
Updating RDF in the Semantic Web

A thesis presented for the degree of

Doctor of Philosophy

Sana Al Azwari

2016

Department of Computer and Information Sciences

University of Strathclyde

Glasgow

DECLARATION

This thesis is the result of the author's original research. It has been composed

by the author and has not been previously submitted for examination which has

led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as quali�ed by University of Strathclyde Regulation

3.50. Due acknowledgment must always be made of the use of any material con-

tained in, or derived from, this thesis.

signed:

Date: 13/1/2016

CONTENTS

1. Introduction . 6

1.1 The Semantic Web Stack . 9

1.2 Motivations . 12

1.3 Hypothesis and research questions 15

1.4 Contributions . 16

1.5 Organization of the thesis . 17

2. Preliminaries . 19

2.1 Ontologies . 19

2.1.1 OWL as an ontology language 23

2.2 OWL 2 Web Ontology Language 26

2.3 Managing ontology changes . 30

2.3.1 Heterogeneity resolution 31

2.3.2 Ontology editing . 33

2.3.3 Ontology fusion . 35

2.4 Change detection . 37

2.5 Reasoning with OWL . 49

Contents iv

2.6 Blank nodes . 53

2.7 Summary . 55

3. Related work . 57

3.1 Practicality of ontology evolution 57

3.1.1 OntoView . 60

3.1.2 PromptDi� . 62

3.1.3 Semversion . 63

3.1.4 CWM . 66

3.1.5 x-RDF-3X . 66

3.1.6 Jena . 68

3.1.7 pOWL . 70

3.1.8 Work of Flouris et al. 71

3.1.9 OUL . 71

3.1.10 Work of Dong-Hyuk et al. 72

3.1.11 RDF/S Di� . 73

3.1.12 BNodeDelta . 74

3.1.13 SQOWL 2 . 75

3.2 Conclusion . 76

4. Experimental methods . 79

4.1 RDF views update . 80

4.2 The cost of pruning in change detection techniques 84

Contents v

4.3 Correct dense delta . 87

4.4 Delta generation using pruned ruleset 91

4.4.1 OWL 2 RL/RDF rules . 92

4.4.2 Pruning OR trees . 97

4.4.3 Blank node pre-processing 104

4.5 Conclusion . 106

5. Results and Discussion . 108

5.1 RDF views update . 108

5.1.1 Validation and performance evaluation 111

5.2 Change detection techniques . 115

5.3 Correct dense delta . 118

5.4 Pruning the OWL 2 ruleset . 126

5.5 General discussion . 133

5.6 Experimental limitations . 138

5.7 Summary . 140

6. Conclusions and future work . 141

6.1 Overall conclusions . 143

6.2 Contribution . 145

6.3 Future work . 146

Bibliography . 147

Contents vi

Appendix 159

A. Foundational work . 160

A.1 Background . 160

A.2 Methodology . 161

A.3 Results and discussion . 163

B. A subset of OWL 2 RL/RDF ruleset 166

C. Proof of the correctness of ∆Dc . 172

D. Change detection: Experimental data 174

E. Software con�guration . 176

LIST OF FIGURES

1.1 Semantic Web Stack . 9

1.2 A simple RDF graph describing the relationship between a person

and an email address . 11

2.1 School ontology . 22

2.2 Sample data structure before and after update 39

2.3 The explicit delta . 40

2.4 The explicit dense delta . 40

2.5 The distinction between ∆ED and ∆D. 45

2.6 The dense delta (∆D) . 46

2.7 Incorrect updates . 46

3.1 Existing systems . 78

4.1 Possible alternatives for applying changes to RDF Data. TS: Triple

Store. V: RDF view. The sold arrow between the triple store and

the view indicates a regeneration process, while the dotted line

indicates updating process. 81

4.2 RDF view update. 83

List of Figures viii

4.3 The dense delta ∆D (left).The correct dense delta ∆Dc (right)

calculated from the example in Figure 2.2 86

4.4 Correct updates . 89

4.5 Entailment rules in OWL2 RF/RDF 92

4.6 OWL 2 OR trees used to derive conclusions about rdfs:subPropertyOf,

rdfs:subClassOf and rdf:type. (In red) The type of each rule based

on the type of its patterns: Selective(S), Non-selective(N), Recur-

sive(R) or a combination of two or all of them. 94

4.7 Overlapped OR trees. The round arrows indicate a recursive call

from within the OR tree . 97

4.8 Sample data structure before and after update with the insert and

delete sets . 98

4.9 Blank nodes tree structures . 106

4.10 Blank nodes chain example . 106

5.1 Random and Speci�c Fixed Update of 10,000 triples. Random

�xed deletes is superimposed by random �xed inserts 110

5.2 Random and speci�c variable updates to the largest (130MB) data

structure. Random variable deletes is superimposed by random

variable inserts. 111

5.3 Update requests from application to RDF views. 112

5.4 Validation process for view update. 113

List of Figures ix

5.5 Performance Evaluation of RDF update using SQL queries and

SPARUL and SPARQL queries. 114

5.6 The results of the performance measurement in change detection

techniques. In (A), (B), (C) and (D) the application line is super-

imposed by the total update line. 115

5.7 Inference time . 122

5.8 Reasoning times . 122

5.9 Delta time . 123

5.10 Delta size . 123

5.11 Comparison of delta approaches. 124

5.12 Reasoning time for 10% updates LUBM data set with no blank

node support . 129

5.13 Reduction in rules assessed as a consequence of pruning in the

100,000 triple structure . 131

5.14 Inference time for ∆ED and ∆Dc in the 100,000 triple for both

LUBM and UOBM . 132

5.15 Performance time for 100,000 triple set in LUBM with and without

support for blank nodes . 133

A.1 Architecture of the mashup . 162

A.2 Sizes of RDF �les generated from XML �les. The solid line is the

experimental line while the dashed line represents the unity line,

which would occur if both sizes of XML and RDF are similar. . . 163

List of Figures x

A.3 RDF generation time. 164

A.4 Number of triples in RDF collections. 165

ACKNOWLEDGEMENTS

First and formost, I would like to thank God, whose many blessings have made

me who I am today.

I am forever grateful to my supervisor Dr. John Wilson for his patience,

guidance and continuse support.

I would like to thank my husband and my daughters, for their patience and

their understanding when I am not always there for them.

I also thank my parents, my brothers and my sister for their wise counsel and

for being always there for me.

Finally, there are my friends for their encourgement and support.

Sana Al Azwari

May 2016

PUBLICATIONS

This work has resulted in the publication of the following papers:

1. Al Azwari, S., & Wilson, J. N. (2015, February). The cost of reasoning with

RDF updates. In Semantic Computing (ICSC), 2015 IEEE International

Conference on (pp. 328-331). IEEE.

2. Al Azwari, S., & Wilson, J. N. (2015). Consistent RDF updates with

correct dense deltas. In Data Science (pp. 74-86). Springer International

Publishing.

3. Al-Azwari, S., & Wilson, J. N. (2015, September). Updating OWL2 on-

tologies using pruned rulesets. In Proceedings of the 11th International

Conference on Semantic Systems (pp. 105-112). ACM. (Winner of the best

paper at SEMANTiCS 2015).

4. Al Azwari, S., & Wilson, J. (2016). Change Detection Techniques in the

Semantic Web-Detailed Analysis. In Proceedings of the Eighth Saudi Stu-

dents Conference in the UK (pp. 239-244). (Winner of the best presentation

at SSC8 2015).

ABSTRACT

RDF is widely used in the Semantic Web for representing ontology data. Many

real world RDF collections are large and contain complex graph relationships that

represent knowledge in a particular domain. Such large RDF collections evolve

as a consequence of their representation of the changing world.

Evolution in Semantic Web content produces di�erence �les (deltas) that track

changes between ontology versions. These changes may represent ontology modi-

�cations or simply changes in application data. An ontology is typically expressed

in a combination of OWL, RDFS and RDF knowledge representation languages.

A data repository that represents an ontology may be large and may be dupli-

cated over the Internet, often in the form of a relational data store. Although this

data may be distributed over the Internet, it needs to be managed and updated

in the face of such evolutionary changes. In view of the size of typical collections,

it is important to derive e�cient ways of propagating updates to distributed data

stores.

The deltas can be used to reduce the storage and bandwidth overhead involved

in disseminating ontology updates. Minimising the delta size can be achieved by

reasoning over the underlying knowledge base. OWL 2 is a development of the

Abstract 4

OWL 1 standard that incorporate new features to aid application construction.

Among the sub languages of OWL 2, OWL 2 RL/RDF provides an enriched

ruleset that extends the semantic capability of the OWL environment. This

additional semantic content can be exploited in change detection approaches that

strive to minimise the alterations to be made when ontologies are updated. The

presence of blank nodes (i.e. nodes that are neither a URI nor a literal) in RDF

collections provides a further challenge to ontology change detection. This is

a consequence of the practical problems they introduce when comparing data

structures before and after an update.

The contribution of this thesis is a detailed analysis of the performance of

RDF change detection techniques. In addition, the work proposes a new ap-

proach to maintaining the consistency of RDF by using knowledge embedded in

the structure to generate e�cient update transactions. The evaluation of this ap-

proach indicates that it reduces the overall update size, at the cost of increasing

the processing time needed to generate the transactions.

In the light of OWL 2 RL/RDF, this thesis examines the potential for reducing

the delta size by pruning the application of unnecessary rules from the reasoning

process and using an approach to delta generation that produces a small number

of updates. It also assesses the impact of alternative approaches to handling

blank nodes during the change detection process in ontology structures. The

results indicate that pruning the rule set is a potentially expensive process but

has the bene�t of reducing the joins over relational data stores when carrying out

Abstract 5

the subsequent inferencing.

1. INTRODUCTION

Since its introduction in 19911, the World Wide Web (WWW) has expanded

considerably in terms of size and number of users. The Web is a large repository

for documents that may consist of text, images and other multimedia. Users over

the Internet can simply access the content via both search engines and hyperlinks.

The simplicity and universality of the WWW have been important factors in the

growth of its content and as a consequence the WWW currently contains more

than 7 billion pages2.

More recently, Web 2.0 has become a popular phenomenon. Web 2.0 is a term

given to describe the second generation of the World Wide Web that is focused on

the ability for people to collaborate and share information online [Cro09]. Web

2.0 started with the publication of social sites such as Facebook3, YouTube4,

LinkedIn5, Twitter6 and others. Web 2.0 has dramatically changed the way of

publishing information and the Web has become a medium for human communi-

cation and interaction with no software skills required for exposing information.

This feature of the Web has contributed a lot to the growth of its content. How-

1 w3c.org
2 http://www.worldwidewebsize.com/
3 http://www.facebook.com/
4 http://www.youtube.com/
5 http://www.linkedin.com/
6 twitter.com

1. INTRODUCTION 7

ever, this explosion in the quantity of Web content has made it di�cult for users

to �nd and process the information they require. As information in the Web is

typically presented in natural language, the use of search engines to �nd infor-

mation may retrieve many irrelevant results or may fail to retrieve many relevant

results. For example, when searching for the keyword `Protein', indexes do not

contain the fact that `chain of amino acid' may be used as synonym for protein,

and as a result, search engines will only retrieve Web pages that contain the key-

word `Protein'. Most search engines will fail to retrieve other Web pages that

contain other synonyms of the search word.

Finding relevant information in the Web is not the only limitation of current

Web solutions. Extracting information from di�erent Web resources adds further

di�culties. This problem goes back to the fact that Web contents are often in

di�erent �le formats, which require di�erent information extraction tools for each

format.

Another task that adds limitations is the task of information integration on the

Web. Combining information from di�erent Web sites to ful�ll users requirements

and requests is a big challenge for the current Web [FFST11]. Human users �nd it

di�cult to access Web content and process information from di�erent Web sites.

However, it is a much more di�cult task for machines or automated processes,

as most Web content is presented in human natural languages and designed to

be used and consumed by human users.

In order to take advantage of the capabilities of machines to process informa-

1. INTRODUCTION 8

tion on the Web, these machines need �rst to be able to capture the semantics of

this information. In this thesis, semantics is de�ned as the expression of relation-

ships between terms. This proposed solution is called the `Semantic Web', also

called Web 3.0, which aims to overcome some of the above mentioned problems

by enabling machines to recognise and process Web content by adding semantics

to its content in a machine readable language.

The initial vision of the Semantic Web by its inventor Tim Berners-Lee is that

�The Semantic Web is not a separate Web but an extension of the current one,

in which information is given a well-de�ned meaning, better enabling computers

and people to work in cooperation� [BLHL01].

Furthermore, the Semantic Web is an infrastructure technology that will help

in linking Web content together and provide more information that can be recog-

nised and processed by computers. This will provide a revolution in capabilities

and improvements in functionality of the existing Web in many aspects such as

search, information extraction and integration. However, Web browsers will still

be used to access Web content and Web applications [Hen11].

For moving the current Web towards this level of service, it needs to be accom-

panied by a combination of machine-readable semantics of data and a knowledge

representation scheme for information. Technologies for the Semantic Web have

already been developed by the AI and W3C communities. This has led to the

emergence of a number of issues related to the Semantic Web such as ontologies,

Semantic Web languages, Semantic Web applications and services.

1. INTRODUCTION 9

1.1 The Semantic Web Stack

Semantic Web technologies provide a means of formally describing the concepts,

vocabularies and relationships for a certain domain. The standard Semantic Web

technologies as speci�ed by the W3C are RDF, RDFS, OWL and SPARQL7.

These technologies are built one on top of another, forming layers of technologies

known as Semantic Web Stack (Figure 1.1).

Proof

URI/IRI

XML

Rule:
RIF

Query:
SPARQL

RDFS

Ontology: OWL

Unifying Logic

Trust

User Interface & Applications

Data interchange:
RDF

C
ry

p
to

Fig. 1.1: Semantic Web Stack

As shown in Figure 1.1, Semantics are delivered by RDF (the Resource De-

scription Framework) a generic data structure for machines to exchange machine

readable data. RDF can be serialized using di�erent serialization syntax such as

7 www.w3c.org

1. INTRODUCTION 10

RDF/XML, N-Triple and Turtle. These documents can then be exchanged across

the Web and reused by other applications.

RDF provides a �exible mechanism for adding semantic annotation to struc-

tured documents on the Web. These annotations describe Web documents and

state the relationships between them. RDF is a simple language; it encodes an-

notations in a set of triples. Each triple consists of three components known as

subject, predicate and object. These components are respectively, like the sub-

ject, verb and object in human natural language. An RDF data structure is a

labeled directed graph, each subject and object in a triple represent a pair of

nodes, and the predicate represents the relationship between them. Figure 1.2

shows the relationship between a person and his email address identi�ed by the

relation 'has_email'. The subject of a triple can be either a blank node8 or an

IRI (Internationalized Resource Identi�ers), the object can be a blank node, an

IRI or a literal value such as string or integer. The predicate of a triple is al-

ways an IRI. Although RDF is a �exible language for adding annotations to Web

documents, it provides limited support for processing the semantics of the terms

used in annotations.

In order to model schema information, the Semantic Web o�ers RDFS Schema

(RDFS), the lightweight ontology language [BG04], and more expressive Web on-

tology languages. RDFS provides special vocabularies to model class hierarchies

(rdfs:subClassOf), and property hierarchies (rdfs:subPropertyOf). It also pro-

8 A blank node holds no textual data but act as a means of gathering together other RDF
nodes.

1. INTRODUCTION 11

Fig. 1.2: A simple RDF graph describing the relationship between a person and
an email address

vides the means to de�ne domains (rdfs:domain) and ranges (rdfs:range) that

allow for assigning a class as the subject and object of a relation with a given

property respectively.

The need for a more expressive ontology language has resulted in the introduc-

tion of several languages including RDFS9 SHOE10, DAML+OIL 11, and OWL

(Web Ontology Language) [PSHH+04]. The W3C standard and the broadly ac-

cepted Web ontology language of the Semantic Web is OWL which exploited

the earlier work on OIL and DAML+OIL and integrated these languages with

RDF. OWL has an RDF based syntax, which makes it hard to read, but that

is a trade-o� for its direct accessibility to Web applications. OWL is part of

the ontology layer in the Semantic Web Stack introduced in Figure 1.1. OWL

9 Resource Description Framework Schema language provides a basic class structure for RDF
10 Simple HTML Ontology Extensions (SHOE) [HHL99]
11 DARPA (US Defense Advanced Research Projects Agency) Agent Markup Language

(DAML) and the Ontology Inference Layer [MFHS02]

1. INTRODUCTION 12

has major bene�ts over RDF in that it is built on the basis of Description Logic

(DL) which provides a logical formalism for ontologies and the Semantic Web by

ensuring accuracy and consistency of data in certain domains.

The next two layers in the Semantic Web Stack are logic and the proof layer

that establishes the truth of logical statements given in the lower layers, to allow

automated reasoners to deduce unstated facts and conclusions. At the top of

the Semantic Web Stack is the trust layer which is the high-level concept of the

Semantic Web: the Semantic Web will achieve its full potential when users have

trust in the data and the quality of information provided. Cryptography is an

element that can be used to provide security throughout the Web stack. Each

layer in the Semantic Web Stack is built on the layer below and tends to be more

complex than the layers below it [BZC10].

1.2 Motivations

As RDF annotations (also known as RDF triples) will be shared between di�erent

agents12, a common interpretation of the terms used in annotations is required,

and this is the role of ontologies. An Ontology is a collection of de�nitions of

concepts and their interrelationships that are used by di�erent agents to provide

a shared interpretation of the ontology content. Using ontologies for automatic

processing in computers (or for the Semantic Web) requires an expressive and

well-de�ned knowledge representation language that can provide a formal de�ni-

12 In this work an agent is considered to be automated processes on the Web.

1. INTRODUCTION 13

tion of the elements they contain. The Web Ontology Language (OWL) provides

such a platform [AVH04].

Any change in a domain, in the conceptualization or in the speci�cation re-

quires a change in the ontology. Changes in the speci�cation mean changes in

how the conceptualization of the domain is represented (i.e. changes in the on-

tology representation language). Changes in the conceptualization of the domain

occur as a result of a new requirement, observation or measurement, or a change

in the usage of the ontology. The domain may also change at any time since

the real world itself is dynamic. Ontology evolution is the process of modify-

ing an ontology in response to a domain or a conceptualization change [FP05].

Data that represents instances described by the ontology is often stored as RDF.

Collections of RDF are often very large13. An example of frequently updated

RDF knowledge bases includes the Gene Ontology (GO)14 which has grown to

incorporate many databases including the world's repositories for plants, animals

and microbial genomes. GO annotations are of very large sizes of more than

108 triples. This knowledge base is updated every month. Another example of

large RDF knowledge bases is the Foundational Model of Anatomy15, an ontol-

ogy for the domain of human anatomy. It contains more than 85,000 classes, 140

relationships connecting the classes, and more than 120,000 terms, and has a fre-

quent incremental updates [GGD13]. DBPedia16 is another example of large RDF

13 See http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/
DataSets/Statistics accessed on Saturday, 27 June, 2015
14 http://geneontology.org/
15 http://si.washington.edu/projects/fma
16 http://wiki.dbpedia.org/

1. INTRODUCTION 14

knowledge bases that has a frequent update. DBPedia is a large multi-domain

ontology which has been derived from Wikipedia. DBPedia describes 3.77 million

concepts with 400 million facts, and it is updated twice a year. Appendix A.1

contains foundational work carried out to generate RDF data from information

retrieved in XML format which shows the verbosity of RDF data compared to

XML.

Since the nature of ontologies is to evolve over time, rebuilding a complete

collection of RDF when this change happens is going to be a problem particularly

when these collections tend to be large. Therefore, managing ontology evolution is

one of the fundamental issues to be addressed in the development of technologies

to support the Semantic Web.

RDF collections can be stored and manipulated persistently in RDF triple

stores. In triple stores, RDF data is typically stored as rows of triples. RDF can

be viewed in di�erent ways such as an in-memory model or as serialized RDF

�les which also can be in di�erent RDF textual formats. There are two common

types of RDF serialization in practice; triple-based and XML-based serialization.

Update propagation between two knowledge bases M and M ′ can be carried

out by generating the deltas ∆ (i.e. the di�erences) between the two knowledge

bases and then applying it to M in order to update M to M ′. In the context of

RDF data structures the knowledge baseM may be large and may be distributed

to a number of di�erent remote locations. It is therefore important to minimize

the delta size since it may need to be distributed to the sites holding the knowledge

1. INTRODUCTION 15

base M.

1.3 Hypothesis and research questions

This work focuses on reducing the delta size, which is important for reducing

the storage required to store these updates and also for reducing the bandwidth

required to transfer these updates through the network.

Reducing the delta size in this work is based on the reduction of both the

set of delete operations needed to propagate the update and the set of insert

operations. It is important to maintain ontology consistency during this process.

in order to produce minimized correct deltas.

Work in the realm of updates to RDFS knowledge bases indicates that it

is possible to use rulesets that de�ne the semantics for such knowledge bases to

restrict the size of the data volume that is needed to update to successive versions

of a knowledge base [ZTC11].

The hypothesis of this work is that improving RDF change detection tech-

niques by exploiting both sets of updates (i.e. insertions and deletions) while

retaining correctness when transforming one knowledge base (KB) into another

will support reduction in the size of updates. Moreover, exploiting the hidden

semantics in RDF KBs by applying complex rulesets such as OWL 2 (in our work,

OWL 2 RL/RDF, a subset of OWL 2) could further support the production of

small sized deltas. The process of reducing the delta size relies on reasoning with

the OWL 2 RL/RDF ruleset [MGH+09] which is more complex than RDFS rules

1. INTRODUCTION 16

as the application of these rules exploits more inferred information in the dataset,

which in turn could avoid unnecessary updates and hence reduce the delta size.

To this end, the hypothesis leads to the following research questions:

1. What are the performance consequences of update strategies that can be

applied to Semantic Web data collections? It is important to measure accu-

rately the costs of di�erent approaches because delta generation may need

to be carried out 'on demand' or in a distributed peer context.

2. What is the best way of minimizing delta sizes using RDFS rules? The

process of minimising deltas using RDFS rules need to be clearly de�ned so

that the principles can be applied to more complex rulesets.

3. How can the richness of OWL 2 be exploited for the reduction of the delta

size? The complexity of the OWL 2 ruleset suggests that new approaches

to minimizing the deltas will be possible.

1.4 Contributions

This thesis makes several contributions:

1. The �rst contribution of this work is a comparative study of di�erent strate-

gies for using semantic content to generate RDF updates in the context

of the overall performance of the process. These strategies are: the ex-

plicit change detection EC, the Backward-chaining change detection BC, the

pruning and backward-chaining change detection and the forward-chaining

1. INTRODUCTION 17

change detection. The evaluation has been performed using di�erent ver-

sions of Uniprot Taxonomy, a real dataset from the bioinformatics domain.

2. the second contribution of this work is an approach for using the smallest

deltas that will maintain the consistency of an RDF knowledge base. This

new method is called correct dense delta (∆Dc), which improves the un-

sound dense delta method (∆D). The performance of this work is evaluated

using real-world datasets from both Gene Ontology (GO) and Uniprot Tax-

onomy which were enhanced by synthetic data using our RDF generator.

3. The third contribution of this work is to assess the impact of pruning rules

in the OWL 2 ruleset in the context of their use in reducing the size of

updates needed to transform ontologies between versions. This part of the

work considers blank nodes when computing the deltas. The evaluation of

this work performed using two benchmark datasets LUBM and UOBM.

1.5 Organization of the thesis

The remainder of the thesis proceeds as follows: Chapter 2 provides the necessary

background that will be of use in the subsequent chapters and to simplify the un-

derstanding of the proposed approaches. This will include a literature review on

the di�erent types of ontology change and an introduction to the existing change

detection techniques. Chapter 3 gives a review of the related work. Chapter 4

is the main core of this thesis. It (a) analyzes and investigates the process of

1. INTRODUCTION 18

updating RDF views (b) provides a detailed analysis of the di�erent change de-

tection techniques and investigates the cost of pruning in these techniques (c)

proposes a correction method for dense delta that retains ontology consistency

(d) extends the ruleset used in change detection by applying more complex rules

in the context of OWL 2 ontologies and proposes a pruning method that prunes

unnecessary rules. Chapter 5 reports and discusses experimental results. Chap-

ter 6 summarizes the results of this thesis and identi�es topics that are worth

further work and research.

2. PRELIMINARIES

The Semantic Web is the new generation of the Web that enables machines to au-

tomate, integrate and exchange information. In this thesis, four main categories

of the issues related to the Semantic Web are addressed: Ontologies, which are

the way of bridging between human knowledge and machine representation, lan-

guages for representing ontologies in the Semantic Web, managing and detection

of change, and reasoning with OWL.

2.1 Ontologies

Since the Semantic Web is a transformation of the current Web of information and

data into the Web of Knowledge [Dev06], this knowledge needs to be captured,

processed, integrated and reused. Ontologies are a knowledge representation

scheme which supports all these tasks. Ontologies have become common on the

World Wide Web. Many disciplines now develop standardized ontologies (see

for example schema.org) that domain experts can use to annotate information in

their �eld in a machine-interpretable language for software agents to process and

share.

Ontologies de�ne a common vocabulary that is used for sharing information in

2. PRELIMINARIES 20

a certain domain. They consist of machine-interpretable de�nitions of concepts in

the domain and the relationships among them. Developing ontologies is useful for

the sharing of common understanding of the structure of information among peo-

ple and software agents. Ontologies also enable the reuse of knowledge in certain

domains. For example, the FOAF ontology1 provides a sharable de�nition of per-

sonal details that can be used in a number of di�erent contexts. Another common

use of ontologies is separating domain knowledge from functional knowledge.

In philosophy, Ontology is a theory about the nature of existence [BLHL01]. In

the literature of Arti�cial Intelligence there are many de�nitions of ontology. The

most widely used de�nition is by Gruber [Gru93] "an ontology is a speci�cation

of conceptualization". That is, an ontology is a formal description of the concepts

and relationships that can exist in a domain of discourse. Common components

of ontologies include classes (also called concepts), properties that describe the

variety of features of the classes (also called attributes or roles) and restrictions

on properties (also called role restrictions). Instances of individual classes are

entities of the same class, but individuals are not an explicit part of the ontology.

An ontology that includes these components together with a set of individual

instances of classes constitutes a knowledge base.

For Web researchers, an ontology is a vocabulary, semantic interconnections,

and some simple rules of inference and logic for a particular topic [Hen01]. In-

formally, an ontology of a certain domain consists of a vocabulary which includes

concepts, or classes of objects. It helps to understand what di�erent things are in

1 http://www.foaf-project.org/

2. PRELIMINARIES 21

a domain and how they are classi�ed. Semantic interconnections, which are links

between concepts help to show the relation between the di�erent things in that

domain. In addition, inference and logic rules enable some forms of reasoning

and validation.

An ontology is not a stand alone structure or a goal in itself. It is typically

text-based �les that can be stored somewhere on the Web and consulted by

di�erent services and applications as necessary. Ontologies can be represented

using machine-readable languages which typically are XML-based �les. They

also can be represented graphically using visual languages and tools [Dev06].

An example of a simple ontology that describes the knowledge of a schools

system is given in Figure 2.1. The classes are Person, Sta�Member, Teacher,

Student, and, Course. The properties are the is-a property which identi�es the

subsumption relationship between classes and the two user-de�ned properties

assigned, and enrolled. These properties are shown as arrows connecting two

classes. The source and destination ends of an arrow are called the domain and

the range respectively.

Classes are the main component of ontologies. They describe and classify con-

cepts in the domain. For example, the class of Sta�Member includes instances of

all sta� members. Speci�c sta� members are instances of this class. For example,

John is an instance of the Sta�Member class. Classes can have subclasses that

include concepts that are more speci�c than their superclasses. The Sta�Member

class can have a Teacher class as its subclass. The Teacher class includes instances

2. PRELIMINARIES 22

Fig. 2.1: School ontology

of all members of sta� who do teaching. Classes also can have superclasses that

include concepts that are more general than their subclasses. For example, the

Sta�Member class can be subclass of a more general class called Person. The

same thing applies to the Student class, which is also a subclass of the Person

class. In typical real world ontologies, all classes are derived from the superclass

Thing. Properties describe features of classes and instances and the relationships

between classes. In the school example, instances of the class Teacher have a

property `assigned', the range of which is an instance of the class Course. An-

other property in our example is the 'enrolled' property which describes the class

Student and its range is an instance of the class Course. The is-a relationship

describes the subclass-superclass relationship described earlier.

2. PRELIMINARIES 23

2.1.1 OWL as an ontology language

OWL is the most recent development in standard ontology languages from the

World Wide Web consortium (W3C). OWL ontologies have similar components

to ontologies built using other data modeling languages such as the UML (Uni�ed

Modeling Language) but in OWL the terminology used to describe these compo-

nents is di�erent. OWL consists of classes, properties, and individuals. Whereas

in UML the components are things, relationships and diagrams. This section de-

scribes how to build the school ontology in OWL using Protégé2; an open-source

platform that provides tools for constructing domain models and knowledge-base

applications with ontologies.

Creating a new ontology includes de�ning classes and the class hierarchy,

de�ning properties of classes, and describing property restrictions.

As mentioned earlier, classes are the main building blocks of an OWL ontology.

In Protégé 4, the initial class hierarchy tree view contains one class called Thing as

the superclass for all other classes. In the school example, the classes are Person,

Sta�Member, Teacher, Student, and Course. The Teacher class is a subclass of

the Sta�Member class, and both the Sta�Member class and the Student class are

subclasses of the Person class.

Classes can be disjoint from each other which means that an individual can

not be an instance of more than one of these classes. For example, in the school

ontology (student, course), (Teacher, Course), (Teacher, Student), (Sta�Member,

2 http://protege.stanford.edu

2. PRELIMINARIES 24

Student), (Sta�member, Course) and (Person, Course) are all disjoint classes.

Properties in ontologies represent relationships between classes. OWL can

de�ne three types of properties, Object properties, Datatype properties and An-

notation properties. Object properties are relationships between two individuals,

Datatype properties describe the relationship between individuals and data values

such as an XML Schema Datatype value or RDF literal. Annotation properties

are used to add information to classes, individuals and object/datatype proper-

ties. In our school ontology we have three object properties; `assigned' which

links the Teacher class and the Course class, `hasTutor' links the Course class to

the Teacher class, and `enrolled' links Student and Course.

OWL object properties can have various characteristics to provide information

concerning properties and their values. These properties include:

• Inverse Properties: One property can be the inverse of another property. If

Property P1 is the inverse of Property P2, and if property P1 links individ-

ual X to individual Y then the inverse property P2 will link individual Y

to individual X.

• Functional Properties: If a property is functional, then it may have at most

one value for each individual.

• Inverse Functional Properties: This characteristic for a property means that

the inverse property is functional.

• Transitive Properties: If a property P is transitive, and it links individual X

2. PRELIMINARIES 25

to individual Y, and also links individual Y to individual Z, then property

P will link individual X to individual Z.

• Symmetric Properties: If a property P is symmetric, and it links individual

X to individual Y, then the same property P will link individual Y to

individual X.

• Asymmetric Properties: If a property P is asymmetric, and individual X is

linked to individual Y via property P, then property P cannot link property

Y to property X.

• Re�exive Properties: A property P is stated to be re�exive if the property

links individual X to itself.

• Irre�exive Properties: A property P is irre�exive if it links individual X to

individual Y, where X and Y are not the same.

Properties in the school ontology may be characterized from the above def-

initions, for example, assigned property may be characterised as asymmetric,

irre�exive, and hasTutor is its inverse property. hasTutor on the other hand

is functional, asymmetric and irre�exive. The last property in our example is

enrolled which links Student to Course and is characterised as asymmetric and

irre�exive.

2. PRELIMINARIES 26

2.2 OWL 2 Web Ontology Language

Since the introduction of OWL, a number of reasoners, such as FacT++[TH05],

Pellet[SPG+07], RACER[HM01] and HermiT[SMH08], and a number of ontology

editors, such as Protégé and Swoop[KPS+06], have been developed. Despite the

success of OWL, users and designers of OWL tools and APIs have identi�ed

certain problems with OWL such as expressivity and practical limitations of the

language. These problems produced a need for a revision of OWL 1.

OWL 2 has received considerable attention leading to the development of tool

support for the language. For example, Protégé has been extended to support

the additional features provided by OWL 2, and also reasoners such as FaCT++

and Pellet systems provide support for OWL 2 inference.

Computing all possible conclusions of an OWL 2 ontology can be a challeng-

ing and sometimes undecidable problem. To address this problem, OWL 2 has

also come in three lightweight sublanguages called pro�les (summarized in Table

2.1): OWL 2 EL, OWL 2 QL and OWL 2 RL. These pro�les are designed by

applying syntactic restrictions on the full features of OWL 2 in order to simplify

the reasoning process. The choice of which pro�le to use in practice depends on

the reasoning task and the structure of the ontology.

OWL 2 EL is designed particularly for application employing ontologies with

a very large number of properties and/or classes. In this subset of OWL 2, the

basic reasoning problems can be performed in polynomial time with respect to

the size of the ontology.

2. PRELIMINARIES 27

OWL 2 QL is used for applications that contain very large volumes of instance

data and where query answering is the most important reasoning task. Sound

and complete query answering can be performed in polynomial time with respect

to the size of the assertions.

OWL 2 RL is aimed at applications that require scalable reasoning and a

limited extension of both RDF and RDFS is desired. Reasoning with OWL 2 RL

can be implemented using rule-based reasoning engines. Reasoning and query

answering problems can be performed in polynomial time with respect to the size

of the ontology. OWL 2 RL/RDF is di�erent from the rest of the pro�les. With

OWL 2 RL/RDF we no longer talk about syntactic restriction of OWL 2, but a

semantic restriction of OWL 2 RDF-based Semantics.

Users of OWL 2 can choose between two slightly di�erent semantics: The

Direct semantics and the RDF-based semantics. There are two way of assigning

meaning to ontologies in OWL 2. Direct semantics can be applied to ontologies in

OWL 2 DL, a subset of OWL 2 and can be regarded as a syntactically restricted

version of OWL 2 Full which is designed to allow more RDF graphs or OWL 2

full ontologies to be valid OWL 2 DL ontologies. However, OWL 2 DL could also

be expressed using RDF-based semantics. In general, conclusions drawn using

the Direct semantics are still valid under the RDF-based semantics while not

all conclusions drawn by RDF-based semantics are valid under Direct semantics

as under the RDF-based semantics there are some extra conclusions are derived

from viewing the ontologies as RDF graphs.

2. PRELIMINARIES 28

On the other hand ontologies in OWL 2 Full, another subset of OWL 2, can

only be interpreted under the semantics of RDF-based Semantics. Direct se-

mantics allow OWL 2 ontologies to be expressed using description logic (DL),

a fragment of �rst-order logic. RDF-based semantics is an extension of RDFS

semantics and is based on viewing OWL 2 ontologies as RDF graphs. The di�er-

ences between direct semantic and RDF-based semantics is that Direct semantics

is not applicable to all RDF databases that use OWL features i.e. cannot be used

with arbitrary RDF graphs.

Regarding decidability when designing a reasoner for OWL 2 ontologies, OWL 2

DL under the Direct semantics is decidable which make designing a reasoner that

answers all yes-no questions possible. On the other hand, OWL 2 Full under

RDF-based semantics is undecidable, thus there are no such reasoners for OWL2

Full under RDF-based semantics.

OWL 2 pro�les, (i.e. OWL 2 EL, OWL 2 QL and OWL RL) are syntactic

fragment of OWL 2 DL. Thus, every conforming OWL 2 DL reasoner is also a

conforming reasoner for OWL 2 QL, OWL 2 EL and OWL 2 RL. However, none

of OWL 2 pro�les is a subset of another. Both OWL 2 semantics, the direct

semantics and the RDF-based semantics, can be used for any of these pro�les,

but the use of Direct semantics for OWL 2 QL and OWL 2 EL, and RDF-based

Semantics for OWL 2 RL is most common in practice.

Unlike other OWL 2 pro�les, OWL 2 RL/RDF, is not a syntactic restriction

of OWL 2 DL, it is rather a semantic restriction of OWL 2 RDF-based Semantics.

2. PRELIMINARIES 29

Tab. 2.1: OWL 2 languages
Language Semantics Syntax Complexity
OWL 2 DL OWL 2 Direct se-

mantics/OWL 2
RDF-based Semantics

Syntactical
restriction of
OWL 2 Full

Decidable

OWL 2 Full OWL 2 RDF-based
Semantics. An exten-
sion of RDFS seman-
tics

RDF graphs Undecidable

OWL 2 EL Typically, not exclu-
sively, interepreted
under OWL 2 Direct
semantics

Syntactic re-
striction of
OWL 2 DL

Decidable

OWL 2 QL Typically, not exclu-
sively, interepreted
under OWL 2 Direct
semantics

Syntactic re-
striction of
OWL 2 DL

Decidable

OWL 2 RL Typically, not exclu-
sively, interepreted
under OWL 2 RDF-
based Semantics

RDF graphs Decidable

OWL 2 RL/RDF Semantic restrec-
tion of OWL 2 Full
semantics

ruleset applied
to generalized
RDF graphs

Decidable

However, reasoners are allowed to extend the semantics of the ruleset up to the

level of RDF-based semantics. In [MGH+09], OWL 2 RL/RDF is de�ned as a

partial axiomatization of the OWL 2 RDF-based semantics in the form of �rst-

order implications 3. This axiomatization contains a large set of triple rules where

each antecedent and consequent in these rules consists of an RDF triple pattern.

Thus, the syntax of OWL 2 RL/RDF is a generalized RDF graphs. Work in this

thesis focuses on the implications of OWL 2 RL/RDF rules in the generation of

KB updates.

3 The axiomatization is called OWL 2 RL/RDF rules which is given as universally quanti�ed
�rst-order implications over a ternary predicate T.

2. PRELIMINARIES 30

2.3 Managing ontology changes

Ontologies can become large structures, and due to this fact, many research

problems may appear during the development and maintenance of ontologies.

Such problems include the challenge of modifying an ontology in order to meet

a certain need or a speci�c requirement. This problem is referred to as ontology

change in [FMK+08]. This process includes any type of change to the ontology

whether this change was in response to external events, such as changes in order to

meet the requirements of an enhanced system, or internal events, such as changes

forced by heterogeneity considerations (i.e. di�erences in terminology, language

or syntax between ontologies).

Several overlapping research topics have appeared in order to deal with the

problem of ontology change, such as (ontology evolution, alignment, merging,

mapping, integrating etc.), causing a confusion in understanding the meaning

and the uses of the terms in these areas. The ontology change problem can be

classi�ed into four groups according to the need for change [FMK+08]:

• heterogeneity resolution, which deals with resolving heterogeneity of on-

tologies which in turn contains �ve sub�elds: ontology mapping, alignment,

articulation, morphism and translation.

• ontology editing that consists of any type of modi�cation to the ontology

such as modi�cation in order to resolve inconsistencies or incoherences (on-

tology debugging) or changes in response to a change request (ontology

2. PRELIMINARIES 31

evolution).

• ontology fusion which deals with the problem of combining two ontologies.

The source ontologies can be from similar domains (ontology integration)

or identical domains (ontology merging).

• ontology versioning which copes with the di�erent versions of ontology by

creating and managing di�erent variants of it.

2.3.1 Heterogeneity resolution

Heterogeneity of the Semantic Web means that di�erent ontologies use di�erent

terminologies, languages and syntax to refer to the same entities. Work related

to the heterogeneity resolution tries to solve this problem by providing a set of

translation rules to make two ontologies use the same name for similar entities

and di�erent names for di�erent entities [ELBB+04] [KS03] [SE05].

Although research �elds related to solving the heterogeneity problem by pro-

viding a set of translation rules do not seem to make any direct change to the

ontology, they are considered sub�elds of ontology change for two reasons: First,

changing an ontology in response to a new information requires both the ontology

and the new information to use the same terminology, language and syntax. Sec-

ond, the change of an ontology in heterogeneity resolution is implicitly performed

as each new collection of information (i.e. new ontology) is changed locally to �t

the source ontology.

The research �elds under the heterogeneity resolution group are: ontology

2. PRELIMINARIES 32

mapping, morphism, alignment, articulation and translation.

Ontology mapping Given an ontology as a pair < S, A > where S is the

signature4 and A is the set of ontological axioms, ontology mapping is de�ned as

the task of relating the signature of two ontologies that share the same domain of

discourse in such a way that the mathematical structure of ontological signatures

and their intended interpretations, as speci�ed by the ontological axioms, are

respected. As a result a set of functions on the ontology signature is produced to

map between the ontologies' vocabularies [KS03].

Ontology morphism Since ontology mapping is restricted to signatures, the

approach that deals with both signatures and axioms of the ontologies is called

ontology morphism [KS03].

Ontology alignment It is also called ontology matching. In ontology alignment

two ontologies are related to each other using a set of relations. It is de�ned as the

process of �nding relationships between ontologies' signatures [Flo07] [SGS+06].

Ontology articulation Each binary relationship in ontology alignment could

be decomposed into a pair of ontology mappings from a common intermediate

source. This process is called ontology articulation and is de�ned as the process

of determining the intermediate ontology and the two mappings to the initial

ontologies [Flo07] [KS03].
4 An ontology signature is the ontology vocabulary that is modeled as a simple set containing

the names of all concepts, properties or individuals that are related to a particular domain
[Flo07].

2. PRELIMINARIES 33

Ontology translation The term ontology translation refers to two di�erent pro-

cesses [Flo07]. The �rst one changes the syntax of the axiom part of an ontology

but not the signature, whereas the second process translates the signature part of

an ontology. Translating the signature part may lead to a confusion when think-

ing of ontology mapping, but to avoid this confusion, it is worth mentioning that

ontology mapping provides a set of functions that relates two ontologies' signa-

tures, while the translation of the signature implements the mapping by applying

these functions.

2.3.2 Ontology editing

Ontology editing is the process of modifying the ontology to resolve inconsisten-

cies or incoherences that may occur in an ontology, which in this case is called

ontology debugging, or to modify the ontology in response to a change request

and this type of modi�cation is called ontology evolution.

The purpose of ontology debugging is to �nd techniques that would remove

contradiction from an ontology which may occur as a result of modeling errors or

changing the ontology [HQ07].

Ontology evolution on the other hand refers to the process of incorporating

new knowledge in an ontology. Six phases of ontology evolution have been iden-

ti�ed in [SMMS02]:

• change detection: in this phase changes in the ontology are identi�ed.

• change representation: changes are formally represented.

2. PRELIMINARIES 34

• semantics of change: the consequence of implementing any change is iden-

ti�ed to guarantee the validity of the ontology.

• change implementation: involves the implementation of the changes using

appropriate tools.

• change propagation: this phase ensures that all changes are propagated to

all dependent agents.

• change validation: this phase allows the ontology engineer to review the

implemented changes and undo any changes if required.

In [PDT05] a similar approach which identi�es �ve phases for ontology evo-

lution:

• change request: this phase involves the identi�cation of required changes.

• change implementation: this phase executes the requested changes on the

ontology. All applied changes are stored into an evolution log to keep track

of these changes.

• change detection: this phase involves the identi�cation of any changes that

may occur as a consequence of modifying the ontology in the previous phase.

• change recovery: in this phase, changes from the change request phase are

checked and revised if necessary.

• change propagation: changes in the evolution log are propagated to depen-

dent parties.

2. PRELIMINARIES 35

2.3.2.1 Ontology versioning

Ontology versioning is considered a variation of ontology evolution [HS04]. The

only di�erence between them is that in the ontology versioning process the orig-

inal ontology and all its versions are stored after changes are performed. Thus,

allowing access to the di�erent versions of the ontology.

2.3.3 Ontology fusion

Ontology fusion refers to the construction of a new ontology by fusing the infor-

mation found in two or more ontologies. Based on the level of similarity between

the source ontologies, ontology fusion is classi�ed into two di�erent research areas:

ontology merging and ontology integration [Flo07].

2.3.3.1 Ontology merging

Ontology merging is the process of combining two or more ontologies containing

identical or overlapped information in order to create a one large ontology. On-

tology merging and ontology alignment are often understood as the two sides of

the same coin, but the only di�erence between them is that the result of ontol-

ogy merging is one new and large ontology, whereas in ontology alignment the

source ontologies remain with links of relations between them. Example of the

tools used for ontology merging are PROMPT and Chimaera, which are based

on a semi-automatic approach that proposes a set of suggestions on how source

ontologies should be combined together leaving the �nal choice to the ontology

2. PRELIMINARIES 36

engineer.

2.3.3.2 Ontology integration

Ontology integration is the process of constructing a global ontology by combining

a number of local ontologies covering loosely related domains. The domain of the

resulting ontology is more general than the domain of any of the source ontologies.

In contrast, the domain resulting from applying ontology merging process is more

speci�c and gives detailed information on a given topic as the source ontologies

are highly overlapped. Fused ontologies are generally heterogeneous in terms of

vocabulary, syntax, representation languages etc., and considering heterogeneity

issues is a common practice when combining di�erent ontologies, but modeling

di�erences need to be taken into account specially when dealing with highly

interconnected (i.e. identical) ontologies as the meaning of the terms are di�erent

even if the same terminology is used, which might lead to an invalid or inconsistent

ontology. Ontology merging (or fusion in the general sense) can be done by

applying �ve steps:

• the identi�cation of the semantic overlap between the source ontologies.

• a transformation (heterogeneity resolution) agreement in terms of the ter-

minology, syntax and representation.

• design and implementation.

• the union of the sources is taken.

2. PRELIMINARIES 37

• the evaluation of the resulting ontology in terms of consistency, redundancy

and validity.

2.4 Change detection

In the Semantic Web, data that represents instances described by an ontology

is typically stored as RDF. On the Web, RDF collections often contain an ex-

tremely large number of triples, and the size of the collection may increase rapidly.

Changes in the ontology may require changes in the underlying RDF data. Since

RDF is, in general, designed to easily integrate information from diverse data

sources, changes to RDF may occur in distributed environments. Therefore, in

order to cope with the evolving nature of the Semantic Web, it is important to

e�ciently detect these changes and update RDF accordingly. In particular where

RDF collections are replicated, it is important to be able to distribute updates

quickly.

The straightforward algorithms for version control systems such as CVS [B+90]

and the traditional change detection techniques based on structured data such as

XML are not able to handle RDF data. This is because RDF models represent

graphs which can be serialized into di�erent text formats and these graphs are

enriched with semantic information including inferred knowledge [ZTC07]. An

RDF graph is a set of triples (subject, predicate, object) each triple represents

a relation between two nodes. The set of triples can be serialized in di�erent

formats, which means that two RDF graphs can be identical in terms of the

2. PRELIMINARIES 38

information they represent but have di�erent text representation. In addition,

RDF data is enriched with semantic information.

Berners-Lee et al. proposed a non text-based change detection scheme for

RDF based on comparing two RDF graphs and computing the di�erences between

them, which generates a set of di�erences called deltas. These di�erences are a

set of change operations (i.e. insertions and deletions) which transform one RDF

graph into another [BLC04]. This change detection method generates the deltas

using set arithmetic for RDF graphs [BLC04]. For example, If M and M ′ are

RDF models, then the delta that transformsM toM ′ is modeled as a set of triple

insertions and triple deletions where insertions is the set di�erence M ′ −M and

deletions is M −M ′.

However, this approach does not handle the semantic level of RDF and does

not exploit the inferred knowledge for the reduction of the produced deltas but

generates the explicit di�erences between two RDF models. In addition, the cost

of storing the delta or exchanging it through the network using this method is

linear with the size of the di�erences between two RDF models [BLC04]. There-

fore, several approaches for calculating the delta have been proposed based on

methods to minimize the delta size in order to reduce the required bandwidth and

storage space for updating RDF data collections [NM02, VG06, BK03, ILK13].

These approaches aim to minimize the delta size by exploiting the semantics of

RDF data. This can be carried out by applying inference rules under the RDFS

speci�cation to the triple set [HM04]. These inference rules are applied to the

2. PRELIMINARIES 39

M M ′

(Graduate subClassOf Person), (Head_Teacher subClassOf Teacher),
(Student subClassOf Person), (Teacher subClassOf Sta�),
(Head_Teacher subClassOf Sta�), (Sta� subClassOf Person),
(Teacher subClassOf Sta�), (Graduate subClassOf Student),
(Sta� subClassOf Person), (Student subClassOf Person),
(John type Student). (Teacher subClassOf Person),

(Head_Teacher subClassOf Person),
(John type Person).

Fig. 2.2: Sample data structure before and after update

existing RDF triples in order to derive new ones, a process known as the RDF

closure.

De�nition 2.4.1 (Closure). Let t be a triple with subject, predicate, object

(SPO). The closure of M is de�ned as M extended by those triples that can be

inferred from the graph M . The closure of an RDF graph M is denoted by:

C(M) = M ∪ {t ∈ (SPO) |M |= t}

Example 1. Let M = {a subClassOf b, b subClassOf c} then the closure of M

will contain these triples and a further triple {a subClassOf c}.

Considering this closure (i.e. inferred set of triples) when calculating the set-

di�erences between two RDF models may reduce the size of the produced delta

because adding triples to a delta when these triples can be inferred in the updated

knowledge base is unnecessary.

The basic operations in change detection techniques are the set-di�erence

operation and the inference operation. Di�erent change detection techniques

can be classi�ed based on the inference strategy (i.e. the computation of the

closure). The existing strategies are the Explicit delta, the Closure delta, the

2. PRELIMINARIES 40

∆E = {Del (Graduate subClassOf Person),
Del (Head_Teacher subClassOf Sta�),
Del (John type Student)}

∪ {Ins (Head_Teacher subClassOf Teacher),
Ins (Graduate subClassOf Student),
Ins (Teacher subClassOf Person),
Ins (Head_Teacher subClassOf Person),
Ins (John type Person)}

Fig. 2.3: The explicit delta

∆ED = {Del (John type Student)}
∪ {Ins (Head_Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student),
Ins (Teacher subClassOf Person),
Ins (Head_Teacher subClassOf Person),
Ins (John type Person)}

Fig. 2.4: The explicit dense delta

Dense delta, the Dense & Closure delta and the Explicit & Dense delta, ∆E,

∆C, ∆D, ∆DC and ∆ED, respectively. The computation of the deltas between

two RDF datasets M and M ′ in ∆C and ∆DC requires computing the closure of

both sets and then in ∆C the set-di�erence operation is performed between the

two closures for producing the deletion set (i.e. C(M)−C(M ′)) and the insertion

set (i.e. C(M ′)−C(M)), while in ∆DC, the set-di�erence operation is performed

between the two closures for producing the deletion set (i.e. C(M)−C(M ′)) while

the insertion set is produced using the set-di�erence operation between M ′ and

the closure of M (i.e. M ′ − C(M)). Thus, both ∆C and ∆DC may produce

larger delta sizes compared to the other change detection techniques because

they produce deltas that not only include the di�erences between the datasets

but also the di�erences between the inferred triples from both datasets. In this

thesis, we focus on inference-based change detection which produces the smaller

delta [ZTC11] [ILK13]:∆ED and ∆Dc (a method that is proposed in this thesis

that is an improved version of ∆D. This improved method produces a correct

delta). However, it is worth mentioning that ∆C, ∆D, ∆DC and ∆ED are

inference based strategies apart from ∆E which is syntactic-based. The ∆E,

∆ED and ∆D are explained here in the context of the two example RDF models

2. PRELIMINARIES 41

M and M ′ in Figure 2.2

As explained above, the naïve way of generating the delta involves computing

the set-di�erence between the two versions using the explicit sets of triples forming

these versions. This is called explicit delta (∆E) which calculates the delta at

the syntactic level of RDF and provides a set of triples to be deleted from and

inserted into M in order to transform it into M ′.

De�nition 2.4.2 (Explicit delta). Given two RDF models M and M ′, let t

denote a triple in these models, Del denote triple deletion which is calculated by

M −M ′, and Ins denote triple insertion which is calculated by M ′ −M . The

explicit delta is de�ned as:

∆E = {Del(t) | t ∈M −M ′} ∪ {Ins(t) | t ∈M ′ −M}

From the example in Figure 2.2, the delta obtained by applying the above

change detection function is shown in Figure 2.3. Executing these updates against

M will correctly transform it to M ′. However, this function handles only the

syntactic level of RDF and does not exploit its semantics. In the latter context,

executing some of the updates in ∆E is not necessary as they can still be inferred

from other triples. For instance, we can observe from the example in Figure 2.2

that deleting (Graduate subClassOf Person) fromM , in order to transform it into

M ′, is not necessary as this triple can still be inferred from the triples (Graduate

subClassOf Student) and (Student subClassOf Person) inM ′. Since this update is

not necessary, it is useful to remove it from the delta. RDF data is rich in semantic

2. PRELIMINARIES 42

content and exploiting this in the process of updating RDF models can minimize

the delta size and therefore the storage space and the time to synchronize changes

between models. In particular this approach handles di�erences between two

versions and does not handle aggregated di�erences between multiple versions.

Unnecessary updates can be avoided by applying a di�erential function that

supports reasoning over the closure of an RDF graph. In RDF inference, the

closure can be calculated in order to infer some conclusions from explicit triples.

This process is carried out by applying entailment rules against the RDF knowl-

edge base. In this work, we consider the RDFS entailment rules provided by

the RDFS semantics speci�cation [HPS14]. This speci�cation contains 13 RDFS

entailments rules. However not all these rules are used in this work, only rules

that derive triples with subClassOf, subPropertyOf and type relations. These

rules are shown in Table 2.2. Other rules that do not have an e�ect on minimiz-

ing the delta size are excluded from the current approach for change detection

[ILK13]. An example of these rules in the RDFS entailment rules is the rule:

(xrdf : typerdfs : Class =⇒ xrdfs : subClassOfrdfs : Resource) which cannot

reduce the delta size.

Thus, in contrast with ∆E, ∆ED obtains a set of insertions by performing

If KB contains Then add to KB
rdfs1 s rdf:type x and x rdfs:subClassOf y s rdf:type y
rdfs2 x rdfs:subClassOf y and y rdfs:subClassOf z x rdfs:subClassOf z
rdfs3 p rdfs:subPropertyOf q and q rdfs:subPropertyOf r p rdfs:subPropertyOf r

Tab. 2.2: Relevant rules

2. PRELIMINARIES 43

the set-di�erence operation M ′ − M . While a set of deletions is obtained by

computing the closure of M ′ (denoted as C(M ′)) �rst and then performing the

set-di�erence operation (M − C(M ′)).

De�nition 2.4.3 (Explicit dense delta). LetM , M ′, Del(t), Ins(t) be as stated

in De�nition 2.5.2. Additionally let C(M ′) denote the closure of M ′. ∆ED is

de�ned as:

∆ED = {Del(t) | t ∈M − C(M ′)} ∪ {Ins(t) | t ∈M ′ −M}

Applying this function to the example in Figure 2.2 produces the delta shown

in Figure 2.4. The inserts in this delta are achieved by explicitly calculating the

set di�erence M ′ −M to provide the set of triples that should be inserted to M

in order to transform it into M ′. On the other hand, the set of deleted triples

is achieved by calculating the closure of M ′ using the RDFS entailment rules to

infer new triples and add them to M ′. From the example, the inferred triples in

M ′ are:
(Teacher subClassOf Person)

(Head_Teacher subClassOf Person)

(Head_Teacher subClassOf Sta�)

(Graduate subClassOf Student)

These inferred triples are then added to M ′ to calculate the set di�erence

M − C(M ′) which results in only one triple to delete: (John type Student). The

number of updates produced by this delta is smaller than the one produced by

the ∆E as a result of the inference process.

2. PRELIMINARIES 44

The e�ect of the inference process in minimising ∆ED is limited to applying

the inference rules when computing the deleted set of triples only. Applying

inference rules for computing the inserted triples may further reduce the number

of updates. For example, inserting the three triples (Teacher subClassOf Person),

(Head_Teacher subClassOf Person) and (John type Person) into M may not be

necessary because these triples implicitly exist in M and can be inferred in M

using the RDFS entailment rules. In this example, applying rdfs1 to M would

infer (John Type Person) while the other two triples could be inferred using

rdfs2. The application of inference over both the insert and delete sets produces

the dense delta (∆D).

De�nition 2.4.4 (Dense delta). Let M, M', Del(t), Ins(t) be as stated in De�-

nition 2.5.2. The dense delta is de�ned as:

∆D = {Del(t) | t ∈M − C(M ′)} ∪ {Ins(t) | t ∈M ′ − C(M)}

Figures 2.5(a) and 2.5(b) illustrate the distinction between ∆ED and ∆D.

In the former only the deletes that are not in C(M ′) need to be carried out. In

this case, C(M) is not checked to see whether all of the planned inserts need

to be applied. In the case of ∆D, deletes are handled in the same way as in

∆ED however inserts are only applied if they are not in C(M). This results in

minimising both delete and insert operations.

From the example in Figure 2.2, the updates generated by applying (∆D) are

2. PRELIMINARIES 45

∆ D(b)(a) ∆ED

C(M)

M
M’

C(M’)

D
el

et
es

U
n
ch

an
g
ed

In
se

rt
sA B

M
M’

C(M’)

D
el

et
es

U
n
ch

an
g
ed

In
se

rt
sA

A − deletes that are still in C(M’) once M’ has been generated

B − inserts that are already in C(M) before it is updated

Fig. 2.5: The distinction between ∆ED and ∆D.

∆D = {Del (John type Student)}
∪ {Ins (Head_Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student) }

Fig. 2.6: The dense delta (∆D)

shown in Figure 2.6. ∆D is smaller than either ∆E or ∆ED with only three

updates to transformM toM ′. However, in contrast to ∆E and ∆ED, ∆D does

not always provide the correct delta to carry out the transformation. In this case,

applying ∆D to transform M into M ′ will transform M as shown in Figure 2.7.

This delta function does not correctly update M to M ′ because when applying

the updates, (John type Person) is not inserted into M and cannot be inferred

in M after the triple (John type Student) has been deleted.

By carrying out this approach, minimizing the delta size could be extended

to handle inference over the delta itself. For example, the di�erence between two

models M and M ′ is:

∆E = Ins(A subClassOf B), Ins(B subClassOf C), Ins(A subClassOf C)

which are the triples that exist in M ′ and do not exist in C(M). Handling

inference over ∆E can reduce the triple (AsubClassOf C) which can be derived

from the other two triples in the delta.

2. PRELIMINARIES 46

M
(Graduate subClassOf Person),
(Student subClassOf Person),

Original (Head_Teacher subClassOf Sta�),
triples (Teacher subClassOf Sta�),

(Sta� subClassOf Person),
(John Type Student).

Inserted (Head_Teacher subClassOf Teacher),
triples (Graduate subClassOf Person).

Fig. 2.7: Incorrect updates

RDF change detection techniques can also be classi�ed based on the order

of the basic operations; the set-di�erence operation and the inference operation,

into forward-chaining change detection and backward-chaining change detection.

The forward-chaining approach follows the inference-then-di�erence strategy,

which computes the entire closure �rst and then calculates the set-di�erences.

Unlike the forward-chaining approach, the backward-chaining approach uses the

di�erence-then-inference strategy, which instead of computing the entire closure,

this method applies �rst the set-di�erence operations and then the inferencing

on the result of the set-di�erence operation. This would be expected to improve

the time and space required in change detection because only a small part of

the closure is computed, not the full closure as in the case of forward-chaining

approach (the two approaches are further explained in Chapter 4).

As explained above, the calculation of RDF closure is based on applying the

RDFS entailment rules provided by the RDFS semantics speci�cation. The entail-

ment rules infer new RDF statements based on the presence of other statements.

However, although the backward-chaining method is applied to infer only rel-

evant triples, some triples might be unnecessary for change detection. Therefore,

the authors in [ILK13] proposed a pruning method in addition to the backward-

2. PRELIMINARIES 47

chaining strategy. The proposed pruning method is applied prior to invoking

backward inference. This allows for the skipping of some irrelevant triples de-

rived from the set-di�erence operation (M −M ′) during change detection. After

pruning, the remaining triples are checked to see if they can be inferred in M'.

By contrast to the approach presented in [BK03], the proposed change detection

technique follows di�erence-pruning-inference strategy.

The irrelevant triples are pruned and removed from M −M ′ using the follow-

ing rules:

(1) When Del(t(SsubClassOfO)): if t(SsubClassOfT ′) 6∈M ′ or

t(T ′subClassOfO) 6∈M ′, then Del(t(SsubClassOfO)) is pruned.

(2) When Del(t(SsubPropertyOfO)): if t(SsubPropertyOfT ′) 6∈M ′ or

t(T ′subPropertyOfO) 6∈M ′, then Del(t(SsubpropertyOfO)) is pruned.

(3) When Del(t(SBO)): if t(SAO) 6∈M ′ or t(AsubPropertyOfB) 6∈M ′, then

Del(t(SBO)) is pruned.

(4) When Del(t(StypeO)): if t(StypeT ′) 6∈ M ′ or t(T ′subClassOfB) 6∈ M ′, then

Del(t(StypeO)) is pruned.

The general rule for pruning is that if the subject or object of a triple does

not exist in M ′ then this triple cannot be inferred in M ′, therefore, this triple is

pruned before the inference process begins.

Results in [ILK13] show that the pruning and backward-chaining method can

prune 10-60% of triples prior to the backward-chaining, and that the inference

2. PRELIMINARIES 48

time using that method is 10-80 times faster than that using the forward-chaining

method and about 1.5-4 times than backward-chaining method. However, the

pruning time and the overall reasoning time (i.e. both the pruning time and the

inference) is not provided.

RDF is used to represent information such as bibliographies, medical and

biological terms and other large scale data. This information is created and

updated from distributed sources, and as already noted, RDF data collections are

typically large and awkward to maintain. It is consequently important for RDF

versioning and synchronization services to employ e�cient strategies to compare

two RDF graphs and transform one graph into another. These strategies need

to provide sum and di�erence functions for RDF graphs [BLC04] and a change

operations able to exploit the semantics of RDF. It is also important to make the

right decisions when optimizing update strategies.

The work presented in this thesis analyses in detail the performance of such

strategies for the ontology evolution process as it is important to provide e�cient

methods for detecting changes in RDF collections and updating them. Since

most of the data in RDF versions remains unchanged as reported by [NM04],

an alternative approach to forward-chaining inference is the backward-chaining

inference [BK03] which instead of computing the full closure of RDF model,

computes only the relevant triples. Choosing backward inference over forward

inference is a trade-o� between storage space and query processing, respectively.

A work in [SQ06] proposed a �exible framework that combines the two strategies.

2. PRELIMINARIES 49

2.5 Reasoning with OWL

The previous section discusses reasoning under a subset of the RDFS semantics.

Work presented later shows that exploiting the hidden information in RDF struc-

tures by applying inference rules could reduce the size of the delta between two

di�erent RDF structures. Further reduction to the delta size is possible if more

hidden information is exploited by applying more complex rules. The Web Ontol-

ogy Language has more facilities for expressing semantics than RDFS, which in

the context of our work, can allow change detection techniques to perform useful

reasoning tasks that aim to reduce delta sizes.

In this section, we move to more complex inference rules under OWL 2 se-

mantics considering the OWL 2 RL/RDF set of entailment rules [Sch09] which is

aimed at applications that require the expressivity of OWL 2 full as well as scal-

able reasoning5. These rules represent a partial axiomatization of the complete

OWL 2 RDF-Based semantics which is designed to be useful for implementation

using rule-based technologies such as RDBMSs, Prolog, Jess, etc.

The OWL 2 RL/RDF ruleset provides a simple set of rules of RDF-based

semantics as a set of �rst-order logic formulas but the formulas for these rules

generally have a more restricted form which make the resulting language less ex-

pressive than OWL 2 Full. However, it is allowed for compliant OWL 2 RL/RDF

reasoners to produce additional reasoning results up to the full expressivity of

the OWL 2 RDF-based semantics. Therefore, it allows tool providers to create

5 Scalable reasoning is reasoning performed on large scale datasets

2. PRELIMINARIES 50

reasoners with an OWL 2 RL/RDF ruleset as a base but with additional power

if needed by customers.

The o�cial OWL 2 RL/RDF ruleset contains 78 rules compared to the 13 rules

de�ned for RDFS. OWL 2 RL/RDF supports all RDFS constructs; however, rules

for axiomatic triples, such as rdf:type rdf:type rdf:Property, in RDF and RDFS

are omitted in OWL 2 RL/RDF for performance reasons as those triples must

be satis�ed by, respectively, every RDF and RDFS interpretation [MGH+09]. In

addition OWL 2 RL/RDF supports rules for de�ning the semantics for: equality,

property axioms, classes, class axioms, datatypes and schema vocabulary. The

semantics of these rules take a variety of forms:

• Semantics of equality which de�ne the equality relation owl:sameAs and its

equality properties such as re�exive, symmetric and transitive.

• Semantics of axioms about properties.

• Semantics of classes.

• Semantics of class Axioms.

• Semantics of Datatypes which include rules for a special processing for

datatypes; e.g. the equality dt-eq and inequality dt-di� rules for literals

that assert that two literals with the same value are equal or two literals

with di�erent values are di�erent, respectively.

• Semantics of schema vocabulary which specify the semantic restrictions on

the vocabulary used to de�ne the schema.

2. PRELIMINARIES 51

The simplicity of the rule-based language speci�cation, the unrestricted RDF

graphs that these rules can handle and the �exibility to extend OWL 2 RL/RDF

reasoners makes this language speci�cation a promising candidate for practical

reasoning in the semantic web [SM09]. Moreover, regarding the syntax of OWL

2 RL/RDF ruleset, there are no limitations to which ontologies this ruleset can

be applied since they are de�ned upon arbitrary RDF graphs therefore it can be

applied to unrestricted or generalized RDF datasets.

The number of rules in reasoning with OWL 2 RL/RDF and the type of

relations supported in these rules have led to several challenges in reasoning with

OWL 2 RL:

• The support of equivalent relations in OWL 2 RL/RDF such as owl:sameAs.

A sameAs relation is a relation of the form (s, owl:sameAs, o), which as-

serts that s denotes the same resource as o. This relation may increase

the complexity for a full materialization of the inferences as it implies the

computation of the transitive closure across the entire KB. This complexity

could be O(N2) with respect to the size of the original KBs using a naïve

representation of closure. This complexity becomes very expensive with

evolving large scale data sets as the inference closure needs to be main-

tained continuously.

• OWL 2 RL/RDF ruleset has large number of inference rules compared to the

RDF(S) ruleset, and these rules may trigger the application of other rules.

A naïve approach to performing reasoning against large-scale datasets may

2. PRELIMINARIES 52

take hours to �nish [KWE10].

• Generally, it is not possible to compute all class subsumptions without

taking into account assertional information (i.e. data) [Krö12] which in

turn may complicate the reasoning process with regard to the size of ABox6

in the used dataset.

Some rules are excluded in a typical implementation for two reasons:

1. They have no e�ect on minimizing the delta size.

2. They may yield an exponential number of inference cycles.

These rules are:

- Inconsistency checks rules. These rules check if a contradiction is derived and

that consequently,the RDF structure is inconsistent.

- The rules that exploit the owl:sameAs transitivity and symmetry. These rules

produce cycles in the inference process as they can be applied to every term

of the triples because of the interaction among owl:sameAs inferences with

other rules in OWL 2 RL/RDF.

- Data list relationships to be asserted between chains of properties such as the

rule prp-spo2 for propertyChainAxiom which says, for example, that uncle

is precisely a parent's brother.

6 An ABox contains data associated with a knowledge base

2. PRELIMINARIES 53

- Datatype checking using rules for supporting datatype reasoning which provides

type checking and value equality and inequality checking for typed literals.

- General schema rules which say, for example, that a class is a subclass of itself

or a property is a subproperty of itself.

In this thesis a subset of OWL 2RL/RDF rules (shown in the table in Ap-

pendix B) is used. This set of rules di�er from the RDFS rules, for example,

there are multiple antecedents in some of these rules. Moreover, most rules in

OWL 2 RL/RDF include assertional triples and generally the number of as-

sertional triples exceed that of schema triples7. The application of these rules

involves calls to the application of other rules and so on until saturation (i.e. no

more triples are inferred). Another challenge with these rules are the use of blank

nodes when de�ning restrictions on classes such as the use of intersectionOf and

unionOf relation.

2.6 Blank nodes

Blank nodes, are a special kind of nodes without a name. They indicate the exis-

tence of a thing for which a URI reference or literal value is not given. Since they

are anonymous, blank nodes require special treatment when matching ontologies.

Despite the problems involved in processing data with these anonymous nodes,

the use of blank nodes in RDF data models is an important feature, which adds

7 Schema triples are triples used in describing an ontology such as triples with predicate
rdf:subClassOf. In contrast, assertional triple is any triple that is not a schema triple [WH09]

2. PRELIMINARIES 54

�exibility when expressing information in RDF model.

The �rst stage in delta construction is the computation and production of the

explicit delta (i.e. the syntactical di�erences) between the two stored models.

After the computation of the syntactical di�erences, the blank node matching

begins, although no order is required for the two processes as they do not overlap.

Blank nodes are arranged in chains and the matching of these nodes can make use

of both the ID of the node as well as the triple count in its chain. The equivalence

of RDF graphs that contain blank nodes is de�ned as [KC06] :

De�nition 2.6.1 (Equivalence of RDF Graphs with blank nodes).).

Two generalized RDF graphs G1 and G2 are equivalent if there is a bijection f

between the sets of triples of the two graphs, such that:

f(uri) = uri for all uri ∈ U1 ⊆ G1

f(lit) = lit for each lit ∈ L1 ⊆ G1

Where U1 is the set of URIs and L1 is the set of literals in G1. For each b ∈ B1 f

maps blank nodes to blank nodes, such that f (b) ∈ B2, where b is a blank node

and B1 and B2 are the set of blank nodes in G1 and G1, respectively.

The triple (s, p, o) is in G1 if and only if the triple (f(s), p, f(o)) is in G2

It follows that if two graphs are equivalent then it certainly holds U1 = U2,

L1 = L2 and ‖B1‖ = ‖B2‖. Since uri and lit have global identi�ers in both

graphs, this bijection matches the uri or lit in one graph to the same uri or lit in

the other graph. Unlike uri and lit, blank nodes have only local identi�ers, thus,

f shows how each blank node identi�er in G1 can be replaced by a new identi�er

2. PRELIMINARIES 55

in order to give G2

Without blank node matching, any pair of blank nodes from di�erent knowl-

edge bases is considered as a di�erence between these data structures. If |Tb1|

and |Tb2| are the blank node counts inM andM ′ respectively then without blank

node matching the delta for two graphs will contain at least |Tb1| + |Tb2| change

operations.

Matching these blank nodes may reduce the size of the delta. The worst case

of blank node matching is when all blank nodes in the participating triples are

not matched. In this case, the delta size with blank node matching is equal to

the delta size without blank node matching. Thus, if blank node matching does

not reduce the delta size, it will never increase it.

2.7 Summary

In order to cope with the evolving nature of the Semantic Web we need an e�cient

change detection approaches for building e�ective Semantic Web synchronization

and versioning services. In this thesis we are interested in computing RDF deltas

as a set of update operations (i.e. inserts and deletes) which enable the correct

transformation from one RDF knowledge base into another.

As these update operations are required for synchronization through the net-

work, it is important to reduce the deltas size and avoid unnecessary updates.

This reduction of the delta will also reduce the storage overhead required to store

2. PRELIMINARIES 56

di�erent deltas between di�erent versions of the knowledge base.

This thesis is focused on change detection approaches that exploit implicit

information in RDF knowledge bases for producing small RDF deltas (i.e. with

a small number of insertions and deletions). It also aims at matching blank node

chains for further reduction of the delta which is considered as a preprocessing

step that is carried out before the application of the change detection approaches.

The next chapter looks at work that has been carried out on approaches

to manage ontology changes with the same or similar orientation as the work

described in this thesis.

3. RELATED WORK

This section gives a discussion of the principals involved in ontology change and

the state of the art tools that have the same or similar goals to the work explained

in this thesis. At the end of this Section, the di�erences between these tools and

the work of this thesis is characterized.

3.1 Practicality of ontology evolution

In the context of Semantic Web systems, there are several non-text based tools

that have been proposed for detecting changes between RDF graphs. For example:

• OntoView [KFKO02]: An ontology management system that compares two

RDF graphs and produces the di�erences between them.

• PromptDi� [NM02]: An ontology versioning system that compare two dif-

ferent versions of an ontology based on heuristic matchers.

• SemVerion [VG06]: A tool that produce di�erences between ontologies using

two di�erent comparison methods; syntax-based and semantic-based.

• CWM [BL+00]: Is a general purpose tool for comparing RDF data in the

Semantic Web. It uses functional and inverse functional properties for iden-

3. RELATED WORK 58

tifying blank nodes.

• x-RDF-3X [NW10]: A system for the management and querying of RDF

datasets based on a deferred indexing method with integrated versioning.

• Jena [CDD+04]: Is a Java framework for developing Semantic Web appli-

cations. It provides a tool for checking if two RDF �les are isomorphic.

• pOWL [Aue04]: A web-based ontology management system. It includes a

tool for tracking changes made when editing the ontology using the system.

• Work of Flouris et al. [FPA06]: Introduces a logic-based approach to ontol-

ogy evolution. This work is inspired by the general belief revision principles

for considering ontology changes in instance and schema levels data.

• OUL [LRVS09] [ILK13]: An event-driven automated ontology updating ap-

proach that makes use of SPARQL and SPARQL/Update statements.

• Work of Dong-Hyuk et al. [ILK12]: A version framework for the manage-

ment of RDF versions in relational databases and a pruning method for the

computation of RDF deltas.

• RDF/S Di� [ZTC07]: An approach that proposed �ve di�erential functions

which take into account the implicit knowledge in RDF graphs by means

of RDF/S inference rules.

• BNodeDelta [TLZ12]: A proposed method for the blank node matching

problem that aims at �nding a mapping that yields a minimal sized delta.

3. RELATED WORK 59

• SQOWL 2 [LM15]: is an approach that performs transactional and incre-

mental reasoning over OWL 2 RL ontologies stored in RDBMS for query

answering. It also supports update for instances level data.

These existing comparison tools typically do not focus on the size of the delta

produced, nor on blank nodes matching. These two aspects are important for

an e�cient versioning system for Semantic Web repositories where versions are

stored in remote sites on the Internet. In addition, these tools are essetially

based on high-level changes between RDF graphs. They describe the meaning

of the di�erent change operations that are detected by the underlying change

detection algorithm in such a way that they can be interpreted and exploited

by humans [PFF+13]. For example, changing the name of a class by deleting it

and inserting it with the new name can be represented in a high-level language

as a rename operation instead of the equivalent (delete and insert pair) low-level

change operations. Therefore, these tools give more attention to other aspects

of the delta such as presentation of the delta in a way that is interpreted by

humans. This includes highlighting the di�erences with di�erent colors [KFKO02]

or representing the di�erences in human language rather than a language that is

interpreted by machines [NM02].

The rest of this Section gives a detailed analysis of these tools, with more attention

to ontology languages supported by them and the way they deal with blank nodes

when producing deltas.

3. RELATED WORK 60

3.1.1 OntoView

OntoView [KFKO02] is a Web-based system that provides users with tools to aid

the task of ontology versioning. It is able to compare two ontologies and recognise

their di�erences. Moreover, it allows users to specify the conceptual relations such

as subsumptions and equivalence. It stores the content of a version, metadata,

and conceptual relations in the ontology and the di�erences between versions.

OntoView distinguishes two types of changes: changes in the conceptual level

and changes in the syntactic level. It provides a di� view tool that compares

two versions of an ontology at the structural level. This tool is inspired by the

UNIX di� tool, however, the UNIX tool compares two text �les at a line-level and

produces lines that are textually di�erent, while OntoView compares two versions

of an ontology at the structural level highlighting changes in the de�nitions of

ontological concepts and properties. The tool distinguishes between several types

of change:

• Non-logical changes: changes in the natural language such as changes in

RDF:label or changes in a comment.

• Logical changes: changes in the de�nition of a class or property such as

changes in the subsumption hierarchy or in the domain or range of a prop-

erty.

• Identi�er changes: this is when a change is made to the identi�er of a class

or a property such as renaming a class or property.

3. RELATED WORK 61

• Inserting de�nitions: are changes to the ontology made by adding a new

class or property.

• Deleting de�nitions: changes that are made to the ontology by deleting a

class or property.

It is worth noticing here that all changes are detected automatically apart from

identi�er changes as this change is not distinguishable from deletions and inser-

tions. Therefore, the system tends to use the location of the de�nition in the �le

to determine whether or not it is a changed identi�er.

Regarding the languages that Ontoview uses for the production of deltas, it

supports an RDF-based ontology language which includes RDFS and DAML+OIL.

First, it splits the ontology to separate de�nitions. These de�nitions are then

parsed into a group of RDF triples. Each group of RDF triples represents a

de�nition of a concept or a property.

The algorithm then locates each small group of triples in the new version with

the corresponding group in the previous version of the ontology. The changes

between these groups are then calculated according to a number of rules which

specify the required changes in the triple set for a speci�c type of change.

These rules are based on a speci�c mechanism that identi�es a set of triples

that should exist in one speci�c version, and the set should not exist in another

version. These rules could then identify all types of changes apart from the iden-

ti�er changes as mentioned earlier. This mechanism relies on the materialization

of all the RDF:type triples in the ontology.

3. RELATED WORK 62

Blank nodes are determined as identi�er changes, and blank node matching

is used indirectly by using the location in the �le as a heuristic to determine

whether it matches or not with a blank node in the other �le.

3.1.2 PromptDi�

PromptDi� [NM02] is an ontology versioning tool integrated into Protégé. This

tool detects changes between two versions of an ontology. It detects structural

changes between two ontologies based on the structure of the ontologies rather

than their text serialization.

The algorithm uses the a knowledge model compatible with the Open Knowl-

edge Base Connectivity (OKBC) protocol [CFF+98], which states that an on-

tology consists of di�erent elements: classes, class hierarchy, instance of classes,

slots, slots attached to a class to specify class properties, and facets to spec-

ify constraints on slot values. All these elements can be represented by di�er-

ent representation formalisms (i.e. ontology languages) such as RDFS, OWL,

DAML+OIL and other formalisms. Thus, PromptDi� applies to ontologies re-

gardless the representation formalism used.

The PromptDi� algorithm is based on the integration of di�erent heuristic

matchers for comparing and analysing two versions of an ontology and producing

the structural di�erences between them. This approach consists of two parts: (1)

an extensible set of heuristic matchers (2) an alignment algorithm to combine

the results of the matchers for producing the structural di�erence between two

3. RELATED WORK 63

versions.

Each matcher employs a speci�c number of structural properties of the on-

tologies to produce matches. The alignment algorithm combines these matchers

so that the result of one matcher is an input into the next and so until this process

produces no more changes in the di�. This di� is then presented to the user to

accept the application of these changes or reject them.

PromptDi� combines an arbitrary number of matchers, each matcher looks

for a particular situation in the unmatched frames, which can be of any type;

class, slot, facet or instance. These situations are: frames of the same type with

the same name, single unmatched sibling, siblings with the same su�x or pre�x,

single unmatched slot, unmatched inverse slot, and split classes.

Moreover, as each of the matchers is a heuristic matcher the results produced

by the matcher may not always be correct. Therefore, these results are presented

to a human expert to analyse them and examine the results of these matchers to

check whether they are correct or not. Although the heuristic matchers generally

focus on matching the structure of the nodes in the ontology which can also be

applied to blank nodes, no special focus was given to this problem.

3.1.3 Semversion

Semversion [VG06] is a structural and semantic versioning system for RDF mod-

els that supports RDF-based ontology languages such as RDFS. This system

separates the management aspects from the core versioning functions.

3. RELATED WORK 64

This approach was inspired by CVS [B+90], the text-based versioning system.

The core feature of Semversion is the separation of the language-speci�c feature

(i.e. the di�) from the structural di�erences. The system o�ers a simple API. For

example, to commit a new version, users can either provide the complete content

of the new version of an RDF model or the di� which is a set of changes that

needs to be applied to the existing version to update it to the newer one.

This versioning system is based on a layered approach that follows the Seman-

tic Web architecture. These layers are: the RDF syntax layer (e.g. RDF/XML,

Turtle, N-triple), the RDF structure layer and the ontology layer. This is to

provide a general versioning system independent of the ontology language used.

At the same time, the ontology versioning layer of the system can be extended

to support functions for speci�c ontology languages. These functions take the se-

mantics of the language into account in order to produce semantic di�s or merging

with semantic con�ict detection.

Di� in Semversion is used in two ways; (1) to calculate the semantic and

structural di�erences between two RDF models. (2) it can be used as an update

command that can apply changes to a remote RDF model because the transfer

of updates is more e�cient than the transfer of the complete new RDF version.

Semversion identi�es three types of di� methods:

• Set-based Di�, is the process of computing the di�erences between the ex-

plicit triples in the two models using set arithmetic for the triple set. Given

we have two versions of an RDF model M and M ′, the set based di� be-

3. RELATED WORK 65

tween these versions are calculated using (M −M ′) for deleted triples and

(M ′−M) for inserted triples. The di� result is then the union of the results

of these two operations. In this method, only triples containing URI or lit-

eral and not blank nodes are considered. Considering blank nodes when

calculating the di� using the set-based method will report all statements

involving blank nodes in the �rst model to be deleted and all statements

involving blank nodes in the second version to be inserted.

• The second di� method is the structural di�. In this di�, Semversion gives

a special focus to blank nodes. Without the presence of blank nodes in the

models the structural di� will be the same as the set-based di�. The problem

of blank nodes is overcome by a process called blank node enrichment. This

process involves adding functional properties to each blank node leading to

a URI and thus treating them as normal nodes. Thus, Semversion can

decide whether two blank nodes are the same or not. However, blank nodes

are matched when they participate in the same triples.

• The third di� method is the semantic di�. In this di� the semantics of

the underlying ontology language are considered. Semversion uses forward

inference to compute the di�erences between RDF models. It materializes

the full closure for both models (i.e. C(M) and C(M ′)) in advance and

then performs the structural di� between C(M) and C(M ′).

3. RELATED WORK 66

3.1.4 CWM

Closed World Machine (CWM) [BL+00] is a Semantic Web general-purpose data

processor for manipulating RDF data in RDF/XML, NTriple and Notation3 for-

mat. It is used to store RDF triples in a triple table for querying using a forward-

chaining inference engine. CWM also supports the computation of the explicit

delta between two knowledge bases and then transforms one knowledge base into

the other using the resulting delta.

3.1.5 x-RDF-3X

x-RDF-3X [NW10] is a system designed and implemented mainly for the man-

agement and querying of RDF datasets. Each dataset is stored in six duplicates

of ternary projections that constitute an RDF triple (i.e. Subject, Predicate, and

Object), one duplicate per index (SPO, SOP, OPS, OSP, POS, PSO). In addi-

tion to the six indexes, x-RDF-3X adds another set of 9 aggregates indexes that

consists of binary projections (SP, SO, OP, OS, PO, PS) and three unary projec-

tions (S,P,O). These indexes, x-RDF-3X provides a performance improvement as

they eliminate the problem of expensive self-joins in database tables which are

required for answering SPARQL query patterns which are executed against RDF

databases. However, storing and accessing these indexes with increasing volumes

of datasets may come at a high cost due to the duplicates of these indexes. Not

only storage, but also performing updates on these datasets is a challenge as it

also requires updating all the indexes.

3. RELATED WORK 67

Versioning is achieved by maintaining versions of individual triples using two

timestamp �elds; created and deleted, to denote the life of each triple version.

This timestamp interval contains the life span for a triple version. For triples

that have not changed, the deleted �eld has a null value.

The update system is built upon a number of assumptions. First, it assumes

that the number of updates to RDF models are infrequent compared to the num-

ber of queries over these models. The second assumption is that the insertions

are more frequent than deletions in RDF models.

Based on these assumptions, the authors have designed and implemented a

di�erential indexing method for RDF-3X. This method has considered updates

as either inserts or deletes. For inserts, it is more challenging as the system is

based on indexing and each RDF dataset is stored in 15 di�erent tables, inserting

a triple requires the inserts to these di�erent tables. To overcome this problem,

the system uses a staging architecture through the use of deferred index updates.

First all updates are collected in workspaces and all their triples are indexed in

di�erential indexes in an isolated manner from the main database. These changes

remain separate for a speci�c period or until the changes exceeded a speci�c time

limit, then all the changes are integrated into the main indexes in the database.

The system handles deletions in the same way as insertions. So in the case of

deleting triples, these triples are inserted into a separate workspace and di�eren-

tial indexes with a deletion �ags are generated. However, this system applies the

updates unaware of reasoning.

3. RELATED WORK 68

3.1.6 Jena

In Jena the handling of RDF data is supported by a Semantic Web toolkit for

Java programmers [CDD+04]. It is mainly centered on RDF graphs as the uni-

versal data structure and as the heart of the di�erent ontology representation

languages such as RDF, RDFS and OWL. The single unit of a graph is the bi-

nary relationship(S,P,O)where P is the binary relationship that links (S,O). This

graph is the core interface for Jena around which the other components are built.

Jena provides a rich API for manipulating RDF graphs. This API provides

di�erent tools to process RDF graphs. For example, it provides tools for input

and output of various serialization of RDF data such as RDF/XML. N-Triple, and

N3. It also supports the query language RDQL [MSR02]. Moreover, it gives the

users the option to store their RDF data either in memory or in database-backed

stores. It also supports reasoning in OWL FULL, DAML+OIL, and RDFS.

The design of Jena is built upon two key architectures goals:

• The Presentation layer: RDF graphs can be presented using a multiple and

�exible presentations for programmers.

• The graph layer: the goal of this layer is to o�er a simple view to the pro-

grammer in terms of RDF triples, as this is particularly useful for reasoning.

The �rst layer is layered on top of the second.

In terms of calculating the di�erences between two models, Jena o�ers a

method that can compare two RDF �les and reports whether they are isomorphic

3. RELATED WORK 69

or not. However, this method does not actually tell what these di�erences are

or what updates can be done in order to update a model from one version into

another.

RDF model theory has a vision that the use of blank nodes is within the

speci�c scope in the �le and not an arbitrary use. This idea is the basis of

handling blank nodes in the work reported in this thesis. This model theory

speci�es blank nodes as existential quanti�ers over the set of resources in which

the identi�ers of these blank nodes are not signi�cant. This contrasts with other

resources, which have identi�ers with global scope outside the local �le (i.e. URI

identi�ers). Blank nodes in RDF can play three roles: in the subject, in the

object, or both.

The handling of blank nodes follows the approach introduced in [M+81] to

check if two graphs are isomorphic. For this method, it creates a signature for all

nodes in the graph either anonymous or named nodes based on their position in

the graph. Nodes with the same signature are matched. If all the nodes in the

graph are matched then the two graphs are isomorphic structures.

A blank node in this method is treated in a more general way and it does not

provide any information on the di�erences between these �les that include blank

nodes in case of non-isomorphic.

3. RELATED WORK 70

3.1.7 pOWL

pOWL is a Web based ontology management tool [Aue04] implemented using the

Web scripting language PHP. It provides di�erent tools for managing ontologies,

which include parsing, storing, querying editing and versioning and comparing

RDF and OWL knowledge bases. The design of pOWL is built upon a four-

layered architecture:

• RDF store layer which stores RDF data in an SQL based databases.

• The ontology language API layer which consists of RDFAPI, RDFSAPI and

OWLAPI.

• The third layer on top of the ontology layer contains all the classes and

functions required to build Web application using the underlying ontology

layer.

• The fourth layer is the user interface layer. This user interface contains a

set of PHP pages for browsing, storing and editing RDF data.

The support for versioning in pOWL provides a method for comparing RDF

versions and reports to the user the di�erences between them. However, this

support is limited to ontologies edited by pOWL only as these changes are tracked

while editing the ontology. Moreover, pOWL supports the rollback of editing

actions. The parent action is rolled back only if the sub-actions are rolled back.

3. RELATED WORK 71

3.1.8 Work of Flouris et al.

Flouris et al. [FPA06] studied the problem of ontology evolution considering

changes in instance level and in schema level with respect to the integrity con-

straint associated with the ontology. Their work is inspired by the general be-

lief revision principles[Gär03] of Success1, Validity2 and Minimal change3. Their

proposed framework is responsible for addressing invalidities caused by change

request. However, this is mainly a theoretical work.

3.1.9 OUL

OUL (Ontology Update Language) [LRVS09] detects frequent domain changes

and updates the ontology. It is built on top of SPARQL and SPARQL Update

and is inspired by database triggers. However, the language requires a user to

manually execute an update in order to detect and handle changes. An extension

to OUL is done in [SHF12] to address some of its drawbacks such as applying

immediate updates rather than the deferred updating. In addition, the extension

also includes automatic change detection which make use of change handlers and

performs SPARQL and SPARQL/UPDATE actions whenever a certain change

event occur. This process is inspired by active database triggers.

1 Every change operation is implemented
2 The resulting ontology is valid
3 The appropriate result of changing an ontology should be as close as possible to the original

3. RELATED WORK 72

3.1.10 Work of Dong-Hyuk et al.

Dong-hyuk et al. [ILK12] proposed a version framework for managing RDF ver-

sions in relational databases. They introduced an optimized delta-based scheme

for managing RDF versions called Aggregated Delta. This scheme stores the

most recent version of RDF while older versions are stored as a backward delta

between two speci�c versions which have more than one in-between delta and

storing them in advance. Older versions are then created on the �y by directly

executing these deltas, instead of executing all the in-between deltas in sequence.

Thus, reducing the increasing version reconstruction time and the storage space

required to store all versions. In addition, for better performance and storage

space, the aggregated approach eliminates the duplicated deltas using the com-

pression algorithm that removes the duplicate triples from the deltas. In addition

to saving storage space, this compression algorithm reduces version construction

time by avoiding unnecessary computation at version reconstruction.

The performance of this approach was evaluated in terms of storage over-

head, logical version construction time, delta computation time, compression ra-

tio, and query processing time. For the experiment, nine versions of a dataset

from Uniprot Taxonomy RDF were used.

Results from their experiments show that the proposed framework maintains

multiple versions of RDF e�ciently compared to two other popular approaches in

RDF version management systems, the All Snapshots approach and the Sequen-

tial approach. The bene�t comes in terms of storage space, version construction

3. RELATED WORK 73

time and query construction time.

The proposed scheme presents the basis for storing RDF versions in relational

databases. It is designed to handle RDF in both instance and schema levels.

However, it is does not handle the OWL model and its associated inference rules.

In [ILK13] a scalable change detection tool for RDF data is proposed. The tool

computes the delta (i.e. the di�erence between two RDF �les) based on backward-

chaining inference strategy. In addition, in order to improve the performance of

change detection, their tool is supported by a pruning method that minimizes the

delta size. To handle RDF data sets too large to �t in the available RAM, this

tool was implemented using relational database and SQL queries for computing

the delta.

3.1.11 RDF/S Di�

In [ZTC07] three RDF/S di�erential delta functions are proposed to transform

one knowledge base into another. These deltas are interpreted as sets of change

operations (deletions and insertions) and are calculated based on the inferred

knowledge from RDFS knowledge bases. These deltas are explicit dense delta

(∆ED), dense delta (∆D) and dense & closure delta (∆DC). These deltas vary

in the application of inference to reduce their size. ∆ED and ∆D are explained

in Section 2.5 (De�nition 2.5.3 and 2.5.4, respectively).

3. RELATED WORK 74

3.1.12 BNodeDelta

In [TLZ12] the authors proposed methods to exploit blank nodes in order to

identify subgraph-isomorphism and reduce the delta size when comparing two

knowledge bases using the explicit information only. The proposed methods are

based on mapping between the blank node of the compared knowledge bases and

they reduce delta size.

The authors represent algorithms that are polynomial in case there are not

directly connected blank nodes. These algorithms return approximate solutions in

the general case. The �rst algorithm is based on the Hungarian method [Mun57]

which produces smaller deltas but at additional cost. A Hungarian method is an

algorithm which �nds an optimal assignment for a given cost matrix. Suppose we

have n resources to which we want to assign to n tasks on a one-to-one basis. Also

suppose that the cost of assigning a resource to a task is known. The assignment

problem is to �nd an optimal assignment that minimizes total cost. In the context

of mapping between blank nodes of the compared graphs, the blank nodes in one

graph, B1, play the role of resources, blank nodes in the other graph, B2, play

the role of tasks, and the edit distances of the pairs in B1×B2 plays the role of

the cost. Considering that ‖B1‖ = ‖B2‖, the Hungarian algorithm computes the

edit distance between all possible n2 pairs and can �nd the optimal assignment at

the cost of O(n3) time. The second algorithm for mapping between blank nodes

of two knowledge bases is signature-based which has reduced cost but produces

larger deltas.

3. RELATED WORK 75

3.1.13 SQOWL 2

SQOWL 2 [LM15] is an approach that is built as a separate layer over an RDBMS.

It performs transactional and incremental reasoning over OWL 2 RL ontologies

stored in RDBMS and adopts a materialised approach that preserves full ACID

properties (i.e. Atomicity, Consistency, Isolation and Durability [HR83]). In

transactional reasoning new data becomes available at the commit of any trans-

action that inserts or deletes data in the database. In incremental reasoning the

materialised views are incrementally maintained as a result of transactions. The

incremental reasoning could be recursive when considering OWL 2 RL.

This approach is based on the Delete & Rederive (DRed) algorithm [GMS93].

In this algorithm, all derived facts are over deleted from the view when deleting

explicit facts. The approach then rederives new facts that are referable from the

remaining explicit facts in the database. This algorithm is ine�cient as some

of the inferred facts are then reinserted or when some derived facts have many

di�erent derivations and have relations to other inferred facts. The SQOWL 2

approach presents a variant of DRed that uses RDBMS triggers which support

transactional and incremental type inference. The way the triggers are used is as

follows:

• Each derived fact in the materialised data is assigned a state.

• Deletions over the explicit facts invoke RDBMS triggers to update the state

of related implicit facts.

3. RELATED WORK 76

• This reduces the number of real deletes from the implicit facts.

Since this approach materialises the results of reasoning, it is more e�cient

for query answering than the non-materialising approaches. This approach can

also be incorporated into any RDBMS application. This approach is restricted to

updates to the ontology A-Box (i.e. assertional knowledge within the knowledge

base) and assumes that the T-Box (i.e. terminological knowledge that describes

the conceptualization) of the ontology remains unchanged. Thus. it performs

type reasoning which derives for each instance its membership of classes and

properties. It is also built on the assumption that the number of queries exceeds

the number of updates and is less suitable for applications where the number of

updates is relatively higher than the number of queries.

3.2 Conclusion

The Semantic Web has undergone signi�cant advancement in change detection.

A synopsis of change detection tools is presented in Table 3.1. Work has been

carried out on characterising the deltas between ontology versions [ZTC11] but

existing RDF change detection tools have not yet focused on producing a small

correct delta using the power of inference and blank node matching that could

e�ciently transform one version of an ontology into another. In addition, al-

though some studies have dealt with inferencing under OWL ontologies in RDF

query processing systems [UVHSB11] [UKM+12][KWE10], no work is found for

detecting RDF changes under OWL 2 ontologies, that gives attention to not only

3. RELATED WORK 77

producing the correct and small delta under the semantics of OWL 2 ontolo-

gies but also reducing the unnecessary inferencing and application of the OWL 2

ruleset.

The work of this thesis focuses on change detection between two versions of

an ontology, to detect changes between them and also to characterise update

commands that can be sent through the network to update remotely stored ver-

sions of the ontology. This work gives considerable attention to both the size and

correctness of the produced delta. The size of the delta in our work is further

reduced by applying a general blank node matching algorithm that preprocesses

blank node chains before the calculation of deltas. This algorithm matches blank

node chains between the two versions and only adds di�erent chains of blank

nodes to the produced delta where these are necessary. For the production of

deltas, this work eliminates unnecessary reasoning through the introduction of a

rule pruning method in the context of rule-based reasoning with OWL 2 RL/RDF

ruleset.

3. RELATED WORK 78

Fig. 3.1: Existing systems

4. EXPERIMENTAL METHODS

RDF is widely used in the Semantic Web for representing ontology data. Many

real world RDF collections are large and contain complex graph relationships that

represent knowledge in a particular domain. Such large RDF collections evolve

in consequence of their representation of the changing world. Although this data

may be distributed over the Internet, it needs to be managed and updated in the

face of such evolutionary changes. In view of the size of typical collections, it

is important to derive e�cient ways of propagating updates to distributed data

stores.

Minimising the size of updates can be achieved by reasoning over the underly-

ing knowledge base. This could be accomplished by reasoning over both insertions

and deletions and by exploiting the semantic content of the underlying ontology

language.

Optimizing the reduction of RDF updates and the need to measure the cost

of this process has led to four sets of experiments:

1. An initial experiment that highlights the problem of view updates and the

cost of applying inserts and deletes over RDF collections.

2. To cope with the evolving nature of the Semantic Web, it is important to

4. EXPERIMENTAL METHODS 80

understand the costs and bene�ts of the di�erent change detection tech-

niques. This experiment provides a detailed analysis of the overall process

of RDF change detection techniques and the cost of reasoning and pruning

unnecessary updates.

3. A change detection technique that yields a small delta is proposed. How-

ever, this delta must satisfy correctness when propagating these updates to

remote knowledge bases. This experimental work describes a new approach

to maintaining the consistency of RDF by using knowledge embedded in

the structure to generate e�cient update transactions.

4. The �nal set of experiments evaluates the potential for reducing the delta

size by pruning the application of unnecessary rules from the reasoning

process. It also assesses the impact of handling blank nodes during the

change detection process in ontology structures.

4.1 RDF views update

An RDF view is an abstract of underlying data where that abstract is represented

as an RDF graph. Three possible ways of applying updates to RDF views and

their underlying triple stores are described in Figure 4.1. (a) View may be regen-

erated after applying updates to the underlying triple store, (b) after updating

the triple store, rather than regenerating the whole view, updates are applied

to the view to �x it. In this case it is called view maintenance. (c) Updates

4. EXPERIMENTAL METHODS 81

are applied directly to the view and updates to the underlying triple store are

postponed, this case is called view update.

Fig. 4.1: Possible alternatives for applying changes to RDF Data. TS: Triple
Store. V: RDF view. The sold arrow between the triple store and the
view indicates a regeneration process, while the dotted line indicates
updating process.

The aim of the �rst set of experiments is to assess the performance of basic

view operations on RDF data structures using the view update model ((c) above).

In these experiments, six di�erent but incremented portions of the Uniprot RDF

dataset were stored in RDF/XML format. Table 4.1 summarizes the character-

istics of the data set.

RDF data Model1 Model2 Model3 Model4 Model5 Model6
Number of triples 80,472 162,587 253,081 540,918 755,579 1,287,856
Size (MB) 8.12 16.2 32.5 56.8 73.1 130

Tab. 4.1: Uniprot RDF

The architecture of this work is shown in Figure 4.2. By using libraries in the

Jena Framework, RDF structures stored in XML/RDF format are loaded as in-

memory models of the RDF structures. These in-memory models can be seen as

4. EXPERIMENTAL METHODS 82

Update Random selection Speci�c seletion Model
Fixed insert

10,000 triples 10,000 triples All six models
Fixed delete
Variable insert 10- 100- 1000- 100,000-

1000,000 triples
10- 100- 100- 1000- 100,000-

1000,000 triples
Only model 6

Variable delete

Tab. 4.2: Number and type of updates performed

RDF views of the underlying RDF structures. The initial work of the experiment

involves two types of RDF view updates: multiple random updates and multiple

speci�c updates. These updates are applied to the instance level of RDF and do

not handle the schema level, which is the ontology level that identi�es complex

constraints on RDF data. The view maintenance approach is classi�ed as an

updating method. It is not a method for managing multiple versions.

Both random and speci�c updates perform updates to an in-memory view of

the underlying RDF structures. The implementation of both approaches uses

Jena as the underlying framework for RDF update as it provides an implemen-

tation of SPARQL and SPARUL. These updates were applied against the RDF

dataset shown in Table 4.1. Each type of update involves four operations: �xed1

deletes, �xed inserts, variable2 deletes, and variable inserts. Table 4.2 shows

the details of each of these operations in terms of the exact number of updated

triples and on which models these updates are applied. The performance of these

updates was compared and evaluated in terms of update CPU time.

In the Random approach, updates were applied to the RDF structure without

1 Fixed in the sense that the number of updates was �xed but the size of the triple store
varied

2 Variable in the sense that the number of updates varied but the size of the triple store was
a constant

4. EXPERIMENTAL METHODS 83

Fig. 4.2: RDF view update.

initially locating speci�c triples to update. In contrast, in the speci�c update

approach, a list of triple subjects was separately prepared by selecting distinct

triple subjects and storing them in a separate text �le using Jena framework and

Java. The subject entries in this list were used to identify and select the triples

that have the same subject or to add new triples having these entries as a subject

to update using SPARQL queries. Whilst the random update will give the time

needed to carry out the update operation, the di�erence between the random

and speci�c operations will give the additional time needed to locate each of the

triples to be updated.

4. EXPERIMENTAL METHODS 84

Within these two overall approaches, the impact of varying the size of the

model was evaluated by using data structures ranging from 8MB to 130MB as

shown in the table. In these cases 10,000 updates were applied to each of the

models. In addition, the impact of varying the number of updates was assessed

by applying between 10 and 1,000,000 updates. In both variable updates and

variable model sizes, the performance of both insert and delete operations were

measured in terms of update time. Results for these experiments are presented

in Section 5.1.

4.2 The cost of pruning in change detection techniques

The work in Section 4.1 assesses the overall cost of updating RDF structures. The

work described in this section provides a detailed analysis of di�erent change de-

tection techniques3 including: explicit change detection (denoted as EC), forward-

chaining change detection (denoted as FC), backward-chaining change detection

(denoted as BC) and pruning-and-backward-chaining change detection (denoted

as PBC). EC performs ∆E (De�nition 2.5.2) for computing the deltas, while FC,

BC and PBC perform ∆ED (De�nition 2.5.3).

The RDF triple store was designed based on the properties subClassOf, sub-

PropertyOf, Type, and Triple which holds triples that contain any other property

type. In addition, there are two extra tables which store the result of performing

the set-di�erence operations M −M ′ and M ′−M , these tables are Del table and

3 De�ned in Section 2.4 on page 36

4. EXPERIMENTAL METHODS 85

Ins table respectively, and a third table (Inf) stores inferable triples. Using these

tables, changes between two RDF models are detected and updated as follows:

First, the di�erences betweenM andM ′ are computed using the set-di�erence

operations M −M ′ and M ′−M , the result is stored in the Del table and the Ins

table, respectively.

Next, in the case of ∆E, the triples in the Del table and the Ins table represent

the delta. Therefore, all the triples in the Del table are removed from M, and all

the triples in the Ins table are inserted into M. This step transforms M to M ′.

In the case of the reasoning-based approach, ∆ED, after computing the explicit

di�erences between the two versions M and M ′ one of the inference strategies

FC, BC or PBC is used to produce the delta based on the semantic di�erences

between the versions. In the case of ∆ED, the reasoning process is applied only

on the Del table and not the Ins table as after the application of this approach

the di�erences in the Ins table will remain explicit di�erences and not semantic

di�erences.

The computation of delta in FC follows the inference-then-di�erence strategy.

Therefore, before computing the di�erences and updatingM , there is an inference

process that involves the calculation of the full closure in M ′.

In the case of BC, a di�erence-then-inference strategy is followed so the di�er-

ences between the two models are computed �rst and instead of calculating the

full closure of M ′ the inference process checks only the triples in the Del table to

see if they can be inferred in M ′ by applying the inference rules in Table 2.2. If

4. EXPERIMENTAL METHODS 86

Algorithm 1: Generation of the correct dense delta ∆Dc

Data: M ,M ′

Result: ∆Dc

1 Del = M −M ′;
2 Ins = M ′ −M ;
3 for a ∈ Del do
4 if inferable(a, M ′) then
5 remove a from Del;

6 for b ∈ Ins do

7 if (inferable(b, M)) and (all antecedents of b /∈ Del) then
8 remove b from Ins;

9 ∆Dc = Del ∪ Ins;

∆D = {Del (John type Student)}
∪ {Ins (Head_Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student) }

∆Dc = { Del (John type Student)}
∪ {Ins (Head_Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student),
Ins (John type Person)}

Fig. 4.3: The dense delta ∆D (left).The correct dense delta ∆Dc (right) calcu-
lated from the example in Figure 2.2

any triple is inferred in M ′ this triple is removed from the Del table.

In contrast, in PBC, prior to the inference process, some of the triples in the

Del table may be pruned. The pruning process checks every triple in the Del

table. If both the subject and the object of the triple exist in M ′ as a subject

and object, respectively, then the triple may be inferable in M ′, and therefore

this triple is inserted to the Inf table. After the pruning process, only the triples

in the Inf table are included in the inference process and not all the triples in the

Del table. It is worth mentioning that not all the rules are applied to each triple,

but only the rules that correspond to the property of the triple. The result of

this experiments are represented in Section 5.2.

4. EXPERIMENTAL METHODS 87

4.3 Correct dense delta

An important requirement of change detection tools is their ability to produce a

small but correct delta that will e�ciently transform one RDF model to another.

This thesis contributes a correct dense delta called ∆Dc. This is achieved by

producing a solution to the correctness of ∆D (∆D is characterized in De�ni-

tion 2.4.4). This is a particularly important problem when RDF collections are

large and dynamic. In this context, propagation between server and client or

between nodes in a peer-to-peer system becomes challenging as a consequence of

the potentially excessive use of network bandwidth. In a scenario where RDF

update is carried out by push-based processes, the update itself needs to be min-

imised to restrict network bandwidth costs. In addition, in pull-based scenarios,

it is important to limit server processing so that updates can be generated with

maximum e�ciency. Both of these scenario will bene�t from using the smallest

deltas that will maintain the consistency of an RDF knowledge base.

De�nition 4.3.1 (Correct dense delta). Let ∆E, C(M) and C(M ′) be as de�ned

in Section 2.5 and additionally let ante(s, t)→ s indicate that s is an antecedent

of t. The correct dense delta ∆Dc is de�ned as:

∆Dc = ∆E−({Del(t) | t ∈ C(M ′)}∪{Ins(t) | t ∈ C(M)∧{ante(s, t)→ s 6∈ Del}})

Where Del is the delete set.

Under the semantics of the subset of RDFS rules in Table 2.2 all deltas are

4. EXPERIMENTAL METHODS 88

unique 4 with respect to the di�erence between C(M) and C(M ′). ∆Dc does not

require M or M ′ to be closed and consequently it is not unique.

The correct dense delta is produced by checking triples in both the insert and

delete sets of ∆E. Firstly, the delete set should be calculated before the insert set.

Secondly, all antecedents for each inferred triple must be checked to see whether

they exist in the delete set. If one or both antecedents exist in the delete set then

this triple cannot be inferred.

To calculate the closure forM in order to compute the insert set, if two triples

in M point to a conclusion based on the rules, then these triples are checked

against the deleted set. The conclusion cannot be true if at least one of the two

triples exists in the delete set, otherwise, the conclusion is true and the triple can

be inferred in M . This process (Algorithm 1) produces the correct dense delta

∆Dc.

Returning to the example in Figure 2.2 in Chapter 2, Figure 4.3 provides an

example of the operation of ∆Dc. Because the delete set is calculated �rst, the

triple (John Type Person) will not be inferred from (John Type Student) and

(Student SubclassOf Person) given that the former is included in the delete set.

The delta will result in the updates shown in Figure 4.3 (the updates on the left).

Applying these updates to M will result in the model in Figure 4.4. This model

is identical to M ′, indicating the correctness of ∆Dc. The number of updates

after �xing the incorrectness problem is increased but it produces a correct delta.

However, this number is smaller than the number of updates produced by ∆ED

4 Uniqueness means there is only one set of update that transform one model into the other

4. EXPERIMENTAL METHODS 89

M
(Graduate subClassOf Person),
(Student subClassOf Person),

Original (Head_Teacher subClassOf Sta�),
triples (Teacher subClassOf Sta�),

(Sta� subClassOf Person),
(John Type Student).

Inserted (Head_Teacher subClassOf Teacher),
triples (Graduate subClassOf Person).

(John Type Person)

Fig. 4.4: Correct updates

or equal to it in the worst case. In such a worst case, none of the inserted triples

in ∆Dc can be inferred in M because either there are no triples that can be

inferred or at least one of the antecedents of every inferable triple is included in

the delete set.

Both ∆ED and ∆Dc functions discussed above apply an inference-then-di�erence

strategy. This implies that the full closure of the RDF models should be calcu-

lated and all the possible conclusions under the RDFS entailment rules are stored

in these models. By contrast, a backward-chaining approach uses the di�erence-

then-inference strategy. That is, instead of computing the entire closure of M ′,

in the case of ∆ED, this method calculates �rst the set-di�erences M −M ′ and

M ′ − M , and then checks every triple in M − M ′ and removes it if it can be

inferred in M ′. The operation becomes:

Remove t from (M −M ′) if t ∈ C(M ′)

Instead of pre-computing the full closure in advance, this method infers only

triples related to the result of M −M ′. This would be expected to improve the

time and space required in change detection by comparison with the forward-

chaining approach.

4. EXPERIMENTAL METHODS 90

In the example dataset shown in Figure 2.2, to calculate ∆ED using the

backward-chaining strategy, the sets of inserted and deleted triples are calculated

using set-di�erence operation in the same way as when calculating ∆E. After

calculating the changes at the syntactic level, each triple in the delete set is

checked to see if it can be inferred in M ′ using the RDFS entailment rules in

Table 2.2. For example, the triple (Graduate subClassOf Person) in M − M ′

is checked to see if it can be derived in M ′. Using the RDFS entailment rules

this triple can be derived from the two triples (Graduate subClassOf Student)

and (Student subClassOf Person), therefore, this triple is removed from M −M ′.

Rather than checking all the triples in M ′, only the three triples in M −M ′ are

checked.

For applying the backward-chaining in ∆Dc, �rst the set of deleted triples

in M − M ′ is inferred as explained above, then the set of inserted triples in

M ′ −M is also checked to see if it can be derived in M . However, to guarantee

the correctness of the delta, before removing the inferable triples from the delta,

antecedents of each inferable triple in M ′ −M are checked to see if at least one

of them exists in M −M ′. If this is the case, this triple cannot be removed from

the delta. Algorithm 1 describes the generation of ∆Dc by backward-chaining.

Both forward-chaining and backward-chaining produce the same delta, but the

latter applies the inference rules on only the necessary triples. However, although

the backward-chaining method is applied to infer only relevant triples, applying

the inference on some of these triples might be unnecessary allowing pruning to

4. EXPERIMENTAL METHODS 91

be applied before backward-chaining [ILK13]. The general rule for pruning is

that if the subject or object of a triple in M −M ′ or M ′ −M does not exist

in M ′ or M , respectively, then this triple cannot be inferred, consequently the

triple can be pruned before the inference process begins. Although pruning may

reduce the workload for inferencing, it carries a potential performance penalty

[AAW15]. A proof of the correctness of ∆Dc is presented in Appendix C. Results

for generating deltas using ∆Dc are presented in Section 5.3.

4.4 Delta generation using pruned ruleset

The use of pruning triples in the context of RDFS knowledge bases typically

follows the process of checking the subject and object of each triple to see if it

exists in the knowledge base. If it does exist then it is needed for the inferencing

process. If not, the triple can be pruned from the inferencing set. This works well

when there is a large number of triples and few rules. Where the rules are more

complex, as in the case of OWL2 RL/RDF, pruning the ruleset rather than the

triples becomes more important. This section describes the process of pruning

the OWL 2 ruleset in the context of repeated rounds of rule application. This

contrasts with previous approaches to the problem that focused on pruning the

triples themselves.

4. EXPERIMENTAL METHODS 92

Fig. 4.5: Entailment rules in OWL2 RF/RDF

4.4.1 OWL 2 RL/RDF rules

The RDFS ruleset provides limited scope for entailment and most of the rules

are not relevant to inference over RDF updates. The OWL 2 RL/RDF ruleset

is more extensive and provides considerable scope for reasoning over ontology

updates[MGH+09]. Examples of the rules are shown in Table 4.5. The full

ruleset used in this thesis is shown in Appendix B.

OWL 2 rules form an OR tree and as can be seen from Table 4.5, there are

multiple possibilities for establishing a single consequence such as (x rdf:type y).

Furthermore, the structure of these rules allows for iterative inference over a triple

set. That is, each rule may produce new triples that can be added to the triple

set and impact further rounds of rule application.

The application of these rules can be used to �nd the smallest delta that

can unambiguously represent the di�erence between two ontologies. A signi�cant

challenge in reasoning over such di�erences comes from the presence of blank

nodes in ontologies.

4. EXPERIMENTAL METHODS 93

4.4.1.1 Rule execution

Simple database implementations of OWL 2 RL rules perform poorly in ontologies

with large ABoxes as the application of the rules requires execution of joins on the

arbitrary large ABox [HD09]. However, optimization such as the parallelisation

of backward-chaining can improve the performance of rule implementations. This

work focuses on backward-chaining for the reduction of RDF deltas.

De�nition 4.4.1 (Delta reduction using chaining).).

Given two RDF modelsM , M ′ and a set of entailment rules R, the reduced delta

∆R is de�ned as: a reduced set of triples tI | tI /∈ ∆R are entailed inM,M ′ using

the rules in R.

Regardless of the set of considered rules, for each update (i.e. inserted or

deleted triple) in the delta, backward-chaining �rst searches all the rules for a

conclusion that is compatible with this update. After this, it will look at the

body of these rules trying to �nd antecedent patterns that contain values in the

same position as speci�ed in the body of the rule. Only triples that contain

properties of the type:

rdfs:subClassOf, rdfs:subPropertyOf or rdf:type are inferred and are checked in this

way.

A subset of the OWL 2 RL/RDF rules can be categorised into three groups

based on these properties. Each group contains a set of rules that have a property

of these values as a conclusion and a body consisting of one or more antecedent

patterns that lead to that conclusion. Figure 4.6 shows the resulting OR tree.

4. EXPERIMENTAL METHODS 94

Fig. 4.6: OWL 2 OR trees used to derive conclusions about rdfs:subPropertyOf,
rdfs:subClassOf and rdf:type. (In red) The type of each rule based on
the type of its patterns: Selective(S), Non-selective(N), Recursive(R) or
a combination of two or all of them.

To check if an update of a particular property type is inferable in the knowledge

base, the set of rules in the appropriate tree are applied sequentially until the

update is inferred in the knowledge base or no more rules remain to apply.

Implementation of these rules can be simpli�ed by decomposing the antecedents

into multiple database searches which are terminated when one component fails to

return a value. Further simpli�cation can be achieved by executing rule patterns

in a particular order starting with simpler patterns �rst.

Rule patterns in OWL 2 RL/RDF are either selective, non-selective or recur-

sive. The di�erent types of patterns indicate how these patterns are executed

against the dataset in order to �nd a matching triple. A selective pattern does

not require further execution of the set of rules in order to �nd a matching triple

in the dataset. If no triple in the knowledge base matches the selective pattern

then no further rules can be applied to infer that pattern. This contrasts with the

4. EXPERIMENTAL METHODS 95

recursive pattern which will generate repeated calls until the desired conclusion

is found or until no more patterns can be executed. Non-selective pattern may

trigger the execution of further rules but are not in themselves recursive.

In OWL 2 RL/RDF ruleset (Appendix B), rules can consists of selective pat-

terns, non-selective patterns, recursive patterns or a combination of two or all of

them. Figure 4.6 shows the type of each rule based on the type of its patterns.

Example 2. As an example of the process, the rule cls-svf1 has antecedents

(?x owl:someValuesFrom ?y)

(?x owl:onProperty ?p)

(?u ?p ?v)

(?v rdf:type ?y)

and consesquent (?u rdf:type?x)

The rule in the above example is of the type SNR, as shown in Figure 4.6,

because it has four patterns (i.e. antecedents) the �rst two is selective (i.e. S),

the third pattern is non-selective (i.e. N) and the last pattern is recursive (i.e.

R). Similarly, the type of the other rules in Figure 4.6 is based on their patterns

which can be found in Appendix B.

One step in reaching the consequent is to establish a list of triples that match

the selective triple pattern (?x owl:someValuesFrom ?y), which will bind only to

triples containing owl:someValuesFrom as a predicate. A further step to reach

the consequent of cls-svf1 is to bind triples matching the non-selective pattern

(?u, ?p, ?v). Rule cls-svf1 also requires the recursive antecedent (?v rdf:type ?y).

4. EXPERIMENTAL METHODS 96

This antecedent can be established by consulting any of the rules in the rdf:type

OR tree shown in Figure 4.6 which also includes a call to cls-svf1.

For each triple in the delta, the purpose of executing the rules is to see if the

triple can be inferred in the updated set (M or M ′). At this point the OR tree

for that triple can be terminated. To achieve this, the order of executing these

patterns starts with selective patterns, followed by the non-selective patterns

and �nally the recursive pattern because they are the most complex in terms of

execution.

Recursive patterns are potentially expensive in terms of their execution be-

cause they generate further calls until the desired conclusion is found or until no

more patterns can be executed. In contrast, the execution of the selective pattern

is relatively simple, because a conclusion such as (?u rdf:type ?x) can be derived

from the knowledge base simply by �nding that the object of the triple (?x) exists

in the someValuesFrom table. In the case where this object does not exist, the

rest of the patterns in the rule no longer require further execution. Thus, in this

example, the patterns (?x owl:someValuesFrom ?y) and (?x owl:onProperty ?p)

are executed �rst because they are both selective patterns and can save the ex-

ecution of the other patterns if no triple in the knowledge base matches one

of these patterns. Subsequently the pattern (?u ?p ?v) and �nally the pattern

(?v rdf:type ?y) are matched because they may require further execution of rules

if no triples in the knowledge base match the pattern. Decomposing the execu-

tion of these patterns in this way may avoid the searches required in executing

4. EXPERIMENTAL METHODS 97

Fig. 4.7: Overlapped OR trees. The round arrows indicate a recursive call from
within the OR tree

them as a single query and consequently reduce the execution time [KWE10]. De-

composed sections can then be executed separately following the order described

above.

As a result of the recursive patterns, the di�erent OR trees overlap because

recursive patterns in one OR tree may require further application of other rules

which may be in other OR trees. Figure 4.7 shows the overlapped OR trees as con-

cluded from the rules they contain. All OR trees (i.e. rdf:type, rdfs:subclassOf,

and rdfs:subpropertyOf trees) have a recursive call from within the OR tree.

In addition, from the rules in the OR trees in Figure 4.6, rdf:type OR tree re-

quires a call to execute rules from other OR trees (i.e. rdfs:subClassOf and

rdfs:subPropertyOf), and rdfs:subClassOf OR tree requires a call to execute rules

from rdfs:subPropertyOf OR tree, while rdfs:subPropertyOf OR tree has only a

recursive call to itself.

4.4.2 Pruning OR trees

The process of pruning OR trees starts with the generation of ∆E. Each triple in

the delta set is checked against the dataset to determine whether it is inferable,

4. EXPERIMENTAL METHODS 98

Fig. 4.8: Sample data structure before and after update with the insert and delete
sets

which would allow it to be removed from the delta set and hence reduce the

delta size. This process requires the execution of each rule in the OR tree for the

corresponding triple (i.e. triples with the a property: rdf:type, rdfs:subclassOf, or

rdfs:subPropertyOf). In a relational data store implementation, the execution of

these rules involves joins between tables in the database that match the patterns

in these rules. However, some execution of these rules, and therefore joins between

tables in the database, are unnecessary and can be avoided as they will not lead

to the desired conclusion.

In the example shown in Figure 4.8, M and M ′ are two di�erent versions

of an OWL knowledge base with M ′ being a newer version of M . The explicit

di�erences (∆E) between the two versions are shown in the same �gure. This

example focuses only on the deletion set of triples because the process of reducing

4. EXPERIMENTAL METHODS 99

this set does not require further checking to perform correct and valid reduction

of the delta, as would be the case if the insertion set was involved. Reducing

the deletion set requires the application of OWL inference rules against M ′, the

newer version of the dataset. The deletion set in the delta contains a triple

(MathTeacher rdfs:subClassOf Staff). In order to reduce the delta size, the triple

needs to be checked to see if it is inferable in M ′. This involves executing the

rules in the OR tree for the subClassOf property shown in Figure 4.6 until this

triple is inferred by the execution of one of these rules or until no more rules can

be applied. In the �rst case, the triple is removed from the delta. In the second

case the triple should remain in the delta. The other rules used in this process

are also identi�ed in Figure 4.6. Using as an example the recursive rule scm-sco,

the execution of this rule requires a recursive call to the rule until the triple is

inferred or no more recursive calls can be applied.

Each time a recursive call is made, a self-join to the subClassOf table is

required in order to infer the triple (MathTeacher rdfs:subClassOf Staff). Initially,

a search is carried out to �nd if the patterns (MathTeacher rdfs:subClassOf ?c)

and (?c rdfs:subClassOf Staff) exist. If they can be found, the triple is inferable

and can safely be removed from the delta. However, if triples matching these

patterns do not exist then the straightforward approach is to �nd all the patterns

that have MathTeacher in the subject position and apply a recursive call to this

rule until the main triple (i.e. (MathTeacher rdfs:subClassOf Staff)) is inferred

or no more patterns can be generated from the dataset which will terminate

4. EXPERIMENTAL METHODS 100

the recursive execution of the rules as RDF datasets contains a �nite number of

triples.

If triples such as (MathTeacher rdfs:subClassOf C1),

(MathTeacher rdfs:subClassOf C2) etc. exist inM ′ then these triples are added to

a list of those inM ′ that have MathTeacher in the subject position. In the context

of the scm-sco rule and consideration of the triple (MathTeacher rdfs:subClassOf C1),

a recursive call is made to the rule in order to infer (C1 rdfs:subClassOf y) by

searching for the patterns (C1 rdfs:subClassOf ?x) and (?x rdfs:subClassOf y). If

these patterns do not exist in M ′, then all the patterns that have C1 in the sub-

ject position are generated and this process continues until the triple is inferred

or no further patterns are generated.

This approach requires successive self-joins in the triple store, which it may

not be possible to infer the triple in order to reduce the delta size. There is

potential advantage in avoiding unnecessary rule execution since this will result

in potentially multiple self-joins in the triple store.

We proposed a rule pruning method that prune unnecessary rules in the OR

tree. This approach is based on initially checking whether both the subject and

object of a triple exist in the appropriate positions as de�ned by the patterns in

each rule before executing that rule. If both subject and object exist then the

rule is applied otherwise it is pruned from execution. The checking avoids the

use of joins in the triple store, thereby reducing the e�ort involved in further

processing. Algorithm 2 describes this method.

4. EXPERIMENTAL METHODS 101

Finding a subject or an object of a triple can be done in two ways based on

the type of the pattern of the rule. Finding a matching triple for a selective

pattern requires checking whether the subject and the object of a triple exist in

the exactly the same positions as de�ned by the patterns of the rule. This is

shown in the algorithm as FindMatchInFixedPosition.

The other way of �nding a subject or an object of a triple is to check whether

the subject and the object of a triple exist in any position (i.e. the subject po-

sition or the object position). Finding matching for non-selective and recursive

patterns is done using this approach which is shown in the algorithm as Find-

MatchInAnyPosition. The evaluation of the pruning algorithm described in this

work is based on a relational triple store which is explained in Section 5.4.

The relational representation of triple data used by the RDF model is decom-

posed into a number of tables as described in Section 4.2. The complexity of

Algorithm 2 is based on (µ) which is the number of triple in any of these tables

and thus normally very much less than (N), being the total number of triples in

the dataset. The algorithm step in line 6 is consequently of complexity O(µ). The

step in line 11 is similarly of O(µ). The last step in the algorithm (in line 14) re-

quires joining of the table that represent the decomposed triples. The worst case

of this process will be O(µ2) which gives an indication of the time complexity of

the algorithm as a whole. The actual performance can be improved by indexing.

Generally, to infer the triple (x rdfs:subClassOf y), both x and y are checked

to see if they exist in the subClassOf table in the subject position of one triple

4. EXPERIMENTAL METHODS 102

and the object position of another triple respectively. No joins are needed in this

step. If the method returns true then the rule can be executed, otherwise this

rule is pruned and no further checking of the consequent takes place. If the rule

is pruned, the other rules in the OR tree are checked in the same way until a true

value is applied or no more rules remain in the OR tree.

For example, a triple such as (S1 rdf:type Sta�) in the deletion set, reduction

in the delta size and particularly the deletion set can be achieved by checking

whether the triple is inferable in M ′ or not by applying rules in the rdf:type

OR tree. Before proceeding with the execution of these rules, the subject (S1)

and the object (Sta�) of this triple are checked against all patterns within the

rules of the rdf:type OR tree. The rule prp-dom, for instance, has two pat-

terns (?p rdfs:domain ?c) and (?x ?p ?y) in its body which derive the conclusion

(?x rdf:type ?c). To check if this rule can be pruned, we need to check if the

subject of the triple (S1 rdf:type Sta�) exists in either the subject column or the

object column of the general triple table. Furthermore, it is necessary to check

the object column in the rdfs:domain table to ascertain whether value Sta� exists

as the object of that triple.

Checking the existence of the subject S1 in either position of the triple table is

an exceptional case that appears in all rules containing a non-terminological pat-

tern (i.e. the property of the triple is a user-de�ned property) such as (?x ?p ?y).

The reason for checking the existence of the value in either the subject or the ob-

ject columns of the general triple table is because triples matching non-terminological

4. EXPERIMENTAL METHODS 103

patterns can be inferred by other rules which include non-terminological patterns

in their bodies that reverse the positions of the values of the subject and object.

An example of such a rule is prp-symp, which has two antecedents in its body:

(?p rdf:type owl:SymmetricProperty) and (?y ?p ?x), and derives a conclusion

(?x ?p ?y).

Checking the value S1 of the triple in only the subject column of the triple

table is not enough to decide if the rule can be pruned as triples matching the

non-terminological pattern (?x ?p ?y) can be concluded by other rules having

non-terminological patterns with the value of the subject in the object position

(?y ?p ?x).

According to the rule prp-dom, checking the subject of the triple (S1 rdf:type Sta�)

in only the subject column of the general triple table will result in pruning this

rule as S1 does not exist in the subject column in this table as shown in Figure 4.8.

However,M ′ contains the triples (ex:hasColleague rdf:type owl:SymmetricProperty)

and (S2 ex:hasColleague S1) which according to rule prp-symp can produce as a

conclusion the triple (S1 ex:hasColleague S2). This has S1 in the subject position

which is necessary for the execution of the rule prp-dom.

To summarise, pruning a rule involves checking whether the

value of the subject and the object of the corresponding triples in the delta set

exist in the same position as stated in the patterns of the body of that particular

rule. Only when a rule contains a non-terminological pattern then the existence

of a particular value is checked against either the subject position or the object

4. EXPERIMENTAL METHODS 104

Algorithm 2: Reasoning with pruned rules
Data: t ∈ ∆, orTree
Result: true if the update is inferable in the knowledge base otherwise

false
1 rules = orTree.getRules(t)//get the rules from the corresponding orTree
2 result = false
3 while rule in rules AND result == false do
4 if ruleType == SNR or SN or SR or S then

/* SNR - Selective, Non-Selective and Recursive */

/* SN - Selective and Non-Selective */

/* SR - Selective and Recursive */

/* S - Selective */

5 selectivePatterns = rule.getSelectivePatterns()
6 if not{selectivePatterns.FindMatchInFixedPosition(t)} then
7 rule.prune()
8 continue //to the next rule in rules

9 if ruleType == SNR or NR or SN or SR then
/* NR - Non-Selective and Recursive */

10 nonSelectivePatterns = rule.getNonSelectivePatterns()
11 if not{nonSelectivePatterns.FindMatchInAnyPosition(t)} then
12 rule.prune()
13 continue //to the next rule in rules

14 result = rule.apply()

15 return result

position.

4.4.3 Blank node pre-processing

RDF model theory [HM04] characterises blank nodes as having local scope within

the �le that contains them. Such nodes act as existential quanti�ers over a set of

resources in which the identi�ers of the blank nodes are not signi�cant. In prac-

tice blank nodes are used to describe multi-component structures represented by

RDF containers, to describe rei�cation (i.e. triples about triples) or to represent

4. EXPERIMENTAL METHODS 105

complex information. Given the local scope of blank nodes, it is not possible

to rely on their identi�ers being consistent between successive ontology versions.

However, chains of blank nodes hold information that may be useful in the pro-

cess of reasoning about updates between ontology versions. Loading blank nodes

involves pre-processing these nodes to trace graphs of triples that contain them.

This step is useful for matching blank nodes when computing the di�erences

between two versions of an ontology and the reduction of the delta size.

Tracing blank nodes is based on the assumption that such chains start with

a non-blank node (i.e. a URI) in the subject position of a triple. These blank

node chains may form a tree such as that shown in Figure 4.9 that represents the

N-triple shown in Figure 4.10. If a triple with a non-blank node in the subject

position and a blank node in the object positon is encountered, the tracing process

begins tracing all connected blank nodes until no more related triples are found.

The length of the chain is equal to the number of triples containing the connected

blank node. The example in Figure 4.10 gives a chain length of 9. Each chain

of blank nodes is held in the triple store along with the length of the chain in

order to use it in the matching process. E�ectively, each chain now has an ID to

distinguish the group of triples that belongs to it. Results from experiments on

blank node processing are contained in Section 5.4.

4. EXPERIMENTAL METHODS 106

dc:title

_:a "The Semantic Web"

rdf:type ex:street ex:number ex:city

ex:Address "4141 "G1" "Glasgow""Richmond

Street"

_:b

<http://www.example.com/SW001>

ex:hasAddress ex:homePageex:fullName

ex:author

"Sana Al Azwari"

ex:postalcode

<http://www.strath.ac.uk/~alazwari/>

Fig. 4.9: Blank nodes tree structures

<http://www.example.com/SW001> dc:title “The Semantic Web" .

<http://www.example.com/SW001> ex:author _:a .

_:a ex:fullName “Sana Al Azwari" .

_:a ex:homePage <http://www.strath.ac.uk/~alazwari/> .

_:a ex:hasAddress _:b .

_:b rdf:type ex:Address .

_:b ex:street “Richmond Street“ .

_:b ex:number “4141“ .

_:b ex:postalcode “G1" .

_:b ex:city “Glasgow" .

Fig. 4.10: Blank nodes chain example

4.5 Conclusion

This chapter has explained the methods used to evaluate the hypothesis that ex-

ploiting the richness of complex ontology languages will support reduction in the

size of updates. Initially it explains work to asses the performance of updates to

RDF structures. It then considers the ways in which this process can be simpli�ed

by inference and pruning in the context of RDFS and OWL 2 semantics. There

are three main contributions in this work. The �rst contribution is to provide an

understanding of the e�ect of pruning method in the context of RDF updates.

Second, this work proposes a novel method for correcting the unsoundness of

4. EXPERIMENTAL METHODS 107

dense delta which produce a small in size number of updates. Third, in this

work, the reduction of the delta is evaluated in the context of complex ontology

languages, the OWL 2 RL/RDF. We propose a rule pruning method that prunes

the application of unnecessary OWL 2RL/RDF rules during the process of delta

reduction. The next chapter presents the experimental results from this process

and discusses their meaning.

5. RESULTS AND DISCUSSION

Experimental work reported in this chapter aims to evaluate the overall hypothe-

sis that exploiting ontology rules when generating RDF updates results in reduced

delta sizes. Details of hardware and software con�guration of systems used in the

evaluation is listed in Appendix E. All change detection techniques were imple-

mented using Java with Jena. For the triple store, a MySQL database was used

to store RDF versions and deltas. This allows for large data sets to be processed

independently of main memory restrictions.

5.1 RDF views update

The hypothesis of the �rst set of experiments is that updating RDF structures

is an expensive process in terms of the work required to maintain real-world

data structures. This section includes a comparison between the two update

approaches discussed in the Section 4.1. These approaches are evaluated in terms

of view update time.

For this experiment a full database containing both the GO vocabulary and

associations between GO terms and gene products including the Uniprot Taxon-

omy from the bioinformatics domain was used. This data set was chosen because

5. RESULTS AND DISCUSSION 109

it is frequently updated and a new version of it is released every month. The data

set includes ten versions dated from 2005 to 2014. That is a �rst release of the

data set for each year. A yearly version was chosen to increase the gap between

versions and therefore get more di�erences between the RDF KBs. Moreover,

the transformation from one version to another was as folows: the oldest version

(i.e.the 2005 version) was transformed to the other di�erent versions starting from

the 2006 version and ending with the 2014 version. This also gradually increases

the number of di�erences between the versions when measuring the delta size and

the performance of the di�erent change detection methods.

As discussed in Section 4.1, RQ2 is concerned with assessing the update per-

formance in both random and speci�c update approaches. To address this issue,

the CPU time for applying the update was measured. Figure 5.1 shows the update

times when a �xed number of triples (10,000 triples) are updated using two types

of updates: deletion and insertion performed against all six models using both

approaches for selecting the triples: random selection and speci�c selection. The

x-axis represents the size of the RDF models in triples as described in Table 4.1,

while the y-axis represents the CPU time in milliseconds.

Figure 5.2 shows the update times when a variable number of triples (10,

100, 1000, 10,000, 100,000, and 1,000,000 triples) are randomly and speci�cally

selected to be deleted from and inserted to model6 (130MB), which is the largest

model in the dataset. The x-axis in Figure 5.2 represents the number of updated

triples, while the y-axis represents the CPU time in milliseconds.

5. RESULTS AND DISCUSSION 110

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 500,000 1,000,000 1,500,000

ti
m

e
 (

m
s

e
c

)

File Size (Mb)

Random Fixed Deletes Specific Fixed Deletes

Random Fixed Inserts Specific Fixed Inserts

Fig. 5.1: Random and Speci�c Fixed Update of 10,000 triples. Random �xed
deletes is superimposed by random �xed inserts

In addition, it can be seen from the results that the delete operation in both

types of update is slower than the insert operation, which means that these two

operations do not use equivalent CPU time.

As clearly shown in both �gures, speci�c update is slower compared to random

update as the latter involves only the time for adjusting RDF structures while

most of the update time in the speci�c update is taken up by searching the

structure. Moreover, this time increases as the number of updates increases and

consequently it is useful to prune these updates to minimize the time taken to

update RDF structures.

In the light of the above results, suppose a scenario where there are multiple

applications concurrently using a materialized view of an RDF triple store (Fig-

ure 5.3). If one of these applications generates a large number of updates that

5. RESULTS AND DISCUSSION 111

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1 10 100 1,000 10,000 100,000 1,000,000

ti
m

e
 (

m
s

e
c

)

number of updates (Triples)

Random Variable Deletes

Specific Variable Deletes

Random Variable Inserts

Specific Variable Inserts

Fig. 5.2: Random and speci�c variable updates to the largest (130MB) data struc-
ture. Random variable deletes is superimposed by random variable in-
serts.

are to be applied to the view, the other applications need to wait until the view

is updated. From the results in Figure 5.2, 100,000 updates will result in a delay

of approximately 10 seconds while the view is adjusted. Clearly, this delay may

not be acceptable for the other applications that are sharing the data structure.

5.1.1 Validation and performance evaluation

To validate the framework, results of the update process which include inserts and

deletes using SPARUL and SPARQL queries in the experiment are compared to

SQL queries over a non-memory resident data store (Figure 5.4). To do this,

each RDF dataset in Table 4.1 is stored in a corresponding triple table using

MySQL database. Each triple table consists of three columns: Subject, Property

5. RESULTS AND DISCUSSION 112

Fig. 5.3: Update requests from application to RDF views.

and Object to store the triples and a column to determine the type of the Object

in each triple whether it is a URL or a literal. These tables are updated using

SQL queries and for each table a list of triple subjects was separately prepared

and the entries in this list were used to identify the triples to update the table.

After updating the tables an RDF �le is generated for each updated table and an

in-memory view is created for the purpose of comparing the results. The same

list of triple subjects is used to update views of the RDF models in Table 4.1

using SPARUL and SPARQL in our framework. Views from the two di�erent ap-

proaches are then compared to see whether they are identical or di�erent. When

comparing the results of updating all six RDF views using the two approaches,

the maintained view was the same as the regenerated view which validates the

framework.

5. RESULTS AND DISCUSSION 113

Fig. 5.4: Validation process for view update.

The CPU time for both types of updates; inserts and deletes in the two

approaches were recorded as highlighted with the dotted red line in Figure 5.4.

The times for each type of update were compared to evaluate the performance

of both approaches. As shown in Figure 5.5, inserting triples to a table using

SQL inserts is more CPU intensive than inserting to the same number of triples

to an in-memory view using SPARUL and SPARQL queries, this is reasonable

as inserting to a database table is actually saving information to a disk which

requires writing this information to a disk and creating indexes for it. On the

other hand, SQL deletes of triples from a table appears to be faster than deleting

the same triples from an in-memory view using SPARUL and SPARQL queries.

This may be because updating from in-memory view requires the upload of both

models into in-memory which is memory expensive. Also deletions in DBMSs are

5. RESULTS AND DISCUSSION 114

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

16,000

72,864 82,277 90,164 94,416 97,382 97,796

ti
m

e
 (

m
s
e
c
)

number of updates (Triples)

SQL Insert

SQL Deletes

View Inserts

View Deletes

Fig. 5.5: Performance Evaluation of RDF update using SQL queries and SPARUL
and SPARQL queries.

handled by only marking the record as being deleted.

5. RESULTS AND DISCUSSION 115

5.2 Change detection techniques

Fig. 5.6: The results of the performance measurement in change detection tech-

niques. In (A), (B), (C) and (D) the application line is superimposed

by the total update line.

5. RESULTS AND DISCUSSION 116

(1) (2) (3)
Triples used Triples excluded

Delta Size in reasoning from reasoning
year-range ∆E ∆ED FC BC PBC BC PBC
2005-2006 43,136 42,770 45,400 817 562 ∼98% ∼99%
2005-2007 116,710 116,228 52,449 1,457 888 ∼97% ∼98%
2005-2008 189,253 188,512 59,995 2,880 1,434 ∼95% ∼98%
2005-2009 210,372 209,334 66,264 4,086 1,969 ∼94% ∼97%
2005-2010 237,510 236,190 74,389 4,754 2,433 ∼94% ∼97%
2005-2011 265,609 264,221 81,538 5,513 2,790 ∼93% ∼97%
2005-2012 308,594 307,163 87,751 5,895 2,883 ∼93% ∼97%
2005-2013 348,819 347,292 99,425 6,735 3,471 ∼93% ∼97%
2005-2014 367,233 365,629 104,209 7,080 3,638 ∼94% ∼97%

Tab. 5.1: Triple statistics. (1) The total number of changes collected using ∆E
and ∆ED. (2) The count of triples participated in the inference process.
(3) The percentage of triples excluded from reasoning.

The previous section describes the results of experiments that characterize the

performance which is encountered when updating RDF collections either in mem-

ory or on disk. One way of limiting these performance problems is to reduce the

number of updates that are needed (i.e. reduce the delta size). The hypothesis

being evaluated in these experiments is that the update size can be reduced by

pruning but this is in itself a potentially expensive process.

Since the inference-based approaches (FC, BC and PBC) use the ∆ED, the

delta reductions produced by these methods are identical1, the sizes of the delta

produced by these methods are equivalent. The delta sizes for the FC, BC and

PBC are smaller compared to the delta produced by the explicit method where

no inference is applied and therefore no reductions from the set of di�erences are

made (Table 5.1).

1 As explained in Section 4.2

5. RESULTS AND DISCUSSION 117

Table 5.1 column 2 shows the number of triples that participated in the infer-

ence process. FC has the highest number of triples used in the inference process

as a result of calculating the full closure. This number is reduced by ∼94% when

changes were detected using BC. PBC, on the other hand, can further prune

∼47% of these triples in BC.

In addition to the delta size and the number of triples in the inference process,

the performance was evaluated by separately measuring the execution time for

each core operation in change detection. These core operations include the total

execution time, the time taken to produce the deltas (set-di�erence), the pruning

time (in the case of PBC only), the inference time (in the case of FC, BC and

PBC only), the reasoning time (which consists of the time to complete both

inferencing and pruning in the case of PBC only) and the set-operation time (i.e.

the application of the delta). The execution times for this experiment are shown

in Appendix D.

The graphs in Figure 5.6, which are plotted in logarithmic scale in the y-axis,

show the results of comparing the performance of the three techniques with an

increasing number, i.e. 50,000 to 1M, of both types of updates; insertions and

deletions. From Figure 5.6 (E) it can be seen that the inference time in PBC is

faster by about 1.5-3 times than that in BC , and of FC by about 19-33 times as

a result of the pruning process. However, although pruning RDF has e�ciently

reduced the inference time, the pruning operation in PBC takes most of the

overall time in change detection as shown in Figure 5.6 (A). Adding the pruning

5. RESULTS AND DISCUSSION 118

time to the inference time, because they are both part of the reasoning process,

gives a more realistic view of the overall performance shown in Figure 5.6 (F).

Moreover, the pruning time appears to increase signi�cantly with the increase in

the number of pruned triples.

Results from these experiments show that change detection using PBC has

a penalty of about 15-30 times by comparison with BC when pruning time is

counted as part of the reasoning process.

5.3 Correct dense delta

In ∆E (De�nition 2.5.2) the delta is calculated using the explicit triples only

for both set of updates; the delete set and the insert set. It does not exploit

the inferred triples for the reduction of the delta. While ∆ED (De�nition 2.5.3)

calculated the delta by exploiting inferred triples for reducing the deletion set

only while the insertion set is calculated explicitly. ∆D (De�nition 2.5.4) on the

other hand, calculates the delta by exploiting inferred triples for producing both

sets of updates. However, as explained in Section 2.5, this delta does not produce

a sound (i.e. correct) deltas.

In the previous section, the delta size is reduced by the inference and pruning

processes which are applied only on the set of deletions and not the insertions

(i.e. ∆ED). This is due to the lack of guarantee of correctness of the delta

produced by inferencing over both sets of update (i.e. ∆D). Thus, in this thesis

we proposed a correction method that can improve the correctness of the deltas

5. RESULTS AND DISCUSSION 119

produced by backward-chaining change detection approaches (BC and PBC) as

explained in Section 4.3. This method is called correct dense delta ∆Dc

The hypothesis being tested in this part of the work is that the correct dense

delta ∆Dc will in general produce a smaller delta than the explicit dense delta

∆ED and at the same time result in a correct update of M to M ′.

To evaluate the correction method, the processing time for computing the

delta and delta size of updates to enhanced RDF KBs of di�erent sizes are as-

sessed. The objective of this evaluation is to compare the performance of the

di�erent delta computation methods (i.e. ∆E, ∆ED, ∆Dc) and approaches (i.e.

forward-chaining (FC), backward-chaining (BC) and pruned backward-chaining

(PBC)) by measuring and comparing their delta computation times over syn-

thetic datasets and by validating their e�ect on the integrity of the resulting

RDFS KBs.

As with the experiment described in Section 4.1, the dataset contains both

GO vocabulary and associations between GO terms and gene products including

the Uniprot Taxonomy. The reason for chosing this dataset is provided on page

102 . The dataset includes �ve versions selected to show a range of values over

the period 2005 and 2014. Using this dataset, the oldest version (i.e. the 2005

version) was transformed to �ve versions released between 2006 and 2014. This

gradually increases the delta size with a consequent e�ect on the performance of

the di�erent change detection methods. The real-world data was enhanced by

synthetic data prepared by incorporating 20% additional triples representing sub-

5. RESULTS AND DISCUSSION 120

Reduction strength
Versions M ∆E ∆ED ∆Dc ∆D ∆ED ∆Dc ∆D

(M −M1′) 121,374 48,136 47,270 44,270 44,212 1.8% 8.0% 8.2%
(M −M2′) 127,374 126,710 125,228 119,228 119,098 1.2% 5.9% 6.0%
(M −M3′) 139,374 230,372 227,334 215,334 214,926 1.3% 6.5% 6.7%
(M −M4′) 157,374 343,594 338,663 317,662 317,109 1.4% 7.5% 7.7%
(M −M5′) 169,374 412,233 406,129 379,129 378,482 1.5% 8.0% 8.2%

Tab. 5.2: Triple counts used in evaluation.

Abbr. delta

E explicit
EDFC explicit dense, forward chaining
EDBC explicit dense, backward chaining
EDPBC explicit dense, pruned,backward chaining
DcFC corrected dense,forward chaining
DcBC corrected dense, backward chaining
DcPBC corrected dense, pruned, backward chaining

Tab. 5.3: Change detection techniques.

Class, subProperty and type properties. Synthetic data was added to ensure that

subProperty rule was exercised and to arrange for the model to contain redundant

triples (i.e. explicit data that can also be inferred from antecedents). The level

of enhancement was chosen to secure a measurable e�ect without obscuring the

structure of the original data.

Using the enhanced datasets, change detection techniques shown in Table 5.3

were implemented. A triple store was constructed in MySQL to handle the RDF

collections and the deltas. Indexing was excluded to preserve the validity of the

use-case. The Jena framework was used to read the RDF dataset into the triple

store and to validate change detection techniques by comparing the updated RDF

dataset with the target RDF dataset.

The consistency ofM ′ after delta application was evaluated by comparing the

in-memory M ′ produced by applying the delta to M in the database with the

original in-memoryM ′ using the Jena isIsomorphic method. Applying ∆Dc using

5. RESULTS AND DISCUSSION 121

the approach described above was found to result in the same M ′ as that used

to generate the delta. By contrast, tests carried out to assess the consistency of

applying the uncorrected ∆D indicate that in all the models tested, this approach

always failed to produce consistent updates.

Table 5.2, Table 5.3 and Figures 5.7-5.10 report the delta sizes and the delta

computation times, respectively. From Table 5.2, the deltas produced by ∆E

exceed those of ∆ED and ∆D. The latter deltas are smaller than those produced

by ∆E as a consequence of applying inference on the delete set of triples ∆ED.

∆Dc further reduces the deltas as a result of inferring both the delete and insert

set of triples when calculating the deltas. ∆D in turn may be smaller than ∆Dc

but its application in the update process may lead to an inconsistent result.

Table 5.2 reports the reduction strength, which is de�ned as the percentage

reduction achieved by inference i.e. |∆E|−|∆ED|
|∆E| or |∆E|−|∆Dc|

|∆E| . Reduction strength

indicates when the size of ∆E, ∆ED and ∆Dc are di�erent i.e. when inference is

capable of making a di�erence to the size of the delta. Reduction strength in ∆Dc

is greater than that in ∆ED as a result of considering both sets of updates. The

reduction strength in ∆D is slightly greater than that of ∆Dc, however, these

deltas produced by ∆D are not always correct.

5. RESULTS AND DISCUSSION 122

Fig. 5.7: Inference time

Fig. 5.8: Reasoning times

5. RESULTS AND DISCUSSION 123

Fig. 5.9: Delta time

Fig. 5.10: Delta size

5. RESULTS AND DISCUSSION 124

Fig. 5.11: Comparison of delta approaches.

In Figure 5.7 it can be seen that of the deltas evaluated in these experiments,

EDBC and the pruned version of the same approach can be generated with the

lowest inference time. This is a consequence of both the e�ciency of backward-

chaining and the application of inference only to the delete set. At the other

end of the spectrum, forward-chaining methods are slower, as a consequence of

the time needed to produce the closure for both models. Forward-chaining is

expensive but becomes useful where models are being queried. However since the

focus of this work is updating models, backward-chaining is a more appropriate

approach where only a limited number of triples are inferred (i.e. triples in the

delta) and not the full closure as the case in the forward-chaining approach.

Pruning generally helps to further reduce the inference time however the pro-

5. RESULTS AND DISCUSSION 125

cess adds further expense. Figure 5.8 shows the reasoning time (i.e the time taken

up by both inferencing and pruning). This indicates that for the data structure

used, the time required to carry out pruning exceeds the inference time both for

∆Dc and ∆ED. This is consistent with previous �ndings [AAW15]. The overall

delta time shown in Figure 5.9 indicates that taking account of set di�erence

operations, inferencing and pruning, approaches that prune the delta set tend to

require signi�cantly more processing power than non-pruning approaches. Over-

all, the ∆E is the fastest process since no pruning or inferencing is carried out.

The delta sizes shown in Figure 5.10 indicate that applying inference on this data

set reduces the updates that need to be executed, particularly when it is applied

to both the insert and delete sets.

The relationship between Figures 5.9 and 5.10 is summarised in Figure 5.11,

which is based on the average delta size and average generation time for all the

data models. Figure 5.11 shows the interaction between the degree of inference

(i.e. the delete set and/or the insert set or no inference at all) and the approach

to inferencing (i.e. inferring all triples or only necessary triples) and their impact

on the delta size and the delta computation time. It can be seen that ∆Dc has

the smallest delta size compared to ∆ED and ∆E. It can also be seen that the

approach to inferencing a�ects the delta computation time. Figure 5.11 indicates

that the combination of ∆Dc and backward-chaining approach is more e�cient

(i.e smaller delta size and faster generation) than the other methods tested. Over-

all, Figure 5.11 shows that the computation time increases in the sequence of ex-

5. RESULTS AND DISCUSSION 126

plicit, backward chaining, pruned backward chaining, forward chaining whereas

the delta size increases in the sequence ∆Dc, ∆ED, ∆E.

The overall e�ect of these results is to indicate that ∆Dc provides a viable

route to limiting the data that would need to be transferred from a server to

a client in order to update copies of an RDF data store. Pruning may assist

this process but comes at a cost of additional processing time, which may be

unacceptable in a peer-to-peer context or where updates need to be generated on

demand.

5.4 Pruning the OWL 2 ruleset

The hypothesis being evaluated in this section of the work is that OWL 2 RL/RDF

rules can be used to reduce the size of updates to OWL 2 ontologies. The

process of pruning rules used in ontology updates with OWL 2 RF/RDF rules

that is explained in Section 4.4 has been evaluated experimentally using the

Lehigh University Benchmark (LUBM) [GPH05] and the University Ontology

Benchmark (UOBM) [MYQ+06]. These Semantic Web benchmarks allow the

generation of datasets of di�erent sizes. LUBM facilitates the evaluation of Se-

mantic Web tools and is accepted as a standard evaluation platform for OWL

ontology systems. Despite this, it does not fully support the inference of ei-

ther OWL lite or OWL DL pro�les of OWL 2. For example, inferencing the

allValuesFrom restrictions and the cardinality constraints cannot be tested using

LUBM datasets. Furthermore, the generated instance data lacks inter-linkage

5. RESULTS AND DISCUSSION 127

between isolated subgraphs. In this context, instance data can be generated to

represent individuals for a number of universities but individuals in one univer-

sity do not have relations with individuals from other universities. This limits

the benchmark's value for scalability tests as inference on connected subgraphs

is harder than that on isolated subgraphs. As a consequence of this, LUBM is

weaker in measuring the capability of inference engines as it does not trigger all

the inference rules supported by these engines.

For these reasons, UOBM was developed to extend LUBM and overcome

its limitations with full support for both OWL lite and OWL DL as well as

the generation of more complex instance datasets by establishing links between

individuals from di�erent universities.

In the experimental work reported here both LUBM and UOBM benchmark

generators were used to produce three versions nominally of 1000, 10,000 and

100,000 triples respectively. Three change ratios on each of these di�erent sizes

of datasets were produced. This involved changing the subsumption hierarchy

as well as the addition of inferable triples. These inferable triples were obtained

by materializing ontology versions and selecting a number of the inferred triples

to be added to the corresponding dataset. The change ratio is de�ned as the

size of explicit di�erences between two versions divided by the size of the original

version. Using this manipulation, four versions for each size of the datasets were

generated: the original version; 5% change ratio version; 10% change ratio version

and 15% change ratio version. Table 5.4 represents the feature of the di�erent

5. RESULTS AND DISCUSSION 128

versions generated using both LUBM and UOBM benchmarks.

LUBM UOBM
Nominal Original ∼5% ∼10% ∼15% Original ∼5% ∼10% ∼15%

size size size
1000 1,391 1,380 1,418 1,445 965 970 962 967

10,000 10,149 10,348 10,553 10,853 10,097 9,956 10,696 10,729
100,000 100,448 102,165 109,377 113,002 101,133 101,894 103,354 107,703

Tab. 5.4: Triple count in the LUBM and UOBM ontologies used for evaluation.

The triple store was implemented in MySQL to handle the RDF collections

and the deltas. Each predicate was represented in a separate table. Indexing

was excluded to preserve the validity of the use-case i.e. delta that may need to

be generated on demand without allowing time for index production. The triple

store was loaded and updates were validated using the Jena framework.

Computation of the syntactic di�erences between successive ontology versions

starts with the generation of ∆E. This step takes into account non-blank node

triples (i.e. triples that do not contain blank identi�ers in any position). After

the calculation of the explicit di�erence between the two versions and the blank

node matching, these di�erences enter a reduction phase where reasoning under

the semantics of OWL 2 RL/RDF is employed for the purpose of minimizing

unnecessary change operations (i.e. insertions or deletions).

In addition to the change detection approaches explained in Section 4.3; the

explicit delta ∆E, the explicit dense delta ∆ED and the correct dense delta ∆Dc,

two pruning-based approaches as proposed in [ILK13] are also employed; pruned

explicit dense delta and pruned correct dense delta, ∆PED and ∆PDc, respec-

tively. These approaches combine the change detection approaches in [ZTC11]

5. RESULTS AND DISCUSSION 129

with pruning methods to reduce unnecessary computation during the reasoning

process. The inference process for the production of these deltas are carried out

using the backward-chaining strategy.

Delta sizes
change |∆E| |∆ED| |∆D|
∼ 5% 5,001 4,398 3,534
∼ 10% 10,001 9,154 7,457
∼ 15% 15,000 7,457 11,165

Tab. 5.5: Delta sizes in the 10,000 triple structure in UOBM triple sets using the
di�erent change detection techniques.

Fig. 5.12: Reasoning time for 10% updates LUBM data set with no blank node

support

Updates were calculated for each of the sample datasets and indicate that

the inference load for ∆Dc exceeded that for ∆ED in consequence of the latter

approach only carrying out inference over the delete set (Figure 5.12). Similarly,

5. RESULTS AND DISCUSSION 130

Figure 5.12 shows that the process of pruning rules in the ∆Dc approach is more

costly than pruning rules for ∆ED because the former, being a larger set, presents

more pruning opportunities.

The distinction between the UOBM and LUBM benchmarks is evident from

Figure 5.13. It can be seen here that UOBM data triggers the execution of more

rules than the simpler LUBM set. Both data sets bene�t from the reduction in

rule operation that is supported by the pruning process described in Section 4.4

although the bene�t is more pronounced in LUBM. The pruning method reduced

∼17% of unnecessary rules in LUBM, while this method reduced ∼4% of un-

necessary rules in UOBM. This, in turn indicates that the bene�ts produced by

pruning rules are in�uenced by the data distribution within a particular dataset.

Benchmark data can be de�cient in this respect because the distribution of values

may not re�ect real world data very accurately. This result also indicates that

the UOBM set presents more of a challenge to the inference process because of

its richer structure.

The variation of inferencing in LUBM and UOBM for the 100,000 triple set is

shown in Figure 5.14. In both change detection approaches ∆ED and ∆Dc, the

inference time in the UOBM dataset is higher than that in the LUBM by ∼85%

and ∼36% respectively using these two approaches.

Delta sizes for the 100,000 triple sets with di�erent change ratios in UOBM are

shown in Table 5.5. These deltas are calculated using di�erent change detection

approaches: the no-inference approach ∆E, the explicit dense delta ∆ED and

5. RESULTS AND DISCUSSION 131

the correct dense delta ∆Dc. The table shows a reduction of the delta as a result

of inferencing over the set of deletes (i.e. ∆ED) and this reduction is increased

further by inferencing over both sets of updates; deletes and inserts (i.e. ∆Dc).

All these deltas are tested for their soundness and they correctly updated the

models.

Fig. 5.13: Reduction in rules assessed as a consequence of pruning in the 100,000

triple structure

The impact of blank node reduction in LUBM is shown in Figure 5.15. This

process saves additional triples in the delta, which has consequences for the per-

formance time of inferencing. Where blank node matching is unsupported, the

cost of inferencing is ∼35% higher, using ∆Dc, than with the support of blank

node matching. This Figure also shows the performance of rule pruning in LUBM

5. RESULTS AND DISCUSSION 132

using the two change detection approaches; ∆ED and ∆Dc. The time for prun-

ing rules using ∆Dc is ∼90% higher than the pruning time using ∆ED. This

very signi�cant di�erence in pruning time between the two approaches is because

∆Dc applies pruning in both sets of updates; the delete set and the insert set,

while ∆ED considers the delete set only.

Overall the results indicate that both rule pruning and blank node matching

have the potential for reducing the processing required for generating compact

deltas.

Fig. 5.14: Inference time for ∆ED and ∆Dc in the 100,000 triple for both LUBM

and UOBM

5. RESULTS AND DISCUSSION 133

Fig. 5.15: Performance time for 100,000 triple set in LUBM with and without

support for blank nodes

5.5 General discussion

Updating RDF is an important problem and as the understanding of the update

process grows, new approaches for its optimization also emerge. The work pre-

sented in this thesis contributes to this growing understanding by presenting an in

depth analysis of the update process. Based on our experimental results, we found

that pruning RDF has a signi�cant e�ect on reducing the inference time. How-

ever, pruning the RDF requires additional time for applying the pruning rules,

and this time increases as the size of the structural di�erences between the RDF

versions increases. This time is about 20-90 times higher than the inference time

(Appendix D). Therefore, since the pruning method is applied prior to computing

5. RESULTS AND DISCUSSION 134

the closure using the backward-chaining strategy, the time for pruning the RDF

needs to be counted for measuring the inference and the overall performance of

the backward-chaining change detection approach. Regardless of the time taken

to prune triples, the inference process has a clear e�ect in reducing unnecessary

updates. Extending this process to reduce updates that involve inserting a triple

and at the same time producing a consistent update can further minimize the

size of the delta that needs to be synchronized to other remote devices.

In this chapter we experimentally evaluated a correction method for dense

deltas that results in consistent update of RDF datasets. We have eliminated the

need for conditions on the dataset by checking the antecedents of inferable triples

in the insert set. If at least one such antecedent is found in the delete set then the

inferable triple in the insert set cannot be removed from the delta. Otherwise,

this triple can be safely removed from the delta to minimize its size.

A summary of our results is shown in Figure 5.11, which characterises the

interaction between the degree of inference (i.e. applying inference on the delete

set and/or on the insert set or no inference at all) and the approach to inferencing

(i.e. inferring all triples or only necessary triples) and their combined impact on

the delta size and computation time. It can be seen that ∆Dc has the smallest

delta size compared to ∆ED and ∆E. It can also be seen that the approach

to inferencing a�ects the delta computation time. Figure 5.11 indicates that

backward-chaining is more e�cient (i.e smaller delta size and faster generation)

than the other methods tested.

5. RESULTS AND DISCUSSION 135

In this chapter we have investigated the e�ect of inference degree and infer-

ence approach on both the delta computation time and storage space over RDF

datasets. Also, it is worth exploring di�erent inference strengths to further eval-

uate the delta sizes and performance of the di�erent approaches to producing

these deltas. Inference strength is de�ned in [ZTC11, p 14:20] as the di�erence

between the full closure of a model and the original model divided by the original

model (i.e. inference strength = |C(M)|−|M |
|M |). In particular while backward-

chaining may be e�cient, combining it with pruning may be expensive in terms

of computation time where data is characterised by large inference strengths.

By contrast with inference strength, reduction strength shown in Table 5.2

indicates when inference is capable of making a di�erence to the size of the pro-

duced delta. When the inference strength is zero, there are no inferences to be

made and the model is closed. Under these circumstances, |∆E| = |∆Dc|.

However, |∆E| may still be equal to |∆Dc| when the inference strength is greater

than zero. This occurs when, for example, none of the triples in the delta are

inferable in M .

Example 3. Let M = {w subClassOf x, x subClassOf y, y subClassOf z} and

M ′ = {w subClassOf x, x subClassOf y, y subClassOf z, n subClassOf r}. Under

these circumstances, ∆E = {ins{n subClassOf r}} and since this triple can not

be inferred in M, ∆Dc = {ins{n subClassOf r}}.

The inference strength has a value of 1 but |∆E| = |∆Dc| i.e. the inference

strength is signi�cantly di�erent from zero but there are no inferred triples. This

5. RESULTS AND DISCUSSION 136

contrasts with the de�nition provided by [ZTC11, p 14:20], which states that

inference strength is proportional to the count of reduced triples. Alternatively,

the reduction strength in this example is zero, thereby providing an e�ective

guide to indicate when |∆E| = |∆Dc|, which is not clearly shown by the inference

strength.

Both inference strength and reduction strength also give an indication of the

work load of pruning. High values for these parameters indicate that a large

number of triples can be inferred. However, adding such inferable triples provides

a large collection of data that needs to be checked for possible pruning before

inference can take place.

Example 4. Let M = {w subClassOf x, x subClassOf y, y subClassOf z} and

M ′ = {w subClassOf x, x subClassOf y, y subClassOf z, n subClassOf r,

w subClassOf z, w subClassOf y, x subClassOf z}.

Here, ∆E = {ins{n subClassOf r}, ins{w subClassOf z}, ins{w subClassOf y},

ins{x subClassOf z}}.

Pruning this list will involve checking every entry to ensure that the subject

or object does not occur in M in order to prune that triple from the list to be

entered into the inference process. Of the four triples added in this example, all

must be checked for pruning but only one triple (ins{n subClassOf r}) will be

removed before the remaining three triples will enter the inference process.

In general terms, reduction strength appears to be a better indication of the

di�erences between ∆E and ∆Dc than inference strength. Similar arguments

5. RESULTS AND DISCUSSION 137

apply to establishing the di�erence between ∆E and ∆ED.

Reduction of the delta size could be larger when the number of inferred triples

in the delta between two datasets is large. For example, comparing a dataset with

its materialized (i.e full closure) version results in a large reduction of the delta,

which means that the di�erence between ∆E and ∆Dc is big.

Since inference has a clear e�ect on reducing the delta size, exploiting inferred

triples may provide further improvements in update performance, thus, similar

methods can be applied to ontologies that are represented in OWL 2. Here the

RL ruleset [MGH+13], as a subset of OWL 2, is much richer than the ruleset

for RDFS with consequent potential for bene�ts to delta generation performance

and size.

However, the rich ruleset of complex ontology languages, like OWL 2, may

provide a challenge to change detection techniques. In particular, the repeated

application of a large ruleset that may be necessary to produce the desired con-

clusion can result in performance problems. Blindly applying rules will result in

many such applications being void as a result of consequents that can not con-

tribute to the desired outcome. Advance knowledge of which rules are applicable

and which are not is very important in avoiding their unnecessary application.

This thesis proposes a change detection technique using backward-chaining infer-

ence. It produces a small delta (Table 5.5) using a pruning method that eliminates

unnecessary inference rules during the reduction of the delta size (Figure 5.14).

A further reduction in delta size is possible through the blank node matching

5. RESULTS AND DISCUSSION 138

method. This method matches chains of blank nodes between ontology versions.

Excluding matched blank nodes from the delta is bene�cial in reducing the delta

size and hence the network bandwidth when synchronizing ontology versions as

well as the storage overhead for deltas (Figure 5.13). .

5.6 Experimental limitations

All experiments were carried out using benchmarks datasets or databases that

have been manipulated. In real world data collections we may get di�erent results

since value distribution in arti�cial data is often di�erent form the real world.

Performance has been assessed by relatively small data collections but we may get

di�erent results when bigger data collections are used. In our work, the evaluation

of the di�erent change detection techniques and the proposed methods involve

time measurements which were carried out by controlling garbage collection and

Just in Time (JIT) compilation in order to achieve results with improved accuracy.

The problem for code-execution time measurement is that Java implementa-

tions have a complex performance life cycle. This life cycle involves a warm-up

phase which has little to do with the actual code and more to do with Java Virtual

Machine (JVM) behavior. In this phase JVM typically loads classes it uses which

involves disk I/O, initializations, parsing and veri�cation. This phase usually

takes place in the �rst execution of the code; however, some JVMs continue gath-

ering pro�ling information in the next few executions of the code. Consequently,

the initial performance is relatively slow which means that multiple iterations of

5. RESULTS AND DISCUSSION 139

the code within a single execution of the virtual machine are required to elim-

inate or exclude the warm-up time and to reach the steady state application

performance which is achieved when the Just-In-Time (JIT) compilation occurs.

However, even when the application reaches the steady state, the Java Virtual

Machine (JVM) behavior involves other concerns that can a�ect the measurement

of the performance. One of these concerns is the automatic memory management

(Garbage collection). Garbage collection (GC) is a VM feature that attempts to

reclaim memory occupied by objects that are no longer in use by the program. GC

is undetermined and can occur at any time during the execution of the program

depending on the task itself and on the status of the underlying resources and this

could have a cost inside each measurement. However, one thing that could be done

is to clean up the VM by calling the garbage collection method System.gc() before

the start of any measurement. This would ensure that the VM is free from objects

created by other code in the same application. In addition, ensuring su�cient

memory is available by increasing the VM heap size (-Xmx) could eliminate the

GC calls by the VM.

As the control of the JIT in our experiments was handled by executing mul-

tiple iterations of the code with a single run of the virtual machine, this process

consumes more processing power as the size of the RDF collection increases. In

our �nal experiments using OWL 2 RL ruleset, JIT was not controlled due to the

intensive consumption of processing power as a result of the complexity of the

ruleset.

5. RESULTS AND DISCUSSION 140

5.7 Summary

The work presented in this chapter initially draws attention to the performance

penalty of updating RDF data collections. The �rst �nding is that pruning triples

from the inference process required for the reduction of the delta helps with this

process but contributes signi�cantly to the overall process and cost. The second

contribution is the proposed method for correcting dense delta, ∆Dc. Our method

results in the smallest correct delta for transformation between di�erent versions.

The third contribution of the work is a method that we proposed for pruning rules

in the context of updating OWL 2 ontologies. The application of this method

results in a reduction of the number of rules applied during the production of the

delta in both datasets; LUBM and UOBM. In addition to rule pruning the third

contribution involves a simple method for blank node matching which is used to

avoid incorporating such content into the di�erences that are detected between

these versions.

6. CONCLUSIONS AND FUTURE

WORK

The work presented in this thesis explores approaches for reducing the costs of

updates on RDF data sets. The initial experiments involved comparing two dif-

ferent update approaches. In the �rst approach, both �xed and variable numbers

of triples were selected randomly and updates were performed against the in-

memory view of the RDF structures. This establishes the basic update time.

While in the second approach, speci�c triples are selected to be updated. The

speci�c approach requires �nding the triples before updating them. The time

measured in these experiments includes both the search and the update time.

Searching for the triples is done by using SPARQL queries while updating them

is done by using SPARUL queries. Results from the experiment show that the

random approach is faster than the speci�c approach. However, in the random

approach no searching is involved in the update process as is the case in the spe-

ci�c approach. This work includes changes to the instance level of RDF and does

not exploit the semantic content of OWL.

The number of updates required for updating RDF collections can be reduced

6. CONCLUSIONS AND FUTURE WORK 142

by inferencing over the data to see if a particular update is really necessary.

Inferencing itself can be reduced by pruning triples from the inferencing process

if there is no prospect of them taking part. Both inferencing and pruning are

costly processes in terms of performance time.

This thesis proposes a correction method for dense deltas that results in con-

sistent update of RDF datasets. This works by checking the antecedents of infer-

able triples in the insert set. If at least one such antecedent is found in the delete

set then the inferable triple in the insert set cannot be removed from the delta.

Otherwise, this triple can be safely removed from the delta to minimize its size.

This work investigated the e�ect of inference degree and inference approach

on both the delta computation time and storage space over RDF datasets. The

results suggest that while backward inference may be e�cient, combining it with

pruning may be expensive in terms of computation time where data is charac-

terised by large inference strengths. Exploiting the inferred triples to infer new

information may provide further improvements in update performance.

These experiments indicate that the semantics of RDF can be exploited in

order to reduce the di�erences between RDF versions. However, change detec-

tion techniques that rely on powerful rules de�ned by ontology languages, such

as OWL, may be complicated by applying a large number of rules and by the

repeated application of these rules in order to get the desired conclusion from the

underlying dataset. Knowing in advance which rules are applicable and which

are not is very important to avoid unnecessary application of rules. Experimental

6. CONCLUSIONS AND FUTURE WORK 143

work in this thesis evaluates a pruning method that prunes unnecessary inference

rules for the reduction of delta size. Experimental results on two datasets; LUBM

and UOBM show that both datasets bene�t from pruning rules. Rule reduction

in LUBM is more pronounced and this is a consequence of the fact that this

dataset is not enriched with OWL 2 constructs when compared to UOBM, and

thus more irrelevant rules can be pruned.

To further reduce the delta size, the thesis explores a blank node matching

method. This method matches chains of blank nodes between RDF versions.

Excluding matched blank nodes from the delta is bene�cial in reducing the delta

size and hence the network bandwidth when synchronizing RDF versions as well

as the storage overhead for deltas.

6.1 Overall conclusions

The research questions that drove this thesis were:

RQ1: What are the costs of di�erent approaches for generating updates that need

to be carried out on demand in a distributed environment?

RQ2: What is an e�cient way of minimizing delta sizes using RDFS rules so that

the principles can be applied to more complex rule sets?

RQ3: How can we exploit the complexity of the OWL 2 rule set for the reduction

of delta size?

These research questions were motivated by the fact that reducing the delta

size by exploiting the semantics hidden in RDF data is important for reducing

6. CONCLUSIONS AND FUTURE WORK 144

the storage required to hold these updates and also for reducing the bandwidth

required to transfer these updates through a network. In this thesis we answered

these research questions by a number of experiments that tackle speci�c issues of

this problem. RQ1 is addressed by establishing a starting point for understanding

and analyzing the costs and bene�ts of the di�erent change detection techniques.

Knowing that the update is expensive, in these experiments we investigate the

cost of pruning with respect to the cost of inference. We also evaluate the costs

and bene�ts of the di�erent change detection techniques.

The results for these experiments showed how implicit knowledge can be ex-

ploited to reduce the number of deletions in the updates. RQ2 is addressed by

expanding this process to involve the insertion set of updates that can further

reduce the update size. However, a naïve approach to achieve this may produce

incorrect updates that lead to an inconsistent ontology. The focus for this ex-

periment was to produce a small collection of updates with correctness of these

updates in mind. This work proposed a technique to reduce the update size

considering both sets; insertions and deletions, and to produce a correct dense

delta.

The inference process can be empowered by applying more complex ontology

languages that can exploit more implicit knowledge and derive new knowledge

which may participate in the reduction of the update size. This work addresses

RQ3. The application of the OWL 2 RL/RDF rule set in this part of our work has

revealed the complexity of the application of these rules in the inference process

6. CONCLUSIONS AND FUTURE WORK 145

which results from the overlapped rules. This problem led to our contribution

of a technique to prune unnecessary rules during the inference process and thus

only rules that may derive the desired conclusion are applied. Moreover, blank

nodes are considered in this part of our work and a matching technique based

on tracing blank nodes chains is proposed to further reduce the delta size rather

than considering all blank nodes as di�erences between the models.

Overall the answers to these research questions indicate that the original hy-

pothesis that " improving RDF change detection techniques by exploiting both

sets of updates (i.e. insertions and deletions) while retaining correctness when

transforming one knowledge base (KB) into another will support reduction in the

size of updates." is a valid statement.

6.2 Contribution

The contribution of this thesis is to provide an in depth analysis of the strengths

and weaknesses of di�erent RDF update strategies that use semantic content

to generate these updates. As a result of this analysis this work proposed an

algorithm for a change detection tool ∆Dc which is able to produce a small delta

that can correctly transform one RDF data set into another. We proposed an

approach for generating the correct dense delta that will maintain the consistency

of RDF data sets. Finally, this thesis contributes to the problem of ontology

evolution by using the extended rule set of OWL 2 RL/RDF. In this contribution

we proposed a pruning method for this complex rule set. We also proposed a

6. CONCLUSIONS AND FUTURE WORK 146

simple blank node matching technique for matching blank node chains between

RDF versions.

6.3 Future work

The main direction of future work is to improve the performance of our change de-

tection technique which may be achieved by distributing the execution of rules in

the OR tree between a number of machines instead of a single machine. Moreover,

more complicated rules could be considered to investigate their e�ect on delta re-

duction. An example of these rules are the rules that exploit the owl:sameAs

relation which have been excluded from the current work due to their execution

complexity.

The work presented in this thesis indicates ways in which delta reduction can

be carried out. There may be circumstances in real world data collections when

delta reduction is unnecessary and bandwidth would be su�cient to transfer the

unreduced delta. These circumstances are yet to be explored.

BIBLIOGRAPHY

[AAW15] S. M. M. Al Azwari and J.N. Wilson. The cost of reasoning with

RDF updates. In Proc 9th IEEE ICSC, pages 328�331, 2015.

[Aue04] Sören Auer. A web based platform for collaborative ontology man-

agement. In Proc. International Semantic Web Conference (ISWC),

2004.

[AVH04] Grigoris Antoniou and Frank Van Harmelen. Web ontology language:

Owl. In Handbook on ontologies, pages 67�92. Springer, 2004.

[B+90] Brian Berliner et al. Cvs ii: Parallelizing software development. In

Proceedings of the USENIX Winter 1990 Technical Conference, vol-

ume 341, page 352, 1990.

[BG04] Dan Brickley and Ramanathan V Guha. {RDF vocabulary descrip-

tion language 1.0: RDF schema}. 2004.

[BK03] Jeen Broekstra and Arjohn Kampman. Inferencing and truth main-

tenance in rdf schema. PSSS, 2003.

[BL+00] Tim Berners-Lee et al. Cwm: A general purpose data

Bibliography 148

processor for the semantic web. URL http://www. w3.

org/2000/10/swap/doc/cwm. html, 2000.

[BLC04] Tim Berners-Lee and Dan Connolly. Delta: an ontology for the

distribution of di�erences between rdf graphs, 2004.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic

Web: Scienti�c American. Scienti�c American, May 2001.

[BZC10] Aurélien Bénel, Chao Zhou, and Jean-Pierre Cahier. Beyond web

2.0â�¦ and beyond the semantic web. In From CSCW to Web

2.0: European Developments in Collaborative Design, pages 155�171.

Springer, 2010.

[CDD+04] Jeremy J Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy

Seaborne, and Kevin Wilkinson. Jena: implementing the semantic

web recommendations. In Proceedings of the 13th international World

Wide Web conference on Alternate track papers & posters, pages 74�

83. ACM, 2004.

[CFF+98] Vinay K Chaudhri, Adam Farquhar, Richard Fikes, Peter D Karp,

and James P Rice. Okbc: A programmatic foundation for knowledge

base interoperability. In AAAI/IAAI, pages 600�607, 1998.

[Cro09] John J Cronin. Upgrading to web 2.0: An experiential project to

build a marketing wiki. Journal of Marketing Education, 2009.

Bibliography 149

[Dev06] Vladan Devedzic. Introduction to the semantic web. In Semantic

Web and Education, pages 29�69. Springer-Verlag, 2006.

[ELBB+04] Jerome Euzenat, Thanh Le Bach, J Barrasa, P Bouquet, J De Bo,

R Dieng-Kuntz, M Ehrig, M Hauswirth, Mustafa Jarrar, R Lara,

et al. State of the art on ontology alignment. Knowledge Web Deliv-

erable D, 2:2�3, 2004.

[FFST11] Dieter Fensel, Federico Michele Facca, Elena Simperl, and Ioan

Toma. Semantic web. In Semantic Web Services, pages 87�104.

Springer, 2011.

[Flo07] Giorgos Flouris. On the evolution of ontological signatures. In Pro-

ceedings of the workshop on ontology evolution, pages 67�72, 2007.

[FMK+08] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dim-

itris Plexousakis, and Grigoris Antoniou. Ontology change: Classi�-

cation and survey. The Knowledge Engineering Review, 23(02):117�

152, 2008.

[FP05] Giorgos Flouris and Dimitris Plexousakis. Handling ontology change:

Survey and proposal for a future research direction. Institute of Com-

puter Science, FORTH., Greece, Technical Report TR-362 FORTH-

ICS, 2005.

[FPA06] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Evolv-

Bibliography 150

ing ontology evolution. In SOFSEM 2006: Theory and Practice of

Computer Science, pages 14�29. Springer, 2006.

[Gär03] Peter Gärdenfors. Belief revision, volume 29. Cambridge University

Press, 2003.

[GGD13] Christine Golbreich, Julien Grosjean, and Stefan Jacques Darmoni.

The foundational model of anatomy in owl 2 and its use. Arti�cial

intelligence in medicine, 57(2):119�132, 2013.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva

Subrahmanian. Maintaining views incrementally. ACM SIGMOD

Record, 22(2):157�166, 1993.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Je� He�in. Lubm: A benchmark

for OWL knowledge base systems. Web Semantics: Science, Services

and Agents on the World Wide Web, 3(2):158�182, 2005.

[Gru93] T. R. Gruber. A translation approach to portable ontology speci�-

cations. Knowledge Acquisition, 5(2):199�220, 1993.

[HD09] Aidan Hogan and Stefan Decker. On the ostensibly silent 'w' in owl

2 rl. In Web Reasoning and Rule Systems, pages 118�134. Springer,

2009.

[Hen01] J. Hendler. Agents and the semantic web. Intelligent Systems, IEEE,

16(2):30 � 37, mar-apr 2001.

Bibliography 151

[Hen11] James Hendler. The semantic web 10th year update. In Proceedings

of the International Conference on Web Intelligence, Mining and Se-

mantics, WIMS '11, pages 1:1�1:3, New York, NY, USA, 2011. ACM.

[HHL99] Je� He�in, James Hendler, and Sean Luke. Shoe: A knowledge

representation language for internet applications. 1999.

[HM01] Volker Haarslev and Ralf Müller. Racer system description. In Au-

tomated Reasoning, pages 701�705. Springer, 2001.

[HM04] Patrick Hayes and Brian McBride. Rdf semantics, 2004.

[HPS14] Patrick J Hayes and Peter F Patel-Schneider. Rdf 1.1 semantics.

W3C Recommendation, Online at http://www. w3. org/TR/rdf11-

mt, 2014.

[HQ07] Peter Haase and Guilin Qi. An analysis of approaches to resolv-

ing inconsistencies in dl-based ontologies. In Proceedings of Interna-

tional Workshop on Ontology Dynamics (IWODâ��07), pages 97�

109, 2007.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Computing Surveys (CSUR), 15(4):287�317,

1983.

[HS04] Peter Haase and York Sure. State-of-the-art on ontology evolution.

2004.

Bibliography 152

[ILK12] Dong-Hyuk Im, Sang-Won Lee, and Hyoung-Joo Kim. A version

management framework for rdf triple stores. International Journal

of Software Engineering and Knowledge Engineering, 22(01):85�106,

2012.

[ILK13] Dong-Hyuk Im, Sang-Won Lee, and Hyoung-Joo Kim. Backward

inference and pruning for rdf change detection using rdbms. Journal

of Information Science, 39(2):238�255, 2013.

[KC06] Graham Klyne and Jeremy J Carroll. Resource description frame-

work (rdf): Concepts and abstract syntax. 2006.

[KFKO02] Michel Klein, Dieter Fensel, Atanas Kiryakov, and Damyan

Ognyanov. Ontology versioning and change detection on the web.

In Knowledge Engineering and Knowledge Management: Ontologies

and the Semantic Web, pages 197�212. Springer, 2002.

[KPS+06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau,

and James Hendler. Swoop: A web ontology editing browser. Web

Semantics: Science, Services and Agents on the World Wide Web,

4(2):144�153, 2006.

[Krö12] Markus Krötzsch. The not-so-easy task of computing class subsump-

tions in owl rl. In The Semantic Web�ISWC 2012, pages 279�294.

Springer, 2012.

Bibliography 153

[KS03] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the

state of the art. The knowledge engineering review, 18(01):1�31, 2003.

[KWE10] Vladimir Kolovski, Zhe Wu, and George Eadon. Optimizing

enterprise-scale owl 2 rl reasoning in a relational database system.

In The Semantic Web�ISWC 2010, pages 436�452. Springer, 2010.

[LM15] Yu Liu and Peter McBrien. Transactional and incremental type in-

ference from data updates. In Data Science, pages 206�219. Springer,

2015.

[LRVS09] Uta Lösch, Sebastian Rudolph, Denny Vrande£i¢, and Rudi Studer.

Tempus fugit. In The Semantic Web: Research and Applications,

pages 278�292. Springer, 2009.

[M+81] Brendan D McKay et al. Practical graph isomorphism. Department

of Computer Science, Vanderbilt University, 1981.

[MFHS02] Deborah L McGuinness, Richard Fikes, James Hendler, and

Lynn Andrea Stein. Daml+ oil: an ontology language for the se-

mantic web. Intelligent Systems, IEEE, 17(5):72�80, 2002.

[MGH+09] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille

Fokoue, and Carsten Lutz. Owl 2 web ontology language: Pro�les.

W3C recommendation, 27:61, 2009.

[MGH+13] Boris Motik, B Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue,

Bibliography 154

and Carsten Lutz. OWL 2 Web ontology language pro�les, W3C

recommendation 11, 2013.

[MSR02] Libby Miller, Andy Seaborne, and Alberto Reggiori. Three imple-

mentations of squishql, a simple rdf query language. In The Semantic

Webâ��ISWC 2002, pages 423�435. Springer, 2002.

[Mun57] James Munkres. Algorithms for the assignment and transportation

problems. Journal of the Society for Industrial and Applied Mathe-

matics, 5(1):32�38, 1957.

[MYQ+06] Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and

Shengping Liu. Towards a complete OWL ontology benchmark.

Springer, 2006.

[NM02] Natalya Fridman Noy and Mark A Musen. Promptdi�: A �xed-point

algorithm for comparing ontology versions. AAAI/IAAI, 2002:744�

750, 2002.

[NM04] Natalya F Noy and Mark A Musen. Ontology versioning in an ontol-

ogy management framework. Intelligent Systems, IEEE, 19(4):6�13,

2004.

[NW10] Thomas Neumann and Gerhard Weikum. x-rdf-3x: Fast querying,

high update rates, and consistency for rdf databases. Proceedings of

the VLDB Endowment, 3(1-2):256�263, 2010.

Bibliography 155

[PDT05] Peter Plessers and Olga De Troyer. Ontology change detection using

a version log. In The Semantic Web�ISWC 2005, pages 578�592.

Springer, 2005.

[PFF+13] Vicky Papavasileiou, Giorgos Flouris, Irini Fundulaki, Dimitris

Kotzinos, and Vassilis Christophides. High-level change detection

in rdf (s) kbs. ACM Transactions on Database Systems (TODS),

38(1):1, 2013.

[PSHH+04] Peter F Patel-Schneider, Patrick Hayes, Ian Horrocks, et al. Owl web

ontology language semantics and abstract syntax. W3C recommen-

dation, 10, 2004.

[Sch09] Michael Schneider. Owl 2 web ontology language: Rdf-based seman-

tics. W3C Recommendation (October 27 2009), 2009.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based match-

ing approaches. In Journal on data semantics IV, pages 146�171.

Springer, 2005.

[SGS+06] Pavel Shvaiko, Fausto Giunchiglia, Marco Schorlemmer, Fiona Mc-

Neill, Alan Bundy, Maurizio Marchese, Mikalai Yatskevich, Ilya Za-

ihrayeu, Bo Ho, Vanessa Lopez, et al. Dynamic ontology matching:

a survey. Techn. Report DIT-06-046, University of Trento, Available

on: http://eprints. biblio. unitn. it/archive/00001040, 2006.

Bibliography 156

[SHF12] Jordy Sangers, Frederik Hogenboom, and Flavius Frasincar. Event-

driven ontology updating. InWeb Information Systems Engineering-

WISE 2012, pages 44�57. Springer, 2012.

[SM09] Michael Schneider and Kai Mainzer. A conformance test suite for

the owl 2 rl/rdf rules language and the owl 2 rdf-based semantics. In

OWLED, 2009.

[SMH08] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-

e�cient owl reasoner. In OWLED, volume 432, page 91, 2008.

[SMMS02] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad

Stojanovic. User-driven ontology evolution management. In Knowl-

edge engineering and knowledge management: ontologies and the se-

mantic web, pages 285�300. Springer, 2002.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-

pur, and Yarden Katz. Pellet: A practical owl-dl reasoner. Web

Semantics: science, services and agents on the World Wide Web,

5(2):51�53, 2007.

[SQ06] Wennan Shen and Yuzhong Qu. An rdf storage and query framework

with �exible inference strategy. In Frontiers of WWW Research and

Development-APWeb 2006, pages 166�175. Springer, 2006.

[TH05] Dmitry Tsarkov and Ian Horrocks. Fact++. School of Computer

Science, University of Manchester, Recuperado el, 28, 2005.

Bibliography 157

[TLZ12] Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis. Blank

node matching and rdf/s comparison functions. In The Semantic

Web�ISWC 2012, pages 591�607. Springer, 2012.

[UKM+12] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank Van Harme-

len, and Henri Bal. Webpie: A web-scale parallel inference engine

using mapreduce. Web Semantics: Science, Services and Agents on

the World Wide Web, 10:59�75, 2012.

[UVHSB11] Jacopo Urbani, Frank Van Harmelen, Stefan Schlobach, and Henri

Bal. Querypie: Backward reasoning for owl horst over very large

knowledge bases. The Semantic Web�ISWC 2011, pages 730�745,

2011.

[VG06] Max Völkel and Tudor Groza. Semversion: An rdf-based ontology

versioning system. In Proceedings of the IADIS international confer-

ence WWW/Internet, volume 2006, page 44. Citeseer, 2006.

[WH09] Jesse Weaver and James A Hendler. Parallel materialization of the

�nite rdfs closure for hundreds of millions of triples. Springer, 2009.

[ZTC07] Dimitris Zeginis, Yannis Tzitzikas, and Vassilis Christophides. On

the foundations of computing deltas between rdf models. In The

Semantic Web, pages 637�651. Springer, 2007.

[ZTC11] Dimitris Zeginis, Yannis Tzitzikas, and Vassilis Christophides. On

Bibliography 158

computing deltas of rdf/s knowledge bases. ACM Transactions on

the Web (TWEB), 5(3):14, 2011.

APPENDIX

Appendix A

FOUNDATIONAL WORK

An initial application-based experiment was conducted to build data mashup and

extended it to produce RDF data.

A.1 Background

Mashups are basically applications that combine information retrieved from dif-

ferent web services through their open APIs to create a useful output of them.

Open APIs are open interfaces that allow other applications or users to access

their data which is usually in an XML (eXtensible Markup Language) format

which provides operating system and programming-language independent data.

Web services, in many cases, provide access to their APIs through di�erent pro-

tocols such as REST and SOAP. The mashup combines information retrieved

through APIs o�ered by eBay and Google Maps and can be accessed from:

http://devweb2011.cis.strath.ac.uk:8180/sana/MashupClientServlet. It is built

in Java and based on an online tutorial provided by IBM: http://www.ibm.com/

developerworks/xml/tutorials/x-ultimashup1/. Both APIs retrieve infor-

http://www.ibm.com/developerworks/xml/tutorials/x-ultimashup1/
http://www.ibm.com/developerworks/xml/tutorials/x-ultimashup1/

APPENDIX A. FOUNDATIONAL WORK 161

mation in XML which is then integrated to produce a simple web page displaying

information about product from eBay and static map of the location of that prod-

uct. The Semantic Web relies on XML and RDF as the base languages for other

Semantic Web technologies. XML enables everyone to structure their documents

by creating their own tags, but it says nothing about the meaning of the struc-

ture. The �exibility of XML in creating user-de�ned tags led to the development

of various domain-speci�c XML models such as CML (Chemical Markup Lan-

guage) and MathML. As XML has nothing to do with the meaning of the tags

used in these models, there is a lack of standardization in describing the resources

on the Web. Hence, a common model for describing data in these various models

is required and this is the role of RDF which is the next layer in the Semantic

Web stack. RDF has become a W3C standard for expressing the semantics of

the data so that this data can be shared across di�erent applications on the Web.

Therefore, since RDF is a descriptive data model for representing and exchanging

data on the Web which serves the goals of the Semantic Web, it would be useful

to enable reuse of XML data in RDF.

A.2 Methodology

An extension to the experiment was carried out to generate RDF data from the

information retrieved in XML format. This information was duplicated in order

to gradually increase the size of the XML �le and transform XML �le to RDF

each time.

APPENDIX A. FOUNDATIONAL WORK 162

The transformation process was done using a hand-coded eXtensible Stylesheet

Language Transformations (XSLT). XSLT is an XML-based language for trans-

forming XML documents.

An ontology for book store is created in order to extend the work to examine

how ontology evolution may a�ect the generated RDF triples, and if the ontology

change is limited, how possible it is to update the RDF instead of regenerat-

ing the whole RDF. Figure A.1 shows the architecture of the mashup and the

transformation process.

Fig. A.1: Architecture of the mashup

APPENDIX A. FOUNDATIONAL WORK 163

A.3 Results and discussion

It can be seen clearly from the graph in Figure A.2 that there is a considerable

increase in the size of RDF compared to the corresponding XML. For example,

the RDF �le size is 70.4MB when XML �le is 60.8 MB, which represents the same

information in RDF but in XML format. This means that the increase in RDF

�le size is greater than the increase in the corresponding XML �le size.

Fig. A.2: Sizes of RDF �les generated from XML �les. The solid line is the
experimental line while the dashed line represents the unity line, which
would occur if both sizes of XML and RDF are similar.

The linearity of the RDF/XML �le size may be a product of duplicating the

APPENDIX A. FOUNDATIONAL WORK 164

XML data but shows that RDF is even more verbose then XML for the same

information content. The time needed to produce RDF also increases more or

less linearly with the size of the source data (Figure A.3).

Fig. A.3: RDF generation time.

The collections of RDF are typically very large. On the web, RDF collections

contain an extremely large number of triples (as evidenced in Figure A.4)), and

this number is increasing rapidly. Moreover, these collections are not static they

change overtime, and to be forced to rebuild a complete collection of RDF when

this change happens is going to be a problem because these collections tend to

be large.

APPENDIX A. FOUNDATIONAL WORK 165

Fig. A.4: Number of triples in RDF collections.

From these results we concluded that it would be useful to �nd a way to

`repair' RDF structures rather than regenerate the whole structure each time

there is a change.

Appendix B

A SUBSET OF OWL 2 RL/RDF

RULESET

Abb Antecedent consequent

scm-sco T(?c1, rdfs:subClassOf, ?c2)

T(?c2, rdfs:subClassOf, ?c3)

T(?c1, rdfs:subClassOf, ?c3)

scm-eqc1 T(?c1, owl:equivalentClass, ?c2) T(?c1, rdfs:subClassOf, ?c2)

T(?c2, rdfs:subClassOf, ?c1)

scm-eqc2 T(?c1, rdfs:subClassOf, ?c2)

T(?c2, rdfs:subClassOf, ?c1)

T(?c1, owl:equivalentClass, ?c2)

scm-hv T(?c1, owl:hasValue, ?i)

T(?c1, owl:onProperty, ?p1)

T(?c2, owl:hasValue, ?i)

T(?c2, owl:onProperty, ?p2)

T(?p1, rdfs:subPropertyOf, ?p2)

T(?c1, rdfs:subClassOf, ?c2)

APPENDIX B. A SUBSET OF OWL 2 RL/RDF RULESET 167

Abb Antecedent consequent

scm-svf1 T(?c1, owl:someValuesFrom, ?y1)

T(?c1, owl:onProperty, ?p)

T(?c2, owl:someValuesFrom, ?y2)

T(?c2, owl:onProperty, ?p)

T(?y1, rdfs:subClassOf, ?y2)

T(?c1, rdfs:subClassOf, ?c2)

scm-svf2 T(?c1, owl:someValuesFrom, ?y)

T(?c1, owl:onProperty, ?p1)

T(?c2, owl:someValuesFrom, ?y)

T(?c2, owl:onProperty, ?p2)

T(?p1, rdfs:subPropertyOf, ?p2)

T(?c1, rdfs:subClassOf, ?c2)

scm-avf1 T(?c1, owl:allValuesFrom, ?y1)

T(?c1, owl:onProperty, ?p)

T(?c2, owl:allValuesFrom, ?y2)

T(?c2, owl:onProperty, ?p)

T(?y1, rdfs:subClassOf, ?y2)

T(?c1, rdfs:subClassOf, ?c2)

scm-avf2 T(?c1, owl:allValuesFrom, ?y)

T(?c1, owl:onProperty, ?p1)

T(?c2, owl:allValuesFrom, ?y)

T(?c2, owl:onProperty, ?p2)

T(?p1, rdfs:subPropertyOf, ?p2)

T(?c2, rdfs:subClassOf, ?c1)

APPENDIX B. A SUBSET OF OWL 2 RL/RDF RULESET 168

Abb Antecedent consequent

scm-int T(?c, owl:intersectionOf, ?x)

LIST[?x, ?c1, ..., ?cn]

T(?c, rdfs:subClassOf, ?c1)

T(?c, rdfs:subClassOf, ?c2)

...

T(?c, rdfs:subClassOf, ?cn)

scm-uni T(?c, owl:unionOf, ?x)

LIST[?x, ?c1, ..., ?cn]

T(?c1, rdfs:subClassOf, ?c)

T(?c2, rdfs:subClassOf, ?c)

...

T(?cn, rdfs:subClassOf, ?c)

cax-sco T(?c1, rdfs:subClassOf, ?c2)

T(?x, rdf:type, ?c1)

T(?x, rdf:type, ?c2)

cax-eqc1 T(?c1, owl:equivalentClass, ?c2)

T(?x, rdf:type, ?c1)

T(?x, rdf:type, ?c2)

cax-eqc2 T(?c1, owl:equivalentClass, ?c2)

T(?x, rdf:type, ?c2)

T(?x, rdf:type, ?c1)

cls-svf1 T(?x, owl:someValuesFrom, ?y)

T(?x, owl:onProperty, ?p)

T(?u, ?p, ?v)

T(?v, rdf:type, ?y)

T(?u, rdf:type, ?x)

cls-svf2 T(?x, owl:someValuesFrom, owl:Thing)

T(?x, owl:onProperty, ?p)

T(?u, ?p, ?v)

T(?u, rdf:type, ?x)

APPENDIX B. A SUBSET OF OWL 2 RL/RDF RULESET 169

Abb Antecedent consequent

cls-avf T(?x, owl:allValuesFrom, ?y)

T(?x, owl:onProperty, ?p)

T(?u, rdf:type, ?x)

T(?u, ?p, ?v)

T(?v, rdf:type, ?y)

cls-hv1 T(?x, owl:hasValue, ?y)

T(?x, owl:onProperty, ?p)

T(?u, rdf:type, ?x)

T(?u, ?p, ?y)

cls-hv2 T(?x, owl:hasValue, ?y)

T(?x, owl:onProperty, ?p)

T(?u, ?p, ?y)

T(?u, rdf:type, ?x)

cls-int1 T(?c, owl:intersectionOf, ?x)

LIST[?x, ?c1, ..., ?cn]

T(?y, rdf:type, ?c1)

T(?y, rdf:type, ?c2)

...

T(?y, rdf:type, ?cn)

T(?y, rdf:type, ?c)

cls-int2 T(?c, owl:intersectionOf, ?x)

LIST[?x, ?c1, ..., ?cn]

T(?y, rdf:type, ?c)

T(?y, rdf:type, ?c1)

T(?y, rdf:type, ?c2)

...

T(?y, rdf:type, ?cn)

cls-uni T(?c, owl:unionOf, ?x)

LIST[?x, ?c1, ..., ?cn]

T(?y, rdf:type, ?ci)

T(?y, rdf:type, ?c)

APPENDIX B. A SUBSET OF OWL 2 RL/RDF RULESET 170

Abb Antecedent consequent

prp-inv1 T(?p1, owl:inverseOf, ?p2)

T(?x, ?p1, ?y)

T(?y, ?p2, ?x)

prp-inv2 T(?p1, owl:inverseOf, ?p2)

T(?x, ?p2, ?y)

T(?y, ?p1, ?x)

prp-eqp1 T(?p1,owl:equivalentProperty, ?p2)

T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-eqp2 T(?p1,owl:equivalentProperty, ?p2)

T(?x, ?p2, ?y)

T(?x, ?p1, ?y)

prp-symp T(?p, rdf:type,owl:SymmetricProperty)

T(?x, ?p, ?y)

T(?y, ?p, ?x)

prp-trp T(?p, rdf:type,owl:TransitiveProperty)

T(?x, ?p, ?y)

T(?y, ?p, ?z)

T(?x, ?p, ?z)

prp-spo1 T(?p1, rdfs:subPropertyOf, ?p2)

T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-dom T(?p, rdfs:domain, ?c)

T(?x, ?p, ?y)

T(?x, rdf:type, ?c)

prp-rng T(?p, rdfs:range, ?c)

T(?x, ?p, ?y)

T(?y, rdf:type, ?c)

scm-dom1 T(?p, rdfs:domain, ?c1)

T(?c1, rdfs:subClassOf, ?c2)

T(?p, rdfs:domain, ?c2)

APPENDIX B. A SUBSET OF OWL 2 RL/RDF RULESET 171

Abb Antecedent consequent

scm-dom2 T(?p2, rdfs:domain, ?c)

T(?p1, rdfs:subPropertyOf, ?p2)

T(?p1, rdfs:domain, ?c)

scm-rng1 T(?p, rdfs:range, ?c1)

T(?c1, rdfs:subClassOf, ?c2)

T(?p, rdfs:range, ?c2)

scm-rng2 T(?p2, rdfs:range, ?c)

T(?p1, rdfs:subPropertyOf, ?p2)

T(?p1, rdfs:range, ?c)

scm-dp T(?p, rdf:type, owl:DatatypeProperty)

T(?p, rdfs:subPropertyOf, ?p)

T(?p, owl:equivalentProperty,

?p)

scm-spo T(?p1, rdfs:subPropertyOf, ?p2)

T(?p2, rdfs:subPropertyOf, ?p3)

T(?p1, rdfs:subPropertyOf, ?p3)

scm-eqp1 T(?p1, owl:equivalentProperty, ?p2) T(?p1, rdfs:subPropertyOf, ?p2)

T(?p2, rdfs:subPropertyOf, ?p1)

scm-eqp2 T(?p1, rdfs:subPropertyOf, ?p2)

T(?p2, rdfs:subPropertyOf, ?p1)

T(?p1, owl:equivalentProperty,

?p2)

Tab. B.1: Selected rules from OWL 2 RL/RDF ruleset

[MGH+09]

Appendix C

PROOF OF THE CORRECTNESS OF

∆DC

Proposition 1. The correctness of ∆Dc is established by conditional proof1.

Let M and M ′ denote two RDF models, let Del and Ins denote the triples to

be deleted from and inserted into M to update it to M ′ under ∆E, let Del′ and

Ins′ denote the triples to be deleted from and inserted intoM to update it toM ′

under ∆Dc, let C(M) and C(M ′) denote the closure of M and M ′ respectively.

It is claimed that

C(M\Del′ ∪ Ins′) = C(M ′) = C(M\Del ∪ Ins)

1 This proof was contributed by Dr Clemens Kupke, University of Strathclyde.

APPENDIX C. PROOF OF THE CORRECTNESS OF ∆DC 173

Proof.

Suppose b ∈M\Del′ ∪ Ins′

Subcase b ∈M\Del′

If b ∈M\Del then b ∈M ′ and b ∈ C(M ′)

If b ∈ Del\Del′ then by de�nition of Del′ we have b ∈ C(M ′)

Subcase b ∈ Ins′

But Ins′ ⊆ Ins ⊆M ′ so clearly b ∈ C(M ′)

Suppose b ∈M\Del ∪ Ins

Subcase b ∈M\Del⇒ b ∈M\Del′ ⇒ b ∈ C(M ′)

Subcase b ∈ Ins

Suppose b ∈ Ins′ then b ∈ C(M ′)

Suppose b /∈ Ins′ by de�nition of Ins′ we know

b ∈ C(M) and does not depend on Del′

⇒ b ∈ C(M\Del′) ⊆ C(M\Del′ ∪ Ins′)

Appendix D

CHANGE DETECTION:

EXPERIMENTAL DATA

APPENDIX D. CHANGE DETECTION: EXPERIMENTAL DATA 175

FC Processing Time
UPDATES TOTAL INF DELTA APP

43,136.0 288,115.2 12,526.2 10,535.4 265,039.0

116,710.0 1,360,343.2 16,785.2 8,855.6 1,334,701.2

189,253.0 1,521,340.8 19,800.0 21,750.4 1,479,759.6

210,372.0 1,633,272.4 23,660.0 26,232.0 1,583,379.2

237,510.0 1,743,232.0 26,785.0 31,820.4 1,684,615.8

265,609.0 1,787,331.4 29,284.0 34,499.4 1,723,541.2

308,594.0 1,857,939.0 31,058.0 38,890.6 1,787,984.4

348,819.0 1,910,102.0 34,369.0 42,988.2 1,832,734.8

367,233.0 1,931,490.8 36,913.0 44,630.8 1,849,940.0

BC Processing Time

UPDATES TOTAL DELTA INF APP

43,136.0 311,423.4 11,859.2 547.6 299,015.6

116,710.0 1,370,769.4 16,023.2 907.6 1,353,837.6

189,253.0 1,635,292.4 25,907.0 1,596.6 1,607,787.8

210,372.0 1,742,764.4 29,210.4 2,653.0 1,710,900.2

237,510.0 1,815,300.0 30,615.0 3,316.2 1,781,367.8

265,609.0 1,889,555.8 34,414.6 4,314.0 1,850,826.4

308,594.0 1,906,702.8 43,289.0 4,726.6 1,858,686.6

348,819.0 1,972,542.6 45,382.0 5,552.8 1,921,607.2

367,233.0 1,989,457.2 47,853.8 5,479.4 1,936,123.0

EC Processing Time
UPDATES TOTAL DELTA APP

43,136.0 310,213.0 11,748.0 298,464.4

116,710.0 1,405,034.4 16,834.0 1,388,199.6

189,253.0 1,648,819.6 27,408.4 1,621,410.6

210,372.0 1,772,373.6 28,904.4 1,743,468.8

237,510.0 1,848,989.0 33,195.6 1,815,792.8

265,609.0 1,914,169.2 35,612.0 1,878,557.0

308,594.0 1,950,972.2 41,406.2 1,909,565.2

348,819.0 1,998,234.6 46,750.0 1,951,483.8

367,233.0 2,036,642.0 47,917.4 1,988,723.8

PBC Processing Time

UPDATES TOTAL DELTA PRUN INF APP REASONING
43,136.0 309,785.6 12,024.8 9,102.4 386.2 288,270.8 9,488.6

116,710.0 1,415,910.2 17,024.3 18,965.7 522.3 1,383,904.8 19,488.0

189,253.0 1,685,152.0 25,212.4 38,303.8 888.2 1,620,746.0 39,192.0

210,372.0 1,800,994.6 28,435.4 58,348.0 1,163.4 1,713,046.0 59,511.4

237,510.0 1,888,765.8 32,547.4 78,961.6 1,511.6 1,775,744.0 80,473.2

265,609.0 1,964,734.6 37,248.4 100,540.4 1,641.2 1,825,303.0 102,181.6

308,594.0 2,029,878.0 42,092.8 113,391.6 1,641.0 1,872,751.2 115,032.6

348,819.0 2,149,090.2 48,545.2 157,389.2 1,867.0 1,941,287.8 159,256.2

367,233.0 2,155,001.0 49,704.2 168,394.4 1,971.2 1,934,929.2 170,365.6

Appendix E

SOFTWARE CONFIGURATION

Tab. E.1: Software configuration

Experiment RDF views update
Change detection

techniques
Correct dense delta

Pruning OWL 2

ruleset

Platform

Intel® Core™ i7-3520M CPU @

2.90GHz, 2901 Mhz, 2Core(s), 4

Logical Processor(s), Windows 7

Pro operating system and 12GB

memory

Intel® Xeon® CPU X3470,@ 2.93GHz – 1CPU with 4 Cores and

hyperthreading, Ubuntu 12.04 LTS operating system and 16GB memory

Java

Platform

Eclipse Java EE IDE. Version: Juno Service Release 2

Heap space: -Xms4096M -Xmx10240M

Data store MySQL. Software version: 5.5.27

Dataset Gene Ontology (GO)
Gene Ontology (Go)

Uniprot Taxonomy

Gene Ontology (GO)

and Uniprot Taxonomy

enhanced by synthetic

data

LUBM and UOBM

	Introduction
	The Semantic Web Stack
	Motivations
	Hypothesis and research questions
	Contributions
	Organization of the thesis

	Preliminaries
	Ontologies
	OWL as an ontology language

	OWL 2 Web Ontology Language
	Managing ontology changes
	Heterogeneity resolution
	Ontology editing
	Ontology fusion

	Change detection
	Reasoning with OWL
	Blank nodes
	Summary

	Related work
	Practicality of ontology evolution
	OntoView
	PromptDiff
	Semversion
	CWM
	x-RDF-3X
	Jena
	pOWL
	Work of Flouris et al.
	OUL
	Work of Dong-Hyuk et al.
	RDF/S Diff
	BNodeDelta
	SQOWL 2

	Conclusion

	Experimental methods
	RDF views update
	The cost of pruning in change detection techniques
	Correct dense delta
	Delta generation using pruned ruleset
	OWL 2 RL/RDF rules
	Pruning OR trees
	Blank node pre-processing

	Conclusion

	Results and Discussion
	RDF views update
	Validation and performance evaluation

	Change detection techniques
	Correct dense delta
	Pruning the OWL 2 ruleset
	General discussion
	Experimental limitations
	Summary

	Conclusions and future work
	Overall conclusions
	Contribution
	Future work

	Bibliography
	Appendix
	Foundational work
	Background
	Methodology
	Results and discussion

	A subset of OWL 2 RL/RDF ruleset
	Proof of the correctness of Dc
	Change detection: Experimental data
	Software configuration

