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Abstract

This thesis is focused broadly on the stopped exit time problem in the stochastic

differential equations setting. It currently appears that one of the most efficient

and powerful approaches to solve this problem (especially in higher dimensions

for which there are no explicit formulae) is the simulation of sample paths of

time discrete approximations. We compute the mean exit time using a Monte

Carlo technique, which has the advantage of being straightforward to implement.

However, controlling the Monte Carlo sampling error and large biases in the nu-

merical method make this method computationally expensive. In our work we

employ a variance reduction technique called multi-level Monte Carlo which dra-

matically reduces the complexity of the method. Surprisingly, even though we

need to compute the quantity in a weak sense (an expected value), the multi-level

method also relies on a strong convergence property of the numerical scheme. In

order to justify the multi-level method we then establish a rate of strong conver-

gence for exit times. We also present an extension to the basic method which

reduces the computational complexity even further. The extended version uses

a Brownian bridge technique which is applied on the simplest nontrivial numeri-

cal scheme for stochastic differential equations with a strong order of convergence

one (the Milstein scheme.) Our results have been derived for multi-dimensional

stochastic differential equations and can be applied to nonlinear stochastic differ-

ential equations models, including those arising in finance and chemical kinetics.

Our theoretical work is complemented by computational tests for a number of

practical problems.
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Chapter 1

Introduction

If you can’t explain it simply,

you don’t understand it well enough.

Albert Einstein, 1879-1955

1.1 Motivation

Even though stochastic differential equations (SDEs) are one of the most popu-

lar tools used to model processes in financial mathematics, it is extremely rare

that one can solve them in some explicit manner. Therefore, numerical methods

have become a very useful tool to solve SDEs. It currently appears that the

most efficient and applicable approach to solve SDEs is the simulation of sam-

ple paths of time discrete approximations. There are numerous examples in the

literature where authors discretise SDEs, typically with Euler-type or Milstein-

type schemes. Regarding applications, there are four main motivations for such

simulations:

� computing an expected value of a function of some process using a Monte

Carlo approach, for example to value a bond or an expected payoff of an

option [5, 14, 45],

� generating time series in order to test parameter estimation algorithms [28],

� approximating the likelihood estimator effectively [85],
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CHAPTER 1. INTRODUCTION

� estimating a mean exit time using Monte Carlo [3, 13, 71,73].

In our work we focus our attention on the last problem. The approach of approx-

imating a mean exit time by directly simulating paths of the SDE and applying

a Monte Carlo technique, relative to the alternative of solving an associated de-

terministic partial differential equation, has the advantages of

� being straightforward to implement,

� coping naturally with high dimensions,

� dealing effectively with complicated boundaries.

However, in this context the inherently high cost of controlling the Monte Carlo

sampling error is exacerbated by the large biases in the numerical method—exit

time samples are less accurate than the corresponding samples of the solution

process itself. Our work is thus motivated by a practical problem for which

there is a need for efficient algorithms to approximate mean exit times in a more

effective way and therefore using less computational effort.

1.2 Contribution

Here we list the major contributions of this thesis.

Strong convergence for exit times (Chapter 4.) We prove that the most

basic discretisation, the Euler–Maruyama method, converges strongly to

the solution of the multi-dimensional SDE with a rate slightly slower than

1/2 in terms of its ability to approximate exit times. Thanks to this we can

justify the use of multi-level Monte Carlo (MLMC).

Non Lipschitz cases (Chapter 4.) The stopped exit time problem restricts

the solution to a compact domain and therefore we may redefine f and g

outside this domain, if necessary, in order to ensure that they are globally

Lipschitz. This allows us to derive results that apply to a wide range of non-

linear SDE models that would otherwise pose analytical difficulties through

non-differentiability of the drift at the origin or superlinear growth of the

diffusion at infinity, including those arising in finance [1,2,16,17,57,70] and

stochastic population dynamics [7, 33,75,76,84].
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CHAPTER 1. INTRODUCTION

Adaptation of MLMC to mean exit times (Chapters 4 & 5.) We adapt

the Euler-based multi-level algorithm developed by Giles [38] in order to

estimate exit times using less computation than the standard Monte Carlo

method. We also test the algorithm numerically on examples in cases rang-

ing from one-dimensional to five-dimensional.

Strong convergence for exit times using Brownian bridges (Chapter 6.)

We present a new numerical method for estimating the expected exit time of

a multi-dimensional SDE. The algorithm uses a Brownian bridge technique

to compute conditional exit probabilities. We note that some ideas behind

the new algorithm were tested numerically in [89]. In order to justify the

multi-level Monte Carlo approach we establish a rate of strong convergence

for the exit time approximation of fine and coarse paths.

Application of the Brownian bridge algorithm to MLMC (Chapter 6.)

We show that the general multi-level Monte Carlo philosophy can be ex-

ploited very effectively in the mean exit time context by computing con-

ditional exit probabilities in a manner that allows pairs of coarse and fine

grids to be combined. We prove that the variance of the new multi-level

algorithm gives significant computational savings of two orders of magni-

tude, comparing with the crude Euler-Monte Carlo approach, in terms of

the required root-mean-square accuracy. We also test the new method nu-

merically in a two-dimensional case.

1.3 Outline

In Chapter 2 we recall numerical methods, concepts of weak and strong conver-

gence, and the mean exit time problem. Chapter 3 introduces multi-level Monte

Carlo and its extensions. It also presents financial applications for various pro-

cesses in various settings. The main body of research is contained in Chapters 4, 5

and 6. In Chapter 4 we present the multi-level Monte Carlo algorithm adapted to

the mean exit time problem. In order to justify MLMC we derive what appears to

be the first proof of strong convergence of Euler–Maruyama in terms of its ability

to approximate exit times. We show that the method performs well on scalar

cases of a geometric Brownian motion and a mean reverting square root process.

3



CHAPTER 1. INTRODUCTION

Chapter 5 provides more numerical examples in the financial and neural network

setting and shows that the multi-level algorithm performs well in more than one

dimension. We also show that even if we violate the assumption of a non-compact

domain, so that the convergence result is no longer applicable, we can still apply

the multi-level method successfully. Chapter 6 provides the reader with a new

Milstein-Monte Carlo algorithm to estimate expected exit times. The method

is based on a novel representation of a mean exit time and a Brownian bridge

interpolation technique. We then adapt this algorithm to the multi-level setting.

The method yields significant computational savings of two orders of magnitude

in terms of the required root-mean-square accuracy. We also test the algorithm

numerically in a two-dimensional case. In the final chapter we summarise our

findings and suggest some possible extensions for further research.
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Chapter 2

Numerical Methods

Everything should be made as simple as possible,

but not simpler.

Albert Einstein, 1879-1955

2.1 Introduction

In this chapter we present the most popular explicit approximation schemes,

explain the concepts of weak and strong convergence, introduce the mean exit

time problem and emphasise the need for a strong convergence result for exit

times. For basic definitions and background of numerical schemes and stochastic

processes we mention some key sources here instead of flooding the text with

repeated citations [58,67,82,87].

We begin with the system of stochastic differential equations (SDEs)

dx(s) = f(x(s))ds + g(x(s))dw(s), (2.1)

with deterministic initial condition x(0) = x0, over a finite time interval [0, T ].
We assume x takes values in Rd, f ∶ Rd → Rd, and g ∶ Rd → Rd×m. Here w = {w(t) ∶
t ≥ 0} is a standard m-dimensional Brownian motion and we let (Ω,F ,P,Ft) be

a complete, filtered probability space satisfying the usual conditions. We specify

an open set O ⊂ Rd.

We impose the following condition on the drift and diffusion coefficients of

the SDE throughout.

5



CHAPTER 2. NUMERICAL METHODS

Assumption 2.1.1. (C2 continuity) Functions f and g have two continuous

bounded derivatives on O.

The above is imposed on f and g to ensure existence and uniqueness of strong

solutions of SDE and to provide extra smoothness needed for (2.9).

2.2 Explicit Euler–Maruyama

The simplest discretisation scheme is the Euler–Maruyama (EM) method. Given

any stepsize ∆t, we define the partition P∆t ∶= {k∆t ∶ k = 0,1,2, ...,N} of the time

interval [0, T ], N∆t = T . The EM approximation Xk ≈ x(k∆t) for equation (2.1)

has the form

Xk+1 =Xk + f(Xk)∆t + g(Xk)∆wk+1, (2.2)

where ∆wk+1 = w((k + 1)∆t) − w(k∆t) and X0 = x0. A vector form of equation

(2.2) has the ith component given by the formula

Xi,k+1 =Xi,k + fi(Xk)∆t +
m

∑
j=1

gij(Xk)∆wj,k+1.

A straightforward, continuous-time extension X(s) ≈ x(s) may then be defined

as the step process

X(s) =Xk, for s ∈ [k∆t, (k + 1)∆t). (2.3)

2.3 Explicit Milstein

If we add a correction to the stochastic increment in the EM method we obtain the

Milstein method. The correction arises because the traditional Taylor expansion

must be modified in the case of Itô calculus. A so-called Itô-Taylor expansion

can be formed by applying Itô’s result, which is a fundamental tool of stochastic

calculus. Truncating the Itô-Taylor expansion at an appropriate point produces

the Milstein discretisation X̂k ≈ x(k∆t) of equation (2.1) with the ith component

6



CHAPTER 2. NUMERICAL METHODS

of the form

X̂i,k+1 = X̂i,k + fi(X̂k)∆t +
m

∑
j=1

gij(X̂k)∆wj,k

+
m

∑
j,n=1

hijn(X̂k) (∆wj,k∆wn,k −Υjn∆t −Ajn,k) ,
(2.4)

where

� hijn(x) is the diffusion tensor defined as

hijn(x) =
1

2

d

∑
l=1

gln(x)
∂gij
∂xl

(x),

� Υ is the correlation matrix for the driving Brownian paths,

� Ajn,k are the Lévy areas defined as

Ajn,k = ∫
(k+1)∆t

k∆t
((wj(t) −wj(k∆t))dwn(t) − (wn(t) −wn(k∆t))dwj(t)) .

We define a straightforward, continuous-time extension of the Milstein scheme in

a similar fashion to Euler–Maruyama in equation (2.3).

2.4 Weak Convergence

There are two main concepts in terms of measuring the rate at which the numer-

ical method approaches the solution as we decrease the stepsize ∆t → 0: weak

convergence and strong convergence. The first concept, weak convergence, is less

demanding as it measures the rate of decay of the “error of the means.” The

other one, strong convergence, measures the rate at which the “mean of the er-

ror” decays as ∆t → 0. Whenever we mention the expected value we implicitly

imply that such a quantity exists.

Given a smooth function P ∶ Rd → R, for P from the set of polynomials of

degree smaller or equal to R, for some R, we say that X converges to x in a weak

sense with an order α if

∣E[P (x(T ))] −E[P (XT )]∣ = O(∆tα). (2.5)

7



CHAPTER 2. NUMERICAL METHODS

Thanks to Assumption 2.1.1 it can be shown that both EM and Milstein have

weak order of convergence α = 1.

2.5 Strong Convergence

Assumption 2.1.1 allows us to provide the classical strong convergence on the

finite time interval [0, T ], which is defined as

(E[ sup
0≤k∆t≤T

∣x(k∆t) −Xk∣p])
1/p

= O(∆tξ), 2 ≤ p <∞. (2.6)

Maruyama [77] showed the mean-square convergence of the EM method, while

Gihman and Skorohod [35] proved that the strong order of accuracy is ξ = 1/2.

For the Milstein approximation the rate is improved to ξ = 1, that is, we have

(E[ sup
0≤k∆t≤T

∣x(k∆t) − X̂k∣
p])

1/p
= O(∆t), 2 ≤ p <∞. (2.7)

The continuously extended scheme has a slight degradation in order,

E[ sup
0≤t≤T

∣x(t) −X(t)∣p] = O(∣ ∆t log(∆t) ∣p/2), p ≥ 2. (2.8)

Note that the convergence rate is the same here for the both Euler–Maruyama

and Milstein schemes. The inequality in (2.8) was proved in [81] for the case

where piecewise linear interpolation is used. A result for the step process then

follows via the triangle inequality. Later in Theorems 6.3.2 and 6.3.8 we will

show that it is possible to improve the strong convergence rate for a continuously

extended Milstein scheme thanks to a Brownian bridge interpolation technique.

2.6 Mean Exit Times

Having specified the open set O ⊂ Rd, the stopped exit time is the first time

at which x(s) leaves the open set O, or T if this is smaller. Our quantity of

interest in this thesis is the expected value of this random variable. We specifically

distinguish between hitting times and exit times. The former is the case when

8



CHAPTER 2. NUMERICAL METHODS

the process under consideration starts outside the set and hits the boundary from

outside. The latter is the case when the process starts inside the set and leaves

it. In this thesis we focus on the latter.

Such exit times are important in many applications, including air traffic man-

agement (using the Markov Chain approach) [65], manufacturing flexibility [96],

quantum electrodynamics [10], the adoption of technological innovation [55], elec-

tronic systems [61, 79], optimal decision making [72, 86], finance, insurance and

economics [23,68,95,100]

We then introduce notation for the stopped exit time for the SDE by

τ ∶= (inf{s > t ∶ x(s) ∉ O}) ∧ T.

Here a ∧ b denotes min(a, b).
Similarly, for the continuously extended Euler–Maruyama approximation, we

let

ν ∶= (inf{s > t ∶ X(s) ∉ O}) ∧ T.

We note that this exit time arises when the natural approximation algorithm is

used: record the first discrete time point at which the Euler–Maruyama path

exits the set O, or T if this is smaller.

The continuous-time extension (2.3) takes the form of a step process, so ν

corresponds to the first grid point where this numerical solution exits the region

of interest, or T if this is smaller.

We emphasise that the stopped exit time problem restricts the solution to a

compact domain. It follows that we may redefine f and g outside this domain, if

necessary, in order to ensure that they are globally Lipschitz. This allows us to

derive results that apply to a wide range of nonlinear SDE models, including those

arising in finance and chemical kinetics that pose analytical difficulties through

non-differentiability of the drift at the origin [2, 93] or superlinear growth of the

diffusion at infinity [21,32,94].

The work of Gobet and coauthors, [53, Theorem 17] (see also [51] and [52]),

gives an optimal rate for the weak convergence of the Euler–Maruyama stopped

exit time:

E[τ] −E[ν] = O(∆t 12 ). (2.9)

9



CHAPTER 2. NUMERICAL METHODS

A proper analysis of the multi-level approach requires an understanding of

both the weak and strong convergence rates of the underlying discretisation

method. For this reason we present what appears to be the first strong con-

vergence result for the stopped exit time problem (Theorem 4.3.1).

2.7 Summary

In this chapter we introduced the most popular explicit discretisation schemes,

explained the difference between weak and strong convergence and presented the

mean exit time problem. We stressed the need for the strong convergence result

of the numerical scheme for exit times to justify the use of the multi-level Monte

Carlo method, which is introduced in the next chapter.

10



Chapter 3

Multi-level Monte Carlo

Prediction is very difficult,

especially about the future.

Niels Bohr, 1885-1962

3.1 Monte Carlo

We start by introducing a standard Monte Carlo approach. Our objective here

is to numerically approximate the expected value E[Y ], where Y = F (x) is some

functional of a random variable x. In many financial applications we are not able

to sample x directly and therefore, in order to perform Monte Carlo simulations,

we approximate x with X such that E[F (X)]→ E[F (x)], when ∆t goes to zero.

We have in mind the case where x may represent the solution of a nonlinear SDE

at a specified time, and X is a numerical approximation using a stepsize ∆t.

The standard Monte Carlo estimate is produced when we use X to compute N

independent samples,

Ŷ = 1

N

N

∑
i=1

F (X[i]),

where X[i] is the numerical approximation to x on the ith sample path and N is

the number of independent simulations of x. For ∆t→ 0 and N →∞ we achieve

a standard Monte Carlo result, Ŷ → E[Y ] [46]. In practice we choose a certain

stepsize ∆t > 0 and a finite number of simulations N and perform Monte Carlo

simulations, producing an error to the approximation of E[Y ]. Here we are in-

11
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terested in the mean square error (MSE), that is, E [(Ŷ −E[Y ])2]. Our objective

in Monte Carlo simulations is to estimate Y with a mean square accuracy TOL2

(so that the desired root-mean-square accuracy is TOL) by minimising the com-

putational complexity required to achieve the target accuracy. The overall error

naturally splits into two terms,

E [(Ŷ −E[Y ])2] = E [(Ŷ −E[Ŷ ] +E[Ŷ ] −E[Y ])2]

= E [(Ŷ −E[Ŷ ])2] + (E[Ŷ ] −E[Y ])2
.

(3.1)

The first term on the right-hand side in (3.1) is the Monte Carlo variance; the

other one is known as the bias of the numerical approximation. The Monte Carlo

variance is proportional to N−1,

Var[Ŷ ] = 1

N2
Var [

N

∑
i=1

F (X[i])] = 1

N
Var[F (X)].

From (2.5) we know that the weak error, ∣E[Ŷ ]−E[Y ]∣ = O(∆t), for both Euler–

Maruyama and Milstein. Hence, the mean square error for the standard Monte

Carlo method is of order O(N−1) + O(∆t2). To ensure the root-mean-square

error is proportional to TOL, we must have MSE = O(TOL2) and therefore

1/N = ∆t2 = O(TOL2), which means N = O(TOL−2) and ∆t = O(TOL). The

computational cost of standard Monte Carlo is proportional to the number of

paths N multiplied by the cost of generating a path, that is, the number of

timesteps in each sample path. Thus, the standard Monte Carlo complexity is

O(TOL−3) [29].

3.2 Multi-level Monte Carlo

We first mention that a multi-level Monte Carlo method for parametric inte-

gration was developed by Heinrich [56]. A similar two-level strategy was de-

veloped slightly earlier by Kebaier [66], and a multi-level approach was under

development at the same time by Speight [91, 92]. In the parametric integration

setting we are interested in estimating the value of E[F (x,λ)], where x is a finite-

dimensional random variable and λ is a parameter. In the simplest case in which λ

is a real variable in the range [0,1], having estimated the value of E[F (x,0)] and

12
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E[F (x,1)], we can use 1
2(F (x,0)+F (x,1)) as a control variate when estimating

the value of E[F (x, 1
2)], since the variance of F (x, 1

2) − 1
2(F (x,0) + F (x,1)) will

usually be less than the variance of F (x, 1
2). This approach can then be applied

recursively for the other intermediate values of λ, yielding large savings if F (x,λ)
is sufficiently smooth with respect to λ.

Giles’ multi-level Monte Carlo path simulation [38] is similar in some ways

and different in others. There is no parametric integration, and the random

variable is infinite-dimensional, corresponding to a Brownian path in the original

paper. However, the control variate viewpoint is very similar. A coarse path

simulation is used as a control variate for a more refined fine path simulation,

but since the exact expectation for the coarse path is not known, this is in turn

estimated recursively using even coarser path simulation as control variates. In

many applications the coarsest path in the multi-level method may have only one

timestep for the entire interval of interest.

3.2.1 Multi-level Monte Carlo Theorem

A multi-level Monte Carlo simulation uses a number of levels of resolution, ` =
0,1, . . . , L, with ` = 0 being the coarsest and ` = L being the finest. In the

context of an SDE simulation, level 0 may have just one timestep for the whole

time interval [0, T ], whereas level L might have 2L uniform timesteps ∆tL = 2−LT .

The smallest stepsize, ∆tL, is chosen so that the bias in the discretisation method

matches the target accuracy of O(TOL); matching ∆tL with TOL then gives

L = log TOL−1

logM . The multi-level method was developed for any integer M > 1. Level

L would then have ML uniform timesteps ∆tL =M−LT . We will specify whether

the method we are using is for M = 2 or for general M .

Let us denote by P the payoff and by P` its approximation on level `. P is

assumed to be a globally Lipschitz function of x(T ), for example, max(x(T )−E,0)
for a call option, where by E we denote the strike. We can then write the following

trivial identity,

E[PL] = E[P0] +
L

∑
`=1

E[P` − P`−1]. (3.2)

On the left is the exact mean of the high-resolution approximation, which has the

required bias. On the right is a telescoping series involving the different levels

13
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of resolution. The idea behind MLMC is to independently estimate each of the

expectations on the right-hand side in (3.2) in a way which minimises the overall

variance for a given computational cost. Let the first term, E[P0], be estimated

by a quantity Y0 that uses the sample mean of N0 independent paths. Thus,

Y0 =
1

N0

N0

∑
i=1

P
[i]
0 .

Each remaining term of the form E [P` − P`−1] is estimated by a quantity Y`

constructed with N` independent pairs of paths. Hence,

Y` =
1

N`

N`

∑
i=1

(P [i]
` − P [i]

`−1) . (3.3)

The key point here is that P
[i]
` −P

[i]
`−1 should come from two discrete approximations

for the same Brownian path (see [83]), in order to have a small difference on

finer levels (thanks to strong convergence) and as a consequence making the

variance small, too. Therefore, very few samples will be required on finer levels

to accurately estimate the expected value. From (3.3) we can see that

E[Y`] =
1

N`

N`

∑
i=1

E[P [i]
` − P [i]

`−1] = E[P` − P`−1].

The overall MLMC estimator Ŷ is of the form

Ŷ =
L

∑
`=0

Y`.

The final accuracy depends on the accuracy of the finest level L, even though we

are using different levels with different discretisation errors to estimate E[P ],

E[Ŷ ] =
L

∑
`=0

E[Y`] = E[P0] +
L

∑
`=1

E[P` − P`−1] = E[PL].

The variance is given by

Var[Ŷ ] =
L

∑
`=0

Var[Y`] =
L

∑
`=0

Var [P`−P`−1]
N`

.

14
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Let us denote by C the total computational cost of the multi-level algorithm.

Each pair of paths at level ` has a cost proportional to 1/∆t`. Hence, the total

computational cost is

C =
L

∑
`=0

N`

∆t`
.

To make the variance of Ŷ less than TOL2

2 for the computational cost C, we can

think of N` as a continuous variable and use the Lagrange function to find the

minimum of
L

∑
`=0

1

N`

Var [P`−P`−1] + λ(
L

∑
`=0

N`

∆t`
−C) .

Thanks to the first order condition we have

N` = λ−
1
2
√

Var [P`−P`−1]∆t`.

We can then write

Var[Ŷ ] =
L

∑
`=0

Var [P`−P`−1]
N`

=
L

∑
`=0

√
λ√

Var [P`−P`−1]∆t`
Var [P`−P`−1].

(3.4)

Our goal is to achieve Var[Ŷ ] ≤ TOL2

2 , so in (3.4) we obtain

λ−
1
2 ≥ 2TOL−2

L

∑
`=0

√
Var [P`−P`−1]∆t−1

` .

Hence, the optimal number of samples N` for level ` can be expressed as

N` = ⌈2TOL−2
√

Var [P`−P`−1]∆t`
L

∑
`=0

√
Var [P`−P`−1]∆t−1

` ⌉ . (3.5)

The smallest stepsize, ∆tL = 2−LT , is chosen so that the bias in the discretisation

method matches the desired accuracy of O(TOL). Thanks to the O(∆t) weak

convergence, we can match ∆tL with TOL and we get

L = log TOL−1

log 2
.
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We now present Algorithm 1. We make an initial estimate of variance dependent

on tolerance. This way the greater the required precision, the greater the initial

sample for estimating variance is.

Algorithm 1 Fix TOL which determines the value of maximum level L.

for ` = 0, ..., L do
Calculate an initial estimate of variance Var [P`−P`−1] using N = TOL−1

samples.
Determine optimal number of samples N` using (3.5).
Generate additional samples as needed until we have N` of them.

end for

If we denote by α the order of weak convergence and by β the order of strong

convergence, we have then just derived a special case of Theorem 3.1 from [38]

for α = 1 and β = 1/2. We now recall a slightly modified version of this theorem

from [43] for the reader’s convenience.

Theorem 3.2.1. Let P denote a functional of the solution of a stochastic dif-

ferential equation (2.1) and let us assume P is globally Lipschitz. Let P` de-

note the corresponding level ` of a numerical approximation. If there exist inde-

pendent estimators Y` based on N` Monte Carlo samples, and positive constants

α,β, γ, c1, c2, c3 such that α≥ 1
2 min(β, γ) and

i) ∣E[P`−P ]∣ ≤ c1 2−α`,

ii) E[Y`] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

E[P0], ` = 0,

E[P`−P`−1], ` > 0,

iii) Var [Y`] ≤ c2 N−1
` 2−β `,

iv) C` ≤ c3N` 2γ `, where C` is the computational complexity of Y`,

then there exists a positive constant c4 such that for any TOL < e−1 there are

values L and N` for which the multi-level estimator

Y =
L

∑
`=0

Y`,

has a mean-square-error with bound

E [(Y −E[P ])2] < TOL2,
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with a computational complexity C with bounds

C ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c4 TOL−2, β > γ,

c4 TOL−2(log TOL)2, β = γ,

c4 TOL−2−(γ−β)/α, 0 < β < γ.

We note that we need the order of weak convergence α in condition i) of

Theorem 3.2.1. Condition iii) includes the crucial for MLMC rate of strong

convergence. We now show that in order to estimate the MLMC variance it is

useful to examine the strong convergence property of the numerical scheme. We

begin with

Var [P`−P`−1] ≤ E [(P`−P`−1)2] ≤ 2E [(P`−P )2] + 2E [(P −P`−1)2] .

For a Lipschitz continuous function P , ∣P (x) − P (y)∣2 ≤K ∣x − y∣2, we can write

E [(P`−P )2] ≤K E [∣x(T )−XT ∣2] ,

for some constant K. Remarkably, the multi-level algorithm depends on the

strong convergence property even though we compute a weak quantity, that is,

an expected value.

3.2.2 Modified Multi-level Monte Carlo

We showed that the crucial step in the MLMC analysis is the estimation of

Var [P` −P`−1]. This differentiates MLMC from standard Monte Carlo, where we

only require a weak error bound for approximations of SDEs. We will, however,

demonstrate that it may not be necessary to have the classical strong convergence

in order to obtain a good multi-level variance.

In (3.3) we have used the same estimator for the payoff P` on every level `, and

therefore (3.2) becomes a trivial identity due to the telescoping summation on the

right-hand side. However, Giles in [37] showed that it can be more desirable to use

different estimators for the finer and coarser of the two levels being considered,

P f
` when level ` is the finer level, and P c

` when level ` is the coarser level. In this
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case, in order for the key equality to hold,

E[P f
L] = E[P f

0 ] +
L

∑
`=1

E[P f
` − P c

`−1],

we need that for ` = 1, . . . , L

E[P f
` ] = E[P c

` ]. (3.6)

Theorem 3.2.1 is still applicable to this modified estimator. The advantage is

that it gives us the flexibility to construct approximations for which P f
` − P c

`−1

is much smaller than the original P` − P`−1, giving a larger value for β, the rate

of variance convergence in condition iii) of Theorem 3.2.1. In the next sections

we demonstrate how suitable choices of P f
` and P c

` can dramatically improve the

convergence of the variance of the MLMC estimator.

A good choice of estimators often follows from analysis of the problem under

consideration from the distributional point of view. We will demonstrate that

methods that had been used previously to improve the weak order of convergence

can also improve the order of convergence of the MLMC variance.

3.2.3 Conditional Monte Carlo

Conditional Monte Carlo has been frequently used to improve convergence of the

MLMC variance [24, 37]. We recall that our goal is to calculate E[P ]. Using

conditional expectation, we can write

E[P ] = E[E[P ∣Z]],

where Z is a random vector we condition on. Hence, E[P ∣Z] is an unbiased

estimator of E[P ]. Using a general formula for variance decomposition, we obtain

Var [P ] = E[Var [P ∣Z]] +Var [E[P ∣Z]],

and therefore Var [E[P ∣Z]] ≤ Var [P ]. In the multi-level setting we obtain a better

variance convergence if we condition on different vectors on fine and coarse levels.

This will be explained more carefully in section 6.3 of Chapter 6.
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3.3 Financial Applications

In this section we present a number of multi-level Monte Carlo applications in

finance. The main application of the multi-level algorithm is to compute the

expected payoff of a financial option. We overview results for Euler–Maruyama

and Milstein approximations when used for pricing options.

3.3.1 Pricing Options with Euler–Maruyama

Giles et al. [40] analysed all the main option payoffs using the EM scheme. Ta-

ble 3.1 (taken from [37]) summarises observations from numerical experiments

and corresponding bounds derived analytically.

Option Numerical Analysis
European O(∆t) O(∆t)
Asian O(∆t) O(∆t)
Lookback O(∆t) O(∆t)
Barrier O(∆t1/2) O(∆t1/2−ε)
Digital O(∆t1/2) O(∆t1/2 log ∆t)

Table 3.1: Convergence β of Var [P`−P`−1]: estimates based on numerical exper-
iments and analytical bounds for the Euler–Maruyama discretisation; here any
ε > 0 can be chosen.

3.3.2 Pricing Options with Milstein

Extending the analysis for EM to the Milstein scheme is not straightforward.

This is because the Milstein scheme gives an improved rate of convergence on

the grid points compared to the EM scheme, but this is not enough for path-

dependent options where the behaviour of the numerical approximation between

the grid points is crucial. Recall from (2.8) that when we use a naive continuous

extension, the Milstein approximation has the same order of strong convergence

as the EM scheme. For this reason we define a Brownian Bridge interpolation for

t ∈ [k∆t, (k + 1)∆t),

X̃(t) =Xk + λ (Xk+1−Xk) + g(Xk) (w(t) −w(k∆t) − λ∆wk+1) , (3.7)

19



CHAPTER 3. MULTI-LEVEL MONTE CARLO

where λ = t−k∆t
∆t . For the Milstein scheme with the Brownian bridge interpolation

we have (see, for example, [81])

E[ sup
0≤t≤T

∣x(t) − X̃(t)∣p] = O(∣ ∆t log(∆t) ∣p).

Unfortunately, the interpolation X̃(t) cannot be implemented because we need

to know the whole trajectory (w(t))0≤t≤T in order to construct it. However,

combining the Brownian bridge interpolation with a conditional Monte Carlo

technique can significantly improve the variance convergence of the multi-level

estimator. This is because only distributional knowledge of certain functionals of

(w(t))0≤t≤T is needed for suitable multi-level estimators.

A Milstein scheme in a one-dimensional case for complex payoffs was analysed

in [24] with numerical tests in [37], a summary of which can be found in Table 3.2.

Comparing with Table 3.1, we see that an extra factor of ∆t is obtained relative

to the EM method.

Option Numerical Analysis
European O(∆t2) O(∆t2)
Asian O(∆t2) O(∆t2)
Lookback O(∆t2) O(∆t2−ε)
Barrier O(∆t3/2) O(∆t3/2−ε)
Digital O(∆t3/2) O(∆t3/2−ε)

Table 3.2: Convergence β of Var [P`−P`−1]: estimates based on numerical exper-
iments and analytical bounds for the Milstein discretisation; any ε > 0 can be
chosen.

3.3.3 Multi-dimensional Milstein Scheme

We consider the Milstein discretisation defined in (2.4). We note that the rate

of strong convergence ξ for the Milstein scheme is double the value we have for

the EM scheme and therefore the MLMC variance for Lipschitz payoffs converges

twice as fast. This improvement, however, does not come without a price, namely

one needs to simulate Lévy areas, which are usually quite expensive in terms of

computational effort. Apart from a two-dimensional case, there is not any efficient

method to simulate Lévy areas [31,90,97].
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Clark and Cameron in [19] showed for a particular SDE that it is not possible

to achieve a better order of strong convergence than the EM scheme when using

just the discrete increments of the underlying Brownian motion. This was con-

firmed by Müller-Gronbach in [80] who extended this analysis to general SDEs.

This means that if we use the standard MLMC method with the Milstein scheme

without simulating the Lévy areas, the complexity will be the same as for EM.

Giles and Szpruch demonstrated in [43] that it is possible to obtain a multi-

level estimator with variance which decreases at the same rate as for the scalar

Milstein estimator, while avoiding computation of Lévy areas. This is achieved

by constructing an antithetic estimator. Therefore, the results from Table 3.2 are

applicable for the multi-dimensional case, too.

3.3.4 Greeks

Arising in risk management and hedging, sensitivities of the prices to various

input parameters, or as they are often called “Greeks”, are an important appli-

cation where Monte Carlo simulations are used. In the multi-level setting three

main techniques are used to improve the MLMC variance: payoff smoothing us-

ing conditional expectations [45], an approximation of the above technique using

path splitting for the final timestep [6] and the use of a hybrid combination of

pathwise sensitivity and the Likelihood Ratio Method [39].

We mention work by Burgos et al. [15] whose results for call and digital options

are presented in Table 3.3 and Table 3.4, and for lookback and barrier options in

Table 3.5 and Table 3.6, respectively. They applied pathwise sensitivity to these

smoothed payoffs, with a scalar Milstein scheme used to obtain the penultimate

step.

Estimator β Complexity

Value ≈ 2.0 O(TOL−2)
Delta ≈ 1.5 O(TOL−2)
Vega ≈ 2.0 O(TOL−2)

Table 3.3: Call option. Numerical convergence β of Var [P`−P`−1] and the MLMC
complexity.
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Estimator β Complexity

Value ≈ 1.4 O(TOL−2.0)
Delta ≈ 0.5 O(TOL−2.5)
Vega ≈ 0.6 O(TOL−2.4)

Table 3.4: Digital option. Numerical convergence β of Var [P`−P`−1] and the
MLMC complexity.

Estimator β Complexity

Value ≈ 1.9 O(TOL−2)
Delta ≈ 1.9 O(TOL−2)
Vega ≈ 1.3 O(TOL−2)

Table 3.5: Lookback option. Numerical convergence β of Var [P`−P`−1] and the
MLMC complexity.

Estimator β Complexity

Value ≈ 1.6 O(TOL−2.0)
Delta ≈ 0.6 O(TOL−2.4)
Vega ≈ 0.6 O(TOL−2.4)

Table 3.6: Barrier option. Numerical convergence β of Var [P`−P`−1] and the
MLMC complexity.

To avoid difficulties in using conditional expectation to smooth payoffs in

practice, authors in [15] use path splitting of every simulated path on the final

timestep. We present their results in Table 3.7. Finally, a vibrato Monte Carlo

Estimator s β Complexity

Value 10 ≈ 2.0 O(TOL−2)
500 ≈ 2.0 O(TOL−2)

Delta 10 ≈ 1.0 O(TOL−2(log TOL)2)
500 ≈ 1.5 O(TOL−2)

Vega 10 ≈ 1.6 O(TOL−2)
500 ≈ 2.0 O(TOL−2)

Table 3.7: Splitting. Numerical convergence β of Var [P`−P`−1] and the MLMC
complexity for s extra samples on the penultimate step.
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technique was applied in [15], numerical results of which are presented in Table 3.8

for the call option with s = 10 extra samples on the penultimate step derived using

the scalar Milstein scheme.

Estimator β Complexity

Value ≈ 2.0 O(TOL−2)
Delta ≈ 1.5 O(TOL−2)
Vega ≈ 2.0 O(TOL−2)

Table 3.8: Vibrato. Numerical convergence β of Var [P`−P`−1] and the MLMC
complexity.

3.3.5 Jump-diffusion Processes

Giles and Xia in [99] successfully adapted the MLMC method to jump-diffusion

SDEs (see, for example, [78]), using a jump-adapted approximation from [88].

The implementation of the multi-level method was more difficult for the path-

dependent options because the coarse and fine path approximations may have

jumps at different times. These differences could lead to a large discrepancy

between the coarse and fine path payoffs, and thus greatly increase the multi-

level variance. To avoid this, Giles and Xia [99] (see also [98]) modified the

simulation approach of Glasserman and Merener [47].

3.3.6 Lévy Processes

Dereich and Heidenreich [26] investigated approximation methods for both fi-

nite and infinite activity Lévy driven SDEs with globally Lipschitz payoffs in the

context of MLMC. They conclude that the rate of the multi-level variance con-

vergence is closely related to the Blumenthal-Getoor index of the driving Lévy

process that measures the frequency of small jumps. If the index is smaller than

one, then neglecting jumps which are smaller than a certain value gives good

results. For the Blumenthal-Getoor index greater than one, better results are

obtained by the use of the Gaussian approximation of small jumps [25].
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3.3.7 Stochastic Partial Differential Equations

Parabolic and elliptic stochastic partial differential equations (SPDEs) applica-

tions have become a fruitful area for the application of the multi-level method

[9, 20, 54]. In particular, the first financial application of SPDE in the multi-

level setting [42] results from modelling credit default probabilities. The authors

conclude that the overall computational complexity to achieve an O(TOL) root-

mean-square accuracy is O(TOL−2).

3.3.8 American Options

Belomestny and Schoenmakers in [11] suggested a way to price American options

using the MLMC algorithm. Their method is based on the Anderson and Broadie

nested Monte Carlo method [4] in which a key component at each timestep is to

estimate conditional expectations using a number of sub-paths. They conclude

that it is possible to construct a multi-level version of the Andersen and Broadie

nested Monte Carlo algorithm that is of the same complexity as the non-nested

one.

3.3.9 Multi-level Quasi-Monte Carlo

We note that the dominant computational cost is on the coarsest levels of an

approximation if β > γ in Theorem 3.2.1. This occurs when the rate at which the

multi-level variance decays with the increasing grid level is greater than the rate at

which the computational cost increases. Since coarse levels of the approximation

correspond to a low-dimensional numerical quadrature, it is natural to consider

the use of a quasi-Monte Carlo technique. This has been analysed by Giles and

Waterhouse in [44] for scalar SDEs with a Lipschitz payoff. They show that

for the case of a European call option the computational complexity appears to

be reduced from O(TOL−2) to approximately O(TOL−3/2), using the Milstein

scheme.
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3.4 Negative Results

The results discussed above are based on the assumption that the numerical

simulation method converges strongly, or, less directly, on the assumption that

the coefficients in the underlying SDE satisfy global Lipschitz conditions. It is

known that numerical methods, especially explicit methods of the type discussed

here, may fail to converge for certain classes of nonlinear SDEs that violate the

global Lipschitz requirement. Using these ideas, the authors in [62] showed that

the EM-based MLMC approach can break down for some nonlinear SDEs. As

discussed earlier, in the mean exit time context that forms the focus of this thesis,

the problem is stated on a compact domain and the restriction to global Lipschitz

coefficients is therefore natural.

3.5 Summary

In this chapter we presented multi-level Monte Carlo and showed its superior-

ity over standard Monte Carlo in terms of the computational effort. We then

introduced conditional Monte Carlo and demonstrated on a number of financial

applications how suitable choices of estimators on fine and coarse levels can dra-

matically improve the variance convergence of the MLMC estimator. In the next

chapter we apply the MLMC algorithm for the mean exit time problem.
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Chapter 4

Mean Exit Times and the

Multi-level Monte Carlo Method

If people do not believe

that mathematics is simple,

it is only because

they do not realize

how complicated life is.

John von Neumann, 1903-1957

Parts of this chapter have been published in Higham et al. [59].

4.1 Introduction

We again consider the system of SDEs (2.1) with the same conditions as previ-

ously.

Our aim in this chapter is to show that the multi-level idea that Giles [38]

introduced for the problem of approximating mean values of the form E[f(x(T )]
may be adapted to the mean exit time context, reducing the computational cost

from O (TOL−4) to O (TOL−3∣ log(TOL)∣1/2). A proper analysis of the multi-level

approach requires an understanding of both the weak and strong convergence

rates of the underlying discretisation method, and for this reason we present

what appears to be the first strong convergence result for the mean exit time

problem (Theorem 4.3.1).
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The chapter is organised as follows. Section 4.2 outlines the existing approxi-

mation results that are relevant to our analysis. In section 4.3, we state and prove

a new strong convergence result. Section 4.4 derives the expected computational

cost of standard Monte Carlo, defines a multi-level algorithm and shows that it

offers improved complexity. In section 4.5 we provide illustrative computational

results.

4.2 Current Results

For the purposes of this chapter, we make our notation slightly more informative.

We let xt,z(s) denote the general solution of the SDE (2.1) at time s with initial

condition x(t) = z. So the specific solution of interest, x(s), is shorthand for

x0,x0(s).
The Euler–Maruyama approximation X t,z

k ≈ xt,z(sk) has X0 = z and

X t,z
k+1 =X

t,z
k + f(X t,z

k )∆t + g(X t,z
k ) (w(sk+1) −w(sk)) , (4.1)

where sk = t+k∆t, and ∆t is the stepsize [67]. A straightforward, continuous-time

extension X t,z(s) ≈ xt,z(s) may then be defined as

X t,z(s) =X t,z
k , for s ∈ [sk, sk+1). (4.2)

For consistency, we use X(s) as shorthand for our approximation to the given

problem; that is X(s) =X0,x0(s), and we use Xk to denote X0,x0
k .

Next, we introduce notation for the stopped exit time. Having specified the

open set O with boundary ∂O and a fixed future time T , we denote the stopped

exit time for the SDE by

τ t,z ∶= (inf{s > t ∶ xt,z(s) ∉ O}) ∧ T,

with τ as shorthand for τ 0,x0 .

Similarly, for the continuously extended Euler–Maruyama approximation, we

let

νt,z ∶= (inf{s > t ∶ X t,z(s) ∉ O}) ∧ T,
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with ν as shorthand for ν0,x0 .

Our analysis makes use of existing results concerning the finite time strong

convergence of the Euler–Maruyama method (2.8) when used to simulate paths of

the SDE and also the weak error arising when this method is used to approximate

the stopped exit time (2.9).

We now make the following two assumptions throughout this chapter.

Assumption 4.2.1. (Strong ellipticity) for some c > 0, ∑ij(g(x)g∗(x))ijξiξj >
c∣ξ∣2, for all x ∈ O, ξ ∈ Rd.

Assumption 4.2.2. (Regularity of the boundary) for d > 1, O ⊂ Rd is

a bounded open set with its boundary ∂O being C2 smooth.

In many applications we would like to consider SDEs with noise as in (4.15)

or (4.19). In these special cases strong ellipticity implies that we restrict our

analysis to the domain O ⊂ R+
d. Particularly, in the one-dimensional case for

O ∶= (α,β) we set the lower barrier to a positive real number, α > 0.

We then give a result that follows directly from the smoothness of the mean

exit time as a function of the initial condition.

Lemma 4.2.3. Under Assumptions 4.2.1 and 4.2.2 there exists a constant K

such that for any z ∈ O we have

E[τ 0,z] ≤K (dz ∧ T ) ,

where dz = inf{∣z − y∣ ∶ y ∈ ∂O}.

Proof

Due to the strong ellipticity in Assumption 4.2.1, the function

u(z) ∶= E[inf{s > 0 ∶ x0,z(s) ∉ O}]

is known to be u ∈ C2(O) ∩C(Ō), satisfying the Dirichlet problem

Lu + 1 = 0 on O, u = 0 on ∂O, (4.3)

where L is a strongly elliptic operator given by

Lu = 1

2
tr{gg∗D2u} + f ⋅Du,
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with tr(A) denoting the trace of A [27]. Since the boundary is C2 smooth,

u ∈ C2(Ō) thanks to [36, Theorem 6.14]. It follows that u is Lipschitz on O,

and we let K denote an appropriate Lipschitz constant. For any given z ∈ O and

y ∈ ∂O we then have u(z) = ∣u(z) − u(y) ∣ ≤K ∣z − y∣, and hence

u(z) ≤Kdz.

By construction, E[τ 0,z] ≤ u(z) and E[τ 0,z] ≤ T and the result follows. ◻

4.3 Main Theorem

In order to justify a multi-level Monte Carlo approach we first establish a rate of

strong convergence for the exit time approximation.

Theorem 4.3.1. Under Assumptions 2.1.1, 4.2.1 and 4.2.2 we have

E [∣ τ − ν ∣p] = O(∣∆t log(∆t)∣ 12 ), ∀p ≥ 1.

Proof

The proof deals separately with two cases. We first consider the event that

the Euler–Maruyama approximation exits before the exact process.

Case I ν < τ
We have

E [(τ − ν)1{ν<τ}] = E [E [(τ − ν)1{ν<τ} ∣Fν]]
= E [E [τ ν,x(ν) ∣Fν]] . (4.4)

On the right hand side, we have the expected stopped exit time for the exact

process, starting from the stopped exit time of the numerical approximation. In

order to bound this quantity, we use two properties

� Lemma 4.2.3 tells us that the stopped exit time τ ν,x(ν) will be small in mean

if the process starts close to a boundary,

� strong convergence (2.8) tells us that the exact solution is close to the
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numerical approximation, which has already reached the boundary or been

stopped.

More precisely, applying Lemma 4.2.3 and (2.8) to (4.4) we find

E [(τ − ν)1{ν<τ}] ≤KE [ sup
0≤s≤T

∣x(s) −X(s)∣] = O(∣∆t log(∆t)∣ 12 ). (4.5)

Next we consider the event that the exact process exits before the Euler–

Maruyama approximation.

Case II τ < ν
We have

E [(ν − τ)1{τ<ν}] = E [E [(ν − τ)1{τ<ν} ∣Fτ ]]
= E [E [ντ,X(τ) ∣Fτ ]] .

Because Lemma 4.2.3 applies to the exact SDE process, rather than the Euler–

Maruyama approximation, the next step is to add and subtract the exact process

that runs forward in time from t = τ with initial condition X(τ) and apply the

triangle inequality, to give

E [(ν − τ)1{τ<ν}] = E [E [ντ,X(τ) − τ τ,X(τ) + τ τ,X(τ) ∣Fτ ]]
≤ ∣E [E [ντ,X(τ) ∣Fτ ]] −E [E [τ τ,X(τ) ∣Fτ ]]∣

+E [E [τ τ,X(τ) ∣Fτ ]] .

The first term on the right hand side concerns the weak error in the mean

exit time algorithm, which is known from (2.9) to be O(∆t 12 ). The second term

on the right hand side can be bounded using the same arguments that lead from

(4.4) to (4.5), showing that it is O(∣∆t log(∆t)∣ 12 ). Hence, we find that

E [(ν − τ)1{τ<ν}] = O(∣∆t log(∆t)∣ 12 ). (4.6)

Combining (4.5) and (4.6) provides the result for p = 1. For a more general

p ≥ 1, the required result follows from

E [∣ τ − ν ∣p] ≤ T p−1E [ ∣ τ − ν ∣ ] .
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Figure 4.1: Bad approximation scenario for exit time

Strong convergence of Theorem 4.3.1 shows that ν → τ in L1 with a rate of

approximately 1
2

as ∆t → 0. However, one may worry about a scenario where

the two exit times are close, but the exact solution and numerical approximation

exit at different areas of phase space. This is illustrated for the scalar case in

Figure 4.1, with O ∶= (α,β). In what follows, we show that this event is unlikely.

Corollary 4.3.2. Under Assumptions 2.1.1, 4.2.1 and 4.2.2 we have

E[ ∣x(τ) −X(ν)∣2 ] = O(∣∆t log(∆t)∣ 12 ).
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Proof. We have

E[ ∣x(τ) −X(ν)∣2 ] = E[ ∣x(τ) −X(ν)∣2 1{τ≤ν} ] +E[ ∣x(τ) −X(ν)∣2 1{τ>ν} ]
≤ 2 E[ ∣x(τ) −X(τ)∣2 ] + 2 E[ ∣X(τ) −X(ν)∣2 1{τ≤ν} ]
+ 2 E[ ∣x(ν) −X(ν)∣2 ] + 2 E[ ∣x(τ) − x(ν)∣2 1{τ>ν} ].

From (2.8), the first and third terms on the right hand side are O(∣∆t log(∆t)∣).
Intuitively, the second term is the case where the exact solution is stopped and

we want to show that we cannot move with the numerical approximation too far

in a small interval of time. The fourth term is a mirror case of the second term,

but this time the numerical approximation is stopped and we want to show that

we cannot move with the exact solution too far in a small interval of time. First,

let us focus on bounding the fourth term,

E[ ∣x(τ) − x(ν)∣2 1{τ>ν} ] = E
⎡⎢⎢⎢⎢⎣

1{τ>ν}
⎛
⎝
∣∫

τ

ν
f(x(t))dt + ∫

τ

ν
g(x(t))dw(t) ∣

2⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ E
⎡⎢⎢⎢⎢⎣
∣∫

τ

ν∧τ
f(x(t))dt + ∫

τ

ν∧τ
g(x(t))dw(t) ∣

2 ⎤⎥⎥⎥⎥⎦
≤ 2 E [ (τ − ν ∧ τ)∫

τ

ν∧τ
∣f(x(t))∣2dt + ∫

τ

ν∧τ
∣g(x(t))∣2dt ]

≤ 2C1 E [ (τ − ν ∧ τ)2 + (ν − ν ∧ τ) ]
≤ 2C2 E [ ∣τ − ν∣ ] = O(∣∆t log(∆t)∣ 12 ),

where in the last line we used Theorem 4.3.1. In a similar manner it can be shown

that

E[ ∣X(τ) −X(ν)∣2 1{τ≤ν} ] = O(∣∆t log(∆t)∣ 12 ),

which finishes the proof. ◻

4.4 Computational Cost

4.4.1 Standard Monte Carlo

A traditional Monte Carlo approach to the estimation of the mean stopped exit

time uses the Euler–Maruyama method to compute independent samples ν[i]
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from the distribution of the corresponding random variable ν. Let ν[i] denote the

computed stopped exit time for the ith simulated path. If we use N such paths,

then the mean value E[τ] is approximated by the sample average

µ = 1

N

N

∑
i=1

ν[i].

The overall error divides naturally into two parts,

E[τ] − µ = E[τ − ν + ν] − µ = (E[τ − ν]) + (E[ν] − µ) . (4.7)

The first term in parentheses is the bias; that is, the weak error of the numerical

method in terms of its ability to approximate the mean stopped exit time of the

SDE. We know from (2.9) that this term is O(∆t 12 ). The second term in (4.7)

concerns the statistical sampling error. This is known to scale like O(1/
√
N)

from the perspective of confidence interval width (see, for example, [45]).

It is natural to measure the computational cost in terms of either

� the total number of evaluations of the coefficients f(⋅) or g(⋅) when we use

the iteration (4.1), or

� the number of pseudo-random number calls to obtain the Brownian incre-

ments in (4.1).

In both cases, the computational cost of each path is proportional to the ra-

tio of the time-span of the numerical approximation, ν[i], and the stepsize, ∆t.

The overall expected computational cost of the standard Monte Carlo method is

therefore proportional to NE[ν]/∆t, which, from (2.9), may be written

N (E[τ] +O(∆t 12 ))
∆t

. (4.8)

If we let TOL denote the target level of accuracy, in terms of confidence interval

width, then balancing the bias and sampling error in (4.7) gives the scaling TOL =
∆t

1
2 = 1/

√
N , whence the complexity measure (4.8) for the method becomes

O(TOL−4).
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4.4.2 Multi-level Monte Carlo

Our aim here is to develop the multi-level methodology in the exit time context.

Following [38], we consider a range of different stepsizes of the form ∆t` =
M−`T , for ` = 0,1,2, ..., L. Here M is fixed integer. The smallest stepsize, ∆tL =
M−LT , is chosen so that the bias in the discretisation method matches the target

accuracy of O(TOL); matching ∆t
1
2

L with TOL then gives

L = log TOL−2

logM
. (4.9)

Intuitively, the multi-level approach exploits the fact that it is not necessary

to compute many paths at this high, and expensive, level of resolution. It is

sufficient to compute a relative small number of ‘high frequency’ paths, and then

pad out the computation with increasingly more information from the increasingly

cheaper, lower resolution stepsizes.

To be more precise, we let the random variable νl denote the stopped exit

time arising when the Euler–Maruyama approximation is used with stepsize ∆t`.

We continue by writing the following trivial identity:

E[νL] = E[ν0] +
L

∑
`=1

E[ν` − ν`−1]. (4.10)

On the left is the exact mean of the high-resolution approximation, which has the

required bias. On the right is a telescoping series involving the different levels of

resolution. We propose to estimate the expected values on the right hand side of

(4.10) as follows. The first term, E[ν0], is estimated by a quantity Z0 that uses

the sample mean of N0 independent paths; so

Z0 =
1

N0

N0

∑
i=1

ν
[i]
0 .

Each remaining term of the form E[ν` −ν`−1] is estimated by a quantity Z` based

on N` independent pairs of paths; so

Z` =
1

N`

N`

∑
i=1

(ν[i]
` − ν[i]

`−1) . (4.11)
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Here, the two samples ν
[i]
` and ν

[i]
`−1 come from the same Brownian path at the

two different levels of resolution. Figure 4.2 illustrates the case where M = 4 for a

scalar SDE; so the two paths are based on stepsizes that differ in size by a factor

of 4. Each Brownian increment for the lower resolution computation is given by

the sum of the four increments used for the higher resolution path. Independent

paths are used for each i in (4.11), and for each different level ` = 1,2, . . . , L.

It remains to control the statistical sampling error by choosing {N`}L`=0 in

order to give an overall variance of O(TOL2) for the estimator.

Using Theorem 4.3.1, we have

Var [ν` − τ] ≤ E[(ν` − τ)2] = O(∣∆t` log(∆t`)∣
1
2 ),

and

Var [ν` − ν`−1] ≤ (
√

Var [ν` − τ] +
√

Var [ν`−1 − τ])2 = O(∣∆t` log(∆t`)∣
1
2 ). (4.12)

So Var [Z`] = O (∣∆t` log(∆t`)∣
1
2 /N`) and, because the computations are indepen-

dent over different levels, our overall estimator Z ∶= Z0 +∑L
`=1Z` has variance

Var [Z] = Var [Z0] +
L

∑
`=1

O (∣∆t` log(∆t`)∣
1
2

N`

) .

Taking

N0 = O(TOL−2), (4.13)

N` = O(TOL−2ML/4∆t
3/4
` ∣ log(∆t`)∣1/2), for ` = 1, . . . , L, (4.14)

it follows that

Var [Z] = O(TOL2) +
L

∑
`=0

O (∣∆t` log(∆t`)∣
1
2

N`

)

= O(TOL2) +
L

∑
`=0

O ( ∣∆t` log(∆t`)∣1/2

TOL−2ML/4∆t
3/4
` ∣ log(∆t`)∣1/2

)

= O(TOL2) +O (TOL2M−L/4
L

∑
`=0

M `/4)

= O(TOL2),
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Figure 4.2: Illustration of the estimator Z`, in the case M = 4 for a scalar SDE.
The same path is sampled at two different levels of resolution.

as required.

Having specified the algorithm, we may now work out the expected compu-

tational cost. Each pair of paths at level ` has a cost proportional to v
[i]
` /∆t`.

Hence, the expected computational cost of the multi-level Monte Carlo method
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is

L

∑
`=0

N`

∆t`
E[ν`] =

L

∑
`=0

TOL−2ML/4∆t
3/4
` ∣ log(∆t`)∣1/2

∆t`
(E[τ] +O(∆t1/2` ))

= O (TOL−2ML/4∣ log(∆tL)∣1/2
L

∑
`=0

∆t
−1/4
` )

= O (TOL−2ML/2∣ log(TOL)∣1/2) .

From (4.9) we see that ML/2 = O(TOL−1), and so the expected computational

cost may be written

O (TOL−3∣ log(TOL)∣1/2) .

This should be compared with the valueO(TOL−4) from section 4.4.1 for standard

Monte Carlo.

4.5 Computational Results for Scalar Case

We now present computational results, focussing on the scalar case. Our aims are

to test the sharpness of the analysis and to check whether the asymptotically valid

improvement in complexity can be observed in a real simulation. Here O takes

the form of an open interval, denoted (α,β).

4.5.1 Strong Error in Exit Time

We begin by checking the sharpness of the strong convergence rate from Theo-

rem 4.3.1 on a geometric Brownian motion model

dx(s) = fx(s)ds + gx(s)dw(s), (4.15)

with constant drift coefficient f = 0.05, constant volatility g = 0.2 and initial value

x(0) = 2. We set the boundaries to α = 1.7 and β = 2.3, and the finite cutoff time

to T = 1. We computed the reference solution E[τ] = 0.4962 using a numerical

solver for the associated boundary value ordinary differential equation. We ap-

proximated the strong exit time error err∆t ∶= E [∣τ − ν∣2] using the sample mean

from N = 5 × 103 path simulations, and stepsizes ∆t = 2−8,2−9,2−10,2−11. The

error behaviour on a log-log scale is shown in Figure 4.3. A least squares fit for
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logC and q in log err∆t = logC + q log ∆t produced q = 0.5167 with a least squares

residual of 0.0289. Error bars representing 95% confidence intervals are small

enough to be covered by the stars in the figure. Thus, our results suggest that

the strong order of convergence equal to approximately one-half in Theorem 4.3.1

is sharp for p = 2.
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Figure 4.3: Strong error in stopped exit time.

4.5.2 Variance Behaviour

A key step in our analysis of the multi-level Monte Carlo algorithm was the

derivation of the variance estimate (4.12). In Figure 4.4 we plot the quantity

log(Var [ν`−ν`−1])/ log(M) over a sequence of levels, where the most refined level
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corresponds to a user-specified accuracy of TOL = 0.001. If (4.12) is sharp, then

this plot will have a slope of approximately −1/2. A least squares fit for the slope

gives q = −0.4984 with a residual of 0.1040. We also include a line with a slope

− 1
2

for reference. Here we used the linear SDE (4.15) with boundaries changed to

α = 0.9, β = 1.1 and initial value x(0) = 1, whence E[τ] = 0.2480.
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Figure 4.4: Variance of ν` − ν`−1 over different levels.

4.5.3 Complexity for Geometric Brownian Motion

Finally, we compare the computational cost versus accuracy for standard and

multi-level mean exit time computation. We measure the computational cost of
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the multi-level method as

CostMLMC ∶= (N0 +
L

∑
`=1

N`M
`) d
T
E[τ], (4.16)

where d is the dimension of the approximated process. For the complexity analysis

in section 4.4.2, we specified an order of magnitude for the number of paths per

level, (4.14), and showed that this (a) produces the correct variance and (b) has

attractive complexity.

In our implementation, we used the values

N` = ⌈2TOL−2
√

Var [ν` − ν`−1]M−` (
L

∑
`=0

√
Var [ν` − ν`−1]M`)⌉ , 0 ≤ ` ≤ L. (4.17)

More precisely, we used order of magnitude estimates of the variances Var [ν` −
ν`−1] that were obtained numerically in a pre-processing step of negligible cost.

To justify the choice (4.17), we note that

Var [Z] =
L

∑
`=0

(Var [ν` − ν`−1]
N`

)

=
L

∑
`=0

Var [ν` − ν`−1]

2TOL−2
√

Var [ν` − ν`−1]M−`(∑L
`=0

√
Var [ν` − ν`−1]M`)

= 1

2
TOL2,

so we achieve a small enough variance.

We also note that the order of magnitude for N` in (4.14) that we used for

the complexity analysis satisfies

TOL−2ML/4∆t
3/4
` ∣ log(∆t`)∣1/2 ≤ TOL−2ML/4∆t

3/4
` ∣ log(∆t`)∣1/4∣ log(∆tL)∣1/4

≤ TOL−2∆t
3/4
` ∣ log(∆t`)∣1/4

L

∑
`=0

M `/4∣ log(∆t`)∣1/4.

Since Var [ν` − ν`−1] = O(∆t
1/2
` ∣ log(∆t`)∣1/2) it follows that our practical choice of

optimal number of paths on level ` gives a comparable order of paths per level.
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The computational cost of the standard method is measured as

CoststdMC ∶= Nd
∆t

E[τ], (4.18)

where N is the total number of sample paths, d is the dimension and ∆t is the

fixed stepsize such that ∆t = O(TOL2). Here N was chosen adaptively to produce

the requiredO(TOL2) variance. We used three choices of the accuracy parameter,

TOL = 10−1.5,10−2,10−2.5. For the SDE and parameters used in Figure 4.4, the

lower left picture in Figure 4.5 shows the accuracy obtained by the multi-level

algorithm as a function of TOL. This confirms that the algorithm produces an

error that scales like TOL.

In the top left picture of Figure 4.5 we plot TOL against TOL3 ×Cost for the

two methods. The results are consistent with the predictions from our analysis:

for the multi-level method this scaled complexity increases slowly like ∣ log TOL∣1/2
whereas for standard Monte Carlo it increases like TOL−1.

In the right of Figure 4.5, we repeat this information in a slightly different

format. The upper right hand picture plots the overall cost against the attained

error, and the lower right hand picture plots the overall cost against the accuracy

parameter. We see that for the most stringent accuracy requirement the multi-

level version is about an order of magnitude cheaper.

4.5.4 Complexity for Mean Reverting Square Root Pro-

cess

As we mentioned in section 4.2, one of the benefits of a mean exit time analysis

is that our attention is restricted to a compact domain, so rigorous results can be

derived for nonlinear SDEs with coefficients that do not satisfy a global Lipschitz

condition. We consider now a mean reverting square root process, proposed by

Cox, Ingersoll and Ross (CIR), commonly used to model interest rates [74]

dx(s) = f(µ − x(s))ds + g
√
x(s)dw(s), (4.19)

noting that the diffusion coefficient is not Lipschitz at the origin. Keeping all the

parameters the same as for the geometric Brownian motion test in Figure 4.5,

additionally we fix µ = 1, which causes the stopped mean exit time to increase
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Figure 4.5: Cost versus accuracy for the standard Monte Carlo method and the
multi-level Monte Carlo algorithm on geometric Brownian motion.

42



CHAPTER 4. MEAN EXIT TIMES AND THE MULTI-LEVEL MONTE
CARLO METHOD

10
-3

10
-2

10
-1

10
-1

10
0

10
1

10
2

TOL

T
O

L
3
 C

o
s
t

 

 

std MC

multi-level MC

10
-3

10
-2

10
-1

10
3

10
4

10
5

10
6

10
7

10
8

10
9

error in mean

C
o
s
t

 

 

std MC

multi-level MC

10
-3

10
-2

10
-1

10
-3

10
-2

10
-1

TOL

e
rr

o
r 

in
 m

e
a
n

10
-3

10
-2

10
-1

10
3

10
4

10
5

10
6

10
7

10
8

10
9

TOL

C
o
s
t

 

 

std MC

multi-level MC

Figure 4.6: Cost versus accuracy for the standard Monte Carlo method and the
multi-level Monte Carlo algorithm on the mean reverting square root process.
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to 0.2495. The complexity results, shown in Figure 4.6, are consistent with those

for the geometric Brownian motion case.

4.6 Summary

In this chapter we showed that it is possible to adapt the MLMC algorithm to the

mean exit time problem. We tested the method numerically in one-dimensional

cases. In the next chapter we test the algorithm in more dimensions on a range

of different applications.
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Chapter 5

Computational Results in More

Dimensions

The more you know, the less sure you are.

Voltaire, 1694-1778

Parts of this chapter have been published in Higham and Roj [60]. Our aim

here is to present further computational tests in more than one dimension. In the

following sections we present computational results for two-dimensional Brownian

motion, a simple neural network (two-dimensional correlated Brownian motion

with drift) and a first-to-default basket of corporate bonds (five-dimensional ge-

ometric Brownian motion.) For each example we confirm that the multi-level

approximation converges to the correct value and estimate the order of the vari-

ance between fine and coarse approximations of stopped exit times. We also

record the computational complexity, in comparison with the standard Monte

Carlo method. We therefore add to the numerical tests in Chapter 4 and [59] by

considering SDEs in more than one dimension and problems on a non-compact

domain. Example 5.1 fulfils all the assumptions of Theorem 4.3.1; examples 5.2

and 5.3 violate the assumption of a non-compact domain. However, we show

numerically that the multi-level algorithm performs well in this setting, too.
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5.1 Two-dimensional Brownian Motion

We first simulate two-dimensional Brownian motion starting at the origin, with

boundary given by a ball of radius R. In the notation of (2.1) we have d = 2,

f ≡ 0 and g = I, where I denotes the identity matrix. The finite cutoff time

is set to T = 1 and simulations are performed for three different radius sizes.

By varying the radius we check whether the multi-level algorithm performs well

when the majority of sample paths leave the domain in the fixed time T and also

when they stay in the domain within this time. The estimated stopped exit time

value is compared against a reference value, which in this case was obtained using

Monte Carlo simulations with N = 5× 107 samples and a stepsize ∆t = 10−4. The

results are presented in Table 5.1. We observe that a more stringent accuracy

requirement decreases the error in the multi-level estimate, as expected.

Table 5.1: Two-dimensional Brownian motion. Values in parentheses indicate
the half-width of the 95% confidence interval.

Radius Reference value TOL MLMC Absolute error %
R = 0.5 0.1279 (0.00003) 0.01 0.1317 2.97

0.005 0.1354 5.86
0.001 0.1294 1.17

R = 1.0 0.4737 (0.00008) 0.01 0.5037 6.33
0.005 0.4807 1.48
0.001 0.4758 0.44

R = 1.5 0.7830 (0.00008) 0.01 0.8454 7.97
0.005 0.7853 0.29
0.001 0.7847 0.22

In a separate test, we then fix R = 1 and check the convergence behaviour.

In the left picture of Figure 5.1 we plot on a log-log scale the accuracy obtained

by the multi-level algorithm as a function of TOL for TOL = 10−3, 5 × 10−3, 10−2

and 5 × 10−2. We see that the algorithm produces an error that scales like TOL.

A line with a slope 1 is included for reference.

In the right picture of Figure 5.1 we plot the quantity log(Var[ν`−ν`−1])/ log(M)
over different levels, for a user-specified accuracy of TOL = 0.001. A least squares

fit for the slope produces q = −0.5525 with a residual of 0.1884. A line with a slope

−1
2 is also included for reference. This agrees with the estimate in section 4.4 of

Chapter 4. Finally, we compare the computational complexity of standard Monte
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Figure 5.1: Two-dimensional Brownian motion. Left: weak error of the multi-
level algorithm. Right: variance of νl − νl−1 over a sequence of levels.
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Carlo with the multi-level version in Figure 5.2. The computational cost of the

multi-level version is measured as in (4.16), where N` is the number of paths used

on each level, calculated as

N` = ⌈2TOL−2
√

Var[ν` − ν`−1]M−` (
L

∑
`=0

√
Var[ν` − ν`−1]M `)⌉ , 0 ≤ ` ≤ L.

We measure the computational cost of the standard Monte Carlo method as in

(4.18). In Figure 5.2 we plot on a log-log scale the computational cost as a

function of the accuracy parameter TOL. For TOL = 2−4, 2−5, 2−6, 2−7 and 2−8

we perform 50 multi-level Monte Carlo computations using different initial states

of the pseudo-random number generator, and plot the complexity results with

green circles. Then we take averages for each accuracy, indicated as black crosses,

and compare them with the complexity of standard Monte Carlo, indicated as

red squares. A least squares fit performed on the Monte Carlo slope produces

q = −4.2156 with a residual 1.0966, and on the multi-level Monte Carlo slope gives

q = −3.1688 with a residual of 1.2891. This is in agreement with the analytical

results quoted in section 4.4: the standard Monte Carlo complexity of O(TOL−4)
and the multi-level Monte Carlo complexity of O(TOL−3∣ log(TOL)∣1/2).

5.2 Simple Neural Network

We now apply the multi-level Monte Carlo algorithm in a neural network setting.

Various models have been considered for the firing of single neurones, but there

is an agreement among researchers that if the electrical state of the neural mem-

brane is stated as a single number, which moves towards or away from the firing

potential depending on whether the neurone receives excitatory or inhibitory in-

put, respectively, then the time to firing can be estimated by the first exit time

of a certain level for a Brownian motion with drift [30,34,63].

Here we are interested in the mean first exit time of 2-dimensional correlated

Brownian motion with drift,

dxi(s) = fids + gidwi(s),

with constant drift coefficients f1 = 0.1, f2 = 0.2, constant diffusion coefficients
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Figure 5.2: Two-dimensional Brownian motion. Computational cost of standard
Monte Carlo (red squares) and multi-level Monte Carlo (green circles). Black
crosses indicate averages of the multi-level Monte Carlo cost for each accuracy.
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gi = 1, i = 1,2, initial values xi(0) = 1, i = 1,2 and correlation coefficient ρ = −0.5,

producing the variance-covariance matrix Σ =
⎡⎢⎢⎢⎢⎣

1 −0.5

−0.5 1

⎤⎥⎥⎥⎥⎦
. The Cholesky de-

composition of Σ gives C =
⎡⎢⎢⎢⎢⎣

1 −0.5

0 0.8660

⎤⎥⎥⎥⎥⎦
, which is then used to simulate correlated

Brownian motions. For i = 1,2 we define the stopping times

τi = inf{t > 0 ∶ xi(t) ≤ Bi},

where we set B1 = 0.5, B2 = 0.25. The quantity of interest is then E [(τ1 ∧ τ2) ∧ T ].
In Figure 5.3 we check the convergence rates of the algorithm and variance. The

results are consistent with those in subsection 5.1. A least squares fit for the

variance slope gives q = −0.5025 with a residual 0.0559.

We also check the computational cost of the algorithm in Figure 5.4. A least

squares fit for the standard Monte Carlo slope produces q = −3.9492 with a

residual 1.1694, whereas the multi-level method gives q = −3.2004 with a residual

0.5913, in line with the theoretical complexity outlined in section 4.4.

5.3 First-to-Default Swaps

Finally, we apply the multi-level Monte Carlo algorithm in a financial setting

to basket default swaps used in risk management. These financial instruments

are derivative securities tied to an underlying basket of corporate bonds or other

assets subject to credit risk. A basket default swap gives the protection buyer

a type of insurance against the possibility of default in exchange for regular

payments made to the protection seller [18]. These instruments are popular

mainly because insuring a basket of assets is usually cheaper than insuring each

asset separately. We focus on the example of a first-to-default swap in which the

protection buyer is compensated if any asset in the basket defaults, at which time

the contract expires [64].

Without trying to price the protection and value legs at several dates, here

we are interested in a mean first default time of the first-to-default basket of 5

corporate bonds with maturity T = 2 years. We note that it is common to use

structural models (see, for example, [12]) with a geometric Brownian motion to
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Figure 5.3: Neural network. Left: weak error of the multi-level algorithm. Right:
variance of ν` − ν`−1 over a sequence of levels.
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Figure 5.4: Neural network. Computational cost of standard Monte Carlo (red
squares) and multi-level Monte Carlo (green circles). Black crosses indicate av-
erages over 50 simulations of multi-level Monte Carlo cost for each accuracy.
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describe dynamics for the value of the underlying assets [22]. Hence, we simulate

the underlying processes using a geometric Brownian motion model

dxi(s) = fixi(s)ds + gixi(s)dwi(s),

with constant drift coefficients f1 = 0.11, f2 = 0.09, f3 = 0.07, f4 = 0.04, f5 = 0.02,

and constant volatilities g1 = 0.4, g2 = 0.6, g3 = 0.8, g4 = 0.8, g5 = 1. The initial

value of each company is set to 1, i.e. xi(0) = 1, i = 1, . . . ,5. The lower boundary,

which is a default level, is set to B = 0.1. We are interested in estimating the

quantity E [(τ1 ∧ τ2 ∧ τ3 ∧ τ4 ∧ τ5) ∧ T ]. We used Monte Carlo simulations with a

fixed timestep ∆t = 10−3 and N = 5 × 106 samples to obtain a reference value

of E[τ ∧ T ] = 1.2359 for the mean first default time of the basket. The half-

interval width of the 95% confidence interval is 0.0005, making the statistical

error negligible.

We use the same format as in the previous two examples. In the right hand

picture of Figure 5.5 a least squares fit for the slope produces q = −0.6049 with a

residual of 0.5252.

In Figure 5.6 a least squares fit performed on the Monte Carlo slope produces

q = −4.1018 with a residual 2.9224, and on the multi-level Monte Carlo slope gives

q = −2.7704 with a residual of 1.4031. The results are therefore consistent with

the theoretical predictions.

5.4 Summary

In this chapter we presented more examples for the mean exit time problem. The

multi-level algorithm seem to perform very well in more than one dimension and

for the cases with a compact and non-compact domain. Next, we present a new

method for approximating exit times and adapt it to the multi-level setting.
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Figure 5.5: First-to-default. Left: weak error of the multi-level algorithm. Right:
variance of νl − νl−1 over a sequence of levels.
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Figure 5.6: First-to-default. Computational cost of standard Monte Carlo (red
squares) and multi-level Monte Carlo (green circles). Black crosses indicate av-
erages over 30 simulations of the multi-level Monte Carlo cost for each accuracy.
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Chapter 6

Multi-level Monte Carlo Using

Brownian Bridge Interpolation

for Expected Exit Times

It is remarkable that a science which began with

the consideration of games of chance should have

become the most important object of human

knowledge.

Pierre Simon Laplace, 1749-1827

Parts of this chapter form a working paper [41].

6.1 Introduction

We consider a general d-dimensional Itô process as defined in (2.1) with the same

conditions as previously. We also introduce a half-space B ⊂ Rd and deterministic

initial condition x0 ∈ B.

Although popular and adopted by many authors [3,13,73], straightforward im-

plementation of Monte Carlo simulations for estimating expected stopping times

turns out to be inefficient. This is due in part to the fact that by sampling discrete

points we can miss the exit and stay in the domain after the true process has

left the domain. In order to avoid completely missing an exit, we can explore the
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properties of the Brownian bridge interpolation between two grid points. This

conditional Monte Carlo approach is based on replacing an estimator with its

conditional expectation [13, 45] and has been applied in the barrier options con-

text by Gobet in [48, 50] and by Giles in [37]. Here, we use the same technique

for estimating expected exit times.

For a given root-mean-square accuracy, TOL, we saw in Chapter 4 that com-

bining Euler–Maruyama samples in a standard Monte Carlo approach leads to

a computational cost of O(TOL−4). A multi-level alternative was developed in

Chapter 4, which has a cost of O(TOL−3∣ log TOL∣1/2). The new sampling method

that we develop in this chapter, which is based on the Brownian bridge interpo-

lation, leads to a cost of O(TOL−3) when used with standard Monte Carlo, and

O(TOL−2) in a suitable multi-level setting.

Some of the ideas behind the new algorithm were tested numerically in [89].

Our aim here is to develop and rigorously analyse a complete algorithm. We

begin by introducing notation in section 6.2. The key result is spread over The-

orems 6.3.2 and 6.3.8, which are presented in section 6.3. In section 6.4 we

compare the expected computational cost of the new method in the Monte Carlo

and multi-level Monte Carlo settings. Finally, this chapter is concluded with

numerical results in section 6.5 and 6.6.

6.2 Notation

We begin with the Milstein discretisation defined as in (2.4). We drop the hat for

clarity, that is, we use X`
k ≈ x(k∆t`) of equation (2.1) with initial data X0 = x0

and stepsize ∆t` = 2` T . We make the following assumptions throughout this

chapter.

Assumption 6.2.1.

A1 Commutativity condition: the diffusion tensor satisfies

hijn(x) = hinj(x),

for all j, n = 1, ...,m, i = 1, ..., d, x ∈ Rd.
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A2 C2 continuity: the drift coefficient f and diffusion coefficient g have two

continuous bounded derivatives on B ⊂ Rd.

A3 Strong ellipticity: for some c > 0, ∑ij(ggT (x))ijξiξj > c∣ξ∣2, for all x ∈ B,
ξ ∈ Rd.

A4 Regularity of the boundary: B ⊂ Rd is a half-space.

We note that the commutativity condition in Assumption 6.2.1 is satisfied by

SDEs with additive noise, diagonal noise in case of d = m, and linear noise [67].

Under this assumption, because the Lévy areas are anti-symmetric, A`jn,k = −A`nj,k,
it follows that

hijn(X`
k)A`jn,k + hinj(X`

k)A`nj,k = 0.

This means that the terms in (2.4) involving the Lévy areas cancel out and it is

not necessary to simulate them. The ith component of the Milstein scheme can

then be written as

X`
i,k+1 =X`

i,k+fi(X`
k)∆t`+

m

∑
j=1

gij(X`
k)∆w`j,k+

m

∑
j,n=1

hijn(X`
k) (∆w`j,k∆w

`
n,k −Ωjn∆t`) .

(6.1)

We now recall some classical results from differential geometry, which can be

found, for example, in [36, pp.381-384]. For x ∈ ∂B, we denote by n(x) the unit

inward normal vector at x (∥n(x)∥ = 1 for x ∈ ∂B.) We call a function xÐ→ πB(x)
a projection of x on the boundary ∂B. The signed normal distance of x to ∂B is

a function xÐ→ dB(x), such that

dB(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(x, ∂B), x ∈ B
0, x ∈ ∂B
−d(x, ∂B), x ∉ B,

where d(x, ∂B) is the Euclidean distance between x ∈ Rd and the boundary ∂B.

Here dB ∶ Rd → R1 is a Lipschitz continuous function with gradient 1 and Hessian

matrix equal to the zero matrix [36]. Also, dB is a C∞ function on a closed

neighborhood of the boundary and can be easily extended to a C∞ function on

Rd with bounded derivatives [51].

Thanks to the regularity of the boundary condition in Assumption 6.2.1, for
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any x, there are unique πB(x) ∈ ∂B and dB(x) ∈ R such that

x = πB(x) + dB(x)n(πB(x)).

The C2 continuity condition in Assumption 6.2.1 allows us to use the classical

finite time strong convergence result for the Milstein scheme (as in (2.7).) The

following Lemma is standard and therefore we omit the proof [81].

Lemma 6.2.2. Let Assumption 6.2.1 hold. There exist a constant cq, indepen-

dent of ∆t`, such that

(E [ max
0≤k≤2`

∣X`
k+1 −X`

k∣
q])

1/q
≤ cq ∣∆t` log

1

∆t`
∣1/2, 1 ≤ q <∞,

and

(E [ sup
∣t−s∣≤∆t`

∣x(s) − x(t)∣q])
1/q

≤ cq ∣∆t` log
1

∆t`
∣1/2, 1 ≤ q <∞.

When sampling directly from a discrete process, there is a positive probability

that the process has left the domain B even though X`
k ∈ B and X`

k+1 ∈ B. Using

a Brownian bridge technique, we can calculate the conditional probability of the

process leaving the domain B conditional on the points X`
k and X`

k+1.

First, let us define the Brownian bridge interpolation with the ith component

of the form,

X̃i(t) =X`
i,k + λ` (X`

i,k+1 −X`
i,k) +

m

∑
j=1

gij(X`
k) (w(t) −w`j,k − λ` (w`j,k+1 −w`j,k)) ,

(6.2)

where λ` = t−k∆t`
∆t`

. We now state Proposition 6.2.3 (a proof can be found, for

example, in [69, Lemma 2].) We note that the formula from Proposition 6.2.3 is

used in [49, equation (11)] and [50] for the simulation of killed diffusions in an

n-dimensional half-space.

Proposition 6.2.3. Let Assumption 6.2.1 hold. For the half-space B, we have

an explicit formula for calculating probability of an exit of the Brownian bridge

interpolation, fixed at points X`
k ∈ B and X`

k+1 ∈ B, which is given by

P( inf
k∆t`≤t≤(k+1)∆t`

dB(X̃(t)) ≤ 0 ∣ X`
k,X

`
k+1) = exp

⎛
⎝
−2

dB(X`
k)dB(X`

k+1)
∥g(X`

k)n(πB(X`
k))∥

2
∆t`

⎞
⎠
.
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This result is true for half-spaces. For more general domains, there is no

explicit formula for the conditional probability. It can, however, be accurately

approximated using an asymptotic expansion in ∆t` [8] or by locally approximat-

ing the domain by an appropriate half-space [50].

Let us introduce the following notation for the conditional probability of the

exit of the Brownian bridge interpolation

p`k ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if X`
k or X`

k+1 are outside B,

exp( −2dB(X`
k)dB(X`

k+1)
∥g(X`

k
)n(πB(X`

k
))∥2∆t`

), otherwise.
(6.3)

We can express the expected bounded exit time of the SDEs (2.1) from the

half-space B as

E[τ] = ∫
T

0
Pτ(τ > t)dt,

where

τ ≡ inf{t ≥ 0 ∶ dB(x(t)) ≤ 0} ∧ T.

Since the process {x(t)}0≤t≤T is Markovian

E[τ] =E[E[τ ∣ x(0), x(∆t`), . . . , x(T )]]

=E [∫
T

0
Pτ(τ > t ∣ x(0), x(∆t`), . . . , x(T ))dt]

=E [
N−1

∑
k=0
∫

(k+1)∆t`

k∆t`
Pτ(τ > t ∣ x(k∆t`), x((k + 1)∆t`))dt] .

Using the trapezoidal integration rule on this formulation we find

E[E[τ ∣ x(0), x(∆t`), . . . , x(T )]] ≈ E [
N−1

∑
k=0

1

2
∆t` (Π̂`

k + Π̂`
k+1)] , (6.4)

where Π̂`
k = Pτ(τ > k∆t` ∣ x(k∆t`), x((k + 1)∆t`)) is the conditional probability

of the process not leaving the domain B until time k∆t`. Denoting by τ∆t` an

approximation of τ using the Milstein scheme (6.1) we take

E[E[τ∆t` ∣X`
0,X

`
1, . . . ,X

`
N]] = E [

N−1

∑
k=0

1

2
∆t` (Π`

k +Π`
k+1)] , (6.5)
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where

Π`
k =

k−1

∏
i=0

(1 − p`i),

with p`i defined in (6.3). The next part of this chapter is devoted to proving

convergence of (6.5) to E[τ].

6.3 New Algorithm and Multi-level Monte Carlo

Multi-level Monte Carlo simulations use a number of different levels of resolution,

0 ≤ ` ≤ L. Here, ` = 0 is the coarsest level and ` = L is the finest. For a range of

different stepsizes of the form ∆t` =M−`T , the smallest stepsize, ∆tL, is chosen

so that the bias in the discretisation method matches a user-specified root mean

square accuracy of O(TOL). In this chapter we take M = 2.

For clarity of the exposition we will express the coarse timestep approxima-

tion at each level in terms of the fine time-step, that is Pf∆t` ∶= {k∆t` ∶ k =
0,1,2, . . . ,2`}. The partition for the coarse approximation is given by Pc∆t`−1 ∶=
{k∆t` ∶ k = 0,2,4, . . . ,2`}. Hence, X`−1

k is associated with X`
k for k = 0,2,4, . . . ,2`.

The multi-level idea is based on a straightforward telescoping identity, which in

our context could be written

E[τL] = E[τ0] +
L

∑
`=1

E[τ` − τ`−1].

In practice, following the approach in [37], we find it useful to use different esti-

mators E[τ f` ] and E[τ c` ] on fine and coarse meshes, respectively, provided

E[τ f` ] = E[τ c` ], ` = 1, . . . , L. (6.6)

Condition (6.6) allows to exploit identity

E[τ fL] = E[τ f0 ] +
L

∑
`=1

E[τ f` − τ c`−1], (6.7)

in the same way as for classical MLMC. On the left we have the finest resolution

approximation with the required bias. On the right is a telescoping summation

involving different levels of resolution. We independently estimate each of the
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expectations on the right-hand side in (6.7) in a way which minimises the overall

variance.

We continue by introducing notation for exit times of the fine and coarse

paths. Let us denote by τ f∆t` the exit time of the new algorithm approximating

the fine path over the time interval [0, T ]. The form of the estimator (6.5) allows

to focus our attention on the conditional expectation itself. On the fine level we

then obtain

E[τ f∆t` ∣X`
0,X

`
1, . . . ,X

`
2`] =

N−1

∑
k=0

1

2
∆t` (Π`,f

k +Π`,f
k+1) . (6.8)

We could define the estimator for the coarse level in a similar fashion but in

order to couple the fine and coarse level better and, as a consequence, to reduce

variance even further, for k-even we introduce an additional middle point X̃`−1
k+1

for the coarse approximation using equation (6.2), at a time (k + 1)∆t`, with the

ith component of the form

X̃`−1
i,k+1 =

1

2
(X`−1

i,k +X`−1
i,k+2 −

m

∑
j=1

gij(X`−1
k ) ((w`j,k+2 −w`j,k+1) − (w`j,k+1 −w`j,k))) .

(6.9)

This way we have added N/2 simulation points on the coarse path and as a result

we obtain a new estimator on the coarse level

E[τ c∆t` ∣X`−1
0 , X̃`−1

1 ,X`−1
2 , . . . ,X`−1

2` ] =
N−2

∑
k=0

k−even

∆t` (Π`−1,c
k +Π`−1,c

k+2 ) , (6.10)

where Π`−1,c
k and p`−1

k are probabilities for which computation involves referring

to the interpolated point. Because the increments (w`k+2 −w`k+1) and (w`k+1 −w`k)
are mutually independent we have

Π`−1,c
k =

k−1

∏
i=0

(1 − p`−1
i ) ≡

k−1

∏
i=0

(1 − p`−1
i,1 )(1 − p`−1

i,2 ),

where (1 − p`−1
i,1 ) and (1 − p`−1

i,2 ) are the probabilities of not leaving the domain on
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the first and second half of the coarse interval, respectively, and they satisfy

p`−1
i,1 ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if X`−1
k or X̃`−1

k+1 are outside B,

exp( −2dB(X`−1
k )dB(X̃`−1

k+1)
∥g(X`−1

k
)n(πB(X`−1

k
))∥2∆t`

), otherwise.

p`−1
i,2 ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if X̃`−1
k+1 or X`−1

k+2 are outside B,

exp( −2dB(X̃`−1
k+1)dB(X`−1

k+2)
∥g(X`−1

k
)n(πB(X`−1

k
))∥2∆t`

), otherwise.

(6.11)

It is crucial that we use g(X`−1
k ) on both timesteps, having used the Brownian

bridge with the diffusion term g(X`−1
k ) to derive both minima. The key equality

(6.6) would have been violated if we changed g(X`−1
k ) to g(X̃`−1

k+1) in calculating

the probability p`−1
i,2 , as we would have used different Brownian bridges on the first

and second half of the coarse timestep. When generating Brownian increments

for the fine sample path, we use (w`k+1 −w`k) as the increment for the first fine

timestep and (w`k+2 −w`k+1) for the second one. We then build the increment for

the coarse path by summing the Brownian increments from two fine timesteps,

i.e., (w`k+1 −w`k) + (w`k+2 −w`k+1) is the increment of the coarse timestep. Note

that in (6.9) the increments (w`k+2 −w`k+1) − (w`k+1 −w`k) are independent of the

Brownian increments used to generate the coarse sample path, (w`k+2 −w`k+1) +
(w`k+1 −w`k). Hence, when implementing the algorithm we can reuse the pseudo-

random numbers (w`k+2 −w`k+1) and (w`k+1 −w`k) to calculate extra points on the

coarse sample path.

Clearly, we have not changed the expectation by introducing the Brownian

bridge interpolation in the coarse timestep estimator and the equality (6.6) is

satisfied. Indeed, we have

E[τ c∆t`] = E[E[τ c∆t` ∣X`
0,X

`−1
2 , . . . ,X`−1

2` ]] = E[E[τ c∆t` ∣X`−1
0 , X̃`−1

1 ,X`−1
2 , . . . ,X`−1

2` ]].

We now show that the interpolated point on the coarse path is close to the point

from the fine approximation.

Lemma 6.3.1. Let Assumption 6.2.1 hold. There exists a constant c, indepen-

dent of ∆t`, such that

(E [ sup
k=0,2,...,2`−1−2

∥X`
k+1 − X̃`−1

k+1∥
q])

1/q
≤ c ∣∆t` log

1

∆t`
∣, 1 ≤ q <∞.
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Proof. From the definition of the Milstein scheme (6.1), by combining X`−1
i,k and

X`−1
i,k+2

X`−1
i,k+1 =

1

2
(X`−1

i,k +X`−1
i,k+2 −

m

∑
j=1

gij(X`−1
k )(∆w`−1

j,k+1 −∆w`−1
j,k )) +Rk+1, (6.12)

where

Rk+1 =(fi(X`−1
k ) − fi(X`−1

k+1))∆t`−1 +
m

∑
j=1

(gij(X`−1
k )) − gij(X`−1

k+1))∆w`−1
j,k+1

−
m

∑
j,n=1

hijn(X`−1
k+1) (∆w`−1

j,k+1∆w`−1
n,k+1 −Ωjn∆t`−1)

+
m

∑
j,n=1

hijn(X`−1
k ) (∆w`−1

j,k ∆w`−1
n,k −Ωjn∆t`−1) .

Subtracting (6.9) from (6.12), using the Lipschitz continuity of f(⋅) and g(⋅) and

applying Lemma 6.2.2 completes this proof. ◻

Thanks to Lemma 6.3.1 we will now write X`−1
k+1 ≡ X̃`−1

k+1 for k = 0,2, . . . ,2` − 2

without introducing ambiguity.

In order to justify the multi-level Monte Carlo approach we establish a rate of

strong convergence for the exit time approximation of fine and coarse paths. The

result is spread over Theorem 6.3.2 and Theorem 6.3.8. We first state a universal,

scheme indifferent, theorem in which for some mesh we bound the difference

between conditional expectations of exit times for high and low resolution paths

by the difference between probabilities of not leaving the domain on these paths.

We then work towards Theorem 6.3.8 in which a rate of strong convergence of

almost 3/2 is achieved.

Theorem 6.3.2. Let Assumption 6.2.1 hold. For some constant c we have

E [(E[τ f∆t` ∣X`
0, . . . ,X

`
2`] −E[τ c∆t` ∣X`−1

0 , . . . ,X`−1
2` ])2]

≤ c(max
k

E [(Π`,f
k −Π`−1,c

k )2] +∆t2`) .
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Proof. Using equations (6.8) and (6.10), we have

E [(E[τ f∆t` ∣X`
0, . . . ,X

`
2`] −E[τ c∆t` ∣X`−1

0 , . . . ,X`−1
2` ])2]

= E[(1

2
∆t`

N−1

∑
k=0

(Π`,f
k +Π`,f

k+1) −∆t`
N−2

∑
k=0

k−even

(Π`−1,c
k +Π`−1,c

k+2 ))
2

]

= E[(1

2
∆t`

N−1

∑
k=0

[(Π`,f
k −Π`−1,c

k ) + (Π`,f
k+2 −Π`−1,c

k+2 )]

− 1

2
∆t`

N−2

∑
k=0

k−even

(Π`−1,c
k − 2Π`−1,c

k+1 +Π`−1,c
k+2 ))

2

].

(6.13)

Due to the fact that Πk is a non-increasing function of k we have

−(Π`−1,c
k −Π`−1,c

k+2 ) ≤ Π`−1,c
k − 2Π`−1,c

k+1 +Π`−1,c
k+2 ≤ Π`−1,c

k −Π`−1,c
k+2 , k ≥ 0.

Hence

E [(E[τ f∆t` ∣X`
0, . . . ,X

`
2`] −E[τ c∆t` ∣X`−1

0 , . . . ,X`−1
2` ])2]

≤ 1

2
∆t2`

⎛
⎜
⎝
E(

N−1

∑
k=0

(Π`,f
k −Π`−1,c

k ) + (Π`,f
k+2 −Π`−1,c

k+2 ))
2

+E(
N−2

∑
k=0

k−even

Π`−1,c
k −Π`−1,c

k+2 )
2⎞
⎟
⎠

≤ 1

2
∆t2`

⎛
⎝

2NE(
N−1

∑
k=0

(Π`,f
k −Π`−1,c

k )2 + (Π`,f
k+2 −Π`−1,c

k+2 )2) +E(Π`−1,c
0 −Π`−1,c

N )
2⎞
⎠

≤ 2T 2 max
k

E[ ∣Π`,f
k −Π`−1,c

k ∣2 ] + 1

2
∆t2` .

(6.14)

◻

We will now outline the main idea of proof of the rate of convergence of the

MLMC variance of the mean exit time estimator. Let us recall that

p`k ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if X`
k or X`

k+1 are outside B,

exp( −2dB(X`
k)dB(X`

k+1)
∥g(X`

k
)n(πB(X`

k
))∥2∆t`

), otherwise.
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If dB(X`
k) > ∆t

1/2−ε1
` and dB(X`

k+1) > ∆t
1/2−ε2
` , then

0 ≤ p`k ≤ exp
⎛
⎝

−2∆t1−ε1−ε2`

∥g(X`
k)n(πB(X`

k))∥
2
∆t`

⎞
⎠
→ 0, when ∆t` → 0. (6.15)

That is, p`k tends to 0 exponentially fast. When dB(X`
k) < ∆t

1/2−ε1
` and dB(X`

k+1) <
∆t

1/2−ε2
` , then

0← exp
⎛
⎝

−2∆t1−ε1−ε2`

(∥g(X`
k)n(πB(X`

k))∥
2
∆t`

⎞
⎠
≤ p`k ≤ 1, when ∆t` → 0.

So if X`
k and X`

k+1 are within a ∆t
1/2−ε
` -neighborhood of the boundary, the prob-

ability of leaving the set B could be anything between 0 and 1. This behaviour

of the function p`k indicates that the main difficulty in proving Theorem 6.3.8 is

in the case where processes under consideration are close to the boundary. For

this reason we split the probability space. Let ε > 0. We introduce the following

event Ω = Ω1 ∪Ω2, where

Ω1 = {ω ∶ inf
0≤t≤T

dB(x(t)) > ∆t
1/2−ε
` },

Ω2 = {ω ∶ inf
0≤t≤T

dB(x(t)) < −∆t
1/2−ε
` },

and hence

Ωc = {ω ∶ inf
0≤t≤T

∣dB(x(t))∣ ≤ ∆t
1/2−ε
` }.

We then write

E [(Π`,f
k −Π`−1,c

k )2] = E [(Π`,f
k −Π`−1,c

k )21Ω] +E [(Π`,f
k −Π`−1,c

k )21Ωc] .

The first summand on the right-hand side of the above inequality converges to 0

exponentially fast. For the second summand we show in Theorem 6.3.8 that on

the set Ωc we have

E [(Π`,f
k −Π`−1,c

k )2] = O(∆t1−ε` ),

but if we chose Ωc such that P(Ωc) = O(∆t1/2−ε` ), then the overall multi-level

variance would be of order O(∆t3/2−ε` ). This is exactly what we are pursuing here.
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For this reason we introduce a new assumption which bounds the probability of

the solution of the SDE entering a neighborhood of the boundary ∂B for any

time 0 ≤ t ≤ T .

Assumption 6.3.3. There exists a constant c such that the probability of the SDE

solution {x(t)}0≤t≤T being within the neighborhood of the set ∂B has a bound

P( inf
0≤t≤T

∣dB(x(t))∣ ≤ ε) ≤ c ε, for all ε > 0.

In a one-dimensional context, Assumption 6.3.3 corresponds to an assumption

of a locally bounded density of inf0≤t≤T x(t).
The next two results, Lemma 6.3.4 and Theorem 6.3.5, tell us that we can

find a set of almost full measure on which path properties of SDEs (2.1) defined

by the set Ω are preserved by the numerical approximation (6.1). These results

rely on the strong convergence property specified in (2.7).

Lemma 6.3.4. Let Assumption 6.2.1 hold and let ε > 0. For η ∈ (0,1) define

E = ⋂4
i=1Ai, where

A1 ={ω ∶ sup
0≤k≤2`

∥x(k∆t`) −X`
k∥ ≤ η∆t1−ε` },

A2 ={ω ∶ sup
0≤k≤2`−2

∥X`
k+1 −X`

k∥ ≤ η∆t
1/2−ε
` },

A3 ={ω ∶ sup
∣t−s∣≤∆t`

∥x(t) − x(s)∥ ≤ η∆t
1/2−ε
` },

A4 ={ω ∶ sup
0≤k≤2`

∥X`
k −X`−1

k ∥ ≤ η∆t1−ε` }.

(6.16)

There exists a constant cη,ε,p, independent of ∆t`, such that

P(Ec) ≤ cη,ε,p∆tp` .

Proof. By subadditivity of the probability measure P(Ec) ≤ ∑4
i=1 P(Aci). Now
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using Lemma 6.2.2 and the Markov inequality, we obtain

P(Ac2) = P({ω ∶ sup
0≤k≤2`−2

∥X`
k+1 −X`

k∥ > η∆t
1/2−ε
` })

≤
E [sup0≤k≤2`−2 ∣X`

k+1 −X`
k∣
q]

ηq∆t
q(1/2−ε)
`

≤ cqγ
−q(∆tq(1/2−γ)` −∆t

q/2
` )

ηq∆t
q(1/2−ε)
`

≤ cη,γ,q∆tq(ε−γ)` ,

where we used the inequality that for x, γ > 0 we have

logx−1 ≤ γ−1(x−γ − 1).

Thanks to Lemma 6.2.2 we can similarly estimate probabilities of the events A1,

A3 and A4, and by choosing γ < ε and q such that q(ε−γ) = p, proof is complete.

◻

Let us now define ΩN = Ω1,N ∪Ω2,N such that

Ω1,N ={ω ∶ inf
0≤k≤2`

dB(X`
k) > ∆t

1/2−ε
`−1 },

Ω2,N ={ω ∶ inf
0≤k≤2`

dB(X`
k) < −∆t

1/2−ε
`−1 },

and hence

(ΩN)c ={ω ∶ inf
0≤k≤2`

∣dB(X`
k)∣ ≤ ∆t

1/2−ε
`−1 }.

Theorem 6.3.5. Let Assumption 6.2.1 hold. Let E ⊂ Ω be defined as in Lemma 6.3.4.

The following inclusions hold:

i) Ω1 ∩E ⊂ Ω1,N ,

ii) Ω2 ∩E ⊂ Ω2,N ,

iii) Ωc ∩E ⊂ (ΩN)c.

Proof. Let η ∈ (0,1) be such that (1/21/2−ε < 1 − η∆t
1/2
` ) ∩ (η∆t

1/2
` + η − 1 ≤

−1/21/2−ε) ∩ (η∆t
1/2
` + η + 1 < 21/2−ε). First, we prove i). Let ω ∈ Ω1 ∩E. By the
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Lipschitz continuity of the function dB(⋅),

dB(x(k∆t`)) ≤ ∣dB(x(k∆t`)) − dB(X`
k)∣+dB(X`

k) ≤ sup
0≤k≤2`

∥x(k∆t`) −X`
k∥+dB(X`

k),

and the fact that ω ∈ Ω ∩A1,

∆t
1/2−ε
` < inf

0≤t≤T
dB(x(t)) ≤ inf

0≤k≤2`
dB(x(k∆t`)) ≤ η∆t1−ε` + inf

0≤k≤2`
dB(X`

k),

we have

∆t
1/2−ε
` (1 − η∆t

1/2
` ) < inf

0≤k≤2`
dB(X`

k).

We can choose η such that

inf
0≤k≤2`

dB(X`
k) > ∆t

1/2−ε
`−1 .

For the remaining part of this chapter we often perform a similar action without

specifically mentioning the constant. Second, we proceed to proving ii). Let

ω ∈ Ω2 ∩E. Then

dB(X`
k) ≤ ∣dB(x(k∆t`)) − dB(X`

k)∣ + dB(x(k∆t`)),

and

inf
0≤k≤N

dB(x(k∆t`)) ≤ sup
0≤k≤N

sup
k∆t`≤t≤(k+1)∆t`

∣dB(x(k∆t`)) − dB(x(t))∣ + inf
0≤t≤T

dB(x(t)),

which proves that

inf
0≤k≤N

dB(X`
k) < (η∆t

1/2
` + η − 1)∆t1/2−ε` .

Our proof of implication iii) is almost the same as the proof of ii). Let ω ∈ Ωc∩E.

Then

inf
0≤k≤N

∣dB(X`
k)∣ ≤ (η∆t

1/2
` + η + 1)∆t1/2−ε` .

◻

Let us consider an event ω ∈ Ωc ∩ E = Ωc ∩ (ΩN)c ∩ E. Therefore, we know

that there exist k∗ and s∗, 0 ≤ k∗, s∗ ≤ N such that ∣dB(X`
k∗)∣ < ∆t

1/2−ε
` and
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∣dB(X`
s∗)∣ < ∆t

1/2−ε
` . The following Lemma tells us that if the fine approximation

is in a ∆t
1/2−ε
` -neighborhood of the boundary at a time ∆t`k∗, then the coarse

approximation at the same time ∆t`k∗ is also in the ∆t
1/2−ε
` -neighborhood of the

boundary. We use convention that ∆t−1 = 2 ∆t0.

Lemma 6.3.6. Let Assumption 6.2.1 hold. For ω ∈ Ωc ∩E, the following inclu-

sions hold:

i) {k ∶ ∣dB(X`
k)∣ < ∆t

1/2−ε
` } ⊂ {k ∶ ∣dB(X`−1

k )∣ < ∆t
1/2−ε
`−1 },

ii) {k ∶ ∣dB(X`−1
k )∣ < ∆t

1/2−ε
`−1 } ⊂ {k ∶ ∣dB(X`

k)∣ < ∆t
1/2−ε
`−2 },

iii) {k ∶ ∣dB(X`
k)∣ < ∆t

1/2−ε
` } ⊂ {k ∶ ∣dB(X`

k+1)∣ < ∆t
1/2−ε
`−1 }.

Proof. Let us choose η ∈ (0,1) as in proof of Theorem 6.3.5. Let ω ∈ Ωc∩E. From

∣dB(X`−1
k )∣ ≤ ∣dB(X`−1

k ) − dB(X`
k)∣ + ∣dB(X`

k)∣ ,

and the fact that ω ∈ Ωc ∩A4 we have

∣dB(X`−1
k )∣ ≤ (η∆t

1/2
` + 1)∆t1/2−ε` .

Inclusion ii) follows by the same argument. Regarding inclusion iii) we have

∣dB(X`
k+1)∣ ≤ ∣dB(X`

k+1) − dB(X`
k)∣ + ∣dB(X`

k)∣ .

From the fact that ω ∈ Ωc ∩A2 we conclude

∣dB(X`
k+1)∣ ≤ (η + 1)∆t1/2−ε` ,

by selecting the constant η appropriately. ◻

We are now close to proving the main result of this chapter. In the remaining

analysis we often use the following identity which we present here for the reader’s

convenience, namely

x1y1−x2y2 =
1

2
(y1+y2)(x1−x2)+

1

2
(x1+x2)(y1−y2), for all x1, y1, x2, y2. (6.17)
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In order to obtain the following pathwise inequality we require the strong

order of convergence to be one. This is in fact the only theorem where the

higher order strong convergence is needed in order to obtain the results from

this chapter. This also suggests that our result cannot be generalised to the

Euler-Maruyama method. From Lemma 6.3.6 we can find the set of indexes α for

which both fine and coarse approximations are within the ∆t
1/2−ε
`−1 -neighborhood

of the boundary and the set of indexes αc = {0,1, . . . ,2`} ∖ α, for which both

approximations are at least ∆t
1/2−ε
`−1 far from the boundary. For convenience let

us define G`,f
k ≡ g(X`

k)n(πB(X`
k)) for k = 0,1, . . . ,2`. Due to the Brownian bridge

interpolation on the coarse level we have

G`−1,c
k ≡

⎧⎪⎪⎨⎪⎪⎩

g(X`−1
k )n(πB(X`−1

k )), for k = 0,2, . . . ,2`,

g(X`−1
k−1)n(πB(X`−1

k−1)), for k = 1,3, . . . ,2` + 1.

Theorem 6.3.7. Let Assumption 6.2.1 hold and 2∆t0 ≤ 1. For ω ∈ (ΩN)c∩E we

have the following pathwise inequalities

sup
k∈α

RRRRRRRRRRRR

2dB(X`
k)dB(X`

k+1)
∥G`,f

k ∥2
∆t`

− 2dB(X`−1
k )dB(X`−1

k+1)
∥G`−1,c

k ∥2
∆t`

RRRRRRRRRRRR
≤ ∆t

1/2−3ε
`−2 , (6.18)

and

∣∏
s∈α

(1 − p`−1
s ) −∏

s∈α
(1 − p`s)∣ ≤ ∆t

1/2−3ε
`−2 . (6.19)

Proof. Let ω ∈ (ΩN)c ∩E. We obtain

RRRRRRRRRRRR

2dB(X`
k)dB(X`

k+1)
∥G`,f

k ∥2
∆t`

− 2dB(X`−1
k )dB(X`−1

k+1)
∥G`−1,c

k ∥2
∆t`

RRRRRRRRRRRR

= ∣2dB(X
`
k)dB(X`

k+1)
∥G`,f

k ∥2
∆t`

− 2dB(X`
k)dB(X`

k+1)
∥G`−1,c

k ∥2
∆t`

+ 2dB(X`
k)dB(X`

k+1)
∥G`−1,c

k ∥2
∆t`

− 2dB(X`−1
k )dB(X`−1

k+1)
∥G`−1,c

k ∥2
∆t`

∣

= ∣
2dB(X`

k)dB(X`
k+1) (G

`−1,c
k −G`,f

k )T (G`−1,c
k +G`,f

k )
∥G`,f

k ∥2 ∥G`−1,c
k ∥2

∆t`

+ 2dB(X`
k)dB(X`

k+1) − 2dB(X`−1
k )dB(X`−1

k+1)
∥G`−1,c

k ∥∆t`
∣.

(6.20)
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We first focus our attention on bounding the first term on the right-hand side in

(6.20). By Assumption 6.2.1 and the fact that ω ∈ (ΩN)c ∩E

∥G`−1,c
k −G`,f

k ∥ ≤ c η∆t1−ε` , for k = 0,2, . . . ,2`. (6.21)

For k = 1,3, . . . ,2`+1, again by Assumption 6.2.1 and the fact that ω ∈ (ΩN)c∩E,

we have

∥G`−1,c
k −G`,f

k ∥ ≤ ∥g(X`−1
k−1)n(πB(X`−1

k−1)) − g(X`
k−1)n(πB(X`

k−1))∥
+ ∥g(X`

k−1)n(πB(X`
k−1)) − g(X`

k)n(πB(X`
k))∥

≤ c η∆t
1/2−ε
`−1 + c η∆t1−ε` .

We then can find η ∈ (0,1) such that

sup
k∈α

∣
2∣dB(X`

k)∣ ⋅ ∣dB(X`
k+1)∣ ∥G

`−1,c
k −G`,f

k ∥ ∥G`−1,c
k +G`,f

k ∥
∥G`,f

k ∥2 ∥G`−1,c
k ∥2

∆t`
∣ ≤ ∆t

1/2−3ε
`−2 . (6.22)

For the second term on the right-hand side in (6.20) we use the inequality (6.17)

and obtain

sup
k∈α

∣2dB(X
`
k)dB(X`

k+1) − 2dB(X`−1
k )dB(X`−1

k+1)
∥G`−1,c

k ∥∆t`
∣

= sup
k∈α

∣(dB(X
`
k+1) + dB(X`−1

k+1))(dB(X`
k) − dB(X`−1

k ))
∥G`−1,c

k ∥∆t`

+ (dB(X`
k) + dB(X`−1

k ))(dB(X`
k+1) − dB(X`−1

k+1))
∥G`−1,c

k ∥∆t`
∣

≤ c η∆t
1/2−2ε
` .

(6.23)

From (6.22) and (6.23) we conclude that (6.18) in Theorem 6.3.7 holds.

We now focus our attention on proving (6.19). From the inequality

ex − ey ≤ ex(x − y), for x ≥ y,

and the pathwise inequality (6.18) we deduce that

1 − p`−1
k ≤ (1 − p`k) + p`k∆t

1/2−3ε
`−2 .
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Let us define a function

h(∆t`−2) ≡∏
s∈α

((1 − p`s) + p`s∆t
1/2−3ε
`−2 ) −∏

s∈α
(1 − p`s) −∆t

1/2−3ε
`−2 .

Note that this function has the following properties:

� it is convex,

� h(0) = 0,

� h(1) = −∏s∈α (1 − p`s) ≤ 0.

This allows us to conclude that for ∆t`−2 ∈ [0,1], we have

h(∆t`−2) ≤ 0.

As a consequence

∏
s∈α

((1 − p`s) + p`s∆t
1/2−3ε
`−2 ) ≤∏

s∈α
(1 − p`s) +∆t

1/2−3ε
`−2 .

This proves that

∏
s∈α

(1 − p`−1
s ) ≤∏

s∈α
(1 − p`s) +∆t

1/2−3ε
`−2 .

By symmetry we can show that

∏
s∈α

(1 − p`s) ≤∏
s∈α

(1 − p`−1
s ) +∆t

1/2−3ε
`−2 ,

and hence

∣∏
s∈α

(1 − p`−1
s ) −∏

s∈α
(1 − p`s)∣ ≤ ∆t

1/2−3ε
`−2 .

◻

Theorem 6.3.8. Let Assumptions 6.2.1, 6.3.3 hold and 2∆t0 ≤ 1. Given any

ε∗ > 0, there exists a constant cε∗, independent of ∆t`, such that

E[(Π`,f
k −Π`−1,c

k )2] ≤ cε∗∆t3/2−ε
∗

` .
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Proof. Using notation from Lemma 6.3.4 and Theorem 6.3.5, and noting that

0 ≤ Π`,f
k ,Π`−1,c

k ≤ 1, we have

E [(Π`,f
k −Π`−1,c

k )2] ≤ E [(Π`,f
k −Π`−1,c

k )21Ω1∩E] +E [(Π`,f
k −Π`−1,c

k )21Ω2∩E]
+E [(Π`,f

k −Π`−1,c
k )21Ωc∩E] + c∆tp` .

(6.24)

Considering the first summand of the above inequality, Theorem 6.3.5 gives us

Ω1 ∩ E ⊂ Ω1,N ∩ E. Therefore, from (6.15) we immediately conclude that there

exists a constant c such that

E [(Π`,f
k −Π`−1,c

k )21Ω1∩E] ≤ c∆tp` , for any p > 0.

Similarly, for the second summand in (6.24), Theorem 6.3.5 gives us Ω2 ∩ E ⊂
Ω2,N ∩E, and as a consequence

E [(Π`,f
k −Π`−1,c

k )21Ω2∩E] = 0.

To complete the proof we need to deal with the third summand in (6.24) for which

Theorem 6.3.5 gives us Ωc∩E = Ωc∩(ΩN)c∩E. Recalling that by α we denoted the

set of indexes for which both approximations are within the ∆t
1/2−ε
`−1 -neighborhood

to the boundary, we arrive at

E
⎡⎢⎢⎢⎢⎣
(∏
s∈α

(1 − pfs)∏
s∈αc

(1 − pfs) −∏
s∈α

(1 − pcs)∏
s∈αc

(1 − pcs))
2

1Ωc∩(ΩN )c∩E

⎤⎥⎥⎥⎥⎦

≤ 2E
⎡⎢⎢⎢⎢⎣
(∏
s∈α

(1 − pfs) −∏
s∈α

(1 − pcs))
2

1Ωc∩(ΩN )c∩E

⎤⎥⎥⎥⎥⎦
+ c∆tp` ,

where we used the identity (6.17) and the fact that for indexes αc both products

are exponentially small. Using Assumption 6.3.3, Theorem 6.3.7 and Hölder’s

inequality we have

E
⎡⎢⎢⎢⎢⎣
(∏
s∈α

(1 − pfs) −∏
s∈α

(1 − pcs))
2

1Ωc∩(ΩN )c∩E

⎤⎥⎥⎥⎥⎦
≤ c∆t1−6ε

` [P (Ωc)]1−ε,

which completes the proof. ◻
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6.4 Expected Computational Complexity

In this section we show that the new multi-level algorithm improves the expected

computational complexity by one order of magnitude, in terms of the required

accuracy, comparing with the new Milstein-Monte Carlo method.

6.4.1 New Milstein-Monte Carlo

We now consider a Monte Carlo approach to the estimation of the mean exit

time using the Milstein method with probabilities based on Brownian bridges

to compute independent samples E[τ∆t` ∣ X`
0,X

`
1, . . . ,X

`
N][i] from the distribu-

tion of the corresponding random variable E[τ∆t` ∣ X`
0,X

`
1, . . . ,X

`
N]. Let E[τ∆t` ∣

X`
0,X

`
1, . . . ,X

`
N][i] denote the computed exit time for the ith simulated path. If

we use M such paths, then the mean value E[τ] is approximated by the sample

average

µ = 1

M

M

∑
i=1

E[τ∆t` ∣X`
0,X

`
1, . . . ,X

`
N][i].

We can break down the overall error naturally into two parts,

E[τ] − µ = E[τ − τ∆t` + τ∆t`] − µ = (E[τ − τ∆t`]) + (E[τ∆t`] − µ) . (6.25)

The first term in parentheses is the bias; that is, the weak error of the new

algorithm in terms of its ability to approximate the mean exit time of the SDE.

Gobet in [48] proved that the weak error for the Euler Brownian bridge is of

O(∆t`). Knowing that the Euler–Maruyama and Milstein discretisation have the

same order of weak error, we deduce that

E[τ] −E[τ∆t`] = O(∆t`). (6.26)

The second term in (6.25) concerns the statistical sampling error. From the

perspective of confidence interval width, this is known to scale like O(1/
√
M).

As previously, it is natural to measure the computational cost in terms of ei-

ther (a) the total number of evaluations of the drift and diffusion coefficients

f(⋅) or g(⋅), or (b) the number of pseudo-random number calls to obtain the

Brownian increments ∆w`k. In both cases, the computational cost of each path

75



CHAPTER 6. MULTI-LEVEL MONTE CARLO USING BROWNIAN
BRIDGE INTERPOLATION FOR EXPECTED EXIT TIMES

is proportional to the ratio of the time-span of the numerical approximation,

E[τ∆t` ∣X`
0,X

`
1, . . . ,X

`
N][i], and the stepsize, ∆t`. The overall expected computa-

tional cost of the new Milstein-Monte Carlo method is therefore proportional to

ME[τ∆t`]/∆t`, which, from (6.26), may be written

M (E[τ] +O(∆t`))
∆t`

. (6.27)

If we let TOL denote the user-specified level of accuracy, in terms of confidence

interval width, so that the root mean square error is O(TOL), then balancing

the bias and sampling error in (6.25) gives the scaling TOL = ∆t` = 1/
√
M ,

whence the complexity measure (6.27) for the method becomes O(TOL−3). With

reference to the complexity results derived in Chapter 4, we see that this compares

favourably with the O(TOL−4) complexity of standard Monte Carlo with EM,

and is comparable with the O(TOL−3∣ log(TOL)∣1/2) complexity of the multi-level

EM method.

6.4.2 New Milstein-MLMC

Theorem 3.1 of [38] provides a general complexity result for multi-level Monte

Carlo. Using that framework, in Theorems 6.3.2 and 6.3.8 we achieved the con-

vergence rate of variance β = 3/2 − ε and we can conclude that complexity of

the multi-level Monte Carlo algorithm is O(TOL−2), giving one order of magni-

tude saving comparing to the new Milstein-Monte Carlo method, in terms of the

required accuracy TOL. This can also be compared to the crudest and most pop-

ular Euler-Monte Carlo approach which has complexity O(TOL−4), as discussed

in Chapter 4. The new Milstein-MLMC method therefore yields significant com-

putational saving of two orders of magnitude over the previous state of the art.

A more detailed description of the new Milstein-MLMC algorithm that speci-

fies an optimal number of paths N` and a termination criterion can be found in

section 6.5.
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6.5 Computational Results

Numerical results are presented in this section. We first describe the precise

numerical algorithm used in the simulations. We then check the sharpness of the

rate of weak convergence in (6.26) for a one-dimensional case with a lower barrier,

the rate of strong convergence in Theorem 6.3.2 for a two-dimensional case, and

finally the asymptotic improvement in complexity in a more realistic simulation.

Algorithm 2 below specifies the computation for one sample path. Full imple-

mentation of the multi-level method requires estimating variance with an initial

small number of sample paths, calculating the optimal number of sample paths

and then generating additional samples as needed for the optimal number of sam-

ple paths, if necessary. Level ` is increased until a required bias is achieved. The

distance between two points is measured by the Euclidean norm.

Algorithm 2 Fix ∆t` > 0, ` > 0 and set ∆t`−1 = 2∆t`.

Set X`
k =X0, X`−1

k =X0, E[τ f ] = 0, E[τ c] = 0, Π`,f = 1, Π`−1,c = 1.
for k = 1, ...,2`−1 do

Generate dw`1, dw
`
2.

for m = 1,2 do
X`
old ←X`

k+m−1.
Evaluate X`

k+m using dw`m and ∆t`.
Calculate p`k+m using X`

old and X`
k+m in equation (6.3).

if dB(X`
k+m) ≤ 0 then

Set p`k+m = 1.
end if
Update E[τ f ] and Π`,f .

end for
X`−1
old ←X`−1

k .
Calculate dw`−1 = dw`1 + dw`2.
Evaluate X`−1

k+2 using dw`−1 and ∆t`−1.
Evaluate X`−1

k+1 using dw`−1
k+1 = dw`2 − dw`1 in equation (6.9).

Calculate p`−1
1 , p`−1

2 using X`−1
old ,X

`−1
k+1 and X`−1

k+2 in equations (6.11).
if dB(X`−1

k+1) ≤ 0 or dB(X`−1
k+2) ≤ 0 then

Set p`−1
k+2 = 1.

end if
Update E[τ c] and Π`−1,c.

end for
E[τ f ] = E[τ f ] +Π`,f × T .
E[τ c] = E[τ c] +Π`−1,c × T .
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We start by examining the sharpness of the rate of weak convergence in (6.26)

on a geometric Brownian motion model

dx(s) = fx(s)ds + gx(s)dw(s), (6.28)

with constant drift f = 0.02, constant volatility g = 0.3, initial value x(0) = 1,

lower boundary B = 0.9 and a finite cutoff time T = 1. In this one-dimensional

case E[τ] = 0.4326, which was calculated by approximating the integral and the

tail probability numerically. We approximated the weak exit time error err∆t` =
∣E[τ]−E[τ∆t`]∣ using the sample mean fromN = 106 path simulations and a variety

of stepsizes. Figure 6.1 shows the error behaviour on a log-log scale. A least

squares fit for logC and q in log err∆t` = logC+q log ∆t` produced q = 1.0068 with

a least squares residual of 0.2710. This is consistent with the weak error order of

convergence equal to one.

We now proceed to check whether the multi-level algorithm converges to the

correct value and whether the bound in Theorems 6.3.2 and 6.3.8 is sharp. For

a two-dimensional version of the SDE (6.28) with constant drift coefficients fi =
0.05, i = 1,2, constant volatilities gi = 0.3, i = 1,2, initial values xi(0) = 1, i = 1,2,

and finite cutoff time T = 1, we divide the plane into two half-planes with equation

y = −0.2x + 1 and set the domain to be the half-plane not including the origin

(0,0).
We first check the weak convergence behaviour. In the left picture of Figure 6.2

we plot on a log-log scale the accuracy obtained by the multi-level algorithm as

a function of TOL for TOL = 2−5, 2−6, 2−7 and 2−8. We observe that the algorithm

produces an error that scales like TOL. A line with a slope 1 is included for

reference. We used Monte Carlo simulations with a fixed timestep ∆t` = 10−3

and N = 5 × 105 samples to obtain a reference value of E[τ] = 0.592. The half-

interval width of the 95% confidence interval is 0.0009, making the statistical

error negligible.

For simplicity, we denote the estimator for the fine level defined in (6.8) by P̂ f
`

and for the coarse one defined in (6.10) by P̂ c
`−1. In the right picture of Figure 6.2,

for the target accuracy TOL = 2−8 we plot the quantity log (Var [Pf
` −Pc

`−1]) over

a sequence of levels. We also include a line with a slope −3
2 for reference. A least

squares fit for the slope produces q = −1.4040 with a residual of 0.9580.
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Figure 6.1: Weak error of the new Milstein-Monte Carlo method.

Finally, we compare the computational complexity of the new Milstein-Monte

Carlo algorithm with the multi-level version in Figure 6.3. The computational

cost of the multi-level version is measured as in (4.16), where N` is the number

of paths used on each level, calculated as

N` = ⌈2TOL−2
√

Var[P̂ f
` − P̂ c

`−1]2−` (
L

∑
`=0

√
Var[P̂ f

` − P̂ c
`−1]2`)⌉ ,

for 0 ≤ ` ≤ L. This choice of N` gives the 1
2TOL2 upper bound on the variance of

the estimator. To achieve a TOL2 upper bound on the mean square error (so that

79



CHAPTER 6. MULTI-LEVEL MONTE CARLO USING BROWNIAN
BRIDGE INTERPOLATION FOR EXPECTED EXIT TIMES

−9 −8 −7 −6 −5 −4
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

log
2
 (TOL)

lo
g 2 (

E
[τ

] −
 E

[τ
∆ 

t])

0 2 4 6

−16

−14

−12

−10

−8

−6

−4

level

lo
g 

(v
ar

ia
nc

e)
 / 

lo
g 

(M
)

Figure 6.2: Left: weak error of the multi-level algorithm. Right: variance of
P̂ f
` − P̂ c

`−1 over different levels.
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the root mean square error is O(TOL)), we impose a 1
2TOL2 upper bound on

the square bias error. We carefully choose the finest discretisation timestep ∆tL

(and therefore the maximum level L) to make sure that E[τ − P̂ f
L] is smaller than

TOL√
2

. From (6.26) we can approximate the remaining bias with a linear function

E[τ − P̂ f
` ] = a∆t`,

as `Ð→∞. Knowing that 2∆tL = ∆tL−1, we then have

E [P̂ f
L − P̂ c

L−1] = E [P̂ f
L − τ + τ − P̂ c

L−1]
= E [P̂ f

L − τ] +E [τ − P̂ c
L−1]

= a∆tL

= E [τ − P̂ f
L] .

(6.29)

If we denote by ZL = 1
NL
∑NL
i=1 (P̂ [i]

L − P̂ [i]
L−1) the estimator for E [P̂ f

L − P̂ c
L−1], we

estimate the remaining bias testing

∣ZL∣ ≤
TOL√

2
.

From (6.29) we can consider E [P̂ f
L − P̂ c

L−1] as a function of ∆tL which converges

to zero as the finest timestep goes to zero. We also can consider ZL as a discrete

sample of the value of this function. If we sample the function at a point ∆tL

near its root, we can obtain a ZL which is misleadingly small. This scenario has

been fixed in [38] where the author proposes to estimate the remaining bias with

the estimates of the two finest timesteps. In the numerical implementation we

then use the following termination criterion

max{∣ZL−1∣
2

, ∣ZL∣} ≤ TOL√
2
.

We measure the computational cost of the new Milstein-Monte Carlo method

as in (4.18). In Figure 6.3 we plot on a log-log scale the quantity TOL2 × cost as

a function of the accuracy TOL. For TOL = 2−5, 2−6, 2−7 and 2−8 we perform 30

new Milstein-Monte Carlo and new Milstein-MLMC computations using different

initial states of the pseudo-random number generator, and plot the complexity
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results with red triangles (new Milstein-Monte Carlo) and green circles (new

Milstein-MLMC). We then take averages for each accuracy, indicated as black

crosses, for both methods. A least squares fit performed on the Monte Carlo

slope produces q = −0.9676 with a residual 0.0757, and on the multi-level Monte

Carlo slope gives q = −0.1045 with a residual of 0.1968. This agrees with the

analytical results quoted in section 6.4 : the new Milstein-Monte Carlo complexity

of O(TOL−3) and the new Milstein-MLMC complexity of O(TOL−2). For the

most stringent test, the multi-level method is up to 100 times more efficient than

the new Milstein-Monte Carlo method.

6.6 Further Computational Results

In this section we present more computational results using the method outlined

in the previous section. This time, however, the domain is a set with curved

boundaries. We recall from this chapter that the result from Proposition 6.2.3 is

not true for such domains, but it can be used to give a good approximation so

long as the boundary is smooth enough.

We then start from a two-dimensional example in which the domain is a circle

with radius R=0.5. For a two-dimensional version of the SDE (6.28) with constant

drift coefficients fi = 0.05, i = 1,2, constant volatilities gi = 0.3, i = 1,2, initial

values xi(0) = 1, i = 1,2, and finite cutoff time T = 1, we first check the behaviour

of weak error and variance. In the left picture of Figure 6.4 we plot on a log-log

scale the accuracy obtained by the multi-level algorithm as a function of TOL for

TOL = 2−5, 2−6, 2−7 and 2−8. We observe that the algorithm produces an error

that scales like TOL, as required. A line with a slope 1 is included. A referenced

value was obtained using the standard Monte Carlo method at high accuracy.

In the right picture of Figure 6.4, for the target accuracy TOL = 2−8 we plot the

quantity log (Var [Pf
` −Pc

`−1]) over a sequence of levels. We also include a line with

a slope −3
2 for reference. A least squares fit for the slope produces q = −1.3663 with

a residual of 0.1029. In Figure 6.5 we present complexity results in the same way

as in Figure 6.3. We plot on a log-log scale the quantity TOL2×cost as a function

of the accuracy TOL. For TOL = 2−5, 2−6, 2−7 and 2−8 we perform 20 standard

Monte Carlo, new Milstein-Monte Carlo and new Milstein-MLMC computations

using different initial states of the pseudo-random number generator, and plot
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Figure 6.3: Computational effort of new Milstein-Monte Carlo (red triangles)
and new Milstein-MLMC (green circles). Black crosses indicate averages of cost
of both methods for each accuracy.
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Figure 6.4: Exit of GBM from a 2d ball. Left: weak error of the multi-level
algorithm. Right: variance of P̂ f

` − P̂ c
`−1 over different levels.
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Figure 6.5: Exit of GBM from a 2d ball. Computational effort of standard Monte
Carlo (blue squares), new Milstein-Monte Carlo (red triangles) and new Milstein-
MLMC (green circles). Black crosses indicate averages of cost of all three methods
for each accuracy.
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the complexity results with blue squares (standard Monte Carlo), red triangles

(new Milstein-Monte Carlo) and green circles (new Milstein-MLMC). We then

take averages for each accuracy, indicated as black crosses, for all three methods.

A least squares fit performed on the standard Monte Carlo slope produces q =
−1.8899 with a residual 0.1459, on the new Milstein-Monte Carlo slope gives

q = −0.8151 with a residual 0.1757 and on the multi-level Monte Carlo slope we

obtain q = −0.0304 with a residual of 0.0668.

We now proceed to the second example. For a two-dimensional version of the

SDE (6.28) with constant drift coefficients fi = 0.05, i = 1,2, constant volatilities

gi = 0.3, i = 1,2, initial values xi(0) = 1, i = 1,2, and finite cutoff time T = 1, we

divide the plane into two parts with equation y = e0.5x − 1 and set the domain

to be the one not including the origin (0,0). In the left picture of Figure 6.6

we plot on a log-log scale the accuracy obtained by the multi-level algorithm as

a function of the accuracy parameter for TOL = 2−5, 2−6, 2−7 and 2−8. We can see

that the algorithm produces an error that scales like accuracy - a least squares fit

for the slope produces q = 0.9668 with a residual of 0.1153. A line with a slope 1

is included for reference. A referenced value was obtained using standard Monte

Carlo at high accuracy.

In the right picture of Figure 6.6, for the target accuracy TOL = 2−8 we plot

the quantity log (Var [Pf
` −Pc

`−1]) over a sequence of levels. We also include a line

with a slope −3
2 for reference. A least squares fit for the slope produces q = −1.3394

with a residual of 0.0752.

In Figure 6.7 we present complexity results in the same way as in Figure 6.3.

We plot on a log-log scale the quantity TOL2 × cost as a function of the accuracy

TOL. For TOL = 2−5, 2−6, 2−7 and 2−8 we perform 30 new Milstein-Monte Carlo

and new Milstein-MLMC computations using different initial states of the pseudo-

random number generator, and plot the complexity results with red triangles (new

Milstein-Monte Carlo) and green circles (new Milstein-MLMC). We then take

averages for each accuracy, indicated as black crosses, for both methods. A least

squares fit performed on the new Milstein-Monte Carlo slope gives q = −0.9023

with a residual 0.1346 and on the multi-level Monte Carlo slope we obtain q =
−0.0549 with a residual of 0.0218.

We finish this section with the third example. For a two-dimensional version

of the SDE (4.19) with constant drift coefficients fi = 0.05, i = 1,2, constant
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Figure 6.6: Exit of GBM from a curved boundary. Left: weak error of the multi-
level algorithm. Right: variance of P̂ f

` − P̂ c
`−1 over different levels.
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Figure 6.7: Exit of GBM from a curved boundary. Computational effort of new
Milstein-Monte Carlo (red triangles) and new Milstein-MLMC (green circles).
Black crosses indicate averages of cost of both methods for each accuracy.
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volatilities gi = 0.3, i = 1,2, initial values xi(0) = 1, i = 1,2, finite cutoff time T = 1,

and a mean reversion parameter µ = 1, we set the domain to be a circle with radius

R=0.5. We recall that the SDE (4.19) is nonlinear and non-Lipschitzian and is

widely used in mathematical finance as an alternative to geometric Brownian

motion. In the left picture of Figure 6.8 we plot on a log-log scale the accuracy

obtained by the multi-level algorithm as a function of the accuracy parameter

for TOL = 2−5, 2−6, 2−7 and 2−8. We can see that the algorithm produces an

error that scales like accuracy. A line with a slope 1 is included for reference and

a referenced value was obtained using standard Monte Carlo at high accuracy.

In the right picture of Figure 6.8, for the target accuracy TOL = 2−8 we plot

the quantity log (Var [Pf
` −Pc

`−1]) over a sequence of levels. We also include a line

with a slope −3
2 for reference. A least squares fit for the slope produces q = −1.3801

with a residual of 0.0933.

In Figure 6.9 we present complexity results in the same way as in Figure 6.3.

We plot on a log-log scale the quantity TOL2 × cost as a function of the accuracy

TOL. For TOL = 2−5, 2−6, 2−7 and 2−8 we perform 30 standard Monte Carlo,

new Milstein-Monte Carlo and new Milstein-MLMC computations using different

initial states of the pseudo-random number generator, and plot the complexity

results with blue squares (standard Monte Carlo), red triangles (new Milstein-

Monte Carlo) and green circles (new Milstein-MLMC). We then take averages for

each accuracy, indicated as black crosses, for all three methods. A least squares

fit performed on the standard Monte Carlo slope produces q = −1.9211 with

a residual 0.0828, on the new Milstein-Monte Carlo slope gives q = −0.9129 with

a residual 0.1058 and on the multi-level Monte Carlo slope we obtain q = −0.0213

with a residual of 0.0552.

Three numerical examples from this section suggest that a straightforward

implementation of the new multi-level algorithm for the process exiting from

a curved boundary does not yield complexity results that are as good as those for

the exit from a half-space. This also suggests that the interpolated point on the

coarse path could be chosen in a more effective way so the variance convergence

is closer to the desired order 3/2.
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Figure 6.8: Exit of the CIR process from a 2d ball. Left: weak error of the
multi-level algorithm. Right: variance of P̂ f

` − P̂ c
`−1 over different levels.
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Figure 6.9: Exit of the CIR process from a 2d ball. Computational effort of
standard Monte Carlo (blue squares), new Milstein-Monte Carlo (red triangles)
and new Milstein-MLMC (green circles). Black crosses indicate averages of cost
of all three methods for each accuracy.
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6.7 Summary

In this chapter we designed and analysed a multi-level version of a new algorithm

for approximating mean exit times. A key step in the design was to provide a

different representation for a mean exit time; the main objective in the analysis

was to establish a rate of strong convergence for variance between coarse and

refined computations. We then showed that it is possible to reduce the com-

putational complexity by two orders of magnitude, compared with the standard

Euler-Monte Carlo method. Finally, we presented more computational examples

for which there is no theoretical background (the assumption of a half-space is

violated) and obtained promising results.
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Chapter 7

Conclusion and Future Research

Knowing is not enough; we must apply.

Willing is not enough; we must do.

Johann Wolfgang von Goethe, 1749-1832

In the past 5 years substantial progress has been made with the multi-level

Monte Carlo method, not only for financial options based on underlying assets

described by the Brownian diffusions and Lévy processes but also for the problem

when the time of a process exiting a certain set is an estimated quantity.

The multi-level approach is based on a simple concept. It may be described

as a recursive control variate method, where we use a coarse path simulation as

a control variate for a fine path simulation, relying on strong convergence prop-

erties to ensure a very strong coupling between the two. In practical applications

the main challenge is to correlate the fine and coarse path simulations as closely

as possible, without excessive cost.

In this work we successfully applied the multi-level approach to the problem of

mean exit times. We thereby derived and analysed the first multi-level algorithm

in this setting. In its basic form, where the exit time is approximated via a

numerical scheme leaving the domain, the new method generates savings of almost

one order of magnitude in computational cost over the standard Monte Carlo

approach. In its most advanced form, in which we calculate probabilities of a

Brownian bridge interpolation leaving the domain between two discrete points,

a new method yields significant savings of two orders of magnitude compared to

the crude Monte Carlo approach.
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In the future, fascinating areas for further research include:

� extending the method to more complicated boundaries in the multi-dimensional

setting [50], for which illustrative numerical examples have been presented

in section 6.6,

� considering the use of quasi-Monte Carlo methods,

� researching on multi-level techniques for early-exercise options such as Amer-

ican and Bermudan options,

� fine-tuning the algorithm to high performance computing architectures.
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