also. 

 

The objective function assessed with kinetic parameters measured at a given 

supersaturation and temperature, f(SS,T), compared with the target kinetic 

parameters was then defined as follows: 
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Equation 17. 𝑓(𝑆𝑆, 𝑇) =  𝐷𝑆𝑆,𝑇(𝑡𝑖𝑛𝑑) + 𝐷𝑆𝑆,𝑇(𝑅𝑛𝑢𝑐) + 𝐷𝑆𝑆,𝑇(𝑅𝑔𝑟𝑜𝑤𝑡ℎ) 

A Bayesian Optimisation algorithm was then implemented to determine the next 

experimental point to trial within the lower and upper bounds of the parameters. 

The algorithm was implemented in Python using the GPyOpt200 library using a 

Gaussian process probabilistic model and expected improvement acquisition 

function (see Item 1 in the Appendix of Chapter 6). 

A Bayesian model with acquisition jitter (a scalar ratio between exploration: 

exploitation) of 0.001, 0.1, 1 and 10 as well as an adaptive dynamic model was 

performed. The criterion for changing the exploration/ exploitation trade off was if 

the objective function value falls below 10% of the maximum objective function 

value, the acquisition jitter is set to 1. Then, if the objective function value falls below 

5% of the maximum, the acquisition jitter is assigned a value of 0.1. In summary this 

approach starts by selecting experiments across the whole design space and then 

adapts its search purpose to focus on finding the true optimum solution. This 

discrete-value adaptive approach makes sense for a crystallisation given the 

potential for many local optima and that experiments are done in batch. A 

continuous-value adaptive approach to changing the acquisition jitter could be 

implemented on fast moving experiments such as flow chemistry. Similar to the 

DoE optimisations, the termination criteria for convergence were a change in 

temperature of less than 2 °C and a change in supersaturation of less than 0.02 

between recommended experiments. Unlike the DoE optimisations, no domain 

knowledge in the form of physical equations that describe the system was needed 

as Gaussian processes can adapt the function used allowing good fit to data with 

many minia and large uncertainties.  

 

6.4. Results and Discussion 

Lamivudine recrystallising from ethanol typically has relatively slow kinetics (i.e., 

large MSZW and induction times in the hours (SS ~ 2)) whereas aspirin in ethyl 

acetate typically has fast kinetics (i.e., narrow MSZW and induction times in the 

minutes (SS ~ 2)). Comparing the performance of the DoE and BO optimisation 

methods for APIs with different inherent kinetic profiles can provide evidence for 

the generalisability of application of these methods.  
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6.4.1. Design of Experiment with surface minimisation: 

Overall, the DoE approach allowed for sufficient data collection of measured kinetic 

parameters and, after applying domain knowledge, allowed for visualisation of the 

data on a 3D surface. The minimum point of the surface (the only optimum value) 

was then found each time by search-based algorithms (refer to Section 6.3.2.1.). 

The initial DoE screen consisting of 28 experiments investigated how 

supersaturation and temperature impacted each of the three objectives: induction 

time, nucleation rate and growth rate. The minimum of the 3D objective function 

surface corresponded to a supersaturation of 2.88 and temperature 26.9 °C for 

lamivudine and a supersaturation of 1.21 and temperature 45.0 °C for aspirin. As 

discussed earlier, various approaches were used to identify the minimum, and the 

values determined by GA, DE, CM-AES and pattern search consistently agreed 

(Table 13 and Table 14 in the Appendix of Chapter 6). By contrast, the Nelder Mead 

values were discarded when calculating the mean value in early iterations as this 

algorithm encountered calculation errors and only predicted the minimum at 

boundary conditions. The results over seven iterations of the optimisation and 

experimental loop are shown in Table 11 where the median values of 

supersaturation and isothermal temperature predicted across all algorithms are 

presented. 
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Table 11. Predicted optimum supersaturations and isothermal experimental temperatures for 

lamivudine and aspirin over multiple iterations, with the objective function also presented. 

Iteration 

Lamivudine Aspirin 

Temperature 

(°C) 

SS Obj. 

Function 

Value 

Temperature 

(°C) 

SS Obj. 

Function 

Value 

Initial 

Screen 

26.9 2.88 0.86 45.0 1.21 1.00 

2 26 2.63 0.81 50.0 1.18 0.90 

3 24.9 2.56 0.73 22.62 1.12 0.84 

4 22.4 2.28 0.72 19.13 1.14 0.72 

5 22.97 2.31 0.68 12.97 1.14 0.68 

6 23.73 2.36 0.61 5.98 1.16 0.57 

7 24.12 2.36 0.61 5.0 1.16 0.57 

 

For both APIs, the termination criteria (see section 6.3.2.1.) were achieved after the 

seventh iteration of the algorithm, equating to 70 experiments. These optimisation 

approaches were consistent in predicting relatively similar values of 

supersaturation and temperature for the global minimum of the objective function 

for lamivudine. However, for aspirin, a series of supersaturation and temperature 

values resulted in the global minimum ‘valley’ as seen in Figure 37.  

 

Figure 37. Surface plot of the objective function resulting from the adaptive DoE optimisation 

experiments for lamivudine (a) and aspirin (b). 

a. b. 
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The surface plot for aspirin has minimal dependence on temperature and is much 

more dependent on supersaturation such that small changes (+/- 0.1) in the 

supersaturation had more impact on the crystallisation kinetics than changes in the 

temperature. The surface plot for lamivudine shows a comparable impact on 

crystallisation kinetics caused both by supersaturation and temperature.  

DoE approaches are typically less suited to handle high levels of noise.201 The fitting 

of physical equations to smooth the objective function surface helped address this 

issue of noise202 associated with the stochastic nature of crystallisation nucleation 

kinetics, and, arguably, significantly reduces the number of experiments required 

to generate a smooth enough surface to find a minimum. This in-part mechanistic 

model parameter fitting allowed for a 2nd order polynomial kinetic model to be 

defined for each API. 

6.4.2. Bayesian optimisation: 

BO was applied using five different acquisition jitter level models to evaluate the 

performance from different exploration and exploitation weightings. These were: 

highly exploitation-focused, exploitation-focused, exploration-focused, a model 

that balanced exploration vs. exploitation and an adaptive model which started as 

exploration-focused and moved to exploitation-focused as the objective function 

value decreased (see section 6.3.2.2 for further details). The three centre points of 

the domain space of interest (SS of 2.4 and temperature of 20 °C for lamivudine 

and SS of 1.5 and temperature of 20 °C for aspirin), and the related extracted kinetic 

data from the initial DoE plan, were used as initial values for the Bayesian model.  

As expected, exploitation-focused models i.e., acquisition jitter of 0.001 to 0.1, 

terminated quickly but still had high values (relative to other models) for the 

objective function for both lamivudine and aspirin indicating that optimisation likely 

found a local rather than global minimum (Table 12). The model which balanced 

the focus between exploitation and exploration, i.e. acquisition jitter of 1, 

terminated for both lamivudine and aspirin after 6 experiments again with high 

objective function values indicative of local minima (Table 12). The exploration-

focused model, i.e., acquisition jitter of 10, achieved significantly lower objective 

function values for both APIs compared with the exploitation-focused model and 

the model that balanced exploration and exploitation models. However, the 
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exploration-focused model only terminated after 31 experiments for lamivudine 

and 25 experiments for aspirin (Table 12). 

 

Table 12. Predicted optimum supersaturations and isothermal experimental temperatures for 

lamivudine and aspirin across different exploration/ exploitation Bayesian models. 

Acquisition 

jitter 

model 

Lamivudine Aspirin 

Temperature 

(°C) 

SS Obj. 

Function 

Value 

No. 

of 

Exp. 

Temperature 

(°C) 

SS Obj. 

Function 

Value 

No. 

of 

Exp. 

0.001 20 2.43 1.90 8 20 1.49 1.98 6 

0.1 19.82 2.58 1.76 6 19.52 1.50 1.98 8 

1 20.95 2.63 1.38 6 20 1.51 1.98 6 

10 29.8 2.57 0.86 31 14.39 1.36 0.40 25 

Adaptive 17.9 2.86 0.40 32 18.17 1.27 0.40 15 

 

To integrate the advantages of exploration-focused models (lower objective 

function values indicative of a global minimum) and exploitation-focused models 

(faster convergence), an adaptive Bayesian model was explored. This acquisition 

jitter for this model started high (10), i.e., exploration-focused, and was reduced 

stepwise with steps down in value triggered by reductions in objective function 

values until the termination criteria was met. In other words, an objective function 

value of between 5 and 10% of the maximum value (this was 8% after 13 

experiments for lamivudine and 6% after 14 experiments for aspirin) triggered the 

change of acquisition jitter from 10 of 1. Termination criteria was met for aspirin 

after 1 experiment at an acquisition jitter of 1. In the lamivudine optimisation, a 

reduction in the objective function value to a value of 3% of the maximum triggered 

the acquisition jitter to change from 1 to 0.1 after a further 19 experiments. The 

results from next experiment following this change met termination criteria. If the 

problem was more complex or the termination criteria more stringent then the 

acquisition jitter could be further reduced, however this was unnecessary here. In 

total termination criteria were satisfied after 32 experiments for lamivudine and 15 

experiments for aspirin (Table 12). This difference in number of experiments 

required is indicative of the differences between fast and slow kinetic regimes for 

the two APIs. Aspirin has a smaller ‘sweet spot’ and a large gradient into the 
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minimum due to the large impact on crystallisation kinetics from small changes in 

process conditions particularly SS and as such the BO algorithm can find the 

optimum more efficiently. 

 

 

 

Figure 38. Plot of posterior mean, posterior standard deviation (sd), and acquisition function for 

lamivudine (a) and aspirin (b) for the final iteration of the adaptive exploration/ exploitation model. 

The X and Y axis, labelled as X1 and X2 correspond to the supersaturation and temperature 

(respectively) input values at which the posterior mean, posterior standard and acquisition function 

are evaluated. 

Figure 38 shows the 2D heat maps for the objective function value (here labelled 

posterior mean referring to the mean of the posterior distribution203 output in BO), 

the uncertainty associated with these values (posterior standard deviation), and the 

acquisition function (an expected improvement algorithm used to weight the 

optimisation towards exploration or exploitation). While some parts of the design 

space still have areas with higher levels of uncertainty (i.e., posterior standard 

deviation ~0.8 and above), these areas also correlate to points where the value of 

the objective function (i.e., posterior mean values) is also predicted to be high. 

a. 

b. 
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Thus, these areas are unlikely to correspond to the global minimum, i.e., objective 

of the optimisation.   

6.4.3. Comparison of the optimisation methods 

It is worth focussing on the results from AdBO as this approach either performed as 

well as or better than other BO configurations tested and shows most promise as a 

general experimental optimisation approach. As the objective functions for BO and 

DoE approaches investigate the absolute difference between the experimental or 

fitted outcome and the target values for each induction time, nucleation rate, and 

growth rate, we can compare the objective function values for both methods. All 

target parameters for induction time, nucleation rate and growth rate were satisfied 

for both lamivudine and aspirin with experimental validation (Figure 45 in the 

Appendix of Chapter 6 – with reference to reliability of each measurement), and 

XRPD (Figure 46 and Figure 47) was run on each crystal sample recovered to 

confirm the target polymorphic form for both lamivudine and aspirin was 

produced.  

The BO methodology for optimising kinetic parameters required fewer 

experiments when compared with the DoE approach (Figure 39).  Specifically, 

AdBO optimisation of lamivudine crystallisation used 50 % less material and 

required 54 % less experiments than DoE methodology. Further improvements 

were seen for aspirin crystallisation where AdBO used 75 % less material and 

required 79 % less experiments than the DoE optimisation. This improvement in 

experimental efficiency is predominantly due to the fact that the AdBO method 

does not require an initial screen of experiments.  

As shown in Figure 39, the AdBO method reaches the lowest objective function 

value and satisfies the termination criteria in the least number of experiments 

suggesting that the AdBO method can outperform both the fixed acquisition jitter 

Bayesian models and the DoE method. While the DoE method achieved a relatively 

low objective function through initial screening, the AdBO method continues to 

drive the trends in objective function even lower. Notably, the AdBO model 

demonstrates a significant improvement over the BO10 (Bayesian with an 

acquisition jitter of 10) for aspirin, achieving a low objective function in 10 fewer 

experiments. Furthermore, AdBO’s faster reduction of the objective function and 

satisfaction of achieving the termination criteria comes at no additional 
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computational cost as all the algorithms employed in this study exhibited 

comparable average execution times (from 3 to 4 s), with no statistically significant 

differences observed (Figure 44 in the Appendix of Chapter 6). 

The inherent noise in the objective function also presented no noticeable challenge 

for the AdBO optimisation. The AdBO method, as applied, was ‘blind’ to the physics 

of the experiment in that no domain knowledge was required to achieve a fit for the 

objective function. This lack of reliance on equations that describe the physics of 

the system provides us with a potentially generalisable method that can handle the 

inherent stochastic nature of induction time and the higher levels of noise 

associated with fewer numbers of experimental points.204 These results also 

suggest that the AdBO method may have potential application to optimise other 

parameters for which the physics of the system is complex or poorly understood as 

well as other physical processes beyond crystallisation.  
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Figure 39. Comparison between different optimisation approaches, DoE for lamivudine (a) and aspirin (d) and AdBO for lamivudine (b*) and aspirin (e*) and 

algorithm performance in reducing the objective function for process condition optimisation for small-scale batch cooling crystallisation of lamivudine (c**) and 

aspirin (f**). The dashed lined represents an extrapolation back to experiment 0, as the DoE methods required a 28 initial screening experimental plan. 

*The numbering on the legends for these figures were not sequential as the AdBO method was a 1 experiment/ iteration approach and thus would make the legend too large to 

display. 

**Some algorithms performed exactly the same as each other and hence not all lines can be displayed on the graph due to overlapping. 
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Both approaches (DoE and AdBO) discussed in this paper have also shown 

significant improvements over a grid search with Bayesian methods requiring the 

least experimental work. A grid search of the design space for lamivudine and 

aspirin would require 1125 and 1069 experiments respectively based on the 

increments of the termination criteria and the span of the design space for each 

variable for each API.  

 

6.5. Conclusions 

This study demonstrated the successful application of two optimisation methods 

for crystallisation kinetic parameters of two APIs with the approaches implemented 

in the Python libraries, PyMOO and GPyOpt. By minimising the total sum of the 

differences between target and experimental values, these algorithms have 

successfully achieved the desired target values for induction time, secondary 

nucleation rate, and growth rate that relate to attainable conditions for a viable 

industrial process design. Two case studies of lamivudine and aspirin were explored 

to assess the effectiveness of the algorithms for APIs that display widely differing 

crystallisation kinetics. The DoE and AdBO methods identified the Pareto optimal 

process conditions, specifically supersaturation and temperature, essential for 

optimising crystallisation processes. Notably, both methods yielded low objective 

function values (0.61 for DoE lamivudine and 0.57 for DoE aspirin and 0.40 for 

AdBO both lamivudine and aspirin with respect to initial values upwards of 11 for 

lamivudine and 7 for aspirin). The savings, in terms of time and material (Section 

6.4.3.), of using AdBO over DoE methods can be estimated as between a 15 – 80 

kWh reduction in energy and specifically £20,000/kg for lamivudine and £60/kg for 

aspirin. 

The effective application of the AdBO method to these two APIs is promising 

however further study across a wider range of APIs is required to confirm the 

generalisability of this approach to the wide range of physicochemical properties 

presented by new pharmaceutical molecules. It will be important to address known 

limitations of the method, such as increasing the dimensionality of this problem 

beyond 20 inputs/outputs (e.g., stirring rate, rate of antisolvent addition, heating/ 

cooling rate, morphology) could reduce algorithmic performance.108, 109 The 
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incorporation of these more complex parameters will have a complex relationship 

with nucleation rate and growth rate and as such convergence of the algorithm may 

require further experimentation or an initial training data set to achieve high 

algorithmic performance. Furthermore, in this work we relied on prior knowledge 

of the MSZW in specific solvents system tested when constraining the design space 

search. However, the approach can be phased to explore potential process 

conditions to evaluate MSZW under different conditions to then feed into more 

detailed kinetic parameter studies.  

Even with these limitations, this study clearly shows that using BO to guide 

experimental design allows for a faster, targeted and more sustainable approach to 

API crystallisation kinetics data collection in pharmaceutical development. 

Furthermore, the AdBO model could transform automated crystallisation data 

collection to autonomous experimental design enabling smart experimentation for 

crystallisation kinetics to further enhance R&D productivity and process 

understanding. This implementation of BO has the potential to translate to 

meaningful cost savings for materials, resource, energy utilisation and chemical 

waste and to accelerate development timelines. This method could also be 

expanded to investigate the optimisation of other numerical parameter objectives 

such as solute concentration, aspect ratio and yield and applied to optimisation of 

drug substant filtration205 and flow146.  
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Appendix 

This appendix contains additional information for context and details pertaining to 

the algorithm code, algorithm results, computational time used and extracted data 

figures and tables. 

def f(x,y): 

    return x**2 + x + y**2 + y 

GPyOpt.methods.BayesianOptimization(f = f, 

                                    domain=bounds, 

                                    model_type='GP', 

                                    acquisition_type ='EI', 

                                    acquisition_jitter = 0.001 to 10, 

                                    X=xy_init, 

                                    Y=z_init) 

Item 1. Bayesian optimisation code implemented in GPyOpt – using a simple 2D parabola function to 

aim for minimums on the surfaces of the initial data, domains set out as the input parameter bounds, a 

Gausian process probabilistic model, an expected improvement acquisition function, a varied 

exploration/ exploitation acquisition jitter and experimental data inputs of X (supersaturation (x) and 

temperature (y)) and the measured inputs of Y (crystallisation kinetics (z)). 

 

Table 13. Individual performance for next best experiment from each algorithm for DoE (PyMOO) for 

lamivudine. 

Iteration Algorithm Results 

Initial Screen GA Supersaturation - 2.88 
Temperature - 27.06 °C 

DE Supersaturation - 2.88 
Temperature - 26.92 °C 

CMAES Supersaturation - 2.88 
Temperature - 26.92 °C 

Nelder Mead Supersaturation - 2.88 
Temperature - -273.15 °C 

Pattern Search Supersaturation - 2.88 
Temperature - 26.92 °C 

Supersaturation of 2.88 +/- 0.2 and temperature of 26.9 +/- 10 °C will be 
used. 

2 GA Supersaturation - 2.63 
Temperature - 25.65 °C 

DE Supersaturation - 2.63 
Temperature - 25.97 °C 
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CMAES Supersaturation - 2.63 
Temperature - 25.97 °C 

Nelder Mead Supersaturation - 2.62 
Temperature - -273.15 °C 

Pattern Search Supersaturation - 2.63 
Temperature - 25.97 °C 

Supersaturation of 2.63 +/- 0.1 and temperature of 26.0 +/- 5 °C will be 
used. 

3 GA Supersaturation - 2.51 
Temperature - 24.46 °C 

DE Supersaturation - 2.56 
Temperature - 24.87 °C 

CMAES Supersaturation - 2.56 
Temperature - 24.87 °C 

Nelder Mead Supersaturation - 2.56 
Temperature - -273.15 °C 

Pattern Search Supersaturation - 2.56 
Temperature - 24.87 °C 

Supersaturation of 2.56 +/- 0.05 and temperature of 24.9 +/- 2 °C will be 
used. 

4 GA Supersaturation - 2.3 
Temperature - 22.18 °C 

DE Supersaturation - 2.28 
Temperature - 22.4 °C 

CMAES Supersaturation - 2.28 
Temperature - 22.4 °C 

Nelder Mead Supersaturation - 2.28 
Temperature - -273.15 °C 

Pattern Search Supersaturation - 2.28 
Temperature - 22.4 °C 

Supersaturation of 2.28 +/- 0.05 and temperature of 22.4 +/- 2 °C will be 
used. 

5 GA Supersaturation - 2.31 
Temperature - 22.97 °C 

DE Supersaturation - 2.31 
Temperature - 22.97 °C 

CMAES Supersaturation - 2.31 
Temperature - 22.97 °C 

Nelder Mead Supersaturation - 2.31 
Temperature - -273.15 °C 

Pattern Search Supersaturation - 2.31 
Temperature - 22.97 °C 

Supersaturation of 2.31 +/- 0.05 and temperature of 22.97 +/- 2 °C will be 
used. 
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6 GA Supersaturation - 2.36 
Temperature - 23.73 °C 

DE Supersaturation - 2.36 
Temperature - 23.73 °C 

CMAES Supersaturation - 2.36 
Temperature - 23.73 °C 

Nelder Mead Supersaturation - 2.36 
Temperature - 23.73 °C 

Pattern Search Supersaturation - 2.36 
Temperature - 23.73 °C 

Supersaturation of 2.36 +/- 0.05 and temperature of 23.73 +/- 2 °C will be 
used. 

7 GA Supersaturation - 2.36 
Temperature - 24.12 °C 

DE Supersaturation - 2.36 
Temperature - 24.12 °C 

CMAES Supersaturation - 2.36 
Temperature - 24.12 °C 

Nelder Mead Supersaturation - 2.36 
Temperature - 24.11 °C 

Pattern Search Supersaturation - 2.36 
Temperature - 24.12 °C 

Termination criteria of +/- 2 °C & 0.02 SS has been met 

 

Table 14. Individual performance for next best experiment from each algorithm for DoE (PyMOO) for 

aspirin. 

Iteration Algorithm Results 

Initial Screen GA Supersaturation - 1.21 

Temperature - 45.16 °C 

DE Supersaturation - 1.21 

Temperature - 45.04 °C 

CMAES Supersaturation - 1.21 

Temperature - 45.04 °C 

Nelder Mead Supersaturation - ERROR 

Temperature - ERROR 

Pattern Search Supersaturation - 1.21 

Temperature - 45.04 °C 
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Supersaturation of 1.21 +/- 0.2 and temperature of 45 +/- 10 °C will be 

used. Minimum SS to be trialled is 1.11. 

2 GA Supersaturation - 1.18 

Temperature - 52.06 °C 

DE Supersaturation - 1.18 

Temperature - 51.75 °C 

CMAES Supersaturation - 1.18 

Temperature - 51.75 °C 

Nelder Mead Supersaturation - ERROR 

Temperature - ERROR 

Pattern Search Supersaturation - 1.18 

Temperature - 51.75 °C 

Supersaturation of 1.18 +/- 0.1 and temperature of 51.75 +/- 5 °C will be 

used. (Incorrect DoE plan was used here) 

3 GA Supersaturation - 1.12 

Temperature - 22.62 °C 

DE Supersaturation - 1.11 

Temperature - 22.62 °C 

CMAES Supersaturation - 1.11 

Temperature - 22.62 °C 

Nelder Mead Supersaturation - ERROR 

Temperature - ERROR 

Pattern Search Supersaturation - 1.11 

Temperature - 22.62 °C 

Supersaturation of 1.12 +/- 0.05 and temperature of 22.62 +/- 2 °C will be 

used. 

4 GA Supersaturation - 1.13 

Temperature - 19.13 °C 

DE Supersaturation - 1.14 

Temperature - 19.13 °C 

CMAES Supersaturation - 1.14 

Temperature - 19.13 °C 
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Nelder Mead Supersaturation - ERROR 

Temperature - ERROR 

Pattern Search Supersaturation - 1.14 

Temperature - 19.13 °C 

Supersaturation of 1.14 +/- 0.05 and temperature of 19.13 +/- 2 °C will be 

used. 

5 GA Supersaturation - 1.12 

Temperature - 12.94 °C 

DE Supersaturation - 1.14 

Temperature - 12.97 °C 

CMAES Supersaturation - 1.14 

Temperature - 12.97 °C 

Nelder Mead Supersaturation - ERROR 

Temperature - ERROR 

Pattern Search Supersaturation - 1.14 

Temperature - 12.97 °C 

Supersaturation of 1.14 +/- 0.05 and temperature of 12.97 +/- 2 °C will be 

used. 

6 GA Supersaturation - 1.16 

Temperature - 5.98 °C 

DE Supersaturation - 1.16 

Temperature - 5.98 °C 

CMAES Supersaturation - 1.16 

Temperature - 5.98 °C 

Nelder Mead Supersaturation - 1.16 

Temperature - 5.98 °C 

Pattern Search Supersaturation - 1.16 

Temperature - 5.98 °C 

Supersaturation of 1.16 +/- 0.05 and temperature of 5.98 +/- 2 °C will be 

used. 

7 GA Supersaturation - 1.16 

Temperature - 5 °C 
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DE Supersaturation - 1.16 

Temperature - 5 °C 

CMAES Supersaturation - 1.16 

Temperature - 5 °C 

Nelder Mead Supersaturation - 1.16 

Temperature - 5 °C 

Pattern Search Supersaturation - 1.16 

Temperature - 5 °C 

Termination criteria of +/- 2 °C & 0.02 SS has been met 

 

 

 

 

Figure 40. Plot of posterior mean, posterior standard deviation, and acquisition function for 

lamivudine (a) and aspirin (b) for the final iteration of the acquisition jitter = 0.001. 
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Figure 41. Plot of posterior mean, posterior standard deviation, and acquisition function for 

lamivudine (a) and aspirin (b) for the final iteration of the acquisition jitter = 0.1. 
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Figure 42. Plot of posterior mean, posterior standard deviation, and acquisition function for 

lamivudine (a) and aspirin (b) for the final iteration of the acquisition jitter = 1. 
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Figure 43. Plot of posterior mean, posterior standard deviation, and acquisition function for 

lamivudine (top) and aspirin (bottom) for the final iteration of the acquisition jitter = 10. 
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Figure 44. Computational time required to perform each optimisation algorithm, averaged over every 

iteration, for lamivudine (a) and aspirin (b). There is a general trend that Nelder Mead and Pattern 

Search performed the fastest but there are no statistically significant differences. Additionally, as all 

algorithm times were below an average of 5 s it can be deemed that due to the large time expense 

associated to the practical crystallisation experiment that algorithm time is trivial in the whole process 

loop. 
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Figure 45. Induction time plot (1a), nucleation rate plot (1b), and growth rate plot fitted to all bins (1c) 

for optimised run of lamivudine and induction time plot (2a), nucleation rate plot (2b), and growth 

rate plot fitted to all bins (2c) for optimised run of aspirin. The low R2 for the growth rate graphs is due 

to fitting the growth rate to all data rather than a particular bin size to increase population size. 
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Figure 46. XRPD pattern for recrystallised lamivudine overlayed against lamivudine raw material. 

 

 

Figure 47. XRPD pattern for recrystallised aspirin overlayed against aspirin raw material. 

 

 



102 
 

7. Utilisation of the model-driven workflow for the 

digital design of small-scale batch cooling 

crystallisation of a broader scope of the chemical 

space. 

 

Abstract 

This study presents five case studies of the model-driven workflow for the digital 

design of small-scale batch cooling crystallisation. The workflow allowed for the 

efficient collection of comprehensive thermodynamic data for ibuprofen, ascorbic 

acid, salicylic acid, benzoic acid and D-mannitol. The subsequent solvent system 

ranking and selection then allowed for the local kinetic parameter estimation and 

optimisation for all five APIs in a chosen solvent. The five APIs demonstrated a 

breadth of molecular and physical properties which exemplified the 

generalisability of the workflow. 

  

  



103 
 

7.1. Introduction 

The use of workflows has demonstrated an increase in efficiency for data collection 

that is findable, accessible, interoperable, and reusable (FAIR).139 

 

Figure 48. Workflow for small scale batch cooling batch crystallisation parameter data collection, 

figure taken from Chapter 4.  

As this work, presented in this chapter, is a continuation of previous studies 

(Chapter 4 and 5) the same workflow for crystallisation parameter data collection 

was used. Additional advancements have been made to the data filters, 

optimisation decision-making loop (Chapter 6) and image analysis191 allowing for 

even more efficient data collection for the five active pharmaceutical ingredients 

(APIs) presented in this chapter. 

The solutes were chosen based on relevance (i.e. NHS demands and production 

volumes) and the goal to include a range of molecular attributes across the thesis.  

Five APIs were chosen for this study to draw comparisons and for a breadth of 

chemical structure to further test the generalisability of the workflow. For example, 

salicylic acid, an anti-inflammatory206, and benzoic acid, an antimicrobial207, have 

similar molecular structures differing by an otho-hydroxy group. Ascorbic acid, 

vitamin C208, and D-mannitol, a diuretic209 and common excipient, have very 

different molecular structures. Additionally, this study features ibuprofen, a 

common anti-inflammatory210, which features both branched hydrocarbon chains 
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and an aromatic ring. The similarities and differences of the five APIs can also be 

seen in Table 15. 

Table 15. LogP, pKa and molecular weight for the five APIs used in this study.211 

API LogP pKa Molecular weight (g/mol) 

Ibuprofen 3.97 4.45 206.28 
Ascorbic acid -1.85 4.70 176.12 
Salicylic acid 2.26 2.78 138.12 

Benzoic acid 1.87 4.21 122.12 

D-mannitol -3.10 13.5 182.17 
 

There is a large spread of values for both LogP (D-mannitol is the most hydrophilic 

and ibuprofen is the most hydrophobic) and for pKa (salicylic acid is the most acidic 

and D-mannitol is the least) within the five APIs. There is also a range of molecular 

weights (benzoic acid is the lowest and ibuprofen is the highest) with some 

molecules having similar weights.  

 

7.2. Materials, Equipment and Methods 

7.2.1. Materials 

The materials used in this study are detailed in Table 16 and Table 17 and none 

underwent further purification.   

Table 16. Detailed information regarding the solutes used in this study. 

Chemical name Source Grade (%) DCS Group* 

Ibuprofen Molekula >98 I 
Ascorbic acid Alfa Aesar 98+ III 

Salicylic acid Alfa Aesar 99 n/a 
Benzoic acid Alfa Aesar 99 n/a 
D-Mannitol Alfa Aesar 97+ III 

*Some APIs are mainly manufactured as topical treatments and therefore do not have a developability classification 
system (DCS) group. 

The solvent choice aimed to incorporate a wide range of functional groups to have 

physical and chemical properties diversity. Refer to Chapter 4 for a more 

comprehensive explanation of how the solvent library was chosen. 
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Table 17. Detailed information regarding the solvents used in this study grouped by functional group. 

Chemical name Source Grade 
(%) 

Methanol VWR 99.95 
Ethanol VWR 99.95 

IPA [Propan-2-ol] Alfa Aesar 99+ 
Pentan-2-ol Alfa Aesar 99 
Butan-1-ol Alfa Aesar 99 

Acetone Thermo 
Scientific 

99+ 

Pentan-2-one Thermo 
Scientific 

99 

Pentan-3-one Alfa Aesar 99 
MIBK [Methyl iso-Butyl Ketone or 4-Methyl-2-

pentanone] 
Alfa Aesar 99 

NMP [N-Methylpyrrolidone] Thermo 
Scientific 

99+ 

Ethyl acetate VWR 99.9 

iso-Propyl Acetate Alfa Aesar 99+ 
iso-Butyl Acetate Alfa Aesar 98 

tert-Butyl Acetate Alfa Aesar 99 

Isopentyl Acetate [Isoamyl acetate] Alfa Aesar 99 

Butyl Cellosolve Acetate [2-n-Butoxyethyl acetate] Thermo 
Scientific 

98 

Formamide Alfa Aesar 99 

DMF [N,N-Dimethylformamide] Alfa Aesar 99 

2-methyl THF Thermo 
Scientific 

99+ 

n-Propyl Propionate Alfa Aesar 99 

n-Pentyl Propionate Sigma Aldrich >99 
Acetonitrile Alfa Aesar 99 

Chlorobenzene Alfa Aesar 99 
Chloroform Alfa Aesar 99.8+ 

Cyclohexane Alfa Aesar 99+ 

Cyclopentane Alfa Aesar 95 
Diethyleneglycol diethyl ether Alfa Aesar 99 

Dimethyl Carbonate Alfa Aesar 99 

Ethylene Glycol [1,2-Ethanediol] Alfa Aesar 99 
n-Heptane Alfa Aesar 95 

Tetralin Alfa Aesar 97 

Toluene Alfa Aesar 99 

Water Milli-Q (Merck) Ultra-
Pure 
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7.2.2. Equipment 

In this study, images taken during the crystallisation experiments were collected 

using Technobis's Crystalline Reactor system125 at a rate of one image every five 

seconds. Each of the eight reactor vials heats and cools following its own 

temperature profile, and every reactor has an HD camera focused on the lower part 

of the vial. X-ray powder diffraction (XRPD) patterns were collected using a Bruker 

D8 Discover, and the data was visualized using DIFFRAC.EVA142 software from 

Bruker. Solid and solvent dosing was carried out using a Zinsser Crissy GGXXL 

robotic platform, which recorded solid and liquid dosed masses with a precision of 

+/- 0.005 mg. The Zinsser platform was used to dose amounts in the range of 5 to 

1000 mg of solid and 1 to 8 mL of solvent. The Quintix (Sartorius)212 analytical 

balance was used for the kinetic parameter study. 

7.2.3. Methods 

7.2.3.1. Solubility and Solvent Effects Study (Polythermal Global Search) 

The stir rate was set at 600 rpm for the template profile unless stated otherwise. 

1. Heat the solution to 90 °C, or 10 °C below the solvent boiling point at a 

heating rate of 0.5 °C/min and hold at the elevated temperature for 10 

minutes. 

2. Cool the solution to 5 °C at a cooling rate of 0.5 °C/min and hold at the 

lowered temperature for 10 minutes. 

3. Repeat the cycle for a total of 3 times. 

The clear point was defined as the temperature at which no particles are present 

within the images collected, similarly, the cloud point was the temperature at which 

crystals first started to form. Crystal product was filtered under vacuum and dried 

under nitrogen to allow for XRPD patterns to be collected. 

7.2.3.2. Kinetic Parameter Study (Isothermal Local Search) 

The stir rate was set at 600 rpm for the template profile unless stated otherwise. 

1. Heat the solution to 90 °C, or 10 °C below the solvent boiling point at a 

heating rate of 0.5 °C/min and hold at the elevated temperature for 10 

minutes. 
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2. Cool the solution to the experimental temperature at a cooling rate of 10 

°C/min, with the stirring rate set to 0 rpm. 

3. Hold at the isothermal experimental temperature for 2 hours. 

4. Repeat the cycle for a total of 5 cycles. 

Images, collected at a frequency of 1 image per 5 seconds, were analysed using a 

convolutional neural network (CNN) image analysis algorithm.191 Induction time, 

defined as the time from reaching isothermal conditions to the detection of 5 

particles or more, growth rate (change in particle size over time) and secondary 

nucleation rate (change in number of particles per image over time) were 

subsequently extracted. If measured kinetic parameter values were not achievable 

then quantitative values were assigned to allow for the optimisation algorithm to 

continue. Qualitative assignments were done in such a way that if nucleation was 

not observed then the assigned parameters were five times below the target 

parameters or if the solute did not dissolve (i.e., too high of a concentration) then 

the parameters were five times above the target parameter. 

The crystal product was filtered under vacuum and dried under nitrogen to allow 

for XRPD patterns to be collected. 

The experimental planner for the optimisation loop associated with the kinetic 

parameter study was an application of the GPyOpt200 Bayesian Optimisation (BO) 

model with an adaptive exploration/ exploitation acquisition jitter. The general 

objective function (f(x)) of the optimisation was: 

 

Equation 18.  𝑓(𝑆𝑆, 𝑇) =  𝐷𝑆𝑆,𝑇(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

where DSS,T is the difference between the target and measured objective at a given 

supersaturation (SS) and temperature (T). A full derivation of this objective function 

can be found in Section 6.3.2.2. using Equation 16 and Equation 17. 

The BO model employed a Gaussian process (GP) model and expected 

improvement (EI) acquisition with acquisition jitter between 0.1 and 10. More 

details about the application of the adaptive Bayesian optimisation (AdBO) model 

can be found in Chapter 6. The termination criteria for convergence were a 

temperature of +/- 2 °C & supersaturation of +/- 0.02 between recommended 

experiments. 
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7.3. Results and Discussion 

The work laid out below is an application of the workflow used in Chapter 4 to 

several APIs and thus each section header refers to a specific box of the workflow 

(Figure 24). 

7.3.1. Define the Aim of the Study 

The aim of this study was to collect quantitative and qualitative solubility and 

solvent effects data on a wider range of APIs from Chapter 4 and 5 and then 

subsequently optimise the small-scale batch cooling crystallisation process in a 

chosen solvent system. This study aims to show the generalisability of the workflow 

into different APIs. 

7.3.2. Review Prior Knowledge 

Experimental solubility data has been previously reported for ibuprofen213-215, 

ascorbic acid216, salicylic acid214, 217-222, benzoic acid214, 223-228 and D-mannitol229. This 

data was used to guide initial experiments and validate our methods.  

7.3.A. Decision A: Are initial experiments required? 

Yes, analysis of raw material was required (see section 7.3.3. below for details). 

7.3.3. Characterise Raw Material 

XRPD was used to determine the form of the raw material for all APIs to allow for 

fingerprinting of experimentally crystallised material against the most stable form 

(see Figure 52 in the Appendix of Chapter 7). No other raw material analysis was 

performed. 

7.3.4. Define Workflow Specific Target Parameters 

The target parameters for the solubility and solvent effects study were an API 

solubility of 0.005 g/g at low temperature and 0.05-0.25 g/g145 at an elevated 

temperature with an aspect ratio of above 0.5146. These physical properties were 

chosen as they ensure a well-suspended slurry whilst retaining a high crystallisation 

yield with good powder flowability of the resulting drug product. At this stage of 

the workflow, yield and crystal shape are not optimised but, instead, used as 

constraints (e.g., only solvent systems that give crystals with an aspect ratio 

exceeding 0.5 are accepted) to subsequently rank possible solvent choices. 
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The optimisation objectives of the kinetic parameter estimation had target values 

as shown in Table 18. These target parameter values correspond to typical values 

that lead to operable conditions in larger-scale crystallisation processes.165 

Additional parameter constraints were included in the kinetic parameter estimation 

including a d90 size distribution between 100 µm and 250 µm and a mean aspect 

ratio above 0.5 so that the resultant powder would be free-flowing146. 

Table 18. Target parameters for induction time, nucleation rate and growth rate (optimisation 

responses) for the kinetic parameter study. 

API 
Target induction 

time (s) 

Nucleation 
rate 

(#/image/s) 

Growth rate 
(µm/s) 

Ibuprofen 3600 0.1 0.1 
Ascorbic 

Acid 
3600 0.1 0.01 

Salicylic 
Acid 

3600 0.1 0.05 

Benzoic 
Acid 

3600 0.1 0.1 

D-
Mannitol 

3600 0.1 0.1 

 

The same target values were not used for all APIs due to feasibility of what is 

achievable within the metastable zone width (MSZW) of the API-solvent system. 

7.3.5. Solubility and Solvent Effects Study (Polythermal Global Search) 

The results from the solubility and solvent effects study can be summarised for all 

APIs in Figure 49 where the use of colour classifications allows for quick 

visualisation.  
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Figure 49. Rubric classifying all APIs in all the solvents for the solubility study. 
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The ‘too soluble’ pink classification resulted in an inoperable process where the 

high concentration (more than 0.5 g/g solvent at elevated temperature) meant a 

thick slurry at low temperatures which did not allow for effective mixing. On the 

other side of the spectrum the ‘antisolvent’ blue classification was where the API 

had a very low concentration (less than 0.005 g/g solvent at elevated temperature) 

which would not be a feasible solvent choice due to excessive solvent consumption 

and low yield. The ‘phobic material’ grey classification is where API sticking to the 

glass walls of the reactor was observed. The ‘wrong shape’, ‘did not nucleate’ and 

‘oiled out’ purple classifications were where the solubility target parameters were 

met or near to the range, but a commonly seen but undesirable issue was observed. 

The ‘colour change’ black classification was where a colour change was observed 

within the vial, often going from a colourless solution to yellow likely due to high 

concentrations. The ‘yes – acceptable’ amber classification was where no fouling, 

desired crystal habit and near target parameter solubility was observed. Finally, the 

‘yes – good’ green classification is where all target parameters for solubility and 

shape have been met, meaning it is the most desired classification. More details on 

the ranking and selection of the solvent system can be found in Section 3.7. 

Ibuprofen was too soluble (solubility > 0.5 g/g solvent at elevated temperature) in 

most organic solvents, this resulted in thick slurries at low temperatures which did 

not allow for stirring. This issue was the reason for poor R2 values (Figure 53 and 

Table 22 in the Appendix of Chapter 7) for some of the solvents. Dissolution of 

ibuprofen in ethylene glycol aligned with target parameters (solubility of 0.005 g/g 

at low temperature and 0.05-0.25 g/g solvent145 at an elevated temperature) 

however, had a MSZW that exceeded 36 °C which approximately is a 

supersaturation of 50, a value that greatly exceeds what would be feasible for 

higher temperature operations. Solvent systems that were near the target 

parameters included cyclohexane, cyclopentane, formamide and n-heptane which 

were all above the range limits. Recoverable crystal product all had a similar habit 

of plates. 

Ascorbic acid solubility was qualitatively assigned as in antisolvent (solubility < 

0.005 g/g solvent at elevated temperature) in most solvents where this 

concentration represents the lower dosing of the Zinsser limit combined with the 

highest operating temperature of the solvent in the Crystalline. On the other hand, 
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ascorbic acid was too soluble in water, resulting in thick hard to control slurries. 

Some solvent systems such as acetonitrile, 1-butanol, 2-propanol and 2-pentanol 

were near the target parameters on the lower side. Oiling out was observed for 

cyclohexane and colour changes were observed for DMF and formamide. The 

dissolution of ascorbic acid in methanol met target solubility parameters. 

Recoverable crystal product all had a similar habit of plates. 

Salicylic acid had high solubility in most organic solvents where some were 

classified as too soluble or near the target parameters (these were on the high side). 

Qualitative observations of salicylic acid in cyclopentane showed sticking to the vial 

walls signifying a phobic interaction between the API/ solvent system. Oiling out 

was observed for salicylic acid in n-heptane. The solubility target parameters were 

achieved for salicylic acid in acetonitrile, chlorobenzene, chloroform, tetralin and 

toluene. All solvent systems gave a similar crystal habit of blocks/ rods except for 

water which exhibited needles. 

Benzoic acid also had high solubility in most organic solvents with some too soluble 

and some near target parameters (slightly above the target range). The target 

parameters for solubility were met for benzoic acid in chlorobenzene, cyclohexane, 

cyclopentane and tetralin. Long plates/ blocks crystal habit was observed for all 

solvent systems except for ethylene glycol and water which exhibited needles. 

D-mannitol was qualitatively assigned as in antisolvent for all organic solvent 

systems except DMF, ethylene glycol, formamide and NMP where they had 

solubility near the target parameters but on the low side. These solvents typically 

had higher solubility for all APIs. Mannitol had high solubility in water (near the 

target parameters on the high side) and exhibited needle crystal habit, like the 

forementioned four organic solvents. 

It can be qualitatively observed, from Figure 49, that salicylic acid and benzoic acid 

have similar solubility classifications with some increases in solubility (e.g., 

acetonitrile and toluene). The addition of the hydroxy group to the base benzoic 

acid molecule being the likely reason for the increase. Ascorbic acid and D-

mannitol had qualitatively similar solubilities where they mainly had very low affinity 

for organic solvents and high solubility in the more polar solvents (e.g., water). 
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Ibuprofen stands out from the other solvents due to having very high solubility in 

mostly all organic solvents and very minimal solubility in water. 

7.3.6. Off-Line Analysis 

All APIs were fingerprinted by XRPD and showed that all recoverable crystal 

product was the same as the starting material (see Figure 58 to Figure 62 in the 

Appendix of Chapter 7), the most stable form, except for 2 discrepancies. D-

mannitol in NMP and N,N-DMF had the same XRPD pattern that differed to the 

starting material (see Figure 63 in the Appendix of Chapter 7); however, these were 

not solvents of interest, so no further characterisation was done. 

7.3.B. Decision B: Can solubility-temperature profiles be plotted with 

the Van’t Hoff relationship (R2 > 0.81) for solvents? 

Yes, refer to Table 22 in the Appendix of Chapter 7. There were a few discrepancies 

e.g., ascorbic acid in ethylene glycol, but these were not solvents of interest so were 

qualitatively ignored from further study. Refer back to Table 5 in the Appendix of 

Chapter 4 for more details on the uncertainty checks. 
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Figure 50. Van’t Hoff plots for ibuprofen in 0.95:0.05 (v/v) heptane: 2-pentanol (a), ascorbic acid in 
methanol (b), salicylic acid in acetonitrile (c), benzoic acid in cyclohexane (d) and D-mannitol in water 
(e). Solubility data points were done in triplicate with no outliers removed as the linear regression met 

the criteria of R2 > 0.81. 

7.3.7. Solvent Ranking & Selection 

For ibuprofen the best, in terms of solubility parameters (solubility of 0.005 g/g at 

low temperature and 0.05-0.25 g/g145 at an elevated temperature) and shape 

parameters (aspect ratio greater than 0.5146 i.e., plates), single solvent system was 

ethylene glycol. The high supersaturation required for nucleation however makes 

this an unfeasible process solvent choice. The next best choice was n-heptane 

however the system did not have a steep temperature dependence. This would 

theoretically result in a low yield. The introduction of a second solvent, to make a 
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binary mixture, was explored where various compositions of alcohols were added. 

95:5 (v/v) heptane: 2-pentanol resulted in the steepest temperature dependence 

within the solubility constraints. This aligned with SAFT-γ Mie group-contribution 

solubility predictions.230  

For ascorbic acid, the best solvent system was methanol due to the good solubility 

compared to the generally low solubility in most other systems. 

For salicylic acid, the best solvent system was acetonitrile due to the good solubility, 

yielded good crystal habit and had a steep temperature dependence. However 

downward reduction with subsequent cycles (Figure 50c) in the solubility 

temperature was observed indicating potential degradation at higher 

temperatures. 

For benzoic acid, the best solvent system was cyclohexane due to the good 

solubility, yielded good crystal habit and had the steepest temperature 

dependence of the four potential solvent choices. 

For D-mannitol, the chosen solvent system was water as was near the target 

parameters in terms of solubility and was the most stable polymorph (this ruled out 

NMP and N,N-DMF).  Water was chosen over ethylene glycol and formamide due 

to being a greener and more sustainable solvent choice. Persistent needles of D-

mannitol recrystallised in water meant that the solvent choice did not meet the 

target value for the shape parameters therefore the introduction of optimising for 

shape in later study was required. A quantitative assignment of 0.75 for the aspect 

ratio optimisation objective was added to the objective function for D-mannitol. 

This assignment was a mid-point target value between 0.5 (shape target parameter 

from the solubility study of which to exceed) and 1.0 (maximum aspect ratio 

possible). 

7.3.8. Local Search: Kinetic Parameter Study 

The design space for each of the API/ solvent systems were determined based 

upon what was feasible within the MSZW where fast induction was expected for all 

systems except ascorbic acid in methanol. Table 19 shows the design space and 

the first experiment, the mid-point for both variables of the design space, and the 

resultant objective function value from the measured kinetic parameters. 
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Nucleation was only experimentally observed for salicylic acid in acetonitrile 

therefore quantitative values were qualitatively assigned for the other systems to 

allow for the Bayesian optimisation algorithm to suggest the next experiment.  

Table 19. Initial 1-experiment screening results for the kinetic parameter estimation for all APIs. SS 
refers to supersaturation. 

API Design Space First Experiment 
Obj. Function 

Value  SS 
Temperature 

(°C) 
SS 

Temperature 
(°C) 

Ibuprofen 
1.05 – 

2 
5 – 50 1.48 27.5 4.83 

Ascorbic 
Acid 

2 – 3 5 – 50 2.5 27.5 6.00 

Salicylic 
Acid 

1.05 – 
2 

5 – 50 1.48 27.5 5.51 

Benzoic 
Acid 

1.05 – 
2 

10 – 50 1.48 27.5 3.50 

D-Mannitol 
1.05 – 

2 
5 – 50 1.48 27.5 3.67 

 

High objective function values, when compared to previous implementations of this 

algorithm (Chapter 6), and that qualitative assignments were required shows that 

the initial experiments were far from the optimum process conditions. 

7.3.9. Off-Line Analysis 

All APIs were fingerprinted by XRPD and showed that all recoverable crystal 

product was the same as the starting material, the most stable form (see Figure 64 

to Figure 68 in the Appendix of Chapter 7). 

7.3.C. Decision C: Were the experiments free from fouling? 

Yes, there was no significant fouling experimentally observed for any of the APIs 

with their chosen solvent system (visually observed in Section 7.3.8.). 

7.3.D. Decision D: Were target parameters or algorithm convergence 

achieved? 

No, as only one experiment had been performed in the initial study it was 

inconclusive whether the optimum process conditions had been found. 

Experimental optimisation was required. 
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7.3.10. Optimisation 

Following the initial iteration of the kinetic parameter study an experimental-

optimisation loop was started that terminated with the following results: 

Table 20. Results of the experiment-optimisation loop that was terminated due to successful 
convergence of a temperature of +/- 2 °C & supersaturation of 0.02 between recommended 
experiments. 

API Number of 

experiments 

Obj. 

Function 

Value 

Reduction in the objective function 

value (%)* 

Ibuprofen 19** 0.38 93.5 

Ascorbic 

Acid 

21 3.30 74.2 

Salicylic 

Acid 

35 2.26 82.6 

Benzoic 

Acid 

10 1.27 81.4 

D-

Mannitol 

30 1.41 84.6 

*Reduction is calculated as the minimum objective function value/ maximum objective function value (as a 

percentage). 

**14 experiments due to the AdBO acquisition jitter of 10, 5 experiments due to the acquisition jitter of 1 due to 

the reduction in the objective function triggering the adaptive model. 

A good reduction in the objective function was calculated for all five APIs with 

excellent reduction especially for ibuprofen, sufficiently enough to trigger a more 

exploitative Bayesian optimisation model. The AdBO model performed well for all 

APIs and arrived at the termination criteria generally quickly (between 10 and 30 

experiments) when compared to the ADoE methods in Chapter 6. The optimisation 

design planner performed best, in terms of number of experiments required, for 

ibuprofen and benzoic acid, but required the greatest number of experiments for 

salicylic acid. This is likely accounted for by the very fast nucleation of salicylic acid 

in acetonitrile causing there to be many local optimums at low supersaturations i.e., 

supersaturation impacted the measured kinetic parameters a lot more than 

temperature. 
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Figure 51. Plot of posterior mean, posterior standard deviation, acquisition function and objective 
function value vs number of experiments for ibuprofen (a), ascorbic acid (b), salicylic acid (c), benzoic 

acid (d) and D-mannitol (e) after the experimental optimisation had terminated. (X1 refers to 
supersaturation and X2 refers to temperature (K/100)). 

It can be seen in Figure 51(left) that there is a global minimum for each of the APIs 

and that the algorithm has generally exploited that area with more experiments. It 

can be observed from Figure 51(second left) that there has been reduction in the 

uncertainty across the design space, especially well for ibuprofen, ascorbic acid, 
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salicylic acid and D-mannitol but poor reduction for benzoic acid. The poor 

performance in reducing the uncertainty of the design space for benzoic acid is 

likely contributed to only 10 experiments being performed before termination. 

However, the reduction in objective function (Figure 51(right)) and that the 

algorithm exploited and converged still suggests that the minimum was found. The 

acquisition function heatmap (Figure 51(second right)) was plotted using an 

acquisition jitter of 1E-7 to visualise the minimum i.e., optimum process conditions 

solution.  

7.3.D. Decision D: Were target parameters or algorithm convergence 

achieved? (Revisited) 

Yes, convergence was achieved as determined by the termination criteria of a 

temperature of +/- 2 °C & supersaturation of 0.02 between recommended 

experiments. 

7.3.E. Decision E: Are additional experiments needed? 

No. A suitable process was developed using cooling crystallisations for all APIs; 

therefore seeded, antisolvent and scaled-up experiments were not required to 

meet the objectives for this study. 

7.3.11. Optimum Process Conditions for Small-Scale Crystallisation 

(Summary) 

The workflow has allowed for the identification of experimental conditions for 

optimum process attributes (good solubility to balance between easy-to-handle 

slurries and not high solvent waste) and crystal attributes (desired polymorph and 

shape and size). 
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Table 21. Optimum process conditions for small-scale crystallisation for the 5 APIs with relevant 

measured kinetic parameters (all processes had a stir rate of 600 RPM). 

API Solvent 
choice 

Temp. 
(°C) 

SS Induction 
time (s)* 

Nucleation 
rate 

(#/image/s)* 

Growth 
rate 

(µm/s)* 

Aspect 
ratio* 

Ibuprofen 0.95:0.05 
(v/v) heptane: 

2-pentanol 

23.92 1.85 2476 
(3600) 

0.080 (0.100) 0.076 
(0.100) 

n/a 

Ascorbic 
acid 

Methanol 5** 2.67 4410 
(3600) 

0.011 (0.100) 0.004 
(0.010) 

n/a 

Salicylic 
acid 

Acetonitrile 5** 1.05** 2683 
(3600) 

0.075 (0.100) 0.257 
(0.050) 

n/a 

Benzoic 
acid 

Cyclohexane 10.14 1.35 5152 
(3600) 

0.123 (0.100) 0.049 
(0.100) 

n/a 

D-
manntiol 

Water 24.99 1.82 6098 
(3600) 

0.096 (0.100) 0.071 
(0.100) 

0.45 
(0.75) 

*Target values are in brackets. 

**These are bounds of the design space. 

 

Taking into consideration the desired solvent choice from Section 7.3.7. and 

following the kinetic study (Section 7.3.8.) and optimisation (Section 7.3.10.) loop 

the final process conditions for small-scale batch cooling crystallisation can be 

stated, as found in Table 21. Good optimisation performance can be observed 

across most APIs for converging on the target induction time. For example, ascorbic 

acid had only a 23% difference from the target value. There was also great 

optimisation convergence performance for nucleation rate across most APIs 

however reduced performance was observed for ascorbic acid. D-mannitol had a 

4% difference from the target value for nucleation rate, which is an example of great 

convergence. The lowest performing response was growth rate where differences 

between measured and target values ranged from 24% (ibuprofen) and 400% 

(salicylic acid). This can be attributed to competing objectives meaning that low 

objective function values for induction time and nucleation rate allow a larger 

objective function value for growth rate whilst still maintaining an overall low 

objective function value. Additionally, there are problems associated with assigning 

appropriate growth rate target parameters without a larger design of experiment 

(DoE) initial screening. It was observed throughout the study that growth rate varied 

the most between APIs. 

As mentioned in Section 7.3.7. persistent needles were observed for D-mannitol so 

therefore an additional fourth objective was introduced into the optimisation 



121 
 

problem. An aspect ratio (defined as width/ length) of 0.75 was quantitatively 

assigned, as that value was the mid-point of the target range with the focus to 

getting greater than 0.5. Despite not achieving 0.5, the final value of 0.45 was a 

significant improvement over measured values in the study being as low as 0.126. 

Finally, it can be observed in Table 21 that the optimum values for temperature for 

ascorbic acid and for supersaturation and temperature for salicylic acid sit on the 

bounds of the design space. This suggests that the true optimum was not found 

and that a reduced objective function value sits outside of the bounds. The 

boundaries of the design space were set in accordance with what is achievable with 

the equipment available i.e., accuracy of balances and temperature controllers. The 

true optimum supersaturation for salicylic acid of likely being less than 1.05 would 

be impractical to experimentally perform due to error associated with the solubility-

temperature profile and error of the Crystalline temperature controller propagating 

which could result in undersaturated solutions. 

 

7.4. Conclusions 

Five case studies have been demonstrated of the workflow without amendment to 

the logic set out in the introduction. This shows great generalisability of the 

workflow across a range, in terms of chemical properties, of APIs giving confidence 

in the logical flow of the workflow. This work demonstrated that both quantitative 

and qualitative thermodynamic data can be collected fast and effectively, as the 

data collection was done in circa. 8 months. This thermodynamic data was then 

used to inform solvent selection for kinetic parameterisation which was concluded 

in between 10 and 35 experiments (circa. 1 month). Process crystallisation routes 

have been proposed for all five APIs that give both good solubility and shape 

attributes and desired kinetic parameters at the small scale. 

The integration of a fourth objective into the kinetic parameter optimisation for D-

mannitol demonstrates the modulus approach to the AdBO experimental planning 

model. This will allow for the introduction of new factors and new responses as the 

workflow is applied to the data collection of more APIs.  
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This work has further reinforced that the individual components, specifically the 

image analysis and Bayesian experimental planner, work as standalone tools and 

when integrated into a workflow. The tested logic of the workflow, through the five 

API case studies, can in the future be applied to robotic integration and 

autonomous systems. There is still a need to extend this study to more systems with 

greater molecular flexibility and polymorphic and solvate formation propensities to 

understand how the approach behaves in a potentially more complex and multi-

objective response surface. 
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Appendix 

This appendix contains additional information for context and details pertaining to 

material characterisation and extracted data figures and tables. 

 

 

Figure 52. XRPD patterns of raw material for all five APIs. 

 

Table 22. Van't Hoff solubility linear regression coefficients and R2 for 5 APIs in various solvents. 

Solvent m c R2 

Ibuprofen 

1-butanol -7893.94 25.29 1.00* 

2-n-butoxyethyl acetate -1543.61 4.30 0.96 

2-pentanol -1407.53 3.99 0.79 

2-pentanone -1533.61 4.68 0.86 

2-propanol -890.29 2.54 0.90 

3-pentanone -5220.92 16.43 0.99 

4-methyl-2-pentanone -840.19 2.51 0.33 

N,N-dimethylformamide -5563.39 18.33 0.82 

N-methylpyrrolidone -1692.82 4.96 0.86 

Water 28092.60 -89.21** 1.00* 

acetonitrile -3283.29 10.17 0.97 

chlorobenzene -4092.40 12.32 0.98 

chloroform -2527.21 7.35 1.00 

cyclohexane -2536.95 7.43 0.80 

cyclopentane -675.80 1.49 0.96 

diethyleneglycol diethyl ether -1447.67 4.40 0.82 

dimethyl carbonate -1047.68 2.79 0.65 

ethanol -995.41 3.04 0.53 

ethylene glycol -12113.81 35.75 0.99 

formamide -32159.63 100.89 0.96 

heptane -3398.60 9.84 0.91 

heptane/ 1-butanol 0.95 (v/v) -5011.60 15.06 1.00 
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heptane/ 1-propanol 0.95 (v/v) -4845.38 14.59 0.99 

heptane/ 2-pentanol 0.95 (v/v) -5162.40 15.53 0.99 

heptane/ ethanol 0.95 (v/v) -5490.33 16.83 1.00 

isobutyl acetate -707.50 1.93 0.20 

isopentyl acetate -3774.28 11.45 0.81 

isopropyl acetate -1959.13 6.00 0.76 

methanol -266.42 0.65 0.02 

n-pentyl propionate -2215.68 6.49 1.00 

n-propyl propionate -858.39 2.46 0.34 

tert-butyl acetate -9121.64 28.65 0.83 

tetralin -3027.84 8.90 0.97 

toluene -938.93 2.73 0.20 

Ascorbic Acid 

1-butanol -2445.65 3.50 0.96 

2-pentanol -3839.69 8.42 0.92 

2-propanol -3154.17 5.99 0.90 

3-pentanone -6722.14 14.65 1.00* 

N-methylpyrrolidone -4731.77 13.69 1.00 

Water -3097.26 9.02 0.99 

acetonitrile -14280.26 38.65 1.00* 

ethanol -1120.67 0.41 0.98 

ethylene glycol -593.61 -1.13 0.01 

methanol -3481.07 9.15 0.95 

Salicylic Acid 

1-butanol -1989.77 5.52 1.00 

2-n-butoxyethyl acetate -1083.24 2.40 0.89 

2-pentanol -1419.52 3.72 1.00 

2-pentanone -1025.49 2.54 1.00 

2-propanol -2011.09 5.82 1.00 

3-pentanone -449.82 0.62 0.34 

4-methyl-2-pentanone -1325.08 3.36 1.00 

Water -4839.64 10.32 0.94 

acetone -4601.64 14.24 0.81 

acetonitrile -2670.00 6.93 0.60 

chlorobenzene -1836.66 3.84 0.99 

chloroform -1526.73 2.43 1.00 

diethyleneglycol diethyl ether -926.81 2.35 1.00* 

dimethyl carbonate -1690.81 3.86 0.65 

ethanol -944.79 2.37 0.82 

ethylene glycol -2925.64 7.75 0.93 

formamide -1250.14 2.51 0.96 

isobutyl acetate -1143.45 2.51 0.98 

isopentyl acetate -2136.80 5.48 0.94 
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isopropyl acetate -2218.09 5.87 0.99 

methanol -1538.58 4.67 0.98 

n-pentyl propionate -1152.37 2.40 0.93 

n-propyl propionate -1259.20 2.86 0.92 

tert-butyl acetate -1266.07 2.79 1.00 

tetralin -674.06 -0.17 0.17 

toluene -3008.13 7.30 0.94 

Benzoic Acid 

1-butanol -2888.22 8.57 0.98 

2-n-butoxyethyl acetate -2477.48 6.69 1.00 

2-pentanol -4304.69 13.29 0.97 

2-pentanone -1746.69 4.83 0.99 

2-propanol -3228.33 10.10 0.92 

3-pentanone -2412.66 6.96 1.00 

4-methyl-2-pentanone -2415.76 6.72 1.00 

N,N-dimethylformamide -35372.86 125.90 1.00* 

Water -5715.39 13.90 1.00* 

acetonitrile -2666.90 7.21 0.95 

chlorobenzene -3746.24 10.20 1.00 

chloroform -8240.19 25.48 1.00 

cyclohexane -5743.04 15.02 0.98 

cyclopentane -4065.50 10.09 1.00 

diethyleneglycol diethyl ether -1908.89 5.40 0.98 

dimethyl carbonate -3363.36 9.38 1.00 

ethanol -2777.68 8.70 0.90 

ethyl acetate -2624.75 7.47 1.00* 

ethylene glycol -7044.39 20.96 0.88 

formamide -3543.18 10.36 0.99 

heptane -4431.57 10.65 1.00 

isobutyl acetate -2797.48 7.65 0.99 

isopentyl acetate -2782.60 7.50 1.00 

isopropyl acetate -2601.62 7.15 1.00 

methanol -2360.73 7.57 0.99 

n-pentyl propionate -2825.43 7.49 1.00 

n-propyl propionate -2538.25 6.84 1.00 

tert-butyl acetate -3118.98 8.49 1.00 

tetralin -4267.11 11.42 1.00 

toluene -3779.33 10.36 1.00 

D-Mannitol 

N,N-dimethylformamide -5741.31 13.41 0.99 

N-methylpyrrolidone -4634.52 10.40 1.00 

Water -2783.47 7.69 1.00 

ethylene glycol -6708.56 16.90 0.99 
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formamide -4821.44 11.86 1.00* 

methanol -4654.67 8.95 0.90 
*R2 values of 1.00 were achieved as only 2 data points were measured. 
**Large negative c coefficients were due to the Van’t Hoff relationship having the opposite trend to what is 
expected due to extremely noisy data. 
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Figure 53. Solubility-temperature profile for ibuprofen in various solvents where quantitative 
solubilities recorded over 0.5 g/g solvent were qualitatively assigned as too soluble and removed 
from the figure due to high uncertainty causing a poor representation of data (top) and solubility-

temperature profile for ibuprofen in various solvents with no data removed (bottom). 
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Figure 54. Solubility-temperature profile for ascorbic acid in various solvents. Note: quantitative 
solubilities recorded over 0.5 g/g solvent were qualitatively assigned as too soluble and removed 

from the figure due to high uncertainty causing a convoluted representation of data. 
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Figure 55. Solubility-temperature profile for salicylic acid in various solvents where quantitative 
solubilities recorded over 0.5 g/g solvent were qualitatively assigned as too soluble and removed 
from the figure due to high uncertainty causing a poor representation of data (top) and solubility-

temperature profile for salicylic acid in various solvents with no data removed (bottom). 
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Figure 56. Solubility-temperature profile for benzoic acid in various solvents where quantitative 
solubilities recorded over 0.5 g/g solvent were qualitatively assigned as too soluble and removed 
from the figure due to high uncertainty causing a poor representation of data (top) and solubility-

temperature profile for benzoic acid in various solvents with no data removed (bottom). 
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Figure 57. Solubility-temperature profile for D-mannitol in various solvents. Note: quantitative 
solubilities recorded over 0.5 g/g solvent were qualitatively assigned as too soluble and removed 

from the figure due to high uncertainty causing a convoluted representation of data. 
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Figure 58. XRPD patterns for the solubility and solvent effects study for ibuprofen in various solvents. 
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Figure 59. XRPD patterns for the solubility and solvent effects study for ascorbic acid in various 
solvents. 
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Figure 60. XRPD patterns for the solubility and solvent effects study for salicylic acid in various 
solvents. 
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Figure 61. XRPD patterns for the solubility and solvent effects study for benzoic acid in various 
solvents. 
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Figure 62. XRPD patterns for the solubility and solvent effects study for D-mannitol in various solvents. 
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Figure 63. XRPD patterns for the solubility and solvent effects study for D-mannitol in NMP and N,N-
DMF fingerprinted against the raw material to highlight that a different form was present. 
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Figure 64. XRPD patterns for the kinetic parameters study for ibuprofen, y-offset to allow for 
fingerprinting. 

 

 

Figure 65. XRPD patterns for the kinetic parameters study for ascorbic acid, y-offset to allow for 
fingerprinting. 

 

 

Figure 66. XRPD patterns for the kinetic parameters study for salicylic acid, y-offset to allow for 
fingerprinting. 
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Figure 67. XRPD patterns for the kinetic parameters study for benzoic acid, y-offset to allow for 
fingerprinting. 

 

 

Figure 68. XRPD patterns for the kinetic parameters study for D-mannitol, y-offset to allow for 
fingerprinting. 
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8. Integration of a Model-Driven Workflow into an 

Industrial Pharmaceutical Facility: Supporting 

Process Development of API Crystallisation. 

 

Abstract 

This study develops and evaluates a knowledge-driven workflow for a material- and 

resource-sparing approach to crystallisation process development. By following 

this workflow, thermodynamic and isothermal kinetic data for the cooling 

crystallization of (3S,5R)-3-(aminomethyl)-5-methyl-octanoic acid (PD-299685) 

within an 8-week timeframe, were obtained. Moreover, the workflow was expanded 

to include isothermal kinetic parameters from a scaled-up cooling crystallisation, as 

well as antisolvent and seeded crystallisation of PD-299685. The systematic and 

standardised data collection facilitated by this workflow enabled the design and 

optimisation of the PD-299685 crystallisation process. The proposed industrial 

crystallisation route for PD-299685 combines cooling and antisolvent techniques, 

offering a wide metastable zone width to facilitate speck-free filtration and effective 

seeding. This approach allows for excellent control over product quality, resulting 

in particles with a desired aspect ratio of 0.766 and a d(v,90) value of 234 µm. These 

parameters align with the proposed API material target specifications for solid oral 

dosage form quality, specifically oral bioavailability and content uniformity, and 

efficient drug product manufacture. 
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8. 1. Introduction 

The use of crystallisation in the pharmaceutical industry offers several advantages, 

including purification and particle engineering. It serves as a purification technique 

to eliminate impurities, ensuring that drug products comply with regulatory 

requirements.3 1 Additionally, crystallisation can be employed for particle 

engineering by modifying solid-state characteristics such as polymorphism15 and 

physical properties such as shape and size. These differences in properties can 

impact bioavailability, downstream processing and drug product manufacturing.146 

(3S,5R)-3-(aminomethyl)-5-methyl-octanoic acid (PD-299685) had been clinically 

evaluated for the reduction of hot flashes associated with menopause as a 

replacement for hormone replacement therapy.231 PD-299685 as the final product 

comes from a complex many-step synthesis where previous crystallisation routes 

included cooling crystallisation in 50:50 water/isopropanol or 50:50 water/ethanol 

by volume.232  Given that the final crystallization had been the object of previous 

development efforts, this study set out to assess whether novel, workflow-based 

approaches to crystallization development would lead either to a more efficient 

process compared to that previously published, or the faster identification of a 

comparable process. 

Typical workflows for developing crystallisation processes consist of solubility and 

metastable zone width (MSZW) measurements to find a suitable solvent that 

primarily gives a high yield within safe operating temperatures and the desired 

polymorph. Once a solvent system and crystallization type is chosen then various 

experiments can be performed, generally at 50 – 100 mL scale, to determine most 

kinetic parameters and whether seeding or other process controls, such as milling, 

are necessary to control additional product attributes such as purity or particle size. 

Process optimisation is usually carried out following known domain relationships 

and chemistry intuition, or by Design of Experiments (DoE)48. A step-by-step 

workflow to assist with consistent data collection for the early stages of process 

understanding has been developed, as shown in Figure 69. Execution of the 

workflow produces a comprehensive dataset of thermodynamic and kinetic 

parameters for cooling crystallisation via isothermal experiments. The workflow 

consists of: 



142 
 

• Aim setting. 

• Collating of prior knowledge. 

• Decision a determines whether enough experimental raw material data is 

already known. 

• Setting target parameters. 

• A solubility study. 

• Choosing a solvent system. 

• Decision B is whether a Van’t Hoff solubility line can be plotted for the 

solvents and solvent mixtures trialled, based upon predictions, with an r2 

accuracy exceeding 0.90. 

• A kinetic parameter study is then completed varying the supersaturation 

and temperature looking for the effects on nucleation rate, growth rate and 

induction time. 

• Decision C allows for the user to change the solvent system if any 

unexpected fouling occurred. 

• Decision D forms part of an optimisation loop until the target parameters set 

earlier are achieved. 

• Decision E, the main extension from previous reported work, allows for a call-

out to seeded, antisolvent, validation and a crystallisation process design. 
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Figure 69. Schematic diagram of the workflow for crystallisation data collection, adapted from 

Chapter 4. 

*Minimum of 3-4 data points must be used for reliable estimates of R2 values. For some solvent systems, this may 

not be achievable as qualitative solubility can still be used to eliminate potential solvents. 

Advancements in data-driven algorithms such as solubility predictive models, 

enhancements in machine learning image analysis and availability of scale-up 

predictive models for unit operations such as filtration and drying205 have been 

deployed to enhance the workflow. With the extension into seeded and antisolvent 

crystallisation and validation from 2 mL to 50-100 mL scale, a new crystallisation of 

PD-299685 was designed and optimised. 

With the major advancements in small-scale crystallisation hardware, the 

overarching aim of this chapter was to successfully develop a batch crystallisation 

process that supersedes past methods, using much less material and time. 

 

8.2. Materials, Equipment and Methods 

8.2.1. Materials 

PD-299685 (PRD:114276/102), (3S,5R)-3-(aminomethyl)-5-methyl-octanoic acid, 

was supplied by Pfizer R&D UK. 
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Figure 70. Molecular structure of (3S,5R)-3-(aminomethyl)-5-methyl-octanoic acid. 

The pure solvents were chosen to ensure functional diversity while following 

solvents guidelines  by the International Conference on Harmonization (ICH)52 i.e., 

avoiding class 1. 

8.2.2. Equipment 

Small-scale crystallisation experiments were performed in the Crystalline 

(Technobis)125 where in-built process analytical technology (PAT) consists of light 

transmissivity and particle viewing via high-definition image collection. Images 

were processed either in proprietary software or by a convolutional neural network 

(CNN) image analysis algorithm191. Validation crystallisation experiments were 

performed in the EasyMax (Mettler Toledo)126 fitted with a Blaze probe 

(BlazeMetrics)127, providing both microscopy and turbidity capabilities. 

X-ray powder diffraction (XRPD) patterns were collected using a D8 Endeavor 

(Bruker)233 and the data was visualised in DIFFRAC.EVA software192. Off-line dry 

powder size and shape measurements were collected using Morphologi G3 

(Malvern Panalytical)234. Differential scanning calorimetry (DSC) was performed on 

the DSC3+ (Mettler Toledo)235. Microscopy images were collected using an Eclipse 

Ci POL (Nikon)236 equipped with a Micropix camera237. 

8.2.3. Methodology 

8.2.3.1. Workflow 

8.2.3.1.1.  Solubility and Solvent Effects Study (Polythermal Global Search)  

In this section, the solubility and effect of solvents of PD-299685 were investigated 

by performing a series of experiments using a Crystalline (Technobis) platform. 
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Known masses of PD-299685 were weighed into 8 mL screw-top vials where known 

solvent volumes were added; each vial contained a 10 mm PTFE magnetic stirrer 

bar. The vials were then subjected to a temperature program consisting of three 

repeated cycles, with each cycle is as follows: 

1. Heat at a rate of 0.5 °C/min to 10 °C below the solvent boiling point or 90 

°C (whichever is lowest) and hold at this temperature for 10 minutes. 

2. Cool at a rate of 0.5 °C/min to 5 °C and hold at this temperature for 10 

minutes. 

3. The above temperature cycle was repeated two more times. 

The stir rate was fixed at 900 RPM for all the above steps. 

Image analysis was carried out to extract the point of dissolution and the primary 

nucleation threshold for each vial, and subsequently, the metastable zone width 

(MSZW) was calculated. Solid state analysis, via XRPD, was performed on samples 

where deviations were observed from the expected crystal morphology. The data 

obtained from the experiments were analysed to understand the effect that 

different solvent systems have both on the crystal and the process. 

Initial concentration values and additional solvent systems to trial were predicted 

using COSMO-RS238 and a group contribution UNIFAC model, implemented in 

Dynochem (Scale-up systems)239. The model has the underlying theory that 

molecules of solute and solvent are broken down into their constituent functional 

groups and interactions can then be parameterised. Predicted and measured 

solubility values were done in an iterative process. Measured data on single solvent 

systems allowed for refinement of the model for single solvent systems and also 

predictions in binary and ternary solvent systems. 

8.2.3.1.2. Kinetic Parameter Study (Isothermal Local Search) 

The impact of varying process conditions on the extracted kinetic parameters of 

PD-299685 at isothermal temperatures from Crystalline (Technobis) data was 

investigated. Known masses of PD-299685 were weighed into 8 mL screw-top vials 

where 7 mL of 55:45 (v/v) water/ 1-propanol was then added, each vial contained a 

stirrer. The vials were then subjected to a temperature program consisting of five 

repeated cycles, each cycle is as follows: 
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1. The vials were heated at a rate of 1 °C/min to 60 °C and held at this 

temperature for 10 minutes. 

2. The vials were rapidly cooled at a rate of 10 °C/min to the isothermal 

temperature of interest, with no stirring. 

3. The vials were held at this temperature for 3 hours. 

4. The above temperature cycle was repeated four more times. 

The agitator geometry was varied across this study to assess magnetic flea, hook 

stirrer, 3-blade pitched impeller and double 3-blade pitched impeller as different 

stirring methods. The stir rate was fixed at 900 RPM.  

Image analysis of the Crystalline image data was done using a CNN algorithm191 to 

extract the induction time, the growth rate, the aspect ratio and an arbitrary 

secondary nucleation rate from the isothermal hold. Samples were filtered, washed 

with acetone, and dried using a standard vacuum filtration setup. The data obtained 

from the experiments were analysed to understand a good spread of the design 

space between process conditions and crystallisation kinetic parameters. 

8.2.3.1.3. Additional Experiments – Seeded, Antisolvent, Easy-Max Validation 

The impact of other modes of crystallisation and the implications of scaling up were 

investigated. The same methodology and analysis as detailed in Section 8.2.3.1.2 

were used for the kinetic parameter estimations of seeded and antisolvent 

crystallisations. The only minor discrepancy was that for seeded crystallisation 

experiments, a known mass of PD-299685 was added during the isothermal holds. 

For the validation experiments, an EasyMax (Mettler Toledo) was equipped with a 

50 mL glass one-piece vessel. A known mass of PD-299685 was added to the 

reactor vessel and then 45 mL of 55:45 (v/v) water/ 1-propanol was added, with 

agitation using an overhead PTFE half-moon stirrer. The experiment used the same 

temperature program as detailed in Section 8.2.3.1.2.  

8.2.3.2. Process Design 

In this section, both the Crystalline (Technobis) and EasyMax (Mettler Toledo) were 

used with the following base process profile: 

1. Heated to 75 °C at a rate of 1 °C/min and held for 30 minutes. 

2. Cooled to 60 °C at a rate of 0.2 °C/min. 
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3. Seed material was added and then held for 30 minutes. 

4. Antisolvent was added over 45 minutes and held for 30 minutes. 

5. Cooled to 5 °C at a rate of 0.2 °C/min. 

6. Additional specific method section as detailed in Section 8.2.3.2.1 and 

8.2.3.2.2. 

This base profile was determined as a product of the workflow based upon a 

covariance analysis of the kinetic parameters which allowed prediction of process 

parameters to get the desired product and performance. The predicted process, 

that complies with operational contracts and objectives set, was developed in 

Crystalline and then validated in the EasyMax equipped with a Blaze probe. 

8.2.3.2.1. Crystalline 

For the optimized process run at screening scale, 350.9 mg of PD-299685 was 

added to an 8 mL vial and 4.67 mL of 55:45 water/ 1-propanol was added. An 

overhead 3-blade pitched impeller cap was used to seal the vial. The vial was 

transferred to the Crystalline (Technobis) and underwent the above process profile 

where 7.1 mg of seed and 2.33 mL of water (antisolvent) were added. After the final 

cool, the vial was isothermally held for 10 hours. The stir rate was fixed at 900 rpm 

throughout the whole process. The API was filtered using a Whatman Autovial 12 

(Cytiva) filter and washed with 2x2 mL of cold acetone and dried in a vacuum oven 

at 40 °C. 

8.2.3.2.2. EasyMax 

Referring to Table 23 for specific details, PD-299685 was added to a two-piece 100 

mL vessel and 66.67 mL of 55:45 water/ 1-propanol was added. A pitched 4-blade 

metal stirrer was used at an agitation rate of 300 RPM throughout, except for when 

high-shear wet milling (HSWM) was in operation. The reaction mixture underwent 

the base process profile detailed above with 33.33 mL of water (antisolvent) added. 

After the final cool, the process underwent specific methodology per iteration. The 

slurry was wet milled. The API was filtered through a 21 mm diameter Buchner 

funnel and washed with 2x10 mL cold acetone and dried in a vacuum oven at 40 

°C. 
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Table 23. Experimental details for End Process Design performed in the EasyMax for 4 iterations. 

Mass 
of API 
(g) 

Mass 
of 
seed 
(mg) 

Additional specific method details HSWM details 

4.992 99.67 Isothermally held at 5 °C for 10 hours 
after the final cool 

IKA T 25 Ultra Turrax 
equipped with a 
S25KD-25F 
dispersing tool for 2 
minutes at 5000 rpm 

5.013 101.8 Milled after the final cool and the 
slurry underwent a thermocycling of 
heating to 20 °C at 1 °C/min, held for 
30 minutes, cooled to 5 °C at 0.2 
°C/min three times. Isothermally held 
for 8 hours. 

IKA T25 Ultra Turrax 
equipped with a 
S25KD-25F 
dispersing tool for 2 
minutes at 5000 rpm 

5.055 102.8 Isothermally held at 5 °C for 14 hours 
after final cool, milled, and 
isothermally held for 1 hour. 

IKA T25 Ultra Turrax 
equipped with a 
S25KD-25F 
dispersing tool for 2 
minutes at 3000 rpm 

5.061 99.7 Isothermally held at 5 °C for 12 hours 
after final cool, milled, and 
isothermally held for 1 hour. 

IKA MagicLab 
equipped with fine 
teeth for a single 
pass at 14,600 rpm 

 

8.3. Results & Discussion 

8.3.1. Workflow 

The sections described below align to boxes within the workflow (Figure 69) where 

the section number of 8.3.1.X. with X referring to the specific numbered box. 

8.3.1.1. Define the Aim of the Study 

The overall aim of the study was to collect thermodynamic and kinetic parameter 

data on PD-299685 at small-scale to be able to select the appropriate crystallisation 

method and then subsequently design a viable process that gives adequate 

product quality, is safe, economical and environmentally sustainable in a 

reasonable cycle time. 

The aim of the solubility and solvent effects study was to collect quantitative and 

qualitative data on the thermodynamic crystallisation behaviour and to evaluate the 

UNIFAC solubility prediction240 regression model. The aim of the kinetic parameter 
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study focused on collecting quantitative kinetic data using a range of agitation 

methods, volumes, and crystallisation techniques. Additional experimentation was 

aimed at expanding and validating the workflow by using various stirrer types (to 

evaluate mixing sensitivity) and particle size and shape analysis methods (to 

simplify data analysis). The investigation of the seeded, antisolvent, and validation 

experiments aimed to explore the design space and enhance the capabilities of the 

workflow. This research built upon prior work (Chapter 4 and 5) developing efficient 

process development workflows, offering an extension and enhancement of its 

application. 

The collected data, both quantitative and qualitative, were utilised to inform a novel 

crystallisation process for the API. The process was optimised to align with drug 

product attributes, highlighting the industrial advantages of the workflow’s 

approach. The study aimed to show that the use of workflows allows for efficient 

and effective process development direction for any given API. 

8.3.1.2. Review Prior Knowledge & Literature Search 

The physical properties of PD-299685 have been previously assessed by optical 

microscopy, DSC, thermogravimetric analysis (TGA), XRPD and vapour sorption/ 

desorption analysis. PD-299685 form A (the most stable polymorph) was classified 

as non-hygroscopic and highly crystalline. Experimental data showed a single 

melting endotherm at 177 °C, <0.5 % wt % moisture loss and that the crystal 

exhibited needle geometry. Additional polymorphs were identified, including form 

B (from rapid evaporation of acetone), form C (methanol solvate) and form D 

(monohydrate). Gravimetric solubility data was available for PD-299685 in pure and 

binary solvent systems, previously measured during screening. PD-299685 had low 

solubility (3.4 mg/mL at room temperature) in water at neutral pH, showed 

synergetic effects in organic/aqueous and organic/organic solvent mixtures, and 

had a high solubility in acidic and alkaline media.241 The manufacturing process 

developed previously, using more traditional and empirical methods, involved an 

11-step linear synthesis, which was followed by a cooling recrystallization in a 

mixture of 50:50 vol/vol EtOH: water to get a yield of 87%.232 The resulting drug 

product was made into immediate-release tablets with doses of 5-20 mg using 

direct compression. However, a drawback of the previous process was the final 
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broad particle size distribution (PSD), with a d90 value exceeding 800 µm. This 

could potentially impact drug product content uniformity, particularly at lower 

doses. HSWM was therefore required to reduce the PSD to target size for tabletting. 

8.3.1.A. Decision A: Are initial experiments required? 

Yes, analysis of raw materials was required (see Section 8.3.1.3. below for details). 

8.3.1.3. Characterise Raw Material 

The starting material for the recrystallisation was form A, as shown by a 

fingerprinting comparison of the XRPD patterns to previous studies. The 

classification was further confirmed based on the onset of a melting endotherm 

observed at 177 °C in the DSC data. 

8.3.1.4. Define Workflow-Specific Target Parameters 

For the solubility and solvent effects study of PD-299685, the objective target 

parameters were to achieve a solubility in the range of 50-250 g/L solvent145, which 

translates to a solvent-to-API ratio of 4-20 L/kg. The solvent system with the steepest 

solubility vs temperature profile was the most preferred. The desired physical 

properties of PD-299685 crystals included an aspect ratio greater than 0.5146 and a 

size (d90) of approximately 100 - 350 µm. Form A was preferred due to its stability 

and lack of solvate character.  

For the kinetic parameter study, the primary objective target was to collect data 

over the design space to determine induction time, growth rate, and nucleation rate 

under different process conditions, such as supersaturation and temperature. 

The target parameters for the end crystallisation process design and optimization 

were yield, particle shape, and particle size. The study aimed to maximize yield 

while maintaining an aspect ratio greater than 0.5146 and a particle size (d90) of 100 

– 350 µm. 

8.3.1.5. Solubility and Solvent Effects Study (Polythermal Global Search) 

8.3.1.5.1. Iteration One 

The first iteration of the solubility and solvent effects study consisted of collecting 

data for PD-299685 in pure solvents. As shown in Figure 71 (a) the solubility of PD-
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299685 was very low in all organic solvents and moderate in water. To improve the 

coverage of the UNIFAC model and to provide data on synergetic effects in solvent 

mixtures, the solubility of PD-299685 was explored in 50:50 (v/v) binary mixtures of 

water and organic solvents. The range of solvent mixtures was limited due to the 

poor miscibility of some organic solvents with water. The increased solubility 

caused by synergetic effects can be seen in Figure 71 (b). Observed crystal habit 

was block-like for most solvent systems with a small amount of fines generation or 

aggregation, which was likely caused by the magnetic stir bar grinding particles.  

 

Figure 71. Approximate solubility-temperature profile of experimental results of PD-299685 in various 

pure solvents (a) and 50:50 binary solvent mixtures (b). NOTE: join-the-dot lines were used as the 

solubility-temperature profiles were estimates based on limited data points. 

The data from this iteration was used to fit a Dynochem UNIFAC model, and binary 

solubility prediction was run at 5 °C, 25 °C, 50 °C and 70 °C for the covered solvents. 

Highly synergetic effects were observed for water/alcohol and water/acetonitrile 

mixtures as shown in Figure 80 (in the Appendix of Chapter 8). The higher predicted 

a. 

b. 
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solubility of PD-299685 at high temperatures, compared to pure and 50:50 (v/v) 

solvents, allows for more economic solvent and vessel usage, whereas minimal 

change at low temperatures enhances a predicted cooling crystallisation yield to 

more than 98%. 

The best binary solvent compositions, due to highest synergistic solubility, for 

further study from this iteration were 40:60 (w/w) ethanol/ water, 40:60 (w/w) IPA/ 

water and 40:60 (w/w) 1-propanol/ water which equates to volume fractions of 

45:55. Acetonitrile/ water has good synergy (where the solubility exceeds that of 

the single solvents) at 30:70 (w/w), equating to 33:66 (v/v), and was also further 

explored. Acetone/ water mixtures were eliminated from the study due to low 

solubility at the upper operating temperature of acetone due to its low boiling 

point. Ethanol/ glycerol had the highest predicted synergy for an organic/ organic 

solvent mixture but with still very low solubility so was also eliminated from the 

study. 

8.3.1.5.2. Iteration Two 

The recommended solvent systems from the above iteration were trialled 

experimentally and the data observed was fed back into a UNIFAC model. 

 

Figure 72. Approximate solubility-temperature profile of the experimental results of PD-299685 in the 

UNIFAC recommended solvent systems. NOTE: join-the-dot lines were used as the solubility-

temperature profiles were estimates based on limited data points. 

The UNIFAC regression model fitted with the new experimental data returned 

recommended solvent systems the same as the previous iteration, therefore 

termination criteria for the solubility and solvent effects study had been met. 



153 
 

Section 8.3.1.7. discusses the classification, ranking and selection of a solvent 

system. 

8.3.1.5.3. Iteration Three 

As an extension to the general workflow, ternary solvents were also explored. As 

55:45 (v/v) water/1-propanol gave the steepest solubility curve that was chosen as 

the base binary mixture. Various UNIFAC model predictions were done with the 

water/1-propanol solvent mixture plus an additional miscible solvent. The general 

trends showed that the addition of a third solvent had a limited impact on the 

solubility except with acetonitrile where the addition of large volumes of solvent 

slightly reduces the overall solubility of PD-299685, at low temperatures, in the 

ternary solvent system. These predictions for PD-299685 in water/1-propanol and 

acetonitrile were validated in the laboratory and it was confirmed the addition of 

acetonitrile reduced the solubility but by a minimal amount. The importance of this 

in designing an antisolvent crystallisation is discussed in Section 8.3.1.7. 

8.3.1.6. Off-Line Analysis 

 

Figure 73. X-ray powder diffraction patterns for PD-299685 recrystallised from 55:45 (v/v) water/ 1-

propanol overlayed against reference Form A/ starting material. 

The XRPD pattern (Figure 73) shows that the recrystallised material using the 

chosen solvent system gives the most stable polymorph, Form A. This is 

confirmation to show that increasing the water content in the solvent system, 

compared to previous crystallisation methods232, does not favour the formation of 

the monohydrate polymorph form. 
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8.3.1.B Decision B: Can solubility-temperature profiles be plotted with the 

Van’t Hoff relationship (R2 > 0.81) for solvents? 

Measured solubility profiles for the predicted best solvent systems for single and 

binary solvent systems, based on target parameters, were achieved with above 0.81 

R2 values for the line of fit. Progression onto the next stages of the workflow was 

permitted. 

8.3.1.7. Solvent Ranking & Selection 

From the solubility and solvent effects study (Section 8.3.1.5), the following 

classifications can be made for PD-299685:  

• 1-butanol, 1-propanol, 2-methyl THF, acetone, acetonitrile, ethyl acetate, 

heptane, isopropanol and isopropyl acetate are antisolvents.  

• Ethanol and DMSO are practically unusable pure solvent systems due to low 

solubility. 

• Water/ organic mixtures gave good synergistic solubility. 

• Acetone would be an ideal wash solvent for filtration and drying due to low 

API solubility and low boiling point. 

8.3.1.7.1. Cooling Crystallisation Solvent: 

Solubility within the target parameters was observed for water/ organic binary 

solvent systems due to synergy meaning that these solvent systems can be 

classified as good cooling crystallisation solvents. The solubility profile (Figure 72) 

for 55:45 (v/v) water/1-propanol had the steepest gradient and therefore highest 

predicted yield from cooling crystallisation. Furthermore, water/1-propanol had the 

highest operating temperature out of the potential solvent systems meaning that 

higher temperatures and thus higher throughput can be achieved. No considerable 

operational and handling issues were observed at low temperature. No fouling was 

observed through image analysis and direct observation therefore this solvent 

mixture was chosen as the cooling crystallisation solvent. 
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Figure 74. Solubility-temperature profile for PD-299685 in 55:45 water/ 1-propanol with the data 

fitted with the Van't Hoff relationship.  

Additional solubility measurements were carried out to allow for a better fit to the 

data over a range of temperatures. A thermal stability trial was also conducted 

where a highly concentrated sample was held for 24 hours at 75, 80, 82.5 and 85 

°C and aliquots were sampled using HPLC. Negligible chemical degradation was 

observed for all temperatures after 2 hours, however a new compound with 

molecular weight of 170.2 g/mol was observed after 5 hours for vials held at 80 °C 

and above. Therefore, a maximum temperature of 75 °C will be used for PD-299685 

in 55:45 (v/v) water/1-propanol to allow an extended hold for dissolution if scaled 

up to plant. 

8.3.1.7.2. Antisolvent Crystallisation Solvent: 

Three possible antisolvent processes were explored in Section 8.3.1.5., which were 

the addition of water, the addition of 1-propanol and the addition of acetonitrile. 

As seen in Figure 80 (of the Appendix of Chapter 8) the predicted solubility was 

lower the closer the solvent mixture was to pure solvent. The addition of 1-propanol 

to PD-299685 in 55:45 (v/v) water/ 1-propanol (to change the 1-propanol content 

to 63%) reduced the solubility as did the addition of water (to change the water 

content to 70%). The addition of water reduced the solubility of PD-299685 more 

as the final solvent composition is closer to the pure solvent and therefore had the 

least synergy of the two solvent system options. As presented in Iteration Three, of 
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Section 8.3.1.5. the addition of acetonitrile reduced the solubility but to minimal 

effect compared to the addition of water. It is also worth noting that ternary solvents 

are not preferred due to increased complexity of solvent recovery and increased 

specification burden. Therefore 70:30 (v/v) water/1-propanol was the chosen final 

composition for antisolvent crystallization for the kinetic parameter study. 

 

Figure 75. Solubility-temperature profile for PD-299685 in 70:30 water/ 1-propanol with the data with 

the Van't Hoff relationship. Note that the triplicate data and fitted line check for uncertainty removed 2 

data points from the dataset for this figure. Also not all data points were able to be collected in 

triplicate due to poor nucleation at low concentrations. 

An additional series of measurements was conducted for PD-299685 in 64:36 (v/v) 

water/ 1-propanol to fit solubility for the halfway point of antisolvent addition. No 

fouling was observed through image analysis and observational analysis. 

The XRPD pattern (Figure 81) confirms that the increase in water content in the 

solvent composition did not cause the formation of the monohydrate polymorph. 

The most stable form, A, was produced. In addition, this solvent composition was 

stress-tested by holding a slurry of PD-299685 in 70:30 water/ 1-propanol at 5 °C 

for more than 5 days where no solid form transformation in the product was 

observed. 
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8.3.1.8. Kinetic Parameter Study (Isothermal Local Search) & 8.3.1.9. Off-Line 

Analysis 

A design of experiment plan was created with a 2-dimensional design space of 

varied isothermal temperature and supersaturation. The plan was based on a 

correlation Latin hypercube design242, a statistical method for designing a near-

random experimental plan, (Table 25 in the Appendix of Chapter 8) adapted so that 

the experiments sat on a Pareto front of feasible nucleation within the MSZW. 

Primary nucleation was not observed for any of the vials ran at a temperature of 16 

°C and supersaturation of 3.2 likely due to the low concentration of the vial. This 

qualitatively showed that high concentration or seeding are required at low 

temperatures. A comparison of different stirrers on the effect of crystallisation was 

conducted on vial 7 of each experiment (temperature of 28 °C, supersaturation of 

2.91) where the magnetic stirrer showed attrition, the hook-shaped stirrer showed 

reduced mixing and the 3-blade pitched stirrer showed good mixing. The 

differences in quality of crystal generation were negligible between the single and 

the double 3-blade pitched impellers therefore the single was chosen for further 

study in Section 8.3.2. as it is more commonly used in plant-scale reactors. 
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Figure 76. Crystalline (Technobis) images from the end of the final hold cycle for vial 7 agitated by 

magnetic flea (a), 3-blade pitched (b), 3-blade double pitched (c) and hook (d) stirrers. 

The qualitative observations between the different stirring methods were validated 

using microscopy and Morphologi data which showed that the particles crystallised 

in the vial with a magnetic flea had a d(v,90) approximately 3.5 times smaller 

compared to overhead stirring methods. 

a. 

b. 

c. 

d. 
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Figure 77. Volume-based particle size distribution (PSD) from Morphologi for all Crystalline stirring 

methods. NOTE; the difference in smoothing is due to varying number of total particles. 

The kinetic parameters extracted, using CNN image analysis, were visualised using 

a covariance matrix due to the multiple dimensionalities of the design and 

measured variable space. 

The agitation methods were assigned a discrete eigenvalue to allow for numerical 

comparisons between continuous and categorical variables across the design 

space. It can be seen from the co-variance matrix (Figure 82 (a)) that changing 

between the magnetic flea and the 3-blade pitched impellor, had a large impact on 

the measured kinetic parameters. It can qualitatively be concluded that the use of 

the magnetic flea in this study ground the particles and created clouds of fines 

which created more particle surface area for faster desaturation. 

The data presented in Figure 82 (b) (in the Appendix of Chapter 8) indicates that 

there was no statistically significant difference in terms of impact for type of 

overhead agitation (hook, single 3-blade pitch, double 3-blade pitch) on 

nucleation, although - as mentioned in an earlier section - the hook impeller gave 

rise to a poor mixing environment. 

PD-299685 can be classified as a slow nucleating and fast growing API across varied 

process conditions and when using an overhead stirrer, the most representative of 

a plant scale process, yields large crystals. The d90 of crystals from the isothermal 

study were larger than 500 µm which exceeded the required particle size required 

for API formulation in this instance. The general crystal habit was blocks, which were 



160 
 

acceptable for downstream processing. Other morphologies, such as needles, are 

less desirable from a process perspective given that particles exhibiting this shape 

generally have poor bulk properties, including for instance flow,  

The information gathered in this stage was foundational for designing an end 

crystallisation process mainly in terms of the impact of agitation and mixing and 

knowing the impact of temperature and supersaturation on nucleation and growth. 

8.3.1.C Decision C: Were the experiments free from fouling? 

No significant fouling occurred, from visual observation, of the API in the chosen 

solvent system, progression onto the next stage of the workflow was permitted. This 

would be particularly important when considering a continuous process. 

8.3.1.D. Decision D: Were target parameters or algorithm convergence 

achieved? 

The target parameters for the solubility study were satisfied in respect to choosing 

a solvent system with appropriate solubility giving crystal habit with a desired 

aspect ratio. The target parameter for size was not satisfied however, and 

mechanical interventions, for example HSWM, would be required. The target 

parameters for the kinetic study were all satisfied. Progression onto the next stage 

of the workflow was permitted with being mindful that crystal size control would 

require milling, similar to the previous recrystallisation process232. 

8.3.1.10. Optimisation 

As target parameters were met (as outlined in Section 8.3.1.D) the optimisation step 

was not required. 

8.3.1.E. Decision E: Are additional experiments needed? 

As the aims of the study were to expand the workflow, into seeding, scale-up 

validation and process design, then further experimentation was required. This 

decision point formed a loop. 
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8.3.1.11. Additional Experiments: Seeded, Antisolvent, Easy-Max Validation 

8.3.1.11.1. Seeded 

Seeded experiments were performed following a space-filling Latin hypercube 

DoE plan, as explained in Section 8.3.1.8. (Table 26 in the Appendix of Chapter 8) 

at lower supersaturations than the previous section. The 3-pitched blade stirrer was 

used in line with findings reported in Section 8.3.1.8. Due to the difficulty in 

accurately dosing equal small quantities of seed into the Crystalline during the hold 

period, it was decided to pause the image analysis and add circa. 5-10 mg and the 

difference in vial weight was recorded, before then restarting the image collection. 

The covariance matrix (Figure 83 (a)) shows that an increase in seed mass caused 

both growth and nucleation rates to increase where the growth rate dominated 

over the nucleation rate. Nucleation however dominated over growth at higher 

temperatures and higher supersaturations, as expected. Microscopy of samples 

taken of vial 3 (supersaturation of 1.60, temperature of 35 °C) showed many small 

crystals with some large agglomerates compared to vial 7 (supersaturation of 1.55, 

temperature of 28 °C) which showed dispersed square crystals over 500 µm. 

8.3.1.11.2. Antisolvent 

The same experimental plan as previously used for the local kinetic search (Section 

8.3.1.8.) was performed here but using only the overhead 3-blade pitched stirrer. 

The data from that section was used alongside data gathered for the addition of 

half of the antisolvent and the addition of all the antisolvent. I.e., an isothermal study 

was conducted in 55:45 (v/v), 64:36 (v/v) and 70:30 (v/v) water/ 1-propanol. 

It can be seen from the covariance matrix (Figure 83 (b)) that the addition of 

antisolvent had a positive impact on nucleation and a negative impact on growth. 

This was ideal for limiting the d90 size of the final crystals. There was also a largely 

positive relationship between the addition of antisolvent at higher temperatures on 

nucleation with minimal impact on growth. Therefore, nucleation would largely 

dominate over growth at high temperatures and higher antisolvent composition.  
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8.3.1.11.3. Easy-Max Validation 

The same experimental plan that was conducted in the local kinetic search (Section 

8.3.1.8) was performed using a 50 mL vessel in the EasyMax with an overhead half-

moon PTFE stirrer. The crystallisation kinetic parameter data for the 3-blade pitched 

impellor in the Crystalline and the data from the EasyMax were compared by 

covariance matrix as shown in Figure 83 as these two stirrers have the most similar 

geometry and tip speed. 

  

Figure 78. Microscopy images taken at 4x magnification of PD-299685 recrystallised from 55:45 (v/v) 

water/1-propanol using the Crystalline with overhead 3-blade pitched impeller (a) and EasyMax with 

half-moon PTFE stirrer (b). 

It can be seen from the covariance matrix (Figure 83 (c)) that there are major 

variances between the Crystalline and EasyMax nucleation and growth data which 

can be accounted for by differences in PAT and reactor geometry. The Blaze probe 

used for the EasyMax image collection had a much smaller field of view (FOV) 

compared to the Crystalline cameras, and therefore it was hard to track nucleation 

and growth. Despite the large variances, microscopy images (Figure 78) showed 

good qualitative similarities in final crystal size between EasyMax and Crystalline 

when using the 3-blade pitched double impellor.  

  

b. a. 
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Figure 79. Volume-based particle size distribution (PSD) from Morphologi for EasyMax overhead 

PTFE stirrer and Crystalline overhead 3-blade double pitched for SS=2.91 and Temperature=28°C. 

The PSDs as shown in Figure 79 also showed good similarity, where the d(v,90) was 

384 µm and 328 µm for the Crystalline 3-blade double pitched and EasyMax PTFE 

stirrer respectively. Therefore, it can be concluded that for the best estimations of 

scaling up from Crystalline to EasyMax, the 3-blade double pitched should be used 

at the millilitre scale. However alternative PAT should be used for online 

measurements of kinetic parameters for a fast growing compound as the one used 

here such as imaging with a wider field of view (FOV). However, this is compound 

specific and the set-up discussed in this paper would most times suffice. 

8.3.1.E. Decision E: Are additional experiments needed? (revisited) 

After completion of the above experiments required to expand the original 

workflow study the decision criterion was met and progression onto the next stage 

of the workflow was permitted. 

8.3.2. Process Design and Optimisation 

After completion of the workflow there was a wealth of data collected, both 

quantitative and qualitative, on the thermodynamics and kinetics of the system. This 

allowed the design and optimisation of a commercially viable crystallisation 

process. 

As shown in Section 8.3.1.5., the solubility and solvent effects study, the solvent that 

gave the highest solubility and temperature dependence was 55:45 water/ 1-

propanol with a predicted yield of over 90% for a cooling crystallisation only. The 

addition of water for a final solvent composition of ~70:30 reduced the solubility at 
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low temperatures further pushing the predicted yield to 95%. Therefore, a cooling 

and antisolvent hybrid crystallisation was proposed as the ideal mode of 

crystallisation. The local kinetic parameter study (Section 8.3.1.8.) showed that the 

use of an overhead blade impeller would yield crystals to align with shape and size 

target parameters set out and would be most like the actual manufacturing vessel. 

Analysis of covariance between isothermal experiments in Crystalline and EasyMax 

showed good comparisons between the different scales.  This enabled process 

understanding of kinetic parameters at millilitre scale before process optimisation. 

Due to past issues of large particle size, the proposed crystallisation route should 

allow for nucleation to dominate over growth. Analysis of covariance in the seeded 

and antisolvent experiments in Section 8.3.1.11. showed that this could be 

achieved where seeding was done at higher temperatures and using lower seed 

mass. Furthermore, a fast antisolvent addition at higher temperatures should also 

allow for more nucleation. A cooling rate of 0.2 °C/min was determined due to heat 

transfer constraints associated with plant-sized equipment. 

8.3.2.1. Crystalline 

The API was recrystallised with a yield of 99%, d90 of 759 µm and a mean aspect 

ratio of 0.718 under conditions described in Section 8.2.3.2.1. Control over particle 

sizing was not achieved by purely crystallisation process control. Yield was 

abnormally high likely due to the excellent purity of the starting material and also 

the narrow geometry of the Crystalline vials allowing for fast depletion of 

supersaturation. This initial experiment however showed that the crystallisation 

process worked well but needs the integration of HSWM. 

8.3.2.2. EasyMax 

Table 24. Experimental results and comments from the four EasyMax iterations of the final process 

design. 

Run d(V,90) 
(µm) 

Mean 
aspect 
ratio 

Yield 
(%) 

Comment(s) 

1 476 0.688 91 HSWM reduced d(v,90) from 664 µm, 
slow filtration 

2 600 0.743 92 Hold and thermocycling after HSWM 
allowed for excessive growth, narrow 

PSD* (less fines), slow filtration 
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3 523 0.725 92 Hold after HSWM allowed recovery of 
yield but also growth, slow filtration 

4 234 0.766 92 HSWM gave narrow PSD*, fast filtration 
*Refers to Figure 84. 

Iteration 4 of the end process design yielded the best process in terms of crystal 

attributes as met the desired target parameters of d90 of 100 – 350 µm and an 

aspect ratio greater than 0. 5. The size and shape of the crystals recovered would 

allow for a fast free flowing bulk powder that is also suitable for tabletting in the 

correct dosage. Using the IKA MagicLab gave a higher degree of control over 

exposure to the mill teeth of the HSWM compared to the T-25 due to the material 

showing poor wettability presumably due to mild having hydrophobic character. 

 

8.4. Conclusions 

The use of a structured workflow allowed for quick collection of data where a 

thermodynamic model and kinetic model were developed for PD-299685 in circa 

8 weeks. Additionally, validation between stirring methods, scale-up and different 

modes of crystallisation was done as part of this study. This showed that the 

Crystalline with an overhead stirrer gave the best estimate of how the crystallisation 

would occur in the EasyMax. Scaling down to the millilitre scale and using offline 

analysis such as Morphologi provided the best comparisons. Further work however 

needs to be done to incorporate comparable online PAT at difference scales. Smart 

decision-making alternating between experimental data and solubility prediction 

algorithms allowed for a fast thermodynamic model to be developed and applied 

to inform solvent selection for an industrial crystallisation process. A space-filling 

Latin hypercube DoE were employed to plan the least number of experiments to 

make a kinetic model for cooling, seeded and antisolvent crystallisations. These 

models were then analysed using covariance matrices to determine the ideal 

supersaturation and temperature for specific process steps in the crystallisation 

process. The optimum crystallisation process developed was a cooling, seeded and 

antisolvent hybrid of PD-299685 in 55:45 (v/v) water: 1-propanol with additional 

water as antisolvent. Dissolution was at 75 °C, seeding and addition of antisolvent 

was done at 60 °C, and then the mixture was cooled to 5 °C before milling. The 

process proposed gives higher control and product quality over previous 
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processes232 as had an increased MSZW to allow for speck-free filtration and 

seeding. Additionally, due to the use of antisolvent addition, the yield has been 

increased by 5%. 
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Appendix 

This appendix contains additional information for context and details pertaining to 

extracted data figures, material characterisation, experimental plans and 

covariance matrix analysis. 

 

Figure 80. Predicted solubility profiles of varying mass compositions of binary solvent mixtures at 5, 

25, 50 and 70 °C of ethanol/ water (a), IPA/ water (b), 1-propanol/ water (c) and acetonitrile/ water (d). 

  

b. a. 

c. d. 
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Figure 81. X-ray powder diffraction patterns for PD-299685 recrystallised from 70:30 (v/v) water/ 1-

propanol overlayed against reference Form A/ starting material. 

 

 

Table 25. Design of Experiment (DoE) plans for the kinetic parameter study. 

Vial Isothermal 
temperature 
(°C) 

SS 

1 36 1.84 

2 16 3.2 

3 35 2.26 

4 24 3.1 

5 21 3.2 

6 31 2.64 

7 28 2.91 
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Table 26. Design of Experiment (DoE) plans for the seeded kinetic parameter study. Note: 

supersaturation for each vial increases for the seeded experiments due to the addition of seed from 

the previous cycle. 

Vial Isothermal 
temperature 
(°C) 

SS 

1 36 1.2 

2 16 1.4 

3 35 1.41 

4 24 1.08 

5 21 1.45 

6 31 1.28 

7 28 1.33 

1 36 1.25 

2 16 1.45 

3 35 1.51 

4 24 1.23 

5 21 1.62 

6 31 1.35 

7 28 1.41 

1 36 1.3 

2 16 1.63 

3 35 1.6 

4 24 1.31 

5 21 1.64 

6 31 1.43 

7 28 1.55 
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The figure continues on the next page.  

a. 
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Figure 82. The covariance matrices of input and output variables* across the kinetic parameter study 

for two different agitation methods, magnetic flea (assigned as 0) and the 3-blade pitched impellor 

(assigned as 1) (a) and for the 3-blade pitched impellor (assigned as 3), 3-blade double pitched 

impellor (assigned as 6) and the hook stirrer (assigned as 2)** (b). The green box resembles the main 

point of interest. 

*Abbreviations in the legend are as follows: Focus – quan refers to a quantitative assignment of the qualitative 

focus of the analysis (see the comment on eigenvalues below), SS is supersaturation, In is induction time, Nuc is 

nucleation rate, Grw is growth rate and Asp is aspect ratio. 

**As the focus of the covariance analysis was looking at differences between stirrer types, these categoric 

variables needed a quantitative value eigen value which was assigned to reflect the number of corners/ blades in 

the stirrer. 

 

b. 
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The figure continues on the next page. 

a. 

b. 
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Figure 83. The covariance matrixes of varied and measured variables across the kinetic parameter 

study for seeded isothermal experiments (a) for three different antisolvent compositions, initial 

(assigned as 0), halfway (assigned as 0.25) and final (assigned as 0.5)* (b) and study for Crystalline 

and EasyMax isothermal experiments (c). 

*Eigenvalues were assigned according to the part of antisolvent added relative to the initial starting volume. 

  

c. 
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Figure 84. Volume-based PSD of the various end process crystallisation of PD-299685 from the 

Crystalline and EasyMax. 
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9. Conclusions. 

 

9.1. General conclusions 

This thesis has demonstrated the usefulness of a standardised workflow applied to 

pharmaceutical crystallisation data collection. The workflow incorporated QbD 

principles and was accelerated to advance the workflow to incorporate QbDD 

principles. The workflow was subsequently validated giving the opportunity for the 

work in this thesis to be integrated into industrial pharmaceutical research with 

confidence. 

The main conclusions, aligned to each research chapter, can be summarised as 

follows: 

1. Developing a model-driven workflow for the digital design of small-scale 

batch cooling crystallisation with the antiviral lamivudine. A logical 11-step 

workflow was developed (main sections including material characterisation, 

solubility studies, kinetic parameter estimation and solid-state analysis). QbD 

principles such as using prior knowledge, setting target parameters and DoE 

experiments allowed for the process optimisation for the crystallisation of 

lamivudine. Data collection was done in 80 polythermal and 28 isothermal 

experiments using only 53 g of API exemplifying vast improvements in efficiency 

and reduction in material wastage. Despite the challenges associated with aspects 

of the workflow e.g., hard-to-review prior knowledge, bi-objective only 

optimisation or equipment costs and constraints the anti-viral case study 

highlighted areas within the workflow for digitalisation into QbDD principles. 

2. High-throughput screening for large-scale data collection to inform 

medicine manufacture of aspirin. The workflow was demonstrated through a 

second case study, the crystallisation of aspirin, which took circa 4 weeks and 71 g 

of API. The structured data collection showed both efficiency and generalisability 

of the workflow and suggests a successful application in industrial pharmaceutical 

research and manufacture. 
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3. Adaptive Bayesian optimisation of process conditions for small-scale batch 

cooling crystallisation across fast and slow kinetic parameters: a comparative 

study. DoE (implemented in PyMOO199) and Bayesian (GPyOpt200) methods have 

significant improvements over grid search methods at finding the optimum process 

conditions to satisfy the target crystallisation kinetic parameters. AdBO 

outperformed all other optimisation algorithms in reducing the objective function 

value for both case studies. Furthermore, AdBO required much fewer experiments. 

This time, and subsequently material, reduction translates to an approximate saving 

of 15-80 kWh for a general lab electricity requirement and up to £20,000/ kg for an 

in-demand anti-viral API (lamivudine). 

4. Utilisation of the model-driven workflow for the digital design of small-

scale batch cooling crystallisation of a broader scope of the chemical space. 

Five API case studies were used to exemplify the integration of the latest Python 

Crystalline image analysis (PyCIA) model and the AdBO experimental planner into 

the workflow. No adaptations to the workflow were required across the breadth of 

chemical space thus showing good generalisability of the workflow for future case 

studies. This suggests that the translation of the logic of the workflow, or specific 

sections, to a robotic smart lab would be achievable without change. A modulus 

approach to the optimisation algorithm was demonstrated through the inclusion of 

a fourth objective to avoid persistent needles for D-mannitol. The ability to 

introduce new objectives into the optimisation problem will allow for the 

adaptation of this work into other areas of research such as process chemistry, drug 

product development and beyond. 

5. Integration of the model-driven workflow into an industrial pharmaceutical 

facility (Pfizer): Supporting Process Development of API Crystallisation. The 

workflow was validated and expanded using an industry-relevant API case study. 

The comparison between different stirring methods and crystalliser volume 

validated that the workflow provided key information for thermodynamic and 

kinetic models and crystallisation process design. Seeded and antisolvent 

experiments were performed to allow for the design of a hybrid antisolvent and 

cooling process crystallisation of PD-299685 that aligned with previous shape and 

size parameters and had improved yield. The integration of the workflow into an 

industrial pharmaceutical research facility allowed for vast time and material 
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savings over more traditional approaches. Increases in efficiency, as demonstrated 

here, are of paramount importance in industry where time constraints and costs are 

a lot more stringent.  
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