REPLICATION AND A MULTI-METHOD APPROACH TO
EMPIRICAL SOFTWARE ENGINEERING RESEARCH

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,
UNIVERSITY OF STRATHCLYDE, GLASGOW
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY.

By
John William Daly
March 1996

THE

NIVERSITY OF
RATHCLYDE

IN GLASGOW

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde
Regulation 3.49. Due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.

(©) Copyright 1996

Abstract

Empirical research is vital if software engineering technology is to be meaningfully
evaluated — without it only guesses can be made at the competing merits of different
approaches. Unfortunately, as this thesis demonstrates, much of existing empirical
work contains some kind of weakness because the approaches used to conduct the
research are inadequate in many ways. To combat this problem, a more methodical
approach to empirical software engineering research is required. This thesis examines
replication and a multi-method approach which, it is argued, can improve the quality
of results achieved by performing empirical research.

External replication, where independent researchers seek to check and improve
the findings of an experiment, is discussed. The results of an external replication
which did not repeat the results of the original study are presented; they demonstrate
the importance of replicating experiments to gain confidence in the findings. As a
result, a set of general recommendations are made for researchers conducting external
replications, and conducting and reporting subject-based experiments.

A multi-method approach to empirical research is proposed which comprises of a
series of empirical studies being evolved from an initial exploratory study through to
laboratory-based studies involving internal replications. The multi-method approach
allows attention to be paid to important matters and the results from each study in the
series can be confirmatory. Results are presented of an application of the multi-method
approach to the object-oriented paradigm. A set of general recommendations are then
made for applying the multi-method approach which should enable researchers achieve
quality empirical results in which they can have confidence.

It is concluded that if researchers adopt a methodology for empirical software
engineering research which integrates the multi-method approach with the technique

of replication then, over time, more reliable and generalisable results will be realised.

Acknowledgements

I would like to thank Dr. Andrew Brooks, Dr. James Miller, Dr. Marc Roper, and
Dr. Murray Wood for their supervision, encouragement, and stimulating discussions.
I believe it is fair to say that without their help and guidance it is likely that this
thesis would never have been completed. It has been a pleasure working with you,
gentlemen.

There are also several other individuals who have contributed, in one way or an-
other, towards the body of research contained within this thesis. They are: Peter Day,
Fiona Ferguson-Smith, Pete Hendry, Dave Lloyd, Fraser Macdonald, Don Millington,
Kevin Waite, and Dave Whittington. To you I record my thanks.

I also wish to thank researchers who have been, or still are, PhD candidates within
the Computer Science Department as well as many of the departmental staff — our
friendly discussions helped me gain confidence in my research and sustain my attempt
to complete it.

[must acknowledge the effort my girlfriend has expended putting up with my selfish
behaviour during the completion of this thesis; more importantly, for understanding
and helping in ways others could not. My deepest thanks, Susie! T also acknowledge
the support that my good friends Allan, David, Euan, Jim, Paul, and Stephen have
given me during the time it has taken to complete this research. Cheers, lads! And,
finally, I wish to thank my mother, father, and family for their eternal faith in my
ability to complete this thesis and for helping whenever they could.

The research contained within this thesis has been supported by EPSRC (formerly
SERC) under award number 92314532. Due acknowledgement must also be given to
the C.K. Marr Trust for additional, and much appreciated, financial support.

List of publications

A number of publications have resulted from the empirical research presented in this

thesis:

o [Daly et al., 1994] presents the results of an external replication of a well per-
formed software engineering experiment. The paper was presented by the au-
thor at the IEEE International Conference on Software Maintenance in Victoria,

Canada.

o [Daly et al., 1995a] details preliminary analysis of the series of experiments test-
ing the effect of inheritance on the maintainability of object-oriented software.
The paper was presented by James Miller at the IEEE International Conference

on Software Maintenance in Nice, France.

o [Daly et al., 1995b] briefly describes the multi-method approach for performing
empirical software engineering research and summarises the results of the three

phased programme of research within the object-oriented paradigm.

o [Daly et al., 1995¢] presents the findings of a questionnaire survey on object-
oriented systems. The paper was presented on behalf of the author by Don
Millington at the IEEE Asia-Pacific Software Engineering Conference in Bris-

bane, Australia.

o [Daly et al., 1996a] reports in full the results of the series of experiments testing
the effect of inheritance on the maintainability of object-oriented software. The
paper was presented by the author at the 6th Workshop on Empirical Studies of
Programmers in Washington D.C., USA. A poster version of the questionnaire

survey was also presented [Daly et al., 1996b].

o [Miller et al., 1996] details the strengths and weaknesses of distributing question-
naires for exploratory research by means of electronic newsgroups and compares

these to the strengths and weaknesses of other distribution media.

Contents

1 Introduction

1.1 Overview o o e e
1.2 The thesis position
1.2.1 Motivation for thesis L.
1.2.2 Proposed research methodology
1.2.3 Contribution of thesis
1.3 Outline of thesis

I BACKGROUND LITERATURE

2 Empirical Research Within Software Engineering

2.1 Introduction
2.2 FEmpirical frameworks and methodologies
221 Conclusions L
2.3 Issues in experimentation
2.3.1 Statistical significance testing
2.3.2 Statistical power analysis oL
2.3.3 Inductive analysis L.
2.3.4 Replication L
2.4 A critique of relevant empirical studies
2.4.1 Experimental design o000
2.4.2 Number of subjects.
2.4.3 Datacollection L
244 Dataanalysis L L L
2.4.5 Reported detail
2.4.6 Experimental results and conclusions

vi

Tt = W W W = =

11

2.4.7 Conclusions from critique
2.5 Summary ... oL e e e e e e e
REPLICATION

Confirmatory Power Through Replication

3.1 Imtroduction
3.2 The ideology of replication
3.2.1 Frequency of replication studies
3.2.2 Recipe improvingo
3.2.3 Experimenters’ regressol
3.3 A framework for replication oo 0oL
3.4 SUmIary . . .o, . e e e e e e e e e e e e e e

An External Replication Study

4.1 Introduction L e
4.2 Review and critique of Korson’s work
4.2.1 Review
4.2.2 Critique L
4.3 Avpilot study
4.3.1 Introduction o
4.3.2 Problems encountered during the pilot study
4.4 The replication study L Lo
4.4.1 Experimental design differences
4.4.2 Replication methodology
4.5 Experimental resultso o L
4.5.1 Statistical resultso L oo
4.5.2 Inductive analysis
4.5.3 Induced rules and interpretation
4.5.4 Discussion e e e
4.6 Conclusions e
Evaluation
5.1 Imtroduction
5.2 TLessonslearned

5.2.1 Scale of recipe improvingo,

vii

29
31

32

33
33
34
36
37
37
38
39

40
40
41
41
43
45
45
45
46
46
47
48
48
50
52
54
55

viil

5.2.2 Level of reported detailo L. 58

5.2.3 General recommendationso 61

5.3 Conclusions 62
IIT A MULTI-METHOD APPROACH 63
6 A Multi-Method Approach To Performing Empirical Research 64
6.1 Introduction 64
6.2 The multi-method approach 65
6.2.1 Strengths and weaknesses 66

6.3 Why the object-oriented paradigm? 67
6.3.1 Understanding object-oriented software 69

6.3.2 Maintenance of object-oriented software 70

6.3.3 Testing of object-oriented software 70

6.3.4 Reuse of object-oriented software 71

6.3.5 Conceptual entropy of class hierarchies 71

6.3.6 Summary e 72

6.4 The planned multi-method application 73

7 Phase I: Structured Interviews 74
7.1 Imtroduction L 74
7.2 Interviewing as an empirical technique 75
7.3 The interview method 0oL, 77
7.4 Analysis and discussion oL oo Lo 78
7.4.1 Learning curve, documentation, time pressures and quick fixes 79

7.4.2 Inheritance and high level understanding 80

7.4.3 Maintenance of object-oriented programs 83

7.4.4 Otherissues e 85

7.5 Conclusions e 86

8 Phase II: A Questionnaire Survey 89
8.1 Introduction 89
8.2 Using questionnaires as an empirical technique 90
8.2.1 Postal methods as a medium 91

8.2.2 Electronic newsgroups as a medium 92

8.2.3 Conclusions o o i e e 93

8.3 Designing a questionnaire survey

8.4 Questionnaire construction and administration

8.4.1
8.4.2
8.4.3
8.4.4

8.5 Responses received L

8.6 Analysis and discussion oL

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8

The OO paradigm in comparison to other paradigms
Inheritance L oL
Difficulties in understanding an OO program
Maintenance of conventional and object-oriented programs
Software reuse through in-house (local) class libraries
C++ as the de facto standard object-oriented language
Questionnaire media differences

Positional differences L o

8.7 Validity of the survey o

8.8 Conclusions e e e e e e

Phase III: A Series Of Laboratory Experiments

9.1 Introduction o e e e e

9.2 Experimental justification o000 L.

9.3 Design of first experiment oL

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6

Procedureo
Subjects
Maintenance taskso Lo
Materials
Data collectiono oo

Avpilot study

9.4 Experimental results oo oL

9.4.1
9.4.2
9.4.3
9.4.4

Collected time data for first experiment
Design of the replication and second experiment
Collected time data for the replication and second experiment .

Interpretation L

9.5 Inductive analysis

1x

93
95
95
95
96
97
98
100
100
101
104
106
106
107
109
112
113
114

9.5.1 Induction database oo oL
9.5.2 Results
9.5.3 Outlierdata
9.6 Experimental validitieso oL
9.6.1 Threats to internal validity
9.6.2 Threats to external validity
9.6.3 Statistical validity

9.7 Conclusions e e e e

10 Evaluation
10.1 Introduction oL
10.2 Justification for the multi-method approach
10.3 Summary of the empirical results
10.4 Successes and shortcomings of the approach
10.5 Lessons learned L
10.6 Additional adviceo oL

10.7 Conclusions v v e e e e e

IV . CONCLUSIONS

11 Conclusions And Further Work
11.1 Summary of thesis o
11.2 Thesis results and further work
11.2.1 Resultso o
11.2.2 Further work oo

11.3 Conclusions L
Bibliography
A Glossary

B Collected Interview Data
B.1 Structured interview template o oo oL

B.2 Paraphrased subject responses

C Collected Questionnaire Data

C.1 Questionnaire on object-oriented systems

135
136
141
142
142
143
144
144

146
146
146
147
148
150
151
152

153

154
154
155
155
156
158

159

172

175
175
178

190

x1

C.2 Raw questionnaire data oL 194
C.3 Summary frequency statistics oL, 199
Experimental Materials And Collected Data 205
D.1 Instructions for the first experiment 205
D.1.1 Practical Test Instructions 205
D.1.2 General Information: Test 1. 207
D.1.3 General Information: Test 2 (and Internal Replication) 211
D.2 Code for first experiment L Lo 215
D21 Test 1 . . o oo 215
D.2.2 Test 2 (and Internal Replication) 223
D.3 Instructions for second experiment 234
D.3.1 Instruction Overview oo i e i 234
D.3.2 General Information (Second experiment) 235
D.4 Code for second experiment L. 239
D.5 Debriefing questionnaire L Lo 266
D.6 Statistical power calculations L Lo 268
D.6.1 First experiment Lo 268
D.6.2 Internal replication 269
D.6.3 Second experiment 269
D.6.4 Conclusions L 270
D.7 Inductive analysis databases 270
D.7.1 The first experiment 270
D.7.2 Internal replication and second experiment 272
Miscellaneous 275
E.1 External replication materials 275
E.1.1 Pilot debriefing results oL 275
E.1.2 Debriefing questionnaire L. 277
E.1.3 Inductive analysisraw data 278

E.2 Basili’s experimentation framework paradigm 279

Chapter 1

Introduction

1.1 Overview

For software engineering, the last quarter of a century has been a time of great change.
Appreciating the problems of software was the beginning in the late 1960s and early
1970s. During the 1970s and 1980s, structured design dominated, the guidelines of
which, if adhered to, promised greater understanding and improved maintenance of
software [Page-Jones, 1988], [Pressman, 1994]. Then new analysis, design, and imple-
mentation paradigms emerged promising more reusable, portable, and less complex
software systems [Berard, 1993], [Cox, 1986). Until recently, however, little evaluative
research was conducted to support the claims made of emerging software technologies;
with the exception of a few researchers, the software engineering community did not
really object. As a consequence, software engineering has accumulated a large body of
software technology without any supporting quantitative evidence [Card et al., 1986].
This has led software engineers to use such technologies without fully appreciating
their benefits and drawbacks relative to other software technologies or when used in a
particular environment.

Fortunately, attitudes are now beginning to change: ever more researchers are
placing greater emphasis on evaluative research by empirical means to test the claims
made of software technology, e.g., [Basili, 1992], [Fenton et al., 1994], [Glass, 1994],
[Votta and Porter, 1995]. Researchers are more aware that without empirical research
only educated guesses can be made at the competing merits of different approaches,

what environments they are likely to perform well in, and what environments they are

SECTION 1.1: OVERVIEW 2

unlikely to perform well in. Although this change in attitudes is a move in the right
direction, there are many aspects of conducting empirical research that the software
engineering community should give more detailed consideration. For example, that
the measures taken to capture the effect under study are appropriate, that empirical
studies are repeated to gain confidence in their results, and the ability to generalise the
results to the population and other environments. To understand software develop-
ment better and manage it more cost-effectively, therefore, more methodical empirical
research must be conducted [Basili and Reiter, 1981].

Conducting empirical research, however, suffers from certain difficulties. For in-
stance, conducting an empirical study is time consuming and requires a large amount
of effort to plan, design, and analyse the collected data; one serious mistake can in-
validate the results. For laboratory experiments it can be difficult to obtain subjects
with appropriate experience; it can be even more difficult to understand subjects’ be-
haviour during a laboratory experiment. For case studies it can be difficult to convince
an organisation to allow evaluation of some aspect of their software process or product.
Conclusions drawn from an empirical study may only apply to a specific environment
and, subsequently, it may be wrong to generalise the results to other environments.
Despite such difficulties, simply relying on intuition about software can be mislead-
ing [Burgess, 1995]. Further, reliance on only anecdotal evidence can lead to biased
conclusions. As a consequence, it is argued that conducting empirical research is the
only way to improve the software process and product [Fenton et al., 1994], [Pfleeger,
1994], [Votta and Porter, 1995].

Yet more than fifteen years ago Curtis argued that although the scientific study
of software engineering was young, maturation of empirical methods would improve
its rate of progress [Curtis, 1980]. Today, for several reasons, it is fair to question
how much more mature (if at all) the empirical methods of software engineering are in
comparison. First, there is still not enough empirical work being conducted. Second,
too much of the empirical research that is conducted falls into the ‘one-shot study’
category. Third, researchers are still reporting empirical work that is not as valuable
or influential as it might be. In short, there is a need for (i) more empirical research
to be conducted and (ii) empirical research to be conducted more methodically. This
thesis makes two proposals to improve methodology in empirical software engineering

— external replication and the multi-method approach.

SECTION 1.2: THE THESIS POSITION 3

1.2 The thesis position

1.2.1 Motivation for thesis

Empirical software engineering research is conducted to help evaluate, predict, under-
stand, control, and improve the software development process or product [Basili et al.,
1986]. The motivation for the research presented within this thesis, however, is not so
much to improve the software process or product, but more to provide software en-
gineering with a research methodology which improves the quality of results achieved

from undertaking empirical research. There are several reasons for this motivation:

1. Much of the empirical research that has been conducted to date contains a weak-
ness because of the empirical methodology used — for example, investigation of
a weak hypothesis, insufficient data analysis, or a lack of detailed reporting. It is
argued that conducting empirical research provides a basis for the advancement
of software engineering. As a consequence, every effort must be made to improve
the empirical work that is conducted by making it more methodical and making

it more reliable and generalisable.

2. Empirical results should be confirmed before they are accepted by the software
engineering community, yet this aspect of empirical research is considered by
too few researchers. If techniques which provide confirmatory power, i.e., the
notion of providing confidence in the results of an empirical study, can be re-
alised and used by software engineering researchers then, over time, more reliable
results will emerge. Hence, over time, these results should have more impact on

industrial practice.

3. Much of the empirical research presented within the software engineering liter-
ature has not included analysis of the data for alternative interpretations from
those offered by the applied statistical tests. With subject-based experimenta-
tion, it is probable that more than one interpretation can be placed on the data.
Many reported conclusions may have been different if researchers had looked for

alternative interpretations.

1.2.2 Proposed research methodology

The motivation for this thesis is to improve the empirical research that is conducted
within software engineering. To achieve this goal a research methodology integrating

two particular techniques is proposed:

SECTION 1.2: THE THESIS POSITION 4

Replication: one method of achieving confirmatory power is to replicate an empirical
study. Replication takes two forms: internal and external. Internal replications
are undertaken by the original experimenters to increase their own confidence in
the results; external replications are undertaken by independent researchers who
seek to check and improve on the findings of other researchers and are critical for
establishing sound results. An external replication of a well performed software
engineering experiment will demonstrate the importance of seeking confirmatory
power and will illustrate the need for more methodical reporting of empirical

research.

Multi-method approach: a second method of achieving confirmatory power is by
investigating a particular hypothesis through the use of different empirical tech-
niques, where the data collected from one technique can then be used to com-
plement data collected from another technique. The multi-method approach can
also be regarded as evolutionary — the important issues discovered by an initial
study are refined and investigated further by the next study, and so forth. Thus
in an evolutionary programme of research, the results from each empirical study
may turn out to confirm one another. It will be argued that these results are

likely to be more reliable and generalisable.

In addition, consideration is given to state-of-the-art software engineering: the
object-oriented paradigm has grown increasingly popular during the 1990’s, yet it
lacks supporting empirical evidence. This situation provides ideal justification for
conducting a programme of empirical research within the object-oriented paradigm to

evaluate the multi-method approach.

1.2.3 Contribution of thesis

This thesis provides two contributions to empirical software engineering.

1. The first (reported) external replication of any software engineering experiment
demonstrates the importance replication holds in an empirical discipline which
uses humans as subjects. Moreover, the replication study demonstrates the
importance of confirming empirical results before they are given any significant

weight by the software engineering community.

2. The multi-method approach is a new technique for performing empirical software

engineering research. An application of the approach to an investigation within

SECTION 1.3: OUTLINE OF THESIS 5

the object-oriented paradigm led to a three phased programme of research which

demonstrates its strengths in comparison to a single-method approach.

Lessons learned from conducting an external replication and applying the multi-
method approach are catalogued. These lessons should provide reference points for
researchers preparing their empirical work to allow external replication, preparing to
undertake an external replication, or preparing to conduct their own multi-method
programme of research.

In addition, detailed analysis of the collected data for the subject-based labora-
tory experiments has been performed. This was undertaken to explore alternative
interpretations of the data. And, finally, several interesting findings resulting from
the application of the multi-method approach to the object-oriented paradigm may

become hypotheses for future research.

1.3 Outline of thesis

The remainder of this thesis is partitioned into four distinct parts which, in turn, are

divided into one or more chapters:
Part I: BACKGROUND LITERATURE

Chapter 2: Empirical Research Within Software Engineering
A review of the empirical literature is presented which discusses (i) estab-
lished empirical frameworks and methodologies, (ii) empirical issues that
should be given more consideration by researchers, and (iii) the variability

that exists in researchers’ empirical practices.
Part II: REPLICATION

Chapter 3: Confirmatory Power Through Replication
The notion of confirmatory power is developed and the need for replication
is introduced and expanded upon. A framework for external replications of

other empirical studies is established.

Chapter 4: An External Replication Study
The findings of an external replication of a software engineering experiment
are presented. The results are markedly different from those of the original

and reasons for this difference are discussed.

SECTION 1.3: OUTLINE OF THESIS 6

Chapter 5: Evaluation
The lessons learned from conducting the external replication are discussed
and a list of guidelines for experimental reporting are presented which, if
followed, should better enable other researchers to perform external repli-

cations.
Part III: A MULTI-METHOD APPROACH

Chapter 6: Introduction
The multi-method approach for performing empirical research is introduced
and discussed. Justification is provided for conducting empirical research
within the object-oriented paradigm and a plan of the intended programme

of research is presented.

Chapter 7: Phase I: Structured Interviews
Structured interviewing is discussed as a technique for performing empirical
software engineering research. The findings of interviews conducted with

experienced object-oriented developers are then presented.

Chapter 8: Phase IT: A Questionnaire Survey
The utility of questionnaires as a technique for performing empirical soft-
ware engineering research is discussed. The design, implementation, and
results of a questionnaire survey, evolved from the findings of the struc-

tured interviews, are then presented.

Chapter 9: Phase III: A Series Of Laboratory Experiments
One of the more important findings from the questionnaire survey and
structured interviews is investigated further through a series of subject-

based laboratory experiments.

Chapter 10: Evaluation
The strengths and weaknesses of the multi-method approach are discussed.
The lessons learned from conducting the programme of research are pre-

sented for use by other researchers.
Part IV: CONCLUSIONS

Chapter 11: Conclusions And Further Work
The final chapter summarises the results of this thesis and discusses possible
further work. It states clearly the contributions of this thesis and ends with

the conclusion that researchers should adopt a methodology for empirical

SECTION 1.3: OUTLINE OF THESIS 7

software engineering research which integrates the multi-method approach

with the technique of replication.

Appendix A: Glossary
The glossary contains definitions of the empirical terms used throughout this

thesis.

Part 1

BACKGROUND
LITERATURE

Chapter 2

Empirical Research Within

Software Engineering

2.1 Introduction

Although conducting empirical software engineering research is becoming an important
part of evaluating new software technology, much of existing software technology has
been adopted on the basis of expert opinion and anecdotal evidence, not on the basis
of empirical or strong theoretical evidence, e.g., see [Basili, 1992], [Fenton et al., 1994],
[Votta and Porter, 1995]. While this can be partially blamed on the fact that software
engineering is a relatively new field which has grown quickly over a short period of time,
empirical evaluation of such technology should be attempted. Evaluation is usually not
performed because the need for scientific confirmation is, unfortunately, outweighed
by the software engineering community’s reliance on intuition. Yet, in an interview

“... in many of our experiments we have shown

with Burgess, Victor Basili states
that our intuition about software is wrong” [Burgess, 1995]. For example, in their
experiments evaluating the efficiency of code reading, functional testing, and structural
testing, Basili and Selby claimed to have discovered that professional programmers
using code reading detected more software faults and had a higher fault detection rate
than other methods [Basili and Selby, 1987] — this was a surprising result to many
of the programmers that participated in the experiments who felt they had performed

better with the testing techniques. While findings about intuition being misleading

strengthen the need for more empirical research, it should be noted that performing

SECTION 2.2: EMPIRICAL FRAMEWORKS AND METHODOLOGIES 10

empirical software engineering research is not an exact discipline and there is a need
for researchers to consider various concerns.

This chapter presents a literature review whose goal is to make researchers more
aware of such concerns. The review begins by examining empirical software engineering
papers which establish frameworks or methodologies for conducting empirical work and
indicates which of these are most relevant to the research conducted within this thesis.
Examination of issues that should be, but rarely are, considered when conducting
empirical software engineering research follows. To demonstrate the variability that
exists in empirical practice, selected empirical studies are introduced and critiqued
(including empirical work conducted within the object-oriented field). The review
ends by highlighting deficiencies in current practice. Some of the work detailed in this
review is relatively old in terms of software engineering literature. This is an indication

of the progress (or lack of it) that has been made during this time.

2.2 Empirical frameworks and methodologies

Basili et al. provide the most well known empirical framework within software engi-
neering, the experimentation framework paradigm [Basili et al., 1986]. The experi-
mentation framework paradigm represents a refinement of part of the Goal/Question/
Metric paradigm (GQM) [Basili and Weiss, 1984] which, in turn, is a mechanism for
defining operational goals and producing a set of metrics from them as required by the
Quality Improvement Paradigm (QIP) [Basili and Rombach, 1988]. (QIP and GQM
are directed towards tailoring the needs of an organisation to understand and improve
their software processes and products). The experimentation framework paradigm has
four phases each of which correspond to a phase within the experimentation process,
i.e., experiment definition, planning, operation, and interpretation. (Table E.2 in Ap-
pendix E reproduces the experimentation framework paradigm in full). Each phase is

briefly summarised:

1. Definition: the definition phase contains six parts — motivation, object, purpose,
perspective, domain, and scope. There can be several motivations, objects, pur-
poses, and perspectives to an experimental study, e.g., the motivation may be to

understand, assess, and improve the effect of a particular software technology.

2. Planning: the planning phase of the experimental process contains three parts
— design, criteria, and measurement. Design incorporates the different type of

methods that can be applied to the experimental design as well as various types

SECTION 2.2: EMPIRICAL FRAMEWORKS AND METHODOLOGIES 11

of statistical methods that can be used. The criteria is dependent on the outcome
of the first phase of the experimental process, i.e., different motivations, objects,
etc, require the examination of different criteria. The effect of the phenomenon

under investigation is captured through various data measurements.

3. Operation: the third phase contains three parts — preparation, execution, and
analysis. Preparation may include conducting a pilot study to check the data
collection methods and the experimental environment are in order. The data is
collected during the execution of the experiment. The analysis of the data may

include a combination of both qualitative and quantitative methods.

4. Interpretation: the final phase of the experimental process also contains three
parts — interpretation context, extrapolation, and impact. The contexts of the
interpretation are the applied statistical analyses, the purpose of the study, and
the knowledge that already exists in the research area. Sample representative-
ness is the major factor for extrapolating the results to other environments.
The impact of the study is dependent upon the presentation of the results for

feedback, replication of the study, and application of its results.

The experimental framework paradigm is intended to structure the experimental pro-
cess and provide a classification scheme for existing empirical studies so that they can
be better understood and evaluated.

Other researchers have also voiced their concern about the lack of structure for
the empirical process within software engineering. Curtis reviews the contribution of
measurement and experimentation to the state-of-the-art in software engineering and
makes several recommendations to improve measurement and experimental evaluation
of software techniques and practices [Curtis, 1980]. The most notable of these recom-
mendations is that experimental results are more impressive when they emerge from
a programme of empirical research rather than from a one-shot study. According to
Curtis, a programme of research offers the advantages of (i) replication of results, (ii)
explication of the important factors which rule the process involved, and (iii) evolution
of the measurement and experimental methods used.

Moher and Schneider address the lack of methodology in empirical software engi-
neering by formalising the use of controlled group experimentation [Moher and Schnei-
der, 1982]. The authors identify what they feel are the five most important categories
which researchers conducting such experimentation must address: experimental de-

sign, subject characteristics, examination environment, performance requirements, and

SECTION 2.2: EMPIRICAL FRAMEWORKS AND METHODOLOGIES 12

measures. Moher and Schneider define these as follows,

1. Experimental design: refers to the selection of subjects, the selection of variables

and treatment levels, and the assignment of treatments to subjects.
2. Subject characteristics: the attributes of a subject prior to any experimentation.

3. Examination environment: includes factors such as training and materials as

well as the physical environment to be used.

4. Performance requirements: consists of tasks the subject must perform and any

constraints imposed.

5. Measures of the experiment: includes the objective and subjective means by

which the subject characteristics, environment, and performance are evaluated.

Moher and Schneider conclude that to achieve meaningful results, experiments must
be properly conducted; that means due consideration of these categories.

Chapanis discusses several factors which can limit an experiment’s generalisability
including unrepresentative subjects, inappropriate selection of dependent variables,
and artifacts which attribute to the actual measurement process [Chapanis, 1988].
Chapanis then recommends two principals of design which will allow findings to be

extrapolated to a wider range of situations:
1. Design as much heterogeneity into the study as possible.

2. Replicate the study with variance in subjects, experimental variables, or exper-

imental procedures.

Although this paper is from the human factors literature, the concepts discussed within
it strongly apply to experimentation within software engineering.

MacDonell claims that the lack of widespread industry acceptance of much of the
research into measurement of software complexity is due to the lack of experimental
rigor associated with many of the studies [MacDonell, 1991]. MacDonell examines
areas where problems have previously arisen when conducting empirical work and
provides recommendations regarding more adequate experimental procedures. These
areas are: pre-experiment design, operational definitions, experimental method, sub-
jective assessment, data collection, program sizes, program sample sizes, languages

revisited, subjects, confounding factors, statistical validity of predictive relationships,

SECTION 2.2: EMPIRICAL FRAMEWORKS AND METHODOLOGIES 13

Anecdotal Case Experiments
Study

Related Causal

Dependence

Specific General
Validity

Poor Good
Test of
Theory

Figure 2.1: Votta and Porter’s spectrum of empirical work

result interpretation, and publication of data and assumptions. Although the exam-
ples used are mainly concerned with software complexity measurement, MacDonell
generalises his recommendations to empirical procedures in most software measure-
ment domains. Hence, this paper could be interpreted as a general review of the
problems of empirical software engineering research.

Potts asks why most of the research performed in software engineering has failed to
make an impact on industrial practice [Potts, 1993]. The author refers to the research-
then-practice approach — a model characterised as “conceive an idea, analyse the
idea, advocate the idea” and contrasts this with his industry-as-laboratory approach
— identify problems through industrial collaboration and create and evaluate solutions
as a research activity. Potts regards the industry-as-laboratory approach to offer the
following advantages: (i) the definition of the problems to be solved comes from a direct
understanding of the application environment, (ii) intermediate results can be applied
to practical problems through the research process; feedback can be applied to future
investigations, and (iii) the research process progressively becomes problem-focused as
opposed to solution-driven.

Votta and Porter attempt to provide a credible model of empirical work for soft-
ware engineering, something they feel is missing [Votta and Porter, 1995]. The authors
discuss internal and external validity, the two factors upon which the degree of cred-
ibility depends upon. They then argue that not all studies have the same level of
credibility, neither do they contribute the same depth or breadth of knowledge. This
is illustrated in Figure 2.1 where the properties of different types of empirical work are
plotted against the axes of dependence, validity, and test of theory. Anecdotal studies
record what happened in a certain context at a certain time within a certain organi-

sation. A case study goes somewhat further by attempting to show some correlation

SECTION 2.3: ISSUES IN EXPERIMENTATION 14

between independent and dependent variables. Case studies are used when examining
events within an organisation where the behaviour of the relevant variables cannot be
manipulated. True experiments go even further and attempt to identify causality, i.e.,
provide a testable theory which explains why one event causes another. Experiments
can only be used when the behaviour of the relevant variables can be manipulated.
There are also several other excellent papers which describe the concepts discussed
above in a similar manner, e.g., [Brooks, 1980], [Kitchenham et al., 1994], [Pfleeger,

1995].

2.2.1 Conclusions

Of the frameworks and methodologies reviewed, all contribute to the knowledge re-
quired to conduct empirical software engineering research. (It should be noted that
these frameworks and methodologies are closely related to traditional approaches
used within the behavioural and social sciences). None of the detailed frameworks
or methodologies are superior given that they differ somewhat in the goals they try
to achieve. The issues raised in [Moher and Schneider, 1982], [Basili et al., 1986], and
[Votta and Porter, 1995], however, are probably most relevant to the type of research

conducted within this thesis.

2.3 Issues in experimentation

Given that empirical software engineering research is not an exact discipline, the plan-
ning, design, and analysis of an empirical study should be considered carefully. Several
articles in the software engineering literature provide a good, general overview of these
factors, e.g., see [Basili and Reiter, 1981], [Pfleeger, 1994], [Tiller, 1991], although they
are not new concepts and, indeed, are very similar to those used within the behavioural
sciences, e.g., see [Coolican, 1990], [Miller, 1975]. There are also other issues to be
considered which are not widely reported in the software engineering literature: es-
timating the statistical power of an experiment, inductive analysis of the collected
data, and confirmatory power (providing confidence in the findings of an experiment)

through replication, and these are explained in this section.

2.3.1 Statistical significance testing

A common method of conducting an experiment is to use statistical significance test-

ing of the Neyman-Pearson type: the form of rejecting or accepting a null hypothesis

SECTION 2.3: ISSUES IN EXPERIMENTATION 15

(denoted Hp), where the null hypothesis is stated simply for the purpose that it may
be rejected. The researcher then accepts the alternative hypothesis (denoted Hy) and
concludes that an effect exists. For example, an experiment concerned with program-

mer productivity might have a null hypothesis

Hy : the mean programmer productivity of group A (treatment) is the

same as that of group B (control)
with the alternative hypothesis stated as

Hy : the mean programmer productivity of group A (treatment) is greater

than that of group B (control).

Once the researcher has stated the null and alternative hypotheses the significance
criterion (a) should be set: a represents the chosen risk of committing a Type I
error (incorrectly rejecting the true null hypothesis) and commonly quoted values
within software engineering are 0.05 or 0.1. The empirical study is then conducted,
the collected data analysed, and statistical tests applied. If the researcher achieves a
statistical result that is less than the preset a value, the null hypothesis is rejected
and the alternative hypothesis accepted.

From the many articles read by the author, it is clear that researchers within soft-
ware engineering use this type of significance testing as their primary means to detect
the presence of an effect within the phenomena being empirically investigated. An im-
portant but rarely considered part of significance testing is statistical power analysis.
Statistical power analysis attempts to minimise the other error that can arise from

significance testing: Type II error (incorrectly accepting the false null hypothesis).

2.3.2 Statistical power analysis

Statistical power analysis, an inherent part of significance testing, is not commonly
presented in research findings. Sawyer and Ball define power to be the probability
that a statistical test will correctly reject a false null hypothesis, i.e., the chance that
if an effect exists it will be found [Sawyer and Ball, 1981]. For example, a power
level of 0.4 means that if an experiment is run ten times, an existing effect will be
discovered four times out of the ten experimental runs (the other six times a Type II
error is committed). An adequate power level is usually quoted at 0.7 or 0.8, i.e., the
chance an existing effect will not be detected is approximately one in five. Conducting
a power analysis involves the following three components as well as the required power

level:

SECTION 2.3: ISSUES IN EXPERIMENTATION 16

The significance criterion («): the chosen risk of committing a Type I error when
performing significance testing. The directionality of the test (the test can be
directional or non-directional) is also of importance. Power can be increased at
the expense of a larger probability of committing a Type I error, e.g., raising «

from 0.05 to 0.1, or by using a directional statistical test.

The sample size (N): the larger the number of subjects, the smaller the error, the

greater the accuracy, and therefore the higher the power of the test.

The effect size (v): the degree to which the phenomenon under study is present in
the population. If all other factors are constant then the larger the effect size,
the greater the probability the effect will be detected and the null hypothesis

rejected.

The power level and these three determinants are related in such a manner that given
any three values, the fourth can be calculated. Ideally, the researcher should estimate
or anticipate the effect size, set the significance criterion, and specify the power level
desired. The number of subjects needed to meet these specifications can then be
estimated from the appropriate statistical tables, such as the ones presented in [Cohen,
1969]. The most difficult aspect of conducting a statistical power analysis is accurately
estimating the effect size. In areas which have been empirically researched for some
time there are usually studies from which an accurate estimate can be made, but in
software engineering, due to a lack of empirical studies, this is not a viable option. The
best method for a reasonable estimation may be to rely upon expert judgment: since
experts have a realistic set of expectations about the effect of a particular phenomenon
(within their field of expertise) this may be used to produce an effect size for the power
calculation. For future studies, researchers can revise any effect size estimation by
also taking in account the results of earlier experiments. (This and other concepts of
statistical power are discussed in greater detail in [Miller et al., 1995]).

Power of the statistical test becomes a particularly important factor when the null
hypothesis cannot be rejected. The lower the power of the test the less likely it is the
null hypothesis is accepted correctly. Consequently, when the null hypothesis is not
rejected and the statistical test has low power, the only conclusion that can be made is
that the effect examined has not been demonstrated by the study, not that the effect
does not exist. Conversely, studies with a high power allow an interpretation of the
results when there is insignificance because there exists strong support for the decision

not to reject the null hypothesis, i.e., the chance that a Type II error has been made

SECTION 2.3: ISSUES IN EXPERIMENTATION 17

is much smaller.

The importance of power is illustrated by means of the following example drawn
from the medical literature: Robins was interested in determining why so much in-
consistency existed in the specialised area of clinical depression [Robins, 1988]. Of
the 87 studies Robins examined he found that only 8 of these had adequate power.
The high power studies all reported a significant relationship, while the low power
studies tended not to support the relationship. As a consequence, what seemed to be
a large number of studies with inconsistent findings was actually only a small number

of studies which provided consistent, meaningful, and reliable conclusions.

2.3.3 Inductive analysis

Quantitative empirical studies involving human subjects are usually best supplemented
with more qualitative data gathering. This is because traditional statistical approaches
strictly require identification of independent, dependent, and random variables with
no errors of omission or commission. The assumptions underlying parametric statistics
are often never tested (e.g., the assumption of normality). And statistical approaches
alone tend not give the reader any real insight into the actual data. Gaining such
insights is important for subject-based experiments as it is probable that more than
one interpretation can be placed on the data. Statistical approaches, based solely
on product measures of performance, do not readily facilitate investigation of such
interpretations.

The inductive analysis paradigm is promoted by Brooks et al. who argue that it
overcomes the weaknesses of traditional approaches through the production of facts
and rules [Brooks et al., 1987]. The paradigm recommends that data should be gath-
ered from as natural setting as possible to allow comparison with real life environments.
The result of the inductive analysis can then be used to supplement statistical mean-
ing and to explain individual results. While simple facts can easily be obtained by
inspection of the data, e.g., in an experiment involving maintenance tasks it should
be easy to identify the number of subjects who made all modifications without any
errors, rules governing potential cause and effects of the data are less easily extracted.
Consequently, the paradigm advocates the use of automated techniques to accelerate
the inductive analysis process and to ensure that potential rules are not overlooked.
Brooks et al. have successfully applied the technique of inductive analysis to human

computer interaction data [Brooks et al., 1987].

SECTION 2.3: ISSUES IN EXPERIMENTATION 18

An inductive analysis, which can manipulate both ordered and unordered vari-
ables, enables the experimenter to build a database of experimental results [Brooks
and Vezza, 1989]. The rule induction software takes each database variable in turn as
the dependent variable. Moreover, new variables, noted after the experiment, may be
introduced to the database as long as variable values are obtainable. When a ‘more
planned’ experiment is being designed, Brooks and Vezza are adamant that data gath-
ering should remain as unrestricted as possible, thus allowing an inductive analysis to
be performed, thus ensuring that any conflicting interpretations are considered [Brooks
and Vezza, 1989]. It should be noted that this is not a shotgun correlation approach,
an approach which attempts to correlate as many measures as possible against one or
more dependent variables in the hope of finding a significant, but possibly meaning-
less, relationship [Courtney and Gustafson, 1993]. The inductive analysis paradigm
examines individual datum points looking for trends between them that may present
an alternative interpretation from any statistical analyses: the emphasis is on trying to
understand what took place; it is more similar in concept to classification trees [Basili
and Selby, 1991]. Classification trees, using software metrics to characterise software
components, are the basis of predicting whether or not a particular component is likely
to have some property, e.g., prone to a large number of errors.

The inductive analysis approach is especially applicable when conducting replica-
tions: if the results are different from that of the original study an inductive analysis
may uncover trends within the data which offer interpretations as to why the difference

was achieved (as Part II will show).

2.3.4 Replication

To provide confirmatory power all software engineering experiments should be repro-
ducible [Brooks et al., 1995]. Replication is vital to other disciplines such as the
behavioural and social sciences; it provides either supporting evidence or questions
the validity of the original experiment. By other researchers repeating an individual’s
empirical work confidence is built up in the procedure and the result. Without repli-
cation, a result should be at best regarded as of limited importance and at worst with
suspicion and mistrust. Replication takes two forms: internal and external. Internal
replication is undertaken by the original experimenters; external replication is under-
taken by independent researchers and is critical for establishing sound results. Part 11

of this thesis illustrates the importance of external replication.

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 19

2.4 A critique of relevant empirical studies

From the previous sections it can be seen that the important features of performing
empirical research are: (i) experimental design, (ii) the number of participating sub-
jects, (iil) empirical data collection, (iv) analysis of the data, (v) the empirical detail
that should be reported, and (vi) the conclusions drawn from the results. This section
illustrates the effect of each of these features by highlighting the positive and negative
aspects of the practices used by researchers in various selected studies. It is essential
to realise the importance of ensuring that practices adopted for each of these features
are appropriate; at the same time, what the impact will be if these practices are inap-
propriate. Note that the purpose of this review is to illustrate positive and negative
aspects of these practices: it is not intended to be a definitive review of the empirical

software engineering literature.

2.4.1 Experimental design

If the design of an experiment is poor or inappropriate it is likely to invalidate the
results of the study. This section examines four separate experiments, two with designs
that can be criticised for lack of planning and two with designs that can be considered
effective for testing their stated hypotheses.

First, Mitchell et al. measured the effects of abstract data types (ADTs) on program
development claiming that delaying the implementation details of ADTs until the
coding phase lead to reduced programmer productivity, increased program inefficiency,
and code quality which was no better than the quality of the code produced without
ADTs [Mitchell et al., 1987]. The experimental design can be criticised on two counts.
(i) The dependent variable, source code quality, was measured by the number of lines
of code, i.e., the more lines of code produced, the poorer the quality of the code.
This variable cannot be regarded as an acceptable measure of code quality for the
simple reason that it does not take account of the important factors which are used
to measure quality, e.g., defect density, coupling, cohesion. Even worse, modularity
of the code, which was also measured during the experiment, was not used as an
indicator of quality. (ii) Productivity was measured as a combination of time logged
into the system, the number of days to complete the design and implement it, and
the average number of lines per hour. For this experiment, this cannot be regarded
as a fair measure of productivity — subjects who had to use ADTs in their design

had only one hour of instruction (and no training) on how to define ADTs in the

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 20

design notation without declaring the details, but had to present their design in the
instructed manner; the other subjects had no such constraint. It is unsurprising to find
that subjects using ADTs took longer to complete their design and implementation,
and were subsequently classed as less productive. As a consequence, results have been
produced that cannot be interpreted as anything other than meaningless.

Second, Lewis et al. empirically tested the relationship between software reuse and
the object-oriented paradigm concluding that substantial productivity benefits are
achieved over the procedural approach and that the object-oriented paradigm has a
particular affinity for software reuse [Lewis et al., 1992]. The experimental design can
be criticised on three counts. (i) Productivity is not measured by total development
time, an essential productivity measure. The reader has no idea if the object-oriented
development took more or less time than the procedural development time. Conse-
quently, the main measures of productivity (number of program runs, number of run
time errors, and time to fix the run time errors) do not determine programmer produc-
tivity accurately enough to support the conclusion Lewis et al. make about it. (ii) The
independent variable was the reuse of software components and subjects were divided
into three categories according to the level of reuse — no reuse, moderate reuse (reuse
as see fit), and strong reuse (reuse anything remotely appropriate). Arguably, this
is an unnatural scenario, where no reuse and strong reuse subjects have unrealistic
constraints placed upon them. (iii) No discussion of the effort required to produce the
software components which were available for reuse takes places. Consequently, the
results of this experiment can be best described as unconvincing, largely because an
important variable, total development time, was not measured (Section 2.4.3 provides
additional criticism of the data collection methods).

In contrast, an experiment which is planned and designed appropriately provides
confidence that the data obtained is not influenced by some unforeseen factor. In
their empirical study, Zweben et al. tested the effects of layering and encapsulation on
software development costs and quality [Zweben et al., 1995]. A set of three experi-
ments compared the use of a layering approach when implementing new components
(layering new components on top of existing components using only information about
their functionality and interfaces) to a direct implementation approach (implementing
new components from the coding details of existing components). Zweben et al. make
careful selection of the independent variable (reuse approach — layering or direct)
and the dependent variables (effort — measured by development time, component

quality — measured by number of defects). The experimental subjects were part of a

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 21

university class on software components in Ada; all were graduate or upper-division
undergraduate Computer Scientists. The subjects were randomly divided into two
groups, counter-balanced by experience. Each group performed the task using both
approaches, but in a different sequence (a sequence effect was catered for during anal-
ysis). Zweben et al. fully considered the random factors that could affect their in-
dependent variable, and designed their experiment accordingly. The only real cause
for concern is the manner in which the experiments were conducted: the Ada class
was run on two separate occasions, approximately 18 months apart. Unfortunately,
the authors do not directly detail whether the three experiments were run for each
class and the data grouped together or if one experiment was run for one class and
two experiments for the other. The latter option (the one which is assumed to have
been used) is fairly secure, but the previous option introduces potential variability
and should really be reported as an internal replication. Apart from this oversight the
authors report their design reasoning in considerable detail; the paper is an example
of how to effectively design an experiment.

Another carefully considered experimental design is presented by Porter et al. who
compare detection methods for software requirements inspections [Porter et al., 1995].
Subjects for the experiment were members of a graduate course in formal methods.
Independent and dependent variables were clearly identified and reported. Porter et
al. evaluated the use of three different detection methods, but because one of these
methods was more systematic than the others, concern was raised that subjects using
this method first might distort the use of other methods in the second round. Con-
sequently, a fractional factorial experimental design was discarded and the authors
opted for a more appropriate partial factorial design — teams of subjects participated
in two inspections using some combination of the three detection methods, but teams
using the systematic approach in the first round also used it in the second round. To
complicate matters the study was conducted over two runs six months apart. Unlike
Zweben et al. this variable is specifically factored into the design and fully reported. At
the same time, it allows criticism about allocation of subjects into teams and teams to
detection methods: for the first experimental run teams of equal ability were created
by rating subjects’ background knowledge and experience and blocking subjects across
teams, then allocating teams across detection methods; for the second experimental
run, subjects were randomly assigned to teams which were then randomly assigned
to detection methods. Porter et al. attempt to justify this strategy by stating that

although teams from the first run may have had equal ability, in comparison teams for

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 22

subsequent runs would not. This is not a strong argument because using the random
approach may have created teams of high and low ability by chance, thus introduc-
ing variability into the experiment. In addition, the random approach meant unequal
numbers of teams were allocated to each detection method. The strategy employed
should have been consistent, i.e., use random assignment for both runs or create teams
of equal ability for both runs, either method provides less potential variability than
the mixed approach used. Porter et al. designed a complex experiment, but one which
is a good example of the numerous different variables that have to be considered when
dealing with multiple treatments. The authors make a substantial effort to cater for
random factors manipulating their dependent variables, but also demonstrate that the

more complex the design, the easier it is to make an oversight.

2.4.2 Number of subjects

As discussed in Section 2.3.2 the larger the number of subjects participating in an
experiment the higher the power level of the statistical test. So it is important to
run the experiment with as many subjects as time and resources allow. There are
various methods of recruiting subjects to participate in experiments, e.g., see [Keppel
et al., 1992]. Unfortunately, the most commonly used approach in software engineering
appears to be availability sampling, i.e., use people that are available to participate as
subjects. Consequently, there are many experiments conducted using only a handful
of subjects, a situation which can cause problems during analysis. These problems are
highlighted below.

First, Moreau and Dominick established a programming environment evaluation
methodology for object-oriented systems and presented a test case application through
an experiment using four subjects, concluding that the object-oriented software pro-
duced was more verbose, but programmer productivity was improved [Moreau and
Dominick, 1990]. The primary focus of the experiment was the development time for
C versus C++ for each subject across three tasks. For one task, however, a subject’s
performance was far poorer on the C++ development, a situation laconically explained
as a debugging difficulty. In an experiment using a large number of subjects such an
explanation may be sufficient. In a situation where this constitutes 25% of the subjects
a full explanation should be provided.

Second, Zweben et al. used 10 subjects for two of of their three experiments testing
the effects of layering and encapsulation on software development costs and quality

[Zweben et al., 1995]. Each experiment was a related design, but because sequence

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 23

effects were detected only 10 observations (5 per group) from 20 could be used during
analysis. For the first of the two experiments, a significant effect was discovered for
initial design and coding time, total development time, and the defect data collected.
In contrast, the second experiment obtained significance for only the initial design and
coding time, although all results were in the same direction. A possible reason for the
difference in significance levels is because the power of the statistical tests was not
high enough in the second experiment. If more subjects had been recruited, it is more
likely statistical significance would have been achieved.

One caveat, using large numbers of subjects does not necessarily mean more reliable
results. For example, in their experiment investigating the validity of cognitive fit! in
the area of recursion and iteration, Sinha and Vessey recruited 82 subjects by paying
each individual $10 to participate [Sinha and Vessey, 1992]. To motivate subjects to
complete the task as quickly as possible cash prizes were awarded to the three fastest
finishers of each group. Such motivation could have influenced the subjects’ choice of
construct (recursion or iteration) to solve the problems, subsequently distorting the
results of the experiment.

As a consequence, the following general conclusions apply, (i) the smaller the sam-
ple size the more sensitive the experiment is to extreme performance from any individ-
ual subject, (i) small subjects pools, because they are unlikely to be representative of
any population, make it difficult to generalise the experimental results, (iii) the larger
the number of subjects, the greater the power of a statistical test, (iv) experiments
conducted using particularly small numbers of subjects should really only be a prelude
to an investigation using a larger number of subjects, (v) whenever possible avoid the
use of availability sampling as it can mean conducting an experiment with only a small

number of subjects.

2.4.3 Data collection

Data collection is another of the crucial factors a researcher should be concerned
with when conducting experimentation: if the data is not collected using accurate
procedures or important measures are not collected at all, the data analysis and results
are likely to be open to criticism. Reasons for directing such criticism are discussed
below.

First, in their experiment, Lewis et al. asked subjects to record their own data

Where the problem representation and problem solving tools and techniques support the strategies
required to solve a given problem.

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 24

while participating in the experiment [Lewis et al., 1992]. Lewis et al. argue this
data collection method is valid by stating that the subjects (who were students) were
promised anonymity from their data collection sheets and also that the data would have
no bearing on their class evaluation. In contrast, subjects were warned if the data was
not given accurately it would have a negative impact on their class evaluation. (How
this would have been recognised from only anonymous data sheets is not discussed).
Regardless of promises and warnings, the measures recorded, the number of program
runs, the number of run time errors, time to fix the run time errors, the number of
edits, and the number of syntax errors, are not measures that are amenable to accurate
collection by hand, e.g., it is not difficult to imagine subjects forgetting to record how
many times they ran their program. Consequently, the accuracy of the collected data
can be questioned. Because the measures were taken by the subjects “some measures
that might have been of interest were not collected” [Lewis et al., 1992]. So a further
criticism arises: total development time was not measured, arguably a more important
measure for this experiment than any of the five that were taken. The validity of this
reasoning should be severely questioned.

Second, in their experiment evaluating the maintainability of object-oriented soft-
ware against procedural software, Henry et al. make use of two data collection mech-
anisms: the use of questionnaires and an automated data collection facility [Henry
et al., 1990]. Strangely, however, none of the quantitative variables, e.g., number of
errors and total development time, were collected automatically. The subjects had to
measure 17 such variables themselves by completing a questionnaire during the ex-
periment, undoubtedly a difficult task to achieve when concentrating on solving the
experimental problem. All the measures made by the subjects could have been taken
automatically, something which would have eliminated variability caused by subjects
taking their own measures and given the experiment more merit.

In contrast, it is more difficult to criticise the accuracy of automatic data collection
procedures. For example, for their experiment on the performance and strategies
of programmers new to object-oriented techniques, van Hillegersberg et al. built a
special development environment to collect the majority of data automatically [van
Hillegersberg et al., 1995]. Using the development environment, subjects were able to
edit, compile, and run the source code until all experimental tasks were completed. For
each subject, the environment measured the amount of time taken to complete each
task and their problem solving behaviour by registering how the subject navigated the

source code, what parts of the program were changed, and what error messages were

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 25

received. In addition, a post-experiment questionnaire obtained subjects’ views of
task difficulty, motivation, and confidence. This paper provides an excellent example
of how to collect data accurately and efficiently.

While automated data collection supplemented with debriefing questionnaires or
interviews is probably the most accurate method of collecting data, Basili and Weiss
demonstrate that data collection by hand can also be accurate, providing data valida-
tion takes place [Basili and Weiss, 1984]. In their experiment on classifying changes to
program libraries, Basili and Weiss made each programmer who caused a change com-
plete a change report form. Many of the reported changes were categorised incorrectly
by programmers, a fact discovered by the data validation procedure — interviewing
the programmer who completed the change report form. The data collection was car-
ried out across three software projects; by completion of the data collection for the
third project, Basili and Weiss estimated that at most 3% of completed forms were
inaccurate.

Finally, other techniques such as video and audio recording have also been shown

to be successful, e.g., see [Denning et al., 1990], [Lee and Pennington, 1994].

2.4.4 Data analysis

Analysis of experimental data should be more than just application of statistical tests,
it should also attempt to explain any subject variability and outlier data — especially
if, as is commonly performed in software engineering experiments, outlier data are
removed from the data set to which the statistical tests are applied. Four data analyses
are reviewed to illustrate the difference between an insufficient and a thorough analysis.

First, in their experiment investigating the performance and strategies of program-
mers new to object-oriented techniques, van Hillegersberg et al. concluded that the
hypothesis that object-oriented concepts are easy to learn and use did not hold for
their experimental subjects [van Hillegersberg et al., 1995]. The analysis is not com-
prehensive enough for several reasons. (A disappointing conclusion given the excellent
data collection facilities used in the experiment as described in Section 2.4.3). (i) The
conclusion is drawn because for six different experimental tasks, subjects maintaining
the structured program were quicker to complete four out of the six tasks (three of
these results achieved statistical significance) and were more productive (task score
divided by completion time) for five out of the six tasks (four of these results achieved
statistical significance). These are interesting results, but they need more explanation,

i.e., the authors do not offer any reason as to why their object-oriented subjects took

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 26

longer and were less productive. The data recorded should have revealed such infor-
mation, yet it is not discussed. (ii) The authors do not attempt to explain why the
object-oriented subjects completed two of the tasks quicker than structured subjects,
nor why they were more productive for one of these tasks. While these results were
not statistically significant, because they were in the opposite direction to the rest of
the results, explanations should have been sought. Did these tasks simply facilitate an
object-oriented solution or were there other factors involved? (iii) The problem solving
behaviour of each subject was recorded, but no analysis of this data take place. As a
consequence, the results of an experiment investigating an important area within the
object-oriented paradigm are not as comprehensive or interesting as they should be.

Second, Lohse and Zweben performed a series of experiments investigating the
effect of module coupling on system modifiability [Lohse and Zweben, 1984]. The ex-
periments compared the effect of modifications on two versions of the same system,
one where all procedure communication was via parameters, the other where all pa-
rameters were replaced by global variables. Statistical tests did not find any significant
effect due to coupling type — no further analysis is undertaken. Lohse and Zweben do
not attempt to explain their data or what problem solving processes subjects were us-
ing. The authors merely conclude that the results of the experiment call into question
the effect of parameters versus globals on system modifiability, something which they
cannot do because the power of their statistical tests was not considered. Lohse and
Zweben should have performed a more thorough analysis of the data, although the
data collected was probably insufficient to allow this. This experiment demonstrates
that if the appropriate data is not collected, an inadequate analysis will follow.

In contrast, thorough data analysis inspires results which are more meaningful.
For example, Basili and Reiter conducted a controlled experiment to investigate the
the effects of a disciplined methodology on software development [Basili and Reiter,
1981]. The data analysis of this experiment was thorough and its findings clearly
reported. The authors identify and justify their use of statistical tests and fully re-
port the results of their application. An impact analysis of these statistical results
takes place, the authors arguing that strong statistical impact is demonstrated by an
actual rejection percentage of null hypotheses well above the expected (by chance) re-
jection percentage. Basili and Reiter then clearly and concisely describe the results of
their statistical analysis by itemising the individual differences identified by the study.
Finally, the authors evaluate these differences based upon a general set of beliefs re-

garding software development which is then used to strongly substantiate the claims

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 27

that (i) methodological discipline is a key influence on the efficiency of the software
development process and (ii) disciplined methodology significantly reduces the costs
of software development. The experiment provides an excellent example of how to
carefully plan, rigorously perform, and report data analysis.

Similarly, in their laboratory experiment, Frakes and Pole investigated the effects
of four different representation methods on the ability to search a database for reusable
components [Frakes and Pole, 1994]. The analysis begins by evaluating the searching
effectiveness of each method with recall (the number of relevant items retrieved over the
total number of relevant items in the database), precision (the number of relevant items
retrieved over the total number of relevant items), and overlap (the ratio of the number
of relevant items in the intersection of two methods over the number of relevant items
in their union). The authors are very thorough in their reporting of this part of the
analysis supplying the full details of their ANOVA tests as well indicating the subject
variability for recall and precision for each method via boxplots. Frakes and Pole also
evaluate the search time for the four representation methods (some were found to be
significantly faster to use than others) and indicate subject variability via boxplots.
To check for an ability effect, UNIX and programming experience were correlated
against search effectiveness and search time — correlation figures were presented,
but no significant results were achieved. Finally, to gain additional insight into the
usefulness of the methods, subjects were debriefed on two issues: (i) their preference
of methods — ranking each method in order of preference and the rating of each
method on a seven point scale of usefulness, and (ii) the helpfulness of methods for
understanding the software components examined — each method was rated on a seven
point scale. The information gained from this useful debriefing is presented in tables
and boxplots. As a consequence, this experiment provides the reader with meaningful
and fully comprehensible data. The conclusions drawn are self-explanatory given the

thorough data analysis Frakes and Pole conducted.

2.4.5 Reported detail

For an experiment to be fully appreciated the written report should detail as much
accurate information as possible. Missing details can reduce the importance the exper-
imental results might have; worse, missing details can actually leave readers skeptical
of the results. Furthermore, it makes external replication extremely difficult, if not
impossible. Two examples are used to illustrate this point.

First, Mancl and Havanas report on a case study of the impact of object-oriented

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 28

software on maintenance [Mancl and Havanas, 1990]. The study is based on a system
which is part developed using structured techniques and part developed using object-
oriented techniques. Mancl and Havanas compared subsystems developed using these
techniques, concluding that the measurements taken show an increase in software
reuse, increased programmer productivity, and reduced complexity of software changes
for the object-oriented developed subsystems. Unfortunately, the findings are confused
by too many missing details. (i) The authors do not explain what type of subsystems
are developed using structured techniques and what type of subsystems are developed
using object-oriented techniques. Were the object-oriented subsystems implementing
less complex functionality? (ii) Many of the object-oriented subsystems used in the
comparison were first designed using structured techniques. How much effort went into
redesigning these subsystems is not detailed, e.g., were they designed for reuse and ease
of maintenance where the original designs were not? (Presumably if they had, then the
redesign should not have been necessary). (iii) It is not reported what the criteria was
for redesigning a structured subsystem. It could be that all the smaller less complex
subsystems were redesigned, but larger, more complex ones were not because of the
investment required to do so. As a consequence, the missing details make the reader
wonder if the subsystems compared by Mancl and Havanas are actually comparable,
thus questioning the value of conclusions.

Second, in their experiment evaluating the maintainability of object-oriented soft-
ware against procedural software Henry el al. do not report enough detail on the
collected data to allow sensible conclusions to be drawn [Henry et al., 1990]. (i) Sub-
jects were divided into two groups, one group solving the experimental tasks using
the object-oriented software then the procedural software, the other group doing the
reverse. The data for these two groups is presented in such a manner that only the
mean totals for each group is given, i.e., there is no data which shows how subjects
performed on the object-oriented and the procedural software, only the accumulation
of the two performances is given. On its own, this data is almost meaningless. (ii)
There is no indication of how individual subjects performed in the experiment, nor is
there any indication of subject variability (an essential factor to be considered given
the data collection methods used, see Section 2.4.3). It is unknown if the experimen-
tal results were adversely affected by such factors. (iii) Henry et al. conclude that
object-oriented software is more maintainable based on the fact that it requires fewer
modules to be edited, fewer sections to be edited, and fewer lines of code to be modified

or added. Subjects maintaining the object-oriented software first, however, perceived

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 29

the experimental tasks to be more difficult than subjects maintaining the procedural
software first. It is unknown if total development time also reflected this finding, i.e.,
did subjects actually take longer to maintain the object-oriented software? Henry et
al. have too many missing details from their collected data to allow their experimental
results to be placed into any context. Furthermore, a personal request for the missing
information was turned down on the basis that it was not available.

Part II of this thesis details the lessons learned from performing an external repli-
cation and introduces guidelines regarding the required level of reported detail for soft-
ware engineering experiments to be fully appreciated and to allow other researchers

to attempt an external replication.

2.4.6 Experimental results and conclusions

Once the experimental process has been completed, it is important not to overstate
the results of the experiment, especially if the experiment is the first to test a partic-
ular hypothesis. (Results emerging from a programme of research or from an external
replication should allow stronger conclusions to be drawn). The main difficulty is the
ability to generalise the results of the experiment to other samples of the population
and to extrapolate the results from the laboratory to industrial practice. Factors which
limit any generalisation are termed threats to external validity. Ideally, researchers
should identify what they view as the threats to their experiment’s external valid-
ity and report the requirements to address such threats. Unfortunately, this is not
commonly performed in practice. One example is provided in [Porter et al., 1995] for
their experiment comparing detection methods for software requirement inspections.
The authors identify three threats to external validity: (i) subjects may not be rep-
resentative of software professionals, (ii) the specification documents used may not
be representative of real programming problems, and (iii) the inspection process used
many not be representative of software development practice. The authors conclude
that surmounting these threats requires experimental replication using software pro-
fessionals to inspect industrial work products. The information provided by Porter et
al. allows their results to be placed in context; in future, researchers should look to

repeat this practice.

2.4.7 Conclusions from critique

The empirical literature reviewed has highlighted examples of contrasting practices

on important experimental issues. The most important conclusion derived from these

SECTION 2.4: A CRITIQUE OF RELEVANT EMPIRICAL STUDIES 30

examples is that empirically-based research does not necessarily mean well performed
research: it has been demonstrated that experiments can produce results that are
meaningless. Fenton et al. support this view and provide five definitive questions
which should be asked about any claim made of software engineering research [Fenton

et al., 1994]:

1. Is it based on empirical evaluation or data?

2. Was the experiment designed correctly?

3. Is it based on a toy or real situation?

4. Were the measurements used appropriate?

5. Was the experiment run over a sufficient period of time?

Although all the answers to these five questions are positive for very few existing
empirical studies, and it is unrealistic to expect the answers to be positive for all
five questions for future empirical studies, such questions do enable other researchers
to gauge the worth and importance of an individual piece of empirical research. In
future, the questions asked by Fenton et al., along with the practices highlighted in this
review, may help researchers to focus on improving any empirical work they perform.

This review has also highlighted certain deficiencies in software engineering empir-
ical practice, namely the lack of external replication and the lack of results emerging
from a programme of empirical research. Votta and Porter agree that deficiencies exist
and present advice on what the software engineering community should undertake to

improve the field’s ability to support credible empirical work [Votta and Porter, 1995]:

1. Accept the need to repeat experiments and publish the results of the replicated

experiments whether they agree or disagree with the results of the original.

2. Encourage the search for explanations when the results of replicated experiments

differ.
3. Sets of theories which are not testable empirically should not be allowed.

4. Models of the differences between student and professional developers in indus-
trial settings must be constructed so that the validity of student studies can be

understood.

5. Cheaper methods of experimentation should be explored, e.g., simulation, effi-

cient data collection.

SECTION 2.5: SUMMARY 31

6. More access to real project data is required.

7. Empirical work must be recognised as important and necessary for a successful

discipline.

Whether or not all these ‘next steps’ are achievable is debatable, but Votta and Porter
identify points which should be seriously considered.

To conclude, researchers should be more aware that there is much that can be
improved in empirical software engineering practice. They should also be aware that
to make empirical results more reliable and generalisable there is a need for external

replication and programmes of empirical research to be conducted.

2.5 Summary

This chapter has introduced the various frameworks and methodologies for conducting
empirical software engineering research; it has summarised the issues that need to be
considered when conducting empirical research, but which are rarely reported in the
literature; finally, it has reviewed and examined important examples of good and bad
practice within software engineering empirical research and has highlighted the major
deficiencies in current practices. The chapters that follow build upon this review by
emphasizing the importance of external replication and introducing a methodology

termed the multi-method approach.

Part 11

REPLICATION

Chapter 3

Confirmatory Power Through

Replication

3.1 Introduction

Every stage of an empirical study from background reading to result interpretation
to writing the report and the conclusions is prone to error. These are but some of
the problems: (i) The background may not be properly researched and the study may
be addressing an unimportant issue. (ii) Inappropriate methods may be used. For
example, with subject-based experiments, strictly controlled laboratory experiments
are usually best supplemented with more qualitative forms of data gathering. Also, an
insufficient sample size can lead to a situation where a real, even quite sizable, effect
has little chance of being revealed as significant. (iii) Errors of commission or omission
may be made or experimental variables may be incorrectly classified. (iv) Statistical
procedures may be misapplied. For example, parametric statistics may be applied to
non-normal data. (v) Alternative interpretations may not be presented. With subject-
based experimentation, it is probable that more than one interpretation can be placed
on the data. (vi) The experimental methods may be poorly reported so that it is
impossible to perform an external replication of the study. For example, instructions
and task materials given to subjects may not be fully reported or may otherwise be
unobtainable. Other researchers, for example, [Basili et al., 1986], [MacDonell, 1991],
have already criticised empirical studies within the software engineering literature for

poor reporting. (vii) Conclusions may not be justified from the analysis or may simply

SECTION 3.2: THE IDEOLOGY OF REPLICATION 34

be incorrectly expressed in terms of the null hypothesis. As a result, there are dangers
in drawing conclusions from a single empirical study which has no confirmatory power.

Consequently, scientists demand that empirical results are reproducible and, im-
portantly, externally reproducible, i.e., an independent group of researchers can repli-
cate the experiment and obtain similar results. Results of a replication can provide
either supporting evidence or question the claims arising from the original experiment.
By other researchers repeating an individual’s empirical results, confidence is built up
in both the procedure and the original claims. Without the confirming power of a
replication, empirically-based claims in software engineering should be regarded at
best as of limited value and at worst with suspicion and mistrust. Replication takes
two forms: internal and external. Internal replications are undertaken by the original
experimenters to increase their own confidence in the results; external replications are
undertaken by independent researchers who seek to check and improve on the findings
of other researchers and are critical for establishing sound results.

This chapter introduces and expands upon the concept of external replication and
details its importance for producing more reliable and generalisable conclusions within
software engineering (making use of the work contained within [Brooks et al., 1995]).
Chapter 4 presents the external replication of a software engineering experiment. The
replication illustrates how easily one or two uncontrolled variables can influence the
results of an experiment and subsequently demonstrates the importance of performing
external replications. Chapter 5 discusses the lessons learned and presents guidance on

the required level of reported detail to allow others to conduct an external replication.

3.2 The ideology of replication

Subjecting theory to experimental test is a crucial scientific activity. Popper, however,

explains that researchers must be sure of their results before reporting them, stating

We do not take even our own observations quite seriously, or accept them

as scientific observation, until we have repeated and tested them [Popper,

1968].
Goldstein and Goldstein take this one step further, stating

We now take for granted that any observation, any determination of a ‘fact’,
even if made by a reputable and competent scientist, might be doubted. It

may be necessary to repeat an observation to confirm or reject it. Science

SECTION 3.2: THE IDEOLOGY OF REPLICATION 35

is thus limited to what we might call ‘public’ facts. Anybody must be able
to check them; experimental observations must be repeatable [Goldstein

and Goldstein, 1978].

Researchers within the software engineering community are beginning to take this
advice seriously and are demanding that experimental results are replicable by an

external agency. For example, Lewis et al. claim

The use of precise, repeatable experiments is the hallmark of a mature

scientific or engineering discipline [Lewis et al., 1991].

And the greater the number of external replications the better, at least until such
time additional replications carry no further confirmatory power. The author agrees
with Curtis who argues that results are more impressive when they emerge from a
programme of research rather than from one-shot studies (although Curtis refers to
internal replications and does not mention the greater confirmatory power of external
replications) [Curtis, 1980].

Broad and Wade, in their description of the scientific ideology, consider replication
to be the third check in verifying scientific claims, the first two being the peer review
system that awards research grants and the journal refereeing that takes place before

publication. The authors also describe the ideal of reporting experiments as follows

A scientist who claims a new discovery must do so in such a way that others
can verify the claim. Thus in describing an experiment a researcher will list
the type of equipment used and the procedure followed, much like a chef’s
recipe. The more important the new discovery, the sooner researchers will

try to replicate it in their own laboratories [Broad and Wade, 1986].

Replication is also concerned with the way the original hypothesis is expressed.

According to Smith

Replication does two things: first, it tests the linguistic formulation of the
hypothesis; second, it tests the sufficiency of the explicit conditions for the

occurrence of the phenomena [Smith, 1983].

One need not go as far as performing a replication to discover problems with
the linguistic formulation of a hypothesis. For example, Henry el al. state in their
conclusions that “the experiment supports the hypothesis that subjects produce more

maintainable code with an object-oriented language than with a procedure-oriented

SECTION 3.2: THE IDEOLOGY OF REPLICATION 36

language” when in fact their subjects were asked to make modifications to an object-
oriented system and a functionally equivalent procedure-oriented system which were
originally developed by a single graduate student (a correct statement of the hypothesis
is given earlier in their paper) [Henry et al., 1990]. Regarding the sufficiency of the
explicit conditions, an example would be where criteria for subject participation in a
software engineering experiment is insufficiently specific. As a result, the replication
yields different results owing to variability amongst subjects.

In conclusion, a stronger scientific and engineering foundation can only come about

if the software engineering community becomes more involved in external replications.

3.2.1 Frequency of replication studies

A search of the empirical software literature was unable to find examples of external
replication studies. Two recent software engineering reference works do not discuss
external replication nor cite examples [McDermid, 1994], [Marciniak, 1994]. Even
reviews of software testing and software maintenance where empirical research is more
common make no mention of external replication work, e.g., [Roper, 1992], [Sharpe et
al., 1991].

A particular study which should have been externally replicated soon after its re-
sults were published was by Shneiderman et al. whose study called into question the
utility of flowcharts in comparison to pseudocode [Shneiderman et al., 1977]. Accord-
ing to Scanlan, this research led to the decline of flowcharts as a way to represent
algorithms [Scanlan, 1989]. A review of their empirical study, however, lead Scanlan
to believe that Shneiderman et al. had failed to consider key dependent variables in
their experimental design, e.g., time to comprehend the documents (the subjects were
all given as much time as they required). Scanlan designed a new experiment using
time as a dependent measure and found that significantly less time was required to
comprehend algorithms represented as flowcharts.! Scanlan’s criticisms of Shneider-
man et al. are deemed controversial, but he has demonstrated the ease with which the
software engineering community may be mislead by accepting the results of a single
empirical study without any confirmatory power. Fxternal replications must be con-
ducted to confirm the results. The major concern, therefore, is the rarity of external

replication in software engineering research.

!Scanlan’s experiment is not an external replication because he designed a new experiment — only
the hypothesis being tested was the same. See Section 3.3 for explanation of what constitutes an
external replication.

SECTION 3.2: THE IDEOLOGY OF REPLICATION 37

3.2.2 Recipe improving

The amount of detail that can be used to describe the setting of an empirical study is
without end. As a consequence, it is more correct to consider partial replication and
the goal of performing as near exact replication as possible. According to Broad and
Wade, exact replication is an impractical undertaking because the recipe of methods
is incompletely reported, because to do so is very resource intensive, and because
credit in science is won by performing original work. The authors do, however, draw

attention to the important activity of improving upon experiments. They state,

Scientists repeat the experiments of their rivals and colleagues, by and
large, as ambitious cooks repeat recipes — for the purpose of improving
them ... All will be adaptations or improvements or extensions. It is in
this recipe-improvement process that an experiment is corroborated [Broad

and Wade, 1986].
Baroudi and Orlikowski qualify this and note

Where a study fails to reject a null hypothesis due to low power, conclusions
about the phenomenon are not possible. Replications of the study, with

greater power, may resolve the indeterminacy [Baroudi and Orlikowski,

1989].

3.2.3 Experimenters’ regress

As noted by Collins, a paradox exists for those who want to use replication as a test

of the truth of scientific claims:

The problem is that, since experimentation is a matter of skillful practice, it
can never be clear whether a second experiment has been done sufficiently
well to count as a check on the results of the first. Some further test is

needed to test the quality of the experiment — and so forth [Collins, 1985].

Although the external replication study presented in the following chapter failed to
replicate the original experiment’s results, it is shown how an inductive analysis of
the data established possible interpretations of the differences between the replication
and the original results. The inductive analysis, by yielding an understanding of the

processes involved, resolved the paradox of the experimenters’ regress.

SECTION 3.3: A FRAMEWORK FOR REPLICATION 38

3.3 A framework for replication

Internal replication is where the original experimenters have carried out a series of
repeated experiments which may be published as one paper or as a series. Internal
replications have some confirmatory power but it is less than that achieved by external
replications. External replication means published experiments which are repeated by
experimenters who are independent of those who originally carried out the empirical
work. Exact replication is unattainable, so it is important to consider and categorise
the difference.

Researchers undertaking an external replication must consider three things [Brooks
et al., 1995]. First, researchers must consider the experimental method and decide
whether a similar or alternative method is to be used. According to Brewer and
Hunter, the employment of multiple research methods adds to the strength of the
evidence [Brewer and Hunter, 1989]. That is, a basic finding replicated over several
different methods carries greater weight. Another option is to improve the existing
experimental method, e.g., by debriefing subjects after the formal experiment is over.
Such debriefings can provide insights into the processes involved. This type of im-
provement does not compromise the integrity of the replication.

Second, researchers must consider the experimental task(s) and decide whether a
similar or alternative task is to be used. According to Curtis, when a finding can be
repeated over different tasks it becomes more convincing [Curtis, 1980]. That is, a
basic finding replicated over several different tasks carries greater weight. Another
option is to improve the existing experimental task, e.g., by making it more realistic.

Third, researchers must consider the experimental subjects and decide whether a
similar or alternative group of subjects are to be used. A basic finding replicated over
several different categories of subjects carries greater weight. Another option is to
improve the group of subjects, e.g., by using more subjects or more stringent criteria
for participation.

The experimentation framework paradigm for software engineering has been es-
tablished [Basili et al., 1986] (and summarised in Chapter 2, Section 2.2), but should
be extended to incorporate external replication and its various forms. The extension
considers the three categories: (i) method, (ii) task, and (iii) subjects where each can
be either similar, alternative, or improved (at this stage it is unnecessary to work
with more detailed categorisations). These categories of method, task, and subjects

could also be applied to internal replications. If the planned replication of an empirical

SECTION 3.4: SUMMARY 39

study is the first to be conducted then it may be more important to attempt to confirm
the original results by keeping method, task, and subjects as similar to the original
as possible; improvements and alternatives can be considered in later replications. Of
course, if too many alternatives are used or if the scale of any recipe-improving is too

substantial, it becomes debatable whether the study counts as a replication.

3.4 Summary

This chapter has introduced and expanded the concept of external replication and
how it can provide confirmatory power for an empirical study. In addition, it has been
argued that the experimental framework paradigm for software engineering should be
explicitly extended to include external replications.

The following chapter presents an external replication study of an experiment which

tested the effect of modularity on software maintenance.

Chapter 4

An External Replication Study

4.1 Introduction

It has been argued that external replication should have an important role in empir-
ical software engineering research. A literature search failed to reveal any published
examples of such work. Two major reasons existed for conducting the first external
replication. First, the software engineering community had to be shown the value of
conducting external replications and the only method of achieving this was to actually
replicate an empirical study. Second, the author was not familiar with conducting
subject-based experiments and wanted to experience the difficulties of such work; per-
forming a replication is an ideal initiation. Once it had been decided to undertake
an external replication, several weeks were spent reviewing a number of doctoral dis-
sertations in the computing field where the emphasis was on empirical investigations.
Korson’s empirical study was concerned with the hypothesis that modular programs
are easier and faster to maintain than non-modular ones under the condition that
modularity has been used to implement information hiding which localises changes
required by a modification [Korson, 1986], [Korson and Vaishnavi, 1986). This study

was chosen on several counts.

1. There exists uncertainty about the empirical foundation of the guideline that
modular software is better, e.g., Fenton cites relatively early work which claims
to show no strong evidence to support the widely held beliefs about the benefits
of modularity [Fenton, 1994]. Korson’s work on the other hand, claimed to

show a large positive effect for modularity and seemed to be one of the better

SECTION 4.2: REVIEW AND CRITIQUE OF KORSON’S WORK 41

performed and reported experiments: the raw data and histogram plots alone
are enough to convince the reader of the result without resorting to the use
of statistics. Consequently, it was unnecessary to perform a formal, statistical
power analysis to check that there was a reasonable probability of detecting a

significant result in the replication study.

2. Korson’s thesis appeared to contain sufficiently detailed descriptions of exper-
imental materials and procedures to allow a replication attempt. The thesis
appendices contained complete code listings and lists of instructions given to
subjects and the thesis body provided criteria for subject participation and a

description of the experimental design and processes.
3. Korson claimed to have succeeded in providing internal replicability stating,

... the study has demonstrated that a carefully designed empirical
study using programmers can lead to replicable, unambiguous con-

clusions

4. On a first reading, Korson’s work qualified as well performed empirical work.
Also, no criticisms of it could be found in the literature, e.g., Banker et al. sum-

marise Korson’s findings without criticism [Banker et al., 1993].

5. If Korson’s work bears up to detailed scrutiny and is externally replicable, then
this would increase confidence in the commonly accepted guideline that modular

programs are easier to maintain than non-modular ones.

4.2 Review and critique of Korson’s work

4.2.1 Review

Korson designed a series of four experiments each testing some aspect of maintenance.
The experiment of most interest from this series sought to demonstrate the value of
information hiding: it was designed to test if a modular program used to implement
information hiding is faster to modify than a non-modular, but functionally equivalent
version of the same program. The non-modular (or monolithic) program was created
by replacing every procedure and function call in the modular version with the body of
that procedure or function. Programimers were asked to make functionally equivalent
changes to an inventory, point of sale program — either the modular version (approxi-

mately 1000 lines long) or the monolithic version (approximately 1400 lines long). The

SECTION 4.2: REVIEW AND CRITIQUE OF KORSON’S WORK 42

maintenance tasks can be classified as perfective maintenance [Marciniak, 1994] — in
this case the tasks were enhancing existing features of a program. Korson hypoth-
esized that the time taken to make the maintenance changes would be significantly
faster for the modular version. The modification process the subjects participated in

contained four phases:

Think: on paper, the modifications are coded noting deletions, additions and changes

to the original source code.

Edit: at the computer, the original program is edited to reflect the modifications

made on paper.
Syntax: the syntax errors are interactively removed from the modifications.

Logic: logic errors are interactively debugged until the program passes a standard

test.

Beforehand, participants were given ample time to read the instructions and to ask
questions on the experimental process and the maintenance tasks. When subjects
were satisfied that they understood the nature of the required modifications, each
participant was given the appropriate program listing (modular or monolithic) and
Phase 1 timings started. Phase 2 began when the participant had made the changes
on paper and was ready to modify the actual program. Phase 3 started when the
required changes had been entered but syntax errors had yet to be removed. Finally,
Phase 4 was entered when all syntax errors had been removed. The times for each of
these phases were recorded and used as a basis for the statistical results (see Section
4.5.1), but note that Korson regarded Phase 2 as an exercise in typing and does not
present timing data for this phase nor involve this phase in the analysis.

Prior to the experiment each subject completed a pretest. This was used simply
as a way of familiarising the subjects with the experimental design and the computer
hardware and software environments. Korson summarised the results for his four

experiments as follows:

The study provides strong evidence that a modular program is faster to
modify than a non-modular, but otherwise equivalent version of the same

program, when the following conditions hold:

(a) Modularity has been used to implement “information hiding” which

localises changes required by a modification.

SECTION 4.2: REVIEW AND CRITIQUE OF KORSON’S WORK 43

(b) Existing modules in a program perform useful generic operations,
some of which can be used in implementing a modification.

(c) A significant understanding of, and changes to, the existing code are

required for performing a modification.

In contrast, the study provides evidence that modifications not fitting into
the above categories are unaided by the presence of modularity in the

source code.

Condition (a) is the condition of interest here. Korson’s result summary is given in
full to draw attention to his claim that not all modifications are necessarily made more

quickly by using modularised code.

4.2.2 Critique

On a first reading, Korson’s work could be classified as well performed empirical work.

On closer inspection, however, a number of weakness were highlighted.

e In the modular program version the global array variable InventoryArray is
used instead of having a driver procedure with a local array variable formally
passed as a parameter to the four modules which require access to it. Hence, the
modular program does not fully implement information hiding and the result is
biased: had parameter passing been implemented for the array variable, mod-
ular subjects may have taken longer to perform the maintenance task. Korson
discusses how common coupling is allowed for an information cluster but the im-
plementation allows the whole program access to the array variable rather than
restricting access to the four procedures which might be construed as making up

an information cluster.

e A subsequent criticism can be made because of the global declaration of the
variable InventoryArray. Modular subjects are specifically asked to delete the
declaration which is immediately succeeded by the following very helpful com-

ment:
{All access to inventory information is via the following 4 procedures}

In the act of deleting the global array variable declaration, modular subjects,
by reading the next line, are given the biased information that they need only

look at the next four modules which are conveniently placed at the top of the

SECTION 4.2: REVIEW AND CRITIQUE OF KORSON’S WORK 44

procedure section. Had there been a driver procedure with a local array variable,
modular subjects would have been placed in the same position as the monolithic
subjects in having first to take time to locate the relevant code. This criticism is
all the more pertinent because in his thesis, Korson develops the explanation that
linear searching of monolithic code is very time consuming while modular code
allows the programmer to use a tree search strategy. Thus Korson incorrectly

asserted that use of comments was consistent across the two program versions.

The instruction to delete a global variable declaration is questionable from an
entirely different point of view: a wary subject may suspect that such a variable is
inadvertently used elsewhere in the program and so perform additional searches

to check for references.

A weakness of any piece of empirical work involving human subjects is the fail-
ure to supplement a traditional statistical approach with a more qualitative or
ethnographic approach which seeks to provide alternative interpretations of the
data at the level of individual subject behaviour. Korson relies solely on tim-
ing data in developing an interpretation of the data. While product measures
of performance are important, some understanding of the underlying processes
can dramatically change the interpretation of the results. Alternative interpre-
tations may have been realised if notes made by subjects on program listings
had been analysed; if subjects had been debriefed as to the cause of difficulties
which resulted in highly skewed timings; if analysis had been performed on the
various saved versions of the modified program during the phases of the exper-
iment; or if analysis had been made of any differences between subjects who
were professional programmers and those who were advanced computer science

students.

Another weakness of any piece of empirical work involving human subjects is a
lack of realism in either the tasks or the context in which subjects are asked to
perform the tasks. Korson’s experiment can be regarded as having imposed an
unrealistic ordering of the four phases. The weakness is that the most natural
way for a programmer to locate code to change is by using the search facility of
a text editor: in the Korson experiment, subjects had to manually search and

write changes on a hardcopy listing of the program during Phase 1.

In later sections, evidence will be presented which corroborates these weaknesses.

SECTION 4.3: A PILOT STUDY 45

4.3 A pilot study

4.3.1 Introduction

An initial pilot study was conducted with four experienced programmers to ensure
that there were no problems with the experimental materials or the execution of the
experimental tasks within the PC environment used. Problems that were discovered
are now discussed. Comments made by the pilot subjects during an informal debriefing

session were also noted and are presented in Appendix E.

4.3.2 Problems encountered during the pilot study

The pilot study session consisted of performing the required modifications to both
the pretest and experiment programs. No problems were encountered during the
pretest pilot — it was a straight forward modification to a page of Turbo Pascal code
which sorted words into alphabetic order. During the experiment pilot, however, the

following problems were encountered:

1. The Alt and function keys used for testing the program worked before the mod-
ification but failed after it because of performance changes not taken into con-
sideration. This problem was later remedied for the experiment proper using a

hot key customisation tool.

2. Some spelling mistakes in the documentation were noted and remedied for the

experiment proper.
3. Subjects were unfamiliar with some of the American-specific terminology.

4. One of the subjects asked what the name of the file to modify was despite it

being mentioned in the instructions.

5. A large sheet of test results caused data identification problems for some of the

subjects.

The solutions adopted for the last three of these problems are discussed in the section

on experimental design differences (Section 4.4.1).

SECTION 4.4: THE REPLICATION STUDY 46

4.4 The replication study

4.4.1 Experimental design differences

Several changes were made to the experimental instructions in an attempt to improve
their readability and highlight particular points. These were minor recipe-improving
changes aimed at reducing sources of variability.

As noted earlier, a problem was encountered with American-specific terminology,
e.g., layaway. The solution adopted was to create explanatory footnotes in the doc-
umentation given to experimental subjects. To avoid subjects experiencing problems
locating the name of the file to modify, the name of the file was highlighted in bold in
the documentation (the filename was in parentheses in the middle of a large paragraph
and was deemed to be easily missed on a first reading). Similarly, in the testing phase
of the instructions the Alt key numbers were highlighted by placing in bold. The
participants were given a listing of the input data file and a listing of the modified file
after the program was run with test data for comparison with their actual program
output. As with Korson, the actual data changes they were looking for on the listings
were circled in order to reduce possible variability in testing times: this had been
overlooked for the pilot study.

Korson made use of human monitors to record start and stop times for each of
the experimental phases. In addition, monitors were present to counter any irregular
circumstances which arose during the experiment, e.g., computer malfunction. As
Korson did not record the number of participants to a monitor no comments can be
made about differences. In this study there were four or five participants to each
monitor.

Korson provided a Turbo Pascal reference manual for each participant. In this
study only one such manual was provided between four or five participants although
it was noted that no reference conflicts were caused by this limitation. Furthermore,
Korson allowed his subjects to keep the Turbo Pascal reference manuals as payment
for their participation. In this study the participating undergraduate student subjects
were not charged for photocopied lecture notes later in the semester.

The replication study was run in the afternoon from 2pm until 6pm rather than
between 6pm and 10pm as Korson had done. Both the pretest and experiment were run
during this time. It is unclear if Korson also ran his pretest on the same occasion as his
first experiment, although it appears unlikely. Between the pretest and the experiment

the replication subjects were provided with a break and light refreshments.

SECTION 4.4: THE REPLICATION STUDY 47

4.4.2 Replication methodology

To achieve equivalent statistical power the replication required at least the number
of subjects (16) that Korson used in the original experiment. Data for 17 out of
23 voluntary subjects was collected. Surprisingly, especially so given the comment
of one the pilot subjects who felt that to complete the experimental task required
no understanding of the software, six subjects (three from the modular group and
three from the monolithic group) failed to complete the experiment by 6pm. Since
no direct payment was made, in contrast to Korson, these subjects were not asked to
return later to complete the experiment. The subjects, all members of the Computer
Science Department at the University of Strathclyde, were a mixture of second year
(5), third year (2), and final year undergraduate students (9), research students (4),
and research assistants (3). While this could be said to be a fairly heterogeneous
group in terms of age, qualifications and ability, all subjects met the criteria set by
Korson: fluency in Pascal, knowledge of the IBM-PC, and an amount of programming
experience. Subjects, randomly assigned to two groups, participated in the experiment
in a single laboratory — subjects with monolithic programs sat next to subjects with
modular programs to discourage plagiarism, although this was not a significant worry.
Subjects were not told about the nature of the experiment, but were informed that
different versions of the program existed and that, subsequently, certain subjects were
likely to finish quicker than others. This was to reduce subjects’ concern about their

performance. The procedure each subject followed was:

1. pretest to familiarise subjects with the environment, e.g., the experimental pro-

cedure, the editor.

2. short break (10 - 15 minutes) for refreshments and to allow subjects to clear

their thoughts,
3. experiment,

4. finally, each subject was asked for brief personal details and to complete a de-

briefing questionnaire (a copy of which can be found in Appendix E).

Both pretest and experiment were of the same format that Korson used (see Section
4.2) and the interested reader is directed to his thesis for details of the instructions,

documentation, modification specifications, and full source code listings.

SECTION 4.5: EXPERIMENTAL RESULTS 48

Group 1 (Modular) Group 2 (Monolithic)
think syntax logic total think syntax logic total
Subject A 15 1 2 18 Subject 1 15 4 5 24
Subject B 14 7 4 25 Subject J 32 6 3 41
Subject C 16 1 10 27 Subject K 38 2 4 44
Subject D 22 1 20 43 Subject L 44 1 4 49
Subject E 39 3 14 56 Subject M 28 11 11 50
Subject F 34 19 5 58 Subject N 36 22 1 59
Subject G 31 29 1 61 Subject O 29 3 29 61
Subject H 46 25 25 96 Subject P 55 2 36 93
Subject Q 38 15 58 111
Mean(mins.) 27.1 10.8 10.1 48.0 35.0 7.3 16.8 59.1
(Korson 14.9 2.9 1.5 19.3 51.9 18.9 15.1 85.9)

Table 4.1: Result times of the replication study

4.5 Experimental results

4.5.1 Statistical results

The timing data collected during the experiment is presented in Table 4.1 (the results
in parentheses are Korson’s mean times) and the bar charts in Figure 4.1 display the
mean modular times versus the mean monolithic times for Korson’s times and the
replication times. Given the size of the effect Korson discovered, it was hypothesized
that the replication’s results would be similar to Korson’s, i.e., that the times for
modular subjects would be significantly faster than for the monolithic subjects. Sur-
prisingly, however, this did not turn out to be the case: mean syntax time actually
took longer for the modular version. Furthermore, the difference between the modu-
lar and monolithic mean total times is relatively small: 48 minutes compared to 59.1
minutes. In contrast, Korson’s times were 19.3 minutes compared to 85.9 minutes. On
average, Korson’s monolithic subjects took more than 4 times as long as his modular
subjects yet the replication monolithic subjects took only approximately 1.3 times as
long as the modular subjects. As shown in Table 4.2, in addition to the mean total
time (Yﬁme), the standard deviation has been calculated to represent the spread in
the subjects’ times (Syj,e). The calculation shows that Korson has a small standard

deviation for his modular group, yet an exceptionally large one for his monolithic

Original Replication
Version Ytime Stime Yti'me Stime
Modular 19.3 8.1 48.0 | 254
Monolithic 85.9 | 47.8 59.1 | 27.0

Table 4.2: Statistical values of the total times

SECTION 4.5: EXPERIMENTAL RESULTS 49

Results of original study Results of external replication
100 100
80 Il Monolithic 80 Il Monolithic
" 1 Modular " 1 Modular
= £ 7
E £ 60 -
() ()
E E 8
[[
40
20
0 .
Think Syntax Logic Total Think Syntax Logic Total

Figure 4.1: Bar charts displaying mean times for Korson and the replication

group. In contrast, the standard deviations for the replication groups were similar.

A possible reason for the relatively poor performance of the replication modular
subjects could be the ability of the subjects relative to Korson’s. If the subjects were
less able than Korson’s, however, much slower results for the modular version would
also have been reflected by much slower results for the monolithic version. As can be
seen from Table 4.1, this is not the case. Indeed, the opposite has occurred: in 2 out of 3
phases the monolithic times were substantially quicker than the corresponding Korson
times, leading to a faster overall mean time by greater than 25 minutes. Possible
reasons for this are discussed later (see Section 4.5.4).

Korson used a Wilcoxon rank sum (unrelated) test in an attempt to reject the null
hypothesis, Hg information hiding has no effect on maintainability. The probability
that Korson produced his results by chance was p < 0.001 and, consequently, Hy was
rejected and Korson concluded information hiding has a positive effect on maintain-
ability. Though the result of the replication is in the same direction as Korson’s,
the significance level was calculated at p < 0.4 (two-tailed unrelated t-test, df = 15,
t = —0.870). This level is so far removed from Korson’s significance level and even
the minimal level of 0.05 usually required to reject the null hypothesis that it asks the
question ‘why are the results so strikingly different?’; especially since Korson claimed
his results were replicable. An inductive analysis was undertaken to investigate the

reasons for this difference, the results of which are discussed in Section 4.5.3.

SECTION 4.5: EXPERIMENTAL RESULTS

50

Variable Description Logical Values
(1) think time to note changes to be made to program 1..3

(2) edit time to edit changes made in think 1..3

(3) syntax time to remove syntax errors 1..3

(4) logic time to remove logical errors 1..3

(5) total 1 total time to complete task 1..3

(6) total 2 total 1 - edit 1..3

(7) program type of program subject had mon, mod
(8) numbchars number of characters subject wrote in think

(9) age age of subject

(10) sex sex of subject m, f

(11) position university status of subject ug, rs, ra
(12) easy mention of task being easy y(es), n(o)
(13) editor mention of making good use of editor y(es), n(o)
(14) diff what caused the most difficulty 1..3

(15) code understanding the code 0..3

(16) learn learned anything 1..4

(17) extra any other comments 1..5

(18) numbchanges | number of changes unidentified in think 1,2

(19) StoRdiff difference between syntax and working programs | y(es), n(o)

Table 4.3: Induction variables

4.5.2 Inductive analysis

An inductive analysis enables researchers to better understand their data through
the production of facts and rules. This allows the researcher to investigate alternative
interpretations of the data (as discussed in Chapter 2, Section 2.3.3). Usually inductive
data has to be described at different levels of details while observing the effect on the
induction rules. In the final phases of the induction process many numeric variables
were assigned logical values in an attempt to induce less fragmented rules including
splitting the induction data in two: one for monolithic subjects, one for modular
subjects. Before discussing the rules produced by the inductive analysis package TRIS
[Arisholm, 1987] (based on [Hart, 1985] and [Quinlan, 1986]), the variables used are
summarised in Table 4.3. A more detailed description of variables, where required, is
provided below.

Subjects’ times, variables (1) to (6), were graded into three groups. These groups
were determined by a) plotting a histogram of the data, b) choosing the two best
split points on the histogram, and c) grading into groups. Subjects were categorised
by position, variable (11), within the department in order to distinguish between
undergraduates (ug), research students (rs) and research assistants (ra). Variables
(12) to (17) are concerned with the answers each subject supplied to the debriefing
questionnaire. These were graded into logical groups with as similar meanings as

possible. Variable (14) diff was graded: 1 - pretest; 2 - finding the correct places to

SECTION 4.5: EXPERIMENTAL RESULTS 51

Induction Variables

112 (34|56 |7 8 9 |10 [11 [12 [13 | 14 | 15 | 16 | 17 | 18 | 19
Al1]1]1|1]|1|1|mod |237 26| m |1rs | ¥ y 3 3 1 1 1 n
Bl1]2|1]|1]|1|1]| mod 58 [22 | m | ra |y y 1 1 2 5 1 n
Cl1j1{1]|1]1|1]| mod 98 | 21 | m |ug | ¥ y 2 2 1 1 2 n
D11 |1|2]|1|2|mod | 105 |22 | m |ug | n y 3 0 3 5 1 n
Ejl2(2|1|1]2|2|mod | 116 |20 | m |ug | ¥ y 1 3 3 1 1 n
Fl2 12122 |mod | 144 |33 | m | rs y y 2 2 3 2 2 n
G213 |1]2]|2]| mod 69 | 27 | m | ra | n n 3 1 3 3 2 n
H|3 23|23 |3 |mod|176 |23 | m |[1s | n y 3 2 3 2 2 y
I 112|111 {1|mon 180 |20 | m |ug | ¥y y 2 0 4 2 2 n
JJ12 (3|1 (1|22 |mon |333 |19 | f |ug | ¥ n 3 0 4 2 1 n
K|2]2]1[1]|2|2|mon |[679 20| m |ug| vy y 2 2 3 2 1 n
L (32|11 |2|2|mon 652 |22|m |ug]| vy n 2 0 1 4 1 n
M|2|3 2|12 |2 |mon |562|22 | m |ug]| vy n 2 1 3 4 1 y
N|[2]3|3|1|3|2|mon|429 |33 | m | rs y n 2 1 1 2 2 n
O|2]3]1|2]|2|2|mon |[445 (22 | m |ug | ¥ v 3 1 3 2 1 y
P13 (3|1|3|3|3|mon |661|26|m/|ra|n y 3 0 1 2 1 y
Q222 |3|3|3|mon |[644 [33 | m |ug | vy n 3 3 2 2 1 y

Table 4.4: Final data for induction package

modify; 3 - remaining mixture of individual answers. Variable (15) code was graded:
0 - no understanding; 1 - only the relevant parts; 2 - fairly well; 3 - well or very
well. Variable (16) learn was graded: 1 - nothing; 2 - read the instructions fully; 3 -
mixture of individual answers; 4 - to make modifications the code does not have to be
understood. Variable (17) extra was graded: 1 - comments in the code not noticed;
2 - no extra comment; 3 - comments in code read but not of any help; 4 - pascal
syntax forgotten; 5 - comments in code helped. Subjects’ programs were saved after:
(i) editing the changes made in the think phase; (ii) removing all syntax errors; (iii)
the program was logically correct. Saving these programs allowed the introduction of
two new variables. The number of changes unidentified in the think phase, variable
(18), was divided into two groups: 1 (0 or 1 change) and 2 (2 or more changes) —
calculated by comparison of the edited version to the completed, working version.
Saved programs were also examined to determine if any changes were made from the
syntax phase to the logic phase, variable (19) - yes or no. In addition to the experiment
times, times for the pretest were also categorised as with variables (1) to (6) as in Table
4.3, e.g., pretest variable (1) was the think time for the pretest. The resulting database
(shown in Table 4.4) for the subjects who completed the experiment contains the final
data used by the induction package. The raw data for the replication can be found in

Appendix E.

SECTION 4.5: EXPERIMENTAL RESULTS 52

think syntax logic total think syntax logic total

Subject A 9 1 1 11 Subject 1 17 3 2 22
Subject B 26 7 18 51 Subject J 16 2 0 18
Subject C 17 2 2 21 Subject K 20 1 1 22
Subject D 13 11 25 49 Subject L 17 1 7 25
Subject E 17 1 30 48 Subject M 17 1 1 19
Subject F 25 5 8 38 Subject N 25 1 13 39
Subject G 22 1 21 44 Subject O 15 1 0 16
Subject H 23 4 19 46 Subject P 14 1 18 33

Subject Q 10 4 1 15

Table 4.5: Result times of pretest

4.5.3 Induced rules and interpretation

Rules were produced for each variable (including the pretest variables) in an attempt to
explain the difference between the replication findings and Korson’s. Many of the rules
induced were highly fragmented, but two rules were produced which drew attention

to two interesting patterns:

1. A suggested relationship was found between the total times taken for the exper-
iment and the pretest. All 9 of the monolithic subjects appeared in the top 12
places when ranked by pretest timings (see data in Tables 4.1 and 4.5).

2. A high number of changes missed in the think phase in the experiment suggested

either an excessively high syntax or logic time.

The first rule or pattern can be interpreted as an ability effect (programming
ability differences of 4 to 1 to 25 to 1 have been reported [Brooks, 1980], [Curtis,
1980]). Also note that modular subject A, who finished both the fastest on the pretest
and the experiment, was known to be a person with high ability. If the ability effect
interpretation is accepted, an underlying problem with the replication is revealed as
the majority of the higher ability participants were assigned to the monolithic task
(remembering participant assignment was random and not based on pretest timings).
Korson, on the other hand, claimed to have found no such ability effect with the
exception of one subject who consistently finished first in his series of experiments. So
the suggested ability effect is one source of variability between the two experiments.

Only subjects B, Q, and O deviate from this ability interpretation in the sense of a
performance mismatch between pre-test and experiment. Comments made during de-
briefing helped explain two of the mismatches. Subject B, who had the longest pre-test
time but the second fastest modular time, commented that the instructions were long

and difficult to read, that they had not taken enough time to read pre-test instructions,

SECTION 4.5: EXPERIMENTAL RESULTS 53

but that they had learned from this experience. This subject also mentioned that the
comment preceding the four procedures where the required modifications were con-
centrated was a big help. Subject Q, who took the longest with the monolithic code
despite being the second fastest on the pretest, commented that they had not read the
instructions fully at the start and had missed important code for outputting a record.
This subject had also accidentally deleted a line during the experiment and a monitor
advised him of his problem. The monitor was later interviewed about this interven-
tion. There was no doubt that the line had been accidentally deleted and it was simply
coincidence that this had been observed by the monitor. When the accidental deletion
was corrected the program passed the test straight away. So there is justification for
including this datum in the analysis: to have discarded it would have meant discarding
the longest time for a monolithic subject. Applying a correction factor to the recorded
time was considered, but the monitor could only crudely estimate that several min-
utes had elapsed between the accidental deletion and its notification to the subject
— too crude an estimate to work with. Had the subject been allowed to continue
unawares, then the recorded time would have had little to do with the experimental
hypothesis as the source of this difficulty was program independent. Subject O, who
had a good pretest performance but a relatively poor performance on the experiment
proper, commented on a difficulty having arisen in the experiment because of having
read data into the wrong variable and that they hated monolithic code. This subject
had also written procedures, an action which could have taken extra time.

The second rule or pattern draws attention to the fact that subjects who missed
a number of changes (two or more) in the think phase had either a higher syntax or
logic time. What is the significance of this? First, of the four subjects whose syntax
was highest, all made edits correcting semantics during the syntax phase, specifically
against instructions. Significantly, three out of the four subjects performed their tasks
on modular code. These three subjects totalled 73 minutes of syntax between them
and are the main reason that the mean syntax time for the modular version is greater
than the mean syntax time for the monolithic version. Second, it tends to indicate
that there exists a certain element of artificialness surrounding the experiment. The
timing of one phase appears to be overlapping into the timing of the following one,
creating potentially inaccurate timings of think, syntax, and logic. FExplanations for
this include: (a) the experiment itself was to blame due to poor design and the en-
vironment of think, edit, syntax and logic phases being artificial or (b) the monitors

who timed the subjects (one monitor to four or five subjects) were not strict enough

SECTION 4.5: EXPERIMENTAL RESULTS 54

in controlling when a subject was ready to move from one phase to the next.

4.5.4 Discussion

Korson required that the various versions of subjects’ programs were saved as they
worked through the phases of the experiment, but does not present any results or
analysis from such important data. Analysis of the replication subjects’ programs was
conducted. The Unix utility diff allowed comparison of the saved syntax program to
the saved logic program and gave an indication of what caused the subject extra time,
if any, to debug. As shown in Table 4.4 from variable (19), only five subjects actually
had any difference between the two programs, and this tends to indicate that subjects
who didn’t have any difference should have had relatively low logic times: all they
appeared to be doing was running through the testing procedure. In reality this was
not the case. Logic times for those in the modular group with no difference between
the syntax and working programs ranges from 1 to 20 minutes, while the equivalents in
the monolithic version only range from 1 to 5 minutes. Why is this? One explanation
of this variability is the procedure the subjects followed to test the program. As in
Korson’s experiment, there were three distinct ways of carrying out a full test of the
program: (i) using a single hot-key, (ii) using a series of hot-keys, and (iii) manually
entering test data. The expert times for each method were: (i) 1m 15s, (ii) 55s, and
(iii) 2m 30s. In addition, if the subject was to reread the instructions on the testing
procedure another minute or so may have been spent. Consequently, any time between
1 and 5 minutes may be regarded as explainable. Perhaps, it may have been better
practice for the monitor to test the program for the subject in attempt to reduce the
significant variability that appears to have arisen. From a hypothetical viewpoint,
what would happen to the results if the subjects whose saved syntax program were no
different from their saved logic program were given a logic time of 1 minute, i.e., if they
were given logic times assuming that they had performed the testing procedure in the
minimum time possible?! The answer is there would be still be no significant difference
between modular and monolithic subjects with p < 0.259 (two-tailed unrelated t-test,
df = 15,1 = —1.172), although the difference between the total time means does widen
so that on average the monolithic subjects took 1.38 times as long as the modular
subjects. To be conservative two-tailed significance levels have been used but even if
one-tailed levels had been used the result would remain well outside the minimal «

level of 0.05 usually required.

!Bringing them into line with the majority of Korson’s subjects.

SECTION 4.6: CONCLUSIONS 55

Another source of variability was the approach the subjects took towards mak-
ing the modifications. It was noted by monitors during the experiment that several
subjects attempted to follow the execution flow of the program, rather than just con-
centrating on finding the modifications to be made. As a consequence, subjects under-
standing of the code ranged from not at all to very well. In the case of subjects I and
J, the two fastest finishers in the monolithic version, both subjects explained in the
subsequent debriefing questionnaire that they had no understanding of the code and
both subjects made the added comment that no understanding of code was necessary
to modify it (this latter comment is in agreement with the feelings of some of the pilot
study subjects — see Appendix E). On the other hand, examination of the listings
with the written modifications showed that subjects G and H had indeed attempted to
follow the flow of program control. These subjects took the longest time to finish the
tasks for the modular version. Yet another modification variation was the fact that
subjects I and O both wrote procedures for the monolithic version, an action which
could have taken extra time.

As already mentioned the monitors may not have been strict enough compared
to the monitors of Korson’s experiment. This may be one of the reasons for the
overlapped phases. However, a comment made by one of the subjects who didn’t
complete the actual experiment said the nature of the experiment made them take
much longer than if they had been able to implement the modifications in the way
they were accustomed to, e.g., compiling, running and experiencing the program first
and then making changes. The phased approach was artificial to them. Subjects
K and P made unsolicited comments to the same effect. Other participants (B and
Q) commented that the instructions were too long and difficult to read resulting in

additional delays.

4.6 Conclusions

The results of the replication were markedly different to those of Korson and conse-
quently do not support his claims of replicability. Korson chose to rely on a quantita-
tive analysis of timings. In contrast, the approach adopted for the replication was to
combine traditional methods with an inductive analysis: this enabled an understand-
ing of the behaviour of the replication subjects and yielded a number of interpretations
to explain why the results were different. So by unraveling the processes several pos-

sible reasons for the variability in the subject behaviour have been revealed, thereby

SECTION 4.6: CONCLUSIONS 56

braking the paradox of the experimenters’ regress: the different results obtained in
the replication study can be explained.

Evidence of an ability effect was found, a major source of variability between the
two studies. There were several other influences on subject timings. Some subjects
failed to identify all the necessary changes during the think phase. The simple act of
incorrectly deleting a line took some time to be spotted by one subject. Two subjects
even began to proceduralise the monolithic code. Several subjects commented on the
artificiality of the experiment: one in particular wanted to engage in a prototyping
approach and was unhappy at having to fall-in with the constraints of the experiment.
As such, these examples illustrate the number of variables that can influence the results
of an empirical study. Simultaneously, the influence of such variables demonstrate the
importance of performing external replications in order to ascertain the reliability of

the original results.

Chapter 5

Evaluation

5.1 Introduction

Part IT of this thesis has discussed the concept of external replication and illustrated its
importance to software engineering by means of the first conducted external replication
study. Recently Votta and Porter have recognised this importance and have concluded
that empirical studies must be repeated and the results published whether they agree or
disagree with the original results [Votta and Porter, 1995]. If the software engineering
community adhere to this recommendation and perform more external replications
then more reliable and generalisable results will emerge over time.

Each external replication study should be categorised within the extension of
the experimental framework paradigm discussed in Chapter 3. In terms of method,
task, and subjects, the external replication detailed here is categorised as (improved,
similar, similar). The method has been categorised as improved because the repli-
cation subjects were debriefed.

In other disciplines, for example, the behavioural and social sciences, researchers
have debated for some time the importance of replication for establishing sound results,
e.g., [Amir and Sharon, 1991], [Lamal, 1991]. From their experiences of undertaking
external replications, researchers in these disciplines have produced rules and recom-
mendations which focus on what type of replication to conduct, e.g., [Hendrick, 1991],
and what should be reported to evaluate the replication, e.g., [Rosenthal, 1991]. The
final chapter in this thesis part integrates the rules and recommendations of relevance

for empirical software engineering with what has been learned from conducting the

SECTION 5.2: LESSONS LEARNED 58

external replication study presented in Chapter 4.

5.2 Lessons learned

In the following sections advice is presented to software engineering researchers re-
garding (i) the scale of recipe-improving when conducting an external replication, (ii)
on the reporting of subject-based experiments, and (iii) general aspects of conducting

subject-based experiments.

5.2.1 Scale of recipe improving

It is rare not to have ideas on how the experimental recipe can be improved upon. As
stated in Chapter 4, making major improvements to Korson’s experimental methods
was resisted as the main interest lay in trying to perform a near exact external repli-
cation to confirm the original results, i.e., only minor recipe-improving changes were
made. The significant improvement of debriefing subjects was made, but this did not
interfere with the application of the original method. To highlight the problem of de-
ciding the scale of recipe-improving, suggestions for improving Korson’s experimental
design are listed: improve program layout and commentary, remove biased comment
in the modular program, replace the global variable in the modular program to fully
implement information hiding, and reduce the size of the experimental instructions
given to subjects. (One can never be sure of obtaining similar results had some or all
of these improvements also been implemented).

Recommendation: when conducting an external replication, carefully consider its pur-
pose. If it is to confirm the original results then only minor recipe-improvements can
be made. If it is to attempt to generalise the results in some manner then major
recipe-improvements or alternatives must be made. (Note well: if improvements or
alternatives are too substantial, it becomes debatable whether the study counts as an

external replication).

5.2.2 Level of reported detail

Once an experiment has been performed and the data analysed, the researcher must
provide as much detail of the empirical research in the report as is possible to allow
others to perform external replications. The volume of such material dictates that it is
likely that it can only be documented in a thesis for a higher degree or with the aid of

a highly detailed technical report or a laboratory kit made available on request. One

SECTION 5.2: LESSONS LEARNED 59

such laboratory kit for software defect-detection techniques [Lott and Rombach, 1995]
has recently become available and is now being used for external replication work.
Even though Korson’s work is reported in his doctoral thesis, several details were
absent from the experimental reporting which introduced uncertainty into the exter-
nal replication study and which disguise some possible sources of variability between
the experiments. These details are presented below along with recommendations to

overcome the problems that were encountered.

1. Korson did not present any information regarding the number of monitors he
used: it was found that a ratio of one monitor to 4 or 5 subjects was just
satisfactory. Had it been known that Korson had worked with a better monitor-
subject ratio steps would have been taken to provide additional monitors.
Recommendation: if making use of human monitors explicitly state the monitor-
subject ratio. Better still, automate any data collection methods and use mon-
itors only in a problem solving capacity stating clearly their experimental role

and what the acceptable level of assistance given to subjects is.

2. Korson made no mention of verbal instructions issued to subjects. Was addi-
tional information given to them emphasizing particular written instructions or
was nothing said? An issue is made of this because, almost without thinking,
information was given verbally to students that different versions of the program
existed.

Recommendation: clarify any verbal instructions given to subjects.

3. With hindsight, it could have been ensured that subjects had properly com-
pleted each phase by instructing monitors accordingly. From Korson’s written
instructions it would seem that subjects were allowed to decide when to move
on, but it may well have been that Korson’s monitors applied additional control.
This comment is made because there is genuine surprise that Korson did not
report any problems with subjects moving prematurely between phases in the
preliminary and primary experiments he conducted.

Recommendation: for experiments involving subjects progressing through vari-
ous phases, clarify whether subjects were required to genuinely complete phases

and, if so, how this was controlled.

4. Korson provided subjects three distinct methods of testing the program for cor-
rectness, yet did not publish the likely timings for these different methods: pro-

viding variability in the method of testing may have been a source of variability

SECTION 5.2: LESSONS LEARNED 60

between the original and replication results.

Recommendation: expert timings should be reported, especially so if there is an
established variation in the way subjects may perform. (The reporting of expert
timings also acts as a check on the existence of ceiling effects which occur when

an experimental task is too easy).

5. It is usual to address outliers in a data set, but Korson does not present any
additional information to explain why one of his subjects took an exceptionally
long time to complete the monolithic version: he relies solely on the interpreta-
tion bound up in the null hypothesis. Providing additional information might
have benefited researchers interested in performing an external replication.
Recommendation: alternative explanations of data, especially outlier data, should

be sought and reported.

6. Korson did not publish his pretest results. Had he done so, this would have
allowed comparison with the replication subjects’ times and provided another
measure of the ability of these subjects relative to the original subjects.
Recommendation: when pretest data is collected, it should be published to assist

those who are attempting an external replication.

7. The criteria Korson set for subject selection was perhaps insufficiently specific:
retrospectively, it is suspected that some subjects whose experience or ability was
not of the required level may have passed the selection criteria for the replication
study. (Recall that six of the subjects failed to complete). While Korson qual-
ified his professional programmer classification as someone with the equivalent
of at least one year’s programming experience as a full time programmer, he did
not provide such additional qualification for his advanced computer science stu-
dents. Any computing student who had completed a Pascal programming class
could have passed the criteria set down by Korson: fluency in Pascal, knowledge
of the IBM-PC, and an amount of programming experience.

Recommendation: more objective subject selection criteria should be stated when
specifying parameters such as position, programming experience, previous expe-
rience of performing maintenance tasks, experience of software environments
(languages, editors, compilers or interpreters), and experience of platform em-
ployed for the experiment. How recent that experience is may also be an im-
portant parameter. (The danger is that the criteria become too exacting and

gathering enough participants for the study becomes impossible. At the same

SECTION 5.2: LESSONS LEARNED 61

time, the subject pool can become so specialised that external validity is com-

promised because of the variability amongst professional software engineers).

8. Criticism can be made of the fact that though 7 of Korson’s 16 subjects were
classified as being professional programmers, the distinction is not maintained in
the design, the analysis, or the interpretation of results: subjects were randomly
assigned. Had all the professional programmers been assigned to the modular
group? It is not known.

Recommendation: where recognizable differences exist between subjects, data is

presented to allow an analysis taking account of these differences.

The criticisms of Korson’s empirical study should not be considered severe. With the
benefit of hindsight these points are easily made because the results of the replication
had to be fully analysed to explain the marked difference between them and those of
Korson. Korson went much further than many researchers in reporting experimental
procedures and materials and he must be commended for that. He published his code
for the experiments (both the pretest and the experimental code) and the instructions
for both the pretest and experiment. He published individual subject timings rather
than just averages, along with the statistical tests and their results. Unfortunately, a
few omitted details have prevented the fullest possible interpretations of the external

replication.

5.2.83 General recommendations

Finally, as a result of conducting the replication, there are several general recommen-

dations made that researchers performing empirical work should consider.

1. In the Korson replication the information gained from the debriefing question-
naires was invaluable and provided the opportunity to understand the process
individual subjects were going through. It also helped to explain the difference
between the replication and the original results.

Recommendation: debrief subjects after they have participated in the study by

means of either a debriefing questionnaire or interview.

2. The replication results were subject to a random ability effect, i.e., the majority
of the higher ability subjects were randomly allocated to one group creating two
groups of uneven abilities. This was a significant source of variability between

the original study and the replication.

SECTION 5.3: CONCLUSIONS 62

Recommendation: when planning an empirical study, consider carefully the abil-
ity of the subjects and design the experiment to control for any effect ability

may have on the variables being measured.

3. For the replication of the Korson experiment is was assumed that the effect
being investigated was large simply because of the huge difference between the
means of the two groups. Consequently, the replication was conducted with a
similar number of subjects as it was felt this would provide sufficient statistical
power. If it had been known that Korson thought a smaller effect was being
investigated steps would have taken to recruit more subjects, thereby increasing
the statistical power of the replication.

Recommendation: attempt to estimate the size of the effect being investigated
and the statistical power of the experiment (as discussed in Chapter 2, Section

2.3.2). This should aid researchers attempting an external replication.

5.3 Conclusions

External replication is a vital part of establishing sound results in the behavioural
and social sciences. In software engineering the need for external replication has
been demonstrated through a brief review of the literature concerned with performing
empirical research, and by means of conducting an external replication study whose
results were markedly different from those of the original. Consequently, it is argued
that external replications have an important role to play in the realisation of reliable
and generalisable results within software engineering. Empirical software engineering
studies must be externally replicated at research centres around the world.

A set of recommendations have been introduced which researchers should consider
when (i) undertaking an external replication, (ii) conducting subject-based experi-
ments, and (iii) reporting subject-based experiments. Other researchers will wish to
refine and add to this list as more external replications are performed.

An approach which reduces the problems of relying on the results of a single em-
pirical study is the multi-method approach, i.e., using two or more different empirical
techniques to investigate a phenomenon in the hope that they confirm one another. It

is this approach that is introduced in Part IIT of the thesis.

Part 111

A MULTI-METHOD
APPROACH

Chapter 6

A Multi-Method Approach To

Performing Empirical Research

6.1 Introduction

Depending on the aim of an empirical study, evidence may be derived from any of the
following empirical techniques: measurement of industrial data, questionnaires, struc-
tured interviews, subject-based laboratory experiments, thinking-aloud protocol anal-
ysis, etc. Although each technique produces different empirical data, data collected
from one empirical technique can complement data collected from another technique.
This approach is termed ‘multi-method’. If an effect is demonstrated by two or more
different empirical techniques independently, it is more likely that the findings are re-
liable and will be accepted by the software engineering community. When the results
agree, the empirical techniques are said to have confirmatory power.

This chapter introduces the multi-method approach for conducting empirical soft-
ware engineering research and emphasizes the strengths of the approach in compar-
ison to a single-method approach. The following chapters present an application of
the multi-method approach through a three phased programme of empirical research
within the object-oriented paradigm. The object-oriented approach has become in-
creasingly popular primarily due to the alleged benefits provided by object-oriented
software, yet little empirical evidence exists to support many of these claims. Section

6.3 details in full why an empirical programme of research within this area is required.

SECTION 6.2: THE MULTI-METHOD APPROACH 65

6.2 The multi-method approach

The multi-method approach is a self-developed approach for software engineering em-
pirical research which has some parallels with the technique of triangulation and the
multimethod approach in the social sciences [Brewer and Hunter, 1989], [Neale and
Liebert, 1986]. In software engineering, the multi-method approach involves using two
or more different empirical techniques to investigate the same phenomenon. If the
results agree, the empirical techniques are said to have provided confirmatory power;
more confidence can be placed in the findings. If the results do not agree, the empiri-
cal studies should not be immediately considered inconsistent:! although the studies
may not have confirmed one another the researcher should be inspired to discover why
this has happened. There may be specific reasons for the conflicting data, e.g., novice
and expert programmers may have been used from one study to the next, where the
benefits achieved by the experts were not demonstrated by the novice programmers.
Information about when a particular software technology provides benefits and when it
does not is very useful and it can contribute greatly to the cohesive body of knowledge
being built from empirical study.

Applying the multi-method approach can be performed in an evolutionary man-
ner. This approach should be adopted when the area of interest has little empirical
research conducted within it and any formulated hypotheses are not particularly fo-
cused. Rather than investigating an effect through two or more different empirical
techniques and hoping confirmatory power is established between them, an initial ex-
ploratory study gathering qualitative data is undertaken. At this early stage, the
initial study presents the opportunity to explore a wide range of topics within the
area of investigation. The collected data is then analysed by qualitative analysis tech-
niques. Once the analysis is complete, the important findings from the initial study
are refined and used as hypotheses for the next empirical study. The process is then
repeated for this phase of the multi-method approach. Once the analysis of the data
for the second phase is complete one of two situations can arise: (i) the results that
have emerged from this phase confirms the results of the previous phase or (ii) the
results do not confirm the results of the previous phase.

If there is consistency between the results of the two phases then the next phase
is undertaken. This phase will investigate further the important findings of the cur-

rent study and so on. This process continues until just a single hypothesis is being

TAt least until it is certain that there is no explanation to account for the difference between the
two studies results.

SECTION 6.2: THE MULTI-METHOD APPROACH 66

thoroughly investigated. For example, the evolutionary programme of research that
is reported within this thesis consists of three phases. It begins with an exploratory
investigation using structured interviews. The interesting findings of this initial inves-
tigation are then used to produce a questionnaire survey with the intention of confirm-
ing the findings of phase I (which actually occurs). Finally, a series of subject-based
laboratory experiments are conducted which examine one of the important results
from phases I and II in a more controlled setting. (Section 6.4 details the planned
application of multi-method approach in full).

On the other hand, if the results are inconsistent between the two phases, investi-
gation should be undertaken to discover why. If no explanation can be provided then
the researcher is faced with a dilemma: (a) should the important results of the latest
study be refined and investigated further by another study or (b) should the empiri-
cal study be redesigned and repeated in order to discover which phase has produced
more reliable results. This dilemma may not be as serious if more than two phases
of the programme of research have been conducted — if it is only the last phase that
does not confirm the findings, it is probable that its results have been influenced by a

uncontrolled variable and, hence, are not reliable.

6.2.1 Strengths and weaknesses

In addition to providing confirmatory power, a multi-method approach has several

strengths that a single-method approach does not have.

Hypothesis formulation. Hypothesis formulation is no longer solely dependent on
the researcher’s intuition: by conducting an exploratory study, a wide range of
important topics within the area of interest can be investigated. The results
of this study are then used to formulate several initial hypotheses for further
investigation through another technique. The process is repeated until a single
hypothesis is being investigated, i.e., each phase of the programme of research be-
comes increasingly focused on the important issues — other less important issues
can be investigated later. An intangible benefit of this is that when conducting
laboratory experiments during later phases of the programime of research, esti-
mation of the effect size becomes easier because the researcher has data upon
which to base their estimate. As a result, statistical power analysis can be more

readily performed (see Section 2.3.2).

SECTION 6.3: WHY THE OBJECT-ORIENTED PARADIGM? 67

Robustness of conclusions. The programme of research consists of a number of
phases each conducted using, e.g., a different number of subjects from a different
sample of the population, by means of a different empirical technique. If results
are consistently demonstrated across each phase, conclusions drawn at the end of
the programme of research are less likely to be adversely affected by the fact that
one of the phases was poorly designed, used a biased sample of the population,
misapplied statistical tests, or did not take into account one of a number of other

important factors.

Increased understanding. The multi-method approach can result in deeper expli-
cation of the important factors affecting the phenomenon under investigation. As
each phase of the programme of research becomes more focused, the researcher
is likely to gain increased understanding of the various factors that affect the

phenomenon.

As a consequence of these strengths, results emerging from a multi-method programme
of research are more impressive than those from a single empirical study. The software
engineering community are, therefore, likely to accept the results as more reliable and
generalisable. Further, independent researchers are more likely to try and replicate
the important findings of the programme of research (the advantages of which are
discussed in Part IT of this thesis).

The main weakness of the multi-method approach is the initial investment of time
and effort required to apply it: each phase must be planned, designed, analysed, and
fully reported before the next phase can begin. Hence, a large investment is required
for a three phased programme of research and little return on that investment will
be achieved until after the initial phase(s). For example, in the initial structured
interview phase detailed in Chapter 7, it was found that each of hour of recorded
material required approximately 25 hours of effort to transcribe, summarise, and fully
analyse. On the other hand, it is argued that this is a worthwhile investment because
of the strengths the approach provides. Overall, a focused programme of research is
likely to be more cost effective than several independent studies because more reliable

and generalisable conclusions can be achieved.

6.3 Why the object-oriented paradigm?

The object-oriented paradigm seems set to dominate the software engineering industry.

This appears to be largely as a result of market forces and the opinion of gurus.

SECTION 6.3: WHY THE OBJECT-ORIENTED PARADIGM? 68

By incorporating the features of data abstraction, dynamic binding, encapsulation,
inheritance, and polymorphism, object-oriented software development has, according

to its advocates, many advantages over conventional methods. For example:

e Object-oriented design is more suited to real world problems [Booch, 1986],

[Rumbaugh et al., 1991], [Schlaer and Mellor, 1988].
e Object-oriented software is easier to understand [Booch, 1986], [Pokkunuri, 1989].

e Object-oriented software better facilitates maintenance and enhancement [Be-

rard, 1993], [Booch, 1986], [Rumbaugh et al., 1991].
e Object-oriented software resists degradation [Booch, 1986], [Pokkunuri, 1989].

o It is easier to reuse object-oriented software components [Berard, 1993], [Booch,

1986], [Liberherr and Xiao, 1993].
o Programmer productivity is improved [Buzzard and Mudge, 1985], [Booch, 1986].
e The total life cycle costs can be reduced [Buzzard and Mudge, 1985].
e Testing of object-oriented software is easier [Rumbaugh et al., 1991].

Unfortunately, there currently exists little empirical evidence to support such claims.
For example, Jones details a visible lack of empirical data to support the assertions
of substantial gains in software productivity and quality, reduction in defect poten-
tial and improving defect removal efficiency, and reuse of software components [Jones,
1994]. Henry et al. provide a list of references which they state have made claims
having qualitative appeal, but which have little supporting quantitative data [Henry
et al., 1990]. Evidence in support of the object-oriented paradigm is slowly beginning
to filter through in certain areas, but is by no means conclusive. For example, Mancl
and Havanas provide some supporting evidence for increased software reuse and ease
of maintenance through better data encapsulation, although their study may lack the
reported detail to convince the strongest skeptics [Mancl and Havanas, 1990]. Deubler
and Koestler extended and re-implemented subsystems of the operating system BS52000
using the object-oriented paradigm and embedded them within the existing code writ-
ten in a combination of low-level and high level languages [Deubler and Koestler, 1994].
The authors’ experiences lead them to believe the object-oriented code produced: (i)

was more structured and easier to understand, (ii) had substantially less errors than

SECTION 6.3: WHY THE OBJECT-ORIENTED PARADIGM? 69

was normal for a new piece of software, and (iii) had less interdependencies among
software components.

But it is not all good news. Deubler and Koestler also stated that the object-
oriented code produced was 10 - 15% less efficient than the original implementation.
More importantly, a subsection of the literature has recently reported that the same
object-oriented concepts which lead to a proliferation of positive claims about the
paradigm may actually cause problems for programmers. Alleged difficulties exist in
understanding, maintaining, testing, and reusing object-oriented software and in the
capacity of class hierarchies to withstand change. These are described in more detail

in the following sections.

6.3.1 Understanding object-oriented software

Object-oriented design localises data in objects to hide data structures, but poten-
tially distributes a program function across several or more classes. Distribution of
functionality, i.e., where pieces of code that are conceptually related are physically lo-
cated in non-contiguous parts of the program, is termed a delocalised plan [Soloway et
al., 1988)]. In object-oriented software the mechanisms of inheritance, polymorphism,
and dynamic binding are responsible for the creation of delocalised plans [Wilde and
Huitt, 1992]. Furthermore, much of the work on good object-oriented programming
style encourages the use of small methods, e.g., [Liberherr and Holland, 1989], and
this exacerbates delocalisation. As a consequence, although it can be relatively easy
to understand most of the data structures and member functions individually, under-
standing their combined functionality can be extremely difficult [Kung et al., 1994],
[Lejter et al., 1992]. For example, understanding the effect of a particular method
may require tracing a chain of method invocations to find where the work is being
performed.

It is also reported that when interacting with a software system for the first time,
a programmer requires a method to identify the components and perceive the system
architecture. In conventional systems, this can be achieved by examining the module
call hierarchy beginning at module main. In object-oriented systems this call hierarchy
will be a hierarchy of methods which has several disadvantages: (i) dynamic binding
may make this hierarchy difficult to calculate, (ii) there may be no ‘main’ method in
the system, and (iii) a hierarchy of methods detracts from the grouping of methods
within objects. Consequently, it is claimed that it can be difficult to gain a high level
understanding of an object-oriented system [Wilde and Huitt, 1992].

SECTION 6.3: WHY THE OBJECT-ORIENTED PARADIGM? 70

Ponder and Bush suggest that polymorphism can also have a detrimental effect
on program understanding [Ponder and Bush, 1994]. They argue that polymorphism
is useful, but creates understanding difficulties because the operations performed can
only be determined dynamically. The authors explain that although it is not necessary
to know the implementation of a method to understand its function, the following
difficulties can arise: (i) with just a few instances of use, inferring the generic meaning
of an operation is difficult and (ii) if a name is shared by subtly different operations,

the programmer is encouraged to infer similarities that do not exist.

6.3.2 Maintenance of object-oriented software

Successful maintenance requires two attributes: the ability to make changes easily
and an in-depth understanding of the software structure and behaviour. It therefore
follows that the difficulties in understanding object-oriented software have implications
for its maintenance. For example, delocalised plans must be fully understood; naming
confusions caused by polymorphism must be resolved, otherwise subtle errors may be
introduced during maintenance; tracing method invocations to their source must be
performed, a difficult and time consuming task exacerbated by dynamic binding.

In addition, the use of inheritance and polymorphism can create a large amount
of dependencies that need to be considered within an object-oriented program [Kung
et al., 1994], [Wilde and Huitt, 1992]. If a dependency exists between two entities in
a system, e.g., Y depends on X, then a programmer modifying X must be concerned
with possible side effects in Y. The number of dependencies that must be considered
in an object-oriented system is far greater than in a conventional software system and,
as a consequence, a maintainer can have great difficulty identifying the impact of their

changes [Kung et al., 1994].

6.3.3 Testing of object-oriented software

Jiittner et al. discuss testing of object-oriented software and in particular integration
testing [Jiittner et al., 1994]. Integration testing is defined as testing the interaction of
program parts during the process of integration, that is the putting together the parts
of a program to form bigger ones. In object-oriented software, these parts are classes.
The features of object-oriented software make integration testing quite different from
that of conventional software. In object-oriented programming, class and integration

testing are not as clearly separated as module and integration testing in conventional

SECTION 6.3: WHY THE OBJECT-ORIENTED PARADIGM? 71

programming, primarily due to the large number of dependencies created by inheri-
tance and polymorphism. Further, class encapsulation hides information, such as state
variables and other objects, which make it more likely that faults remain hidden dur-
ing the test process. The authors conclude that integration testing is more complex
for object-oriented software and more research is required within the area to produce
adapted and completely new integration testing strategies.

As mentioned above, the large number of dependencies in an object-oriented system
make it difficult to anticipate and identify the “ripple effect” of changes made by
maintenance. It is therefore difficult to identify which parts of the system need to be
retested [Kung et al., 1994]. In addition, the authors state that data, control, and
state behaviour dependencies make it difficult to prepare and generate test data to

retest the affected components (a procedure known as regression testing).

6.3.4 Reuse of object-oriented software

For reuse to be carried out effectively it is necessary to be able to locate the relevant
pieces of code as quickly as possible. It is now being suggested that this is not as
easy a task in object-oriented software as once thought — the large number of similar
classes, each of which tend to encapsulate a large number of small methods, make
it difficult to quickly browse them and find the functionality required for reuse. For
example, Wilde and Huitt state that it can be difficult to find the right class to use
out of Smalltalk’s many different classes of Collection [Wilde and Huitt, 1992]. If the
reuse benefits of the object-oriented approach are to be realised, it must be possible

to locate the required code efficiently.

6.3.5 Conceptual entropy of class hierarchies

All systems that are frequently changed tend towards disorder, a characteristic recog-
nised as entropy. Given frequent change, class hierarchies in object-oriented systems
can be expected to exhibit entropic tendencies. This has been termed conceptual en-
tropy by [Dvorak, 1994]. Conceptual entropy is manifested by increasing conceptual
inconsistency as the hierarchy is traversed. That is, the deeper the hierarchy the less
likely that a subclass will consistently extend or specialise the concept of its superclass.

According to Dvorak, conceptual entropy occurs for three reasons: (i) concepts be-
come more complex — the number of properties that a developer must consider to un-
derstand a class concept increases with each level, (ii) there are more classes to consider

as superclasses, and (iii) classes become more specialised, thus conceptual matches for

SECTION 6.3: WHY THE OBJECT-ORIENTED PARADIGM? 72

Object-oriented concept Reference
Aggregation [Jittner et al., 1994); [Kung et al., 1994]
Dynamic binding [Jiittner et al., 1994]; [Kung et al., 1994];

[Lejter et al., 1992]; [Wilde and Huitt, 1992];
[Wilde et al., 1993]

Encapsulation / Class concept | [Jiittner et al., 1994]; [Kung et al., 1994];

[Wilde et al., 1993]

Inheritance [Crocker and von Mayrhauser, 1993]; [Dvorak, 1994];
[Jiittner et al., 1994]; [Kung et al., 1994];

[Lejter et al., 1992]; [Wilde and Huitt, 1992];
[Wilde et al., 1993]

Polymorphism [Crocker and von Mayrhauser, 1993]; [Jiittner et al., 1994];
[Kung et al., 1994]; [Ponder and Bush, 1994];
[Wilde and Huitt, 1992]; [Wilde et al., 1993]
Small methods [Tiittner et al., 1994]; [Ponder and Bush, 1994];
[Wilde and Huitt, 1992]; [Wilde et al., 1993]

Table 6.1: Object-oriented concepts reported to cause difficulties to programmers

subclassing must be more exact. The concept was empirically demonstrated through
an experiment using seven subjects each with on average one years object-oriented
experience. Dvorak concluded that if conceptual entropy was left unchecked it would
eventually reach a stage where the utility of the class hierarchy becomes constrained

and it has to be restructured.

6.3.6 Summary

To sumimarise, the purported advantages of the object-oriented paradigm are the driv-
ing force behind its increasing popularity. The majority of these advantages, while
widely publicised in software engineering text books, have little or no supporting em-
pirical evidence. Recently, however, the literature has begun to report that the object-
oriented concepts of aggregation, dynamic binding, encapsulation, inheritance, poly-
morphism, and small methods can cause programmers difficulties when working with
object-oriented software. Again, little empirical evidence exists to support how signif-
icant these difficulties are, but because they contradict the opinion of object-oriented
advocates they have been discussed in more detail. (Table 6.1 comprehensively sum-
marises the literature which reports on any individual concept). It is therefore argued
that conducting empirical work to investigate the varying opinions within the object-

oriented literature is important, and timely, research.

SECTION 6.4: THE PLANNED MULTI-METHOD APPLICATION 73

6.4 The planned multi-method application

Clearly the object-oriented paradigm requires more empirical evidence than currently
exists. As a consequence, a multi-method approach was undertaken to investigate
the alleged advantages and disadvantages of the object-oriented approach. This pro-
gramme of research is regarded to be evolutionary: the findings of one phase were
the basis of the focus and design of the next phase. The strategy to conduct this
programme of research was carefully considered to include the most useful and worth-
while techniques (as well as the most economically viable due to financial limitations).
Letters sent to managers of industrial institutions throughout Scotland secured the
availability of seven employees of a large corporate company who were all experienced
object-oriented developers. To elicit as much as their knowledge as possible the most
appropriate technique to use was structured interviews. The first phase of the evolu-
tionary programme of research was to conduct an exploratory investigation by means
of structured interviews with these industrialists and academics with industrial expe-
rience. The full details of this study are presented in Chapter 7. The findings of this
primary investigation were used to design and implement a questionnaire on key as-
pects of object-oriented systems, which was then distributed to appropriate electronic
newsgroups and to members of an object-oriented postal mailing list. The intention
was to confirm (or otherwise) the findings of the first phase across a larger and wider
practitioner group. The details of this study are presented in Chapter 8. Finally, a
series of subject-based laboratory experiments were conducted which tested one of the
important and most interesting results from the questionnaire survey and structured

interviews in a more controlled setting. Full details are described in Chapter 9.

Chapter 7

Phase I: Structured Interviews

7.1 Introduction

This chapter presents the first phase of the multi-method programme of research, an
exploratory investigation to elicit knowledge from experienced object-oriented devel-
opers by means of structured interviews. Structured interviewing is an appropriate
method to initiate evidence gathering for several reasons: (i) interviewing elicits more
of the subject’s general knowledge than other techniques, (ii) interviewing software de-
velopers from both academia and industry should determine if academics are exploring
issues that industrialists deem important, i.e., do academics and industrialists have
similar or differing opinions on object-oriented issues?, (iii) interviewing experienced
object-oriented software developers from industry provides external validity in the
form of real world data, something which can be difficult to provide in more controlled
experimentation, (iv) object-oriented software developers have experience-based opin-
ions on the advantages and disadvantages of the paradigm; these opinions could be
used to justify if an empirically unsupported practice warrants further, more detailed
investigation, and (v) the information obtained from the interviews can identify issues
that have not been previously considered. Section 7.2 discusses the advantages and
disadvantages of using structured interviews as an empirical technique.

The structured interview requires a template from which the interview can be
directed. The subject may give an answer which is deemed worthy of pursuing, and
the interviewer can then ask supplementary questions (though care must be taken not

to bias the interview direction). Once satisfied, the interviewer returns to the next

SECTION 7.2: INTERVIEWING AS AN EMPIRICAL TECHNIQUE 75

question on the template. Section 7.3 details in full the interview method used for this
study. The remainder of the chapter provides analysis and discussion of the verbal

data collected (Section 7.4).

7.2 Interviewing as an empirical technique

Interviewing is an appropriate means for conducting a primary investigation and offers

several advantages over other empirical techniques:

External validity. Interviewing experienced subjects allows gathering of real world
data which is of extreme importance for drawing generalisable conclusions (as-
suming large amounts of subjects are interviewed). Furthermore, if a number of
independent experienced developers hold the same opinion on a particular issue,
the likelihood is an effect of some kind exists; further empirical investigation is

justified.

Flexibility. Interviewing is a flexible technique that does not have the rigidity of, e.g.,
a questionnaire survey, yet still allows data to be gathered relatively quickly
and unhindered [Sinclair, 1990]. Interesting points made by the subject can
be explored further by efficient question probing. In addition, feedback from
initial interviews can be used to refine the interview template to concentrate on
issues not previously considered. Conversely, refinement can remove issues which
were initially considered to be important, but which, on discussion, appear less
significant, i.e., the interview template can be re-oriented if necessary without

major disruption to the study, as long as the detail is reported in the findings.

Motivation of subjects. The interviewer has the ability to motivate the subject to
contribute additional information about a topic. The interviewer can also direct
and accelerate the flow of the interview thereby improving the quality of the

subject’s information flow [Biemer et al., 1991].

Clarification through re-interviewing. The ability to re-interview subjects allows
further investigation of important topics only discussed briefly in the original
interview. This elicits further detail as well as clarification of any opinions ex-
pressed, an important advantage that other empirical techniques, e.g., question-

naires, do not readily allow [Biemer et al., 1991].

As important, however, is to realise that there can exist difficulties in collecting

data from structured interviews:

SECTION 7.2: INTERVIEWING AS AN EMPIRICAL TECHNIQUE 76

Subject pressures. There is the danger of subjects saying what they think is ap-
propriate to say. For example, if the subject being interviewed thinks that the
listener is more proficient or knowledgeable in the interview domain then there
may be pressures to appear rational, knowledgeable and correct. Inversely the
subject may become uncooperative or present a particular attitude to the topic
[Bainbridge, 1990]. Social influences may also affect the course of the interview,
e.g., if the subject thinks what they say can be held against them then this may
bias their answer towards what they think the interviewer wishes to hear. An-
other problem is that while an experienced subject may be opinionated and talk

freely on any topic, they may not mention what they think is obvious.

Cognitive issues. Most people think more quickly than they talk (especially if time
pressures exist on the subject, e.g., the subject is being asked to speak their
thoughts while performing a task of some description). This highlights the gen-
eral point that verbally communicated data may only give a limited sample of the
total knowledge of the subject under study, i.e., only a subset of their cognitive

activity may be reported [Bainbridge, 1990].

Interviewer experience. The interviewer requires a good working knowledge of the
domain being questioned: without it, important aspects of the interview may be

found to be ambiguous, unresolved or, simply, unnoticed.

In addition, there are no objective independent techniques for doing analyses on inter-
view data. This may lead to subsequent problems for the analyser who may have to
make assumptions when interpreting what the subject has mentioned, or use their own
knowledge of the domain to make particular inferences. There are also high costs in-
volved in terms of time and effort to fully analyse verbal data. For example, Marchioni
states the need to spend about 25 hours for each hour of subject observation on tasks
such as transcribing video tapes and coding detailed protocol analysis [Marchionini,
1990]. Neilson denies this and reckons in realistic development situations each hour
of thinking-aloud observation only needs half an hour of combined analysis and re-
port writing [Neilson, 1992]. In the author’s experience of transcribing and analysing
structured interview data, Marchioni’s estimate was found to be reasonably accurate.

To summarise, the findings of an interview study are unlikely to be generalisable
unless large numbers of subjects are interviewed and measurement errors are factored
into the analysis [Biemer et al., 1991]. The structured interview technique is very

useful, however

SECTION 7.3: THE INTERVIEW METHOD 77

e For gaining insight into the knowledge of others.

e For gaining insight into subjects’ opinions about published problems and advo-

cates’ claims.
e As initial evidence for justifying further empirical investigation.

Papers in the literature have used similar techniques, such as thinking-aloud protocols
and knowledge acquisition through video recording, apparently with success, e.g., see
[Denning et al., 1990], [Walz et al., 1993]. It is argued, however, that while interviewing
may make the preliminary survey it should be followed by the chain and transit of
objective measurement. The multi-method approach is an appropriate method of
achieving this. (For a more comprehensive discussion of verbal data see [Biemer et al.,

1991], [Ericsson and Simon, 1984], and [Goguen and Linde, 1993]).

7.3 The interview method

The interview questions were designed to elicit information on three aspects of develop-
ers’ object-oriented knowledge: (i) information on their background, e.g., experience,
language familiarity, (ii) their opinions on the perceived advantages and disadvantages
of the paradigm, and (iii) their opinions on existing object-oriented technology, e.g.,
software tools, languages such as C++, and class libraries. The interview was struc-
tured in such a way that factual questions (requiring just one or two sentence answers)
were asked first, followed by questions requiring answers based on opinions from ex-
perience. This approach was taken to allow the subject time to settle and relax before
asking the more thought provoking questions.

A draft interview template was written and piloted during an initial interview with
an experienced industrial employee. The goal of the pilot was to receive reactions on
the structured interview technique and the questions asked. The only point made by
the subject was that not enough questions were asked about software tools, stressing
that tools are an important part of object-oriented programming. The draft template
was revised to take account of this noted point and the other interviews were con-
ducted with this refined template as their basis. (Appendix B contains a copy of this
template).

Twelve subjects, chosen for their experience of working with object-oriented sys-
tems, agreed to be interviewed using the refined template. Seven of these subjects were

industrial employees and five were academics, four of whom had industrial experience

SECTION 7.4: ANALYSIS AND DISCUSSION 78

of developing or working with object-oriented systems. The subjects were given no
prior knowledge of the content of the interview except that it was based on object-
oriented systems, but were told that any replies given would be treated confidentially
to reduce concern about how their answers might be used. The interview process was
kept as informal as possible, e.g., the subjects were drinking coffee before and during
the interview to help them relax and answer questions freely.

The interviews were carried out during the working day and lasted from 30 minutes
to almost 2 hours. Each interview was recorded using a hand held recorder which was
then transcribed to paper to ease analysis. Note that the initial interview was also
transcribed and included in the analysis.

It was hoped that the interview template was comprehensive, but as a safeguard

each subject was asked the final question

Has there been anything that you have not been asked that you feel is

important and should be addressed?

The majority of subjects answered no to this, or mentioned something specific about
their own work which they would have enjoyed talking about. In all, the subjects

appeared to think the interview was a “pretty full questionnaire”.

7.4 Analysis and discussion

Analysis was undertaken by summarising each interview transcript, and tabulating
answers (paraphrased) for each question to compare and contrast them. This method
of analysis has the advantage of allowing the data to be easily visualised, bearing in
mind that 13 subjects were interviewed.

Table 7.1 summarises the attributes of the interviewed subjects: column one pro-
vides a subject identifier, column two (Pos.) represents the subject’s position as either
an academic (A) or industrialist (I), column three (Exp.) gives the experience of the
subject in years, and the remaining columns present the subject’s knowledge of var-
ious object-oriented languages. The level of object-oriented experience varied from
six months to ten years, but note that the least experienced used object-oriented
techniques every working day. So it is argued there is justification for describing all
interviewed subjects as experienced object-oriented developers (only I, J, and L were

not daily users).

SECTION 7.4: ANALYSIS AND DISCUSSION 79

Object-Oriented Languages
Pos. | Exp. | C++ | Flavours | Eiffel | Objective-C | OO-Pascal | Simula | Smalltalk
AT 10 v v v
B I 0.5 Vv
C I 3 V4 V4
D | I 4] v v
E A 2 VA
F I 1 N4
G I 3.5 VA VA
H| I 50 v J
L] A 50 v v
1A s v Vv v
K| 1| 15| v J
L A 2 VA Vv
M| A | 3| v v

Table 7.1: Subjects’ position, experience, and object-oriented language familiarity

7.4.1 Learning curve, documentation, time pressures and quick fixes

Learning curve. Several subjects (A, I, J, and L) mentioned the learning curve as an
influencing factor when changing from the structured design paradigm to the object-
oriented paradigm: the subjects made the point that the learning curve is a steep
one. In addition, subject J commented “you really have to think differently ... I'm
still thinking in structured C in some ways” (repeating the point made in [Wilde et
al., 1993]). Subject L quantified by stating that to fully make the transition can take
as long as two years.

One reason that can make the learning curve steeper than necessary is the use of
hybrid programming languages like C++. Subjects B, K, L., and M said the use of C++
has a detrimental influence on learning how to develop object-oriented software. As
subject K stated, “it’s a language which doesn’t really encourage to think in terms
of objects.” Subject B added, “someone ... might just regress into doing something
in a C fashion when they should be doing it in an object-oriented fashion.” And
subject M hypothesised, “being forced to be object-oriented I'm sure actually helped
me.” Lozinski details many of the limitations of C++ and provides some excellent
accompanying discussion by comparing it to the more highly regarded hybrid language
Objective-C [Lozinski, 1991]. (Tables B.11, B.22, and B.24 in Appendix B provide

individual comments).

Design documentation. Ten subjects, including all industrial subjects, indicated
that they had had trouble with the availability of design documentation: either it did

not exist or it was inadequate. Subject K reasoned that when time constraints become

SECTION 7.4: ANALYSIS AND DISCUSSION 80

a factor, documentation is the first thing that suffers (subjects A and D made simi-
lar statements). However, subject L. warned that documentation for object-oriented
systems is a more important aid to understanding than it is for other systems and
if it was missing maintainers would suffer severe consequences. Subject G qualified,
“design documentation is important otherwise you are back to where you were before
[with structured designed systems].” The subject made the point that object-oriented
systems are not easier to understand than other systems unless the design documenta-
tion fully captures class relationships, class member functions, member variables, and
so on. Subject M supported this claiming, “the documentation is essential.” Subject
H provided the rather worrying comment, “... on the last project I worked on there
wasn’t any decent documentation anyway, ... you might find that, that’s by far the
most common case that there’s no good up to date design documentation.” These

difficulties appear indicative of what Kung et al. have experienced. They state,

Our experience indicates that it is extremely time consuming and tedious
to test and maintain an QO software system. This becomes even more

acute when documentation is either missing or inadequate [Kung et al.,
1994].

(Tables B.18 and B.25 in Appendix B provide individual comments).

Time pressures and quick fixes. Eleven subjects thought it was possible to perform
quick fixes on object-oriented code and especially C++ code, e.g., “yes, particularly in
C++7, “it’s too easy in C++”, “in C++it’s a lot easier”, “it’s all too easy, it’s really easy,
and the temptation is always there”. Subject L reckoned this is “one of the dangers
in these hybrid languages” while subject G stated, “yes, but that’s bad maintenance
rather than bad design.” Subjects A, C, D, F, and K mentioned a quick fix can be the
result of time pressures. Analysis of the data from the external replication detailed in
Chapter 4 discovered that subjects performed pragmatic maintenance (performing the
minimal amount possible to complete the required task) under laboratory conditions.

(Tables B.24 and B.25 in Appendix B provide individual comments).

7.4.2 Inheritance and high level understanding

Design. Subjects A, C, F, G, I, and L. made the point that if inheritance is designed
properly (the hierarchy is structured using appropriate abstractions) then it will not
cause understanding difficulties. Additionally, 5 of these subjects agreed that if de-

signed properly, inheritance should aid understanding. On the other hand, subjects

SECTION 7.4: ANALYSIS AND DISCUSSION 81

D, E, H, J, K, and M mentioned that inheritance can make understanding difficult:
subject D said that it can be difficult to trace the flow of control, while subjects J,
K, and M mentioned that tracing a line of method invocations to determine which
method is performing the work is difficult (repeating points from [Lejter et al., 1992]
and [Wilde and Huitt, 1992]). Subjects H and K agreed it can be difficult to un-
derstand what functionality a line of code is performing until it is realised it calls
an inherited member function. Subjects H and K also agreed inheritance can cause
confusion when interacting with inherited member variables — where have they been
inherited from? (repeating points in [Lejter et al., 1992]). The statement by subject

C, made in the context of design, appears to best fit the general opinion

“I think on the whole, it comes back slightly to how well written the code
is ... I think once you get into the way of thinking about inheritance it does
not make it more difficult to understand and in fact often makes it a lot

simpler; if your code is badly written then it’s a nightmare.”

(Table B.4 in Appendix B provides individual comments).

Delocalised plans. In delocalised plans, conceptually related pieces of code are phys-
ically located in non-contiguous parts of a program [Soloway et al., 1988]. Inheritance
creates further opportunities for delocalisation by spreading method functionality over
the hierarchy. Subjects were asked about the effect this had on system understanding.
Almost every subject commented that if the inheritance hierarchy is designed properly
then it would not be detrimental to understanding. Additionally, subject A said that
it was a natural way of writing and understanding code, subject C declared that “it’s
likely to aid understanding”, and subject H stated “it simplifies things; it simplifies
your design”. (Table B.5 in Appendix B provides individual comments).

Depth of inheritance. Subjects were asked to define a deep inheritance hierarchy
and the effect of depth of inheritance on system understanding. These definitions
are summarised in Table 7.2. Subject C said that 10 levels of inheritance (including

multiple inheritance) would be a deep and complex hierarchy. The subject added,

“you want to avoid using a depth of nesting that you don’t need and it’s

therefore inappropriate.”

The subject made the point that the hierarchy must be appropriately designed. Sub-

ject H also noted that 10 levels of inheritance is a deep hierarchy. In contrast, subject

SECTION 7.4: ANALYSIS AND DISCUSSION 82

Depth of inheritance (levels)
Subject | 3-4 5-6 > 6 Not relevant
A v
B v
C v+ MI
D v
B v
Pl
¢ | v
H v
I v
1|y
K v+ MI
L
M N

Table 7.2: Subject opinions on a deep inheritance hierarchy

I stated that depth was not an issue they had ever considered and, therefore, the ques-
tion was not relevant. The remaining subjects mainly noted 3-4 levels of inheritance as
deep. Comparison of the data in Tables 7.1 and 7.2 shows no significant relationship

between experience or the language used! and the depth of inheritance.

Multiple inheritance. Subjects B, C, G, H, I, and K mentioned that multiple in-
heritance is more a complex concept than single inheritance. Additionally, subject L
was concerned that multiple inheritance allowed for a sloppy approach (inappropri-
ate inheritance). The subject stated their reluctance to use multiple inheritance by
mentioning anything designed using multiple inheritance can be designed using single
inheritance. Subjects B and H agreed, mentioning that multiple inheritance makes
your design more complex. On the other hand, subjects C, E, and K stated multi-
ple inheritance had benefits. Subject C reckoned it is easier to reuse with multiple
inheritance and it can also make maintenance changes easier. Subject E mentioned
it maps the reality of systems being modeled, and subject K agreed reporting that if
you have a real case for multiple inheritance then it is advantageous. Subjects B, G,
and L disagreed. Both B and L stated multiple inheritance is more tightly coupled
than single, and therefore software reuse can be more difficult, while subject G stated
“single inheritance is the way to do it.” (Table B.9 in Appendix B provides individual
comments).

To summarise, Table 7.3 provides the advantages and disadvantages of inheritance
mentioned by the interview subjects. (Tables B.7 and B.8 in Appendix B provide

individual comments).

! Although most subjects talked in the context of C++ for the majority of the interview.

SECTION 7.4: ANALYSIS AND DISCUSSION 83

Inheritance

Advantages Disadvantages
Allows design at the highest level of Understanding is difficult if not well designed

abstraction Overuse or inappropriate use of inheritance leads
Prevents code redundancy to more complex code that’s harder to follow
Aid to understanding if designed well Multiple inheritance can complicate the design
Information hiding through encapsulation | Tracing flow of control and dependencies can be
Quick prototyping difficult
Single inheritance encourages good design | New concept to learn
Multiple inheritance for complex designs Deep hierarchies can cause understanding
Provides modularity difficulties

Table 7.3: Summary of the advantages and disadvantages of inheritance

7.4.3 Maintenance of object-oriented programs

Facilitating change. Subjects A, B, C, D, E, F, G, H, K, and L stressed that
if well designed changes are made to a well designed software system, the effects of
these changes are likely to be more localised with object-oriented code than with
equivalent structured code. In contrast, if the changes are not well designed, then
side effects will have as much an impact on an object-oriented system as on any other
system. Although subjects D, H, J, and K agreed that changes are more localised in
an object-oriented system, these four subjects also noted that changes can also have
a greater global effect because any changes made will affect subclasses which inherit
them (repeating the point in [Jiittner et al., 1994], [Kung el al., 1994], and [Wilde and
Huitt, 1992]). On the other hand, subjects D, H, and K noted that this concept has
the benefit of being able to “fix it for one, fix it for all”: if class X has a corrective
maintenance change made then any subclass Y has that change made automatically
through inheritance (a benefit not mentioned in [Kung et al., 1994] or [Wilde et al.,
1993]). Subjects B, D, G, J, and L raised the issue of tracing of method dependencies
through the class hierarchy as “problematic” (repeating the points in [Wilde and Huitt,
1992] and [Lejter et al., 1992]). According to subject K “just seeing where a piece of
code does that work ... from the point of view of understandability can be quite
tricky.” The subjects agreed this is compounded when the inheritance hierarchy is

deep. (Tables B.2, B.4 and B.6 in Appendix B provide individual comments).

Object-oriented software difficulties. Regarding object-oriented programs caus-
ing problems for software maintainers, subject A related it to the learning curve: un-
derstanding the way an object-oriented program works is not easy to begin with and
takes time to acquire the correct method of thinking, “learning by osmosis” (repeating

the point made in [Wilde et al., 1993]). Subject J repeated that missing documentation

SECTION 7.4: ANALYSIS AND DISCUSSION 84

could cause maintainers difficulty. Subjects B and K mentioned the one class per file
style promoted by Stroustrup [Stroustrup, 1991] as undesirable: it can make tracing
of dependencies extremely difficult without good tool support (repeating the point in
[Lejter et al., 1992]). The general opinion, however, was that there is more structure
to a well designed object-oriented system and, as such, it is easier to maintain than
a non object-oriented system. As a caveat, subject L stated that perhaps too few
object-oriented systems have had sufficient maintenance to be able to say. (Tables

B.10, B.11, and B.16 in Appendix B provide individual comments).

Rate of entropy. Subjects were asked if they thought that continual maintenance
would eventually lead to unmaintainability. The majority of subjects commented that
this would be the case although in comparison to an equivalent structured program
there is a lesser tendency for this to happen, i.e., it would still happen but over a longer
of period time. Subject A stated this would happen “without a doubt”: the rate of
entropy increases over time and everything tends to disorder. Subject D also discussed
the rate of entropy but did think it is reduced for object-oriented systems. Subject
E agreed, but only on the condition that programmers “maintain the object mindset
for making changes” to the system. Subject J made a similar statement. Subject H
concluded that as with anything, if ad hoc changes are made then unmaintainability

will ensue. (Table B.12 in Appendix B provides individual comments).

Software tools. Subjects mentioned that tools are helpful for understanding and
maintaining object-oriented programs. Differences of opinion did arise about whether
they are a necessity or not: subjects E, F, H, J, K, L, and M all declaring they are,
the remainder declaring they are not. All the subjects did agree that tools do alleviate
some of the understanding problems that can occur when performing object-oriented
software maintenance. Subject I reckoned that more object-oriented tools are needed.

(Table B.3 in Appendix B provides individual comments).

Quality of maintenance. Subjects A, B, C, D, G, K, and M mentioned that it would
be difficult for a maintainer to tell if any changes made had degraded the system code
quality (repeating the point made in [Kung et al., 1994]). Code reviews and walk-
throughs performed by a panel of programmers are recommended practice by these
subjects as a reliable safety net for catching any introduced errors. (Table B.17 in

Appendix B provides individual comments).

SECTION 7.4: ANALYSIS AND DISCUSSION 85

7.4.4 Other issues

Small methods. Regarding small methods as good object-oriented programming
practice, subject A concluded that methods “can be one line ... but as much as 50
lines for ‘real’ methods” depending on their function. Subject F stated, “I try to keep
them small.” However, subjects B, C, D, and K all mentioned methods of size in excess
of 100 lines of code (subject C had worked with a method of 2500 lines) although
this was not regarded as good programming practice. In general, the subjects felt that
small methods are good programming practice. (Table B.1 in Appendix B provides

individual comments).

Object-oriented programming practices. Subjects were asked if they had ideas
on good and bad object-oriented programming practices. Once more the importance
of design was stressed. Subjects A, C, F, I, K, and M mentioned that good design
usually means good code; conversely bad design produces bad code. According to
subject C “it is almost less the coding style than the design style that is important”.
Additionally, subjects C and D agreed that not too deep an inheritance tree was
good style (although from Table 7.2 it can be seen their definitions of deep differ).
Subject H added “there seems to be few points of reference for object-oriented code
quality”. The rules and recommendations produced by Henricson and Nyquist for
object-oriented programming is one standard which may help to reduce any existing
inconsistencies [Henricson and Nyquist, 1992]. (Table B.16 in Appendix B provides

individual comments).

Polymorphism. Every subject interviewed thought that polymorphism is a useful
concept in object-oriented programming and they agreed it can produce generic code.
However, subjects B, C, E, G, I, and J mentioned that polymorphism, especially if
semantic consistency is not maintained, can cause confusion and make it difficult to

understand how the system works. In particular, subject B stated,

“Yes, it’s a great benefit in some cases ... In some cases, it makes things
really difficult to understand ... Used properly and used reasonably spar-

ingly, it can be really advantageous.”

(This reiterates the conclusions drawn in [Ponder and Bush, 1994] and [Wilde and
Huitt, 1992]). (Tables B.20 and B.21 in Appendix B provide individual comments).

Dynamic binding. Similarly, regarding dynamic binding, while every subject con-

sidered it as a clearly defined benefit (subject A remarked “without it there is no

SECTION 7.5: CONCLUSIONS 86

object-oriented programming”) subjects C, E, L, and M felt that there can be un-
derstanding difficulties if the programmer was “careless” when using it. Subjects C
and L mentioned that one of the big problems is the calling of non-existent methods.
If managed carefully, however, according to subject D, “it simplifies the code ... It’s
a more intuitive way of working.” (Table B.19 in Appendix B provides individual

comments).

Software reuse. All subjects, except subject E made frequent use of commercially
produced libraries, but subjects A, D, I, K, and L were the only frequent users of in
house (local) class libraries. No generalisation can be made, but it does support asking
the question is the object-oriented approach meeting its reputation for ease of software

reuse? (Tables B.13, B.14, and B.15 in Appendix B provide individual comments).

Overall benefit. Subjects were asked to complete the interview with a conclusion on
the utility of the object-oriented paradigm (is it beneficial?). Nearly all the subjects
were very positive about the object-oriented paradigm — the main benefit being the
ability of the paradigm to map real world domains into software. Subjects regarded
the technology as being preferable to work with, saying that it makes life easier and
makes programming “good fun”. One subject commented that it is beneficial where it
is appropriate (some types of problem are not suited to an object-oriented solution).
The only major drawback was seen to be the fierce learning curve which caused ini-
tial difficulties in understanding aspects of the technology (e.g., polymorphism and
dynamic binding).

7.5 Conclusions

Interviewing users on the advantages and disadvantages of aspects of software engi-
neering can be rewarding: it can help to identify (i) problems not yet considered, (ii)
conditions under which existing problems are compounded, alleviated, or do not apply,
and (iii) issues which appear worthy of further empirical inquiry and those that do not.
The structured interview is an effective method of conducting a primary investigation
within a multi-method programme of empirical research. Although the results of this
study cannot be generalised with a great degree of confidence, the opinions gathered
provide pointers to areas of interest and potential problems.

It is believed that the weaknesses of the structured interview technique were not

a major influence on this study because (a) anonymity of subjects and the interview

SECTION 7.5: CONCLUSIONS 87

setting encouraged them to speak freely, (b) the interviewer’s experience in the do-
main meant further investigation of important points was conducted as required, and
(¢) clarification of elicited knowledge could be made after the interview transcript
was available (although this was required from only one subject). The analysis was
performed by transcribing and summarising each interview and tabulating subjects’
answers to each question. Interview tramnscripts were read at least several times and
it is unlikely that any important points were overlooked. Analysis of the collected

interview data uncovered several aspects of marked interest:

Learning curve. The learning curve was mentioned as being steep when switching
to the object-oriented paradigm from another, different paradigm — one subject
mentioned the figure of almost two years to make the transition. Note well:
this conclusion is based mainly on information elicited from subjects who were
not daily users of object-oriented technology. It may also be contradicted some-
what by the fact that a subject with only six months experience was a very

knowledgeable and proficient developer.

Inheritance. Depth of inheritance was discussed: excessive inheritance depth or inap-
propriate use of inheritance can cause understanding difficulties and is therefore
something to be avoided (any initial time saved will be outweighed by the diffi-
culties the inappropriate inheritance causes). In contrast, inheritance, when de-
signed and implemented appropriately, is more likely to aid understanding than
compound it. Understanding difficulties are created by dependencies caused by
inheritance, however. Tracing a line of dependencies through inheritance hi-
erarchies to find where the work is being performed can be a time-consuming

task.

Design documentation. Object-oriented systems are as prone, if not more so, to
the problems of missing documentation. Several subjects mentioned that time
constraints can cause documentation to suffer. The drawbacks of missing doc-
umentation should be considered carefully from a maintenance perspective. If
the documentation captures the correct information it could reduce future time
pressures: subsequent changes may be properly designed, reducing system degra-

dation; if not then the reverse might be true.

Design. The design of an object-oriented system appears to be extremely important:
subjects continually mentioned design when discussing the problems of inheri-

tance, software maintenance, polymorphism, and dynamic binding, stating that

SECTION 7.5: CONCLUSIONS 88

if the design was appropriate then understanding was not constrained. In con-
trast, however, if not well designed then the system could be a “nightmare” to

understand.

Software maintenance. As a consequence of software maintenance, object-oriented
systems are still prone to degradation. The consensus was that object-oriented
software would resist software degradation through maintenance better than
other software systems, but only if the object mindset is kept when performing
maintenance: ‘quick fixes’ are likely to increase software degradation (or the rate
of entropy, as referred to by 2 subjects) to that of any other software. Trainees,

therefore, are not the best people to perform maintenance.

C++. Subjects indicated a lack of enthusiasm towards C++ and viewed it inferior in

many aspects to ‘purer’ object-oriented languages.

Conducting the structured interviews was the first phase of the multi-method pro-
gramme of research. The next phase of the programme of research involved the design
of a questionnaire from the structured interview findings to gather quantitative data

from a larger sample of the object-oriented practitioner population.

Chapter 8

Phase II: A Questionnaire

Survey

8.1 Introduction

This chapter presents the findings of a questionnaire survey, the second phase of the
multi-method programme of research. The questionnaire survey followed the struc-
tured interviews presented in Chapter 7 with the intention of examining their findings
on: (i) the perceived advantages of the paradigm, (ii) inheritance, (iii) the difficulties
object-oriented code can cause, (iv) software maintenance and its consequences, (v)
use of in house (local) class libraries, and (vi) the C++ programming language. A sur-
vey of this nature is appropriate as the second phase within the programme of research
because questionnaires have the advantage of being able to collect large amounts of
data which do not suffer from interviewer bias. The utility of questionnaires as a tech-
nique for empirical software engineering research is discussed, in particular the use of
electronic newsgroups as a medium for questionnaire distribution (Section 8.2). The
design and distribution of the questionnaire which was posted to appropriate world-
wide electronic newsgroups and to members of a U.K. postal object-oriented mailing
list is fully detailed in Section 8.4. The remainder of the chapter summarises the

collected data and presents in depth analysis.

SECTION 8.2: USING QUESTIONNAIRES AS AN EMPIRICAL TECHNIQUE 920

8.2 Using questionnaires as an empirical technique

There exist various media for distributing questionnaires, e.g., electronic newsgroups,
face-to-face, magazines, post, the telephone (see Table 1 in [Miller et al., 1996] for
an overview of the comparative advantages and disadvantages). In common with all

empirical techniques, questionnaires have both strengths and weaknesses:

Strengths: In comparison to other empirical techniques requiring an arbitrary num-

ber of subjects, questionnaire surveys are relatively inexpensive to conduct.

Data from questionnaires can be collected reasonably quickly because it is the respon-
dent who completes the process on their own unlike other techniques which require

skilled intermediates to record the process.

Questionnaires do not suffer the problem of interviewer bias: the responses given are

not affected by the pressures an interview can cause (as discussed in Chapter 7).

If good response rates are achieved from a representative sample then findings can be

generalisable.

Questionnaires can be completed anonymously and confidentially, providing obvious

advantages, e.g., truthful responses.

Analysis of questionnaire data, while not easy, is not as difficult as analysis of struc-
tured interview or verbal protocol data. That said there are still difficulties, e.g.,
editing the collected data into the format required by a software analysis package is
both time consuming and error prone (Kikuchi et al. discuss using neural networks as

a possible method of counteracting this error proneness [Kikuchi et al., 1993]).

Weaknesses: According to Sinclair, designing and administering a high quality ques-
tionnaire is a skilled task; a specialist in the behavioural sciences, a computer expert,
and a statistician working as a team may be required to complete the process [Sinclair,

1990].

It may be difficult to sample the population in a representative way creating bias in

the results. Poor response rates may also bias the results.

If the information obtained is not factual or easily checked then its reliability and
validity are not always guaranteed [Goguen and Linde, 1993]. For example, smokers
answering a medical questionnaire may be inclined to be less than honest about the

number of cigarettes they smoke for fear of being morally criticised.

SECTION 8.2: USING QUESTIONNAIRES AS AN EMPIRICAL TECHNIQUE 91

There is little scope to correct misunderstandings or probe responses once a question-
naire has been returned.

Using questionnaires is an excellent method of providing large amounts of quan-
titative data from a population under investigation relatively cheaply and efficiently.
However, they are not a panacea and it can be difficult to produce generalisable find-
ings. Consequently, it is argued that important findings are tested further by other

empirical means.

8.2.1 Postal methods as a medium

Using postal methods to conduct a questionnaire survey is a popular medium primarily
due to financial cost: all that is required is the photocopying costs, sampling costs,
address labels, and mailing costs. In comparison to other questionnaire techniques,

postal methods offer the following

Advantages: Using postal methods as a medium provides good access to the popu-

lation sample, and also means the sample are likely to read the questionnaire.

The use of reminders and self-addressed stamped envelopes for return can help
increase the response rate (although they can also add significantly to the survey

costs), reducing the bias of non-response.

Speed of turnaround can be reasonably efficient if the urgency of the survey is

stressed in the covering letter.

The respondent may consult others before completing the questionnaire, or pass
the questionnaire on to a more knowledgeable person (although this can be

viewed as a disadvantage for certain surveys).

Disadvantages: The questionnaire usually has to be kept reasonably short: lengthy

questionnaires may discourage response.

The ability to ask open questions is very restricted because such questions require
writing, and respondents generally tend to leave these questions blank or give
a two or three word answer. Also, open questions usually require probing the

answer given and this cannot be performed.
Finally, postal survey methods generally suffer poor response rates which may
bias the findings.

Much has been written about postal survey methods by other researchers, e.g., see

[Dillman, 1978], [Oppenheim, 1992] and [Sudman and Bradman, 1983] for more detail.

SECTION 8.2: USING QUESTIONNAIRES AS AN EMPIRICAL TECHNIQUE 92

8.2.2 Electronic newsgroups as a medium

No relevant literature has been found on the utility of electronic newsgroups as a
medium for distribution of questionnaires. In the author’s experience of conducting
an electronic survey similarities appear to exist with the utility of Magazine Dis-
tributed Questionnaires (MDQs). Using electronic newsgroups to gather information
is an appropriate empirical technique subject to criteria similar to those stated by
Pratto and Rodman for MDQs: (a) the target population is defined in terms of some
phenomenon that is not widespread in large populations and there exists electronic
newsgroups that appeal to the target population, (b) there is no commonly available
sampling frame! for the target population, and (c) investigative research on the topic
is limited [Pratto and Rodman, 1987]. Once satisfied, using Electronic Newsgroup
Distributed Questionnaires (ENDQs) can provide the following:

Advantages: ENDQs provides very quick access to members of the target population,
i.e., by making use of the vast number of existing electronic newsgroups it is
possible to select the ones which have a large proportion of individuals who
are part of the target population. In fact targeting is highly efficient using this
method, as newsgroups are in general very focused and are unlikely to be read by
anyone not interested in the topic. Also these newsgroups can provide access to
specialised populations, which are often unavailable in other media. This again

is due to the diversity of the topics under discussion across these groups.

The monetary cost of such a survey is exceptionally low, an advantage when
performing exploratory research with limited financial support. This type of
survey usually works on a something-for-something basis: the individual is asked
to respond, and, in turn, is promised access to the survey results (usually posted

to the corresponding newsgroups).

ENDQs have the ability to obtain a substantial amount of quantitative data:
popular electronic newsgroups are read by thousands of individuals from all over

the world.

The speed of turn-around from beginning the ENDQ to collecting the data is
quick because sampling frames are not needed, i.e., once the questionnaire has
been completed, all that is required is posting it to the appropriate newsgroups

(responses can be returned within a matter of hours). This is also an advantage

1A sampling frame is a list of all of the members of the population under investigation from which
the sample is drawn.

SECTION 8.3: DESIGNING A QUESTIONNAIRE SURVEY 93

for planning future research with deadlines, e.g., subject-based experiments re-
quire advanced laboratory bookings, subject recruitment, and so on, and ENDQs

can quickly help to focus hypotheses for testing.

Disadvantages: A questionnaire posted to electronic newsgroups will be distributed
to a ‘biased’ population: only those who subscribe to the newsgroup can read

the questionnaire.

Respondents to the questionnaire are self-selected from the total population for
their motivation and interest to respond. Also, the most effective method of
increasing response rates in postal questionnaires is through follow-up contacts:
this method is not available for ENDQs for obvious reasons and demonstrates
further the problem of self-selection. Self-selection is a problem which, to a
certain degree, exists for all methods of questionnaire distribution [Hawkins,

1975], although for ENDQs the problem is pronounced.

Finally, the ability to ask open questions is still as restricted as in postal method
questionnaires because such questions require typing. Open questions require

probing of the answers given and this still cannot be easily performed.

A full discussion of the utility of ENDQs is provided in [Miller et al., 1996].

8.2.3 Conclusions

To conclude, researchers should be aware of the advantages and disadvantages of using
questionnaires before deciding to place any significance on their findings: when using
ENDQs there is the likely bias of self-selection. Using ENDQs also offer various advan-
tages, notably the collection of data relatively quickly and cheaply. This data can then
be used to form specific hypothesis to be tested by more rigorous empirical techniques.
Postal surveys, on the other hand, produce results that can be representative of the
population under study assuming a sampling frame is available and a reasonable re-
sponse rate is achieved. They are also more expensive and time consuming to perform

in comparison to an ENDQ survey.

8.3 Designing a questionnaire survey

A questionnaire usually consists of the following sections: (i) a prologue which intro-
duces the topic and attempts to motivate the reader to respond, (ii) a classification

section asking for personal details such as name, age, experience, (iii) an information

SECTION 8.3: DESIGNING A QUESTIONNAIRE SURVEY 94

section detailing the questions on the phenomenon under investigation, and (iv) an
epilogue which thanks the respondent for participating and supplies instructions for
returning the questionnaire [Oppenheim, 1992].

Although it is sensible to construct the questionnaire in this format, eliciting accu-
rate information is primarily dependent on the design of the questions. First, before
deriving the questions, Sinclair states the following points require answers: (i) what
are the results supposed to show (what are the objectives of the study), (ii) what level
of accuracy is required, and (iii) what additional data is required to link this survey
to other research [Sinclair, 1990]. Without these answers the questionnaire begins
with vague thinking, which produces vague questions, which ultimately, regardless of
how good the analysis, produces vague answers. Sinclair concludes that there is no
substitute for this part of the design. Second, the language used to phrase the ques-
tions should be carefully chosen. It should be understandable and unambiguous, i.e.,
the question should mean the same to everyone regardless of the context the respon-
dent uses it in, although the validity of this position has been questioned [Goguen and
Linde, 1993]. Third, questions should be as short as possible, and not double-barrelled,
e.g., it can be hard to analyse a question such as ‘Are you familiar with structured
design or object-oriented design?’ Fourth, questions should not be loaded in a partic-
ular direction, i.e., they should not invite any particular answer to be given. Finally,
respondents may pass off their opinion as truth creating bias in the results. If thisis a
significant worry, it can be catered for by the use of closed questions? which offer the
advantages of: (i) clarifying the alternatives for the respondent thus reducing the like-
lihood of snap responses, (ii) ease of analysis, and (iii) helping to eliminate the useless
answer, e.g., ‘How long have you been writing object-oriented code? Since I started
programming in C++’. Closed questions, however, also have several disadvantages: (i)
they must cover the total response range, (i) they create a forced-choice situation,
(iii) all the answers must seem equally attractive, and (iv) in difficult questions they
allow the respondent to hide in the safety of the ‘don’t know’ answer.

Once the questionnaire is complete, it is important to reduce the bias of the sample
respondents, i.e., the respondents should be representative of the population under
investigation; this is best achieved by randomly sampling the population as far as
possible. This is a difficult task and requires an available sampling frame for the

population: it is therefore impossible to have random sampling in ENDQs. A problem

2Closed questions provide the answers from which the respondent must choose. Open questions,
on the other hand, require the respondent to provide their own answer.

SECTION 8.4: QUESTIONNAIRE CONSTRUCTION AND ADMINISTRATION 95

with non-representative samples is that the findings cannot be easily generalised. For
more detailed discussion on questionnaire design (and other important survey aspects)

see [Biemer et al., 1991] and [Oppenheim, 1992].

8.4 Questionnaire construction and administration

8.4.1 Layout

The layout of the questionnaire followed the guidelines detailed in Section 8.3. A
letter® introducing the topic of the questionnaire, the motivation for conducting the
survey, and the instructions for returning completions was considered the prologue
section. The classification section collected details on the respondents’ position at
work, experience with the object-oriented paradigm, familiarity with object-oriented
languages, and information on experience with inheritance, maintenance, and class
libraries. The information section asked questions to which the answers were more
based on opinions derived from “experience, reading, or conferring with colleagues.”
The epilogue allowed the respondent to make additional comments and elaborate on
points made in the questionnaire, and thanked the respondent for participating (see
Appendix C for a copy of the distributed version of the questionnaire).

The principle concern was to keep the layout differences between the two versions
to a minimum, and this was achieved. Media dependent differences were noted after

the questionnaire had been distributed, however (see Section 8.4.4 for details).

8.4.2 Derivation of the questions

As stated, the questionnaire survey is the second phase of the programme of research.
The aim was to explore users attitudes to some of the findings of the structured
interviews. Analysis of these attitudes can be used to form hypotheses to be tested
using more specific forms of experimentation, e.g., a questionnaire devoted to object-
oriented software maintenance, or a controlled laboratory experiment to test a smaller,
but more focused hypothesis. Issues discovered from conducting the interviews lead

to the following survey objectives:

1. Explore attitudes to the perceived advantages of ease of analysis and design,
programmer productivity, software reuse, and ease of maintenance relative to

other paradigms.

FAt the beginning of the file in the electronic version; a separate sheet of paper in the postal one.

SECTION 8.4: QUESTIONNAIRE CONSTRUCTION AND ADMINISTRATION 96

2. Explore attitudes towards inheritance (including depth of inheritance and mul-
tiple inheritance) and measure how often reported difficulties in the literature

occur in reality.
3. Catalogue the difficulties of understanding object-oriented code.
4. Explore attitudes to object-oriented software maintenance and its consequences.

5. Discover if the promise of software reuse is being met only through commercial

class libraries or if in house (local) class libraries are being used.
6. Explore practitioners attitudes towards the C++ programming language.

Nineteen questions (several with two or more parts) were derived from these objec-
tives (this includes three initial questions on experience, job classification, and object-
oriented language familiarity). No more than four questions were asked on any issue.
To facilitate ease of analysis all questions, except one, were closed although extra writ-
ten information was encouraged. The categories provided covered the range of possible
answers through either a nominal data category or an ordinal data range (range of 1
to 5, where 1 = Never and 5 = Always). The only open question, based on objective
3 above, was considered too important to create a forced choice situation. Another

concern was that a closed alternative may not cover the entire response range.

8.4.3 A pilot study

Piloting of a questionnaire is important to discover unnoticed assumptions in questions
such as loading biases, ambiguities, or unnecessary complexity. If these are not iden-
tified before the questionnaire is distributed little can be done to rectify the situation
[Oppenheim, 1992].

A draft questionnaire was posted to a local newsgroup where it was answered by
fellow researchers as meticulously and pedantically as possible. The comments were

collated and led to the conclusions:

1. It was obvious that some of the questions required either clarification or simpli-
fication, e.g., “too vague”, “will need to explain this”, “what is this trying to

find out?”

2. It was not clear whether respondents could mark more than one box off in the
closed questions, e.g., “can I put more than one X here too? Your instructions

are not clear.”

SECTION 8.4: QUESTIONNAIRE CONSTRUCTION AND ADMINISTRATION 97

3. Some of the questions were phrased in a loaded or biased way, e.g., “Is this too
directed /loaded?”, “Biased?”

4. Closed questions did not cover the full response range: several respondents gave

answers outwith the range provided.

The identified faults were rectified and the revised version was reviewed a second
time. Several comments lead to minor changes, after which the questionnaire was

distributed. Note that the initial responses were not included in the data analysis.

8.4.4 Distribution

Four hundred questionnaires were randomly posted to members of a mailing list (con-
sisting of 2000 names and addresses) within the U.K. All members of the list had
in the past expressed interest in the object-oriented technology of a certain software
company. Unfortunately, nothing can be said about how representative recipients of
the questionnaire were because it was not known how representative of object-oriented
practitioners the mailing list was. The responses received, however, were from a va-
riety of practitioners, from a wide number of academic and industrial organisations
across the country.

The questionnaire was also posted to the world wide distributed electronic news-
groups comp.databases, comp.lang.clos, comp.lang.c++, comp.lang.eiffel, comp.lang.
objective-c, comp.lang.smalltalk, comp.object, comp.software-eng, and comp.sys.next.
programmer. This approach enabled a variety of different people access to the ques-
tionnaire, e.g., software engineers, project managers, academics. As discussed in Sec-
tion 8.2, this approach suffers from self-selection: only individuals who subscribed
to the newsgroups were able to read it and only those motivated enough may have
responded. Subsequently, the respondents may not be representative of the object-
oriented population. The responses received, however, did come from various groups
of people from all over the world.

It is important to note that it is extremely difficult, if not impossible, to obtain
a representative sample of the object-oriented practitioner population because there
is no sampling frame available. Consequently, although little can be said about the
sample being representative of the population, there can be more confidence in the

findings if no difference of opinion exists between the two sets of respondents.

SECTION 8.5: RESPONSES RECEIVED 98

Distribution differences

The experience of using different media to conduct the survey uncovered a number of
differences between them. An aspect not considered during the questionnaire design
was the ability to edit the questionnaire: many respondents of the electronic version
increased the space allocated for comments after each question, while postal respon-
dents rarely appended further information on extra sheets of paper. It would seem the
electronic version facilitated extra written comments, although its respondents may
just have been more motivated (as discussed in Section 8.2). Another significant dif-
ference was the access to members of the target population: it was exceptionally easy
to repost the questionnaire to the electronic newsgroups to attract more responses,
but, because of financial limitations, reminders could not be sent out to members of
the mailing list. These differences should be classified as significant benefits for using
electronic newsgroups over postal methods (assuming the postal sampling is not rep-
resentative of the population, as is likely in this survey). Using both media, however,

has the advantage of increasing the number and variety of survey respondents.

8.5 Responses received

The electronic survey received 167 responses to the questionnaire. The postal survey
received 155 returns, although 11 of these were too incomplete to be included in the

analysis and 36 were marked return to sender. Using the formula
(number returned / (number in sample - (non-eligible + non-reachable))) x 100

provides a response rate of at least 33%. McNeill notes that response rates for mail-
based questionnaires are usually in the region of 30-40% [McNeill, 1985]. According to
Edwards, a response rate of 20-30% for mail-based questionnaires can be considered
adequate [Edwards, 1972]. In their well referenced software maintenance survey which
included sending reminders, Lientz and Swanson ‘only’ produced a 24.6% response
rate [Lientz and Swanson, 1980]. Dillman remarks that use of the total design method
(TDM) can help achieve response rates between 60-75% [Dillman, 1978]. Among other
attributes, TDM requires a sampling frame of the population under study and a mech-
anism for contacting questionnaire recipients who have not responded. Such a high
response rate was not achieved for this survey for two reasons. First, a proper sampling
frame was not available — the mailing list was not a list of people who used object-

oriented technology. Consequently, many recipients who were unable to complete the

SECTION 8.5: RESPONSES RECEIVED

99

Survey
Position Electronic | Electronic % | Postal | Postal % | Total | % of Total
Student 34 20.4 3 2.8 37 13.5
Academic 23 13.8 11 10.2 34 12.4
Software engineer 85 50.9 42 38.9 127 46.2
Project manager 10 6.0 25 23.1 35 12.7
Other 15 9.0 27 25.0 42 15.3
Table 8.1: Respondents’ positions

questionnaire may have simply discarded it. An estimate of this number cannot be
provided, but it is likely to be reasonably high (which would increase the response rate
considerably). Second, this survey was conducted anonymously — reminders could not
be sent to recipients who had not returned the questionnaire.

Before discussing the analysis of the 275 completed questionnaires information is
presented on respondents’ attributes. Table 8.1 provides a breakdown of the differ-
ent positions held by respondents, the largest proportion being software engineers
(46.2%).* The ‘Others’ category consists of class librarians, consultants, research as-
sistants, system managers, and technical directors. Table 8.2 presents a break down
of the respondents’ experience of the object-oriented paradigm, the largest propor-
tion (34.4%) having greater than 4 years experience. Further, approximately 90%
of the respondents reported to be using object-oriented technology more than twice
every working week, with only 2% using it less than once a week. Finally, a break
down of the languages respondents are familiar with is presented in Table 8.3. The
table displays the number of respondents familiar with C++, Objective-C, and so on,
and the percentage this accounts for of the total respondents. The ‘Others’ row con-
tained the languages C-Flavors, Dylan, OO COBOL, OO Pascal, Sather, and Simula.
As expected, C++ is the most familiar language overall although the percentage of
respondents familiar with it might have been higher given the publicity it receives.

Further examination of the dataset found that software engineers (67%) were more

Survey
Time (years) | Electronic | Electronic % | Postal | Postal % | Total | % of Total
<1 8 4.8 17 16.0 25 9.2
1-2 39 23.4 30 28.3 69 25.3
3-4 58 34.7 27 25.5 85 31.1
>4 62 37.1 32 30.2 94 34.4

Table 8.2: Respondents’ experience with the OO paradigm

*All percentages have been calculated using the number of responses received for each question.

The total number of responses to each question can be found from the appropriate table in Appendix

C.

SECTION 8.6: ANALYSIS AND DISCUSSION 100

familiar with C++ than were academics (50%) or project managers (37%).

Survey
Language Electronic | Electronic % | Postal | Postal % | Total | % of Total
CH++ 122 73.1 37 34.3 159 57.8
Objective-C 57 34.1 41 38.0 98 36.6
Eiffel 14 8.4 3 2.8 17 6.2
Smalltalk 57 34.1 36 33.3 93 33.8
CLOS 15 9.0 0 0.0 15 5.5
Other 14 8.4 35 32.4 49 17.8

Table 8.3: Respondents’ familiarity with different OO languages

8.6 Analysis and discussion

Analysis was performed by tabulating the responses for each questionnaire into SPSS
format which was then used to calculate frequencies and percentages (presented in

tabular form in Appendix C). Statistical tests were applied where appropriate.

8.6.1 The OO paradigm in comparison to other paradigms

(Drawn from Q. 10(a), (b), (c), and (d) in Appendiz C. Summary statistics are
presented in Tables C.10, C.11, C.12, and C.13).

Many unsupported claims about the benefits of the object-oriented paradigm over
other paradigms have been made, particularly with respect to ease of analysis and
design, programmer productivity, software reuse, and ease of maintenance. Figure
8.1 displays the distribution of responses to a closed question on these issues. The
results show a huge positive response for the object-oriented paradigm in each of these
categories. A subset of respondents qualified their response: The problem: not all
problems are best suited to an object-oriented solution, Design: if the design is poor
then an object-oriented software system is likely to be more difficult to maintain than a
poorly designed conventional equivalent, Quality of abstraction: if hidden assumptions
are made during the implementation, resulting software will be harder to reuse, and
All things being equal between the paradigms: e.g., a skilled non object-oriented pro-
grammer will be more productive in their paradigm than a non skilled object-oriented
programmer. While these views are plausible, the fact remains the large majority
of respondents view the object-oriented paradigm as offering benefits in these four

categories (remembering the sample are very probably object-oriented advocates).

SECTION 8.6: ANALYSIS AND DISCUSSION 101

The OO paradigm more beneficial in terms of ...

300 — —300

250 — —250

200 — —200
150 — —150
100 — —100
50— —50 E ves
E H I No
I:l Don’t know
0— \ \ \ \ o
A B C D

Figure 8.1: Is the object-oriented paradigm more beneficial than other paradigms in
terms of A: ease of analysis and design, B: programmer productivity, C: software reuse,
and D: ease of maintenance?

Number of responses

8.6.2 Inheritance

(Drawn from Q. 5, 7, and 11 in Appendiz C. Summary statistics are presented in
Tables C.6, C.7, and C.14).

Three questions were devoted to the topic of inheritance: First, depth of inheritance
was considered. A closed question asked at which depth does inheritance begin to cause
understanding difficulties. The data, illustrated in Figure 8.2, shows that of those re-
spondents that felt depth of inheritance causes difficulties (approximately 55%), the
largest proportion marked 4-6 levels of inheritance as the region where the problems
start. A Chi-square test performed on the respondents who reported having problems
with depth of inheritance against those who did not, provided a statistical significant
result, p < 0.05 (one-tailed, df = 3, X? = 6.79), for an association between experience
and having a problem with depth of inheritance, i.e., the more experienced the de-
veloper the less likely they are to have a problem with depth of inheritance. Yet the
frequency of experienced respondents who reported a problem with depth is still high:
43 respondents (50.6%) with 3 - 4 years experience and 43 respondents (45.7%) with
> 4 years experience. In addition, a Chi-square test was calculated to check if having
a problem with depth of inheritance was language dependent, but found no statistical
difference (two-tailed, df = 2, X% = 2.54). Regardless, the response distribution shown
in Figure 8.2 indicates that inheritance depth can cause understanding problems. Chi-
damber and Kemerer [Chidamber and Kemerer, 1994] discuss depth of inheritance as
a metric and present data on this from libraries of two different sites: at site A (C++

library) only approximately 75 from 634 classes have a depth of 4 or more (median=1,

SECTION 8.6: ANALYSIS AND DISCUSSION 102

Depth of Inheritance

140 — —140
120 —120
100 — —100
1%}
Q
L i L
=
2
2 80— —80
L
k]
T 60— —60
o
£ il L
=3
=4
40— —40
20— —20
0 0
2-3 4-6 >6 No problem

Figure 8.2: Depth at which inheritance begins to cause difficulties

max=8). At site B (Smalltalk library) approximately 550 from 1459 classes have a
depth of 4 or more (median=3, max=10). Similarly, Miller et al. present a mean depth
of 1 and a maximum of 4 for their inspected C++ code [Miller et al., 1994]. Viewing
these figures with the presented data asks the question: are programmers deliberately
avoiding the creation of deeper hierarchies or are shallower hierarchies just a more
natural model?

Second, respondents were asked to grade how often inheritance caused them under-
standing difficulty. It was generally agreed that inheritance does cause understanding
difficulties: only 19% of respondents said it never caused any difficulty. This is not
significant because the largest proportion (48.5%) said it caused difficulty only occa-
sionally. What has significance is that when asked what has caused the most difficulty
when trying to understand object-oriented software, inheritance was the second most
popular answer after missing or inadequate design documentation (see Section 8.6.3).
As discussed in Chapter 6, Section 6.3 related research has reported that inheritance

can cause:
e Distributed class descriptions through the hierarchy.
o (Class-to-class dependencies.
e Understanding and maintenance difficulties.
o Increased code complexity.

These inheritance related difficulties were specifically mentioned by many respondents.
Third, respondents were asked to grade the usefulness of multiple inheritance (al-

though a subset of the sample may not have been familiar with this concept because

SECTION 8.6: ANALYSIS AND DISCUSSION 103

not all object-oriented languages support it, e.g., Objective-C). The distribution of
responses was spread relatively evenly across the middle categories, with minorities of
11.7% and 10.5% reporting it was never and always of use respectively. The utility
(and concept) of multiple inheritance may be language dependent, but a Chi-square
test did not indicate statistical significance (two-tailed, df = 8, X% = 9.00). According
to Perry and Kaiser multiple inheritance is widely recognised as both a blessing and
a curse and the response distribution supports this position [Perry and Kaiser, 1990].
The argument of multiple inheritance versus single inheritance will continue: some
arguing that it produces a more complex design, is more difficult to test, is more dif-
ficult to reuse, and is easy to abuse; others arguing it maps the reality of the domain
being modelled producing a more appropriate design, and it facilitates software reuse
and maintenance. While multiple inheritance may be more complex than single inher-
itance the questionnaire data supports the theory that multiple inheritance is a useful
concept. A source of concern, however, is that multiple inheritance is used when it is
inappropriate. As a consequence, object-oriented software can become more complex
than is necessary. One method of preventing unnecessary complexity may be through

use of patterns (see, e.g., [Gamma et al., 1995]).

Typical method size

(Drawn from Q. 4(a) and (b) in Appendiz C. Summary statistics are presented in
Tables C.4 and C.5).
Wilde et al. report that maintainers of object-oriented code often must trace through
chains of dependencies created by inheritance, a problem compounded by the pro-
liferation of small methods [Wilde et al., 1993]. Small methods, however, have been
advocated by much of the work on good object-oriented programming style, e.g., [Hen-
ricson and Nyquist, 1992], [Johnson and Foote, 1988]. The data summary in Table
8.4 displays the frequencies to respondents’ typical method size (in executable lines of
code) and the upper and lower limits of methods that programmers have written. The
response distribution is something of a bell curve: a typical method appears to fall
within 12 £+ 7 lines of code. While a typical method is less than 20 lines of code long
for nearly 90% of the respondents, 44% of respondents reported their largest methods
exceeded 50 lines of code.

Table 8.5 presents the frequencies of typical method size for the most popular
languages (any respondent who circled familiarity with more than one language could

not be included in any of these columns owing to inability to distinguish which language

SECTION 8.6: ANALYSIS AND DISCUSSION

104

was being described).

Typical method size | Frequency % | Method range | Frequency %
1 - 4 lines 20 8.0 | 1- 50 lines 116 | 55.8
5 - 10 lines 101 | 40.2 | 1 - 100 lines 49 | 23.6
11 - 20 lines 104 | 41.4 | 1 - 150 lines 8 3.8
> 20 lines 26 | 10.4 | 1 - 200 lines 22 | 10.6

1 - 250+ lines 13 6.3

Table 8.4: Frequency of typical method sizes and method ranges

Wilde et al. present an analysis of three software systems,

reporting that 50% or more methods are fewer than 4 Smalltalk lines or 2 C++ lines

independent of the application domain [Wilde et al., 1993]. The data presented above

does not seem to support this finding, but is more supportive of the data presented in

Miller et al. who report a mean method size of C++ code for experienced programmers

as 9 lines of code (range 1 - 35) [Miller et al., 1994].

Object-Oriented Language

C++ % | Objective-C % | Smalltalk %
1 - 4 lines 4 6.8 1 7.1 5 12.2
5 - 10 lines 19 32.2 5 35.7 20 48.8
11 - 20 lines 25 42.4 7 50.0 15 36.6
> 20 lines 11 18.6 1 7.1 1 2.4
Total 59 14 41

Table 8.5: Language breakdown of typical method sizes

8.6.3 Difficulties in understanding an OO program

(Drawn from Q. 6 in Appendiz C).

An open-ended question asked what causes the most difficulty when trying to under-

stand an object-oriented program. The most frequently appearing answers were:

1.

missing or inadequate design documentation (39, 16.8%),

. inheritance (36, 15.5%),

12.9%),

(20, 8.6%),

the friend function) (17, 7.3%),

. poor or inappropriate design (including inappropriate use of OO concepts) (30,

. tracing a line of method invocations to find the method which performs the work

. the C++ programming language (including syntax, languages obscurities, and

SECTION 8.6: ANALYSIS AND DISCUSSION 105

6. method naming confusions (including obscure and inconsistent naming) (11,

4.7%),

7. experience with the procedural paradigm before learning the object-oriented

paradigm (9, 3.9%),
8. relationships between classes and how objects communicate (9, 3.9%),
9. polymorphism (8, 3.4%), and
10. understanding ‘clever’ coding styles (8, 3.4%).

Other less popular responses were dynamic binding, hybrid code (mixture of both
object-oriented and conventional code), knowing what code to reuse from a class li-
brary, and the splitting up of a system into many small files. There were, however, 5
subjects that stated that nothing specific had caused them understanding difficulties.

The survey data supports the premise that missing design documentation is a
major source of heartache to developers attempting to understand what a software

system is doing, and how it is doing it. As Davis states,

Design without documentation is not design. I have often heard software
engineers say “I have finished the design. All that’s left is its documenta-
tion.” Can you imagine a building architect saying “I have completed the
design of your new home. All that’s left is to draw a picture of it”? [Davis,
1994].

Moreover, the data supports the premise that object-oriented systems are equally
susceptible to missing design documentation and the difficulties it causes.

Inheritance is reported as the second most popular reason for causing understand-
ing difficulties in object-oriented systems. Possible reasons were discussed in Section
8.6.2.

Finally, the data suggests that poor or inappropriate design is a major source of
understanding difficulty. (In the context of object-oriented systems, poor design in-
cludes inappropriate use of object-oriented concepts, inappropriate abstractions, and
unnecessary complexity). Further, design must be considered with reference to inher-
itance. A poorly designed hierarchy will compound the problems discussed in Section
8.6.2. This is not a surprising result, but it does strengthen the argument that the
object-oriented paradigm is not a panacea: object-oriented systems must still be ap-

propriately designed. Failure to do so severely affects their understandability.

SECTION 8.6: ANALYSIS AND DISCUSSION 106

Missing or inadequate design documentation and poor or inappropriate design (two
of the first three in the above list) are not paradigm specific and are concerned with
the deficiencies of current software engineering practice. Perhaps an improvement of
current practice would offer more advantages rather than making the transition to the

object-oriented paradigm.

8.6.4 Maintenance of conventional and object-oriented programs

(Drawn from Q. 12, 13, and 14 in Appendiz C. Summary statistics are presented in
Tables C.15, C.16, and C.17).

Three closed questions were asked about software maintenance. First, respondents
were asked if continual maintenance of conventionally (i.e., structured) designed soft-
ware would lead to unmaintainability. The largest proportion (43.7%) of respondents
thought this would usually happen. Respondents were then asked the same question
in the context of object-oriented designed software. The largest proportion (48.5%)
of respondents thought this would occasionally happen. A Wilcoxon signed ranks
(related) test was calculated to test for ordinal level differences between the two re-
sponses. The results show significance at p < 0.01 (12 respondents circled a number
greater for the second question, 148 respondents circled a number less for the second
question, and 70 respondents circled the same number for both questions; two-tailed,
N =230,7 = —9.458). Thus it is concluded that respondents regard object-oriented
software less likely to lead to unmaintainability.

Further, to examine the attitude of practitioners regarding object-oriented soft-
ware facilitating maintenance, respondents were asked directly whether object-oriented
software was generally more maintainable than the equivalent conventionally designed
software. The largest proportion of respondents (58.4%) circled category 4, i.e., they
thought this would usually be true. This statistic, however, does not paint a complete
picture: disclaimers explained that this would be true if the software was designed
well; if not then object-oriented software will be more difficult to maintain because of

more complex and less intuitive inter-relationships.

8.6.5 Software reuse through in-house (local) class libraries

(Drawn from Q. 9 in Appendiz C. Summary statistics are presented in Table C.9).
It is argued that object-oriented software facilitates reuse. As a consequence, frequent
use of in-house class libraries might be expected. The respondents were asked to

grade their use of such libraries. Responses received were divided between infrequent

SECTION 8.6: ANALYSIS AND DISCUSSION 107

users of in-house class libraries (those that said they never or only occasionally used
them 43.3%) and frequent users (those that stated they usually or always used them
42.2%). A Chi-square test found no significance difference (two-tailed, df = 2, X?* =
3.1) between the language known and frequency of use of in-house class libraries. In
this survey, therefore, it is concluded that use of in-house class libraries is language
independent. Interpretation of the almost equal split is difficult without comparative
figures for in-house software libraries for the structured paradigm. Examining the
complete dataset, however, shows 75.4% of respondents make use of in-house class
libraries at least occasionally: although almost one quarter of respondents never make
use of in-house class libraries, it does appear that local software reuse is becoming
more widespread.

A small subset of respondents, however, warned that time can be wasted trying
to find existing code to reuse, or understanding what code there is in an attempt to
reuse it — Wilde and Huitt have stated that for the reuse benefits of object-oriented
software to be achieved it must be possible to locate the required code efficiently
[Wilde and Huitt, 1992]. An area of growing interest is Christopher Alexander’s notion
of patterns and pattern languages, developed for describing architectural constructs
and now borrowed by OOA and OOD, which it is argued may reduce these problems.

Alexander states,

each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without

ever doing it the same way twice [Gamma et al., 1995).

Patterns are discovered by experience, and are described in a manner that emphasizes
potential reuse: the pattern can be used as a higher level building block for OOA and
OO0D. More information on Alexander’s pattern concept is provided in the excellent

book by [Gamma et al., 1995].

8.6.6 C++ as the de facto standard object-oriented language

(Drawn from Q. 15, 16, and 17 in Appendiz C. Summary statistics are presented in
Tables C.18, C.19, and C.20).
Three questions were asked about the C++ language. Respondents were told only

to answer these questions if they had relevant experience. First, a closed question

SECTION 8.6: ANALYSIS AND DISCUSSION 108

measured attitudes towards C++ becoming the industry de facto standard object-
oriented programming language. The largest proportion, 143 respondents (60.9%),
regarded it as ‘bad’, 42 respondents (17.9%) regarded it as ‘good’ (the remainder were
indifferent (14.9%) or unsure (6.4%)). A subset of respondents explained the reasons

for their answers:

Bad: all the problems of C exist in C++; very obscure syntax; many of its features
have been ‘hacked’ together, e.g., multiple inheritance; it allows the writing of
straight C, i.e., not forced to write OO code; easy to override data security and
break encapsulation, e.g., friends; almost encourages the programmer to take

short cuts; has blackened the reputation of the object-oriented paradigm.

Good: efficient in comparison to purer QOO languages; can make use of existing C
libraries; many developers know C so the transition to C++ is easier and less
costly; C++ has given many exposure to the object-oriented paradigm and as a

consequence object-oriented programming has become mainstream.

A second question measured attitudes towards C++ allowing a mixture of object-
oriented and conventional programming. The majority, 108 respondents (45.8%) re-
garded this a disadvantage, 86 respondents (36.4%) regarded it an advantage, and 25
respondents (10.6%) decided it was both. Again, a subset of respondents explained

their reasons:

Disadvantage: leads to a mess of mixed metaphors which is harder to read and
understand; for full encapsulation and ease of maintenance, software should be
consistently designed in one paradigm, not two; allows for the sloppy approach
because it enables reverting to conventional programming if the programmer runs
into difficulties (especially novice OO programmers); complexity is increased;
enables a gradual migration to OO which impedes the thought process; can

claim that OO code is being written when it is not.

Advantage: OO is more appropriate at the design level — at the implementation
level it helps to be able to perform conventional decomposition of methods;
it allows freedom to choose the most appropriate technique; not all problems
facilitate an QO solution, but the environment can be used regardless; transition
for programmers with a conventional background can be made gradually, making

it easier and maintaining programmer productivity.

SECTION 8.6: ANALYSIS AND DISCUSSION 109

Third, in the context of performing maintenance, respondents were asked about
making use of the friend function® to prevent redesigning the inheritance hierarchy.
69 respondents (38.1%) said they would make use of a friend function in this manner
only occasionally; further 45 respondents (24.9%) said they would never make use of a
friend function to do this. Of concern, however, was the frequency of respondents who
sald they would use a friend function to prevent this more than just occasionally:
37 respondents (20.4%) said sometimes, 24 respondents (13.3%) said usually, and
remarkably, 6 respondents (3.3%) said always. Stroustrup states that friends should
only be used to avoid (a) global data, (b) global (non member) functions, and (c)
public data members [Stroustrup, 1991]. Unfortunately, the friend function is easily
abused; apparently programmers are using it to cut corners by breaking encapsulation
enabling another class to directly manipulate the private data. Subsequent testing and
maintenance becomes more difficult because class relationships become more obscure

and more complex.

8.6.7 Questionnaire media differences

As discussed earlier in Section 8.2, a concern about the use of electronic newsgroups
as a medium for questionnaire distribution is the problem of self selection — only
those who subscribe to the newsgroup can read the questionnaire and respondents are
self-selected from this ‘biased’ population for their motivation and interest to respond.
It was therefore necessary to examine the data for evidence of self-selection. If strong
relationships are detected between a survey medium and respondents’ answers then
this would constitute such evidence.

A Chi-square test was performed on each question variable to check for answer
differences between the electronic newsgroup respondents and the mailing list respon-
dents. Table 8.6 presents the results of each test where any result indicated as signifi-
cant is at the p < 0.05 level or better. The significant result achieved for respondent
position, Q. 1(a), demonstrates that in this survey different media have targeted dif-
ferent cross-sections of the population (something discussed as a distinct possibility
in Section 8.4.4). The significant differences achieved for capacity used, experience,
and language familiarity are not independent of this fact and can therefore be easily
explained: because two different groups of practitioners were questioned it is under-
standable that differences exist (i) in the capacity respondents use the paradigm, (ii)

in respondents’ object-oriented experience, and (iii) in respondents’ familiarity with

SFriends of a class are trusted with access to the private and protected members of that class.

SECTION 8.6: ANALYSIS AND DISCUSSION 110

Description Question | Degrees of | Test result | Significant? | Cramér’s
freedom (X?) @
Position Q. 1(a) 4 44.08 Yes 0.40
Capacity used Q. 1(b) 3 8.46 Yest 0.13
Object-oriented experience Q. 2(a) 3 12.28 Yest 0.21
Language familiarity Q.3 5 50.86 Yes 0.34
Typical method size Q. 4(a) 3 2.59 No 0.10
Method size range Q. 4(b) 4 7.81 No 0.19
Depth of class hierarchy Q.5 3 4.37 No 0.13
Inheritance caused difficulty Q.7 4 2.00 No 0.09
Problems caused by naming Q.8 4 4.87 No 0.14
Use of local class libraries Q.9 4 8.63 No 0.18
Ease of analysis and design Q. 10(a) 2 10.53 Yest 0.20
Programmer productivity Q. 10(b) 2 5.68 No 0.15
Software reuse Q. 10(c) 2 0.77 No 0.05
Ease of maintenance Q. 10(d) 2 1.49 No 0.07
Multiple inheritance useful Q. 11 4 5.88 No 0.15
SP maintenance problems Q. 12 4 2.42 No 0.10
OO maintenance problems Q.13 4 4.36 No 0.14
OO more maintainable than SP | Q. 14 4 6.25 No 0.16
C++ as a de facto standard Q. 15 2 2.62 No 0.10
C++ allows hybrid programming | Q. 16 3 3.01 No 0.11
C++ friend function Q. 17 4 3.31 No 0.14
Use operator overloading Q. 18(a) 4 2.01 No 0.10
Overload operators as Q. 18(b) 3 4.43 No 0.17
Use of templates Q. 19 4 2.94 No 0.13

Table 8.6: Two-tailed Chi-square test results between each variable and the media
used for the questionnaire distribution. j— see text for explanation

different object-oriented languages (although capacity used and experience are not
significant under the Bonferroni correction method discussed below).

Although statistically significant relationships have been discovered by the Chi-
square test, this significance does not indicate the strength of the relationship: a
significant result only means that the relationship in the population is unlikely to be
zero [Welkowitz et al., 1976]. Tt is, therefore, desirable to have a measure of the strength
of the relationship, i.e., have an index of the degree of correlation. For this reason
Cramérs ¢ was calculated, a linear index which converts the Chi-square X? value to
a correlation coefficient (interpreted as a Pearson r correlation coefficient) indicating
the strength of the relationship between two different variables. The index is on the
scale of 0 to 1 where the larger the value of ¢, the stronger the relationship between
the two variables. Note that the largest value, achieved for position (¢ = 0.40), only
represents a weak to moderate relationship between the medium used and the position
the respondent held. Consequently, given that (i) of the remainder of the questions
tested (Q. 4 to 19), with the exception of Q. 10(a), provided no significant difference

of opinion between the two sets of respondents and (ii) the calculated indexes for

SECTION 8.6: ANALYSIS AND DISCUSSION 111

these questions are indicators of no more than weak relationships, there is increased
confidence that the self-selection problem has not biased the results of this survey.

The exception was a statistical difference of opinion about the ease of OOA and
00D (see Figure 8.1). The complete data set was examined in an attempt to ex-
plain the difference. A second Chi-square test was performed including only those
respondents who chose either the ‘yes’ or ‘no’ category (to eliminate the ‘don’t know’
respondents as the reason for the difference). A significant result was still obtained,
p < 0.05 (two-tailed, df = 1, X% = 5.94). Further examination of the data set revealed
that the significance was caused by the number of respondents who replied ‘no’ to the
question: only 11 (7.2%) respondents in the electronic group compared to 16 (17.2%)
in the mail group. The questionnaires for these respondents were then examined for
similarities which might explain why they answered ‘no’, e.g., were they relatively in-
experienced object-oriented practitioners? Cross checking across all the other variables
in Table 8.6, however, did not reveal any common ground and meant no explanation
could be based on the data. One possible reason of statistical significance may be
because when conducting multiple comparisons, the probability of committing a Type
I error increases with the number of tests. Courtney and Gustafson state, “although
the probability of a Type I error is fixed at a = 0.05 for each individual test, the prob-
ability of falsely rejecting at least one of those tests is significantly larger than 0.05”
[Courtney and Gustafson, 1993]. Given that 24 statistical tests were applied, there-
fore, the probability that the significant result for Q. 10(a) was achieved by chance is
quite high. If the answer to any question is independent of all other answers then this
probability is calculated as P(z > 1) = 1 — (1 —0.05)** = 0.71. Although question de-
pendence exists within certain parts of the questionnaire, this figure provides a rough
estimate of just how large this probability is. The most frequently advocated method
of reducing this inflated Type I error probability is through the Bonferroni correction
method [Ottenbacher, 1991]. This simple procedure involves dividing the a level de-
sired for statistical significance (in this case & = 0.05) by the number of statistical tests
conducted. Thus, through application of this method, a significant relationship will
be achieved only if the p value is less than a = 0.0021. As a consequence, statistical
significance only remains for position and language familiarity; the other relationships
indicated as statistically significant in Table 8.6 with a { do not achieve the required
p value to be classed as significant under the Bonferroni correction method.

To conclude, although it is likely that neither medium has provided sample rep-

resentativeness for this survey, the opinions expressed in the questionnaires did not

SECTION 8.6: ANALYSIS AND DISCUSSION 112

show any significant difference across the media used under the Bonferroni correction
method. More importantly, the strength of the relationship between the opinion given
to an arbitrary question and the medium used could only, at best, be described as
moderate. Also mail based questionnaires are known to suffer from the self-selection
problem within acceptable limits and these results show little difference between the
two media. The problem of self-selection within the ENDQs component of this survey
appears to be of a similar order to the mail distributed component, and hence there is
confidence that this effect has not invalidated the results of this survey. Furthermore,
this can be regarded as initial evidence suggesting that ENDQs are not fatally flawed
due to the self-selection problem (see [Miller et al., 1996] for a full discussion of this).

8.6.8 DPositional differences

Different categories of respondents exist within the survey sample, and the data was
examined for conflicting opinions between members of academia and industry. The
academics, software engineers, and project managers were statistically tested for re-
sponse differences. Students were not included in this analysis because of their relative
inexperience; ‘others’ were not included because of respondent heterogeneity.

Two-tailed Chi-square tests were applied at the 0.05 « level, the results of which
are presented in Table 8.7. Four significant results were obtained. First, a significant
result was obtained for the capacity in which the paradigm is used: the main difference
is that academics use it more for teaching purposes than for analysis and design or
programming. In contrast, only a small proportion of industrialists use it for teaching.

The second significant result was obtained for the use of in-house class libraries:
software engineers and project managers used these libraries significantly more often
than academics. A possible explanation for this may that industrialists design for soft-
ware reuse: they are producing high quality commercial applications and get a return
on this investment. Academics, generally speaking, do not produce such applications
and therefore do not have such a need for these libraries.

The last two significant results support the belief that academics hold a more purist
view of the object-oriented paradigm. For example, not a single academics responded
that it was good that C++ has become the industry de facto standard object-oriented
language (see Section 8.6.6 for reasons). Furthermore, the large majority of academics
were of the opinion that it was disadvantageous for object-oriented languages like C++
to allow hybrid programming. Software engineers and project managers appeared

more pragmatic in their responses to these questions.

SECTION 8.7: VALIDITY OF THE SURVEY 113

Description Question | Degrees of | Test result | Significant? | Cramér’s
freedom (X?) [0)

Capacity used Q. 1(b) 4 53.73 Yes 0.29
Object-oriented experience Q. 2(a) 6 10.62 No 0.16
Language familiarity Q.3 4 8.47 No 0.13
Typical method size Q. 4(a) 4 6.02 No 0.13
Method size range Q. 4(b) 4 3.18 No 0.10
Depth of class hierarchy Q.5 4 3.67 No 0.10
Inheritance caused difficulty Q.7 6 3.46 No 0.10
Problems caused by naming Q.8 6 10.16 No 0.17
Use of local class libraries Q.9 8 18.17 Yest 0.22
Ease of analysis and design Q. 10(a) 2 0.20 No 0.01
Programmer productivity Q. 10(b) 2 1.13 No 0.06
Software reuse Q. 10(c) 2 0.99 No 0.05
Ease of maintenance Q. 10(d) 2 0.05 No 0.01
Multiple inheritance useful Q. 11 4 3.12 No 0.09
SP maintenance problems Q. 12 4 4.91 No 0.12
OO maintenance problems Q.13 4 1.82 No 0.07
OO more maintainable than SP | Q. 14 4 4.21 No 0.11
C++ as a de facto standard Q.15 2 16.33 Yes 0.25
C++ allows hybrid programming | Q. 16 2 7.13 Yest 0.16
C++ friend function Q. 17 4 2.38 No 0.09
Use operator overloading Q. 18(a) 4 2.75 No 0.10
Overload operators as Q. 18(b) 6 9.58 No 0.20
Use of templates Q. 19 n/a

Table 8.7: Two-tailed Chi-square test results between each variable and the responses
of the academics, software engineers and project managers. j— see text for explanation

The Bonferroni correction method was again applied to reduce the inflated prob-
ability of Type I error of test. A significant relationship will be achieved only if the
p is less than a = 0.0022. As a consequence, statistical significance only remains for
capacity used and for C++ as a de facto standard object-oriented language; the other
two relationships indicated as statistically significant in Table 8.7 with a § do not
achieve the required p value to be classed as significant under the Bonferroni method.

Finally, the use of the Chi-square test was inappropriate for the last variable (the
use of templates) because too many of the expected frequency calculations were less
than five responses [Kaplan, 1987]. Examination of the dataset found no noticeable
difference between academics and industrialists (the majority were less than frequent

use of templates).

8.7 Validity of the survey

Questionnaire design is not an exact discipline and, as specified in Section 8.2, one of its

major disadvantages is the inability to correct misunderstandings or probe responses

SECTION 8.8: CONCLUSIONS 114

once the completed questionnaire has been returned. In an attempt to verify the valid-
ity of the questionnaire design, therefore, respondents’ views about the questionnaire
are now discussed.

A small number of respondents (3) mentioned that several questions should have
had an ‘it depends’ category. An ‘it depends’ category is meaningless, however, unless
respondents are willing to specify what it depends on. At the time of designing the
questionnaire it was thought that this was catered for by encouraging relevant written
material after each question. Such information was supplied by many respondents.
In addition, two respondents commented that an invalid assumption was made about
the friend function: it has legitimate uses as well as the illegitimate one discussed.
The respondents were quite correct, but the legitimate uses of the friend function
presented in Section 8.6.6, were not of interest in this survey. Finally, three respondents
felt that the ordinal data range of Never to Always was too harsh and, consequently,
respondents would be unlikely to choose the end categories. The number of responses
received in these categories has shown this criticism to be inaccurate (see Appendix
C).

Given the small number of criticisms levelled at the survey questions and their
counter-arguments, there is justification for arguing that they had little or no impact

on the validity of the survey results.

8.8 Conclusions

This chapter has considered using questionnaires as a technique for gathering em-
pirical data and has reported the findings of an object-oriented questionnaire survey
(distributed to electronic newsgroups and to a members of a mailing list) concentrat-
ing on the following issues: the perceived benefits of the object-oriented paradigm over
conventional paradigms, inheritance, the understanding difficulties of object-oriented
code, software maintenance and its consequences, use of local class libraries, and the
C++ programming language. While there is difficulty in generalising from a sample
of the population to the actual population itself, the responses of 275 object-oriented

practitioners on these issues should be considered important. Results have shown that

e Respondents are of the view that the object-oriented paradigm is more advan-
tageous than conventional paradigms in terms of ease of analysis and design,

software reuse, programmer productivity, and ease of maintenance.

SECTION 8.8: CONCLUSIONS 115

e Inheritance can cause difficulties when trying to understand object-oriented soft-
ware: only 25% of respondents reported it had never caused them difficulty. More
significant was that inheritance was catalogued as the second largest reason for
understanding difficulties. It is hypothesized that understanding becomes more
constrained with a deeper hierarchy (55% of respondents indicated depth of in-

heritance is a concept which can introduce difficulties).

e From the list of catalogued reasons for understanding difficulties, two of the first
three are not paradigm specific: missing or inadequate design documentation
and poor or inappropriate design and are still prevalent problems. The advan-
tages that an improvement of current software engineering practice would bring,

regardless of paradigm, should be considered.

e Maintenance is still perceived to cause software degradation, but respondents
viewed (with statistical significance) this occurring less frequently provided the
system and the change are well designed. Further, well designed object-oriented
software is regarded to be more maintainable than equivalent conventional soft-

ware.

e Respondents indicated that the C++ language has many deficiencies in compari-
son to ‘purer’ object-oriented languages. Consequently, the majority viewed the

fact that C++ has become the industry de facto standard as detrimental.

Analysis conducted to find object-oriented language dependent answers, however, was
unable to show any significant differences, one aspect of the survey findings that was
contrary to expectation. Analysis was also conducted to uncover response differences
between (a) respondents to the electronic questionnaire and to the mailing list ques-
tionnaire and (b) academics and industrialists. Applied statistical tests found little
difference between the electronic and postal respondents: those it did find, with one
exception, were neither unexpected nor inexplicable. This strengthens the findings of
the survey and is also evidence that the self-selection problem of ENDQs appears to
have had a minimal effect on the results of this survey. One interesting difference of
opinion that arose between the academics and the industrialists was their perception of
C++: academics consistently took a more purist view to object-oriented programming
where industrialists appeared more pragmatic in their opinions. Finally, the validity
of the survey was considered: a small minority made several criticisms which have

been discussed and rejected as having any impact of the survey findings.

SECTION 8.8: CONCLUSIONS 116

The questionnaire survey was phase Il in the programme of research. The data col-
lected is consistent with data collected from the interview study; it has been confirmed
across a larger sample of the object-oriented practitioner population. It is concluded
that the survey has been successful for gathering a large amount of quantitative data

on practitioners opinions and identifying areas for further empirical investigation.

Chapter 9

Phase III: A Series Of

Laboratory Experiments

9.1 Introduction

This chapter describes the third and final phase of the multi-method programme of
research, subject-based laboratory experiments investigating one of the important find-
ings demonstrated across phases I and II. A series of subject-based laboratory exper-
iments were designed to test the effect of depth of inheritance on the maintainability
of object-oriented software. In the first experiment, subjects were timed perform-
ing identical maintenance tasks on object-oriented software with a hierarchy of three
levels of inheritance depth and equivalent object-based software with no inheritance.
Then an internal replication was carried out using more experienced subjects. These
subjects also participated in a second experiment of similar design, but involving a
greater level of inheritance depth: subjects performed identical maintenance tasks
on object-oriented software with a hierarchy of five levels of inheritance depth and
the equivalent object-based software. During both experiments and the replication,
debriefing questionnaires were used and subjects’ code was examined to assess the
modification processes.

The remainder of this chapter details the design of the experiments and describes
the procedures, tasks, and materials. Statistical tests are applied to the timing data
collected and a detailed inductive analysis is conducted to explore alternative expla-

nations. Conclusions are then drawn.

SECTION 9.3: EXPERIMENTAL JUSTIFICATION 118

9.2 Experimental justification

In phase I there was consensus amongst object-oriented developers interviewed that
depth of inheritance affects a programmers’ ability to understand object-oriented soft-
ware. In phase II, the majority of object-oriented practitioners questioned (55%)
agreed that depth of inheritance is a factor when attempting to understand object-
oriented software. Of these practitioners, the largest proportion indicated that between
4 and 6 levels of inheritance depth is where difficulties begin. Since it is well docu-
mented that program understanding is a major factor in providing effective software
maintenance and that software maintenance accounts for a large part of the total soft-
ware development budget, this is a finding that could be of major importance. To
investigate the phenomenon in a controlled manner, a series of subject-based labora-
tory experiments, including a replication, were conducted in an attempt to evaluate
the effect of depth of inheritance on the maintainability of object-oriented software.
Students and recent graduates were used as subjects. The use of student subjects
has been justified by Brooks [Brooks, 1980] and adopted by researchers in previous em-
pirical studies, e.g., [Lewis et al., 1992], [Porter et al., 1995]. Drawing generalisations
from their performance, however, is something that should be carefully considered. For
example, Curtis has voiced concern about the use of novice programmers as subjects
[Curtis, 1986]. On the other hand, the series of experiments were conducted within
a multi-method programme of research and it was hoped their results would confirm
the findings of phases I and II. If confirmatory power were achieved, any conclusions
drawn would be more reliable and generalisable. Subsequent studies should still seek
to scale up the findings to the maintenance of more complex software by professional

programmers.

9.3 Design of first experiment

The experiments sought to determine if depth of inheritance has an effect on the
maintainability of object-oriented software. Throughout this chapter the following

definitions apply:

Depth of inheritance: the level of a class in the hierarchy where the base class is
level 1. Consequently, any class is at level n if it has n — 1 superclasses. The

level of the deepest leaf class is quoted as the depth of the hierarchy.

SECTION 9.3: DESIGN OF FIRST EXPERIMENT 119

Maintenance: modification of a software product after delivery to correct faults, to
improve performance or other attributes, or adapt the product to a changed

environment [Schneidewind, 1987].

Maintainability: the ease with which a software system can be corrected when er-
rors or deficiencies occur, and can be expanded or contracted to satisfy new

requirements [Schneidewind, 1987].

Standard significance testing was adopted and for the first experiment the stated

null hypothesis was:

Hg The use of a hierarchy of 3 levels of inheritance depth does not affect

the maintainability of object-oriented programs,
to be rejected in favour of the alternative hypothesis

Hy The use of a hierarchy of 3 levels of inheritance depth does affect the

maintainability of object-oriented programs.

Note that no direction has been specified in the alternative hypothesis: it was not pre-
dicted whether the effect on maintainability would be positive or negative because: (i)
of the varying opinions expressed in the maintenance literature about object-oriented
software and (ii) although the depth being empirically investigated borders the range
indicated most frequently by practitioners in phase II where difficulties begin to occur,
it is not completely within that range (see Figure 8.2). A depth of three was chosen
to provide an intermediate reference point between the flat code and the second ex-
periment which provides a depth within the range most frequently indicated.

To test the hypothesis, subjects were matched on ability and were then randomly
allocated into one of two groups. Group A performed a maintenance task on a pro-
gram with an inheritance hierarchy while group B performed the same task on an
equivalent version of the program without an inheritance hierarchy (referred to from
now on as the ‘flat” version). To counter-balance this, the reverse was then carried
out: group B performed a similar maintenance task on a second, similar program with
an inheritance hierarchy while group A maintained the equivalent flat version (Section
9.3.2 explains this design in full). Counter-balancing the groups in this manner should
have eliminated any task direction bias and subsequently any ability effect, but there
is always the possibility that counter-balancing can introduce a learning effect. The

data is examined for this effect (see Section 9.5.2).

SECTION 9.3: DESIGN OF FIRST EXPERIMENT 120

This traditional experimental design provided a single independent and a single
dependent variable. The program version (inheritance or flat) being maintained was
the independent variable and the dependent variable was the time taken to complete
the maintenance task; the most frequent measure of programmers’ efforts on software
maintenance is the time taken [Foster, 1991]. Data gathering (discussed in Section
9.3.5) was not limited to this dependent variable to allow an inductive analysis to be
performed (discussed in Section 9.5).

The design, coupled with anticipated student numbers, effectively meant that the
experiment had a power level sufficient to detect any medium to large effect sizes, i.e.,
the experiment would have a good chance of detecting any sizable effect that exists.

The power calculations for the series of experiments are presented in Appendix D.

9.3.1 Procedure

The first experiment was performed through a taught postgraduate conversion course
in information technology. All of the students (see Section 9.3.2) enrolled in an object-
oriented programming class using C++ which was intensively taught over a four week
period with approximately nine hours of practical time every week for the first three
weeks and five hours in the last week. Students were taught the concepts of object
encapsulation, inheritance, message passing, and polymorphism, a working knowledge
of which was required to complete the maintenance tasks. Practical exercises were
based on these concepts, with students designing and implementing their own classes
and inheritance relations and integrating these with existing code.

Students consented to their practical work being used for research purposes and the
practical tests/experiments, constituting 60% of the final class mark, were conducted
on separate days during the final week of the class. For each practical test, every
student was given a sheet detailing the experimental instructions, a packet containing
the maintenance task, and a second packet containing a listing of the source code.
The experimental instructions were also explained verbally at the beginning. (The
only other information given was that different versions of the program existed, stated
to reduce students concern about their relative performance during an individual test).

The procedure followed for each of the two practical tests was:

1. Subjects were allowed five minutes to read the instructions and ask questions.
When this time had passed and all subjects indicated they were happy with the

instructions, they were instructed to open packet 1.

SECTION 9.3: DESIGN OF FIRST EXPERIMENT 121

2. Packet 1 contained the maintenance task the subjects were to attempt. Subjects
were given a further ten minutes to read the task and ask questions. Again,
when this time had passed and all subjects had indicated they were happy with

the maintenance task, they were instructed to open packet 2.

3. Packet 2 contained the experimental code listing. Once packet 2 was opened,
data recording began and each subject had up to 1 hour 45 minutes to complete
the maintenance task and compile and execute the code until the program output
matched the required output provided. When subjects were of the opinion that
they had completed the task a monitor checked their work. If the output was
correct, data recording was terminated; if not, the subject was asked to continue

with the modification.

After completing the maintenance task, subjects were asked to complete a debrief-
ing questionnaire before leaving. The questionnaire elicited personal details, program-
ming experience, and impressions of the maintenance task just attempted, e.g., the
overall task difficulty, what approach to the modification was taken, and what aspect

caused the most difficulty. A copy of the questionnaire is provided in Appendix D.

9.3.2 Subjects

Thirty one students enrolled in the object-oriented programming course, all of whom
had completed a ten week class in imperative programming using Turbo Pascal. Each
subject sat two multiple choice tests (counting for the other 40% of the class mark)
which assessed their object-oriented programming knowledge gained from the class.
The subjects were distributed into two groups (16 subjects in group A and 15 subjects
in group B) by matching pairs of subjects on the results of these two multiple choice
tests and then randomly assigning one to each group: this pre-screening matching was
performed to reduce subject variability across the groups.

The two groups were counter-balanced across the program versions with or without
inheritance as illustrated in Table 9.1. Allocation in this manner ensured that all sub-

jects performed a maintenance task to both a flat program version and an inheritance

Group | Experiment la Experiment 1b
A Program 1 inheritance | Equivalent flat version
version of program 2
B Equivalent flat version | Program 2 inheritance
of program 1 version

Table 9.1: Group allocations to tasks in the first experiment

SECTION 9.3: DESIGN OF FIRST EXPERIMENT 122

Univ_Community

D = D @ firstName
print @ |astName
@ department

-] / (-] "\ suen

D% ﬁmu%

staffld regNumber

gm (] Lecturer A D \Secretary
-1 — =

hourlyWage
D D Profr
print
=0 —
@ rescarchGrant
setResearchGrant

Figure 9.1: Inheritance hierarchy of database system for university staff and students.

program version. Subjects who did not complete the task could not be included in the
statistical analysis because the nature of the study prevented subjects from continu-
ing after the allocated time period. The efforts made by these subjects, however, have

been taken into account.

9.3.3 Maintenance tasks

There were two programs to be modified; each was designed in an object-oriented
fashion and then implemented in C++. Both programs were simple database systems
which allowed records to be created, displayed, modified, and deleted. The first system
stored information on two types of university staff and students via the classes Lec-
turer, Secretary, and Student. Figure 9.1 displays the inheritance hierarchy for this
database system. The classes Staff and Student inherit from the Univ_Community
class, Lecturer and Secretary inherit from Staff, and Professor (to be added) inherits
from Lecturer. The classes Univ_Community and Staff are abstract classes: there are
no instances of these classes, they merely have the abstract features common to the
specialisation classes. Instances of Lecturer, Secretary and Professor can receive the

message staffld, and the member function in the super-class Staff will be executed.

SECTION 9.3: DESIGN OF FIRST EXPERIMENT 123

Member functions in any of the subclasses can manipulate the instance variables first-
Name, lastName, and department by means of the appropriate member functions in
the superclass. Finally, each class overloads the member function print to implement
its own version. The second system stored information on three types of written work
via classes Book, Conference, and Thesis. The inheritance hierarchy for this system
was similar to that of the university database, as were the number of fields per class.

Two versions of each system were used, a flat and an inheritance program version.
The equivalent flat program versions were created by removing all the inheritance
links between the classes in the hierarchy and adding the data members and individual
member functions to each class which had previously inherited them. Any abstract
classes were then deleted, leaving a ‘flattened’ but equivalent version of the inheritance
hierarchy. The flat program versions were each about 440 lines of code and consisted
of four classes (each distributed in a header and implementation file). The inheritance
program versions consisted of six classes and were each about 390 lines of code. The
inheritance depth for each system was three.

To test the hypothesis about the maintainability of object-oriented software, main-
tenance tasks were devised which introduced new requirements (in this case, increasing
the amount of information the database could store). The subjects’ task was to add a
single class to their system. A Professor class had to be added to the university system,
and a Phd_Thesis class to the library system. The Professor class was to consist of
seven fields, some of which are shown in Figure 9.1, and was intended to be specialised
from class Lecturer. The Phd_Thesis class was also to consist of seven different fields
and was intended to be specialised from class Thesis. These two tasks were designed
to be similar. In line with common programming practices each class was expected to
have: (i) its member variables declared as private, (ii) a constructor, (iii) a destructor,
and (iv) public member functions (although the required output could be obtained
without all of these practices being adhered to). Subjects had then to create an in-
stance of their new class with initial and default values, modify some of these values,
and then display the object. Regardless of the program version (inheritance or flat)

the modification task was the same.

9.3.4 Materials

Each subject was given the following experimental materials:

e a workstation (such that subjects in the same group were not sitting next to

each other),

SECTION 9.3: DESIGN OF FIRST EXPERIMENT 124

o full experimental and maintenance task instructions,
e complete, documented source code listing of the program, and

o test-data to determine successful task completion.

The environment used was Sun-Sparc workstations, Sun C++ compiler, and the GNU
Emacs editor. The experiment was run under laboratory conditions: there was no
form of communication between the subjects. They were, however, allowed access to

their class textbook [Skinner, 1992].

9.3.5 Data collection

The data was automatically collected by a highly controlled environment designed
specifically for this study. Each subject was required to start a shell script which pro-
vided a workstation prompt with their login name and the time. This script was kept
running throughout the experiment and it recorded the process the subject adopted
towards the modification; this allowed the reader of the typescript to decipher, for
example, how long was spent on a particular problem.

Another shell script was introduced which, while compiling the subject’s files to
generate the executable, automatically copied each file with a time stamp to a backup
directory. This meant the number of compilations could be calculated and also allowed
examination of each subject’s solution as it was written and compiled from one stage
to the next.

In summary, the data collected from conducting each experiment for any given
subject was: (i) the time to complete the task, (ii) automatic file backups, (iii) a
script of the subject’s experimental procedure, (iv) the final version of the subject’s

solution, and (v) answers to the debriefing questionnaire.

9.3.6 A pilot study

The importance of performing a pilot study of an experiment cannot be over empha-
sized. Pilot studies are conducted: (i) to find introduced assumptions in the experi-
mental materials, (ii) to find mistakes in the experimental procedure, (iii) to test that
the experimental instructions are clear, (iv) to check tasks have reasonable complexity,
but that they can be completed within the allotted time, (v) to ensure performance
of any automatic data collection techniques, and (vi) to attempt to identify other un-
foreseen circumstances. Performing a pilot study can mean the difference between a

success and a failure.

SECTION 9.4: EXPERIMENTAL RESULTS 125

Subject | Imheritance | Flat Subject | Imheritance | Flat
Identifier Time Time | Identifier Time Time

1 18 44 2 39 37
3 39 31 4 - 99
5 27 - 6 45 100
7 36 64 8 - 98
9 44 - 10 48 49
11 - - 12 38 38
13 47 67 14 25 38
15 32 26 16 36 60
17 36 - 18 - 85
19 58 78 20 57 56
21 28 35 22 36 38
23 49 29 24 52 -
25 18 41 26 92 -
27 31 46 28 41 64
29 29 - 30 102 47
31 79 -

Table 9.2: Subjects’ completion times for the first experiment (minutes)

A pilot study was performed using four experienced subjects: one for each program
version. No significant issues were encountered during the pilot study, but subjects did
require clarification on several points in the instructions, e.g., two subjects mentioned
that the description of the required program output was not specific enough. The

instructions were subsequently amended to make them clearer.

9.4 Experimental results

9.4.1 Collected time data for first experiment

Table 9.2 presents the timing data in minutes for each subject to complete the main-
tenance task with the inheritance program version and the flat program version for
the first experiment (hyphens indicate a subject did not complete the task within
the allotted time). This data is presented in summarised form in Table 9.3. Column
two gives the mean time (Xyime), column three gives the standard deviation (Siime),
columns four and five give the minimum and maximum times, column six gives the
number of observed times (N), and column seven gives the number of incomplete times
(Inc.). Rows one and two present the summary for the first run using the university
database system. Rows three and four present the summary for the second run using
the library database system. Note that the average times for the inheritance and flat
program versions are very similar for the two software systems which indicates that

there were no task effects. (The difference in average times for flat versus inheritance

SECTION 9.4: EXPERIMENTAL RESULTS 126

Xtime | Stime | Min. | Max. | N | Inc.
Program 1 Flat 53.1 23.1 26 98 | 10 5
Program 1 Inheritance 44.1 20.6 18 92 | 14 2
Program 2 Flat 56.8 23.9 31 100 | 13 3
Program 2 Inheritance 43.5 20.4 25 102 | 13 2
Grouped Flat 55.2 23.1 26 100 | 23 8
Grouped Inheritance 43.8 20.1 18 102 | 27 4

Table 9.3: Statistical summary of the first experiment times

for each software system are in the same direction, although they are not statistically
significant). In addition, rows five and six present the grouped mean flat and inheri-
tance times for the two runs. Examination of these times shows a mean difference of
11.4 minutes between the total inheritance and flat times.

Statistical tests were then applied. Formal skewness and kurtosis tests were per-
formed and found several of the data distributions to be non-normal at the 95% con-
fidence interval (confidence intervals are provided in [Brooks et al., 1994]). Conse-
quently, to be conservative, non-parametric statistical tests were applied (although for
each non-parametric test a similar result was obtained by an alternative parametric
tests). A Wilcoxon signed ranks (related) test which takes account of the difference
(positive or negative) between paired values, i.e., the performance difference between
a subject’s time to complete the inheritance program version and the flat program
version, was calculated. The test statistic is based on the ranks of the absolute values
of the difference between the two variables, giving more weight to pairs that show
large differences than to pairs that show small differences. The statistical test, based
upon the 20 subjects who completed both the flat and inheritance program versions,
produced a significant result with p = 0.05 (two-tailed, N = 20,z = —1.95): 13 sub-
jects performed better on the inheritance than the flat, six did the opposite, and one
achieved the same time for both versions. Of the remaining 11 subjects who failed to
complete both program versions, three subjects completed a flat but not an inheri-
tance program version, seven subjects completed an inheritance but not a flat program
version, and one subject failed to complete either program version. Together this in-
formation provides a performance ratio of 20:9, i.e., approximately two out of three

subjects performed better when maintaining object-oriented software with inheritance.

9.4.2 Design of the replication and second experiment

An internal replication was conducted to confirm the direction of the findings of the

first experiment, and a second experiment testing the effect of a hierarchy of five levels

SECTION 9.4: EXPERIMENTAL RESULTS 127

Group | Internal Replication Second Experiment
A Inheritance version Equivalent flat version
of 5 level hierarchy
B Equivalent flat version | Inheritance version
with 5 levels

Table 9.4: Group allocations to tasks for the replication and second experiment

of inheritance depth was also conducted. It was decided to perform these with more
experienced programmers; they were planned and executed relatively soon after the
first experiment and before its results were known. Thirty one subjects,! a mixture
of BSc. Computer Science students going into final (fourth) year and new graduates,
volunteered to participate. (See Appendix D for a statistical power analysis). All
subjects were well versed in C programming. The subjects participated in a taught
intensive C++ course over a week, during which the internal replication using the
library database system was performed. One half of the subjects maintained the flat
version; the other half the inheritance version. No internal replication was performed
using the university database system because the subjects were to participate in the
second experiment which involved using a deeper inheritance hierarchy (see Section
9.4.3).

Subjects were allocated to two groups in the same manner as that detailed in Sec-
tion 9.3.2, but were blocked across their average Computer Science exam marks. The
groups were counter-balanced across program versions with or without inheritance as
illustrated in Table 9.4. Allocation in this manner again ensured that all subjects per-
formed a maintenance task to both a flat program version and an inheritance program
version, i.e., those that performed with the flat program version in the replication were
given the inheritance program version in the second experiment and vice versa. The
procedures, materials, and environment were the same for the replication and second

experiment as they were for the first experiment (see Section 9.3).
9.4.3 Collected time data for the replication and second experiment

An internal replication

For the internal replication the specified null hypothesis was the same as for the first

experiment:

!'Two subjects missed the replication because of prior commitments. All subjects participated in
the second experiment.

SECTION 9.4: EXPERIMENTAL RESULTS 128

Subject | Imheritance | Subject Flat
Identifier Time Identifier | Time
3 32 1 41
4 29 2 27
5 - 6 97
7 19 10 51
8 51 14 63
9 35 15 63
11 77 16 59
12 44 18 31
13 28 20 22
17 14 22 35
19 22 23 44
21 52 25 38
24 26 27 25
26 29 29 49
28 -

Table 9.5: Subjects’ completion times for the internal replication (minutes)

Hy The use of a hierarchy of 3 levels of inheritance depth does not affect

the maintainability of object-oriented programs,
to be rejected in favour of the alternative hypothesis

Hy The results of the internal replication will be in the same direction as

the first experiment.

The direction specified in the alternative hypothesis indicates the results of the repli-
cation were expected to be similar to the results of the first experiment.

Table 9.5 presents the timing data in minutes for each subject to complete the
maintenance task. This data is summarised in Table 9.6 in the same format used
in Table 9.3. The results were in the same direction as the first experiment with a
difference in time (10.9 minutes) between the two groups, similar to that of the first
experiment. Note that the average times for the replication groups are faster than
the first experiment by 9.1 minutes for the flat program version and 8.6 minutes for
the inheritance program version. This improvement in performance is interpreted as
being due to the replication subjects’ greater programming experience.

A Wilcoxon rank sum (unrelated) test was calculated for these times because,

unlike the first experiment, there was no paired value available for comparison. The

Xtime | Stime | Min. | Max. | N | Inc.
Replication Flat 46.1 20.0 22 97 | 14 0
Replication Inheritance 35.2 17.0 14 77| 13 2

Table 9.6: Statistical summary of the replication times

SECTION 9.4: EXPERIMENTAL RESULTS 129

statistical result was not significant, p = 0.07, (one-tailed, W = 151.0, z = —1.51), but
is arguably close enough to the 0.05 level to add some confirmatory power to the first

experiment (see Section 9.5.2 for further discussion of this).

Using a deeper inheritance hierarchy

The same subjects participated in the second experiment which tested the effect of a
deeper inheritance hierarchy on the maintainability of object-oriented software. The
procedure used during the first experiment was kept exactly the same.

The system used for this experiment was a larger and more complex version of
the university database system from the first experiment (see Figure 9.1). The inher-
itance hierarchy was extended to include more members of the university community:
undergraduate student, postgraduate student, technician, senior technician, and su-
pervisor classes were incorporated into the software. In addition, member functions
were introduced so that wages and salaries could be calculated for the university em-
ployees. Figure 9.2 displays the inheritance hierarchy for this system. Again, two
versions of the system were constructed: a flat program version and an inheritance
program version. The inheritance depth for this system was 5. The inheritance pro-
gram version was around 880 lines of code, distributed in 12 classes (again, each class
was distributed in a header and implementation file) and a main file. The flat program
version, constructed in the same manner detailed in Section 9.3.3, had 3 fewer classes
(the abstract classes which were deleted), but was around 200 lines longer.

The maintenance task for this more complex system was again devised to meet new
requirements. The task involved adding a new class, Director, which was intended to
be specialised from class Supervisor (as detailed in Figure 9.2). Once more the task
required member functions to create, modify, display, and delete instances of the class.
In addition, a member function had to be written to calculate the taxable salary for
Director. Fach subject then had to create an instance of their new class and send it
messages to invoke actions to meet the required program output.

Standard significance testing was used with a null hypothesis of:

Hy The use of a hierarchy of 5 levels of inheritance depth does not affect

the maintainability of object-oriented programs,
to be rejected in favour of the alternative hypothesis

Hy The use of a hierarchy of 5 levels of inheritance depth does affect the

SECTION 9.4: EXPERIMENTAL RESULTS 130

Univ_Community

@ firstName
@ |astName
@ department

gl I

ﬁm D T staff / D D\Student

staffld Pf' nt

0-0 —

-
/ta>@wesalary regNumba \
Lecturer J/

Technician Pg Student Ug Student

pl’l nt pn nt prl nt
B B

hourl yWage annual Sal ary taxabl eSaI ary

Professor Senior_Technician
-0 _ -0
print print
gl [~[]
setResearchGrant taxableSalary
D - D _ Supervisor
print

=0~

taxableSalary

=U_

print

==

taxableSalary

==

setOffice

@ subordinates

Director

@ office

Figure 9.2: Hierarchy with 5 levels of inheritance for second experiment.

maintainability of object-oriented programs — subjects maintaining the in-
heritance program version will take longer than those subjects maintaining

the flat program version.

For this hypothesis a direction was provided because the depth being empirically inves-
tigated is within the range indicated most frequently by practitioners where difficulties
begin to occur.

Table 9.7 presents the timing data collected for subjects to complete the mainte-
nance task?. Table 9.8 presents this timing data in the usual summarised form. Note

that the direction of the mean times matches the predicted direction of the hypothesis.

2This includes amending the time of subject 3 from the flat group by 8 minutes due to a workstation
related difficulty.

SECTION 9.4: EXPERIMENTAL RESULTS 131

Subject | Imheritance | Subject Flat
Identifier Time Identifier | Time

1 33 3 69

2 33 4 65

6 90 5 31

10 65 7 15

14 34 8 29

15 65 9 40

16 53 11 47

18 34 12 57

20 53 13 92

22 50 17 73

23 48 19 44

25 36 21 -

27 76 24 34

29 115 26 29

30 40 28 73

31 46

Table 9.7: Subjects’ completion times for the second experiment (minutes)

Cross checking the mean times from the replication and this experiment (see Tables
9.6 and 9.8) shows that while the mean time for the flat group has increased only
marginally (approximately 3.5 minutes), the mean time for the inheritance group has
increased substantially (on average approximately 19.8 minutes longer per subject).
Possible reasons for this large turn around are discussed below.

A Wilcoxon rank sum test (unrelated), however, did not show significance between
these mean times p = 0.27 (one tailed, W = 217.5,z = —0.62), and hence the null
hypothesis cannot be rejected. On the other hand, the direction of the mean times

has reversed for this experiment. This is an important finding and worth exploring.

Xiime | Stime | Min. | Max. | N | Inc.
Flat 49.6 21.3 15 92 | 15 1
Deeper inheritance 55.0 23.9 33 115 | 15

Table 9.8: Statistical summary of the second experiment times

9.4.4 Interpretation

Figure 9.3 displays the spread of the collected times through the use of boxplots (see
Appendix A or [Chambers et al., 1983] for a full description). The first two boxplots
represent the times of the first experiment for the inheritance group (N = 27) and
the flat group (N = 23); boxplots three and four represent the inheritance group
(N = 13) and the flat group (N = 14) times for the replication; finally, boxplots
five and six represent the inheritance group (N = 15) and the flat group (N = 15)

SECTION 9.4: EXPERIMENTAL RESULTS 132

120-

3
|
|
!

L T

Time (minutes)
D
o

W
Q

L - - 1

Inher-itance Fl-at Inhe;itance Ffat Inhe;itance Ffat

Figure 9.3: Boxplots of completion times for the first experiment, the internal repli-
cation, and the second experiment using a deeper inheritance hierarchy

times for the second experiment. The boxplots show similarity between the spread
of the data in the first experiment and the replication and also show the difference
in performance between flat and inheritance groups as the depth of the hierarchy is
increased. Figure 9.4 demonstrates more clearly trends in performance. An attempt
to explain the varying performances is made in Section 9.5.2.

Of immediate interest is that subjects’ relative performance deteriorated on the
inheritance program version with a deeper hierarchy. One possible explanation for this
may be the phenomenon identified by Dvorak as conceptual entropy [Dvorak, 1994].
All systems that are frequently changed characteristically tend towards disorder, a

term recognised as entropy. In object-oriented systems

“conceptual entropy is manifested by increasing conceptual inconsistency
as we travel down the hierarchy. That is, the deeper the level of the
hierarchy, the greater the probability that a subclass will not consistently

extend and/or specialise the concept of its superclass.” [Dvorak, 1994].

Dvorak identified this concept through an experiment where subjects were to con-
struct a class hierarchy from class specifications: the deeper the hierarchy got the
less agreement there was between subjects about a class’s placement in the hierarchy.
Essentially, a similar effect has been found here. In the first experiment, the majority
of subjects who implemented inheritance in their solutions agreed on which class to
specialise from: only four subjects, one of whom changed their mind during the modifi-

cation process, did not agree with the other subjects. Further, as was expected, almost

SECTION 9.4: EXPERIMENTAL RESULTS 133

60

50 Y

Time (mins.)

30

20 |

® Flat
X Inheritance

0 T T 1
First Experiment Replication Second Experiment

Figure 9.4: Average completion times for the first experiment, the internal replication,
and the second experiment using a deeper inheritance hierarchy

all the subjects working with an inheritance program version extended its hierarchy
from three to four levels of inheritance depth. Similarly, in the internal replication,
only two from the 26 subjects who implemented inheritance in their solution did not
specialise from the same class as the others. Again, almost all subjects working with
the inheritance program version extended the hierarchy from three to four levels of
inheritance depth.

In contrast, the results for the second experiment which used a deeper inheri-
tance hierarchy found substantial disagreement about which class to specialise from
amongst the subjects. Subjects working with an inheritance program version can be
categorised into three groups: subjects that inherited from class Lecturer (two sub-
jects, X¢ime = 57.4 minutes), subjects that inherited from class Staff (nine subjects,
Xiime = 59.0 minutes), and subjects that inherited from class Supervisor (four sub-
jects, Xyime = 47.5 minutes). In addition, six subjects working with the flat program
version attempted an inheritance solution and all of these subjects specialised from
class Supervisor.

To characterise this data further, subjects’ source code and debriefing question-
naires were examined. Several interesting trends emerged from subjects working with
the inheritance program version. First, of the two subjects that specialised from class
Lecturer, one subject thought that Lecturer was most closely related to Director. This
subject had not fully understood the inheritance hierarchy, however, and this may have
affected their decision to specialise from Lecturer. The other subject stated that not
enough time had been spent deciding which class to specialise from; in hindsight the

subject stated class Supervisor should have been chosen. Second, of the nine subjects

SECTION 9.4: EXPERIMENTAL RESULTS 134

that specialised from class Staff, four subjects stated they had chosen it because it
supported some of the functionality required. (This suggests these subjects did not
look closely enough at the other classes which supported additional functionality).
Four other subjects stated that class Staff was the most logical choice. (This suggests
that these subjects examined the inheritance hierarchy and decided that, in reality,
Director is a member of Staff, but nothing further). The remaining subject did not
give a suitable reason for their choice. Third, the four subjects that chose to spe-
cialise from class Supervisor stated they did so because it had the most attributes in
common with Director. (This suggests that having studied the inheritance hierarchy,
these subjects decided that they should specialise from the class which most closely
resembled their new class). Of the six subjects who used inheritance when working
with the flat program version, four subjects stated they inherited from class Supervi-
sor because it had the most attributes in common with Director, one subject stated
Director is related to Supervisor in reality, and one subject did not give a reason for
their choice. (This suggests subjects working with the flat program version were more
concerned about the functionality of the superclass rather that considering if Director
is a type of Supervisor in reality). These interpretations are supported by the fact
that ten subjects stated in their debriefing questionnaires that deciding which class
to specialise from, and the related consequences of this, had caused them the most
difficulty during the experiment. In contrast, no subjects made this comment in their
debriefing questionnaire for either the first experiment or the replication. It would
therefore appear that extending the hierarchy from three levels of inheritance depth
was less confusing than extending the hierarchy from five levels of inheritance depth.

One difficulty that affects program understanding, and hence maintenance, is the
presence of delocalised plans, where pieces of code that are conceptually related are
physically located in non-contiguous parts of the program [Soloway et al., 1988]. Ac-
cording to Wilde et al., the mechanism of inheritance creates further opportunities for
delocalisation [Wilde et al., 1993]. One such related difficulty is that understanding a
single line of code may require tracing a line of method invocations through an inheri-
tance hierarchy. In a shallow hierarchy this may not represent a large overhead, but as
the hierarchy becomes deeper the overhead is likely to increase. This problem can be
alleviated somewhat by a sensible naming convention which reduces the need to trace
the line of method invocations in order to understand its functionality [Ponder and
Bush, 1994]. In the case of a maintainer who wants to view the actual implementation

of a method, tracing the line of invocations to its source must be conducted. Such

SECTION 9.5: INDUCTIVE ANALYSIS 135

tracing may have affected some subjects’ modification times; indeed, five subjects from
the inheritance group stated in their debriefing questionnaires problems with tracing
method invocations. Subjects who made these comments came from all three of the
defined categories: one subject who had inherited from Lecturer, two subjects who had
inherited from class Staff, and the remaining two subjects who had inherited from class
Supervisor. Again, no subjects made this comment in their debriefing questionnaire
for the first experiment or for the replication.

To summarise, two explanations have been uncovered as to why subjects’ perfor-

mance was not better on the inheritance program version with a deeper hierarchy.

1. Subjects working with a deeper inheritance program version had difficulties de-

ciding which class to specialise from.

2. Subjects working with a deeper inheritance program version had difficulties trac-

ing method invocations.

9.5 Inductive analysis

The concept of an inductive analysis was introduced in Chapter 2 Section 2.3.3. In
this section the findings of an inductive analysis are presented. Subjects’ solutions,
script files, backup files, and debriefing questionnaires were all examined in an attempt

to find alternative interpretations of the data.

9.5.1 Induction database

Table 9.9 displays the variables which were analysed during the inductive analysis.?

A more detailed description of these variables, where required, is now given. Variable
(1) Subjectld has been introduced to uniquely identify any given subject. Variable
(3) ExpResult is the recorded time (minutes) for the subject to complete the task.
Variable (4) is the time (minutes) which should be deducted from variable (3) because
of either (i) adverse circumstances or (ii) inspection of subjects’ program backups
identified reasons for doing so, e.g., beginning a solution using inheritance, but then
changing to a flat solution. Variables (9) to (20) are concerned with what the subjects
wrote in the debriefing questionnaire (the grading of similar responses into groups for

logical variables is discussed in Appendix D). Variable (11) ModDiff is the subjective

*There is slight variability between the experiments and replication for the logical value ranges pro-
vided in the table. This is because of the different response ranges given to the debriefing questionnaire.

SECTION 9.5: INDUCTIVE ANALYSIS

136

Variable Description Logical values
(1) SubjectId The subject identifier 1..31

(2) Group The group the subject was allocated to A or B
(3) ExpResult The time to complete the modification task

(4) TimeAdj Time adjustments made to ExpResult

(5) ExpInh Inheritance used in modification solution y(es),n(o)
(6) NumbComp The number of compilations made

(7) Experience Programming experience 1..3

(8) Questionnaire | Completed the debriefing questionnaire v(es),n(o)
(9) InstTime Time to understand the experimental instructions | 1..3

(10) SynDiff Difficulty with C++ syntax 1..3

(11) ModDift Modification difficulty 1..10

(12) Diff What caused the most difficulty 1.4

(13) Consume Most time consuming action 1.3

(14) Approach Approach to modification a,b,c,d
(15) Understand How well was the code understood 1..3

(16) NotUndst Any code not understood 1..3

(17) CodeQual Quality of code written 1..3

(18) Different Do anything different next time 1..5

(19) Learned Learned anything 1.4

(20) Extra Extra comments made 1.4

Table 9.9: Induction variables

grading given by the subject for the modification task difficulty (1 - very easy, 10
- very difficult). And variable (14) Approach is the approach the subject adopted
towards the modification: (a) understanding the code first, then tackling the task, (b)
tackle task immediately, and attempt to understand the code as required, (c) cutting
and pasting the existing files to meet the required specification, and (d) a different
approach specified by subject.

Initially four separate databases for these variables were created, one each for
the first and second runs of the first experiment, one for the internal replication,
and one for the second experiment using a deeper inheritance hierarchy. These four
databases (Tables D.1, D.2, D.3, and D.4) are presented in Appendix D along with a
full description of the grading of the data into groups for the logical variables.

9.5.2 Results

The inductive analysis package IRIS [Arisholm, 1987] was used to produce a rule for
each variable within each induction database. While nothing of specific value was
uncovered by the induction package, conducting the inductive analysis did help to

highlight several interesting patterns:

1. A weak relationship between subjects’ use of inheritance and the program version

(either inheritance or flat).

SECTION 9.5: INDUCTIVE ANALYSIS 137

2. Weak evidence of a learning effect between experimental runs.
3. A case for adjustment of several subjects’ completion times.

Subsequently, further analysis took place to determine if any of these patterns had an

effect on the statistical analysis.

Use of inheritance within solutions to modification tasks

Data for variable (5) revealed that while all subjects used inheritance for the inheri-
tance program versions, many subjects had also implemented inheritance for the flat
program versions. This is not unnatural because subjects made extensive use of inher-
itance throughout their object-oriented programming class. Table 9.10 presents the
number of subjects who used inheritance for their solution when working on a flat
program version for comparison with those that did not (the number in parentheses
is the number of subjects who did not complete the maintenance task). Two issues

should be explored from these figures:

1. The different number of subjects adopting inheritance and flat solutions across

the series of experiments.

2. Performance differences between subjects using inheritance in their solution and

those not.

First, almost three out of five subjects produced a flat solution in the first
experiment, but in the replication using more experienced subjects only about
one in four did so. In the second experiment the number rose to three out of four
subjects. Why is this? A question in the debriefing questionnaire asked subjects (a)
if they had used inheritance or not in their solution and (b) to explain their rea-
sons. Examination of this questionnaire data helped to provide the necessary insights:
the majority of subjects from the first experiment who provided a flat solution
explained that they wanted to maintain consistency between their solution and the
provided flat code. In contrast, subjects from the replication were more eager to
use inheritance because they felt (i) the class to be added was a natural specialisation
of an existing class, (ii) it helped to reuse the existing code, saving time, and (iii)
to reduce code redundancy. Although several subjects from the first experiment
also made these points, it is argued that the greater experience of the replication

subjects is the reason the majority used inheritance for the flat program version.

SECTION 9.5: INDUCTIVE ANALYSIS 138

Number of subjects
Solution First Experiment | Replication | Second Experiment
Flat 18 (3) 3 (0) 12 (0)
Inheritance 13 (5) 11(0) 4 (1)

Table 9.10: The number of subjects who used inheritance in their solution to flat
program versions and the number of subjects who did not

In contrast again, it appears that subjects did not believe such reasons for using
inheritance for the flat program version in the second experiment. Seven subjects
stated that they did not use inheritance because it was not present in the existing
code (four of these subjects did mention that they thought inheritance could have
been used, but were not sure if it was appropriate); two subjects stated they did
not feel familiar enough with inheritance to use it; two subjects stated that they had
attempted to use inheritance but, having encountered difficulties, had changed to a
flat solution (discussed further below); one subject gave no reason.

Second, was there any performance difference between subjects using inheritance
in their solution to a flat program version and those who did not? Examination of
times from the first experiment revealed the following: the eight subjects who used
inheritance in their complete solution averaged 51.1 minutes, and the 15 subjects who
produced a complete flat solution averaged 57.3 minutes. Comparison of these two
times, however, does not take into account the fact that two more subjects failed to
complete their solution to the flat program version when attempting to use inheritance.
So there does not appear to be any real performance difference.

In the internal replication only three subjects produced a flat solution to the
flat program version and their performance (mean of 46.3 minutes) was about average.
Debriefing questionnaires were examined for explanations of their times. Subjects 2
and 14 specified their approach to the maintenance task, variable (14), had simply
been to copy the relevant files and then modify them to meet the required specifica-
tion. Additionally, subject 2 mentioned inheritance was not used in order to maintain
consistency with the existing code and subject 14 stated a desire to simply obtain a
correct result. Subject 29 had a different explanation: being confused by inheritance,
subject 29 felt it would be quicker to perform the maintenance task without it. Ex-
amining times for three subjects, however, does not provide enough information to be
sure of any performance difference.

In the second experiment, the majority of subjects produced a flat solution to

the flat program version. Ouly four subjects used inheritance (mean of 63.0 minutes):

SECTION 9.5: INDUCTIVE ANALYSIS 139

subjects 17 and 19 were of about average performance; subject 13 was the slowest of
all the flat subjects, but blamed poor performance on having not read the source code
listing properly and consequently missing out a needed function; subject 21 did not
complete the task — before attempting the maintenance task, subject 21 began to
construct an inheritance hierarchy from the flat class structure, an action which cost
a large amount of time. Again, because limited subject numbers are being dealt with,
it is difficult to say if performance differences exist.

So, overall there is no need to investigate time adjustments in order to compensate

for this effect.

A possible learning effect

The possibility of a learning effect was mentioned in Section 9.3. Examination of the
data found that in the first experiment 11 (out of 15) subjects attempted a flat
solution in the first run while only seven (out of 16) subjects produced a flat solution
in the second run. One simple explanation is that a handful of subjects, having used
inheritance during the first run, felt more confident about using inheritance a second
time. So there is marginal evidence of a learning effect. This trend was not, however,
repeated by the more experienced subjects: only three subjects (out of 15) produced a
flat solution in the replication while 12 subjects (out of 16) produced a flat solution
in the second experiment, more than would have been expected if any learning effect
existed (the reasons for this trend have been explained earlier). To be sure no learning
effect was present, a two-way ANOVA test was calculated for the first experiment.
This was to test for a sequence effect or an interaction effect on the time taken to
complete a maintenance task, i.e., to discover if the sequence the subjects received
the program version (flat first or inheritance first) had any effect on the maintenance
task times. (A similar test cannot be performed for the replication and second
experiment because the times collected are not directly comparable in this manner).
The results are presented in Table 9.11 where sequence is the order a subject attempted
the two programs and treatment is the program version the subject was working with.
The results do not show significance for a sequence effect or for an interaction effect
between the sequence and treatment effects (critical F} 46,95 = 4.05). It is concluded
that if any learning effect was present, it was sufficiently weak that it has had an

insignificant impact on the statistical analysis.

SECTION 9.5: INDUCTIVE ANALYSIS

140

Source Sum Square | df | Mean Square F Sig of F
Sequence 82.04 1 82.04 | 0.17 0.68
Treatment 1594.89 1 1594.89 | 3.31 0.07
Sequence x Treatment 30.24 1 30.24 | 0.06 0.80
Within 22188.75 | 46 482.36

Total 23895.92 | 49

Table 9.11: Two-way ANOVA testing for sequence and interaction effects

Adjustments to subjects’ times

As mentioned earlier it was discovered that a number of subjects began an inheritance
solution but, having encountered difficulties, changed to a flat solution. Adjustment of
these subjects’ times was made to observe any effect on the statistical results produced

in Section 9.4. Three methods of adjustment were considered:

1. Extreme adjustment — the entire time the subject was working on an inheritance

solution should be subtracted from their total time.

2. Moderate adjustment — undoubtedly the subject was reading and understanding
the code as they attempted their inheritance solution and hence only a percentage

of this time, e.g., 50%, should be subtracted from their total.
3. Subject exclusion — exclude the subject’s data from the analysis.

Although the second method appears the most objective, method (i) was adopted to
see if the significant result withstood such a bias.

Two times from the first experiment were subsequently adjusted (subject 1:
44 to 31 minutes and subject 6: 100 to 55 minutes; adjusted mean = 52.7). The
Wilcoxon signed ranks (related) was recalculated and significance became marginal
with p = 0.06, (two-tailed, N = 20,z = —1.85). It is reassuring that, given the
marginality of this result, making such biased adjustments had only a minor effect on
the p value of the statistical test.

Extreme adjustments were also made to two flat times from the second experiment
(subject 3: 69 to 53 minutes and subject 4: 65 to 40 minutes; adjusted mean =
46.9). While these adjustments favoured the alternative hypothesis, the resulting
Wilcoxon rank sum (unrelated) still did not obtain significance p = 0.15, (one-tailed,
W = 208,z = —1.02). Although still unable to reject the null hypothesis for this
experiment evidence, in the form of (i) a change of performance direction favouring
subjects who maintained the flat program version and (ii) comments made in the de-

briefing questionnaire, suggests that an effect may exist at deeper levels of inheritance.

SECTION 9.5: INDUCTIVE ANALYSIS 141

Experiment Subject Id. | Time (mins.)
First experiment 26 92
30 102
31 79
Internal replication 11 77
Second experiment 29 115

Table 9.12: Qutlier data points from Figure 2

Certainly it warrants further investigation.

9.5.3 Outlier data

Figure 9.3 shows five datum points outlying the tail distributions of the boxplots. Each
point, referred to as an outlier data point, is at least 1.5 times the distance between
the 25th percentile and the 75th percentile from the 75th percentile, i.e., 1.5 times the
size of the box from the top of box. Note well that the outlier data points all belong
to subjects who were modifying an inheritance program version; to remove these data
points would severely bias the results in favour of the inheritance times. In any case,
the impact of these outliers on the results of the statistical tests was reduced because
non-parametric tests were applied. Data for the subjects in question was examined in
an attempt to explain why they took longer relative to other subjects.

As detailed in Table 9.12 there are three subjects times (from 27) which outlie
the boxplot in the first experiment, one subject time (from 13) in the internal
replication, and one subject time (from 15) in the second experiment using the
deeper inheritance hierarchy.

The outlier subjects from the first experiment all had explanations for their
longer times: (i) Subject 26 had quite a bit of difficulty dealing with syntax errors and
removing them took the subject some time. In addition, the subject mentioned in the
debriefing questionnaire that there was quite a steep learning curve for object-oriented
development. (ii) Subject 30 made a simple error when editing a file and this error
took approximately an hour to find. (iii) Subject 31 stated they took over half an hour
to fully understand what was required for the maintenance task.

In the internal replication subject 11 stated it took them about 20 minutes
to understand what was required for the maintenance task. Furthermore, the subject
claimed to have had quite some difficulty removing syntax errors.

Finally, in the second experiment subject 29 had difficulty deciding which class to
specialise from and twice had a change of mind about which class to use. In addition,

the subject tried to tackle the task immediately and understand the code as required.

SECTION 9.6: EXPERIMENTAL VALIDITIES 142

This approach may have increased their overall time.

9.6 Experimental validities

9.6.1 Threats to internal validity

A major concern within any empirical study is that an unobserved independent vari-
able is exerting control over the dependent variable(s), a possibility which must be
minimised. Three such threats have been identified: (i) selection effects, (ii) matura-

tion effects, and (iii) instrumentation effects.

1. Selection effects are due to natural variations in subject performance (see, e.g.,
[Brooks, 1980]). An example of this has been presented in Chapter 4 where
the majority of ‘high ability’ subjects were randomly assigned to one of two
groups, something which obviously biased the results of the study. Such bias
was catered for in this study by creating subject groups of equal ability (as

detailed in Sections 9.3.2 and 9.4.2).

2. Maturation or learning effects are caused by subjects learning as an experiment
proceeds. The threat here was that subjects would learn from the first run
and that their performance on the second run would be biased. The data was

analysed for this (see Section 9.5.2) and no significant effect was found.

3. Instrumentation effects may result from differences in the experimental materials
employed. In this study such effects were likely to arise from differences in
the presented software systems and modification tasks. Although an explicit
attempt was made to ensure as much similarity as possible, such variation can
be difficult to avoid. The collected timing data for the first experiment are
very similar across the two runs; the internal replication repeated these results.
This increases confidence that any such effect was minimised. Instrumentation
effects also appear minimal between the replication and second experiment —
the increase of mean time for the inheritance group would have been similar for

the flat group otherwise.

So there is no evidence suggesting that these threats to internal validity have impacted

on the results of the study.

SECTION 9.6: EXPERIMENTAL VALIDITIES 143

9.6.2 Threats to external validity

The greater the external validity, the more the results of an empirical study can be
generalised to actual software engineering practice. Three threats to external validity
have been identified which limit the ability to apply any such generalisation: (i) subject
representativeness, (ii) the size and complexity of the software systems used, and (iii)
maintenance is a process, and only the implementation phase of the process has been

considered in these experiments.

1. The subjects who participated in the experiments may not be representative of
software professionals. Although the participants in the replication and second
experiment were a mixture of final year students and new graduate computer
scientists and were classed as more experienced programmers, they cannot be
categorised as experienced software professionals. For pragmatic considerations,
having students as subjects was the only viable option for the laboratory-based

experiments.

2. The software systems used for the experiments were not large and may not be
representative of real software systems. The inheritance depth used in these
software systems is representative of real inheritance hierarchies, however — see
the characteristics of object-oriented class hierarchies presented in [Chidamber
and Kemerer, 1994]. Furthermore, it may be that to control and isolate the effect
of inheritance on the maintainability of object-oriented software, small systems
are required otherwise the effect may become too difficult to detect. As noted
by Tiller, more control exerted over an experiment is gained only at the expense
of its realism [Tiller, 1991] — an attempt to achieve as fine a balance as possible

was made.

3. Although maintainability of software is best evaluated with respect to the en-
tire maintenance process, laboratory-based experimentation on such a scale is
not practical; this study has concentrated on the implementation phase of the

maintenance process.

The first and second threats to external validity are common to many reported em-
pirical studies, e.g., [Henry et al., 1990], [Lewis et al., 1992], [Porter et al., 1995]. It
is argued there is justification to conclude that because the effect of inheritance has
been consistently reported across the programme of research, there is less of a threat

to external validity. To fully overcome these threats a replication package is proposed

SECTION 9.7: CONCLUSIONS 144

Totals
Data distribution N | Skewness | Kurtosis
Experiment 1 flat 23 0.756 2.380
Experiment 1 inheritance | 27 1.447* 4.825%
Replication flat 14 1.082% 3.966
Replication inheritance 13 1.137* 3.794
Experiment 2 flat 15 0.330 2.245
Experiment 2 inheritance | 15 1.192% 3.698

*

Table 9.13: The results of the formal skewness and kurtosis tests. * — significant at

95% confidence interval

as further work in order to allow other researchers to conduct external replications
using different subjects, variables, and procedures (see [Chapanis, 1988] for a detailed

discussion about making generalisations).

9.6.3 Statistical validity

Throughout this study mainly non-parametric statistical tests have been used, namely
the Wilcoxon signed ranks (related) and the Wilcoxon rank sum (unrelated). It is im-
portant to note that non-parametric tests have a smaller statistical power than their
parametric equivalents and, as such, under similar conditions with a population of
normal distribution the non-parametric test is less likely to reject the null hypothesis
(assuming an effect does exist), i.e., the test has a larger chance of committing a Type
II error. This probability was reflected by the results of the i-test applications whose
results were slightly more significant?. An underlying assumption for parametric sta-
tistical tests, however, is that the sample data are drawn from a normally distributed
population [Welkowitz et al., 1976]. There was uncertainty if this assumption had
been met — formal skewness and kurtosis tests were applied to each of the data dis-
tributions. As shown in Table 9.13 the results found several of the data distributions
to be non-normal at the 95% confidence interval or better (represented by an * in the
table). Although the i-test is a robust test and is often used when the underlying
mathematical assumptions are not met, the skewness and kurtosis results mean that

the non-parametric tests are more appropriate for this statistical analysis.

9.7 Conclusions

This empirical study should be of interest to those designing and maintaining object-

oriented software: its results suggest that object-oriented software with a shallow

*The t-test is the parametric equivalent of the Wilcoxon tests.

SECTION 9.7: CONCLUSIONS 145

hierarchy (3 levels of inheritance depth) may be more maintainable than equivalent
object-based software with no inheritance. In contrast, object-oriented software with a
deeper hierarchy (5 levels of inheritance depth) was not shown to be more maintainable
than the equivalent object-based software; indeed, subjects’ completion times, source
code solutions, and debriefing questionnaires actually provided some evidence suggest-
ing subjects began to experience difficulties with this deeper hierarchy (although no
statistical significance was obtained).

While several threats to the external validity of the empirical study have been
identified, it is argued that because the results have been confirmed across phases I
and II of the multi-method programme of research, these threats are reduced. Sub-
sequent experimentation, however, should make use of larger software systems using
professional programmers as subjects. Such experimentation might also consider the
other categories of maintenance with a view to evaluating them in terms of the overall
maintenance process, not just in terms of the implementation phase.

A complete inductive analysis has been conducted and has not offered any alter-
native explanations of the data. The analysis considered the variability within the
collected data including the use of inheritance in a flat program version, a maturation
or learning effect, adjustment of subjects’ times, and examination of all outlier data
points. Of particular interest was the discovery of conceptual entropy — as expected
the large majority of subjects extended the hierarchy from 3 to 4 levels of inheritance
depth, but only a small number of subjects extended the hierarchy from 5 to 6 levels
of inheritance depth. Several possible reasons for this exist, but one explanation may
be that it is more demanding to extend a deeper hierarchy than it is to extend a
shallower hierarchy. Schenberger has recently obtained similar results in distributed
computer environments [Schneberger, 1995]. As a system is distributed into smaller
and more autonomous components, Schenberger found that while the complexity of
the systems components is reduced, overall complexity is increased because of an in-
creased number of system variables; as a result, software maintenance becomes more
difficult. Effectively the same occurs in an inheritance hierarchy: the deeper the hier-
archy becomes, the larger the number of superclasses a class may have, and the more

complex it becomes to understand their combined functionality.

Chapter 10

Evaluation

10.1 Introduction

Part IIT of the thesis has introduced the multi-method approach to performing empiri-
cal software engineering research. To thoroughly evaluate the multi-method approach,
an application has been presented in the form of a three phased programme of research
within the object-oriented paradigm. The programme of research was initiated by an
empirical study involving structured interviews of experienced object-oriented devel-
opers on their opinions of the advantages and disadvantages of the object-oriented
paradigm. The findings of this primary investigation were then refined and used
to design and implement a questionnaire survey which was answered by 275 object-
oriented practitioners. Finally, a series of subject-based laboratory experiments were
conducted which investigated one of the important and most interesting findings from
the questionnaire survey and structured interviews in a controlled setting.

The final chapter in this thesis part reiterates the arguments for applying the multi-
method approach, summarises the results from the application of the multi-method
approach, evaluates the successes and shortcomings of this application, and concludes

with a series of recommendations for other researchers attempting similar work.

10.2 Justification for the multi-method approach

To achieve reliable and more generalisable results, an empirical study requires con-
firmatory power, usually achieved by means of: (i) external replication and (ii) in-

vestigation of the same phenomenon through a different empirical study. The most

SECTION 10.3: SUMMARY OF THE EMPIRICAL RESULTS 147

effective method of achieving this second goal is through an approach which views
a series of different empirical studies as evolutionary. That is, the important issues
discovered by an initial study are refined and investigated further by the next study,
and so forth. (As demonstrated by Chapters 7 through 9). The results from each
study may, therefore, turn out to confirm one another.

Justification for adopting a multi-method approach to performing empirical re-

search can be provided by three additional strengths:

1. Hypothesis formulation is no longer dependent on the experimenter’s intuition.
The nature of the evolutionary approach allows several hypotheses to be inves-
tigated further from the previous phase of the programme of research (which
begins with an initial exploratory study). This refinement may continue until
only a single hypothesis is being investigated — other less important hypotheses

can be investigated later.

2. If results are consistently demonstrated across phases, conclusions drawn at the
end of the programme of research are more robust. They are less likely to be
adversely affected by the fact that one of the phases was poorly designed, used
a biased sample of the population, misapplied statistical tests, or did not take

into account one of a number of other important factors.

3. As each phase of the programme of research becomes more focused, the experi-
menter is likely to gain increased understanding of the various factors that affect
the phenomenon under investigation. In addition, a researcher should undertake
detailed investigation to determine potential causes of any inconsistencies which
arise across phases. Any explanations may also provide increased understanding

about the phenomenon under investigation.

As a consequence, results emerging from a multi-method programme of research are
more impressive than those from a single empirical study. In turn, the software engi-

neering community is likely to have more confidence in their reliability.

10.3 Summary of the empirical results

Applying the multi-method approach to an investigation within the object-oriented
paradigm provided an interesting and important set of empirical results which have
shown consistency across the first two phases of the programme of research. First,

findings such as object-oriented design can be poor or inappropriate, excessive use

SECTION 10.4: SUCCESSES AND SHORTCOMINGS OF THE APPROACH 148

of inheritance can cause understanding difficulties, and a less than positive view of
the most popular object-oriented language (C++) provide some evidence that object-
oriented techniques are not the panacea they have been promised to be. Second,
initial evidence has been provided which supports some of the purported benefits of
object-oriented techniques namely, ease of analysis and design, increased programmer
productivity, increased software reuse, and ease of maintenance. It should be noted
that these benefits appear to be dependent on whether the problem is amenable to an
object-oriented solution and the object-oriented design is appropriate. If these criteria
are not met then the reverse may occur. Third, while there is some evidence to suggest
that ease of maintenance is an attribute of object-oriented software, some factors arose
from the programme of research which compounds this notion. Missing design doc-
umentation and poor or inappropriate design appear to be prevalent problems; these
affect the understandability and maintenance of an object-oriented software system at
least as much as other systems designed using alternative structured methodologies.
Furthermore, the series of subject-based experiments found that depth of inheritance
has an effect on the maintainability of object-oriented software. These results have
implications for current software developers using object-oriented techniques and for

the training of future practitioners.

10.4 Successes and shortcomings of the approach

While applying the multi-method approach to the object-oriented paradigm has pro-
duced some interesting and important findings with respect to object-oriented tech-
nology, of greater importance is that the application has provided an opportunity to

evaluate the successes and shortcomings of the approach as an empirical methodology:

1. The multi-method approach has demonstrated several findings consistently across
phases I and IT of the programme of research and one finding consistently across
all three phases, i.e., the multi-method approach has provided confirmatory

power for its results, and, hence, it results are more reliable.

2. Three different cross-sections of people have been involved in the three phases
of the programme of research. As a consequence of this and the confirmatory
power provided by phases I and II, there is some justification for generalising
the results of phase III, the series of laboratory experiments, to actual software
engineering practice. If phase III has been conducted separately there would

have been little justification for generalisation.

SECTION 10.4: SUCCESSES AND SHORTCOMINGS OF THE APPROACH 149

3. The multi-method approach has demonstrated that several interesting findings
can arise from the more general investigations that initiate the programme of
research. For example, there are findings from phases I and II of the programme
of research that are worth turning into hypotheses and investigating further.
The multi-method approach has also demonstrated that it is much easier for the
researcher to identify the hypotheses of most importance for further investiga-
tion within the programme of research. For example, if phases I and II had not
been conducted it is unlikely that the series of experiments would have investi-
gated the effect of depth of inheritance on software maintainability. As a result
of these benefits, the programme of research tends to focus on the larger and
more important problems; as such, the researcher is less likely to embark on an

expensive study which is of little interest or consequence.

4. Increased understanding of the various factors that affect the phenomenon under
investigation was discussed as a theoretical advantage in Section 10.2. The ap-
plication of the multi-method approach found that in practice this was indeed an
advantage. For example, by completion of phase III much more was understood
about inheritance and how depth of inheritance may affect the understandability
of object-oriented software. (The inductive analysis was also an important factor

in this understanding).
As with any original research undertaking there were also shortcomings:

1. The amount of time and effort required to plan, design, and organise each phase
of the programme of research and analyse the collected data was considerably
more than expected. In addition to the human component, i.e., the time taken
to organise subject interviews, receive all completed questionnaires from respon-
dents, and recruit subjects for the experiments, reasons for this under estima-
tion include: (i) the effort required to analyse the verbal data collected from the
structured interviews, (ii) the time taken to examine the questionnaire data for
correlations between different variables, and (iii) the time and effort required to
carefully plan, design, and organise (a) the series of laboratory experiments and
(b) the lectures and practicals to teach the subjects the necessary object-oriented
concepts.! In spite of this, the findings achieved from the invested time and ef-
fort to apply the multi-method approach are likely to be more cost effective than

several independent studies.

!This was by no means an individual effort. Due acknowledgment is given to Drs. Brooks, Miller,
Roper, and Wood whose efforts to achieve this goal matched, at the very least, my own.

SECTION 10.5: LESSONS LEARNED 150

2. The second shortcoming is a direct consequence of the first. Because the time to
complete each phase of the programme of research was longer than estimated,
analysis of each phase was not fully complete before the beginning of following
phase. Due to constraints imposed by availability of student subjects there was
little choice except to proceed to the next phase with as much of the analysis
complete as possible. (This was more of an issue when moving from phase II to
IIT than it was for moving from phase I to IT). It is likely that this shortcoming
is more a consequence of PhD time pressures than a shortcoming of the multi-

method approach.

Although it is argued that the successes of the multi-method approach far outweigh

these shortcomings, there are lessons to be learned from both.

10.5 Lessons learned

Applying the multi-method approach to an empirical investigation within the object-
oriented paradigm has lead to a number of important lessons being learned. These
lessons are described as a series of recommendations which should aid researchers

attempting similar programmes of research.

1. The multi-method approach has proven to be a successful methodology for con-
ducting empirical software engineering research. Its primary shortcoming, how-
ever, is the large investment of time and effort required to conduct a programme
of research which involves three or more phases.

Recommendation: be prepared for the time and effort required to undertake the

multi-method approach for empirical work; working to deadlines can be difficult.

2. Proceeding from one phase of the multi-method approach to the next before its
analysis is fully complete could lead to an investigation of lesser importance.
Recommendation: rigidity should be applied when moving from one phase of
the multi-method approach to the next — only when the analysis of a phase is

complete should the experimenter consider the next phase.

3. It is important that each phase is recognised as an empirical study in its own
right and not just part of a multi-method approach. This offers two advantages:
(i) the details of each phase become available as the multi-method approach

evolves, and (ii) each phase should have sufficient details reported that it can be

SECTION 10.6: ADDITIONAL ADVICE 151

externally replicated should the findings be of sufficient importance to warrant
it.
Recommendation: after the completion of the data analysis for a particular

phase, the results should be reported within a technical report.

4. Results are likely to be more highly regarded when coming from a progressive
programme of research like an evolutionary multi-method approach, e.g., [Daly
et al., 1996a), [Daly et al., 1996b].

Recommendation: Explicitly state which phase of the multi-method approach is
being reported, how this relates to any previous phases, and what future research

is planned from this work.

10.6 Additional advice

Advice, based on the experience of conducting a three phased multi-method pro-
gramme of research, is also given to help researchers considering applying the approach
for the first time. It should be noted that there is an element of subjectivity to this

advice and it should be treated accordingly.

Phase I — the aim of the exploratory phase is to identify key issues and to explore
opinions on the advantages and disadvantages of the technology under investiga-
tion. Any previous research in the area should be reviewed and, if relevant, used
to help focus the phase. Phase I should use techniques which enable qualitative
data to be collected. It is important that the subjects used are not particularly
homogeneous as this may bias the findings and have an adverse affect on what
is investigated in later phases. Phase Il can be entered when the researcher
is confident that enough key issues have been identified which warrant further
investigation. Appropriate phase I techniques include structured interviews, a
questionnaire with general open questions, verbal protocol analysis, or even a

combination of these.

Phase II — the aim of phase II is to provide reliable empirical evidence from which
hypotheses can be formulated for detailed investigation in the next phase. Phase
IT should incorporate what has been learned from phase I and investigate it fur-
ther by collecting a sizable amount of quantitative data. The use of inferential

statistics can help identify large effects — these can be rated in order of interest

SECTION 10.7: CONCLUSIONS 152

to the software engineering community. Phase III can be entered if effects of suf-
ficient importance and interest are found and can be turned into hypotheses for
more detailed investigation. Appropriate phase II techniques include widely dis-
tributed questionnaires, more general case studies, and verbal and video protocol

analysis.

Phase III — the aim of phase III is to provide strong empirical support for the one or
more hypotheses under investigation. Three phases is the minimum number of
phases recommended for the multi-method approach. Phase III may be an exit
point (i.e., enough data has been collected) if the findings have been consistently
demonstrated by this phase and earlier phases of the programme of research.
Appropriate techniques for phase III (if an exit point) are laboratory experiments

and detailed case studies.

Further phases — depending on the techniques used in earlier phases further inves-
tigation using, e.g., professional programmers or industrial scale software, may

be required to allow any generalisations.

10.7 Conclusions

The multi-method approach allows focused empirical enquiry to be undertaken from
a more general empirical study. Moreover, if an effect has been consistently demon-
strated then this approach adds confirmatory power; subsequently, the software engi-
neering community are more likely to have confidence in the reliability of the findings.
Similarly, if different population samples are used for different phases of the programme
of research and results are consistently demonstrated, there is some justification for
generalising the results.

Although the multi-method approach requires a large investment of time and effort
to apply it to a programme of empirical research, it has been argued that the return
on this investment provides several other advantages including, ease of identification
of hypotheses for further investigation, focusing on the more important problems as
the programme of research progresses, increased understanding of the various factors
that affect the phenomenon under investigation, and there is less chance of conduct-
ing an expensive study which is of little value or consequence. It is concluded that
researchers should consider applying a multi-method approach paying close attention

to the recommendations that have been made above.

Part IV

CONCLUSIONS

Chapter 11

Conclusions And Further Work

11.1 Summary of thesis

Increasingly large amounts of money are being consumed by software costs, yet prob-
lems still exist with software quality and delivering software on schedule and within
the development budget. This is partly as a result of the absence of measurement pro-
grammes and partly as a result of software developers using software technology which
has not been evaluated. As a consequence, conducting empirical evaluation has started
to become a more important part of software engineering research. The methodology
used for empirical software engineering research is still somewhat immature, however,
and requires improvement for several reasons. First, much of the empirical research
that has been conducted contains weaknesses as a result of the empirical methodology
used. Second, empirical results are not being confirmed before being accepted by the
software engineering community. And, third, much of the empirical software engi-
neering research has not included analysis of the data for alternative interpretations.
To understand software development better and manage it more cost-effectively more
methodical empirical research is required. This thesis is concerned with achieving this
goal by means of a research methodology using the multi-method approach integrated
with the technique of replication.

The research methodology has been used to present (i) the results of an external
replication of a well performed software engineering empirical study and (ii) an appli-

cation of the multi-method approach to an investigation within the object-oriented

SECTION 11.2: THESIS RESULTS AND FURTHER WORK 155

paradigm. Conducting the external replication study and the multi-method pro-
gramme of research has demonstrated why these two techniques are able to allevi-
ate some of the problems surrounding current empirical software engineering research

methodology.

11.2 Thesis results and further work

11.2.1 Results

Part IT of this thesis details the experiences of conducting an external replication of
a well performed empirical study. Although the results of the external replication did
not repeat the results of the original study, conducting an inductive analysis helped to
understand the reasons for the difference. The most important lessons learned from

conducting the external replication are:

1. Careful consideration of the purpose of conducting an external replication study.
If the purpose is to confirm the original results then only minor recipe-improve-
ments should be made. If the purpose is to attempt to generalise the results
then major recipe-improvements or alternatives must be made. (Note well: if
improvements or alternatives are too substantial, it becomes debatable whether

the study counts as an external replication).

2. The level of reported detail should be sufficient to allow other researchers to
attempt an external replication (or, if not, the detail should be available on re-
quest). The production of a laboratory kit can substantially reduce the amount
of work required by researchers to undertake an external replication. It is im-
portant that researchers also begin to report an estimate of the size of the effect
they are investigating. This will allow researchers undertaking an external repli-
cation to conduct a statistical power analysis thus ensuring the replication has

a sufficient level of statistical power.

3. The relative ability of the subjects is likely to be one of the largest sources of
variability in an empirical study involving humans. Researchers conducting such
research should carefully consider the ability of the subjects and attempt to

control for any effect it could have on the results in the experimental design.
As a consequence of conducting the external replication study, a framework has been
established for categorising external replications of other software engineering empiri-

cal studies as they take place (see Chapter 3, Section 3.3).

SECTION 11.2: THESIS RESULTS AND FURTHER WORK 156

Part III of this thesis details the multi-method approach and the results of an appli-
cation within the object-oriented paradigm. Conducting a multi-method programme
of research allowed the strengths and weaknesses of the approach to be evaluated.
Realised strengths include: (i) Hypothesis formulation is no longer dependent on the
researcher’s intuition — by conducting an exploratory survey gathering qualitative
data, a number of important findings can be turned into hypotheses for further inves-
tigation, i.e., the researcher is likely to become aware of issues they had not previously
considered. (ii) As hypotheses become more focused for each phase of the programme
of research, increased understanding of factors which affect the phenomenon being
investigated is gained. (iii) If results can be consistently demonstrated across phases
of the programme of research more confidence can be placed in the reliability of the
findings. (iv) Conclusions emerging from a programie of research are robust in that
they are less likely to be affected if one of the phases has weaknesses identified in its
design. If weaknesses are identified in the design of a single empirical it is likely the
findings become regarded as invalid.

The main weakness of the approach is the large investment of time and effort
required to conduct a multi-method programme of research. This investment includes
carefully planning and controlling the programme of research to enable analysis of each
phase prior to beginning the next phase. Nevertheless, a multi-method programme of
research is likely to be more cost effective than several independent studies because
more reliable and generalisable conclusions can be achieved.

The most important lessons learned from applying the multi-method approach are:

1. Results emerging from a multi-method programme of research are likely to be

more highly regarded by the software engineering community.

2. Each phase of the programme of research should be treated as an independent
empirical study and ideally written up as technical report in its own right. This
means the details of the programme of research become available as each phase
is completed rather than when the whole programme of research is completed.
More importantly, it should mean that sufficient detail is reported for each phase

should researchers be interested in conducting an external replication.

11.2.2 Further work

As a result of conducting the multi-method programme of research, three main areas

of further work are identified:

SECTION 11.2: THESIS RESULTS AND FURTHER WORK 157

e The application of the multi-method approach within the object-oriented para-
digm has discovered a set of interesting results. In particular, there are several
findings consistently demonstrated across phases I and II of the programme of
research that could be stated as hypotheses for further empirical investigation.

For example, phases I and II found that:

— The design of object-oriented software is considered to be more important
than the design of conventional software. It would be interesting to test
if poorly designed object-oriented software is more difficult to understand

and maintain than poorly designed structured software.

— Design documentation is perceived to be a very important aid to under-
standing object-oriented software. It may be that without design docu-
mentation object-oriented software is no easier or, indeed, more difficult
to understand that undocumented conventional software. In contrast, if
design documentation is available object-oriented software may be easier
to understand. There is also scope to incorporate design documentation
into the series of experiments that were conducted on the effect of inheri-
tance depth — design documentation may alleviate some of the difficulties

encountered.

— Object-oriented software is considered to resist degradation from mainte-
nance under the condition that changes made are appropriately designed.
It would be interesting to test the effect of making such changes to object-

oriented software and contrast them with the effect of making ‘quick fixes’.

e The series of subject-based laboratory experiments could be made available as a
package for external replication should any researcher be interested in verifying
the results. Such a package would require that all source code, experimental
instructions, and data collection facilities are included as well as the information

provided within this thesis.

e To fully generalise the results of the series of subject-based experiments there
should be some attempt to scale up the findings to professional programmers

using more complex software.

SECTION 11.3: CONCLUSIONS 158

11.3 Conclusions

It has been argued that the methodology for conducting empirical software engineering
research requires improvement. This thesis provides a number of contributions to an

improved methodology:

1. Tt has been shown that replication and the multi-method approach are key ele-
ments of confirmatory research. External replication seeks to provides confidence
in the results of an original study whereas the multi-method approach provides
confirmatory power within a programme of empirical research. As a result, find-

ings are likely to be more reliable and generalisable.

2. A multi-method approach helps to address many of the weaknesses that exist in
current empirical research. For example, the approach facilitates investigation
of more important hypotheses, more thorough data analysis, more methodical
reporting, and greater understanding of the factors that affect the phenomenon
under investigation. Furthermore, the multi-method approach ensures a greater
coverage of the problem space through the exploratory phases of the programme
of research. This may encourage researchers to undertake more empirical re-

search and thus address the lack of empirical results within software engineering.

3. The inductive analysis paradigm has been used to ensure thorough analysis of
the collected data and to ensure any alternative interpretations of the data have

been considered.

In conclusion, researchers should adopt a methodology for empirical software engi-
neering research which integrates the multi-method approach with the technique of
replication. Such a methodology will, over time, help to provide more reliable and
generalisable empirical results within software engineering. In addition, when dealing
with human subjects, inductive analysis should be conducted to ensure alternative

interpretations are not overlooked.

Bibliography

[Amir and Sharon, 1991] Y. Amir and I. Sharon. Replication research: A “must” for
the scientific advancement of psychology. In J. Neuliep, editor, Replication in the

Social Sciences, pages 51-69. Sage Publications, first edition, 1991.

[Arisholm, 1987] G. Arisholm. IRIS — Integrated Rule Induction System. Department
of Computer Science, University of Strathclyde, Glasgow, 1987.

[Bainbridge, 1990] L. Bainbridge. Verbal protocol analysis. In J. Wilson and E. Cor-
lett, editors, Fvaluation of Human Work, A practical ergonomics methodology, pages

161-179. Taylor and Francis, 1990.

[Banker et al., 1993] R. Banker, S. Datar, C. Kemerer, and D. Zweig. Software com-
plexity and maintenance costs. Communications of the ACM, 36(11):81-94, 1993.

[Baroudi and Orlikowski, 1989] J. Baroudi and W. Orlikowski. The problem of sta-
tistical power in MIS research. MIS Quarterly, 13:87-106, March 1989.

[Basili and Reiter, 1981] V. Basili and R. Reiter. A controlled experiment quantita-
tively comparing software development approaches. IEEF Transactions on Software

Engineering, SE-7(3):299-313, 1981.

[Basili and Rombach, 1988] V. Basili and H. Rombach. The TAME project: Towards
improvement-oriented software environments. IEEFE Transactions on Software En-

gineering, SE-10(6):758-773, 1988.

[Basili and Selby, 1987] V. Basili and R. Selby. Comparing the effectiveness of software
testing strategies. IEEE Transactions on Software Engineering, SE-13(12):299-313,
1987.

[Basili and Selby, 1991] V. Basili and R. Selby. Paradigms for experimentation and
empirical studies in software engineering. Reliability Engineering and System Safety,

32:171-191, 1991.

BIBLIOGRAPHY 160

[Basili and Weiss, 1984] V. Basili and D. Weiss. A methodology for collecting valid
software engineering data. [EFF Transactions on Software FEngineering, SE-

10(6):728-738, 1984.

[Basili et al., 1986] V. Basili, R. Selby, and D. Hutchens. Experimentation in software
engineering. IEEFE Transactions on Software Engineering, SE-12(7):733-743, 1986.

[Basili, 1992] V. Basili. The experimental paradigm in software engineering. In
H. Rombach, V. Basili, and R. Selby, editors, Fzperimental Software Fngineer-
ing Issues: Crilical Assessment and Future Direclions, Lecture Notes in Computer

Science 706, pages 3—12. Springer-Verlag, 1992.

[Berard, 1993] E. Berard. Essays On Object-Oriented Software Engineering, volume 1.
Prentice Hall, 1993.

[Biemer et al., 1991] P. Biemer, R. Groves, L. Lyberg, N. Mathiowetz, and S. Sudman,

editors. Measurement Errors in Surveys. John Wiley and Sons, Inc, 1991.

[Booch, 1986] G. Booch. Object-oriented development. IEEE Transactions on Soft-
ware Engineering, SE-12(2):211-221, February 1986.

[Brewer and Hunter, 1989] J. Brewer and A. Hunter. Multimethod Research A Syn-
thesis of Styles. Sage Publications, 1989.

[Broad and Wade, 1986] W. Broad and N. Wade. Betrayers of the Truth. Oxford
University Press, 1986.

[Brooks and Vezza, 1989] A. Brooks and P. Vezza. Inductive analysis applied to the
evaluation of a CAL tutorial. Interacting with Computers, The Interdisciplinary

Journal of Human Computer Interaclion 1, pages 159-170, 1989.

[Brooks et al., 1987] A. Brooks, A. Walker, and C. Boardman. At the interface of shell
built expert systems. Third International Fxpert Systems Conference, June 1987.

[Brooks et al., 1994] A. Brooks, D. Clarke, and P. McGale. Investigating stellar vari-
ability by normality tests. Vistas in Astronomy, 38:377-399, 1994.

[Brooks et al., 1995] A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood. Replica-
tion of experimental results in software engineering. Research report EFoCS-17-94,

Department of Computer Science, University of Strathclyde, Glasgow, 1995.

BIBLIOGRAPHY 161

[Brooks, 1980] R. Brooks. Studying programmer behavior experimentally: The prob-
lems of proper methodology. Communications of the ACM, 23(4):207-213, April
1980.

[Burgess, 1995] A. Burgess. Finding an experimental basis for software engineering.

IEEFE Software, 28(3):92-93, 1995.

[Buzzard and Mudge, 1985] G. Buzzard and T. Mudge. Object-based computing and
the Ada programming language. IEEE Computer, 18(3):12, 1985.

[Card et al., 1986] D. Card, V. Church, and W. Agresti. An empirical study of soft-
ware design practices. IEEFE Transactions on Software Engineering, SE-12(2):264—
271, February 1986.

[Chambers et al., 1983] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graph-
tcal methods for data analysis. Wadsworth International Group, first edition, 1983.

[Chapanis, 1988] A. Chapanis. Some generalisations about generalisation. Human

Factors, 30(3):253-267, 1988.

[Chidamber and Kemerer, 1994] S. Chidamber and C. Kemerer. A metrics suite for
object-oriented design. IFFE Transactions on Software Engineering, 20(6):476-493,
June 1994.

[Cohen, 1969] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Aca-
demic Press, first edition, 1969.

[Collins, 1985] H. Collins. CHANGING ORDER Replication and Induction in Scien-
tific Practice. SAGE Publications, 1985.

[Coolican, 1990] H. Coolican. Research Methods and Statistics in Psychology. Hodder
& Stoughton, 1990.

[Courtney and Gustafson, 1993] R. Courtney and D. Gustafson. Shotgun correlations

in software measures. Software Engineering Journal, 8(1):5-13, 1993.

[Cox, 1986] B. Cox. Object-Oriented Programming. Addison-Wesley, first edition,
1986.

[Crocker and von Mayrhauser, 1993] R. Crocker and A. von Mayrhauser. Mainte-
nance support needs for object-oriented software. In Proceedings of the International

Computer Software and Applications Conference, pages 63-69, November 1993.

BIBLIOGRAPHY 162

[Curtis, 1980] B. Curtis. Measurement and experimentation in software engineering.
Proceedings of the IEEFE, 68(9):1144-1157, September 1980.

[Curtis, 1986] B. Curtis. By the way, did anyone study any real programmers? In Em-
pirical Studies of Programmers: First Workshop, pages 256-262. Ablex Publishing
Corporation, 1986.

[Daly et al., 1994] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Verification
of results in software maintenance through external replication. In Proceedings of the
IEEFE International Conference on Software Maintenance, pages 50-57, September
1994.

[Daly et al., 1995a] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. The ef-
fect of inheritance on the maintainability of object-oriented software: An empirical
study. In Proceedings of the IEEFE International Conference on Software Mainte-
nance, pages 20—-29, October 1995.

[Daly et al., 1995b] J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood. A multi-
method approach to performing empirical research. IEEF Software Engineering
Technical Council Newsletter, 14(1):SPN 10-SPN 12, 1995.

[Daly et al., 1995¢c| J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood. A survey
of experiences amongst object-oriented practitioners. In Proceedings of the IFEF

Asia-Pacific Software Engineering Conference, pages 137-146, December 1995.

[Daly et al., 1996a] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Evaluat-
ing the effect of inheritance on the maintainability of object-oriented software. In
FEmpirical Studies of Programmers: Sixth Workshop, pages 39-57. Ablex Publishing
Corporation, January 1996.

[Daly et al., 1996b] J. Daly, J. Miller, A. Brooks M. Roper, and M. Wood. Poster
presentation: An empirical evaluation of object-oriented practitioners’ experiences.
In Empirical Studies of Programmers: Sixth Workshop, pages 267-268. Ablex Pub-
lishing Corporation, January 1996.

[Davis, 1994] A. Davis. Fifteen principles of software engineering. IEEFE Software,
11(6):94-101, November 1994.

[Denning et al., 1990] S. Denning, D. Hoiem, M. Simpson, and K. Sullivan. The value

of thinking aloud protocols in industry: A case study at Microsoft Corporation. In

BIBLIOGRAPHY 163

Proceedings of the Human Factors Society 34th Annual Meeting, pages 1285-1289,
1990.

[Deubler and Koestler, 1994] H. Deubler and M. Koestler. Introducing object-
orientation in large and complex systems. IFEF Transactions on Software Engi-

neering, 20(11):840-848, November 1994.

[Dillman, 1978] D. Dillman. Mail and telephone surveys: the total design method.
John Wiley & Sons, first edition, 1978.

[Dvorak, 1994] J. Dvorak. Conceptual entropy and its effect on class hierarchies. IEEFE
Computer, 27(6):59-63, June 1994.

[Edwards, 1972] B. Edwards. Statistics for Business Students. Collins, first edition,
1972.

[Ericsson and Simon, 1984] A. Ericsson and H. Simon. Protocol Analysis. The MIT
Press, first edition, 1984.

[Fenton et al., 1994] N. Fenton, S. Pfleeger, and R. Glass. Science and substance: A
challenge to software engineers. IEEFE Software, 11(4):86-95, July 1994.

[Fenton, 1994] N. Fenton. Software measurement: A necessary scientific basis. IEEE
Transactions in Software Engineering, 20(3):199-206, 1994.

[Foster, 1991] J. Foster. Program lifetime: A vital statistic for maintenance. In Pro-

ceedings of the IEEF Conference on Software Maintenance, pages 98-103, 1991.

[Frakes and Pole, 1994] W. Frakes and T. Pole. An empirical study of representation
methods for reusable software components. IEFFE Transactions on Software Fn-
gineering, 20(8):617-630, August 1994. Special Issue on 1993 European Software

Engineering Conference.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, first edition, 1995.

[Glass, 1994] R. Glass. The software research crisis. IEEE Software, 11(6):42-47,
November 1994.

[Goguen and Linde, 1993] J. Goguen and C. Linde. Techniques for requirements elic-
itation. In Proceedings of the IFEFE International Symposium on Requirements En-

gineering, pages 152-164, 1993.

BIBLIOGRAPHY 164

[Goldstein and Goldstein, 1978] M. Goldstein and I. Goldstein. HOW WE KNOW An
Fxploration of the Scientific Process. Plenum Press, New York and London, 1978.

[Hart, 1985] A. Hart. Experience in the use of an inductive system in knowledge
engineering. In M A Bramer, editor, Research and Development in Expert Systems,

pages 117 — 126. Cambridge University Press, 1985.

[Hawkins, 1975] D. Hawkins. Estimation of nonresponse bias. Sociological Methods
and Research, 3:461-485, 1975.

[Hendrick, 1991] C. Hendrick. Replications, strict replications, and conceptual replica-
tions: Are they important? In J. Neuliep, editor, Replication in the Social Sciences,

pages 41-49. Sage Publications, first edition, 1991.

[Henricson and Nyquist, 1992] M. Henricson and E. Nyquist. Programming in C++
Rules and Recommendations. Ellemtel Telecommunications Systems Laboratories,

1992.

[Henry et al., 1990] S. Henry, M. Humphrey, and J. Lewis. Evaluation of the main-
tainability of object-oriented software. In IEFFE Conference on Computer and Com-

munication Systems, pages 404409, September 1990.

[Johnson and Foote, 1988] R. Johnson and B. Foote. Designing reusable software.
Journal of Object-Oriented Programming, 1:25-35, June/July 1988.

[Jones, 1994] C. Jones. Gaps in the object-oriented paradigm. IEEE Computer,
27(6):90-91, June 1994.

[Jiittner et al., 1994] P. Jiittner, S. Kolb, and P. Zimmerer. Integrating and testing
of object-oriented software. In Proceedings of the Furopean Conference on Software

Testing, Analysis, and Review, pages 13/1-13/14. Siemens AG, 1994.

[Kaplan, 1987] R. Kaplan. Basic Statistics for the Behavioral Sciences. Allyn and
Bacon, Inc., first edition, 1987.

[Keppel et al., 1992] G. Keppel, W. Saufley, and H. Tokunaga. Introduction to Design
and Analysis. W. H. Freeman and Company, first edition, 1992.

[Kikuchi et al., 1993] T. Kikuchi, T. Matsuoka, T. Takeda, and K. Kishi. Automatic
classification of a large volume of questionnaire data by means of competitive learn-

ing. In World Congress on Neural Networks, pages 1212-1215, 1993.

BIBLIOGRAPHY 165

[Kitchenham et al., 1994] B. Kitchenham, S. Linkman, and D. Law. Critical review
of quantitative assessment. Software Engineering Journal, 9(2):43-53, 1994.

[Korson and Vaishnavi, 1986] T. Korson and V. Vaishnavi. An empirical study of the
effects of modularity on program modifiability. In Empirical Studies of Program-

mers: First Workshop, pages 168-186. Ablex Publishing Corporation, 1986.

[Korson, 1986] T. Korson. An Empirical Study of the Effects of Modularity on Pro-
gram Modifiability. PhD thesis, College of Business Administration, Georgia State
University, 1986.

[Kung et al., 1994] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen.
Change impact identification in object-oriented software maintenance. In Proceed-
ings of the IFFFE International Conference on Software Maintenance, pages 202-211,
September 1994.

[Lamal, 1991] P. Lamal. On the importance of replication. In J. Neuliep, editor,
Replication in the Social Sciences, pages 31-35. Sage Publications, first edition,
1991.

[Lee and Pennington, 1994] A. Lee and N. Pennington. The effects of paradigm on
cognitive activities in design. International Journal of Human-Computer Studies,

40:577-601, 1994.

[Lejter et al., 1992] M. Lejter, S. Meyers, and S. Reiss. Support for maintain-
ing object-oriented programs. IFEF Transactions on Software Engineering, SE-

18(12):1045-1052, December 1992.

[Lewis et al., 1991] J. Lewis, S. Henry, D. Kafura, and R. Schulman. An empirical
study of the object-oriented paradigm and software reuse. In OOPSLA, pages 184~
196, 1991.

[Lewis et al., 1992] J. Lewis, S. Henry, D. Kafura, and R. Schulman. On the rela-
tionship between the object-oriented paradigm and software reuse: An empirical

investigation. Journal of Object-Oriented Programming, 5(4):35-41, 1992.

[Liberherr and Holland, 1989] K. Liberherr and I. Holland. Assuring good style for
object-oriented programs. IFFEFE Software, 6:38-48, September 1989.

[Liberherr and Xiao, 1993] K. Liberherr and C. Xiao. Object-oriented software evo-
lution. IEEFE Transactions on Software Engineering, 19(4):1993, April 1993.

BIBLIOGRAPHY 166

[Lientz and Swanson, 1980] B. Lientz and E. Swanson. Software Maintenance Man-

agement. Addison-Wesley, first edition, 1980.

[Lohse and Zweben, 1984] J. Lohse and S. Zweben. Experimental evaluation of soft-
ware design principles: An investigation into the effect of module coupling on system

modifiability. Journal of Systems and Software, 4:301-308, 1984.

[Lott and Rombach, 1995] C. Lott and H. Rombach. A repeatable software engineer-
ing experiment for comparing defect-detection techniques. Technical report, De-

partment of Computer Science, University of Kaiserslautern, Germany, 1995.

[Lozinski, 1991] C. Lozinski. Why I need Objective-C. Journal of Object-Oriented
Programming, pages 21-28, September 1991.

[MacDonell, 1991] S. MacDonell. Rigor in software complexity measurement experi-

mentation. Journal of Systems and Software, 16(2):141-149, 1991.

[Mancl and Havanas, 1990] D. Mancl and W. Havanas. A study of the impact of
C++ on software maintenance. In Proceedings of the IEFE Conference on Software

Maintenance, pages 63—69, 1990.

[Marchionini, 1990] G. Marchionini. Evaluating hypermedia-based learning. In
D. Jonassen and H. Mandel, editors, Designing hypertext/hypermedia for learning,
pages 355-373. Springer-Verlag, 1990.

[Marciniak, 1994] J. Marciniak, editor. Encyclopedia of Software Engineering, volume
1 and 2. John Wiley and Sons, Inc., 1994.

[McDermid, 1994] J. McDermid, editor. Software Fngineer’s Reference Book.
Butterworth-Heinemann Ltd, 1994.

[McNeill, 1985] P. McNeill. Research Methods. Tavistock Publications, first edition,
1985.

[Miller et al., 1994] J. Miller, G. Darroch, M. Wood, A. Brooks, and M. Roper. Chang-
ing programming paradigm - an empirical investigation. In M. Lee, B. Barta, and

P. Juliff, editors, Software Quality and Productivily, pages 62-65. Chapman and
Hall, 1994.

[Miller et al., 1995] J. Miller, J. Daly, M. Wood, A. Brooks, and M. Roper. Statistical

power and its subcomponents - missing and misunderstood concepts in software

BIBLIOGRAPHY 167

engineering empirical research. Research report EFoCS-15-95, Department of Com-

puter Science, University of Strathclyde, Glasgow, 1995.

[Miller et al., 1996] J. Miller, J. Daly, A. Brooks, M. Roper, and M. Wood. Elec-
tronic bulletin board distributed questionnaires for exploratory research. Journal

of Information Technology, 22(2), to appear April 1996.

[Miller, 1975] S. Miller. Ezperimental Design and Statistics. Essential Psychology.
Methuen, 1975.

[Mitchell et al., 1987] J. Mitchell, J. Urban, and R. McDonald. The effect of abstract
data types on program development. IEEF Computer, pages 85-88, August 1987.

[Moher and Schneider, 1982] T. Moher and G. Schneider. Methodology and exper-
imental research in software engineering. [International Journal of Man-Machine

Studies, 16:65-87, 1982.

[Moreau and Dominick, 1990] D. Moreau and W. Dominick. A programming envi-
ronment evaluation methodology for object-oriented systems: Part II - test case

application. Journal of Object-Oriented Programming, 3(3):23-32, 1990.

[Neale and Liebert, 1986] J. Neale and R. Liebert. Science and Behaviour: An intro-
duction to methods of research. Social Learning Theory. Prentice-Hall, third edition,

1986.

[Neilson, 1992] J. Neilson. Evaluating the thinking-aloud technique for use by com-
puter scientists. In R. Hartson, editor, Advances in Human Computer Interaction,

volume 3, pages 69-82. Ablex Publishing Corporation, 1992.

[Oppenheim, 1992] A. Oppenheim. Questionnaire design, interviewing, and attitude

measurement. Pinter Publishers, new edition, 1992.

[Ottenbacher, 1991] K. Ottenbacher. Statistical conclusion validity. American Journal
of Physical Medicine and Rehabilitation, 70(6):317-322, 1991.

[Page-Jones, 1988] M. Page-Jones. Practical Guide to Structured Systems Design.

Prentice-Hall International, second edition, 1988.

[Perry and Kaiser, 1990] D. Perry and G. Kaiser. Adequate testing and object-
oriented programming. Journal of Object-Oriented Programming, 2(1):13-19, 1990.

BIBLIOGRAPHY 168

[Pfleeger, 1994] S. Pfleeger. Design and analysis in software engineering. Part 1: The
g g g g g
Language of Case Studies and Formal Experiments. ACM SIGSOFT Software Fn-
gineering Notes, 19(4):16-20, October 1994.

[Pleeger, 1995] S. Pfleeger. Design and analysis in software engineering. Part 3: Types
of Experimental Design. ACM SIGSOFT Software Engineering Notes, 20(2):14-16,
April 1995.

[Pokkunuri, 1989] B. Pokkunuri. Object-oriented programming. SIGPLAN Notices,
24(11):96-101, 1989.

[Ponder and Bush, 1994] C. Ponder and B. Bush. Polymorphism considered harmful.
ACM SIGSOFT, Software Fngineering Notes, 19(2):35-37, April 1994.

[Popper, 1968] K. Popper. The Logic of Scientific Discovery. Hutchinson of London,
revised edition, 1968.

[Porter et al., 1995] A. Porter, L. Votta, and V. Basili. Comparing detection methods
for software requirements inspections: A replicated experiment. IEFFE Transactions

on Software Engineering, 21(6):563-575, June 1995.

[Potts, 1993] C. Potts. Software engineering research revisited. IEEFE Software,
10(5):19-28, September 1993.

[Pratto and Rodman, 1987] D. Pratto and H. Rodman. Magazine-distributed ques-
tionnaires for exploratory research: Advantages and problems. Sociological Spec-

trum, 7:61-72, 1987.

[Pressman, 1994] R. Pressman. Software Engineering: A practitioner’s approach. Mc-
Graw Hill, European edition, 1994.

[Quinlan, 1986] J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,
1986.

[Robins, 1988] J. Robins. Attributions and depression: Why is the literature so in-
consistent? Journal of Personality and Social Psychology, 54(5):880-889, 1988.

[Roper, 1992] M. Roper. Software testing: A selected annotated bibliography. Soft-
ware testing, verification and reliability, 2:113-132, 1992.

BIBLIOGRAPHY 169

[Rosenthal, 1991] R. Rosenthal. Replication in behavioral research. In J. Neuliep, ed-
itor, Replication in the Social Sciences, pages 1-30. Sage Publications, first edition,

1991.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Prentice Hall, 1991.

[Sawyer and Ball, 1981] A. Sawyer and D. Ball. Statistical power and effect size in
marketing research. Journal of Marketing Research, 18(3):275-290, August 1981.

[Scanlan, 1989] D. Scanlan. Structured flowcharts outperform pseudocode: An exper-

imental comparison. IEFFE Software, 6(5):28-36, September 1989.

[Schlaer and Mellor, 1988] S. Schlaer and S. Mellor. Object-Oriented Systems Anal-
ysis: Modeling the World in Data. Yourdon Press: Prentice Hall, first edition,
1988.

[Schneberger, 1995] S. Schneberger. Software maintenance in distributed computer
environments: System complexity versus component simplicity. In Proceedings of

IEFEFE International Conference on Software Maintenance, pages 304-313, 1995.

[Schneidewind, 1987] N. Schneidewind. The state of software maintenance. IEEE
Transactions on Software Engineering, SE-13(3):303-310, 1987.

[Sharpe et al., 1991] S. Sharpe, D. Haworth, and D. Hale. Characteristics of empir-
ical software maintenance studies: 1980-1989. Journal of Software Maintenance:

Research and Practice, 3:1-15, 1991.

[Shneiderman et al., 1977] B. Shneiderman, R. Mayer, D. McKay, and P. Heller. Ex-
perimental investigations of the utility of detailed flowcharts in programming. Com-

munications of the ACM, 20(6):373-381, 1977.

[Sinclair, 1990] M. Sinclair. Subjective assessment. In J. Wilson and E. Corlett,
editors, Fvaluation of Human Work: A practical ergonomics methodology, pages

58-88. Taylor and Francis, 1990.

[Sinha and Vessey, 1992] A. Sinha and I. Vessey. Cognitive fit: An empirical study of
recursion and iteration. IEEE Transactions on Software Engineering, 18(5):368-378,
1992.

BIBLIOGRAPHY 170

[Skinner, 1992] M. Skinner. The C++ primer: a gentle introduction to C++. Silicon
Press and Prentice Hall, first edition, 1992.

[Smith, 1983] G. Smith. The problems of reduction and replication in the practice of
the scientific method. Annals of the New York Academy of Sciences, 406:1-4, 1983.

[Soloway et al., 1988] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert.

Designing documentation to compensate for delocalized plans. Communications of
the ACM, 31(11):1259-1267, 1988,

[Stroustrup, 1991] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
second edition, 1991.

[Sudman and Bradman, 1983] S. Sudman and N. Bradman. Asking Questions. Jossey-
Bass Publishers, first edition, 1983.

[Tiller, 1991] D. Tiller. Experimental design and analysis. In N. Fenton, editor, Soft-
ware Metrics — A Rigorous Approach, pages 63—78. Chapman and Hall, 1991.

[van Hillegersberg et al., 1995] J. van Hillegersberg, K. Kumar, and R. Welke. An
empirical analysis of the performance and strategies of programmers new to object-

oriented techniques. In Psychology of Programming Interest Group: 7th Workshop,
January 1995.

[Votta and Porter, 1995] L. Votta and A. Porter. Experimental software engineering:
A report on the state of the art. In Proceedings of the IEEE International Conference
on Software Fngineering, pages 277-279, 1995.

[Walz et al., 1993] D. Walz, J. Elam, and B. Curtis. Inside a software design team:
Knowledge acquisition, sharing and integration. Communications of the ACM,

36(10):63-76, 1993.

[Welkowitz et al., 1976] J. Welkowitz, R. Ewen, and J. Cohen. Introductory Statistics

for the Behavioral Sciences. Academic Press, second edition, 1976.

[Wilde and Huitt, 1992] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engineering, SE-18(12):1038-
1044, December 1992.

[Wilde et al., 1993] N. Wilde, P. Matthews, and R. Huitt. Maintaining object-oriented
software. IEEFE Software, 10(1):75-80, 1993.

BIBLIOGRAPHY 171

[Zweben et al., 1995] S. Zweben, S. Edwards, B. Weide, and J. Hollingsworth. The
effects of layering and encapsulation on software development cost and quality. IFEF

Transactions on Software Engineering, 21(3):200-208, March 1995.

Appendix A

Glossary

Definitions given in this glossary are the accepted definitions used by the International
Software Engineering Research Network (ISERN) or, if not yet ISERN defined, com-
mon definitions found in any empirical or statistical text. ISERN definitions have been
given priority because the network consists of a group of organisations, universities,
and companies, from all over the world, who place the same importance on conducting
empirical research. ISERN members are the leading software engineering institutions

conducting empirical work and meet annually to exchange ideas and share knowledge.

Alternative hypothesis (H;): the hypothesis that remains tenable when the null
hypothesis is rejected.

Availability sampling: obtaining a sample of the population simply by making use

of people who are available and willing to participate in an experiment.

Boxplot: used to represent the distribution of a set of data where the bottom of the
box represents the 25th percentile, the top of the box the 75th percentile, and
the line across the middle the 50th percentile (median value). The top hinge is
the largest data point less than or equal to 1.5 midspreads (the length of the
box) above the 75th percentile; the bottom hinge is the smallest point greater
than or equal to 1.5 midspreads below the 25th percentile. An outlier is any

point above or below a hinge.

Confirmatory power: providing confidence in the findings of an empirical study

by either replicating it and achieving similar results or investigating a similar

APPENDIX A: GLOSSARY 173

hypothesis by means of a different empirical technique and achieving similar

results.

Dependent variable: a measure used to characterise the effects of the independent

variable(s).

Effect size: the degree to which the phenomenon under study is present in the pop-

ulation.

Empirical: said of data based on observation or experience and of findings that can

be verified by observation or experience.

Experiment: in general, an experiment is defined as an act or operation for the
purpose of discovering something unknown or testing a principle, supposition,

etc;

In software engineering, a trial that is conducted in order to verify a hypothesis
defined beforehand in a controlled setting in which the most critical factors can

be controlled or monitored.

Hypothesis: a tentative explanation that accounts for a set of facts and can be tested

by further investigation; a theory.
Independent variable: a manipulation that is applied to the subject of study.

Null hypothesis (Hy): a statement concerning one or more parameters that is sub-

jected to a statistical test.

Population: all observations of the phenomena being studied, e.g., all software mod-

ules, all code reviews, all programmers.

Power of a statistical test: probability of rejecting the null hypothesis when the
alternative hypothesis is true.
Qualitative data: data represented as words and pictures, not numbers. Qualita-

tive analysis consists of methods designed to make sense of qualitative data.

Quantitative data: data represented as numbers or discrete categories which can
be directly mapped onto a numeric scale. Quantitative analysis consists of

methods designed to summarise quantitative data.

Sample: A subset of the population.

APPENDIX A: GLOSSARY 174

Sampling frame: a list of all of the members of the population under investigation

from which the sample is to be drawn.

Triangulation: the validation of a data item with the use of a second source, a second

data collection mechanism, or a second researcher.
Type I error: incorrectly rejecting the true null hypothesis.

Type II error: incorrectly accepting the false null hypothesis.

Appendix B

Collected Interview Data

B.1 Structured interview template

Thanks for taking the time to be interviewed on this subject. The questions I'll ask will start off
as relatively simple and should mainly be one or two sentence answers. Later questions move
into more complicated areas and will mainly ask for opinions gained from actual experience,

reading, and conferring with your colleagues.

1. To what extent is your knowledge of object oriented programming; that is how long have

you used it, and how often do you use it?
2. Which language or languages are you most familiar with?

3. What size in executable lines of code are, on average, a single object’s method (you may

give a range if you wish)?

4. Compared to structured programs, what would you say the effect of changes are in
object oriented programs. For example, are changes likely to cause ‘ripples’ to propagate

through the system, or be localised to particular objects?
5. Do you use the inheritance facilities of your language(s)?
No: why not?
Yes: how often?
6. Do you think inheritance can cause difficulties when

(a) trying to understand the code as a whole?

(b) trying to understanding small segments of code (e.g., as a software maintenance

engineer might do)?

APPENDIX B: STRUCTURED INTERVIEW TEMPLATE 176

No: what about when the hierarchy is particularly deep (define deep)?
No: why not?
Yes: see next question.

Yes: As a consequence do you think that software tools are a necessity for under-

standing and maintaining object-oriented programs.
No: why not?
Yes: Why? Any particular types you find useful, e.g., a cross reference

browser, etc?

7. Inheritance can spread the functionality of particular methods over the system. What
do you think is the impact of this from an understanding point of view? What do you

think is the impact of this from a maintenance point of view?
8. What benefits, except for reuse, do you think inheritance provides?

9. What disadvantages do you think inheritance introduces (apart from the ones already

discussed)?

10. The argument of inheritance versus multiple inheritance has existed for some time now.

What are your opinions on this discussion? Which option do you think is best?

11. Without discussing inheritance, can object oriented code, in your opinion, cause prob-

lems to software maintenance engineers?
Yes: Expand on these problems?
No: What makes it easy to maintain then?

12. It is possible to maintain imperative code to death; that is the quality of the code
deteriorates as it is continually maintained, until it becomes unmaintainable. Do you
think that this can happen to object-oriented code, given changes are performed in an
object-oriented fashion?

No: why not?
Yes: why?

13. How much use do you make of the class libraries? Which language?

14. Do you ever maintain these libraries by updating them?

No: why not?
Yes: What is the procedure for this?
15. Do you think as class libraries increase in size, and are used more often, the maintenance

overhead spent on them will be greater than the maintenance overhead of the actual

product? Opinions and explanations please.

APPENDIX B: STRUCTURED INTERVIEW TEMPLATE 177

16. Do you have any opinions on what is good or bad programming style when concerned
with object oriented code quality? Has your company produced guidelines you should

adhere to?

17. Given that a software maintenance engineer makes changes on a small scale, for example
modifying a method, or adding a new method, is it possible to know whether the changes

made have degraded the system code quality?

18. Would, in your opinion, a software maintenance engineer consult any design documen-

tation to help him/her understand specific pieces of code causing difficulty?

19. Do you think that dynamic binding causes more problems than advantages?

Yes: Expand on the specific disadvantages you feel are the worst.

No: Expand on the specific advantages you feel are the best.

20. Polymorphism has been said to be a great strength of oo languages, but is also said to
introduce difficulties in program analysis and understanding. Would you agree with this

statement?

Yes: Why?
No: Why not?
21. Polymorphism, however, requires consistent use of method names within a system. Have

you experienced any particular problems with consistent naming in this manner? What

about the case of operator overloading?

Yes: Why?
No: Why not?

22. Are you aware of the C++ language?

Yes: What do you feel are the disadvantages of this language when compared to other
object-oriented languages? What advantages does C++ hold over other object-

oriented languages.

No: nothing further.

23. When a software maintenance engineer makes modifications is it possible that he might

‘hack in a quick fix’ instead of trying to maintain object-orientedness?

Yes: Have you done this yourself? Have seen this done by any of your colleagues? Why

is this quicker?

No: Why not?

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

178

24. To conclude, do you believe that the object oriented paradigm, taking everything into

consideration, is more beneficial than other paradigms?

25. Has there been anything that you have not been asked that you feel is important and

should be addressed, or anything you would like to reiterate?

Thanks again for your time.

B.2 Paraphrased subject responses

This section details a summary of the remarks that individual subjects made to specific

questions and issues. The data are presented in paraphrased form (although quotes

indicates the subjects own words). No response means that the subject did not mention

anything of significance. Tables are ordered by the questions in the interview template.

Remarks made by a subject to a particular topic, but not given to a question are

indicated and tabulated in the appropriate tables.

Subject

Remark

ECR-=DoRE0Qm >

Small but up to 50
1-100

100+ (C-Flavours)
2-50

1-40

1-50; keep them small
1-30

1-20

5-10

6 lines

1-100

< 12 lines

1 - screenful

Table B.1: Answers and remarks to Q. 4

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

179

Subject

Remark

A

B

==l] Elolw

20—

Changes are localized, but hard to tell if system quality is

degraded. Good design is the key

Depends on the design: changes localized if good design, but will

affect the whole system if not

It depends on how well written and designed they are: less implications
if this is done well, but difficult to maintain otherwise

Must be well designed: if they are then changes more localized
Localized, but design very important

Design very important: have classes correct (good abstractions) then
more localized

Well designed code then changes are localized; bad code then they’re not
Good design important: if good design then changes more localized
More modular code with object-orientation and less like to

require changes

Localized, but can have a bigger global effect: affect all subclasses
More localized, design important

Localized, again design is important

Objects are structured pieces of code, more adaptable to change and
easier to maintain

Table B.2: Answers and remarks to Q. 4 and various other questions

Subject

Remark

A
B

==l NoNwle!

ZWNHH

Tools are useful but not a necessity; class browser

Not a necessity, if you don’t need tools to understand a non

OO program then you don’t need them for an OO program

Not a necessity, but useful

Not a necessity, but very helpful

Yes a necessity, you need them for visibility of whole maintenance process
Yes a necessity, but that’s the case with everything

Not a necessity, but a definite benefit

Yes a necessity: it’s hard to know the relationships between classes
without them

Tools are very important; more are needed

I think they are a necessity, if dealing with something big then yes

A necessity: they help to visualize things you might not have realised
A necessity, yes I think so

A necessity, a good browser is essential

Table B.3: Answers and remarks from Q. 6

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

180

Subject

Remark

A
B

mAe=—= HOo=EH

=2 =

Makes it easier if abstractions are designed and implemented properly
It shouldn’t make understanding difficult: inherited classes should
implement same sort of function: understand the base class method to
know what it’s doing

Inheritance makes understanding easier, but it must be well designed and
well written

Inheritance causes difficulties for tracing the flow of control
particularly with multiple inheritance; “you don’t know where you are
going to end up.”

Yes without fully appreciating repercussions in terms of dynamics
Yes, but only if it’s wrong, if the inheritance is inappropriate

It means tracing through more code, but if done well then no problems
It can when methods are overloaded, e.g., where does this member
variable get inherited? is hard to answer

No difficulty: can’t see why it would

Can be difficult to trace which method is being called: tools help
Sometimes. Having to hunt through all the source code for
implementation is problematic

Depth of inheritance an issue; easy to understand if designed well
related to depth, e.g., if you have to trace back through a great
number of objects to see what method is implemented then yes

Table B.4: Answers and remarks to Q. 6

Subject

Remark

>

=Nl oNolwle@lee

ZHNHH

If using abstraction properly then a natural way of writing and
understanding code

If designed properly then understanding ok

If designed and written well then ok, it’s likely to aid understanding
No great impact on understanding

No more understanding difficulties than with structured programs
If the abstractions are clear then understanding should be ok

If done well then understanding should be ok

Inheritance simplifies things hence better understanding; “it simplifies
your design.”

No impact on understanding, it causes no difficulty

No problem, you don’t have to deal with it at that level

No real problem

The hierarchy should be defined well so no understanding problem
I don’t really know: it goes back to the design, the functionality

spread should not affect me that much

Table B.5: Answers and remarks to Q. 7

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

181

Subject

Remark

A

— ==l o lwl@Nee)

—

=z =

If abstraction is enforced then it should be ok; if it isn’t then
there could be trouble; tracing of dependencies can be difficult

but tools help

Can be difficult if inheritance is deep: difficult to trace dependencies
If well written then ok, life is easier

Good because fix it for one, fix it for all subclasses

Not qualified to answer

No experience of maintenance

Tracing up the hierarchy can be a problem

No more difficult than tracing C function calls, in fact its more
structured so no specific problems; fix it for one fix it for all

No impact: programmers don’t think like that

Depth of inheritance is an issue: the deeper the hierarchy the
more tracing required therefore tools are important

Can cause problems because it may break subclasses who

use the method that’s been changed

No experience of maintenance

Inherent object-orientation has made it easy to the find way round
a system, to find which bit was requiring maintenance

Table B.6: Answers and remarks to Q. 7

Subject

Remark

Ae-—=EDHoOEEgO 3>

= -

Able to design at highest level of abstraction
Provides modularity and prevents code redundancy
Aid to understanding and avoids code duplication
Simplifies control structure of methods

Provides focus for powerful abstraction

Reduces redundancy; allows abstraction

No duplication of functionality, simplifies design
Reuse of specification
Information hiding and encapsulation

to understanding, simulates the real world
Quick prototyping, single inheritance good for design
“None, inheritance is a kind of implementation thing”

Helps produce nice designs at the conceptual level and aids understanding

Better encapsulation, quick prototyping, high levels of abstraction, aid

Table B.7: Answers and remarks to Q. 8

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

182

Subject | Remark
A If the design is not good then understanding inheritance is a problem
B Speed; the deeper hierarchy then the more complexity
C If over used then it can result in code that’s harder to follow
D Tracing the flow of control
E Misrepresenting abstractions is a problem
F None
G New concept to learn
H None experienced
I Multiple inheritance and inappropriate use of inheritance
J Tracing dependencies; what method is this attached to? can be hard
to answer
K If not designed properly then BIG problems
L Multiple inheritance
M Losing your way in the hierarchy (related to depth)
Table B.8: Answers and remarks to Q. 9
Subject | Remark
A Single inheritance far more useful
B Multiple inheritance complicates things and software reuse is harder
C Use multiple inheritance for complex applications; reuse and maintenance
is easier with MI.
D Multiple inheritance useful at the coding level
E Multiple inheritance maps the reality of the system
F Try to avoid multiple inheritance
G Multiple inheritance a big problem - it’s harder; SI is the way to do it
H Multiple inheritance a trojan horse: it makes the design more complex
I Multiple inheritance isn’t worth the extra effort; it’s more complex
J Multiple inheritance comes very naturally
K Multiple inheritance can be messy: it’s an advantage but you must have a
solid case for using it
L Multiple inheritance allows for sloppy approach; you don’t really need it
more tightly coupled, and reuse is harder
M “Multiple inheritance helped to underline the different functionality
the object was inheriting”

Table B.9: Answers and remarks to Q. 10

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

183

Subject | Remark

A Yes it can, but it’s related to the learning curve: these do disappear

B No more problems than structured code; difficult for those who don’t
know the code; splitting each class into a single file doesn’t help

C Problems if people doing maintenance don’t have good object-oriented
skills, but if these skills are possessed then it’s easier

D No problems, need knowledge of basic architecture but that’s all; use of
contractors easier for OO systems: they can get up to speed quicker

E If only partial knowledge of the system then maintenance difficulties

F No: it’s the same as any other paradigm; abstraction aids maintenance

G If personnel trained properly then they shouldn’t have problems

H Less problems that straight C: OO has more structure

I If designed properly then objects shouldn’t need maintenance, just
specialization of existing classes

J If poorly documented

K One file per class idea can make it harder but tools help

L Few systems mature enough for this to be decided

M Can’t envisage any great problems from it, my experience is than it is
easier to maintain object-oriented code

Table B.10: Answers and remarks to Q. 11
Subject | Remark

A “Getting into OO way of thinking takes time” “learning by osmosis”

I “Learning curve is really fierce”

J “You really have to think differently; I'm still thinking in
structured C in some ways”

L Almost 2 years to become a fully conversant object-oriented programmer

Table B.11: Remarks made about the learning curve

APPENDIX B: PARAPHRASED SUBJECT RESPONSES

184

Subject

Remark

“mmDoOEETQm

2R

“Without a doubt” The rate of entropy leads to disorder and
abstraction will eventually be lost

Quick fixes lead to unmaintainability.

Yes but process is slower than with structured programs.

Rate of entropy reduced: it’s slower for object-oriented systems
There is a lesser tendency but must keep object-oriented mindset
Yes but depends on the design of the changes: must keep abstractions
Slower for object-oriented programs

If quick fixes unmaintainability ensues: corruption of the design
Much less tendency for object-oriented programs

Not as easily for object-oriented programs: changes made are
object-oriented then the systems shouldn’t become a mess

Less likely than with structured programs

Less so with object-oriented programs

Yes, I could envisage that situation occurring

Table B.12: Answers and remarks to Q. 12

Subject

Remark

==RoNNoRwleNee i

=l

A lot, all the time

Very limited use C++

None for C-flavours, **** for C++

Extensive in past, limited at present

None to date

Pretty limited

*okkk

A lot for Objective-C, limited for C++: easier to write general
purpose classes in Objective-C

A lot

Use bought libraries all the time

All the time; we build our own libraries

Extensive use of own libraries

Depends on what’s available - beginning to in C++, all the time
in Objective-C

Table B.13: Answers and remarks to Q. 13

APPENDIX B: PARAPHRASED SUBJECT RESPONSES 185

Subject | Remark
A Yes, take code from another programmer and modify it for new
requirements; no for commercial libraries
No for commercial libraries; very limited maintenance and limited
reuse otherwise
No for bought libraries, code is robust
Avoid it, perhaps specialization but not modifying the original code
No experience of maintaining class libraries
Definitely, change someone else’s code to meet your requirements
A little maintenance but nothing major
No, class libraries tend to change very little
No
Yes, all the time through a revision control procedure
More so than a single programmer might do; trying to make code generic
as possible in order to allow reuse
No

oo

RO =EE00

=

Table B.14: Answers and remarks to Q. 14

Subject | Remark

A No, there is no distinction between libraries and application

B Possible, but if well written then libraries don’t need much maintenance

C Less maintenance: likely to be more robust than new code if used before,
but need good version and configuration control

D No, being tested by a large user group and this irons out the bugs

quickly: stability

Depends on scaleability of class libraries: need version and
configuration control

Class libraries are static and hence reliable, so no

Class libraries are stable once they’ve been debugged, so no

In my experience class libraries once stable are changed very little

No, little maintenance of class libraries once stable

It’s a possible scenario, but it’s not happening at the moment
Problems get ironed out as you use it, so no

Shouldn’t have to maintain libraries (Cox’s maturity index a good idea): well
used then well stressed and exercised

Depth of library an issue; incremental development with maturity index
should prevent maintenance being required

=

CR==EHaH

=

Table B.15: Answers and remarks to Q. 15

APPENDIX B: PARAPHRASED SUBJECT RESPONSES 186

Subject | Remark

A Code must be put through code review, guidelines are subjective, e.g.,
don’t use gotos, global variables, but bad design produces bad code

B One file for one class is not good style; inconsistency

C Long methods are a sign that something wants thinking about; excessive

inheritance depth; “it’s almost less the coding style than the design

style that’s important”

D Short methods, protected instead of public inheritance where possible;

not too deep an inheritance tree

E I’ve not enough programming experience, it’s vital that common programming
guidelines are accepted though

Good design usually means good code: we have code reviews earlier now

I don’t like overloading, it complicates things too much

Should have code reviews to sort things out, seems to be few points of
reference for OO code quality

I Identification of correct objects; inappropriate use of inheritance: all

at the design level

Small methods; mixing object-oriented code with procedural code is sloppy

== R

“Mechanism not policy” (based on good design)
Question not asked

Good design then good code, bad design then bad code

e

Table B.16: Answers and remarks to Q. 16

Subject | Remark
A Difficult to say, changes should be localized: only when encapsulation

is broken is there a worry, code reviews help

Difficult to know, code reviews help

Its no more impossible than under the procedural type of method;
breaking encapsulation is a bad idea, code reviews help

No, but this is true of any system

It depends on the utility of the method changed

Use metrics and code reviews to check so yes it is possible

No, but a code review should spot it

It’s subjective, but code reviews spot these things

Question not asked

Yes, the changes should be tested adequately and encapsulated
No, difficult to tell; code reviews help

Encapsulation so it should not have degraded

Very difficult to tell

O w

ECfrRe—=OooO=m=E0

Table B.17: Answers and remarks to Q. 17

APPENDIX B: PARAPHRASED SUBJECT RESPONSES 187

Subject | Remark

A Trouble with availability and quality of design documentation
Subjects B, C, D, F, G, H, J, K, & M made similar statements

E Documentation is usually available

G “Design documentation is important otherwise you are back to where you
were before”

L Documentation for OO programs more important aid to understanding than
documentation for non OO systems

M “The documentation is essential”

Table B.18: Answers and remarks to Q. 18

Subject | Remark

A No, without dynamic binding no object-oriented programming
B No, really useful; Objective-C far better than C++ for it
C No, it allows very elegant code, but there can be problems of finding

methods bound at run-time

No, it’s a big help: simplifies the code; it’s more intuitive
No, if managed well it maps reality

No, good/clear abstractions are aided by it

If you understand it, then it causes few problems
No, it makes your design simpler

Question not asked

No, it allows generic code, no switches etc

No, it provides lots of advantages

No, only problem is calling a non existent method
Yes if you are careless, no if you are not

ECom—w—~OoREg

Table B.19: Answers and remarks to Q. 19

Subject | Remark

A No, using a message should have the same effect on any object that
responds to it; abstraction
B Yes, it’s a great benefit, but it can make things difficult to understand.
If used properly and sparingly it’s advantageous
Yes, it produces generic code, but easy to lose track of what’s going on
No, it simplifies things rather than making them more difficult: you
are looking at the behaviour of each object but not the details
Maintain semantic consistency and no problem, otherwise problems
No, methods with same name should achieve the same aim
Yes but related to learning the concept
It simplifies things; I think it’s wonderful
It’s the most important property in OO systems, but must maintain high
level semantics
It can cause confusion: you just have to be careful
No problem, it improves understanding

o Q

—~EHo=e

It’s an aid to human understanding, it’s more intuitive
No problem with the size of systems I've looked at

20—

Table B.20: Answers and remarks to Q. 20

APPENDIX B: PARAPHRASED SUBJECT RESPONSES 188

Subject | Remark

A No problems, perhaps with operator overloading, but tools help this

B No problems, but I avoid operator overloading as it is not predictable

C No problems, no operator overloading experience

D Yes, naming is big issue in object-oriented programming, no great problems
with operator overloading, but no great experience either

E No real experience of any such problems

F Not with polymorphism, but experience of operator overloading not pleasant

G No, but little use; operator overloading used sensibly then useful

H Yes, it’s hard to know the best time to use the same names

I This is one of the major hidden problems in object-oriented systems,
programmers must understand about consistent naming. Operator overloading
for thoroughly defined operators only

J None experienced; no use of operator overloading

K Yes, easily make a mistake renaming a member function, and this can lead
to subtle errors that are hard to find because everything looks ok

L Not personally

M No

Table B.21: Answers and remarks to Q. 21

Subject | Remark

A It’s been hacked together without much thought

B Syntax of it, can be very obscure

C Same pitfalls as C, easy to write C in C4+4. “Regress back into doing
something in a C fashion when they should be doing it in OO fashion”
Complicated, tries to do everything, inconsistent
Unit of modularity, the class, has not been scaled up
Same problems as C, strong typing, write C instead of C++
All of the C problems

Huge monster of a language, strongly typed, obscure

— Do T

Time bomb on wheels, allows bad programmers to write bad
object-oriented code

Almost programming in C; mixing and matching paradigms is sloppy
Undefined areas (e.g., protected inheritance), doesn’t look
object-oriented, doesn’t encourage object-oriented way of thinking

L Doesn’t encourage object-oriented programming: you may write C
instead of C++; it’s strongly typed

M Strong typing; sold as a better C: allows you to feel as if you are an
object-oriented programmer, but you are not, allows you to write C;
not forced to write object-oriented code

=

Table B.22: Answers and remarks to Q. 22

APPENDIX B: PARAPHRASED SUBJECT RESPONSES 189

Subject | Remark

Its efficiency and popularity
Its fast

Its performance

Familiarity with C and speed
Difficult to say if it has any
Control over everything

Its performance

Its performance

Allows use existing C libraries and OO is taking off because of C++
Its efficiency; existing C libraries

More efficient

Efficiency and it’s street credibility

Efficient; backed by AT&T

ECoRe =D

Table B.23: Answers and remarks to Q. 22

Subject | Remark

A “Yes, without a doubt. It’s common practice” “Time pressure
does exist”

B It depends on the maintainer. It’s “easier in C++”

C “Entirely possible” “Only thing you can do in the time”

D “Absolutely, someone pushed in a hurry will do it the easiest way”

E “It’s too easy in C++”

F Yes because of time pressures

G “Yes, but that’s bad maintenance rather than design”

H “There’s a good chance it might happen” I've only done it once

I “Yes particularly in C++4”

J In C++ a lot easier to do quick fix; depends on nature of the project as
well as individual

K “Yes absolutely”

L “One of the dangers in these hybrid languages”

M “It’s all too easy, it’s really easy, and the temptation is always there

Table B.24: Answers and remarks to Q. 23

Subject | Remark
A time constraints have caused quick fixes to OO code in the past
Subjects C, D, F, and K made similar statements
D Must try to remain competitive and that can cause quick fixes
K Documentation is the first thing that suffers because of time constraints

Table B.25: Remarks about time constraints when performing quick fixes

Appendix C

Collected Questionnaire Data

C.1 Questionnaire on object-oriented systems

Section 1 — Your Background with Object-Oriented Technology

Base your answers to the questions in Section 1 on experience with object-oriented technology. CIR-
CLE the category which most accurately describes your answer. Please feel free, however, to articulate

information which you regard as relevant at the end of each question.

1. (a) What is your current position?
Student
Academic
Software Engineer
Project Manager
Other - please specify:

(b) In what capacity do you use object-oriented technology?
Teaching
Programming
Analysis and design

Other - please specify:

2. (a) How long have you used object-oriented technology?
< 1 year
1 - 2 years
3 - 4 years
> 4 years

(b) How often do you use object-oriented technology (e.g., every day, once a week, etc)?

APPENDIX C: QUESTIONNAIRE ON OBJECT-ORIENTED SYSTEMS 191

3. Which object-oriented language(s) are you most familiar with? (you may circle more
than one category)
C4++
Objective-C
Eiffel
Smalltalk
CLOS
Other - please specify:

4. A method is typically how many executable lines of code?
1 - 4 lines
5 - 10 lines
11 - 20 lines
> 20 lines

Your range of smallest to largest is:

5. How deep would your inheritance hierarchy be before you became uncomfortable with it?
1 level
2 - 3 levels
4 - 6 levels
> 6 levels
No problem with depth

6. What causes you the most difficulty when trying to understand an object-oriented program?

Please specify:

7. Has inheritance caused difficulty when trying to understand an object-oriented program?
(please circle the appropriate number)
Never Always
1 2 3 4 5

8. Overloading requires consistent use of method names within a system. Have you experienced
any problems with consistent naming in this manner (i.e., methods did not maintain semantic
consistency)? (please circle the appropriate number)

Never Always
1 2 3 4 5

9. Have you made use of class libraries that are local to your company/academic institution
(i.e., designed and implemented by your company /institution)?
(please circle the appropriate number)
Never Always
1 2 3 4 5

APPENDIX C: QUESTIONNAIRE ON OBJECT-ORIENTED SYSTEMS

Section 2 — Opinionated Object-Oriented Questions

Base your answers to Section 2 on your opinions. Opinions can be gauged on experience, reading or

conferring with colleagues. Again, feel free to articulate any relevant information at the end of each

question.

10.

11.

12.

13.

14.

Do you believe that the object-oriented paradigm is more beneficial than other
paradigms in terms of ...
FEase of analysis and design: Yes
No
Don’t know
Programmer Productivity: Yes
No
Don’t know
Software Reuse: Yes
No

Don’t know

Ease of Maintenance: Yes

No

Don’t know?
Any other reasons? - please specify:
Is multiple inheritance useful? (please circle the appropriate number)

Never Always
1 2 3 4 5

Do you think that continual maintenance of structured programs, i.e., non object-oriented

programs, leads to unmaintainability? (please circle the appropriate number)
Never Always
1 2 3 4 5

Do you think that continual maintenance of object-oriented programs leads to
unmaintainability? (please circle the appropriate number)

Never Always

1 2 3 4 5

Do you think that object-oriented code is more maintainable than structured code?
(please circle the appropriate number)

Never Always

1 2 3 4 5

APPENDIX C: QUESTIONNAIRE ON OBJECT-ORIENTED SYSTEMS 193

Please answer questions 15 to 19 only if you have knowledge of C++4 or strong opinions

on the subject in question.

15.

16.

17.

18.

19.

C++ appears to have become the de facto standard object-oriented language for industry.
Do you regard this as

Bad

Good

Indifferent

Don’t know, or

Disagree with statement, please say why:

C++ allows a mixture of object-oriented programming and structured programming.
Do you see this mixture of paradigms as an

Advantage, please say why:

Disadvantage, please say why:

Don’t know?

When maintaining a C+4 program would you make use of the FRIEND function rather
than redesign your inheritance hierarchy and thus maintain object-orientedness?
(please circle the appropriate number)

Never Always

1 2 3 4 5

(a) How often do you make use of operator overloading?
(please circle the appropriate number)

Never Always

1 2 3 4 5

(b) Do you overload operators as

Member functions, please say why:
Non-member functions, please say why:
Both of the above, please say why:
Not Applicable?

How often do you make use of templates?

(please circle the appropriate number)

Never Always
1 2 3 4 5

Comments and points you would care to elaborate on:

194

APPENDIX C: RAW QUESTIONNAIRE DATA

ionnaire data

C.2 Raw quest

This section provides the raw data for the 275 completed questionnaires. The data is

a 0 indicates no response was given

is ordered by question and is coded as follows:

for that question, a 1 indicates the first category was chosen for the answer to the

question, a 2 indicates the second category was chosen, and so forth. In the case

where the number listed is outwith the number of categories available, a combination

of categories where chosen by the respondent. Finally, the last number of each row

electronic

indicates which distribution media the questionnaire was received from: 0

postal.

newsgroups and 1

0O 0 0 0 0 O
3 3 2 3 4 0

1
1

1 0 0 3 3
3 0 4 0 O 4
2 2 2 4 0 0 0 0 0 0 O

1

1
1

2 265 2 4 2 3

6

1

8 3

8 4 3 10 0 1 5 3 4 5 3
1 5 2 3

1

1
1
1

3

2 2 2 3 6

2 4 3 4 1 2 2
0 4 3 4 2 2 5 0 0 0 O
2 4 2 2 4 6

1
1
1

3 2 3 3 2 2 3 3

7

1

3 2 3
3 8 3
3 2 3
3 2 3

2 3 3 1
2 5 3 1

1

5
3 0 5 4 2 4 3

3 3 3 2

1 8
1
2 5 2 3

2 7 3

3 4 2 4 2 4 3 3 3 4 0

1

1
1
1

4 3 1

1
1

2 05 3 5 1
2 4 4

1

1
4 2 0 0 0 0 0 0 0 O

3 5 3 3 3

3 0 5 3

1

1

3 4 2 4

1

1
3 3 3 3 3 0 0 O

3 2 3 4 3

13 3 2 56 2 3 2 3 3

1

1
1
1

2 0 0 0 O

1
3 3 4 3 3 0 0 0 0 0 O

0O 0 5 2 0 1

2

4

1

1

1

4 4

1

4 3 2 4 3 2 4

1 1 0 0 O
3 3 0 2 5 0 0 0 0 O O

5§ 0 4 3

0O 0 2 3
3

6
4
1

1
1
1

1
1
1
1
1
1
0

1
1
1
1
1
1
1
1
2
1

1
1
1

3 2 3 1 5 2 2 5 3

3 2 3
4 2 4

1

1

3 2 4 3 4 0 0 0 0 0 O

1 4 3 1 4 2 2 4 2 4 2 5

3 2 5 2

3

12 0 0 3 3 2 0 3 3

2 2 0 0 O

1
2 4 2 4 0 0 0 0 0 O

3 3 2 2

1
1
1
1
1
1

5 4 0 O

0 5 2 3 3 3 1

3 4

1 1 4 3 4
0O 5 3 5 2 3 0 3

3 4 3 5 2

2 4 3 3

1

1

1

5 7 4

2

1

1
1

2 2 0

3

1
1

2 3 2 4
4 2 3 4

3 2 4 2 4

1 5 2 3 2 2

16 3

1
2
1

2
3

2 5 4

4 4 3 1

1

1
1

16 2 2 5 2 4 4 2

7

4 3 9

4 4 O

4 3 5 2 3 4 2

2 0 3 2

2

1

1 1 4 5 5 45 1 0 0 0O 0 O
1

1

1
1
1

5 4 2 3 2
2 2 2 3 4 5 2
4 5 3 3 0 2 2
2 2 3 2

0

2 4 4 O

1
1
1
1
1
1

2 5 2 4
2 0 0 4 0 3
4 2 2 2 3 2 2 2 2

5 2 2 2 2 2 2 2 3 3 3 3

7

1
1
1

2 2 3 3 0
2

1
1

1

1
1
9

3 8 3

1

3 8 4 2
5 7 4

2 3 4 3

2 3 2 2 3

1

1

3 2 5 3 4 5 2

1
1
1

2 0 0 0 O

4 2 5

3 3 3 5 3 4

1 3 4 2

4

14 3 1
1

3
3

1

5§ 3 4 0 2

13 3

2 2

14 2 0 3 2 1

4 3

1

1 2 3 3 3 2 1 2
2 2 2 2 0 2 2 3 0 0 0 0 0 O

2

1

14 2 0 3 3 4 1

1 2

2

2 3 3 3 3 2

1

1
2
1
1

3 3 3 3 2 3 2

4 5 5 3 4

2

1

3 2 2 2 6
3 8 3
3 8 3
3 2 4
3 8 4
4 2 3

2 2

1 2 4 3 3 1
3 2 4 2 4

2

14 3 0 3 4 4 5 2

14 3

1
1
1
1
1

4 2 2 2 2

1

1 2 2 2 4 3

3 2 45 2 0 0 0 O

3 3 3 3

1
1

16 2 2 3 2 2

1

1

1

1
2 2 2 0 3

3 3 3 3 3

1

14 3 3 3 2

14 3

2 4 3 4 1

1

1
1
1

5 2 3 4 2 2

1

4 3 3 2
4 3 4

1

14 2 0 3 5 4 5 2

14

1

1 3 2 2 2 2 2 2 4 1 4 4 2

2

2

5 8 4 2

195

APPENDIX C: RAW QUESTIONNAIRE DATA

3 5 2 4 2 1 2 3 3 3

3 3 3 2 4 3 4 3 3 4 5

2
1

14 3 4 3 2 1

1

4

0

4

1

1

2
2
1

1
1
2

5 2 2 4 2
4 3 2 4 2

3 4 2 4

4 2 4 0

1

3 2 3 4 0 0 0 0 0 0 O
3 2 0 0 0 2 3 4 2
3 0 3 0 O

1
1

2 3 4 3

2 1

16

8 2 2

1 0
1

1

1
1
1

1
1
1

2 3 1
1
1

5 5 4

0O 4 4 3

1

1
1

1
2 0 3 2 3

4 3 2 4 0 0 0 0 0 O O
2 4 2 4 0 0 0 0 0 0 O

5 0 0 4
2 4 3 4

1

4 3
1
1

1
2

1
1

11 2 1 3 2 3

7

8 2 0
2 3 2 2

5§ 2 4 0

1

2 2 3 2 2 2
3

1

0O 0 0 0 O
3 4 3 5 O

1 5
2 4 2 5

3 4 2 2

1

1

1
1

0 4 4 0

1

2 0 56 2 3 2
3 4 4 2

9
2

1
1
1
1

8 3
8 3
8 3
7 3

4 2 5 0 0 0 0 0 O O

1
1

1 3 3 2 1 5
1

1

2 0 0 4

1 1

16 2 2 5 2 2 2 1

4
4

4 4 3 2 O

2 2 4 4 O

3 2 2 0

2

0O 2 0 0 0 0 2 0 0 0 0O

5 2 2 1 1 1 1
3 3 1 3 4 4 2 4
1 2 3 5 4 3

8 3
8 3

4 3 1 0 4 O

1
1

16 3 1

1

1

2 2 2 4

1
1

1
1
1

2 3 3 4 2 0 4 2 2 1

1

3 3 4 0 0 4 4 2 0 0 0 0 O

5 2 0 2

16 0 0 3 4 3
16 2 0 5 2

2 0 0 0 0 O

2

1
1
1
1
1
1
1

3 3 3 3 4 2 O

1

1
1
1
1

3 3
3 3
3 3

1 4 0 4 O

3 0 0 4

3 3 3 3 4 2 O

2 0 0 0 0 O
3 2 2 0 2 O
2 0 0 0 0 O

1

1

16 0 0 3 4 3

5§ 5 2 5
5 4 2 4
0 2 2 4
0 4 2 4

10 3 0 5 2 2 5

4

1
1

2 0 3 4 2 1

11

0O 2 4 2 O

1

0O 2 0
2 0 0 0 0 O

2
2

3 4 3 4
2 3 2 4

2 1
1

3

2 0 3 2 0

9

1

1
1
1
1
1

3 2 4
3 3 3 5

1

3 2 3 2

2 8 3 1 2
2 4 3 1

1 4 1 4 2 O

1

10 3 2 2 4 5

4 0 0 0 0 O
2

4 2 5

1 3 4

3 5 3

2 8 3 2 2

2 4 3

1 4 2 O

3 3 3 5 4

1

10 3 2 2 4 5

1

2 05 3 2 4 2 4 0 3 0 0 0 0 0 0 O

2

2 5 4 2 4

4 5 0
0O 0 0 0 O

1

4 2 4 4

7

2 5 4
2 6 4
2 7 4
2 7 4
2 7 4

1
2
1
1

1
1
1
1

1 1 3 2 5 5 4
1 1

1

1
1

16 0 0 3 3 2 2

16
6

1
1
1
1

4 2 0

1

5 5 3 4

3 4 2 4

1 3 4 2 4

1

0O 0 0 0 O
0O 0 0 0 O

4 0 5 3 0 2

3 1 5 4 2 4

1

10 3 2 5

2 2 4 4 2 5 2 0 0 0 0 O
2 4 3 3 3

1 1

5 2 4 3 1

1

1

2 7 4 27

2 7 4

2 3 3 3 3 0
2

2

1
1
1
1
1

0O 0 2 3 3

0

1

1 4 3 O

3
1

5§ 5 2 4

3 0 4 3 2 4

2 7 4 3 3

2 5 4

3 4 0 O

2 4 4 2 5
3 3 0 0 4
1

2

0

2 4 4 3 2 0

2
1

1 3 2 3 4

1

1

4 2 5 3 4 4

7

0O 5 2 5 2 4 4 3

3 4

5

4

o0 2 2 0
1

1
1

2 4 2 4
0 3 2 4

3 2 3 2 2 3

7

1

0O 0 0 0 O

4 5 2 4 0 0 0 0 0 0 O

1

1
1
1
1

1
1
1
1

1
1
1
1

1 3 3

5

2
2 2 3 3 3 2

3 4 5 2 4 5

1 2 0 0 0 0 O

3 2 4 4 2

1
1

1
1
1

0O 2 2 4 0 0 0 0 0 0 O
4 4 3 4 3 2 2 5 3 5 0

6
7

3 0 4 2 2 4

1 4 2 O
4 2 0
2 0 0 0 0 O

5 3 1

3

2 0 4 3 3 4

3 2 3 2 2 3

3 2 2 2 2

3 4 3 4 1

1
1
1
1

1 1
1
1
2

1

3

1

3 4 2 4 3 4 2 2 2 3 0
5§ 2 3 5§
2 2 3 4

1

3

4 2 2 1

1
1
1

1
1

1
1

8 0O 2 5 3 2 4
3 5 3 4 3 4
4 5 3

8

1
1
1

3
4 3 3 2

1

3 3 3

1

196

APPENDIX C: RAW QUESTIONNAIRE DATA

2 2 2 3 4 3

1 11
3 8 2 3 7 3
3 8 2 2 6
3 2 2 2
3 8 3
3 2 3
3 8 3
3 8 3
3 2 3
3 8 3
3 3 3
3 7 3
3 8 3
3 7 3
3 8 3
3 7 3
3 8 3
3 2 3
3 8 3
3 8 3

1

3 3 3 4 3 4 3 3 4
0 3 3 4
3 5 3 0 0 4 3 4 O

1 1

1

2 4 4 0 0 O

1

3 2 5 4 2 5

0

1 0

1

1 1

1 4 2 0 5 1

1
7

1 3 3 4

4 4 2 5 6

2 3 65 2 2 5

3
3

16 3 0 3 3 4 5
1

1
1

2 0

1

3 3 3 4 3 2 2 4

3 1 1

3 4 2 2 1

1

5 2 2 4

2 4 3 4 1

1
1
1

1
1
1

1
1
1

1
1
1

1
1

1

0 3 2 5 2

4 4 2 3 2 2

3 23 5 0 0 0 0 0 0 O

4 4 3 4 2

2 3

2 2 0

1

1 4 2 4 2

3

1
1

4 2 0 0 0 0 O O

1

3

3 4 5 2 0 4

3
3

3 3 2 3

3 4 2 4 2 1

1
1

1
1
1
1

1
1
1
1

5§ 2 2 4 1
1
1

1

1
1

2 4 3 4 6 4 2 4 3

2 4 4 1 2 4
2

1
4

1 2 3 5 4 0 O

2 4 3 3 3

1

3 2 2 4

3 4 3 4 3 2 2 4 3 3 0

5 4 2 5

2 2 2 0 2 0

1

5§ 2 2 3

2 1

10
4
1

1
1
1

2 4 25 0 0 0 0 0 O O
2 2 2 4 2

1 1 1

3 2 3 2 3 3 1

1

3 2 3 4 0
1

1

2 5 2 4

1

2 2 2 0

5§ 5§ 5 5 2 2

1 1

1
1

1
1

3 4 3 4

16 3
1

3 8 3 0
3 2 3
3 8 3
3 8 3
3 8 3
3 3 3
3 8 3
3 8 3
3 2 3
3 8 4
3 8 4
3 2 4
3 7 4
3 5 4
3 2 4
3 7 4
3 8 4
3 8 4

1 2 3 3 2 0

2 3 3 0 0 4 2

3 2 5 2 2 4

1
1
1

1 5 2 3 4

16 3
3

5 4 4 3 1 2 2 0 0 0 O

1

2
1

2 5 6 2

3 0 4 2 5 5 3 2 5 3

1
2 2 2 4 3 4 6

1

5§ 3 4 3 2 3 3 4 4 O

1

2 3 4 0 O

1

4 4 2 4 0 0 0 0 O O O

1

1
1

1
1

3 2 0 3

1

4

1
1
1
1
1
1
1
1
1
1

2 0

1

2 3 2 4 2 5 2 3 2 4

3 5 3 4 4 2
4 2 5 2 2 2

4 5 3

7
1
1
5
4

4 3 3 O

1

1
1
1

3 5 2 5 2
3 3 3 3
5 4 2 4
0O 2 5 4

3 5 3 4 0

1
1
1

2 0 0 0 O

2 56 65 2 2 5
3 2 3 3 4 5

4 0 0 0 0 O

1

1 1 1

1

3 4

5 4 3 4 5

5 2 2 4
5 2 2 3

1
1

10 3

4 5 2 4 3 2 5 4 3 2 O

2 1 1
1 0 4 2 5 3
4 3 3 4

1

16 4
9

5§ 3 2 0
1

1
4
2

1
2
1
1

4 4 O

1

16 4 5 4 2 2 4

3 4 3 2 2
3 0 0 3

2 2 0

1

2

10

3 7 4 2
3 2 4
3 8 4
3 8 4
3 8 4
3 3 4
3 8 4
3 8 4
3 8 4
3 8 4
3 7 4
3 8 4
3 8 4
3 8 4
3 7 4
3 8 4
3 8 4
4 2 3
4 8 3
4 8 3
4 7 3
4 8 4
4 8 4
4 8 4

1
1

16 3 2 3 2 3 4

9

1
1
1
1
1
1
1
1
1
1
1

1 1 2 4 3 4 1 3 4 2 1
3 4 3 4 1 4
4 4 3 4 1

1

1 4 3 2 4

2
1

3 3 3 0

1

5 4 3 2 5

16

2 2 3 3 1

1

1

2

2 4 2 4 3

4 5 2 3 5§

1

1
1

1 3 3 1 3 5 5 4 3 4 3 2 2
4 5 2 5
3 4 2 2 2
1

4

1

3 4 4 2

2 3 4 3 3 0

1
1
1
1

1
1
1
1

16
6

0 3 0 3 O

1
3

1
1

1
1
1
1
1

4 0 3 2 2 2

2 2 3 4 0
2 2 3 2 0
3 4 3 4 O

4 3 2 4

1

10 3 2 5 2 2 4

16

3 3 3

2 2 2
1
1

1 3 3 2 3

1

4 5 5 4 6

1
1

1
1

10 3 5 3 2 2 4

7

4

1

2 5 3 4 3 2 2 3

4 4 3 4

5 4 3 2
5 2 2

0
2

2 2 2 0 5 0

1

1

10
4

1

1 2 5 5§ 45 2 0 0 0 0 O
2 4 3 5
2 4 2 5

1

2 4 0 2 O

1

1
1

16 3 0 5§

4
5
2

1
1
1
1

2 0 0 0 0 O

1 1 1
1

5§ 2 2 5 1

1

3

5§ 3 3 4 0 0 0 0 O 0 O

1

2 0 5 2

0O 0 0 0 O

5 1
4 2 4 1
4 4 4 3 2
3 3 1
2 3 4 3 3
1

1

3 2 5 2 2 2

2
16 3 0 2

1 2 2 0 3 0
1 1
1

1
1

4 0 2 4

3 4 2 0

1
1

1 2 2 3 2 0

1

3 4 1

5

4

3

1

4 2 5

5§ 3 3 5§

1 1

1

16 4 0 5 2 3 5

1
1
1

1

5§ 2 2 1 3 3 4 0

1

5
3 2 2 4 2

4 8 4 2
4 8 4

2 3 0 1
3 4

1
1

1 1 1

1

3 0 3 3 3 4

3 2 2 2

1

3 0 4 2 4 2

5 2 2 2

197

APPENDIX C: RAW QUESTIONNAIRE DATA

2 2 2 3 4 0
2 2 3 3 4 0

1

1
1

3 4 4 3 3
3 4 4 3 3

1
1

1
1

2 4
2 4

5
5

0

0
3 0 3 2 2 5§

5 2 3
5 4 3
5 3 3
5 7 4
5 2 4
5 4 4

1

1
1

2

3 3 0 4 3
3 2 2 4
2 3 2 4
2 5 3 4

3 3 2 4

8
9
7
4

4 0
1

1
1
1
1

0O 0 0 0 O

5 2 2 4
5 2 2 5

2
2

2 0 0 0 0 O
2 2 3

1
1

1
1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1
1

1

1
1
1
1

3
1

1

16 2 0 5 2 2 3

4
5 8 4
5 7 4
5 7 4
5 7 4
5 2 4
5 7 4

2 3 3

3 4 2 4 2
2 2 2 3 3
0O 0 0 O
2 4 3 4
5 4 4 4

1 3 2 2 4
5 4 3 3
5

1
0

0
0

2 2 3 4 0

9
4
4

2 0 0 0 0 O
4 0 0 0 0 O

1
2

1
1
1
1
1

0 3

2 3

0O 0 0 0 O

2

16 3 2 5 2
11

1
1

0O 0 4

4 4 2 4

2 4 3 3 4 4

0O 0 2 2

2 0 0 0 0 1

1

1

1

4 2 0

4 5 2 5 2

1 4 4 2 3

8 2 3

1

2 4 25 0 0 0 0 0 O

1 1 1
0 4 2 4

4 2 3 1 1

3 0 O

2
2

4

2 4 3

1 2 0 0 0 O
1 2 2 4 0
1 1

1
1

1

2 5 3 4 6

2 8 4

4 3 3 4
3 4 3 4
3 3 3 2 4
3 4 4 4 0

0O 0 0 O

1 3 2 4 4
5 4 4 2

1
16 2 0 5 3 3

3

3

2 2 4 2 4

1

2 0 4 3

1
1
1
1

2
1
1
2

1
1
1

1

1

4

1 0 0 0 O

2 4 3 2 4 3

1
1

0O 0 4 4 3 5

1
1

2 4 2 4 3 2 2 2 4 2
4 4 2 4 3 3 2 3 4

2 3 2 5

1

2 0 0 0 O

1

1
1

1

4 4 3 4 2 3 2 4 3

1 3 3 2 4 4 2 4 2 3 4
1 56 3 3 0 3
1

1

1

3

1

1
1

16 3 0 5 3

1
1
1
1
1

2

8

1
1

2 0 2 4 0 0 0 0 0 O

1
1
1
1

1
1
1
2

1
1
1
1

1

2 4 3 2

3 0 4 0 4 0 0 0 0 0 O

1
1

2 0 2 2 2 2

4

2 2 2 3

1
1
1

3 4 2 5

12 2 2 5 2 3 5

2

2

3
2 3 3 4 5

5 3 2 4
2 4 2 4

2 2 4 2 2 5

2

1 5 3 2 2

14
1

1
1
1

2 2 2 0 3 2 3 2 0 1

1

2
1
1
1
1

3 4 1 3
1

3 2 2 2

3 2 4 2 4 3 1 5 2 3 2

1

14 4 4 3 3

2 1

8

4 4 2 4 4 2 0 O O O

3 3 3 3 3 31 2 3 0 3
1

1
3

1 4 0 3 4 4 2 1

3 2 2 2

1

5§ 0 0 0 00O O 0O
4 2 2 4 3

2 4 2 5

14 0 O 5

2 1

3

4 4 2

1

1

1 1 1
1

1
1

16 3 4 5 2 2 3

1

3 5 3

3 8 3 0 14 2 2 65 2 3 2
14 3

3 8 3
3 5 3

2 4 25 1 2 05 0 0 1
1

1 1
1 1

5 2 2 3 1
1

1

1
1

2 3

3 3 2 4 2
3 4 3 4

14 3 0 3 2 2 3

4 3 0 0 O

1

5 2 3
5 2 3

1

2
3

3 2 3 3 4
3 8 3
3 2 4
3 2 4
3 8 4

4 4

3 2 4 3 4 3 1

1 1
1
1

1

2 2 4 3 4 4

1

1
1
1

1

3 2 4 0 3 3 2 3 3 3 4

2 3 4 4 2

5

1

14 3

4 3 2 1
1

1

1

1

14 2 2 2 4 3 4

0O 0 0 O

2 2 3 3 2

1
1
1

1

1

2 3 3 4 2 4 4 2

1

1
1
3
0
1
2
1

1
1
1
2
1
2
1

3 0 4 3 4 0 0 0 0 0 O

1
1
1
1
1

1
1
1
1
1
1

3 2 3 2

3 0 2 2 3

1 3 2 3 0 0 0O 0 0 O

1

4 2 2 0 4

1 2 3 4

2 5 3 4

5 3 4 4

2 5 3 2 4

1 1
1

1

2 3 2 4 3 2 2 3

4 4 3 4 2
2 4 2 5 3

1

14

0O 0 0 4
4

1
1

14 3 2 2 4 4 O

1
1
1
1
1
1
1

2

3

3 4 3 2 2 5

1 3 0 2 4 2 2

4 3 3
4 8 3
4 7 3
4 2 3
4 3 3

1 3 3 3 4

3 3 2 4 3

3 3 2 2

14

2 2 4 1

1

1 1 1

1 4 2 2 2 1

1

14 3

3 2 2 4

14 3

0 3
2

1
1

3 4 2 4 2
5§ 5 3 3 2

1

1
3 2 2 4 2 0

1
1

1

1

14 2 0 5 2 2 3

16 3 4 3

1

4 7 4 3
4 8 4
4 8 4

1
1

2 56 0 3 4

1

1

1

14 3 4 5 2 2 4
14

1
1

0O 2 4 4 2 0 4 0 3

1

1

198

APPENDIX C: RAW QUESTIONNAIRE DATA

1
1

1 1 1 1 0 3 3 3 0 O O O 0 O
11 1 2 4 4 4 2

1

5 2 3 5

3

4
1

4 8 4
4 3 4
4 7 4

2 2 4 3

1

3 4 2 3 2 2

1
1

14 2 4 5 2

1
1

0O 0 0 O

1
2

3 3 2 3 2
2 2 65 3

1
1

4 0 3 3

4 4 4 O
5§ 8 2 3

1

3 0 2 4 4 3

1

5 5§ 3 0 0 0 0 0 O

5 5 3

3 3

2

1

2

2
1

14 2 0 5

5 4 2 3

1
1
1

2 3 2 2 4 0 0 0 0 0 O

1 1

1 3 2 2 1

3

5 2 2 4 4
5§ 4 0 0 O
5§ 2 2 0 6

0O 0 0 00000 0OO O OO OOOO O O0 O

2

3 3 3 4 0 3 0 0 0O 0 O O

2 4 3 1 1 1

1

1 2 0 0 0 O

2 5 2 65

1

3 0 04 0 0 0 O 0 O
2 3 3 3

1 1

1

2

1

5 2 2 2 4
5 8 3
5 4 3
5 8 3

2 4 4

1

2 0 2 3 3 4

3

1

1
1
1

1 4 3

4 2 2 4 5 2 1

3 2 4 2 1 1 1 1

1

1
1

3 005 2 0 0 0 O
4 5 3 4 0 0 0 0 0 O

0O 2 3 5

3 2 4 2 3 2

3
2

4

1 1 1 1

5 4 3 5
3 2 2 4

1
1

5 3 3 4 4

5 2 4

2 2 3

1

1 14
4 4

5 2 4 3

1
1
1
1
1

0O 0 0 00000 0OO O OO OOOO O O0 O

1
3
2

1

4 4 2 4 2 3 3 4 1

1
1

1 1
1 1

1
1
1

1 5 2 3 1

1
1

14

4 4 2 4 0 0 0 O O O

5 2 2 2

3 3 2

5 2 4 3 4
5 8 4 0 4
5 4 4 3 4

5 2 4

2 0 0 0 O
2 5 0 0 O
4 2 2 3
1

1
1
1

3 3 3 0 2 0O

1
1

4 4 2 5

1

2 2 6 2 2

2 4 3 4

1

1 56 2 2 5

16 4

1

4 4 3 3 0O 0 0 O

3 3 3

1

4 0 4 2 2 3

5 8 4 2 4
5 4 4
5 7 4

2 0 3 2 0 4

1

1
1

i1 0 3560 01 2 0 0 0 0 1

2

1
1

14 2 5 3 4 2 5

16 3 0 3 3 O

2 2 3

1

2 0 0 0 3 2

1
1

5 6 4 O

1

1 0 2 2 1

1
1

1
1

4 2 2 2 0 0O 0 0 2 3 0 0 O
4 4 5 2

2 2 3 9

0O 0 0 0 O

0 4 3

1 56 0 0 00 3 4 3 3

6

1

3 2 3 0 4 2

1

1 1 4 0 0 3 1 2 0 2 O

3 2 4 4 4 5 O

8

1

3 3 4

3 03 0 000 0 OO O O OO0OO0OO0O OO OO0 O

2

11

3 7 4 0
3 8 4

5$ 0 000 3 2 2 35 00 2 3 2 0

5 1 1

1

16

1

APPENDIX C: SUMMARY FREQUENCY STATISTICS

199

C.3 Summary frequency statistics

The tables presented represent the frequencies of respondents’ answers. The numbers

in parentheses represent the frequency of electronic and postal replies, e.g., for the four

students who had < 1 year of experience in Table C.2, 3 were from the electronic survey

and 1 was from the postal survey.

All tables, except Tables C.1 and C.3, have one

count per respondent, i.e., the sum of the total column is the number of respondents

who answered the question.

What capacity is OO used in?

Position Teaching Programming | Analysis & design | Other use

Student 3 (30) | 32 (30,2) | 19 (17,2 | 0 (0,0)

Academic | 24 (16,8) | 21 (16,5) | 11 9,2) | 4 (3,1

S/w Eng. 14 (11, 3) 117 (80,37) 7 (60,17) 1 (0,1)

Proj. Man. | 4 (1,3) | 26 (10,16) | 24 (8,16) | 3 (0,3)

Other 12 (15| 28 (11,17) | 20 (8,12) | 8 (2,6)

Total 57 (38,19) | 224 (147,77) | 151 (102,49) | 16 (5,11

Table C.1: Responses to Q. 1(b)
Object-oriented experience

Position < 1 year 1 - 2 years 3 - 4 years > 4 years Total

Student 4 (3,1) |13 (12,0) | 17 (161) | 3 (3,0) 37

Academic 2 (200 4 (31)]|10 (55 |18 (13,5) 34

S/wEng. |15 (3,12) | 37 (22,15) | 40 (30,10) | 35 (30,5) | 127

Proj. Man. | 4 (04) | 6 (1,5) |11 (47) |14 (59) 35

Other 0 (00)]| 9 (1,8 | 7T (34) |24 (11,13) 40

Total 25 (8,17) | 69 (39,30) | 85 (58,27) | 94 (62,32) | 273

Table C.2: Responses to Q. 2(a)
Object-oriented language familiarity

Position C++ Objective-C Eiffel Smalltalk CLOS Other
Student 24 (22,2) |15 (141) | 1 (1,00 [16 (16,0) | 3 (3,0) | 5 (41)
Academic 17 (14,3) | 13 (9,4) 1 (1,0) | 14 (7,7 3 (3,0) 6 (4,2)
S/w Eng. 85 (67,18) | 41 (26, 15) 11 (9,2) | 35 (23,12) 8 (8,0) | 18 (5,13)
Proj. Man. | 14 oy |18 (5a3) | o (0,0) |10 37| 1 (1,0) |12 (0,12)
Other 19 (127 |11 (38) | 4 (31) |18 (810)| 0o (0,00 8 (1,7
Total 159 (122,37) | 98 (57,41) | 17 (14,3) | 93 (57,36) | 15 (15,0) | 49 (14,35)

Table C.3: Responses to Q. 3

APPENDIX C: SUMMARY FREQUENCY STATISTICS

200

Typical method size?
Position 1-4 lines 5-10 lines 11-20 lines > 20 lines | Total
Student 3 (3,0) | 14 (14,0) | 11 (10,1) | 4 (3,0) 32
Academic 3 (21)| 14 (95| 13 (85] 2 (2,0) 32
S/w Eng. T (6,1) | 47 (26,21) | 48 (36,12) | 16 (13,3) | 118
Proj. Man. 1 (0,1) 10 (3,7 20 (5,15) 2 (1,1) 33
Other 6 (24) | 16 (511) | 12 (48) | 2 (0,2) 36
Total 20 (13,7) | 101 (57,44) | 104 (63,41) | 26 (19,7) 251
Table C.4: Responses to Q. 4(a)
Method size range:
Position 1-50 lines 1-100 lines 1-150 lines 1-200 lines 1-200+ lines | Total
Student 18 (17,1) | 6 (60]0 (0,00 3 (1) | 0 (0,0 27
Academic 4 86| 5 @n|1 (10| 1 (| 1 (1,0 22
S/w Eng. 54 (35,19) | 28 (21,7) | 4 (3,1) | 10 (7,3) | 11 (10,1) 107
Proj. Man. | 13 (2,11) | 4 (22) |2 (1)] 6 (1,5 | 0 (0,0) 25
Other 17 (a2) | 6 (33) |1 (o1 | 2 (L) | 1 (01) 27
Total 116 (67,49) | 49 (36,13) | 8 (5,3) | 22 (11,11) | 13 (11,2) | 208
Table C.5: Responses to Q. 4(b)
Depth of class hierarchy?
Position 2-3 levels 4-6 levels 6 > levels No problem Total
Student 6 (4,2) 9 (9,0) 4 (3,1) 18 (18,0) 37
Academic 5 (4,1) | 13 (10,3) 3 (2,1) 13 (7,6) 34
S/wEng. |10 (55) | 41 (27,14) | 19 (12,7) | 57 (41,16) | 127
Proj. Man. | 6 (1,5) |10 (28 | 2 (1,1)| 16 (6,10) 34
Other 50 (1L4) |12 (39| 3 (0,3) | 21 (11,10) 41
Total 32 (15,17) | 85 (51,34) | 31 (18,13) | 125 (83,42) 273
Table C.6: Responses to Q. 5
Inheritance caused difficulty?
Position Never Occasionally Sometimes Usually Always | Total
Student 5 (4,1) 21 (20,1) 5 (4,1) 4 (4,00 | 1 (1,0 36
Academic 50 (32| 12 84| 9 (63)] 6 (51) |0 (00 32
S/wEng. |26 (20,6) | 59 (3821) |27 (16,11) | 14 (10,4) [0 (0,0) | 126
Proj. Man. | 7 (43) | 16 (412) | 5 (14)| 4 (04) | 1 (0,1) 33
Other 8 (44)| 22 (814)| 6 (24| 5 (1,4 |0 (0,0 41
Total 51 (35,16) | 130 (78,52) | 52 (29,23) | 33 (20,13) | 2 (1,1) 268

Table C.7: Responses to Q. 7

APPENDIX C: SUMMARY FREQUENCY STATISTICS 201

Problems caused by naming inconsistencies?
Position Never Occasionally Sometimes Usually Always | Total
Student 12 (102) | 9 (900] 8 (1) | 5 (50) |0 (0,0 34
Academic To@3) | 7 (o)1 (64| 5 (23) |2 (20 31
S/wEng. |26 (1511) | 58 (43,15) | 22 (12,10) | 14 (9,5) | 0 (0,0) | 120
Proj. Man. | 11 (4,7) 12 (3,9) 7 (3,4) 4 (0,4) | 0 (0,0) 34
Other T (25 | 20 (911) | 8 (26)] 4 (22) |0 (0,0 39
Total 63 (35,28) | 106 (71,35) | 55 (30,25) | 32 (18,14) | 2 (2,0) 258
Table C.8: Responses to Q. 8
Use of local class libraries?
Position Never Occasionally Sometimes Usually Always Total
Student 15 (14,1) | 11 (11,00 | 3 (3,0) | 4 (22) | 4 (40 37
Academic |13 (85) | 7 (43)| 4 (31| 8 (71| 1 (1,0 33
S/w Eng. 22 (7,15) | 22 (16,6) | 23 (16,7) | 31 (26,5) | 28 (19,9) 126
Proj. Man. | 5 (1,4) | 6 15 | 1 1) |12 B7)| 8 (26) 32
Other 1 (10| 4 (04| 8 @4 9 (4| 8 (53 40
Total 66 (31,35) | 50 (32,18) | 39 (26,13) | 64 (45,19) | 49 (31,18) | 268
Table C.9: Responses to Q. 9
0O0: Ease of analysis and design?
Position Yes No Don’t know | Total
Student 29 (212) | 4 (31| 2 (20 35
Academic 27 (20,7) 4 (2,2) 3 (1,2) 34
S/w Eng. 99 (72,27) | 13 (58) | 11 (47) | 123
Proj. Man. | 20 (9,20) | 3 (0,3) | 2 (1,0) 34
Other 35 (1421) | 3 (1,2) | 3 (0,3) 41
Total 219 (142,77) | 27 (11,16) | 21 (8,13) | 267

Table C.10: Responses to Q. 10(a)

0O0O: Programmer productivity?
Position Yes No Don’t know | Total
Student 27 (27,2) 2 (2,0) 6 (5,1) 35
Academic 28 (21,7) 2 (1,1) 4 (1,3) 34
S/wEng. | 102 (7032) | 15 (87) | 8 (53)| 125
Proj. Man. | 31 (1021) | 3 (0,3) | 0o (0,0) 34
Other 30 (1317 | 4 (04) | 6 (1,5) 40
Total 218 (139,79) | 26 (11,15) | 24 (12,12) 268

Table C.11: Responses to Q. 10(b)

APPENDIX C: SUMMARY FREQUENCY STATISTICS

202

0O: Software reuse?
Position Yes No Don’t know | Total
Student 21 (243) | 1T (1,00 | T (7,0) 35
Academic | 30 (20,10) | 2 (2,00 | 2 (1,0) 34
S/wEng. | 105 (69,36) | 13 (103) | 7 (43) | 125
Proj. Man. 28 (9,19) 2 (0,2) 3 (1,2) 33
Other 35 (1322) | 2 (1L,1) | 4 (1,3) 41
Total 225 (135,90) | 20 (14,6) | 23 (14,9) 268
Table C.12: Responses to Q. 10(c)
0OO: Ease of software maintenance?
Position Yes No Don’t know | Total
Student 24 (213) | 3 (30) | 7 (7,0 34
Academic 24 (17,7) 3 (3,0) 7 (3,4) 34
S/w Eng. 97 (69,28) | 11 (5,6) | 16 (8,8) 124
Proj. Man. | 20 (920) | 3 (1,2) | 2 (0,2) 34
Other 29 (11,18) | 4 (13| 7T (34) 40
Total 203 (127,76) | 24 (13,11) | 39 (21,18) | 266
Table C.13: Responses to Q. 10(d)
Multiple inheritance useful?
Position Never Occasionally Sometimes Usually Always Total
Student 3 (2,1) | 10 (10,0) 8 (8,0) 8 (6,2) 4 (4,0) 33
Academic 6 (5,1) 6 (5,1) | 10 (5,5) 4 (2,2) 5 (4,1) 31
S/w Eng. 8 (53) |37 (25,12) | 29 (18,11) | 28 (17,11) | 12 (9,3) | 114
Proj. Man. | 7 (2,5) |10 (0,10) | 8 (44) | 3 (1,2) | 4 (3,1) 32
Other 5 (14) | 11 an |13 8| 7 (25| 1 (1,0 37
Total 29 (15,14) | 74 (44,30) | 68 (40,28) | 50 (28,22) | 26 (21,5) 247
Table C.14: Responses to Q. 11
Continual maintenance of SP code leads to unmaintainability?
Position Never Occasionally Sometimes Usually Always Total
Student 0 (0,0 3 (3,0) 4 (4,0) 15 (13,2) 5 (4,1) 27
Academic | 0 (0,0) | 2 (2,0) | 10 6,4) | 15 (105 | 4 (3,1) 31
S/wEng. |1 (1,00 |18 (11,7) |31 (19,12) | 52 (36,16) | 17 (14,3) | 119
Proj. Man. | 0 (0,0) | 2 (L) |13 (310) | 12 (48) | 6 (2,4) 33
Other 0 (0,0)] 9 (3,6) | 7 34| 14 (68| 7 (1,6 37
Total 1 (1,0) | 34 (20,14) | 65 (35,30) | 108 (69,39) | 39 (24,15) 247

Table C.15: Responses to Q. 12

APPENDIX C: SUMMARY FREQUENCY STATISTICS

203

Continual maintenance of 00 code leads to unmaintainability?
Position Never Occasionally Sometimes Usually Always Total
Student 1 (1,00] 16 (133) | 8 (80) | 3 (3,00] 0 (0,0) 28
Academic |0 (0,0) | 17 (125 | 9 (81)| 3 (30)| 1 (1,0 30
S/w Eng. 2 (2,0) 51 (31,20) | 48 (36,12) 4 (2,2) 8 (6,2) 113
Proj. Man. | 2 (2,0) | 14 (3,11) |15 (411) | 2 (1,1) | 1 (0,1) 34
Other 0 (0,0)| 17 (7,00) |10 (46) | 2 (1,1)| 3 (0,3) 32
Total 5 (5,0) | 115 (66,49) | 90 (57,33) | 14 (9,5) | 13 (7,6) | 237
Table C.16: Responses to Q. 13
OO code more maintainable than SP code?
Position Never Occasionally Sometimes Usually Always Total
Student 0 (0,0)]0 00 | 3 (30] 18 (7,1] 8 (62) 29
Academic | 0 (0,0) | 1 Loy | 3 (21| 21 (47| 8 (62) 33
S/wEng. |2 (02) |5 (4,1) | 22 (13,9) | 69 (48,21) [22 (18,4) | 120
Proj. Man. | 2 (1,1) | 1 (0,1) | 8 (2,6) | 18 (4,14) | 4 (3,1) 33
Other 0 (0,0) |1 (0,1) | 10 (4,6) | 20 (10,10) | 4 (0,4) 35
Total 4 (1,3) |8 (5,3) | 46 (24,22) | 146 (93,53) | 46 (33,13) | 250
Table C.17: Responses to Q. 14
C++ as a de facto standard?
Position Bad Good Indifferent Don’t know | Disagree | Total
Student 25 (232) | 5 (&) | 1 (1,0) | 1 (1,00 | 0 (0,0 32
Academic 29 (20,9) 0 (0,0) 1 (0,1) | 0 (0,0) 1 (1,0) 31
S/w Eng. 54 (40,14) | 21 (15,6) | 25 (13,12) | 3 (1,2) 6 (51) 109
Proj. Man. 12 (6,6) | 11 (3,8) 4 (0,4) | 1 (0,1) 1 (0,1) 29
Other 23 (11,12) | 5 (23) | 4 (22) |0 (0,00 | 2 (02 34
Total 143 (100,43) | 42 (24,18) | 35 (16,19) | 5 (2,3) | 10 (6,4) | 235
Table C.18: Responses to Q. 15
C++ allows hybrid programming?
Position Advantage Disadvantage | Don’t know | Adv. & Disadv. | Total
Student 10 (91) | 12 (10,2) | 6 (6,0) | 3 (3,0 31
Academic T3 | 21 (156) | 2 (1,1)] 1 (1,0) 31
S/wEng. |46 (33,13) | 45 (28,17) | 6 (4,2) | 14 (11,3) | 11
Proj. Man. | 14 (4,10) | 10 (37| 2 (0,2) | 3 (2,1) 29
Other 9 (63| 20 (713)| 1 (01) | 4 (2,2) 34
Total 86 (56,30) | 108 (63,45) | 17 (11,6) | 25 (19.6) | 236
Table C.19: Responses to Q. 16
Use of Friend function rather than redesign?
Position Never Occasionally Sometimes Usually Always Total
Student 3 (30)] 5 GO | 7 (10| 6 (51)]0 (0,0) 21
Academic 12 (8,4) 1 (0,1) 2 (2,0) 4 (3,00 | 0 (0,0) 19
S/wEng. |20 (164) | 41 (30,11) | 21 (12,9) | 10 (6,4) | 3 (2,1) 95
Proj. Man. | 5 (2,3) | 11 G6 | 3 12| 2 (02]2 (02 23
Other 5 (05) | 11 74| 4 22| 2 (021 (0,1) 23
Total 45 (29,16) | 69 (47,22) | 37 (24,13) | 24 (14,10) | 6 (2,4) | 181

Table C.20: Responses to Q. 17

APPENDIX C: SUMMARY FREQUENCY STATISTICS 204

Make use of operator overloading?
Position Never Occasionally Sometimes Usually Always Total
Student £ @40 | 7 61] 2 (20] 6 (60)| 4 (40 23
Academic 9 (81)| 3 B0 | 5 (32| 4 (13)] 2 (0,2) 23
S/wEng. |12 (8,4) |36 (24,12) | 18 (13,5) | 20 (16,4) | 9 (6,3) 95
Proj. Man. | 1 (1,00 | 7 (25| 7 (43| 6 (0,6) | 3 (1,2) 24
Other 3 (1,2)] 6 4o | 7 @3 | 5 (23] 1 (1,0 21
Total 29 (22,7) | 59 (37,22) | 39 (26,13) | 41 (25,16) | 19 (12,7) | 187

Table C.21: Responses to Q. 18(a)

Overload operators as:
Position Members Non-members Both N/A Total
Student 7 (7,00 | 3 (3,0) | 5 (50) | 4 (40 19
Academic 7 (3,4) 0 (0,0) 4 (2,2) | 10 (9,1) 21
S/w Eng. 29 (19,10) 6 (4,2) | 26 (21,5) | 19 (12,7) 80
Proj. Man. | 11 (1,10) | 0 00] 6 (33| 4 (22 21
Other 8 (44) | 1 o1 9 (4| 3 (1,2 21
Total 62 (34,28) | 10 (7,3) | 50 (36,14) | 40 (28,12) | 162
Table C.22: Responses to Q. 18(b)
Make use of templates?
Position Never Occasionally Sometimes Usually Always | Total
Student 10 (91)] 3 (3,0)] 0 (0,00 8 (800]2 (2,0 23
Academic T (25)] 6 6,0 6 (42| 1 (1,002 (1,1) 22
S/wEng. |48 (34,12) | 17 (13,4) | 11 (9,2) | 12 (7,5) | 4 (2,2) 92
Proj. Man. | 9 (2,7) | 4 22) | 7 @5 | 6 (24) |0 (0,0) 26
Other 9 (4,5) 2 (0,2) 6 (2,4) 5 (4,1) | 0 (0,0) 22
Total 83 (51,32) | 32 (24,8) | 30 (17,13) | 32 (22,10) | 8 (5,3) | 185

Table C.23: Responses to Q. 19

Appendix D

Experimental Materials And
Collected Data

D.1 Instructions for the first experiment

D.1.1 Practical Test Instructions

Please read these instructions carefully. Any questions of clarification will be answered
by the invigilators. The test is open-book, i.e., you can refer to class notes and the
recommended textbook (but only the recommended textbook). This test contributes
30% of the overall assessment. Marks will be awarded for correctness. On completing
the test, candidates may leave the laboratory. Candidates may not otherwise leave
the laboratory until the time is up. If there is an emergency, such as a workstation

crash, please signal one of the invigilators.

e Check that you have two packets, numbered 1 and 2. If you do not have these,

indicate this to an invigilator.

¢ When instructed, open Packet 1 which contains information about a program
and a modification you are asked to make to it. You have 10 minutes to read
this information, and may ask questions for clarification during this time. Please

ensure that you understand what is required.

e When instructed, open Packet 2 which contains the listing of the source code
you will be modifying. Approach the modification in the way you see fit. Please

make sure you work as carefully as you can.

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 206

e Anything you wish to write down should be done so on the source code listing.
In the event of being unable to complete the test, documentary evidence of your

work will attract marks.
e Make sure you print and sign your name on the listing of the source code.

e Once you feel you have completed the modification specified in Packet 1, indicate
this to an invigilator who will examine your program output. If your modification
is correct and produces the desired output then you have completed the test, oth-
erwise you must continue making the modification until you either successfully
complete the task, or until the test time is up. You will not be penalised if you

have to continue after showing the results of your modification to an invigilator.

e When you have successfully completed the test, an invigilator will collect your
annotated listing of the source code and sign it if your work was successfully

demonstrated.

o After the test is over, on no account alter the files you have used in this practical
test. These will be printed later, used as documentary evidence of your work,

and will attract marks.

To avoid candidates being in breach of University regulations regarding conduct

at examinations, the invigilators insist that throughout the test:
e there is no talking
e there is no use of the printers
e there is no use of e-mail or any other form of electronic communication

e 10 attempt is made to look at another candidate’s work

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 207

D.1.2 General Information: Test 1

Program functionality: the program creates objects from the subset of a university
population, namely student, lecturer and secretary. It then manipulates these objects
through some of their member functions.

Each member of the university community has a set of particular attributes, some

of which are common to all members. The attributes for each member are as follows:

Student Lecturer Secretary
last_name last name last_name
first_ name first name first_ name
age age age
department department department

registration number staff id_number staffid_number
year annual_salary hourly wage

boss

Modification Overview

Program extensibility: you are required to extend the program to deal with a new
member, professor, of the university community, ie write a class professor, and
create an instance of this class to show your code performs correctly. See the

Detailed Specification section for a complete description of this modification.

File structure

The file structure consists of a header and implementation file for each class, and a
main file. These files are conventionally named: that is header files are filename.h,
implementation files are filename.cc, and the main file is main.cc.

Furthermore, there exist files in your directory which, while they must present for
the compilation to work, do not need to be modified or even examined. These
files are: string.h and string.cc (they simply provide the means to store a sequence of
characters as a string object), and compile (used to compile the program - see next

section).

Compiling and Executing the Program

For examination purposes a shell script has been introduced which saves your files each
time you compile your code. This enables examiners to award marks for incomplete

work. You compile your program by typing:

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 208

compile *.cc

Note: compile is used in place of CC.
You must then deal with any compilation errors you may receive. Once your

program compiles, you may execute it by typing:

a.out

Detailed Specification

1. Write a class professor which has the following attributes:

String last_name; String first_name;
unsigned age; String department;
unsigned staff id_number; float annual _salary;

integer research_grant_number;.

Your professor class should be able to construct an object using parameters, and
should be able to set all of its attributes when required, just like any of the other
classes. Furthermore, when a professor object is displayed to the screen it should
display all its private data in a fashion similar to other objects. (see Program

Output section for clarification of this output).

You must write your code as a header file called professor.h, and an implemen-
tation file called professor.cc. Once you have written the appropriate code, add

the lines

professor Williams("Williams", "John", 53, "History",
100003, 31000, 0);

Williams.print() ;

Williams.set_research_grant_number(13);

Williams.print();

to function main, in file main.cc. This will create your professor object, display
it, use the member function which sets the research_grant number, and then

display the object again to make sure the desired effect has been achieved.

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 209

Program Output

You may wish to compile the program before you make any modifications and examine
the program output. A lecturer object is output, his department is changed from
Mathematics to Statistics, and then the lecturer object is output again.

The actual program output after a correct modification should be:

Name: Smith, David

Age: 34

Department: Mathematics
Staff Id. #: 100001
Annual Salary: $25000

Name: Smith, David
Age: 34

Department: Statistics
Staff Id. #: 100001
Annual Salary: $25000

Name: Williams, John
Age: 53

Department: History
Staff Id. #: 100003
Annual Salary: $31000

Research Grant #: O

Name: Williams, John
Age: 53

Department: History
Staff Id. #: 100003
Annual Salary: $31000
Research Grant #: 13

If you have a problem viewing the program output because it scrolls off the screen,

you can execute the program by typing
a.out | more

When you feel you have completed the test satisfactorily, raise your hand and demon-

strate your output to an invigilator.

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 210

Getting Started

Login to the workstation and start up the X windowing system by typing startx.
The source code for your practical test has been copied into a subdirectory called
C++/Testl. Type cd C++/Testl to enter the directory, followed by 1s to list the
files. You can examine any file by (i) looking at the listing in Packet 2, (ii) by typing
more filename or (iii) loading the file into the emacs editor. You should run the
emacs editor from one window and use a separate window for issuing compilation
commands and execution commands. Make sure to cd C++/Test1 in both windows.

Important: before you open Packet 2, it is imperative that you script your
entire practical session (that is, make a record of your work on the computer). In the

window that you plan to use for compilation and execution commands, type:
record

This will start a script file called typescript which records your workstation session,

and changes your prompt to look something like
maxwell-04 jd 1:55pm

If this does not happen when you type record please raise your hand and tell an
invigilator. It is important that you get this working as it enables the examiner to
determine how serious an attempt at modifying, compiling and executing the program
has been made. As stressed earlier, documentary evidence of your work will attract
marks.

Important: At the end of the test, please type
exit

to finish the auto recording of your programming efforts.

You should now understand what is required of you, and be ready to open Packet

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 211

D.1.3 General Information: Test 2 (and Internal Replication)

Program functionality: the program creates objects from the subset of sources of writ-
ten information, namely book, conference, in_conference (a paper from a conference
proceedings), and thesis. It then manipulates these objects through some of their
member functions.

Each member of the written work subset has a set of particular attributes, some

of which are common to all members. The attributes for each member are as follows:

Book Conference In_conference Thesis
citekey citekey citekey citekey
title title title title

year year year year
author editor editor author
publisher publisher publisher institution
volume organisation organisation

paper_title

author

pages

Modification Overview

Program extensibility: you are required to extend the program to deal with a new
member, phd thesis, of the written information subset, ie write a new class
phd_thesis, and create an instance of this class to show your code performs
correctly. See the Detailed Specification section for a complete description of

this modification.

File structure

The file structure consists of a header file and implementation file for each class, and
a main file. These files are conventionally named: that is header files are filename.h,
implementation files are filename.cc, and the main file is main.cc.

Furthermore, there exist files in your directory which, while they must present for
the compilation to work, do not need to be modified or even examined. These
files are: string.h and string.cc (they simply provide the means to store a sequence of
characters as a string object), and compile (used to compile the program - see next

section).

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 212

Compiling and Executing the Program

For examination purposes a shell script has been introduced which saves your files each
time you compile your code. This enables examiners to award marks for incomplete

work. You compile your program by typing:
compile *.cc

Note: compile is used in place of CC.
You must then deal with any compilation errors you receive. Once your program

compiles, you may execute it simply by typing:

a.out

Detailed Specification

1. Write a class phd_thesis which has the following attributes:

String citekey; String title;
unsigned year; String author;
String institution; String supervisor;

unsigned duration;

Your phd_thesis class should be able to construct an abject using parameters,
and should be able to set all of its attributes when required, just like any of
the other classes. Furthermore, when the phd_thesis object is displayed to the
screen it should display its private data in a fashion similar to other objects (see

Program Output section for clarification of this output).

You must write your code as a header file called phd_thesis.h, and an implemen-
tation file called phd_thesis.cc. Once you have written the appropriate code, add

the lines

phd_thesis Johnson('"johnson:85",

"Software Understandability: An Empirical Study",

1985, "D. Johnson", "Georgia State University", "unknown", 0);
Johnson.print();
Johnson.set_supervisor("Dr. M. Watson");
Johnson.set_duration(3);

Johnson.print();

to the function main, in file main.cc. This will create your phd_thesis object,
display it, use the member functions which set the duration and supervisor, and

then display the object again to make sure the desired effect has been achieved.

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 213

Program Output

You may wish to compile the program before you make any modifications and examine
the program output. A conference object is output, the editor is changed from a
missing value to W. Schaefor, and then the conference object is output again.

The actual program output after a correct modification should be:

cite key: ieee:87

Title: IEEE Tutorial on Software Design Techniques
Year: 1987

Editor:

Publisher: McGraw-Hill

Organisation: IEEE

cite key: ieee:87

Title: IEEE Tutorial on Software Design Techniques
Year: 1987

Editor: W. Schaefor

Publisher: McGraw-Hill

Organisation: IEEE

cite key: johnson:85

Title: Software Understandability: An Empirical Study
Year: 1985

Author: D. Johnson

Academic Institution: Georgia State University
Supervisor: unknown

Course Duration (years): O

cite key: johnson:85

Title: Software Understandability: An Empirical Study
Year: 1985

Author: D. Johnson

Academic Institution: Georgia State University
Supervisor: Dr. M. Watson

Course Duration (years): 3

If you have a problem viewing the program output because it scrolls off the screen,

you can execute the program by typing

a.out | more

APPENDIX D: INSTRUCTIONS FOR THE FIRST EXPERIMENT 214

When you feel you have completed the test satisfactorily, raise your hand and demon-

strate your output to an invigilator.

Getting Started

Login to the workstation and start up the X windowing system by typing startx.
The source code for your practical test has been copied into a subdirectory called
C++/Test2. Type cd C++/Test2 to enter the directory, followed by 1s to list the
files. You can examine any file by (i) looking at the listing in Packet 2, (ii) by typing
more filename or (iii) loading the file into the emacs editor. You should run the
emacs editor from one window and use a separate window for issuing compilation
commands and execution commands. Make sure to cd C++/Test2 in both windows.

Important: before you open Packet 2, it is imperative that you script your
entire practical session (that is, make a record of your work on the computer). In the

window that you plan to use for compilation and execution commands, type:
record

This will start a script file called typescript which records your workstation session,

and changes your prompt to look something like
maxwell-04 jd 1:55pm %

If this does not happen when you type record please raise your hand and tell an
invigilator. It is important that you get this working as it enables the examiner to
determine how serious an attempt at modifying, compiling and executing the program
has been made. As stressed earlier, documentary evidence of your work will attract
marks.

Important: At the end of the test, please type
exit

to finish the auto recording of your programming efforts.

You should now understand what is required of you, and be ready to open Packet

APPENDIX D: CODE FOR FIRST EXPERIMENT 215

D.2 Code for first experiment

D.2.1 Test 1

Inheritance program version

// lecturer.h
class lecturer : public staff
{
private:
float annual_salary;

public:
/* lecturer constructor */
lecturer (String, String, int, String, int, float);

void set_annual_salary (float);
/* allow print to be overwritten by derived classes: make it virtual */
virtual void print () conmst;

};

// lecturer.cc

#include <iostream.h>
#include "univ_community.h"
#include "staff.h"
#include "lecturer.h"

// assign initial values
lecturer::lecturer (String ln, String fn, int a, String dept, int sin, float s)
staff (1n, fn, a, dept, sin)

{
annual_salary = s;
}
void lecturer::set_annual_salary (float as)
{
annual_salary = as;
}
void lecturer::print () const
{
staff::print();
cout << "Annual Salary: $" << annual_salary << endl;
}

// secretary.h
class secretary : public staff

{
private:
float hourly_wage;
String boss;
public:
/* secretary constructor */
secretary (String, String, int, String, int, float, String);
void set_hourly_wage (float);
void set_boss (String);
/* allow print to be overwritten by derived classes: make it virtual */
virtual void print () conmst;
¥

// secretary.cc
#include <iostream.h>

APPENDIX D: CODE FOR FIRST EXPERIMENT 216

#include "univ_community.h"
#include "staff.h"
#include '"secretary.h"

// assign initial values

secretary::secretary (String 1ln, String fn, int a, String dept, int sin,
float hw, String bs)
staff (1n, fn, a, dept, sin)

{
hourly_wage = hw;
boss = bs;
}
void secretary::set_hourly_wage (float hw)
{
hourly_wage = hw;
}
void secretary::set_boss (String bs)
{
boss = bs;
}
void secretary::print () const
{
staff::print();
cout << "Hourly Wage: $" << hourly_wage << endl
<< "Boss: '<< boss << endl;
}
// staff.h
class staff : public univ_community
{
private:
int staff_id_number;
public:
/* staff constructor */
staff (String, String, int, String, int);
void set_staff_id_number (int);
/% allow print to be overwritten by derived classes: make it virtual */
virtual void print () conmst;
};
// staff.cc

#include <iostream.h>
#include "univ_community.h"
#include "staff.h"

// assign initial values
staff::staff (String ln, String fn, int a, String dept, int sin)
univ_community (ln, fn, a, dept)

{
staff_id_number = sin;
}
void staff::set_staff_id_number(int sin)
{
staff_id_number = sin;
}

void staff::print () const
{

univ_community::print ();

APPENDIX D: CODE FOR FIRST EXPERIMENT 217

cout << "Staff Id. #: " << staff_id_number << endl;

// student.h
class student : public univ_community
{
private:
int registration_number;
int year;

public:
/* student constructor */
student (String, String, int, String, int, int);

void set_registration_number (int);

void set_year (int);

/* allow print to be overwritten by derived classes: make it virtual */
virtual void print () conmst;

¥

// student.cc

#include <iostream.h>
#include "univ_community.h"
#include "student.h"

// assign initial values
student::student (String ln, String fn, int a, String dept, int reg_numb, int yr)
univ_community (1n, fn, a, dept)

{
registration_number = reg_numb;
year = yr;
}
void student::set_registration_number (int reg_numb)
{
registration_number = reg_numb;
}
void student::set_year (int yr)
{
year = yr;
}
void student::print () const
{
univ_community::print();
cout << "Registration #: " << registration_number << endl
<< "Year: " << year << endl;
}

// univ_community.h
#include "string.h" /* Header file for the String Class */

class univ_community

{
private:
String last_name; /* String object which stores last name */
String first_name;
int age;
String department;
public:

/* univ_community constructor */
univ_community (String, String, int, String);

APPENDIX D: CODE FOR FIRST EXPERIMENT

218

void set_last_name (String);

void set_first_name (String);

void set_age (int);

void set_department (String);

/* allow print to be overwritten by derived classes: make it virtual */
virtual void print () const;

¥

// univ_community.cc
#include <iostream.h>
#include "univ_community.h"

// assign initial values
univ_community::univ_community (String 1ln, String fn, int a, String dept)
{

last_name = 1n;

first_name = fn;

age = a;

department = dept;

}
void univ_community::set_last_name (String last_n)
{
last_name = last_n;
}
void univ_community::set_first_name (String first_n)
{
first_name = first_n;
}
void univ_community::set_age (int a)
{
age = a;
}
void univ_community::set_department(String dept)
{
department = dept;
}
void univ_community::print () const
{
cout << endl << "Name: " << last_name << " 6 "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl;
}
// main.cc
#include "univ_community.h" // Header file for Univ_community Class
#include "student.h" // Header file for Student Class
#include "staff.h" // Header file for Staff Class
#include "lecturer.h" // Header file for Lecturer Class
#include '"secretary.h" // Header file for Secretary Class
main()
{

/% create objects and assign values using the constructor */
student Daly("Daly'", "John'", 22, "Computer Science", 9263520, 2);
student Watson("Watson'", "Andy", 26, "Economics", 9164789, 4);
lecturer Smith("Smith', "David'", 34, "Mathematics', 100001, 25000) ;
secretary Jones('Jones', "Anne", O, "English", 0, 0, "GTB");

/* change the private data using the object’s member functions */

APPENDIX D: CODE FOR FIRST EXPERIMENT 219

Jones.set_age(21);
Jones.set_staff_id_number(100002) ;
Jones.set_hourly_wage(5.55);

/* print the Smith object, change a private data member, and */
/* observe the outcome */

Smith.print();

Smith.set_department('Statistics");

Smith.print();

Flat program version

// lecturer.h
#include "string.h" /* Header file for the String class */

class lecturer
{
private:
String last_name; /* String object which stores last name */
String first_name;
int age;
String department;
int staff_id_number;
float annual_salary;

public:
/* lecturer constructor */
lecturer (String, String, int, String, int, float);

void set_last_name (String);
void set_first_name (String);
void set_age (int);

void set_department (String);
void set_staff_id_number (int);
void set_annual_salary (float);
void print () const;

¥

// lecturer.cc
#include <iostream.h>
#include "lecturer.h"

// assign initial values
lecturer::lecturer (String ln, String fn, int a, String dept, int sin, float s)
{

last_name = 1n;

first_name = fn;

age = a;

department = dept;

staff_id_number = sin;

annual_salary = s;

}
void lecturer::set_last_name (String last_n)
{
last_name = last_n;
}
void lecturer::set_first_name (String first_n)
{
first_name = first_n;
}

void lecturer::set_age (int a)

{

APPENDIX D: CODE FOR FIRST EXPERIMENT

220

age = a;
}
void lecturer::set_department(String dept)
{
department = dept;
}
void lecturer::set_staff_id_number(int sin)
{
staff_id_number = sin;
}
void lecturer::set_annual_salary (float as)
{
annual_salary = as;
}
void lecturer::print () const
{
cout << endl << "Name: " << last_name << " 6 "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Annual Salary: $' << annual_salary << endl;
}

// secretary.h
#include "string.h" /* Header file for the String Class */

class secretary
{
private:
String last_name; /* String object which stores the last name */
String first_name;
int age;
String department;
int staff_id_number;
float hourly_wage;
String boss;

public:
/* secretary constructor */
secretary (String, String, int, String, int, float, String);

void set_last_name (String);
void set_first_name (String);
void set_age (int);

void set_department (String);
void set_staff_id_number (int);
void set_hourly_wage (float) ;
void set_boss (String);

void print () const;

¥

// secretary.cc
#include <iostream.h>
#include '"secretary.h"

// assign initial values
secretary: :secretary (String 1ln, String fn, int a,

String dept, int sin, float hw, String bs)
{

last_name = 1n;

APPENDIX D: CODE FOR FIRST EXPERIMENT

221

void

void

first_name = fn;

age = a;

department = dept;
staff_id_number = sin;
hourly_wage = hw;

boss = bs;

secretary::set_last_name (String last_n)

last_name = last_n;

secretary::set_first_name (String first_n)

first_name = first_n;

secretary::set_age (int a)

age = a;

secretary::set_department(String dept)

department = dept;

secretary::set_staff_id_number(int sin)

staff_id_number = sin;

secretary::set_hourly_wage (float hw)

hourly_wage = hw;

secretary::set_boss (String bs)

boss = bs;

secretary::print () const

cout << endl << "Name: " << last_name << " Z "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl

<< "Staff Id. #: " << staff_id_number << endl
<< "Hourly Wage: $" << hourly_wage << endl
<< "Boss: '<< boss << endl;

// student.h

#include "string.h"

class student

{

private:

String last_name; /* String object which stores the last name */

String first_name;

int age;

String department;

int registration_number;

/* Header file for the String Class */

APPENDIX D: CODE FOR FIRST EXPERIMENT

222

int year;

public:

¥

/* student constructor */
student (String, String, int, String, int, int);

void set_last_name (String);

void set_first_name (String);

void set_age (int);

void set_department (String);

void set_registration_number (int);
void set_year (int);

void print () const;

// student.cc
#include <iostream.h>
#include "student.h"

// assign initial values

student::student (String ln, String fn, int a, String dept,

{

void

void

int reg_numb, int yr)

last_name = 1n;
first_name = fn;

age = a;
department = dept;
registration_number = reg_numb;
year = yr;

student::set_last_name (String last_n)

last_name = last_n;

student: :set_first_name (String first_n)

first_name = first_n;

student: :set_age (int a)

age = a;

student: :set_department(String dept)

department = dept;

student: :set_registration_number (int reg_numb)

registration_number = reg_numb;

student::set_year (int yr)

year = yr;

student: :print () const

cout << endl << "Name: " << last_name << " 6 "
<< first_name << endl

APPENDIX D: CODE FOR FIRST EXPERIMENT 223

<< "Age: " << age << endl

<< "Department: " << department << endl

<< "Registration Number: " << registration_number << endl
<< "Year: " << year << endl;

// main.cc
Same as inheritance program version

D.2.2 Test 2 (and Internal Replication)

Inheritance program version

// book.h
class book : public written_work
{
private:
String author;
String publisher;
int volume;

public:
/* book constructor */
book (String, String, int, String, String, int);

void set_author (String);
void set_publisher (String);
void set_volume (int);

void print () const;

¥

// book.cc

#include <iostream.h>
#include "written_work.h"
#include "book.h"

// assign initial values
book::book (String ck, String tle, int yr, String athr, String pub, int vol)
written_work (ck, tle, yr)

{
author = athr;
publisher = pub;
volume = vol;
}
void book::set_author (String athr)
{
author = athr;
}
void book::set_publisher (String pub)
{
publisher = pub;
}
void book::set_volume (int vol)
{
volume = vol;
}

void book::print () const

written_work::print();
cout << "Author: " << author << endl
<< "Publisher: " << publisher << endl

APPENDIX D: CODE FOR FIRST EXPERIMENT 224

<< "Volume: " << volume << endl;

// conference.h
class conference : public written_work
{
private:
String editor;
String publisher;
String organisation;

public:
/* conference constructor */
conference (String, String, int, String, String, String)

void set_editor (String);

void set_publisher (String);
void set_organisation (String);
void print () const;

};

// conference.cc
#include <iostream.h>
#include "written_work.h"
#include "conference.h"

// assign initial values

conference::conference (String ck, String tle, int yr, String ed, String pub,
String org)
written_work (ck, tle, yr)

{
editor = ed;
publisher = pub;
organisation = org;
}
void conference::set_editor (String ed)
{
editor = ed;
}
void conference::set_publisher (String pub)
{
publisher = pub;
}
void conference::set_organisation (String org)
{
organisation = org;
}
void conference::print () const
{
written_work::print();
cout << "Editor: '" << editor << endl
<< "Publisher: " << publisher << endl
<< "Organisation: " << organisation << endl;
}

// in_conference.h
class in_conference : public conference
{
private:
String paper_title;
String author;

APPENDIX D: CODE FOR FIRST EXPERIMENT 225

String pages;

public:
/* in_conference constructor */
in_conference (String, String, int, String, String, String, String,
String, String);

void set_paper_title (String);
void set_author (String);
void set_pages (String);

void print () const;

};

// in_conference.cc
#include <iostream.h>
#include "written_work.h"
#include "conference.h"
#include "in_conference.h"

// assign initial values

in_conference::in_conference (String ck, String tle, int yr, String ed,
String pub, String org, String pt, String aut,
String pgs)
conference (ck, tle, yr, ed, pub, org)

{
paper_title = pt;
author = aut;
pages = pgs;
}
void in_conference::set_paper_title (String pt)
{
paper_title = pt;
}
void in_conference::set_author (String aut)
{
author = aut;
}
void in_conference::set_pages (String pgs)
{
pages = pgs;
}
void in_conference::print () const
{
conference: :print() ;
cout << "Paper Title: " << paper_title << endl
<< "Author: " << author << endl
<< "Pages: " << pages << endl;
}
// report.h
class report : public written_work
{
private:
String author;
public:

/* report constructor */
report (String, String, int, String);

void set_author (String);
void print () const;

APPENDIX D: CODE FOR FIRST EXPERIMENT 226

¥

// report.cc

#include <iostream.h>
#include "written_work.h"
#include "report.h"

// assign initial values
report::report (String ck, String tle, int yr, String aut)
written_work (ck, tle, yr)

{
author = aut;
}
void report::set_author (String aut)
{
author = aut;
}
void report::print () const
{
written_work::print();
cout << "Author: " << author << endl;
}
// thesis.h
class thesis : public report
{
private:
String institution;
public:
/* thesis constructor */
thesis (String, String, int, String, String);
void set_institution (String);
void print () conmst;
};

// thesis.cc

#include <iostream.h>
#include "written_work.h"
#include "report.h"
#include "thesis.h"

// assign initial values
thesis::thesis (String ck, String tle, int yr, String aut, String inst)
report (ck, tle, yr, aut)

{
institution = inst;
}
void thesis::set_institution (String inst)
{
institution = inst;
}
void thesis::print () const
{
report::print();
cout << '"Academic Institution: ' << institution << endl;
}

// written_work.h
#include "string.h" /* Header file for the String Class */

APPENDIX D: CODE FOR FIRST EXPERIMENT 227

class written_work

{
private:
String citekey; /* String object used to hold the cite key value */
String title;
int year;
public:
/* written_work constructor */
written_work (String, String, int);
void set_citekey (String);
void set_title (String);
void set_year (int);
/% allow print to be overwritten by derived classes: make it virtual */
virtual void print () conmst;
Y

// written_work.cc
#include <iostream.h>
#include "written_work.h"

// assign initial values
written_work::written_work (String ck, String tle, int yr)

{

citekey = ck;

title = tle;

year = yr;
}
void written_work::set_citekey (String ck)
{

citekey = ck;
}
void written_work::set_title (String tle)
{

title = tle;
¥
void written_work::set_year (int yr)
{

year = yr;
¥
void written_work::print () const
{

cout << endl << 'cite key: '" << citekey << endl

<< "Title: " << title << endl
<< "Year: " << year << endl;

}
// main.cc
#include "written_work.h" // header file for written_work class
#include "book.h" // header file for book class
#include "conference.h" // header file for conference class
#include "in_conference.h" // header file for in_conference class
#include "report.h" // header file for report class
#include "thesis.h" // header file for thesis class
main()
{

/* create the objects and assign values using the constructor */
book stats('cohen:82", "Introductory Statistics', 1982, "J. Cohen",

APPENDIX D: CODE FOR FIRST EXPERIMENT

228

"Academic Press", 1);

in_conference oop('minor:92", "The Int. Conf. on Software Maintenance",
1992, "E. Smith'", "Ablex & Co.", "IEEE",
"The 00 Paradigm for Software Maintenance", "E. Minor'",
"8l - 82");

thesis domains(''daly:91", "Semantic Integration of Heterogeneous Domains'",
1991, "J Daly", "Strathclyde University");

conference ieee('"ieee:87", "IEEE Tutorial on Software Design Techniques",
0’ llll’ llll’ ”IEEE”);

/* set the private data using the object’s member functions */
ieee.set_year(1987);
ieee.set_publisher("McGraw-Hill");

/% print the ieee object, set a private data member, and */
/* observe the outcome */

ieee.print();

ieee.set_editor("W. Schaefor");

ieee.print();

Flat program version

// book.h
#include "string.h"

class book

{
private:
String citekey; /* String object used to hold the cite key value */
String title;
int year;
String author;
String publisher;
int volume;
public:
/* book constructor */
book (String, String, int, String, String, int);
void set_citekey (String);
void set_title (String);
void set_year (int);
void set_author (String);
void set_publisher (String);
void set_volume (int);
void print () const;
};
// book.cc

#include <iostream.h>
#include "book.h"

// assign initial values
book::book (String ck, String tle, int yr, String athr, String pub, int vol)

{

citekey = ck;
title = tle;
year = yr;
author = athr;
publisher = pub;
volume = vol;

APPENDIX D: CODE FOR FIRST EXPERIMENT

229

void

book::set_citekey (String ck)

citekey = ck;

book::set_title (String tle)

title =

tle;

book::set_year (int yr)

year = yr;

book: :set_author (String athr)

author

athr;

book::set_publisher (String pub)

publisher = pub;

book::set_volume (int vol)

volume = vol;

book::print () const

cout <<
<<
<<
<<
<<
<<

endl << '"cite key: " << citekey << endl
"Title: " << title << endl
"Year: " << year << endl

"Author: " << author << endl
"Publisher: " << publisher << endl
"Volume: " << volume << endl;

// conference.h

#include "string.h"

class conference

{

private:
String citekey;
String title;

int year;

String editor;
String publisher;
String organisation;

public:
/* conference constructor */

conference (String, String, int, String, String, String)

void set_citekey (String);

void set_title (String);

void set_year (int);

void set_editor (String);

void set_publisher (String);
void set_organisation (String);
void print () const;

/* Header file for the String Class */

APPENDIX D: CODE FOR FIRST EXPERIMENT 230

¥

// conference.cc
#include <iostream.h>
#include "conference.h"

// assign initial values
conference::conference (String ck, String tle, int yr,
String ed, String pub, String org)

{
citekey = ck;
title = tle;
year = yr;
editor = ed;
publisher = pub;
organisation = org;
}
void conference::set_citekey (String ck)
{
citekey = ck;
}
void conference::set_title (String tle)
{
title = tle;
}
void conference::set_year (int yr)
{
year = yr;
}
void conference::set_editor (String ed)
{
editor = ed;
}
void conference::set_publisher (String pub)
{
publisher = pub;
}
void conference::set_organisation (String org)
{
organisation = org;
}
void conference::print () const
{
cout << endl << 'cite key: " << citekey << endl
<< "Title: " << title << endl
<< "Year: " << year << endl
<< "Editor: " << editor << endl
<< "Publisher: " << publisher << endl
<< "Organisation: '" << organisation << endl;
}

// in_conference.h
#include "string.h" /* Header file for the String Class */

class in_conference
{
private:

String citekey;

APPENDIX D: CODE FOR FIRST EXPERIMENT

231

String title;

int year;

String editor;
String publisher;
String organisation;
String paper_title;
String author;
String pages;

public:
/* in_conference constructor */
in_conference (String, String, int, String, String, String, String,
String, String);

void set_citekey (String);

void set_title (String);

void set_year (int);

void set_editor (String);

void set_publisher (String);
void set_organisation (String);
void set_paper_title (String);
void set_author (String);

void set_pages (String);

void print () const;

};

// in_conference.cc
#include <iostream.h>
#include "in_conference.h"

// assign initial values

in_conference::in_conference (String ck, String tle, int yr, String ed,
String pub, String org, String pt, String aut,
String pgs)

{
citekey = ck;
title = tle;
year = yr;
editor = ed;
publisher = pub;
organisation = org;
paper_title = pt;
author = aut;
pages = pgs;
}
void in_conference::set_citekey (String ck)
{
citekey = ck;
}
void in_conference::set_title (String tle)
{
title = tle;
}
void in_conference::set_year (int yr)
{
year = yr;
}
void in_conference::set_editor (String ed)
{

editor = ed;

APPENDIX D: CODE FOR FIRST EXPERIMENT 232

void in_conference::set_publisher (String pub)

{
publisher = pub;
}
void in_conference::set_organisation (String org)
{
organisation = org;
}
void in_conference::set_paper_title (String pt)
{
paper_title = pt;
}
void in_conference::set_author (String aut)
{
author = aut;
}
void in_conference::set_pages (String pgs)
{
pages = pgs;
}
void in_conference::print () const
{
cout << endl << '"cite key: ' << citekey << endl
<< "Title: " << title << endl
<< "Year: " << year << endl
<< "Editor: " << editor << endl
<< "Publisher: " << publisher << endl
<< "Organisation: '" << organisation << endl
<< "Paper Title: " << paper_title << endl
<< "Author: " << author << endl
<< "Pages: " << pages << endl;
}
// thesis.h
#include "string.h" /* Header file for the String Class */

class thesis

{

private:
String citekey;
String title;
int year;
String author;
String institution;

public:
/* thesis constructor */
thesis (String, String, int, String, String);

void set_citekey (String);
void set_title (String);

void set_year (int);

void set_author (String);
void set_institution (String);
void print () conmst;

};

// thesis.cc
#include <iostream.h>
#include "thesis.h"

APPENDIX D: CODE FOR FIRST EXPERIMENT 233

// assign initial values
thesis::thesis (String ck, String tle, int yr, String aut, String inst)

{
citekey = ck;
title = tle;
year = yr;
author = aut;
institution = inst;
}
void thesis::set_citekey (String ck)
{
citekey = ck;
}
void thesis::set_title (String tle)
{
title = tle;
}
void thesis::set_year (int yr)
{
year = yr;
}
void thesis::set_author (String aut)
{
author = aut;
}
void thesis::set_institution (String inst)
{
institution = inst;
}
void thesis::print () const
{
cout << endl << '"cite key: ' << citekey << endl
<< "Title: " << title << endl
<< "Year: " << year << endl
<< "Author: " << author << endl
<< "Academic Institution: " << institution << endl;
}

// main.cc
Same as inheritance program version

APPENDIX D: INSTRUCTIONS FOR SECOND EXPERIMENT 234

D.3 Instructions for second experiment

D.3.1 Instruction Overview

Please read these instructions carefully and in full before moving to the next stage.

Any questions you have will be answered by your monitor.

1. Check that you have 2 packets, numbered 1 and 2, and a sheet entitled “Getting
Started”.

If you do not have these indicate this to your monitor.

2. When instructed, open the packet numbered 1 which contains information about
a program and a modification you are asked to make to it. You have 10 minutes
to read this information, and may ask any questions you have during this stage.

Please ensure, however, that you understand what is required before moving on.

3. Packet 2 contains the source code you will be modifying. You may approach the
modification in any way you see fit - there are no constraints being placed on

you. However, please make sure you work as quickly and carefully as you can.

Important: if you wish to write anything down please do so on the source code
listing.

Once you feel you have completed the modification specified in packet 1, indicate
this to a monitor who will examine your program output. If your modification
is correct and produces the desired output then you have completed the task,
otherwise you should continue making the modification until you do successfully

complete the task.

Exceptional Circumstances

Circumstances may arise when you need to stop the practical test for a short pe-
riod. Such circumstances include a workstation crash. Report any such untoward

circumstances to a monitor who will attempt to deal with the problem.

Finishing Off

When you have successfully completed the required task, a monitor will collect your
program listing and give you a questionnaire to complete. Please answer the question-

naire as accurately as possible and hand it in before you leave.

APPENDIX D: INSTRUCTIONS FOR SECOND EXPERIMENT 235

D.3.2 General Information (Second experiment)

Program functionality: the program creates objects from the subset of a university
population, namely undergraduate and postgraduate students, secretary, lecturer, pro-
fessor, technician, senior technician and supervisor. It then manipulates some of these
objects through their member functions.

Each member of the university community has a set of particular attributes, some
of which are common to all members. These communal attributes can be determined

from the program listing.

Modification Overview

Program extensibility: you are required to extend the program to deal with a new
member, director, of the university community, ie write a class director, and
create an instance of this class to show your code performs correctly. See the

Detailed Specification section for a complete description of this modification.

File structure

The file structure consists of a header and implementation file for each class, and a
main file. These files are conventionally named: that is header files are filename.h,
implementation files are filename.cc, and the main file is main.cc.

Furthermore, there exist files in your directory which, while they must present for
the compilation to work, do not need to be modified or even examined. These
files are: string.h and string.cc (they simply provide the means to store a sequence of
characters as a string object), and compile (used to compile the program - see next
section).

In addition to the string class declarations, the following constants have been

declared in string.h:

const int this_year = 94
const float relief_tax = 15.0 const float basic_tax = 20.0

const float normal tax = 25.0 const float upper_tax = 40.0
These constants are used throughout the program when calculating employees take
home pay.
Compiling and Executing the Program

A shell script has been introduced which saves your files each time you compile your
code. This enables us to follow your approach to the modification. Please make sure

you compile the program by typing:

APPENDIX D: INSTRUCTIONS FOR SECOND EXPERIMENT 236

compile *.cc

Note: compile is used in place of CC.

Compilation errors will be reported in the usual way, and the executable will be:

a.out

Detailed Specification

1. Write a class director who has the following attributes:

String last_name; String first_name;
unsigned age; String department;
unsigned staff id_number; float annual salary;
String subordinates; String office;

Your director class should be able to construct an object using parameters, and
should be able to set all of its attributes when required, just like any of the other
classes. It should also calculate the director’s salary after deducting taxes at the
upper tax band rate. Furthermore, when the director object is displayed to the
screen it should display all its private data in a fashion similar to other objects

(see the Program Output section for clarification of this output).

You must write your code as a header file called director.h, and an implementation

file called director.cc. Once you have written the appropriate code, add the lines

director Wilson("Wilson", "Michael", 55, "Science Departments",
671234, 53995, "All science employees', "");

Wilson.print();

Wilson.set_office("L11.01");

Wilson.print();

to function main, in file main.cc. This will create your director object, display
it, use the member function which sets the office attribute, and then display the

object again to make sure the desired effect has been achieved.

APPENDIX D: INSTRUCTIONS FOR SECOND EXPERIMENT 237

Program Output

You may wish to compile the program before you make any modifications and examine

the program output - a secretary and a supervisor object are output.
The actual program output after a correct modification should be:

Name: Jones, Ann

Age: 21

Department: English

Staff Id. #: 100002

Hourly Wage: $5.55

Hourly wage after tax: $4.7175
Boss: GTB

Name: Johnson, Robert

Age: 47

Department: Chemical Engineering
Staff Id. #: 450000

Annual Salary: $40000

Salary after tax: $30000
Subordinates: Dobbs, Smith & White

Name: Wilson, Michael

Age: 55

Department: Science Departments
Staff Id. #: 671234

Annual Salary: $53995

Salary after tax: $32397
Subordinates : All science employees
Office:

Name: Wilson, Michael

Age: 55

Department: Science Departments
Staff Id. #: 671234

Annual Salary: $53995

Salary after tax: $32397
Subordinates : All science employees
Office: L11.01

If you have a problem viewing the program output because it scrolls off the screen,

remember you can redirect output to more as follows:

a.out | more

APPENDIX D: INSTRUCTIONS FOR SECOND EXPERIMENT 238

When you feel you have completed the modification satisfactorily, raise your hand and

demonstrate your output to a monitor.

Getting Started

You should run your preferred editor in one window and use a separate window for
issuing compilation commands and execution commands. Make sure to cd C++/Proj2
in both windows.

Important: before you open Packet 2, it is imperative that you script your entire
practical session. In the window that you plan to use for compilation and execution

commands, type:
record

This will start a script file called typescript which records your workstation session,

and changes your prompt to look something like
maxwell-04 jd 1:55pm

If this does not happen when you type record please raise your hand and tell a
monitor.

Important: At the end of the session, please type
exit

to finish the auto recording of your programming efforts.

You should now understand what is required of you, and be ready to open Packet

APPENDIX D: CODE FOR SECOND EXPERIMENT 239

D.4 Code for second experiment

Inheritance program version

// lecturer.h
class lecturer : public staff

{
private:
float annual_salary;
public:
/* lecturer constructor */
lecturer (const String, const String, unsigned, const String,
unsigned, float);
/% default lecturer constructor */
lecturer ();
void set_annual_salary (const float);
void taxable_salary () conmst;
void print () const;
};

// lecturer.cc

#include <iostream.h>
#include "univ_community.h"
#include "staff.h"
#include "lecturer.h"

// assign initial values

lecturer: :lecturer (const String ln, const String fn, unsigned a,
const String dept, unsigned sin, float as)
staff (In, fn, a, dept, sin)

annual_salary = as;

// no initial values, assign defaults
lecturer: :lecturer ()

staff ()
{
annual_salary = 0.00;
}
void lecturer::set_annual_salary (const float as)
{
annual_salary = as;
}
void lecturer::taxable_salary () const
{
float tax_rate = 100 - normal_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}

void lecturer::print () const

staff::print();
cout << "Annual Salary: $" << annual_salary << endl;
lecturer: :taxable_salary();

APPENDIX D: CODE FOR SECOND EXPERIMENT 240

// pgrad.h
class pgrad : public student
{
private:
String degree;
unsigned duration;

public:
/* pgrad constructor */
pgrad (const String, const String, unsigned, const String,
unsigned, unsigned, const String, unsigned);

/* default pgrad constructor */
pgrad ();

void set_degree (const String);
void set_duration (const unsigned);
void print () const;

};

// pgrad.cc

#include <iostream.h>
#include "univ_community.h"
#include "student.h"
#include '"pgrad.h"

// assign initial values

pgrad: :pgrad (const String 1ln, const String fn, unsigned a, const String dept,
unsigned reg_numb, unsigned yr, const String deg, unsigned dur)
student (ln, fn, a, dept, reg_numb, yr)

degree = deg;
duration = dur;

// no initial values, assign defaults
pgrad: :pgrad ()
student (), degree ()

{

duration = O;
}
void pgrad::set_degree (const String deg)
{

degree = deg;
}
void pgrad::set_duration (const unsigned dur)
{

duration = dur;
}
void pgrad::print () const
{

student: :print();

cout << "Degree: ' << degree << endl

<< "Duration (years): ' << duration <<endl;

}

// professor.h
class professor : public lecturer
{
private:
unsigned research_grant_number;

APPENDIX D: CODE FOR SECOND EXPERIMENT

241

public:

/* professor constructor */

professor (const String, const String, unsigned, const String,

unsigned, float, unsigned);

/* default staff constructor */
professor ();

void set_research_grant (const unsigned);
void print () const;

};

// professor.cc

#include
#include
#include
#include
#include

<iostream.h>
"univ_community.h"
"staff.h"
"lecturer.h"
"professor.h"

// assign initial values

professor::professor (const String 1ln, const String fn, unsigned a,
const String dept, unsigned sin, float as, unsigned r)
lecturer (1n, fn, a, dept, sin, as)

research_grant_number = r;

// no initial values, assign defaults
professor: :professor ()
lecturer ()

{

research_grant_number = O;

}

void professor::set_research_grant (const unsigned r)

{

research_grant_number = r;

}

void professor::print () const

{

lecturer: :print();

cout << "Research Grant #: " << research_grant_number << endl;

// secretary.h
class secretary : public staff

{

private

float hourly_wage;
String boss;

public:

/% secretary constructor */

secretary (const String, const String, unsigned, const String,

unsigned, float, const String);

/* default secretary constructor */
secretary O);

void set_hourly_wage (const float);
void set_boss (const String);

void taxable_salary () const;

void print () const;

APPENDIX D: CODE FOR SECOND EXPERIMENT

242

¥

// secretary.cc

#include <iostream.h>
#include "univ_community.h"
#include "staff.h"
#include '"secretary.h"

// assign initial values
secretary: :secretary (const

const
const
staff
{
hourly_wage = hw;
boss = bs;
}

String 1ln, const String fn, unsigned a,

String dept, unsigned sin, float hw,
String bs)
(1n, fn, a, dept, sin)

// no initial values, assign defaults

secretary: :secretary ()
staff (), boss ()

cout << "Hourly wage after tax: $" << tax_sal << endl;

{
hourly_wage = 0.00;
}
void secretary::set_hourly_wage (const float hw)
{
hourly_wage = hw;
}
void secretary::set_boss (const String bs)
{
boss = bs;
}
void secretary::taxable_salary () const
{
float tax_rate = 100 - relief_tax;
float tax_sal;
tax_sal = tax_rate/100 * hourly_wage;
}
void secretary::print () const
{
staff::print();
cout << "Hourly Wage: $" << hourly_wage << endl;
secretary::taxable_salary();
cout << "Boss: '"<< boss << endl;
}

// senior_technician.h

class senior_technician : public technician

{

private:

/* Wo new private data */

public:

/* technician constructor */
senior_technician (const String, const String, unsigned,
const String, unsigned, float);

/* default technician constructor */

senior_technician ();

APPENDIX D: CODE FOR SECOND EXPERIMENT 243

void taxable_salary () const;
void print () const;

};

// senior_technician.cc
#include <iostream.h>
#include "univ_community.h"
#include "staff.h"

#include "technician.h"
#include "senior_technician.h"

// assign initial values

senior_technician::senior_technician (const String ln, const String fn,
unsigned a, const String dept,
unsigned sin, float as)
technician (1n, fn, a, dept, sin, as)

// no initial values, assign defaults
senior_technician: :senior_technician ()

technician()
{
}
void senior_technician::taxable_salary () const
{
float tax_rate = 100 - normal_tax;
float tax_sal;
float sal = technician::get_annual_salary();
tax_sal = tax_rate/100 * sal;
cout << "Salary after tax: $" << tax_sal << endl;
}
void senior_technician::print () const
{
technician::print Q) ;
}
// staff.h
class staff : public univ_community
{
private:
unsigned staff_id_number;
public:
/* staff constructor */
staff (const String, const String, unsigned, const String, unsigned);
/* default staff constructor */
staff ();
void set_staff_id_number (const unsigned);
void years_at_univ () const;
void print () const;
/* Pure virtual function */
virtual void taxable_salary () const = O;
};
// staff.cc

#include <iostream.h>
#include <stdlib.h>

APPENDIX D: CODE FOR SECOND EXPERIMENT 244

#include "univ_community.h"
#include "staff.h"

// assign initial values

staff::staff (const String ln, const String fn, unsigned a,
const String dept, unsigned sin)
univ_community (1n, fn, a, dept)

staff_id_number = sin;
// no initial values, assign defaults

staff::staff ()
univ_community ()

{
staff_id_number = O;
}
void staff::set_staff_id_number(const unsigned sin)
{
staff_id_number = sin;
}
void staff::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void staff::print () const
{
univ_community::print ();
cout << "Staff Id. #: " << staff_id_number << endl;
}

// student.h
class student : public univ_community
{
private:
unsigned registration_number;
unsigned year;

public:
/* student constructor */
student (const String, const String, unsigned, const String,
unsigned, unsigned);

/* default student constructor */
student ();

void set_registration_number (const unsigned);
void set_year (const unsigned);

void years_at_univ () const;

void print () const;

¥

// student.cc

#include <iostream.h>
#include "univ_community.h"
#include "student.h"

// assign initial values
student: :student (const String ln, const String fn, unsigned a,

APPENDIX D: CODE FOR SECOND EXPERIMENT 245

const String dept, unsigned reg_numb, unsigned yr)
univ_community (ln, fn, a, dept)

registration_number = reg_numb;
year = yr;

// no initial values, assign defaults
student: :student ()
univ_community ()

{
registration_number = O;
year = 0;
}
void student::set_registration_number (const unsigned reg_numb)
{
registration_number = reg_numb;
}
void student::set_year (const unsigned yr)
{
year = yr;
}
void student::years_at_univ () const
{
cout << "Years at University: " << year << endl;
}
void student::print () const
{
univ_community: :print();
cout << "Registration #: " << registration_number << endl
<< "Year: " << year << endl;
}

// supervisor.h
class supervisor : public senior_technician

{
private:
String subordinates;
public:
/* supervisor constructor */
supervisor (const String, const String, unsigned, const String,
unsigned, float, const String);
/* default technician constructor */
supervisor ();
void set_subordinates (const String);
void print () const;
I

// supervisor.cc

#include <iostream.h>
#include "univ_community.h"
#include "staff.h"

#include "technician.h"
#include "senior_technician.h"
#include '"supervisor.h"

// assign initial values
supervisor::supervisor (const String ln, const String fn, unsigned a,

APPENDIX D: CODE FOR SECOND EXPERIMENT 246

const String dept, unsigned sin, float as,
const String subs)
senior_technician (1n, fn, a, dept, sin, as)

subordinates = subs;
// no initial values, assign defaults

supervisor::supervisor ()
senior_technician(), subordinates()

{
}
void supervisor::set_subordinates (const String subs)
{
subordinates = subs;
}
void supervisor::print () const
{
senior_technician: :print ();
cout << "Subordinates : ' << subordinates << endl;
}

// technician.h
class technician : public staff
{
private:
float annual_salary;

public:
/* technician constructor */
technician (const String, const String, unsigned, const String,
unsigned, float);

/* default technician constructor */
technician ();

void set_annual_salary (const float);
float get_annual_salary () const;
void taxable_salary () const;

void print () conmst;

};

// technician.cc

#include <iostream.h>
#include "univ_community.h"
#include "staff.h"
#include "technician.h"

// assign initial values

technician::technician (const String ln, const String fn, unsigned a,
const String dept, unsigned sin, float as)
staff (ln, fn, a, dept, sin)

annual_salary = as;

// no initial values, assign defaults
technician::technician ()
staff ()
{
annual_salary = 0.00;

}

APPENDIX D: CODE FOR SECOND EXPERIMENT 247

void technician::set_annual_salary (const float as)

{
annual_salary = as;
}
float technician::get_annual_salary() const
{
return annual_salary;
}
void technician::taxable_salary () const
{
float tax_rate = 100 - basic_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}
void technician::print () const
{
staff::print ();
cout << "Annual Salary: $" << annual_salary << endl;
// use this pointer in order to call the correct taxable_salary function
// when dealing with derived classes
this -> taxable_salary ();
}
// ugrad.h
class ugrad : public student
{
private:
String course;
public:
/* ugrad constructor */
ugrad (const String, const String, unsigned, const String,
unsigned, unsigned, const String);
/% default ugrad constructor */
ugrad ();
void set_course (const String);
void print () const;
Y
// ugrad.cc

#include <iostream.h>
#include "univ_community.h"
#include '"student.h"
#include '"ugrad.h"

// assign initial values

ugrad: :ugrad (const String ln, const String fn, unsigned a,
const String dept, unsigned reg_numb, unsigned yr,
const String cs)
student (ln, fn, a, dept, reg_numb, yr)

course = cs;
// no initial values, assign defaults

ugrad: :ugrad ()
student (), course()

APPENDIX D: CODE FOR SECOND EXPERIMENT 248

{
}
void ugrad::set_course (const String cs)
{
course = cs;
}
void ugrad::print () const
{
student: :print();
cout << "University course: " << course << endl;
}

// univ_community.h
#include "string.h" /* Header file for the String Class */

class univ_community
{
private:
String last_name; /* String object which stores last name */
String first_name;
unsigned age;
String department;

public:
/* univ_community constructor */
univ_community (const String, const String, unsigned, const String);

/* default univ_community constructor */
univ_community ();

void set_last_name (const String);
void set_first_name (const String);
void set_age (const unsigned);
void set_department (const String);

/* allow print to be overwritten by derived classes: make it virtual */
virtual void print () conmst;

/* pure virtual function */

virtual void years_at_univ () const = 0;

¥

// univ_community.cc
#include <iostream.h>
#include "univ_community.h"

// assign initial values
univ_community::univ_community (const String 1ln, const String fn,
unsigned a, const String dept)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
}

/* no initial values, assign defaults */
univ_community: :univ_community ()
last_name(), first_name(), department ()

{
age = 0;

void univ_community::set_last_name (const String last_n)

APPENDIX D: CODE FOR SECOND EXPERIMENT

249

{
last_name = last_n;
}
void univ_community::set_first_name (const String first_n)
{
first_name = first_n;
}
void univ_community::set_age (const unsigned a)
{
age = a;
}
void univ_community::set_department(const String dept)
{
department = dept;
}
void univ_community::print () const
{
cout << endl << "Name: " << last_name << " "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: '" << department << endl;
}
// main.cc
#include "univ_community.h" // Header file for Univ_community Class
#include "student.h" // Header file for Student Class
#include "ugrad.h" // Header file for Ugrad Class
#include "pgrad.h" // Header file for Pgrad Class
#include "staff.h" // Header file for Staff Class
#include "technician.h" // Header file for Technician Class
#include "senior_technician.h" // Header file for Senior_technician Class
#include '"supervisor.h" // Header file for Supervisor class
#include "lecturer.h" // Header file for Lecturer Class
#include "professor.h" // Header file for Professor Class
#include '"secretary.h" // Header file for Secretary Class
main()
{

/* create objects and assign values using the constructor */
pgrad Douglas('Douglas'", "Craig", 23, '"Marketing'", 9263520, 2, "PhD", 3);
ugrad Watson("Watson'", "Andy'", 26, "Computer Science", 9164789,

4, "Computer and Electronic Systems");
lecturer Smith("Smith', "David'", 34, "Mathematics', 890001, 24995);
professor Davidson('Davidson", '"Joe'", 53, "Mathematics", 771234,

31995, 12);
technician Dobbs("Dobbs", "Davie", 27, "Chemical Engineering",
740021, 13450);
senior_technician White("White", "Jimmy', 43, '"Chemical Engineering",
893212, 19950);
supervisor Johnson("Johnson'", "Robert'", 47, "Chemical Engineering",

450000, 40000, "Dobbs, Smith & White");

/* create the object using the default constructor */
secretary Jones;

/* set the variables using the object’s member functions */
Jones.set_first_name('Ann");

Jones.set_last_name (" Jones");

Jones.set_age(21);

Jones.set_department("English");
Jones.set_staff_id_number(100002) ;

Jones.set_boss("GTB");

APPENDIX D: CODE FOR SECOND EXPERIMENT

250

Jones.set_hourly_wage(5.55);

/* print the Jones object after all the values have been set */
Jones.print();

/* print the Johnson object */

Johnson.print();

Flat program version

// lecturer.h
#include "string.h" /* Header file for the String Class */

class lecturer
{
private:
String last_name; /* String object which stores last name */
String first_name;
unsigned age;
String department;
unsigned staff_id_number;
float annual_salary;

public:
/* lecturer constructor */
lecturer (const String, const String, unsigned, const String,
unsigned, float);

/* default lecturer constructor */
lecturer ();

void set_last_name (const String);

void set_first_name (const String);

void set_age (const unsigned);

void set_department (const String);

void set_staff_id_number (const unsigned);
void set_annual_salary (const float);
void years_at_univ () const;

void taxable_salary () conmst;

void print () const;

¥

// lecturer.cc
#include <iostream.h>
#include <stdlib.h>
#include "lecturer.h"

// assign initial values
lecturer::lecturer (const String ln, const String fn, unsigned a,
const String dept, unsigned sin, float as)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
staff_id_number = sin;
annual_salary = as;

}

// no initial values, assign defaults
lecturer: :lecturer ()
last_name(), first_name(), department ()
{

age = 0;

staff_id_number = 0;

APPENDIX D: CODE FOR SECOND EXPERIMENT

251

}
void lecturer::set_last_name (const String last_n)
{
last_name = last_n;
}
void lecturer::set_first_name (const String first_n)
{
first_name = first_n;
}
void lecturer::set_age (const unsigned a)
{
age = a;
}
void lecturer::set_department(const String dept)
{
department = dept;
}
void lecturer::set_staff_id_number(const unsigned sin)
{
staff_id_number = sin;
}
void lecturer::set_annual_salary (const float as)
{
annual_salary = as;
}
void lecturer::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void lecturer::taxable_salary () const
{
float tax_rate = 100 - normal_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}
void lecturer::print () const
{
cout << endl << "Name: " << last_name << " 6 "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Annual Salary: $'" << annual_salary << endl;
lecturer::taxable_salary();
}
// pgrad.h

annual_salary = 0.00;

#include "string.h"

class pgrad

APPENDIX D: CODE FOR SECOND EXPERIMENT

252

{
private:
String last_name; /* String object which stores last name */
String first_name;
unsigned age;
String department;
unsigned registration_number;
unsigned year;
String degree;
unsigned duration;
public:
/* pgrad constructor */
pgrad (const String, const String, unsigned, const String,
unsigned, unsigned, const String, unsigned);
/* default pgrad constructor */
pgrad O);
void set_last_name (const String);
void set_first_name (const String);
void set_age (const unsigned);
void set_department (const String);
void set_registration_number (const unsigned);
void set_year (const unsigned);
void set_degree (const String);
void set_duration (const unsigned);
void years_at_univ () const;
void print () const;
s
// pgrad.cc

#include <iostream.h>
#include '"pgrad.h"

// assign initial values

pgrad: :pgrad (const String 1ln, const String fn, unsigned a, const String dept,
unsigned reg_numb, unsigned yr, const String deg, unsigned dur)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
registration_number = reg_numb;
year = yr;
degree = deg;
duration = dur;
}

// no initial values, assign defaults
pgrad: :pgrad ()

last_name(), first_name(), department(), degree()

{
age = 0;
registration_number = O;
year = 0;
duration = O;

}

void pgrad::set_last_name (const String last_n)

last_name = last_n;

void pgrad::set_first_name (const String first_n)

APPENDIX D: CODE FOR SECOND EXPERIMENT

253

void

first_name = first_n;

pgrad: :set_age (const unsigned a)

age = a;

pgrad: :set_department (const String dept)

department = dept;

pgrad: :set_registration_number (const unsigned reg_numb)

registration_number = reg_numb;

pgrad: :set_year (const unsigned yr)

year = yr;

pgrad: :set_degree (const String deg)

degree = deg;

pgrad: :set_duration (const unsigned dur)

duration = dur;

pgrad: :years_at_univ () const

cout << "Years at University: " << year << endl;

pgrad: :print () const

cout << endl << "Name: " << last_name << ", "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Registration #: " << registration_number << endl
<< "Year: " << year << endl
<< "Degree: '" << degree << endl
<< "Duration (years): ' << duration << endl;

// professor.h

#include "string.h"

class professor

{

private:

String last_name; /* String object which stores last name */

String first_name;

unsigned age;

String department;

unsigned staff_id_number;

float annual_salary;

unsigned research_grant_number;

/* Header file for the String Class */

APPENDIX D: CODE FOR SECOND EXPERIMENT 254

public:
/* professor constructor */
professor (const String, const String, unsigned, const String,
unsigned, float, unsigned);

/% default professor constructor */
professor ();

void set_last_name (const String);

void set_first_name (const String);

void set_age (const unsigned);

void set_department (const String);

void set_staff_id_number (const unsigned);
void set_annual_salary (const float);
void set_research_grant (const unsigned);
void years_at_univ () const;

void taxable_salary () const;

void print () const;

¥

// professor.cc
#include <iostream.h>
#include <stdlib.h>
#include '"professor.h"

// assign initial values
professor: :professor (const String 1ln, const String fn, unsigned a,
const String dept, unsigned sin, float as, unsigned r)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
staff_id_number = sin;
annual_salary = as;
research_grant_number = r;
}

// no initial values, assign defaults
professor: :professor ()
last_name(), first_name(), department ()

{
age = 0;
staff_id_number = 0;
annual_salary = 0.00;
research_grant_number = O;
}
void professor::set_last_name (const String last_n)
{
last_name = last_n;
}
void professor::set_first_name (const String first_n)
{
first_name = first_n;
}
void professor::set_age (const unsigned a)
{
age = a;
}

void professor::set_department(const String dept)

APPENDIX D: CODE FOR SECOND EXPERIMENT

255

department = dept;

void professor::set_staff_id_number(const unsigned sin)

staff_id_number = sin;

}
void professor::set_annual_salary (const float as)
{
annual_salary = as;
}

void professor::set_research_grant (const unsigned r)

research_grant_number = r;

}
void professor::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void professor::taxable_salary () const
{
float tax_rate = 100 - normal_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}
void professor::print () const
{
cout << endl << "Name: " << last_name << " 6 "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Annual Salary: $' << annual_salary << endl;
professor: :taxable_salary();
cout << "Research Grant #: " << research_grant_number << endl;
}

// secretary.h
#include "string.h" /* Header file for the String Class */

class secretary
{
private:
String last_name; /* String object which stores last name */
String first_name;
unsigned age;
String department;
unsigned staff_id_number;
float hourly_wage;
String boss;

public:
/* secretary constructor */
secretary (const String, const String, unsigned, const String,
unsigned, float, const String);

APPENDIX

D: CODE FOR SECOND EXPERIMENT

256

/* de
secre

void
void
void
void
void
void
void
void
void
void

¥

fault secretary constructor */
tary O);

set_last_name (const String);
set_first_name (const String);
set_age (const unsigned);
set_department (const String);
set_staff_id_number (const unsigned);
set_hourly_wage (const float);
set_boss (const String);
years_at_univ () const;
taxable_salary () const;

print () const;

// secretary.cc
#include <iostream.h>
#include <stdlib.h>
#include '"secretary.h"

// assign initial values

secretary: :secretary (const String ln, const String fn, unsigned a,
const String dept, unsigned sin, float hw,
const String bs)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
staff_id_number = sin;
hourly_wage = hw;
boss = bs;

}

// no initial values, assign defaults

secretary: :secretary ()

last_name(), first_name(), department(), boss()

{
age = 0;
staff_id_number = O;
hourly wage = 0.00;
}
void secretary::set_last_name (const String last_n)
{
last_name = last_n;
}
void secretary::set_first_name (const String first_n)
{
first_name = first_n;
}
void secretary::set_age (const unsigned a)
{
age = a;
}
void secretary::set_department(const String dept)
{
department = dept;
}

void secretary::set_staff_id_number(const unsigned sin)

APPENDIX D: CODE FOR SECOND EXPERIMENT 257

{
staff_id_number = sin;
}
void secretary::set_hourly_wage (const float hw)
{
hourly_wage = hw;
}
void secretary::set_boss (const String bs)
{
boss = bs;
}
void secretary::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void secretary::taxable_salary () const
{
float tax_rate = 100 - relief_tax;
float tax_sal;
tax_sal = tax_rate/100 * hourly_wage;
cout << "Hourly wage after tax: $" << tax_sal << endl;
}
void secretary::print () const
{
cout << endl << "Name: " << last_name << ", "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Hourly Wage: $" << hourly_wage << endl;
secretary::taxable_salary();
cout << "Boss: '"<< boss << endl;
}

// senior_technician.h
#include "string.h" /* Header file for the String Class */

class senior_technician
{
private:
String last_name; /* String object which stores last name */
String first_name;
unsigned age;
String department;
unsigned staff_id_number;
float annual_salary;

public:
/* senior_technician constructor */
senior_technician (const String, const String, unsigned, const String,
unsigned, float);

/* default senior_technician constructor */
senior_technician ();

void set_last_name (const String);
void set_first_name (const String);

APPENDIX D: CODE FOR SECOND EXPERIMENT

258

¥

void set_age (const unsigned);

void set_department (const String);
void set_staff_id_number (const unsigned);
void set_annual_salary (const float);

float get_annual_salary () const;
void years_at_univ () const;
void taxable_salary () conmst;
void print () const;

// senior_technician.cc
#include <iostream.h>
#include <stdlib.h>

#include "senior_technician.h"
// assign initial values

senior_technician::senior_technician (const String ln, const String fn,
unsigned a, const String dept,

// no initial values, assign defaults

last_name = 1n;
first_name = fn;

age = a;
department = dept;

staff_id_number = sin;

annual_salary = as;

unsigned sin, float as)

senior_technician: :senior_technician ()
last_name(), first_name(), department ()

{

void

void

age = 0;

staff_id_number = 0;
annual_salary = 0.00;

senior_technician::set_last_name (const String last_n)

last_name = last_n;

senior_technician::set_first_name (const String first_n)

first_name = first_n;

senior_technician::set_age (const unsigned a)

age = a;

senior_technician::set_department(const String dept)

department = dept;

senior_technician::set_staff_id_number(const unsigned sin)

staff_id_number = sin;

senior_technician::set_annual_salary (const float as)

annual_salary = as;

APPENDIX D: CODE FOR SECOND EXPERIMENT 259

}
float senior_technician::get_annual_salary() const
{
return annual_salary;
}
void senjior_technician::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void senior_technician::taxable_salary () const
{
float tax_rate = 100 - normal_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}
void senior_technician::print () const
{
cout << endl << "Name: " << last_name << ", "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Annual Salary: $' << annual_salary << endl;
// use this pointer in order to call the correct taxable_salary function
// when dealing with derived classes
this->taxable_salary();
}

// supervisor.h
#include "string.h" /% Header file for the String Class */

class supervisor
{
private:
String last_name; /* String object which stores last name #*/
String first_name;
unsigned age;
String department;
unsigned staff_id_number;
float annual_salary;
String subordinates;

public:
/% supervisor constructor */
supervisor (const String, const String, unsigned, const String,
unsigned, float, const String);

/% default supervisor constructor */
supervisor ();

void set_last_name (const String);

void set_first_name (const String);

void set_age (const unsigned);

void set_department (const String);

void set_staff_id_number (const unsigned);

APPENDIX D: CODE FOR SECOND EXPERIMENT

260

void set_annual_salary (const float);
float get_annual_salary () const;
void set_subordinates (const String);

void years_at_univ

() const;

void taxable_salary () const;
void print () conmst;

¥

// supervisor.cc
#include <iostream.h>
#include <stdlib.h>
#include '"supervisor.h"

// assign initial values
supervisor::supervisor (const String ln, const String fn, unsigned a,
const String dept, unsigned sin, float as,

const String subs)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
staff_id_number = sin;
annual_salary = as;
subordinates = subs;

}

// no initial values, assign defaults
supervisor: :supervisor ()

last_name(), first_name(), department(), subordinates()

void supervisor::set_last_name (const String last_n)

void supervisor::set_first_name (const String first_n)

void supervisor::set_age (const unsigned a)

void supervisor::set_department(const String dept)

void supervisor::set_staff_id_number(const unsigned sin)

n;

{
age = 0;
staff_id_number = O;
annual_salary = 0.00;
}
{
last_name = last_n;
}
{
first_name = first_
}
{
age = a;
}
{
department = dept;
}
{
staff_id_number = sin;
}

void supervisor::set_annual_salary (const float as)

annual_salary = as;

APPENDIX D: CODE FOR SECOND EXPERIMENT 261

float supervisor::get_annual_salary() const

{
return annual_salary;
}
void supervisor::set_subordinates (const String subs)
{
subordinates = subs;
}
void supervisor::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void supervisor::taxable_salary () const
{
float tax_rate = 100 - normal_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}
void supervisor::print () const
{
cout << endl << "Name: " << last_name << " "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Annual Salary: $" << annual_salary << endl;
// use this pointer in order to call the correct taxable_salary function
// when dealing with derived classes
this->taxable_salary();
cout << "Subordinates: " << subordinates << endl;
}

// technician.h
#include "string.h" /* Header file for the String Class */

class technician
{
private:
String last_name; /* String object which stores last name */
String first_name;
unsigned age;
String department;
unsigned staff_id_number;
float annual_salary;

public:
/* technician constructor */
technician (const String, const String, unsigned, const String,
unsigned, float);

/* default technician constructor */
technician ();

void set_last_name (const String);

APPENDIX D: CODE FOR SECOND EXPERIMENT 262

void set_first_name (const String);

void set_age (const unsigned);

void set_department (const String);

void set_staff_id_number (const unsigned);
void set_annual_salary (const float);
float get_annual_salary () const;

void years_at_univ () const;

void taxable_salary () const;

void print () const;

¥

// technician.cc
#include <iostream.h>
#include <stdlib.h>
#include "technician.h"

// assign initial values
technician::technician (const String ln, const String fn, unsigned a,
const String dept, unsigned sin, float as)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
staff_id_number = sin;
annual_salary = as;

}

// no initial values, assign defaults
technician::technician ()
last_name(), first_name(), department()

{
age = 0;
staff_id_number = 0;
annual_salary = 0.00;
}
void technician::set_last_name (const String last_n)
{
last_name = last_n;
}
void technician::set_first_name (const String first_n)
{
first_name = first_n;
}
void technician::set_age (const unsigned a)
{
age = a;
}
void technician::set_department(const String dept)
{
department = dept;
}
void technician::set_staff_id_number(const unsigned sin)
{
staff_id_number = sin;
}

void technician::set_annual_salary (const float as)

annual_salary = as;

APPENDIX D: CODE FOR SECOND EXPERIMENT 263

}
float technician::get_annual_salary() const
{
return annual_salary;
}
void technician::years_at_univ () const
{
unsigned years;
years = this_year - abs(staff_id_number/10000) ;
cout << "Years at university: " << years << endl;
}
void technician::taxable_salary () const
{
float tax_rate = 100 - basic_tax;
float tax_sal;
tax_sal = tax_rate/100 * annual_salary;
cout << "Salary after tax: $" << tax_sal << endl;
}
void technician::print () const
{
cout << endl << "Name: " << last_name << ", "
<< first_name << endl
<< "Age: " << age << endl
<< "Department: " << department << endl
<< "Staff Id. #: " << staff_id_number << endl
<< "Annual Salary: $' << annual_salary << endl;
// use this pointer in order to call the correct taxable_salary function
// when dealing with derived classes
this->taxable_salary();
}
// ugrad.h

#include "string.h"

class ugrad

{

private:

String last_name; /* String object which stores last name */
String first_name;

unsigned age;

String department;

unsigned registration_number;

unsigned year;

String course;

public:

/* ugrad constructor */
ugrad (const String, const String, unsigned, const String,
unsigned, unsigned, const String);

/* default ugrad constructor */
ugrad ();

void set_last_name (const String);

void set_first_name (const String);

void set_age (const unsigned);

void set_department (const String);

void set_registration_number (const unsigned);
void set_year (const unsigned);

APPENDIX D: CODE FOR SECOND EXPERIMENT 264

void set_course (const String);
void years_at_univ () const;
void print () const;

¥

// ugrad.cc
#include <jiostream.h>
#include '"ugrad.h"

// assign initial values

ugrad::ugrad (const String 1ln, const String fn, unsigned a,
const String dept, unsigned reg_numb, unsigned yr,
const String cs)

{
last_name = 1n;
first_name = fn;
age = a;
department = dept;
registration_number = reg_numb;
year = yr;
course = cs;
}

// no initial values, assign defaults
ugrad: :ugrad ()
last_name(), first_name(), department(), course()

{
age = 0;
registration_number = O;
year = 0;
}
void ugrad::set_last_name (const String last_n)
{
last_name = last_n;
}
void ugrad::set_first_name (const String first_n)
{
first_name = first_n;
}
void ugrad::set_age (const unsigned a)
{
age = a;
}
void ugrad::set_department (const String dept)
{
department = dept;
}
void ugrad::set_registration_number (const unsigned reg_numb)
{
registration_number = reg_numb;
}
void ugrad::set_year (const unsigned yr)
{
year = yr;
}

void ugrad::set_course (const String cs)

course = Cs;

APPENDIX D: CODE FOR SECOND EXPERIMENT

265

void

void

ugrad::years_at_univ () const

cout <<

"Years at University: '" << year << endl;

ugrad::print () const

cout <<
<<
<<
<<
<<
<<
<<

endl << "Name: " << last_name << ", "

first_name << endl

"Age: " << age << endl

"Department: " << department << endl
"Registration #: '" << registration_number << endl
"Year: " << year << endl

"University course: " << course << endl;

APPENDIX D: DEBRIEFING QUESTIONNAIRE 266

D.5 Debriefing questionnaire

Please answer this questionnaire as honestly as you can. Anything you write down will be

treated confidentially.

Personal Details

Name:

Qualifications: Programming experience:

1. How long into the test did it take you to grasp what was required, eg after reading the

instructions, after examining the code, etc?
2. How much trouble, if any, did you have with the C++ syntax?

3. On a scale of 1 to 10 how difficult would you say the modification was (1 very easy, 10
very difficult)?

4. What caused you the most difficulty?

5. Overall, what action would you say took you the most time to perform, for example

understanding the code, removing syntax errors, editing the changes, etc?

6. What approach did you adopt to tackle the modification?

(a) Understanding the code first, then tackling the task.
(b) Tackle task immediately, and attempt to understand the code as required.
(c¢) Cutting and pasting the existing files to meet the required specification.

(d) Other, please specify:

7. Did you use inheritance or not? Explain why.

APPENDIX D: DEBRIEFING QUESTIONNAIRE 267

10.

11.

12.

13.

14.

. If you answered yes to 7, which class did you use as the parent for the class director?

Why did you use this class, and how long did it take to make this decision?

. How well do you understand the code?

What parts of the code, if any, did you not understand?

How would you judge the quality of the code you produced compared to the code you

were given?

Having performed the modification, would you do anything different next time around?

Have you learned anything from this? If so what?

Any other comments?

Our thanks for your participation in the two experiments. We hope you enjoyed the course

and it’s of some use to you in the future!

John Daly (PhD student) and the other members of EFoCS.

APPENDIX D: STATISTICAL POWER CALCULATIONS 268

D.6 Statistical power calculations

Before designing the empirical study it was decided that any effect to be investigated
would have to be either a medium or a large effect (at this early level of empirical
enquiry, small effects were deemed to be of lesser importance). The multi-method
programme of research conducted lead to the belief that the effect size of depth of in-
heritance fell between these two categories. Statistical power analysis was performed
before conducting the study using the anticipated subject numbers, a preset a level,
and the effect size index introduced by [Cohen, 1969] for medium and large effects (al-
though it was expected that the effect size would fall between these two extremes from
the data collected from phases I and II, there was no method to estimate it more accu-
rately because this series of experiments is the first to investigate this phenomenon).

Keppel et al. state that the minimum statistical power value adopted should be
0.7 and argue that any value below this represents poor science [Keppel et al., 1992].
It is argued that this is a purist’s view, more applicable to areas of science that
have been empirically researched for some time, and is not a pragmatic approach for
software engineering because: (i) much of the empirical research conducted is the first
to investigate any given phenomenon, (ii) it is difficult to accurately estimate the
effect size (something which greatly affects the power level), and (iii) the number of
programmers required as subjects cannot easily be met. These reasons do not detract
from the importance of conducting a statistical power analysis before planning an
empirical study: this allows the experimenter to realise their chance of detecting an
effect if one exists, provides researchers with insight into the value of the empirical
study, and also enables researcher to plan better any external replications. Moreover, it
is of extreme importance that if the null hypothesis is not rejected then the researcher
considers the statistical power of the experiment: if it is too low then there is no
justification to claim that the null hypothesis is in fact true because the probability of

Type II error is too great.

D.6.1 First experiment

The attributes used for these calculations were (i) N = 31, (ii) @ = 0.05 (preset alpha
level for rejecting Hyp with a two-tailed statistical test), and (iii) vy = 0.5 & v = 0.8

(the medium and large effect size indexes). The power calculations were:

Medium effect: § = 0.5 x \/32—1 = 1.97. Hence, from the appropriate table the derived

power level is 0.52.

APPENDIX D: STATISTICAL POWER CALCULATIONS 269

Large effect: 6 = 0.8 x ,/% = 3.15. Hence, from the appropriate table the derived

power level is 0.86.

Hence, it is concluded that there would be approximately a 1 in 2 chance of detecting

a medium effect and approximately a 4 in 5 chance of detecting a large effect.

D.6.2 Internal replication

The internal replication was conducted before the results of the first experiment were
known. Hence, the estimate of the effect size was the same as that of the first experi-
ment. Other attributes used were: (i) N = 14.5, (ii) a = 0.05 (preset alpha level for
rejecting Ho with a one-tailed statistical test), and (iii) v = 0.5 & v = 0.8.

Medium effect: 6 = 0.5 % \/% = 1.35. Hence, from the appropriate table the derived

power level is 0.39.

Large effect: 6 = 0.8 x \/1‘;—‘5 = 2.15. Hence, from the appropriate table the derived

power level is 0.70.

It is therefore concluded that there would be about a 40% chance of detecting a medium

effect and a 70% chance of detecting a large effect.

D.6.3 Second experiment

The attributes used for these calculations were (i) N = 15.5, (ii) @ = 0.05 (preset
alpha level for rejecting Hy with a one-tailed statistical test), and (iii) v = 0.5 &

7 = 0.8 (the medium and large effect size indexes). The power calculations were:

Medium effect: § = 0.5 % \/% = 1.39. Hence, from the appropriate table the derived

power level is 0.40.

Large effect: § = 0.8 x \/152—'5 = 2.23. Hence, from the appropriate table the derived

power level is 0.72.

These figures are almost the same as the internal replication with approximately a 40%
chance of detecting a medium effect and approximately a 70% chance of detecting a

large effect.

APPENDIX D: INDUCTIVE ANALYSIS DATABASES 270

D.6.4 Conclusions

It is important to note that the above power calculations are only rough estimates;
indeed, the fact that non-parametric statistical tests were used reduces the estimated
power levels. While power is an important issue in experimentation, especially when
the null hypothesis is not rejected, its importance should not be overstated when
there is difficulty accurately estimating the effect size, e.g., when conducting primary
empirical studies.

For this series of experiments the design is considered to have been carefully
planned, the number of subjects relatively high (as far as software engineering ex-
periments are concerned), and the power levels reasonable (given that this is the first
empirical study investigating this phenomenon). The fact that the null hypothesis
was not rejected for the experiment using a deeper hierarchy is probably due to the
fact that the statistical power was not high enough. It does appear that there is an
existing effect, evidence of which is provided by the change of direction between the

flat and inheritance mean times across the two experiments and replication.

D.7 Inductive analysis databases

This section presents the database for each experimental run used during the inductive
analysis, i.e., two databases for the first experiment, one for the internal replication,
and one for the second experiment. Explanations of logical variables from the debrief-
ing questionnaires are also presented. Subjects’ answers to questionnaires in the first
experiment were some what different to answers given in the replication and second
experiment: combining the data collected for logical variables were slightly different
between experimental runs. These data groupings are explained in full in the sections

below.

D.7.1 The first experiment

The logical groupings of data for variables in Tables D.1 and D.2 are now explained.
Variable (7) Experience (programming experience) is graded as: 1 = limited to the
MSc course, 2 = MSc course and some programming experience outwith it, and 3
= a sizable amount of programming experience outwith the MSc course. Variable
(9) InstTime (time to understand the experimental instructions) is graded as: 1 =
immediately to < 5 minutes, 2 = 5 minutes to < 10 minutes, and 3 = > 10 minutes.

Variable (10) SynDiff (difficulty with syntax) is graded as: 1 = none to very little, 2

APPENDIX D: INDUCTIVE ANALYSIS DATABASES 271

Induction Variables

2 3 4|5 6 7181910 |11 |12 |13 |14 |15 |16 | 17 | 18 | 19 | 20
1 A 18 0 y 1 2 y 1 2 2 3 1 a 3 1 2 3 1 1
2 0Aal3|oly |5 |1 |n|-| |- |- | -1|-1-1|-1-1-1=-1-
3 A3 0]y 5 2|y |1 2 3 3 1 a 3 2 3 1 2 4
4 A - O|ly |16 |1 |n/| - - - - - - - - - - - -
5 B - 0 y 14 2 y 3 3 5 3 1 a 1 1 1 1 4 1
6 A4 |0 |y 8 1|y | 2 2 6 2 1 a 2 3 2 1 3 1
7 A 36 0 y 4 1 y 2 2 6 1 2 a 2 1 2 3 2 1
8 B 98 0| n 18 1 y 3 3 9 2 3 b 1 3 2 2 4 1
9 A 44 0 y 5 3 y 1 2 3 1 3 d 3 1 3 4 3 3
10 A 48 0 y 3 1 y 1 2 3 2 2 a 2 3 3 1 2 1
11 B - 0| n 16 1 y 3 3 5 2 1 a 1 3 1 1 4 4
12 | A |38 |0 |y 6 2|y | 2 1 8 2 1 a 3 1 3 1 1 2
13| B |67 |0 |y |16 |3 |y | 2 2 5 2 3 a 2 1 2 4 4 1
14 B 38 0| n 4 3 y 1 2 2 4 3 c 3 1 3 2 2 1
15 B 26 0| n 3 1 y 1 1 1 4 1 [3 1 3 2 2 2
16 A 36 0 y 4 1 y 1 2 3 3 2 a 3 1 3 1 1 2
17 B - 0 y 12 3 y 2 2 4 2 3 b 2 1 1 4 4 1
18 | A - 0|y - 1 |(n| - - - - - - - - - - - -
19 B 78 0| n 9 1 y 3 2 2 3 1 a 3 1 3 2 2 4
20 A 57 | O y 7 1 y 1 1 5 2 1 d 2 1 3 1 3 1
21 | A |28 |0 |y 3 1|y |1 1 2 4 1 c 3 1 3 1 1 1
22 B 38 0| n 5 1 y 2 2 2 4 1 a 3 1 3 1 1 2
23 B 29 0| n 2 1 y 2 1 4 4 1 c 2 1 3 5 4 1
24 B - 0| n 27 1 y 2 1 4 2 2 a 2 1 2 1 4 1
25 A 18 0 y 1 2 y 1 1 1 4 1 d 3 1 3 1 3 1
26 A 92 0 y 17 1 y 1 2 3 2 3 a 3 1 2 1 4 3
27 B 46 0| n 9 1 y 2 1 5 2 1 a 3 1 2 2 1 1
28 B 64 0 y 13 1 y 1 2 4 2 2 a 2 1 3 1 4 1
29 | B - O|n |17 |1 |n | - - - - - -
30| B|47 |0 | n 6 1|y |3 1 2 2 a 2 1 3 1 1 2
31 A 79 0 y 12 1 y 3 2 7 3 1 a 2 3 3 1 1 1

Table D.1: Raw data for the first run of the first experiment

= little to some, and 3 = quite a bit to substantial. Variable (12) Diff (what caused
the most difficulty) is graded as: 1 = inheritance related difficulties, 2 = syntax and
compiler errors, 3 = other difficulties, and 4 = nothing. Variable (13) Consume (most
time consuming action) is graded as: 1 = editing the changes, 2 = understanding the
code, and 3 = removing errors. Variable (15) Understand (how well was the code
understood) was graded as: 1 = not very well, 2 = fairly to moderately well, and 3
well to very well. Variable (16) NotUndst (any code not understood) is graded as:
1 = none, 2 = string class, and 3 = certain C+4 syntax. Variable (17) CodeQual
(quality of code written) is graded as: 1 = poorer quality, 2 = similar quality, and 3
= as good as or better quality. Variable (18) Different (do anything different next
time) is graded as: 1 = no, 2 = use inheritance, 3 = add comments, 4 = be more sure

of syntax, and 5 = draw the inheritance hierarchy. Variable (19) Learned (learned

anything) is graded as: 1 = nothing, 2 = inheritance, 3 = 0O is beneficial, and 4 =

other answers. Finally, variable (20) Extra (extra comments made) is graded as: 1

nothing, 2 = mention of task being straightforward, 3 = steep learning curve for OO,

APPENDIX D: INDUCTIVE ANALYSIS DATABASES 272

Induction Variables

2 3 4 5 6 7189|1011 |12 |13 |14 | 15 | 16 | 17 | 18 | 19 | 20
1 A 44 12 n 5 2 y 1 1 2 1 1 b 3 1 3 2 1 1
2 A 37 0 n 3 1 y 1 2 4 1 c 2 1 3 1 1 2
3 A 31 0 y 3 2|y |1 1 3 4 1 a 3 2 3 1 2 4
4 A 99 0 n|12 |1 |n| - - - - - - - - - - - -
5 B 27 0 y 1 2 y 1 1 3 4 1 a 3 1 3 1 1 4
6 A | 100 | 45 | n 711 |y |2 3 5 2 3 a 2 1 1 2 4 1
7 A 64 0 y 5 1 y 2 3 7 2 3 a 2 1 3 1 1 4
8 B - 0 y 25 1 y 3 3 10 2 3 a 1 3 1 1 4 4
9 A - 0 y 10| 3 | n| - - - - - - - - - - - -
10 A 49 0 y 7 1 y 1 2 6 2 3 b 2 1 3 1 2 1
11 B - 0 y 21 1 y 1 3 5 3 3 a 2 2 1 1 4 1
12 | A 38 0 y |12 |2 | n| - - - - - - - - - - - -
13 | B 47 0 y 6 3|y |1 1 3 2 1 a 3 1 3 1 4 1
14 B 25 0 y 4 3 y 1 1 2 2 1 c 3 1 3 1 4 1
15 B 32 0 y 2 1 y 1 1 1 3 1 b 3 1 3 1 1 1
16 A 60 0 n 12 1 y 1 1 2 2 3 a 3 1 2 1 4 1
17 | B 36 0 y 6 3 y 1 1 3 2 3 a 3 1 3 1 2 4
18 A 85 0 n |17 | 1 n - - - - - - - - - - -
19 B 58 0 y 11 1 y 1 2 2 3 3 c 3 1 3 1 4 1
20 A 56 0 y 7 1 y 1 1 6 3 1 a 2 1 1 1 3 1
21 | A 35 0 n 2 1|y |1 1 2 2 1 c 3 1 3 2 1 1
22 B 36 0 y 2 1 y 2 1 2 2 1 a 3 3 2 1 4 1
23 B 49 0 y 8 1 y 2 1 4 2 3 c 2 1 2 1 2 1
24 B 52 0 y 9 1 y 2 1 3 1 3 d 2 1 2 1 2 1
25 A 41 0 y 12 2 y 1 1 1 4 3 a 3 1 3 1 1 1
26 A - 0 y 24 1 y 2 3 4 2 3 a 2 1 2 1 1 3
27 | B 31 0 y 9 1 y 2 1 5 2 1 a 3 1 2 1 4 1
28 B 41 0 y 13 1 y 1 1 2 2 3 a 3 1 3 1 4 4
29 | B 29 0 y 1 1 |n| - - - - - - - - -
30 | B | 102 0 y |11 |1 |y | 2 2 3 2 a 2 1 3 1 4 4
31 A - 0 y 15 1 y 3 3 7 2 3 a 2 1 2 1 4 1

Table D.2: Raw data for the second run of the first experiment

and 4 = other answers.

D.7.2 Internal replication and second experiment

The logical groupings of data for variables in Table D.3 (the internal replication) are
now explained. Variable (7) Experience (programming experience) is graded as: 1 =
a final year student, 2 = a new graduate student, and 3 = a PhD student. Variable
(9) InstTime (time to understand the experimental instructions) is graded as above.
Variable (10) SynDiff (difficulty with syntax) is graded as above. Variable (12) Diff
(what caused the most difficulty) is graded as: 1 = inheritance related difficulties, 2 =
syntax difficulties and compiler errors, 3 = object construction and initialisation, 4 =
nothing, and 5 = other answers. Variable (13) Consume (most time consuming action)

is graded as: 1 = editing and making changes, 2 = understanding the code, and 3

removing errors. Variable (15) Understand (how well was the code understood) is
graded as above. Variable (16) NotUndst (any code not understood) is graded as: 1

= none, 2 = string class, and 3 = other replies. Variable (17) CodeQual (quality of

APPENDIX D: INDUCTIVE ANALYSIS DATABASES 273

Induction Variables

2 3 4|5 6 718|910 |11 |12 |13 | 14 (15 |16 | 17 | 18 | 19 | 20
1 B 41 0 y 19 1 y 1 3 3 2 3 d 2 1 3 1 1 2
2 B 27 1 0 n 3 2 y 1 1 4 4 1 d 2 1 3 1 1 2
3 A|32]|0]|y 5 2 |y | 2 1 3 3 3 c 2 1 2 1 2 4
4 A|l29|0 |y 2 1|y |1 1 1 4 1 d 3 1 3 1 1 2
5 A - 0 y 37 | 3 y 3 3 4 3 3 b 2 3 1 4 5 1
6 B 710y |3 |2|y]|3 3 5 5 2 b 2 1 3 3 2 1
7 A 19 0 y 2 2 y 1 1 2 5 1 c 2 1 3 1 5 1
8 A 51 0 y 5 2 y 1 2 2 3 3 c 2 1 3 4 3 1
9 A 35 0 y - 2 y 1 2 3 4 1 d 2 2 3 1 1 1
10 B 51 0 y 12 1 y 1 2 2 3 3 b 3 1 2 1 5 1
11 A 7T 10 y 27 2 y 3 1 5 2 3 c 2 1 2 1 5 1
12 | A |44 |0 |y 6 2 |y | 2 3 5 1 3 a 3 3 2 1 4 1
13| A |28 |0y 4 1|y |1 3 1 3 3 d 2 1 3 1 1 1
14 B 63 0 n 18 2 y 1 3 3 5 3 d 2 1 3 2 2 2
15 B 63 0 y 10 1 y 1 3 4 3 3 a 2 1 2 1 4 4
16 B 59 0 y 21 2 y 2 1 2 2 3 b 2 1 1 1 2 4
17 | A 14 0 y 2 2 y 1 1 3 1 1 c 2 1 2 1 3 3
18 B 31 0 y 5 2 y 2 2 3 3 1 b 3 3 1 1 4 1
19 A 22 0 y 2 1 y 1 1 2 2 1 d 3 1 2 1 1 2
20 B 22 0 y 2 1 y 1 1 1 3 1 c 3 1 3 1 3 2
21| A |52 |0 |y |10|1|y]|1 3 3 2 3 a 3 1 3 1 1 1
22 B 35 0 y 4 2 y 2 2 2 4 1 a 3 1 3 1 3 1
23 B 44 0 y 3 2 y 2 1 2 3 1 d 3 1 2 1 3 1
24 A 26 0 y 4 2 y 1 1 1 4 1 C 3 1 3 1 1 1
25 B 38 0 y 5 1 y 1 2 4 3 1 b 2 1 3 1 3 1
26 A 29 0 y 7 2 y 1 2 3 5 1 b 3 1 3 1 3 1
27 | B 25 0 y 1 2 y 1 1 2 1 1 d 2 2 3 1 2 4
28 A - 0 y 15 3 y 3 3 9 5 3 a 1 1 1 1 5 1
29| B |49 |0 | n 5 2 |y | 2 3 2 2 3 a 2 1 3 2 1 1
30 | - - - - - - | - - - - - - - - - - - - -

Table D.3: Raw data for the internal replication

code written) is graded as above. Variable (18) Different (do anything different next
time) is graded as: 1 = no, 2 = use inheritance, 3 = read instructions properly, and
4 = concentrate on object construction. Variable (19) Learned (learned anything) is
graded as: 1 = nothing, 2 = inheritance benefits, 3 = extensibility of OO code, 4 = 00
is beneficial, 5 = other answers. Finally, variable (20) Extra (any extra comments) is
graded as: 1 = nothing, 2 = modification was straight forward, 3 = 0O is good to
work with, and 4 = other answers.

The logical grouping of attributes in Table D.4 (the second experiment) are the
same as above except for the following, variable (12) Diff (what caused the most
difficulty) is graded as: 1 = inheritance related difficulties, 2 = syntax difficulties
and compiler errors, 3 = choosing which class to specialize from, 4 = part of the
modification, and 5 = other answers. Variable (13) Consume (most time consuming
action) is graded as: 1 = editing and making changes, 2 = understanding the code, 3 =
removing errors, and 4 = inheritance related difficulties. Variable (16) NotUndst (any

code not understood) is graded as: 1 = none, 2 = string class, 3 = other replies, and 4 =

APPENDIX D: INDUCTIVE ANALYSIS DATABASES 274

Induction Variables

2 3 4 5 6 7189|1011 |12 |13 |14 |15 |16 | 17 | 18 | 19 | 20
1 B 33 0 y - 1 y 2 1 2 3 2 d 3 1 3 1 1 3
2 B 33 0 y 5 2 y 1 2 7 4 3 d 2 1 3 4 2 1
3 A 77 24 |{n |15 |2 |y |3 3 4 1 3 c 2 1 2 2 4 1
4 A 65 20| n |13 |1 |y |3 3 6 1 3 a 3 1 3 2 1 1
5 A 31 0 n 8 3 y 2 1 1 5 3 a 2 1 2 1 3 1
6 B 90 0 y| 17| 2|y |3 3 7 1 2 b 2 3 2 4 2 1
7 A 15 0 n 1 2 y 2 2 3 5 1 c 2 4 3 1 2 1
8 A 29 0 n 7 2 y 1 1 1 5 3 c 2 1 3 4 4 1
9 A 40 0 n 7 2 y 1 2 5 4 1 c 2 4 3 1 4 1
10 B 65 0 y 14 1 y 1 2 4 4 4 b 3 1 3 3 2 1
11 A 47 0 n 7 2 y 3 2 4 5 2 a 2 1 2 1 4 1
12 | A 57 0 n 8 2 |y | 2 1 6 4 1 a 2 1 2 2 4 1
13 | A 92 0 y |31 |1y |1 2 3 5 2 d 2 1 3 1 4 1
14 B 34 0 y 11 2 y 1 2 3 5 1 c 2 1 3 1 1 1
15 B 65 0 y 5 1 y 3 2 3 5 2 a 3 1 3 1 3 1
16 B 53 0 y 24 2 y 2 1 4 4 2 b 2 1 1 1 2 1
17 | A 73 0 y 11 2 y 1 3 7 1 4 a 2 3 3 3 4 1
18 B 34 0 y 3 2 y 3 1 4 1 1 a 2 3 3 4 3 1
19 A 44 0 y 7 1 y 2 2 5 1 2 d 2 1 3 4 4 1
20 B 53 0 y 10 1 y 2 3 3 2 3 d 3 4 3 1 3 1
21 | A - 0 y 2 1|y |1 1 6 1 1 d 2 1 3 1 3 1
22 B 50 0 y 9 2 y 1 1 3 4 3 c 3 1 3 3 3 1
23 B 48 0 y 5 2 y 2 1 3 1 1 d 3 1 2 1 3 1
24 A 34 0 n 3 2 y 1 1 3 5 1 [3 1 3 2 4 1
25 B 36 0 y 4 1 y 1 1 7 3 2 b 2 4 3 1 1 3
26 A 29 0 n 5 2 y 1 1 1 2 1 d 3 1 3 2 3 1
27 B 76 0 y 19 2 y 2 3 6 1 4 b 2 1 2 4 3 1
28 A 73 0 n 7 3 y 2 2 5 5 1 c 1 1 2 4 4 1
29 | B | 115 0 y|19| 2|y |1 1 7 3 3 b 2 1 3 1 3 3
30 | B 40 0 y 6 1|y | 2 1 3 3 1 a 3 1 3 1 4 2
31 A 46 0 n 10 2 y 3 2 3 3 1 c 2 3 2 2 4 1

Table D.4: Raw data for the second experiment

everything but the relevant parts. Variable (18) Different (do anything different next
time) is graded as: 1 = no, 2 = use inheritance, 3 = draw the inheritance hierarchy,
and 4 = other answers. Variable (19) Learned (learned anything) is graded as: 1 =
nothing, 2 = inheritance hierarchies can be complex, 3 = use of inheritance/inheritance
has benefits, 4 = other answers. And variable (20) Extra (extra comments made) is
graded as: 1 = nothing, 2 = modification was straight forward, 3 = deciding which

class to specialize from was difficult.

Appendix E

Miscellaneous

E.1 External replication materials

E.1.1 Pilot debriefing results

Subjects were informally debriefed after the pilot study for the external replication.
Their substantive comments (paraphrased here) on the pretest and experiment were
as follows:

Pretest:
e An unrealistic problem but useful for Turbo Pascal practice.
o Use of a fixed array for file processing was unnatural.
Experiment:

o The pretest taught you the semantics of the task (in pretest, use disk seek read
and write pairs and replace with array assignment statements while in the ex-
periment use array assignment statements and replace these with disk seek read

and write pairs).

¢ No intellectual capacity needed to perform changes (in either monolithic or mod-

ular programs).

e In the modular program, there is an instruction to delete the global array variable
InventoryArray but this happens to be the last variable declaration which is

immediately followed by the comment that the following procedures are the only

APPENDIX E: EXTERNAL REPLICATION MATERIALS 276

ones that ever use this array: as a consequence I no longer have to consider the

program, just looking at the four procedures.

e In the monolithic program, the task turns into a global search and replace oper-
ation and as such is unrealistic because I can’t use the editing environment and
feel at a disadvantage as I am having to manually search through listing for all

the changes.

¢ In the modular program, unhappy that arrays are passed as global structures
instead of being passed as parameters: means that the task is much easier than

it should be.
o After first pass, editing and compiling wrapped into logic phase.
o Suggest highlighting name of file.

e If you make a mistake, only then do you have to try and understand what is

going on.

e You have to remember to restore the test data files properly if testing reveals

you have made a mistake otherwise you can end up taking even more time.
e Program layout and commentary could be improved.

o [think I had written down all the changes correctly on paper but had incorrectly

typed in one of the changes.

Several of these comments corroborate some of the criticisms presented in Chapter 4,
Section 4.2.2 and some can be viewed as identifying additional weaknesses of Korson’s
study. Note that there exists similarity between some of the comments above and

some of those made on debriefing questionnaires by replication sub jects.

APPENDIX E: EXTERNAL REPLICATION MATERIALS 277

E.1.2 Debriefing questionnaire

Thank you for participating. Before you leave, please give a few personal details and

your comments.

Personal details

Name:

Age:

Sex:

Position (e.g., 2nd year CS):

Qualifications if you are a graduate (e.g., BSc. Comp. Sci. 2(i)):

Comments

1. Did you find the task easy?

2. Did you make good use of the editor?

3. What caused you the most difficulty?

4. How well do you understand the code?

5. Have you learned anything? If so, what?

Any other comments?

APPENDIX E: EXTERNAL REPLICATION MATERIALS

278

Induction Variables

1 2 3 4 5 6 7 8 9| 10 | 11 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
A | 15 4 1 2 22 18 mod | 237 | 26 | m TS y y 3 3 1 1 0 n
B | 14 | 13 7 4 38 25 mod 58 | 22 | m ra y y 1 1 2 5 1 n
C 16 6 1 10 33 27 mod 98 | 21 | m | cs4 n y 2 2 1 1 2 n
D | 22 3 1 20 46 43 mod | 105 | 22 | m | cs4 | n y 3 0 3 5 0 n
E 39 14 3 14 70 56 mod | 116 20 m cs3 n y 1 3 3 1 0 n
F | 34 7 19 5 65 58 mod | 144 | 33 | m TS y y 2 2 3 2 2 n
G | 31 2 29 1 63 61 mod 69 | 27 | m ra n n 3 1 3 3 5 n
H 46 16 25 25 112 96 mod | 176 23 m TS n y 3 2 3 2 2 y
1 15 15 4 5 39 24 mon | 180 | 20 | m | cs4 y y 2 0 4 2 3 n
J 32 | 30 6 3 71 41 mon | 333 | 19 f cs2 y n 3 0 4 2 1 n
K 38 | 14 2 4 58 44 mon | 679 | 20 | m | cs3 y y 2 2 3 2 1 n
L 44 | 21 1 4 70 49 mon | 652 | 22 m | cs4 y n 2 0 1 4 0 n
M |28 |30 |11 | 11 80 50 mon | 562 | 22 | m | cs4 y n 2 1 3 4 1 y
N 36 | 47 | 22 1 106 59 mon | 429 | 33 | m TS y n 2 1 1 2 3 n
(0] 29 7 3 29 88 61 mon | 445 | 22 | m | cs2 y y 3 1 3 2 0 y
P 55 26 2 36 | 119 93 mon | 661 26 | m ra n y 3 0 1 2 0 y
Q 38 22 15 58 133 | 111 | mon | 644 | 33 m cs2 y n 3 3 2 2 1 y

E.1.3 Inductive analysis raw data

Table E.1: Raw data for external replication study

Table E.1 displays the data in its raw form before any manipulation took place. Similar

replies given to each question on the debriefing questionnaire were grouped so that they

had the same logical value (as described in Chapter 4).

APPENDIX E: BASILI’S EXPERIMENTATION FRAMEWORK PARADIGM

279

E.2 Basili’s experimentation framework paradigm

I. Definition

Motivation Object Purpose Perspective Domain Scope
Understand | Product | Characterize | Developer Programmer Single Project
Assess Process Evaluate Modifier Program/project | Multi-project
Manage Model Predict Maintainer Replicated Project
Engineer Metric Motivate Project manager Blocked subject-project
Learn Theory Corporate manager
Improve Customer
Validate User
Assure Researcher

II. Planning
Design Criteria Measurement

Experimental designs
Incomplete Block
Completely randomised
Randomised block
Fractional factorial

Multivariate analysis

Direct reflections of cost/quality
Cost
Errors
Changes
Reliability
Correctness

Metric definition
Goal-question-metric
Factor-criteria-metric

Metric validation

Data Collection
Automatability

Correlation Indirect reflections of cost/quality Form design and test

Factor analysis Data coupling Objective vs. subjective

Regression Information visibility Level of measurement
Statistical models Programmer comprehension Nominal/classificatory
Non-parametric Execution coverage Ordinal/ranking
Sampling Size Interval

Complexity Ratio
IIT. Operation

Preparation Execution Analysis

Pilot study

Data collection
Data validation

Quantitative vs. qualitative
Preliminary data analysis
Plots and histograms
Model assumptions
Primary data analysis
Model applications

IV. Interpretation

Interpretation context Extrapolation Impact
Statistical framework Sample representativeness Visibility
Study purpose Replication
Field of research Application

Table E.2: The experimentation framework paradigm [Basili et al., 1986]

