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Abstract

Simulations of nanoscale systems where fluid mechanics plays an important role

are required to help design and understand nano-devices and biological systems.

A simulation method which hybridises molecular dynamics (MD) and continuum

computational fluid dynamics (CFD) is demonstrated to be able to accurately

represent the relevant physical phenomena and be computationally tractable.

An MD code has been written to perform MD simulations in systems where

the geometry is described by a mesh of unstructured arbitrary polyhedral cells

that have been spatially decomposed into irregular portions for parallel process-

ing. The MD code that has been developed may be used for simulations on

its own, or may serve as the MD component of a hybrid method. The code

has been implemented using OpenFOAM, an open source C++ CFD toolbox

(www.openfoam.org).

Two key enabling components are described in detail. 1) Parallel generation

of initial configurations of molecules in arbitrary geometries. 2) Calculation of

intermolecular pair forces, including between molecules that lie on mesh portions

assigned to different, and possibly non-neighbouring processors.

To calculate intermolecular forces, the spatial relationship of mesh cells is

calculated once at the start of the simulation and only the molecules contained in

cells that have part of their surface closer than a cut-off distance are required to

interact. Interprocessor force calculations are carried out by creating local copies

of molecules from other processors in a layer around the processor in question.

The process of creating these copied molecules is described in detail.

A case study of flow in a realistic nanoscale mixing channel, where the geom-

etry is drawn and meshed using engineering CAD tools, is simulated to demon-

strate the capabilities of the code for complex simulations.
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Preface

Original contribution

Chapters 6, 7, 11 and 12 and appendices C, D and E, represent the main orig-

inal technical component of the thesis and constitute its unique contribution to

knowledge. The contents of these chapters has been accepted to a peer-reviewed

journal, references [1] and [2]. All of the work presented is solely my own, except

where otherwise attributed by citations in the text, with two exceptions:

• the parallelisation of the initial molecular configuration utility in chapter 6 and

the development of the optimised anchor position in section 6.4 was carried out

in conjunction with Matthew K. Borg of the University of Strathclyde;

• the particle tracking algorithm described in section 8.3 was developed by Niklas

Nordin (Scania CV AB, Sweden, formerly of Chalmers University of Technology,

Sweden) and Henry Weller (OpenCFD Ltd, UK). This section is adapted from

reference [3]; the text and images of this paper were produced by me. The

algorithm was previously unpublished and my involvement with this paper arose

from a need to formally document it. This was required to convince referees of

a draft of reference [2] that the cost and complexity of determining which cell

a molecule occupied did not make the proposed intermolecular force calculation

algorithm impractically expensive.

Inclusions to provide context

The work presented in this thesis is the subject of ongoing research and devel-

opment. Some sections have been included that describe work that has not been

implemented and tested. They are intended to place what has been done in a

wider context and provide a more complete and coherent picture of what future

development is required and some of the goals that motivate it. For example,

generalised open boundaries and driving volumes as described in sections 9.3 to

9.5, have not been implemented, but are necessary future steps.

Some sections are explained in detail because, although they are not necessar-

ily original, there is no literature source for them. They will be useful to anyone

using, modifying or extending this work. These sections are the derivation of

reduced units (appendix A), the derivation of the force equation for the shifted

force Lennard-Jones potential in general reduced unit form (appendix B) and
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the explanation of the cause of energy cascades when too large an integration

timestep is used (section 8.2.1).

Appendix F (adapted from [4]) does not fit into the main body of the thesis

because it deals with gas dynamics and the results were obtained using a precursor

MD code to the one presented in the thesis. This appendix is relevant, however,

in the context of fluid dynamics simulation by molecular methods, and studies

issues applicable to the work of the research group I was based in.

OpenFOAM and programming

Features of the C++ programming language make writing, modifying and main-

taining a large and complex piece of software significantly easier. OpenFOAM [5]

has been used to implement the simulation algorithms presented in this thesis;

it makes extensive use of these features. See appendix G for an introduction to

OpenFOAM.

It is difficult to describe many aspects of a software based project in a thesis.

The details of the code are too complex to describe meaningfully without listing

the code itself. In this case it would be even more difficult to describe because a

substantial knowledge of OpenFOAM would be required to provide the context

to appreciate and understand the code fully. Therefore, this thesis contains the

specification and requirements of the code, the algorithms that have been im-

plemented, and some results that the code has produced. This does, however,

obscure the fact that writing ‘good’ code (well designed and structured, readable,

general and reusable, easy to modify and maintain, flexible, modular and exten-

sible) is crucial to success and contains much of the research and engineering skill

that has been developed and used.

Note on reading

Readers unfamiliar with the concept of molecular dynamics as a simulation tech-

nique should read section 5.1 before reading chapters 2, 4 or beyond.

Sections 13.3 and D.4 comprise sequences of images. These are best viewed

page-by-page as a pdf file (see attached CD) to appreciate the transitions.

Graham Macpherson

May 2008
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Chapter 1

Introduction

1.1 Research objectives

The ability to manipulate materials and create devices at the atomic level has

been long anticipated [6], but has only recently started to become amenable

to practical, widespread application. Amongst many of these rapidly emerging

‘nanotechnologies,’ fluid mechanics, for liquids in particular, plays an important

but often poorly understood role. This lack of understanding is largely due to the

difficulty of making direct experimental measurements at such tiny length scales.

The aim of this research is to investigate, by computer simulation, the phenomena

present in liquids at length and time scales relevant to nano-engineering systems

in which liquids play a central role. This requires an understanding of how the

behaviour of a liquid in a nanoscale geometry differs from that observed at the

macroscale. The aim is to provide simulation and analysis methods to assist in

the design of future devices that manipulate and exploit phenomena that are

insignificant at the macroscopic scale.

The objectives of the work presented are to:

• establish the range of length and time scales, as well as physical phenomena

(and their relative importance) relevant in the simulation and design of

existing and future nano devices;

• devise and implement a simulation method for liquids suitable for the iden-

tified scales and phenomena, and capable of simulating realistic engineering

geometries.

2
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These are the enabling steps of a larger research project whose further objectives

are to:

• compare simulations to published experimental data and the simulations of

others, ensuring that the model converges to known results in simulations

tending towards larger scales;

• carry out ‘pathfinder’ simulations of geometries suitable for future devices,

with the intention of publication to allow experimental research groups to

assess the accuracy of the predictions;

• provide a simulation code to academia and industry which is able to per-

form useful simulations to assist in understanding and designing nanoscale

devices.

1.2 What is the ‘nanoscale’

A defining characteristic of this research is that it is concerned with ‘nanoscale’

liquid flows. However, many of the application areas are speculative in nature,

because their manufacturing and characterisation technologies are only just be-

coming feasible. Therefore the scale at which they will operate is undecided.

Biological analysis is expected to be one of the primary uses of this research;

therefore, to help establish a suitable range of sizes for simulation, table 1.1 gives

the typical size of cells and molecules that may be manipulated.

Table 1.1: Approximate sizes of substances relevant to biological applications

Item Size

Water molecule, OH distance 0.096nm
Amino acid 0.8nm
Cell wall pore 0.4-4nm
DNA: width of strand 2nm
DNA: length of helical turn 3.4nm
Quantum dots 2-9nm
Globular protein 4nm
Eucaryotic cell nucleus pore 10nm
Virus 20-100nm diameter
Bacteria 100-200nm to À 1µm
Red blood cell 6-8µm diameter
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1.3 Nano-scale applications

The following describes some of the technologies, current and envisioned, where

an enhanced understanding of the behaviour of small scale liquid flow would be

beneficial.

• ‘Lab-on-a-chip’ devices can provide ubiquitous, rapid, cheap and disposable

chemical and biological analysis and synthesis using minimal quantities of

expensive or difficult to obtain samples or reagents. These devices can incor-

porate many individual component systems including pumps, reactors and

separators for modification and manipulation of biological cells as well as

mixers and transport channels where dispersion is to be minimised. These

are currently microscale devices, but much of their behaviour depends on

nanoscale processes, and the trend to further miniaturisation may make

them nano devices in the future. The requirement for precision fluid ma-

nipulation at very small scales is fundamental to advances in this area of

research; from [7]:

Central to the problem is the ability to move molecules over nanome-

tre dimensions with high precision, selectivity, and temporal control;

a capability which, when realised, will enable advances on both fun-

damental and technological fronts. Active control over transport of

specific molecules at nanometre dimensions would comprise an en-

abling technology by permitting (a) new approaches to molecular sep-

arations that augment passive analyte-stationary phase interactions,

(b) the study of reactions in which one or more reagents are available

in extremely limited quantities, and (c) coupling of powerful methods

of molecular identification, e.g. mass spectrometry, to spatially and

temporally resolved molecular sampling methods; thereby permitting

inherently small samples to be manipulated spatially.

The ability to model fluid devices is a key feature in developments that will

help to realise this capability. These devices often share common features:

– transport and manipulation of complex suspended molecules with di-

mensions approaching those of the channel;

– the actuation of flow and suspended particles is primarily electroki-

netic: electroosmosis to create bulk motion of a fluid; electrophoresis
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to move charged suspended particles; dielectrophoresis to move un-

charged dielectric particles and electrowetting to move droplets across

surfaces;

– multi-phase flows, either as immiscible droplets of liquid (for example,

water droplets in oil) or liquid-gas systems.

• Designing and interpreting results from small scale instrumentation for mea-

suring properties such as temperature, pressure, mass flow rate and species

concentration. For example, nanoscale liquid chromatograph columns and

detectors.

• Designing propulsion methods for ‘free swimming’ nanoscale devices and

understanding the propulsion mechanisms of mobile micro-organisms.

• High throughput, highly selective filtering membranes, for large scale wa-

ter purification, for example. Analysis of natural nanochannels (such as

aquaporin proteins [8]) can provide inspiration for this.

• Electronics fabrication by photolithography takes place at the nanometre

scale, involving the action of liquids on substrates. Understanding of this

process is particularly relevant given the constant reduction in feature size

(45nm gate length chips were released by Intel at the time of writing).

MEMS and NEMS (Micro/Nano-Electro-Mechanical Systems) are also fab-

ricated using similar technology. Nanoimprint lithography is an emerging

fabrication technology where a droplet of liquid is placed on a substrate and

flows into the nanoscale structure of a master template because of capillary

forces. This allows “an entire wafer of circuits to be stamped out quickly

and inexpensively” (from HP Labs1).

1.4 Physical phenomena

The main differences between macroscale fluid dynamics and that at the nanoscale

are caused by physical effects that are absent or unimportant at larger scales. It

is not possible to establish a hierarchy of importance of these effects because it

would be application-specific and must be deduced by analysis and simulation in

each case.

1http://www.hpl.hp.com/research/about/nanotechnology.html
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1.4.1 Surface effects

Consider the surface area to volume ratio of a cube of side length, l, given by

6l2

l3
∝ 1

l
.

As l decreases by many orders of magnitude to move from the macro to the

nanoscale, the relative importance of the effects of surface interactions on the

volume of fluid increase accordingly. The behaviour of the liquid becomes highly

determined by surface effects and the details of fluid-solid intermolecular interac-

tions. This gives rise to the dominance of surface tension, adsorption, molecular

layering [9, 10], boundary slip and the effects of an electric double layer in a

large portion of the volume of the system. These surface effects are inherently

molecular in nature, specific to the substances involved and their state, are often

too complex to encapsulate in simple phenomenological constants, and can rarely

be predicted a-priori. This makes the behaviour of a fluid system dependant on

multiple concurrent time and length scales. A simulation method is required to

account for the small/short scale complexity, but still be amenable to providing

insight over useful sizes and times.

1.4.2 Thermal fluctuations and diffusion

Thermal fluctuations are present in many properties of a small system, such as the

local instantaneous temperature, density and pressure. They carry information

about the state and thermodynamics of the fluid and drive diffusive processes,

so they cannot be ignored. The time and length scales involved in nanoflows

makes diffusion very important, particularly when trying to mix liquids together,

because creating turbulent flow is normally not possible at small length scales.

Small scale fluctuations also give rise to interesting, useful, but not fully under-

stood processes such as thermodiffusion [11, 12]. At macroscopic length and time

scales these fluctuations are not observed because they are fast and spatially small

compared to the system, and are ‘averaged out.’

1.4.3 Invalidation of continuum equations

It is possible to violate the continuum approximation of fluid mechanics or the

normally assumed linear constitutive relationships. The former occurs often in
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the vicinity of solid surfaces, where the molecular nature of the wall influences

the structure of the fluid, causing it to form molecular layers. Where a chan-

nel is narrow enough that the whole cross section is affected by molecular lay-

ering, substantial departures from the predictions of continuum fluid dynamics

occur [13, 14]. The latter can occur when a fluid is close to a solid surface or under

high velocity, temperature or concentration gradients, leading to non-Newtonian,

non-Fourierian or non-Fickian behaviour.

1.4.4 Electrokinetic effects

Any surface possessing a net electrical charge will give rise to an electrical double

layer (EDL, also known as a Debye, or shielding layer) in an aqueous solution next

to it [15, 16]. The surface charge attracts oppositely charged mobile electrolyte

ions in solution, creating a concentration of charged ions near (and adsorbed

onto) the surface. This region of liquid carrying a net charge can be acted upon

by an imposed electric field, causing the charged liquid to move. This is known

as electroosmotic flow (EOF).

The spatial extent of the EDL is dependent on the ion concentration and

valency, pH and temperature of the solution, and is characterised by the Debye

length, which is usually of the order of nanometres. This means that EDLs could

cover entire flow regions of interest, especially for low electrolyte concentrations,

rather than being confined close to channel walls, as in larger geometries.

Most applications for actuating small quantities of liquids will be solely elec-

trokinetic (electroosmotic for an ionic liquid and electrophoretic for colloidal par-

ticles) and, as the system size reduces, this becomes increasingly true [7, 17–23].

From [18]:

Electrokinetic ‘pumping’ is the leading technology for driving flows through

microchannels, especially for channels where h < O(10µm), because EOF

can achieve much higher volumetric flow rates Q than pressure gradient-

driven flow. In fully developed EOF, Q ∝ h for a given E [electric field

strength]; in Poiseuille flow, Q ∝ h3 for a given pressure gradient. Elec-

trokinetic pumping is also the leading technology for biochemical separa-

tions at the microscale, since the (nearly) uniform velocity profiles of EOF

result in much less Taylor dispersion than Poiseuille flow. Taylor dispersion

is a major limitation for compact biochemical separations using ‘lab on a
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chip’ devices since efficient separation of large biomolecules requires high

sample concentrations.

1.5 Thesis structure

The structure of parts I and II is the result of the following thought process:

• The objective is to study the fluid dynamics of nanoscale liquids by simulation.

• What applications are there for this knowledge?

• What literature is available to provide experimental results for comparison?

• What physical effects are important at the nanoscale?

• What simulation techniques are available to model these effects?

• Hybridising molecular dynamics (MD) with continuum mechanics is
the best option.

• This requires an MD code that can operate in geometries defined
by unstructured arbitrary polyhedral meshes with general, open
boundaries, rather than the simple shapes with periodic boundaries
offered by existing MD codes.

• To achieve this the following parts of the MD code must be
developed to operate in arbitrary geometries that have been
spatially decomposed for parallel processing:
− generation of initial configurations of molecules;
− calculation of intermolecular forces;
− tracking of the motion of molecules;
− application of boundary conditions and driving forces;
− measurement of spatially resolved properties.

Part III then describes the testing and performance of the MD code that has

been developed.



Chapter 2

Experimental data literature

The papers discussed in this chapter are broadly categorised as being either con-

cerned with practical nano-channels and nano-devices, or more fundamental stud-

ies of the details of how liquids behave near surfaces. The latter covers fluid slip,

the surface force experiment, the presence of nanobubbles, and regions of reduced

density near hydrophobic surfaces, topics which are largely interrelated. Only a

representative sample of the literature is reviewed; papers offering compelling

results or raising significant issues only are included.

Significant literature exists relating to flow in micro-channels. This is not cov-

ered here (see [24] for a review), except where either the behaviour is dependent

explicitly on a nanoscale process, or the situation highlights a salient difference

from what would be expected at the nanoscale.

There is a lack of high quality, repeatable experimental data to compare sim-

ulations to, so molecular dynamics (MD) simulations are also included because

they can offer detailed insight into nanoscale phenomena. The MD simulations

can be considered to be indirectly verified because the intermolecular potentials

employed are either experimentally determined, or calculated from first principles

using quantum mechanics.

2.1 Nano-channels and nano-devices

2.1.1 Nanotube and nanopipe flows

Simulations and experiments of flows in fullerene structured, single or multi-

walled, crystalline nanotubes, have been reported for water and simple hydrocar-

9
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bons [25–31]. In these studies, very fast filling dynamics for the fluid entering

the tubes (fluid motion at speeds of hundreds of m/s over ps time scales) are

reported, which do not agree with the macroscopic Washburn equation [32]. This

is caused by virtually frictionless transport, due to the hydrophobic nature of the

crystalline carbon. High speed fluid transport and the reactivity of carbon allows

functionalisation of nanotube entrances and high throughput, selective and gated

transport membranes to be created [33]. Other experiments directly observe

the evaporation and condensation of water in nanotubes [34] and the effect of

the presence of gas molecules in nanotubes has been simulated and qualitatively

compared to experiments [35].

Nanopipes are much larger channels formed by chemical vapour deposition

of material in pre-existing pores [25, 36]. These channels tend to have larger

diameters than molecular nanotubes with walls comprising amorphous material

rather than single crystals, and as such will have increased roughness. Flow

experiments reported for these channels are in agreement with the Washburn

equation.

2.1.2 Electrokinetic devices and flows

One of the main differences between nano and micro-channels is the size of the

electrical double layer relative to the channel width. In nano-channels the double

layers from opposite surfaces can overlap and result in a net charge of the liquid

in the whole channel. This allows well controlled electrokinetic transport in these

channels and the exclusion of one polarity of charged species [7, 17, 22, 23]

Experiments have been reported where the double layer structure has been

controlled by surface chemistry and the application of external fields to create

nanofluidic diodes [20] and transistors [19, 21].

2.2 Surface effects

The details of liquid-solid interfaces are very complex, depending on the species

of each material and their thermodynamic state. Various experiments can be

performed to attempt to characterise them [37], although the results of different

techniques do not necessarily agree. The preparation and handling of samples as

well as the measurement technique interact with the measurand.
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The major area of investigation is the difference between hydrophobic and

hydrophilic surfaces; these are important effects which are useful for controlling

fluid behaviour, but their underlying mechanisms are not well understood. The

situation is further complicated by water being the liquid of interest because it

displays complex behaviour, usually attributed to subtle changes in local structure

near a surface caused by its permanent dipole and hydrogen bond network.

2.2.1 Surface force experiment

The surface force apparatus [38] comprises two curved surfaces (made from molec-

ularly smooth mica for example) which are piezoelectrically actuated to oscillate

towards each other. The forces between them, due to interactions with a liquid or

vapour, are measured. Films, coatings and treatments can be applied to the sur-

faces and the force data can be used to assess fluid-solid interactions. From this,

the presence of fluid slip [39] (also see below) can be deduced and the behaviour of

liquids, squeezed to be only several molecules thick, can be examined [40]. A good

review of the apparatus, studies that have been conducted and the interpretation

of results can be found in reference [41]. The resolution of typical instruments is

approximately 0.1nm for the gap between the surfaces and 10−8N for force on a

surface.

2.2.2 Boundary slip

The no-slip velocity boundary condition used in macroscale fluid mechanics is

known to be invalid in some rarefied gas flows [42] and the underlying mechanism

is a long-studied problem [43]. Slip at liquid-solid interfaces is more complex and

there is debate in the literature about its underlying mechanism; [44] presents a

good review of the state of knowledge and range of studies.

Slip is often quantified using a slip length, δ, arising from Navier’s hypothesis

which states that the slip velocity, uslip, is proportional to shear rate, γ̇, i.e.

uslip = δγ̇. A fixed value of slip length is considered to be an oversimplified

representation with a limited range of applicability.

Hydrophilic surfaces do not generally display evidence of boundary slip so

complex monolayers are typically used to make them hydrophobic. Published

experiments are conducted with a range of fluids (water, dodecane, tetradecane

and sucrose solutions) over different ranges of shear rate. Results split into studies
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reporting long slip lengths, of the order of hundreds of nanometres to micrometres,

or short slip lengths, of the order of tens of nanometres. In experiments reporting

long slip lengths [45–51], the suggested mechanism is the presence of a layer of

nano-bubbles forming a lubricating layer. It has been suggested [52] that long slip

lengths are caused by the contamination of the surface with nanoscopic particles.

Short slip lengths are reported in [52–54], where a region of depleted water density

(a vapour layer) fits the observations.

Simulations of simple molecular dynamics systems with fluid impinging on

molecularly smooth walls at very high rates of shear have been reported [10, 55]

presenting short slip length results. The shear rates involved are much higher than

would be seen in practical devices. Short slip length results have been obtained

from low shear rate MD simulations using liquid decane [56] or simplified 10-atom

chain molecules [57].

2.2.3 Nanobubbles

Several papers have been published describing the formation, morphology, sta-

bility and characteristics of ‘nanobubbles’: layers of vapour or gas that form

on hydrophobic surfaces [58–61]. These are investigated using atomic force mi-

croscopy. Some authors are sceptical [62, 63] about whether these bubbles exist

at all, or at least whether they are always present, or are nucleated by the mea-

surement process. A recent study is careful to identify and exclude this possibility

and show how the sample preparation technique can be controlled to produce or

suppress bubble formation [61].

2.2.4 Density depletion

Neutron [62] or x-ray [63] reflectivity experiments have been performed to inves-

tigate the region of contact between water and a hydrophobic surface with high

spatial resolution.

The experiments reported in [62], where deuterated water is in contact with a

polished quartz surface which has a octadecyl-tricholorosilane (OTS) monolayer

chemically attached1, find that a 0.2-0.4nm wide region of depleted water den-

sity is found at the surface. In [63] the interface between de-ionised water and

1 OTS and other silane monolayers are frequently used to produce hydrophobic surfaces; for
example, see [52, 54, 61, 62, 64, 65].
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“self-assembled methyl-terminated octadecyl chains of condensed octadecyltri-

ethoxysiloxane (OTE)” deposited on a silicon oxide surface is examined. Similar

results for the width and position of the depleted region to [62] are found.

Degassing the liquid samples, or saturating them with a gas other than air

(argon and CO2 for example [62]) has a significant impact on the results, as also

seen in the nanobubble case [61].

Another experiment [64] used time-domain thermoreflectance to measure ther-

mal conductivity at hydrophobic (created again using a self-assembled OTS mono-

layer) and hydrophilic interfaces, and found that only a very thin vapour layer

(0.25nm) fits their data at the hydrophobic interface.

Molecular dynamics simulations of water in contact with a crystallised layer

of long chain alkanes and alcohols (hydrophobic and hydrophilic respectively) are

reported in [66]. No depleted density layer is observed at the hydrophilic surface,

and a sub-nanometre depleted layer is observed at the hydrophobic surface. This

paper demonstrates the ability to directly compare MD and x-ray experimental

results. Molecular dynamics is also used to demonstrate some of the complexities

of water in a high curvature hydrophobic ‘pocket’ [67]. The details of hydrogen

bond rearrangement, drying, transient filling and emptying of the pocket are

observed.

2.3 Summary

In nanoscale studies, significantly more consideration of the chemical composition

of the fluid and device is required compared to the majority of fluid mechanics ap-

plications. Many authors stress the importance of controlled sample preparation

and the characterisation of surfaces.

A wide variety of boundary conditions are possible because of different surface

materials and roughnesses, the presence of nano-bubbles and slip, as well as the

ability to form electric double layers. This can be regarded as an engineering

opportunity for design flexibility, rather than properties that must be rigorously

specified and simulated for a given material. To take advantage of this, nanofluidic

devices can be designed by requiring a certain surface characteristic, with the

intention of this demand being matched as closely as possible by fabrication

techniques.



Chapter 3

Evaluation of simulation

techniques

3.1 Specification and requirements

Four techniques have been identified as being potentially able to describe the

flow of liquids at the nanometre scale: continuum CFD, molecular dynamics,

the lattice Boltzmann equation, and dissipative particle dynamics. Modelling

and simulation techniques will be evaluated against criteria that are divided into

critical and desirable requirements.

Critical requirements. A modelling technique must:

1. have a computational cost that does not require excessive periods to simu-

late complex, realistic, 3D geometries over useful time scales, i.e. can provide

solutions in a matter of hours or days on a small to medium size parallel

computer;

2. be theoretically sound, i.e. derivable from basic physical principles, obeying

the laws of conservation of mass, momentum, energy and the second law of

thermodynamics1;

1The second law of thermodynamics is only strictly applicable to systems of a minimum size
over a minimum timescale. The equations of motion for molecules are time-reversible, but the
production of entropy required to satisfy the second law means that, in general, the state of
a whole system is not. This can be reconciled by treating the second law probabilistically, as
formalised in the ‘fluctuation theorem’ [68–72].

14
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3. not require the use of unknown or unknowable physical parameters, con-

stants and properties to give accurate results;

4. have the ability to simulate all fluid mechanical phenomena, i.e. not be

restricted to isothermal, adiabatic or isentropic processes;

Desirable requirements. It would be preferable for a modelling technique to:

1. be amenable to massive parallelisation to run on large supercomputers;

2. use existing, well established algorithms and software to facilitate rapid

development;

3. be flexible enough to easily model complex phenomena and effects; for ex-

ample multiphase and multispecies flows, suspended particles, chemical re-

actions or electrokinetic effects;

4. support multi-scaling and system size flexibility to allow a wide range of

problem sizes and geometrical details to be concurrently analysed.

3.2 Continuum computational fluid dynamics

Continuum computational fluid dynamics (CFD), using the Navier-Stokes equa-

tions [73] and finite volume discretisation [74–76] is overwhelmingly the most

widely applied fluid dynamics simulation technique in scientific and engineering

applications. It is used to simulate suspended particles, combustion, chemically

reacting systems, multiphase and electrokinetic flows, for example. The validity

of the simulation depends on the validity of the governing equations used, and

the accuracy depends on that of the boundary conditions and constitutive rela-

tions supplied (such as the relationship involving viscosity, thermal conductivity

or heat capacity). As mentioned in section 1.4.3 and discussed further in the next

chapter, the continuum approximation, therefore CFD’s governing equations, can

be invalid at very small scales.

In order to capture the effect of thermal fluctuations, the continuum equations

may need to be stochastic differential equations [77–79], where the magnitude of

the fluctuation is given by the fluctuation-dissipation theorem [80].
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3.3 Molecular dynamics

Molecular dynamics simulates a fluid at a fundamental level by deterministically

tracking the motion of every atom in a system, which move according to classical

dynamics and interact with each other via specified intermolecular potentials.

See section 5.1 for more details. The price paid for being able to offer a full mi-

croscopic description of a system is the high computational cost [81–83]. Systems

of only a few tens of nanometres simulated for times of a few nanoseconds require

hundreds or thousands of CPU hours.

3.4 Lattice Boltzmann

The Lattice Boltzmann (LB) method uses cellular automata techniques to sim-

ulate fluid mechanics, and is a “hyper-stylized version of the Boltzmann equa-

tion” [84]. It comprises a rigid lattice, over which computational particles move

at one of a small set of discrete velocities and collide stochastically at lattice sites

in order to reproduce hydrodynamic behaviour. Using the Lattice Boltzmann

equation, the fluid density and velocity “can be shown to evolve according to the

quasi-incompressible Navier-Stokes equations of fluid dynamics” [85] when the

discrete velocities are chosen to conserve mass and momentum at each lattice

step.

This method is particularly well suited to rapid computation (in 2 dimen-

sions at least [84], p42) because it involves only a ‘streaming’ calculation to allow

particles to move from one lattice position to another, and a ‘collision’ calcula-

tion at lattice vertices. This allows large systems with realistic geometries to be

simulated in realistic time scales.

A recent paper [85] has compared LB and MD simulations for a “nontrivial

nanoscopic fluid flow” — a 2D channel flow around an obstacle. While agree-

ment with the MD simulation is demonstrated, it does not provide a rigourous

demonstration of the claimed general applicability and valididity of LB. The MD

simulation used to validate the LB simulation is relatively simplistic:

• the simulation is 2D: given that the authors are making quantitative com-

putational speed comparisons between LB and MD, this is unrealistic;

• a purely repulsive Weeks-Chandler-Andersen (WCA) intermolecular poten-

tial is used, which is not a realistic model of a real fluid;
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• the entire flow-field has been forced to be isothermal;

• the wall and obstacle atoms in the MD simulation are static, not undergoing

thermal vibrations around lattice sites;

• there is no difference between wall-liquid and liquid-liquid intermolecular

potentials.

The authors state that fluid momentum being transported by the flow velocity is

a disadvantage:

“The major advantages of LB over a purely hydrodynamic description

are. . . highly irregular boundaries can be handled with ease because

particles move along straight trajectories. This contrasts with the

hydrodynamic representation, in which the fluid momentum is trans-

ported along complex space-time dependent trajectories defined by

the flow velocity itself.”

which seems to be a strange assertion. No mention of the energy equation or

temperature profile for the LB simulation is made. The fluid viscosity and the

velocity profile are both lattice spacing dependent. Comparison of the transient

response of the LB and MD systems is not considered.

The theoretical basis of the Lattice Boltzmann technique being able to of-

fer insight into microscopic processes in liquids (i.e. offer more insight than a

Navier-Stokes solution) is questionable because of its derivation from the Boltz-

mann equation for dilute gases. The assumptions of molecular chaos and binary

collisions only [86, 87] are essential to the Boltzmann equation and neither is

appropriate for a liquid: molecular positions and velocities are highly correlated,

and any molecule in a liquid will be in simultaneous ‘contact’ with approximately

50 others. This is acknowledged in [85]:

“Although LB is a particle-based method, it cannot resolve the short

ranged structural order of a dense liquid, since it describes a struc-

tureless lattice gas with no many-body interactions.”

Furthermore, numerical artifacts and restrictions on the magnitude of spatial

gradients, compressibility and heat transfer caused by the rigid lattice, and the

strict timestep between collisions this imposes, are disadvantages [88].
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3.5 Dissipative particle dynamics

Dissipative Particle Dynamics (DPD) (and the related Smoothed Particle Hydro-

dynamics, SPH) can be regarded as a method of coarse-graining molecular dy-

namics [89], where dissipative particles, representing a number of real molecules,

move in an MD-like fashion, interacting with ‘intermolecular’ forces to reproduce

hydrodynamic behaviour at length and time scales beyond the reach of molecular

dynamics. It is possible to easily include coarse grained polymers in solvents to

represent DNA, proteins or viruses for example.

There are two categories of simulation available which can be identified under

the DPD (or SPH) description: ‘soft’ particles [90–92], similar to MD, or ‘sharp’

volume definitions which use a (dynamic) lattice structure such as a Voronoi tes-

sellation. Voronoi tessellation is a method of discretising space around a set of

points, such that a region is identified which is closer to the point it surrounds

than any other. These points are regarded as dissipative particles, The construc-

tion of the tessellation itself forms part of the derivation of the dynamics of the

system [93–98], where the fluxes across the mesh faces are calculated from some

of the same information used to (dynamically) create the mesh. This technique

may equivalently be seen as spatial discretisation of continuum equations, forming

a Lagrangian, finite volume description. Implementations exist of Voronoi tes-

sellation algorithms, CGAL [99] for example. Calculating the tessellation (which

must be done at each timestep) is expensive in 3D, especially if solid walls are to

be included [96], and parallelisation is difficult.

DPD or SPH are thermodynamically consistent, ensured by their adherence to

the GENERIC framework [91, 93, 94] and they can easily incorporate thermal

fluctuations [80, 91, 92, 95]. GENERIC (General Equation for the NonEqui-

librium Reversible-Irreversible Coupling) is a framework for formulating time-

evolution equations for non-equilibrium systems which ensures that any system

with this structure is thermodynamically consistent, see [100–105].

3.6 Evaluation and comparison

Table 3.1 shows a (subjective) evaluation of the relative merits of the identi-

fied modelling techniques, judged against the criteria stated in section 3.1. The

techniques have been ranked according to their overall suitability for nanofluidic
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simulation.

Table 3.1: The merits of the identified modelling techniques judged against the crite-
ria stated in section 3.1. Techniques are judged to be definitely suitable (X), definitely
unsuitable (×), or the answer is problem specific or unproven so far (?).

CFD MD LB DPD

Critical
1 X × X ?
2 X X ? X
3 × X × ×
4 X X × X

Desirable
1 X X X ?
2 X X × ×
3 X X ? ?
4 X × × X

Rank 1 2 4 3

No technique fulfils all of the critical requirements. All techniques except

MD fail critical requirement 3 because they need to be supplied with boundary

conditions and constitutive models which, at the nanoscale, the behaviour of a

system is very sensitive to. Providing that the intermolecular potentials are cor-

rect, MD avoids this problem because it simulates them directly. MD fails critical

requirement 1 because it is orders-of-magnitude too computationally expensive to

simulate realistically sized systems over timescales of the order of microseconds.

Continuum computational fluid dynamics and molecular dynamics can, be-

tween them, satisfy all of the simulation requirements, both critical and desirable.

MD is able to accurately model the fluid properties, behaviour and boundary con-

ditions, and CFD is able (given accurate boundary conditions and constitutive

relations) to simulate large systems over useful timescales, except at the small-

est of features, where MD is most applicable. Therefore, a simulation technique

which hybridises continuum CFD and MD, each operating at their applicable

scales, is the best option. This will be elaborated on in the next chapter.



Chapter 4

Hybrid molecular/continuum

simulation

Successful fluid dynamics simulations using molecular dynamics have been re-

ported [13, 14, 106–113], but MD is prohibitively computationally costly for sim-

ulations of systems beyond a few tens of nanometres in size, over timescales

beyond a few tens of nanoseconds. Fortunately, the molecular detail of the full

flow-field that MD simulations provide is often unnecessary; in liquids, beyond 5–

10 molecular diameters (. 3nm for water) from a solid surface the continuum-fluid

approximation is valid and the Navier-Stokes equations with bulk fluid properties

may be used [9, 40, 111]. Hybrid simulations have been proposed [83, 88, 114–116]

to simultaneously take advantage of the accuracy and detail provided by MD in

the regions that require it, and the computational speed of continuum mechanics

in the regions where it is applicable. An example application of this technique is

shown schematically in figure 4.1, where a complex molecule is electrokinetically

transported into a nanochannel for separation and identification [23]. Only the

complex molecule, its immediately surrounding solvent molecules, and selected

near-wall regions require an MD treatment; the remainder of the fluid (compris-

ing the vast majority of the volume) may be simulated by continuum mechanics.

A hybrid simulation would allow the effect of different complex molecules, sol-

vent electrolyte composition, channel geometry, surface coatings and electric field

strengths to be analysed at a realistic computational cost.

A primary reason for choosing a hybrid approach is that less a priori knowl-

edge is required of complex boundary and interface conditions and constitutive

relations. It also provides the ability to unambiguously introduce complex phys-

20
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Solid

molecule
Complex

Flow

MD Region

Nanochannel

Figure 4.1: Schematic of an application of a hybrid MD/continuum simulation: complex
molecules being transported into a nano channel. Only the complex molecules, regions
near them and regions near solid surfaces need an MD treatment; the remaining volume
can be simulated with continuum mechanics.

ical effects i.e. surfactants, proteins, reactions, dissolved gases, surface charges or

electrokinetics. This contrasts with the lattice Boltzmann and dissipative parti-

cle dynamics methods which essentially provide alternative but equivalent means

of solving the conventional continuum governing equations; they require user

supplied boundary conditions and representative physical models which must be

known a-priori. Hybrid simulations also allow direct integration of bulk hydrody-

namic transport with more conventional MD applications, for example very high

confinement or complex molecules [117] e.g. aquaporin proteins [118] or chemi-

cally gated nanotubes [33].

It should be noted that, for straightforward cases (simple fluids not under

high confinement), a conventional Navier-Stokes description (including thermal

fluctuations where necessary) with the no-slip velocity boundary condition (es-

pecially for hydrophilic surfaces) will be adequate; no MD simulation is required.

The accuracy of such a simulation would depend on the accuracy of the trans-

port properties used and their dependence on the state of the fluid. These can

be determined in advance by MD [111].

The proposed hybrid technique uses the benefits of continuum simulation and

MD in their respective domains of applicability and couples them together to
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simulate across a wider range of length and time scales and physical effects than

either is capable of individually. This technique is particularly appropriate for

looking at nanoscale liquids, because this is where the continuum approximation

breaks down and the molecular nature of the liquid starts to become significant.

Two types of hybridisation can be employed:

1. coupled, domain decomposition hybridisation [83, 88, 114–116] where parts

of the simulation domain are simulated by MD and other parts by CFD. The

two components exchange information and both advance in time together;

2. performing a continuum simulation in the whole domain, but using MD

at a set of sampling locations and times to derive accurate local boundary

conditions and constitutive relations to guide and correct the continuum

simulation. This is known as the heterogeneous multiscale method [119,

120]. This alleviates a major problem encountered in a fully coupled hybrid

simulation: the disparity between simulation time scales. MD operates

in the pico to nanosecond realm, and the continuum simulation may need

to run for microseconds at least to simulate any real, useful systems. The

results derived from the MD simulation can be stored and a library of results

established, so that when a system encounters a particular flow condition

and fluid state again, it could immediately reuse the result. This is similar

to the In Situ Adaptive Tabulation (ISAT) [121] method used in chemical

engineering control systems.

The two critical issues for a hybrid technique are:

• identifying breakdown of the continuum approximation or Navier-Stokes

equations when flow conditions are sufficiently complex, non-continuum or

non-equilibrium to require an atomistic treatment;

• coupling the MD and continuum domains together, ensuring both simula-

tions are correct at the interface.

4.1 Breakdown of continuum equations

Breakdown of the Navier-Stokes (NS) equations can happen for two reasons:

• failure of the continuum approximation caused by the molecular nature of

the fluid becoming important, this is seen near solid surfaces in particular;
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• departure from hydrodynamic behaviour and the failure of linear consti-

tutive relations (Newtonian viscosity, Fourierian heat conduction, Fickian

diffusion) in bulk fluid, i.e. away from a wall, under high spatial gradients

in velocity, temperature, density or concentration.

4.1.1 Continuum failure

The continuum approximation breaks down in liquids near solid surfaces when

molecular effects are observed, such as discrete layering (oscillatory density pro-

files) [9, 10]. These effects are highly influenced by the details of the intermolec-

ular forces and molecular structure of the surface in question [122]. It has been

suggested by experiment [40, 122] and simulation [9, 10, 123] that this occurs

within approximately five molecular diameters of a surface.

4.1.2 Deviation from hydrodynamics and linear response

In order to use the conventional continuum equations of fluid mechanics (the

Navier-Stokes equations), the dynamics of the fluid must be in the hydrodynamic

regime, this is where the variation of macroscopic variables occurs over length and

time scales that are large compared to molecular scale events [124] (p219). In this

case the assumption of local thermodynamic equilibrium is being implicitly made,

where, although the macroscopic system is not in equilibrium (its properties vary

in space and time) thermodynamic relationships hold in any small subdomain

that is observed [124] (p220). In this case, linear-response theory [124] (p206)

can be used to relate the flux of mass, momentum and energy to gradients in

macroscopic variables in the liquid. In the case where spatial or temporal vari-

ations are too rapid, then the correlation between the behaviour of molecules

(which decays away to zero in the hydrodynamic limit) means these relationships

do not hold [124] (p241).

Non–Newtonian stress-strain behaviour can be expected when the strain rate,

γ̇ & 2τ−1, where τ is the characteristic molecular timescale of the liquid [55].

This corresponds to a velocity gradient of hundreds of ms−1/nm for simple liq-

uids, which is unlikely to be encountered in practical applications. It has been

shown [125] that picosecond timescale events are necessary to violate the expected

linear thermal behaviour. Simulations have shown that hydrodynamic continuum

equations, when they have the correct transport coefficients, parameterised by the
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local fluid state, are able to represent relatively large spatial gradients in temper-

ature [111].

It is possible to encounter high concentration gradients, particularly where

two fluids are mixing. In this case the diffusion behaviour may not be linear,

or the diffusion coefficients might not be possible to know without molecular

simulation.

4.2 Coupling MD and continuum regions

A theoretically sound and computationally efficient method is required to couple

the continuum and atomistic regions of the simulation. There are two approaches

to coupling [126]: the Schwarz method [83, 114], which couples the state of the

continuum and atomistic regions, or coupling by passing fluxes of mass, momen-

tum and energy across the interface between the regions [88, 115]. It is not clear

whether either is universally more suitable.

Transferring information from the continuum to atomistic region is particu-

larly challenging [114, 127–129] because a continuum flux of mass, momentum

and energy must be discretised into an whole number molecules, which must have

a realistic spatial distribution, and physically correct distribution of momentum

and energy.

The transport properties used in the continuum domain must closely match

those that arise from the intermolecular potential models used for the MD sim-

ulation [114, 127] in order to produce accurate results and stable coupling. For-

tunately, deriving transport coefficients from MD is straightforward [111, 124,

130, 131]. An overlap region is usually required where both the continuum and

atomistic simulation operate in order to ensure that both match at the interface.

4.3 Validation

Direct experimental validation of a nanoscale simulation is very difficult because

experimental systems are complex, difficult to make accurate measurements of,

and sensitive to small changes in setup. This does not diminish the value of the

simulation however; as good a match as possible with experimental results should

be obtained to establish confidence in the validity of the simulation. The simula-

tion may then be used to probe the dependence of results on varying details of the
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setup that cannot be well controlled or observed in the experiment. For example,

in experiments where self-assembled monolayers are involved (see chapter 2) the

coverage, quality and stability of the monolayers is critical, but difficult to control

and characterise. Similarly, in reference [64] where heat conductance through a

layered structure is involved, the sensitivity of the result to layer thicknesses or

the quality of bonding between layers can be used to provide insight into the

experimental results or control required in sample preparation.

Molecular dynamics simulations can be indirectly validated. If the intermolec-

ular potentials used are accurate and valid for the state of the fluid and the

MD code correctly calculates intermolecular forces and accurately integrates the

equations of motion, then the simulation should not be substantially in error.

An exception to this could occur when a system is close to an unstable state,

i.e. a small perturbation or error could cause the possible solution trajectories to

diverge. Also, when external fields or open boundary conditions are applied to

the simulation, they may cause errors because the manner in which they act may

be unphysical.

Part of a validation procedure will require that the MD component of the

simulation reproduces results obtained from other MD codes. In addition, the

hybridisation technique and the applicability of the continuum breakdown crite-

ria may be probed by simulating a simple system (a channel flow for example)

as a fully MD case, then introducing an increasing continuum region. If the hy-

bridisation coupling technique is working correctly, the continuum CFD is valid

and the MD region is large enough, then the results should stay the same.

4.4 Hybrid simulations in arbitrary geometries

Published studies [83, 88, 114–116] have demonstrated that hybrid simulations

are viable, but these studies have dealt only with simple flows and domains. The

geometries used have been typically simple cuboids with periodic boundaries. To

be a useful, general engineering tool, a hybrid simulation must be able to simu-

late flows in complex 3D domains, where the geometry is derived from standard

engineering CAD tools.

In order to achieve this, the MD component must be able to simulate flows in

similar arbitrary geometries because, as can be seen in figure 4.1, the MD region of

the domain will normally not be a simple shape. The remaining chapters describe
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the creation of algorithms and a code to perform MD simulations in arbitrary,

CAD derived geometries. This is an enabling step in creating a hybrid simulation

tool, and also allows purely MD simulations in domains that were previously not

possible.



Part II

Molecular dynamics in arbitrary

geometries
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Chapter 5

Molecular dynamics simulation

overview and requirements

5.1 Molecular dynamics overview

Molecular dynamics simulates the deterministic, classical motion of a collection

of molecules1, which interact with each other according to an intermolecular po-

tential, U . The equation of motion for a simple (rotationally symmetrical, no

moment of inertia) molecule, i, is [130, 131]

miai = fi, (5.1)

where ai is the acceleration vector of the molecule and fi is the total force acting

on it, given by

fi =
N∑

j=1
j 6= i

fij, (5.2)

the sum of forces acting on molecule i caused by all other molecules j. If U(rij) is

the potential energy between molecules i and j as a function of the intermolecular

separation

rij = |rij|, (5.3)

1To preserve generality, ‘molecule’ will be used to mean ‘atom’, ‘ion’ or ‘molecule’, i.e. argon
atoms, sodium ions, or water molecules would all be referred to as molecules. The physical
context should indicate the meaning.

28
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Figure 5.1: ri and rj are the position vectors of molecules i and j, rij = ri − rj and fij
is the force acting on i caused by j.
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Figure 5.2: An overview of the molecular dynamics calculation process.

where

rij = ri − rj, (5.4)

and ri and rj are the position vectors of molecules i and j (see figure 5.1), then

fij = −∇U(rij). (5.5)

The key steps in a molecular dynamics simulation are shown in figure 5.2;

each of these elements will be elaborated on in chapters 6 to 10. Calculating the

intermolecular forces is overwhelmingly the most computationally time consuming

step.

5.1.1 Reduced units

It is common in MD to perform numerical simulations using a set of scaled,

or reduced units [130, 131]. Only three parameters are required to define the

new units: length, energy and mass. Reduced units typically scale all quantities
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Table 5.1: Reduced unit quantity expressions and the reference values used in this work.
The reference length and energy are taken from the Lennard-Jones potential for argon (see
section 5.1.3) and the reference mass is that of an argon atom. A reduced unit quantity
can be converted to SI units by multiplying it by the value in the last column.

Defined quantities

length l∗ = l/σr σr = 3.4× 10−10 m
energy ε∗ = ε/εr εr = 1.65678× 10−21 J
mass m∗ = m/mr mr = 6.6904× 10−26 kg

Derived quantities

force f∗ = f (σr/εr) fr = 4.87288× 10−12 N

time t∗ = t
√

εr/mrσ2
r tr = 2.16059× 10−12 s

position r∗ = r/σr rr = 3.4× 10−10 m

velocity v∗ = v
√

mr/εr vr = 157.364 ms−1

acceleration a∗ = a (mrσr/εr) ar = 7.28340× 10−13 ms−2

temperature T ∗ = T (kb/εr) Tr = 120 K
pressure P ∗ = P

(
σ3

r/εr

)
Pr = 4.21530× 107 Nm−2

mass density ρ∗M = ρM

(
σ3

r/mr

)
ρMr = 1702.22 kgm−3

number density ρ∗N = ρNσ3
r ρNr = 2.54427× 1028 m−3

towards unity. They may be used to perform a single simulation in a given

reduced unit state, then obtain a range of values by scaling the simulation result.

Choosing the reference length and energy to be the same as those in the inter-

molecular potential being used, and the reference mass to be that of the molecules

being simulated, simplifies and speeds up the calculation of intermolecular forces

because those variables may be eliminated from the force equation. This work

is intended to create a general framework for simulation with multicomponent

fluids and mixed form potential functions, so the reduced units cannot be used

to remove parameters from equations, merely to scale them. Defining a reference

length, σr, energy, εr and mass mr; reduced unit quantities have a superscript

asterisk, i.e. l∗. The reduced unit of common quantities, as well as the reference

value which a reduced unit should be multiplied by to convert it to SI, are shown

in table 5.1 and are derived in appendix A.

5.1.2 Intermolecular potentials

Molecules interact with each other via a number of different physical mechanisms,

although they are essentially all electromagnetic in nature [132, 133]. In this work

only non-bonded interactions will be considered, which can be broadly categorised

as short and long range forces:
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Short range forces

When two molecules are sufficiently close, their electron clouds overlap, and,

due to the Pauli exclusion principle, the electron density in the overlap region is

reduced. This allows the positively charged nuclei, which are normally shielded

by the electrons, to repel each other.

Long range forces

There are three principle mechanisms for long range forces.

• Electrostatic: when molecules have either a permanent charge or are neutral

but have a permanent dipole (such as water) then the regions of the molecule

with net charge experience Coulombic interactions. Electrostatic interac-

tions are pairwise additive, i.e. the force between any pair of molecules is

independent of the position or state of other neighbouring molecules.

• Induction: the electric field created by a charged or polar molecule distorts

the electron charge distribution of neighbouring molecules, inducing a dipole

in it, which then interacts attractively with the molecule that induced the

distortion. Induction interactions are not pairwise additive because the dis-

tortion of the electron charge distribution of a particular molecule depends

on the net electric field it experiences.

• Dispersion: The fluctuations of the electron distribution around molecules

create instantaneous dipoles which interact to produce an attractive force

between molecules that have no permanent charge or dipole. Dispersion

interactions are not pairwise additive, but can be approximated as such.

In this work only short range repulsion and dispersion interactions (often

referred to as ‘Van der Waals’ forces) between neutral, mono-atomic, spherically

symmetric molecules have been considered, although the infrastructure has been

created to allow the many more complex classes of interaction [130–133] that exist

in the literature (for example reference [134] reviews the numerous potentials

available for water and [135] offers a recent and promising [136] potential derived

from first principles) to be easily added. It has been assumed that the forces

between molecules are pairwise additive.

The equations used to describe short range potentials usually extend to infinite

values of rij, however, it is necessary to impose a cut-off radius, rcut, beyond which
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Figure 5.3: The Lennard-Jones (LJ) and shifted force LJ intermolecular potentials for
argon. The inset figure shows that the shifted force version has a value and gradient of
zero at 0.85nm, the cut-off radius, and is zero thereafter.

the potential energy is zero. A cut-off is required to reduce the computational

cost of calculating the intermolecular forces, and the fact that potentials do not

extend to infinity has a quantum mechanical basis [86, 137]. The cut-off radius

is chosen where the value and gradient of the potential are both small.

5.1.3 The Lennard-Jones potential

Possibly the most famous potential used in molecular dynamics is the Lennard-

Jones (LJ) 12-6 model:

U (rij) =





4ε

((rij

σ

)−12

−
(rij

σ

)−6
)
, rij ≤ rcut

0, rij > rcut.

(5.6)

It was originally intended as a model for argon, but has become studied in its

own right because of its simplicity (more accurate models for argon have existed

for a long time [133]). Its equation of state has been thoroughly determined [138]

and it can be used as a benchmark to check and compare simulation codes.
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It is usually implemented as the shifted-force [131] Lennard-Jones potential:

USF (rij) =





4ε

[((rij

σ

)−12

−
(rij

σ

)−6
)
−

((rcut

σ

)−12

−
(rcut

σ

)−6
)

+
12rcut (rij − rcut)

σ2

((rcut

σ

)−14

− 1

2

(rcut

σ

)−8
)]

, rij ≤ rcut

0, rij > rcut.

(5.7)

The shifted force potential ensures that the potential and its spatial gradient

(hence the force) are zero at the cut-off radius, see figure 5.3. The shifted force

LJ potential was used in all simulations in this work, with parameters which

approximate argon unless otherwise stated: ε = 120kb, where kb is the Boltzmann

constant, σ = 0.34nm and rcut = 2.5σr ≡ 0.85nm.

The equation for fij for the shifted force potential (derived in appendix B) in

reduced units is

f∗ij =
48ε∗

σ∗2

((
r∗ij
σ∗

)−14

− 1

2

(
r∗ij
σ∗

)−8

− r∗cut

r∗ij

((
r∗cut

σ∗

)−14

− 1

2

(
r∗cut

σ∗

)−8
))

r∗ij.

(5.8)

5.1.4 Periodic boundaries

Molecular dynamics simulations are typically performed with periodic boundary

conditions [124, 130, 131] where the system is simulated as if it is surrounded by

an infinite number of copies of itself. In practical terms, this means that when

a molecule leaves one side of the domain, it is ‘wrapped-round’ and reintroduced

on the other side. Molecules calculate forces with periodic images of the system,

which are actually molecules residing across periodic boundaries on the other side

of the system, see figure 5.4.

5.2 Limitations of conventional molecular

dynamics

5.2.1 System geometry

Existing, widely used MD codes (such as LAMMPS, NAMD, AMBER, GRO-

MACS or DL POLY) can only simulate systems represented by simple domains:



CHAPTER 5. MD OVERVIEW AND REQUIREMENTS 34

r cut

rcut

Figure 5.4: Periodic boundaries. Above: the notional arrangement. The periodic sys-
tem of molecules (centre) is surrounded by images of itself. When a molecule leaves the
system it enters one of the images, and the image on the opposite side of the system
moves a corresponding molecule in. A molecule calculates intermolecular forces between
all molecules within rcut residing in the system and neighbouring images. Below: the com-
putational implementation. Molecules leaving the system are ‘wrapped-round’ and re-enter
from the opposite side. Intermolecular forces are calculated with molecules positioned on
the opposite side of the domain.
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volumes that are space filling when periodic boundaries are applied, normally

cubes, cuboids, or parallelepipeds. This is because most MD simulations are

intended to examine a system in an infinite, unbounded medium, without the

influence of solid surfaces.

5.2.2 Neighbour lists

The conventional method of MD force evaluation in distributed parallel com-

putation is to use the cells algorithm to build neighbour lists for interacting

pairs [130, 131]. The replicated molecule method provides interactions across

periodic boundaries and interprocessor boundaries, where the system has been

spatially partitioned [139, 140].

The spatial location of molecules in MD is dynamic, and hence not deducible

from the data structure that contains them. A neighbour list defines which pairs

of molecules are within a certain distance of each other and so need to interact via

intermolecular forces. When considering systems where the geometry is defined

by a mesh of unstructured, arbitrary polyhedral cells, that may have been divided

into irregular and complex mesh portions for parallel processing, neighbour lists

have two limitations:

1. Interprocessor molecule transfers: A molecule may cross an interpro-

cessor boundary at any point in time, even part of the way through a

timestep. At this point it should be deleted from the processor it was on

and an equivalent molecule created on the processor on the other side of

the boundary. Given that neighbour lists are constructed as lists of array

indices, references or pointers to the molecule’s location in a data structure,

deleting a molecule would invalidate this location and require searching to

remove all mentions of it. Likewise, creating a molecule would require the

appropriate new pair interactions to be identified. Neither is practical due

to the computational cost involved. It is conventional to allow molecules to

stray outside of the domain controlled by a processor and carry out inter-

processor transfers (deletions and creations) during the next neighbour list

rebuild. This is straightforward when the spatial region associated with a

processor can be simply defined by a function relating a position in space to

a particular cell on a particular processor (i.e. a uniform, structured mesh,

representing a simple domain). In a geometry where the space in question
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is defined by a collection of individual cells of arbitrary shape, this is more

difficult. For example, the location the molecule has strayed to may be on

the other side of a solid wall on the neighbour processor, or across another

interprocessor boundary.

2. Spatially resolved flow properties: MD simulations used for flow stud-

ies must be able to spatially resolve fluid mechanical and thermodynamical

fields. This is achieved by accumulating and averaging measurements of the

properties of molecules in individual cells of the same mesh that defines the

geometry. If a molecule is allowed to stray outside of the domain controlled

by a processor, as above, then it would not be unambiguous and automatic

which cell’s measurement the molecule should contribute to.

Both of these problems could be mitigated by communicating with the neighbour-

ing processor to determine and communicate which cell a molecule outside the

domain should be in, or alternatively maintaining a local copy of the geometry

of the neighbouring processors to a certain depth. In this work, however, either

of these options would result in an inflexible arrangement, with each additional

simulation feature requiring special treatment; neighbour lists have therefore not

been used.

Neighbour lists have some unfavourable features that limit their computa-

tional speed in large and non-equilibrium simulations. If one region of the fluid

has a high temperature or high bulk velocity, then the high molecular velocities

will cause the neighbour list to be invalidated and rebuilt often, limiting the cal-

culation speed in the whole domain. Increasing the size and temperature of a

system also inherently reduces the number of timesteps that a neighbour list is

valid for, thereby increasing the computational cost. This relationship can be

predicted, see appendix C.

A new algorithm has been designed either to replace the neighbour list tech-

nique outright, or to construct the neighbour list for simulations operating on

meshes of unstructured arbitrary polyhedral cells.
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5.3 Requirements for arbitrary geometry

simulation

In order to produce a useful, general simulation tool for hybrid simulations, the

MD component must be able to model complex geometrical domains represented

by unstructured mesh geometries of arbitrary polyhedra (such as those generated

by large scale, automatic meshing of geometries created by engineering CAD

tools) that have been parallelised for distributed computing by spatial decom-

position. This is also useful functionality in its own right; MD simulations of

complex nano-devices derived from CAD models can be made directly by per-

forming ‘CFD with molecules’. To achieve this:

• initial configurations of molecules corresponding to volumes defined by the

mesh must be generated. The algorithms underpinning a preprocessing

tool able to create such configurations are described in chapter 6. This is

able to fill volumes defined by a zone of the mesh (a set of cells) with a

single species crystal lattice of molecules. The user may specify the lattice

structure, orientation, density, temperature and average velocity;

• intermolecular forces must be calculated, taking account of periodic and

interprocessor boundaries. This is the most important and computation-

ally demanding aspect of any MD simulation and methods are detailed in

chapter 7 and appendices D and E;

• molecules must be tracked as they move through the mesh from cell to cell

(chapter 8);

• boundary conditions and constraints must be imposed to control the state

and define the dynamics of the system. Chapter 9 discusses some sim-

ple methods that have been implemented and outlines proposals for more

powerful techniques;

• spatially resolved measurements of the properties of the fluid and the flow

must be made. Methods for measuring and temporally averaging proper-

ties in individual cells are given in chapter 10 for a heterogeneous fluid

containing an arbitrary number of species.
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5.3.1 Parallelisation

The simulation is to be parallelised by domain decomposition [139, 140], where

the simulation volume is divided into smaller portions and each processor is given

responsibility for simulating the molecules residing in its portion. Molecules move

between processors when they enter and leave a portion. Where the simulation

domain is simple (a cube or a cuboid for example) then the decomposition is

straightforward (divide into smaller cubes or cuboids), which is what is done by

existing MD codes. Where the domain is a complex shape constructed using

unstructured arbitrary polyhedra, the volume must be decomposed into irregular

portions. There are libraries available for partitioning meshes (METIS [141] for

example) which minimise interprocessor connections, but can produce unintu-

itively shaped portions over which the user does not have much direct control.

Intermolecular forces must be passed across processor boundaries, and where

the decomposition into portions can be entirely arbitrary, processors that do not

share a boundary still may need to communicate.

5.4 Implementation in OpenFOAM

All algorithms described have been implemented in OpenFOAM [5], which is an

open source C++ library intended for continuum mechanics simulation of user-

defined physics (primarily used for CFD) in arbitrary, unstructured geometries.

See appendix G for an overview. The MD simulation code (see chapters 7 to 10)

has been built using OpenFOAM’s lagrangian particle tracking library (see sec-

tion 8.3) and is called gnemdFOAM. All features of OpenFOAM have a common

infrastructure for distributed memory parallel processing using MPI for commu-

nications.

The initial molecule configuration generation tool for gnemdFOAM is also

written using OpenFOAM and is called molConfig, see chapter 6. molConfig op-

erates independently on individual portions of a mesh that have been spatially

decomposed to run in parallel, allowing systems comprising very large numbers of

molecules to be created because they never need to all be contained in the mem-

ory of a single computer. The molecular configurations are the same whether

generated in parallel or in serial; crystal lattices generated in parallel are contin-

uous and defectless across interprocessor boundaries. All parallel decomposition

and reconstruction is dealt with by OpenFOAM using existing functionality.
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5.4.1 Mesh description

The mesh in OpenFOAM is flexible and powerful: it is unstructured and built

from arbitrary polyhedra. From the OpenFOAM user guide [5]:

“By default OpenFOAM defines a mesh of arbitrary polyhedral cells

in 3D, bounded by arbitrary polygonal faces, i.e. the cells can have

an unlimited number of faces where, for each face, there is no limit

on the number of edges nor any restriction on its alignment.”

A list of mesh vertex positions is stored and a list of mesh faces is constructed;

each face is an ordered list of vertex numbers. Cells are constructed as a list of

face numbers. Vertices may be shared by several faces and cells. Cells can be

grouped together into zones, each zone representing a region of the domain with

common characteristics. Zones are used in molConfig to define regions to be filled

with different crystals.

Patches

Patches are a set of OpenFOAM classes. Each patch comprises a collection

of cell faces representing a mesh boundary of some form — they may provide

solid surfaces, inlets, outlets, symmetry planes, periodic planes, or interprocessor

connections.

5.4.2 Continuum solver integration

One of the main advantages of using OpenFOAM is that it offers tight integration

with highly capable continuum mechanics solvers using the same geometry and

underlying numerics as the molecular component. This facilitates hybridisation

greatly. It also allows the extension of physical phenomena which may be incor-

porated: for example Maxwell’s equations can be solved on the same mesh as

the molecules occupy to apply an external electromagnetic field, or to apply the

mean-field value of long range electrostatic interactions.

5.4.3 Reduced unit implementation

Currently gnemdFOAM and molConfig are implemented in reduced units, as are

all quantities that the user must specify. In future versions all user interface
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quantities will be in SI units and a set of reduced units will be used for internal

calculation only.



Chapter 6

Initial molecular configuration

generation

In order to initialise an MD simulation, molecules must be placed in the zones

of a mesh. In conventional MD simulations this is typically done by filling the

system with a homogeneous lattice, with any additional features, such as complex

molecules or solid boundaries, being placed by hand. The tool molConfig has

been created to perform ‘flood fills’ of zones of cells in the mesh with lattices of

molecules. The zones may have arbitrary shape and be distributed across any

number of processors. Lattices of molecules may be used to fill zones containing

solids, liquids or gases: the intermolecular potential, temperature and density of

the molecules will determine if the ordered lattice state is preserved (for a solid)

or if it quickly collapses or melts into a random, fluid-like spatial distribution.

The algorithm used by molConfig fills any volume defined by a zone of cells

with a single lattice of molecules of specified orientation and alignment. It gener-

ates an expanding cube of lattice unit cells, starting from a user-specified position

(known as an ‘anchor’ for the lattice), and angled according to a user-specified

orientation (see figure 6.1). Each of these unit cells is populated with molecules

corresponding to a user-specified type of lattice for the zone. Each proposed

molecule position is tested to see which cell it occupies1. If this cell comprises part

of the zone currently being filled, the molecule is accepted; if not, the molecule

is rejected. Using lattice unit cells makes the generation of the expanding cube

independent of the specific crystal structure. Additional layers of unit cells are

1Finding which cell a position corresponds to is an existing function in the mesh description
in OpenFOAM.

41
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2

1

A

Figure 6.1: A single mesh zone comprising two disconnected volumes. These volumes are
filled by creating an expanding cube of lattice unit cells from the anchor point, A. Volume
2 will be filled as long as volume 1 is not fully filled before the expanding cube reaches the
edge of volume 2.

added to the cube until no molecules are accepted for placement in a complete

layer, meaning that the volume has been completely filled. An exception is made

if no molecules have been placed in the zone so far, enabling the lattice anchor

to be placed outside the volume of the zone.

Concave and disconnected volumes of cells belonging to the same zone must

be able to be filled (see figure 6.1) which makes more sophisticated algorithms

(for example projecting rays to find the extents of the domain) difficult to imple-

ment reliably. The ability to fill disconnected volumes allows, for example, wall

regions with gaps for fluid inlets to be filled with a single lattice. It is also a re-

quirement for parallel processing because mesh decomposition will often produce

disconnected volumes for a zone that is fully-connected in the undecomposed

mesh.

6.1 Creating an expanding cube of unit cells

Consider a solid cube of unit cells comprising n layers of concentric hollow cubes

of one unit cell thickness, starting with n = 0 as a single unit cell at the centre. A

layer of this expanding cube is constructed as a combination of a top and bottom

‘cap’ plus ‘rings’ of cells, see figure 6.2. A Cartesian lattice coordinate system
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n = 2, cap

n = 1 cube

n = 2, rings

n = 2, cap

Figure 6.2: Exploded view of the unit cells in layer n = 2 added to the cube of cells
containing layers n = 0 and 1. A (2n + 1) × (2n + 1) square of unit cells — a ‘cap’ —
is placed on each end of the cells from the previous layer and (2n − 1) rings are added
between the caps to establish the next full layer of the cube.

local to the expanding cube is defined to specify the position of a unit cell,

Λ = Λxxλ + Λyyλ + Λzzλ ≡ (Λx,Λy,Λz) ,

where Λx,Λy and Λz are integers for unit cell centres and xλ, yλ and zλ are the

lattice coordinate system unit vectors.

Caps Caps are placed in the xy lattice coordinate plane. The top cap has

Λz = n and the bottom cap Λz = −n. For each cap, a complete square is

generated by setting

Λy = {−n,−n+ 1, . . . , n} ,

and for each value of Λy generate a line of cubes by setting

Λx = {−n,−n+ 1, . . . , n} .
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The centre unit cell (n = 0) is a special case and is placed at the lattice coordinate

origin.

Rings There are 2n− 1 rings, with

Λz = {−n+ 1,−n+ 2, . . . , n− 1} .

The rings are created by a 2D expanding layer of squares algorithm. The (Λx,Λy)

coordinates of the unit cells to be added to the layer of the ring are generated by

adding a layer to a square of unit cells. Unit cells are generated along one side of

the square and replicated around the other three sides to create the whole layer.

Note that this replication cannot be performed by simply rotating or reflecting

the positions of molecules on one side to create the other three, because the unit

cells are generally not rotationally symmetric.

The generation of an expanding square of unit cells is shown in figure 6.3.

The first cell (n = 0) is a special case and is placed at the origin of the lattice

coordinate system. The coordinates of a unit cell will be given by n, the layer it

is in, and r, the repetition counter: r = {0, 1, 2, . . . , 2n− 1}, which generates the

correct number of unit cells along each side. Λk represents the coordinates of the

unit cells on the kth side of the layer, k = {1, 2, 3, 4}:

Λ1 = (n,−n+ (r + 1)) , (6.1)

Λ2 = (n− (r + 1) , n) , (6.2)

Λ3 = (−n, n− (r + 1)) , (6.3)

Λ4 = (−n+ (r + 1) ,−n) . (6.4)

Note that the coordinate of each successive side is generated by swapping the x

and y coordinates, negating the y → x transfer, i.e.

Λk+1 =
(−Λk

y,Λ
k
x

)
. (6.5)
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Figure 6.3: The construction of the sides of the square for layers n = {1, 2, 3, 4}. Λ1:
vertical, positive x, light-grey. Λ2: horizontal, positive y, dark-grey. Λ3: vertical, negative
x, white. Λ4: horizontal, negative y, mid-grey. a) Λ1 for n = 1; b) all sides for n = 1 and
Λ1 for n = 2; c) all sides for n = 2 and Λ1 for n = 3; d) all sides for n = 3 and Λ1 for
n = 4.
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6.2 Zone specification: molConfigDict

For each zone of cells in the mesh, the user must specify the details of the lattice to

be created. This data is supplied through the molecule configuration dictionary2

file: molConfigDict. The entry for a zone contains the items shown in table 6.1.

The overall density of molecules placed in the zone (the total number of

molecules divided by the total zone volume) may only be approximately correct.

It will deviate slightly from the bulk value specified unless the region dimensions

correspond to an integer number of unit cells and the anchor and orientation

angles place and align the lattice so that the domain is filled accordingly.

It is possible to generate molecular data from an underlying, spatially-varying

data field. For example, a temperature and velocity field from an initial con-

tinuum fluid mechanics simulation of the geometry using OpenFOAM may be

available, and the molecular velocities can be generated using the local values of

temperature and bulk velocity.

To create a solid wall in a simulation it is often useful to tether molecules into

a lattice, for example using a spring potential [110, 142], so that they retain their

structure. If tethered is yes, then the initial locations of molecules in this zone

will be their tether positions.

In future developments of the utility, realistic crystals will be available in a

library. The id, mass and density entries will not be necessary, and additional in-

formation may be required. For example, for latticeStructure = NaCl, molecules

would be placed with the correct structure and spacing for the specified temper-

ature (and possibly pressure), and given ids of Na and Cl, with the appropriate

mass and charge assigned to each.

6.3 Generating molecule positions from a unit

cell

A rank two rotation tensor, R, is created using the φ, θ, ψ convention Euler

angles [143] to specify the orientation of the lattice relative to the global Cartesian

2All user specified data is supplied to OpenFOAM via dictionary files.
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Table 6.1: Data elements required by each zone in molConfigDict.

Entry Description Data Required

density bulk number density scalar
temperature initial temperature scalar
velocityDistribution random number distribution (at the

specified temperature) to choose ini-
tial velocities of molecules from, see
section 6.6

uniform or maxwellian

bulkVelocity average velocity to add to random
velocity component

vector

id identification of type of molecule
to be added — used to determine
which intermolecular potential to
use

string, e.g. LJ

mass mass of each molecule to be placed scalar
latticeStructure what structure of lattice to create string, e.g. SC, BCC or

FCC
anchor the position specifying the starting

point of the lattice
vector

anchorSpecifies specifying whether the anchor is the
position of a molecule or the corner
of a unit cell

molecule or corner

tethered are the molecules to be tethered to
their initial positions?

yes or no

orientationAngles the orientation of the lattice, see
section 6.3

triplet of angles
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coordinate system:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (6.6)

where,

r11 = cos(ψ)cos(φ)− cos(θ)sin(φ)sin(ψ),

r12 = cos(ψ)sin(φ) + cos(θ)cos(φ)sin(ψ),

r13 = sin(ψ)sin(θ),

r21 = −sin(ψ)cos(φ)− cos(θ)sin(φ)cos(ψ),

r22 = −sin(ψ)sin(φ) + cos(θ)cos(φ)cos(ψ),

r23 = cos(ψ)sin(θ),

r31 = sin(θ)sin(φ),

r32 = −sin(θ)cos(φ),

r33 = cos(θ).

Another rank two tensor, G, is required to specify the scaling of the cubic unit

cells to the shape of the lattice,

G =




g11 0 0

0 g22 0

0 0 g33


 . (6.7)

This is specific to the lattice structure used and the density of the crystal. R and

G are used in conjunction with the lattice anchor, A, to transform a position in

lattice coordinates, Λ, to a position, P, in the global coordinate system

P = A + R · (G ·Λ). (6.8)

Each lattice type will place its own number of molecules in the appropriate po-

sitions around the unit cell centre. Three examples given below are the simple,

body-centred and face-centred cubic lattices where

g11 = g22 = g33 = g,
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because the lattices are cubic. These examples are based on lattice generation

steps in [130].

Simple cubic (SC)

For ρ, the user specified bulk number density,

g = ρ−1/3.

and if anchorSpecifies = molecule then a single molecule is placed at the unit

cell centre, Λ. If anchorSpecifies = corner the molecule is shifted in the lattice

coordinates to Λ− (0.5, 0.5, 0.5) prior to transformation by equation (6.8).

Body centred cubic (BCC)

For a unit cell centre Λ, if anchorSpecifies = molecule, molecules are placed at

(Λx,Λy,Λz) ,

(Λx + 0.5,Λy + 0.5,Λz + 0.5) ,

in lattice coordinates, then transformed to the global coordinate system using

equation (6.8), where

g =
(ρ

2

)−1/3

.

If anchorSpecifies = corner then the two positions above are shifted in the lattice

coordinates by (−0.25,−0.25,−0.25) prior to transformation.

Face centred cubic (FCC)

For a unit cell centre Λ, if anchorSpecifies = molecule, molecules are placed at

(Λx,Λy,Λz) ,

(Λx,Λy + 0.5,Λz + 0.5) ,

(Λx + 0.5,Λy,Λz + 0.5) ,

(Λx + 0.5,Λy + 0.5,Λz) ,
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in lattice coordinates, then transformed to the global coordinate system using

equation (6.8), where

g =
(ρ

4

)−1/3

.

If anchorSpecifies = corner then the four positions above are shifted in the lattice

coordinates by (−0.25,−0.25,−0.25) prior to transformation.

6.4 Optimising the anchor position

The choice of anchor strongly influences the speed of the algorithm. An anchor

near to the centre of the zone volume minimises the number of unnecessary unit

cells to be tested. This has a large impact when the mesh has been decomposed for

parallel processing because the anchor may lie far from the spatial region assigned

to the processor in question. The algorithm will test many unnecessary unit cells

before it reaches the region that the processor in question has been assigned,

whereupon the expanding cube will be large and only a small proportion of the

unit cells added to a layer will create molecules that are accepted.

The anchor position can also impact on the ability to fill disconnected volumes.

If a volume of a zone finishes filling before another starts, then the algorithm will

terminate and not fill the further away volume. Again, an anchor near the centre

of the zone mitigates this. Both of these problems are addressed by automatically

moving the anchor from the user-specified point to the lattice site that is closest

to the zone volume centre; molecules are created at the same positions as they are

when starting from the user-specified anchor, so no change in the configuration

results.

The centroid of the volume is not the quantity of interest because this is

weighted towards larger volumes. The required centre is instead calculated by

finding the midpoint between the extremities of the volumes of the zone in the

global coordinate system,

C =
1

2
(Xmin +Xmax, Ymin + Ymax, Zmin + Zmax) . (6.9)

The closest lattice point to C is required, and will be called the optimised

anchor, AO (see figure 6.4). Rewriting equation (6.8) for C, where ΛC is the po-

sition of the volume centre in local lattice coordinates and A is the user specified
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Figure 6.4: Placing the optimised anchor at the unit cell position closest to the centre of
the volumes in the zone.

anchor,

C = A + R· (G ·ΛC) , (6.10)

and rearranging for ΛC ,

ΛC = G−1 · (R−1 · (C−A)
)
. (6.11)

R is orthogonal, so R−1 = RT and

G−1 =




1/g11 0 0

0 1/g22 0

0 0 1/g33


 . (6.12)

The closest unit cell centre in lattice coordinates, ΛAO
, is found by

ΛAO
= (nint (ΛCx) , nint (ΛCy) , nint (ΛCz)) , (6.13)

where nint returns the nearest integer to the argument. The optimised anchor is

given finally by

AO = A + R· (G ·ΛAO
) , (6.14)
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Figure 6.5: Three zone test case mesh and zones: a channel with a constriction. Overall
dimensions are 31× 25× 12 MD reduced units.

and AO is used instead of A in equation (6.8) when generating unit cells.

Optimising the anchor position does not guarantee that all possible arrange-

ments of disconnected volumes will be filled, although it substantially increases

the number that will be. If a volume in a particular zone does not get filled with

molecules, then the zone can be subdivided and the new zones given identical

details in molConfigDict. The mesh can be redecomposed to distribute the cells

amongst processors differently if the problem occurs only in parallel.

6.5 A three zone test case

The operation of the placement algorithm is illustrated by the example case

illustrated in figure 6.5. Table 6.2 shows the pertinent molConfigDict entries

describing the configuration of the system. Three different types of molecule are

created, in three different lattice structures. The wall zones tether their molecules

in place and the liquid region is given an initial average velocity. All numerical

values are expressed in MD reduced units [130, 131] with an energy scale of 120kb,

where kb is the Boltzmann constant, a length scale of 0.34nm and a mass scale

of 6.6904× 10−26kg.

Figure 6.6 shows the configuration of molecules that molConfig generates for
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Table 6.2: Pertinent molConfigDict entries for the three zone test case in figure 6.5.

Entry Bottom Wall Liquid Top Wall

density 0.8 0.8 0.85
bulkVelocity (0.0 0.0 0.0) (2.0 0.0 0.0) (0.0 0.0 0.0)
id WALLB LJ WALLT
latticeStructure FCC SC BCC
anchor (16.25 4.75 6.25) (6.25 13.25 6.25) (18.25 20.75 6.25)
anchorSpecifies molecule molecule corner
tethered yes no yes
orientationAngles (30 0 0) (45 0 0) (0 0 0)

Figure 6.6: Three zone test case configuration of molecules. Molecules coloured according
to id. User specified anchors

⊗
and optimised anchors

⊕
are shown.

this test case, and the positions of the user-specified and optimised anchors.

The bottom wall anchor is in the optimal position. The bottom wall and liquid

anchors are positioned on top of molecules and the top wall anchors are between

molecules, as per their respective anchorSpecifies entries. Figure 6.7 shows the

molecules in 3D.

The mesh is decomposed into four portions for parallel processing using the

METIS [141] library (see figure 6.8). The mesh portions assigned to processors

1 and 3 contain disconnected volumes belonging to the same zone. Focusing on

the portion assigned to processor 1 (see figure 6.9) there are two disconnected

volumes each for the bottom wall and liquid zones. The optimised anchors for
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Figure 6.7: 3D view of the molecules created in the three zone test case. Molecules
coloured according to id.

these two zones are shown. The same configuration of molecules is generated

when the four portions are filled independently by different processors, as when

the whole mesh is filled using one processor. Figures 6.5 to 6.9 were generated

using ParaView [144].

6.6 Molecular velocity generation

The velocities of the molecules created are initialised to a set of thermal (random)

velocities to match the user defined temperature, TU , in the molConfigDict entry

for the zone. The equilibrium kinetic temperature, T , of a stationary system of

NM molecules [131] is given by

T =
1

3NM

NM∑
i=1

miv
2
i , (6.15)

in MD reduced units, wheremi is the mass of a molecule and vi is the magnitude of

its velocity. The direction of the velocity assigned to each molecule is random, and

the magnitude of each is chosen to give the correct temperature. The distribution

of molecular speeds can either be Maxwellian or uniform.
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Figure 6.8: The mesh for the three zone test case decomposed into 4 portions for parallel
processing. Processors 1 and 3 have zones with disconnected volumes.

Figure 6.9: The disconnected volumes of the bottom wall and liquid zones residing on
processor 1. The shading corresponds to the zones as shown in figure 6.5. The optimised
anchors for filling each zone on this processor are shown.
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Maxwellian distribution

The equilibrium (Maxwellian) velocity distribution of a system is defined as the

probability of a component of a molecule’s velocity in any direction being a normal

distribution with a zero mean [145], i.e.

P (vx) =
1

σ
√

2π
e−v2

x/2σ2

, (6.16)

where σ =
√
T/m. The velocity to assign to a molecule, vi, is obtained by

sampling the component in each direction from a normal distribution random

number generator with zero mean and variance σ2 = TU/mi. A Maxwellian

initial distribution creates molecular velocities that are physically more realistic

than a uniform distribution.

Uniform distribution

A vector, vr, is created for each molecule which has each of its components

generated by a uniform random number generator returning a value between -1

and 1. The velocity assigned to the molecule, vi, is given by

vi =

√
3TU

mi

vr

|vr| . (6.17)

The prefactor is obtained by rearranging equation (6.15) for vi with NM = 1. A

uniform initial velocity distribution can be used to determine when a system has

equilibrated: measuring the velocity distribution in the system as the simulation

progresses and identifying when it reaches a Maxwellian form.

Remove drift velocity and apply average

The finite number of random numbers used to generate the molecular velocities

will in general not result in a mean velocity of zero. This remaining ‘drift’ velocity

is removed and the user-specified average velocity for the zone in question, vU , is

added to each molecule by

v′i = vi − 1

N

N∑
i=1

vi + vU . (6.18)
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6.7 Avoiding high energy overlaps at zone

boundaries

At the interface between different zones it is possible that molecules will be placed

so close to each other that the high-energy, repulsive portions of their intermolec-

ular potentials will overlap. This causes the MD simulation to crash because

these high energy overlaps accelerate molecules to very large velocities in the first

timestep, where they then overlap with the first molecule that they collide with

(due to the finite timestep), accelerating it to a very high velocity. This causes a

cascade of high energy impacts and the total energy in the simulation to increase

uncontrollably. This is similar to what happens when too long an integration

timestep is used, see section 8.2.1.

This problem is avoided by calculating the intermolecular energy between

pairs of molecules (see chapter 7) before the first timestep; any pairs sharing

a potential energy above a user defined threshold, Umax, are identified. If the

molecules in a high energy pair have the same id (are the same type of molecule)

then one of them is deleted from the simulation. If the molecules have different ids

then a user specified removal order list is consulted. The molecule that appears

first in the removal order list is deleted. An example of this is shown in figure 6.10.

This also applies across periodic and interprocessor boundaries, where molecules

on either side of these boundaries can be so close to each other that they overlap.

Determining a potential energy limit

There are numerous ways to choose a potential energy limit. Each of them has the

same objective — identify a pair-interaction energy that, if converted to kinetic

energy, would impart a velocity to the molecules in the pair that would cause an

energy cascade for the current value of timestep. Currently a single energy limit

is used that must cope with the ‘worst case’ overlap. It would be possible to have

a different limit corresponding to each intermolecular potential.

A simple method of determining Umax is to choose a velocity from the high

speed end of the Maxwellian velocity distribution for the ‘worst-case’ situation

— the lightest molecules at the highest temperature. The velocity chosen should

be relatively improbable — see appendix C for how to choose a velocity with a

specified probability. For example, for a temperature of T = 2.5 and molecules

of mass m = 1 (all quantities in MD reduced units), then there is a probability
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Figure 6.10: A close-up of the top right of figure 6.6 showing the constriction in the
top wall zone. a) shows the molecules created by filling the zones, note the overlapping
molecules at the interface. b) the result when WALLT comes before LJ (see table 6.2) in
the removal order list: liquid zone molecules (LJ) are retained at the expense of top wall
molecules (WALLT). c) the result when LJ comes before WALLT in the removal order list:
top wall molecules (WALLT) are retained at the expense of liquid zone molecules (LJ).
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of 1/1000 that a particular molecule will be travelling at a speed of v = 6.756.

Therefore,

Umax =
1

2
mv2 =

6.7562

2
= 22.82,

would be a suitable potential energy limit in this case. A limit should be low

enough to ensure stability, but not so low as to remove large numbers of molecules

that are legitimately interacting, should the simulation be stopped and restarted

at any point.

Insertion of complex molecules

The high energy overlap removal mechanism can be used as the basis for the

insertion of complex molecules. For example, the insertion of large biomolecules

into a system, or adding carbon nanotubes spanning a solid barrier between two

fluid reservoirs. The complex molecule can be created in place and, providing

that the solid and solvent molecules appear before any of the constituents of the

complex molecule in the removal order list, it will be embedded into the existing

matter.



Chapter 7

Intermolecular Force Calculation

7.1 Interacting cell identification

In order to efficiently calculate intermolecular pair forces in meshes constructed

from unstructured arbitrary polyhedral cells, the Arbitrary Interacting Cells Al-

gorithm (AICA) was devised. AICA is a generalisation of the Conventional Cells

Algorithm (CCA) [130, 131]. In the CCA, a simple (usually cuboid) simulation

domain is subdivided into equally sized cells. The minimum dimension of the

CCA cells must be greater than rcut, the cut-off radius of the intermolecular pair

potential, so that all molecules in a particular cell interact with all other molecules

in their own cell and with those in their nearest neighbour cells (i.e. those they

share a face, edge or vertex with — 26 in 3D). Extensions to this that permit

the use of smaller cells [146–148] have been proposed, but they still require the

domain to comprise a structured mesh of uniform cubes or cuboids. The objec-

tive of any cell algorithm is to evaluate interactions between as few molecules as

possible that are further apart than rcut to maximise computational speed.

AICA uses a 3D mesh of unstructured polyhedra so there are no restrictions

on cell size, shape or connectivity. A cell’s position in the mesh structure does

not imply anything about its physical location or connectivity. Therefore, the

ability to handle arbitrary geometries comes from deducing locally which cells

are in range to interact. Each cell has a unique list of other cells that it is to

interact with, this list is known as the Direct Interaction List (DIL) for the Cell

In Question (CIQ). It is constructed by searching the mesh to create a set of

cells that have at least one part of their surface within a distance of rcut from the

surface of the CIQ, see figure 7.1. Where there are multiple molecular species

60
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cutr

Figure 7.1: Interacting cell identification example using 2D unstructured triangular cells.
The spatial domain (main square section comprising the real cells) is periodic top-bottom
and left-right. Real cells within rcut that interact with the CIQ (dark) are shaded in grey.
The required referred cells are hatched in alternate directions according to which boundary
they have been referred across. Realistic systems would be significantly larger compared
to rcut than shown here.

present with different values of rcut, the maximum value is used to determine cell

interactions. Where substantially different cut-off radii are present, it would be

possible to have separate DILs for different range interactions, all of which could

be constructed simultaneously during a single evaluation of the mesh.

This work has been carried out on the basis that the mesh is static. It is

possible to use the same methods for a system with a dynamic mesh, providing

that the information about which cells interact can be efficiently and reliably kept

up-to-date, or rebuilt without incurring an unreasonable computational cost.

The DILs are established prior to the start of simulation and are valid through-

out because the spatial relationship of the cells is fixed, whereas the set of

molecules they contain is dynamic. In a similar way to the CCA, at every timestep

a molecule in a particular cell calculates its interactions with the other molecules

in that cell and consults the cell’s DIL to find which other cells contain molecules

it should interact with. Information is required to be maintained at all times

stating which cell a molecule is in — this has been implemented in a robust

and efficient manner in OpenFOAM as part of the method for tracking particle

motion, see section 8.3.
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rcut

A

Replicated
molecules

Processor 2Processor 1

Figure 7.2: Spatial decomposition for parallel processing. Molecule A must calculate
intermolecular forces with all other molecules within its cut-off radius, rcut. When the
domain has been decomposed, some of these molecules may lie on a different processor. In
this case, copies of the appropriate molecules from processor 2 are made on processor 1.

7.2 Replicated molecule periodicity and

parallelisation

When parallelising an MD simulation, the spatial domain is decomposed and

each processor is given responsibility for a single region. Molecules that cross the

boundaries between these regions need to be communicated from one processor

to the next. Processors also communicate when carrying out intermolecular force

calculations, in which molecules close to processor boundaries need to be repli-

cated on their neighbours to provide interactions. This process is illustrated in

figure 7.2. Periodic boundaries also require information about molecules that are

not physically adjacent in the domain (see figure 7.3); these required interactions

can also be constructed by creating copies of molecules outside the boundary.

It is possible to handle processor and periodic boundaries in exactly the same

way, because they have the same underlying objective: molecules near to the edge

of a region need to be copied either between processors or to other locations on

the same processor at every timestep to provide interactions. This is a useful

feature because decomposing a mesh for parallel processing will often turn a

periodic boundary into a processor boundary. The issue is: how to efficiently

identify which molecules need to be copied, and to which location, because this

set continually changes as the molecules move.

More general and flexible coupled boundaries can be implemented using the
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Replicated
molecules

rcut

B

Figure 7.3: Periodic boundaries. Molecule B must calculate intermolecular forces with
all other molecules within rcut. Some of those molecules may be on a periodic image of the
system, which, in computational terms, will reside on the other side of the domain. Serial
calculations in simple geometries typically use the minimum image convention [130, 131],
but this is not suitable for parallelisation.

rcut molecules
Replicated

Figure 7.4: An example of a non-parallel, separated boundary. This could represent
either a 90◦ bend in a channel where molecules are ‘recycled’ from inlet to outlet. It could
also represent a cross section through a hybrid simulation of flow in a pipe where the MD
section is an outer annulus and rotational symmetry has been exploited to simulate only a
quarter of the pipe — a typical CFD technique. In both cases, molecules near the separated
boundaries must correctly exchange intermolecular forces.
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same framework, where molecules are replicated to either side of a spatially-

separated, non-parallel boundary. For example, a ‘recycling’ boundary condition

or a rotationally symmetric simulation, see figure 7.4, or coupling an inlet or

outlet boundary or hybrid interface with any orientation to a static, external

molecule reservoir.

7.3 Referred molecules and cells

Replicated molecule parallelisation and periodic boundaries are handled in the

same way using referred cells (see figure 7.1) and referred molecules.

7.3.1 Referred molecule

A referred molecule is a copy of a real molecule that has been placed in a re-

gion outside a periodic or processor boundary in order to provide the correct

intermolecular interaction with molecules inside the domain. A referred molecule

holds only its own position and id (identification of which type of molecule it is

for multi-species simulations). Referred molecules are created and discarded at

each timestep, and do not report any information back to their source molecules.

Therefore if molecule j on processor 1 needs to interact with molecule k on pro-

cessor 2, a separate referred molecule will be created on each processor.

7.3.2 Referred cell

Referred cells define a region of space and hold a collection of referred molecules.

Each referred cell knows

• which real cell in the mesh (on which processor) is its source;

• the required transformation to refer the position and orientation of the real

molecules in the source cell to the referred location, see appendix E. A

general transformation of position and orientation is required for the cases

mentioned in section 7.2 and figure 7.4 which require the replicated cells to

have a different orientation to their source cell;

• the positions of all of its own vertices. These are the positions of the ver-

tices of the source cell which have been transformed by the same referring

transform as the referred molecules it contains;
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• the structure of all of the cell edges. Each edge is defined by a pair of indices

in the referred vertex positions list indicating the vertices that comprise it;

• the structure of all of the cell faces. Each face is defined by a list of indices

in the referred vertex positions list indicating the vertices that comprise it;

• which real cells are in range of this particular referred cell and hence require

intermolecular interactions to be calculated. This is constructed once at

the start of the simulation, in the same way as the DIL for real-real cell

interactions.

7.4 Interacting cell identification methods

Building DILs and creating referred cells depends on identifying whether or not

two cells are close enough such that the molecules they contain need to interact.

Four methods for testing this were considered: PP, PPGR, CGAL and PFEE.

Point-Point (PP)

The fastest and most straightforward method of determining whether cells are

within rcut is to use Point-Point (PP) searching. All of the Np points in the mesh

are compared to each other using a non-double-counting loop, and if any pair of

points are within rcut of each other, then all of the cells that these points form

part of1 must all be in range of each other, see algorithm 1. Note that a point

is compared to itself (pj = pi is used for the inner loop rather than pj = pi + 1)

— this guarantees that neighbouring cells are identified for interaction if none of

their non-shared vertices are within range of each other.

It is possible for PP to introduce errors, where molecules that should interact

do not because their containing cells are not identified as being in range. Slices

of cells may not be identified for interaction because

• a vertex may be within rcut of a face of another cell, but not of any vertex.

See figure 7.5;

1The information about which cells use a specific mesh point, and all subsequent information
about the relationship between the points, edges, faces and cells in the mesh exists in, and is
readily accessible from, the mesh description in OpenFOAM.
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Algorithm 1 Point-Point cell searching

for pi = 0; pi < Np; pi + 1 do
for pj = pi; pj < Np; pj + 1 do

if the magnitude of the separation of the points referenced by pi and
pj ≤ rcut then

all cells which pj and pi form part of must interact.
end if

end for
end for

BA rcut

Figure 7.5: Errors caused by cut-off radius searching between vertices only. A sphere of
radius rcut drawn from the indicated vertex on cell A intersects a face of cell B, therefore,
molecules near this vertex should interact with molecules in the shaded region. A sphere
of radius rcut drawn from either of the indicated vertices on cell B will not intersect any
point of the surface of cell A; therefore, point-face searches are not reciprocal.

• the edges of two cells may be within rcut of each other, but none of the

vertices of either cell are within rcut of a vertex, edge or face of the other.

See figure 7.6, this problem is only possible in 3D.

Both of these problems are most prevalent in meshes of tetrahedral cells, and

cannot occur in regular meshes with cuboid, or nearly cuboid cells.

Point-Point with Guard Radius (PPGR)

The errors identified with the PP method can be reduced by adding a guard

radius, rG, to rcut. PPGR works exactly as PP, except cells with vertices separated

by ≤ rG + rcut now also interact. The guard radius will mean that many cells will

have DILs that are larger than necessary, which will slow down the running of

the simulation because more unnecessary molecule pairs will be evaluated at each

timestep. It is possible to remove all errors from PP by adding a large enough
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Figure 7.6: Two tetrahedral cells with edges within rcut (dashed lines) of each other,
but searching from vertices cannot establish this. The closest points between the two
edges are marked, and the intersecting volumes on the other cell of a sphere of radius rcut

drawn from these points is shaded. Note that the straight edges of the shaded sections are
perpendicular.

guard radius, but this value is difficult to determine in advance, and in practise

is relatively large, introducing a significant running performance penalty.

Computational Geometry Algorithms Library (CGAL)

Whether cells need to interact can be found without either the errors of PP or

the unnecessary additions to DILs of PPGR. The published CGAL library [99]

can be used to calculate the closest distance between two convex hulls [149],

constructed from the points of each cell. This method always finds all of the cells

that need to interact, irrespective of their relative geometry, by using a single

non-double-counting loop comparing all cells in the mesh to each other. When

implemented, however, the computational cost proved thousands of times greater

than any of the other three methods described here. It is not suitable for meshes

with a realistic number of cells, and will not be discussed further.

Point-Face and Edge-Edge (PFEE)

All cells within rcut of each other can be identified, without adding any unneces-

sary cells to a DIL, by conducting the mesh search on the basis of the two errors

identified in PP: point-face and edge-edge searching.
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v1

v2

PvA

PfA

PeA

v0
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Figure 7.7: The three possibilities for the closest point on a face to an arbitrary point;
the point can be closest to a vertex, Pv, an edge, Pe, or the face itself, Pf . Points labelled
with a subscript A are those projected onto the plane of the face.

APiAPo

Pi

Po

n

C

Figure 7.8: Projecting the point to be evaluated onto the plane defined by the face centre
and normal unit vector. The projected point can either lie outside (PoA) or inside (PiA)
the face. The face is shown as a solid line and the extended plane as a dashed line.
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Point-Face The closest point on a face (which is a polygon with an arbitrary

number of sides) to an arbitrary 3D point, P, can either be a face vertex, lie

on an edge, or lie on the face itself. Figure 7.7 shows these three cases. The

question of whether the point is within rcut of the face can be determined by the

following algorithm. The structure of this point-face algorithm is such that it

only evaluates as much of the problem as is necessary to make a decision about

whether the point is in range of the face. Once it has this, it stops the evaluation

of the current point-face pair and moves on to the next.

1. Project P to the nearest point, PA, on the plane defined by the face centre,

C and normal unit vector, n, see figure 7.8, using

PA = P− ((P−C) · n)n. (7.1)

If |(P−C) · n| > rcut then it is not possible for the point to be in range of

the face2. No more calculation is necessary for this point-face pair.

2. Whether PA lies inside or outside of the face must be determined. A line

PAC is drawn from PA to C, along the plane of the face and each edge

of the face is tested to see if this line crosses it. To do this, all of the

vertices, v0,v1 . . .vN, are projected onto a local 2D coordinate system that

coincides with the plane of the face, with PA as its origin, see figure 7.9.

This is necessary because PAC and an edge may be skew if considered as

3D lines due to numerical round-off errors in the position of points of the

face, or where a face is not perfectly flat, which is possible when more than

three vertices are used to define it3. The axis unit vectors of the coordinate

system on the plane are

x′ =
C−PA

|C−PA| , (7.2)

y′ =
(C−PA)× n

|(C−PA)× n| , (7.3)

2The test actually performed is |(P−C) · n|2 > r2
cut to avoid the square root when deter-

mining the magnitude of the vector. All other vector magnitude comparisons are also performed
in this way.

3The presence of non-planar faces in the mesh does not cause any errors in point-face search-
ing because which cell a molecule occupies in the mesh is also determined by the effective plane
of the face defined by the face centre and normal vector(see section 8.3.
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and the position vector of a vertex, vα, in plane coordinates is

v′α = ((vα −PA) · x′)x′ + ((vα −PA) · y′)y′. (7.4)

Given that C lies on the line of x′, by definition

C′ = |C−PA|x′. (7.5)

When determining the local coordinates of the vertices, if |P− vα| ≤ rcut

then the face must be in range of the point. No more calculation is necessary

for this point-face pair.

3. Finding E, the intersection point between PAC and the edge defined by ver-

tices vα and vβ. The equations for E′, the intersection in plane coordinates

of the lines P′
AC′ and v′αv′β, are

E′ = λAC′, (7.6)

E′ = v′α + λv (v′β − v′α) . (7.7)

Expanding equations (7.6) and (7.7) in x′ and y′ components

E ′
x′ = λAC

′
x′ ,

E ′
y′ = λAC

′
y′ ,

E ′
x′ = v′αx′ + λv

(
v′βx′ − v′αx′

)
,

E ′
y′ = v′αy′ + λv

(
v′βy′ − v′αy′

)
,

and solving for λA and λv, given that C ′y′ = 0 because E′ lies on the line of

x′

λA =
1

C ′x′

(
v′αx′ − v′αy′

(
v′βx′ − v′αx′

)
(
v′βy′ − v′αy′

)
)
, (7.8)

λv = − v′αy′

v′βy′ − v′αy′
. (7.9)

If 0 ≤ λA ≤ 1 and 0 ≤ λv ≤ 1, then the edge in question is crossed between

PA and C. PA must have been outside of the face, and E is the closest
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Figure 7.9: Defining a coordinate system local to the plane of the face to calculate
intersections with face edges.

point on the face to P,

E = PA + λA (C−PA) . (7.10)

If |P− E| ≤ rcut then the face is in range of the point. If no edge is crossed

by PAC, then PA must have been on the face, so if |P−PA| ≤ rcut then

the face is in range of the point, and the cells that the face forms part of

must interact with the cells that the point forms part of.

The non-reciprocal nature of the point-face search must be borne in mind

when searching for cells using it. When constructing DILs all faces must be

tested with all points; no reduction in cost via a non-double-counting procedure

is possible. Real cell points must search for referred cell faces and referred cell

points must search for real cell faces. This, and the relatively complex algorithm

for calculating the point-face distance, results in PFEE being computationally

expensive.

Edge-Edge This uses the derivation of the closest distance between two skew

lines [150] to determine whether two edges are within range of each other. The

edges to be compared (see figure 7.10) lie on lines that extend to infinity, the

equations for the closest points on these lines are

c1 = vα + λ1 (vβ − vα) , (7.11)

c2 = vγ + λ2 (vδ − vγ) . (7.12)
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Figure 7.10: The closest distance between two edges.

Defining [151],

a = vβ − vα,

b = vδ − vγ,

c = vγ − vα,

and solving equations (7.11) and (7.12) for λ1 and λ2 gives

λ1 =
(c× b) · (a× b)

|a× b|2 , (7.13)

λ2 =
(c× a) · (a× b)

|a× b|2 . (7.14)

If |a× b| = 0, then the lines are parallel and this algorithm is invalid. A point-

face search will, however, identify parallel edges as being in range if necessary.

No more calculation is necessary for this edge pair.

If 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1, then the closest points between the lines

lie somewhere along both edges. In this case, calculate c1 and c2 using equa-

tions (7.11) and (7.12) and test |c1 − c2| ≤ rcut to determine if the edges, hence

the cells they form part of, are in range. Edge-edge searching is reciprocal and

can be performed under a non-double-counting loop.
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7.5 Intermolecular force calculation procedure

Build cell interactions

At the start of the simulation, the DIL for each real cell and appropriate referred

cells are created, and the referred cells determine which real cells they must supply

interactions to. Details of these processes can be found in appendix D. Referred

cells need not be sourced only from processors sharing a boundary, i.e. AICA is

able to identify cell interactions between non-neighbouring processors. However,

when constructing the referred cells, processors need only communicate across

interprocessor faces, i.e. with neighbours only.

Build cell occupancy and refer molecules

At each timestep, before calculating any forces, a list for each cell is built stating

which molecules it contains. This is a computationally cheap operation because it

only involves querying each molecule for which cell it is in, and adding a reference

or pointer to that molecule to the list for the appropriate cell. Each molecule holds

information about which cell it occupies by virtue of the tracking mechanism (see

section 8.3).

At each timestep, all real cells which are the source cell of one or more referred

cells send the position and id of all of the molecules they contain to the appropriate

referred cell on the appropriate processor. The destination referred cells perform

the appropriate position and orientation transformation when the molecules are

received. The referred molecules are discarded and re-created from the source

molecules at each timestep.

Force calculation

The total intermolecular force acting on a molecule is calculated at each timestep

by considering two types of interactions. Real-Real interactions occur between

a molecule and others on the same processor, according to algorithm 2. Real-

Referred interactions occur between real molecules and referred molecules aris-

ing from the other side of a processor or periodic boundary, according to algo-

rithm 3. Referred molecules do not need to calculate interactions between them-

selves, because every referred molecule is a copy of a real molecule elsewhere, and

as such will receive all of its real-real and real-referred interactions in-situ.
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Algorithm 2 Real-Real Molecule Force Calculation.

for all real cells, ci do
for all real molecules in ci, mi do

for all real cells in ci’s DIL, cj do
for all real molecules in cj, mj do

calculate intermolecular force fij between mi and mj

add fij to fi (total force vector for mi)
add fji = −fij to fj

end for
end for
for all real molecules in ci with an index greater than∗ mi, mi′ do

calculate intermolecular force fii′ between mi and mi′

add fii′ to fi
add −fii′ to fi′

end for
end for

end for
∗Comparison of the index of molecules in the same cell, m′

i > mi, means that interactions
between molecules in the same cell are not double-counted and a molecule does not calculate
an interaction with itself. The order of comparison is not important, as long as all pairs are
covered, so m′

i < mi would work equally well.

Algorithm 3 Real-Referred Molecule Force Calculation

for all referred cells, cq do
for all referred molecules in cq, mq do

for all real cells that cq interacts with, cp do
for all real molecules in cp, mp do

calculate intermolecular force fpq between mp and mq

add fpq to fp
end for

end for
end for

end for



Chapter 8

Integration of equations of

motion

8.1 Integration algorithms

The equation of motion for the rotationally symmetrical molecules used in this

work is simply Newton’s second law of motion. In general this is not the case,

and the Lagrangian or Hamiltonian [143, 152] formulation must be used to derive

the equations for motion of molecules with rotational and internal degrees of free-

dom. There are two classes of numerical integration schemes in wide-spread use

in molecular dynamics: leapfrog and predictor-corrector. The leapfrog scheme is

simple and gives better energy conservation for a given timestep. The predictor-

corrector method is higher order, giving better trajectory accuracy, and is more

flexible for complex problems; it is preferred when solving equations of motion in-

volving the rotational dynamics of molecules and constraint dynamics [130]. Only

leapfrog integration has been implemented so far, although the infrastructure has

been established for efficient runtime selection of predictor-corrector integration,

anticipating the widening of the complexity of problems that will be solved.

A detailed evaluation of what situation each is best applied in and their rela-

tive merits will not be included (for this see [130, 131]).

8.1.1 Leapfrog

For a molecule at a position r at time t, advancing by a timestep of ∆t, forming

a Taylor expansion of a directional component, r:

75
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r(t+ ∆t) = r(t) +
dr(t)

dt
∆t+

1

2!

d2r(t)

dt2
∆t2 +

1

3!

d3r(t)

dt3
∆t3 +O(∆t4). (8.1)

Here the velocity component of the molecule is

v(t) =
dr(t)

dt
,

and the acceleration component is

a(t) =
d2r(t)

dt2
,

which is known from the total intermolecular force acting on the molecule and

Newton’s second law: f = ma. Forming the Taylor expansion for r(t−∆t),

r(t−∆t) = r(t)− dr(t)

dt
∆t+

1

2!

d2r(t)

dt2
∆t2 − 1

3!

d3r(t)

dt3
∆t3 +O(∆t4), (8.2)

adding equations (8.1) and (8.2) (the O(∆t3) terms cancel), then rearranging for

r(t+ ∆t):

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4). (8.3)

Dividing equation (8.3) by ∆t and rearranging

r(t+ ∆t)− r(t)

∆t
=
r(t)− r(t−∆t)

∆t
+ a(t)∆t+O(∆t3), (8.4)

then substituting in

v(t+ ∆t/2) =
r(t+ ∆t)− r(t)

∆t
, (8.5)

and

v(t−∆t/2) =
r(t)− r(t−∆t)

∆t
, (8.6)

to give

v(t+ ∆t/2) = v(t−∆t/2) + a(t)∆t+O(∆t3). (8.7)

Returning to equation (8.3) and rearranging the right hand side into
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r(t+ ∆t) = r(t) +

(
r(t)− r(t−∆t)

∆t
+ a(t)∆t+O(∆t3)

)
∆t,

= r(t) +
(
v(t−∆t/2) + a(t)∆t+O(∆t3)

)
∆t,

= r(t) + v(t+ ∆t/2)∆t+O(∆t4). (8.8)

Equations (8.7) and (8.8) constitute the leapfrog scheme for updating the velocity

and position of the molecules at each timestep. Note that the position and velocity

are evaluated for different times. This does not pose a problem, and the velocity

can be recorded at the same time as the position by splitting its increment in

two [130]. The sequence of calculation is then (using full vector quantities rather

than components):

v(t+ ∆t/2) = v(t) + a(t)
∆t

2
, (8.9)

r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t, (8.10)

calculate a(t+ ∆t) using the updated positions, r(t+ ∆t), then,

v(t+ ∆t) = v(t+ ∆t/2) + a(t+ ∆t)
∆t

2
. (8.11)

8.2 Choosing an integration timestep

The timestep to use for integrating the equations of motion requires a trade-off

between accuracy and computational speed. Shorter timesteps give a more accu-

rate solution of the equation of motion and better conservation of momentum and

energy. However, for the same simulation duration, more timesteps are required,

hence more computational time. Experimentation is required with a small sys-

tem to set the timestep for the particular intermolecular potential and integration

algorithm used and the state of the fluid in question [130].

8.2.1 Stability: preventing energy cascades

The steep repulsive nature of the intermolecular potentials often used in MD sim-

ulations places an upper limit on the timestep that can be used. With reference to
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Figure 8.1: The approach of two molecules showing them tracking along the Lennard-
Jones potential. When timesteps are short (left), the molecules repel smoothly. When
timesteps are longer (shown here increased by a factor of three, right) the incoming molecule
‘jumps’ deep into the high energy repulsive region of the intermolecular potential, and will
be repelled at a high velocity.

figure 8.1, consider two molecules approaching each other, and interacting with

a Lennard-Jones potential. Considering motion relative to the grey molecule,

the incoming molecule moves in finite ‘jumps’ in position, the size of which are

determined by the velocity of the molecule and the timestep used for integra-

tion. When the timesteps are fine, then the intermolecular potential is sampled

regularly, and when the repulsive (negative gradient) portion of the potential is

reached, the incoming molecule is decelerated smoothly, then accelerated in the

opposite direction: the molecules repel. When, however, the timesteps are large,

the ‘jump’ in position when entering the repulsive region takes the incoming

molecule deep into the repulsive portion of the potential. In the next timestep

both molecules experience a very large repulsive force, accelerating each other to

very high velocities. These high-velocity molecules then travel further into the

repulsive region of the next molecules they collide with, resulting in twice as many

molecules travelling at even higher speeds. This creates a cascade process and

the kinetic energy of the molecules in the system rapidly diverges. The maximum

velocity of molecules in the simulation, therefore the temperature, determines the

maximum timestep.
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8.3 Tracking molecules in arbitrary unstructured

meshes

Tracking the motion of molecules in a simple geometry represented by a structured

computational mesh does not present significant conceptual or computational

difficulties: an algebraic expression can be used to determine which cell a particle

occupies and when it encounters a boundary. In conventional MD a molecule

can be moved along the trajectory for its current timestep without regard to

an underlying mesh; it discards the information about which cell it previously

occupied, then easily and quickly determines which cell it occupies in its new

position for the purposes of force calculation.

When, however, the geometry is complex, comprising a mesh of unstructured,

arbitrary polyhedral cells, as applied here, discarding and redetermining which

cell a particle is in is no longer computationally efficient because it requires a time-

consuming search of the mesh. It is more efficient to carefully track where and

when particles cross mesh faces and change cell, and whether they hit boundaries

as they move along their trajectory. Maintaining information about which cell

a particle occupies is necessary for tracking the particle in subsequent timesteps

and is also used when calculating intermolecular forces.

The particle base class in OpenFOAM provides robust motion tracking in

arbitrary meshes (which may be moving or deforming), handles particles hitting

any type of boundary (including periodic), and transfers particles between pro-

cessors immediately as they hit interprocessor patches. The remainder of this

chapter describes this generic particle1 tracking algorithm, and is adapted from

reference [3]. The molecule class used in gnemdFOAM is derived from the particle

base class and inherits all of this tracking functionality automatically.

8.3.1 Basic particle tracking algorithm

Consider the situation in figure 8.2, where a particle is located at position a and

is required to move to b, determined by solving the equation of motion for the

particle. The motion can be performed as a series of individual tracking events,

each ending when the particle either crosses a face of a cell, or arrives at the final

destination. The particle must move to position p, where the line ab intersects

1“Particle” rather than “molecule” tracking will be referred to to emphasise the generality
of the algorithm.
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Figure 8.2: A particle moving from position a to b, crossing two faces at p and p′ and
changing cell twice. The cell comprises four numbered faces, each of which stores face
centre, Cf , and face normal, S, vectors. The cell centre, Cc, is shown.

face 2, then change to the neighbouring cell. It will carry on to p′, change cell

again, before finally arriving at b. For the first part of the motion, a to p, the

position p is found using

p = a + λa (b− a) , (8.12)

where λa is the fraction along the line ab where the intersection occurs with the

plane defined by a face centre, Cf and face normal vector, S. Therefore, because

p lies on this plane,

(p−Cf ) · S = 0. (8.13)

Substituting equation (8.12) into equation (8.13) gives,

λa =
(Cf − a) · S
(b− a) · S . (8.14)

Equation (8.14) is applied to calculate a value of λa for each face of the cell that

the particle currently occupies, using each face’s own Cf and S vectors. The face

that the particle actually crosses is that which has the lowest value of λa in the

interval 0 ≤ λa ≤ 1. For the example shown in figure 8.2, faces 1 and 2 have λa

values in this interval, with face 2 having the lower value, giving the correct face

to be crossed.

The particle is moved to p and the particle’s cell occupancy information is
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Figure 8.3: The physical interpretation of the value of λa. Face neg yields a negative
value of λa, face pos yields a value of λa greater than 1.

changed to the neighbouring cell using the mesh connectivity: cell A, where the

particle started, crosses face 2, cell A shares face 2 with cell C, therefore, the

particle changes occupancy to cell C. Using this connectivity information means

that computationally expensive mesh searching is avoided when maintaining cell

occupancy information. The next tracking event is then executed in the same

way: λa is calculated for each of the faces of the new cell, and the particle is

tracked to the next face it has to cross, or to the final destination, if that is in

the new cell.

If no face satisfies 0 ≤ λa ≤ 1, then b must be inside the same cell as the

particle started in, and it can be moved directly to the end point of the motion.

For a particular face, λa < 0 corresponds to the particle motion from a to b being

away from the face; λa > 1 corresponds to the motion from a to b being towards

the face, but not reaching it. These two cases are shown in figure 8.3.

Deficiencies of the basic algorithm related to non-planar cell faces

Each face in the mesh stores a vector describing its face centre position and

face normal vector; these define the plane of the face used when calculating if a

particle crosses it. Where a face comprises more than three vertices, all of the

vertices will not necessarily lie on a single plane. Therefore, the mesh stores face

centroid and integrated area normal vectors which represent the effective plane

of the face. Non-flat faces lead to a representation of the mesh that is no longer a

set of space-filling cells. An example of this can be seen in figure 8.4, where face

2 has an exaggerated twist; plane 2 is the effective plane based on the centroid

and integrated area normal vector. Plane 2 does not meet exactly with face 1,

which is perfectly planar in this example.

There is a possibility of losing track of particles when they cross a face close

to a vertex. In figure 8.4, a particle moving from a to b or b′ will cross face 1,

and, by mesh connectivity, change cell. The particle will, however, as it crosses

face 1, be located physically on the wrong side of plane 2 to be consistent with
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Figure 8.4: A mesh with a twisted face (face 2) which differs from its effective plane
(plane 2). The figure on the right is a top-down view of the figure on the left.

occupying this new cell. The implications of this are clearer when considering the

situation shown in figure 8.5, which is a 2D representation showing a situation

analogous to that encountered during an event such as that shown in figure 8.4.

Figures 8.4 and 8.5 are not directly related because it is only possible for the

non-planar face issue to occur, and be represented, in 3D.

In figure 8.5 imagine that the particle has crossed face 1, leaving cell D, and,

by mesh connectivity, its cell occupancy information is set to cell A. However, the

position, p, that the particle has tracked to lies outside of cell A. How the basic

tracking algorithm responds depends on the final destination of the particle. The

final destination can be either:

case b: inside the cell that is physically consistent with its current position (cell

C). Values of λa calculated using p and each face of cell A (the cell that the

particle’s cell occupancy information states it should be in) are λa < 0 or

λa > 1, which is equivalent to the particle not needing to change cell. The

particle will move to b, but it will not change its occupancy information

from cell A to cell C.

case b′: inside the cell that the particle’s cell occupancy information has been

set to by mesh connectivity during the previous tracking event (cell A). The

values of λa calculated using p and each face of cell A will determine that

face 2 is intersected and the particle will change its occupancy information

from cell A to cell C, but will be tracked into the physical region of cell A.
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Figure 8.5: An analogous situation to a particle tracking across a face close to a vertex,
in the vicinity of a non-planar face. The particle’s post tracking event position, p, is
located physically outside of the cell determined by connectivity information in the previous
tracking event: cell A in this case.

In either case, the particle is not physically located in the cell that its cell occu-

pancy information states it should be, and is effectively lost to the simulation.

Correcting this problem would require a computationally expensive mesh search

every time a particle changes cell in order to check that it moved into the cell it

should have, and finding it if not.

8.3.2 Modified tracking algorithm

With reference to figure 8.2, if b is outside the starting cell, then a particle may

be tracked from any position inside the cell and will cross the planes of the same

faces that it would have if it had started at a. Therefore, rather than using a to

find which face the particle will hit when moving from a to b, the cell centre, Cc,

can be used to calculate λc by replacing a with Cc in equation (8.14),

λc =
(Cf −Cc) · S
(b−Cc) · S . (8.15)

Using λc to find which face the particle will hit will result in 0 ≤ λc ≤ 1 for face

1 and 2 in figure 8.2, as before. If λc < 0 or λc > 1 for all faces, then again as

before, b must be inside the cell. It is necessary to calculate λa for all faces whose
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Algorithm 4 Complete tracking algorithm.

while the particle has not yet reached its end position at b do
find the set of faces, Fi for which 0 ≤ λc ≤ 1
if size of Fi = 0 then

move the particle to the end position
else

find face F ∈ Fi for which λa is smallest
move the particle according to equation (8.16) using this value of λa

set particle cell occupancy to neighbouring cell of face F
end if

end while

planes are crossed (where 0 ≤ λc ≤ 1, faces 1 and 2 in this case) and the lowest

value of λa determines which face was actually hit. This value of λa is stored for

use in the remainder of the calculation. The complete algorithm is summarised

in algorithm 4.

The final components of the modified algorithm, and the reasons for the mod-

ification, become clear when returning to the two cases shown in figure 8.5:

case b: face 2 produces 0 ≤ λc ≤ 1, but λa < 0, meaning that the pb trajectory

points away from face 2. Here the particle is not moved, but the cell occu-

pancy change determined by λc is performed, i.e. face 2 has been crossed.

The particle changes occupancy from cell A to cell C and continues tracking

to b. If the pb trajectory had pointed towards face 2 (but b was still in

cell C), then λa > 1, and the particle is moved to b and the cell occupancy

is changed to cell C as above. In both situations this is implemented by

moving the particle to p, given by

p = a + λm (b− a) , λm = min (1,max (0, λa)) ; (8.16)

case b′: all values of λc < 0 or λc > 1, so the particle is moved to b′ and the cell

occupancy stays as cell A.

It is possible to reduce the problems created by non-planar faces by decompos-

ing each face into triangles and applying the basic algorithm to each of these sub-

faces [153]. This is, however, computationally more expensive than the modified

algorithm above, and in practise, particles are still lost from the simulation due

to numerical rounding errors, especially in moving meshes (see below). Rounding
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errors can give rise to the same issue as encountered with non-planar faces, i.e.

the particle’s position is inconsistent with its cell occupancy information. The

modified algorithm accommodates this, and as such rounding errors do not cause

tracking failures or problems.

Concave cells

There is a possibility that the modified algorithm can enter an infinite loop if the

cell it occupies is concave. Considering the example in figure 8.6. As the particle

moves from a to b it does not need to leave (concave) cell A. It will, however,

calculate an intersection with the plane defined by face 1 at p, and, by mesh

connectivity, change occupancy to cell B. It is, however, moving away from face 2

in cell B, and will change occupancy to cell C, where it is moving away from face

3, and will change back to cell A and the process will start again, generating an

infinite loop. Meshes using this algorithm must have concave cells decomposed

into smaller convex cells.

Moving meshes

The algorithm as described is able to track particles in meshes that are moving

by simply altering how λa is calculated, provided that the mesh does not move

too far in a single step relative to the particle. Assuming that the mesh is moved

before the particle tracking occurs, the mesh must not move so far as to place the

particle more than one cell away from the cell it started in. It is assumed that

particle tracking timesteps are short in comparison to the rate of mesh motion,

and as such the motion of the mesh during the timestep can be assumed to be

at a constant velocity. Figure 8.7 shows a single tracking event (not necessarily

a full timestep) where a particle is attempting to track from a to b across a face

in the mesh that is moving from a cell centre, face normal pair, Cs,Ss, at the

start of the tracking event, to an end state, Ce,Se. The particle will intersect

the moving face at p, when the face is part-way through its motion at Cm,Sm.

Given that the velocity of the particle and the linear and rotational velocities of

the face are all considered constant throughout the tracking event, and that the

mesh and particle are moving over the same time interval, then the same value

of λa applies to determining the face centre and normal vectors at intersection as
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Figure 8.6: A particle moving in concave cell A from a to b will become stuck in an
infinite loop.

Se

Cm

Sm

SsCs

Ce

a

b

p

Figure 8.7: A particle tracking across a face that is translating and rotating.



CHAPTER 8. INTEGRATION OF EQUATIONS OF MOTION 87

for the particle motion in equation (8.12), i.e.

Cm = Cs + λa (Ce −Cs) , (8.17)

Sm = Ss + λa (Se − Ss) . (8.18)

Substituting equations (8.17) and (8.18) for Cf and S into equation (8.14) results

in a quadratic in terms of λa,

A2λ
2
a + A1λa + A0 = 0, (8.19)

where

A2 =
(
(b− a)− (Ce −Cs)

) · (Se − Ss) ,

A1 =
(
(b− a)− (Ce −Cs)

) · Ss + (a−Cs) · (Se − Ss) ,

A0 = (a−Cs) · Ss.

Equation (8.19) can either have two positive, real roots, in which case the root

with the smallest magnitude is chosen, or imaginary roots, meaning the face

was not intersected, so an (arbitrary) value of λa > 1 is returned. If the mesh

undergoes linear motion only then Se = Ss and equation (8.19) reduces to

λa =
− (a−Cs) · Ss(

(b− a)− (Ce −Cs)
) · Ss

. (8.20)

This process is equally valid for finding λc by substituting equations (8.17) and

(8.18) into equation (8.15).

8.3.3 Boundary interactions and parallelisation

At every face crossing, a check is performed to determine if the face forms part of

a boundary or is internal to the mesh. Specific actions can be taken depending

on the type of boundary encountered, for example:

• periodic boundary: the particle is physically moved to ‘wrap around’ to the

appropriate cell on the other side of the cyclic boundary, then continues the

tracking step;

• interprocessor boundary: the particle is removed from the current processor
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and recreated in the appropriate cell on the destination processor, where it

completes the remainder of its motion;

• solid wall: the velocity of the particle is altered according to the wall model

employed, e.g. specularly or diffusely reflected, see chapter 9. The particle

now travels towards a different destination;

• outlet: the particle is deleted and removed from the simulation.

After a particle encounters a periodic boundary or a solid wall then, due to a

position or velocity change, the particle tracks towards a different destination in

the next tracking event than the one to which it was moving to at the beginning

of the timestep. This is compatible with the algorithm as described.



Chapter 9

Boundary conditions and driven

flows

Periodic and interprocessor boundaries are familiar concepts in MD. There are,

however, more general types of boundary, as well as driving forces, required in

order to provide the facility to perform flexible fluid mechanics simulations. Only

simple solid walls (section 9.1) have been implemented and tested in the present

code; the remaining sections in this chapter outline planned developments.

9.1 Simple solid walls

A simple planar surface is created by modifying the velocity of a molecule when

it comes into contact with a patch of type ‘wall.’ The molecule can be specularly

or diffusely reflected. This type of boundary can only be used in portions of

the domain where the detailed molecular nature of the surface is not important,

otherwise an explicit crystalline wall is required.

For a specular reflection, the component of the molecule’s incident velocity

normal to the face on the patch that it has collided with is reversed. If the

incoming molecule’s velocity is v and the face normal unit vector is n (which

always points out of the domain, i.e. away from the incoming molecule) then the

post-impact velocity, v′ is

v′ = v − 2 (v · n)n. (9.1)

For a diffuse reflection, the components of the post-impact velocity will be drawn

89
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from a Gaussian distribution at a specified temperature TD, in a similar way

to section 6.6 where the velocities of newly created molecules are set. The unit

vectors specifying the direction of the two components tangential to the wall, t1

and t2, are found using

t1 =
v − (v · n)n

|v − (v · n)n| , (9.2)

t2 = n× t1. (9.3)

A normal distribution random number generator, Rn, which produces a series of

independent values, Rnj, with zero mean and variance σ2 = TD/mi, where mi is

the mass of the incident molecule, is used to assign magnitudes to the components

of v′,

v′ = Rn1t1 +Rn2t2 − |Rn3|n. (9.4)

The magnitude of the random number generated for the normal component is

taken to ensure that the molecule moves back into the domain.

A ‘statistical’ wall is created by using a random number generator to give a

fraction PS of the molecules incident on it a specular reflection (where 0 ≤ PS ≤ 1)

and (1 − PS) of the molecules a diffuse reflection. If PS = 0 then all molecules

are fully equilibrated with the wall, and the no-slip velocity boundary condition

results.

9.2 Boundary force walls

A simple planar boundary, whether it is one that allows mass to pass through

or not, creates an unphysical environment for proximate molecules because they

do not experience intermolecular interactions with molecules that would be on

the other side of the boundary. This creates an effective boundary condition of

empty space on the other side of the boundary. In order to control the state of the

fluid near the boundary (to give the correct density or pressure for example) by

replacing these missing interactions, many authors [83, 114, 116, 119, 127, 154,

155] use boundary force models. These impose an artificial force on molecules that

varies with distance away from the wall. They are often used in hybrid simulations
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as part of the coupling mechanism between the continuum and molecular domains.

One feature to note is that boundary force models can be used to create a region

of depleted density near to the terminating edge of the domain to facilitate the

insertion of particles into dense fluids.

9.3 Generalised open boundaries

A simple fluid outlet can be created by using a patch of type ‘patch’ that simply

deletes a molecule when it comes into contact with it. A more general open

boundary can be created that can control the mass, momentum and energy flux

across it, and the state of the fluid near it. Such control cannot easily be exercised

at each timestep, but over a number of timesteps average values may be imposed.

The patch must:

• accommodate molecules impacting on it from inside the simulation domain;

• introduce molecules from outside of the domain.

When a molecule hits the patch, it has a probability, P , that it will:

• PS: specularly reflect the molecule;

• PD: diffusely reflect the molecule with a velocity corresponding to a tem-

perature of TD;

• PR: allow the molecule to pass through, it is then removed from the simu-

lation;

where PS + PD + PR = 1.

The patch can attempt to insert molecules of a particular species, k, at a

specified mass flowrate per unit area, RIk with a velocity corresponding to a

specified TI (which may or may not be the same as TD) and bias velocity vI .

The molecules can be introduced into the system at a target potential energy, UI

using published algorithms [128, 129].

The insertion of molecules will happen on a face-by-face basis (this allows

the insertion energy, temperature and bias velocity to vary across the patch:

OpenFOAM’s mesh description allows the properties of the patch to be easily

spatially varied. This could be used to impose a velocity profile on the flow at an
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inlet or an arbitrary temperature profile along a wall. Mass must be introduced

in discrete values corresponding to a whole number of molecules. One strategy

for achieving this is to create a mass counter, C, for each species and the mass

to be introduced through the face in question can be accumulated onto it. For a

face of area A, which is to introduce mass at a rate of RIk kg/m
2s of a particular

species, then, for a timestep of duration ∆t,

Ct
k = Ct−1

k +RIkA∆t. (9.5)

For a constant rate of introduction C will grow linearly. At each timestep, the

value of Ck/mk will be examined for each counter, where mk is the mass of one

molecule of the species in question. If

• Ck/mk ≤ 0 then no attempt will be made to introduce molecules in this

timestep;

• 0 < Ck/mk < 1 then there is a probability of Ck/mk that an attempt will be

made to introduce a molecule at this timestep — a uniform random number

generator will be used to determine this. If the molecule is successfully

inserted then C is decremented by mk (hence negative values of Ck/mk can

occur, see figure 9.1). If the insertion of the molecule fails (for example, a

suitably low energy position near the face cannot be found) then the mass

is retained on the counter and another attempt will be made at a later

timestep. The use of random numbers leads to a stochastic introduction of

flux, which seems more physical than insertion at a constant interval;

• Ck/mk ≥ 1 then bCk/mkc molecules will have insertion attempts made

and C is decremented by mk for each that succeeds. There is a further

probability of

Ck/mk − bCk/mkc

that another attempt is made, as for the case above when 0 < Ck/mk < 1.

If too many molecule insertions fail (most likely due to high fluid density near

to the patch) then C will continue to accumulate mass that will never be inserted.

In this case a boundary force wall can be incorporated to create a low density

region to improve insertion rates.
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Figure 9.1: The mass addition counter for a face and species, Ck, climbs linearly and
particle insertions occur with a probability of Ck/mk at each timestep. When a particle is
inserted Ck is reduced by mk.

9.3.1 Variable permeability periodic boundaries

This framework may be used to create periodic patches with a probability of

‘wrapping’ the molecule around the boundary or reflecting it. This can be used

to create a pressure gradient to drive a flow [156]. This can be achieved by

suppressing molecule insertion (RI = 0) and using probabilities such that the

molecule hitting the patch will

• PS: specularly reflect the molecule;

• PD: diffusely reflect the particle with a velocity corresponding to a temper-

ature of TD;

• PW : be wrapped around the periodic boundary.

Where PS + PD + PW = 1 as before.

9.4 Thermostats, constraints and driven flows

It is conventional in MD to use thermostats and constraints in order to drive

a system to a desired state and sample a specific statistical mechanical ensem-

ble [130, 157]. These operate by either modifying the Hamiltonian of the system,

or by coupling the molecules to an external ‘heat-bath’ and statistically mod-

ifying their velocities. The system then no longer simulates purely Newtonian

dynamics.
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Figure 9.2: A simple system employing driving volumes (shaded regions) and wall
molecules tethered (molecules with crosses) into a crystal to constrain the fluid and solid
boundaries of a system. Only the free regions, where natural Newtonian dynamics occur,
will be used to generate results. The free wall crystal will remain a solid by virtue of its
intermolecular potential only.

Control of the state of the fluid in fluid mechanics simulations is carried out

at boundaries only, to allow the dynamics in the test section to exhibit natural

(momentum and energy conserving) dynamics. To accomplish this, volumes of

the mesh will be defined as thermostatted or constrained sections, called driving

volumes (see figure 9.2). These can be combined with tethering molecules to en-

sure that solid walls stay stationary or move with a prescribed average velocity,

see figure 9.2. Molecules inside the driving volumes experience the required mod-

ifications to their properties and revert to undergoing natural dynamics when

they leave it. The thermostats and constraints applied inside driving volumes

can vary spatially by using the underlying mesh to set their parameters, allowing

arbitrary profiles of velocity or temperature to be imposed, for example.

There are several aspects that are common to applying thermostats and con-

straints to conventional MD simulations that cannot be applied in arbitrary ge-

ometries. In particular:

• conventional methods for controlling pressure in particular involve expand-

ing and contracting the MD simulation domain itself to modify the inter-

atomic spacing. These cannot be employed in complex domains, although

selective removal of molecules to reduce the overall density may be feasible;
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SaSs
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regionboundary

General open
volume
Driving

controller measurement

Figure 9.3: A fluid inlet or outlet created using feedback control. The set points, Ss, for
the properties to be controlled are compared to the actual values, Sa, in a measurement
region. A controller adjusts the parameters of a boundary and driving volume.

• the measurement and control of molecules must depend only on local prop-

erties, not the global state of the system. Any mechanism that depends on

knowing the peculiar velocity of the molecules (i.e. the molecule’s velocities

with the bulk streaming velocity subtracted) will present a problem. It is

difficult to accurately determine the streaming velocity with fine spatial and

temporal resolution, see section 10.4, so methods that do not require this

must be used [158–160].

The driving volume infrastructure will also be useful in coupling continuum

and molecular systems together in a hybrid simulation, because overlap regions,

where the dynamics of molecules are constrained, are often used [114, 116].

9.5 Setting and feedback control of parameters

The generalised boundary model (section 9.3) has 7 + K adjustable parameters

to control the patch, where K is the number of species involved: PS, PD, PR,

RIk, TD, TI , UI and vI . Average mass flowrate can be controlled by varying

the insertion and removal rates, PR and RIk. The energy and momentum flux,

however, are linked through the velocity assigned to molecules (controlled by TD
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and TI), as well as the insertion and removal rates, ratio of specular to diffuse

reflections and UI , the potential energy new molecules are introduced with. The

state of the fluid will also depend on all of the parameters in a complex manner.

It is therefore unlikely that a desired condition can be achieved by simply setting

the parameters at the start of a simulation.

A solution to this would be to control the parameters using a feedback loop.

For example, if the pressure at the inlet to a channel is to be controlled, then

a region downstream of the inlet can have its pressure measured and a feedback

loop used to control the patch parameters to a achieve desired value. Creating

a driving volume for fluid inside the domain near the boundary and controlling

its parameters in a similar way can be combined with control of the boundary to

achieve the desired state. Figure 9.3 shows a sketch of this scheme. Deducing the

response of the system to patch parameter variations, determining the number of

properties that can be simultaneously controlled, and designing the controller to

be applied would be a significant challenge.



Chapter 10

Spatially resolved flow properties

The capabilities described in chapters 6 to 9 allow molecules to be simulated

moving through the volume defined by a mesh. In order to make the simulation

useful, measurements of the system need to be made. As with continuum CFD,

the cells in the mesh will hold the information about the state of the fluid in the

volume they define. Measurements are required of:

• the state of the fluid in the cell, represented by an average value assigned

to the cell centre;

• transport through the cell, represented by the net flux crossing the cell

faces.

Typically the properties of the molecules contained in a cell are averaged at any

given timestep, and many timesteps are averaged to produce useful results. These

measurements are required

• to give an indication of the state of the fluid and flow for its own analysis;

• for a hybrid simulation, to provide data to couple the MD and continuum

components together.

10.1 Spatial and temporal averaging in cells

Choosing the resolution of the mesh and the averaging period requires a balance of

competing aims. Long averaging periods lead to a better signal-to-noise ratio (all

properties are subject to fluctuations) but can mask the details of the evolution
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of a time-varying system. Likewise, small cells show fine spatial resolution of

properties, but require longer averaging periods to increase the number of samples

in the measurement to reduce noise. There is also a dependence between the

resolution of cells in the mesh required for property measurement and that needed

to optimise the speed of intermolecular force calculation. If the mesh needs to

be finer for property measurement than for force calculation, then there is no

problem because excess cells do not have a substantial negative impact on the

force calculation performance (see chapter 12). If the mesh needs to be finer for

force calculation than property measurement then properties are measured on the

finer mesh and the data from several cells can be aggregated and ‘smoothed’ in

a post-processing stage. This requires that no simplifications or assumptions are

made regarding the functional form of the data, number of samples or averaging

periods; ‘raw’ data will be collected. The measurement techniques described are

designed to remain valid for ≤ 1 molecule per cell and single timestep resolution

(no time averaging). Fixed duration timesteps are assumed; variable timesteps

would require appropriate weighting when constructing averages.

It is often the case that the full 3D field of a system is not of interest, but the

average variation of properties in one direction. For example, consider a system

with periodic boundaries in two directions (say x and y) and solid walls bounding

the third (z), with a variation of a property in the z direction. The simulation is

intended to examine the dynamics of the 1D variation, and as such measurements

will be made by averaging across x-y planes (providing there are no appreciable

3D flow patterns). For the purposes of intermolecular force calculation, there

will need to be many cells in each x-y plane, whereas it would be convenient

for measurement to have only one cell per plane. Again, data will be collected

in the finer cells, and calculating plane averages will occur as a post-processing

step, ensuring that the contributions from unequally sized cells are appropriately

weighted.

If the dynamics of a system are too fast to permit long enough time averaging

periods to provide a suitable signal-to-noise ratio, then ensemble averaging may be

used. The system can be started in several different but equivalent configurations

(the same initial molecular positions with the same initial temperature, but a

different set of random numbers for the velocities, for example) and the results

combined. Care must be taken to identify if the dynamics of the systems diverge,

and are no longer following the same trend.
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There will be exceptions to the case above where fine cells required for mea-

surement can be tolerated for force calculation. When calculating radial distribu-

tion functions [130, 131] or the electron density profile of a system to compare it

to x-ray experiments [66] then very fine resolution histograms are required (1pm

bin widths for the latter) which would require an unmanageable number of cells.

These cases will be handled by creating a set of cells comprising the volume to

be measured. A histogram will be created with the required resolution corre-

sponding to variation in a user defined direction. Alternatively, the variation as

a function of distance normal to a set of faces on the boundary of the cell set

could be used.

10.2 Measureable properties

The spatial and temporal variation of a large number of physical properties of a

fluid and flow can be measured:

• average velocity ;

• kinetic temperature;

• configurational temperature;

• mass density and mass fraction;

• number density and mole fraction;

• velocity distribution;

• pressure;

• stress;

• heat flux;

• entropy;

• mass, momentum and energy flux across a surface;

• radial distribution function [124, 130, 131];

• correlation functions [124, 130, 131];

• transport coefficients (e.g. viscosity, thermal conductivity or diffusivity).

All variables can be measured on a per-species basis for multi-species simulations

and on a total basis. For example the density of a single species compared to the

total density gives composition of the fluid, or in highly non-equilibrium situations

different species may have different effective temperatures.

Measurement of the properties in italics has been implemented in the present

code. The measurement of the others has presently not been implemented be-
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cause either there is ambiguity or debate about the method or meaning of the

measurement, particularly in an arbitrarily shaped volume, or a need has not

arisen for the data in the cases studied. The measurement of stress in particular

is contentious; literature exists describing stress tensor measurement [161–163]1,

but its definition is not unique [169]. The infrastructure for defining and mea-

suring a field in gnemdFOAM is general, so a new measurement may be rapidly

implemented when the simulation requires it, or to experiment with competing

definitions.

10.2.1 Gas collision properties

Molecular dynamics can be used to test the limits of kinetic theory and investigate

rarefied and non-equilibrium gas dynamics (for more discussion see appendix F).

The following can be measured in addition to the properties outlined above to

investigate this:

• probability of a molecule being simultaneously in collision with a given

number of other molecules;

• distribution of free paths between collision;

• distribution of time that molecules spend in collision.

The spatial variation of these averaged collision properties can give an indication

of the non-equilibrium processes occurring in rarefied gases, particularly in the

vicinity of solid walls.

10.3 Velocity

For a system containing K different species of molecules, a running sum is kept

of the momentum of each species and the total mass of each species in each

cell. Data is accumulated for each timestep, t, of the averaging period that is τ

timesteps long. The mass of a molecule of particular species is mk. It is the same

for all molecules of that species and constant for all timesteps in the averaging

period.

The average velocity of the fluid in a cell is given by the total momentum of

the molecules divided by the total mass of molecules in the cell [170, 171], i.e.

1 The same authors are responsible for many other relevant publications in the non-
equilibrium MD field, i.e. [13, 110, 164–168]
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v =

K∑

k=1

τ∑
t=1

Ntk∑
i=1

mitkvitk

K∑

k=1

τ∑
t=1

Ntk∑
i=1

mitk

, (10.1)

where mitk and vitk are respectively the mass and velocity of a molecule i, of

species k, at timestep t. Given that the mass of a molecule of a particular species

is constant for all timesteps, then mitk becomes mk and

Ntk∑
i=1

mk = mk

Ntk∑
i=1

1 = mkNtk. (10.2)

LetNk be the total number of molecules of species k in the cell over all τ timesteps,

Nk =
τ∑

t=1

Ntk. (10.3)

Substituting these definitions into equation (10.1) gives

v =

K∑

k=1

mk

τ∑
t=1

Ntk∑
i=1

vitk

K∑

k=1

mkNk

. (10.4)

A mean velocity for the kth species is defined as

vk =
1

Nk

τ∑
t=1

Ntk∑
i=1

vitk. (10.5)

10.4 Kinetic temperature

Defining the average kinetic temperature of the fluid in a cell as (by extending

equation 21 in [168], ignoring any terms accounting for the loss of degrees of

freedom caused by constraints):

T =
1

3kbN

K∑

k=1

mk

τ∑
t=1

Ntk∑
i=1

(vitk − v) · (vitk − v) (10.6)
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where kb is the Boltzmann constant,

N =
K∑

k=1

Nk,

is the total number of molecules of all species in the cell, and v is the mean,

or ‘streaming’ velocity. The temperature is therefore given by the mean kinetic

energy of the molecules, where their peculiar (or thermal) velocities are used to

measure this. The use of v is problematic in two ways. The first problem is a

practical computing concern: the sum as shown cannot be formed on a timestep-

by-timestep basis and stored as a running sum because v is not known until the

end of the averaging period. It would be possible to record all velocities in each

cell and construct the peculiar velocities from them at the end of the averaging

period once the streaming velocity is known. This would require, however, a

prohibitive amount of memory, especially for large systems using long averaging

periods. Fortunately equation (10.6) can be rearranged to avoid this; expanding

the dot product:

T =
1

3kbN

K∑

k=1

mk

τ∑
t=1

Ntk∑
i=1

(vitk · vitk + v · v − 2vitk · v) ,

=
1

3kbN

K∑

k=1

mk

(
τ∑

t=1

Ntk∑
i=1

vitk · vitk +
τ∑

t=1

Ntk∑
i=1

v · v − 2
τ∑

t=1

Ntk∑
i=1

vitk · v
)
,

and noting that v does not depend on i or t, so can be brought out of these sums:

T =
1

3kbN

K∑

k=1

mk

(
τ∑

t=1

Ntk∑
i=1

vitk · vitk +Nkv · v − 2v ·
τ∑

t=1

Ntk∑
i=1

vitk

)
. (10.7)

It is enough to add vitk, vitk · vitk and Ntk to running sums for each cell to allow

v and T can be calculated at the end of the averaging period, after τ timesteps.

The second problem surrounding the use of v will occur when there are in-

sufficient samples to give an accurate streaming velocity. Large uncertainty will

remain in the measured average velocity, which will lead to inaccuracy in mea-

surements, like kinetic temperature, that depend on it. This will be a particular

problem for time varying systems using fine cells.
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The temperature for a single species in a mixture can be defined as

T k =
mk

3kbNk

(
τ∑

t=1

Ntk∑
i=1

vitk · vitk +Nkv · v − 2v ·
τ∑

t=1

Ntk∑
i=1

vitk

)
, (10.8)

although it is not clear if the streaming velocity in this case should be the all-

species velocity v, or the streaming velocity for the individual component vk.

These will only be significantly different under highly non-equilibrium conditions,

or when there are only a small number of samples to compute an accurate average

velocity.

Given that the subtraction of the streaming velocity is used to essentially

remove the effect of a moving reference frame on the measurement of temperature,

it would seem that the all-species streaming velocity, v should be used. In this

case, the total temperature can be calculated from the average of the single species

temperatures weighted by the relative abundance of the species,

T =
K∑

k=1

Nk

N
T k. (10.9)

Note that using the definition of temperature given by equation (10.6), where the

streaming velocity is removed, involves an implicit assumption of local thermo-

dynamic equilibrium in the cell [172].

An alternative and more intuitive way of considering the total temperature

for a multi-species mixture comes by writing equation (10.6) with the mass of

each molecule included in the sum and the (1/2) retained in the kinetic energy

expression:

T =
2

3kbN

N∑
i=1

1

2
mi (vi − v) · (vi − v) . (10.10)

A single summation incorporating each molecule at a timestep and all timesteps

in the averaging period, N molecules in total, has been used for clarity. Similarly,

the average velocity is given by,

v =

N∑
i=1

mivi

N∑
i=1

mi

.
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Defining variables for the total mass,

M =
N∑

i=1

mi,

and momentum

P =
N∑

i=1

mivi,

so,

v =
P

M
,

and expanding the dot product in equation (10.10) to give:

T =
2

3kbN

[(
N∑

i=1

1

2
mi (vi · vi)

)
− 1

2

(P ·P)

M

]
.

The first term in brackets is the internal kinetic energy of the fluid, the second

term is the kinetic energy associated with its bulk motion.

10.4.1 Other definitions of temperature

When a fluid is out of equilibrium, there is no longer a unique, unambiguous def-

inition of temperature. Alternative definitions, such as the ‘configurational tem-

perature’ can be used [173–176]. It has the benefit of not requiring the streaming

velocity to be calculated first [158, 173].

10.5 Density and mass/mole fraction

The single species number density, ρNk, in a cell is given by the average number

of molecules of species k per timestep divided by the cell volume V ,

ρNk =
Nk

τV
, (10.11)

and the total number density, ρNk, is given by

ρN =
N

τV
=

K∑

k=1

ρNk. (10.12)
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The mole fraction, φNk, of species k is given by

φNk =
Nk

N
=
ρNk

ρN

. (10.13)

Similarly, the single species mass density, ρMk is given by the average mass of

species k per timestep divided by the cell volume V ,

ρMk =
mkNk

τV
, (10.14)

and the total mass density, ρM , is given by,

ρM =
1

τV

K∑

k=1

mkNk =
K∑

k=1

ρMk. (10.15)

The mass fraction, φMk, of species k is given by

φMk =
mkNk

K∑

k=1

mkNk

=
ρMk

ρM

. (10.16)

10.6 Velocity distribution

The Maxwellian ‘velocity’ distribution is in fact a molecular speed distribution,

constructed by each component of velocity having a normal distribution [145].

There is no preferred direction of motion and a single temperature defines the

width of the distribution, hence the magnitude of the velocity components. When

the fluid is flowing, and not in equilibrium, it is not particularly useful to form

the distribution of molecular speeds. The distribution of velocity in a partic-

ular component direction, and the differences between distributions in different

component directions, is more informative. These directions can vary from cell

to cell, and be supplied externally, or self generated. For example, at a surface,

the velocity distribution component normal to the local surface, the distribution

aligned with the local streaming velocity, and the remaining transverse direction

can be measured. The directions will vary from cell to cell but will always repre-

sent the normal, flow and transverse components of the flow. The structure of the

mesh and fields in OpenFOAM makes this easy; the distribution for a particular

cell can be easily linked to the geometrical properties of the cell or its constituent
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faces, or any of the field data stored for that cell.

10.6.1 Distribution class

The measured distribution of speed is stored in an object of the ‘distribution’ class

(essentially a histogram) which is constructed using a user specified value for the

width of its histogram bins, bw. There is no need to specify the number of bins

because the underlying data structure dynamically resizes itself to the correct

number. When a value is added to the distribution then n, the key for the bin

that the value lies in is calculated, and the count variable, D(n), for that bin is

incremented by one. If the key does not already exist, it is created and its count

set to 1. Keys are always integers to avoid floating point comparisons. A key of

value n represents a bin of width bw, centred at (n+1/2)bw. The appropriate key

for a scalar quantity v is given by

n = integer(v/bw)− neg(v/bw), (10.17)

i.e. taking the integer part2 of v/bw and correcting for negative values by using

the boolean function neg() which returns 1 if its argument is negative and 0

otherwise.

When the distribution is to be output the keys are converted to their equiva-

lent bin centre values and the accumulated counts must be normalised to D′(n),

such that:
nmax∑

n=nmin

D′(n)bw = 1. (10.18)

The sum of all of the bin counts gives the total number of values recorded, Nv,

nmax∑
n=nmin

D(n) = Nv, (10.19)

2integer() is not the floor or ceiling function because it always rounds towards zero, for
example, integer(3.2) = 3, integer(−5.8) = −5.
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which (because Nv does not depend on n) rearranges to,

1

Nv

nmax∑
n=nmin

D(n) = 1,

⇒
nmax∑

n=nmin

1

Nvbw
D(n)bw = 1, (10.20)

so, by comparing equations (10.18) and (10.20), the normalised values are

D′(n) =
1

Nvbw
D(n). (10.21)

The distribution class is also able to calculate the mean and median of the

data and ‘shift’ the distribution along the bin value axis by a user specified value,

or by its own mean to centre the distribution. The shift applied to the distribution

will generally not be a whole bin width, so the operation involves remapping the

shifted data onto standard bin centres.

This class can be used as a template to measure other properties that require

a 2D representation, for example, correlation functions or the structure factor of

a fluid. Examples can be found in

• section 12.1.2. The distribution of the magnitude of intermolecular po-

tential calculation errors caused by imperfect mesh searching using the PP

and PPGR methods (figures 12.3 and 12.4) are recorded by the distribution

class;

• appendix C. The probability distributions for maximum velocity in a timestep

(figure C.2) were recorded, and had their mean values calculated by, the dis-

tribution class;

• appendix F. Results shown in all graphs (figures F.1, F.2 and F.3) were

produced using a precursor to the distribution class in an older code, gnemd

(see chapter 12).



Part III

Performance and testing
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Chapter 11

Molecular configuration

generation performance

A cubic test system of 50 units side length (in MD reduced units) was chosen

to evaluate the performance of molConfig. The commercial CFD meshing soft-

ware GAMBIT R© was used to generate 21 different tetrahedral meshes with these

dimensions. They were generated by specifying the number of cell edges to be

placed on the edges of the bounding geometry, and then allowing GAMBIT R© to

automatically generate a tetrahedral mesh. Edge numbers of 10–30 were used

and the number of cells, NC , generated in each case are shown in table 11.1. An

example mesh (edge number 15) is shown in figure 11.1. A single zone was de-

fined for the whole mesh and filled with an SC lattice with five different densities,

ρ = {0.8, 0.4, 0.2, 0.08, 0.02}, creating NM = {97336, 46656, 27000, 10648, 2744}
molecules in each mesh. The time taken for molConfig to fill each mesh was

recorded and is shown in figure 11.2. Linear trends fit the computational time

data very well, although the negative intercepts of the fitted lines indicate that

linear scaling does not hold when there are very few cells. All timing tests were

performed on a PC with a 2.8GHz, AMD AthlonTMFX-62 processor.

Each line in figure 11.2 represents a constant number of molecules with a

varying number of cells in the mesh. The dependence of the computational time

on the number of molecules is examined by holding the number of cells constant,

as shown in figure 11.3 for three meshes. The three vertical lines on figure 11.2

correspond to the meshes chosen. This data does not fit a linear trend; the

computational cost grows more slowly than a linear relationship with increasing

number of molecules in a fixed mesh. A function of the form:
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Table 11.1: Number of cells in test tetrahedral meshes generated by GAMBIT R©.

edge no. 10 11 12 13 14 15 16 17 18 19
Ncells 7520 9748 11101 19344 22289 22338 28113 36646 43420 50877

20 21 22 23 24 25 26 27 28 29 30
56171 67520 73801 88334 97488 105385 129761 145016 145196 185016 196847

Figure 11.1: Tetrahedral test mesh with edge number 15. The outline of cells on four of
the six faces of the bounding cube are shown, and two of the twelve portions of cells are
shown from the mesh when decomposed for parallel processing.

p+ q (NM/r)
s ,

where p, q, r and s are the fitting parameters, was found to fit the data well, with

r and s similar for each line.

In a practical system, the computational cost will increase as approximately

the ‘problem size’ squared, because a larger problem will involve a larger mesh

with more cells, where the cost is proportional to NC , as well as a larger number

of molecules, where the cost is approximately proportional N0.88
M .

11.1 Aspect ratio

The speed of molecule generation is highly dependent on the shape of the mesh;

for the cubic lattices used here, cubic domains are the fastest to fill because they
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Figure 11.2: The computational time required to generate a given number of molecules
with a varying number of cells in the mesh. The vertical lines are the meshes selected for
figure 11.3.
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Table 11.2: The performance of molConfig for a cuboid system with varying aspect ratio.

B 40 38 36 34 32 30 28 26 24 22 20

a 1 1.166 1.371 1.628 1.953 2.370 2.915 3.641 4.630 6.011 8
NM 64000 63888 63936 64220 64288 63900 64304 63580 63504 63534 64000

time/[s] 17 38 74 120 176 300 450 687 1186 1959 3433

match the shape of the expanding volume of unit cells. Any deviation from cubic

takes longer to fill for the same number of cells and molecules. To examine this, a

cuboid regular mesh of 20×20×20 cells was created with various aspect ratios, see

figure 11.4. The number of cells and the volume of the system was held constant

to give approximately1 the same number of molecules, NM . For a cuboid with a

base area of B2, and a side length of L, the volume is

V = B2L. (11.1)

Defining the aspect ratio, a, of the system to be

a =
L

B
, (11.2)

substituting this into equation (11.1), and rearranging for a gives

a =

(
B1

B

)3

(11.3)

where B1 is the side dimension when a = 1, used to set the total system volume.

Here B1 = 40, so V = 64000. Table 11.2 lists the aspect ratios used, the number

of molecules generated and the computational time required to fill each of the

meshes with an SC lattice of density = 1. The computational time taken for each

aspect ratio, relative to the time required for a = 1, is shown in figure 11.5. A

quadratic function fits the data very well. High aspect ratio mesh shapes incur

a significant computational time penalty with the expanding cube volume filling-

algorithm because unnecessary unit cells will be tested in a large volume outside

the mesh.

1The number of molecules varies because the geometry for a particular aspect ratio does not
exactly match the geometry of the lattice that it is being filled with. However, the maximum
deviation from, in this case, 64000 molecules is only 496, or 0.775%.
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Figure 11.4: Two examples of the mesh used to examine aspect ratio sensitivity: a = 1
(dark solid with white grid) and a = (40/28)3 = 2.915 (light solid with black grid). Note
that the number of cells is the same in both cases (20 in each direction); they are stretched
to match the overall dimensions.
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11.2 Parallel performance.

The parallel performance of molConfig has not been subjected to timing tests

because the processors do not need to communicate during the filling process.

Any deviation from ideal speedup for parallel molecule generation will be mostly

determined by the size and shape of the portions of the mesh that result from

spatial decomposition. For example, a cubic system divided into 8 smaller, equally

sized cubes and filled on 8 processors is likely to fill faster than the same cubic

system divided into 12 strips and filled on 12 processors.

11.3 Choosing mesh dimensions and anchor

positions

The overall dimensions and refinement of the mesh will be usually dictated by

concerns other than the speed of molecule generation: the impact on the speed of

intermolecular force calculation and the resolution of flow properties. The scaling

of the molConfig algorithm is linear with the number of cells in the mesh and

better than linear with the number of molecules, so the molecule generation pro-

cess does not impose unreasonable constraints on the choice of mesh. Very high

aspect ratio shapes (long channels, for example) present a performance penalty,

and should be subdivided into several smaller zones to speed up molecule gener-

ation. Placing the anchor for all of these zones at the same place will ensure that

they are filled with a single crystal; the anchor will be optimised for each zone

automatically.

Choosing the dimensions of the domain requires care if a solid crystal wall

extends across a periodic boundary; the domain must be sized to permit an

integer number of lattice unit cells in the wall zone to prevent gaps or overlaps

in the lattice. The anchor of the lattice should be chosen so that a plane of a

lattice does not lie exactly along the surface of the mesh. If this occurs, then

numerical rounding errors will cause patchy placement of molecules in this plane

— some molecules will be inside the domain and some outside. A small shift of

the anchor will move the plane off the surface and prevent this. A similar issue

occurs when generating molecules in parallel: if a molecule lies exactly on a face

shared by two processors, each processor may place a molecule in essentially the

same place. This is more difficult to prevent, because it depends on how the
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mesh is decomposed, but does not cause problems because one of the duplicated

molecules will be removed by the high energy overlap check.



Chapter 12

Intermolecular force calculation

performance

12.1 Accuracy: average pair potential energy

The total potential energy of all pair interactions in a test system was calculated

by an in-house code: gnemd. It was written in C++ and was based on and

validated against the code supplied in reference [130]. The positions of all of the

molecules from the gnemd test case were imported into gnemdFOAM, transferring

with a precision of 18 significant figures. The same system (same bounding box

geometry and same intermolecular potential) was simulated by gnemdFOAM

using a regular cubic mesh and the 21 tetrahedral meshes as used in chapter 11.

The cubic mesh in gnemdFOAM comprised 283 = 21952 cubic cells. Periodic

boundaries in each direction were applied.

A cubic system domain of exactly 50 units side length was chosen to avoid

any round-off errors when generating the mesh geometry, and a fluid number

density of (50/46)−3 = 0.778688 chosen to give a perfect simple cubic lattice of

463 = 97336 molecules. The total potential energy of all pair interactions for the

molecules in their initial configuration, divided by the number of molecules, will

be used to compare the results. All MD values in these tests will be expressed

in reduced units scaled using the argon Lennard-Jones potential length, energy

and mass values, see section 5.1.3. A cut-off radius of rcut = 2.5 was used in each

case.

This average potential per molecule, 〈PE〉, was calculated using gnemd,

〈PE〉g, and by gnemdFOAM for 22 meshes (21 tetrahedral and cubic) using

116
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Figure 12.1: Relative error between 〈PE〉 for each tetrahedral mesh and 〈PE〉gF with
different cell interaction build methods.

the PP, PPGR (with rG = 0.125, 0.25, 0.5, 1.0) and PFEE cell interaction iden-

tification methods. The cubic mesh in gnemdFOAM was not sensitive to any of

the mesh searching errors of PP identified in section 7.4 and produced exactly

the same result, 〈PE〉gF , with each of the cell interaction identification methods:

〈PE〉g = −4.22656275761469,

〈PE〉gF = −4.22656275759921,∣∣∣∣
〈PE〉g − 〈PE〉gF

〈PE〉gF

∣∣∣∣ = 3.64× 10−12. (12.1)

The difference between 〈PE〉g and 〈PE〉gF , equation (12.1), most probably

arises from the accumulation of rounding errors in the calculation of all pair po-

tentials1 and any round-off error in the transfer of molecule positions between the

two codes. The magnitude of this difference is considered to be small enough to

indicate no algorithm or implementation errors. The relative error between 〈PE〉
1There are approximately 50 molecules in range of each other molecule, giving approximately

97336× 50/2 = 2433400 pair interactions.
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for the tetrahedral meshes using the various cell interaction methods and 〈PE〉gF

is calculated in the same manner as equation (12.1) and shown in figure 12.1.

The errors in the PP or PPGR results are due to cells containing molecules that

should interact not being identified by point-point searching of the mesh. The

errors in PP and PPGR simulations become smaller in meshes with more cells

because a fixed rcut + rG length becomes larger relative to the cell size, giving a

greater chance of establishing two points of a cell being in range.

Note that PFEE always produces a result that appears to be on the numerical

‘noise floor’ of the simulation — where the cumulative effect of numerical rounding

errors becomes important. This is supported by the PPGR results dropping onto

this line when rG is large enough, indicating that all errors have been removed.

This line has a smaller magnitude than the value from equation (12.1), which

is plotted as ‘g to gF, cubic mesh’. This demonstrates that PFEE identifies the

correct cells to provide every molecular interaction in the system, irrespective of

mesh topology.

12.1.1 Parallel accuracy

The accuracy of PFEE when the simulation is parallelised is demonstrated in

figure 12.2. The tetrahedral meshes were decomposed into 12 portions (as shown

in figure 11.1) by a simple x : y : z = 2 : 3 : 2 split and into 32 portions

using METIS [141], then simulated on a distributed memory parallel cluster.

The ‘parallel to serial error’ data represents the relative difference between 〈PE〉
calculated for each mesh and 〈PE〉gF . The ‘parallel self error’ data represents the

difference between 〈PE〉 calculated for each mesh and 〈PE〉 calculated for the

cubic mesh parallelised in the same way as the tetrahedral meshes. It is interesting

to note that the parallel self errors are substantially lower than the parallel to

serial errors; the cubic mesh simulated in parallel gives a result substantially closer

to the parallel tetrahedral meshes than the serial result. The parallel to serial

errors are larger than those for PFEE in figure 12.1, although still acceptably

small. This demonstrates that the referred cells, which provide the intermolecular

force connection between processors, are correctly created and used.
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Figure 12.2: Relative error in 〈PE〉 for each tetrahedral mesh simulated in parallel using
12 and 32 processors. Cell interactions built with PFEE.

12.1.2 Distribution of errors

The values of 〈PE〉 for PP and PPGR do not give an indication of how the inter-

molecular force errors due to missed interactions are distributed. If a large number

of molecules experience small errors, then this could be tolerable. If, however, a

small number of molecules receive substantial errors, this will may cause unac-

ceptable perturbations to the dynamics. The latter case is observed in practise.

The system simulated above is initialised in the cubic mesh with molecule

velocities drawn from a Maxwellian distribution at a temperature of 2.5. The

system is allowed to evolve in gnemdFOAM using the leapfrog integration scheme

for 1000 timesteps of ∆t = 0.005 to create a reference system. This was done

to let the initial simple cubic lattice relax into a more realistic configuration,

because the net force on each molecule in the perfect crystal is zero, which is not

useful for calculating relative errors. The molecule positions from the reference

system are used in the tetrahedral meshes and the acceleration vector for each

molecule calculated. The absolute and relative error magnitude between the

acceleration for each molecule in the tetrahedral mesh and the acceleration for
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Figure 12.3: Relative error magnitude distribution for tetrahedral mesh, edge number
14.

the corresponding molecule in the reference system is calculated:

absolutei = |ateti − aref i| , (12.2)

relativei =
|ateti − aref i|

|aref i|
. (12.3)

These errors were added to histograms to assess their distribution. Examples of

the histograms are shown in figures 12.3 and 12.4 for the edge number 14 mesh,

using PP and PPGR (rG = 0.125, 0.25, 0.5, 1.0). Both graphs show that the vast

majority of molecules receive very small errors. A small number of molecules

receive a substantial absolute error — up to 2.5, where acceleration magnitudes

of up to 100–150 are typical in this simulation. Large relative errors of 30% (see

the inset portion of figure 12.3) are also seen, although these may be caused by

the reference acceleration magnitude being very small. The addition of a guard

radius does improve matters, but not substantially until, in this example, rG > 0.5

is used.
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Figure 12.4: Absolute error magnitude distribution for tetrahedral mesh, edge number
14.

12.2 Computational speed

The computational speed of establishing cell interactions and calculating inter-

molecular forces in gnemdFOAM was assessed for each of the tetrahedral meshes

above, filled with 97336 LJ molecules. The time taken to build the interaction

lists (create DILs, create referred cells and find real cells in range of referred cells)

was recorded, and an intermolecular force calculation for all molecules performed

400 times and timed. The molecules were not moved during the simulation.

All timing tests in this section were performed on a PC with a 2.8GHz, AMD

AthlonTMFX-62 processor.

The time taken to build the interaction lists is shown in figure 12.5 (note the

logarithmic time axis). For the PP and PPGR data, an increase with increasing

rG is seen because more referred cells will be created. It is clear that PFEE

takes substantially longer than PP or PPGR to build the interaction lists. This

is understandable given the number of comparisons and calculations required by

PFEE. Building the interaction lists is O(N2), for a mesh of N cells, and as

such benefits greatly from parallelisation because each portion of the mesh only
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needs to search itself. The longest PFEE builds, taking several 1000s of seconds,

would typically not be practical and the mesh would be decomposed and the

simulation parallelised. The interaction lists are established only once, at the

start of the simulation, so for a very long simulation this may not represent a

substantial portion of the total time. If the same mesh with the same rcut is to

be used repeatedly, then the cell interaction information can be calculated once

then written to, and read from disk.

The average time taken per timestep to calculate all intermolecular forces is

shown on figure 12.6. All of the results follow a similar trend: in meshes with few

cells, each cell contains a large number of molecules, and many pairs identified to

interact will be further apart than rcut. As the cells become smaller, the number

of unnecessary interactions reduces until a point where the additional overhead of

administrating more cells becomes more costly than the benefit derived, produc-

ing a ‘dip.’ All of the results essentially level off for meshes with a large number

of cells (greater than 80000). This shows that the presence of empty cells (there

are 97336 molecules in the system) does not present a significant overhead, a

favourable characteristic. The only exception is for PPGR, rG = 1.0, where the

large number of additional interacting cells seems to cause a noticeable overhead

increase in meshes containing many cells.

The PP and PPGR results produce a family of curves, with increasing rG the

computational time increases and the region of the ‘dip’ narrows. An increased

guard radius will produce DILs with unnecessary cells on them and unnecessary

real-referred cell interactions, increasing the number of intermolecular evaluations

between pairs of molecules that are further apart than rcut.

The PFEE result has a similar form to PP and PPGR but does not fit into the

family. In meshes with fewer cells, PFEE is more expensive than PP and most of

the PPGR results because it is correctly identifying cells to interact that PP and

PPGR miss. Comparing figure 12.6 to figure 12.1 it can be seen that the ‘dip’

(up to approximately 40000 cells) in computational time coincides with the region

of maximum errors for PP and PPGR — missed cell interactions emphasise the

‘dip’ by reducing the number of calculations required by each molecule. The fact

that PFEE does not take significantly longer to calculate forces than PP for finer

meshes demonstrates that it does not identify any more cells to interact than are

absolutely necessary.

There is an opportunity to trade-off the time taken to build the interaction
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Figure 12.5: Time taken to build interaction lists at the start of the simulation.

lists using PFEE with a quick list build and slower timesteps using PPGR and

a large enough rG to remove all errors. The required rG length is difficult to

determine in advance, however, and most realistic simulations involve very many

timesteps, which would soon make the PPGR simulation slower overall.

Further simulations to characterise the performance of the code, exploring the

impact of molecule number density, system size, mesh cell size and morphology

(for example, tetrahedral vs. hexahedral, skew, aspect ratio) number of processors

and decomposition method are required.

12.2.1 Speed comparison with conventional MD code

To assess the speed of calculation relative to a conventional MD neighbour-list

method, gnemdFOAM was compared to programs pr 04 1 and pr 04 2 from ref-

erence [130]. The test case was a cubic system of density ρN = 0.8, with pe-

riodic boundaries in each direction. A regular cubic mesh of varying resolution

was created for the gnemdFOAM cases. Two sizes of system were considered,

NM = 123 = 1728 molecules and NM = 263 = 17576 molecules. Each system

size was simulated at two temperatures, T = 1.0 and T = 2.5, and two cut-off
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Figure 12.6: Time taken to calculate intermolecular pair forces between all molecules.

radii were used, giving eight permutations of simulation case. The purely re-

pulsive WCA potential with a cut-off radius of rcut = 21/6 ≈ 1.122 was used to

compare to pr 04 1 and the unshifted, truncated Lennard-Jones potential with

rcut = 2.5 was used to compare to pr 04 2. For the cases with 1728 molecules,

10000 timesteps were simulated; for the 17576 molecule case 2000 timesteps were

simulated.

The results are shown in tables 12.1 and 12.2. The number of cells in the

gnemdFOAM meshes are shown along with the time taken for each case to run,

tgF , as well as the reference time, tref , taken by pr 04 1 or pr 04 2 to run. In the

gnemdFOAM cases, only the time spent calculating timesteps (force calculation

and integration of equations of motion) is shown. The time taken to build the

interaction lists is excluded because it is a one-off cost at the start of the simu-

lation and its relative impact depends on the length of the simulation. For each

case the ratio between the fastest gnemdFOAM mesh (minimum tgF ) and the

reference time is calculated,

RgF =
min(tgF )

tref

,
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Table 12.1: Simulations comparing pr 04 1 (rcut = 21/6) with gnemdFOAM.

no. NM T tref /[s] tgF /[s] RgF

number of cells: 83 93 103 113 123 133 143 153

1 1728 1.0 15.27 67.14 54.71 48.93 46.40 82.89 76.42 71.51 66.82 3.04
2 1728 2.5 17.51 49.26 45.55 83.79 2.60

number of cells: 203 213 223 233 243 253

3 17576 1.0 40.79 112.2 109.3 106.8 104.0 101.7 182.8 2.49
4 17576 2.5 45.60 107.2 103.5 102.6 184.3 2.25

Table 12.2: Simulations comparing pr 04 2 (rcut = 2.5) with gnemdFOAM.

no. NM T tref /[s] tgF /[s] RgF

number of cells: 63 73 83 93 103 113 123 133

5 1728 1.0 106.1 316.8 242.2 275.0 245.0 212.7 244.3 281.0 282.3 2.00
6 1728 2.5 115.5 247.7 211.9 242.8 1.83

number of cells: 183 193 203 213 223 233

7 17576 1.0 231.1 513.0 460.3 452.2 427.1 407.1 498.5 1.76
8 17576 2.5 251.3 452.0 427.9 408.3 1.62

to show the relative performance.

These comparative timing tests were carried out on PC with a 2.66GHz Intel R©

CoreTM2 Q6700 processor and both codes were compiled using gcc version 4.2.2

using the -O3 optimisation option. For each simulation the average kinetic and

total energy per molecule for the reference codes and gnemdFOAM agreed.

In these cases, gnemdFOAM is a factor of 1.6 to 3.0 slower than the refer-

ence codes which use a conventional neighbour list method. The performance

difference between gnemdFOAM and the reference codes decreases with increas-

ing system size, temperature and cut-off radius. It should be noted, however,

that the test is not comparing codes written with the same intention: gnemd-

FOAM calculates intermolecular potentials via a generalised run-time potential

selection mechanism that allows any number of species to be simulated. The

reference codes are written and compiled specifically for their application; only a

single species simulation is possible. Additionally, the particle tracking system in

gnemdFOAM is more sophisticated and costly because it is required for complex

geometries.

The dependence of the speed of calculation of the reference codes on system

size and temperature is consistent with reduced neighbour-list lifetimes, as noted

in section 5.2.2 and appendix C. The speed of gnemdFOAM is not significantly
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influenced by the system temperature because it uses a cell-only method. This

is demonstrated by the agreement between the T = 1.0 and T = 2.5 results;

they were similar enough that simulations other than around the fastest mesh

resolution for the T = 2.5 cases were considered unnecessary.

There are significant ‘jumps’ and local minima in the results when varying the

mesh resolution for a given cut-off radius, this is best seen in the results for case

5. The mesh comprises regular cubic cells and the resolution in each direction

can change only by integer values. Certain steps in resolution cause a transition

between a situation where the volumes of the cells in the DILs are almost all

within the cut-off radius, to a situation where the outer layer of cells have little of

their volume within the cut-off radius. The transition is sharp because all cell’s

DILs change at once because all cells are the same size. Irregular meshes, such

as the tetrahedral meshes used above, will not exhibit this effect.

12.3 Discussion

The accuracy of using PFEE mesh searching to determine which cells in the

mesh should interact has been demonstrated by simulating a cubic MD system

represented by 21 different tetrahedral meshes, ranging from 7520 to 196847 cells.

The results are the same, to within numerical round off error, to those produced

by gnemd. The computational cost of intermolecular force calculation with AICA

depends on the mesh used but scales favourably with increasing refinement of the

mesh. In particular, having a significant number of empty cells does not add

much computational overhead. The accuracy of exchanging intermolecular force

data across periodic and interprocessor boundaries using referred molecules and

cells has been demonstrated, with the 21 tetrahedral meshes producing the same

results when simulated in serial as on 12 and 32 processors.

12.3.1 Choosing a mesh

The performance of the algorithm is highly dependent on the mesh it is applied

to. When choosing a mesh to use for a simulation the following points must

be considered, and in some cases numerically tested and traded-off against one

another:

• The time required to build cell interaction lists depends on the intermolec-
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ular potential cut-off radius, rcut, the number of cells and their shape, and

the form of the mesh: a tetrahedral mesh will have a different balance of

points : edges : cells compared to a hexahedral mesh, which will impact on

the time taken for a PFEE search.

• Optimising the size of the mesh to minimise the time taken to run the

simulation is complex and is case-specific.

• The implications of mesh refinement on the measurement of spatially re-

solved properties is discussed in section 10.1, but in general, the cell sizes

are determined by whether property measurement or intermolecular force

calculation requires finer mesh resolution.

• The mesh does not need to be uniform, it can have locally high resolution

for making measurements in regions of interest but be coarser to improve

computational speed if necessary in other regions. The ‘tricks of the trade’

used in CFD can also be applied, for example the mesh can be adaptively

refined to track a region of interest.

• PP and PPGR are generally not good choices for building cell interactions

unless the mesh in question comprises regular hexahedra because they can

introduce significant errors to molecule force calculations.



Chapter 13

Case study: CAD-derived mixing

channel

To demonstrate the capabilities of gnemdFOAM, a case study of flow in a com-

plex, 3D nanochannel was simulated where the geometry was derived from a

CAD (computer-aided design) model. The objective of the study was not pri-

marily to analyse the fluid dynamics in the channel, rather to demonstrate what

it is possible to simulate. A three inlet, one outlet microscale mixing channel

from reference [177] was chosen as a guide for the geometry, see figure 13.1, and

a reduced scale version was created.

13.1 Geometry definition

The process of creating the geometry is:

1. The system was drawn in Pro/ENGINEER R©, a commercial CAD tool. A

sketch is created defining the outline of the shape, see figure 13.2. Note

that constraints are placed on most of the dimensions so that they may

only be one of a small set of parameters, allowing the size of the mixing

section to be easily changed. Adjusting L2 adjusts the width of the mixing

section. All dimensions are in MD reduced units, where σr = 0.34nm. This

sketch is extruded to form a solid, hollowed out to leave a shell and the

material at the inlets and outlets removed, see figure 13.3. The internal

edges and corners are all rounded to make the geometry more realistic, as

fabrication techniques are not able to make sharp channel shapes. This

128
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Figure 13.1: The geometry that the case study is based on, taken from [177]. There are
three fluid inlets (narrower channels at the top of the image) and one outlet.

gives the volume of the wall regions with empty space remaining for the

fluid section (figure 13.4).

2. The geometry is exported from Pro/ENGINEER R© as a STEP file and im-

ported into GAMBIT R©, a commercial mesh generation tool, see figure 13.5.

3. A volume exists for the region that will form the solid walls and a region

must be created for the volume containing the fluid. To do this, faces for the

inlets and outlets are created from existing edges, as shown on figure 13.6.

4. These new faces are combined with the existing faces on the inside of the

channel to create a volume for the fluid section. This is shown in figure 13.7

where the geometry involved only in the solid wall volume is not shown.

5. The fluid volume is split into 4 parts by creating box volumes surrounding

each of the three inlets channels (see figure 13.8 for an example of this) and

intersecting them with the fluid volume.

6. A reservoir volume is created at the entrance to each of the inlet channels

and joined to the adjacent inlet channel volume, see figure 13.9.

7. Each volume is given a name to identify all of the cells that are created

in it as being part of a zone for the generation of initial configurations of

molecules.
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8. Collections of geometrical faces are grouped together to form patches, so

that all of the cell faces that lie on them will form patches in the mesh

to which boundary conditions may be applied. The outlet, the faces of

the molecule reservoirs that are external to the volumes and the remaining

outer surface are defined as three separate patches.

9. The volumes are meshed by GAMBIT R© using mostly automatic tetrahe-

dral meshing, except in the molecule reservoirs where hexahedral cells were

easy to create. A size function is applied at the mixing section to give finer

cells around the mixing section. Creating meshes with tetrahedral cells is

discouraged in continuum CFD, despite their ease of creation by automated

tools, because they suffer from large interpolation errors compared to hexa-

hedral cells. In this case the cells are required only to provide a space filling

representation and to collect measurement data; no equations are solved

using them. It will be seen, however, that collecting data in tetrahedral

cells may produce noisy data.

10. The mesh is exported from GAMBIT R© as a Fluent R© mesh and imported

into OpenFOAM using the fluentMeshToFoam utility with the ‘writeZones’

option. The mesh as imported is shown in figures 13.10, 13.11 and 13.12.

11. The boundary file in the OpenFOAM mesh directory is edited to assign

the correct type to the patches created in the meshing process. The outlet

patch and external surfaces except those of the molecule reservoirs are of

type ‘patch,’ meaning that a molecule will be deleted when it touches a

face. The reservoir external surfaces are of type ‘wall,’ and molecules are

specularly reflected from faces they impact on. The external faces are of

type ‘patch’ because the crystal near them is tethered forming a solid, so

flow cannot leave the domain. The wall molecules whose tether points are

close enough to the edge of the domain such that their locus of oscillation

crosses the patch will be deleted. This does not affect the flow in the system

if the wall is thick enough and is preferable to wall molecules close to the

edge of the domain bouncing rapidly against a solid wall.

At this stage the geometry definition is complete.
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13.2 MD preprocessing and simulation

Three types of molecule are created and are named depending where on where

in the geometry they are initially placed. This allows the mixing in the channel

to be observed by measuring the relative abundance of each type. There are two

liquid molecule types, separated into those that start in the centre of the channel

(the outlet region and the aligned inlet) and those that start in the side inlets.

Molecules that comprise the wall are also created as a separate species to allow

the channel boundary to be identified. The molecules have the ids LJ C, LJ S

and LJ W, meaning Lennard-Jones, Centre, Side and Wall)

Four simulations were carried out in this geometry at two temperatures, T =

1.0 in reduced units, equivalent to 120K, and T = 2.5 ≡ 300K. One simulation at

each temperature used the same intermolecular potential between each molecule

and another simulation used potentials where the energy scale of the shifted force

Lennard-Jones potential was altered to make the liquids less miscible. To do this

the attractive well was made deeper between liquid molecules of the same type

and shallower between molecules of different types. The initial configuration of

the systems was otherwise identical.

The molecule reservoirs are enclosed by solid walls and flow is created in the

system by making the outlet type ‘patch,’ so that a molecule crossing it is deleted.

This effectively means that the system vents into a vacuum, although the fact that

a molecule is deleted as soon as it touches the patch means that it is not allowed

to evaporate into the vacuum naturally: it is ‘pulled’ out of the simulation.

The potentials dictionary for both cases is shown in figure 13.15. The wall

molecules are tethered into place by a harmonic spring potential, the strength of

which is shown in figure 13.15. The steps required to preprocess and run the MD

simulation are:

1. The mesh is decomposed into 48 portions using the METIS library [141],

which is used by OpenFOAM’s decomposePar utility. A script ‘boundary-

ToProcs’ is used to make a copy of the boundary description of the unde-

composed mesh in the directory for each processor’s mesh portion. This file

is used in the construction of patch segments (see appendix D).

2. The domain is filled with molecules in parallel using molConfig. The zone

specifications are given in figure 13.14 and the zone names are shown in

figures 13.10 and 13.11. The liquid zones (LJ C and LJ S) are filled with
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a simple cubic lattice and the wall molecules (LJ W) are tethered into an

FCC lattice. Figure 13.13 shows the molecules that are created on one of

the processors, and the mesh portion belonging to an adjacent processor.

3. The controlDict (control dictionary file, common to all OpenFOAM simu-

lations) has the timestep set to 0.005, with a simulation end time of 500

(both in reduced units). An interval of 10 time units (2000 timesteps) is

specified to write the configuration of the system to disk (from which it can

be restarted if necessary) and acts as the averaging period for measuring the

field values. The temperature, velocity, number density and mass density

fields are measured for each species and as total values. The mass and mole

fraction fields can be calculated during post-processing using the ratio of

species to total density.

The molecule creation and simulation runs were carried out on 48 cores

of a 100 core cluster, each core belonged to a dual core, 64bit, 2GHz AMD

OpteronTM chip. The interconnect was via gigabit ethernet. It took approxi-

mately 13 minutes to create the initial configuration of 1462512 molecules for

each case. The number of molecules created in all simulations is the same be-

cause the density, orientation, structure and anchor of the lattices stays the same

for each. In conventional MD codes which simulate simple cubic domains, the

computational cost of initial molecule generation is negligible. In this case 13

minutes is still a very small proportion of the overall simulation time. The MD

simulations took between 80 and 136 hours to run. Building all referred cells and

interaction lists took approximately 11 minutes and 30183 liquid molecules were

removed at zone boundaries due to high energy overlaps. The time taken to solve

varies partly due to the differing rate of outflow of molecules from the system

(faster flow leaving fewer molecules to simulate in later timesteps) and also due

to disk access and communications congestion caused by other jobs running on

the cluster.
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Figure 13.4: 3D view of the volume created in Pro/ENGINEER R© to define the wall
region of the channel.

Figure 13.5: The geometry of the Pro/ENGINEER R© model imported into GAMBIT R©

as vertices, edges, faces and a volume to represent the wall region.
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Figure 13.6: New faces are created using existing edges to define the inlet and exit faces
from the fluid volume.

Figure 13.7: The newly created faces (see figure 13.6) are combined with the faces on
the inside of the existing volume to define an internal volume for the fluid. The geometry
not associated with this new volume is not shown
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Figure 13.8: Rectangular volumes are created and used to split the fluid volume into four
separate volumes so that the three inlets and the outlet region may be filled with molecules
independently.

Figure 13.9: Molecule reservoirs are added to the fluid inlets.
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outletRegionPosZ

inletRegionNegZ

inletRegionNegX

inletRegionPosX

Figure 13.10: The mesh after being exported to OpenFOAM. The four liquid zones are
shown.

wallRegion

Figure 13.11: The mesh after being exported to OpenFOAM. The wall zone is shown.
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Figure 13.12: The internal space forming the liquid channel. Note the curved channel
edges.

Figure 13.13: The molecules contained on one processor portion of mesh are shown
coloured by id: blue for LJ C and red for LJ W. The mesh portion of an adjacent processor
is also shown.
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outletRegionPosZ inletRegionNegZ

{ {

density 0.8; density 0.8;

temperature 2.5; (or 1.0;) temperature 2.5; (or 1.0;)

velocityDistribution maxwellian; velocityDistribution maxwellian;

bulkVelocity (0.0 0.0 0.0); bulkVelocity (0.0 0.0 0.0);

id LJ_C; id LJ_C;

mass 1.0; mass 1.0;

latticeStructure SC; latticeStructure SC;

anchor (0.0 0.0 0.0); anchor (0.0 0.0 0.0);

anchorSpecifies corner; anchorSpecifies corner;

tethered no; tethered no;

orientationAngles (0 0 0); orientationAngles (0 0 0);

} }

inletRegionNegX inletRegionPosX

{ {

density 0.8; density 0.8;

temperature 2.5; (or 1.0;) temperature 2.5; (or 1.0;)

velocityDistribution maxwellian; velocityDistribution maxwellian;

bulkVelocity (0.0 0.0 0.0); bulkVelocity (0.0 0.0 0.0);

id LJ_S; id LJ_S;

mass 1.0; mass 1.0;

latticeStructure SC; latticeStructure SC;

anchor (0.0 0.0 0.0); anchor (0.0 0.0 0.0);

anchorSpecifies corner; anchorSpecifies corner;

tethered no; tethered no;

orientationAngles (0 0 0); orientationAngles (0 0 0);

} }

wallRegion

{

density 0.85;

temperature 2.5; (or 1.0;)

velocityDistribution maxwellian;

bulkVelocity (0.0 0.0 0.0);

id LJ_W;

mass 1.0;

latticeStructure FCC;

anchor (0.0 0.0 0.0);

anchorSpecifies corner;

tethered yes;

orientationAngles (0 0 0);

}

Figure 13.14: Entries in the molConfigDict dictionary for the case study. The zone
names are shown in figures 13.10 and 13.11
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Removal order

removalOrder 3 (LJ_C LJ_S LJ_W);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Pair potentials

pair

{

LJ_C-LJ_C LJ_C-LJ_C

{ {

potentialType shiftedLennardJones; potentialType shiftedLennardJones;

sigma 1.0; sigma 1.0;

epsilon 1.0; epsilon 1.25;

rCut 2.5; rCut 2.5;

} }

LJ_C-LJ_S LJ_C-LJ_S

{ {

potentialType shiftedLennardJones; potentialType shiftedLennardJones;

sigma 1.0; sigma 1.0;

epsilon 1.0; epsilon 0.75;

rCut 2.5; rCut 2.5;

} }

LJ_C-LJ_W LJ_C-LJ_W

{ {

potentialType shiftedLennardJones; potentialType shiftedLennardJones;

sigma 1.0; sigma 1.0;

epsilon 1.0; epsilon 1.0;

rCut 2.5; rCut 2.5;

} }

LJ_S-LJ_S LJ_S-LJ_S

{ {

potentialType shiftedLennardJones; potentialType shiftedLennardJones;

sigma 1.0; sigma 1.0;

epsilon 1.0; epsilon 1.25;

rCut 2.5; rCut 2.5;

} }

LJ_S-LJ_W LJ_S-LJ_W

{ {

potentialType shiftedLennardJones; potentialType shiftedLennardJones;

sigma 1.0; sigma 1.0;

epsilon 1.0; epsilon 1.0;

rCut 2.5; rCut 2.5;

} }

LJ_W-LJ_W LJ_W-LJ_W

{ {

potentialType shiftedLennardJones; potentialType shiftedLennardJones;

sigma 1.0; sigma 1.0;

epsilon 1.0; epsilon 1.0;

rCut 2.5; rCut 2.5;

} }

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Tethering Potentials

tether

{

LJ_W

{

potentialType harmonicSpring;

springConstant 150;

}

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Figure 13.15: Entries in the potentials dictionary for the case study. In the pair potentials
sub-dictionary the potential specification for the case where all potentials are identical (left)
and when they are different (right) are both shown.
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13.3 Results

The results from the simulations are shown in four series of figures. Each figure

shows the total density, total velocity magnitude, mole fraction of the side species

(LJ S) and mole fraction of the centre species (LJ C) for a particular averaging

period. The four series are:

• figures 13.20 to 13.25 on pages 146 to 151: equal intermolecular potentials

and T = 2.5 for timestamps 10, 50, 90, 130, 170 and 210;

• figures 13.26 to 13.31 on pages 152 to 157: different intermolecular poten-

tials and T = 2.5 for timestamps 10, 50, 90, 130, 170 and 210;

• figures 13.32 to 13.37 on pages 158 to 163: equal intermolecular potentials

and T = 1.0 for timestamps 10, 100, 200, 300, 400 and 500;

• figures 13.38 to 13.43 on pages 164 to 169: different intermolecular poten-

tials and T = 1.0 for timestamps 10, 100, 200, 300, 400 and 500.

The timestamp for an averaging period refers to the data collected in the

previous 10 units of time, so a timestamp of 170 represents the data collected

between 160 and 170. The temperatures stated are the initial temperatures of

the simulation, defined by molConfig. In each simulation the temperature drops

because the system is depressurising and evaporating.

All results shown are from a cut through the middle of the domain along a

plane with normal in the y direction (see figure 13.10 for the axes of the geometry).

An example of the field variation in the other two planes is shown in figure 13.16.

The data is collected in cells, but can be displayed as an interpolated field

by ParaView [144]. The two representations are compared in figure 13.17. Fig-

ure 13.18 shows one of the inlet sections where the molecule reservoir comprises

hexahedral cells and the channel section comprises tetrahedrals. It would seem

from this that tetrahedrals produce ‘noisier’ data, although the relative volume of

the cells would need to be accounted for to examine this. Full flow field plots are

rarely useful for quantitative analysis, rather for appreciating the flow dynamics

and gaining insight into the processes that are occurring, so the interpolated fields

will be shown. Any quantitative results would require the data to be reduced to

single number or line graphs. The interpolated fields are necessary to calculate

and display contours of the field variables.
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Figure 13.16: Cuts through the x and z normal planes of the domain.

Figure 13.17: Comparing the raw cell data and the interpolated field. The raw cell data
(above) is more difficult to appreciate in the mixing flow field but forms a sharp interface
at the wall, the interpolated field (below) smears the interface at the wall but is easier to
appreciate in the flow field.



CHAPTER 13. CASE STUDY: CAD-DERIVED MIXING CHANNEL 144

Figure 13.18: The cells in the molecule reservoirs are hexahedra, and those in the channel
are tetrahedra. The hexahedral cell values seem to be less noisy.

There is a significant difference between the T = 2.5 and T = 1.0 simulations.

In the T = 2.5 cases the outlet section rapidly depressurises and the flow ‘chokes’

at the throat of the mixer where very high velocities are observed; a velocity of

1.5 in reduced units is equivalent to 236m/s. The side and centre species mix in

a complex process because the state at the throat is close to the critical point for

a Lennard-Jones fluid where ε∗ = 1 and σ∗ = 1 [138]. Where the intermolecular

potentials are different, the mixing of the two streams is not as complete; the

side streams stay relatively separate from the centre. The 5× 10−6 mole fraction

contour shows the extent to which traces of one species have diffused into the

other. Where the potentials are equal, the species diffuse into each other more

readily.

In the T = 1.0 cases the flow is significantly slower and does not undergo a

large decompression in the outlet section. The equal potential simulation forms

a ‘barrier’ — an increase in density — at the exit. This could be caused when

the outlet patch deletes a molecule and the molecules close to the exit that it

was previously attractively interacting with recoiling due to the sudden removal

of this downstream force. The equal potential fluids mix well and diffuse into

each other, whereas in the different potential simulation the fluids stay relatively

immiscible and do not diffuse into each other significantly. The different potential
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simulation does not decompress as much, or flow as fast as the equal potential

simulation.

The overall outflow can be appreciated by plotting the total number of molecules

in the system as a function of time, see figure 13.19.
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Figure 13.19: The total number of molecules in the system versus time. The initial
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temperature reduces the flowrate. The different intermolecular potential simulations flow
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Figure 13.44: The distribution of molecules amongst 48 processors for the T = 2.5 case
where the potentials are all equal. Some processors simulate significantly more molecules
than others. The situation has not changed significantly by the end of the simulation.

13.4 Discussion

A significant performance penalty arises from an unbalanced decomposition of the

system. The decomposition was carried out so that the number of cells on each

processor was approximately the same, which is desirable for CFD. However, the

cells are not the same size, particularly because they have been made deliberately

fine in the mixing section. The number of molecules in a portion of the mesh is

proportional to the total volume of cells in that mesh portion in this case because

density is reasonably homogeneous. The distribution of the number of molecules

on each processor is shown in figure 13.44 at the start and end of the T = 2.5 equal

potential simulation and shows that some processors are simulating significantly

more molecules than others. A modification to OpenFOAM’s decomposition

utility (decomposePar) is required to balance the decomposition.

It is very difficult to make reliable comparisons between the simulations be-

cause the fluid state is uncontrolled and the alteration of potentials alters the

properties and transport coefficients of the fluid. The use of an outlet venting to
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vacuum is also an uncontrolled and unsuitable way to drive the flow; it is likely

to be the cause of the density barrier observed in the T = 1.0, equal potential

simulation. The intention of this case study was to illustrate the potential of the

code to perform simulations in complex geometries. It has achieved this aim, and

highlighted the need for the infrastructure to be created to make such simulations

more controllable.



Chapter 14

Conclusions and further work

14.1 Conclusions

The objective of this research has been to create a molecular dynamics code with

functionality not present in those that currently exist: the ability to perform sim-

ulations in complex geometries, represented by unstructured meshes of arbitrary

polyhedra, such as those derived from engineering CAD models. These meshes

are subdivided for parallel processing, and the simulation is insensitive to the size

and shape of the decomposed portions, and their connectivity.

The code is intended to serve as a component in a hybrid molecular dynamics-

continuum fluid mechanics simulation method, which is the subject of ongoing

research, although it may be equally well employed as a standalone MD code

for the direct simulation of complex nanoscale structures. More generally, the

methods developed may be used for performing any particulate simulation in an

arbitrary geometry where long range forces between particles are important, i.e.

larger particles that carry an electrostatic charge, such as colloids.

A tool has been written that is able to create initial configurations of molecules

by filling spatial zones of the mesh with single crystal lattices of user specified

molecule type, structure, density and orientation. This tool operates in parallel,

where the mesh has already been decomposed. Each processor fills the zones

on its own portion of the mesh, but does so in a way that there are no defects

across processor boundaries. Parallelisation of this tool allows large systems of

molecules to be created because there is no constraint that all of the molecules

must fit into the memory of a single computer at any point.

A molecular dynamics code has been written which calculates pair forces

172
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between molecules which occupy an arbitrary mesh. The computational cost

of the force calculation has been kept low, scaling linearly with the number of

molecules in the system. This is achieved by determining the spatial relationship

of cells once at the start of the simulation and using this information at each

timestep to specify which molecules must interact. Replicated molecules are

used to pass intermolecular forces across periodic and interprocessor boundaries.

Determining how to efficiently implement this force calculation, and particularly

how to do it in parallel, comprises the primary original contribution of this work.

The motion of molecules is tracked through the mesh, where they interact with

boundaries (i.e. inlets, outlets, solid surfaces or interprocessor surfaces) when they

cross the appropriate mesh face, making the boundary definition locally specified

and able to comprise any shape.

All code has been implemented using OpenFOAM [5]. The most important

technical advantages this confers are the powerful and flexible mesh structure

and existing particle tracking infrastructure; both of these features (like all of

OpenFOAM) were already parallelised. OpenFOAM is written in C++, which

allows new functionality to be easily incorporated by deriving new, specialised

classes from templated generic classes that contain core functionality. New fea-

tures are therefore able to be easily made interoperable with the rest of the code

infrastructure. OpenFOAM is open source, and as such its use also facilitates the

dissemination, and wider use, of the newly developed MD code.

The performance of the initial configuration generation and force calculation

algorithms has been shown to scale favourably with the number of cells and

molecules in a mesh. A case study of a parallelised, complex geometry containing

a large number of molecules, producing complex flow patterns, demonstrates the

ability of the code to tackle useful and realistic simulations.

14.2 Future developments

The following is a discussion of tasks required to expand the scope of the MD

code to make it applicable to realistic problems. The subject of implementing a

hybrid simulation will not be covered in detail.
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14.2.1 Expand range of materials

The infrastructure for simulating a wider range of materials needs to be estab-

lished. This involves generalising the pair potential infrastructure using some of

the functionality of the C++ programming language, namely templating, inher-

itance and virtual functions. The core of the force calculation code can call for

the force and energy between a pair of molecules without needing to know which

potential is involved or how it is implemented. This allows easy run-time selection

of different forms of potential, (i.e. Lennard-Jones, Buckingham etc. [133, 178])

and the ability to add new potential models to the code without changing the

force calculation classes. In this way, users who are not acquainted with the

core details of the code may make meaningful extensions to it. This is the case

with the structure of the rest of OpenFOAM. The potential infrastructure can

be further generalised to simulate many body interactions.

Currently the code deals only with short-ranged pair forces between single,

spherically symmetrical atoms. Rigid (i.e. diatomic gases, water molecules) and

flexible (i.e. hydrocarbons, polymers, biomolecules) rotationally asymmetric poly-

atomic molecules should be included. This will require predictor-corrector equa-

tion of motion integration, incorporating rotational dynamics [130, 131].

The inclusion of long-range electrostatic forces are necessary for many appli-

cations. The methods normally used to calculate long range interactions (the

Ewald sum [130, 131], smoothed particle-mesh Ewald [179] are applicable to pe-

riodic systems only. In complex geometries, the reaction field method [131] or

a variant of the fast multipole method [130] with a generalised hierarchical cell

subdivision could be investigated.

The range of materials that can be generated by molConfig should be ex-

panded. The fourteen Bravais lattices [180] can be implemented to allow real,

non-homogeneous crystals to be filled into volumes. A library of common solids

and liquids drawn from the open literature should be established. The stochastic

creation of mixtures would be useful, for example including a specified proportion

of a dissolved gas, randomly distributed in a liquid.

14.2.2 Measurements

The range of properties that are measured should be expanded, particularly to

include stress and heat flux. A flexible infrastructure is required to make spe-
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cialised measurements, in addition to simply resolving properties onto the mesh.

A surface may be defined and the profile of a flux passing through it measured

with high spatial resolution. Similarly, a volume may be defined and the varia-

tion of a parameter in a specified direction measured with high spatial resolution.

Simpler measurements (the total flux of a certain species through a plane for

example) can be made with the same methods. As with generalised potential

functions, this infrastructure should be designed so that new measurements may

be made without needing to alter the core force calculation and molecule motion

code.

Block averaging methods [130] should be applied to time averaged quantities

to allow an accurate value for the variance in a measurement to be estimated.

Overlapping data collection [130] can be used to reduce the noise in time varying

data without increasing the result output interval.

An automated tool is required to measure fluid transport properties over a

specified range of states to ensure that continuum simulations that the MD sim-

ulation is hybridised with, or compared to, represent the same fluid as the MD

potential.

14.2.3 Boundaries and driven flows

Methods are required to create controlled inlet and outlet boundaries, as well as

creating regions of the domain where the state of the fluid is controlled. This is

required to apply the type of flow boundary conditions that are common in CFD:

controlling the velocity, pressure and temperature of the fluid. Volumes where a

fluid state is controlled can use the same underlying infrastructure as those used

to make measurements. This functionality is also required for coupling a hybrid

simulation.

14.2.4 Performance improvements

The parallel performance of the code can be improved by profiling to determine

the most costly functions and optimising them. The decomposition of the mesh

should be altered to weight a cell by the number of molecules it contains in order

to equally distribute the number of molecules among processors. A method of

repartitioning cells and molecules between processors to dynamically load-balance

the simulation during running would be beneficial in transient simulations where
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large density variations move through the mesh.

The performance impact of parallel communications latency can be greatly

reduced by communicating referred molecules between processors during the force

calculation between pairs of real molecules.

Alternative methods for searching the mesh to establish which cells are in

range of each other can be tried to attempt to reduce the time taken to build

interaction lists. For example, a ‘wave’ can be launched into the mesh from the

faces of the cell in question which moves outwards and stops propagating when

the last cell it moved through is not in range. This would avoid needing to search

the whole mesh.
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Appendix A

Reduced unit derivation

Reduced unit expressions for force, time, velocity, acceleration, temperature, pres-

sure and density are derived below in terms of defined values for reference length,

σr, energy, εr and mass mr.

Force

From energy = force · distance:

f =
ε

l
=
ε∗εr
l∗σr

,

f

(
σr

εr

)
=
ε∗

l∗
,

therefore,

f ∗ = f

(
σr

εr

)
. (A.1)

Time

From Newton’s second law:

f = ma =
ml

t2
,

f ∗
(
εr
σr

)
=
m∗mrl

∗σr

t2
,

f ∗ =
m∗l∗

t2

(
mrσ

2
r

εr

)
,
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therefore

t∗ = t

√
εr

mrσ2
r

. (A.2)

Velocity

Manipulating the magnitude of velocity only, using speed = distance / time:

v =
l

t
,

=
l∗σr

t∗
√
mrσ2

r/εr
,

=
l∗

t∗

√
εr
mr

,

v

√
mr

εr
=
l∗

t∗
,

therefore

v∗ = v

√
mr

εr
. (A.3)

Acceleration

Manipulating the magnitude only, using acceleration = velocity / time:

a =
v

t
,

=
v∗

√
εr/mr

t∗
√
mrσ2

r/εr
,

=
v∗

t∗

(
εr

mrσr

)
,

a

(
mrσr

εr

)
=
v∗

t∗
,

therefore,

a∗ = a

(
mrσr

εr

)
. (A.4)
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Temperature

Using the equipartition definition of temperature (where kb is the Boltzmann

constant):

T =
2

3kbN

∑
N

1

2
mv2,

=
2

3kbN

∑
N

1

2
m∗mrv

∗2
(
εr
mr

)
,

=

(
εr
kb

)
2

3N

∑
N

1

2
m∗v∗2,

T

(
kb

εr

)
=

2

3N

∑
N

1

2
m∗v∗2,

therefore,

T ∗ = T

(
kb

εr

)
. (A.5)

Pressure

From pressure = force / area:

P =
f

l2
,

=
f ∗ (εr/σr)

l∗2σ2
r

,

P

(
σ3

r

εr

)
=
f ∗

l∗2
,

therefore

P ∗ = P

(
σ3

r

εr

)
. (A.6)
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Mass density

Mass density is defined as total mass divided by volume:

ρM =
M

V
,

=
M∗

V ∗

(
mr

σ3
r

)
,

ρM

(
σ3

r

mr

)
=
M∗

V ∗ ,

therefore

ρ∗M = ρM

(
σ3

r

mr

)
. (A.7)

Number density

Number density is defined as total number (which has no unit) divided by volume:

ρN =
N

V
,

=
N

V ∗σ3
r

,

ρNσ
3
r =

N

V ∗ ,

therefore

ρ∗N = ρNσ
3
r . (A.8)



Appendix B

Derivation of shifted force

equation

The equation for the intermolecular force between molecules interacting with a

shifted force Lennard-Jones potential (for the case where rij < rcut) is derived by

substituting equation (5.7) into equation (5.5):

fij = −∇
(

4ε

[((rij

σ

)−12

−
(rij

σ

)−6
)
−

((rcut

σ

)−12

−
(rcut

σ

)−6
)

+
12rcut (rij − rcut)

σ2

((rcut

σ

)−14

− 1

2

(rcut

σ

)−8
)])

. (B.1)

The values of σ, rcut and ε are constant, so

∇
((rcut

σ

)−12

−
(rcut

σ

)−6
)

= 0,

∇
(
rcut

((rcut

σ

)−14

− 1

2

(rcut

σ

)−8
))

= 0,

and the following constant is defined for convenience:

CSF =
12rcut

σ2

((rcut

σ

)−14

− 1

2

(rcut

σ

)−8
)
.

Equation (B.1) then becomes:

fij = −∇
(

4ε

[(rij

σ

)−12

−
(rij

σ

)−6

+ CSF rij

])
. (B.2)
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Figure 5.1 shows the sign convention for the force vector. fij, the force acting on

molecule i due to j, is repulsive (points away from the pair of molecules in the

direction of rij) when −∇U(rij) is positive, i.e. the portion of the potential where

U decreases with increasing rij. Using summation notation [181] where ek is a

unit vector in the direction rk (k = {x, y, z} for a Cartesian coordinate system),

fij = −ek
∂

∂rk

(
4ε

[(rij

σ

)−12

−
(rij

σ

)−6

+ CSF rij

])
, (B.3)

where,

∂rij

∂rk

=
∂

∂rk

(
r2
x + r2

y + r2
z

) 1
2 ,

=
1

2

(
r2
x + r2

y + r2
z

)− 1
2 2rk,

=
rk

rij

is required to apply the chain rule to equation (B.3). Also

∇rij = ek
∂rij

∂rk

= ek
rk

rij

=
rij

rij

= r̂ij,

where r̂ij is the unit vector in the direction rij. Equation (B.3) then becomes

fij = −4εek
∂

∂rk

((rij

σ

)−12

−
(rij

σ

)−6
)
− 4εCSF r̂ij,

= −4εek

(
−12rk

rijσ

(rij

σ

)−13

+
6rk

rijσ

(rij

σ

)−7
)
− 4εCSF r̂ij,

= 4εrkek

(
12

σ2

(rij

σ

)−14

− 6

σ2

(rij

σ

)−8
)
− 4εCSF r̂ij,

= 4ε

(
12

σ2

(rij

σ

)−14

− 6

σ2

(rij

σ

)−8
)

rij − 4εCSF r̂ij.

Reintroducing CSF to give the full expression:

fij = 4ε

(
12

σ2

(rij

σ

)−14

− 6

σ2

(rij

σ

)−8
)

rij − 48εrcut

σ2

((rcut

σ

)−14

− 1

2

(rcut

σ

)−8
)

r̂ij,

=
48ε

σ2

((rij

σ

)−14

− 1

2

(rij

σ

)−8

− rcut

rij

((rcut

σ

)−14

− 1

2

(rcut

σ

)−8
))

rij. (B.4)
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Rewriting equation (B.4) in reduced units (see section 5.1.1 and appendix A), but

retaining ε and σ throughout to keep the expression general and allow simulations

containing multiple species with different potentials. Substituting σ = σ∗σr,

r = r∗σr and ε = ε∗εr into equation (B.4):

fij =
48ε∗εr
σ∗2σ2

r

((
r∗ijσr

σ∗σr

)−14

− 1

2

(
r∗ijσr

σ∗σr

)−8

−r
∗
cutσr

r∗ijσr

((
r∗cutσr

σ∗σr

)−14

− 1

2

(
r∗cutσr

σ∗σr

)−8
))

r∗ijσr,

which becomes,

f∗ij = fij

(
σr

εr

)
=

48ε∗

σ∗2

((
r∗ij
σ∗

)−14

− 1

2

(
r∗ij
σ∗

)−8

−r
∗
cut

r∗ij

((
r∗cut

σ∗

)−14

− 1

2

(
r∗cut

σ∗

)−8
))

r∗ij. (B.5)

Substituting reduced unit quantities into equation (5.7) (for rij < rcut) and

cancelling as above gives the reduced unit expression for the corresponding inter-

molecular energy:

U∗SF =
USF

εr
= 4ε∗

[((
r∗ij
σ∗

)−12

−
(
r∗ij
σ∗

)−6
)
−

((
r∗cut

σ∗

)−12

−
(
r∗cut

σ∗

)−6
)

+
12r∗cut

(
r∗ij − r∗cut

)

σ∗2

((
r∗cut

σ∗

)−14

− 1

2

(
r∗cut

σ∗

)−8
)]

. (B.6)

At the start of the simulation, the terms

(
r∗cut

σ∗

)−12

−
(
r∗cut

σ∗

)−6

, (B.7)

and

r∗cut

((
r∗cut

σ∗

)−14

− 1

2

(
r∗cut

σ∗

)−8
)
, (B.8)

are calculated and stored to be used during every force evaluation because they

are constant. The term (B.7) can be used in equation (B.6). The term (B.8) can

be used in equations (B.5) and (B.6).
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A similar process to the above will be required to derive the equations for

intermolecular forces when a new class of potential is added to the code.



Appendix C

Neighbour list lifetime prediction

The computational cost of the neighbour list algorithm depends on the number

of timesteps a neighbour list remains valid for — a quantity whose dependence

on simulation properties can be predicted. For a given number of molecules, N ,

of mass m, in equilibrium at a temperature T , there is a probability of 1/N that a

molecule in the system will be travelling with a velocity vN . It is therefore likely

that at every timestep there will be one molecule travelling at, or close to this

velocity. Given that a neighbour list is invalidated when the cumulative sum of

maximum displacements in the system exceeds a fixed threshold (usually 0.5∆R,

i.e. half the user defined guard radius [130]), finding the number of timesteps

required for a molecule travelling at vN to cover this distance gives an estimate

of the average lifetime of the list. Estimating vN by equating the Maxwellian

velocity distribution to 1/N , where T , m and vN are in reduced MD units (see

figure C.1):

4π
( m

2πT

) 3
2
v2

Ne

„
−mv2

N
2T

«

=
1

N
. (C.1)

The high speed solution is,

vN(T,m,N) =

√√√√−2T

m
W−1

(
− 1

4N

√
2πT

m

)
, (C.2)

where W−1 is the secondary real branch of the Lambert W function.

The accuracy of vN as a prediction of the maximum velocity in the system has

been tested experimentally. Two systems containing 1728 and 13824 Lennard-

Jones molecules, m = 1, at a number density of 0.8 were equilibrated to two
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P
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Figure C.1: Maxwellian velocity distribution. Finding velocities corresponding to a
probability of 1/N , where N is the number of molecules in the system. There are two real,
positive solutions — the high speed one is vN , the quantity of interest.

different temperatures, T = 1.0 and T = 2.5, then simulated for 44000 timesteps

of ∆t = 0.005. At each timestep the maximum velocity in the system was found

and added to a histogram with a velocity bin width of 0.05. The histograms were

then normalised to produce probability functions, their mean calculated, and the

data was fitted to a curve of the form,

fvN
(x) = p(x− s)qe−(x−s)/r. (C.3)

Figure C.2 shows the maximum velocity probability functions with their mean

and the corresponding value of vN(T,m,N). Table C.1 shows the pertinent data

and the curve fitting parameters for each result. The values of vN and the distri-

bution mean are close in all four cases, with vN consistently higher (2.5% – 5.5%

in these examples) but lying comfortably within the distribution. Using vN will

result in a slightly pessimistic estimate of the lifetime of a neighbour list.

Table C.1: Experimental data and curve fitting parameters for fvN (x).

T N vN mean vN−mean
mean p q r s

1 1728 4.528 4.294 5.45% 17310 6.794 0.1008 3.504
1 13824 5.006 4.783 4.66% 47060 7.027 0.08975 4.058

2.5 1728 6.979 6.821 2.31% 610.7 8.334 0.1494 5.416
2.5 13824 7.756 7.558 2.62% 1276 7.157 0.1406 6.406
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Figure C.2: Probability of maximum velocity in simulation at T = 1.0 (top) and T =
2.5 (bottom) for 1728 and 13824 Lennard-Jones molecules of mass m = 1 compared to
vN (T,m, N). The data was collected from 44000 timesteps of ∆t = 0.005. The mean of
the distributions is shown for comparison. Temperature, velocity and mass are expressed
in reduced units.
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Figure C.3: Variation of estimated neighbour list lifetime with typical simulation param-
eters for a Lennard-Jones fluid [130]. T, m, ∆R and ∆t are in reduced MD units.

The number of timesteps (of length ∆t) a neighbour list is valid for, L, is

given by

L =

⌈
0.5∆R

∆tvN

⌉
. (C.4)

This lifetime reduces with increasing temperature and number of molecules, as

shown in figure C.3, resulting in a higher computational cost when using neigh-

bour lists. At higher temperatures, vN is higher because the velocity distribution

covers a higher molecular speed range. In systems comprising more molecules,

it is more probable that at least one molecule will be travelling at a given speed

in the upper region of the distribution, therefore vN is also higher. The cost of

an algorithm based only on cell interactions is not sensitive to either of these

parameters, therefore becomes increasingly attractive in large systems (> 106

molecules) where neighbour list lifetimes are lower. The use of the ceiling func-

tion in equation (C.4) reduces the impact of the difference between vN and the

measured mean of the maximum velocity probability function, resulting only in

an alteration of the position of the ‘steps’ in the result.



Appendix D

Build cell interactions

Building DILs, creating referred cells and determining which real cells are in range

of them is allowed to be computationally expensive (within reason) because it will

only happen once at the beginning of the MD simulation, if the mesh is static.

Accessing the information, however, must be as fast as possible because it will

happen at every timestep. In each of these steps either the PP, PPGR or PFEE

method can be used to test whether or not two cells are within rcut of each other.

D.1 Building DILs

The construction of the DILs and accessing molecules is done in such a way as

to not double-count interactions. For example, if cells A and B need to interact,

cell B will be on cell A’s DIL, but cell A will not be on cell B’s DIL. When a

molecule in cell A interacts with one in cell B, the molecule in cell B will receive

the inverse of the force vector calculated to be added to the molecule in cell A,

because the pair forces are reciprocal, i.e. fab = −f ba, because of Newton’s third

law.

When using PP or PPGR, all points in the mesh are compared, as per algo-

rithm 1 (page 66). For each step in each method, two sets of cells are returned.

When two points are in range, this produces a set of cells attached to one point

and another set attached to the other point. When using PFEE, all points are

compared to all faces. When a point-face pair are in range, the set of cells that

are attached to the point and the set of cells that the face forms part of are pro-

duced. All edges in the mesh are compared in a non-double-counting loop, and

when they are in range two sets of cells are again produced — those attached to

205
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one edge and those attached to the other. The index of each cell in one set is

compared to the index of each cell in the other set, and the cell with the higher

index is added to the DIL of the cell with the lower index. When the indices are

equal, cells are not added to their own DIL.

D.2 Creating referred cells

Coupled patches (see section 5.4.1) are the basis of periodic and interprocessor

communication for creating referred cells. Coupled patches provide two surfaces;

a molecule which exits one enters the other. Two types are used in AICA:

• Periodic patches on a single processor are arranged into two halves, each

half representing one of the coupled periodic surfaces. When a molecule

crosses a face on one surface, it is wrapped around to the corresponding

position on the corresponding face on the other surface.

• Processor patches provide links between portions of the mesh on different

processors, one half of the patch is on each processor. When a molecule

crosses a face on one surface, it is moved to the corresponding position

on the corresponding face on the other surface, on the other processor.

Decomposing a mesh for parallel processing will often require a periodic

patch to be changed to a processor patch.

The surfaces of coupled patches may have any relative orientation, and may be

spatially separated as long as the face pairs on each surface correspond to each

other.

D.2.1 Creating patch segments

In the decomposed portion of the mesh on each processor, each processor and

periodic patch should be split into segments, such that:

• faces on a processor patch that were internal to the mesh prior to decom-

position end up on a segment;

• faces on a processor patch that were on separate periodic patches in the

undecomposed mesh end up on different segments. These segments are

further split such that faces that were on different halves of the periodic

patch on the undecomposed mesh end up on different segments;
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• faces on different halves of a periodic patch end up on different segments.

Each segment must produce a single vector/tensor transformation pair (see ap-

pendix E) which will be applied to all cells referred across it.

D.2.2 Cell referring iterations

For each patch segment:

1. Find all real and existing referred cells with a portion of their surface in

range of the faces comprising the patch segment.

2. Refer or re-refer this set of cells across the boundary defined by the patch

segment using its transformation, see appendix E. In the case of a segment

of periodic boundary, this creates new referred cells on the same processor.

For a segment of a processor patch, these cells are communicated to, and

created on the neighbouring processor. Before creating any new referred

cell a check is carried out to ensure that it is not

• a duplicate referred cell, one that has been created already by being

referred across a different segment;

• a referred cell trying to be duplicated on top of a real cell, i.e. a cell

being referred back on top of itself.

If the proposed cell for referral would create a duplicate of an existing

referred cell, or end up on top of a real cell, then it is not created. To

be a duplicate, the source processor, source cell and the vector part of the

transformation (see appendix E) must be the same for the two cells (note,

the vector part of the transformation for a real cell is zero by definition).

A single run of these steps will usually not produce all of the required referred

cells. They are repeated until no processor adds a referred cell in a complete

evaluation of all segments, meaning all possible interactions are accounted for.

In iterations after the first, in step 1 it is enough to search only for referred cells

in range of the faces on the patch segment, because the real cells will not have

changed and would all be duplicates. The final configuration of referred cells does

not depend on the order of patch segment evaluation.
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Referred cells
Coloured by source processor

Red − processor 0
Green − processor 1
Blue − processor 2

Cells selected for referral
Coloured by current processor

Red − processor 0
Green − processor 1
Blue − processor 2

Cells selected, but will not be
referred because would create

Coloured by current processor
Red − processor 0

Green − processor 1
Blue − processor 2

duplicate cells

Real cell

Figure D.1: Key to colour coding of cells in example construction of referred cells.

D.3 Determining real cells in range of referred

cells

Once all of the referred cells have been created, each referred cell searches the

mesh to determine which real cells have part of their surface within rcut range of

the surface of the referred cell, and therefore need to be supplied with referred

molecule interactions. The referred cell stores which real cells it needs to interact

with. This process is accelerated by only searching a subset of the real cells in

the mesh. These are the real cells that were identified as being in range of any

processor or periodic patch when creating the referred cells. This set is guaranteed

to contain all cells that could be in range of a referred cell.

D.4 Example construction of referred cells

The figures on pages 210 to 227 show the referred cell construction algorithm

operating on a mesh that has been decomposed to run in parallel. The example

is in 2D for clarity but the process is exactly the same in 3D. In this example the

number of referred cells created exceeds the number of real cells, which would lead

to much costly interprocessor communication. This is because the mesh has been

made deliberately small relative to rcut to demonstrate as many features of the

algorithm as possible, and to be understandable. In realistic systems, the mesh

portions would be significantly bigger than rcut and the referred cells would form

a relatively thin ‘halo’ or ‘skin’ around each portion. Decomposition of the mesh

should preferably be carried out to minimise the number of cells that need to be

referred and to ensure that the vast majority of the intermolecular interactions
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happen between real-real molecule pairs; in this way the communication cost is

minimised.
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Appendix E

Cell referring transformations

A spatial transformation is required to refer a cell across a periodic or processor

boundary. Figure E.1 shows the most general case of a cell being referred across

a separated, non-parallel boundary, where,

α0 = cell with a face on one side of the boundary,

β0 = cell with a face on the other side of the boundary, coupled to α0,

α1 = cell α0 referred across the boundary,

C = face centre,

n = face normal unit vector,

Sα0β0 = Cβ0 −Cα0 , position shift from Cα0 to Cβ0 ,

Rα0β0 = tensor required to rotate −nα0 to nβ0 , given by,

Rα0β0 = − (nα · nβ) I + (1 + nα · nβ)

(
nα × nβ

|nα × nβ|
)2

+ nαnβ − nβnα, (E.1)

where I is the identity tensor. The absolute position, P′, of a molecule trans-

formed across a boundary (with its containing cell) from its original position P

is required. To derive the P → P′ transform, first the position of P relative to

the centre of the coupled face on α0 is given by

P−Cα0 . (E.2)

This vector is rotated by the transformation tensor defined by the source and

destination coupled face normals:

Rα0β0 · (P−Cα0). (E.3)
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α0

β0

α1

Cβ0

Cα0

−nα0

nβ0

nα0P

P′
Rα0β0

Sα0β0

Figure E.1: A molecule at point P is referred across the boundary (heavy line) to P′ by
a transformation defined by the face centre/face normal vectors of the faces of cells α0 and
β0 on the boundary. The mesh is rigid, so all points of cell α1 have the same relative spatial
relationship as α0. The vertices of referred cell α1 are calculated by the same process.

The rotated position is transformed back to global coordinates:

Cα0 + Rα0β0 · (P−Cα0), (E.4)

and then shifted by the relative separation of the coupled face centres, i.e.

P′ = Cα0 + Sα0β0 + Rα0β0 · (P−Cα0),

= Cα0 + Cβ0 −Cα0 + Rα0β0 · (P−Cα0),

= Cβ0 −Rα0β0 ·Cα0 + Rα0β0 ·P. (E.5)

The result is the same if the point is shifted by Sα0β0 prior to rotation by Rα0β0

around Cβ0 . The final position of P′ is the same using any coupled face cen-
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tre/face normal pair on the boundary. Therefore, all cells and all molecules

referred across a particular boundary may use the transformation derived from

one cell.

This result can be used to transform the positions of all of the molecules in a

source cell to their correct position in a referred cell. Molecules being referred also

operate on their own rotationally-dependent properties (e.g. angular orientation

or velocity) using the rotation tensor. This transformation is suitable for multiple

periodic boundaries and arbitrary mesh decompositions where existing referred

cells must be re-referred by other boundaries. This creates the cell relationships

across edges, corners, and also on non-neighbouring processors. See appendix D.4

for an example. Cell re-referring is achieved by writing equation (E.5) as a generic

transform:

P′ = y + R ·P, (E.6)

where,

y = Cβ0 −Rα0β0 ·Cα0 , (E.7)

R = Rα0β0 . (E.8)

If y and R are the transformations required to move P to P′, then transforming

P′ to P′′ using y′ and R′ gives:

P′′ = y′ + R′ ·P′,

= y′ + R′ · y + R′ ·R ·P,
= y′? + R′? ·P, (E.9)

reduced to the generic form by defining,

y′? = y′ + R′ · y, (E.10)

R′? = R′ ·R. (E.11)

Further re-referrals can be reduced to a single transform in this way, with only a

single vector/tensor pair required to be stored by the referred cell at any stage.

Any number of cell referring transformations may be made sequentially, but the

resulting transformation takes the initial source position (P) and directly trans-

forms it to the final destination regardless of, and without having to intermedi-
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ately visit, the other referred locations along the way.



Appendix F

Non-equilibrium gas dynamics

There is an opportunity to use MD to explore some important and unresolved is-

sues in rarefied gas dynamics, especially in micro and nano systems [42]. Rarefied

conditions in a gas are characterised by high Knudsen number, Kn = λ/L, which

can arise from a large mean free path, λ, (low pressure gas, e.g. high altitude

aeronautics) or small (micro or nano) characteristic length, L.

Many of the unusual effects seen at surfaces in microsystems are thought to

arise from the gas not being in equilibrium. To test this, fundamental properties

of a gas — the molecular velocity distribution and the distribution of free path

between collisions — and their spatial variation, can be measured from MD simu-

lations of a moving gas in the presence of solid walls. This information cannot be

obtained except by direct simulation because the velocity distribution of the gas,

and many of its dependent parameters cannot be measured experimentally. Only

macroscopic properties can be measured reliably, such as average mass flowrate

through a channel. Interpretation of these results, however, is problematic be-

cause there can be multiple causes of deviation of these quantities from those

expected from macroscopic theory, separating out their relative contribution is

difficult.

Previously reported simulations of the distribution of free path between col-

lisions [130] were carried out with the interaction between molecules represented

by step intermolecular potentials, such as the hard sphere or square well models.

The instance of a ‘collision’ is unambiguous with a step potential, but continuous

potentials have been used here. A collision is defined to have occurred at the po-

sition and time when molecules first move closer than the cut-off radius of their

intermolecular pair potential, and the free path and free time between collisions

232
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Figure F.1: Free path distribution — LJ gas, 300K. Kinetic theory predicts an exponential
relationship (equation (F.1)), however we observe that this cannot represent the very short
path (inset), short path (A) and long path (B) characteristics simultaneously. An improved
fit is found using equation (F.2).

is calculated as being the interval between these interaction start points.

Figure F.1 shows the free path distribution for a simulation of 3375 Lennard-

Jones atoms (rcut = 0.85nm) at a density of 1.7kg/m3, equilibrated to 300K in a

periodic domain, resulting in a pressure of 1.05bar — approximately atmospheric

conditions. The results are averaged over 400000 timesteps of 10.8fs each. Kinetic

theory [182] predicts that the free path distribution, p(l) is of the form

p(l) = a0e
− l

λ0 , (F.1)

where a0 is chosen to normalise the distribution and λ0 is the mean free path.

This single exponential functional form does not fit the data particularly well

across the whole free path range. Modifying the functional form to

p(l) = a0e
− l

λ0 + a1e
− lr

λ1 , (F.2)
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Figure F.2: Probability of finding a given number of other molecules simultaneously in a
molecule’s intermolecular potential — LJ gas, 300K.

gives a significantly better fit of the data, although no physical significance has

been ascribed to the additional parameters. It is possible that the definition of a

collision employed here is responsible for the deviation from exponential form. It

should be noted that the free path result is dependent on the (arbitrary) cut–off

radius employed. This is a recognised problem when using continuous classical

intermolecular potentials [86]. However, what is most important is the difference

between free path distribution in a bulk fluid and near a surface, so as long as

a consistent cut–off radius and collision definition is used, this should not be an

issue.

The collision handling algorithm implemented allows the evaluation of the

time spent and distance travelled in collision for an arbitrary number of simulta-

neous collisions — functioning correctly at liquid densities, where any molecule

is typically in simultaneous ‘collision’ with approximately 50 others. Figure F.2

shows the probability of finding a given number of other molecules in a molecule’s

force field. This demonstrates that, when using a realistic intermolecular potential

(including an attractive portion) instead of simple repulsive model, then there is a
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Figure F.3: Distribution of time spent in collision — LJ gas, 300K.

significant chance of observing collisions that involve more than two molecules (a

binary collision). These results show that 3.1% of all collision events will involve

three or more molecules. This has direct implications for identifying the limit of

the dilute gas approximation employed when deriving the Boltzmann equation.

The probability function for the time that molecules spend in each other’s

intermolecular potentials is shown on figure F.3. The data has a very long ‘tail’;

the probability of spending a long period in collision is relatively high (pairs of

molecules were observed remaining in collision for longer than 450ps). This is in-

terpreted as molecules forming temporary pairings, via the attractive part of their

potentials. Another of the assumptions underpinning the Boltzmann equation is

that of molecular chaos, where the motion of individual particles is uncorrelated,

something which is not applicable to molecules which spend significant periods

interacting.

Spatially resolved data for microscopic state of a gas near to a surface will

provide insight into two unresolved issues in practical micro system design:

1. slip and thermal transpiration;
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2. the Knudsen layer.

Under high Kn conditions, the velocity of a gas is not the same as an adja-

cent surface — it can ‘slip’ over it. This process is also dependent on the local

temperature gradient of the surface, because the gas has a tendency to flow from

cold to hot, an effect known as thermal transpiration. Maxwell [43] produced

a velocity boundary condition which can successfully describe slip and thermal

transpiration flows [183]. This relies, however, on the inclusion in the slip equa-

tions of a tangential momentum accommodation coefficient (TMAC) — which is

an adjustable phenomenological parameter depending on many details of the wall

geometry and composition. TMAC values cannot be easily measured by exper-

iment or theoretically deduced. They are usually assumed to be a constant for

the purposes of analysis. This may be masking the effects of the non–equilibrium

nature of gas–solid interactions. It was acknowledged by Maxwell [43] that,

“. . . it is almost certain that the stratum of gas nearest to a solid body

is in a very different condition from the rest of the gas.”

MD can directly probe the mechanisms underlying slip and thermal transpira-

tion. The main strength of MD is that it is not confined to simple (monoatomic)

gases or simple ‘equivalent’ models for surfaces. The effects of surface roughness;

velocity gradient, wall model; gas type — diatomic gases or a mixture represent-

ing air; temperature and temperature gradient, for example, can all be studied.

Within approximately one mean free path of a surface, the linear relationship

between shear stress and velocity gradient breaks down — this region is known

as the Knudsen layer. It is possible to model the effect of the Knudsen layer by

phenomenologically scaling the local constitutive relations of the gas — creating

a non–Newtonian fluid with a position dependent viscosity [184]. This has been

shown to be an effective technique, although more data gathered by MD would

extend the applicability of the technique to complex geometries and more gas

species.
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Introduction to OpenFOAM

G.1 Overview

OpenFOAM is an open source1 code intended to perform large scale engineering

continuum computational fluid mechanics (CFD) simulations. It has been applied

to industrial problems such as automotive external aerodynamics and internal

combustion engine flows.

OpenFOAM comprises a collection of C++ libraries and executables. Exe-

cutables are built from the libraries and are divided into solvers and utilities.

Solvers simulate a particular physical problem and utilities manipulate the ge-

ometry of a simulation case, or the results of a solver, to perform pre-processing

and post-processing operations. Solvers for a wide range of continuum mechanics

problems are included in the code: incompressible and compressible fluid flows in-

cluding turbulence and non-Newtonian fluids; multiphase flows; direct numerical

simulation (DNS) and large eddy simulation (LES); combustion; heat transfer;

electromagnetics; solid dynamics and financial modelling. There is also a suite of

tools for creating and manipulating mesh geometries as well as converting them

to and from external formats.

Users may create new solvers and utilities using only abstracted, top-level

syntax without knowledge of the implementation details of built-in algorithms

and operations. For example, solvers are created by typing continuum mechanics

equations in tensor form into the solver code. These are discretised and solved,

in parallel if necessary, by the underlying classes, unseen by the user.

For further information, and to obtain a copy of OpenFOAM and its docu-

1Released under the GNU General Public License, www.gnu.org/licenses.
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mentation, see www.openfoam.org.

G.2 Modular code structure

OpenFOAM has a modular and extensible code structure which makes it amenable

to performing a wider range of physical simulations than its core continuum me-

chanics remit. There are many C++ classes that deal with file IO and establish-

ing controls for run-length, timestep, the interval for writing to disk, for example,

which are common to every type of simulation and may be reused.

Similarly, every simulation requires the geometry that is being simulated to

be defined. The unstructured arbitrary polyhedral mesh description in Open-

FOAM is powerful and flexible, providing functions for extracting geometrical

and connectivity information. For example: what are the face centre positions

for the faces of particular cell? Which cells are connected to a particular vertex?

See section 6.1 of the OpenFOAM User Guide and section 2.3 of the OpenFOAM

Programmers Guide [5] for details of the mesh description.

OpenFOAM uses geometrical decomposition to implement distributed mem-

ory parallelisation, and every component is coded at its most basic level to operate

in parallel. A good example is the Lagrangian particle tracking system that the

molecular dynamics code described has been based on. The basic particle class

represents an abstract, generic discrete particle and implements the functionality

to track it through the mesh, identify when it hits boundaries, and transfer it

between processors when it crosses between the portions of a spatially decom-

posed mesh. All of this functionality is templated, so that when a specific type of

particle is derived from the basic particle it requires only the additional data and

modelling pertinent to it. A molecule, for example, requires velocity, acceleration

and species identity information and the functionality to calculate intermolecular

pair forces. The molecule class inherits the basic motion and parallel functionality

without any changes being made to the basic particle class.

All of this functionality may be implemented independently of the continuum

mechanics solvers. All of the components link together easily however, so, for ex-

ample, it is straightforward to impose the effect of a continuum field on a discrete

particle and vice versa without requiring changes to the underlying libraries for

either component.
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G.3 Why C++?

Creating a flexible, comprehensible and expandable top-level syntax to allow rapid

user-creation of interoperable libraries and executables, without requiring inti-

mate knowledge of, and requiring changes to be made to the core code, requires

many features of the C++ programming language. These primarily are object

orientation, encapsulation and code reuse, polymorphism and generic program-

ming by inheritance and templated classes. For a more detailed discussion of the

choice of language see section 3.1 of the OpenFOAM User Guide [5].

It is worth noting that, contrary to traditional impressions, particularly for

x86 architecture computers, C++, together with a good compiler does not pro-

duce slow software, and FORTRAN does not represent the absolute standard for

performance [185]. Properly written and compiled C++ executables are fast.
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