University of Strathclyde Strathclyde Institute of Pharmacy and Biomedical Science

Molecular Mechanisms of Cadmium Toxicity

by

Akeem Olalekan Lawal

A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) 2009 'This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree'.

'The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgment must always be made of the use of any material contained in, or derived from, this thesis'

Signed:

Date:

ACKNOWLEDGEMENTS

My first appreciation is to God, the almighty for the strength and wisdom He gave me to accomplish this study.

My profound appreciation goes to the Commonwealth Scholarship for providing me the financial support throughout my study without which I will not have been able to undergo such study.

I would also like to express my profound gratitude to my supervisor, Dr. Elizabeth Ellis, for her guidance, advice, support and encouragement throughout my study. I also appreciate Dr. Corinne Spickett, my second supervisor and Dr. Eve Lutz for their understanding and assistance.

I would also thank my colleagues in the lab, Sudhakhar, Liza, Samar and Sorada, for making the lab interesting and for their cooperation during my study. I also appreciate the help from Chantevy and Vijay and Karen, of the Biophotonics Center, during my study.

Finally, I thank my dearly beloved wife, Tola and my children, Stephen and Esther, for being there for me because without them this study will not have been completed. I appreciate you all.

ABSTRACT

Cadmium is a heavy metal which has been associated with a number of pathological diseases. However, despite the known toxicity of this metal, there is inconclusive evidence about its mechanism(s) of action in the cells. The present study was therefore undertaken with the aim of defining the role of oxidative stress, intracellular Ca²⁺ alteration via phospholipase C- Inositol-1,4,5-triphosphate (PLC-IP₃) and mitochondrial-cytochrome c dependent pathways in the etiology of cadmium-induced toxicity in three human cell lines: HepG2 (human hepatoma), 1321N1 (human astrocytoma) and HEK 293 (human embryonic kidney) cell lines after 24hrs exposure to 5, 10 and 50 μ M cadmium chloride (CdCl₂). The role of the Nrf2-Keap1-ARE pathway in the adaptive response of these cell lines to Cd exposure was examined, and the possible mechanism(s) involved in the protective response of garlic extracts to CdCl₂ were also investigated. Finally, this work examined changes in the proteomic profile of the three human cell lines after Cd exposure in order to develop suitable biomarkers for Cd toxicity. In summary, this study shows that the oxidative stress induced by Cd occurs by different mechanisms depending on cell type and that Ca²⁺ alteration may play an important role in Cd-induced toxicity in HEK 293 cells, while the mitochondrial-cytochrome c dependent pathway is important in Cd toxicity in all three cell lines. Also, the study shows that Nrf2-Keap1-ARE mediated adaptive response to Cd may be activated by PKCδ and that Cd generally alters the metabolism of exposed cells.

iv

CONTENTS

Acknowledgements	iii
Abstract	iv
Contents	V-XV
List of Figures	xvi-xxiii
List of Tables	xxiv-xxv
Abbreviations	xxvi-xxviii

1.0 Introduction

2

1.1 General Introduction and Scope of thesis	2-3
1.2 Cadmium	3
1.2.1 Physico-Chemical Properties	3-4
1.2.2 Sources of Cd	6
1.2.2.1 Natural Sources	6
1.2.2.2 Uses, Industrial sources and Environmental release of Cd	6-7
1.2.2.3 Occupational and Other human sources	7
1.2.3 Routes of exposure and Acceptable daily intake (ADI)	7-8
1.2.4 Biological half life	8
1.3 Cd Toxicity	8-9
1.3.1 Mechanisms of Cd toxicity	9
1.3.1.1 Induction of Oxidative stress	9-10
1.3.1.1.1 Effects of oxidative stress and Chronic Cd exposure	10-11
1.3.1.1.2 Effects of oxidative stress and Acute Cd exposure	11
1.3.1.1.3 Effects of oxidative stress and Cd-induced malignant	
transformation	11-12

1.3.1.2 Mechanisms of Increased ROS	14
1.3.1.2.1 Depletion of intracellular GSH	14
1.3.1.2.2 Enhanced ROS production by inflammation and Fenton	
reaction	14-15
1.3.1.3 Interference with cellular antioxidant defence	15-16
1.3.1.4 Inhibition of enzyme activities	16
1.3.2 Apoptosis	17
1.3.2.1 Mitochondrial-caspase dependent Apoptosis	19-21
1.3.2.2 Non-caspase Protease in Apoptosis	22
1.3.2.3 Induction of Apoptosis by Cd	22-23
1.3.2.4 The Mitochondrion and Cd-induced toxicity	23
1.3.3 Interference with Signal Transduction pathways and Ca ²⁺	
metabolism	24
1.3.3.1 Ca ²⁺ and Apoptosis	24
1.3.3.2 Cd ²⁺ and Ca ²⁺ signalling	26-27
1.4 Adaptive Responses to Cd Exposure	29
1.4.1 Nrf2-Keap1-ARE Transcription Pathway	29-36
1.4.2 Regulation of Nrf2 activation and degradation and	
mechanism of Nrf2-Keap1-ARE signal transduction	37
1.4.2.1 Keap1-dependent and –independent degradation	37-38
1.4.2.2 Inducers of Nrf2-Keap1-ARE pathway	38
1.4.2.2.1 Direct electrophilic attack on sensor molecules on Keap1	38-39
1.4.2.2.2 Post-translational modification	39-40
1.4.2.3 Negative regulation of Nrf2 activation	40
1.4.3 Protein Kinase C	41
1.4.3.1 PKC and Cd toxicity	41-42
1.4.4 Nrf2-Keap1-ARE dependent cytoprotective enzymes	42-46

1.4.5 Nrf2-Keap1-ARE pathway and Cd	46-47
1.5 Chemoprevention	49
1.5.1 Garlic	51-52
1.5.1.1 AGE	52
1.5.2 Garlic and the Nrf2-Keap1-ARE pathway	53
1.6 Justification for project	55
1.7 Aims	55-56

2.0 Materials and Methods

58

2.1 Materials	58
2.1.2 Human cell lines	58-59
2.1.3 Cell culture equipment	59
2.1.4 Cell culture Media and Reagent	59-60
2.1.5 Cell culture plastic wares	60
2.1.6 Cells counting	60
2.1.7 Cells extracts reagent preparation	61
2.1.8 Cadmium compound	61
2.1.9 Cell viability	62
2.1.10 Lactate Dehydrogenase (LDH) Leakage assay reagent	62-63
2.1.11 Reactive oxygen species assay reagent	63
2.1.12 Lipid peroxidation assay reagent	64
2.1.13 Single cell gel electrophoresis (comet) assay reagent	65-66
2.1.14 Apoptotic and Necrotic studies reagent	66-67
2.1.15 Reduced glutathione assay reagent	67
2.1.16 Glutathione S-transferase assay reagent	67-68
2.1.17 Glutathione reductase assay reagent	68

2.1.18 Glutathione peroxidase assay reagent	69
2.1.19 Catalase assay reagent	69-70
2.1.20 Superoxide dismutase (SOD) assay reagent	70-71
2.1.21 Aldehyde reductase activity assay reagent	71
2.2 Methods	72
2.2.1 Cell culture	72
2.2.2 Cells counting by Haemocytometer	72-74
2.2.3 Cell extract preparation for enzymes assay	74-76
2.2.4 Stock cadmium(II) chloride (100µM) solution	76
2.2.5 Cell viability study (MTT assay)	76-77
2.2.6 LDH Leakage assay	78-80
2.2.7 Assay for Reactive oxygen species	80-81
2.2.8 Lipid peroxidation assay	82-85
2.2.9 Reduced glutathione level determination	85-88
2.2.10 Glutathione S-transferase activity determination	89-91
2.2.11 Glutathione reductase activity determination	91-93
2.2.12 Glutathione peroxidase activity determination	94-97
2.2.13 Catalase activity determination	97-99
2.2.14 Superoxide dismutase activity determination	99-102
2.2.15 Aldehyde reductase activity determination	102-104
2.2.16 Protein gels and western blots	104-110
2.2.17 Protein determination	110-112
2.2.18 ATP determination	112-115
2.2.19 Singles cell gel electrophoresis (comet) assay	115-119
2.2.20 Statistical analysis	120

3.1 Introduction	122-124
3.2 Material and Methods	125
3.2.1 Materials	125
3.2.2 Methods	125
3.2.2.1 Inhibitor studies for cell viability	125-126
3.3 Results	127
3.3.1 Effects of cadmium chloride on cell viability	127
3.3.2 Effects of CdCl ₂ on cell membrane integrity	127-128
3.3.3 Effects of cadmium chloride on cellular redox status	135-136
3.3.4 Effects of cadmium chloride on cellular lipid peroxidation	136
3.3.5 Effects of cadmium chloride on catalase activities	143
3.3.6 Effects of catalase inhibitor (aminotriazole) on cell viability in	
CdCl ₂ exposed cell	147
3.3.7 Effects of cadmium chloride on superoxide dismutase	
activities	149
3.3.8 Effects of cadmium chloride on Glutathione peroxidase	
activities	151
3.3.9 Effects of Glutathione peroxidase inhibitor	
(mercaptosuccinate) on cell viability in CdCl ₂ exposed cells	155
3.3.10 Effects of cadmium chloride on the glutathione reductase	
activities	157
3.3.11 Effects of Glutathione reductase inhibitor (BCNU) on cell	
viability in CdCl ₂ exposed cells	159
3.3.12 Elevation of aldehyde-metabolizing enzymes	161

3.4	Discussion	166-172
0.1	D10C0001011	100 172

c Dependent Pathway in Cadmium-induced Cell Death in	
Human Cell Lines	
4.1 Introduction	• • • •
4.2 Materials and Methods	• • • •
4.2.1 Cell culture	••••
4.2.2 Apoptotic and Necrotic studies	••••
4.2.3 Cell viability-inhibitor study	••••
4.2.4 Calpain Activity Determination	•••
4.2.5 Caspase 3 Activity Determination	••••
4.2.6 Intracellular Ca ²⁺ level determination	•••
4.2.7 Preparation of subcellular fractions	••••
4.2.8 Protein Gels and Western Blots	•••
4.3 Results	••••
4.3.1 Cadmium chloride-induced apoptotic and necrotic cells	
death	•••
4.3.2 Effects of Cd on Indicators of Apoptosis	••••
4.3.3 Cadmium chloride induced caspase 3 activation and	
expression	••••
4.3.4 Effects of phospholipase C inhibitor on caspase 3 activation	••••
4.3.5 Effects of U73122 and U73343 on cell viability	•••
4.3.6 Effects of U73122 on cell viability after cadmium chloride	

4.3.8 Effects of phospholipase C inhibitor on calpain activation	215
4.3.9 Effects of Cadmium treatment on Ca ²⁺ levels	216
4.3.10 Effects of phospholipase C inhibitor on Ca ²⁺ release	216
4.3.11 Effects of Cd on DNA fragmentation	225
4.4 Discussion	227-232

5.0 Nrf2 Mediated Adaptive Response to Cadmium Exposure Invo	olves
Protein Kinase C	234
5.1 Introduction	234-236
5.2 Materials and Methods	237
5.2.1 Cell culture	237
5.2.2 Cell fractions preparation	237
5.2.3 Protein Gels and Western Blots	237
5.2.4 RNA Isolation	239-243
5.2.5 Quantitative Reverse Transcriptase-Polymerase Chain	
Reaction (qRT-PCR)	243-246
5.2.6 MTT assay for inhibitors study	247-248
5.2.7 Western blot analysis for inhibitors study	248
5.3 Results	249
5.3.1 Effects of CdCl ₂ on the expressions of Nrf2-dependent	
enzymes	249
5.3.2 Effects of CdCl ₂ on Nrf2 protein translocation	249-250
5.3.3 Effects of CdCl ₂ on Nrf2 mRNA level	257
5.3.4 Effects of CdCl ₂ on GSTA1 mRNA expression	260
5.3.5 Effects of CdCl ₂ on NQO1 mRNA expression	260

5.3.6 Effects of broad spectrum PKC inhibitor (BMA) on Nrf2	
translocation after CdCl ₂ treatment	263
5.3.7 Effects of CdCl ₂ on PKC δ , p-PKC δ and PKC α proteins	
expressions	267
5.3.8 Effects of PKCo inhibitor (rottlerin) on GSTA1 mRNA	
expression in 1321N1 cells after CdCl2 exposure	270
5.3.9 Effects of PKCo inhibitor (rottlerin) on NQO1 mRNA	
expression in 1321N1 cells after CdCl2 exposure	270
5.3.10 Effects of PKCo inhibitor, rottlerin, on Nrf2 protein	
translocation in 1321N1 cells after Cd exposure	273
5.3.11 Effects of PKCs and ERK1/2 inhibitors on cell viability in the	
presence of CdCl ₂	275-276
5.4 Discussion	279-284

6.0 The Chemopreventive Effects of Diallyldisulfide and Garlic

Extracts Against Cadmium-induced 10	oxicity	286

6.1 Introduction	286-288
6.2 Materials and Methods	289
6.2.1 Cell Culture	289
6.2.2 Sample preparation for enzyme assay	289
6.2.3 Garlic extracts preparation	289
6.2.4 Cell treatment and assays	289
6.2.5 MTT assay for inhibitors study	290
6.3 Results	291
6.3.1 Effects of garlic extracts and dially disulfide (DADS) on cell	271
viability after CdCl2 exposure	291

6.3.2 Effects of garlic extracts and dially disulfide (DADS) on	
Lactate dehydrogenase (LDH) leakage after CdCl2 exposure	291-292
6.3.3 Effects of garlic extracts and dially disulfide (DADS) on lipid	
peroxidation after CdCl ₂ exposure	297-298
6.3.4 Effects of garlic extracts and dially disulfide (DADS) on	
reactive oxygen species (ROS) levels after CdCl ² exposure	298-299
6.3.5 Effects of garlic extracts and dially disulfide (DADS) on GSH	
levels after CdCl2exposure	304
6.3.6 Effects of DADS on Nrf2 and NQO1 expression in 1321N1	
cells exposed to CdCl2	307
6.3.7 Effects of DADS on Nrf2 and NQO1 expression in HEK 293	
cells exposed to CdCl2	307-308
6.3.8 Effects of AGE on Nrf2 and NQO1 expressions in 1321N1	
cells exposed to CdCl2	311
6.3.9 Effects of AGE on Nrf2 and NQO1 expressions in HEK 293	
cells exposed to CdCl2	312
6.3.10 Effects of GA on Nrf2 expression in 1321N1 cells exposed to	
CdCl ₂	315
6.3.11 GA pre-treatment alters calpain activity in presence of	
CdCl ₂	317
6.3.12 DADS pre-treatment alters calpain activity in cells exposed	
to CdCl ₂	317
6.3.13 AGE pre-treatment alters calpain activity in HEK 293 cells	
exposed to CdCl2	318
6.3.14 Effects of catalase and glutathione peroxidase inhibitors on	
cell viability in AGE, GA and DADS pre-treated 1321N1 cells	
exposed to CdCl2	322

6.3.15 Effects of catalase and glutathione peroxidase inhibitors on	
cell viability in AGE, GA and DADS pre-treated HEK 293 cells	
exposed to CdCl2	327
6.4 Discussion	332-337
7.0 Changes in Protein Expression in Response to Cadmium	
Toxicity	339
7.1 Introduction	339-340
7.2 Materials and Methods	341
7.2.1 Cell Culture	341
7.2.2 Cell Sample Preparation for 2-D Gel Electrophoresis	341-342
7.2.3 Rehydration of Immobiline Drystrips (pH 3-10)	342-343
7.2.4 Running First Dimension: Isoelectric Focussing (IEF)	343-344
7.2.5 IPG Strip Equilibration	344-345
7.2.6 Running Second Dimension: SDS-PAGE	345-347
7.2.7 Staining the gel	347-348
7.2.8 Imaging the gel	349
7.2.9 Image analysis using Phoretix [™] 2D analysis software	349
7.2.10 Picking, digesting and identification of protein	349
7.3 Results	350
7.3.1 Protein separation by 2-D electrophoresis from HepG2,	
1321N1 and HEK 293 cell lines after CdCl2 exposure	350
7.3.2 CdCl ₂ -induced Calreticulin Proteins Expression in HepG2	
cells after 24hrs Exposure to 5 μ M CdCl ₂	356

7.3.3 CdCl ₂ -induced ATP Synthase, H ⁺ Transporting,	
Mitochondrial F1 Complex, Beta Subunit Expression in HepG2 and	
HEK 293 Cell Lines after 24hrs Exposure to 5 μ M CdCl ₂	356
7.3.4 CdCl ₂ -induced C-protein Expression in 1321N1 cells after	
24hr Exposure to 5 µM CdCl2	359
7.3.5 CdCl ₂ -induced ALB protein Expression in HEK 293 cells after	
24hr Exposure to 50 μM CdCl2	359
7.3.6 Secondary Validation of ATP5B Protein Expression by	
Western Blot Analysis	361
7.4 Discussion	363-369

8.0 General Discussion 371

8.1	Summary	371
8.2	Oxidative Stress and the Role of Nrf2	371-374
8.3	Apoptosis and the Role of Calcium	374-375
8.4	Biomakers for Cd Exposure	375-376
8.5	Conclusions and Future Work	376-378

9.0	References	379-41
9.0	References	379-4

Appendix

LIST OF FIGURES

Figure 1.1	Proposed pathways for the involvement of ROS in Cd	
	toxicology and carcinogenesis following acute and	
	chronic exposure	13
Figure 1.2	Fenton reaction	15
Figure 1.3	Schematic diagram of the major apoptotic signalling	
	pathways	18
Figure 1.4	Schematic representation of the proposed mechanisms	
	of Ca ²⁺ signals induced apoptosis	25
Figure 1.5	Proposed pathways of apoptosis by Cd	28
Figure 1.6	Nrf2 regulatory network	32
Figure 1.7	Schematic representation of Keap1	34
Figure 1.8	Oxidative/electrophilic stress and Nrf2:INrf2	
	signalling	36
Figure 1.9	Schematic representation of the effects of Cd on the	
	Nrf2-Keap1-ARE pathway	48
Figure 1.10	Classification of chemopreventive agents on the basis	
	of the time at which they exert their protective	
	effects	50
Figure 1.11	Structures of garlic organosulfur compounds	53
Figure 1.12	Proposed double edged-sword effects of Cd	54
Figure 2.1	Biochemistry of the MTT reaction in cell viability	
	study	77
Figure 2.2	Biochemistry of the LDH reaction in the detection of	
	cytotoxicity	79
Figure 2.3	The reaction between malondialdehyde (MDA) and	
	thiobarbituric acid (TBA)	84

Figure 2.4	The reaction between GSH and Ellman reagent	87
Figure 2.5	GST catalysed reaction	89
Figure 2.6	Glutathione reductase catalysed reaction	92
Figure 2.7	Glutathione peroxidase catalysed reaction	95
Figure 2.8	Catalase catalysed reaction	98
Figure 2.9	SOD catalysed reaction	100
Figure 2.10	AKR catalysed reaction	103
Figure 2.11	Biochemistry of acrylamide polymerization	106
Figure 2.12	Western blot transfer sandwich	109
Figure 2.13	Luciferase catalysed reaction	114
Figure 3.1	Dose and time-dependent effects of CdCl2 on cell	
	viability 1	29-130
Figure 3.2	Comparison of the effects of CdCl ₂ on HepG2, 1321N1	
	and HEK 293 cell viability after 24hr	
	exposure	131
Figure 3.3	Dose and time-dependent effects of CdCl2 on LDH	
	leakage	132-133
Figure 3.4	Comparison of the effects of CdCl ₂ on HepG2, 1321N1	
	and HEK 293 cells LDH leakage after 24hr	
	exposure	134
Figure 3.5	Dose and time-dependent effects of CdCl2 on GSH	
	level	137-138
Figure 3.6	Comparison of the effects of CdCl2 on the GSH levels	
	in HepG2, 1321N1 and HEK 293 cells after 24hr	
	exposure	139
Figure 3.7	Dose and time-dependent effects of CdCl2 on reactive	
	oxygen species (ROS) production	140-141

Figure 3.8	Comparison of the effects of CdCl2 on ROS production	
	and lipid peroxidation in HepG2, 1321N1 and HEK	
	293 cells after 24hr exposure	142
Figure 3.9	Dose and time-dependent effects of CdCl2 on catalase	
	activities	144-145
Figure 3.10	Comparison of the effects of CdCl2 on catalase	
	activities in HepG2, 1321N1 and HEK 293 cells after	
	24hr exposure	146
Figure 3.11	Effects of catalase inhibitor (aminotriazole) on cell	
	viability in CdCl2 exposed cells	148
Figure 3.12	Comparison of the effects of CdCl2 on superoxide	
	dismutase activities in HepG2, 1321N1 and HEK 293	
	cells after 24hr exposure	150
Figure 3.13	Dose and time-dependent effects of CdCl ₂ on	
	glutathione peroxidase activities	152-153
Figure 3.14	Comparactive effects of CdCl2 on GPx activities in	
	HepG2, 1321N1 and HEK 293 cells	154
Figure 3.15	Effects of GPx inhibitor (mercaptosuccinate) on cell	
	viability in CdCl2 exposed cells	156
Figure 3.16	Comparative effects of CdCl ₂ on glutathione reductase	
	activities in HepG2, 1321N1 and HEK 293 cells	158
Figure 3.17	Effects of GRed inhibitor (BCNU) on cell viability in	
	CdCl ₂ exposed cells	160
Figure 3.18	Dose and time-dependent effects of CdCl2 on	
	glutathione S-transferase activities	162-163
Figure 3.19	Comparative effects of CdCl ₂ on glutathione reductase	
	activities inHepG2, 1321N1 and HEK 293 cells	164

Figure 3.20	Comparative effects of CdCl2 on aldo-keto reductase	
	activities in HepG2, 1321N1 and HEK 293 cells	165
Figure 4.1	Cadmium chloride-induced apoptotic and necrotic cell	
	death	194
Figure 4.2	The effects of CdCl2 on percentage distribution of	
	apoptotic and necrotic cells in HepG2	194-196
Figure 4.3	The effects of CdCl2 on percentage distribution of	
	apoptotic and necrotic cells in 1321N1	197-198
Figure 4.4	The effects of CdCl2 on percentage distribuction of	
	apoptotic and necrotic cells in HEK 293 cells	199-200
Figure 4.5	Level of Bax protein in the mitochondrial fractions of	
	cadmium chloride exposed cells	203-204
Figure 4.6	Expression levels of cytochrome C in the cytosolic	
	fraction of CdCl ₂ exposed cells	205-206
Figure 4.7	Effects of CdCl2 on ATP levels in exposed cells	207-208
Figure 4.8	Effects of CdCl2 on caspase 3 activities in exposed	
	cells	209-210
Figure 4.9	Effects of CdCl2 on caspase 3 protein expression in	
	exposed cells	211-213
Figure 4.10	Effects of U73122 and U73343 on cell viability	217-218
Figure 4.11	Effects of U73122 on cell viability in cells exposed to	
	CdCl ₂	219-220
Figure 4.12	Effects of CdCl2 on calpain activities in CdCl2	
	exposed cells	221-222
Figure 4.13	Effects of CdCl ₂ on the levels of intracellular Ca^{2+} in	
	CdCl ₂ exposed cells	223-224
Figure 4.14	Effects of CdCl2 on DNA fragmentation in exposed	

	cells	226
Figure 5.1	Effects of different concentrations of CdCl2 on HO1,	
	NQO1 and y-GCSc expressions after 24hr	
	exposure	251-253
Figure 5.2	Effects of different concentrations of CdCl2 on Keap1	
	and Nrf2 expressions in the cytosolic and nuclear	
	fractions of HepG2 cells	254
Figure 5.3	Effects of different concentrations of CdCl2 on Keap1	
	and Nrf2 expressions in the cytosolic and nuclear	
	fractions of 1321N1 cells	255
Figure 5.4	Effects of different concentrations of CdCl2 on Keap1	
	and Nrf2 expressions in the cytosolic and nuclear	
	fractions of HEK 293 cells	256
Figure 5.5	Nrf2 mRNA levels after CdCl2 exposure	258
Figure 5.6	Melting and amplification curves of Nrf2 genes in	
	1321N1 cells after 24hr exposure to CdCl2	259
Figure 5.7	GSTA1 mRNA levels after CdCl2 exposure	261
Figure 5.8	NQO1 mRNA levels after CdCl2 exposure	262
Figure 5.9	Effects of broad spectrum PKC inhibitor,	
	bisindolymaleimide (VIII) acetate (BMA) on Nrf2	
	protein expression in the cytosolic and nuclear	
	fractions of HepG2 cells after Cd exposure	264
Figure 5.10	Effects of broad spectrum PKC inhibitor,	
	bisindolymaleimide (VIII) acetate (BMA) on Nrf2	
	protein expression in the cytosolic and nuclear	
	fractions of 1321N1 cells after Cd exposure	265
Figure 5.11	Effects of broad spectrum PKC inhibitor,	

XX

	bisindolymaleimide (VIII) acetate (BMA) on Nrf2	
	protein expression in the cytosolic and nuclear	
	fractions of HEK 293 cells after Cd exposure	266
Figure 5.12	Effects of CdCl ₂ exposure on PKC δ , p-PKC δ and PKC α	
	expressions in HepG2 cells	268
Figure 5.13	Effects of CdCl ₂ exposure on PKC δ , p-PKC δ and PKC α	
	expressions in HEK 293 cells	269
Figure 5.14	Effects of PKC ⁰ inhibitor (rottlerin) on GSTA1 mRNA	
	levels in 1321N1 cells after exposure to CdCl ₂	271
Figure 5.15	Effects of PKC ⁰ inhibitor (rottlerin) on NQO1 mRNA	
	levels in 1321N1 cells after exposure to CdCl2	272
Figure 5.16	Effects of PKC ⁰ inhibitor, rottlerin, on Nrf2 protein	
	expression in the cytosolic and nuclear fractions of	
	1321N1 cells after Cd exposure	274
Figure 5.17	Effects of broad spectrum PKC inhibitor,	
	bisindolylmaleimide (VIII) acetate (BMA), PKC α	
	inhibitor (safingol), PKCδ inhibitor (rottlerin) and	
	ERK1/2 inhibitor (PD98059) on cell viability after	
	exposure to CdCl ₂	277-278
Figure 6.1	Effects of AGE, GA and DADS on cell viability in the	
	presence of CdCl ₂	293-294
Figure 6.2	Effects of AGE, GA and DADS on LDH leakage in	
	the presence of CdCl ₂	295-296
Figure 6.3	Effects of AGE, GA and DADS on lipid peroxidation	
	in the presence of CdCl ₂	300-301
Figure 6.4	Effects of AGE, GA and DADS on reactive oxygen	
	species production in the presence of CdCl2	302-303

Figure 6.5	Effects of AGE, GA and DADS on GSH levels in the	
	presence of CdCl ₂	305-306
Figure 6.6	Effects of DADS on the expression of Nrf2 and	
	NQO1 in 1321N1 cells after CdCl2 exposure	309
Figure 6.7	Effects of DADS on the expression of Nrf2 and	
	NQO1 in HEK 293 cells after CdCl2 exposure	310
Figure 6.8	Effects of AGE on the expression of Nrf2 and NQO1	
	in 1321N1 cells after CdCl2 exposure	313
Figure 6.9	Effects of AGE on the expression of Nrf2 and NQO1	
	inh HEK 293 cells after CdCl2 exposure	314
Figure 6.10	Effects of GA on the expression of Nrf2 in 1321N1	
	cells after CdCl ₂ exposure	316
Figure 6.11	Effects of GA pre-treatment on calpain activity in the	
	presence of CdCl ₂	319
Figure 6.12	Effects of DADS pre-treatment on calpain activity in	
	the presence of CdCl ₂	320
Figure 6.13	Effects of AGE pre-treatment on calpain activity in	
	HEK 293 cells in the presence of CdCl ₂	321
Figure 6.14	Effects of aminotriazole on 1321N1 cell viability in	
	the presence of AGE, GA and DADS after CdCl ₂	
	exposure	323-324
Figure 6.15	Effects of mercaptosuccinate on 1321N1 cell viability	
	in the presence of AGE, GA and DADS after $CdCl_2$	
	exposure	325-326
Figure 6.16	Effects of aminotriazole on HEK 293 cell viability in	
	the presence of AGE, GA and DADS after CdCl ₂	
	exposure	328-329

Figure 6.17	Effects of mercaptosuccinate on HEK 293 cell	
	viability in the presence of AGE, GA and DADS after	
	CdCl ₂ exposure	330-331
Figure 7.1	2-dimensional gel electrophoresis of HepG2 cells after	
	24hr treatment with CdCl ₂	351
Figure 7.2	2-dimensional gel electrophoresis of 1321N1 cells after	
	24hr treatment with CdCl ₂	352
Figure 7.3	2-dimensional gel electrophoresis of HEK 293 cells	
	after 24hrs treatment with CdCl2	353
Figure 7.4	Relative expression of Spot a (Calreticulin protein) in	
	HepG2 cells as analysed by phoretix 2-D software after	
	24hr exposure to CdCl2	357
Figure 7.5	Relative expression of Spot b (ATP Synthase, H+	
	transporting, mitochondrial F1 complex beta subunit,	
	ATP5B) protein as analysed by phoretix software after	
	24hr exposure to CdCl2 in HepG2 and HEK 293	
	cells	358
Figure 7.6	Relative expression of Spot c (C protein) as analysed	
	by phoretix software after 24hr exposure to CdCl2 in	
	1321N1 cells	360
Figure 7.7	Relative expression of Spot d (ALB protein) as	
	analysed by phoretix software after 24hr exposure to	
	CdCl ₂ in HEK 293 cells	360
Figure 7.8	Secondary validation of ATP5B expressions by western	L
	blot	362

LIST OF TABLES

Table 1.1	Physical and Chemical Properties of Cd	5
Table 2.1	Standard TMP dilution preparation	83
Table 2.2	Lipid Peroxidation Reaction Mixture	85
Table 2.3	Standard GSH preparation	86
Table 2.4	GSH Assay Mixture	88
Table 2.5	GST Assay Mixture	91
Table 2.6	Glutathione Reductase Activity Assay Mixture	93
Table 2.7	Glutathione Peroxidase Activity Assay Mixture for	
	1321N1 and HEK 293 cells	96
Table 2.8	Glutathione Peroxidase Activity Assay Mixture for	
	HepG2 cells	97
Table 2.9	Catalase Activity Assay Mixture	99
Table 2.10	SOD Activity Assay Mixture	102
Table 2.11	BSA standard dilution for protein determination	111
Table 2.12	Standard ATP Dilution Preparation	113
Table 2.13	ATP assay mixture	115
Table 4.1	Calpain assay mixture	183
Table 4.2	Preparation of pNA stock solutions	184
Table 4.3	Preparation of pNA Calibration Curve	184-185
Table 4.4	Caspase assay reaction mixture	186
Table 4.5	Apoptosis indicators antibodies	192
Table 4.6	Antibodies for cells fractions normalisation	192
Table 5.1	Antibodies for western blot	238
Table 5.2	SV Total RNA Isolation System Components	239
Table 5.3	PCR programme for LightCycler®2.0 System	245
Table 5.4	Oligonucleotides for PCR Reaction	246

Table 5.5	PKCs and ERK1/2 MAPK Inhibitors	248
Table 7.1	Total number of protein spots present in HepG2,	
	1321N1 and HEK 293 cell lines by 2D electrophoresis	
	after CdCl ₂	
	exposure	354
Table 7.2	Number of induced and repressed protein in	
	HepG2, 1321N1 and HEK 293 cell lines by 2D	
	electrophoresis after CdCl2 exposure	354
Table 7.3	Identification of proteins from Cd treated HepG2,	
	1321N1 and HEK 293 cells compared with untreated	
	cells	355

ABBREVIATIONS

AGE	Aged garlic extract
ARE	Antioxidant response element
Apaf-1	Apoptotic peptidase activating
	factor1
Bax	Bcl-2 associated X protein
Bcl-2	B-cell lymphoma 2
BMA	Bisindolymaleimide VIII acetate
Cadherin	Calcium dependent adhesion
	molecule
CBP	cAMP-Response Element-Binding
	Protein
Cd	Cadmium
CdCl ₂	Cadmium chloride
CDNB	1-chloro-2,4-dinitrobenzene
CNC	Cap'n'collar
Ст	Cycle threshold
Cys	Cysteine
DADS	Diallyldisulfide
DAG	Diacylglycerol
DAS	Diallylsulfide
DAT	Diallyltrisulfide
dATP	Deoxyadenosine triphosphate
DEVD	Asp-Glu-Val-Asp
DMEM	Dulbecco's Modified Eagle Medium
EDTA	Ethylenediaminetetraacetic acid
Ellman	5,5'-dithio(2-nitrobenzoic acid)

FADD	Fas-associating protein with a novel
	death domain
Fe ²⁺	Iron(II) ion
Fe ³⁺	Iron(III) ion
g	Gram
g	Centrifugal force equivalent to
	gravitational acceleration
GA	Aqueous garlic extract
y-GCSc	Gamma glutamyl cysteine synthase
GCLM	Glutamate cysteine ligase modifier
	subunit
GCLC	Glutamate cysteine ligase catalytic
	subunit
GST	Glutathione S-transferase
GSK	Glycogen synthase kinase
HEK 293	Human embryonic kidney cells
HepG2	Human hepatoma cells
HO1	Heme oxygenase 1
H ₂ FDA	Dihydrofluorescein diacetate
JNK	c-Jun N-terminal Kinases
Keap1	Kelch-like ECH associating protein 1
LDH	Lactate dehydrogenase
MafK	Macrophage activating factor K
MALDI	Matrix assisted Laser Desorption and
	Ionization
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-
	diphenyltetrazolium

Nrf2	Nuclear factor erythroid 2-related
	factor 2
NR3C1	Nuclear receptor subfamily 3 Group
	C member of glucocorticoid receptor
NQO1	NADP(H):quinone oxidoreductase
PCR	Polymerase chain reaction
OSCs	Organosulfur compounds
РКС	Protein kinase C
PLC-IP ₃	Phospholipase c-inositol-1,4,5-
	triphosphate
PIDD	p53-Induced Protein with Death
	Domain
qRT	Quantitative reverse transcriptase
RNA	Ribonucleic acid
ROS	Reactive oxygen species
SAC	S-allylcysteine
SAMC	S-allylmercaptocysteine
TAE	Tris-acetic acid-EDTA buffer
TBA	Thiobarbituric acid
TOF	Time of flight
TRITC	Tetramethyl Rhodamine
	Isothiocyanate
FITC	Fluorescence Isothiocyanate
TMP	Tetramethoxypropane