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Abstract

This thesis is initially concerned with solving the Blind Source Separation (BSS) 

problem. The BSS problem has been found to occur frequently in problems 

existing in various Scientific and Engineering application areas. The basic idea 

of the BSS problem is to separate a collection of mixed data into its underlying 

information components.

To tackle the BSS problem two related methodologies have been utilized exten­

sively throughout the literature. The first approach is by utilizing the statistical 

technique Independent Component Analysis (ICA). This method utilizes a trans­

formation that maximizes the statistical independence of the mixed data compo­

nents. The second approach is based on the Approximate Joint Diagonalization 

(AJD) of a set of target matrices, either the time delayed correlation matrices or 

matrix slices of the fourth order cumulant tensor. This approximate diagonaliza­

tion results in matrices which are maximally diagonal. Within this thesis both 

of the above approaches are utilized within an adaptive gradient descent setting 

to tackle the BSS problem.

The first contribution within this thesis is the novel application of the Matrix 

Momentum optimization framework to perform ICA, via the optimization of a 

Mutual Information based cost function. The algorithm is shown to give Newton 

like performance with low computational cost.

The second contribution within this thesis is the first application of the Simulta- 



Contents viii

neons Perturbation Stochastic Approximation (SPSA) algorithm to jointly diag­

onalize a set of time delayed correlation matrices.

As a result of the above work it was also found that the SPSA algorithm could 

also be applied to the problem of Image Registration. Currently one of the 

most popular methods of solving the Image Registration problem is based on 

the maximization of the Mutual Information between the images. The final 

contribution within this thesis is the application of the SPSA algorithm to other 

novel Information Theoretic cost functions to perform Image Registration.
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Chapter 1

Introduction

This chapter gives an introduction to the main topic of this thesis, Blind Sig­

nal Processing, and includes a background to the Blind Source Separation (BSS) 

problem and the statistical technique of Independent Component Analysis (ICA), 

that are of current interest in the field. Associated algorithms and further details 

of these problems will be explained further throughout this thesis. An introduc­

tion to the Image Registration problem is also given here. This problem can be 

solved using similar cost functions and algorithms to those used in solving the 

Blind Source Separation problem.

1.1 Blind Source Separation

Blind Source Separation refers to the problem of separating mixed data into 

its underlying information components. The problem is often described as the 

Cocktail Party Problem based upon the remarkable ability of humans to track 

and attend to an auditory source in a noisy environment, when the source is 

generated independently by a speech or sound signal. This phenomenon was first 

studied in 1953 by Cherry [1, 2, 3]. The model for the Cocktail Party Problem 
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is shown in Figure 1.1. Within Figure 1.1, for the Cocktail Party problem the

Figure 1.1: The Cocktail Party Problem Model

input sources Si represent the sound sources and the mixing system represents the 

room reverberation. The neural network model utilized to create the unmixing 

system required to select the sound of interest, represents the human brain [3, 4], 

Extending the Cocktail Party Problem model to the separation of Multiple Input 

Multiple Output (MIMO) digital communication signals is shown in Figure 1.2, 

where in this context the sources to be separated represent the transmission 

from a handset to a multi-antenna base station, the mixture process arises from 

the reverberation of the transmitted communication signals with the transmission 

environment and interference from other transmitting signals. In both of the 

above examples the source mixtures s arriving at the sensors x are the result of a 

convolution between the sources and the transmission environment. For the case 

where the propagation delays are negligible then this convolutive model reduces 

to an instantaneous mixture of the source signals s, further described in chapter 2. 

This case arises for example when separating out artifacts from signals of interest 

in EEG experiments [5, 6, 7, 8], MEG Source Localization [9, 10, 11], Analysis
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X] (k)

Figure 1.2: MIMO Communications

of fMRI [12, 13], Face Recognition [14, 15, 16, 17] and Image Feature Extraction 

[18, 19, 20] to name but a few. Therefore due to its widespread application in this 

thesis only the instantaneous mixing case is considered in detail. The algorithms 

developed within this thesis could be extended to the convolutive mixing scenario 

by performing the separation in the Frequency Domain [21, 22, 23], using a Linear 

Prediction based approach [24, 25] or by using oversampling and row stacking 

[26, 27, 28, 29, 30]. During the development of the BSS/ICA algorithms detailed 

further within this thesis it became clear that a number of the algorithms and cost 

functions utilized within this domain mapped directly to the Image Registration 

problem. This led to the work described in chapter 6. An Introduction to the 

Image Registration problem is given in the following section.

1.2 Image Registration

In 1895 Physicist Wilhelm Konrad Roentgen accidentally discovered x-rays. This 

remarkable discovery led to the birth of the field of medical imaging when Roent-
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gen famously took a picture of his wife Frau Roentgen’s hand [31]. From this 

point, x-ray projection radiography became, and continues to this day, to be 

the most commonly utilized imaging modality for medical diagnosis. In the 

1970s there was another revolution in medical imaging with the introduction of 

x-ray Computer Tomography (CT) also know as Computed Axial Tomography 

(CAT). Since then there has been numerous advances in both Computational and 

Engineering methods that have resulted in several new imaging modalities, e.g 

Positron-Emission Tomography (PET), Single Photon Emission Computed To­

mography (SPECT), Ultrasound and Magnetic Resonance Imaging (MRI). The 

emergence of these new imaging methods provided huge developments in clinical 

treatments and in medical research. It is known that each of the above modalities 

has its own individual strengths and weaknesses. As a method of compensating 

for this, practitioners will often require scans from multiple modalities when de­

veloping diagnosis and plans for treatment. This process may then require to be 

repeated to allow the monitoring of patient medical changes and aid subsequent 

diagnosis. This potentially requires the clinician to mentally integrate multimodal 

imagery acquired at multiple time points to extract useful patient information. To 

aid this process for the clinicians, Image Registration has been applied within the 

medical domain. The first application of Image Registration within multimodal 

imagery was developed in [32] where tomographic brain images were utilized for 

the planning of Radiotherapy treatment. The objective of Image Registration 

is to develop a spatial transformation that maps homologous points between a 

pair of images and brings them into correspondence. Most commonly intermodal 

imagery is applied intra-subject, where different modalities of the same subject 

are observed, but it is also possible to register inter or intramodal images inter­

subject, over multiple subjects. This may be required for example to establish a 

homeomorphism between the brain images of a group of individuals and a given
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(a) Source Image (b) Target Image (c) Registered Image

Figure 1.3: The objective of the registration is to find the corresponding mapping 

between the Source and Target images

reference image, as a method of reducing the anatomical intersubject variance 

[33]. To demonstrate Image Registration an example of registering two MRI im­

ages is given in Figures 1.3(a), 1.3(b) and 1.3(c). The first image in Figure 1.3(a) 

is a slice of a T2 contrast MR image of a subject, and the second image is the 

equivalent slice of a T1 contrast MR image of the same subject. The different 

contrast weighted MRI scans provide a clinician with additional information, as 

depending on the contrast some tissues become easier to see with one technique 

over the other. T1 contrasts are known to provided better anatomical informa­

tion and provide better distinction between cystic and solid structures, whereas 

T2 contrast images are known to provide better pathological changes. Within 

this example, the Tsallis Mutual Information Image Registration algorithm de­

veloped in chapter 6 is utilized to register the T2 contrast source image shown 

in 1.3(a) to the T1 contrast target image shown in 1.3(b). To demonstrate the 

accuracy of the registration, a Canny edge detection of the target image in Fig­

ure 1.3(b) is overlaid upon the registered image. This is shown in Figure 1.3(c). 

The source and target images utilized in example where obtained from [34]. The 

above sections have given an overview to the topics that will be developed in 

further detail within this thesis. In the following an outline of the structure of 
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the thesis is given.

1.3 Thesis Outline

This chapter provided a simple introduction to the field of Blind Source Sepa­

ration, the problem and some of the applications of the developed algorithms 

to real world problems in diverse fields ranging from Mobile Communications 

to Cognitive Neuroscience. Also provided was an introduction to Image Regis­

tration, a topic also discussed within this thesis as during the PhD research it 

was discovered that the algorithms utilized within these two fields, specifically 

Information Theoretic based cost functions, often overlap.

Chapter 2 gives a more detailed introduction to solving the Blind Source Sep­

aration problem utilizing the statistical technique of Independent Component 

Analysis. The assumptions required for utilizing the ICA technique are detailed, 

and it is shown that the second order Principal Component Analysis technique 

in its direct form is incapable of solving the BSS problem for Non-Gaussian sig­

nals. Next the Kullback-Leibler Divergence is introduced as a cost function for 

optimization within the BSS context. Then, to finish this chapter some of the 

most commonly utilized ICA techniques are described.

Chapter 3 details the development of the Information Maximization algorithm 

one of the first and most commonly utilized stochastic gradient descent based 

ICA algorithms. The cost function originally utilized within this algorithm is 

the Kullback-Leilber divergence. The full development of the gradient update 

equation is derived for this neural network based algorithm. During the remainder 

of this chapter, Amari’s Natural Gradient is introduced and is then placed within 

the context of the BSS problem. The algorithm is shown to provide a dramatic 

improvement in the convergence properties of the InfoMax algorithm.
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Chapter 4 introduces the first application of the Matrix Momentum algorithm 

within the BSS context. The Matrix Momentum algorithm is a gradient descent 

based method that utilizes a modified momentum term to create a second order 

Newton type method without the requirement for a matrix inversion inherent 

with standard Newton type approaches. The first approach undertaken was to 

utilize Pearlmutter’s Hessian Vector product to develop the momentum term. It 

was found that this method consistently became unstable. The second approach 

to avoid this algorithm instability is to utilize the exact Hessian calculation within 

the algorithm development. This newly developed algorithm is shown to provide 

fast convergence with low computational complexity when applied within the 

BSS context.

Chapter 5 introduces Spall’s Simultaneous Perturbation Stochastic Approxima­

tion algorithm (SPSA) and its application to the BSS problem. Stochastic ap­

proximation algorithms are introduced, specifically the Finite Difference Gradient 

algorithm before the SPSA algorithm is introduced. It is shown that the SPSA 

algorithm significantly reduces the computational complexity per iteration when 

compared with the FDSA algorithm. Previous applications of the SPSA algo­

rithm to the BSS problem are discussed. The SPSA algorithm is then utilized 

to develop a novel matrix joint diagonalization algorithm titled SPSA-JD. The 

algorithm is shown to provide good performance when applied to diagonalize a 

set of perfectly diagonalizable matrices. The algorithm is then shown to perform 

well in the BSS context diagonalizing a set of time delayed correlation matrices. 

Chapter 6 utilizes the SPSA algorithm detailed within the previous chapter in 

application to optimization for solving an Image Registration problem in medical 

imaging. Image registration is initially introduced, and the Information Theoretic 

cost functions for optimization via the SPSA algorithm are detailed. This details 

the Kullback-Liebier, Renyi and Tsallis divergence measures. It is then shown 
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that for a synthetic Image Registration problem Tsallis divergence measure results 

in fast and accurate convergence. This represents both the first application of 

Tsallis divergence and the SPSA optimization framework within medical image 

registration.

Chapter 7 brings this thesis to its conclusion, giving a summary of the work 

detailed in the previous chapters. Also within this chapter, further work for 

continuing the research areas developed is suggested.

1.4 Original Contributions

The original contributions presented in this thesis include the development of 

novel adaptive gradient descent based algorithms and their application to op­

timization problems in Blind Source Separation and Image Registration. These 

algorithms are based on Information Theoretical and Joint Diagonalization based 

cost functions.

The first contribution developed within this thesis is the application of the Matrix 

Momentum algorithm to the Blind Source Separation problem. This algorithm 

represents a Newton based second order gradient descent method without the 

requirement for the inversion of the Hessian matrix required by straight Newton 

methods. The algorithm is shown to provide good convergence properties with 

low computational complexity

The second contribution, is the utilization of the Simultaneous Perturbation 

Stochastic Approximation gradient descent technique for optimization of a ma­

trix joint diagonalization based cost function. This algorithm is then utilized to 

diagonalize a number of time delayed correlation matrices for application within 

the second order based Blind Source Separation problem.

The third and final contribution developed is the application of the Simultané-
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ous Perturbation Stochastic Approximation gradient descent technique to Mutual 

Information based cost functions in Image Registration. Tsallis, Renyi and Shan­

non’s entropy are compared and it is shown that for a synthetic Image Registra­

tion problem the combination of the Tsallis Relative Entropy based cost function 

resulted in the highest performance.

1.5 Publications resulting from this work

Gordon Morison, Tariq Durrani, ’SPSA for Noisy Non-stationary Blind Source 

Separation’ IEEE International Conference on Acoustics, Speech and Signal 

Processing, Hong Kong 2003 pages 285-288

Gordon Morison, Tariq Durrani, ’Blind Equalization Using Matrix Mo­

mentum and Natural Gradient Adaptation’, IEEE International Workshop on 

Neural Networks for Signal Processing, Toulouse, France 2003 pages 439-448

Gordon Morison, Tariq Durrani, ’Blind MIMO Equalization Using Matrix 

Momentum and Natural Gradient Adaptation’, IEE Colloquium on DSP 

Enabled Radio, Livingston, Scotland, UK 2003

Stephan Martin, Gordon Morison, William Nailon, Tariq Durrani, ’Fast 

and accurate image registration using Tsallis Entropy and Simultaneous Pertur­

bation Stochastic Approximation’, IEE Electronics Letters, Volume 40, Number 

10, May 2004 pages 595-597



Chapter 2

Background

In this chapter the essential background for the statistical technique of Indepen­

dent Component Analysis (ICA) is developed, and the application to the field of 

Blind Source Separation is described.

2.1 Independent Component Analysis

Independent Component Analysis (ICA) in its most simplistic form aims at de­

composing a multivariate data into a linear sum of non-orthogonal basis vec­

tors which have basis coefficients that are maximally statistically independent. 

The basis vectors and the basis coefficients are learned in an unsupervised man­

ner. The standard ICA model representing an n-dimensional observation vector 

x(fc) = • • • ,xn(k)]T is generated as follows:

x(fc) = As(fc) (2.1)

where s(fc) = ,sn(^k)]T is an n-dimensional i.i.d. (independent identi­

cally distributed) vector known as sources, and A G is known as the linear 

instantaneous mixing matrix. The decomposition of the observed vector x^k) into
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maximally statistically independent components is achieved via a linear transfor­

mation W G Rnxn in the following manner:

y(fc) = Wx(fc) (2.2)

where the matrix W G RnX” represents the inverse of the mixing matrix A-1, and 

the system output vector y(fc) is an estimate of the independent source vector 

s(fc). As the linear transformation in ICA is learned in an unsupervised manner 

the problem would of course be ill-posed if assumptions on the nature of the 

system were not made. Some of these assumptions have already been mentioned 

but in the interests of clarity they will be stated explicitly here.

2.1.1 Assumptions

The assumptions made for the standard ICA model for the case of linear instan­

taneous mixture:

1. The components of the source vector s(fc) are statistically indepen­

dent.

2. The mixing matrix A is non-singular and full column rank

3. The observed vector x(A;) is zero mean.

4. At most one of the sources has a Gaussian distribution.

Assumption 2 may be stated as the columns of the matrix are linearly indepen­

dent. For simplicity it is generally assumed that the mixing matrix is square, 

although a number of algorithms have been developed that allow for this as­

sumption to be removed [35, 36]. Assumption 3 arises due to the fact that a non 

zero mean observed random variable x can be written as a combination of a zero
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mean stochastic process and a constant factor

x = x + c (2.3)

where c is a constant. Using the fact that the random variable x and the constant 

c are independent then c is viewed by a separating system as another independent 

observed signal, where c is a constant non zero variable. It will be seen later that 

due to the constant nature of this variable its identifiability would not be possible. 

Fortunately this may be thought of as a soft assumption as any source vector x(fc) 

not meeting this condition can be replaced by a centred version of itself as shown:

x(A; + 1) = x(A;) — £^[x(fc)] (2-4)

where E[.] represents the expectation operator. The fourth assumption will be 

explained later in the chapter.

2.1.2 Ambiguities

Taking into account the ICA model and the above assumptions the following 

ambiguities arise in the model.

1. The variances of the source signals Si cannot be determined.

2. The mixing matrix A can only be determined up to a (n x n) permutation 

matrix P.

The first ambiguity arises due to the fact that both the source signal s(fc) and 

the mixing matrix A are unknown then a fixed scalar £ between a source signal 

s(fc) and the corresponding column of the mixing matrix A does not effect the 

observation vector x(&) as shown:
n

x(fc) = As(fc) = (2.5)
i=i 
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where a, represents the ¿-th column of the mixing matrix A. Using this result the 

source signal variance may be then normalized to unity without loss of generality.

E^k)] = 1 (2.6)

The second ambiguity again arises due to the fact that the source signal s(fc) and 

the mixing matrix A are unknown therefore any ordering placed on the signals 

is essentially meaningless. Therefore using the above ambiguities the ICA model 

may now be written as:

y(k) = Wx(fc) = PDWAs(fc) = PDs(fc) (2.7)

where as above, P is a permutation matrix and D is a diagonal scaling matrix.

2.2 Statistical Independence

The key concept of ICA is the statistical independence assumption of the mea­

sured signals. Two scalar random variables x and y are said to be independent if 

knowledge of the value of one of the random variables gives no information on the 

value of the other. Statistical independence is defined in terms of the probability 

density functions of the random variables. Two random variables are said to be 

statistically independent if their joint probability density function factors into the 

product of the marginal probability density functions of the random variables. 

This may be stated mathematically for x and y as follows:

Px,y&y) = Px(X)Py(.y) (2-8)

where p(x, y) is the joint probability density function of the random variables x 

and y, and px(x) and Py^y} represent their marginal probability densities. Gen­

eralising this result to the vector case:

Px.y,x„..(x.y.z. ■••) = Px(x)Py(y)?z(z) ■ • • (2.9)
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Referring to the original ICA model Equation 2.1 it may be intuitively seen that 

after the linear transformation of the source signals s(fc) by the mixing matrix A 

the joint probability function of the observation vector px(x) will not be equal to 

the product of the marginal densities px(xi).
n

¿=1

Also in the standard ICA model no assumptions are made regarding the pdf 

of the input signals, other than at most one signal is drawn from a Gaussian 

distribution. Therefore information contained in the signals must be used to 

develop a linear transformation that maximizes the independence of the signals.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) is a method for removing the second or­

der dependence from a set of observed random variables, this results in a set of 

variables that are uncorrelated. This may be thought of as a weak form of inde­

pendence as the resulting random variables are independent up to second order. 

From that point of view ICA may be thought of as a refinement of PCA, that 

decorrelates non-Gaussian data for all statistical orders. There are a number of 

methods available for performing PCA [37, 38]. These methods may generally be 

split into matrix methods and data type methods. The matrix based methods 

will utilize all of the available data, the matrix is then decomposed to reveal 

more detail about the principle directions of the variances. This will involve the 

diagonalization of the matrix using for example the Householder transformation, 

Eigenvalue Decomposition (EVD) or Singular Value Decompositions (SVD). For 

completeness creating a Whitening transformation using the SVD is described 

within Appendix B due to its widespread use within ICA. The data type meth­

ods use the data directly, often in an adaptive manner, such that the principal 
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component directions are updated as each data sample arrives. Two examples of 

these methods are using a neural network with Hebbian learning [39, 40, 41] or 

multilayer perceptron trained using backpropagation [42, 43]. Although it must 

be noted that the convergence of the adaptive based methods rely heavily on the 

intelligent selection of the learning parameters for the algorithm. Parameter se­

lection for adaptive algorithms for application to the ICA problem are discussed 

in chapters 3, 4 and 5 within this thesis. For now it is sufficient to describe the 

outcome of the PCA process independently of a specific algorithm, making the 

assumption that the orthogonalization is performed correctly. Utilizing this, the 

output of the PCA process generates a matrix B G Rnxn that decorrelates the 

observation vector x(fc). The resulting output from the Whitening process is the 

uncorrelated vector z(k) generated as follows:

z(k) = Bx(fc) = BAs(fc) (2.11)

The resulting covariance matrix of the whitened observations is as follows:

Rzz = E[z^z^H] = I (2.12)

where I represents the identity matrix. It can be seen that if an orthogonal 

transformation Q is applied to the resulting whitened outputs z(fc), the output 

of which will be defined as u(fc):

u(fc) = Qz(fc) (2-13)

Then the resulting covariance matrix of the newly defined vector u(fc) is as follows:

Ruu = E[Qz^z{k)HQH]

= QRzz(fc)QH

= QQh = I (2.14)
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It can be seen from the above that the Whitening transform obtained using PCA 

can only separate the observation vector up to an orthogonal transformation. 

This arises as the transformation restores independence only up to second order. 

An orthogonal transformation has eigenvalues equal to one and has the property 

that it provides an isometry between two spaces in which distance between points 

is preserved under the transformation. This may be thought of in a vector space 

as a rotation without scaling. Therefore, it can be seen that decorrelation is a 

necessary but not sufficient condition to maximize the independence of the obser­

vation vector x(fc). In order to resolve the remaining rotation, further information 

is required, the orthogonal matrix must be found. This restricts the search space 

to the space of orthogonal matrices. An orthogonal matrix has n(n — l)/2 de­

grees of freedom, therefore the whitening process reduces the complexity of the 

ICA problem. In order to resolve the orthogonal ambiguity that is left after the 

whitening process further information from the signal is required. There are nu­

merous techniques available to resolve this ambiguity, the most popular methods 

in the field are described in the following sections.

2.3.1 Non-Guassianity

The Central Limit Theorem states that under certain conditions the distribution 

of the arithmetic mean of a number of independent random variables will tend 

towards a Gaussian distribution as the number of variables tends to infinity [44]. 

As the observation vector x(fc) in the Blind Source Separation and ICA problems 

represents a linear combination of random variables, based on the Central Limit 

Theorem the distribution of the observation vector y(k) will tend to a Gaussian 

distribution. Therefore to obtain independent components at the system output 

y(k) then a linear transformation W(fc) is required that results in components 
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at the output that have a distribution that is maximally far from a Gaussian. 

That is disributions that have a positive or negative kurtosis, described as super­

Gaussian or sub-Gaussian distributions. This is described in further detail in 

Appendix A.

2.3.2 Non-Gaussian Assumption

The above may be used to explain the fourth assumption that at most one source 

has a Gaussian distribution. This will be demonstrated for the case of two sensors 

and two sets of two sources each containing 1000 data samples. The first source 

vector is generated from a Uniform distribution with zero mean and unit variance, 

the second source vector is generated from a Gaussian distribution with zero mean 

and unit variance. The joint probability density function of the above vectors is 

plotted on the following bidimensional plot know as a scatter diagram [45, 46] 

shown in Figures 2.1 and 2.2 respectively.

The signals are mixed using the following randomly chosen mixing matrix:

A = f 2 ~3 (2.15)

y 2 -i /

The resulting joint distributions of the Uniform and Gaussian distributed sources 

are as shown in Figures 2.3 and 2.4 respectively. Both the above sets of sig­

nals are spatially whitened using PCA, specifically using the SVD as described 

in Appendix B. The resulting joint distributions for the Uniformly distributed 

sources and the Gaussian distributed sources are shown in Figures 2.5 and 2.6 

respectively. As was stated previously in section 2.3 it can be seen clearly for the 

Uniformly distributed signals in Figure 2.5 that the PCA stage separates the sig­

nals up to a rotation. For non-Gaussian signals this rotation can then be resolved 

by either implicitly or explicitly utilizing the higher order statistics of the obser­

vation vector x(fc). Yet for the Gaussian case the distributions are rotationally
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Figure 2.1: Joint distribution of two Uniformly distributed sources

symmetric, therefore an orthogonal mixing matrix has not altered the pdf of the 

observation vector x(fc) as shown in Figure 2.6. This gives no information as to 

the nature of the mixing matrix. Unlike non-Gaussian distributions theoretically 

a Gaussian random variable has zero higher order statistics, that is statistics of 

order greater than 2, as a Gaussian distribution can be completely characterized 

by its mean /z and variance a. An introduction to higher order statistics is given 

in Appendix A.

2.4 Independence Measures

As discussed in the previous chapter the fundamental assumption in Blind Source 

Separation is the statistical independence of the input sources. The basis of 

any source separation algorithm is to restore the statistical independence of the 

sources at the output of the sensor array. The process of transforming the data at



2.5 Contrast Functions 19

Biavariate disribution of Gaussian Sources

si

Figure 2.2: Joint distribution of two Gaussian distributed sources

the output of the sensor array into statistically independent sources is known as 

Independent Component Analysis (ICA) [47, 48]. Independent Component Anal­

ysis extends Principal Component Analysis (PCA) by the additional inclusion of 

higher order statistics. Thus ICA may be defined as a linear decomposition that 

minimizes the dependence measure between the sources. A number of criterion 

can be used for measuring the statistical dependence between the output sources. 

These criterion are often referred to as cost functions or contrasts [48] and their 

properties are defined in the following sections.

2.5 Contrast Functions

A contrast function first defined in [48] is mapping J from the set of densities 

{p(x)} to R, where the mapping J has the following properties:

• The mapping J(p(x)) stays constant if the components of the vector x are
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Biavariate disribution of uniformly distributed sources after mixing 
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Figure 2.3: Joint distribution of two mixed Uniform distributed sources
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permuted.

J(p(Px)) = J(p(x)),VP 

where P is a permutation matrix.

• The mapping J(p(x)) is invariant to changes in scale

J(p(Dx)) = J(p(x)),VD (2.16)

where D is a diagonal matrix.

• If the components of x are independent

J(p(Ax))> J(p(x)),VA (2.17)

where A is any invertible matrix. Therefore the minimum value of the con­

trast function arises when the components of the vector x are independent.

Some of the most commonly used contrast functions used to generate independent 

components from a mixture of sources are given in the following subsections.
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Figure 2.4: Joint distribution of two mixed Gaussian distributed sources

2 .5.1 Information Theoretic Independence Measures

A popular class of contrast functions for the Blind Source Separation problem 

are based upon Shannon’s Information Theory [49, 50], specifically the concept 

of Relative Entropy as the stochastic independence measure. The contrast func­

tion used in this case is the Kullback-Leibler divergence (Relative Entropy) [51]. 

The Kullback-Leibler divergence between two density functions p(y) and g(y) is 

defined as follows.
D(p\\q)= i p(y)log[^Mdy (2.18)

J-oo \Q(y))

This divergence may be thought of as a distance measure between probability 

density functions, the result of the above equation is always non-negative and 

zero if and only if the two distributions p(y) and g(y) are the same distribution.
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Figure 2.5: Joint distribution of two unmixed Uniform distributed sources

1. The Kullback-Leibler divergence is always non-negative

'(X)

with equality if and only if

p(y) = ?(y)

2. The Kullback-Leibler divergence is invariant under an invertible transfor­

mation g(.)

/
oo

pWog
-oo

dy = D(g(p)\\g(qY)

3. The Kullback-Leibler divergence is non-symmetrical.
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Figure 2.6: Joint distribution of two unmixed Gaussian distributed sources

Although the term distance measure is used this is a slight misnomer, as the 

Kullback-Leibler divergence is not a true distance measure or metric in the sense 

of a divergence measure in calculus as it is not a symmetric measure, and there­

fore does not obey the triangle inequality [37]. A large number of algorithms 

for the Blind Source Separation problem are based upon either minimization or 

maximization of Equation 2.18, with the differences stemming from the choice of 

the distribution g(y). Ideally g(y) would be chosen such as the true distribution 

of the input sources, but commonly the true distribution may be unknown, thus 

either a hypothesized distribution is assumed or the distribution is estimated. 

One approach is the use of a marginalized probability density function. The 

Kullback-Leibler divergence for an n-dimensional vector y can then be written 

as follows:
>(y)__  

1 Pi(.Ui)
dy (2.19)
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This may then be written in terms of another well-known Information Theoretic 

quantity the mutual information. The mutual information I of a random vector 

y is defined as follows [52],

Ay) = Éw>-W) (2-20)

i=l

where the joint entropy is defined as

Z
OO

p(y) log(p(y))dy (2.21)
•oo

and the marginal entropies H{yi) are defined as

Z
OO

pÇyd^gÇpÇy^dyi (2.22)
-oo

The mutual information has the property that it is non-negative and zero if and 

only if the random vectors are statistically independent. Therefore the mutual 

information makes a specifically attractive contrast function for the ICA problem. 

Using the transformation of random variables [44] and taking into the definition 

of y(fc) in Equation 2.2, the mutual information may now be written as follows:

n

/(y) = - K(x) - log | det W| (2.23)
i=i

A closely related information measure to mutual information is Negentropy, this 

is defined in the following subsection.

2.5.2 Negentropy

It is know from Information Theory that Gaussian random variables have the 

highest entropy or are the most random of all random variables of equal vari­

ance [52, 44], Using this result entropy can be interpreted as a measure of non- 

Gaussianity. It was stated in subsection 2.3.1 that independent components have 
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a distribution that is maximally far from a Gaussian distribution. Negentropy of 

a random variable is defined as follows:

= H(ygau„) - ff(y) (2.24)

where ygaUss is a n-dimensional Gaussian random vector with the same mean and 

covariance as the output vector y (A;) given as follows:

Pgauss^y} = „ , (2.25)
(2%) 2 det2 \ /

where Ryy = £?[yyT] is the covariance matrix of the random vector. Taking into 

account the inherent scaling ambiguity, the mean and variance of the random 

vector y will in practice be normalized to zero mean and unit variance, there­

fore a Gaussian random vector with zero mean and unit covariance can be used. 

Negentropy has the following properties inherited from the Kullback-Liebler di­

vergence:

1. It is invariant for any linear invertible transformation.

2. It is zero if and only if the output vector y (A:) has Gaussian distribution.

3. It is always non-negative.

The relationship between mutual information and Negentropy is discussed in the 

following subsection.

2.5.3 Mutual Information and Negentropy

Comparing Equations 2.20 and 2.24, it can be observed that minimization of 

the mutual information is equivalent to maximization of the Negentropy. The 

Negentropy may also be defined as the Kullback-Liebler divergence between the
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density of the output vector y(A:) and its normal equivalent both with zero mean 

and unit variance.

«Ay)=/ pWog(
J—oo \P gauss A ) J

(2.26)

The Maximum Likelihood contrast function is described in the following subsec­

tion.

2.5.4 Maximum Likelihood

Another popular contrast function utilized extensively in Blind Source Separation 

is based on the principle of Maximum Likelihood estimation. For a given model 

the probability of a data set as a function of the parameters of the model is 

termed the likelihood. In the Blind Source Separation situation, the parameters 

of the model given in Equation 2.1 are the transformation A and the pdf’s of the 

sources p(s). Therefore the likelihood for the Blind Source Separation problem 

is given as:

px(x|A,p,) = (2.27)

Due to the fact that in the source separation context we are interested in finding a 

transformation that unmixes the source signals s, then we substitute the demixing 

parameter W for A-1 giving the following likelihood:

px(x|A,ps) = | det W|ps(Wx) (2.28)

Assuming that the estimation will be based upon a set of A i.i.d. samples

x.v = {x(l),...,x(A)} (2.29)

then the pdf of x^v is given as

v
Px(xn) = JJpx(x(n))

n=l
(2.30)
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Normalizing and taking the logarithm of the above equation results in the nor­

malized log-likelihood, giving the Maximum Likelihood estimator for W based 

upon xN as

WML arg max — log Jpx(x(n))
W 7 V n=l

n=l

arg max — w N
(2.31)

It can be seen clearly that the above equation represents the sample average of 

logpx(x(n)). As N —► oo the above equation may be written as:

WML arg max /
” J—oo

;x

arg max w
dx

arg max w Z
OO

px(x) logps(Wx)dx + log | det W|
■oo

(2.32)

The following term can be subtracted from the above equation without altering 

the likelihood function as it is independent of demixing matrix W

px(x) logpx(x)dx (2.33)

Giving the function to be optimized for the Maximum Likelihood solution as:

WML

(2.34)

Now that the most common contrast functions to be optimized for IC A have 

been introduced, some alternative second order methods are described, that when 

combined with additional assumptions on the data can also be used to solve the

Blind Source Separation problem.
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2.6 Second Order Methods

So far all of the independence measures described have been based on Informa­

tion Theoretic ideas, which are based on the assumptions that the signals are 

non-Gaussian i.i.d random variables, as these have tended to be the more popu­

lar approaches to the ICA problem. It was shown in section 2.3 that second order 

techniques such as PCA can separate sources only up to an orthogonal rotation 

Q for the case of i.i.d. sources. If it is known that the sources have a tempo­

ral structure, e.g. the sources have non-vanishing correlations and the sources 

have different power spectrum then the statistical independence condition can 

be relaxed, and second order statistics can be sufficient to separate the sources 

and correctly estimate the mixing matrix [53, 54, 55]. Some of the most popular 

second order blind source separation techniques will be described later in this 

chapter.

2.7 Approaches to the BSS problem

Having laid the basic foundations for the linear instantaneous blind source sep­

aration problem, it is now time to review some of the previous solutions to the 

problem. Over the last decade there have been numerous differing approaches 

to the BSS problem arising from the different communities that are currently 

working in the area. These are classified based on the nature of the approach. 

During the rest of this chapter some of the most popular algorithms for solving 

the BSS problem will be described.
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2.8 Closed form methods

The statistical signal processing community has also had a huge impact in the de­

velopment of IC A and approaches to the blind source separation problem. These 

techniques in general are referred to as batch methods, will normally involve ex­

plicit calculation of the higher order statistics of the observation vector ^k) and 

are closed form methods. Some of the original techniques developed in this field 

are described in the following subsections.

2.8.1 Comon’s Method

One of the early and seminal works in this field was Comon’s minimization of 

mutual information method [48]. It was in this paper that the idea of contrast 

functions was introduced and defined. This work extended the well known field 

of Principal Component Analysis (PCA) with the addition of higher order in­

formation. The specific contrast function used in this seminal paper was the 

maximization of the Negentropy. The algorithm adopted a two stage procedure 

consisting of a PCA prewhitening stage followed by an orthogonal rotation stage 

exploiting higher order statistics of the output vector y(k). For simplicity the 

two input two output (TITO) scenario will be described first, then the extension 

to higher dimensionality will be shown. A prewhitening matrix B is generated 

by the PCA stage and the resulting whitened output vector is given as follows:

z(fc) = Bx(fc) (2.35)

For the TITO case, the required orthogonal matrix can be parameterized as a 

Given’s rotation matrix [56]. A Given’s rotation matrix is a plane rotation matrix
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that can be parameterized as follows:

(
costO} sin(0) \

(2.36)
—sin^ cos(0) I

Where 6 represents the angle of rotation. The contrast function utilized was the 

Negentropy of the prewhitened vector z(fc). This is given as follows:

= J^k)) - ¿ + 1 log (2.37)

Where diag represents the diagonal elements of the covariance matrix Rzz of the 

prewhitened vector z(fc). Taking into account the diagonal nature of the covari­

ance matrix Rzz due to the prewhitening stage, the resulting contrast function 

for the algorithm is given as follows:

row) = j(zW) - £ JW + bogn

n 

= <2'38> 

i=l

The contrast function is now the maximization of the marginal negentropies of the 

prewhitened vector z(fc). Utilizing the fact that both Negentropy and multivariate 

entropy are invariant to orthogonal transformation Q the mutual information for 

the prewhitened non-Gaussian data may now be written as follows:

n

Ay) = J(z) - J^)
¿=1 
n

= J(z) - 52 (2.39)
1=1

By definition this involves the calculation of the marginal probability densities 

yi, which are currently unknown and require to be estimated. Comon estimated 

the required marginal probability densities using an Edgeworth expansion [57] of 

the system outputs yi. An Edgeworth expansion as stated in Appendix A is a 
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series expansion about a Gaussian pdf. Utilizing the Edgeworth expansion the 

following approximation to the Negentropy is given, where is the nth order 

cumulant of the system output yi as defined in Appendix A.

117 1
(2.40) 

4o 4o o

In generating the system of equations to be solved to find the rotation angle 

0, Comon made the assumption that majority of signals naturally occurring will 

have a symmetric probability density function and therefore the third order statis­

tics need not be considered. This is a commonly made assumption in the ICA 

and BSS literature. Removing the third order cumulant terms from the above 

equation, the following equation is given as the contrast function to be optimized.

= ¿M»))’ (2.41)
4o

As was stated in the above paragraph, the multivariate entropy J(z) is invariant 

under an orthogonal transformation, therefore only the above equation is required 

in the optimization procedure. The contrast function to be maximized for the 

algorithm can now be written as:

/(y) = -¿My))2 (2.42)

It turns out that the optimization of the above equation may be carried out 

by taking the root of a fourth order polynomial, where the unknown variable 

within the optimization is the angle 6. The above method is applicable only for 

the TITO case. In order to extend the algorithm to the more useful scenario 

of more than two signals Comon introduced a pairwise Jacobi like iteration. 

Comon also details within the paper the extension of the algorithm to complex 

valued signals. This is of specific importance in the communications domain as 

a number of commonly used modulation schemes employ complex valued signals
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[58] . Comon’s algorithm has been extended in [59] to deal with the case that 

the sources have differing fourth order cumulant signs, and a simplified version of 

the algorithm was described in [45, 46] where the algorithm was utilized for the 

extraction of the fetal electrocardiogram from the maternal cutaneous potential 

recordings. The algorithm was further extended to the case that the third and 

fourth order cumulant tensor was simultaneously diagonalized in [60, 61, 62], 

This algorithm results in a more intuitive cost function for optimization, yet has 

the limitation that it can only separate real valued signals.

2.8.2 FOBI

Around the time that Comon was working on his method [48], Cardoso had also 

developed an algebraic method for solving the source separation problem that 

exploited the fourth order moments of the observation vector y(&) [63]. This 

algorithm was creatively titled FOBI (Fourth-Order Blind Identification) by Car­

doso. The algorithm utilizes a two step approach in a similar manner to Comon’s 

algorithm, where the first stage of the algorithm is a prewhitening performed us­

ing a PC A, as in Comon’s method creating the prewhitened output vector z(fc). 

In the second stage of the algorithm, a quadratically weighted covariance matrix 

is formed, using a slight abuse of standard notation for a covariance matrix in 

the following equations:

RZz(&) = E(|z(fc)|2z(A:)z(fc)T) (2.43)

Using the definition of the prewhitened vector z(fc) the above equation may be 

rewritten as follows:

RZZ(A;) = £(|BAs(A:)|2BAs(A;)s(/c)T(BA)T) (2.44)

Utilizing the independence of the input source vector s(fc), and the knowledge 

that after the whitening transformation B has been applied the resulting matrix
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BA is orthogonal, then the following equation is obtained.

Rzz(fc) = Wdiag(E[s^k) + n - l])Wr (2.45)

The demixing matrix W in this instance is equivalent to BAT due to the orthog­

onality after the whitening process B. It can be seen that the above equation 

has the form of an Eigenvalue Decomposition (EVD), the demixing matrix can 

be obtained from the output of the EVD of Equation 2.45 providing the elements 

of the diagonal matrix above that represent the kurtosis of the source vector are 

unique. The FOBI algorithm was extended to operate in the presence of noise by 

Tong et al. in [64], though one of the problems with the FOBI approach is it can 

only separate sources that have differing kurtosis values, if this is not the case 

the algorithm fails completely. To alleviate this problem Cardoso extended the 

FOBI algorithm to utilize the tensor structure of the fourth order cumulant in 

[65, 66]. This resulted in one of the most heavily utilized algorithms within the 

ICA field, the JADE algorithm [67]. This algorithm is described in the following 

subsection.

2.8.3 JADE

One of the most popular algorithms used in ICA was developed by Cardoso in 

[67]. The algorithm is known as the JADE algorithm (Joint Approximate Diago­

nalization of Eigen-matrices) as it utilizes the joint approximate diagonalization 

algorithm developed by Cardoso in [67] as a method of diagonalizing the fourth 

order cumulant tensor. The JADE algorithm was initially developed for the 

separation of complex signals [68, 69] for application to the separation of com­

munications signals. The method is a natural extension of the FOBI algorithm 

described above. As with the FOBI algorithm above, the JADE algorithm be­

gins with a prewhitening stage, the orthogonal transformation that still remains 
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is found by diagonalizing the fourth order cumulant tensor. The fourth order 

cumulant tensor described in Appendix A can be thought of as a four way array, 

the JADE algorithm performs the separation by utilizing the joint diagonaliza­

tion algorithm developed by Cardoso and Souloumiac [70] on matrix parallel slices 

of this array. If all cumulant matrices are utilized for the diagonalization, then 

JADE equivalently minimizes the following cost function, similar to Comon’s cost 

function detailed above in Equation 2.41.

J(w) = $2 cum(.yiyjy^yiY (2-46)

In [71] Cardoso gives a comparison of the JADE algorithm with gradient based 

methods. The JADE algorithm has been utilized extensively in application to 

the BSS problem [72, 73, 74], although the algorithm is very computationally 

demanding due to the requirement to calculate the full fourth order cumulant 

tensor. This is especially problematic in high dimensional spaces. In the fol­

lowing sections some gradient based algorithms are described that provide more 

computationally efficient approaches to solving the BSS problem.

2.9 Fixed Point Methods

These methods were first proposed by Hyvdrinen et al. in their original work 

[75, 76] and extended in subsequent papers [77, 78, 79, 80, 81]. The original 

FastICA method operates by finding a single source at a time, then repeating 

the process to find additional sources. The algorithm to find a single source is 

described in the following section along with some subsequent extensions to the 

algorithm.
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2.9.1 FastICA

The FastICA method is a fixed point method originally proposed by Hyvurinen in 

[75, 76]. The optimization criterion described in this paper was the maximization 

of the kurtosis. As is mentioned in Appendix A, the normalized kurtosis value 

of a Gaussian variable is zero in the case of infinite samples, thus positive or 

negative values for kurtosis can be used as a measure of non-Gaussianity. It is 

known from the Central Limit Theorem that the joint pdf of the output vector 

x will tend towards a Gaussian distribution, as a result of the mixing process. 

Therefore a transformation W that maximizes the value of the kurtosis will also 

maximize the deviation from Gaussianity, this will result in independent signals 

at the output y. Typically the non-Gaussianity is measured as either the squared 

value or the absolute value of the kurtosis. In order to simplify the optimization 

space for the algorithm, the data is transformed to be zero mean and then the 

data is prewhitened. The output of the prewhitening stage is given as in Equation 

2.11. Prewhitening the data using PCA as described in Appendix B constrains 

the vector w to the unit circle. Thus the norm of the vector w is given as follows: 

l|w||2 = l (2.47)

In order to find the direction in which the absolute value of the kurtosis traverses 

gradient techniques are employed. The gradient of the kurtosis of the output 

vector y is given as follows:

= 4[E'(z(wTz)3)] - 3wfi[(wrz)3] (2.48)

The squared value of the kurtosis could also be used in the above equation [75, 

48]. The following gradient algorithm can now be constructed that includes the
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whiteness constraint reducing the degrees of freedom of the problem.

w(A; + 1) = w(fc) ± /i[F(z(wTz)3) — 3wE[(wTz)3]

w(* + l) = Il "¿TL (2'49)||w(fc+ 1)||2

In order to prevent the weights from possibly converging to the same maxima 

the output of the system is decorrelated at each iteration. This may be achieved 

using a Gram-Schmidt orthogonalization [77]. Due to the magnitude and sign 

ambiguity inherent with the source separation problem, convergence can be de­

termined when the demixing vector w direction no longer changes or flips in 

magnitude. Thus convergence can be determined as follows:

|wr(A; — l)w(A;)| ~ 1 (2.50)

This allows the introduction of a fixed point algorithm with the absolute or 

squared value of the kurtosis as the contrast function. In a fixed point algorithm 

a solution to an equation of the following form is required:

y(k+ l) = /fo«) (2.51)

The solution is found by making an initial estimate y, then making the iterative 

step given in Equation 2.51, and repeating the process until some stopping cri­

terion is met. For the case when the absolute value of the kurtosis is used as 

the optimization criterion, the following fixed point algorithm was suggested in 

[75, 78]:

w = E[z(wTz)3] — 3w (2.52)

This above algorithm introduced fixed point algorithms to the source separation 

problem, yet using a kurtosis based cost function has the limitations that the 

estimated kurtosis value is very sensitive to outliers within the data. For some 

problems, where the underlying source data is bounded this problem is of little 
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concern (e.g audio or image separation). Yet when the data is potentially un­

bounded other cost functions measuring non-Gaussianity are preferred. In [82] 

Hyvdrinen changed the cost function of the algorithm to using Negentropy as 

the optimization criterion to perform the separation, thus escaping the problems 

associated with kurtosis based algorithms. In [83, 84, 85] the algorithm was ex­

tended to complex valued signals. This represented a significant development in 

the field, as the algorithm could then be applied within the digital communica­

tions context. This was tackled by Zarzoso in [86] where the FastICA algorithm 

based on kurtosis optimization was successfully applied to the MIMO communi­

cations. A disadvantage of the FastICA algorithm, is due to the batch nature of 

the algorithm, a large amount of data must be stored in memory simultaneously. 

This can be reduced by computing the expectation E\\ over a finite number of 

samples in an online manner, while keeping the columns of the mixing matrix 

Wj fixed, updating the mixing matrix columns Wj once the average has been cal­

culated. The FastICA algorithm to this point represents one of the most highly 

used algorithms for application to the BSS problem.

2.10 Second Order Methods

In the cases where the sources have non-vanishing temporal correlations then 

as previously mentioned in section 2.6 it is possible to use alternative separa­

tion techniques to methods based either implicitly or explicitly on higher order 

statistics, like the methods described in the sections above. In these cases it is 

sufficient to utilize only the second order statistics as the optimization criterion 

to perform the source separation. A number of algorithms exist in the literature 

that exploit only second order statistics, the most well published of these algo­

rithms is a second order variant of the JADE algorithm and is described within 
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this section. To begin of the initial second order methods is described.

2.10.1 AMUSE

The Algorithm for Multiple Unknown Signal Extraction (AMUSE) algorithm was 

developed in 1991 by Tong et al. [53] and represents one of the first approaches to 

the BSS problem utilizing only second order statistics of the mixed source signal 

vector x(fc). The AMUSE algorithm begins by utilizing a Whitening transfor­

mation to diagonalize the zero lag covariance matrix of the input vector x(fc), 

this results in the whitened output vector z(fc). The second stage within the 

algorithm is to calculate the symmetrized covariance matrix as follows.

Rzz = |(RZZ + Rd (2.53)

Where the covariance matrix in the above equation is calculated as follows for a 

given time lag r.

Rzz = E^k^k - t)t] (2.54)

The second stage given in Equation 2.53 ensures the symmetry of the covariance 

matrix in the presence of estimation error. The final stage of the algorithm is to 

take the Eigenvalue Decomposition of the covariance matrix defined in Equation 

2.53, the rows of the separating matrix W are given as the resulting eigenvectors 

of this transformation. A similar algorithm to the AMUSE algorithm described 

was also detailed by Molgedey et al. in [87]. The algorithm was extended by 

Liang in [54] to allow for the scenario where the additive noise at each of the 

inputs has a different noise covariance. An extension to the AMUSE algorithm is 

described in the following subsection which includes diagonalization of multiple 

covariance matrices at various time delays.
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2.10.2 SOBI

The Second Order Blind Identification (SOBI) algorithm was introduced in [55] 

and is a second order variant of Cardoso’s JADE algorithm described previously 

in subsection 2.8.3, the algorithm represents an extension of Tong’s AMUSE 

algorithm [53]. The algorithm exploits the time coherence of the source signals 

Si^k). The algorithm requires the following assumption on the nature of the 

source signals.

1- RssW = E[s(k + r)sT(k)] = diaglp^r)... Pn^)]

This assumption implies that the sources Si^k), 1 < i < n are mutually uncorre­

lated and Pi(r) = E[si(k + r^s^ky] represents the auto-covariance of the source 

s^k). The SOBI algorithm calculates the covariance matrices of the input vector 

^k) as follows for multiple time lags r:

Rxx(t) = E[x(A;)x(A; - r^] 

= E[(As(A;))(As(A; — r))T] 

= AE[s{k)s(k — t)t]At 

= ARss(t)At

From the above assumption the cross correlation terms, that are given by the 

off-diagonal elements of the covariance matrices Rss(r) for each time lag t are 

zero for independent signals. Hence the demixing matrix W = A“1 can be 

found as the solution to a matrix diagonalization problem. That is, to find the 

matrix that simultaneously jointly diagonalizes the set of covariance matrices 

RxxCO- To perform the diagonalization of the above covariance matrices at 

multiple values of time delay r, the authors used the joint diagonalization of 

Cardoso and Souloumiac described in [70]. Joint diagonalization algorithms are 

discussed in greater detail in chapter 5. As was previously mentioned for the 
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explicit fourth order based methods, the performance of the SOBI algorithm 

[55] can be poor if the number of data samples available to the algorithm is 

small. This arises for small sample sizes, the cross terms of the correlation matrix 

do not become precisely zero, thus the correlation matrices Rxx(r) may not be 

exactly jointly diagonalizable. Nonetheless, for the case of small sample sizes the 

AMUSE and SOBI algorithms can provide an improvement in performance over 

HOS based methods due to the rapid convergence of second order cumulants to 

their asymptotic values, when compared to their higher order counterparts. The 

computational cost for the SOBI algorithm may also be less than required for 

the explicit HOS based algorithms, yet this is sometimes countered by the large 

number of correlation matrices required to be jointly diagonalized in order to 

obtain good convergence from the algorithm, and that the number of matrices 

must be estimated. Adaptive and Neural network based methods which can 

be run in both online and offline mode are introduced in the next section and 

described in greater detail later in this thesis.

2.11 Adaptive filtering and Neural Network 

based methods

A number of researchers have tackled the BSS problem using neural network 

approaches [88, 41, 76]. As these techniques are essential to the development of 

the algorithms described in this thesis, an initial overview of one of the original 

neural network based techniques is described here while more in-depth description 

is left for later chapters. The Herault-Jutten network is described in the following 

subsection.
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2.11.1 Hérault-Jutten Network

In the mid 80s Herault first began studying the following problem in Computa­

tional Neuroscience: How is the central nervous system able to recover or separate 

the mixtures of signals that are transmitted along the neuronal fibres? This work 

was first developed within [89, 90]. This work then led onto one of the first ap­

proaches to the BSS problem within a Signal Processing context, this was given 

by Herault and Jutten [47, 91] where a neural network implementation that im­

plicitly introduced higher order moments of the output by cancellation of two 

non-linear odd functions of the separator output. It was in this paper that the 

term Independent Component Analysis was coined as a descriptive term for a 

method used to maximize the statistical independence of a set of mixed sources. 

This term arises due to the similarity of ICA and Principal Component Analysis 

(PCA). In the Herault-Jutten paper [47] a recursive neural network as shown

Figure 2.7: Herault-Jutten Recursive Neural Architecture

in Figure 2.7 is utilized where the weights or the network are updated using a 

steepest descent algorithm. The output of the Herault-Jutten recursive neural 

network representing the unmixed signals is given as follows.

y=(I + W)-1x (2.55)
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The stochastic gradient equation for the system is given as follows:

W(Hl) = W(fc)-/iVW (2.56)

Where as stated above the update equation VW is two non-linear odd functions 

of the separator output f(yi) and g(yj), given as follows.

j (2.57)

The Herault-Jutten algorithm has been implemented extensively in hardware 

throughout the literature [92, 93, 94, 95] due to its performance and easy imple­

mentation. The algorithm has been further extended to incorporate the case of ill 

conditioned mixing by Cichocki et al. in [96]. The algorithm has been extended 

to the convolutive environment in [97, 98], a FPGA implementation of the con- 

volutive extension described in [97] has recently been proposed in [99]. Thus the 

Herault-Jutten algorithm still remains a popular method within the literature to 

this day. In the following section some methods for assessing the performance of 

algorithms in the BSS context is introduced.

2.12 Performance Measures

As a method of comparing the performance of ICA and BSS algorithms a number 

of measures have been proposed throughout the literature. The most commonly 

used performance measure is known as Amari’s performance measure described 

in the following subsection. Other measures have been proposed for specific appli­

cation areas e.g. audio separation in [100], yet these measures are less commonly 

cited.
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2.12.1 Amari’s Performance Measure

As had been described throughout the course of this chapter the Blind Source 

Separation problem is to create a transformation W that inverts the mixing 

matrix A. Therefore a natural performance measure for a source separation 

algorithm is to measure the distance of the global system matrix E = WA to the 

identity matrix. Although this would be ill posed if the ambiguities described 

in subsection 2.1.2 were not also taken into account. The standard performance 

measure Amari’s Performance Index (APZ), used for linear instantaneous Blind 

Source Separation was first give by Amari in [101]. It provides a measure of the 

distance of the global system matrix E from the identity matrix incorporating a 

potential permutation and scaling.

APi = y f y fa-^ + EIE 1 1-1) (2-58)maxk\eik\ J maxk\eki\ J

where E = (e^) = WA. It can be seen that the above equation has the following 

two properties.

• 0 < API < 1 for all global mixing matrices E

• API = 0 if and only if E = PD where P is a permutation matrix and D a

diagonal scaling matrix

Another performance measure that can be used is the signal to noise ratio de­

scribed in the following subsection.

2.12.2 Signal to Noise Ratio

Another possible separation criteria detailed in [102, 103] is the signal to noise

ratio (SNR) of the output sources. This is given by the following equation:

SNR— 101og10 E[n^2]J
(2.59)
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Where n(t) = y(i) — s(i), with the permutation manually resolved, represents 

the undesired or noise vector. This performance measure assumes that the per­

mutation ambiguity has been solved before its application.

2.12.3 Gradient Norm

As the algorithms detailed within this thesis concentrate on the gradient based 

approaches to the BSS problem then the norm of the gradient of the cost function 

is a commonly used performance measure. This is based upon the idea that for a 

convex cost function the usual stopping criterion for an optimization algorithm is 

the nullity of the gradient, in other words the required solution is found once the 

gradient vanishes or decreases beyond a given threshold. This is given as follows 

for a given BSS cost function J(W)

ÖJ(W) 
aw

2

(2.60)

Where in the above context, the value r is a suitably chosen small value in the 

vicinity of zero. This performance metric will be used for a number of the al­

gorithms developed within this thesis. Another important factor utilized in the 

selection of signal processing algorithms is the computational complexity of a 

chosen algorithm. This is discussed in the following subsection.

2.12.4 Computational Complexity

Computational complexity represents an important consideration in algorithm 

development as more and more devices are mobile, relying on low power usage. 

Yet this, although not exclusively, is predominantly based upon implementa­

tion and hardware considerations. A number of authors have utilized FLOPS 

(MATLAB floating point operations) as a method of assessing the computational 
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complexity of their algorithms, yet this method has been subsequently made re­

dundant. Therefore, where appropriate within this thesis, purely for a measure 

of relative comparison the computational time consumption on a consistent mi­

croprocessor architecture will be utilized.

2.13 Summary

This chapter has given an overview of the basic theory required for the Blind 

Source Separation problem, and has given a review of the current state of the 

art methods, specifically concentrating on the instantaneous linear mixture case 

for as many sensors as sources. As the Natural Gradient algorithm plays an 

important part in the development of this thesis a more detailed description of 

the algorithm, its development and extensions is given in the following chapter.



Chapter 3

Information Maximization

3.1 Introduction

The Information Maximization algorithm (InfoMax) has been one of the most 

influential algorithms in solutions to the BSS problem. The algorithm was first 

introduced in [104, 105] by Bell and Sejnowski. An example of the setup for 

the algorithm is shown in Figure 3.1. In this paper the chosen cost function

Unknown

Figure 3.1: Neural Architecture for the BSS problem

J(W) was the maximization of the information between the input and the output 
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of a feedforward neural network. Mutual Information provides a measure of 

the amount of information one variable tells about another. Thus, utilizing the 

definition for the mutual information defined in Equation 2.20 for the input vector 

x and the output vector y we obtain the following Equation.

7(y,x) = B'(y) + F(x)-K(y,x) (3.1)

Within this equation the entropy at the neural network output H (y) represents 

the uncertainty at the output y that can be explained by x, which is the mutual 

information Z(y, x), and the uncertainly at the output y that cannot be explained 

by the input x. This can be written as 77(y|x). Thus an alternative definition for 

the mutual information between the input and output is obtained [52, 104, 105].

Ay, x) = F(y) - H(y|x) (3.2)

The second term in Equation 3.2 is a noise term since is represents the information 

at the output that is not related to the input. Thus in the no noise case the term 

H(y|x) = 0. Therefore when the weight matrix of the feedforward neural network 

represents an invertible continuous deterministic mapping, the maximization of 

the above equation for the mutual information with respect to the weight matrix 

of the feedforward neural network W is equivalent to the maximization of the 

entropy at the output. This is given as follows:

^^(y^) = ^^(y) (3-3)
o W oW

Straight maximization would be inappropriate as the entropy of the output of the 

demixing system y = Wx would tend to infinity for arbitrarily large demixing 

matrices W [106]. Therefore to perform separation the output data y is trans­

formed via a nonlinear transformation </>(y), that acts component-wise on y. For 

ease of notational simplicity and to remain consistent with notation used for the 
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mixing and demixing system throughout this thesis the output from the demixing 

system will be defined as

u = Wx

Therefore allowing the standard output vector y to be written as

y = 0(u) = 0(Wx)

(3.4)

(3.5)

Thus the cost function maximized with respect to the demixing matrix IT used 

in the Bell and Sejnowski algorithm is as follows:

When the vector u is transferred through the nonlinear transformation ^>(u) 

maximization of the mutual information and therefore the maximization of the 

entropy at the output vector y is achieved when high density parts of the pdf of x 

are aligned with sloping parts of the function <$(u). When the transformation 0(u) 

represents a monotonically increasing invertible function that maps the input to 

the interval [0,1]- The transformation is also known as a squashing function 

in neural network literature [43] and has the requirement that the function has 

a unique inverse. If the transformation 0(u) meets the above criterion then 

the linear transformation W performed on the observation vector x results in a 

transformation of the probability density function [44]. This is given as follows:

p(y) = (3.7)
I Jc|

where |JC| is the absolute value of the Jacobian of the transformation. The 

Jacobian is defined as the determinant of the matrix of partial derivatives given 

as follows:
/ dyi _ . . dyi \ 

dxn

Jc = det (3.8)
dyn . . . dyn

\ dxi dyn /
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For an invertible transformation ^(u) the Jacobian may be written as:
n

dyi
(3.9)

1=1

As was described in chapter 2 the joint entropy of the output vector y is given 

as follows:

Z
OO

p(y)log(p(y))dy
-oo

= E[— log(p(y))] (3.10)

Using this definition in the maximization of the mutual information the following 

analysis for the maximization of the cost function J(W) is obtained:

dJ(W) 
âW

^(y.x) = ^B[-iog(p(y))]

d 
dW 

d 
aw E log(p(x)) -log|Jc|

E

5W£[10i (dewing) 

u x 1=1 '

d
aw log (det (W)) +

n n—ÿ 
aw

In order to calculate the derivative in Equation 3.14 it is required to choose 

the nonlinearity </>(.). The nonlinear transformation <^(u) should be picked such 

that the transformation matches as closely as possible the cumulative distribu­

tion function (cdf) of the input in an attempt to match the pdf, therefore the

transformation should ideally be given as:

(3-11)

In the blind case this is not completely possible as the underlying pdf’s of the 

input data are assumed to be unknown. Therefore an approximation of the pdf 
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of the data is made, obviously at this point if a priori information is known about 

the data then it can be included to provide a better solution, this idea will be 

expanded later within this thesis. In the Bell and Sejnowski paper [104] the 

logistic sigmoidal function was used.

^u) = <312)

This function has the advantage that its derivative has a simple form, this is 

given as follows:

(3.13)

Utilizing the logistic function given in Equation 3.12 and its derivative given 

above within Equation 3.13 the following cost function is obtained1.

1The derivative of the determinant with respect to a matrix is calculated using Jacobi’s 

Formula [107]
2As is common notation in the adaptive ICA literature the k index is only used for the first 

two terms of the update equation, this format is used within this thesis unless the index is 

required for clarity

aj(w) 
aw (Q

e W~T + aWlog

/ \-1 a // \\E wT + ^(y)(i - (0(y)))J I ^(y)(i - (0(y)))j )

E W-r + (l-2</>(y))xr (3.14)

In the paper this cost function is maximized via the standard Steepest Descent 

algorithm [108, 109]. The following update equation is developed for the Bell and 

Sejnowski algorithm2 [104, 105].

W(k + 1) = W(fc) - Ai[W-r - (1 - 20(y))xr] (3.15)
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In the derivation of the algorithm given in [104] additional unit inputs were 

included that facilitate dealing with biased inputs, as this has largely been ignored 

in the literature, they have been omitted here and as the data can be centred to 

be zero mean, the function 0(.) and the expected value of the data will be zero 

mean rendering any bias term superfluous. Of specific importance in the above 

algorithm is the nonlinearity at the output of the neural implementation. This 

will be developed further in the following subsection.

3.1.1 Maximum Entropy

In the InfoMax algorithm the nonlinearity <^() plays an essential part in the 

minimization of the mutual information required to perform the separation of 

the mixed source vector x, it will be shown in the following subsection that the 

maximization of the entropy between the input and output of the network is 

equivalent to the minimization of the mutual information. From an information 

theoretic point of view this is explained initially by observing the joint entropy of 

the output vector y, rearranging the equation for the mutual information given in 

Equation 2.20, the joint entropy at the output of the network is given as follows: 
n

= E - i(y) (3-16)
i=l

The marginal entropy as shown in Equation 2.22 can be written as an expectation 

as follows:

Z
OO 

p(?/i) log(p(?/i) W* 
•00

= —K [log (p(pi))] (3.17)

Using the transformation of random variables for the nonlinearity </>() that has 

been previously introduced [44] in section 3.1, the marginal entropy is written

= -E log
p(^A 
i^-i / I dm I / 

(3.18)
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laking the derivative of the joint entropy H(y) with respect to the demixing 

matrix W gives the following:

dH^y) d A [ d
dW “ °S(|f^|) <9W y

¿=1 L \ 1 oui । / _

It can be seen from the above equation that there exists a relationship between 

the maximization of the joint entropy between the input and the output of the 

neural network and the minimization of the output components yi = 0(uj). If the 

nonlinear activation function 0() is chosen such that it matches the cumulative 

distribution function of the input Ui, then the first term in Equation 3.19 is equal 

to zero, and the maximization of the entropy between the input and output of the 

neural network is equal to the minimization of the mutual information between 

the output components. In the context of the BSS problem the exact pdf of the 

inputs is generally unknown, therefore the above term acts as an error term. In 

the next subsection it is shown that the InfoMax algorithm described above is in 

fact equivalent to the Maximum Likelihood contrast function [106].

3.1.2 Maximum Likelihood

In subsection 2.5.4 the Maximum Likelihood principle was introduced as a po­

tential cost function for use in solving the Blind Source Separation problem. In 

[106] Cardoso showed that the Maximum Likelihood approach does in fact co­

incide with the Bell and Sejnowski algorithm developed above in [104] provided 

that the demixing matrix W is identified to A-1. In the next section Amari’s 

Natural gradient algorithm is introduced which both improves the convergence 

and the computational complexity of the InfoMax algorithm.
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3 2 Natural Gradient Adaptation

When performing optimization within a manifold a metric is required to give a 

concept of distance within the manifold. For the case of a Euclidean manifold 

S = {w G R"} with a cost function J(w) defined on S, w representing an 

orthonormal coordinate system, the squared length of a small incremental vector 

dw joining w and w + dw is given as follows: 
n

|dw|2 = dw'dw = ^dw^ (3.20)
i=i

where dwi represents the components of the vector dw. If the coordinate system 

is not orthonormal or the space represents a Riemannian space S then the above 

equation is inappropriate and a measure incorporating the local curvature of the 

space is required. This is given by the following quadratic form:

|dw|2 = wrGw = y^gij(w)dwjdwj (3-21)
id

In the above equation the matrix G is known as the Riemannian metric tensor. 

This matrix introduces curvature of the cost surface. For a Euclidean manifold the 

matrix G reduces simply to the identity matrix I. It can be seen that the above 

equation represents a weighted distance, induced by a weighted inner product 

[37]. The above Riemannian metric will be included within the standard Steepest 

Descent algorithm in the next subsection.

3.2.1 Steepest Descent Directions

The standard Steepest Descent algorithm [108, 110, 109] as utilized in the above 

InfoMax algorithm [104] utilizes the following strategy. For a cost function J(w) 

at w, the direction of Steepest Descent is given as the vector dw that minimizes 

d(w + dw) under the constraint:

|dw|2 = e2 (3.22)
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for a sufficiently small e, and an assumed fix step size for the learning algorithm. 

Based on the above analysis it can be seen clearly that the standard Steepest 

Descent algorithm is appropriate only in the case where the underlying optimiza­

tions space exists within a Euclidean manifold. If this is not the case then the 

Steepest Descent algorithm may take incorrect descent steps. To improve this 

Amari introduced the local curvature of the cost surface within the cost function 

[111]. This is shown in the following subsection.

3.2.2 Natural Gradient Descent

It was shown above that if the underlying optimization manifold is not Euclidean 

then the ordinary gradient does not in fact represent the direction of steepest 

descent. If the underlying cost surface is Riemannian, then to obtain the direction 

of steepest descent the local curvature of the cost surface must be included within 

the algorithm. This is achieved utilizing the steps detailed in [112, 88], in the 

following manner, setting the direction vector dw as follows:

dw = ca (3.23)

where a is a vector that satisfies the constraint.

11 a| |2 = aTGa = = 1 (3.24)
ij

and G represents the Riemannian metric tensor introduced in section 3.2. It is 

required to find a to minimize

J(w + dw) = J(w + ea) (3.25)

Taking the first two terms of a Taylor series expansion of the above equation, the 

following equation is obtained:

J(w + ea) = J(w) + eVJ(w)Ta (3.26) 
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where VJ(w) is the standard gradient vector. To minimize the function under 

the given constraint the following Lagrangian equation is utilized:

J(w + ea) = J(w) + eVJ(w)Ta - AarGa (3.27)

Taking the derivative of the above equation and setting the result to zero:

di Al
< eV J (w)Ta - -a7 Ga = 0 (3.28)

Cz I j

the following equation is obtained:

VJ(w) = 2AGa (3.29)

solving for a gives

a = Àg-‘VJ(w) (3.30)

where A is chosen to normalize the direction vector a without changing its direc­

tion. The following equation

VJ(w) = G-1VJ(w) (3.31)

is know as the Natural Gradient of the cost function J in the Riemannian space 

representing the direction of steepest descent. Amari suggested in [112, 88] a 

Natural Gradient descent algorithm of the form

w(Hl) = w(fc)-/A7J(w) (3.32)

where as in the standard steepest descent algorithm /z represents a suitably cho­

sen step size. In [101, 113, 114, 112, 88] Amari addressed the BSS problem 

in the context of Natural Gradient adaptation. This is shown in the following 

subsection.
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3.2.3 BSS via Natural Gradient Adaptation

Amari introduced the concept of the Natural Gradient algorithm within the 

BSS/ICA problem [101]. The development of the algorithm was based on the 

fact that the optimization space of the problems takes place within the space 

of n x n invertible matrices W. The space of n x n invertible matrices forms 

a Lie Group. Some properties of matrix groups, and Lie groups are addressed 

in the following subsection as a necessary introduction for the application of the 

Natural Gradient algorithm within the ICA and BSS problems.

3.2.4 Groups Theory

It was stated above that in [101] Amari introduced the Natural Gradient algo­

rithm to the BSS problem. The development of the algorithm is based upon 

the group structure of the space of n x n matrices. A group in mathematics, is 

a non-empty set together with a binary operation that satisfies certain axioms. 

The axioms for a group G are as follows, where . denotes a binary operation:

1. Closure - Va, b € G, a.b E G

2. Associativity - Va, b,c E G, a.(b.c) = (a.b^.c

3. Identity \/g EG, e.g = g — g.e

4. Inverse - \/g E G, 3h E G, h.g = e = g.h

It can be seen clearly that the space of square nonsingular matrices forms a group, 

when the binary operation is matrix multiplication and the identity for the group 

is the matrix identity I. It was mentioned above that in the derivation of the 

Natural Gradient algorithm Amari utilized the Lie Group structure of the space 

of matrices. Lie groups are defined in the following subsection.
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3.2.5 Lie Groups

Lie groups were introduced by Sophus Lie in [115]. A Lie group obeys the same 

properties as a standard group but has the additional condition that the oper­

ations of the group are differentiable. A Lie group represents a differentiable 

manifold that obeys the group properties [116]. To define the Riemannian metric 

for the BSS problem it is require to define the following operator K() that maps 

matrix to a matrix:

K(W) : Rraxn Rnxn (3.33)

Utilizing this operator the cost function for the BSS problem may be written as:

J(W) = A(W)J(W) (3.34)

Changing the constraint on the cost function from above slightly for the develop­

ment of the algorithm, the additional constraint required to achieve equilibrium 

is added that:

For W = A'1, as no further adaptation is required once the correct demixing 

system has been obtained. Combining this new constraint with Equation 3.34, 

then the equation satisfies the above constraint, when the cost function J(W) 

does. Therefore the functions have the same equilibrium, although their stability 

may be different. The Natural Gradient algorithm will not effect the stability of 

an equilibrium provided the matrix G-1 is a positive definite matrix 3. Repeating 

the analysis above for the BSS problem as defined by Amari in [101, 117, 114, 112], 

we begin with the demixing matrix W. We wish to extend this matrix by an 

infinitesimally small perturbation dW such that:

3 A positive definite matrix has the property that the determinant is always positive

W W + dW (3.36)
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The tangent space Tw of the Lie Group at W is a linear vector space, it is known 

as a Lie Algebra and is spanned by all small perturbations dWij. Defining an 

inner product at W that will give a distance metric within the weight space W, 

and defining the tangent vector at W as dW, the small perturbation results in 

the following inner product at W:

|dW|2 = (dW,dW)w

= tr(dWTdW)w (3.37)

Taking into account that to solve the BSS problem we require to find the inverse 

of the transformation x = As, such that the demixing matrix equals W = A-1. 

Therefore the following mapping exists:

WA = WW1 = I (3.38)

The perturbation dW at W is mapped to a perturbation at the Identity matrix 

by multiplying the above mapping by W-1:

(W + dW)W-1 = I + dWW“1 (3.39)

Creating the term for the right multiplied tangent vector

dX = dWW“1 (3.40)

and comparing the above equations we can see that the tangent vector dW at W, 

corresponds to the tangent vector dX at I. In this case both the tangent vectors 

must have the same length [101]. Therefore we can equate the inner products at 

both W and the identity I as follows:

(dW, dW)w = (dX, dX)x (3.41)

Following the analysis for the Riemannian metric tensor vector component given 

in section 3.2 we can equate the weighted inner products above to the Riemannian
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metric tensor for the matrix case as follows:

(dW, dW)w = (dX, dX), = = 22 Gijkl(yV)dWi:idWkl (3.42)
ij ijkl

where the Riemannian metric tensor G is defined as follows:

GttM(W)=£iitW^W^ (3.43)
m

Extending again the analysis in section 3.2 the first two terms of the Taylor series 

expansion:

J(W + dW) = J(W) + eVJ(W)rdW (3.44)

Utilizing the above equation the matrix differential can be given as:

J(W + dW)-J(W) = e(VJ(W),dW)/ (3.45)

Interpreting the Natural Gradient V J(W) of J as a vector applied at W and the 

standard gradient V J(W) of J as a vector applied at the identity I, then from 

the above analysis these two may be equated as follows:

(VJ(W)r,dW)w = (VJ(W)W-1,dWW“1)ww-1 = (VJ(W)T, dW)/ (3.46)

Rewriting the above weighted inner products in trace form:

ir(W“TV J(W)TdWW"1) = ir(VJ(W)TdW) (3.47)

Utilizing the commutative properties of the trace function and equating terms:

irGW^W^VJ(W) - VJ(W))dW) = 0 (3.48)

Rearranging terms in the above equation, gives the following equation for the 

Natural Gradient algorithm within the space of matrices for application to the 

BSS problem [101, 117, 114, 112]:

VJ(W) = VJ(W)WTW (3.49)
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The gradient directions for a hypothetical manifold are shown diagrammatically 

in Figure 3.2.5 for both the standard stochastic gradient VJ(W) and for the 

Natural Gradient VJ(W).

Figure 3.2: Comparison of Natural Gradient and Stochastic Gradient descent 

directions

Thus, the update equation including the Natural Gradient cost function modifi­

cation is given as follows:

W(k + 1) = W(fc) - ^[1 - ^(y)yT]W (3.50)

The nonlinearity 0(y) is chosen such that it models implicitly the higher order 

statistics of the underlying source signal. It was shown in [118, 119, 120, 121] that 

the exact form of the nonlinearity used with the Natural Gradient and InfoMax 

algorithms is not crucial to the separation success providing that the sign of the 

kurtosis of the underlying signals is unchanged. The performance of the InfoMax 

and Natural Gradient algorithms is compared in the following section.

3.3 Simulation Example

In order to demonstrate the performance of the Natural Gradient algorithm in 

on-line mode, and to show the improvement in performance over the InfoMax 



3.3 Simulation Example 61

algorithm the following simulation is employed. The source signals are three ar­

tificially generated sub-Gaussian signals, consisting of a Uniformly distributed 

signal, and two Binary signals. They are shown in Figure 3.3 The signals are

Figure 3.3: Sub-Gaussian source signals

then mixed using a random mixing matrix, generated from a Uniform distribu­

tion. The mixed signals are shown in Figure 3.4. An example of the unmixed 

signals generated by the Natural Gradient algorithm is chosen randomly from the 

output of 10 simulation runs and is shown in Figure 3.5: Within this example the 

source signals were sub-Gaussian in nature, therefore the score function <$(y) = y3 

was chosen. The score function has been shown to provide good performance for 

separation of sub-Gaussian signals [101, 113, 114, 112, 88]. The performance of 

the algorithm shown in Figure 3.6, represents the average value of two hundred 

simulation runs of the above described example. The performance metric used to 

show the convergence of the algorithm is Amari’s performance metric, described 

in the previous chapter. It can be seen clearly from Figure 3.6 that the Natural
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Figure 3.4: Signals mixed using a uniformly distributed random mixing matrix
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Gradient extension to the InfoMax algorithm vastly improves the convergence of 

the InfoMax algorithm. The removal of the matrix inversion in the update equa­

tion also represents a large reduction in the computation per iteration required 

by the algorithm. Later in this thesis it will be shown for the communications 

context that convergence improvements can be achieved by better modeling the 

distributions of the underlying signals.

3.4 EASI

At the same time that Amari was developing the Natural Gradient method Car­

doso and Laheld had independently developed a similar method they termed the 

gradient update within the paper the Relative Gradient method [122, 123], the 

complete algorithm within the paper is known as the Equivariant Adaptive Source 

Separation (EASI) algorithm. As the development of this algorithm results in 

a similar function in nature to the Natural Gradient algorithm its development
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Figure 3.5: Unmixed signals using the Natural Gradient algorithm

is left described in the references. The algorithm does differ in the inclusion of 

a prewhitening stage as part of the gradient update equation. The equation is 

given as follows:

w(fc +1) = w(fc) - M[yyr -1 + ^(y)yT - y<y)r] w (3.51)

For all of the above algorithms the convergence of the algorithm is dependent on 

correct choice of the adaptation parameter A fixed value for p is often used, 

but if fast convergence speed is required then larger adaptation rates become 

necessary, this can lead to algorithm instability. A number of adaptive step 

size selection methods have been introduced for use with the Natural gradient 

algorithm [124, 125, 126] that offer improvements in both algorithm convergence 

and misadjustment reduction. In the EASI algorithm a normalized version of the 

algorithm was introduced similar to the normalized LMS algorithm [127] that 

provides extra stabilization for the algorithm. The normalized EASI algorithm
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Comparison of Informax and the Natural Gradient Methods

Figure 3.6: Comparison of the Natural Gradient and the InfoMax algorithms

is given as follows:

W^k + 1) = W(k) - + MyT -^^]W (3.52)
1 + yyyT 1 +/z|yr^>(y)|

In [128] an algorithm is developed that provides additional stability to the Natural 

Gradient algorithm [101, 113, 114, 112, 88]. This algorithm was extended to the 

EASI algorithm and was then applied to the separation of communication signals 

in [129].

3.5 Conclusion

In the above analysis it can be seen clearly that incorporating the Natural Gradi­

ent extension into the InfoMax algorithm reduces the computational complexity 

of the algorithm greatly due to the removal of the matrix inversion within the cost 

function, and increases the convergence of the algorithm due to better modeling 

of the underlying cost surface [101, 113, 114, 112, 88]. The EASI algorithm was 
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introduced due to its similarity to the Natural Gradient method. The Matrix 

Momentum algorithm is introduced within the next chapter. This algorithm rep­

resents a second order gradient based method, similar in nature to the Newton 

method without the requirement for a matrix inversion of the Hessian matrix. 

This method is shown to provide fast convergence and low complexity. The Ma­

trix Momentum method is fully explained within the following chapter and its 

performance is compared with the Natural Gradient algorithm.



Chapter 4

Matrix Momentum

In this chapter the Matrix Momentum algorithm is introduced, which is known to 

improve the performance of the standard Steepest Descent gradient algorithm. 

The algorithm is then utilized within the Blind Source Separation (BSS) con­

text as an extension to the Information Maximization algorithm described in the 

previous chapter. The performance of the algorithm is demonstrated via the sep­

aration of a mixture of speech signals. It is shown that the algorithm achieves fast 

convergence and low computational complexity when compared with the Natural 

Gradient and Relative Newton algorithms.

4.1 Introduction

In the previous chapter Amari’s Natural Gradient algorithm was discussed, and 

it was shown to provide dramatic increases in convergence speed and computa­

tional complexity when compared with the InfoMax algorithm [104]. The Newton 

Method is a well known technique in Optimization Theory offering quadratic con­

vergence properties that significantly outperform the standard Steepest Descent 

technique. One of the well known problems with the Newton Method is the 
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requirement of a matrix inversion at each iteration step. A number of Newton 

Methods have been applied to the BSS problem each avoiding the matrix inver­

sion in a novel fashion [130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]. In 

this chapter the Matrix Momentum algorithm developed by Orr in [141, 142], 

is utilised as a second order optimization technique applied to the BSS prob­

lem, resulting in a Newton type method without the requirement for a matrix 

inversion. This provides improved convergence relative to the standard Steepest 

Descent methods without significant increase in computational cost. The Matrix 

Momentum algorithm will be described fully within this chapter, before being 

applied within the framework of the BSS problem. The Matrix Momentum al­

gorithm is demonstrated to further increase the convergence with respect to the 

Natural Gradient algorithm [101, 113, 114, 112, 88] and is shown to provide equal 

performance in convergence with low computational complexity when compared 

with alternative Newton based BSS methods [134, 135, 136, 136]. The develop­

ment of the above algorithms is shown within the following sections. To begin 

the development of the Matrix Momentum algorithm it will be important to first 

revisit the Steepest Descent technique, before continuing to the Newton Method.

4.2 Gradient Learning Algorithms

It was mentioned in the previous chapter that the Steepest Descent algorithm 

[108, 110, 109] was utilized in the development of the InfoMax algorithm [104]. 

The algorithm dates back to 1847 [108] and represents one of the most time served 

algorithms known in Optimization Theory. The format of the Steepest Descent 

algorithm for a matrix valued cost function J(W) is given by the following equa­

tion.

(4.1)
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where as previously described /z represents the learning rate parameter for the 

algorithm and additionally added is C*(W) a suitably chosen positive definite 

matrix. For the standard Steepest Descent algorithm the matrix is chosen as 

the identity matrix C*(W) = I. It was shown in the previous chapter that if 

the matrix C(W) is set equal to the inverse of the Riemannian metric tensor 

G-1 then we find the direction of steepest descent in the Riemannian space, this 

algorithm developed by Amari is known as the Natural Gradient [101, 113, 114, 

112, 88], and provides rapid convergence and reduced computational complexity 

when compared with the Steepest Descent approach [104] . For the case that the 

matrix C(W) is set equal to the inverse Hessian matrix, this represents another 

well known algorithm within Optimization Theory: the Newton Method. As the 

Newton Method is important to the understanding of the Matrix Momentum 

algorithm it will be described in the following subsection.

4.2.1 The Newton Method

Newton method is often described initially in terms of root finding. As this 

explanation can naturally be extended to function minimization or maximization, 

this explanation will be used here. Beginning with the Taylor series expansion 

of the scalar valued function about the point w = w(k) + Aw we find the 

roots of the function as follows.

+ Aw) = J(w(0)) + (Aw) J'(w(0)) + O(n2) (4.2)

Truncating the above expansion at first order, setting the equation equal to zero 

such that J(w(0) + Aw) = 0, then solving for Aw = Aw(0), results in the 

following equation for an initial guess w(0).
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Letting Awi = w0 + Aw0, and repeating this results in the following update 

equation.
. ,,. J(w(k)} ,. ...

△w* = “WWWW (4-4)

We can use the above to develop an iterative update equation for finding the 

root. This is given as follows.

(4-5>

Trivially, it can be seen that the above analysis can be extended to function 

minimization by observing that if a variable w is a stationary point of a cost 

function J(w) then the variable w is a root of the cost function’s derivative. 

Therefore the value of the input variable w can be found by applying the Newton 

method to This results in the following update equation.

w(k + 1) = w(k) - (4-6)

This method has the constraint that it requires the cost function to be twice 

differentiable. Extending this analysis to a vector valued twice differentiable cost 

function J(w) we obtain the following update equation for the Newton method.

w(fc + 1) = w(fc) — H 1VJ(w) (4-7)

Where H represents the n x n Hessian matrix, the matrix of second partial 

derivatives, and V J(w) represents the n x 1 Jacobian vector, the vector of partial 

derivatives. Extending this result to a matrix valued twice differentiable cost 

function as required in BSS the following Newton update equation is obtained.

W(k + 1) = W(fc) — mat H-1uec[VJ(W)] (4.8)

Where mat is an operator that transforms a n2 x 1 vector into a n x n matrix, 

and the vec operator turns a n x n matrix into a n2 x 1 vector. These operators
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are required as the Hessian matrix H of a matrix valued cost function results in 

a n2 x n2 matrix. The above equation more generally will be written including 

a step size parameter /z which is generally defined in the range 0 < ^ < 1. To 

ensure algorithm convergence the step size n should be chosen to ensure the Wolfe 

conditions are satisfied for each iteration of the method [143, 144],

W(A; + 1) = W(fc) — /z I mat H-W[VJ(W)] (4.9)

It can be seen clearly in the above equation that the inversion of a n2 x n2 

matrix represents a significant cost overhead in the implementation of a straight 

Newton method applied to the BSS problem. In the following section the Matrix 

Momentum algorithm developed by Orr in [141, 142] is introduced, which provides 

an algorithm with Newton-like performance avoiding the high computational cost 

of the straight Newton method. In [26, 27] the first application of the Matrix 

Momentum algorithm to the BSS problem was introduced, as detailed further 

within this thesis.

4.3 The LMS algorithm with Momentum

The idea of incorporating previous values of the weight vector along with the 

standard Steepest Descent update term was first utilized by Proakis in [145, 58] 

for high speed adaptive equalization in digital communications. The idea was 

then revisited by Roy in [146, 147] and within these references, the algorithm was 

named the Momentum LMS (MLMS) algorithm. At the same point the addition 

of a momentum parameter was further analysed by Tugay in [148, 149, 150]. The 

momentum parameter addition to the Steepest Descent update equation is shown 

as follows:

W(fc +1) = W(q - + «W(A;) - W(* - 1)) (4.10) 
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Where to ensure stability the momentum parameter /3 is defined such that |/?| < 1. 

It was found by Roy and Shynk in [147] that while the algorithm remains stable 

if the momentum parameter /3 is negative within the above range this can cause 

decreased algorithm performance. Therefore, generally the parameter is chosen 

to be positive. Expanding the right hand side of the above steepest descent 

equation with momentum, it can be seen that the above equation can be written 

as an exponential averaging of the weight update equation for a constant

value for ¡3. Rewriting the above equation as an exponential average the following 

equation is obtained.

W(£ + 1) = ww-^^w)+KW^ dJ(W(k — 1)) 
dW(k - 1)

aw(fc)

= w aw(/c)

dJ(W(k- 1))\
dW(k - 1) J

15J(W(fc-l))
P dW(k - 1)

i

i=0
(4-11)

dJ(W(k-i)) 
dW(k - i)

For the case where the momentum parameter /3 lies within the range defined in 

[147] as detailed above, and making the assumption that within the significant 

terms within the above exponential average equation the gradient terms are not 

changing rapidly, then the finite summation term can be replaced by an infinite 

summation as follows:

f aw(M
aj(ww) t
W) (4.12)

Using the above equation it can be seen from the convergence of the Geometric 

series that the momentum addition has the effect of rescaling the learning rate

parameter,

a aw^ hi ~i-A ) (4.13)
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This is shown as follows where the learning rate p,eq is defined as the equivalent 

learning that would be required to obtain the same rate of convergence for the 

case that (3 = 0:

= (4.14)
1 /J

It was shown in [141] that the addition of a momentum term does not improve 

convergence in excess of what can be achieved by simply utilizing the equivalent 

learning rate p,eq. This is an unsurprising result, yet the addition of a momentum 

term has been utilized extensively in the neural network literature [151, 152, 153, 

154] and the references therein. Specifically in the context of the Backpropagation 

algorithm [42], In the following subsection the Matrix Momentum algorithm is 

introduced.

4.3.1 Matrix Momentum

It has been shown previously that although the Newton method provides im­

proved convergence with respect to the Steepest Descent algorithm, the required 

matrix inversion per iteration can be computationally expensive. As a method 

of removing the requirement for this matrix inversion Orr introduced the Matrix 

Momentum algorithm [141, 142]. Beginning with the momentum equation given 

in Equation 4.10 it was shown that the addition of the momentum term had the 

effect of rescaling the learning parameter. It was shown in subsection 4.2.1 that 

for the Newton Method the learning rate parameter is equal to the inverse of the 

Hessian of the cost function. In [141] Orr posed the question: ’’What was the 

momentum parameter required such that the equivalent learning rate parameter 

Heq was equal to the inverse of the Hessian matrix?”. This is shown as follows for 

the matrix valued case:

= H-‘ = ^[1 - fl-1 (4.15)
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Where I in the above equation represents the identity matrix. Solving the above 

equation for the momentum parameter /3 we obtain the following result such that 

the effective learning rate for the system is equal to the inverse of the Hessian 

matrix of the cost function:

= I — (4.16)

Placing this (3 momentum parameter in the context of the steepest descent equa­

tion with the momentum update as shown in Equation 4.10 we obtain the fol­

lowing update equation.

W(. + l) =

+ i(W(fc)-W(*-l))

— HvecÇWÇk) — ~W(k — 1)) (4.17)

Rewriting the final section of the above equation for simplicity as AW(fc) = 

W(fc) — W(Zc — 1), the above equation takes the following form.

W(^l) =

+ ^AW(fc) -/¿(mat Hvec^W^ (4.18)

Thus it can be seen from the above equation that it is required to calcu­

late the product of the Hessian matrix and the vector of previous weights 

mat [Huec( AW (Zc))]. This product can be calculated in two ways, the full 

Hessian matrix H of the cost function J(W) can be calculated as in Newton 

based approaches [134, 135, 136, 138, 117, 112, 88] and multiplied by the vec­

tor vec(AW(fc)) or alternatively the product of the Hessian H and the vector 

can be found in one calculation. The latter method will be explored within this 

chapter. The product of the Hessian and an arbitrary vector was introduced 

by Pearlmutter in [155] and at the same time a similar method was developed 
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independently by Moller in [156, 157]. This method is described in the following 

section initially for functions of a vector, as this can then be further extended 

to functions of a matrix utilizing the mat and vec operators, transforming the 

matrices to vectors, calculating the Hessian vector product, then transforming 

again the corresponding vectors to matrices.

4.4 Pearlmutter’s Hessian Vector product

It is a well known fact that the Hessian (the matrix of second order derivatives) 

and higher order derivatives appear in the Taylor series expansion of the gradient 

perturbed around a point in the parameter space of the a given vector w, this 

may be shown as follows using prime notation for simplicity:

J'(w + Aw) = J'(w) + HAw + O(||Aw||2) (4-19)

where J(w) represents the cost function, H is the Hessian matrix and Aw repre­

sents a perturbation of the vector w. Setting this perturbation Aw = rv where 

v represents an arbitrary vector and r a small number. Manipulating the above 

equation to compute the product of the Hessian H with vector Aw the following 

equation is obtained:

HAw = H(rv) = rHv

rHv = + rv) — J'(w) + O(^2) (4.20)

dividing the above equation by r

TT J'(w + rv) - J'(w) _ .Hv = —---------- ---------—- + 0(r) (4-21)
r

The above equation has been used for calculation of the Hessian vector product; 

however this method has the drawback that it is very susceptible to round off
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errors. This arises due to the the fact that the constant term r must be small 

enough that the O(r} term is insignificant, thus the precision of the vector v is 

affected. A loss of precision is also experienced in the gradient calculation of the 

perturbed gradient minus the original one, as the values are almost identical. To 

alleviate the numerical difficulties associated with the above method, Pearlmutter 

used the following elegant solution to compute Hv exactly:

Hv = lim
r—*0

Jz(w + rv) - J'(w) 
r

— J'(w + rv) 
or

(4.22)
r=0

Taking the limit of the above Equation 4.22 as r —» 0 gives the definition of a 

gradient on the right hand side of the equation, leaving the left hand side as the 

Hessian vector product Hv. Pearlmutter defined the following transformation to 

convert a gradient calculation algorithm into a Hessian vector product calculation 

[155]. This transformation was achieved by defining the following operator:

R{J(w)} = y—T(w + rv) 
or (4.23)

The above operator is then applied to each of the equations of the procedure 

for calculating the gradient. As R{.} is a differential operator, it follows the 

standard rules for differential operators, these are written for the R{.} case as 

follows:

R{c} = 0 (4.24)

R{w} = v (4.25)

K{/(^(w))} = /'(^(w))R{p(w)} (4.26)

R{c/(w)} = cR{/(w)} (4.27)

R{/(w)^(w)} = R{/(w)}p(w)+ /(w)R{#(w)} (4.28) 
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The initial aim was to embed the Natural Gradient algorithm within the Matrix 

Momentum algorithm. This was implemented utilizing the above rules in Equa­

tions 4.24-4.28, and combining with the Natural Gradient update equations the 

following equation is developed for the Hessian vector product required for the 

Matrix Momentum upgrade equation.

mat Hvec(AW)
( aW

R{[i - ^(y)yT]W) (4.29)

As previously the vec operator amalgamates into a single column vector the 

columns of a matrix, and the mat operator reverses this operation. Applying 

Pearlmutter’s R{.} operator to Equation 4.29 gives the following result:

R{[I - 0(y)yr]W} = {[-diag^'^y^W

+ 0(y)(AWy)T}W

+ [I - <Xy)yT]AW (4.30)

As is standard in Natural Gradient based algorithms the choice of the score 

function 0(.) is critical to the algorithm performance. It was shown in [104, 88] 

that the score function should be chosen as follows:

^y) = aWlo8Wy)> = ^ (431>

For the separation of super-Gaussian sources the hyperbolic tangent function 

tanh(.) is commonly utilized as the nonlinearity for the above equation. Placing 

this equation in the context of the Hessian vector product of the gradient update 

equation, including the Natural gradient update equation and the momentum 

term AW for insertion within the Matrix Momentum algorithm, we obtain the
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following equation.

R{ [I - tanh(y )yT] W} =

+

+

{[-diag(\ - tanh2(y))yT]AW

(1 - tanh2(y))(AWy)r}W

[I - </>(y)yT]AW (4.32)

Utilizing this equation the following gradient update equation is obtained for the 

Matrix Momentum algorithm, including the Hessian vector product created from 

the Natural Gradient update equation.

W(fc + 1) = W(k) - /z[I - tanh(y)yr] + AW(fc)

~ {[—- tanh2(y))yT] AW

+ (1 — tanh2(y))(AWy)r}W
+ [i - <Xy)yT]Aw) (4.33)

In the next section the performance of the above algorithm is discussed.

4.5 Simulations

The above Hessian vector product including the tanh(.) nonlinearity was utilized 

to apply the Matrix Momentum algorithm to the separation of super-Gaussian 

sources. A similar approach to the above had been utilised previously in applica­

tion to the BSS problem by Schraudolph in [158] in the context of the Stochastic 

Meta Descent (SMD) algorithm. As stated by Schraudolph in [159, 160, 161] the 

Matrix Momentum algorithm is prone to instability when applied to nonlinear 

problems. It was found that the above algorithm caused the system to diverge. 

As a method of stabilizing the algorithm, Schraudolph proposed an adaptive term 

in [162]. To combat the above stability problems, in utilizing Pearlmutter’s Hes­

sian vector product within the Matrix Momentum algorithm, there are two key 
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modifications that could be made to improve the performance of the algorithm 

for application to the separation of super-Gaussian signals. The first modifica­

tion was to utilize the exact Hessian calculation of the underlying cost function 

J(W). The second was to utilize an improved nonlinearity specific to super­

Gaussian signals proposed in the development of the Relative Newton method 

described in [135, 134, 138]. It is also believed that one of the problems associ­

ated with this approach is that the calculation of the gradient is made using the 

modified differential dX = dWW“1 as described in chapter 3, while the Hessian 

vector product is not calculated in the Riemannian space. This approach could 

be altered such that the second order gradient is calculated in the Riemannian 

space as shown by Elsabrouty in [163]. Instead an approach similar to the Rel­

ative Newton method [135, 134, 138] is undertaken that utilizes the full Hessian 

calculation. This approach is detailed within the following section and applied 

within the context of the Matrix Momentum algorithm.

4.6 Matrix Momentum with Full Hessian

As was shown in the above section the application of the Matrix Momentum 

[141, 142] method combined with Pearlmutter’s Hessian vector [155] is prone to 

instability when applied to the BSS problem. To stabilize the Matrix Momentum 

algorithm within the BSS context it was decided to begin with the Maximum 

Likelihood cost function shown in chapter 3 to be equivalent to the InfoMax 

formulation. The Maximum Likelihood cost function is given as follows.

n
J(W) = log|det(W)| + J^log^^)) (4.34)

i=i
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Taking the derivative of the above equation results in the gradient update equa­

tion seen previously in the development of the InfoMax algorithm [104, 105].

= W~T “ ^4'35^

The approach taken by Zibulevsky in the development of the Relative Newton 

method [134, 135, 136, 136], at this point is to calculate the Hessian of the cost 

function J(W) by first utilizing the vec operator to transform the n x n matrices 

in the above equation into a vector of length n2 x 1. This results in the following 

update equation

= vec(W~T) — vec(0(y)xT) (4.36)

The calculation of the differential of the above equation can be broken into two 

distinct components, the first component Hi is calculated as the differential of 

the vec(W-r) term in Equation 4.36. To calculate the differential of this term it 

is useful to first begin by differentiating both sides of the identity W~rWT = I.

d(W“TWT) = d(I)

d(W^T)WT + W-TdWT = 0

d(W“r) = -W~TdWTW~T (4.37)

Thus the first component Hi of the Hessian calculation can be written as a 

Kronecker product as follows.

Hi = -W”T ® W~T (4.38)

Continuing with the calculation of the differential of the second term wec(d(y)x7') 

of Equation 4.36, we obtain the following block diagonal matrix equation for the
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second part of Hessian Hz-

^"(y)xxT 0 ••• 0

0 02(y)xxr • • • 0
H2 = (4.39)

o o C(y)xxr

Thus the Hessian matrix can be calculated by summing the above two equations. 

Thus the Matrix Momentum equation is given as follows.

W(A:+1) = W(1S) +/z[W~r - <Xy)xT]

+ (△ W(fc) + + H2)vec(AW)])} (4.40)

As stated in the previous section to improve the performance of the algorithm 

for the separation of super-Gaussian sources we require to use a model for the 

logarithm of the pdf log(p(y)) as given in Equation 4.34. While studying the 

sparse image coding within the visual cortex, Olshausen and Field introduced in 

[164, 165] a number of functions appropriate for the modeling of sparse sources, 

examples of these functions are —e~x2, the absolute function |z| and log(l + x2). 

Another approximation utilized within the development of the Relative Newton 

[134, 135, 136, 136] method is implemented. This permits fair performance com­

parison with the Matrix Momentum algorithm. The function is given as follows 

to approximate the logarithm of the pdf i?(y) w log(p(y)).

^i(y) = |y| - Mi + |y|)

^(y) = (4.41)

The above function has the property that it tends towards the absolute value 

function (.( as the parameter A tends to zero. The above analysis is utilised in 

the following section for the separation of three speech signals, which have a 

super-Gaussian distribution.
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4.7 Simulations

To demonstrate the performance of the above algorithm an example is given in 

the following section that demonstrates the performance of the algorithm in the 

separation of two mixed speech and one music signal.

4.7.1 Separation of speech signals

The algorithm is utilized to separate the mixture of two speech signals and one 

music signal, these are shown in Figure 4.1, each signal consists of 10000 sample 

points. The mixing matrix is a randomly generated 3x3 matrix drawn from a 

uniform distribution. An example of the mixed signals is shown in Figure 4.2, 

and an example of the unmixed signals using the Matrix Momentum algorithm 

is shown in Figure 4.3.

Figure 4.1: 2 speech 1 music signals before mixing

Three measures have been utilized to show the performance of the algorithm, 

the norm of the gradient, Amari’s performance metric, and the CPU utilization
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Mixed Source Signals

Number of data samples

Figure 4.2: 2 speech 1 music signals mixed

Unmixed Source Signals

0 2000 4000 6000 8000
Number of data samples

10000

Figure 4.3: 2 speech 1 music signals unmixed

of the system, as described in chapter 2. The algorithm was run for 50 inde­

pendent simulation trials in offline mode. The Matrix Momentum algorithm is 
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compared with both the Natural Gradient algorithms and the Relative Newton 

method, with the original Relative Newton Method and the fast version intro­

duced by Zibulevsky in [136]. For the examples shown the A parameter used in 

the nonlinearity shown in Equation 4.41 is set to a value of 0.01, the value was 

chosen heuristically. The gradient norm was chosen randomly for one of the 50 

simulation trials that were run. This is shown in the following diagram. Amari’s

Figure 4.4: Gradient norm per algorithm iteration

performance metric as described in chapter 2 gives a measure of the separation 

capability of the algorithm. The average of this value for each of the algorithms 

over 50 independent simulation trials is given in Figure 4.5. It can be seen from 

Figures 4.4 and 4.5 that the Newton based methods and the Natural Gradient 

method converge to a similar solution. The CPU utilization is given to compare 

the algorithms, the simulations were performed on identical hardware. This is 

shown in Figure 4.6.
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Figure 4.5: Average Amari Performance Index for 50 independent simulation 

trials

Figure 4.6: CPU time taken for each independent trial
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It can be seen from the above diagrams that the convergence properties of the 

algorithms give similar performance. However, the CPU utilization required for 

the Matrix Momentum algorithm is vastly reduced when compared with the Rel­

ative Newton and Natural Gradient methods, and offers similar convergence with 

a slight improvement in computational complexity when compared to the Fast 

Newton method. Thus it has been shown that the Matrix Momentum algorithm 

combined with the derived Hessian provides good separation performance in the 

BSS case. The following section concludes the Matrix Momentum portion of this 

thesis.

4.8 Conclusions

In this chapter the Matrix Momentum algorithm originally introduced by Orr 

[141] has been described in the context of the BSS problem. The Newton Method 

was introduced and it was shown that the Matrix Momentum method does in 

fact converge to the Newton method without the requirement for a matrix inver­

sion as needed by the standard Newton method. It was described that utilizing 

Pearlmutter’s Hessian vector product within the Matrix Momentum algorithm 

as shown by Orr in [141] was not suitable for the Hessian calculation within the 

BSS context for the separation of super-Gaussian sources. To overcome these 

problems with this approach the full Hessian was calculated. This, combined 

with a nonlinearity specifically chosen for super-Gaussian or sparse sources, was 

shown to provide good performance for real and synthetic signal separation. To 

further improve the Matrix Momentum algorithm the following approaches are 

suggested.

1. Placing the Matrix Momentum upgrade equations within the context of a 

trust region optimization framework as described by Choi in [166, 167, 168] 
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and extended again by Choi for the Trust Region Relative Newton method 

[169, 170]. This would prevent the algorithm from diverging and resort to 

the standard Steepest Descent algorithm in the event that the Newton step 

moves too far from the cost function.

2. Another approach would be to repeat the Matrix Momentum algorithm de­

velopment in the context of the Riemannian development framework. This 

would involve the calculation of the Hessian of the cost function J(W) with 

respect to the modified differential dX = dWW-1 in a similar manner to 

the Newton type method described by Elasbrouty in [163, 171] but utilizing 

the Matrix Momentum algorithm to avoid the matrix inversion required by 

a standard Newton method.

3. Another potential solution would be to combine the above approaches to 

develop a Riemannian Trust Region Matrix Momentum based BSS solution.

In this chapter an algorithm has been introduced that gives similar performance to 

current second order methods with reduced computational complexity compared 

to standard gradient methods. In the following chapter an algorithm is introduced 

based on its simplicity from an implementation point of view.



Chapter 5

Simultaneous Perturbation

Stochastic Approximation

5.1 Introduction

It has been seen throughout this thesis that optimization methods have been 

essential to solving the BSS problem. This will be extended further within this 

chapter with the introduction of Spall’s Simultaneous Perturbation Stochastic 

Approximation (SPSA) method. The term Stochastic Approximation (SA) has 

become a standard term for techniques that try to either minimize or maximize 

a function observed in the presence of noise, or to find an approximation to 

the solution of an equation that has been observed in the presence of noise. This 

technique was first introduced by Herbert Robbins and his student, Sutton Monro 

in 1951 in their seminal paper [172] and extended further by Kiefer and Wolfowitz 

in [173]. The SPSA technique has been shown by Spall [174, 175, 176, 177] to 

provide a number of benefits when compared to these classical SA methods, 

including faster convergence and reduced computation. The SPSA algorithm has 

been applied extensively in a number of fields including optimal control [178,
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179], neural network training [180], optimization of particle filters [181], traffic 

management [182, 183] and recently in application to the BSS problem [184]. The 

8PSA method applied within the context of the BSS problem as detailed within 

.184] is described within this chapter, and in the following chapter the SPSA 

algorithm is applied with a novel cost function in the context of Medical Image 

Registration as detailed in [185]. Therefore, within this chapter the classical SA 

methods will be introduced. This will be followed by an full explanation of the 

SPSA method. At this point the SPSA algorithm will be utilized within the 

context of the BSS problem and will be shown to be capable of approximately 

jointly diagonalizing a set of time delayed covariance matrices. First, the classical 

SA methods are introduced in the following section.

5.2 Stochastic Approximation Methods

As is standard with optimization methods, SA algorithms are required to find 

either the minimum or maximum value of some vector valued cost function J(w). 

More specifically the algorithms are required to find the vector w that minimize 

or maximize this cost function. In the context of SA algorithms the cost function 

will generally be corrupted by an additive noise source. Skipping slightly ahead 

it can be seen that for application to the BSS scenario we require to extend 

the above SA framework to the matrix case, such that it is required to find the 

matrix W that will minimize or maximize a given cost function J(W). The SA 

algorithms will initially be described for vector valued cost functions and then will 

subsequently be extended to matrix valued cost functions when utilized within 

the BSS context. The seminal algorithm in the field was the Robbins-Monro 

algorithm described in the following subsection.
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5.2.1 Robbins-Monro Stochastic Approximation

In 1951 Herbert Robbins and his student, Sutton Monro developed an algorithm 

to estimate the roots of a regression equation with the benefit that the algorithm 

had guaranteed convergence properties [172], This algorithm is known as the 

Robbins-Monro Stochastic Approximation (RMSA) algorithm. The algorithm 

makes the assumption that the objective or cost function is a differentiable func­

tion J(w) with respect to the vector parameter w. Noting that the roots of 

an equation can be found by taking the derivative of the objective function and 

setting the result equal to zero. Assuming that J(w) is a differentiable function 

with respect to the matrix w. This can be written as follows:

^(w) = = 0 (5.1)
aw

Assuming that the available measurement will be a noisy version of the above 

gradient y(w) at each iteration k will be given as follows:

y(w)(A:) =^(w)(fc) + i/(A:) (5.2)

Where v represents an additive i.i.d. zero mean noise term. Placing the above 

equation in the context of a stochastic gradient equation we obtain the following 

equation for the weight vector update w.

w(fc + 1) = w(fc) — a(A:)y(w) (5.3)

The aik) in the above equation represents the step size parameter which, within 

this thesis, generally is denoted by but due to the preference within the Stochas­

tic Approximation literature the term a(k) will be utilized within this and the fol­

lowing chapter. The above method has the potential disadvantage for a stochastic 

approximation algorithm that an analytical gradient ^(w) must be known in ad­

vance. An alternative method that utilizes an approximation to calculate the 

gradient is defined in the following subsection.
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5.2.2 Finite Difference Stochastic Approximation

To avoid the requirement that the analytical gradient be known in advance as de­

scribed in the RMSA algorithm described above, Kiefer and Wolfowitz developed 

a method in [173], refined subsequently in [186], that calculates an approximate 

gradient value utilizing values of the cost function J(w). This method was titled 

the Finite Difference Stochastic Approximation (FDSA) method as it utilizes a 

finite difference method to approximate the gradient of the given cost function. 

This update equation for the FDSA method is shown as follows.

w(k + 1) — w(k) — a(ky(w) (5.4)

Where p(w) is an approximation of the gradient calculated from potentially noisy 

measurements of the cost function. The following equation represents a one 

sided finite difference gradient approximation. Within this equation the vector 

e, represents a vector containing n elements, where the ith element is set to one 

and all remaining elements are zero. The value c^k} is a small constant that is 

annealed throughout the duration of the learning process.

Mw(&)) =
J(w(fc) + c(fc)ej) - J(w(fc)) 

c(&)
(5-5)

Another alternative gradient approximation is the two sided version as given in 

the following equation.

. z z,n J^{k} + c{ky^-J^^-c^ky^ ( .
=-------------------- 2^)-------------------- <5'6)

For the vector valued case the chosen gradient approximation from the above 

equations requires one calculation of the cost function J(w) for each of the n 

elements of the input vector for the one sided gradient approximation, and two 

cost function calculations for the two sided version. It can then be seen that 

extending the above gradient approximation equations to the case of a n x n
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matrix would subsequently require a minimum of n2 calculations of the cost 

function J(W) per algorithm iteration. Thus this approach has the disadvantage 

that the algorithm becomes computationally very complex as the dimensionality 

of the problem scales. This problem was the motivation for the development of 

the Simultaneous Perturbation Stochastic Approximation algorithm.

5.2 .3 Simultaneous Perturbation Stochastic Approxima­

tion

As a method of reducing the computational cost and of improving the conver­

gence speed of the above FDSA algorithm without requiring knowledge of the 

underlying analytical gradient as with the RMSA algorithm, Spall developed the 

Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm [174], 

Spall presents general introduction to Stochastic Approximation algorithm and 

a complete coverage of SPSA in [177]. The development of the algorithm as with 

the previous algorithms begins with a potentially noise version of the cost func­

tion. The update equation for the vector valued case is given by the following 

equation.

2c(A;)

Where 0 represents element by element multiplication and is a random 

vector generated from a Bernoulli ±1 distribution. The random vector has the 

following property.

M] = 0 (5-8)
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Utilizing the above properties and taking the Taylor series expansion of Equation 

5.7, we obtain the following expansion.

&(w(&) =
1

(c(fc)^(fc))2 <92 J(wi(A))
2! âw2

•WJ) -
OW,

(c(fc)^(fc))252J(wj(fc))
2! ôw2

OWj

(5-9)

Observing the above expansion it can be seen that Equation 5.7 gives an approx­

imation of the gradient as with the above SA algorithms with a huge reduction in 

the computational cost when compared to the FDSA algorithm as the gradients 

for each element are calculated simultaneously, instead or requiring an iteration 

per element. This removes the requirement for knowledge of the analytical gra­

dient as needed with the RMSA method. Extending the above Equation 5.7 to 

the matrix valued cost function as required in the BSS problem we obtain the 

following equation for each matrix element.

^W^k) = (5.10)J(W^ + - J^k) - c^k^k))
^k^k)

The above equation has the benefit that only two values of the cost function 

require to be calculated at each iteration, independent of the size of the input 

vector. This offers a huge computational improvement over the FDSA algorithm. 

As with the FDSA algorithm the value c(&) is a small constant that is annealed 

throughout the learning duration, in [174, 177] the equation for the learning rate 

is given as follows.

c(k) = ------ — (5.11)
v ’ (k + 1)7 v 7 
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A practically effective value for the 7 parameter is given by Spall in [176] as 

0.101. This value will be utilized within this thesis. The SPSA algorithm utilizes 

the same gradient update equation as the previous FDSA method given in 5.4. 

To improve the accuracy of the gradient calculation given in Equation 5.7 when 

utilized within the update Equation 5.4 an expectation of the gradient calcula­

tions is often taken. Yet as with standard gradient algorithms, the expectation 

is replaced by a sample average. This is given in the following equation.

v-i
W(k + 1) = - a^k^N-1 £(VW)n} (5.12)

n=0

As with the perturbation constant c(k) the learning rate parameter is also an­

nealed during the learning process as given in [174, 177]. This is given as follows.

= -...----- (5.13)
(k + l)a

A practically effective value for the a parameter is given by Spall in [176] as 

0.602, which will be utilized within this thesis. Now the SPSA algorithm and its 

associated parameters have been discussed, the application of the algorithm to 

the BSS problem is described in the next section.

5.3 BSS using SPSA Optimization

The first application of the SPSA algorithm within the context of the BSS prob­

lem was introduced by Ding et al. in [187, 188, 189] where SPSA was utilized to 

optimize a Mutual Information based cost function. The same authors demon­

strated the application of the algorithm with a differing cost function in [190], 

where the diagonality of the nonlinear correlation function was utilized as the 

measure for optimization. Independently Maeda, at the same time been con­

sidering the application of the SPSA technique within the context of the BSS 
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problem, his first work [191] in this area was similar to Ding et al. in which he 

applied the SPSA framework to a Mutual Information based cost function. This 

work was subsequently extended by Maeda in [192] where a Natural Gradient 

based framework was embedded within the SPSA algorithm. In this thesis the 

SPSA algorithm is utilized to create a gradient based approximate joint diagonal­

ization algorithm [184]. The approximate joint diagonlization cost function and 

its application within the BSS context is described within the following section.

5.4 Joint Diagonalization

Joint diagonalization of matrices is an extremely well utilized technique in the 

fields of Numerical Computation, Multivariate Statistics and Signal Processing, 

specifically in the context of ICA and the BSS problem. Utilizing the measure 

originally defined by Cardoso in [67] the joint diagonalization of a given set of N 

matrices Cz may be written in cost function format J(W) as follows:
N

J(W) = 0ff(WClWT) (5.14)
z=i

Where the function off^.) gives a measure of the diagonality of the resulting 

matrix, that is the sum of the squares of the off-diagonal elements of a given 

matrix B. This is given by the following matrix equation

0//(B) = £^ = ||B[[2 -^bl (5.15)
i^j

The problem with utilizing Equation 5.14 as the minimization cost function for 

joint diagonalization is the trivial solution W = 0, results in a minimum of 

the cost function. In order to avoid the trivial solution, constraints must be 

placed upon the matrix W. Numerous techniques exist within the literature for 

constraining the optimization space when utilized in the BSS context, this is 

described within the following subsection.
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5.4.1 Application of Joint Diagonalization to BSS

As described initially in chapter 2, Joint Diagonalization algorithms play an im­

portant role in two of the most heavily utilized methods within the BSS literature, 

that is the SOBI [55] and JADE [67] algorithms. Joint diagonalization is an ex­

tensively utilized technique within the BSS field. For the case of two matrices, 

the problem can be solved using a Generalized Eigenvalue Decomposition as de­

scribed in [193]. Other methods will often require the diagonalization of multiple 

matrices. The following list details a number of the areas so far that have utilized 

Approximate Joint Diagonalization to solve the BSS problem.

1. Multiple time delayed correlation matrices [194, 195, 139, 55, 196, 197, 198, 

199, 200]

2. Fourth order cumulant matrices [201, 67]

3. Second characteristic function [202, 203, 204]

4. Spatial time-frequency distribution matrices [205, 206]

One of the original methods for constraining the search space for the joint diago­

nalization algorithms was to first prewhiten the data as described in Appendix B, 

this is the approach taken in the SOBI [55] and its extensions WASOBI [197, 198], 

EWASOBI [199, 200], TDSEP [196], JADE [67]. Prewhitening is known to be effi­

cient from a computational point of view for approximate joint diagonalization as 

this addition enables Jacobi based algorithms to estimate the required orthogonal 

factor of the matrix process. A problem that exists when using a prewhitening 

based approach is that errors introduced at this stage cannot be subsequently 

removed by higher order stages. This introduces a lower bound on the achievable 

estimation error between the true and estimated mixing matrices, this was ini­

tially shown by Cardoso in [207], and later and in further detail by DeLathauwer 
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et al. in [208]. To avoid the potential introduction of errors via the prewhitening 

stage a number of Approximate Non Orthogonal Joint Diagonalization algorithms 

were introduced. One of the initial approaches, utilizes the constraint that the 

matrices within the set of matrices to be diagonalized are positive definite [209]. 

Later this constraint was subsequently relaxed in [201, 210, 211, 212], An al­

ternative approach to joint diagonalization from the previous mentioned batch 

based close form approaches is to introduce a gradient based cost function. A 

comprehensive introduction to gradient based approximate joint diagonalization 

was introduced by Joho et al in [194, 195], where a number of constraint meth­

ods were introduced for avoiding the trivial solution for minimization of Equation 

5.14. This idea was further extended by the same authors utilizing a constrained 

Newton based approach in [139]. The problem was approached from the context 

of Riemannian geometry by Ziehe et al. in [213] where a Natural Gradient based 

approach is undertaken. This Riemannian approach was continued via Asfari in 

[214, 215, 216] where Riemannian based gradient algorithms were shown for both 

the orthogonal and non-orthogonal joint diagonalization cases.

As has been demonstrated within this subsection, there exists a number of ap­

proaches for both limiting the optimization space required when implementing 

joint diagonalization algorithms and for avoiding the trivial solutions W = 0. In 

the following subsection the procedure utilized within this thesis is described.

5.4.2 Joint Diagonalization using SPSA

It was described in the above subsection that the search space for the optimization 

algorithm must be constrained such that the trivial solution is avoided, numerous 

methodologies have been adopted to achieve this goal. Within this thesis the joint 

diagonalization Equation 5.14 is combined with a penalty term described within 
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[214], this is shown in the following equation.

N

J(W) = off(WClWT) - log(det(W)) (5.16)
i=i

The term det(W) penalizes the cost function when the weights W are very 

small, therefore providing a method of avoiding the trivial solution, without the 

requirement that the matrix W be orthogonal, or the columns of the matrix are 

normalized at each algorithm iteration reducing the complexity of the resulting 

algorithm. The performance of the algorithms is demonstrated in the following 

section.

5.5 Simulations

In order to demonstrate the performance of the algorithm, the SPSA-JD algo­

rithm will first be utilized to diagonalize a set of perfectly diagonalizable matrices. 

The algorithm will then be applied to the diagonalization of a set of time delayed 

correlation matrices of speech signals for application to the instantaneous BSS 

problem.

5.5.1 Separation of perfectly diagonalizable matrices

Before demonstrating the application of the SPSA-JD algorithm developed above 

to the BSS problem where the cost functions (either multiple correlation or cu­

mulant matrices) are not exactly diagonalizable, it is first shown that for the case 

where the set of matrices is exactly diagonalizable the SPSA-JD algorithm gives 

good performance. To demonstrate this, the following setup originally detailed 

in the simulation of the FFdiag [217, 218] and further utilized within the QDIAG 

algorithm detailed in [219] is implemented. A set of N diagonal matrices Cz is 

created such that the elements on the diagonal are produced from a standard zero 
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mean unit variance Gaussian distribution for each matrix Cl where 1 < I < N. 

The procedure to generate a set of N perfectly diagonalizable matrices Rz is to 

premultiply the set of diagonal matrices Cz by a randomly generated matrix A, 

and postmultiply by its transpose AT. This matrix has again been produced 

from a standard zero mean unit variance Gaussian distribution, this is shown as 

follows.

Rz = ACzAt (5.17)

The above generated set of matrices Rz can be jointly diagonalized by any matrix 

that differs from the matrix A-1 by a row permutation or a row scaling. To 

demonstrate the performance of the algorithm the algorithm is compared with the 

FFdiag [217, 218], QDIAG [219] and ACDC [220] algorithms. The performance 

measure utilized is a normalized version of the cost function given in Equation 

5.14, where the normalization factor is the number of off-diagonal elements given 

by n2 — n where n represents the size of the n x n matrices. The performance of 

the algorithm is given in the following diagram.

It can be see that for the above task the SPSA-JD algorithm is outperformed by 

the FFdiag [217, 218] algorithm and the QDIAG [219], but performs well against 

the ACDC [220] algorithm. It was not shown in the above diagram for space 

reasons but the ACDC algorithm was found to converges after approximately 

3000 iterations. A similar result to the above analysis was shown in [213] where 

the Natural Gradient is applied within the joint diagonalization cost function 

space. Therefore it can be judged from this that while gradient based joint 

diagonalization offer good performance when applied to perfectly diagonlizable 

matrices they are outperformed by close form methods such as FFdiag [217, 218] 

and the recently developed QDIAG [219]. It was shown within this subsection 

that the SPSA-JD algorithm developed above is capable of jointly diagonalizing a 

set of perfectly diagonalizable matrices with good performance. In the following
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Figure 5.1: Algorithm performance for perfectly diagonlizable matrices

subsection this concept is extended to the BSS problem.

5.5.2 Separation of a mixture of speech signals

In order to test the algorithm developed in this chapter in the BSS context the 

following simulation scenario is utilized. To solve the problem the SPSA-JD 

algorithm will be applied to the diagonalization of the time delayed correlation 

matrices. The fourth order cumulant matrices, second characteristic function and 

the spatial time-frequency distribution matrices could also have been utilized as 

the optimization criterion within this framework, yet the time delayed correlation 

matrices were chosen as their calculation requires the lowest computational com­

plexity when compared with the other methods. Three speech signals sampled 

at 11025Hz consisting of 20000 samples are utilized as the input sources signals, 

these are shown in Figure 5.2. The signals are mixed using randomly mixing ma­

trix, generated from a Uniform distribution, an example of this mixing is shown
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Figure 5.2: Speech source signals

in Figure 5.3. To achieve separation the algorithm approximately jointly diago-

Figure 5.3: Mixed speech source signals

nalizes 10 time delayed correlation matrices. The correlation matrices calculated
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over K samples are given by the following formula:

/ 1 K
Rjx = N -T 52 *(kWk ~ T) (5.18)

The time delays for each correlation matrix given in the above Equation 

were chosen as Z(r) = [1,3,5,9,11,13,15,17,19,21], these delays were chosen 

heuristically and many other potential combinations are available, an optimal 

number and the time delays of the correlation matrices to be jointly diagonalized 

is still an open research question. An example of the separation output of the 

example is shown in Figure 5.4. As the calculated correlation matrices are not

Figure 5.4: An example of the output signals

exactly diagonalizable, the joint diagonalization cost function given in Equation 

5.14 is inappropriate for assessing the performance of the algorithm within the 

BSS context. To show the performance of the algorithm Amari’s Performance 

Index is utilized, this is shown in Figure 5.5. The final performance metric for 

the algorithm is to demonstrate that when the algorithm has converged, the
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Figure 5.5: Amari’s Performance Index

product of the mixing and unmixing matrices represents an identity matrix up to 

a permutation and a scaling. This is shown for an example run in the following 

Figure 5.6. Thus in this chapter the SPSA optimization framework has been 

utilized to develop an approximate joint diagonalization algorithm, this algorithm 

has been named the SPSA-JD method. It was shown that for the case of perfectly 

separable matrices, the algorithm provides good performance. The algorithm was 

then shown to perform well in the BSS context for the separation of time delayed 

correlation matrices.

5.6 Conclusions

In this chapter the SPSA algorithm introduced initially by Spall has been intro­

duced and applied to the joint diagonalization of a set of matrices for application 

within the BSS context. This chapter began by giving an introduction to the 

Stochastic Approximation methods, specifically the Finite Difference method, it
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Product of separating and mixture matrix

Figure 5.6: Combination of the mixing and unmixing matrices

was then shown that the SPSA method vastly reduces the computational com­

plexity when compared with the Finite Difference method. Previous applications 

of the SPSA method within the BSS context were discussed. Joint diagonaliza­

tion methods were then introduced, before combining with the SPSA method 

to create the SPSA-JD algorithm. The performance of this algorithm was then 

shown for perfectly diagonalizable matrices, then further demonstrated in BSS 

context. To further improve the SPSA-JD algorithm the following approaches 

are suggested.

1. One of the problems that currently exists with the SPSA method is the 

requirement to choose both the step size parameter aik) and the perturba­

tion parameter c^k). Utilizing the basic step size and perturbation methods 

described by Spall in [177] has the problem that these parameters may con­

verge before the underlying algorithm has converged resulting in massive 

misadjustment, making the choice of these parameters an art within itself.
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This creates huge potential for improving the SPSA algorithm by develop­

ing novel step size and perturbation algorithms.

2. To further improve the convergence of the SPSA-JD algorithm the second 

order SPSA algorithm, known as the adaptive SPSA algorithm, introduced 

initially in [221] and further described within [177, 222, 223] could be im­

plemented in place of the standard SPSA method. This method represents 

the stochastic equivalent of the Newton-Raphson algorithm discussed ear­

lier within this thesis. It is thought that this method could be utilized to 

drastically improve the convergence properties of the SPSA-JD algorithm.

3. One of the problems that is common to all methods that utilize the di­

agonalization of the time delayed correlation matrices is the selection of 

the number of matrices to diagonalize, and the delays at which to select 

these matrices. A genetic based time lag selection algorithm for the TDSEP 

algorithm [196] was introduced in [224], this approach provides good per­

formance yet genetic algorithms are known to be computationally intense, 

therefore the proper selection of the number and time lag of associated 

matrices is still a difficult research question.

4. A final possibility would be to change the optimization methods utilized 

within this chapter. One of the potential replacement candidates would be 

the Complex Step Derivative optimization framework described by Martin 

in [225, 226]. This method provides a way of estimating the derivative of 

real valued function J(W) numerically utilizing the following formula.

dJ(W) Im[J(W + ¿AW)]
~mT “---------aw-----  (519)

Where the i in the above equation creates a complex valued perturbation 

△W, and the operator Im[.] returns the imaginary part of the created
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complex function. This approach has the potential drawback that the step 

size parameter to utilize the gradient within a steepest descent algorithm 

has to be chosen, and the algorithm in its current form is only applicable 

to real valued sources.

In this chapter the SPSA algorithm has been utilized in the BSS context to 

develop a joint diagonalization based solution. In the next chapter the SPSA 

algorithm is utilized to optimize a number of Information Theoretic cost functions 

to provide a novel solution to a medical image registration problem.



Chapter 6

Image Registration Using SPSA

In the previous chapter the SPSA algorithm was introduced in the context of Joint 

Diagonalization and its application to the BSS problem. It was found during the 

course of this research that the Information Theoretic cost functions based on mu­

tual information used to solve the Image Registration problem were identical to 

those utilized within the IC A and BSS communities [227, 228, 229, 230, 88, 118]. 

It was then found that the SPSA algorithm was specifically suitable for optimiza­

tion within this framework. Within this chapter the first application of the SPSA 

algorithm to Medical Image Registration is introduced, this is also reinforced with 

the novel application of both Renyi’s and Tsallis’s mutual information measures 

[231, 232],

6.1 Image Registration

Image Registration as initially introduced in chapter 1 is the process utilized to 

apply a transformation to a pair of images that results in the maximum accuracy 

between the two images, where the two images have originally been captured 

via different imaging methods or captured at differing time points. The main 
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application for Image Registration is the suppression or cancellation of geometric 

distortions between a given Reference Image and the Sensed Image, gen­

erally referred to as the Floating Image F(i,j). This is addressed by finding a 

transformation T that maximizes the alignment of the images and F(i,j}. 

Details of the transformation T will be explained later within this chapter. There 

exists a huge number of applications for Image Registration, including some typ­

ical applications in Computer Vision [233, 234] , Remote Sensing [235, 236, 237] 

and Medical Imaging [185, 238, 239]. Some common features of Image Registra­

tion algorithms are discussed in the following subsection.

6.1.1 Image Registration Approaches

A vast number of approaches for tackling the Image Registration problem, it 

was shown by Brown [240] and in several subsequent Image Registration survey 

papers [241, 238, 239, 242] that the majority of these algorithms share the four 

following distinct algorithm components.

1. Feature Detection - This work involves obtaining useful components 

from the images to be utilized within the registration process. Exam­

ples of features utilized within Image Registration algorithms are Edges 

[243, 244, 245], Curvature [246, 247], Corresponding Points [248, 249]. 

Within this thesis the features utilized within the Image Registration al­

gorithm are the Histograms of the individual images and the Joint Image 

Histogram [230, 185], these are utilized to approximate the underlying pdfs 

of the individual images for application in the mutual information based 

cost functions as explained in section 6.2.

2. Search Space - This space contains the geometrical transformations that 

will be applied to the floating image F(i,j) to register with the reference 
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image R(i,j\ There exists a number of potential transformations that can 

be applied, yet these can broadly be split into two categories, Rigid and 

Non-Rigid Transformations [250, 251, 252], Rigid transformations are gen­

erated via a combination of image translations and rotations, and are often 

extended to include Affine transformations that extend this transforma­

tion to include scalings and shearings. These transformations are applied 

globally to the image. Non-Rigid Transformations allow local deformations 

of the image, these are sometimes referred to as Elastic Transformations 

[253, 254]. Within this thesis only Rigid Transformations are considered, 

these are described in subsection 6.1.2.

3. Similarity Metric - The Similarity Metric is the specific measure utilized 

to gauge the degree of similarity between two images to be registered. A 

number of measures have been proposed within the Image Registration 

field, including Cross Correlation [240, 255], Sum of Squared Differences 

(¿2 Norm) [256, 257] and mutual information based approaches [227, 228, 

229, 230, 239, 185]. In this thesis the mutual information based approaches 

are extended by utilizing both Renyi [231] and Tsallis [232] based mutual 

information measures. This is explained further in section 6.2.

4. Optimization Algorithm - This component represents the algorithm uti­

lized to maximize the similarity measure. A number of Optimization algo­

rithms have been utilized within the context of Multiresolution based Image 

Registration [258], these included Steepest Descent [108, 127], Conjugate- 

Gradient [259, 56], Quasi-Newton [260, 261] and Levenberg-Marquardt 

[262, 263, 264]. In this thesis Spall’s SPSA algorithm [174, 175, 176, 177] 

detailed within the previous chapter for application to the Blind Source 

Separation problem, is applied as the optimization algorithm, used to max-
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imize the similarity between the two images to be registered.

As has been stated above, there exists a number of potential geometrical trans­

formations that can be applied within the image registration context. Within 

this thesis only Rigid Body transformations are considered, specifically consist­

ing only of Translation and Rotation, as this will allow an accurate comparison 

of the novel mutual information based cost functions presented within this the­

sis and current algorithms based on Shannon’s mutual information. Rigid Body 

Transformations are described as follows.

6.1.2 Rigid Body Transformations

Rigid Body Transformations represent a subset of Affine Transformations. Affine 

Transformations have the property that when applied to an image, straight lines 

remain straight and parallel lines are preserved but rectangles within the image 

may potentially become parallelograms. The transformation is applied to the 

image globally, and no deformation of the image is performed. Affine Transfor­

mations are generated from the following Image operations.

1. Rotation - A rotation around the centre of the image

2. Translation - A displacement of every point in the image by a constant 

distance

3. Scaling - A magnification or shrinkage of the image

4. Shearing - A shearing transformation results in an image that appears that 

it has been pushed in a direction that is parallel to the coordinate axis

These image operations are demonstrated in Figure 6.1 on a synthetic image. 

Within this thesis the following Equation is utilized to generate the transforma­

tion T that simultaneously performs an image translation tx in the rr-axis, an
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Translate

Rotate Shear

Figure 6.1: Affine Transformation Image Operations

image translation ty in the j/-axis, and a rotation of the image by angle 0. The 

quantities (xp, Vf) and (xr, yp) represent the x and y coordinates of the Floating 

and Reference Image respectively.

Xf

Vf

s.cos(0)

s.sin(ß)

—s.sinÇd) 

s.cosiß)

xR

Vr

tx
(6.1)

This can be written compactly as one matrix equation as follows

Xf

Vf

s-costO) —sin(ß)

s.cos(0)

0

xR

Ur (6-2)

1 0 1 1
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Which for simplicity we can write in parametrized form as T = [s,tx,ty,9], re­

sulting in the following:

%f xR
= T (6.3)

_ vf J l yR .
Within this thesis it is assumed that the scaling parameter is 1, and can be 

removed from further consideration. In Figure 6.2 a flow chart representation of

the Image Registration system developed within this thesis is detailed.

Reference Image

Floating Image Optimization Algorithm - SPSA

Figure 6.2: Flowchart for Image Registration system

In the following section an introduction to Image Registration via maximization 

of mutual information is developed.
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6.2 Image Registration by Maximization of Mu­

tual Information

Image Registration by maximization of mutual information has generated a large 

quantity of literature especially in medical imaging [238, 239]. This approach 

was introduced initially by Viola in [227, 228, 229] and independently by Col- 

lignon [265], then subsequently by Maes [230], Pluim [266] and Studholme et al. 

[267]. These algorithms offer an improvement in both convergence speed and 

computational complexity when compared with traditional correlation based Im­

age Registration algorithms [268, 269]. Today a huge amount of research is still 

continuing in this field making it an ever expanding area. As stated above in sec­

tion 6.1 registration consists finding the optimum transformation T, which will 

best align the images R(i,f) and F(i,f) with i and j being their coordinates. R 

being the reference image and F the floating image such that F(T{i,j)) should 

fit R. In this thesis Rigid Body transformations are applied to 2D images as 

detailed within subsection 6.1.2. In standard mutual information based Image 

Registration approaches [227, 228, 229, 230, 239, 185] the measure of similarity 

between the two images being registered is computed by finding the value of the 

mutual information associated to the pixel intensity distribution of the images. 

Within this chapter the pixel intensity distributions are calculated using the in­

dividual and joint image histograms, these could be calculated utilizing Parzen 

Density Estimation [270] or an alternative Probability Density function estima­

tion algorithm [271, 272]. The definition of mutual information is based on the 

Relative Entropy or Kullback-Leibler distance [51], is described as:

Z(X; y) = ^p^x, y) log (6-4)
p^My)
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with X and Y are two discrete random variables representing the pixel intensity, 

and p(y) respectively, are their marginal probability density functions and 

y) is their joint probability density. This mutual information is based on the 

classic Shannon definition of entropy [49, 50, 52].

6.2.1 Registration Algorithm

Different measures of divergence based on generalized entropies are proposed in 

the registration algorithm to produce alternative ways to process the mutual 

information between the images R and F. They provide a measure of the sta­

tistical dependence between the distribution of the image intensities of pixels 

in both images. The images are transformed according to a Rigid Body Trans­

formation scheme as described in subsection 6.1.2. Writing the transformation 

utilized above in Equation 6.2 as a transformation vector T = \tx^ty,O\ which 

contains the parameters corresponding to an image translations over x and y 

axes and a image rotation as described in subsection 6.1.2, the parameters can 

now be utilized directly in an optimization algorithm framework. If the output 

of the transformation T results in non-integer coordinates for the Floating image 

F^i,^, then a mapping is required to a set of integer coordinates. This interpo­

lation procedure can be thought of as a resampling of the Floating image Fti,^ 

[273]. The technique chosen to fit the floating image F(T(i,jy) to the grid of 

the reference after each transformation is based on Spline Interpolation 

[274, 275, 276]. This method was chosen as in Lehmann et al. survey paper on 

interpolation in Medical Imaging it was found that Spline interpolation offered 

the smallest interpolation error without a great increase in computational com­

plexity when compared with other methods such as nearest neighbour, linear, 

quadratic, Lagrangian and Gaussian interpolation [277].



6.2 Image Registration by Maximization of Mutual Information 114

6.2.2 Measures of Divergence and Mutual Information

Shannon’s mutual information based Image Registration algorithms [227, 228, 

229, 230, 239] have been shown to provide excellent performance in comparison 

to Correlation based measures [268, 269]. Since the development of Shannon’s 

mutual information a number of different définitions of Entropy and measures 

of divergence have been investigated [52, 278]. One Entropy measure which is 

famous due to its popularity in the Physics domain was introduced by Tsallis in 

[232]. Tsallis presented a form of nonextensive entropy to describe a large class 

of physical phenomena. The divergence measure proposed by Tsallis is given by:

¿WP II «) = ^(l - £<6-5) 
1 — a q?i ■ll

with et G R — {1}. If Pi and Qi are replaced respectively by the joint probability 

p(x, y) and by the product of the marginal distribution p(x).p(y), then the mutual 

information based on Tsallis definition of entropy is obtained, which can also be 

described as:

- (6.6)

where Tsallis’s form of entropy H^Jx) of order a is given via the following equa­

tion.

Another form of entropy similar in form to Tsallis entropy has been proposed 

earlier by Renyi in [231], which results in the following divergence measure is 

given by the following equation:

^(pII^^Î^EÇh (6-8>
1 - Pi
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with a G R - {1}- As with the Tsallis divergence measure if pi and are replaced 

respectively by the joint probability p(x, y) and by the product of the marginal 

distribution p{x).p{y\ then the mutual information based on Renyi definition of 

entropy is obtained, which can be described as:

y) = «"M + H^y) - H^x,y) (6.9)

where Renyi’s form of entropy H^x) of order a is given via the following equa­

tion.
HRe^ = —1 - (log ^p(x)a) (6.10)

(1 — a)

It is important to note that when a —> 1, using L’Hopital rule, Tsallis and 

Renyi definitions tend towards the Shannon expression of entropy. In [185] the 

first application of Tsallis Entropy as a divergence measure for optimization as 

an Image Registration criterion was demonstrated, this work will be further ex­

plained within this chapter. Renyi’s divergence measures had been utilized in 

[279] in a Fourier based registration method. In the following section the Shan­

non [49, 50, 52], Renyi [231] and Tsallis [232] based information measures are 

utilized within the SPSA algorithm as the Optimization criterion to perform 

Image Registration.

6.3 Image Registration using SPSA

The SPSA gradient free Optimization framework introduced initially by Spall 

in [174, 175, 176, 177] was described in detail in the previous chapter. The 

SPSA algorithm was initially applied to the optimization of Shannon’s mutual 

information for Image Registration by Cole-Rhodes in [236, 280, 237] for Image 

Registration applications in Remote Sensing. Cole-Rhodes then extended this 

work to utilize Spall’s second order SPSA [177, 222, 223] in [281]. The SPSA
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algorithm has subsequently been applied in [282, 283, 253] again for optimization 

of Shannon’s mutual information as the given cost function. As stated above 

within this thesis the first application of Tsallis mutual information to the Image 

Registration problem is demonstrated, along with the novel combination of both 

Tsallis [232] and Renyi’s [231] mutual information with Spall’s SPSA algorithm 

[174, 175, 176, 177]. To utilize the Information measures within the SPSA algo­

rithm the following stochastic update equation for the transformation vector T 

is generated, as described in the previous chapter in Equation 5.12.

T(k + 1) = T(k) + a^g^T^ (6.11)

In the above equation the gradient vector g(k) for the parameter space T = 

[tx, ty, 0] is calculated using the following equation for each parameter.

J(T + c(k)^ - J(T - 
2c(k)^k)

The cost function J(T) used in the optimization is either given by the Tsallis 

mutual information defined in Equation 6.7, or the Renyi mutual information 

defined in Equation 6.9. The transformation T is then applied to the image at 

each algorithm iteration. The parameters a{k\ c(k} and £ are chosen as described 

previously in subsection 5.2.3. In the following subsection the performance of the 

algorithm is illustrated.

6.3.1 Automated Registration Algorithm

In this subsection, the three different measures of similarity were tested based 

on the classic Shannon mutual information and on its Tsallis [232] and Renyi 

[231] forms. The reference image for the experiment is a 512 by 512 pixels ¿2 

Magnetic Resonance Image (MRI) with 16 bits gray scale levels. To demonstrate 

the performance of the algorithms and to compare between the mutual infor­

mation measures the approach initially utilized by Maes in [230] is undertaken.
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Figure 6.3: Reference and Floating images used for the registration algorithm. 

To demonstrate algorithm performance the floating image is created from the 

Reference image plus speckled noise.

The floating image is the same image but corrupted with uniformly distributed 

random multiplicative noise with mean 0 and variance equal to 0.04. The images 

which are utilized for the validation of the above algorithms are displayed in the 

Figure 6.3.

Before running the optimization process, the floating image is transformed with 

an initial vector T — [tx,ty,6] = [10, —5,15] and no optimization is carried out 

on the scaling parameter. In the case of multimodality optimization within med­

ical imaging the pixel resolution is often a well known parameter so the pixel 

dimension can be fixed before the optimization of the translations and the rota­

tion, removing the requirement to optimize the scale parameter. The algorithm 

is required to output a solution as close as possible to T = [0, 0, 0].

6.4 Implementation Results

Table 6.1 provides a summary of the simulations, which have been carried out 

during the experiment. If the absolute average error between the results and the
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Table 6.1: Registration results.

Type of Entropy Results Conv.

IterationsType a tx ty e
Shannon 0.0081 0.0118 0.0316 300

Tsallis 0.9 0.0069 0.0086 0.0118 100

Tsallis 0.8 0.003 0.008 0.0028 042

Tsallis 0.5 4.2386 10.8246 -99.6618 none

Renyi 0.9 0.0055 0.0046 0.0203 295

Renyi 0.5 0.0039 -0.0019 0.0075 380

expected solution is computed, the most precise registration after 500 iterations 

is achieved with Tsallis mutual information set with a = 0.8 and Renyi set with 

a = 0.5. According to the results of the Table 6.1, Tsallis can achieve a sharper 

registration than Shannon based mutual information approaches. The registra­

tion algorithm converges to the global solution except when it is parameterized 

with Tsallis definition and a = 0.5. When utilizing Tsallis mutual information 

it is important to take into consideration that if a is too low this may cause 

the algorithm to diverge, if a = 1 then Shannon mutual information is simply 

applied. The a parameter needs to be set up according to a trade-off between the 

convergence speed and precision of the registration. Renyi’s mutual information 

provided no improvement in algorithm convergence but resulted in slightly simi­

lar registration accuracy to the Tsallis definition. Using Renyi if a is decreased, 

the optimization algorithm converges slowly to the global solution, and was found 

not to diverge. Thus with both Tsallis and Renyi’s mutual information measures 

the choice of the a parameter is crucial to the algorithm performance.

The different definitions for mutual information are assessed in terms of precision 

and accuracy but also comparing the number of iterations needed to converge 
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to the global solution. Figure 6.4 represents the behaviour of the 0 parameter 

during the 500 first iterations of the optimization process. Observing the vari­

ation of this parameter can inform us on how fast the algorithm converges to 

the global solution. The initial transformation, which was applied to the float­

ing image, was equal to T = [10,-5,15]. It is also supposed that the three 

transformation parameters converge approximately at the same time to the solu­

tion, which has been practically verified. Referring to the Figure 6.4, the fastest 

data set to converge was observed when using Tsallis mutual information with 

a = 0.8 in approximately 42 iterations. This result when compared to Shannon 

mutual information, which converges in 300 iterations, achieves a speed up of ap­

proximately 7 times, this represents a very significant speedup in the algorithm 

convergence. Tuning the a parameter results in modifying the average time of 

convergence. However if a is not correctly set up, the algorithm may not converge 

at all and result in a false registration. The following section concludes the Image

Figure 6.4: Convergence of the 6 transformation parameter in function of the 

number of iterations of the optimization algorithm for different definitions of 

mutual information.
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Registration component of this thesis.

6.5 Conclusion

In this chapter the first application of both Renyi’s and Tsallis’s entropies as an 

optimization criterion for solving the problem of Image Registration was intro­

duced, utilizing Spall’s SPSA algorithm. It was shown that the Tsallis entropy 

based information measures out-performed the convergence achieved using Shan­

non’s mutual information, Renyi’s information measure was found to demonstrate 

no convergence improvement compared with Shannon’s measure. To further im­

prove the algorithms developed within this chapter the following approaches are 

suggested.

1. As was stated in the previous chapter, one of the methods that has recently 

been introduced to improve the convergence properties of the SPSA algo­

rithm is Spall’s second order extension to the standard SPSA algorithm 

[177, 222, 223]. This approach has been successfully undertaken by Cole et 

al in [281] in the context of registration of multi-temporal satellite images, 

where Shannon’s mutual information was utilized as the similarity mea­

sure. It is thought that the combination of the second order optimization 

criterion with either Tsallis or Renyi’s mutual information measures would 

result in even faster performance than has been currently demonstrated.

Within this chapter the SPSA algorithm has been combined in a novel manner 

with Tsallis and Renyi’s mutual information Measures to produce algorithms for 

application to problems in Medical Image Registration. In the following chapter 

this thesis is brought to its conclusion, and suggestions for further work are re­

emphasized.



Chapter 7

Conclusion

As all things must come to an end, this chapter provides an overview of the 

achievements developed within this thesis, a summary of the work contained 

within this thesis, some future problems and outstanding issues are discussed, 

bringing this thesis to its conclusion.

7.1 Achievements

The aim of this thesis was to develop novel adaptive algorithms for application 

to the problem of Blind Source Separation (BSS). During the development of 

this process it was also found that there was significant overlap between the cost 

functions and optimization procedures utilized within BSS and the problem of 

mutual information based Image Registration. This led to the following resulting 

contributions.

• The first application of the Matrix Momentum algorithm to the BSS prob­

lem was shown [26, 27]. This combined the exact Hessian of the InfoMax 

cost function with the Matrix Momentum algorithm to develop an algo­

rithm with Newton like performance.
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• A novel application of the SPSA algorithm to the joint diagonalization of a 

set of matrices is demonstrated, it is then shown that this can be utilized to 

solve the BSS problem by jointly diagonalizing the time delayed correlation 

matrices of the observation vector x(fc).

• The first application of Tsallis mutual information measure [232] to the 

Image Registration problem.

• The first combination of the SPSA algorithm with Renyi [231] and Tsal­

lis [232] based mutual information measures for application to the Image 

Registration problem.

These achievements were detailed within this thesis as follows.

7.1.1 Thesis Summary

This thesis was split into 7 chapters. The first chapter introducing the topics of 

research, the Blind Source Separation and Image Registration problems. A review 

of the topics discussed within this thesis is given, and the original publications 

developed during the course of PhD research are detailed.

The second chapter develops the theory utilized in solving the BSS problem, 

specifically using ICA and contrast function optimization. The second chapter 

concludes with introductions to some of the most fundamental algorithms that 

have been developed within the ICA field. These algorithms form the basis set 

for the development of new algorithms and improvements of existing ones.

The third chapter details one of the most prominently used Neural Network 

approaches to the BSS problem, the Information Maximization (InfoMax) algo­

rithm [104, 105]. After the development of this algorithm it was noticed by Amari 

that the algorithm convergence and computational complexity could be reduced 
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by post multiplying the gradient by the positive definite matrix WTW. This 

represents the Natural Gradient operator within the parameter space of square 

non-singular matrices [101, 117, 114, 112], The Mathematical description of this 

algorithm was detailed. At the same time Amari introduced the Natural Gradi­

ent extension to the InfoMax algorithm Cardoso and Lahleld had independently 

developed an equivalent gradient method with a prewhitening extension they la­

beled the Relative Gradient algorithm [122, 123]. This algorithm is also shown 

for completeness.

The fourth chapter introduces the application of the Matrix Momentum gradient 

optimization algorithm [141, 142] to the BSS problem is presented. The Matrix 

Momentum algorithm provides a Newton type method with reduced computa­

tional complexity, compared with methods requiring a direct matrix inversion. It 

was found that combining the Matrix Momentum algorithm with Pearlmutter’s 

Hessian vector product given in Equation 4.22 as initially suggested by Orr [141] 

was found to be unsuitable within the BSS context, as the algorithm suffered 

from instability. To avoid these instability problems the exact Hessian was cal­

culated and utilized within the Matrix Momentum framework. The algorithm is 

shown to provide fast convergence with low computational complexity.

The fifth chapter introduces the application of Spall’s Simultaneous Perturbation 

Stochastic Approximation (SPSA) algorithm [174, 177] to the joint diagonaliza­

tion of a set of matrices. Initially, Stochastic Approximation (SA) algorithms are 

introduced, specifically the Finite Difference Stochastic Approximation (FDSA) 

algorithm. The SPSA algorithm is then compared with the FDSA algorithm in 

terms of calculations per iteration and is shown to require significantly less com­

putation [174, 177]. The first application of the SPSA algorithm to the problem 

of joint diagonalization of matrices is then introduced. This is then utilized in 

the BSS context to jointly diagonalize a set of time delayed correlation matrices.
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Finally the sixth chapter introduced the application of the SPSA algorithm 

[174, 177] described in the previous chapter to the Image Registration prob­

lem. The algorithm is combined with Shannon [49], Renyi [231] and Tsallis [232] 

mutual information measures. This representing the first application of Tsallis 

entropy to the Medical Image Registration [185], and the first combination of 

Renyi and Tsallis entropy with the SPSA algorithm. It was demonstrated that 

Tsallis entropy resulted in the fastest convergence of the three described methods.

7.2 Further Research

The aim of this research was to develop novel algorithms for application to the 

BSS problem. As stated in chapter 1 within this thesis only the instantaneous 

BSS problem was considered. The extension of the Matrix Momentum algorithm 

to the convolutive case would represent the next natural algorithm extension. 

This could be undertaken using a variety of approaches, but some initial ideas 

are given as follows.

• Transformation to the frequency domain [21, 22, 23], this transforms the 

convolutive model to a series of instantaneous ICA problems in each fre­

quency bin. The Matrix Momentum could be applied to perform the ICA at 

each frequency, then applying the inverse Fourier transform. This approach 

has the problem that the permutation and amplitude cannot be found us­

ing standard ICA methods. To alleviate this problem the above technique 

could be combined with methods for resolving these ambiguities inherent 

to the ICA problem [284, 285].

• Temporal based methods based on oversampling and row stacking [26, 27, 

28, 29] have also been utilized within the Blind Equalization field for Single
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Input Multiple Output (SIMO) Digital Communications. This concept can 

be extended to the Multiple Input Multiple Output (MIMO) scenario using 

instantaneous IC A as in [30].

The SPSA algorithm introduced in chapter 5 and again utilized in chapter 6 was 

shown to provide fast convergence for both the BSS and Image Registration prob­

lems. It is expected that for both tasks the following would provide interesting 

research avenues.

• To improve the convergence properties of the SPSA algorithm Spall devel­

oped the Adaptive SPSA algorithm [177, 222, 223]. This algorithm rep­

resents a Newton type method, with appropriate parameter tuning could 

provide large improvements in algorithm convergence time at the expense 

of additional computational complexity.

• Investigation of novel non gradient based optimization algorithms such as 

the Complex Step Derivative [225, 226] or methods based on Algorithmic 

Differentiation [286] may offer new frameworks upon which to develop new 

BSS and Image Registration based methods.

It has been mentioned repeatedly throughout this thesis that it was discovered 

during the course of the work on BSS that there was significant overlap between 

the cost functions and optimization procedures utilized within the BSS and Image 

Registration fields. A final suggestion for future merging of the work developed 

within this thesis.

• The application of the Matrix Momentum algorithm for optimization of 

the Shannon [49], Renyi [231] and Tsallis [232] based mutual information 

to solve the Image Registration problem.
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• The above algorithms could then be utilized in other applications of Image 

Registration than Medical Imaging, for example Super Resolution Image 

Reconstruction [234, 233] or Motion Estimation [287, 288, 289].



Appendix A

Higher Order Statistics

A.l Higher Order Statistics

Due to the importance of higher order statistics in the theoretical development of 

the ICA problem this thesis would be incomplete without an introduction to the 

field. Second order processes have historically been the main topic of study in the 

statistical signal processing community based predominately on the assumption 

that the data has a Gaussian distribution. Yet these techniques are inappropriate 

when the data is non-Gaussian. As no assumptions as to the density function of 

the source signals are made, a method of characterizing the distributions, that 

may be computed from the data samples to give information about the nature 

of the source signals is required. The statistics used to further describe a non­

Gaussian distribution are the moments and cumulants, these will be described 

further within this Appendix. The term Higher Order Statistics (HOS) refers to 

moments and cumulants of order greater than two. The utilization of HOS either 

implicitly or explicitly forms the backbone of the majority of algorithms for the 

BSS problem. These will be described in the following section.
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A.2 Moments

The moments of a random variable x with probability density function px(x) are 

given as follows:

Z
OO

xnpx(x)dx (A.l)
-oo

where n is a non-negative integer number. Another useful set of moments of a 

random variable x are the central moments, which are the moments about the 

mean value /z, this is given as follows:

/
oo

(x - p^Px^dx (A.2)
■oo

The first central moment (n = 1) is zero and produces no useful information.

Z
OO 

(x - p)px(x)dx = 0 (A.3)
-oo

Yet the standard first moment gives the mean value p of the distribution

Z
OO 

xpx(x)dx (A.4)
■oo

The second central moment (n = 2) represents the variance a2 of the distribution, 

or the average deviation from the mean value of the distribution.

Z
OO 

(x - p^Px^dx (A.5)
■oo

The third central moment, known as the skewness 7 provides a measure of the 

asymmetrical nature of a pdf.

7 = E[(x - /z)3] (A.6)

Thus for symmetrical distributions this is zero, and as the majority of natural 

signals have symmetrical pdf’s this measure is less frequently used in solving BSS 

problems [41, 118, 88], yet a recent application of third order statistics applied 
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to biomedical data is given in [290, 291]. A much more widely used statistic in 

solving BSS and ICA problems is the forth order moments and a related statistic 

known as the kurtosis. As a number of the pdf’s of signals encountered in BSS 

and ICA problems have zero mean or can be normalized to have zero mean this 

will be assumed from this point. The kurtosis of a zero mean random variable 

has its origins in cumulants which will be described later in this appendix, but 

due to the relation to the fourth order moment, they will be described initially 

here. The kurtosis of a random variable is given as follows:

k4(z) = - 3(£[z2])2 (A.7)

In the case where the data has been normalized to unit variance, as is common 

with a number of BSS and ICA algorithms as a result of the scaling ambiguity, 

then the kurtosis is given as follows:

^x) = E[x4]-3 (A.8)

The above equation may be seen as a standardized version of the standard fourth 

order moment. Another definition of kurtosis often utilized is the normalized 

kurtosis.

(a-9)

It can be seen clearly that if the variable has been normalized to unit variance 

then the normalized kurtosis is again simply a normalized version of the fourth 

order moment. The kurtosis of a random variable is specifically important in the 

fields of BSS and ICA as the kurtosis gives a measure of the non-Gaussianity 

of a random variable, as for a Gaussian random variable the kurtosis is zero 

[41, 118, 88]. In the statistical literature a distribution with zero kurtosis is called 

mesokurtic. Distributions that rise to a peak faster than a Gaussian distribution, 

and have longer tails are known as leptokurtic or super-Gaussian distributions.
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Super-Gaussian distributions can be characterized by having a kurtosis value 

greater than zero. Distributions that have shorter tails and rise slower than 

a Gaussian distribution are known as platykurtic or sub-Gaussian distributions. 

These can be characterized by having a kurtosis value less than zero. An example 

of a Gaussian, super-Gaussian and sub-Gaussian distribution is shown graphically 

in Figure A.l.

Figure A.l: Density models for the super-Gaussian, sub-Gaussian and Gaussian 

distributions

In the above section the scalar moments up to the fourth order have been intro­

duced. In the following subsection the generation of moments is introduced along 

with their link to probability density functions via the characteristic function.

A.2.1 Characteristic Functions

For a zero mean random variable x with probability density function px(x) the 

characteristic function or moment generating function is given by the following 
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integral [44, 292, 293],

Z
OO

(A.10)

Each probability density function is uniquely defined by its characteristic func­

tion. I he characteristic function represents the Fourier transform of the pdf of 

the random variable x. This may be written as the expectation over the density 

Px^-

(A11)

Taking the Taylor series expansion of the above equation

= / px(x^l + jcux +-^ + ---)dx (A.12)
J —oo

Taking the nth derivative of the above equation and evaluating at ju = 0 results 

in the following expression.

(A.13)

(A.14)

The coefficient terms of the above equation represents the moments of t he random 

variable x hence the term moment generating function. If all the moments of a 

random variable are finite and the series converges absolutely near u,' = 0 t hen t he 

moments uniquely define the pdf of the random variable. Extending this result 

to the case of multiple random variables with joint probability density fun. 

p(ti- ^2, • • •, xn) the following characteristic function is developed

r... .
J —oo J —oo

(A. 15)
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The joint moments are calculated in the same manner as the scalar moment« of 

a random variable. Taking the Taylor series expansion of the above equation and 

differentiating as done previously, the following equation for the joint moments 

of order r — ii + • • • + in is obtained.

m"...- (3} w...._ <A 16>1 ’ ’ n j|=-=u,=O

This can be written simply as follows:

- xj*] (A. 17)

In the next section the cumulants of random variables an :oducad.

A.3 Cumulants

Related to moments, cumulants have the interesting property that the cumu­

lant of a sum of independent variables is simply the sum of the n'* cumulants of 

the summands. Calculation of the cumulants is detailed in the following subsec­

tion.

A.3.1 Cumulant Generating Function

Just as the characteristic function for a random variable i can be used to generate 

the moments, the natural logarithm of the characteristic func tion can t« used to 

generate the cumulants of the random variable [44, 292. 293,. this is known as 

the second characteristic function or the cumulant generating function

#(u;) = InWU)) = (A-18)

The coefficients of Kn of the Taylor series expansion of the cumulant generating 

function are called the cumulants of the distribution of the random variable x
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Repeating the analysis performed for the moments, the cumulants are given as

follows:

(A.19)

Using the above equation the first four cumulants of a random variable i with

non zero mean / 0) are given as follows:

(A.20)

2«2 = m2 - m. (A.21)

«3 = m3 - 37712)711 + 2771, (A.22)

«4 = 7774 — 37710 ~ ^m3ml + 12m2771f - 6t71| (A.23)

The first and second cumulants representing the mean and the variance of the 

random variable x respectively. Repeating this analysis for the multivariate case, 

results in the following equation.

(A.24)
u»i=—=*>»=0

The following simplified notation is used extensively when dealing with cross 

cumulants, to calculate the cross cumulant for a given order r = »1 — •

«H.....i. =(^771^....JXi..........Xn) (A.25)

«1 = mt

Utilizing this equation the second, third and fourth cross cumulants for a aero 

mean vector x are given as follows:

CU7772(x1X2) = #[X1X2]

CU7773(X1X2X3) = E[XiX2X3,

cum4(X1x2x3X4) = E[x1x2x3x4; - E x^, E x3x,.

— E[xiX3]Eix2x4, - E[xiX4 E xjx.y

(A.26)

(A.27)

(A.28)

(A.29)
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It can be seen clearly that Equation A.29 reduces to the kurtosis given in Equation

A.7 for the case of a single variable, where x1 = x2 = x3 = xs

Now that moments and cumulants have been introduced a probability AmRity 

estimation technique, the Edgeworth expansion that is utilized within the BSS 

literature will be described.

A.4 Probability Density Estimation

In the Blind Source Separation and Equalization algorithms it is commonly nec­

essary to have to estimate the probability density functions of the underlying 

source signals. A number of estimation methods have been utilized in the liter- 

ature, for example Parzen Windowing [294], Gaussian Mixture Model* and 

methods based upon using the Pearson system 296. 291. '297] Method- Ku-xl 

upon Chebyshev-Hermite polynomials haw been extensively um*I throughout th<- 

literature and are generally based upon either the Gram-Charlier [298] or Edge­

wort h [48] expansions. These expansions lead to very similar approximation- 

differing based upon the ordering of the terms. The Edgeworth expansion is 

introduced in the following section.

A.5 Edgeworth Expansion

It is well known in Signal Processing and Mathematics that functions can be 

expressed as a series of terms such as trigonometric functions eg the Four.». 

and Cosine series, or as powers of the variable using the Thyior series expan- 

sion. For the case of probability density functions these expansions aren’t suited 

ideally. Instead the Gram-Charlier and Edgeworth expansions approximate the 

probability density function using the moments and cumulants respectively of a
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random variable [299, 300, 301]. The Edgeworth expansion utilizes heavily the 

Chebyshev-Hermite polynomials in the pdf expansion [302]. The«» are described 

in the following subsection.

A.5.1 Chebyshev-Hermite polynomials

The Chebyshev-Hermite polynomials h^y) are defined as the successive deriva- 

tives of a Gaussian random variable 0(y) with zero mean and unit variance 

is given as follows:

(A.30)

With <¿>(3/) given as follows .

M = e"^2 (A.31)

A recurrence relation for calculation of the Hermite polynomials is given as fol-

lows:

hn+i(y) = yh^y) - nK^y} (A.32)

Where the initial coefficient in the relation ho = 1. L tilizing the above the 

truncated Edgeworth expansion written in terms of the n" order cumulants 

and the Hermite polynomials hn is given as follows:

Py^ =
1 1 . » 10 It / X

M 1 +

1 35 , , , 280 u .
—.^h^y} + -^w^y) + -qr^My) 
5! 1 :

+ ¿¡WM) + gj-^«(v)

2100 2 L / \ । 15400 /,.) (A.33)

where <$(y) represents the Gaussian density function given in Equal i 1



Appendix B

Whitening Transformations

It was shown in chapter 2 that a whitening transformation performed bv .1 Prim i- 

pal Component Analysis (PCA) stage, before performing ICA. solves the problem 

up to an orthogonal rotation parameter. This parameter can be resolved by 

corporating either the HOS of the data vector within an ICA algorithm or b\ 

making further assumptions upon the source signals and solving using a second 

order BSS algorithm. Within this Appendix the Singular Value Decompo- 

utilized extensively for performing the initial Whitening transformation is de­

scribed.

B.l Singular Value Decomposition

The Singular Value Decomposition (SVD) is known as one of the most powerful 

tools from Linear Algebra. It is used to decompose a matrix into several compo- 

nent matrices, this is often described as a matrix factorization. The popularity of 

the SVD arises due to its ability to deal robustly with over and underdetermined 

least squares problems [303], and ill-conditioned matrices [304. 305:. In the Blind 

Source Separation or Independent Component Analysis case the singular value
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decomposition is used as a method of diagonalizing the covariance matrix of the 

observation vector y(k). This process is often referred to as a spatial whitening. 

The SV D of a matrix A is given in the following subsection.

B.l.l SVD Theory

Every matrix A e Rmxn can be factored as follows:

A = USVT (B.l)

where U 6 ¡s an orthogonal matrix, S € Rmxn is a diagonal matrix1, 

and VT e Rnxn is an orthogonal matrix. The columns of the matrix U are the 

eigenvectors of the matrix AAr and are known as the left singular eigenvectors, 

likewise the columns of the matrix V are the eigenvectors of the matrix ArA and 

are similarly known as the right singular eigenvectors. The diagonal elements a, 

of the matrix £ are known as the singular values of A. these are the square root 

of the eigenvalues of both AAT and ATA. The singular values from the output 

of the SVD will be ordered as follows:

<T1 > <72 > <72 > • • • > > 0. (B.2)

where p — min(m, n). The number p of non-zero singular values gives the nu­

merical rank of the matrix A [56].

B.1.2 SVD as a Whitening transformation

In chapter 2 it was shown that the Whitening transformation is used to develop 

a matrix B that decorrelates the observation vector x(*). This >rmation 

shown in Equation 2.11. should result in the diagonalization of the co\-ariaoce 

matrix, and the variances of the sources on the diagonal should be unit). The 

~ Tf the matrix X is not a square matrix has non zero elements for X„ and reroa eisewbere 
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covariance matrix of the observation vector x(t) before the Whitening 

mation B is given as follows.

Rxx = E[x(k)x(k)T]

= EKAs^XAsW)1]

= EfAs^Xfc)7 Ar

= E[AR„Ar] (B.3)

Utilizing the fundamental assumption of Statistical Indep. of the input 

sources s(fc) described in subsection 2.1.1, the covariance matrix of the input 

sources Rss = I. Placing this into Equation B.3 we obtain the following simplified 

equation for the covariance matrix.

Rxx = E[AAt] (B 4)

The above covariance has the property that its symmetric, that is Rxx = R 

Real symmetric matrices have a number of unique properties [37. 107].

1. They have a unique spectral factorization.

2. Their eigenvalues are all real.

3. The eigenvectors corresponding to each unique eigenvalue are orthogonal.

4. As a consequence of the symmetry the above matrices U and V in the S\ D 

shown in Equation B.l are identical.

Taking the SVD of Equation B.4 and utilizing the above properties of red sym­

metric matrices, then in this case the SVD is equivalent to the Eigenvalue De­

composition (EVD) as a Whitening transformation.

Rxx = vsvr

£[AAr] = VSVr

EJAA7! = VE1/2S1/2Vr B5) 
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From observation of Equation B.5. and the knowledge that the matrix V is 

orthogonal, such that VV^ = V^V = I it can be seen that the transform.

B required to diagonalize the covariance matrix Rxx is given by the following 

equation.

B = S-1/2VT (B.6)

This is demonstrated by applying this transformation to the observation vector 

x(A), then taking the covariance matrix of the Whitened output z A results m 

the following covariance matrix originally shown in Equation 2.12. Utilizing the 

SVD transformation obtained above in Equation B.5. the Whitem-d output is 

obtained.

Rzz = E[z(A:)z(fc)T]

= E[Bx(/r)x(Ar)rBr]

= F[BRxxBr]

= E[BAArBr]

= E[BVS1/2E1/2V7Br]

= E[E-1/2VrVS1/2E,/2VrVE,/î]

= I (B7)
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