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Abstract

This thesis is initially concerned with solving the Blind Source Separation (BSS)
problem. The BSS problem has been found to occur frequently in problems
existing in various Scientific and Engineering application areas. The basic idea
of the BSS problem is to separate a collection of mixed data into its underlying
information components.

To tackle the BSS problem two related methodologies have been utilized exten-
sively throughout the literature. The first approach is by utilizing the statistical
technique Independent Component Analysis (ICA). This method utilizes a trans-
formation that maximizes the statistical independence of the mixed data compo-
nents. The second approach is based on the Approximate Joint Diagonalization
(AJD) of a set of target matrices, either the time delayed correlation matrices or
matrix slices of the fourth order cumulant tensor. This approximate diagonaliza-
tion results in matrices which are maximally diagonal. Within this thesis both
of the above approaches are utilized within an adaptive gradient descent setting
to tackle the BSS problem.

The first contribution within this thesis is the novel application of the Matrix
Momentum optimization framework to perform ICA, via the optimization of a
Mutual Information based cost function. The algorithm is shown to give Newton
like performance with low computational cost.

The second contribution within this thesis is the first application of the Simulta-
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neous Perturbation Stochastic Approximation (SPSA) algorithm to jointly diag-
onalize a set of time delayed correlation matrices.

As a result of the above work it was also found that the SPSA algorithm could
also be applied to the problem of Image Registration. Currently one of the
most popular methods of solving the Image Registration problem is based on
the maximization of the Mutual Information between the images. The final
contribution within this thesis is the application of the SPSA algorithm to other

novel Information Theoretic cost functions to perform Image Registration.
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Chapter 1

Introduction

This chapter gives an introduction to the main topic of this thesis, Blind Sig-
nal Processing, and includes a background to the Blind Source Separation (BSS)
problem and the statistical technique of Independent Component Analysis (ICA),
that are of current interest in the field. Associated algorithms and further details
of these problems will be explained further throughout this thesis. An introduc-
tion to the Image Registration problem is also given here. This problem can be
solved using similar cost functions and algorithms to those used in solving the

Blind Source Separation problem.

1.1 Blind Source Separation

Blind Source Separation refers to the problem of separating mixed data into
its underlying information components. The problem is often described as the
Cocktail Party Problem based upon the remarkable ability of humans to track
and attend to an auditory source in a noisy environment, when the source is
generated independently by a speech or sound signal. This phenomenon was first

studied in 1953 by Cherry [1, 2, 3]. The model for the Cocktail Party Problem
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the thesis is given.

1.3 Thesis Outline

This chapter provided a simple introduction to the field of Blind Source Sepa-
ration, the problem and some of the applications of the developed algorithms
to real world problems in diverse fields ranging from Mobile Communications
to Cognitive Neuroscience. Also provided was an introduction to Image Regis-
tration, a topic also discussed within this thesis as during the PhD research it
was discovered that the algorithms utilized within these two fields, specifically
Information Theoretic based cost functions, often overlap.

Chapter 2 gives a more detailed introduction to solving the Blind Source Sep-
aration problem utilizing the statistical technique of Independent Component
Analysis. The assumptions required for utilizing the ICA technique are detailed,
and it is shown that the second order Principal Component Analysis technique
in its direct form is incapable of solving the BSS problem for Non-Gaussian sig-
nals. Next the Kullback-Leibler Divergence is introduced as a cost function for
optimization within the BSS context. Then, to finish this chapter some of the
most commonly utilized ICA techniques are described.

Chapter 3 details the development of the Information Maximization algorithm
one of the first and most commonly utilized stochastic gradient descent based
ICA algorithms. The cost function originally utilized within this algorithm is
the Kullback-Leilber divergence. The full development of the gradient update
equation is derived for this neural network based algorithm. During the remainder
of this chapter, Amari’s Natural Gradient is introduced and is then placed within
the context of the BSS problem. The algorithm is shown to provide a dramatic

improvement in the convergence properties of the InfoMax algorithm.
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Chapter 4 introduces the first application of the Matrix Momentum algorithm
within the BSS context. The Matrix Momentum algorithm is a gradient descent
based method that utilizes a modified momentum term to create a second order
Newton type method without the requirement for a matrix inversion inherent
with standard Newton type approaches. The first approach undertaken was to
utilize Pearlmutter’s Hessian Vector product to develop the momentum term. It
was found that this method consistently became unstable. The second approach
to avoid this algorithm instability is to utilize the exact Hessian calculation within
the algorithm development. This newly developed algorithm is shown to provide
fast convergence with low computational complexity when applied within the
BSS context.

Chapter 5 introduces Spall’s Simultaneous Perturbation Stochastic Approxima-
tion algorithm (SPSA) and its application to the BSS problem. Stochastic ap-
proximation algorithms are introduced, specifically the Finite Difference Gradient
algorithm before the SPSA algorithm is introduced. It is shown that the SPSA
algorithm significantly reduces the computational complexity per iteration when
compared with the FDSA algorithm. Previous applications of the SPSA algo-
rithm to the BSS problem are discussed. The SPSA algorithm is then utilized
to develop a novel matrix joint diagonalization algorithm titled SPSA-JD. The
algorithm is shown to provide good performance when applied to diagonalize a
set of perfectly diagonalizable matrices. The algorithm is then shown to perform
well in the BSS context diagonalizing a set of time delayed correlation matrices.
Chapter 6 utilizes the SPSA algorithm detailed within the previous chapter in
application to optimization for solving an Image Registration problem in medical
imaging. Image registration is initially introduced, and the Information Theoretic
cost functions for optimization via the SPSA algorithm are detailed. This details

the Kullback-Liebler, Renyi and Tsallis divergence measures. It is then shown
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that for a synthetic Image Registration problem Tsallis divergence measure results
in fast and accurate convergence. This represents both the first application of
Tsallis divergence and the SPSA optimization framework within medical image
registration.

Chapter 7 brings this thesis to its conclusion, giving a summary of the work
detailed in the previous chapters. Also within this chapter, further work for

continuing the research areas developed is suggested.

1.4 Original Contributions

The original contributions presented in this thesis include the development of
novel adaptive gradient descent based algorithms and their application to op-
timization problems in Blind Source Separation and Image Registration. These
algorithms are based on Information Theoretical and Joint Diagonalization based
cost functions.

The first contribution developed within this thesis is the application of the Matrix
Momentum algorithm to the Blind Source Separation problem. This algorithm
represents a Newton based second order gradient descent method without the
requirement for the inversion of the Hessian matrix required by straight Newton
methods. The algorithm is shown to provide good convergence properties with
low computational complexity

The second contribution, is the utilization of the Simultaneous Perturbation
Stochastic Approximation gradient descent technique for optimization of a ma-
trix joint diagonalization based cost function. This algorithm is then utilized to
diagonalize a number of time delayed correlation matrices for application within
the second order based Blind Source Separation problem.

The third and final contribution developed is the application of the Simultane-
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ous Perturbation Stochastic Approximation gradient descent technique to Mutual
Information based cost functions in Image Registration. Tsallis, Renyi and Shan-
non’s entropy are compared and it is shown that for a synthetic Image Registra-
tion problem the combination of the Tsallis Relative Entropy based cost function

resulted in the highest performance.

1.5 Publications resulting from this work

Gordon Morison, Tariq Durrani, ’SPSA for Noisy Non-stationary Blind Source
Separation’ IEEE International Conference on Acoustics, Speech and Signal

Processing, Hong Kong 2003 pages 285-288

Gordon Morison, Tariq Durrani, ’Blind Equalization Using Matrix Mo-
mentum and Natural Gradient Adaptation’, IEEE International Workshop on

Neural Networks for Signal Processing, Toulouse, France 2003 pages 439-448

Gordon Morison, Tariq Durrani, ’Blind MIMO Equalization Using Matrix
Momentum and Natural Gradient Adaptation’, IEE Colloquium on DSP
Enabled Radio, Livingston, Scotland, UK 2003

Stephan Martin, Gordon Morison, William Nailon, Tariq Durrani, ’Fast
and accurate image registration using Tsallis Entropy and Simultaneous Pertur-
bation Stochastic Approximation’, IEE Electronics Letters, Volume 40, Number

10, May 2004 pages 595-597



Chapter 2

Background

In this chapter the essential background for the statistical technique of Indepen-
dent Component Analysis (ICA) is developed, and the application to the field of

Blind Source Separation is described.

2.1 Independent Component Analysis

Independent Component Analysis (ICA) in its most simplistic form aims at de-
composing a multivariate data into a linear sum of non-orthogonal basis vec-
tors which have basis coeflicients that are maximally statistically independent.
The basis vectors and the basis coefficients are learned in an unsupervised man-

ner. The standard ICA model representing an n-dimensional observation vector

x(k) = [z1(k),- - ,zn(k)]T is generated as follows:
x(k) = As(k) (2.1)
where s(k) = [s1(k), -, sn(k)]” is an n-dimensional i.i.d. (independent identi-

cally distributed) vector known as sources, and A € R"*" is known as the linear

instantaneous mizing matriz. The decomposition of the observed vector x(k) into
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maximally statistically independent components is achieved via a linear transfor-

mation W € R™" in the following manner:
y(k) = Wx(k) (2.2)

where the matrix W € R™*" represents the inverse of the mixing matrix A~!, and
the system output vector y(k) is an estimate of the independent source vector
s(k). As the linear transformation in ICA is learned in an unsupervised manner
the problem would of course be ill-posed if assumptions on the nature of the
system were not made. Some of these assumptions have already been mentioned

but in the interests of clarity they will be stated explicitly here.

2.1.1 Assumptions

The assumptions made for the standard ICA model for the case of linear instan-

taneous mixture:

1. The components s;(k) of the source vector s(k) are statistically indepen-

dent.
2. The mixing matrix A is non-singular and full column rank
3. The observed vector x(k) is zero mean.
4. At most one of the sources has a Gaussian distribution.

Assumption 2 may be stated as the columns of the matrix are linearly indepen-
dent. For simplicity it is generally assumed that the mixing matrix is square,
although a number of algorithms have been developed that allow for this as-
sumption to be removed [35, 36]. Assumption 3 arises due to the fact that a non

zero mean observed random variable z can be written as a combination of a zero
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mean stochastic process and a constant factor
rT=IT+c (2.3)

where c is a constant. Using the fact that the random variable x and the constant
c are independent then c is viewed by a separating system as another independent
observed signal, where ¢ is a constant non zero variable. It will be seen later that
due to the constant nature of this variable its identifiability would not be possible.
Fortunately this may be thought of as a soft assumption as any source vector x(k)

not meeting this condition can be replaced by a centred version of itself as shown:
x(k+1) = x(k) — Elx(k)] (2.4)

where E[.| represents the expectation operator. The fourth assumption will be

explained later in the chapter.

2.1.2 Ambiguities

Taking into account the ICA model and the above assumptions the following

ambiguities arise in the model.
1. The variances of the source signals s; cannot be determined.

2. The mixing matrix A can only be determined up to a (n X n) permutation

matrix P.

The first ambiguity arises due to the fact that both the source signal s(k) and
the mixing matrix A are unknown then a fixed scalar ( between a source signal
s(k) and the corresponding column of the mixing matrix A does not effect the

observation vector x(k) as shown:

x(k) = As(k) = Xn: % s (2.5)
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where a; represents the i-th column of the mixing matrix A. Using this result the

source signal variance may be then normalized to unity without loss of generality.
Elsi(k)] =1 (2.6)

The second ambiguity again arises due to the fact that the source signal s(k) and
the mixing matrix A are unknown therefore any ordering placed on the signals
is essentially meaningless. Therefore using the above ambiguities the ICA model

may now be written as:
y(k) = Wx(k) = PDWAs(k) = PDs(k) (2.7)

where as above, P is a permutation matrix and D is a diagonal scaling matrix.

2.2 Statistical Independence

The key concept of ICA is the statistical independence assumption of the mea-
sured signals. Two scalar random variables z and y are said to be independent if
knowledge of the value of one of the random variables gives no information on the
value of the other. Statistical independence is defined in terms of the probability
density functions of the random variables. Two random variables are said to be
statistically independent if their joint probability density function factors into the
product of the marginal probability density functions of the random variables.

This may be stated mathematically for z and y as follows:

Pey (2, y) = p(T)Dy (y) (2.8)

where p(x,y) is the joint probability density function of the random variables
and y, and p, (z) and py(y) represent their marginal probability densities. Gen-

eralising this result to the vector case:

Dy, (XY, 2, ) = Po(X) Py (¥)P(2) - - (2.9)
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Referring to the original ICA model Equation 2.1 it may be intuitively seen that
after the linear transformation of the source signals s(k) by the mixing matrix A
the joint probability function of the observation vector px(x) will not be equal to

the product of the marginal densities p,(x;).

n
pe(x) # | [ po(:) (2.10)

i=1
Also in the standard ICA model no assumptions are made regarding the pdf
of the input signals, other than at most one signal is drawn from a Gaussian
distribution. Therefore information contained in the signals must be used to

develop a linear transformation that maximizes the independence of the signals.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) is a method for removing the second or-
der dependence from a set of observed random variables, this results in a set of
variables that are uncorrelated. This may be thought of as a weak form of inde-
pendence as the resulting random variables are independent up to second order.
From that point of view ICA may be thought of as a refinement of PCA, that
decorrelates non-Gaussian data for all statistical orders. There are a number of
methods available for performing PCA [37, 38]. These methods may generally be
split into matrix methods and data type methods. The matrix based methods
will utilize all of the available data, the matrix is then decomposed to reveal
more detail about the principle directions of the variances. This will involve the
diagonalization of the matrix using for example the Householder transformation,
Eigenvalue Decomposition (EVD) or Singular Value Decompositions (SVD). For
completeness creating a Whitening transformation using the SVD is described
within Appendix B due to its widespread use within ICA. The data type meth-

ods use the data directly, often in an adaptive manner, such that the principal
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component directions are updated as each data sample arrives. Two examples of
these methods are using a neural network with Hebbian learning [39, 40, 41] or
multilayer perceptron trained using backpropagation [42, 43]. Although it must
be noted that the convergence of the adaptive based methods rely heavily on the
intelligent selection of the learning parameters for the algorithm. Parameter se-
lection for adaptive algorithms for application to the ICA problem are discussed
in chapters 3, 4 and 5 within this thesis. For now it is sufficient to describe the
outcome of the PCA process independently of a specific algorithm, making the
assumption that the orthogonalization is performed correctly. Utilizing this, the
output of the PCA process generates a matrix B € R™" that decorrelates the
observation vector x(k). The resulting output from the Whitening process is the

uncorrelated vector z(k) generated as follows:

z(k) = Bx(k) = BAs(k) (2.11)
The resulting covariance matrix of the whitened observations is as follows:

R.. = E[z(k)z(k)¥] =1 (2.12)

where I represents the identity matrix. It can be seen that if an orthogonal
transformation Q is applied to the resulting whitened outputs z(k), the output
of which will be defined as u(k):

u(k) = Qz(k) (2.13)
Then the resulting covariance matrix of the newly defined vector u(k) is as follows:

Ruu = E[Qz(k)z(k)" Q"]
= QRzz(k)QH
= QQ7 =1 (2.14)
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It can be seen from the above that the Whitening transform obtained using PCA
can only separate the observation vector up to an orthogonal transformation.
This arises as the transformation restores independence only up to second order.
An orthogonal transformation has eigenvalues equal to one and has the property
that it provides an isometry between two spaces in which distance between points
is preserved under the transformation. This may be thought of in a vector space
as a rotation without scaling. Therefore, it can be seen that decorrelation is a
necessary but not sufficient condition to maximize the independence of the obser-
vation vector x(k). In order to resolve the remaining rotation, further information
is required, the orthogonal matrix must be found. This restricts the search space
to the space of orthogonal matrices. An orthogonal matrix has n(n — 1)/2 de-
grees of freedom, therefore the whitening process reduces the complexity of the
ICA problem. In order to resolve the orthogonal ambiguity that is left after the
whitening process further information from the signal is required. There are nu-
merous techniques available to resolve this ambiguity, the most popular methods

in the field are described in the following sections.

2.3.1 Non-Guassianity

The Central Limit Theorem states that under certain conditions the distribution
of the arithmetic mean of a number of independent random variables will tend
towards a Gaussian distribution as the number of variables tends to infinity [44].
As the observation vector x(k) in the Blind Source Separation and ICA problems
represents a linear combination of random variables, based on the Central Limit
Theorem the distribution of the observation vector y(k) will tend to a Gaussian
distribution. Therefore to obtain independent components at the system output

y(k) then a linear transformation W (k) is required that results in components



2.3 Principal Component Analysis 17

at the output that have a distribution that is maximally far from a Gaussian.
That is disributions that have a positive or negative kurtosis, described as super-
Gaussian or sub-Gaussian distributions. This is described in further detail in

Appendix A.

2.3.2 Non-Gaussian Assumption

The above may be used to explain the fourth assumption that at most one source
has a Gaussian distribution. This will be demonstrated for the case of two sensors
and two sets of two sources each containing 1000 data samples. The first source
vector is generated from a Uniform distribution with zero mean and unit variance,
the second source vector is generated from a Gaussian distribution with zero mean
and unit variance. The joint probability density function of the above vectors is
plotted on the following bidimensional plot know as a scatter diagram [45, 46]
shown in Figures 2.1 and 2.2 respectively.
The signals are mixed using the following randomly chosen mixing matrix:

A= (2.15)

2 -1

The resulting joint distributions of the Uniform and Gaussian distributed sources
are as shown in Figures 2.3 and 2.4 respectively. Both the above sets of sig-
nals are spatially whitened using PCA, specifically using the SVD as described
in Appendix B. The resulting joint distributions for the Uniformly distributed
sources and the Gaussian distributed sources are shown in Figures 2.5 and 2.6
respectively. As was stated previously in section 2.3 it can be seen clearly for the
Uniformly distributed signals in Figure 2.5 that the PCA stage separates the sig-
nals up to a rotation. For non-Gaussian signals this rotation can then be resolved
by either implicitly or explicitly utilizing the higher order statistics of the obser-

vation vector x(k). Yet for the Gaussian case the distributions are rotationally
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This may then be written in terms of another well-known Information Theoretic
quantity the mutual information. The mutual information I of a random vector

y is defined as follows [52].

Iy)=> H(y) - H(y) (2.20)

where the joint entropy is defined as

Hiy)=~ [ ply)oalp(y))dy (221)
and the marginal entropies H(y;) are defined as

) =~ [ pw) og(p(us))du (222
The mutual information has the property that it is non-negative and zero if and
only if the random vectors are statistically independent. Therefore the mutual
information makes a specifically attractive contrast function for the ICA problem.
Using the transformation of random variables [44] and taking into the definition

of y(k) in Equation 2.2, the mutual information may now be written as follows:
I(y)=>_ H(y;) — H(x) — log | det W| (2.23)
i=1

A closely related information measure to mutual information is Negentropy, this

is defined in the following subsection.

2.5.2 Negentropy

It is know from Information Theory that Gaussian random variables have the
highest entropy or are the most random of all random variables of equal vari-
ance [52, 44]. Using this result entropy can be interpreted as a measure of non-

Gaussianity. It was stated in subsection 2.3.1 that independent components have
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Normalizing and taking the logarithm of the above equation results in the nor-
malized log-likelihood, giving the Maximum Likelihood estimator for W based

upon Xy as
1 N
WML = arg mV%X N 1Og};[1px(x(n))

N
1
= argmax X;Ingx(x(n)) (2.31)
n=
It can be seen clearly that the above equation represents the sample average of
log px(x(n)). As N — oo the above equation may be written as:

o0
Wy = argmvz&,x/ px(X)logpx(XiW,ps)dX

—0o0

= argmvz&x/ px(X) log (\detW|ps(Wx))dx

= arg mv%x/ Py (%) log ps(Wx)dx + log | det W| (2.32)

—00
The following term can be subtracted from the above equation without altering

the likelihood function as it is independent of demixing matrix W

/_00 Px(X) log px (x)dx (2.33)

Giving the function to be optimized for the Maximum Likelihood solution as:

_ * o px(x)
Wy = argmax/_oopx(x) log (ps(Wx)dx log ———| detW])dX
oo py(Y))
= argmax— «(X)log | == |dx 2.34
gma /_oop() g(ps(y) (2.34)

Now that the most common contrast functions to be optimized for ICA have
been introduced, some alternative second order methods are described, that when
combined with additional assumptions on the data can also be used to solve the

Blind Source Separation problem.
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2.6 Second Order Methods

So far all of the independence measures described have been based on Informa-
tion Theoretic ideas, which are based on the assumptions that the signals are
non-Gaussian i.i.d random variables, as these have tended to be the more popu-
lar approaches to the ICA problem. It was shown in section 2.3 that second order
techniques such as PCA can separate sources only up to an orthogonal rotation
Q for the case of i.i.d. sources. If it is known that the sources have a tempo-
ral structure, e.g. the sources have non-vanishing correlations and the sources
have different power spectrum then the statistical independence condition can
be relaxed, and second order statistics can be sufficient to separate the sources
and correctly estimate the mixing matrix [563, 54, 55]. Some of the most popular
second order blind source separation techniques will be described later in this

chapter.

2.7 Approaches to the BSS problem

Having laid the basic foundations for the linear instantaneous blind source sep-
aration problem, it is now time to review some of the previous solutions to the
problem. Over the last decade there have been numerous differing approaches
to the BSS problem arising from the different communities that are currently
working in the area. These are classified based on the nature of the approach.
During the rest of this chapter some of the most popular algorithms for solving

the BSS problem will be described.
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2.8 Closed form methods

The statistical signal processing community has also had a huge impact in the de-
velopment of ICA and approaches to the blind source separation problem. These
techniques in general are referred to as batch methods, will normally involve ex-
plicit calculation of the higher order statistics of the observation vector x(k) and
are closed form methods. Some of the original techniques developed in this field

are described in the following subsections.

2.8.1 Comon’s Method

One of the early and seminal works in this field was Comon’s minimization of
mutual information method [48]. It was in this paper that the idea of contrast
functions was introduced and defined. This work extended the well known field
of Principal Component Analysis (PCA) with the addition of higher order in-
formation. The specific contrast function used in this seminal paper was the
maximization of the Negentropy. The algorithm adopted a two stage procedure
consisting of a PCA prewhitening stage followed by an orthogonal rotation stage
exploiting higher order statistics of the output vector y(k). For simplicity the
two input two output (TITO) scenario will be described first, then the extension
to higher dimensionality will be shown. A prewhitening matrix B is generated

by the PCA stage and the resulting whitened output vector is given as follows:
z(k) = Bx(k) (2.35)

For the TITO case, the required orthogonal matrix can be parameterized as a

Given’s rotation matrix [56]. A Given’s rotation matrix is a plane rotation matrix







2.8 Closed form methods 31

series expansion about a Gaussian pdf. Utilizing the Edgeworth expansion the
following approximation to the Negentropy is given, where &, is the nth order

cumulant of the system output y; as defined in Appendix A.

T(8)) = 5 Ra(u)? + () + o) — (W) (ra(as)) (2:40)

In generating the system of equations to be solved to find the rotation angle
8, Comon made the assumption that majority of signals naturally occurring will
have a symmetric probability density function and therefore the third order statis-
tics need not be considered. This is a commonly made assumption in the ICA
and BSS literature. Removing the third order cumulant terms from the above

equation, the following equation is given as the contrast function to be optimized.

1

J(yi(k)) = 48

—= (ka () (2.41)

As was stated in the above paragraph, the multivariate entropy J(z) is invariant
under an orthogonal transformation, therefore only the above equation is required
in the optimization procedure. The contrast function to be maximized for the

algorithm can now be written as:

1

I(y) = =5 (ra(y))’ (2.42)

It turns out that the optimization of the above equation may be carried out
by taking the root of a fourth order polynomial, where the unknown variable
within the optimization is the angle §. The above method is applicable only for
the TITO case. In order to extend the algorithm to the more useful scenario
of more than two signals Comon introduced a pairwise Jacobi like iteration.
Comon also details within the paper the extension of the algorithm to complex
valued signals. This is of specific importance in the communications domain as

a number of commonly used modulation schemes employ complex valued signals
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[58]. Comon’s algorithm has been extended in [59] to deal with the case that
the sources have differing fourth order cumulant signs, and a simplified version of
the algorithm was described in [45, 46] where the algorithm was utilized for the
extraction of the fetal electrocardiogram from the maternal cutaneous potential
recordings. The algorithm was further extended to the case that the third and
fourth order cumulant tensor was simultaneously diagonalized in [60, 61, 62].
This algorithm results in a more intuitive cost function for optimization, yet has

the limitation that it can only separate real valued signals.

2.8.2 FOBI

Around the time that Comon was working on his method [48], Cardoso had also
developed an algebraic method for solving the source separation problem that
exploited the fourth order moments of the observation vector y(k) [63]. This
algorithm was creatively titled FOBI (Fourth-Order Blind Identification) by Car-
doso. The algorithm utilizes a two step approach in a similar manner to Comon’s
algorithm, where the first stage of the algorithm is a prewhitening performed us-
ing a PCA, as in Comon’s method creating the prewhitened output vector z(k).
In the second stage of the algorithm, a quadratically weighted covariance matrix
is formed, using a slight abuse of standard notation for a covariance matrix in

the following equations:
R..(k) = E(|z(k)[’z(k)z(k)") (2.43)

Using the definition of the prewhitened vector z(k) the above equation may be

rewritten as follows:
R.,,(k) = E(|BAs(k)|?BAs(k)s(k)T(BA)T) (2.44)

Utilizing the independence of the input source vector s(k), and the knowledge

that after the whitening transformation B has been applied the resulting matrix
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is found by diagonalizing the fourth order cumulant tensor. The fourth order
cumulant tensor described in Appendix A can be thought of as a four way array,
the JADE algorithm performs the separation by utilizing the joint diagonaliza-
tion algorithm developed by Cardoso and Souloumiac [70] on matrix parallel slices
of this array. If all cumulant matrices are utilized for the diagonalization, then
JADE equivalently minimizes the following cost function, similar to Comon’s cost
function detailed above in Equation 2.41.

JW)= > cum(yiy;yry1)® (2.46)

ijkl#iikl

In [71] Cardoso gives a comparison of the JADE algorithm with gradient based
methods. The JADE algorithm has been utilized extensively in application to
the BSS problem [72, 73, 74], although the algorithm is very computationally
demanding due to the requirement to calculate the full fourth order cumulant
tensor. This is especially problematic in high dimensional spaces. In the fol-
lowing sections some gradient based algorithms are described that provide more

computationally efficient approaches to solving the BSS problem.

2.9 Fixed Point Methods

These methods were first proposed by Hyvirinen et al. in their original work
[75, 76] and extended in subsequent papers [77, 78, 79, 80, 81]. The original
FastICA method operates by finding a single source at a time, then repeating
the process to find additional sources. The algorithm to find a single source is
described in the following section along with some subsequent extensions to the

algorithm.
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2.9.1 FastICA

The FastICA method is a fixed point method originally proposed by Hyvdarinen in
[75, 76]. The optimization criterion described in this paper was the maximization
of the kurtosis. As is mentioned in Appendix A, the normalized kurtosis value
of a Gaussian variable is zero in the case of infinite samples, thus positive or
negative values for kurtosis can be used as a measure of non-Gaussianity. It is
known from the Central Limit Theorem that the joint pdf of the output vector
x will tend towards a Gaussian distribution, as a result of the mixing process.
Therefore a transformation W that maximizes the value of the kurtosis will also
maximize the deviation from Gaussianity, this will result in independent signals
at the output y. Typically the non-Gaussianity is measured as either the squared
value or the absolute value of the kurtosis. In order to simplify the optimization
space for the algorithm, the data is transformed to be zero mean and then the
data is prewhitened. The output of the prewhitening stage is given as in Equation
2.11. Prewhitening the data using PCA as described in Appendix B constrains

the vector w to the unit circle. Thus the norm of the vector w is given as follows:
w2 =1 (2.47)

In order to find the direction in which the absolute value of the kurtosis traverses
gradient techniques are employed. The gradient of the kurtosis of the output

vector y is given as follows:

Orq(y) T \3 T,\3
—g = 4[E(2(w2)’)] — 3wE[(w"2)’] (2.48)

The squared value of the kurtosis could also be used in the above equation [75,

48]. The following gradient algorithm can now be constructed that includes the
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concern (e.g audio or image separation). Yet when the data is potentially un-
bounded other cost functions measuring non-Gaussianity are preferred. In [82]
Hyvdrinen changed the cost function of the algorithm to using Negentropy as
the optimization criterion to perform the separation, thus escaping the problems
associated with kurtosis based algorithms. In [83, 84, 85] the algorithm was ex-
tended to complex valued signals. This represented a significant development in
the field, as the algorithm could then be applied within the digital communica-
tions context. This was tackled by Zarzoso in [86] where the FastICA algorithm
based on kurtosis optimization was successfully applied to the MIMO communi-
cations. A disadvantage of the FastICA algorithm, is due to the batch nature of
the algorithm, a large amount of data must be stored in memory simultaneously.
This can be reduced by computing the expectation E[| over a finite number of
samples in an online manner, while keeping the columns of the mixing matrix
w; fixed, updating the mixing matrix columns w; once the average has been cal-
culated. The FastICA algorithm to this point represents one of the most highly

used algorithms for application to the BSS problem.

2.10 Second Order Methods

In the cases where the sources have non-vanishing temporal correlations then
as previously mentioned in section 2.6 it is possible to use alternative separa-
tion techniques to methods based either implicitly or explicitly on higher order
statistics, like the methods described in the sections above. In these cases it is
sufficient to utilize only the second order statistics as the optimization criterion
to perform the source separation. A number of algorithms exist in the literature
that exploit only second order statistics, the most well published of these algo-

rithms is a second order variant of the JADE algorithm and is described within
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this section. To begin of the initial second order methods is described.

2.10.1 AMUSE

The Algorithm for Multiple Unknown Signal Extraction (AMUSE) algorithm was
developed in 1991 by Tong et al. [53] and represents one of the first approaches to
the BSS problem utilizing only second order statistics of the mixed source signal
vector x(k). The AMUSE algorithm begins by utilizing a Whitening transfor-
mation to diagonalize the zero lag covariance matrix of the input vector x(k),
this results in the whitened output vector z(k). The second stage within the
algorithm is to calculate the symmetrized covariance matrix as follows.

1
Rm=:§(Rm—+RL) (2.53)

Where the covariance matrix in the above equation is calculated as follows for a
given time lag 7.

R, = E[z(k)z(k — 7)7] (2.54)

The second stage given in Equation 2.53 ensures the symmetry of the covariance
matrix in the presence of estimation error. The final stage of the algorithm is to
take the Eigenvalue Decomposition of the covariance matrix defined in Equation
2.53, the rows of the separating matrix W are given as the resulting eigenvectors
of this transformation. A similar algorithm to the AMUSE algorithm described
was also detailed by Molgedey et al. in [87]. The algorithm was extended by
Liang in [54] to allow for the scenario where the additive noise at each of the
inputs has a different noise covariance. An extension to the AMUSE algorithm is
described in the following subsection which includes diagonalization of multiple

covariance matrices at various time delays.
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2.10.2 SOBI

The Second Order Blind Identification (SOBI) algorithm was introduced in [55]
and is a second order variant of Cardoso’s JADE algorithm described previously
in subsection 2.8.3, the algorithm represents an extension of Tong’s AMUSE
algorithm [53]. The algorithm exploits the time coherence of the source signals
si(k). The algorithm requires the following assumption on the nature of the

source signals.
1. Rs(7) = E[s(k + 1)sT (k)] = diag[p:(7) . . . pu(7)]

This assumption implies that the sources s;(k),1 < ¢ < n are mutually uncorre-
lated and p;(7) = E[s;(k + 7)si(k)] represents the auto-covariance of the source
si(k). The SOBI algorithm calculates the covariance matrices of the input vector

x(k) as follows for multiple time lags 7:

Rux(1) = Elx(k)x(k—7)7]
= E[(As(k))(As(k —7))7]
= AE[s(k)s(k —7)T]AT

= AR (r)AT

From the above assumption the cross correlation terms, that are given by the
off-diagonal elements of the covariance matrices Rgs(7) for each time lag 7 are
zero for independent signals. Hence the demixing matrix W = A~! can be
found as the solution to a matrix diagonalization problem. That is, to find the
matrix that simultaneously jointly diagonalizes the set of covariance matrices
R.x(7). To perform the diagonalization of the above covariance matrices at
multiple values of time delay 7, the authors used the joint diagonalization of
Cardoso and Souloumiac described in [70]. Joint diagonalization algorithms are

discussed in greater detail in chapter 5. As was previously mentioned for the
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2.11.1 Herault-Jutten Network

In the mid 80s Herault first began studying the following problem in Computa-
tional Neuroscience: How is the central nervous system able to recover or separate
the mixtures of signals that are transmitted along the neuronal fibres? This work
was first developed within [89, 90]. This work then led onto one of the first ap-
proaches to the BSS problem within a Signal Processing context, this was given
by Herault and Jutten [47, 91] where a neural network implementation that im-
plicitly introduced higher order moments of the output by cancellation of two
non-linear odd functions of the separator output. It was in this paper that the
term Independent Component Analysis was coined as a descriptive term for a
method used to maximize the statistical independence of a set of mixed sources.
This term arises due to the similarity of ICA and Principal Component Analysis
(PCA). In the Herault-Jutten paper [47] a recursive neural network as shown

y(k)
7 @ 7

m m

x(k)

+
> >

=

Figure 2.7: Herault-Jutten Recursive Neural Architecture

in Figure 2.7 is utilized where the weights or the network are updated using a
steepest descent algorithm. The output of the Herault-Jutten recursive neural

network representing the unmixed signals is given as follows.

y=(I+W)x (2.55)
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The stochastic gradient equation for the system is given as follows:
W(k+1)=W(k) - uVW (2.56)

Where as stated above the update equation VW is two non-linear odd functions

of the separator output f(y;) and g(y;), given as follows.

Vwy = f1:)g(y;),i # J (2.57)

The Herault-Jutten algorithm has been implemented extensively in hardware
throughout the literature [92, 93, 94, 95] due to its performance and easy imple-
mentation. The algorithm has been further extended to incorporate the case of ill
conditioned mixing by Cichocki et al. in [96]. The algorithm has been extended
to the convolutive environment in [97, 98], a FPGA implementation of the con-
volutive extension described in [97] has recently been proposed in [99]. Thus the
Herault-Jutten algorithm still remains a popular method within the literature to
this day. In the following section some methods for assessing the performance of

algorithms in the BSS context is introduced.

2.12 Performance Measures

As a method of comparing the performance of ICA and BSS algorithms a number
of measures have been proposed throughout the literature. The most commonly
used performance measure is known as Amari’s performance measure described
in the following subsection. Other measures have been proposed for specific appli-
cation areas e.g. audio separation in [100], yet these measures are less commonly

cited.
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Where n(t) = y(t) — s(t), with the permutation manually resolved, represents
the undesired or noise vector. This performance measure assumes that the per-

mutation ambiguity has been solved before its application.

2.12.3 Gradient Norm

As the algorithms detailed within this thesis concentrate on the gradient based
approaches to the BSS problem then the norm of the gradient of the cost function
is a commonly used performance measure. This is based upon the idea that for a
convex cost function the usual stopping criterion for an optimization algorithm is
the nullity of the gradient, in other words the required solution is found once the
gradient vanishes or decreases beyond a given threshold. This is given as follows

for a given BSS cost function J(W)

2

(2.60)

‘ } DI (W)
oW

Where in the above context, the value € is a suitably chosen small value in the
vicinity of zero. This performance metric will be used for a number of the al-
gorithms developed within this thesis. Another important factor utilized in the
selection of signal processing algorithms is the computational complexity of a

chosen algorithm. This is discussed in the following subsection.

2.12.4 Computational Complexity

Computational complexity represents an important consideration in algorithm
development as more and more devices are mobile, relying on low power usage.
Yet this, although not exclusively, is predominantly based upon implementa-
tion and hardware considerations. A number of authors have utilized FLOPS

(MATLAB floating point operations) as a method of assessing the computational
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complexity of their algorithms, yet this method has been subsequently made re-
dundant. Therefore, where appropriate within this thesis, purely for a measure
of relative comparison the computational time consumption on a consistent mi-

croprocessor architecture will be utilized.

2.13 Summary

This chapter has given an overview of the basic theory required for the Blind
Source Separation problem, and has given a review of the current state of the
art methods, specifically concentrating on the instantaneous linear mixture case
for as many sensors as sources. As the Natural Gradient algorithm plays an
important part in the development of this thesis a more detailed description of

the algorithm, its development and extensions is given in the following chapter.



Chapter 3

Information Maximization

3.1 Introduction

The Information Maximization algorithm (InfoMax) has been one of the most

influential algorithms in solutions to the BSS problem. The algorithm was first

introduced in [104, 105] by Bell and Sejnowski. An example of the setup for

the algorithm is shown in Figure 3.1. In this paper the chosen cost function
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Figure 3.1: Neural Architecture for the BSS problem

J(W) was the maximization of the information between the input and the output
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of a feedforward neural network. Mutual Information provides a measure of
the amount of information one variable tells about another. Thus, utilizing the
definition for the mutual information defined in Equation 2.20 for the input vector

x and the output vector y we obtain the following Equation.
I(y,x) = H(y) + H(x) — H(y,x) (3.1)

Within this equation the entropy at the neural network output H(y) represents
the uncertainty at the output y that can be explained by x, which is the mutual
information I(y, x), and the uncertainly at the output y that cannot be explained
by the input x. This can be written as H(y|x). Thus an alternative definition for

the mutual information between the input and output is obtained [52, 104, 105].

I(y,x) = H(y) — H(y[x) (3.2)

The second term in Equation 3.2 is a noise term since is represents the information
at the output that is not related to the input. Thus in the no noise case the term
H(y|x) = 0. Therefore when the weight matrix of the feedforward neural network
represents an invertible continuous deterministic mapping, the maximization of
the above equation for the mutual information with respect to the weight matrix
of the feedforward neural network W is equivalent to the maximization of the

entropy at the output. This is given as follows:

0

0
FwlX) =y HE) (3.3)

Straight maximization would be inappropriate as the entropy of the output of the
demixing system y = Wx would tend to infinity for arbitrarily large demixing
matrices W [106]. Therefore to perform separation the output data y is trans-
formed via a nonlinear transformation ¢(y), that acts component-wise on y. For

ease of notational simplicity and to remain consistent with notation used for the
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For an invertible transformation ¢(u) the Jacobian may be written as:

" Oy
J. = det(W) H
i=1 Ou;

(3.9)
As was described in chapter 2 the joint entropy of the output vector y is given
as follows:

H(y) = - / " py) log(p(y))dy

-0

= E[-log(p(y))] (3.10)

Using this definition in the maximization of the mutual information the following
analysis for the maximization of the cost function J(W) is obtained:

8;(&7) _ 8iw_f(y,x):aiWE[—log(zD(W)]

- a2

0

- _WE {log(p(X)) —log I‘]c|:|

0
= ﬁEﬂOg | Jel]

- %E{log (det(W) ﬁ gfj)}

— Eb—% log(det(W)) + aiw Zn:k’g (gii)}

In order to calculate the derivative in Equation 3.14 it is required to choose

the nonlinearity ¢(.). The nonlinear transformation ¢(u) should be picked such
that the transformation matches as closely as possible the cumulative distribu-
tion function (cdf) of the input in an attempt to match the pdf, therefore the
transformation should ideally be given as:

o(u) ~ /u p(u)du (3.11)

In the blind case this is not completely possible as the underlying pdf’s of the

input data are assumed to be unknown. Therefore an approximation of the pdf






















































4.2 Gradient i.earning Algorinms

requirement of a matrix inversion at each iteration step. A number of Newton
Methods have been applied to the BSS problem each avoiding the matrix inver-
sion in a novel fashion [130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]. In
this chapter the Matrix Momentum algorithm developed by Orr in [141, 142],
is utilised as a second order optimization technique applied to the BSS prob-
lem, resulting in a Newton type method without the requirement for a matrix
inversion. This provides improved convergence relative to the standard Steepest
Descent methods without significant increase in computational cost. The Matrix
Momentum algorithm will be described fully within this chapter, before being
applied within the framework of the BSS problem. The Matrix Momentum al-
gorithm is demonstrated to further increase the convergence with respect to the
Natural Gradient algorithm [101, 113, 114, 112, 88] and is shown to provide equal
performance in convergence with low computational complexity when compared
with alternative Newton based BSS methods [134, 135, 136, 136]. The develop-
ment of the above algorithms is shown within the following sections. To begin
the development of the Matrix Momentum algorithm it will be important to first

revisit the Steepest Descent technique, before continuing to the Newton Method.

4.2 Gradient Learning Algorithms

It was mentioned in the previous chapter that the Steepest Descent algorithm
[108, 110, 109] was utilized in the development of the InfoMax algorithm [104].
The algorithm dates back to 1847 [108] and represents one of the most time served
algorithms known in Optimization Theory. The format of the Steepest Descent
algorithm for a matrix valued cost function J(W) is given by the following equa-

tion.
9J(W (k)

TWE (4.1)

W(k+1) = W(k) — uC(W(k))
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Letting Aw; = wo + Awp, and repeating this results in the following update

equation.
_ J(w(k))
J'(w(k))

We can use the above to develop an iterative update equation for finding the

Aw(k) = (4.4)

root. This is given as follows.

J(w(k))

~ Tw(h) (45)

w(k+1) = w(k)

Trivially, it can be seen that the above analysis can be extended to function
minimization by observing that if a variable w is a stationary point of a cost
function J(w) then the variable w is a root of the cost function’s derivative.
Therefore the value of the input variable w can be found by applying the Newton

method to J’(w). This results in the following update equation.

J'(w(k))

= Tw(®)) (4.6)

wlk+1) = w(k)

This method has the constraint that it requires the cost function J(w) to be twice
differentiable. Extending this analysis to a vector valued twice differentiable cost

function J(w) we obtain the following update equation for the Newton method.
w(k+1) =w(k) - H'VJ(w) (4.7)

Where H represents the n x n Hessian matrix, the matrix of second partial
derivatives, and V. J(w) represents the n x 1 Jacobian vector, the vector of partial
derivatives. Extending this result to a matrix valued twice differentiable cost

function as required in BSS the following Newton update equation is obtained.
W(k+1)=W(k) — mat I:H_lvec[VJ(W)]] (4.8)

Where mat is an operator that transforms a n? x 1 vector into a n X n matrix,

and the vec operator turns a n X n matrix into a n? x 1 vector. These operators
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are required as the Hessian matrix H of a matrix valued cost function results in
a n? x n? matrix. The above equation more generally will be written including
a step size parameter p which is generally defined in the range 0 < p < 1. To
ensure algorithm convergence the step size u should be chosen to ensure the Wolfe

conditions are satisfied for each iteration of the method [143, 144].

W(k+1) = W(k) — u (mat [H-lvec[W(W)]D (4.9)

It can be seen clearly in the above equation that the inversion of a n? x n?
matrix represents a significant cost overhead in the implementation of a straight
Newton method applied to the BSS problem. In the following section the Matrix
Momentum algorithm developed by Orr in [141, 142 is introduced, which provides
an algorithm with Newton-like performance avoiding the high computational cost
of the straight Newton method. In [26, 27] the first application of the Matrix

Momentum algorithm to the BSS problem was introduced, as detailed further

within this thesis.

4.3 The LMS algorithm with Momentum

The idea of incorporating previous values of the weight vector along with the
standard Steepest Descent update term was first utilized by Proakis in [145, 58]
for high speed adaptive equalization in digital communications. The idea was
then revisited by Roy in [146, 147] and within these references, the algorithm was
named the Momentum LMS (MLMS) algorithm. At the same point the addition
of a momentum parameter was further analysed by Tugay in [148, 149, 150|. The
momentum parameter addition to the Steepest Descent update equation is shown
as follows:

9J (W (k))

Wk +1) = Wk) g

+ B(W(k) - W(k—1)) (4.10)
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Where to ensure stability the momentum parameter § is defined such that |G| < 1.
It was found by Roy and Shynk in [147] that while the algorithm remains stable
if the momentum parameter 3 is negative within the above range this can cause
decreased algorithm performance. Therefore, generally the parameter is chosen
to be positive. Expanding the right hand side of the above steepest descent

equation with momentum, it can be seen that the above equation can be written

8J(W (k)

W) for a constant

as an exponential averaging of the weight update equation

value for 3. Rewriting the above equation as an exponential average the following

equation is obtained.

Wk+1) = W) - ua‘g(WL((:))) + B(W(ls _1)- Mag(vx:fv(;k_—&)» — B(W(k—1))
- DIW(E)) 8J(W(k—1))
= W(k)_“( W) P oWk =) )
_ 00J(W(k))  0J(W(k—1))
- W(k)"“(ﬂ W) P 8W(k—1)>

1 .
(0J(W (k —1))
= W(k)— t
® =138 ("
For the case where the momentum parameter § lies within the range defined in
[147] as detailed above, and making the assumption that within the significant
terms within the above exponential average equation the gradient terms are not

changing rapidly, then the finite summation term can be replaced by an infinite

summation as follows:
G (OTW(E =)\ AT(W(k) o=
“;ﬂ< W (k — 1) >”“ W (k) ;ﬁ (4.12)

Using the above equation it can be seen from the convergence of the Geometric

series that the momentum addition has the effect of rescaling the learning rate

OJ(W(k)) o= s . w [OJ(W(K))
F w27 ( ) (4.13)

parameter,

1- 8\ oW(k)

(4.11)
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This is shown as follows where the learning rate (i, is defined as the equivalent
learning that would be required to obtain the same rate of convergence for the

case that 8 = 0:

g = 755 (4.14)

It was shown in [141] that the addition of a momentum term does not improve
convergence in excess of what can be achieved by simply utilizing the equivalent
learning rate p.,. This is an unsurprising result, yet the addition of a momentum
term has been utilized extensively in the neural network literature [151, 152, 153,
154] and the references therein. Specifically in the context of the Backpropagation
algorithm [42]. In the following subsection the Matrix Momentum algorithm is

introduced.

4.3.1 Matrix Momentum

It has been shown previously that although the Newton method provides im-
proved convergence with respect to the Steepest Descent algorithm, the required
matrix inversion per iteration can be computationally expensive. As a method
of removing the requirement for this matrix inversion Orr introduced the Matrix
Momentum algorithm [141, 142]. Beginning with the momentum equation given
in Equation 4.10 it was shown that the addition of the momentum term had the
effect of rescaling the learning parameter. It was shown in subsection 4.2.1 that
for the Newton Method the learning rate parameter is equal to the inverse of the
Hessian of the cost function. In [141] Orr posed the question: ”What was the
momentum parameter required such that the equivalent learning rate parameter
teq Was equal to the inverse of the Hessian matrix?”. This is shown as follows for

the matrix valued case:

e =H™ = pll - B (4.15)
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Where I in the above equation represents the identity matrix. Solving the above
equation for the momentum parameter  we obtain the following result such that
the effective learning rate for the system is equal to the inverse of the Hessian
matrix of the cost function:

B=1—uH (4.16)
Placing this 8 momentum parameter in the context of the steepest descent equa-
tion with the momentum update as shown in Equation 4.10 we obtain the fol-

lowing update equation.

0J(W (k))
W (k)

; ((W(k)—W(k—l))

W(k+1) = W(k)—pu

- u(mat [Hvec(W(k) ~ W(k — 1)))D (4.17)

Rewriting the final section of the above equation for simplicity as AW (k) =
W (k) — W(k — 1), the above equation takes the following form.

OJ(W (k))
W (k)

+ (AW(k) .y (mat [Hvec(AW(k))J )) (4.18)

W(k+1) = W(E) —u

Thus it can be seen from the above equation that it is required to calcu-
late the product of the Hessian matrix and the vector of previous weights
mat[Hvec(AW (k))]. This product can be calculated in two ways, the full
Hessian matrix H of the cost function J(W) can be calculated as in Newton
based approaches {134, 135, 136, 138, 117, 112, 88] and multiplied by the vec-
tor vec(AW (k)) or alternatively the product of the Hessian H and the vector
can be found in one calculation. The latter method will be explored within this
chapter. The product of the Hessian and an arbitrary vector was introduced

by Pearlmutter in [155] and at the same time a similar method was developed
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independently by Moller in [156, 157]. This method is described in the following
section initially for functions of a vector, as this can then be further extended
to functions of a matrix utilizing the mat and vec operators, transforming the

matrices to vectors, calculating the Hessian vector product, then transforming

again the corresponding vectors to matrices.

4.4 Pearlmutter’s Hessian Vector product

It is a well known fact that the Hessian (the matrix of second order derivatives)
and higher order derivatives appear in the Taylor series expansion of the gradient
perturbed around a point in the parameter space of the a given vector w, this

may be shown as follows using prime notation for simplicity:
J(w+ Aw) = J'(w) + HAw + O(||Aw||?) (4.19)

where J(w) represents the cost function, H is the Hessian matrix and Aw repre-
sents a perturbation of the vector w. Setting this perturbation Aw = rv where
v represents an arbitrary vector and r a small number. Manipulating the above
equation to compute the product of the Hessian H with vector Aw the following

equation is obtained:
HAw = H(rv)=rHv
rHv = J'(w+rv)—J(w)+0(r? (4.20)

dividing the above equation by r

J'(w+rv)—J(w)

Hv = + O(r) (4.21)

The above equation has been used for calculation of the Hessian vector product;

however this method has the drawback that it is very susceptible to round off



4.4 Pearlmutter’s Hessian Vector product 75

errors. This arises due to the the fact that the constant term r must be small
enough that the O(r) term is insignificant, thus the precision of the vector v is
affected. A loss of precision is also experienced in the gradient calculation of the
perturbed gradient minus the original one, as the values are almost identical. To
alleviate the numerical difficulties associated with the above method, Pearlmutter

used the following elegant solution to compute Hv exactly:

/ o
Hv = lim J (W -+ TV) J (W) _ —8—Jl(w + TV) (4.22)
r—0 r or

r=0
Taking the limit of the above Equation 4.22 as r — 0 gives the definition of a
gradient on the right hand side of the equation, leaving the left hand side as the
Hessian vector product Hv. Pearlmutter defined the following transformation to
convert a gradient calculation algorithm into a Hessian vector product calculation

[155]. This transformation was achieved by defining the following operator:

R{J(w)} = %J(W +rv) (4.23)

r=0
The above operator is then applied to each of the equations of the procedure
for calculating the gradient. As R{.} is a differential operator, it follows the

standard rules for differential operators, these are written for the R{.} case as

follows:
R{c} = 0 (4.24)
R{w} = v (4.25)
R{f(g(w))} = f(g(w))R{g(w)} (4.26)
R{cf(w)} = cR{f(w)} (4.27)

R{f(w)g(w)} = R{f(wW)}g(w)+ f(w)R{g(w)} (4.28)
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The initial aim was to embed the Natural Gradient algorithm within the Matrix
Momentum algorithm. This was implemented utilizing the above rules in Equa-
tions 4.24-4.28, and combining with the Natural Gradient update equations the
following equation is developed for the Hessian vector product required for the

Matrix Momentum upgrade equation.

mat[Hvec(AW) = R{MWTW}

W
= R{[I- ¢(y)y"|W} (4.29)

As previously the vec operator amalgamates into a single column vector the
columns of a matrix, and the mat operator reverses this operation. Applying

Pearlmutter’s R{.} operator to Equation 4.29 gives the following result:

R{[I-¢y)y"TW} = {[-diag(¢'(y))y"]1AW
+ oy)(AWy)T}W

+ [I-¢@y)y' 1AW (4.30)

As is standard in Natural Gradient based algorithms the choice of the score
function ¢(.) is critical to the algorithm performance. It was shown in [104, 88]

that the score function should be chosen as follows:

o(y) log(p(y)) = Py) (4.31)

T oW

For the separation of super-Gaussian sources the hyperbolic tangent function
tanh(.) is commonly utilized as the nonlinearity for the above equation. Placing
this equation in the context of the Hessian vector product of the gradient update
equation, including the Natural gradient update equation and the momentum

term AW for insertion within the Matrix Momentum algorithm, we obtain the
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following equation.

R{[I - tanh(y)y"|W} = {[-diag(1 — tanh®(y))y"]AW
+ (1 - tanh*(y))(AWy)"}W

+ [I—¢(y)y"|AW (4.32)

Utilizing this equation the following gradient update equation is obtained for the
Matrix Momentum algorithm, including the Hessian vector product created from

the Natural Gradient update equation.

W(k+1) = W(k)— [l —tanh(y)yT] + AW (k)
— wf {i-diog(1 - i)y TIAW

+ (1- tanhz(y))(AWy)T}W

+ [I- cb(y)yT]AW} (4.33)

In the next section the performance of the above algorithm is discussed.

4.5 Simulations

The above Hessian vector product including the tanh(.) nonlinearity was utilized
to apply the Matrix Momentum algorithm to the separation of super-Gaussian
sources. A similar approach to the above had been utilised previously in applica-
tion to the BSS problem by Schraudolph in [158] in the context of the Stochastic
Meta Descent (SMD) algorithm. As stated by Schraudolph in [159, 160, 161] the
Matrix Momentum algorithm is prone to instability when applied to nonlinear
problems. It was found that the above algorithm caused the system to diverge.
As a method of stabilizing the algorithm, Schraudolph proposed an adaptive term
in [162]. To combat the above stability problems, in utilizing Pearlmutter’s Hes-

sian vector product within the Matrix Momentum algorithm, there are two key
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It can be seen from the above diagrams that the convergence properties of the
algorithms give similar performance. However, the CPU utilization required for
the Matrix Momentum algorithm is vastly reduced when compared with the Rel-
ative Newton and Natural Gradient methods, and offers similar convergence with
a slight improvement in computational complexity when compared to the Fast
Newton method. Thus it has been shown that the Matrix Momentum algorithm
combined with the derived Hessian provides good separation performance in the
BSS case. The following section concludes the Matrix Momentum portion of this

thesis.

4.8 Conclusions

In this chapter the Matrix Momentum algorithm originally introduced by Orr
[141] has been described in the context of the BSS problem. The Newton Method
was introduced and it was shown that the Matrix Momentum method does in
fact converge to the Newton method without the requirement for a matrix inver-
sion as needed by the standard Newton method. It was described that utilizing
Pearlmutter’s Hessian vector product within the Matrix Momentum algorithm
as shown by Orr in [141] was not suitable for the Hessian calculation within the
BSS context for the separation of super-Gaussian sources. To overcome these
problems with this approach the full Hessian was calculated. This, combined
with a nonlinearity specifically chosen for super-Gaussian or sparse sources, was
shown to provide good performance for real and synthetic signal separation. To
further improve the Matrix Momentum algorithm the following approaches are

suggested.

1. Placing the Matrix Momentum upgrade equations within the context of a

trust region optimization framework as described by Choi in [166, 167, 168]






Chapter 5

Simultaneous Perturbation

Stochastic Approximation

5.1 Introduction

It has been seen throughout this thesis that optimization methods have been
essential to solving the BSS problem. This will be extended further within this
chapter with the introduction of Spall’s Simultaneous Perturbation Stochastic
Approximation (SPSA) method. The term Stochastic Approximation (SA) has
become a standard term for techniques that try to either minimize or maximize
a function observed in the presence of noise, or to find an approximation to
the solution of an equation that has been observed in the presence of noise. This
technique was first introduced by Herbert Robbins and his student, Sutton Monro
in 1951 in their seminal paper [172] and extended further by Kiefer and Wolfowitz
in [173]. The SPSA technique has been shown by Spall [174, 175, 176, 177] to
provide a number of benefits when compared to these classical SA methods,
including faster convergence and reduced computation. The SPSA algorithm has |

been applied extensively in a number of fields including optimal control [178,
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5.2.1 Robbins-Monro Stochastic Approximation

In 1951 Herbert Robbins and his student, Sutton Monro developed an algorithm
to estimate the roots of a regression equation with the benefit that the algorithm
had guaranteed convergence properties [172]. This algorithm is known as the
Robbins-Monro Stochastic Approximation (RMSA) algorithm. The algorithm
makes the assumption that the objective or cost function is a differentiable func-
tion J(w) with respect to the vector parameter w. Noting that the roots of
an equation can be found by taking the derivative of the objective function and
setting the result equal to zero. Assuming that J(w) is a differentiable function

with respect to the matrix w. This can be written as follows:

_0J(w)

— =0 5.1
gw) = =0 1)
Assuming that the available measurement will be a noisy version of the above

gradient y(w) at each iteration & will be given as follows:
y(w)(k) = g(w)(k) + v(k) (5.2)

Where v represents an additive i.i.d. zero mean noise term. Placing the above
equation in the context of a stochastic gradient equation we obtain the following

equation for the weight vector update w.
wik+1) = w(k) —a(k)y(w) (5.3)

The a(k) in the above equation represents the step size parameter which, within
this thesis, generally is denoted by u but due to the preference within the Stochas-
tic Approximation literature the term a(k) will be utilized within this and the fol-
lowing chapter. The above method has the potential disadvantage for a stochastic
approximation algorithm that an analytical gradient g(w) must be known in ad-
vance. An alternative method that utilizes an approximation to calculate the

gradient is defined in the following subsection.
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A practically effective value for the v parameter is given by Spall in [176] as
0.101. This value will be utilized within this thesis. The SPSA algorithm utilizes
the same gradient update equation as the previous FDSA method given in 5.4.
To improve the accuracy of the gradient calculation given in Equation 5.7 when
utilized within the update Equation 5.4 an expectation of the gradient calcula-
tions is often taken. Yet as with standard gradient algorithms, the expectation
is replaced by a sample average. This is given in the following equation.

Wk +1) = W(k) - a(k){N-l Z_:(VW)n} (5.12)

n=0
As with the perturbation constant c(k) the learning rate parameter is also an-

nealed during the learning process as given in [174, 177]. This is given as follows.

a

AT

(5.13)

A practically effective value for the a parameter is given by Spall in [176] as
0.602, which will be utilized within this thesis. Now the SPSA algorithm and its
associated parameters have been discussed, the application of the algorithm to

the BSS problem is described in the next section.

5.3 BSS using SPSA Optimization

The first application of the SPSA algorithm within the context of the BSS prob-
lem was introduced by Ding et al. in [187, 188, 189] where SPSA was utilized to
optimize a Mutual Information based cost function. The same authors demon-
strated the application of the algorithm with a differing cost function in [190],
where the diagonality of the nonlinear correlation function was utilized as the
measure for optimization. Independently Maeda, at the same time been con-

sidering the application of the SPSA technique within the context of the BSS
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problem, his first work [191] in this area was similar to Ding et al. in which he
applied the SPSA framework to a Mutual Information based cost function. This
work was subsequently extended by Maeda in [192] where a Natural Gradient
based framework was embedded within the SPSA algorithm. In this thesis the
SPSA algorithm is utilized to create a gradient based approximate joint diagonal-
ization algorithm [184]. The approximate joint diagonlization cost function and

its application within the BSS context is described within the following section.

5.4 Joint Diagonalization

Joint diagonalization of matrices is an extremely well utilized technique in the
fields of Numerical Computation, Multivariate Statistics and Signal Processing,
specifically in the context of ICA and the BSS problem. Utilizing the measure
originally defined by Cardoso in [67] the joint diagonalization of a given set of N

matrices C! may be written in cost function format J(W) as follows:

J(W) = of f(WC'WT) (5.14)

=1

Where the function of f(.) gives a measure of the diagonality of the resulting
matrix, that is the sum of the squares of the off-diagonal elements of a given
matrix B. This is given by the following matrix equation

of f(B) = b} =Bl - ) b (5.15)

i#j i#£j

The problem with utilizing Equation 5.14 as the minimization cost function for
joint diagonalization is the trivial solution W = 0, results in a minimum of
the cost function. In order to avoid the trivial solution, constraints must be
placed upon the matrix W. Numerous techniques exist within the literature for
constraining the optimization space when utilized in the BSS context, this is

described within the following subsection.
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et al. in [208]. To avoid the potential introduction of errors via the prewhitening
stage a number of Approximate Non Orthogonal Joint Diagonalization algorithms
were introduced. One of the initial approaches, utilizes the constraint that the
matrices within the set of matrices to be diagonalized are positive definite [209].
Later this constraint was subsequently relaxed in [201, 210, 211, 212]. An al-
ternative approach to joint diagonalization from the previous mentioned batch
based close form approaches is to introduce a gradient based cost function. A
comprehensive introduction to gradient based approximate joint diagonalization
was introduced by Joho et al in [194, 195], where a number of constraint meth-
ods were introduced for avoiding the trivial solution for minimization of Equation
5.14. This idea was further extended by the same authors utilizing a constrained
Newton based approach in [139]. The problem was approached from the context
of Riemannian geometry by Ziehe et al. in [213] where a Natural Gradient based
approach is undertaken. This Riemannian approach was continued via Asfari in
[214, 215, 216] where Riemannian based gradient algorithms were shown for both
the orthogonal and non-orthogonal joint diagonalization cases.

As has been demonstrated within this subsection, there exists a number of ap-
proaches for both limiting the optimization space required when implementing
joint diagonalization algorithms and for avoiding the trivial solutions W = 0. In

the following subsection the procedure utilized within this thesis is described.

5.4.2 Joint Diagonalization using SPSA

It was described in the above subsection that the search space for the optimization
algorithm must be constrained such that the trivial solution is avoided, numerous
methodologies have been adopted to achieve this goal. Within this thesis the joint

diagonalization Equation 5.14 is combined with a penalty term described within
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application for Image Registration is the suppression or cancellation of geometric
distortions between a given Reference Image R(i,5) and the Sensed Image, gen-
erally referred to as the Floating Image F(i,7). This is addressed by finding a
transformation 7" that maximizes the alignment of the images R(, 7) and F (3, j).
Details of the transformation 7" will be explained later within this chapter. There
exists a huge number of applications for Image Registration, including some typ-
ical applications in Computer Vision [233, 234] , Remote Sensing [235, 236, 237]
and Medical Imaging [185, 238, 239]. Some common features of Image Registra-

tion algorithms are discussed in the following subsection.

6.1.1 Image Registration Approaches

A vast number of approaches for tackling the Image Registration problem, it
was shown by Brown [240] and in several subsequent Image Registration survey
papers [241, 238, 239, 242] that the majority of these algorithms share the four

following distinct algorithm components.

1. Feature Detection - This work involves obtaining useful components
from the images to be utilized within the registration process. Exam-
ples of features utilized within Image Registration algorithms are Edges
[243, 244, 245], Curvature [246, 247], Corresponding Points [248, 249].
Within this thesis the features utilized within the Image Registration al-
gorithm are the Histograms of the individual images and the Joint Image
Histogram [230, 185], these are utilized to approximate the underlying pdfs
of the individual images for application in the mutual information based

cost functions as explained in section 6.2.

2. Search Space - This space contains the geometrical transformations that

will be applied to the floating image F(4,j) to register with the reference
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image R(%,J ). There exists a number of potential transformations that can
be applied, yet these can broadly be split into two categories, Rigid and
Non-Rigid Transformations [250, 251, 252]. Rigid transformations are gen-
erated via a combination of image translations and rotations, and are often
extended to include Affine transformations that extend this transforma-
tion to include scalings and shearings. These transformations are applied
globally to the image. Non-Rigid Transformations allow local deformations
of the image, these are sometimes referred to as Elastic Transformations
[253, 254]. Within this thesis only Rigid Transformations are considered,

these are described in subsection 6.1.2.

3. Similarity Metric - The Similarity Metric is the specific measure utilized
to gauge the degree of similarity between two images to be registered. A
number of measures have been proposed within the Image Registration
field, including Cross Correlation [240, 255], Sum of Squared Differences
(L, Norm) [256, 257] and mutual information based approaches [227, 228,
229, 230, 239, 185]. In this thesis the mutual information based approaches
are extended by utilizing both Renyi [231] and Tsallis [232] based mutual

information measures. This is explained further in section 6.2.

4. Optimization Algorithm - This component represents the algorithm uti-
lized to maximize the similarity measure. A number of Optimization algo-
rithms have been utilized within the context of Multiresolution based Image
Registration [258], these included Steepest Descent [108, 127], Conjugate-
Gradient [259, 56], Quasi-Newton [260, 261] and Levenberg-Marquardt
[262, 263, 264]. In this thesis Spall’s SPSA algorithm [174, 175, 176, 177]
detailed within the previous chapter for application to the Blind Source

Separation problem, is applied as the optimization algorithm, used to max-
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6.2 Image Registration by Maximization of Mu-
tual Information

Image Registration by maximization of mutual information has generated a large
quantity of literature especially in medical imaging [238, 239]. This approach
was introduced initially by Viola in [227, 228, 229] and independently by Col-
lignon [265], then subsequently by Maes [230], Pluim [266] and Studholme et al.
[267]. These algorithms offer an improvement in both convergence speed and
computational complexity when compared with traditional correlation based Im-
age Registration algorithms [268, 269]. Today a huge amount of research is still
continuing in this field making it an ever expanding area. As stated above in sec-
tion 6.1 registration consists finding the optimum transformation 7', which will
best align the images R(3,j) and F(4,j) with ¢ and j being their coordinates. R
being the reference image and F the floating image such that F(7'(Z, 7)) should
fit R. In this thesis Rigid Body transformations are applied to 2D images as
detailed within subsection 6.1.2. In standard mutual information based Image
Registration approaches [227, 228, 229, 230, 239, 185] the measure of similarity
between the two images being registered is computed by finding the value of the
mutual information associated to the pixel intensity distribution of the images.
Within this chapter the pixel intensity distributions are calculated using the in-
dividual and joint image histograms, these could be calculated utilizing Parzen
Density Estimation [270] or an alternative Probability Density function estima-
tion algorithm [271, 272]. The definition of mutual information is based on the

Relative Entropy or Kullback-Leibler distance [51], is described as:

1Y) = S pla ) log 25 (6.4
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with @ € R—{1}. As with the Tsallis divergence measure if p; and g; are replaced
respectively by the joint probability p(z,y) and by the product of the marginal
distribution p(z).p(y), then the mutual information based on Renyi definition of

entropy is obtained, which can be described as:
Ige(z;y) = Hp,(2) + Hg(v) — Ho(7,y) (6.9)

where Renyi’s form of entropy Hg,(z) of order « is given via the following equa-
tion.

Hiu () = g log 2 p(2)) (6.10)
It is important to note that when o — 1, using L’Hopital rule, Tsallis and
Renyi definitions tend towards the Shannon expression of entropy. In [185] the
first application of Tsallis Entropy as a divergence measure for optimization as
an Image Registration criterion was demonstrated, this work will be further ex-
plained within this chapter. Renyi’s divergence measures had been utilized in
[279] in a Fourier based registration method. In the following section the Shan-
non [49, 50, 52], Renyi [231] and Tsallis [232] based information measures are
utilized within the SPSA algorithm as the Optimization criterion to perform

Image Registration.

6.3 Image Registration using SPSA

The SPSA gradient free Optimization framework introduced initially by Spall
in [174, 175, 176, 177] was described in detail in the previous chapter. The
SPSA algorithm was initially applied to the optimization of Shannon’s mutual
information for Image Registration by Cole-Rhodes in [236, 280, 237] for Image
Registration applications in Remote Sensing. Cole-Rhodes then extended this

work to utilize Spall’s second order SPSA [177, 222, 223] in [281]. The SPSA
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algorithm has subsequently been applied in [282, 283, 253] again for optimization
of Shannon’s mutual information as the given cost function. As stated above
within this thesis the first application of Tsallis mutual information to the Image
Registration problem is demonstrated, along with the novel combination of both
Tsallis [232] and Renyi’s [231] mutual information with Spall’s SPSA algorithm
[174, 175, 176, 177]. To utilize the Information measures within the SPSA algo-
rithm the following stochastic update equation for the transformation vector T

is generated, as described in the previous chapter in Equation 5.12.
T(k+1)=T(k)+ a(k)g(T(k)) (6.11)

In the above equation the gradient vector §(k) for the parameter space T =

[tz, ty, 0] is calculated using the following equation for each parameter.

The cost function J(7') used in the optimization is either given by the Tsallis

mutual information defined in Equation 6.7, or the Renyi mutual information
defined in Equation 6.9. The transformation 7T is then applied to the image at
each algorithm iteration. The parameters a(k), c(k) and € are chosen as described
previously in subsection 5.2.3. In the following subsection the performance of the

algorithm is illustrated.

6.3.1 Automated Registration Algorithm

In this subsection, the three different measures of similarity were tested based
on the classic Shannon mutual information and on its Tsallis [232] and Renyi
[231] forms. The reference image for the experiment is a 512 by 512 pixels #2
Magnetic Resonance Image (MRI) with 16 bits gray scale levels. To demonstrate
the performance of the algorithms and to compare between the mutual infor-

mation measures the approach initially utilized by Maes in [230] is undertaken.















Chapter 7

Conclusion

As all things must come to an end, this chapter provides an overview of the
achievements developed within this thesis, a summary of the work contained
within this thesis, some future problems and outstanding issues are discussed,

bringing this thesis to its conclusion.

7.1 Achievements

The aim of this thesis was to develop novel adaptive algorithms for application
to the problem of Blind Source Separation (BSS). During the development of
this process it was also found that there was significant overlap between the cost
functions and optimization procedures utilized within BSS and the problem of

mutual information based Image Registration. This led to the following resulting

contributions.

e The first application of the Matrix Momentum algorithm to the BSS prob-
lem was shown [26, 27]. This combined the exact Hessian of the InfoMax
cost function with the Matrix Momentum algorithm to develop an algo-

rithm with Newton like performance.
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e A novel application of the SPSA algorithm to the joint diagonalization of a
set of matrices is demonstrated, it is then shown that this can be utilized to
solve the BSS problem by jointly diagonalizing the time delayed correlation

matrices of the observation vector x(k).

e The first application of Tsallis mutual information measure [232] to the

Image Registration problem.

e The first combination of the SPSA algorithm with Renyi [231] and Tsal-
lis [232] based mutual information measures for application to the Image

Registration problem.

These achievements were detailed within this thesis as follows.

7.1.1 Thesis Summary

This thesis was split into 7 chapters. The first chapter introducing the topics of
research, the Blind Source Separation and Image Registration problems. A review
of the topics discussed within this thesis is given, and the original publications
developed during the course of PhD research are detailed.

The second chapter develops the theory utilized in solving the BSS problem,
specifically using ICA and contrast function optimization. The second chapter
concludes with introductions to some of the most fundamental algorithms that
have been developed within the ICA field. These algorithms form the basis set
for the development of new algorithms and improvements of existing ones.

The third chapter details one of the most prominently used Neural Network
approaches to the BSS problem, the Information Maximization (InfoMax) algo-
rithm [104, 105]. After the development of this algorithm it was noticed by Amari

that the algorithm convergence and computational complexity could be reduced
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by post multiplying the gradient by the positive definite matrix WZW. This
represents the Natural Gradient operator within the parameter space of square
non-singular matrices [101, 117, 114, 112]. The Mathematical description of this
algorithm was detailed. At the same time Amari introduced the Natural Gradi-
ent extension to the InfoMax algorithm Cardoso and Lahleld had independently
developed an equivalent gradient method with a prewhitening extension they la-
beled the Relative Gradient algorithm [122, 123]. This algorithm is also shown
for completeness.

The fourth chapter introduces the application of the Matrix Momentum gradient
optimization algorithm [141, 142] to the BSS problem is presented. The Matrix
Momentum algorithm provides a Newton type method with reduced computa-
tional complexity, compared with methods requiring a direct matrix inversion. It
was found that combining the Matrix Momentum algorithm with Pearlmutter’s
Hessian vector product given in Equation 4.22 as initially suggested by Orr [141]
was found to be unsuitable within the BSS context, as the algorithm suffered
from instability. To avoid these instability problems the exact Hessian was cal-
culated and utilized within the Matrix Momentum framework. The algorithm is
shown to provide fast convergence with low computational complexity.

The fifth chapter introduces the application of Spall’s Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm [174, 177] to the joint diagonaliza-
tion of a set of matrices. Initially, Stochastic Approximation (SA) algorithms are
introduced, specifically the Finite Difference Stochastic Approximation (FDSA)
algorithm. The SPSA algorithm is then compared with the FDSA algorithm in
terms of calculations per iteration and is shown to require significantly less com-
putation [174, 177]. The first application of the SPSA algorithm to the problem
of joint diagonalization of matrices is then introduced. This is then utilized in

the BSS context to jointly diagonalize a set of time delayed correlation matrices.
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Finally the sixth chapter introduced the application of the SPSA algorithm
[174, 177) described in the previous chapter to the Image Registration prob-
lem. The algorithm is combined with Shannon [49], Renyi [231] and Tsallis [232]
mutual information measures. This representing the first application of Tsallis
entropy to the Medical Image Registration [185], and the first combination of
Renyi and Tsallis entropy with the SPSA algorithm. It was demonstrated that

Tsallis entropy resulted in the fastest convergence of the three described methods.

7.2 Further Research

The aim of this research was to develop novel algorithms for application to the
BSS problem. As stated in chapter 1 within this thesis only the instantaneous
BSS problem was considered. The extension of the Matrix Momentum algorithm
to the convolutive case would represent the next natural algorithm extension.
This could be undertaken using a variety of approaches, but some initial ideas

are given as follows.

e Transformation to the frequency domain [21, 22, 23], this transforms the
convolutive model to a series of instantaneous ICA problems in each fre-
quency bin. The Matrix Momentum could be applied to perform the ICA at
each frequency, then applying the inverse Fourier transform. This approach
has the problem that the permutation and amplitude cannot be found us-
ing standard ICA methods. To alleviate this problem the above technique
could be combined with methods for resolving these ambiguities inherent

to the ICA problem [284, 285].

e Temporal based methods based on oversampling and row stacking [26, 27,

28, 29] have also been utilized within the Blind Equalization field for Single
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Input Multiple Output (SIMO) Digital Communications. This concept can
be extended to the Multiple Input Multiple Output (MIMO) scenario using

instantaneous ICA as in [30].

The SPSA algorithm introduced in chapter 5 and again utilized in chapter 6 was
shown to provide fast convergence for both the BSS and Image Registration prob-
lems. It is expected that for both tasks the following would provide interesting

research avenues.

e To improve the convergence properties of the SPSA algorithm Spall devel-
oped the Adaptive SPSA algorithm [177, 222, 223]. This algorithm rep-
resents a Newton type method, with appropriate parameter tuning could
provide large improvements in algorithm convergence time at the expense

of additional computational complexity.

e Investigation of novel non gradient based optimization algorithms such as
the Complex Step Derivative [225, 226] or methods based on Algorithmic
Differentiation [286] may offer new frameworks upon which to develop new

BSS and Image Registration based methods.

It has been mentioned repeatedly throughout this thesis that it was discovered
during the course of the work on BSS that there was significant overlap between
the cost functions and optimization procedures utilized within the BSS and Image
Registration fields. A final suggestion for future merging of the work developed

within this thesis.

e The application of the Matrix Momentum algorithm for optimization of
the Shannon [49], Renyi [231] and Tsallis [232] based mutual information

to solve the Image Registration problem.



7.2 Further Research 120

e The above algorithms could then be utilized in other applications of Image
Registration than Medical Imaging, for example Super Resolution Image

Reconstruction [234, 233] or Motion Estimation [287, 288, 289].



Appendix A

Higher Order Statistics

A.1 Higher Order Statistics

Due to the importance of higher order statistics in the theoretical development of
the ICA problem this thesis would be incomplete without an introduction to the
field. Second order processes have historically been the main topic of study in the
statistical signal processing community based predominately on the assumption
that the data has a Gaussian distribution. Yet these techniques are inappropriate
when the data is non-Gaussian. As no assumptions as to the density function of
the source signals are made, a method of characterizing the distributions, that
may be computed from the data samples to give information about the nature
of the source signals is required. The statistics used to further describe a non-
Gaussian distribution are the moments and cumulants, these will be described
further within this Appendix. The term Higher Order Statistics (HOS) refers to
moments and cumulants of order greater than two. The utilization of HOS either
implicitly or explicitly forms the backbone of the majority of algorithms for the

BSS problem. These will be described in the following section.
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A.2 Moments

The moments of a random variable z with probability density function p,(x) are

given as follows:

mn, = E[z"] = /oo " p,(x)dx (A1)

t® ]

where n is a non-negative integer number. Another useful set of moments of a
random variable z are the central moments, which are the moments about the
mean value u, this is given as follows:
o = Blle =) = [ (o= u)pala)da (A2)
— 00
The first central moment (n = 1) is zero and produces no useful information.
m=Ele— )= [ @ wpalz)da =0 (A3)
Yet the standard first moment gives the mean value p of the distribution
p= Ez] = / zp.(z)dz (A.4)
—00
The second central moment (n = 2) represents the variance o2 of the distribution,
or the average deviation from the mean value of the distribution.
o0
7 =Bl =)= [ (@ wPplo)is (A.5)
The third central moment, known as the skewness v provides a measure of the

asymmetrical nature of a pdf.
v = El(z — p)’] (A.6)

Thus for symmetrical distributions this is zero, and as the majority of natural
signals have symmetrical pdf’s this measure is less frequently used in solving BSS

problems [41, 118, 88], yet a recent application of third order statistics applied
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