
University of Strathclyde

Doctoral Thesis

Generalising Plans to Influence
Landscapes for Robust Agent Execution

in Virtual Worlds

Author:

Luke Dicken

Supervisor:

Dr. John Levine

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Strathclyde Artificial Intelligence and Games Research Group

Department of Computer and Information Sciences

July 4, 2016

http://www.strath.ac.uk
http://saig.cis.strath.ac.uk
http://www.cis.strath.ac.uk/

Declaration of Authorship

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the

award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowl-

edgement must always be made of the use of any material contained in, or derived from,

this thesis.

Signed:

Luke Dicken

July 4, 2016

i

UNIVERSITY OF STRATHCLYDE

Abstract

Department of Computer and Information Sciences

Doctor of Philosophy

Generalising Plans to Influence Landscapes for Robust Agent Execution in

Virtual Worlds

by Luke Dicken

Artificial Intelligence is one of the most promising areas of modern technology, with

great potential for changing the face of the modern world. However almost universally

we use one of two paradigms in AI – either techniques that are very efficient but which

lack good long-term reasoning, or techniques that are exceptionally good at providing

long-term solutions but which are slow to execute and reasonably inflexible. This is

a problem because the natural world does not decompose so neatly into one or other

box, many situations require fast problem-solving that is also cognisant of long-term

objectives and motivations.

A great example of this kind of problem is frequently encountered in the video game

industry, where the computational load is predominantly tied up simulating an envi-

ronment and rendering this graphically to the player. As a consequence there is very

limited processing power available for the AI systems that power the activity within that

environment. However, there is also a need for the actions being taken by the agents

in the game to at least appear to be intelligent, and for many games that intelligence

needs to be exhibited in a dynamic, rapidly changing world. This is a clear example of

an area where efficient long-term reasoning is necessitated, and cannot adequately be

solved with either of the two existing families of algorithms.

University Web Site URL Here (include http://)
http://www.cis.strath.ac.uk/

iii

The core hypothesis of the work is derived from the need to bridge the gap between

the two paradigms and states that an architecture that operates in this way “will be

demonstrably more robust and efficient than those that are either purely Reactive or

purely Deliberative.” Additionally, as a technique intrinsically bound with an industrial

need, it is also essential that any proposed architecture be viable in an industry setting.

The work firstly presents an extensive literature review focusing on techniques for both

Reactive and Deliberative reasoning, with a particular emphasis on those that are in

use in the video game industry. By understanding contemporary techniques, along with

their strengths and weaknesses, a context for the problem is provided from which a

new framework will be created that draws strengths from both paradigms and mitigates

the potential weaknesses. The result is the Integrated Influence Architecture (I2A)

which uses a combination of techniques from both types of reasoning and leveraging the

nature of video games to make use of the large amount of resources available during

their development, rather than relying on the comparatively small amount available at

runtime. The I2A functions primarily by creating a “Common Representation” that is

generated from a symbolic description of the game world, formatted in such a way that

it lends itself to mathematical manipulation (as opposed to more traditional symbolic

representations that are better suited to search). The premise is that by using such a

representation, information that has been generated from either Reactive or Deliberative

types of reasoning can be combined to provide a holistic view of the situation, informed

by both paradigms

This bulk of the work sets out the overall methodology for the I2A, specifically the man-

ner in which a problem can be described using a symbolic description language (PDDL)

and from this the Common Representation can be calculated. During execution, the CR

is used much like an Influence Map with sources of influence coming from the different

reasoning systems. Additionally time is spent on evaluating the proposed I2A by the

criteria established. This is done by demonstrating that the processes underpinning it

are sound, that the technique can be used in an industry setting, that it is capable of

reacting to threats within the context of long term reasoning and that the I2A as a

whole is an efficient process. Potential future directions that the work could be taken in

in order to have wider applicability and better results are also discussed.

Acknowledgements

This work would not have been possible without the input and involvement of more

people than I can reliably name. I owe a huge debt to all the practitioners around the

world who have taken time out to help me to understand the issues and challenges facing

Game AI. To Chris Preston at Ubisoft Reflections who first looked at my work, gave me

insights and helped me to realise that industry engagement didn’t need to be scary. To

Alex Champandard of AIGameDev.com, who not only runs one of the best conferences

in the field but also a very welcoming community for those aspiring to learn and apply AI

in games. To Dave Mark and Steve Rabin whose AI Game Programmers Guild remains

a clubhouse I’m not sure I deserve to be a part of, and to Neil Kirby without whom I

wouldn’t have been accepted. To Kevin Dill at Lockheed Martin’s Advanced Simulation

Center for the support and encouragement, and for prompting me to discuss this work

at GDC. I’m also grateful to so many members of AIGameDev.com, the AIGPG and

the International Game Developers Association who I’ve interacted with over the years

- too numerous to list by name. You know who you are.

On the academic side, I’m grateful to old hands such as Michael Mateas, Mark Riedl

and Julian Togelius, and to the newcomers, Michael Cook, Josh McCoy, Gillian Smith,

Ben Sunshine-Hill and Ben Weber who have all had wisdom and insight to share.

Closer to home, putting all of this together wouldn’t be possible without a great support

system backing me up. To my family and friends, I couldn’t have done this without

you. My parents in particular deserve an honourable mention for all they’ve done to

support me throughout this. Years of proof reading and insufferable conversations have

finally come to an end! Brian McDonald also deserves recognition for making my final

submission possible, acting as my tele-presence from 5,000 miles away.

To my friends and family at Zynga who have supported, teased, cajoled and otherwise

motivated me, and then allowed me space to complete my corrections and submit them

alongside a demanding project, thank you. Special thanks to Alex Ntoulas, Moises

Goldszmidt and Arash Nia for all their assistance in the past 18 months.

And finally thanks of course to my supervisor Dr John Levine. It might have taken a

couple of years for me to explain this well enough for you to see the whole picture John,

but thank you for believing in it anyway, and helping me to reach the finish line!

I’m honoured to have shared this thing of ours with so many wonderful people. Thank

you all for letting me be a part of it.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

Contents v

List of Figures ix

1 Introduction 1

1.1 A History of Artificial Intelligence in Video Games 2

1.1.1 The First Artificially Intelligent Games 3

1.1.2 Artificial Intelligence in Contemporary Video Games 4

1.2 Motivation . 8

1.2.1 Reactive Systems . 8

1.2.2 Deliberative Systems . 10

1.2.3 The Necessity to Bridge the Gap 11

1.3 Research Statement . 12

1.3.1 Concept . 12

1.3.2 Research Process . 13

1.3.3 Applicability . 14

1.3.4 Evaluation . 14

1.3.5 Summary . 15

1.4 Papers and Presentations Used . 16

1.5 Thesis Layout . 17

2 Related Work 18

2.1 Automated Planning . 19

2.1.1 Problem Representation . 19

2.1.1.1 PDDL . 20

2.1.1.2 SAS+ . 23

Generating SAS+ From PDDL 24

2.1.2 Classical Planning . 25

2.1.2.1 Heuristic Search and A* 26

2.1.3 Contemporary Planning - Planning Graphs and DTGs 27

2.1.3.1 Fast Forwards . 29

v

Contents - July 4, 2016 vi

The Relaxed Planning Graph 30

Helpful Actions . 30

2.1.3.2 Macro Actions . 31

2.1.3.3 Landmark Analysis . 32

2.1.4 Planning For Uncertainty . 34

2.1.4.1 Probabilistic Planning . 34

Markov Decision Processes 35

2.1.4.2 Plan Repair . 35

2.1.4.3 Partial Observability . 36

2.1.5 Automated Planning Summary . 36

2.2 AI Techniques in Games . 37

2.2.1 State-based Techniques . 38

2.2.1.1 Basic Finite State Machines 38

2.2.1.2 Hierarchical Finite State Machines 39

2.2.1.3 Hierarchical Concurrent State Machines 40

2.2.1.4 Behaviour Trees . 42

Behaviour Trees and FSMs 44

2.2.2 Mathematical Techniques . 45

2.2.2.1 Influence Maps . 45

2.2.2.2 Utility-based Architectures 47

Reasonable vs Optimal Play 49

2.2.2.3 Neural Networks . 50

2.2.3 Deliberative Techniques . 53

2.2.3.1 Goal Oriented Action Planning 53

2.2.3.2 HTN . 56

2.2.3.3 Monte Carlo Tree Search 57

Monte Carlo in Games . 59

POMCoP . 61

2.2.4 Game AI Summary . 62

2.3 Other Relevant Architectures for AI Agents 63

2.3.1 Subsumption . 63

2.3.2 Three Layer Architecture . 65

2.3.3 T-REX . 66

2.4 Summary of Existing Systems . 67

2.4.1 I2A and GOAP . 68

2.4.2 I2A and Influence Maps . 68

2.4.3 I2A and Utility . 69

2.4.4 I2A and Markov Decision Processes 69

3 Method 71

3.1 Concept . 71

3.2 Overview . 73

3.2.1 Components . 73

3.2.1.1 Develop-time . 74

3.2.1.2 Run Time . 75

3.2.2 The I2A In Practice . 77

3.2.2.1 Develop Time . 78

Contents - July 4, 2016 vii

3.2.2.2 Run Time . 80

3.3 The Common Representation - Compiled PDDL 82

3.4 Abstraction of States . 87

3.4.1 Abstraction Through Clustering 88

3.4.2 The Adapted Fuzzy c-Means Algorithm 89

3.4.2.1 Consequences of Operation in a Discrete Space 91

3.5 Types of Graph Nodes . 92

3.5.1 Goal Nodes . 92

3.5.2 Focal Nodes . 92

3.5.3 Super Nodes . 93

3.6 Sources of Influence . 94

3.6.1 Deliberative Influence . 94

3.6.1.1 “Active” Focal Nodes . 95

3.6.1.2 Goal Nodes . 96

3.6.2 Sources of Reactive Influence . 96

3.7 Influence Propagation . 97

3.7.1 Propagation Techniques . 97

3.7.1.1 Reward Sharing Propagation 98

3.7.1.2 Example . 99

3.7.1.3 Influence Propagation Through Super Nodes 101

3.8 The Integrated Influence Landscape . 104

3.8.1 Mechanics for Combining Landscapes 104

3.9 Implicit Contingency Planning . 105

3.9.1 The Nature of Contingencies . 105

3.9.2 Finding Contingencies . 106

3.9.3 Functional Equivalence of Focal Nodes 107

3.10 The I2A Executive . 108

3.10.1 Action Choice . 108

3.10.1.1 Localised Expansion-bound A* Search 109

3.10.2 Acting . 110

3.11 Summary . 110

4 Evaluation - Functionality and Viability 112

4.1 Results of Processing . 113

4.1.1 Logistics+ Problems . 113

4.1.1.1 Decoupling Worlds and Problems 114

4.1.1.2 The Logistics+ Worlds 115

4.1.2 Domain Preprocessing . 116

4.1.3 Clustering Analysis . 118

4.1.4 Time to Execution Analysis . 121

4.2 Unity Case Study . 122

4.2.1 Unity Overview . 123

4.2.1.1 GameObjects . 124

4.2.1.2 Component-based Architectures 125

4.2.1.3 MonoBehaviours . 126

4.2.1.4 Editor Extensions . 126

4.2.2 Developing an Agent in Unity with I2A 127

Contents - July 4, 2016 viii

4.2.3 Creating a PDDL Game Representation 129

4.2.3.1 The PDDLManager GameObject 129

4.2.3.2 The PDDLObject Component 130

4.2.3.3 Automated PDDL Generation 131

4.2.4 Executing Actions . 134

4.2.5 Retrieving and Updating the Plan 137

4.2.6 Execution Monitoring . 139

4.3 Summary . 140

5 Evaluation - Robustness and Efficiency 142

5.1 Worked Example . 143

5.1.1 An Example From Industry . 143

5.1.1.1 Movement in MGM . 144

5.1.1.2 Hazards and Items in MGM 145

5.1.2 Algorithmic Example . 149

5.1.2.1 During Game Development 149

5.1.2.2 During Runtime . 154

5.1.3 Summary . 158

5.2 Complexity Analysis . 160

5.2.1 Introduction to Computational Complexity 161

5.2.2 Complexity Analysis of the I2A System 162

5.2.2.1 Complexity During Development 162

5.2.2.2 Complexity During Runtime 167

5.2.3 Complexity Summary for Mountain Goat Mountain 171

5.2.3.1 Generalising to Larger Problems 173

5.2.3.2 Comparative Complexity of Alternate Techniques 174

5.3 Overview of Algorithmic Analysis . 175

6 Discussion 177

6.1 Immediate Improvements . 177

6.1.1 Influence Propagation as a Vector Operation 178

6.1.1.1 Worked Example . 178

6.1.2 Memory Constraints . 190

6.1.3 Extensibility . 191

6.2 Future Considerations . 192

6.2.1 Black Swans . 192

6.2.2 Procedural Content Generation . 196

6.2.3 Generation of Entities . 198

6.3 Parameters and Tuning . 199

6.4 Summary . 201

7 Conclusions 202

7.1 Final Thoughts . 205

Bibliography 206

List of Figures

2.1 An example world to which A* path planning is well suited 26

2.2 An example planning graph . 29

2.3 Demonstrating how landmarks can manage the combinatorial explosion
of the search space . 33

2.4 A Simple FSM for Guard Behaviour . 38

2.5 An example HFSM . 39

2.6 An Example of an Influence Map in Ms. Pac-Man 47

2.7 Overview of a Perceptron . 50

2.8 Example of a Game Tree in practice . 58

2.9 Diagram of a Subsumption Architecture 64

3.1 Overview of the Integrated Influence Architecture Components 73

3.2 Layout of the Example Scenario . 78

3.3 The Obvious Solution - Computed Upfront Forming the Initial Plan . . . 79

3.4 The Contingency Plan Provided by I2A 80

3.5 An Alternative Contingency . 82

3.6 A simple example of a DTG for a package within one city 84

3.7 An example DTG for the truck . 86

3.8 The Cartesian Product of the two DTGs shown 87

3.9 A Basic Scenario for Reward Propagation 99

3.10 Influence Applies Directly to the Goal Node 100

3.11 Results of a Single Propagation Step . 101

3.12 Completed Propagation of Influence . 102

4.1 The Package1 DTG from World 1 . 117

4.2 An in-application visualisation of the Package1 DTG from World 1 118

4.3 The Package1 DTG from World 2 . 120

4.4 The PDDLManager Component . 130

4.5 An example of a PDDLObject-enabled GameObject 131

4.6 An Example of a Walkable NavMesh . 133

4.7 Tool for PDDL Generation from NavMesh 134

4.8 Results of NavMesh extraction as shown using debug tools ingame 135

4.9 PDDLObjects registered with the PDDLManager 136

4.10 An example plan loaded into the PDDLManager 137

5.1 The Mountain Goat Mountain world, with tile locations picked out in
purple. 146

5.2 Uphill connections between tiles in MGM. 147

ix

List of Figures x

5.3 Additional traversable connections when using the “Super Goat” ability. . 148

5.4 Downhill connections between tiles . 149

5.5 Recap of the Integrated Influence Architecture Components 150

5.6 Data Flow of the Develop-time Components of the I2A 151

5.7 The MGM world shown from a top-down perspective, with height anno-
tations for each tile. 152

5.8 Data Flow of the Runtime Components of the I2A 155

6.1 The Basic Propagation Example - Node 1 is a Goal Node 179

6.2 An example from Stampede Run, each section of path is laid out proce-
durally and many are reused . 197

To my parents,

the finest role models I could have asked for.

And to Heather,
my producer and my heart.

xi

Chapter 1

Introduction

Artificial Intelligence (AI) is the name given to the field of scientific study that deals

with automated decision making. Whenever a system makes a decision on its own,

independent of human oversight, it is acting with Artificial Intelligence. This doesn’t

reflect the quality of the decision being made, as AI systems are still capable of making

bad choices - the fact that they made a choice at all is what makes them AI. Typically we

refer to such a system as an “Agent”, and the standard definition calls for it to be able

to perceive its environment using sensors, and make changes to that environment using

effectors[1]. These sensors and effectors could be as simple as a small piece of code that

can read the contents of a file, and a small piece of code that can create files; the agent

here would be able to make the new files dependent on the contents detected, which

although rudimentary qualifies as an intelligent, automated system. This definition

holds for much more complicated systems as well, for example the Mars Rover which is

capable of sensing a great deal of information about the environment it is in and then

using effectors both to move around that environment and also to interact with it to

undertake scientific experiments.

1

Chapter 1. Introduction 2

The promise of Artificial Intelligence is frequently shown in Science Fiction - an auto-

mated workforce and sophisticated personal assistants, able to adequately adapt and

perform duties in changing circumstances with only high-level instruction, but today

one of the most prevalent application areas for this kind of technology is in the world of

play, and specifically Video Games.

1.1 A History of Artificial Intelligence in Video Games

For as long as there have been games, people have had a desire to play them with fewer

people than intended. A relatively modern example of this can be found in Bridge, the

earliest reference to which seems to be from 1886 (although as with many such things,

the context makes it clear that the game was played extensively as a variant of Whist).

Traditionally a four-player game, by 1922 three player variants of the game were becom-

ing common enough for their popularity to be commented on in newspapers[2]. More

classically, consider Chess. This game began in the 6th century and has since evolved

into the game we know today, with a broadly recognisable (by today’s standards) ver-

sion emerging in the 15th century. Of significance however is Wolfgang von Kempelen’s

“Automaton Chess Player”, more commonly referred to today as the “Turk”.

The Turk was promoted as a fully automated chess player, built in 1770 to widespread

acclaim. Such was the interest in the device that it was taken on regular tours around

Europe and played exhibition matches against world leaders and dignitaries. It would

be fifty years before the device was revealed to be a hoax, being operated by a person

hidden inside the cosmetic mechanisms within. Although not in any way artificially

intelligent, the Turk remains an important part of Artificial Intelligence in the area of

games, since it highlights clearly how much, even over three centuries ago, people wanted

Chapter 1. Introduction 3

to have automated players to compete against. Unfortunately it would be a long time

before this could be realised, with the creation of “El Ajedrecista” by Leonardo Torres

y Quevedo in 1912[3].

1.1.1 The First Artificially Intelligent Games

El Ajedrecista is referred to as the first “computer game”, but more than anything it is

a milestone in Artificial Intelligence for games. It was an automated player capable of

playing “KRK” games, which is to say games in which one player controlled a King and

a Rook, whilst the other player had a single King. Torres made a number of assump-

tions and simplifications that reduced the complexity even further, but regardless, this

machine was still the first of its kind, capable of playing games independent of human

control and providing people with the first glimpse of the single player games that were

to follow, using algorithms to replace human ingenuity and demonstrating the first true

instance of Artificial Intelligence in games.

As El Ajedrecista was being demonstrated, elsewhere the “arcade” was beginning to

catch the public’s imagination. Initially an evolution of carnival entertainment, what

were previously sideshows manned by attendants began to be replaced by machines that

allowed players to take part in skill-based contests. Ball-tossing and shooting galleries

are two prime examples of this style of game, where the mechanisms controlled the

enforcement of the rules of the game, resetting the field at the start of a new session

but were not implicitly making decisions, and therefore not artificially intelligent. These

machines too evolved, giving way to pinball machines and other “electro-mechanical”

devices that allowed more and more diverse scenarios and gameplay elements, but still

in a constrained manner. Pong (Atari, 1972) and Space Invaders (Taito, 1978) were the

earliest successes from the area of video games, but even these were still run according to

Chapter 1. Introduction 4

rules that didn’t alter dependent on the player. Arguably the first video game to make

use of AI techniques was Pac-Man (Namco, 1980). Although a deterministic game, each

of the enemies in the game is imbued with its own personality, and the reactions they

make to the player’s actions reflect that there is a level of decision making[4]. If not the

very first video game to exhibit this kind of feature, it certainly was the first commercial

hit to do so.

1.1.2 Artificial Intelligence in Contemporary Video Games

In the games industry, it is worth highlighting how little processing power is available for

AI systems. Most modern games are designed to run at 60 frames per second[5], which

is to say that the screen will be updated 60 times each second. Typically this means

that the state of the game world will be updated as required 60 times a second as well,

although there are certain techniques that allow this to occur at a different frequency.

In general then, each frame update can take only 16 milliseconds, and in that time a

significant portion of the processing power available will be dedicated to other tasks such

a graphics rendering, physics simulations and user interface. As a result, it is estimated

that AI routines might get a maximum of 10%1 of the available processing power, or in

real terms about 1.6 milliseconds per frame update. This is in stark contrast to what

is considered typical in the academic AI discipline, where for example, the bi-annual

Automated Planning Competition gives participants 7 gigabytes of RAM and a half

hour per problem[6].

As a result of this necessity for light-weight approaches, many industrial applications

of AI in games tend to be somewhat rudimentary. This has been generally accepted as

“good enough” by the industry, because they are able to work around it to some extent

1Personal communication with Chris Preston, then Engineering Manager at Ubisoft Reflections

Chapter 1. Introduction 5

since they are creating the simulated world that the agents inhabit. It is less compu-

tationally expensive to skew the rules of that world than it is to create a “scientifically

competent” AI system capable of acting truly intelligently in these worlds.

It is also worth noting that in many cases, the “smoke and mirrors” approach to AI in

games is seen by the industry as acceptable. The objective for these companies is to

make an entertaining product for the players, and a scientific approach to creating the

AI systems does not always respect this. Consider even a simple game such as Chess,

which has had significant research targeted at it. Currently IBM’s Deep Blue is arguably

the most high profile AI system for Chess having a significant ability to play at a high

level, as proven when it defeated Garry Kasparov, a Grandmaster of the game and at

the time World Champion[7]. For all this success, Deep Blue has not gone on to be a

successful product for IBM, and there does not seem to a widespread consumer desire

to play against this type of exceptionally strong ”intelligent” chess system.

Although it is important to recognise that the games industry is much more sales-

oriented than academia, and consequently is much less reliant on advances in the state of

AI, there are arguments to be made in favour of being able to incorporate better AI into

games than is currently available. Foremost among these is that different circumstances

require different types of reasoning. In a presentation at the Paris Game AI Conference

DICE’s Mikael Hedberg stated that the average lifespan of their AI controlled, or Non-

Player Characters (NPC) was just five seconds, and in that timeframe there is not much

scope for a player to see past the illusion of intelligence[8] - but that is just one game in

one genre. In fact it could be argued that the level of AI in use in these kind of games

becomes a cycle of reinforcement, where the fact that many game developers choose to

rely on such fragile approaches to their character AI, creates a situation where these

same developers aren’t able to push beyond this to develop characters more fully. This

Chapter 1. Introduction 6

could explain the large number of games that employ the “NPC as canon fodder” cliché,

since conventional wisdom and the current state of the art does not allow for much richer

decision making and instead relies on tight control over the AI systems and agents in

order to create specific cinematic experiences, often involving set-piece elements over

which the developers have strong directorial control.

That of course is not to say that all games approach their AI this way, and one notable

exception to this is F.E.A.R. (Monolith Productions, 2005) which used Goal Oriented

Action Planning (GOAP) (a technique which will be explained in greater detail in the

next chapter). The broad premise of GOAP is that it allows NPCs to perform some basic

reasoning about their environments and make plans[9]. As one of the first mainstream

industry applications of more advanced reasoning, it was a major step forwards but

noticeably this alternative approach to AI struck a chord with many players, and is still

often cited by players as being an example of good Game AI[10]. More recently Just

Cause 2 (Avalanche Studios, 2010), which had a much more of a sandbox and open-

world approach to its gameplay, also included an AI system derived from the GOAP

technique, and again it resonated very well with players as the NPCs in the game world

behaved in interesting and in many cases rational ways despite the fact that with such a

varied number of game play approaches, the exact behaviour of the player could not have

been predicted. This highlights that there is a demand for games with much stronger

AI where the player can feel that they are truly interacting with characters able to make

rational decisions, rather than ones whose sole purpose is to provide target practice.

Nowhere is this more evident than in large-scale Role Playing Games (RPG) such as

Elder Scrolls V: Skyrim (Bethesda Game Studios, 2011) or Mass Effect (Bioware, 2007),

in which there are a selection of enemies to be killed, but also a range of characters that

will exist throughout the duration of the game, which in some cases can extend beyond

Chapter 1. Introduction 7

80 hours of content to explore. These may be the inhabitants of villages that the player

will encounter, who are going about their daily lives - or some abstract representation

of it - but by far the most important are the companion characters who travel with the

player character. Many of these RPG games adopt a party-style approach where the

player gets AI controlled teammates who not only contribute during combat but also are

an integral part of the story being told and the decisions that the player is making[11].

These characters are often driven by the same basic architectures powering the enemies

in combat - meaning that they are often heavily driven by designers, and considered good

enough to exhibit intelligence for a short period of time. They are notoriously perceived

as stupid by players, and this is a frequent sticking point in reviews and anecdotes.

Skyrim in particular exhibited a number of problems with the way that NPCs were

controlled. During combat, they would perceive certain spells cast by the player, notably

those that caused damage to anything within a certain radius, as a hostile action - even

when the clear target was a common foe. This would often result in the NPCs ignoring

this foe and attacking the player - an irrational response. Another source of criticism

of Skyrim focused on an emergent gameplay issue with the merchants; the game allows

players to steal items from shops, and uses a line of sight check from the merchant to

determine if you are “caught”, and if so the guards in the town are alerted. The game

also allows for physics-based interaction with the world, picking up objects and placing

them down. Players soon realised that by using this method of interaction, they could

use buckets and place them over the merchants’ heads, thus effectively blindfolding them

and allowing thievery to occur unchecked[12].

This example of player innovation highlights that any attempt to design an NPC’s

responses to player actions is by its nature doomed – the development team cannot

hope to exhaustively enumerate all the ways that the players will interact with the

Chapter 1. Introduction 8

world and the NPC, so the reliance on the accepted smoke and mirrors wisdom rapidly

breaks down in the face of NPCs having to do anything more rigorous than run onto a

battlefield, get shot and fall over. It’s clear that this can have a major impact on public

perception of games – Skyrim’s faults have been expounded on at length in gaming

media, whilst games such as F.E.A.R. that allow for novel solutions to be derived by the

agent on the fly have been praised.

Despite many industry veterans’ claims that the current state of Game AI is sufficient,

there is clearly scope for broad improvements to be made, as well as a strong desire for

those improvements in the audience for the products. As such, more robust and capable

AI systems can be developed that will have relevance and impact on the industry if

adopted.

1.2 Motivation

When we speak about possible improvements in Game AI, we have two conflicting prob-

lems. Firstly there is the need for better reasoning systems and secondly there is the

need for the reasoning systems to be computationally simplistic to retain the speed of

operation needed in the context of games. Broadly, prior approaches to AI, both in

the games domain and more generally, have treated each of these as very distinct prob-

lems which have been tackled by two different AI paradigms, Reactive and Deliberative

Systems respectively.

1.2.1 Reactive Systems

Reactive Systems is a catch-all term used to describe a family of AI techniques that

are designed for very quick, responsive decision making. The biological model for this

Chapter 1. Introduction 9

kind of system can be thought of as the instinctive responses we have to certain stimuli,

such as flinching away from sources of pain. This happens below any level of conscious

thought. In much the same way, Reactive AI approaches are designed to quickly map a

stimulus to a reaction, without involving any sort of reasoning. A common example of

this is a Subsumption Architecture[13], which will be examined in detail in Section 2.3.1,

but resembles a prioritised mapping of responses to certain conditions. Coupled with a

default behaviour, it is easy to use this kind of system to create “intelligent” autonomous

behaviour. Imagine a small robot with a default action of moving forward, but a response

mapping that when it detects a collision, it should back away and turn. With this very

simple combination, it is easy to see that the robot is now capable of ensuring that it is

always in motion, and of avoiding obstacles.

What is less clear is the way that this system can achieve objectives that require long

term reasoning. The response mappings are not stateful (meaning they have no history of

prior states that the agent has been in), and often when concepts of state are introduced,

the advantages of the Reactive System paradigm are lost - most frequently the speed

with which sense can be translated into action[14]. As a result, architectures based solely

on this model tend to be very good at taking actions that ensure certain conditions are

maintained or avoided provided that this can be solved by a single action, rather than

requiring a sequence of steps be executed over time.

Consider a puzzle in which it is necessary to slide small squares around in order to re-

assemble a picture. This sort of problem can be solved using a strategy that understands

where each piece needs to end up, and then works backwards from there to establish

the process by which the current state of the puzzle can be transformed into the desired

state. A Reactive System is ill suited for this, as the only thing that can be sensed

by the system is that the pieces are not in the correct position, and the only response

Chapter 1. Introduction 10

possible is to move a piece into a new position - probably still incorrect. As a result,

the Reactive System cannot “see” the solution as it requires multiple steps, but would

be capable of executing such a solution that has been provided by some other system as

a “recipe” to follow.

1.2.2 Deliberative Systems

In contrast, Deliberative Systems are much better suited to this kind of long term

reasoning about sequences of actions. The broad philosophy of Deliberation is to draw

in as much information about the state of the world as possible, and perform analysis

in order to find a method of achieving a desired result. This is often a computationally

expensive process, and as such is much slower than a Reactive System, but the benefit

is that it can provide very intricate sequences of steps required to find the result. A

Deliberative System is very well equipped for solving the sliding picture puzzle described

above. Providing it with a description of the initial state of the puzzle and the desired

state at the end, along with a description of how the pieces can be manipulated (in

other words, the actions that can be performed in this problem), a Deliberative System

can use this information to simulate performing those actions, and understand how they

have affected the world. As a result, this kind of architecture is able - whether through

trial and error, or more sophisticated means - to produce a solution for the puzzle.

Deliberative Systems are used extensively in AI for board games, such as Chess and

Go[15] to provide state of the art AI approaches to game playing. Early Deliberative

Systems such as those built on the MiniMax algorithm[16] relied on exhaustive analysis

of the state space to discover optimal strategies of play, whilst other techniques such

as Monte Carlo Tree Search[17] use intelligent sampling to get a sense for the state

space, exploring new areas whilst trying to find optima in areas previously found to be

Chapter 1. Introduction 11

promising. Outside of games, techniques like Automated Planning rely on guided search

and heuristic estimation to shape a path through the state space towards solutions, but

in all these cases, the emphasis is on assessing all the options available at a given choice

point and finding the one that provides the best outcome in the long-term view[18].

1.2.3 The Necessity to Bridge the Gap

These two contrasting paradigms provide the two ends of the AI application spectrum;

domains that require very rapid decision-making but which do not have long-term com-

ponents that require sequences of actions to achieve. At the other extreme, we have a

more logic-centric approach that is not concerned about any kind of time constraints.

These contrasting characteristics make for a very good theoretical demarcation, but un-

fortunately, not all real world problems fall neatly into one or other classification. In

fact, a range of applications for AI techniques fall in between the two - requiring both

long term reasoning in order to satisfy some goals and short term reaction to account

for aspects of the world that cannot be reasoned about.

What is needed to deal with this classification of problem is something that takes the

best elements of both Reactive and Deliberative systems and combines them in some

way to create a system that is able to provide strong long-term reasoning quickly enough

that it can be of use alongside a game engine, where the majority of the computational

power is being dedicated to managing the game and rendering it to the screen for the

player.

Chapter 1. Introduction 12

1.3 Research Statement

1.3.1 Concept

The work described here seeks to address the disconnect between Reactive and Delib-

erative Systems in a more subtle way than has previously been attempted, creating an

efficient way to build agents that can make use of the benefits of both styles of reasoning.

The contrast between the the two has previously been summed up by the following

phrase:

”When someone accidentally puts their hand on a hot stove, the hand is removed before

conscious consideration of whether this action is a good idea”.

In this formulation the Reaction and the Deliberation are seen as two wholly independent

processes and there is no need to undertake a complicated and computationally complex

approach to address the fact that the hand is burning.

This arbitrary divide between the two approaches neglects to consider that there is

actually value in guiding reaction in the context of prior deliberation. To put this

another way, when a quick reaction is required, there are likely several different forms

that reaction might take, some of which might better serve the longer term goals that

a Deliberative system has set. In this way, the prior phrase might be altered in the

following way, which serves as the conceptual framing for the research presented here:

”When someone accidentally puts their hand on a hot stove, the hand is removed before

conscious consideration of whether this action is a good idea, but it is preferable to move

it in the direction of the first aid kit.”

Chapter 1. Introduction 13

It is the core hypothesis of this work that an architecture derived from this conceptual

model will be demonstrably more robust and efficient than those that are either purely

Reactive or purely Deliberative. Domains that benefit from this type of reasoning include

the specific use-case of providing decision logic for characters in virtual worlds such as

those found in video games. Due to the focus on this application area it is also essential

that any architecture proposed be viable for use in an industry setting.

1.3.2 Research Process

In order to prove the hypothesis, a new architecture must be developed that adequately

combines key elements of both the Reactive and Deliberative paradigms. This requires

a deep understanding of the current state of the art in order to appropriately build on

past techniques. As a result of this understanding, the research has been broadly guided

by three fundamental principles as follows:

• It is relatively well accepted that algorithms which use search as a technique (such

as many Deliberative systems) are much more computationally expensive than

algorithms used for function evaluation and validation. As a consequence, min-

imising reliance on search strategies would seem prudent.

• The area of path finding in games is relatively well explored in literature, and

techniques exist to diminish reliance on search in this type of problem which may

have applicability.

• Games present an interesting opportunity in that there are significant resources

available during the development of the game when compared to the execution of

the game.

Chapter 1. Introduction 14

These key insights provide the framing for the literature review and the basis for the

development of a proposed architecture capable of testing the hypothesis.

1.3.3 Applicability

It should be noted that such an architecture will not be applicable for every game.

Above, it was noted that reactive and deliberative solutions address two specific classes

of problem, and equally the converse will be true in that the proposed architecture

will only be suitable for use in scenarios that combine elements of both. There is

no expectation that the proposed solution be able to outperform a purely deliberative

approach being applied to a purely deliberative problem, or equally a reactive solution to

a reactive problem. The key to the applicability of a game to the kind of solution being

proposed is that it should combine elements of deliberation and reaction; it must have

some degree of long term objective that can be reasoned about whilst at the same time

having dynamic elements that will force the agent to deviate from its planned approach

to the objective or otherwise reassess its reasoning. Games without this combination

our considered beyond the scope of the architecture proposed.

1.3.4 Evaluation

It is necessary to conduct a thorough evaluation of the proposed architecture in order

to validate the hypothesis that is superior to prior techniques. There are a number of

criteria that must be satisfied in order to demonstrate this.

• Functionality - It must be functional, which is to say that it must be able to

actually make decisions informed by both Reaction and Deliberation in dynamic

environments.

Chapter 1. Introduction 15

• Viability - It must be applicable to industry. One of the core motivations of the

work is addressing a shortcoming in contemporary solutions in use by industry,

so any proposed solution must in turn be able to address that shortcoming in the

industry directly.

• Robustness - It must be able to handle dynamic environments by reacting to

threats and opportunities in a timely manner

• Efficiency- It must demonstrate computational efficiency against deliberative so-

lutions

The first of these will be proven by demonstrating its applicability in a range of scenarios.

To support the second requirement, it will be shown that the technique can be integrated

into a modern game development toolkit. Finally, the third and fourth requirements will

be fulfilled by presenting a worked example of a game closely related to a real project

from industry and demonstrating the capabilities of the architecture for this style of

game.

These four criteria will sufficiently support the hypothesis, although it is outside the

scope of the research to exhaustively demonstrate the architecture’s superiority. Most

notably to this point, the intended approach is sufficiently modular and adaptable, and

a thorough exploration of configurations of the architecture and its performance under

differing circumstances will not be tackled as part of this work.

1.3.5 Summary

To summarise, this work postulates that there is value in thinking about Reaction and

Deliberation differently, and that it is possible to create an architecture that is informed

Chapter 1. Introduction 16

by both methods simultaneously. Such a system should blend the best of both ap-

proaches, taking the computational efficiency of the Reactive System and pairing it with

the robust long term reasoning of a Deliberative System. In order to prove this theory,

an architecture has been created, referred to as the Integrated Influence Architecture

(I2A), which is built on these principles. The research presented in this thesis will

describe the manner in which it works, as well as demonstrating that such a system pro-

vides a notable improvement over contemporary techniques by providing efficient but

strong decision making.

1.4 Papers and Presentations Used

This thesis includes an extensive amount of work that has already been published, both

in academic conferences and journals, as well as through more industry-facing channels.

• At the 11th International Conference on Intelligent Data Engineering and Auto-

mated Learning Conference 2010, work from this project was published that ex-

plained in detail the clustering algorithm used to create abstract representations

of state spaces[19].

• An overview of the creation of Influence Landscapes was presented in a paper at

the Society for Artificial Intelligence and Simulated Behaviour’s Symposium on

Artificial Intelligence and Games 2011[20].

• In 2012, the savings obtained by using a clustered abstraction approach to planning

was demonstrated in an article published in the International Journal of Data

Mining, Modeling and Management[21].

Chapter 1. Introduction 17

• The work was featured as an invited seminar given at Lockheed Martin’s Burling-

ton MA campus in July 2012, and was presented at the AltDevConf held in

2012[22]. It was featured as part of the the Game Developers Conference in the

Artificial Intelligence Summit in March of 2013[23].

1.5 Thesis Layout

The remainder of the thesis is structured as follows. Chapter 2 will provide an overview

of relevant techniques and approaches to AI systems that have been in use in the video

game field as well as elsewhere. In Chapter 3, the specific method proposed for the

I2A will be shown and explained thoroughly. To address the evaluation criteria outlined

above, results of experimentation proving the functionality of this approach will be

presented in Chapter 4 along with a proof of viability by implementation in the popular

game engine Unity 3D. Chapter 5 will demonstrate robustness by outlinging an example

game from industry to showcase the manner in which the components interoperate and

the flow of information between them and will also address efficiency by presenting an

analysis of the computational complexity involved in each component. Discussion of the

architecture, possible extensions and future enhancements will be presented in Chapter

6, whilst Chapter 7 will give a summary and draw conclusions from the work.

Chapter 2

Related Work

The Integrated Influence Architecture draws inspiration from a number of different tech-

niques in use both within the games industry currently as well as those that are more

academic or that have previously not been seen within games. In this chapter, a review

of relevant previous work has been undertaken to fully contextualise the I2A, not only in

terms of its components but also the shortcomings of contemporary approaches that ne-

cessitate a system like the I2A. As the majority of the system is motivated by, and built

on top of, Automated Planning, Section 2.1 takes an intensive look at this discipline.

Section 2.2 discusses techniques within the games industry, with specific emphasis on

those techniques in use currently and their perceived shortcoming. In Section 2.3, other

techniques that are of relevance but not specifically related to Automated Planning or

Games are discussed. These are predominantly executive systems that translate a de-

cision from a logic system into an action in the world. The chapter closes by providing

a comparative analysis between the I2A and several key works that were introduced in

earlier parts of the chapter. This analysis can be found in Section 2.4.

18

Chapter 2. Related Work 19

2.1 Automated Planning

Automated Planning (or “planning”) is the name given to a branch of AI in which a

problem is attempted to be solved by creating a concrete list of actions that must be

executed in sequence (a “plan”) in order to alter the situation that an agent finds itself

in, in order to achieve some desire outcome.[1]

Planning is a deliberative AI technique, which is to say that it performs reasoning,

taking all the information it knows about the environment into consideration in order

to produce a coherent approach to solving the problem.[18]

2.1.1 Problem Representation

A planning problem is typically specified in terms of three things.

• A complete, fully enumerated description of the current state of the world.

• A description of the possible actions that can be taken within that world.

• A partial description outlining what the final objective of the plan should be.

The description of the goal is typically partial because only certain elements are impor-

tant - consider this in terms of any real world task. Rarely is the goal state exhaustively

enumerated, but instead it is generally considered in terms of a small number of condi-

tions being met. Any state that meets these is a potential goal state, and the remainder

of the world can be disregarded. In a package delivery problem, the goal is that the

package is in the right place - the configuration of the rest of the world is irrelevant,

therefore any state where the package is in the right place is a goal state. The same

holds for most planning problems, where there are only a small number of salient things

Chapter 2. Related Work 20

describing a goal. The objective of planning is to find a sequence of actions that reach

a goal state, and typically an optimal solution will be that one that finds the goal state

using the shortest path.

On the other hand, the initial world state specification needs to be fully exhaustive.

This is used by the planning agent to determine the resources available to it, as well as

the configuration that all objects within the world are in when the resulting plan begins

execution. Note that in general the assumption is that these descriptions are accurate,

and the world behaves in a deterministic and predictable manner. An overview of ways

that this assumption can be overcome is detailed in Section 2.1.4.1.

In order to be easily parsed by a planning agent, the problem representation needs

to be described formally in a machine readable format. Generally, one of two standard

formalisms are used for this, either the Planning Domain Description Language (PDDL)

or Simple Action Structures + (SAS+), although there is no requirement for this and

other languages can be used to describe these problems.

2.1.1.1 PDDL

PDDL is the de facto standard for the Automated Planning community, and was first

defined in 1998 ahead of the AIPS Planning Systems Competition as a standard repre-

sentation that could be used in order to allow planning algorithms to work on the same

problem set, and thereby be comparable.[24]

As a language based on first order predicate calculus, PDDL provides a rigorous gram-

mar by which the nature of a planning domain can be represented. PDDL uses a

two-component approach, decomposing a problem into a Domain specification, which

describes the kind of environment that the agent will be acting in, including the kinds

Chapter 2. Related Work 21

of objects that it might encounter, and a Problem specification which explicitly sets out

what objects exist in the world, their types and how they are initially arranged, as well

as the goal of the planning task being described.

PDDL represents the world as a set of facts. Facts that are not asserted are assumed to

be false. PDDL solves the “Frame Problem”[25] by making use of Reiter’s “Successor

State Axiom”, which is to say that facts that are asserted true at one time point will

remain true at all subsequent time points unless explicitly negated.[26]

PDDL utilises a predicate-based or “lifted” approach to formalism, meaning that it is

defined in context of variables that can later be quantified. This means that the world

can be described using a framework such as at(var1, var2) with the variables being sub-

stituted in later. This is in contrast to a “grounded” representation, in which every

permutation of the at(var1, var2) predicate must be enumerated, leading to exception-

ally large world descriptions. This lifted approach means that the representation can be

abstracted, and PDDL supports variable typing to constrain this even further. However,

it should be noted that this approach is largely a convenience for the human creating

the specification - when solving the problem many planners will perform variable sub-

stitution in order to create a grounded representation internally.

Since its inception, PDDL has undergone a number of revisions that have added addi-

tional features. By far the most adopted is PDDL 2.1, which was introduced in 2002.

The primary contributions of this revision to the standard were “durative actions”,

which allowed actions to be represented as having a temporal length associated with

them, where previously they were assumed to be instantaneous. This allowed planners

to search for shortest-time plans, and distinguish that although a plan might have more

steps involved, it would complete quicker. PDDL 2.1 also brought in “numeric fluents”

Chapter 2. Related Work 22

which allowed numeric values to be tracked such as fuel consumed by performing ac-

tions, and “plan metrics” which allowed a planning problem to try to find a plan that

minimised the value of these fluents.[27] Subsequent revisions introduced “timed initial

literals”, which is to say actions that occur at specific times independent of plan exe-

cution (PDDL 2.2 [28]), “preferences” which allow a problem to specify soft constraints

that planners should try to conform to if possible (PDDL 3.0 [29]). PDDL 3.1 would

have introduced “object fluents”, allowing fluents to not only take numerical values as

before, but also an object-type, however this work does not appear to have ever been

adopted as part of the official PDDL specification.[30]

PDDL has also spawned a number of successor languages that have attempted to tackle

either a much broader set of planning problems than the PDDL specifications allow for,

or have seen the concepts of PDDL adapted for a more niche application. Two examples

of the latter are the New Domain Definition Language (NDDL)[31] and the Multi-Agent

Planning Language (MAPL)[32], which fall outwith the scope of this work. Of more

relevance are those languages that extend the PDDL specification to be more expres-

sive. One prime example of this is PDDL+[33] which uses autonomous “processes”

and “events” to attempt to produce a model of the world that was more accurate and

correctly portrayed actions as affecting continuous change on the world (as opposed to

PDDL 2.1’s model in which actions did not affect change except at their initiation and

termination). This meant that for example a bucket being filled over time would expe-

rience a constant change in volume over time, rather than a single discrete update when

the filling action completes. Although this enhanced the accuracy of the model, it also

increased the computational complexity of algorithms tackling problems specified in this

way. As a result, PDDL+ failed to gather much traction within the planning community,

as evidenced by it never being adopted by the International Planning Competition.

Chapter 2. Related Work 23

2.1.1.2 SAS+

The approach that PDDL takes to its representation is motivated by having a lot of

statements about the world and each one being either true or false. This means that the

PDDL formalism has a “high dimensionality” but since each dimension can only take

one of two values, it is a “low value” representation. This is an approach that is well

suited for certain search strategies - there are a lot of switches to change, but as they can

only be on or off it is easy to see whether changing one has had a positive or negative

effect. SAS+ is conceptually very different in that its approach is “low dimension /

high value” - almost opposite to PDDL. This means that there are a smaller number of

switches, but rather than on/off, they are selectors across a number of choices. Changing

one value here is less informative - it might have changed to a worse value, but that

doesn’t mean that the previous value was the optimal. This alternative representation

is less well matched to some of the earlier search algorithms used in planning, but when

paired with an appropriate algorithm it can be an effective strategy.

More formally, SAS+ makes use of a sequence of multi-valued variables to represent what

in PDDL would be a set of implicitly linked facts.[34] A good example of this alternative

approach is to consider a scenario in which a package can be in one of several locations.

In PDDL, this would be represented as a set of facts, and perhaps a move action that

simultaneously deletes the proposition that the package is at its current location whilst

also asserting the fact reflecting its new location. In this way, PDDL will ensure that

only one of these facts is true at any one time, although from a short inspection of the

facts themselves, there is no indication that they are linked.

Under the SAS+ formalism, such things that are implicitly represented in PDDL become

explicit. A SAS+ representation of the example would make use of a single variable,

Chapter 2. Related Work 24

whose value could represent any of the locations that the package could be at. SAS+

not only captures the specific values that the variable can take, but also the manner in

which it transitions between those values. Consider if the package can only be moved

to adjacent locations, then from Location 2, it could move to Location 1 or Location

3. This is represented in SAS+ as a “Domain Transition Graph” (DTG) and plays a

significant role in the I2A as shall be explained in Chapter 3.

SAS+ also represents the interdependency of types of object within the world, by making

use of the “Causal Graph” (CG). This shows which objects rely on others, so captures

the manner in which the respective DTGs for each variable might be interleaved.

Generating SAS+ From PDDL It has been shown to be possible to automatically

generate SAS+ from PDDL.[35] Naively it is possible to treat each proposition in the

PDDL as a binary valued variable, but this does not allow for any of the alternative

formalism to be leveraged. By analysis, it is possible to collect the mutually exclusive

propositions in a PDDL domain and turn these into variables with associated DTGs.

The CG can be found by analysis of PDDL actions; the types of object that appear in

the effects of an action are dependent on the objects that appear in the preconditions

for that action.

It should be noted that this automatic generation process does not necessarily retain

a semantic meaning that is easily observed for non-trivial domains. In particular, the

naming of variables and values loses any sense of the orginal meaning of these in the

PDDL.

Chapter 2. Related Work 25

2.1.2 Classical Planning

So called ”Classical Planning” first came to the fore in the early 70s with techniques

such as the Stanford Research Institute Problem Solver (STRIPS). For their time these

were ground breaking and represented a new way of looking at problem solving in real

world scenarios, or as the title of the original STRIPS paper indicates ”A New Approach

to the Application of Theorem Proving to Problem Solving”.[36]

The STRIPS language was a very simple arrangement of logical operators, structured

such that an action was defined in terms of the preconditions that needed to be satisfied,

and the effect of applying the action. In this it is clear that later formalisms such as

PDDL were heavily influenced by STRIPS, and its position as the initial precursor to the

Automated Planning field is unquestionable, as evidenced by its longevity in literature

and courses over forty years later.

Naively, it should be noted that a planning problem can be solved by taking the initial

state and applying all the actions whose preconditions are currently satisfied to generate

a set of successor world states, and continue with this process down a tree of states until

a state is found that matches the goal. This is an example of a ”forwards-chain” search,

but also one that is unguided, meaning that no information is being provided to focus

the algorithm on promising areas.

The STRIPS solver works in a more robust manner, using ”backwards-chain” or ”re-

gression” planning.[1] This means that the solver starts with the goals that must be

satisfied and finds actions that would achieve them as part of the action’s effects. The

relevant effect is replaced by the unsatisfied preconditions of that action, the action is

added to the front of the plan and the process recurses until the initial state is reached.

Chapter 2. Related Work 26

2.1.2.1 Heuristic Search and A*

In contrast to unguided search, a ”Heuristic Search” or ”Heuristic-guided Search” uses

the notion of a heuristic (or estimate) to guide it. The A* algorithm is perhaps one of

the best known heuristic search algorithms[37] and is typically used for pathfinding in

well-behaved worlds.[38] Imagine a tile-based world with obstructions. The aim is to find

the shortest path from point A to point B, moving around the obstacles. An example

of this world is shown in Figure 2.1, where the goal and starting point are represented

by the diamond and triangle.

Figure 2.1: An example world to which A* path planning is well suited

The algorithm starts from point A and works towards point B by considering the states

that can be reached from the current point. Each one is scored in such a way that an

estimate of the distance of the path traversing that point is obtained. At all times, the

next node to consider will be the node that is currently the lowest scoring that has not

been expanded.

In order to calculate this score there are two components, the distance the agent has

Chapter 2. Related Work 27

travelled so far, and the remaining distance. The cost of the path to reach the current

node from Point A is known - this is the number of layers traversed down the tree so

far, however the remaining length to the goal is unknown, and calculating it exactly

would be computationally complex. Instead the remaining cost is estimated using a

heuristic, which is generally analogous to a ”good rule of thumb”. For A* in the kind of

scenario shown, this is often the Manhattan Distance between the current location being

considered and point B, meaning the summation of the absolute difference in the x and

y coordinates. A good heuristic should be relatively accurate so as to properly inform

the search, but it also must be computationally efficient. A good heuristic will also often

be what is termed “admissible”, which is to say that it will never generate a heuristic

value larger than the correct value. Put another way, it will never overestimate the

work remaining, although will often underestimate, and here the Manhattan Distance

is demonstrably admissible as a location in a grid system cannot ever be closer than the

difference in its x and y coordinates from the current position.

In this way, heuristics are used to guide a search and suggest areas of the tree that

seem promising in a strategy often referred to as ”Best-First Search” (contrasting with

Breadth- and Depth-First techniques). This is used to good effect in planners, with the

Fast Forwards system being particularly effective and discussed in Section 2.1.3.1. An

alternative approach to heuristic guided search, based on state space sampling, will be

introduced in Section 2.2.3.3.

2.1.3 Contemporary Planning - Planning Graphs and DTGs

As planning evolved and emerged as a standalone discipline within Artificial Intelligence,

it became clear that there were cases for both backwards and forwards chained search.

STRIPS had originally used backwards chaining in order to control the size of the state

Chapter 2. Related Work 28

space, but it was evident that this had limited value, and that an alternative approach

was required. Forwards-chained search became a viable alternative as more research was

undertaken, and the nature of planning problems was better understood.

One such advance was the representation of the problem as a “planning graph”. When

considering a planning problem previously, the conventional wisdom was to visualise it

as a series of states connected by actions. The actions would change what facts were

true, and the states were effectively an encapsulation of the facts true at any given

point. This meant that the problem was being perceived as one of identifying a set of

state transitions which would traverse this representation. This was true regardless of

formalism - both PDDL and SAS+ (and others) used this as a conceptual starting point.

The Graphplan system turned this on its head and instead used the “planning graph”

as its conceptual start point.[39]

The planning graph represents both actions and facts as nodes within the graph, with

these being structured as alternating layers of facts and actions. The initial layer of the

graph represents the facts true in the initial state, whilst the subsequent layer includes

all those actions that can be applied from this state. Edges within the graph represent

causality, so actions are connected to the facts in the subsequent layer that are altered

as a consequence of the action, and also to the facts in the preceding layer that they are

contingent on as part of their pre-conditions. An example of this structure is shown in

Figure 2.2.

Using this structure, Graphplan is able to extend the planning graph until a layer is

reached in which the goal facts are concurrently true. Then it is a relatively simple

process to work backwards from those facts to find the actions which cause them to be

true, and so on until a plan is formed.

Chapter 2. Related Work 29

Figure 2.2: An example planning graph

Unfortunately Graphplan predates the International Planning Competition, therefore a

rigorous analysis of its performance was never conducted, however based on the work

it led to, such as Fast Forwards[40], Fast Downwards[41], LAMA[42] and others, it can

be thought of as a predecessor to an entire family of planning algorithms. As such,

its lasting significance is much more related to its conceptual contribution than the

improvement this directly had on its performance on planning problems.

2.1.3.1 Fast Forwards

Of the successors to Graphplan, one of the most celebrated remains Jorg Hoffman’s

Fast Forwards system. It uses a variant of the planning graph in order to provide

efficient heuristic guidance for a forwards-chained search, alongside a novel approach

to action choice.[40] FF proved its dominance against a range of planners as part of

Chapter 2. Related Work 30

the Second IPC, in which it was recognised for “Exceptional Performance” - the only

domain-independent planner to achieve this that year.[43]

The Relaxed Planning Graph FF’s most significant contribution is the “Relaxed

Planning Graph” (RPG), a variant of Graphplan’s planning graph in which only the

positive outcomes of actions are considered. Put another way, when a fact is asserted

as true, it is never falsified in the RPG. This gives a simplified view of the problem,

and the plans generated will be misleading - in effect, the RPG is providing an idealised

view of the world, but this simplification drastically reduces the computation required.

Consequently this makes the RPG very useful for estimating the amount of work re-

maining in a problem, using this idealised plan length as a heuristic estimate. It should

be noted that due its nature, the RPG will underestimate the amount of work required

(although it will also never overestimate) making it an admissible heuristic as defined

in Section 2.1.2.1.

By its nature, it is important to recognise that the accuracy of the estimate is dependent

on the nature of the domain, since it is poorly suited to problems that feature structures

in which a goal fact must be falsified in order to achieve another fact and then reachieve

the first, a scenario famously encountered in the Sussman Anomaly.[44] The core issue

with this is that a plan derived using the RPG will not account for reachieving the first

goal, since it does not negate the goal being achieved when it is undone. This can lead

to vastly underestimated heuristics in these situations, however since it is only guiding

the search this inaccuracy will be handled by the search algorithm when it is detected.

Helpful Actions FF also introduced a system of pruning for the search space based

on the potential actions under consideration. Specifically it restricts its attention to

Chapter 2. Related Work 31

“helpful actions” which are those that will add at least one of the goals of the planning

system in the next step. This allows the search to focus solely on actions that contribute

directly to the plan.

On the face of it, this filtering of actions may seem excessively constraining, but it

is important to be aware that both the RPG and the helpful actions filter are only

used during one particular search technique that FF uses, known as “Enforced Hill

Climbing” - when this strategy fails to provide information to the algorithm, it defaults

to a traditional breadth-first approach, which allows FF to maintain a robust success

rate on a range of plans, since its particular techniques are bypassed in the event that

they are not informing the search.

2.1.3.2 Macro Actions

The concept of the “Macro Action” is relatively simple and one that has been around

even since the time of STRIPS, albeit undergoing a number of iterations[36]. Put simply

a macro action is a sequence of actions that occurs together in such a way that it makes

sense for it to be packaged up as a single action. Consider the sequence of actions:

1. Leave the house

2. Drive to the store

3. Order coffee

4. Collect coffee

5. Drink coffee

Chapter 2. Related Work 32

Trivially it can be surmised that this sequence of actions will likely occur together on a

regular basis, and because of this, its possible to reduce the depth to which a planner

needs to search by simply encapsulating the whole sequence in a single action.

Importantly, this example hinges on having an understanding of the nature of the world,

which for the purposes of the example is the domain of the planning problem. Because of

this, humans can appreciate the significance of this sequence of actions. For Automated

Planning, this intuition is not available, and the majority of significant improvements

to macro actions have been centred on their generation.

There are broadly two methods by which macro actions can be derived, either by analysis

of the domain or by analysis of plans (although some planners adopt a mixed approach

using elements of both). In the first instance, analysis of actions is typically used to

establish causal links between actions, which is to say an action that generates a fact

that another condition uses. An example of this could be unlocking and opening a door,

the first of which asserts that the door is unlocked, whilst that the second requires that

the door be unlocked. Examples that utilise this approach include REFLECT[45] and

more recently Macro-FF.[46]

Analysis of plans more closely resembles the coffee example above, where sequences and

patterns are sought in the generated plans for a domain in order to increase efficiency

when solving other, more complex problems. This approach can be seen in planners

such as MARVIN[47] and MORRIS.[48]

2.1.3.3 Landmark Analysis

A comparatively recent advance in planning, “Landmark Analysis” refers to discovering

facts that must be true at some point during execution in order to reach a solution to a

Chapter 2. Related Work 33

planning problem.[49] Conceptually these are bottlenecks in the domain that all plans

must go through, which can be visualised as a bridge crossing a river for plans requiring

you to drive from a point on one side to a point on the other - the route taken on either

side can change, but every plan must by its nature cross the bridge.

Identifying these locations allows a planning problem to be safely decomposed into sepa-

rate problems, firstly from the initial state to the landmark state and secondly from the

landmark to the goal. This allows the combinatorial explosion of states per layer in the

search tree to be managed directly, since these can be treated as two independent prob-

lems, as shown in Figure 2.3 which shows this explosion control as the comparative width

of the triangular search spaces, both under a traditional search and a Landmark-based

search.

Figure 2.3: Demonstrating how landmarks can manage the combinatorial explosion
of the search space

Although trivially, the initial and goal facts constitute landmarks, they are not con-

sidered interesting. The extraction of those landmarks that are interesting is a more

Chapter 2. Related Work 34

complicated task that utilises the properties of the Relaxed Plan Graph in order to

identify states that appear as a requirement to satisfy facts that must be true down the

line. A level of verification is also required since the RPG is not able to identify cyclic

graphs and will falsely indicate the shortest path round the cycle as a landmark.

Landmark analysis has been shown to cause significant performance improvements in

planners based on FF and Graphplan[49] and two notable planning systems that have

exploited aspects of landmarks, Fast Downwards[41] and LAMA[42], have gone on to

great success with their respective entries in the IPC.

2.1.4 Planning For Uncertainty

As mentioned previously, planning assumes a deterministic well-behaved environment,

and that the agent performing the planning is the only one active in that environment.

These are very idealistic assumptions that occur infrequently in real-world applications.

One viable strategy is to pair a planning system with some other form of executive

system, which is a model that will be discussed further in Section 2.3, however attempts

have been made that are purely based on planning. The first of these that will be

discussed is the attempt to model uncertainty as part of the planning problem, whilst

the second approach accepts that the assumptions of planning are invalid and attempts

to find ways to work around this.

2.1.4.1 Probabilistic Planning

Probabilistic PDDL (PPDDL) was adopted as the official standard for the IPC’s proba-

bilistic track, held in 2004 and 2006[50]. PPDDL’s primary contribution was to introduce

the notion that effects of actions could be probabilistic and to allow a distribution to be

Chapter 2. Related Work 35

defined for the possible outcomes. For example consider a robot picking up a box in a

warehouse. Under PDDL, the assumption is that the robot will always successfully pick

the box up, but there could be many reasons why this action could fail, from mechanical

failure to the box being misaligned. PPDDL allows this to be represented in the model,

and the effects of failure to be enumerated - perhaps in the case of the robot above,

there is a 5% probability of failure in which the box ends up on the floor, a 1% likeli-

hood that the robot’s arm fails and a 94% chance that the action completes successfully.

Although it is true that this is a more realistic model of the world in many respects, it

relies on an enumeration of all the ways that an action can affect the world. In simu-

lated worlds and example scenarios, this less rigorous assumption about the world may

hold, but it is still not accurate as all the ways in which something can go wrong is

effectively unquantifiable. A more detailed discussion of this specific issue will be given

in Chapter 5.

Markov Decision Processes Effectively, PPDDL representations are just a logi-

cal restatement of a classical mathematics device called the Markov Decision Process

(MDP).[51] This is a “discrete-time stochastic control process”, or more informally de-

scribes a system in which the next state that the system will be in is defined by a

probability distribution based on the current state.

2.1.4.2 Plan Repair

Under plan repair, the underlying concept is that since planning is inherently prob-

lematic, instead of modelling a world using further assumption about its probabilistic

nature, it is better to instead monitor plan execution and when the state of the world

differs from the expectation, to replan from this new state. This is intuitively quite a

Chapter 2. Related Work 36

naive approach, and yet when first introduced by FF-Replan[52] it proved very success-

ful, winning the 2004 IPC probabilistic track, and had it entered the 2006 track, it would

also have won that too.

However, a more nuanced approach is to attempt to find some way of “patching” the

existing plan such that the computation already performed does not need to be redone.

By instead planning for ways that the plan can be resumed, the CPU requirements of

the end-to-end process has been shown to be reduced.[53]

2.1.4.3 Partial Observability

It is also worth noting that there is another class of uncertainty, known as “Partial

Observability”. It is easy to see that in some cases the result of an action may be one

among a set of choices, it is also possible that it is not known with full certainty what

state the agent is in. There may be areas of an agent’s world that it is not currently aware

of, meaning that the world has some state but aspects of that state are not observable

by the agent. This introduces significant complexity to the problem. Although I2A

does not cater specifically to the partially observable case, it is worth bearing it in mind

as this is more general than the fully observable case assumed by the majority of AI

systems.

2.1.5 Automated Planning Summary

Automated Planning has been shown to be a valuable area of AI research. Over the

decades since it first was explored more complex problems can now be tackled and

although initially some of the limitations of the discipline were severe, advances have

allowed for the planning tasks to be achieved faster. However, the techniques as a group

Chapter 2. Related Work 37

still assume that a lot of computational power is available, orders of magnitude beyond

that which game engines typically allow for AI subsystems. Not only that but in order to

provide tractable problems a lot of assumptions are made about the environment, most

notably that the agent will be the only thing able to make changes to the environment.

This does not hold in game environments.

Although the ability to create long term plans of action to solve complex problems is a

vital aspect of the perception of intelligence, in its current form, Automated Planning

is not an ideal solution to tackle the kinds of problems highlighted in the prior chapter.

2.2 AI Techniques in Games

As noted in the previous chapter, there is a long tradition of putting AI systems in

games. For the purposes of this literature review, the discussion is limited to only to

what might be called the “contemporary” era, which is to say what can be recognised as

video or computer games. Even here, there are techniques that have withstood the test

of time due to the simplicity, and a range of techniques that are more modern which

provide additional refinements, increased believability or perform more optimally.

Broadly, AI techniques in games can be broken down into three families. Firstly are those

that have derived from Finite State Machines, in which the AI system steps through

discrete, defined states in a manner controlled by the system as it has been created by

the AI developer. Another range of techniques try to model the world in such a way

that mathematical processes can be used to evaluate appropriate responses for the AI

system. Finally, a group of techniques rely on much more significant processing in order

to produce their responses, which are based not only on the current state that the agent

Chapter 2. Related Work 38

is in, but also reasoning about future states and the way that the world can be changed

to suit the agent’s needs.

2.2.1 State-based Techniques

2.2.1.1 Basic Finite State Machines

Perhaps the most popular “entry-level” technique for AI in games is the Finite State

Machine (FSM).[54] In this paradigm, states that the agent can be in are represented as

mutually exclusive, and there are discrete and explicit transitions that allow the agent

to change between specific states when a certain trigger is received.

Figure 2.4: A Simple FSM for Guard Behaviour

For agents in game worlds this could be a reasonably simplistic system such as a guard

who patrols until it detects the player at which point it transitions into an attack state.

When the player is dead, the guard transitions back to patrolling. This simple system

can be seen in Fig. 2.4. However immediately there are oversights and situations that

have not been considered - what if the player escapes from the guard for example? At

some point, the guard should return to its patrol. Perhaps it would be more realistic if

the guard transitioned into an intermediate suspicious/exploratory state when it loses

Chapter 2. Related Work 39

sight of the player. The FSM system is very powerful, however this expressive power is

matched by a very unwieldy system that suffers greatly from combinatorial explosion.

This can make designing AI systems using basic Finite State Machines a very challenging

problem.[55]

2.2.1.2 Hierarchical Finite State Machines

The Hierarchical Finite State Machine (HFSM) attempts to overcome the complexity of

the FSM by organising states into a hierarchy, grouping similar states together.[56] [57]

This allows for more complex behaviour by allowing a designer to box out an entire set

of behaviours as one “state” at the top level, and then internally handling them more

robustly, perhaps as an iterative series of states.

Figure 2.5: An example HFSM

Revisiting the guard from the previous example, it might be appropriate to think in

terms of attacking the player as a single state, but in reality there are many different

ways that the player could be attacked depending on circumstances. If the player is a

long way away, the guard may choose to attack with a ranged weapon, but if the player

Chapter 2. Related Work 40

is close, a melee weapon would be more appropriate. However the process of selecting

between them is kept internal to the attack state, and transitions move in and out of

that state rather than having to wire each of the substates into the rest of the machine.

In this way, the HFSM manages to some extent to mitigate the combinatorial explosion

that results as more states and transitions are required in a typical FSM.

2.2.1.3 Hierarchical Concurrent State Machines

The Hierarchical Concurrent State Machine (HCSM) is a relatively modern addition to

the AI programmer’s arsenal, having been developed as part of a research project at

University of Iowa to provide scenario management in a driving simulator.[58] HCSMs

trace a lot of their heritage back to Statecharts[59] and Finite State Machines before

them.

The core building block of an HCSM is the HCSM itself, creating a nested, Russian

doll style system that organises modular component. Where those internal HCSMs are

linked by transitions, the parent HCSM is described as “Sequential”, since only one can

be active at a time, they are activated in sequence. If there are no transitions between

the child HCSMs, then the parent is “Concurrent” and all the internal states are active

at any given tick.

Each HCSM has an “activity function” associated with it, which is used to generate an

output based on, but independent of, the active state within the HCSM. The HCSM

specification defines input “wires” used to supply a continuous stream of data to the

machine, as well as controls and “dials” (represented by variables in code) which are

used to set parameters within the machine. It is important to note that time within the

Chapter 2. Related Work 41

machine is discretely modeled, and although changes to the input are visible immediately

inside the machine, changes made to the controls are not reflected until the next tick.

When an HCSM is executed, firstly a “pre-activity” function is run which is used to

control the flow of information into the child HCSMs that will be active this tick (with-

out reference to which will be active). Subsequently, if the HCSM is sequential then

which transitions should fire must be determined, and which of the children will become

active as a result. Having determined this (or bypassed this step for concurrent HC-

SMs) each of the children of this HCSM that is active will have its execution function

activated, generating a recursive set of calls inside the nested HCSM from the top down.

Subsequently the HCSM’s “activity function”, which is to say it’s actual output value,

is evaluated. This is an important ordering to understand, since it means that whilst

children of an HCSM are able to influence their parents, parents cannot have any bearing

on a child’s output this tick, and need to wait to impart this as part of the pre-activity

next tick to set the controls of the child HCSMs.

HCSMs provide a way of managing the combinatorial complexity of large sets of states

by removing the need for states to transition between each other in the case of those

that can be interrupted, for example a set of states that represent a “patrol” behaviour

don’t all need to be able to transition into an “attack” when certain conditions are

met, instead the patrol behaviour states are unified into a “superstate”. Their modular

nature also means that different aspects of the world can be handled separately, or

jointly. The HCSM gives a significant degree of modularity whilst also being relatively

easy to implement due to its recursive nature.

The HCSM is seen as significant in the Game AI community as it is the driving structure

behind the Left 4 Dead AI Director developed by Valve.[60] This was a system designed

Chapter 2. Related Work 42

to alter the game in subtle ways both to ensure added replayability since the layout of

enemies and pickups in each level would change, but also to control the flow of the game

and enforce a certain pacing. The motivation for this was drawn from the horror movie

genre in which it is accepted that there is a certain pacing, in which intensity grows

gradually to a peak, stays at this peak and then tails off leading to a rest period, which

is seen as very engaging by audience members. Left 4 Dead attempted to replicate this

pacing, but in an interactive setting it is very difficult to attain this kind of experience

on a per-player basis. Traditionally the aim of level design has been to provide this for

an approximately “average” player, but by being able to tailor the experience through

the HCSM system, specifically designed for scenario control, a number of factors of the

level design can be subtly influenced such as the number and location of the enemy

characters in the level. More recent implementations have also taken to putting a wider

range of aspects of the environment under the control of the AI Director in order to

create a more engaging experience for the player.

2.2.1.4 Behaviour Trees

By far the most common contemporary AI algorithm for driving characters in a game

world currently is the Behaviour Tree (BT).[61] BTs are derived in part from Finite

State Machines, and owe at least part of their ancestry to the State Charts widely used

in the Embedded Systems community, and first came to the fore in the video game

industry after their successful implementation by Damian Isla during the development

of Halo 2 (Bungie, 2004).[62]

A Behaviour Tree can be thought of at its most basic as a tree, although more technically

it is a Directed Acyclic Graph since a node can have multiple parents. Leaf nodes within

the DAG represent some action or set of actions that the agent can express as well as

Chapter 2. Related Work 43

conditions that must be true, whilst nodes higher in the DAG structure are concerned

with the logic of traversing the DAG.[63]

More specifically, these higher nodes are grouped into “Selectors” and “Decorators”.

Selectors choose which of the children of the node will be traversed, and in what order.

• A “Sequence Selector” ensures that all the children of this node will be visited in

a left-to-right manner.

• A “Concurrent Selector” is used when the children of the node should be visited

together.

• A “Random Selector” is used to determine at random the order in which the nodes

of the sub-tree should be visited.

• A “Priority Selector” allows for a run-time evaluation of which nodes should be

visited in what order.

There is only one type of Decorator, which is used to ensure that certain conditions hold

true or for example to allow a timer to lockout an entire subtree if it has been visited too

recently, thus controlling the frequency with which certain behaviours can be triggered.

Leaf nodes can either be “Conditions”, which will evaluate as true or false dependent on

whether the condition has been satisfied, or “Actions” which can be false if the action’s

preconditions are not met, or “running” if the behaviour begins executing.

When an action or condition return false, that blocks all siblings of that node in the

DAG from being considered. In a concurrent or sequence selector, that causes the

selector itself to evaluate as false, but in random and priority selectors, it means that

they re-evaluate and choose a new subtree to work with, either at random or the subtree

Chapter 2. Related Work 44

with the next highest priority. When an action and selectors returns a “running” result,

this is passed back up the DAG to the parent node, effectively meaning that the DAG

is traversed until a behaviour begins running, or the DAG has been exhausted.

At the next iteration, traversal will resume at the root node and continue as normal

until a selector which is still set to “running” is found. At this point, rather than

begin processing the selector as normal, the BT will begin from the behaviour that was

running at the previous iteration. This allows a minimal amount of state information

to be passed between ticks implicitly, since using this, complex sequences of behaviours

can be executed whilst still intelligently overridden as circumstances change over time.

One of the key strengths that game developers like about the Behaviour Tree archi-

tecture is its extensibility. New behaviours can be added easily without requiring any

additional changes be made to existing behaviours. It’s also easy to arrange and pri-

oritise behaviours that have been crafted in order to tune the overall feel of the agent’s

actions. Because the architecture is inherently stateless (beyond a memory of the prior

running behaviour) it is significantly easier to manage complex behaviour systems - in

particular from a design point of view - since for example the concept of high priority

behaviours intervening and preventing lower priority behaviours from executing does not

need to be considered as a specific set of state changes as it would in a more traditional

architecture such as a FSM.

Behaviour Trees and FSMs It is worth noting that in many cases the Behaviour

Tree is used as a device to limit the expressive power exposed to a systems designer.

This artificial limit allows the designer to focus on creating realistic behaviours in a

manageable manner, but at runtime many Behaviour Tree systems will take the tree

that the designer has created and compile it into a FSM for execution. This exploits the

Chapter 2. Related Work 45

fact that all Behaviour Trees can be represented as an equivalent FSM (although the

reverse is not true), a point made by Sunshine-Hill at GDC 2014.[64]

2.2.2 Mathematical Techniques

2.2.2.1 Influence Maps

One of the early approaches to AI in strategy games was the Influence Map, which

evolved from approaches that were used by research in the game Go[65] and has been

used to great effect in specific works in the games industry.[66] In many ways it can be

seen as a kind of abstract representation of the world in which objects within that world

exert positive or negative influence. That influence can then radiate out throughout the

world and serve as an attractive or repellent force to guide the movement of an agent.[67]

Influence Maps are spatial representations of the world - typically a two-dimensional,

discrete, tile-based world. Influence radiates to adjacent tiles from a source. In a game

context, powerful enemy soldiers may be a source of negative influence as the agent

wants to avoid combat with them. Weaker enemies may be a source of negative influ-

ence too (generating much less influence than their stronger counterparts) to avoid po-

tential losses, however in a game where the units can gain additional attributes through

combat, these weak enemies may generate positive influence since the agent can defeat

them. Items and resources that the agent can use could be a source of positive influence

attracting the agent to them.

An Influence Map relies on a formula in order to radiate the influence a source creates in

the world around other locations by propagating the influence out. There are a range of

different approaches that could be used here, but the most common are typically linear

and inverse square.[67] In either case, the amount of influence an agent experiences due

Chapter 2. Related Work 46

to one specific source decays as the distance from that source increases. This parallels

a number of physical forces such as magnetism and gravity, which suggests why an

alternative term for this approach is the Artificial Potential Field.

All the sources of influence in a world have their respective influence propagated through-

out the world. In areas where one or more source exerts an influence, some method of

combining them is used, which could be summation, taking the maximal value or some

other approach. There are arguments for many different techniques to be used here,

and each will give an agent using an Influence Map a different behaviour. A summation

of influence allows a positive source to cancel out a negative source but two positive or

negative sources will reinforce each other. An agent operating under this system would

avoid areas that were clearly bad, but might be tempted to explore areas that had pos-

itive and negative elements. A maximal value approach might give the agent a very

positive view of the world, where it overestimates its likelihood of success, whereas a

minimal value approach, where the agent uses the least value of the combined influence

sources would generate a very pessimistic view of the world, and consequently an agent

that acts quite timidly.

What is important to observe is that whereas the previously mentioned systems required

a designer to architect a set of behaviours, an Influence Map uses the interplay of math-

ematical formulae to evoke that sense of behaviour and intent in the agent. Although

it is used solely for choosing areas of the world to travel to (and it should be noted

is not implicitly a navigation system per se, although an A* algorithm can be used in

conjunction with the influence values), it is still possible to generate different tones to

the agent’s actions.

In Figure 2.6 an example of a calculated Influence Map is shown. This is drawn from

Chapter 2. Related Work 47

Figure 2.6: An Example of an Influence Map in Ms. Pac-Man

previous work with Ms. Pac-Man (Midway, 1982).[68] In the left of the image, the state

of the game is shown, the agent is trapped and enemy ghosts are closing in. On the right,

an Influence Map for this situation has been calculated, with a high value reflecting a

strong negative influence. The cumulative effect of the close grouping of ghosts in the

bottom right reinforces to produce a high amount of influence in these areas (represented

by the red “heat”), whilst the ghost in the centre of the screen produces comparatively

low amount of influence (as shown by the cyan colour).

2.2.2.2 Utility-based Architectures

Utility architectures are so called because they assess the “utility” or “value” of the

options available and make their choices based on what seems to be the most appropriate

course of action at any given moment. Utility systems are set up in such a way that

the relative value of different objects can be described and combined with other stimuli.

This means that a large number of factors can contribute to a decision, and because the

evaluation is a mathematical operation, the outcome can be found quickly. Utility lends

Chapter 2. Related Work 48

itself to situations where there isn’t a specific “right” action to take in a given situation,

but there are a number of actions that would be acceptable. [63] [69]

Each potential action can be assessed to determine its suitability in a given situation

based on a response curve. For a very simple action, there may be only a single factor

being considered, and consequently a single response curve, an example of this might be

a naive “Attack Enemy” action, which becomes more valuable the closer the enemy is.

A simple function for this might start with a high value when the enemy is 0 units away,

and decay linearly to a distance where the value of the attack becomes 0. However,

this is not an especially sophisticated implementation as other factors would need to

be considered such as the ammunition level of the NPC and their health - with low

ammunition, or low health, a better response would be to avoid the combat and retreat.

These would be represented with their own response curves which may be linear or any

other function. The output from each one is then combined to produce an overall rating

of the action. This combination function can take a number of different forms, such as

taking the minimal or maximal value, or multiplying or adding the values together. The

result is then compared to the rating of all the other actions available, putting them into

a ranked order. From this, the most appropriate action can be taken based on taking a

number of factors into consideration.

One interesting part of the nature of Utility systems is designing them to be extensible.

Care must be taken with this to ensure that, for example, the addition of a new factor

for consideration doesn’t increase the potential value that an action can take and create

an accidental bias. Dave Mark’s Infinite Axis Utility System is an example of a system

that works around this by ensuring that all the response curves are clamped between 0

and 1, so that any result from a response curve will always be in that range, and should

the curve give a value outwith this, it will be adjusted to be either 0 (for values lower

Chapter 2. Related Work 49

than 0) or 1 (for values greater than 1). This combination technique used by the IAUS

is a multiplicative process, which since the components of the function range between

0 and 1, results in a value that is guaranteed to be between 0 and 1, regardless of the

number of factors and response curves that are considered.[23]

Previously, it was discussed that Behaviour Trees could make use of a “Priority Selec-

tor”, and it is worth noting here that a good implementation for assessing the priority of

children of such a selector is based on Utility. This was shown to good effect in Redshirt

(The Tiniest Shark, 2013) which uses a single Behaviour Tree to model a number of dis-

tinct characters.[70] The nature of the game is such that each character has a personality

and must take actions in keeping with that personality, and here a Priority Selector can

tie into a utility system that takes that personality into account to ensure that actions

chosen are in keeping with the character traits that the player has previously seen the

agent exhibit.

Reasonable vs Optimal Play One of the aspects of Game AI that is highlighted

very well by the Utility approach to decision logic is the distinction between Optimal play

and Reasonable play. In traditional Artificial Intelligence, the assumption is typically

that the best decision is always the one that results in some metric being optimised, such

as speed, cost and so on. In a game-based domain, especially for agents within a game

world, this means optimally completing their objective. When this objective is set to be

an interaction with the player, and especially when it is an enemy attempting to oppose

the player, making the optimal choice at every decision point can lead to a very difficult

game for the player to win. Because Utility Theory scores all of the possible actions, it

is possible to ignore the “optimal” highest scoring action and instead choose the next-

best action. By doing this, optimal play can be avoided thereby creating a beatable

Chapter 2. Related Work 50

challenge for the player whilst also ensuring that the actions chosen are sufficiently

realistic choices to maintain believability. It is also possible, instead of choosing the next-

best action to randomly choose between N next-best actions, introducing an amount of

non-determinism whilst also maintaining believability of action choice.[71]

2.2.2.3 Neural Networks

The Neural Network architecture is modelled after our understanding of how a biological

brain operates. Whereas the Neuron forms the core of a biological brain, a Neural

Network is formed from interconnected “Perceptrons”. These are broadly the same in

function, and can almost be seen as analogous to an organic transistor, albeit where a

transistor is only able to output a signal at 0 or 1, making it digital, a perceptron can

output any value in the range 0 to 1. This output is calculated based on an internal

weighting of inputs combined with an ”activation function” which maps that input into

the appropriate output signal.[1] A diagram demonstrating this structure is shown in

Figure 2.7.

Figure 2.7: Overview of a Perceptron

Chapter 2. Related Work 51

The power of the Neural Network comes when a number of these perceptrons are wired

together. At the initial layer, a range of inputs are brought in from the world, and then

these are wired to a number of perceptrons. At the final layer of the network, the output

from these last perceptrons is wired up to a series of actuators that will effect change in

the world. When a perceptron has an input added to it, it can determine what weight

to give to that input, so it can bias in favour of one or more of the inputs, or have no

bias.

The nature of the Neural Network allows the weights to be “trained” in such a way that

they provide the expected response out of the actuators in a set of training examples.

This is an example of “supervised learning”, where the weights are being tuned so that

the behaviour of the system matches the outputs that are deemed to be appropriate

in the situations that the training examples describe, with the notion that being able

to adequately respond to the situations described in the training data will produce a

Neural Network capable of reacting to a range of circumstances.

Neural Networks in their purest form are about pattern recognition, and mapping that

recognition to an output signal.[72] However, the way that they are doing this is through

function approximation. Training an NN can be seen as giving it datapoints, and ex-

plaining what side of a curve that point belongs to. The Neural Network then performs

a regression analysis to classify unseen datapoints.[56]

Typically in games however, it is more common to be talking about using Neural Net-

works for agency rather than classification, although from a certain point of view it can

be argued that this is still classification - a determination of “good” and “bad” actions

dependent on circumstances. In this model, the classification itself is secondary to the

output being generated and mapping that into action in the game world.

Chapter 2. Related Work 52

A simple example of this kind of system can be seen in research done with “EvoTanks”,

in which small tanks are controlled by Neural Networks in order to play a game inspired

by the classic game Tank (Kee Games, 1974) in which two tanks attack each other.

The game is shown from a top down point of view, and each tank is able to turn left

or right, move forwards or back and fire.[73] In EvoTanks, each tank is controlled by

an NN whose outputs are wired to each of the potential actions within the world. The

input for each NN is connected to a sensor. In this way, the perception of the world

becomes a datapoint, and the resultant response a classification of what the agent did in

that situation. This creates a system that can learn as it goes by trial and error, feeding

the validity of its actions back to either reinforce or correct an action.

This has been used to good effect in a limited number of games directly, such as Creatures

(Millenium Interactive, 1997) and Black and White (Lionhead, 2001) which provide

scope for players to train agents about their world. In Creatures, these were pet-like

characters, and the player was responsible for looking after them, but also giving them

the necessary knowledge of what aspects of the world were good and bad such that they

could help themselves. In Black and White, the player took on the role of a god with

a giant animal acting as their avatar. The avatar could be trained to interact with the

world on the player’s behalf, performing good deeds for their worshippers - or equally

bringing down vengeful wrath upon them, depending on their play style. In both cases,

a Neural Network was part of the solution that powered these systems.[74][75]

More recently, NNs have been used to power the decision making in Supreme Commander

2 (Gas Powered Games, 2010).[76] The approach taken here was to train neural networks

such that they could make decisions for commanding an army in a real time strategy

game. One key aspect that this work explains very well is that it is very important

when working to train Neural Networks that an appropriate evaluation function be

Chapter 2. Related Work 53

used. Robbins relates how an oversight in the evaluation of actions in SC2 initially led

to armies that were unwilling to attack the enemy commander, since his death caused a

large explosion that destroyed the friendly army. However, killing the enemy commander

also won the game, an aspect that wasn’t exposed to the evaluation function. Because

of this, initial attempts to train the system avoided a number of obvious game-winning

strategies.

This annecdote is a rare situation where the actions of an NN are explainable, however

in general the NN is a black box, and there is no scope for tuning it by hand. The

inputs supplied to the Neural Network are complexly modified by the Perceptrons in

such a way that it is not clear why specific values have been derived or how to change

them without retraining the Neural Network. For video game developers, this can be an

awkward proposition since the behaviour of the agent needs to be tailored to feel just

right in the game. For other techniques, small issues can be corrected more directly to

create the requisite behaviour, whereas this is not possible with an NN. Equally, the

developer’s understanding for why a specific action is being taken is diminished using

Neural Networks, since there is no method for justifying an action either in terms of the

situation, or in terms of previous training data. As a result, Neural Networks remain an

interesting, but often unused technique in games.

2.2.3 Deliberative Techniques

2.2.3.1 Goal Oriented Action Planning

Goal Oriented Action Planning (GOAP) is a technique pioneered by Jeff Orkin for

F.E.A.R.[9] (Monolith Productions, 2005), and has been used in a number of games since,

most recently for titles such as Just Cause 2 (Avalanche Studios, 2010) and Deus Ex:

Chapter 2. Related Work 54

Human Revolution (Eidos Montreal, 2011). GOAP is an implementation of some of the

basic concepts of STRIPS-style classical planning (discussed previously in Section 2.1.2),

relying heavily on backwards chained search. GOAP is designed to control Non Player

Characters (NPC) within a game world, and the majority of applications that it has been

used for have been First Person Shooter style games, although this is not a requirement

of the technique.

GOAP plans to achieve objectives that are chosen by a high level system from a number

of options, selecting what seems to be the most appropriate goal for a given situation.

This goal is passed to the planning system to be achieved. One interesting aspect of

GOAP that extends it beyond the traditional classical planning paradigm is the inclusion

of “Context Preconditions” - these are preconditions of actions that are evaluated during

execution rather than during reasoning. They reflect aspects of the world that, were they

put into the representation during reasoning, would make the problem intractable. A

good example of this sort of preconditions is the requirement that a target be in range

before an agent can shoot at it. In order to reason about this aspect of the world, it

is possible to expose the entire knowledge of the pathfinding system to the reasoner

in order for it to take steps within the plan to ensure that the target is within range.

However, if the target is non-static and acting with its own intelligence, even this would

not be sufficient since the plan could not reliably predict the target’s actions. GOAP

bypasses this issue by abstracting the problem to be dealt with at execution - if the

target is not in range then the agent will not shoot and will be forced to provide a new

plan that can be executed - perhaps by swapping its equipped weapon to one with a

longer range, or by coming up with a new approach to attacking the target.

GOAP represents a significant milestone in AI for games in that it was the first time this

kind of planning system was incorporated into a mainstream title, however it is fair to say

Chapter 2. Related Work 55

that it is also very much the lowest hanging fruit of what Automated Planning can do in

game environments. One of the most significant issues is that GOAP doesn’t address the

fundamental problem of applying deliberative reasoning in a game environment, namely

the computational expense associated with deliberation. In order to work around this

issue, a lot of GOAP implementations are restricted to reasoning at a very high level,

for example about tactical options rather than specific actions within the world.

Within the industry GOAP has received a mixed response. Because techniques that

derive from STRIPS are able to create novel solutions to problems through their rea-

soning, there are many stories related by players about their experiences and the weird

and wonderful solutions that the NPCs come up with when presented with edge-case

situations that the game designer would not have envisioned as part of the development

process, meaning that more traditional, designer-driven approaches to NPC AI algo-

rithms would likely not have had a suitable response. However, for many development

teams, it is precisely this character-based creation of novel solutions that is their major

concern with GOAP and similar techniques. Typically these teams put a higher empha-

sis on ensuring that a player has a specific experience when playing their game, rather

than providing the tools for the NPCs and players to interact to have one among many

experiences. As a development philosophy, these teams are much more about creating

an interactive yet almost cinematic experience, where the NPCs do not have significant

autonomy or choice and reasoning is not a desirable trait. As such, adoption of GOAP

and similar planning-based techniques has not been widespread, and more sophisticated

implementations have not been explored.[77]

Chapter 2. Related Work 56

2.2.3.2 HTN

Outside of the STRIPS planning paradigm, and its successors, another approach to plan-

ning that has received attention within the game development community is Hierarchical

Planning, in particular Hierarchical Task Networks (HTN). HTN planning has been used

to good effect in the Transformers franchise (High Moon Studios, 2010-2012)[78], as well

as the Killzone series (Guerilla Games, 2004-2013).[79]

An HTN planner works by being provided with an initial configuration of the world (just

as in STRIPS) and then a “Task” that must be accomplished. This task is given as a

high level objective of what must be achieved. The HTN system also contains a library

of “decompositions” that break tasks either into “Compound Tasks” (which can then be

further decomposed) or into “Primitive Tasks” which are a set of ground actions that

will achieve the task. This means that the HTN system will start from the high level

task it has been assigned and break it down into more concrete things it must do, until

it reaches a sequence of actions that it can execute directly.[63]

There are typically multiple different possible decompositions for a task, representing

different ways that it can be completed. The role of the HTN planner is to find a

suitable sequence of decompositions such that when the task is reduced to primitives,

it can change the initial state of the world into one in which the original task provided

has been completed. In this way, HTN can be seen as a top-down approach to planning,

where the initial statement provides a plan that is highly abstracted and the planner

acts to concretise it into actions, fundamentally at odds with the STRIPS family that

builds the plan from the bottom-up.

The main drawback of HTN planning is that it relies on the library of possible decom-

positions being created in advance. This adds significant overhead to the work involved

Chapter 2. Related Work 57

in creating an HTN implementation, but at the same time, it also serves to address

GOAP’s shortcomings in so far as creative and directorial control of the NPC behaviour

is concerned, since the decompositions govern the way the NPC will interact with a

game world. In effect, the decompositions give an NPC flexibility in how it approaches

a problem, but they do not allow it to create a novel solution to a problem, since it will

always be constrained by the available decompositions, which must have been envisioned

by a member of the development team.

2.2.3.3 Monte Carlo Tree Search

Previously when search has been considered, it has been visualised as a tree of states,

with the successors of each state being those potential states that are reached by applying

some modifier to the current state. At each layer of the tree, the agent in question is able

to make a decision. In many applications however, this is not the case, and there are

multiple agents to account for. Game trees attempt to take this into consideration by

allowing for the possibility of other agents to take actions. Typically this is turn-based

in nature, with games such as chess, tic-tac-toe and checkers being among the most

frequent to be represented as game trees.

By allowing the idea of external agency, these games can be played using algorithms

that attempt to infer the actions the other players might make. Perhaps the most

celebrated of these is the MiniMax algorithm, which assumes that the other player will

play optimally and is working to minimise the agent’s potential score. By making this

assumption at every node in the game tree where the opponent might make a choice, the

agent will always be able to maximise the potential minimum reward.[16] In Figure 2.8

a game of tic-tac-toe is in progress and the agent is playing the role of X. There are

three possible moves that it could make, and by expanding the tree of potential moves,

Chapter 2. Related Work 58

Figure 2.8: Example of a Game Tree in practice

the agent can determine its best course of action. Minimax would indicate that the

best move was the rightmost of those presented, since in this tree the minimum result

possible is a draw, whereas in all others, the minimum is a loss.

Monte Carlo Rollout is a technique pioneered by von Neumann and Ulam which hinges

on the premise that for an arbitrarily large search space, sampling within that space

can provide as useful an overview of the space as can be obtained from an exhaustive

enumeration. In the context of trees, a Monte Carlo Tree Search (MCTS) involves a

random walk down the tree to a terminal state and an assessment of the value of the

end state. For game trees in particular, where the nodes represent moves by alternating

players, a random walk can be misleading since it assumes all the moves by all the players

have an equal probability of being chosen which is not the case. Equally, randomness

in the walk does not allow for the information being gathered across multiple samples

to bias the selection towards areas of the space that warrant further exploration due to

being “good”, whilst also contrasting this with the need to find areas of the search space

that have yet to be explored which could contain equally promising states.

Chapter 2. Related Work 59

MCTS uses an approach in which a history of the nodes visited is built up over time,

with each sample through the tree an additional node is added to this history, and the

value of terminal state reached is recorded at the leaf node in the history, as well as

propagating back up the partial tree that has already been created. This is typically

stored as the average value of the leaf nodes reached from this state, along with the

number of times this node has been considered in a route to a leaf node.

The balance between exploration and exploitation is handled by the selection algorithm

used whilst the sample is traversing the area of the tree that has previously been ex-

panded and is currently stored in the history. A heuristic is used here to bias the selection

algorithm in some way. Most frequently this uses the the “Upper Confidence Bounds

applied to Trees” heuristic (UCT).[17]

Monte Carlo in Games Monte Carlo was for years left as something of a dead-

end after its creation by von Neumann; the number of simulations required to make it

a viable approach was greatly at odds with the computation power available. In the

academic games research community, it wasn’t until very recently that it experienced

a renaissance as a technique with the application of MCTS to the game of Go[15] and

then the creation of the UCT heuristic.

Go is a traditional board game originating in China thousands of years ago. At its

most basic, the rules of Go are fairly straightforward. The game is played on a grid of

intersecting lines, with the points of intersection being the positions available for play.

Players place a stone of their representative colour (typically White or Black) at one of

these positions, taking turns. The goal of the game is to capture the opponent’s stones by

surrounding them either individually or in groups by your own stones, thereby removing

them from the game and creating an area on the board that you control. Go is most

Chapter 2. Related Work 60

commonly played on a 19x19 grid (although the game can be played on smaller grids,

most frequently for tuition), for a total of 361 playable “points” on the board, creating a

search space that is incredibly broad, and assuming all positions remain playable (which

is unlikely but provides an upper bound on game length), 361 moves can be taken,

creating a potential space of approximately 2361 final configurations for the board. This

is far too large a space for exhaustive search to be feasible, and with the bushy nature of

the tree, most traditional search strategies would not be appropriate. Because its nature

is to sample the search tree, Monte Carlo has proven especially effective at tackling this

problem and evaluating what the best move in a particular situation is.

When used in a game context, initially Monte Carlo was implemented such that during

the rollout phase, choices were made at random. Moving into a game such as Poker,

it is clear that a random selection between the choices available is not at all reflective

of the behaviour of a player, and as such the search process is not necessarily exploring

areas of the tree that would realistically be in use by the opponents.

Previous work has explored the ways in which the rollout can be adapted to make use

of existing knowledge about the way that Poker is played using a large corpus of data

based on “hand histories” downloaded from an online casino.[80] Each history is a record

of what a player at the table experienced, meaning that there is a wealth of information

that remains hidden since one of the key aspects of the game is the imperfect information

each player has. By taking a large number of these histories and generating an action

predictor from them, Van Den Broeck et al. showed that an opponent model could be

imparted into a Monte Carlo Tree Search algorithm resulting in a more accurate search,

producing noticeably better decisions for the agent being driven by such an algorithm.

One of the weaknesses of the approach taken by Van Den Broeck et al was the assumption

Chapter 2. Related Work 61

that there is only a single archetype representing a generic “Poker Player”. Fundamen-

tally this meant that all of the data they were using to learn an opponent model from

could therefore be acted on as a single group. Work at University of Strathclyde moved

to address this oversight by learning a classification from the hand history data that

used a clustering approach to identify a number of different archetypes into which a

player could be assigned. This gave even finer grain control over the action prediction

by ensuring that not only were the actions selected based on what was appropriate for

a Poker player, but specifically for this type of Poker player, since it is well understood

that different players have different play styles. By using an action predictor conformant

with a player’s archetype, a more accurate simulation could be put into the rollout.[81]

Both this and the Van Den Broeck work suffered from the weaknesses of their data

however, in that the information gained was incomplete and told one side of a very

complex story. The Strathclyde Poker Research Environment (SPREE) was an attempt

to overcome this by reducing the reliance of research on the commercial online casinos

for large datasets related to Poker, by creating an environment in which players could

play the game, and researchers could access the logs from the server itself, giving com-

plete information and vastly improving the quality of the data provided to any machine

learning algorithm.[82]

POMCoP The Partially Observable Monte Carlo cooperative Planning (POMCoP)

technique is of particular interest, since this technique deals explicitly with what they

term “sidekicks”, which are effectively the companion characters discussed in Chap-

ter 1.[83] POMCoP uses a Partially Observable Markov Decision Process (POMDP) a

variant of the MDP previously introduced in Section 2.1.4.1, and uses partially observ-

able Monte Carlo methods in order to find a controller that solves the POMDP. The

Chapter 2. Related Work 62

work uses POMCoP to play a game called Cops and Robbers, in which a human player

is supported by an NPC sidekick. Two cops are required to capture a robber, therefore

its necessary for the human and the sidekick to cooperate in order to trap one of the

robbers and win the game. The sidekick is able to ask the human which robber to tar-

get, but doing so costs a turn. The main source of uncertainty in this game relates to

the human’s intentions. Although the sidekick can know which robber is being targeted,

they cannot know how the player intends to act (or even if they have changed to another

target), one of the biggest findings of this work was knowing when to query the human

and confirm their intentions, allowing the sidekick to adequately support the player in

achieving their objectives.

2.2.4 Game AI Summary

It could be argued that in many ways, Game AI techniques are drastically behind the

state of the art in academia. What this would overlook is the differing reality of what

resources are available for execution in a game environment, where so much processing

power is being diverted to other areas.

Despite this, Game AI has proven exceptionally good at finding systems that are ”good

enough” and using sub-standard AI techniques in ways that hide their flaws to provide a

good experience to players. However, with that said, there are many areas where ”good

enough” fails to hold up, and these are often highlighted by critics as fundamental

weaknesses, since they are so immersion breaking.

Attempts to address this such as through the use of GOAP and HTN planning in recent

years have found moderate success but in many ways their implementation is still very

rudimentary. It’s potentially the case that the industry adopts older techniques from

Chapter 2. Related Work 63

academia because the processing power required in order to make them function becomes

available to the AI team, and arguably there is very little true innovation in this area

coming from the industry - understandable since blue sky research projects are at best

hard to justify in context of the financial bottom line.

With that said, the initiative shown by the industry in adapting systems and finding

ways to make things work given their constraints is remarkable, and the application of

this kind of thinking to other systems is one of the core tenets of the work presented

below.

2.3 Other Relevant Architectures for AI Agents

2.3.1 Subsumption

The Subsumption Architecture, developed by Brooks, is one of the most well known

examples of a Reactive System. The architecture consists of an prioritised list of be-

haviours which can be active at any given time, with each behaviour being expressed

as a mapping of a set of input stimuli to a set of output effects. Multiple behaviours

can be active at once if appropriate, and where there is a conflict in the outputs, the

higher priority behaviour overrides, or “subsumes”, the output from the lower priority

behaviour.[13]

The primary virtue of Subsumption is its speed, since in order to ascertain which be-

haviours should be active at a given time it is a relatively simple case of matching the

current observed input from the environment against the pre-defined patterns of the

behaviours, which is a computationally inexpensive process. This means that a system

Chapter 2. Related Work 64

Figure 2.9: Diagram of a Subsumption Architecture

developed using this architecture is inherently able to quickly react to new circumstances,

giving it a robust capability to resolve issues encountered.

Additionally, the Subsumption Architecture is very extensible, since it is constructed for

a modular set of behaviours. To add more behaviours is simply a case of creating the

behaviour by establishing the input that triggers it and the consequent output response,

and then inserting this behaviour into the list of behaviours with an appropriate priority.

There are, however, a number of disadvantages to this approach. Because it is a relatively

simplistic model, it is not able to represent long-term goals except implicitly within

its behaviours; it does not have a stateful representation that allows for a memory of

previous situations, and this can lead to an inability to achieve more complex tasks.

Also, because multiple behaviours can be active at a given point, the architecture has

large potential for creating an “emergent system” in which simple behaviours combine

to produce more complex high-level behaviours. This can be an undesired effect and

lead to problematic situations if that high-level behaviour is not anticipated.

Chapter 2. Related Work 65

2.3.2 Three Layer Architecture

The Three Layer Architecture (TLA) was a paradigm first put forward by Gat to ad-

dress these shortcoming of Subsumption.[84] Prevailing wisdom before Subsumption had

favoured a process based around a chain of Sense, Plan and Act phases. It was broadly

felt that Subsumption eliminated the Planning phase, and although the virtue of this

could be seen, as already mentioned it was not without its shortcomings. TLAs were an

attempt to reintroduce the planning phase by creating a layered system, in which the

speed of the reactive system could be preserved, but certain aspects of the environment

could also be addressed by a deliberative reasoning system.

The canonical TLA is split into the following components: The Controller, The Se-

quencer and The Deliberator. The Controller can be thought of as being similar to a

Subsumption Architecture inasmuch as it is designed to provide a very quick mapping

from sense to actuation through a library of functions very similar to Subsumption’s

behaviours. The Controller typically holds a larger array of functions than are ever

active at a given point, with the selection of which are active being determined by the

Sequencer. This allows the Sequencer to manipulate the Controller in such a way as to

ensure that the behaviours it is able to make use of are contributing to a broader task,

effectively reconfiguring the lower layer in real time. The selection of high-level task to

achieve is handled by the Deliberator layer, which is where the more time consuming

processing takes place. This process can either be instigated by the Sequencer request-

ing a new task, or by the Deliberator itself generating a new task and handing it off to

supercede the previous task.

The TLA approach does not stipulate the mechanics by which each layer undertakes

its task, meaning that a number of different modules can be plugged together in this

Chapter 2. Related Work 66

fashion to achieve a result, albeit with varying degrees of success. This has made the

TLA a very robust and timeless paradigm that is still seeing use today.

However, TLAs are somewhat inflexible, in as much as they rely on the task decom-

position of a high-level objective being reduced to a series of shorter tasks, and then

the assumption is that the emergent nature of the controller layer will allow these tasks

to be achieved regardless of the environment in which the agent is acting. However, in

this canonical model of the TLA, there is no scope for this to be verified and for issues

encountered by the controller layer to be passed around within the architecture - only

for information to be passed down from deliberator to sequencer to controller (with the

exception of the sequencer polling up to request a new series of tasks to achieve).

In general terms, this is a fundamental weakness of the TLA, since at a conceptual

level it makes the assumption that aspects of the world are either solvable through this

emergent reaction, or by some sort of deliberation to create a schedule of emergence. This

fundamentally separates the world into elements that must be reacted to, and elements

that must be deliberated about, however this kind of classification is not always as clear

cut in a real (or even simulated) environment.

2.3.3 T-REX

The Teleo-Reactive EXectuive (T-REX) generalises some of these concepts to form a

more robust, fast-acting agent, specifically designed to cater to the fast-changing unpre-

dictable environment of underwater exploration and experimentation[85].

The basic principle of T-REX is to create a set of “reactors” representing specific ob-

jectives being controlled. The reactors are able to pass goals to each other via pre-

determined paths, as well as passing observations about the current state, again using

Chapter 2. Related Work 67

pre-determined paths, providing a structure not dissimilar to a hierarchical decomposi-

tion of the task being undertaken.

The main weakness in this approach is that information from high-level deliberative

modules is passed to other modules, and is not implicitly transparent to the executive.

This means that although the executive is told what needs to be achieved, it has no

understanding of the context, of why it needs to be achieved, and so plan repair can

only occur by the same process, with observations bubbling back up to the appropriate

layer for recovery and being used to update goals to be satisfied at the lower layers.

This is certainly a more efficient process than requiring a full replan, but the black-box

compartmentalisation of the problem by topic seems to be artificially restrictive, and still

requires that deliberation be re-executed without additional instructions being passed

along. Of all the executives discussed here, T-REX is the only one that comes close to

resembling the approach that appears to be crucial to efficient, robust execution.

2.4 Summary of Existing Systems

As can be seen, although there are a number of techniques in use both within academia

and industry, none adequately bridge the gap between the Reactive and Deliberative

paradigms. This is problematic as it lends each technique a significant set of weaknesses

and consequently, no current approach is suited to the kind of combination of scenarios

envisaged that combine both long-term reasoning with short-term reaction.

In this, the Integrated Influence Architecture specifically addresses a number of weak-

nesses of those techniques that have been analysed above, and also inherits traits from

many of them.

Chapter 2. Related Work 68

2.4.1 I2A and GOAP

By far the most obvious comparison is to GOAP due to both systems’ utilisation of

STRIPS-derived planning. However, it is important to reiterate that GOAP was very

much the lowest hanging fruit of what is possible with planning systems in games.

Planning was limited to a very high level in GOAP, reasoning only about the sequence of

abstract concepts and “modes” that an NPC could use in order to limit its computational

complexity. Because of this GOAP did not address replanning when a plan can no longer

be executed, instead relying on the simplistic nature of computed plans to allow it to

recompute a new solution to the full planning problem in a reasonable timeframe.

However, with that said, I2A still shares a lot of traits with GOAP, most notably the

need to add markup to the game world so that it can be described in PDDL and reasoned

about. I2A can naturally be thought of as a successor to GOAP in many ways in that

it takes the concepts introduced by Orkin and expands on them to provide a more

thorough implementation of STRIPS planning, without making the compromises and

sacrifices that GOAP did.

2.4.2 I2A and Influence Maps

Of all the previously mentioned approaches to decision making, it could be argued that

the I2A most closely resembles Influence Maps. In fact, a good way to visualise how I2A

operates is to visualise it as an Influence Map operating across the state space, rather

than being limited to the traditional constraint of only using a spatial representation of

the world; in a traditional IM, the influences radiates from good and bad locations in

the world, whilst in the I2A the influence originates from states that the agent should

(or should not) be attempting to traverse. In this way, the I2A can be thought of as an

Chapter 2. Related Work 69

extension of IMs into “concepts” as well as locations, reasoning about ways of traversing

the state space not just by navigating the game world but also interacting with it.

2.4.3 I2A and Utility

The I2A also relates closely to architectures based on Utility Theory. One of the core

features of I2A is the avoidance of search as a decision-making tool, instead leveraging

function evaluation as far as possible to limit the computational complexity of the ap-

proach. Like Utility, I2A is a system for ranking and evaluating a range of potential

choices and like Utility, I2A evaluates all the options before selecting the one deemed

most appropriate. Where Utility is evaluating potential responses to a situation and the

action to take however, I2A is evaluating the potential trajectories through the state

space.

2.4.4 I2A and Markov Decision Processes

The I2A is also closely related to the MDP system in that it is an enumeration of

state transitions, which could be described in a matrix format showing adjacency of

states. However, in contrast to MDPs, it is assumed that the outcome of each action is

deterministic, that is to say that the action will result in exactly one resultant state. To

compensate for this, the I2A allows for the state to be altered after an action is achieved,

so rather than have actions with non-deterministic outcomes and have to deal with this

added layer of complexity, states can be thought of as being fully connected through

actions that are “secret” to the agent - they cannot be utilised by the agent explicitly,

but can be applied in order to rationalise discrepancies between expected and detected

state. Perhaps the most crucial distinction is that the MDP model does not allow for

Chapter 2. Related Work 70

changes to the world over time in terms of the value of the state transitions, which is

a core concept of the I2A. This allows for the representation to be updated and links

broken or added as the circumstances change, which would not be possible with a pure

MDP.

Chapter 3

Method

3.1 Concept

The previous section described many of the approaches that have previously been taken

to the problem of achieving agency within a game world. The core aspect of previous

work has been centred around a paradigm of Reactive or Deliberative approaches to

interaction with the world; architectures have predominantly tried to tackle either one

or the other, and even those few that have attempted to bridge the gap have done so by

decomposing the task into the two aspects, and switching between sub-systems capable

of targeting one or the other.

Fundamentally, this is at odds with how we approach the world as humans. We typically

react to problems within the context of the long term goals that we are trying to achieve,

and we allow those goals - and our belief about the plan we need to execute in order to

achieve them - to inform the decision process during our reaction. Consider a situation

in which we go to start a car, and the “check engine” light comes on. The logical next

step to this is to book the car in to be inspected by a mechanic. This is a valid reaction,

71

Chapter 3. Method 72

but it doesn’t consider that tomorrow we need to get to an appointment, and driving to

it is the only option. This is a reasonably trivial example, but it highlights that reacting

in a vacuum does not make for optimal decision-making and can be very disruptive to

what we are trying to achieve in broader terms. Having access to information about our

long term plans and intentions means that we can take them into account when reacting,

and react in a way that makes sense both in terms of the current decision required, as

well as that big-picture view.

The Integrated Influence Architecture (I2A) attempts to bring this kind of decision

making process to the AI field by acknowledging that the barrier we have placed between

the Reactive and Deliberative paradigms is an artificial construct, and for good decision

making, we need to be able to make choices informed by elements of both. Not only

that, but the point of relying on Reactive decision-making has always been the speed

with which it can act, so one of the core principles in the creation of the I2A has been

retaining that speed.

At a high level, the I2A system functions by putting together a number of well under-

stood techniques in order to solve the problem. The core of the system is a unified

representation of the world that can be shared between the Deliberative and Reactive

aspects. This representation is an abstract topographical model of the potential state

space of the world, and the manner in which those states can be traversed. This gives a

representation very similar to that used by a number of spatial reasoning systems and a

problem very reminiscent of path-finding, which is a particularly well-understood area

with a number of proven solutions. The “Integrated Influence” aspect of the architecture

is about combining the information being provided by environmental sensing (as in a

traditional Reactive system) with the information exposed by a Deliberative reasoning

Chapter 3. Method 73

system in such a way that both are influencing the pseudo path-planning around the

full state space space.

3.2 Overview

Fundamentally, the I2A is a system for providing robust, efficient execution for agents

within a game world. It does this by combining a number of components and exploiting

the fact that a lot of pre-computation can be handled upfront and not be made a part

of the run time process. Figure 3.1 shows the full set of components that make up the

I2A and their manner of interaction.

Figure 3.1: Overview of the Integrated Influence Architecture Components

3.2.1 Components

The components of the I2A are divided into two types, firstly those that perform prepro-

cessing during the development of the game and utilise the time and resources available

Chapter 3. Method 74

at this point. The second type are those that are used during the execution of the game.

3.2.1.1 Develop-time

The following components comprise the sub-systems of the I2A that are used during

development of the game.

Level Design

The main component that the I2A requires is an environment to act in that has been

determined in advance. That means that the game must have its levels designed during

development. In order to be able to describe the level and how it works to the I2A,

concurrent with the design of the level, the designer must also add descriptive markup

to the level that highlights the different types of objects in the world and associates a

semantic description of the world with the internal representation that the game engine

will use.

PDDL Representation

Once the level has been designed, it needs to be transformed into a PDDL representation

that will be more abstract than the level itself. This may not need to capture every aspect

of the level, just those that the agent being powered by the I2A can interact with. With

an appropriate component-based markup system as mentioned above, creating this could

be implemented automatically, otherwise it can be generated by hand, although as a first

order logic, this can quickly become a complex process to approach without automation.

Initial Planning (IP)

During development, a goal for the agent is determined and a plan is formed a priori

using classical planning methods based on the PDDL representation generated. This

Chapter 3. Method 75

is a highly idealised plan that relies on the standard set of assumptions that planning

requires such as the agent being the only active actor in the environment. As such, it

will almost certainly not remain valid for the duration of execution, but it provides a

starting point that will be used to inform the agent’s decisions during run time.

Common Representation

For the I2A to function correctly, it needs to make use of a model of the world that can be

shared between both the deliberative and reactive elements of the I2A during execution.

In order to create such a representation, the PDDL description of the world is used and

the aspects that remain constant are extracted creating a complete enumeration of the

state space and the manner in which each state can transition to others. As this results

in a combinatorial explosion, and an infeasibly large footprint, this enumeration then is

abstracted to create a representation that is more manageable and lightweight for use

at run time.

3.2.1.2 Run Time

Having performed extensive computation during development, the system is then much

more efficient during run time.

Game World

Naturally, as the I2A is designed to run inside a game, the world it operates in - the

game as experienced by the player - is a very important component, and underpins the

whole of the operation of the I2A. The location of entities and state of the world are

very important aspects, and although a lot of the Game World component sits outside

the scope of the I2A, being part of the engine powering the game, it is still important

Chapter 3. Method 76

to consider the manner in which I2A interfaces to that world, and the information is

exposed back to the agent.

Environmental Sensing (ES)

The environmental sensing component is used to take the information being generated

by the Game World about the state of certain aspects of the game world and relate that

back to relevant states in the common representation.

Asynchronous Replanning (AR)

The point of the I2A is to alleviate a necessity to constantly replan when the outcome

of a plan’s execution deviates from expectation. Whilst the information presented by

the IP provides an important initial source of insight into the domain, the I2A expects

that it will become inaccurate at some point during execution. To compensate for

this, Asynchronous Replanning takes place as a background process, allowing the I2A

to update the view of the world that the deliberative reasoning is providing. Note

that for expediency at run-time, the AR component does not plan in the entire of the

state space, but uses the abstracted state space held by the Common Representation

component. As this is asynchronous, the agent can continue to make decisions while an

update is pending.

The Integrated Influence Landscape (IIL)

The Integrated Influence Landscape is the combination of the Environmental Sensing

and Initial Planning (or later, Asynchronous Replanning) components. The IIL itself

makes use of the Common Representation in order to bring in the data being exposed by

both of those components and apply them to a model of the game world. The way this

is achieved is by using the ES and IP/AR as sources of “influence”, a heuristic estimator

Chapter 3. Method 77

of how good or bad a state is. Because this is applied to a representation common to

both components, it is possible to directly combine these amounts of influence to create

a coherent opinion of the current estimated value of states in the world, not only based

on the state of the environment that the agent is currently perceiving, but also the

objectives it is trying to accomplish.

Acting in the World

Finally, action in the world is achieved by evaluating the agent’s current position within

the IIL and performing a very localised search process to determine what the best course

of action is at this time. This allows the agent to pick an action at this time that will

lead to a more desirable state and ultimately to the agent’s goals.

3.2.2 The I2A In Practice

A good way to highlight the division of these components may be to discuss a worked

example of the I2A in action in a small game. In this scenario, the agent is positioned

in a series of rooms - a small dungeon or perhaps a castle basement. The agent has to

retrieve an object from within the level, but must be able to intelligently - and rapidly -

react to changes in the environment. A simple planning system based around STRIPS

can create a plan order to reach and obtain the item, however it cannot reason about

the presence of monsters and traps. The agent must be able to react to their presence

intelligently yet still complete the objective.

It can be seen that in the example in Figure 3.2 there are six rooms. The agent begins in

the upper-left room. There is an item to retrieve in the upper-right room, but the most

direct route is blocked by a yellow door. The yellow key is in the bottom-left room.

Chapter 3. Method 78

Figure 3.2: Layout of the Example Scenario

3.2.2.1 Develop Time

As the game is developed, the objects will be placed within the world. The rooms and

corridors will be laid out, and the door, goal item, key and the model for our I2A powered

NPC will be positioned. As these are laid out we can semantically say that they exist

in the world, that the rooms are connected to each other as shown in Figure 3.2 and so

on.

It is then possible to automatically generate a PDDL representation of the world by

using a system that indexes the semantic descriptions supplied by the level designer,

and then undertakes some analysis to determine more implicit information such as the

connections between locations in the world. The outcome of this is a PDDL Domain

and Problem description pair describing the world that the agent is acting in and what

the agent is trying to achieve.

Using this PDDL representation the Initial Plan component generates a plan that would

allow the agent to collect the item. An optimal plan is to traverse the middle rooms

Chapter 3. Method 79

to the bottom-right and then move up, bypassing the locked door. This is shown in

Figure 3.3.

Figure 3.3: The Obvious Solution - Computed Upfront Forming the Initial Plan

We also need to calculate the common representation which enumerates all of the po-

tential states that the world can be in. The agent can be in any of the rooms, it can

have the key or not, the door can be open or not and it can have the item or not.

Individually these form small graphs representing different aspects of the world. The

common representation begins to emerge when we consider a full enumeration of all the

potential combinations. The actions that cause the transitions between states become

edges in what is a full state space.

For a small problem like this, the state space is manageable, but it can suffer from

combinatorial explosion when this is done for larger problems, therefore as part of this

process the common representation goes through a process of abstraction to create a

more manageable problem space to work with.

Chapter 3. Method 80

3.2.2.2 Run Time

At run-time, the game world begins to operate as expected. Effectively this means that

the simulated world has come to life and the agent can begin acting in the world. To

begin with the agent can conform to the Initial Plan provided during development and

begin by moving into the bottom-middle room. As it attempts to move into the bottom-

right room, the combination of the Game World and Environmental Sensing signal that

there is a problem - the agent would have to pass through fire to continue executing the

plan. As this is not a good thing for the agent, the Integrated Influence Landscape is

updated to reflect that a negative area has been found.

Figure 3.4: The Contingency Plan Provided by I2A

By applying this negative influence to the IIL, a contingency route through the state

space becomes the dominant path to the goal. This is shown in Figure 3.4. The Action

component will perform the analysis necessary to determine that this is the best course

of action and begin implementing it.

For such a simple example, the need to replan is greatly diminished since the broad input

from the plan is still respected over such a small disruption, but for larger problems, as

Chapter 3. Method 81

the contingencies become dominant and the agent deviates from the plan it should be

noted that the optimal plan, and therefore the information being supplied to the IIL

may become obsolete, so a new plan is generated to reflect this using the Asynchronous

Replanning component. For speed, this acts on the abstract representation of the world

to give a more tractable problem, but is a low priority, which is why this is treated as

a side process. Over time, the AR will update the IIL, but the agent can continue to

execute whilst waiting for that update.

It is also worth noting that the specific type of contingency that becomes dominant

may not require the use of an alternative route, but the use of some sort of system that

negates the problem. In the case of the fire in the dungeon, the agent might cast a

protection spell that allowed it to pass unscathed as in Figure 3.5. This highlights a

particular aspect of the IIL and underlying Common Representation components which

is that although the agent does not have specific knowledge of the presence of hazards

in the world, it must have knowledge of how to handle those hazards. Although on the

diagram it appears as though the agent respects the original path through the dungeon,

in context of the Common Representation, it is actually traversing a very different set

of states - namely those where the agent experiences the effects of this protection spell.

This small example shows the way that the I2A divides the problem clearly into Develop

Time and Run Time aspects in order to provide good decision making whilst also re-

taining speed and computational simplicity during execution, when many other factors

of the game are vying for processing power.

Chapter 3. Method 82

Figure 3.5: An Alternative Contingency

3.3 The Common Representation - Compiled PDDL

As mentioned one of the key aspects to bridging the gap between the Reactive and De-

liberative AI paradigms is finding a way that the two can share a common representation

of the world. This means that information from a reasoning system can be combined

with the suggested choices offered by a deliberative system in such a way that the final

arbitration and decision takes both paradigms into account.

As was noted in the previous chapter, the most frequently used representation for Auto-

mated Planning is the Planning Domain Description Language. Helmert has previously

described a system for automatically compiling a PDDL representation into a SAS+

representation by using analysis of mutually exclusive facts and grouping these together

to form the SAS+ variables and their associated Domain Transition Graphs[30].

The best way to explain this process is through a short example. Consider a world in

which a package is moved between locations within three separate cities. There is a

truck that the package is loaded into and the truck can be moved around the city it is

in. To move between cities, the package must be taken by plane to another city. We

Chapter 3. Method 83

assume that the locations within the city are fully connected (from any one location, you

can reach any other), and that one plane connects a specific pair of locations within two

cities, which are the designated airports. This scenario is based on the classical Logistics

planning domain, although tailored to highlight certain aspects of the I2A system better

than the original, creating the Logistics+ variant[21]. The variation from the classical

design of the domain is that traditionally a plane could fly between any pair of airports.

By introducing a concept of a ”flightpath” and restricting a single plane to only serve a

pair of airports, this better allows the domain to express alternative arrangements and

contingency plans. This domain will be discussed in greater depth in Section 4.1.1.

The PDDL representation of this world consists of a series of facts about it that are

true. Some of these assertions cannot be changed and are considered to be intransitive,

for example no action described would allow for a road to be removed so the road layout

is intransitive. Contrastingly, some assertions are only true for this particular state of

the world. For example the location that the truck is at currently will change when

the appropriate action causes it to move. However, the nature of this means that it

is possible to group certain facts about the world together; for each truck, it can only

ever be at one location at a time, moving the truck removes one fact and asserts a new

one. This is a reasonably obvious example, but a more obfuscated one can be seen by

considering the location of the package. Provided there is a truck in each city, and each

city is connected to another by a plane, it is possible for the package to be at any location

in the world, but it is also possible for it to be at no location - when it is loaded into

a truck or plane. The analysis of mutually exclusive states will group these together.

Facts that have been grouped together become the values that a variable can take in the

SAS+ representation. As the process is automated the meaning of each variable is not

explicitly exposed. However, it is possible to deduce that a variable in a SAS+ model

Chapter 3. Method 84

does have a meaning; in the example it could represent the location of a package, or a

truck.

Not only does the SAS+ representation capture the values that a variable can take,

but also the way that it can change between those values. For the case of the package,

the domain is constructed such that the package can never jump from one location to

another, it must always be moved from one to the other by being loaded into a vehicle

and then unloaded. This means that it is possible to construct a Domain Transition

Graph that shows the manner in which the transitions can occur as in Figure 3.6, which

shows a small example of a world with just one city and three locations.

Figure 3.6: A simple example of a DTG for a package within one city

It is also possible to represent a graph structure as an “Adjacency Matrix” which is an

n x n matrix of binary values (for n nodes within the graph) in which the value at (i, j)

reflects the existence (or lack thereof) of an edge connecting node i to node j[86]. Note

that for a bi-directional graph, the adjacency matrix is required to be symmetric, but

for a DTG representation, which is a directed graph, this is not the case. For the simple

Chapter 3. Method 85

in truck at L1 at L2 at L3

in truck 0 1 1 1
at L1 1 0 0 0
at L2 1 0 0 0
at L3 1 0 0 0

Table 3.1: A matrix representation of the example DTG

example DTG we could represent this using the matrix shown in Table 3.1. Note that

as there are no explicit NO-OPS in the domain (although there is equally no stipulation

as to the frequency at which actions must be taken in I2A), so there is no edge recorded

that will link a state to itself. The adjaceny matrix representation provides a solid data

structure with which to work on these problems, and also has other implications which

will be discussed in Section 6.1.1.

The SAS+ formalism provides a directed graph for each of the variables it identifies.

Individually, each one provides a small portion of the current world state, consequently

the full state is identified by the value each of these variables takes. It is therefore possible

to build a complete representation of the potential state space and the nature of the

transitions within that space by evaluating the Cartesian Product (an operation denoted

below by the open-square � symbol) of all of these DTGs together as in equation 3.1.

DTG1�DTG2�...�DTGn (3.1)

Following on from the simple example above, it has been shown that one of the gener-

ated DTGs captures the location of a package with relation to the locations and truck.

Another would capture the location of the truck as in Figure 3.7. The product of these

two provides the current world state, where the truck is and where the package is. How-

ever, there are certain restrictions on how the two variables interact - it isn’t possible

for example to load the package into a truck unless it is currently at the same location

Chapter 3. Method 86

as the package. By taking this into consideration, the graph shown in Figure 3.8 can

be generated. It can be seen that this shares characteristics with both DTGs previously

shown, in as much as the triangular pattern of the truck’s DTG is replicated four times,

once for each state in the package’s DTG. The package can only transition when the

truck is in the right location. In order to ensure that only that the Cartesian Product

process has not introduced spurious edges into the graph it is necessary to validate in

each that the preconditions that would need to be satisfied for the edge to be traversed

in fact are satisfied in the state that the edge originates from.

Figure 3.7: An example DTG for the truck

This means that from a PDDL description of a world, it is possible to automatically

create an exhaustive enumeration of all the states the world may be in, and the way

that the world will transition between those states.

This enumerative approach gives a consistent context that data sensed from the envi-

ronment can be added to during execution, whilst data from the deliberative reasoning

system - in this case a planner - can also be applied in this same context.

Chapter 3. Method 87

Figure 3.8: The Cartesian Product of the two DTGs shown

3.4 Abstraction of States

A fully enumerated state space will, except in trivial problems, rapidly become quite

unwieldy and difficult to manipulate. However, importantly, we know that there is likely

to be disruption in the long term reasoning system, due to the interactions of the agent

with forces outwith its control such as the player. As a consequence there is little use

in thinking in concrete terms very far into the future since circumstances are likely to

change. To use a real world example, when we do any sort of reasoning about our future

actions, the further away from now they are, the less concrete we are likely to be - when

we go to work in a morning, we might have a plan of all the items we will need to

pack for a day in the office, but our plan will then include a higher level “drive to the

office” abstraction, rather than a definitive list of steps we will take when we leave our

house. There are two reasons for this, one is the traditional Macro Action paradigm in

which a group of actions are so often performed together that they can be grouped into a

single action for expediency of planning. More interesting in the context of the I2A is the

notion of flexibility, which is to say that there are a number of different routes that might

Chapter 3. Method 88

be taken in order to “drive to the office”, which will change in desirability. In this way,

the abstract “drive to the office” directive is actually a placeholder - it isn’t possible to

determine a route until factors such as traffic and time of day are considered, so in effect

the placeholder acts to push a concretisation off until execution time. In many ways,

this approach holds with the concepts that underpin task decomposition in Hierarchical

Task Networks (discussed previously in Section 2.2.3.2). Rather than decomposing all

tasks in advance however, here the emphasis is on what could be described as ”just in

time” task decomposition.

In order to achieve this, there is a need for an abstraction mechanism that allows for a

variable granularity dependent on the distance within the state space from the current

state. This allows for local states to be reasoned about concretely, whilst distant states

can be thought of in the abstract.

3.4.1 Abstraction Through Clustering

A natural solution to this sort of problem is to consider a clustering of the state graph.

Broadly such a clustering analysis allows for a systematic grouping of similar or proxi-

mate states. For this type of problem, proximity is more useful since by the nature of

the underlying graph, states that are in close proximity will typically share a number of

characteristics in terms of the world they represent.

There are a number of algorithms that would provide a partitioning of the graph into

appropriate clusters in order to allow for the kind of abstraction sought, but for reasons

that will be introduced in Section 3.5.2 a sub-family of algorithms known as ”Fuzzy

Clustering” is used to perform this. Whereas more traditional clustering techniques use

a hard edge for each cluster, and a node is either part of one or another of the clusters,

Chapter 3. Method 89

in Fuzzy Clustering a node belongs to every cluster to a varying degree. Nodes will

tend to express a strong weight towards belonging to clusters they are well within the

boundary of, but those that are on the fringes will find themselves having some amount

of tie to two or more clusters.

3.4.2 The Adapted Fuzzy c-Means Algorithm

One of the most accepted methods of performing Fuzzy Clustering is the Fuzzy c-Means

algorithm which attempts to find the centre-points (or “means” - in the sense of average)

of k clusters within the provided data. This algorithm assumes that the distance between

any pair of nodes can be calculated by treating them as spatially positioned data points

and finding the length of the vector separating them.

The principal adaptation from the traditional implementation of the algorithm is altering

the notion of distance from the traditional Cartesian sense to one that is applicable in

context. In this case, Djikstra’s algorithm[87] is used to pre-compute a lookup table of

the shortest distance (in number of edges traversed) between any pair of nodes. This

provides an appropriate substitute to the standard distance measure.

The Fuzzy c-Means algorithm works by randomly picking an initial placement of the

centroids of the k clusters being identified. Subsequently the strength with which each

node belongs to each cluster is assessed based on the distance from the node to the

cluster centroid, proportional to the distance that node is from the all of the other

cluster centroids. With this calculated for each node, the centroids are then updated,

and then the strengths are again re-evaluated, with this iterative process being repeated

until the centroids and strengths stabilise between iterations.

Chapter 3. Method 90

∀k, ∃Ck := Ck = argmina

(
Σx

(
distance(x, a) ∗

(
wxk

Σy(wyk)

)))
(3.2)

∀x, ∀k := wxk = Σj




distance(Ck,x)
2

distance(Cj ,x)2
if Cj 6= x

1 otherwise


−1

(3.3)

Equation 3.2 states that for every cluster k, there exists a centroid for that cluster Ck

which is the node a which minimises the sum of the distance from a to every other node

x, normalised by the strength with which node x is deemed to belong to the cluster k,

relative to the strength with which is belongs to all other clusters.

In Equation 3.3, the strength with which a node x belongs to a cluster k, wxk is evaluated

as the sum of the squared distance of x from the centroid of k divided by the squared

distance of x from the centroid of each other cluster. This sum is then inverted. As

a consequence of squaring and then inverting, the weighting used can be characterised

as a normalised inverse-square relationship. Note that there are special cases when x

is the centroid of a cluster being assessed (Cj), in which case during this step of the

summation, a value of 1 is used in place of the result of division. Note also that in this

case, a total sum for wx may exceed 1.0, which is why in Equation 3.2 it is necessary to

sum the weights of wx when determining relative weighting.

The number of clusters that are to be found can be tuned as required but a standard

rule of thumb[88] is given in Equation 3.4 in which the number of clusters k is given

as the ceiling of the square root of half the number of nodes. This has been shown to

provide reasonable solutions for the I2A, but has not been proven to be optimal, and

it is possible that something more complicated would provide better results, such as an

Chapter 3. Method 91

adaptive algorithm that varies the number of clusters until the best fit of clustering is

found.

k = d
√

(n/2)e (3.4)

3.4.2.1 Consequences of Operation in a Discrete Space

Due to the discrete nature of the space, the centroid of a cluster must be an existing

node within the space. That creates a situation in which an imprecise clustering can be

generated because the iterative change per step is insufficient to cause the centroid to

change location, causing a premature stabilisation.

It is also possible for a “misclassification” to occur due to the initial random seeding,

for example when two clusters start out similar they will likely converge to be identical.

These cases can be detected and rejected easily, and are referred to as “Faults”.

However, it should be noted that the random seed is beneficial for overcoming the

problem of discretisation in the space, since a repeated run of the algorithm will generate

a potentially different result. Therefore both weaknesses of the approach can be solved

trivially by a majority voting system derived from the Byzantine General problem[89]

in which a number of solutions are generated and a majority consensus is taken as the

true value. This has been shown to be an effective solution to the problem due in large

part to the low failure rate experienced when clustering the state space.[20]

Chapter 3. Method 92

3.5 Types of Graph Nodes

Within the state space graph, there are a number of nodes that are important to the

operation of the I2A. These nodes have significance for a number of reasons, and their

effect on the state graph is distinct from that of standard nodes. For this reason, each

has a specific name and is described here.

3.5.1 Goal Nodes

A Goal Node (GN) is a node that conforms to the goal of the task being undertaken.

Note that there will generally be more than one GN in a given state space graph, since

a goal is only a partial definition of those facts that must be true. This leaves a range

of conditions about the world that are irrelevant, meaning a range of states when the

world is fully enumerated.

A GN is obviously a state that the agent should try to attain, since when the agent

reaches a GN, it has completed its task, so in effect, the whole I2A framework is designed

to guide the agent to a suitable GN.

3.5.2 Focal Nodes

Conceptually, Focal Nodes can be thought of as states within the state space that have

structural significance, or in very high-level terms they represent bottleneck states that

plans will typically pass through in order to achieve meaningful activity. A good way

to illustrate this is with another real-world example, this time using two islands that we

want to navigate which are connected by a single bridge. We can navigate around one

island relatively trivially, but if we want to go to the other island, we must pass across

Chapter 3. Method 93

the bridge, so in this example, the bridge is a Focal Node (FN). Note that conceptually

this closely parallels the idea of Landmarks presented in Section 2.1.3.3, but whereas

Landmarks are found by analysis of plans, FNs are found by structural analysis of the

state space.

FNs are the reason that the clustering algorithm shown above must be a Fuzzy Clus-

tering, because this allows for FNs to be found with relative ease. The clustering is

effectively creating a representation of the islands mentioned above, and by determining

those nodes that lie between clusters, we are implicitly identifying the ”bridges” between

the islands. More formally, Focal Nodes are those nodes that do not express a strong

classification for one specific cluster.

Focal Nodes are used by the I2A when processing the input from a planning system, as

will be explained in Section 3.6.1.

3.5.3 Super Nodes

A Super Node (SN) is the name given to a cluster of nodes in a partially abstracted graph

of the state-space. This is an important clarification because influence must behave

differently when applied to a Super Node since it is a placeholder for a neighbourhood

of states rather than a single state.

It is also important for the I2A to track which states are SNs in the state graph so that

it can accurately manage the abstraction as the agent traverses the graph. As distant

SNs become closer to the agent, at some point they need to be replaced with a concrete

representation of that area, whilst the area that the agent has moved away from can be

substituted for a single SN.

Chapter 3. Method 94

3.6 Sources of Influence

There are two primary sources of influence in the I2A framework (although note that

other sources could also be added - a detailed discussion of this is addressed in Chapter 5).

The plan generated by a planning system is processed to create a source of Deliberative

Influence, whilst sensing of the environment that the agent is acting in creates a source

of Reactive Influence.

3.6.1 Deliberative Influence

Importing deliberative reasoning into the architecture involves applying a positive influ-

ence value to states in the world that the planning system thinks the agent should pass

through. At a basic level, it would be sufficient to take each state that appears in the

plan and give that state a positive influence score. This would create a “Royal Road”

style view of the desired trajectory through the state space, an ideal path[90]. However,

when circumstances of the scenario changed and an agent found itself away from this

ideal, this approach would conceptually create a situation where the dominance of the

deliberative plan required that the agent resume progress down this royal road as quickly

as possible, without consideration for the more broader view of the state space. A good

way to visualise this problem is to visualise the problem as a real-world hill climbing

exercise. By bringing each state of the plan into the influence system, we would create

a landscape with a pronounced ridgeline that gets us directly from the bottom to the

top. However, we expect that at some point we are likely to fall off this ridge and end

up somewhere else, and from that position it may not make sense to expend the effort

required to climb back up the side of the ridge to get back on the Royal Road to the

Chapter 3. Method 95

summit. In fact, from where we are now, it may be that there is a better route to the

top, and if we fixate on the ridgeline, we will overlook this.

This means that rather than apply influence directly to each state that the plan passes

through, what is needed is to get a gist of the plan’s intention at a more abstract level

and use this as the source of influence. This is where the Focal Nodes become significant,

since as mentioned above these are the ”bridges” by which the I2A can traverse Super

Node ”islands”. This means that the Focal Node is by its nature providing that context

as to a plan’s intention - any plan that passes through a specific FN intends to traverse

between the islands that that FN connects.

Although the abstraction doesn’t implicitly retain a sense of meaning as to what is being

abstracted, it is easy to see that this approach gives a much better sense of the semantic

significance of the plan. Alternative approaches not leveraging the underlying structure

of the World, such as taking every Nth action in the plan as a source of influence, do

not.

3.6.1.1 “Active” Focal Nodes

Importantly, not every Focal Node is significant in the context of every plan, and so the

I2A performs an analysis to determine which Focal Nodes the Initial Plan expects to

traverse through. These are the ”Active Focal Nodes” and the ones at which influence is

applied in order to form the Deliberative Influence Landscape. This allows the intentions

of the plan to be represented in the state space based on which of the ”bridges” it will

pass through.

Chapter 3. Method 96

3.6.1.2 Goal Nodes

Because Goal Nodes are the target of the agent’s overall execution, an amount of in-

fluence is applied to these states within the space. This provides a basic shape to the

influence landscape that will generate an overarching gradient for the agent to work with

and provide a steady draw from the agent to the GN.

3.6.2 Sources of Reactive Influence

Reactive influence is applied to the landscape based on detection from the environment

and correspondingly updating the relevant states. The amount of influence a situation

warrants is tunable as a parameter, allowing designers to vary the strength to create

compelling reactions. Most commonly, these will apply to a specific location, therefore

all states that correspond to that location under different circumstances should have an

influence applied. In general, the nature of games-style domains is that these will gener-

ally be negative influence sources, which is to say, things that should be avoided. This is

a broad abstraction over a number of different types of thing that could be detected in

the environment such as enemies or hazards within the world. Positive influence sources

might be items within the world that cannot be reasoned about deliberatively, perhaps

power-ups that appear randomly or allied agents acting independently within the world.

Sources of influence detected in the environment need not necessarily be tied to location,

though as noted this is the most common. Consider a scenario in which rain is detected.

For an outside environment, this is effectively location-agnostic, and might apply a

negative influence to all states in which the agent does not have an umbrella, biasing

the agent into picking the umbrella up when rain is seen. This highlights that influence

can apply to concepts as readily as to locations.

Chapter 3. Method 97

3.7 Influence Propagation

If Influence was only applied at the nodes it was detected, some nodes would be desirable

and others not, but this wouldn’t help in guiding the agent between these nodes. Instead,

influence is propagated around the graph of the state space to create the landscape,

which identifies not just the high and low points within the graph, but also the ascents

and descents between them. This creates a unified view not just of where in the graph

the agent should go, but the most appropriate methods by which it can get there. This

technique has already been shown to be effective in the Influence Map approach discussed

in the previous chapter. Threats are detected in a single location but the influence that

threat creates is smoothed out over all nearby locations. Influence Landscapes operate

on much the same principle but instead of this smoothing happening between nearby

locations, it takes place across the state space.

3.7.1 Propagation Techniques

How this smoothing is handled is in large part specific to the implementation; many

different algorithms tackle this kind of scenario and may under different circumstances

generate different results. For example, it would be possible to designate each source

of influence as the peak of a Gaussian distribution, and assign each node within the

graph a score based on its minimum edge-distance from that influence source. When a

node experiences influence from multiple sources, it may be appropriate under different

circumstances for the maximal, minimal or average value to be taken, and it may in

certain domains be appropriate for more exotic combination metrics to be considered,

such as a summation of the various influence levels (although this is probably only useful

in very specific cases since from a philosophical point of view, it would doubly-weight

Chapter 3. Method 98

a node that was halfway between two sources of influence, and give rise to that node

potentially being preferred to either of the positive influence sources).

3.7.1.1 Reward Sharing Propagation

Since our notion of Influence within the graph is intrinsically connected to the concept

of the heuristic value of a state, it makes sense that we can apply approaches derived

from those that are used in heuristic state analysis to solve the problem of propagating

values around the graph. Traditionally these methods are designed for passing the value

of a state upwards in a search tree so that the parent nodes that contribute to that state

are also seen to be worthwhile, but since we can view a tree structure as a special type of

graph, the method can be applied just as well in the context of generating the Influence

Landscape.

The Reward Sharing approach to propagation updates the value of each node in the

graph by starting at the sources of influence, and finding the nodes which are parents of

these, which is to say those nodes having edges originating at them which terminate at

the influence source. For each of these, an updated value is calculated as the reward of

the successor under consideration split equally amongst all of the parents of that node

as in Equation 3.5. If this value is higher than the current value that the parent node

has (which is initially 0), then the value of the parent node is updated. Every node that

has its value updated is added to the list of nodes that need to be considered in this

manner.

⌊
(Vn)

Count(Parents(n))

⌋
− 1 (3.5)

Chapter 3. Method 99

In this way, the reward that a node provides, which is synonymous with its Influence

value, is distributed across the graph structure.

3.7.1.2 Example

Consider the following small example that will show the Reward Sharing system in

practice. In this graph there are 5 nodes as shown in figure 3.9.

Figure 3.9: A Basic Scenario for Reward Propagation

This scenario describes a simple state space representation in which state 0 and state 2

connect only to state 1, 1 connects to 0, 2 and 3. 3 connects to 1 and 4, and from state

4 only state 3 is reachable. For the purposes of this example, Node 1 is the goal to be

reached, making it a source of influence. It receives a positive score of 100 as a result,

as shown in figure 3.10.

Chapter 3. Method 100

Figure 3.10: Influence Applies Directly to the Goal Node

Node 1 is the child of three nodes within the graph, Node 0, Node 2 and Node 3. By

Equation 3.5 each of the parent nodes should have a reward of 32 propagated to them.

As their previous score was undefined, these values of 32 get stored, and each of the

three nodes is then considered for further propagation. This is shown in Figure 3.11.

For Node 0 and Node 2, their only parent is Node 1, so the equation generates a score

of 31 - lower than the already recorded 100 so propagation from these nodes can be

disregarded. Node 3 however also has Node 4 as a parent, and when the reward is

shared, the resultant value of 15 is higher than Node 4’s previously undefined value, so

the new one is used. Again, for Node 1, the value of 100 is retained.

The update to Node 4 causes it to be considered for further propagation, but it will not

update the value of its parent (Node 3) as the result is lower than that already recorded.

Chapter 3. Method 101

Figure 3.11: Results of a Single Propagation Step

At this point, there are no further candidates for propagation, and the algorithm is

complete having appropriately shared the reward from Node 1 around the graph network.

The results are showing in Figure 3.12. For scenarios with multiple sources of influence,

they are just initialised with the appropriate number of nodes requiring consideration

and the algorithm executes as normal until stability when all nodes have been considered

and no updates have been made.

3.7.1.3 Influence Propagation Through Super Nodes

When states are abstracted, the ability to directly apply influence to a node within the

state space is lost. Influence must be applied to the whole Super Node, and the amount

of influence applied must reflect the combined influence detected for that Super Node.

This introduces some imprecision since even within a Super Node, there are likely to be

Chapter 3. Method 102

Figure 3.12: Completed Propagation of Influence

short-term contingencies available - even within this local group there are potentially

alternative pathways through the graph structure. At an abstract level the granular

representation will implicitly be lost, however some semblance of its activity can be

captured if we consider the expected “per-node value” of an influence source.

The per-node value is a heuristic measure of what the expected average value of influence

is likely to be, and is based on an estimated density and connectedness within the

Super Node. For example, if we are using the standard cost sharing heuristic and

apply a negative influence of 100, we know that firstly only one node within this cluster

would have a value of -100 applied, but we also know that the amount of propagation

experienced will be largely dependent on the connectedness of the sub-graph within the

cluster. A fully connected subgraph will in general offer more possibilities to avoid a bad

state, but the bad state will remain proximate to the states being traversed. Equally a

Chapter 3. Method 103

minimally connected subgraph - effectively a straight line of states - offers no opportunity

to avoid that state. In either case, connectedness is demonstrably an important factor

in how much weight should be given to an influence source.

The connectedness of a cluster can be ascertained based on its edge count. A fully

connected graph will have N2-N edges (recall that the state graph is a directed graph,

so edge direction is salient). A minimally connected graph will have N-1 edges. Therefore

for a graph with E edges, we can evaluate its connectedness using the formula below.

C = (E −N − 1)/(N2 − 2N − 1) (3.6)

This will generate a value of 1 in the case of a fully connected graph and 0 for a minimally

connected graph, and a linear function between the two.

The amount of influence to be applied should naturally be related to the average of

the influence applied across each of the nodes contained within the Super Node. The

formula used for this, using I to refer to the amount of influence being applied to a

specific node, is as follows

Is.n. =
I

N
+

((
I − I

N

)
× (1− C)

)
(3.7)

In a fully connected graph, the impact of the influence being applied is limited solely

to the average of that influence spread around the sub-graph. This is a lower value to

represent that the more connected graph will have multiple paths through avoiding this

node. In a minimally connected graph, at the other end of the scale, the full amount of

influence is applied to the Super Node since there is no option in this case and all routes

Chapter 3. Method 104

must flow through the node being considered. Note that between these two extremes,

the function is linear dependent on how connected the graph is.

Note that this formula applies both when influence is applied directly within the Super

Node, and is also useful when determining the amount of influence a Focal Node should

exert into the Super Node, since in this case the source of the influence doesn’t matter.

This formula can be used in either case to calculate the per-node value, based on either

the injected influence value in the case where there is a source of influence inside a super

node, or on the propagated value originating from the sharing heuristic.

3.8 The Integrated Influence Landscape

At this point in the process, there now exist two landscapes that have been fully prop-

agated, one for the deliberative data that has been extracted from the plan, and the

second representing the reactive data that has been sensed from the environment.

The aim of the architecture is to unify these two disparate approaches into a single view

of the world, and this is the Integrated Influence Landscape (IIL), so called because it

integrates the influence from different sources. Since both landscapes are structurally

identical, the challenge of combining them lies solely in determining what a rational

mechanic for this would be.

3.8.1 Mechanics for Combining Landscapes

In large part, the process by which multiple landscapes can be combined is left as a

decision to be taken by implementors of the I2A - dependent on the context, different

processes create different agents which may or may not behave appropriately. In the

Chapter 3. Method 105

most basic case, simply adding the two values of a node to create its value in the IIL

may be an acceptable approach. It may also be that taking the larger of the two is

under certain circumstances the most appropriate technique, creating an agent that

overestimates the likely value of nodes within the search space. The I2A is designed to

be flexible and allow for experimentation to find techniques that create agents consistent

with the kind of behaviour the designer is looking for.

3.9 Implicit Contingency Planning

Under ideal conditions, the plan and the influence landscape generated from that plan

will describe the critical path through the state space in order to reach the closest goal

state from the starting point. However, as discussed, the underlying assumptions of

the planner mean that the conditions encountered in a game world - or in any world

beyond sterile tightly controlled environments - are rarely ideal. The interaction of the

Deliberative Influence and the Reactive Influence allows for this to be handled intuitively

within the single architecture. As a consequence, as the circumstances that an agent finds

itself encountering deviate from that which is expected, an I2A agent is able to adapt

to this and find alternative routes across the state space that are now more desirable.

3.9.1 The Nature of Contingencies

There are, broadly speaking, two reasons a contingency is required: because an action

within the plan will fail, or because, due to changes in the environment, an alternative

approach is of more value. The distinction can be best exemplified by considering a

scenario in which the plan calls for air travel on a specific flight.

Chapter 3. Method 106

• “Roadblocks” occur when we cannot execute a required action in the plan for

some reason. In the example scenario, consider the case that the required flight is

cancelled. If this were to happen we cannot rely on that step within the plan, and

so will need to reconsider our actions.

• “Preferences” occur when external elements disrupt the world such that although

the planned action is still possible, it is not the best way of achieving the agent’s

goals. Again referring to the example scenario, assume instead that when booking

the required flight, it is found to be prohibitively expensive. This new information

makes this flight less desirable, and there will come a tipping point where the

cost of the flight outweighs the inconvenience of other flights or other modes of

transport.

In both cases, it is clear that to work around the problem will require considering the use

of a different path through the state space. These different paths are contingencies, and

as previously discussed, are traditionally found by halting execution and re-evaluating

the deliberative component of the problem. However, in either case, the I2A is designed

to overcome these quickly using simple and efficient arithmetic operations instead of

resorting to re-solving a search problem, a significant advantage over other systems.

3.9.2 Finding Contingencies

The Integrated Influence Landscape, by its nature, implicitly contains all the potential

contingencies that are available in the state space, since all possible routes through that

space are contained in the graph representation. As the influence values are updated

during execution, the best path through the space changes, but crucially it remains clear

how that path traverses the space.

Chapter 3. Method 107

3.9.3 Functional Equivalence of Focal Nodes

One advantageous aspect of adopting the abstracted representation from the Fuzzy Clus-

tering algorithm described above is that we have the classification of each Focal Node,

which is a mathematical representation of which Super Nodes each FN lies between.

Two FNs with a similar classification will be connected to the same SNs, and as such

are described as “Functionally Equivalent” inasmuch as these FNs provide a route be-

tween the same sets of SNs. Consider another transportation example from the real

world in which the domain involves traveling around and between two cities. It could be

argued that each city might form its own cluster of nodes, thus making each one a Super

Node, but the ways that it is possible to travel between the cities, perhaps a car journey

or a plane ride, could be represented as two Focal Nodes connecting the two SNs. Here

is a prime example of this functional equivalence - although there is a choice to be made,

and each may have positive and negative effects to be considered when evaluating the

two, in terms of the structure of the domain, the two are, at an abstract level, providing

the same service broadly speaking, in that they are providing a link between these two

SNs.

This is significant as again this provides another way of finding contingencies without

requiring a new solution to the planning problem. In circumstances where a FN is

not reachable, Functionally Equivalent FNs (FEFN) can be used in place and provide

identical sources of influence as the original FN. This allows an FN that is “active” as

defined above to be modified during execution, and for the deliberative influence to be

modified during run time and updated in a very simple manner as it becomes clear that

the plan is not going to be able to be followed. Importantly, although this is not a robust

solution, since the rate of occurrence of FEFNs will vary between domains, it should be

Chapter 3. Method 108

noted that this is another computationally “free” solution that is derived as part of a

process already being undertaken, namely the identification of the FNs themselves.

3.10 The I2A Executive

Putting all of these components together creates an analysis of the world that is powered

by the Integrated Influence Architecture. Crucially, an awful lot of the processing can

be done upfront during development and stored, meaning that the cost at run-time is

significantly reduced. This is an important aspect because as was shown in the previous

chapter, traditional methods for performing the kinds of long-term reasoning necessary

are usually significantly computationally expensive and not viable to be used alongside

the other intensive tasks that a computer game typically requires.

However, in order to effect decisions based on the I2A system, it must be coupled

with an Executive, as was seen in the previous chapter. Whereas Gat’s Three Layer

Architecture arbitrated between components to determine the most appropriate choice,

the I2A system uses the ”integrated influence” of these components to make a choice

informed by both.

3.10.1 Action Choice

In the most basic terms, an Executive must choose what action to take. Naively, for the

I2A this is simply an evaluation of the values of the states that are immediately reachable

from the current node in the IIL, which as a look-up process in an existing structure

is computationally trivial. This is however quite a short-sighted process that requires

significant reliance on the IIL producing a monotonic or strictly increasing landscape,

which cannot be guaranteed by the functions that generate the IIL.

Chapter 3. Method 109

At the other end of the spectrum computationally would be trying to find a best path

through the graph to the nearest goal node. However, this reintroduces the notion of

over-reliance on search that the I2A was designed to avoid, meaning that the computa-

tional complexity reduction is lost. This is clearly not a good strategy.

As a compromise a good approach would seem to be some form of limited look ahead

using a localised search.

3.10.1.1 Localised Expansion-bound A* Search

A* search (introduced in Section 2.1.2.1) is typically used in order to find the shortest

path between two nodes in a graph, but as a best-first strategy and with a modified

heuristic, it can instead do a localised search to perform an expanding-radius best-first

search looking for the node in the state space that has the highest value in the IIL.

In order to make a computationally tractable search, the number of nodes that can be

expanded as part of the algorithm is bound and when this limit is reached, the node

with the best value is chosen as the agent’s current short-term objective. Due to the

abstract nature of the IIL, the algorithm is prohibited from replacing a Super Node

with its concrete equivalent as it is unrealistic to assume that a Super Node represents

a single step of radius expansion (and for typical limits, it is unlikely that the radius

would expand to the neighbourhood on the far side of the Super Node). This ensures

that the Executive can choose to enter a SN by traversing the entry edge to the SN but

may not then expect to exit the SN during this execution step. The SN will then be

substituted naturally after which the Executive can traverse the nodes contained with

the SN as it has now been replaced by the more detailed representation comprised of

standard nodes.

Chapter 3. Method 110

A simple heuristic for the search is to take the IIL value for a node, but it is worth noting

that other alternatives could be more effective or provide more appropriate behaviours

under certain circumstances. The obvious modification is to discount the value of a node

based on its distance from the current node, which would serve to model the potential

for disruption faced by the agent as it attempts to make choices based on data that may

later be updated.

3.10.2 Acting

Having used the information from the IIL and used some method of action choice, the

immediate action required for the agent to take will be apparent, whether that is the

first action that will lead eventually to the state the Executive has identified as being

the short-term goal, or that is the single action that the Executive has determined as

being appropriate.

This action is passed to the game world in order for execution to be taken, and the agent

moved or otherwise for a change to effected.

3.11 Summary

This chapter has presented the proposed components of the Integrated Influence Ar-

chitecture and the mechanism by which it functions. The fundamental philosophy of

the I2A system is that it incorporates both deliberative and reactive paradigms concur-

rently. The process hinges on leveraging resources during development of the game in

order to generate a representation of the world that can be used by both reactive and

deliberative systems at the same time.

Chapter 3. Method 111

Because of this, the I2A is able to quickly begin directing the behaviour of a non-player

character, and do so in a way that allows it react to changing circumstances in an

intelligent manner, that is respectful of long-term goals. The I2A implicitly exposes

contingency plans and alternative ways of completing objectives to provide a robust

architecture that offers a more efficient approach to agent activity in a dynamic envi-

ronment such as that found in a video game setting.

Chapter 4

Evaluation - Functionality and

Viability

In the initial research statement presented in Section 1.3, four criteria for evaluation were

presented. This chapter will address the initial two of these, namely the functionality and

viability of the I2A as a novel approach to decision making in NPC characters. In order

to prove the functionality, it is necessary to demonstrate that the theory is sound, which

is to say that the process by which the I2A functions to turn a PDDL representation into

its own Common Representation formulation, to create an abstraction of this using the

clustering technique and the ability to plan on this more abstract space. Here each of

these processes will be verified to highlight that I2A can achieve what has been described

above. Many of the results here were presented in previously published work[21].

To establish the viability of the technique, the second section of this chapter will focus

on an implementation of the I2A within the game development tool Unity, one of the

most popular engines for game development[91]1. This is done to show that not only is

1http://unity3d.com

112

Chapter 4. Evaluation - Functionality and Viability 113

the work presented sound, but also that it is relevant to current trends in industry, and

could have impact on the state of the art used by practitioners.

4.1 Results of Processing

In order to demonstrate the viability of the I2A from a theoretical point of view, a

number of experiments were performed. These broadly were designed to show that it

was possible to reformulate a planning problem in the manner that the I2A requires[20].

It was also important to highlight that although moving towards an enumeration of the

state space gives a combinatorial explosion in problem size, using a clustering analysis

allows for this to be managed in a way that is not cost prohibitive[21].

In both cases a set of scenario problems were used that were derived from the Logistics+

domain. Note also that for the domain preprocessing phase, a range of domains were

also tested in order to verify that the technique was broadly applicable and that some

aspect of Logistics+ didn’t make it uniquely suited to this kind of approach.

4.1.1 Logistics+ Problems

The Logistics+ domain is a version of classic planning problems in which packages

must be delivered to locations. This is a very standard collection of problems and

many variants exist such as Driverlog (in which the trucks that move the packages

around also require drivers who must move around the world) and Logistics which groups

locations into cities and then utilises aeroplanes which can travel between any pair of

specially designated locations within cities which act as a model of an airport. In

Logistics+ we identify that although in certain implementations, it makes sense for

planes to operate in this manner (modelling, effectively, the ability to charter a plane

Chapter 4. Evaluation - Functionality and Viability 114

between two destinations) a more typical scenario has planes serving specific routes

between cities, and this is the variant represented by Logistics+. This is useful in the

context of the I2A because this highlights alternative routing and contingency planning;

choices for an air route that were initially sub-optimal can become at runtime more

desirable because of facets of the problem that were not exposed to the deliberative

reasoning system. In addition, this kind of problem is one that is frequently encountered

in games albeit at a somewhat abstract level; many tasks within game environments

are effectively represented from a reasoning point of view as a sequence of sub-tasks

involving bringing the correct item to the correct place, often in the context of multiple

items needing to be positioned correctly. This holds both for short term, for example

bringing the correct key to open a door and long term, such as bringing the One Ring

to Mount Doom. The experience of the gameplay itself might be different, but many

games can be boiled down to this sort of reasoning, making a domain like Logistics+ a

very useful abstraction.

4.1.1.1 Decoupling Worlds and Problems

In designing sample problems for the I2A within the Logistics+ domain we reasoned that

more often than not we would see the same game world (or level) being used by an agent

who tried to achieve multiple sets of objectives sequentially, or by two or more agents

acting within the same game world. As such, it makes sense to separate the unchanging

elements that describe the environment from those that make up the specific instance

in order to reduce the amount of computation that gets duplicated.

This is a subtle distinction from the manner in which a planning problem is usually

stated, being typically framed as a Domain and a Problem, with the former describing

Chapter 4. Evaluation - Functionality and Viability 115

possible interactions and types of object within the world, and the latter specifying how

the world is put together, the state of the world initially and the goal of the task.

Although the I2A relies on a PDDL representation and a standard problem statement,

it is conceptually useful to recognise this distinction since fundamentally a significant

amount of the processing the I2A performs is based on these intransitives elements

that form the specific layout of the problem, which is termed a World rather than the

Problem in the traditional way. Consider a real-world delivery problem, although the

specifics of what packages will need to be delivered where will change day to day, there

will be a range of characteristics of each problem that are fixed, for example the road

layout and number of trucks available. Because the layout of the World does not change

between problems, a significant amount of the I2A computation can be reused, reducing

the computational requirement further.

4.1.1.2 The Logistics+ Worlds

For demonstrative purposes, five distinct worlds have been created for the example

Logistics+ problems:

• World 1 : This world contains 3 cities, each of which comprises 3 locations. Each

city contains a truck and two airports, which link respectively to the other cities.

There are two packages in this world.

• World 2 : This world also contains 3 cities, but only two of these have 3 locations.

The other has 7 locations, making for an imbalanced graph. The larger city is also

served by a second truck for a total of 4. There remain 3 planes and 2 packages.

• World 3 : A smaller world, this version has only 2 cities, each of which is made of 3

locations. 1 plane links the cities, which each have a truck. There are 2 packages.

Chapter 4. Evaluation - Functionality and Viability 116

• World 4 : This is an imbalanced version of World 3, where one city has 4 locations

and the other 5 for a total of 9.

• World 5 : This world has the same basic structure as World 4 but contains 3

packages.

There are three different goal conditions that can be applied in all five worlds, allowing

for the generation of a valid set of benchmarks by combining each world with each goal.

It should be noted that in order for the translation process to not eliminate redundant

variables, in worlds with packages that are not required to move, we include a dummy

goal that the package remain at its initial location.

• Easy goals : In this set of goal conditions, a single package must be moved to

a location other than that which is starts at. For consistency, this is set to be

City2Location3, a location that occurs in all worlds.

• Medium goals : These goal conditions require that two packages be moved, with

the second package moving from City2Location1 to City1Location2.

• Hard goals : The final set of goals require two packages be moved as before and also

dictate final locations for one of the trucks and one of the planes, City1Location1

and City1Location3 respectively.

4.1.2 Domain Preprocessing

The first step towards making these Logistics+ problems work with the I2A is to trans-

late them into the Common Representation. The way do this is to reframe them from

PDDL into SAS+ which is a relatively trivial matter using Helmert’s translation system

designed for Fast Downward[41]. The output from this is loaded into a Python script

Chapter 4. Evaluation - Functionality and Viability 117

built on top of Muise’s KRToolkit2 which extracts the DTG information from the SAS+

encoding and reformulates it as a set of simple graph representations, one for each DTG.

This is visualised for the DTG for the package in Figure 4.1, which has been shaded to

highlight the three distinct cities emerging within the DTG structure.

Figure 4.1: The Package1 DTG from World 1

This representation can then be imported into an application and manipulated. In

Figure 4.2 the DTG shown in Figure 4.1 has been loaded into a Java application. The

diamond shape denotes the initial location of the package (City1Location2), whilst the

rectangle represents the goal stat (City2Location3) This allows for the DTG generated to

be visualised (by processing through Graphviz3) for verification. Note that as a holdover

from the processing, each DTG has a node titled ”None” which is unconnected. This

refers to the state in which that variable has been assigned no value, and is not connected

to the remainder of the graph since although Helmert’s translation system allows for this

to be a theoretical case, it is not a state that occurs in practice.

The Common Representation is the result of the Cartesian Product of each of the DTGs.

In World 1 there are two packages, three trucks and three planes. Each package can

take one of 15 states, each truck one of three and each plane one of two, meaning that

2https://bitbucket.org/haz/krtoolkit/overview
3http://www.graphviz.org/

Chapter 4. Evaluation - Functionality and Viability 118

Figure 4.2: An in-application visualisation of the Package1 DTG from World 1

the Common Representation has 15 ∗ 15 ∗ 3 ∗ 3 ∗ 3 ∗ 2 ∗ 2 ∗ 2 = 48, 600 possible states

(too large to attempt to visualise). As mentioned in Section 3.3, it is necessary after

this step to perform a process of edge elimination to remove those edges introduced by

the Cartesian Product operation that do not have their preconditions satisfied.

4.1.3 Clustering Analysis

Because of the number of states involved in the Common Representation, it becomes

necessary to apply a clustering to create an abstract representation that is more easily

managed. As was explained in Section 3.4 the method by which a clustering is produced

is an iterative process using the Fuzzy c-Means algorithm.

The fact that clustering is possible across a graph representation is not inherently an

interesting result, but as was discussed in Section 3.4.2.1, Faults can occur due to the

non-deterministic nature of the initial mean choice, and the discrete state space involved.

The rate at which these faults occur in each Logistics+ World is shown in Table 4.1.

Chapter 4. Evaluation - Functionality and Viability 119

World # Nodes Time taken to cluster Number of Faults Average Time Per
Detected (Avg) Cluster Attempt

1 48,600 0.83 ms 0.33 0.62 ms
2 1,411,200 7.40 ms 8.85 0.75 ms
3 1,458 0.57 ms 1.24 0.25 ms
4 5,760 0.71 ms 1.5 0.28 ms
5 69,120 1.06 ms 2.32 0.32 ms

Table 4.1: Results of Clustering Algorithm (Averaged Over 500 Iterations)

This table also shows the total time taken for each world to be clustered successfully.

Although the intention is for this process to be undertaken during development, it is

important to point out that it is not a computationally complex process. When factoring

the fault rate against the average time taken to generate a successful clustering, an

indication of how rapidly the Common Representation can be manipulated is shown.

Note that due to being less than a single millisecond, these numbers are unlikely to be

especially precise.

What is important to note is that World 2 is a significantly larger problem, stemming

from the increased size of the DTGs for each package. The relevant DTG is shown in

Figure 4.3. With the addition of 5 states per Package DTG raising the total number to

20, and with two trucks with a seven state DTG, the true impact of the combinatorial

explosion can be seen in this DTG, which serves to explain both the longer time taken

per clustering attempt and also the larger number of faults present during attempts to

cluster this World.

World 1 is quite a well-behaved world in that it is formed from quite symmetrical graphs

and has a relatively small explosion. The results seem to indicate that this gives a better

fault tolerance. World 5 seems to also demonstrate that the speed of clustering is not

solely determined by the number of nodes, but perhaps as World 5 is generated by the

Chapter 4. Evaluation - Functionality and Viability 120

Figure 4.3: The Package1 DTG from World 2

composition of more DTGs, this plays a role in the complexity required to perform the

clustering.

It was also felt to be relevant to test this process on a range of other pre-existing domains

from planning literature to verify that Logistics+ was not in some way uniquely suited

to this type of process. The results of this are shown in Table 4.2. This shows that there

are two other domains that can be clustered in this way, Satellite and Zeno. Others are

significantly more challenging. The results for Freecell are perhaps the most indicative

of the reasoning for this.

The Freecell domain models the popular card game of the same name. A normal deck

of cards is dealt in a layout similar to traditional solitaire but face up (meaning that

there is perfect information). The aim of the game is move the cards into four ordered

and suited piles, by moving only the top card of each stack. The name comes from four

placeholder positions that can hold a single card, these are the ”free cells”.

Chapter 4. Evaluation - Functionality and Viability 121

Domain Successful Clustering %

Freecell 0%
Rovers 20%

PipesNT 52%
Driverlog 70%
Depots 81%
Satellite 100%

Zeno 100%
Logistics+ 100%

Table 4.2: Results of Clustering on Different Domains

This is inherently a domain that has a large number of DTGs that have fewer nodes, since

each card in the deck will be represented by its own, reasonably substantial DTG. This

compounds the combinatorial explosions, and an inspection of those Rovers, PipesNT

and Driverlog problems where the clustering fails suggests that this is also the case in

these instances as well. This is potentially a broader symptom of the combinatorial

explosion, that although the intention of the I2A is to mitigate the impact of the com-

binatorial explosion at runtime, it seems that it may be having an impact during the

preprocessing phase. Further investigation will be required to determine if this can be

overcome by optimisation in the clustering algorithm to diminish the memory footprint

required.

4.1.4 Time to Execution Analysis

Of particular interest are the potential gains that this clustering provides in terms of

the computational speed-up, and the reduced complexity of the problem. This is useful

because an abstract solution to the problem provides sufficient information to apply

influence to relevant Focal Nodes at runtime. Recall that Focal Nodes will never be

abstracted as they exist between the clusters.

Chapter 4. Evaluation - Functionality and Viability 122

The LAMA planner was used both as a benchmark acting on the original PDDL files,

and in a modified form using the generated Common Representation. Because of the na-

ture of the input and output systems for this, and specifically because the preprocessing

was done inline, involving intermediate writes to the file system, it was not felt appro-

priate to compare the execution times directly. Instead a comparison was drawn based

on the number of nodes within the search tree each planning system expanded, which

provides a suitable metric for direct comparison and shows the reduction in computa-

tional complexity more clearly. The resulting plans from both systems were validated

subsequently to ensure correctness.

Table 4.3 shows the results of this analysis. In all the scenarios presented, the abstraction

provided the expected complexity reduction to show a significant speed increase. World

2 consistently required the most search for a solution, which is reasonable since it has

the most nodes by a large factor, and consequently the most clusters to search. It also

is expected for all worlds under the Easy set of problems to have reasonably similar

number of expansions required since the differences between them are somewhat trivial

in the context of a package traversing from City 1 to City 2 - the complexity of the

domain in World 2 is actually largely irrelevant since much of this comes from City 3,

which in the Easy goal does not feature in an optimal plan. This will be discussed in

more theoretical terms in Section 5.2.2.2 below.

4.2 Unity Case Study

One of the core aspects of the I2A is that it is applicable in real scenarios, and one

of the best ways to demonstrate this is to highlight its compatibility with a commonly

used game engine. Unity is one of the most popular game engines currently available,

Chapter 4. Evaluation - Functionality and Viability 123

World # Node Expansions to Node Expansions to
Abstracted Solution LAMA Solution

Easy 1 3 28
2 4 28
3 2 12
4 4 12
5 4 12

Medium 1 6 46
2 9 46
3 3 24
4 5 24
5 3 25

Hard 1 4 69
2 11 69
3 9 44
4 3 44
5 5 28

Table 4.3: Results of Abstraction of Search Space

with numerous games being developed using it from small independent titles such as

Easy Money (Robot Overlord Games, 2015) to large-scale productions such as Pillars

of Eternity (Obsidian Entertainment, 2014) which raised almost $4,000,000 through

Kickstarter, becoming the most widely funded game project to raise money through

this platform[92]. This breadth of adoption at all levels of industry makes it a natural

choice to develop a selection of components to highlight the manner in which the I2A

could be implemented.

4.2.1 Unity Overview

Unity is designed to be relatively straightforward to begin development with. There

are broadly two aspects to the system, the Unity Editor, a powerful visual tool for

developing games, and the Unity Runtime, which is a series of APIs and libraries that

provide a computing environment for those games to execute in. Basic shapes and

elements can be added to a level relatively easily using a drag and drop interface, but

Chapter 4. Evaluation - Functionality and Viability 124

the primary power of Unity comes from its ability to execute scripts, written in either

Javascript (technically a proprietary version of this language commonly referred to as

UnityScript), C# or Boo (a language developed to conform to Microsoft’s Common

Language Infrastructure whilst using a Python-based syntax).

As a powerful contemporary game engine, Unity is quite a complicated system. The

following sections will provide a high-level overview of its approach in order to give

context for the work done inside Unity for the I2A.

4.2.1.1 GameObjects

The core of Unity’s representation of the game is known as a GameObject. All elements

within the world are GameObjects, and can be moved around a 3D coordinate system.

GameObjects can be organised such that they nest within another GameObject, in

which case they can be moved around a coordinate system whose origin is the parent’s

position. GameObjects are named, and can also be ”tagged”. These are both primarily

systems that allow the GameObject to be referenced from another element within the

GameWorld. Names and tags do not have to be unique, but each GameObject can only

have one.

Unity holds a number of basic GameObject types internally. This allows for very simple

creation of basic 3D shapes such as cubes and spheres, and the creation of commonly

used things such as lights, physics colliders, terrain objects and GUI elements.

GameObjects that will be reused multiple times, or that are to be exported between

projects, can be stored as ”Prefabricated Objects” or prefabs. This is a powerful tech-

nique since not only does it allow for a reduction in the amount of configuration a

Chapter 4. Evaluation - Functionality and Viability 125

GameObject requires, but it also means that GameObjects can be instantiated pro-

grammatically at runtime. For example, a bullet object can be stored as a prefab and

then instantiated as a clone of the original bullet whenever a gun is fired, or an enemy

soldier can be instantiated whenever a new enemy is encountered, using the prefab as a

template.

4.2.1.2 Component-based Architectures

Unity uses what is referred to as a Component-based Architecture, which is what allows

it to use the GameObject as an all-purpose holder for anything within the world. The

differentiation between a cube, a light and an audio source comes from the components

that are attached to each GameObject to add to or alter its behaviour in the game

world.

This is an exceptionally robust approach since it means that the elements in the game

world are really the result of a composition of one or more components, which gives a

lot of scope for diversity and flexibility. As an example, although both the cube and

the light are primitive GameObjects, it is quite possible to quickly create a cube that

is also a light by adding the appropriate components. In this case, the ”box collider”

component gives the GameObject the physical properties of a box, a ”mesh filter” and

”mesh render” give it the visual appearance of a box, and the ”light” component, which

allows it to emit light into the world.

This flexibility is expanded significantly by the fact that in Unity, components can

be added from the online ”Asset Store” as well as developed locally, meaning that

GameObjects can be made to do specifically what is required within the game with

Chapter 4. Evaluation - Functionality and Viability 126

relative ease, with the emphasis being on creating that behaviour rather than developing

the infrastructure to enable it.

4.2.1.3 MonoBehaviours

One of the prime aspects of the Unity infrastructure, and the way that many compo-

nents are created is through the use of MonoBehaviours. Technically a MonoBehaviour

is a superclass from which scripts can inherit in order to be able to perform actions as

components. This means that it is possible to create a script in any of the supported lan-

guages, inherit from this class and be in a position where the basic hooks for interacting

with the Unity environment are already present.

Specifically, a script derived from the MonoBehaviour class can have a range of functions

created that will trigger at certain points in the execution of the game’s main loop. When

the GameObject is first instantiated in the world, it will trigger each of its contained

component’s Start() function and each frame every component will have its Update()

function called, and many more such functions are triggered at the appropriate point in

the game’s execution.

The combination of the component approach to game development, coupled with the

MonoBehaviour class system provides a very powerful framework from which to build

complicated yet robust behaviour of various GameObjects, and gives a great degree of

control to the developer.

4.2.1.4 Editor Extensions

One of Unity’s most powerful features is that the Unity Editor itself is running with

the Unity Runtime. This means that it is possible to create what are known as ”Editor

Chapter 4. Evaluation - Functionality and Viability 127

Extensions” which allow for additional functionality to be added to the Editor itself to

support new toolchains or workflows.

One of the most common of these extensions is to create a custom ”Inspector”, a panel

which exposes a component to the game designer so they can manipulate values without

having to modify the code. The default inspector is very general-purpose which is great

in some situations, but often there is a need to present the information in a different way

or allow different interactions. Sometimes the issue is that the designer needs to alter

a complex and purpose-built datatype, and again this can be handled with a custom

inspector.

Less often but still quite common is that an extension will provide programmatic func-

tionality that is useful during development, often providing a way to automate tasks or

otherwise simplify the process. Examples include providing in-editor access to cloud-

based data storage such as an entire suite of extensions allowing for the development of

Behaviour Trees visually such as “Behave”[93].

Editor Extensions allow for new features to be developed for Unity in such a way that

they can be used by those not intimately familiar with the code underlying their opera-

tion, making them much more usable and valuable as part of the development process.

4.2.2 Developing an Agent in Unity with I2A

In order to create an NPC within a game developed in Unity, it is first and foremost

important to make the game. The I2A is intended to function as a decision logic system

for NPCs within the game, so this is perhaps the most time consuming aspect of the

process. As a placeholder during development, other more simple decision systems can

be used. As Maxis’s Dan Kline observed during his keynote at the 2011 Paris Game AI

Chapter 4. Evaluation - Functionality and Viability 128

Conference, a great way to approach the design of a new AI system in a game is to use

the rule “0, 1, Rand(), Game AI”[94], which is to say that initially the system should be

off, then its components should be tested as always on to ensure each works correctly,

before testing that they can be used in different sequences and finally an intelligent

system determines how to trigger the components meaningfully. This is more directly

applicable to systems like Behaviour Trees which can be decomposed into individual

behaviours and approached in this manner, but it also applies to the overall agent

system as a whole.

Developing the runtime portion of the I2A as a script to execute within Unity is reason-

ably straightforward. An internal representation of the Common Representation must

be developed, and a method for influence updates to be applied and propagated through

that representation. Its also necessary to implement a local search algorithm to choose

the most appropriate action to take. The majority of this work can be undertaken with

relative ease since it is almost exclusively development of a single component to achieve

a specific set of criteria.

The more challenging aspect of the development of an I2A agent is connecting this logic

to the broader game world, since much of this is determined by the constraints imposed

by Unity. There are four specific hurdles that must be overcome; firstly, the game

world must be exposed to the I2A system in such a way that it can create the Common

Representation, which requires that the world be described symbolically. There must

also be a way that instructions from the I2A system can be appropriately passed through

the game world in order for an action to take place. It must also be possible that a plan

can be made and updated using the PDDL representation the game world is generating,

by making use of an external planning system. Finally, since the expectation of the

I2A is that there will be some form of unintended consequences or prevention of the

Chapter 4. Evaluation - Functionality and Viability 129

successful completion of actions, it is necessary to ensure that there is a level of execution

monitoring in place to ensure that these situations are detected and compensated for.

4.2.3 Creating a PDDL Game Representation

One of the first challenges to be overcome when trying to implement the I2A is the

manner in which the game can be represented as a PDDL problem. There needs to be

some way to not only convert the scenario as laid out in the Unity editor into the initial

description used by the system, but also to maintain that representation as actions are

taken within the game.

The system implemented in Unity to handle this relies on two aspects, firstly a GameOb-

ject called the PDDLManager, and secondly a component MonoBehaviour called a

PDDLObject, which is added to all elements of the game that need to be described

as part of the PDDL representation.

4.2.3.1 The PDDLManager GameObject

The PDDLManager is a single GameObject with an associated PDDLManager script

component. It is intended to be a unique element within the game world and as such

is also tagged as a ”PDDLManager” to enable other scripts to find the appropriate

GameObject and reference it. There should only ever be a single GameObject that uses

this tag in order to facilitate this.

The inspector window for the PDDLManager is shown in Figure 4.4. The Actions object

holds a set of elements. In the Figure you can see that this world has a single action

Move which has three parameters. Before the Move action can be applied, the fact at

a crate loc1 must be true, and after this will not be true, and it will be asserted that

Chapter 4. Evaluation - Functionality and Viability 130

at a crate loc2 is now true. This is just a slightly different format than a traditional

PDDL representation, designed to be slightly easier to edit without specific knowledge

of the language.

Figure 4.4: The PDDLManager Component

The PDDLManager is the central place where the PDDL representation is built and

maintained, so it needs to be aware of every item within the game that must be repre-

sented in PDDL. This is achieved using the PDDLObject component.

4.2.3.2 The PDDLObject Component

Every GameObject within the Unity environment that is to be part of the PDDL system

has a PDDLObject component attached to it. This is shown in Figure 4.5. The core

elements exposed to the designer are the unique name for this object in the PDDL

description, and its object type.

Chapter 4. Evaluation - Functionality and Viability 131

Figure 4.5: An example of a PDDLObject-enabled GameObject

When the game begins execution, the PDDLObject finds the instance of the PDDL-

Manager using the Unity engine’s tools for looking up a GameObject based on its tag.

It then ”registers” itself with the PDDLManager, passing its name, type and a reference

to the parent GameObject that the PDDLObject is attached to. This is primarily the

entire role of the component - to make its presence, and that of its GameObject, known

to the PDDLManager.

4.2.3.3 Automated PDDL Generation

For specific objects like NPCs, or those that have potential impact on gameplay, explic-

itly defining them in this manner is necessary. However, for a number of less explicit

elements, it is quite a tedious process, most notably for locations within the world. Un-

der a standard explicit representation using the PDDLManager/PDDLObject model,

Chapter 4. Evaluation - Functionality and Viability 132

locations would need to be defined as empty GameObjects, have the PDDLObject com-

ponent attached and then have the other locations that are reachable from that one

linked by hand.

A much better method is to devise a system for extracting these implicit details auto-

matically from information available from the Unity engine. Specifically for Unity, this

can be achieved using the NavMesh feature. A Navigation Mesh is a computed surface

that represents the area that could be traversed by an agent with specific parameters

such as width. The NavMesh is created from a set of polygons, with the vertices of

these representing significant points where the walkable surface changes. In Figure 4.6

an example scenario is shown with the NavMesh highlighted in light blue. The walls

in the scenario create a disruption that cannot be walked through, but also there is an

amount of space given. Agents will not go closer to the walls than this, allowing them

not to project their bodies into the wall (in the same way a human would not try to

get their centre of mass closer than half a shoulders width to a wall). By observing this

distance, the vertices can be clearly seen as the points at which the NavMesh changes,

since its edges are straight line segments.

The NavMesh is used for pathfinding as the edges within the mesh describe ideal paths

for traversing the space. From within the initial polygon a path can be created to a

vertex and from that vertex, using the edges to any other polygon within the NavMesh.

A detailed description of this process is outwith the scope of this work.

What is significant about the NavMesh is that it is calculating the location of what

are considered to be important positions for navigation already in the vertices it marks.

Based on analysis of the corresponding edges not only can PDDL objects for locations

automatically be generated, but also the corresponding associations between links that

Chapter 4. Evaluation - Functionality and Viability 133

Figure 4.6: An Example of a Walkable NavMesh

are traversable can also be created, saving a significant amount of time for the game

designer.

Figure 4.7 shows the Editor Extension created to aid with this process. Unfortunately,

the vertices are not exposed directly and instead it is necessary to analyse the descrip-

tion of the polygons that comprise the NavMesh using Unity’s NavMesh.Triangulate()

function4. Duplicate vertices are eliminated by comparing relative positions of vertices.

Those that appear grouped together are only counted once, since these are the vertices

being duplicated as they form part of multiple polygons within the NavMesh.

With the set of unique vertices, it is possible then to perform a raycast analysis to

determine which pairs of vertices can be traversed directly. Performing this from each

vertex to each other vertex in the NavMesh allows for all pairs of walkable locations to

be found, this can then be stored and represented directly in PDDL. The result of this

analysis is shown in Figure 4.8.

4Since replaced by NavMesh.CalculateTriangulation()

Chapter 4. Evaluation - Functionality and Viability 134

Figure 4.7: Tool for PDDL Generation from NavMesh

4.2.4 Executing Actions

The ability to take an action as chosen by the I2A executive and translate that into an

action within the game world is clearly one of the major hurdles. Recall that edges within

the Common Representation of the I2A are all representing actions, therefore there is

a mapping of an edge within the CR into a PDDL action with associated parameters.

Being able to dispatch a PDDL action inherently means that an I2A action can also be

Chapter 4. Evaluation - Functionality and Viability 135

Figure 4.8: Results of NavMesh extraction as shown using debug tools ingame

dispatched and executed.

This relies on using the PDDLManager to interact with GameObjects that have reg-

istered themselves using the PDDLObject component. In Figure 4.9 six GameObjects

have been registered with a reference to the specific GameObject, name and type.

In Figure 4.10 a plan consisting of four actions is set to be executed. This plan is stored

as an array of strings, and takes a format slightly distinct but functionally similar to

PDDL.

Because of the format of the action, it can easily be decomposed using a string tokeniser

into its constituent parts, those being firstly the name of the action and subsequently

the one or more relevant parameters. Note that there is no limit on the number of

parameters that could be specified.

Each parameter is specified by the name of the PDDL object, with the registered objects

list of the PDDLManager being used to translate this into a list of GameObjects. Then

Chapter 4. Evaluation - Functionality and Viability 136

Figure 4.9: PDDLObjects registered with the PDDLManager

another property of the Unity engine is used in order to activate them, the SendMessage()

function, which broadly allows for a function with a specific name to be triggered. This

is called on a GameObject, but the function is actually invoked - or at least attempted

to be invoked - within each component. In Figure 4.10 the first action reads Move

Crate1 Left BackLeft. When this is parsed, the GameObjects that are specified as

having the PDDL names Crate1, Left and BackLeft are sent the Move command, and

the objects involved are passed in as parameters for that command. Because Left and

BackLeft are locations, although they receive this message to invoke their respective

Move functions, they do not have these present. However, Crate1, whose inspector

window was previously shown in Figure 4.5, also has another script attached to it as a

component, the Crate MonoBehaviour, and this does provide an implementation of the

Move, invoked as Mov(GameObject[] params).

Chapter 4. Evaluation - Functionality and Viability 137

Figure 4.10: An example plan loaded into the PDDLManager

SendMessage() is a powerful way for the PDDLManager to call function implementations

without having to be confident that these implementations actually exist, meaning that

the PDDLManager can remain very compartmentalised and independent of the specifics

of the domain being used.

4.2.5 Retrieving and Updating the Plan

It is very important for the I2A that it be able to update the plan as execution progresses

and the nature of the world deviates from that which the planning system originally

expected. Although the bulk of the I2A is designed to alleviate the reliance on this

replanning, it does not remove it, so there is still a necessity to be able to update the

plan held by the PDDLManager.

Chapter 4. Evaluation - Functionality and Viability 138

It was felt that implementing an entire planning system within Unity was outside the

scope of the project, but it was still necessary to prove that such replanning was possible.

Due to the nature of the replanning within the I2A being asynchronous, a good solution

was felt to make use of network communications to interface with an external component.

Unity provides a robust library within its engine for interacting with websites, which

allows for a delay in processing time.

The JavaFF planning system5 created by Coles, Coles, Fox and Long is a natural fit

for development in this manner since it is an open source implementation of the FF

planning system[40]. Although FF is no longer considered to be at the cutting edge of

planning technology, it is still a strong workhorse, and because of the open nature of

the JavaFF implementation, it was relatively simple to adapt the system to function as

effectively a planning web server, taking a PDDL problem and domain as input strings,

running the JavaFF system and capturing the output and presenting back as the result

of the query that the Unity system instigated.

From the perspective of the PDDLManager, when a new plan is required, it can use the

current PDDL description of the world to generate an HTTP request to the Network-

JavaFF server running locally. This is a non-blocking function that allows other aspects

of the Unity engine to continue execution while the request is served. This fulfills the

requirement that the I2A be able to perform its replanning asynchronously.

The resulting text is then parsed into a format compatible with the PDDLManager, a

small amount of plan repair is undertaken to compensate for the actions that have been

taken while the plan was being generated, and the new plan is then imported into the

PDDLManager ready to be incorporated into the I2A logic.

5http://www.inf.kcl.ac.uk/staff/andrew/JavaFF/

Chapter 4. Evaluation - Functionality and Viability 139

4.2.6 Execution Monitoring

The ability to detect the state of execution and ensure that the internal representation

of the world is only updated as actions complete is also important, as is detecting when

actions fail and ensuring that an appropriate recovery is attempted.

The primary way in which this is ensured is that each action being executed is called from

within what Unity calls a coroutine, which is best thought of as (although technically

very dissimilar to) a multi-threaded task. A single coroutine starts its execution and at

a specific point during that execution uses the Yield statement to pause its process.

This can then allow other activities to continue, and at each pass through the main

game loop, Unity will start processing this coroutine again until it sees the next Yield

and so on. This means that when an action is triggered, it can be monitored during

each frame of the game execution, using Yield to ensure the action can check if it has

completed and if not, make the changes necessary for a single frame of the action. In

the next frame, this action can be resumed, and when it has completed successfully, this

can be alerted to the PDDLManager.

Detecting and compensating for an action’s failure is a more complicated task, with some

reasons for the failure being dependent on the specific game, whilst others are likely to

be more generic and broadly applicable. An action might fail to execute because its

preconditions are no longer satisfied, which would be easily detectable as that action

came to be executed. Equally, it might fail because of the interaction of some other

elements during the execution process. For example consider an NPC walking through

an open door. If the door is closed after the NPC’s action has started but before it has

actually stepped through, then the NPC may find itself walking against the closed door.

In this case, it is necessary to have some more robust form of fault detection.

Chapter 4. Evaluation - Functionality and Viability 140

Using the coroutine process it would be possible to build a simple timeout into the

action execution that if the action does not complete within a certain time. A better

approach would be to implement fault detection as part of the action execution itself.

For example in the case of the NPC walking through the doorway it may be that any

collision that NPC suffers would be considered a fault. In either case, this can be signaled

to the coroutine which can interrupt itself, and use the same SendMessage() function to

trigger error correction systems on the relevant objects.

In this way, the execution of the system can be monitored, and faults can be detected.

Although this will always be very implementation specific, it is possible to use the tools

that the Unity engine provides to ensure that the I2A is informed as to the outcome of

the actions it has instigated.

4.3 Summary

This chapter has addressed two of the evaluation criteria laid out in Section 1.3, namely

the functionality and viability of the I2A. Its functionality was demonstrated by an

experimental analysis showing that the methodology of the I2A is sound, and discussing

its performance under certain conditions. A comparison to the contemporary planning

system LAMA was drawn to demonstrate the effectiveness of the clustering techniques

that the I2A uses and finally it was shown that these techniques apply in a range of

common planning domains and are not just specific to the Logistics+ domain described.

These are important results since as a novel technique, the I2A is unproven and its

ability to reason and act in game worlds must be shown through experimentation. The

experiments performed give a clear indication that the I2A methodology is sound and is

applicable in domains that are likely to be analogous to those that describe game worlds.

Chapter 4. Evaluation - Functionality and Viability 141

In the second half of the chapter, the viability of the I2A was established by demon-

strating that the I2A could be implemented insde the popular Unity game engine. Four

crucial obstacles to this were highlighted and solutions described that would enable the

I2A to function within Unity, specifically with reference to how the I2A could be con-

nected to the game world and the way that instructions could be coordinated within

that world. This proves that the technique can be viable in an industry-facing con-

text, making it a valid approach to solving the problem of decision-making for agents in

virtual worlds.

Chapter 5

Evaluation - Robustness and

Efficiency

The prior chapter demonstrated the feasibility of the I2A both in terms of its function-

ality as well as its viability for use in an industry context. However two key criteria

for evaluation remain, namely demonstrating that the I2A is sufficiently robust to deal

with dynamic environments and potential threats to its execution and that it is efficient

enough to outperform traditional deliberative solutions. In this chapter these will be

addressed by firstly showcasing an example problem, from a recent commercial game,

and demonstrating that the I2A would be well suited to empowering NPC agents within

this game. Secondly the question of efficiency will be addressed to demonstrate the

computation time of the I2A and contrast this with contemporary alternatives.

142

Chapter 5. Evaluation - Robustness and Efficiency 143

5.1 Worked Example

In order to effectively showcase the potential of the I2A, this section will explore an

example based on a real-world game released by a major game studio. The game will

be described at a high level before being explored in more detail, with specific reference

to the manner in which the components of the I2A operate and interconnect. This will

then be summarised, and comparison will be drawn to alternative systems.

5.1.1 An Example From Industry

A great example of the kind of problem that the I2A is uniquely suited to can be seen in

Mountain Goat Mountain (Zynga, 2015). Zynga released this game in the third quarter

of 2015 to a strong critical[95][96] and consumer reception, garnering a 4.5 star (out of

5) rating on both the Google Play Store[97] and Apple’s iOS App Store[98]. Mountain

Goat Mountain was developed using the Unity framework which has been previously

introduced, therefore what follows builds in many ways on the case study presented

previously in Section 4.2.

The aim of Mountain Goat Mountain is to get your character (the eponymous Mountain

Goat) as high as possible up a mountain, by moving forwards, backwards, left and right.

The goat can jump up a single step at a time. The goat needs grass to survive, and this

is placed sporadically around the mountain, meaning that the goat must continuously

keep moving. The goat will die if it makes a mis-step and falls off the mountain. Along

the climb, there are coins that can be collected that allow the player to unlock new types

of goats (changing only the aesthetic, not the mechanics) as well as the “Super Goat”

power-up that allows the goat to jump more than a single step up the mountain in one

Chapter 5. Evaluation - Robustness and Efficiency 144

move. Additionally as the goat climbs, it will encounter obstacles such as rolling logs

and storm clouds either of which can kill the goat and end the game.

This problem lends itself well to exemplifying the strengths of the I2A because there are

clearly elements of both deliberation and reaction inside the game. There is an element

of planning involved in determining the goat’s path up the mountain. There are also

a range of elements whose presence or absence will be determined during execution,

meaning that they cannot be reasoned about as part of the planning operation. These

have varying utility and worth - a single coin has significantly less value than the Super

Goat, and the latter may be sufficiently valuable to warrant risking an end to the game

by crossing the path of one of the logs.

It should be noted that in the “real” version of Mountain Goat Mountain (MGM), the

level is created procedurally. The implications of this will be discussed in detail below

in Section 6.2.2, however for the purposes of this example, we will assume that the level

is crafted by hand during development.

5.1.1.1 Movement in MGM

As mentioned above, the goat is able to move forwards, backwards left and right (al-

though because of the angle the camera is placed at, this appears to be more of a diagonal

movement). The mountain is made from discrete building blocks, meaning that there

is a uniformity to its creation that from the top down makes its construction resemble

a tile-based map like that discussed in relation to the A* algorithm in Section 2.1.2.1,

albeit with the addition that each tile also has an associated height. The mountain as

shown ingame is visible in Figure 5.1 and the tile equivalent, viewed from the top down,

is shown in Figure 5.4.

Chapter 5. Evaluation - Robustness and Efficiency 145

There are several rules that govern allowed movement, summarised as follows:

• Any adjacent tile that has the same height, or one higher is connected for normal

movement (jumping). These connections are shown in Figure 5.2.

• Any adjacent tile that has a lower height is connected for normal movement

(falling). These connections are shown in Figure 5.4.

• A tree occupying a tile makes it impassable for movement.

• The “Super Goat” is able to traverse in a straight line from a tile to the next

walkable tile in any direction, regardless of height and intervening terrain. This

type of movement is shown in Figure 5.3.

• Springboards provide a temporary effect similar to the Super Goat in that they

launch the goat to the next walkable tile. Springboards are valid for a single

direction only and when the goat lands on them will automatically launch it in

that direction.

5.1.1.2 Hazards and Items in MGM

One of the key elements in Mountain Goat Mountain is that the environment is ex-

ceptionally dynamic. There are a range of hazards to avoid and items to collect which

appear within the world at (from the player’s perspective at least) random points within

the level. The nature of these is listed below:

• Logs - These are a type of hazard that move in a single direction down the moun-

tain. They will continue moving in that direction until they reach the end of their

Chapter 5. Evaluation - Robustness and Efficiency 146

Figure 5.1: The Mountain Goat Mountain world, with tile locations picked out in
purple.

life, come to a missing tile or have to climb more than a single level in one step,

in which case they will expire.

• Boulders - The Boulder follows more or less the same rules as the Log, with

the exception that it will occasionally change the direction of movement down

the mountain. This is unpredictable, and therefore makes the Boulder a more

significant threat.

• Storms - Storms sit over specific tiles and often occur at bottlenecks in the moun-

tain. A Storm is effectively a timed gate, causing a lightning strike at a regular

interval. If the Goat is struck by lightning, it dies.

Chapter 5. Evaluation - Robustness and Efficiency 147

Figure 5.2: Uphill connections between tiles in MGM.

• Crumble Tiles - Although most tiles on the mountain have a level of safety asso-

ciated with them, Crumble Tiles do not - a short time after first standing on a

Crumble Tile, it will disintegrate, and if the Goat is still standing on it, it will die

as a result.

• Grass - The Goat needs grass to survive. Over time the Goat’s “grass meter” will

empty, and it must be topped up regularly from the grass tiles which are dispersed

intermittently throughout the mountain. Grass is not something to be pursued in

itself, but its presence should decide which of two similar routes up the mountain

the Goat will take.

• Coins - Appearing intermittently, but potentially on any traversable tile, Coins

are the primary currency of MGM. When the player has collected 100 Coins, they

Chapter 5. Evaluation - Robustness and Efficiency 148

Figure 5.3: Additional traversable connections when using the “Super Goat” ability.

are able to purchase cosmetic items to change the look of the game (but this does

not affect the gameplay). Their positioning may influence a player’s path up the

mountain, but their individual utility to a player is relatively low.

• Chests - Chests hold a group of coins, with the number being randomly assigned

from as little as 5 to as high as 100. As such, they are more useful to the player

but typically positioned in such a way that makes them very difficult to get to.

• Super Goat Spring - In order to turn into the Super Goat, the Goat must collect

the Super Goat Spring. After a short period as the Super Goat it will return to

its normal mode.

Chapter 5. Evaluation - Robustness and Efficiency 149

Figure 5.4: Downhill connections between tiles

5.1.2 Algorithmic Example

As was previously discussed in Section 3.2.1, there are a number of components to the

I2A. Figure 5.5 revisits these and the broad flow of the I2A process. This section will

present a detailed look at the way the components interact, and the data that is passed

between them.

5.1.2.1 During Game Development

During the game’s development, a number of things must be established in the Level

Layout, and the Common Representation and Initial Plan must be calculated. An

overview of the data flow for this is presented in Figure 5.8.

Chapter 5. Evaluation - Robustness and Efficiency 150

Figure 5.5: Recap of the Integrated Influence Architecture Components

Level Layout

A Mountain Goat Mountain level is comprised of tiles positioned at varying heights in

order to present a challenging set of paths to the player. When generating the PDDL

Representation in the next phase, one of the things that is paramount is knowing the

height and location of every tile and whether it is traversable by the Goat. One of

the easiest ways to do this is to ensure that each tile makes use of the Unity tagging

system referenced in Section 4.2.3.1, and adding a component to the tile prefab object

(the concept of prefabs was introduced in Section 4.2.1.1) to allow the designer to select

whether it is walkable or not.

PDDL Representation

With each tile tagged, it is easy to retrieve a list of all the tiles in the level, and iterate

through that list. For each tile, the system must take its X,Y and Z coordinates inside

Unity and using the standard size of a tile, create a grid representation of height, which

Chapter 5. Evaluation - Robustness and Efficiency 151

Figure 5.6: Data Flow of the Develop-time Components of the I2A

is best held as a two dimensional integer array. An example of this, derived from

Figure 5.1 is shown in Figure 5.7. Using a representation like this, and the movement

rules presented above, it is possible to then step through the grid and assess what tiles

serve as origins for which destination tiles. This process must be done for each tile, in

all four potential directions of movement and all three movement types (jumping, falling

and Super Goat jumps). For each, if a valid movement type exists, it can be recorded

as a PDDL fact in the form connected(origin, destination). For connections that

require the Super Goat ability, these can be recorded as super-connected(origin,

destination). This will give a description of the world that the Goat is operating in.

A PDDL definition of the actions that the Goat can take is also a requirement. The

MGM world is relatively simple, and the Goat is only able to take one of four actions at

any time, however for the sake of the representation, the standard movement and Super

Goat movement would be modeled as separate actions, the former have a precondition

Chapter 5. Evaluation - Robustness and Efficiency 152

Figure 5.7: The MGM world shown from a top-down perspective, with height anno-
tations for each tile.

that the Goat not be in Super Goat mode, and the latter having one that it is. It is

also necessary to model the collection of the Super Goat Spring as that provides the

mechanism by which the Goat will change modes, as well as an action to cause the Goat

to revert to its normal mode when the Super Goat ability expires

Finally in order to satisfy the requirements of the PDDL formalism, there must be a goal

presented. The overall goal in MGM is to climb as high as possible. Because in the real

game the mountain is procedurally generated, this could be arbitrarily high, but for the

sake of this example it is assumed that there is an ending height, represented by a set of

tiles that, when the Goat lands on them will trigger the win condition. Because of this,

the win condition can be set as the goal of the problem, and will causatively imply that

reaching one of these highest tiles is the way to reach that goal to the planner. Note that

Chapter 5. Evaluation - Robustness and Efficiency 153

there are alternatives to this model, such as using a disjunctive set of conditions that

the Goat is at one of this set of tiles, or even drawing on the use of fluents and metric

planning (introduced in Section 2.1.1.1) to track the height as a number and attempt to

maximise it. These alternatives introduce their own challenges however, and will not be

explored here.

Common Representation

Now that there is a complete PDDL problem definition, it is possible to hand this off to

the Common Representation component which will compute the CR. Firstly, the PDDL

is reformulated into the SAS+ formalism using Helmert’s translator[35] which operates

primarily by mutual-exclusion analysis to determine those facts that can be grouped

together. Here the output would be three DTGs, one for the location of the Goat on the

mountain, another for the current Super Goat status and finally a third that captures

the current value for the win condition.

The next step in the process is to apply the Cartesian Product operation to combine

these three DTGs. This process will increase the number of states dramatically, but

also the number of edges, and many of these states that were present in a DTG now

can be eliminated as their preconditions are not satisfied when the DTGs are combined.

Consider that any transition that requires the Super Goat ability will be present in the

DTG, however after the Cartesian Product process is undertaken, that edge will appear

twice in the Common Representation. Likewise, the edge that activates the Super Goat

ability will appear multiple times, even in situations where this would not be a valid

transition because the Super Goat Spring is not present. This means that there needs

to be a clean-up pass to remove edges representing actions whose preconditions are not

Chapter 5. Evaluation - Robustness and Efficiency 154

satisfied, and then to remove those states that are now unreachable. The resulting graph

structure is the foundation of the Common Representation.

With this graph structure now in place, the clustering algorithm can be used to iden-

tify the Focal Nodes and Super Nodes within the graph using the process described in

Section 3.4. The Common Representation is then stored in both the full and abstract

versions with a mapping between the two.

Initial Planning

Because the Initial Plan is created during development, when efficiency and computa-

tional time is not a concern, the full PDDL representation is used in order to create

a complete listing of the actions that must be taken in order to optimally achieve the

goal. This is done using a standard planning system built to operate with PDDL - the

choice here is somewhat flexible since this is primarily a black box operation, and the

planner in use here will be deployed onto development machines, meaning that there are

no usability concerns around ensuring compatibility and availability of specific language

runtimes. LAMA, Fast Downwards or JavaFF would all be suitable choices as they will

all be able to adequately output the plan in an appropriate format.

5.1.2.2 During Runtime

During the game’s execution the I2A will need to make a choice as to what action should

be taken next. This will be determined by observing the world in which the agent

is acting and taking into account the information being presented by the deliberative

reasoning component in order to evaluate possible action choices in the context of both

types of reasoning, iteratively updating the Integrated Influence Landscape. A visual

representation of this process is presented in Figure 5.8. Note that the components

Chapter 5. Evaluation - Robustness and Efficiency 155

represented by dashed ellipses are from the develop-time operation of the I2A. This

process will be described by component below.

Figure 5.8: Data Flow of the Runtime Components of the I2A

Creating the Initial Integrated Influence Landscape

The Integrated Influence Landscape is built by taking the Common Representation as a

core structure and then layering in the different sources of Influence. In its initial form,

the IIL is constructed purely based on the Initial Plan - as the level is being loaded there

is not yet an environment from which to draw additional data. As such, this IIL is created

simply by taking the plan created during Initial Planning and determining which of the

Focal Nodes within the Common Representation that plan would pass through. For

computational simplicity, this process can be carried out on the non-abstract version

of the CR rather than attempt to translate actions in the plan into their abstracted

counterparts. This will identify the Active Focal Nodes. A small amount of influence is

added to each of these and to any nodes that satisfy the goal of the problem, which for

Chapter 5. Evaluation - Robustness and Efficiency 156

this example would be any node for which the win condition is true. For each of these,

the influence is propagated across the CR’s graph structure.

Given that this initial seeding can be done on the full CR, it is important to also use

the method described in Section 3.7.1.3 to also give a valid Influence value to each of

the Super Node clusters stored in the abstract representation.

Game World

During execution, the Game World will need to expose a number of aspects to the I2A

architecture, primarily to validate that the I2A is reflecting the current state of the

game. The location of the Goat and whether it is in Super Goat mode are the main

things that needs to be monitored to ensure that the model the I2A is working from is

kept current. Since the map of the level is available to the I2A in advance, there are few

scenarios that should cause the model to deviate from the reality, perhaps the primary

one being an attempt to utilise a Super Goat path and the Super Goat ability expiring

before it is possible to act on this. Effectively, this is an execution monitoring system

to provide insurance and fault tolerance.

Environmental Sensing

The I2A system needs to be aware of potential hazards and desirable objects in its

vicinity, and in order to achieve that it needs to be able to detect the current state of

objects within the Game World. To do this, a new component is added to the Goat

during development that will effectively act like a radar system, detecting all objects

within a certain radius from the Goat. This is somewhat analogous to a radar system,

detecting the obstacles and their location. Unity has built-in functionality to achieve

this in the Physics.OverlapSphere function, which returns all GameObjects that

have active Collider components touching or within the sphere provided as an argument

Chapter 5. Evaluation - Robustness and Efficiency 157

to the function. It is trivial to then iterate through this list of GameObjects to select

only those relevant to the I2A system, which can then be passed to the IIL component

in order to update the influence that the game world is generating.

Asynchronous Replanning

The high level view of the current game state as exposed through the Game World

component is used by the Asynchronous Replanning system in order to detect when

the Goat has deviated from the expected execution of the existing plan. At this point,

a planning operation is instigated in order to determine if a new, more optimal, plan

exists. This is run as a low priority background process on the abstracted Common

Representation. As the planning is being performed in the abstract, it will have limited

complexity, and as a background process it is non-blocking, which means that the I2A

is able to continue executing to the best of its ability in the intervening time between

the initial need for a replan operation being detected and the result of the replan being

available.

Updating the IIL

As new information is provided to the IIL component from the Environmental Sensing

and Asynchronous Replanning systems, the IIL is updated as necessary. This involves

recalculating the propagation of influence based on this new information, with the new

version of the IIL replacing the old. In the case of Environmental Sensing, this means

taking the presence of hazards and items into consideration and applying a reflective

amount of influence to match their perceived utility. In this way, coins would only

create a small amount of positive influence, while a coin chest would produce signifi-

cantly more. In Section 3.7.1 it was observed that the propagation techniques could be

implementation-specific and the log hazard in Mountain Goat Mountain is a compelling

Chapter 5. Evaluation - Robustness and Efficiency 158

example of the necessity for this as it moves only in a single direction - the negative

influence that it generates should not radiate along the path it has already traversed as

it is not a threat in those states, and again the I2A is designed in such a way that this

can be captured and represented as part of the algorithms within the system.

For an update to the Asynchronous Replanning information, again the Active Focal

Nodes are determined and propagation is carried out as described in Section 3.7.1.3.

Choosing an Action

The final phase in choosing an action is to use the IIL, updated with the most recent

information available at this point in the game’s execution, to determine an action to

take. In Section 3.10.1.1 the Localised Expansion-Bound A* Search was introduced and

is a viable option in the context of Mountain Goat Mountain. This allows the I2A to do

a limited look-ahead to select a promising path by which to climb the mountain. The

look-ahead aspect prevents the agent from getting stuck in localised dead-ends on the

mountain by ensuring not only that the immediate choice is good, but that the path it

leads to is also a good option when considering all kinds of influence.

5.1.3 Summary

The above described how each of the components outlined in Section 3.2.1 contributes to

the functioning of the I2A as a system capable of acting based on a hybrid of deliberative

and reactive data. Mountain Goat Mountain is in a lot of ways a thorough encapsulation

of the kind of problem that the I2A is designed for in that it combines long-term planning

in the route and method of traversing the Mountain, along with highly dynamic elements

such as the the Boulders, Logs and Coins that require a more reactive approach as they

enter the Goat’s awareness.

Chapter 5. Evaluation - Robustness and Efficiency 159

When contrasted with alternative techniques, it is clear to see the strengths of the I2A.

Consider a technique such as relying entirely on A* search. Clearly such an approach

would be quite strong in its ability to plot a route up the Mountain that was optimal,

but it would not be able to cope with the dynamic elements of the game, and as such

would be a very high risk approach that would not be expected to do well in the average

case. The same argument could be made for a more robust Deliberative approach such

as planning, which would require the majority of the design overhead of the I2A in order

to create a PDDL representation on which planning could be undertaken, but would not

have the capability to react to the dynamic elements either.

A more Reactive based approach, such as one utilising the principles of Subsumption[13],

in which the default behaviour is to climb the mountain as best as possible with higher

priority behaviours taking precedence when necessary in order to avoid the hazards and

take advantage of items as they appear. This approach would have a higher survivability

since in an ideal scenario it would be able to avoid danger, but this avoidance and the

naive approach to pathing would mean that there would be a significant trade-off against

the amount of progress the Goat was able to make up the Mountain.

Finally, with reference to prior hybrid systems, the Three Layer Architecture[84] in-

troduced in Section 2.3.2 is a prime example of such a system that does not solve the

core issues underlying either approach. In the TLA, what might be expected would be

for both a planning system and something like a Subsumption system to cohabitate,

with the third layer arbitrating between which one should be active at a given moment.

However, without knowledge of the existing plan to guide it, the Subsumption system

will make potentially sub-optimal choices in terms of the long term objective. Equally,

having had its execution disrupted, the planning system would then have to perform a

Chapter 5. Evaluation - Robustness and Efficiency 160

replan operation, which as has been discussed is computationally expensive. Replan-

ning will be triggered each time the agent needs to divert to overcome an obstacle, which

means in the context of MGM many many times in the course of one game, which is

clearly unwieldy and inefficient.

This example demonstrates not only how the I2A operates, but also provides a context

for why it does so and highlights how it overcomes the challenges that other techniques

face when attempting to operate within this environment.

5.2 Complexity Analysis

When creating a new algorithm, it is important to consider not just the end results of

the process but also the time it takes to run - as has been previously discussed, one of

the critical aspects that differentiates the games domain is the very strict computational

constraints. An obvious method for comparing the I2A to other algorithms would be by

doing a simple comparison of execution times for specific problems but this overlooks

that the I2A pushes much of its computation into develop-time, and that an algorithm’s

implementation will have dramatic impact on its execution. As an example, consider

that a specific implementation of an algorithm may use file storage in order to move

information between its components - this is not a requirement of the process and is

significantly slower than other methods might be, but for whatever reason was thought

to be an advantageous approach. In the context of execution time though, file storage

is a ponderous medium by which to exchange information and as such, the execution

time would be artificially higher due to implementation details that are not a part of

the algorithmic specification.

Chapter 5. Evaluation - Robustness and Efficiency 161

5.2.1 Introduction to Computational Complexity

Instead of assessing execution time, we utilise methods from theoretical computer sci-

ence in order to compare algorithms in an implementation-agnostic manner. Instead of

assessing execution time, the emphasis shifts to evaluating the number of steps the al-

gorithm will take in order to reach a conclusion. Consider the following trivial example:

In algorithm 1, an input value is given and it is added to itself 4 times. In algorithm

2, an input value is given and it is multiplied by 4. Intuitively, these will produce the

same result, but algorithm 1 will do it after 4 instructions (the repeated addition) whilst

algorithm 2 will do so after just 1, making it more efficient1. Crucially this assessment

is completely independent of context concerns such as parity in the hardware executing

the algorithms, language that the algorithms are implemented in and so forth.

In these sorts of problems, it is typical to consider the efficiency of an algorithm in

relation to the size of the input that it is passed. Computational Complexity typically

aims to answer the question of “what happens to the number of steps in the algorithm

as this number gets larger and tends towards infinity?” or put another way, “what is

the worst possible case?”. This is the premise of “Big-O” notation, an accepted way

of representing the computational complexity of an algorithm. The Big-O notation not

only assumes that the input size (typically denoted as n) tends towards infinity but that

for a sufficiently large n, the complexity can be adequately approximated by taking the

“order of the function” as an upper bound on its expected growth rate. As an example,

consider an algorithm with a nested For loop; the outer loop runs n times, and each

time performs n operations meaning that the nested loop itself costs n2. There is a

subsequent process that requires stepping through the entire input again, and there is

1It is worth pointing out that many modern compilers will perform optimisations on trivial problems
such as this, recognising the repeated addition and replacing it with the single multiplication step.

Chapter 5. Evaluation - Robustness and Efficiency 162

some overhead and additional steps that are independent of the size of the input which

we can represent as a constant value C. It would be accurate to say that this algorithm

will execute in n2 + n + C steps, but for the sake of simplicity and comparison it is

important to recall that computational complexity is interested in the general case as n

tends towards infinity. As this occurs, higher order terms within the function become

increasingly dominant, so it is fair to say that for a sufficiently large n, n2 will be a

dominating factor, and indeed this is what the Big-O notation captures, extracting the

dominant term. In this case, the computational complexity of the algorithm would be

represented as O(n2).

5.2.2 Complexity Analysis of the I2A System

As a novel approach to the problem of agent execution in dynamic environments, it

is important to consider the computational complexity of the I2A in order to ensure

that it is satisfying its primary aim - to be a better approach to AI in a game setting.

However, with that said, one of the core concepts underpinning the I2A is that during

the development of a game, there is an abundance of computational power available. As

such, it is important to be mindful that the complexity of those components that are

part of the develop-time process is much less significant than those that will ship as part

of the game itself, and these components will be treated separately below.

5.2.2.1 Complexity During Development

As described previously, during development several different components are used in

order to perform the necessary calculations to provide the runtime components with the

Chapter 5. Evaluation - Robustness and Efficiency 163

needed data structures and seed information. Below each one of these will be assessed

to determine its computational complexity.

Level Layout

In some regards, the Level Layout process is likely to be the most time consuming since

it is primarily a manual process. Ensuring that each tile is positioned appropriately and

has the correct information cannot be an not automated process, and therefore does not

have an associated computational complexity.

PDDL Representation

In order to build the PDDL Representation of the level, a list of all the tiles is needed as

are the maximum width and depth that tiles can be positioned at. Finally the standard

width, depth and height of a tile are required. All of these should be easily accessible

from the level. By iterating across each tile, for a given n number of tiles, it is possible

to build the 2 dimensional height map as was shown in Figure 5.7. Since this involves

dividing each of the components of the 3 dimensional position of every tile within the

Unity engine by respectively the tile’s width depth and height, this is an O(n) operation.

To determine the predicates that will form the PDDL representation it is now necessary

to establish for each of the three movement types whether it is applicable and what the

resulting destination tile is, using the height map as a lookup device. This will again be

an O(n) operation since there are a fixed number of lookups required.

Common Representation

In order to build the Common Representation there are three steps required. The first

is to reformulate the PDDL problem statement into SAS+, the second to perform the

Chapter 5. Evaluation - Robustness and Efficiency 164

Cartesian Product operation and finally the resulting state space is clustered. Each of

these will be considered separately.

Translating a PDDL problem into the SAS+ formalism is undertaken using Helmert’s

Translate system[35]. Although Helmert does not present a complexity analysis for

this system, the detailed description of the process does give a level of insight. The

process broadly consists of several steps. In the first PDDL object types are compiled

out, reduced to explicit predicates in the definition. Intuitively this is likely to be a

linear complexity of O(m) where m is the number of objects in the PDDL problem.

The Invariant Synthesis step considers which PDDL predicates that are true in the

initial state remain true throughout the entire state space, again intuitively this is likely

approximated as a linear complexity in terms of the number of initial predicates p and

number of states s since each one must be checked in every state, so is O(p ∗ s). Every

predicate is now grounded, which means being repeated with every possible combination

of objects put in place of its variables. For the Mountain Goat Mountain example,

the predicates predominantly take two arguments as they determine the location of an

object, or that two locations are connected, so for every predicate p there will need to

be m versions of the first object and m versions of the second object, so the complexity

here can be approximated as O(p ∗ m2). The final step in translation is to build the

Multi-Valued Variable representation based on the prior analysis of invariants. This

appears to be a relatively simple operation with complexity O(i) with i representing

the number of invariants detected previously. As a whole process then, this stage can

be represented as O(m2) with the bounding factor being the number of objects in the

PDDL problem.

The translation process will generate a number of DTGs d with each DTG having nd

nodes. The Cartesian Product process will take each DTG and combine them into a

Chapter 5. Evaluation - Robustness and Efficiency 165

single process. If the average number of nodes in a single DTG is captured as navg then

the number of operations that will be required will be (navg)d. As noted previously there

is a subsequent pass ensuring that the preconditions for each edge are met, removing

the edge if not. The Cartesian Product process will have introduced an additional d

edges into the state space for each node, which means that validating these edges will

be a process based d ∗ (navg)d iterations, or O((navg)d+1).

The final step required in computing the Common Representation involves iteration of

the clustering algorithm described in Section 3.4.2. On the face of it, there is an issue

with regards to computational complexity here in as much as this clustering algorithm

does not provably terminate - it is not hard to envisage a situation where the cluster

center swaps between two points repeatedly. However here the discretisation of the

state space works (as described in Section 3.4.2.1) to the algorithm’s advantage in that

migrating a cluster center from one state to another is a step function rather than con-

tinuous. This should drastically alleviate the circumstances under which such a scenario

can happen, if not eliminate it completely. Due to the discrete nature of the space, the

only way such a scenario could occur would be if the space that the cluster occupied was

perfectly symmetrical and balanced against every other cluster, with the “true” center of

the cluster sat perfectly equidistant between two states, creating a situation not unlike

that described by the Buridan’s Ass paradox[99]. The circumstances needed to create

this appear vanishingly unlikely. Based on this, it holds that the clustering algorithm

will determine a result within some k iterations, and if the above justification does not

hold true in specific cases it would be possible to modify the algorithm to resolve after k

iterations and return its best result, which would also overcome the challenge that this

lack of provable termination introduces.

On the assumption that one way or the other, the algorithm will terminate after k

Chapter 5. Evaluation - Robustness and Efficiency 166

iterations, the actual operation of the clustering should be considered next. In this

it will be assumed that there are n nodes in the Common Representation, and that c

clusters are being found. By Equation 3.3 it can be shown that updating the weights

with which each node belongs to each cluster will be n ∗ c operations, and each one

requires an evaluation of c distances to get a proportional measure of the distance from

this node to the current cluster centers, so this process will require n ∗ c2 operations.

In order to update the cluster centers, Equation 3.2 indicates that for each cluster it

is necessary to find the node which minimises the distance from itself to every other

node. This means that there are c operations in which n nodes are compared against

n nodes, so this process will require c ∗ n2 operations. Finally, by Equation 3.4 n and

c can be equated, since in this it is stated that c is the ceiling of the square root of n,

meaning that c is approximated by n0.5 This means that the abstraction of the Common

Representation can be done in k(n ∗ c2 + c ∗ n2) which is equivalent to k(n2 + n2.5).

Consequently the complexity of this process is O(n2.5).

As a whole then, this phase of the develop-time process is likely to be approximated in

complexity by the Cartesian Product operation as d (the number of Domain Transition

Graphs) will be more than 2.5 - in fact in Mountain Goat Mountain it will be 3, repre-

senting the location of the Goat, its Super Goat status and whether it has successfully

achieved the win condition. Consequently, this complexity of this phase will be O(n3)

for n nodes average per DTG.

Initial Planning

In Helmert’s “Understanding Planning Tasks”[35] a comprehensive study of many con-

temporary planning domains is undertaken in order to establish their complexity class.

Helmert makes a particular point of separating what he terms “route planning and

Chapter 5. Evaluation - Robustness and Efficiency 167

transportation” tasks and determines that the task of finding an optimal solution to

such a problem is NP-Hard. Informally this means that the complexity of the prob-

lem corresponds to being at least that of the hardest problems that can be solved in

Non-Deterministic Polynomial time (from which derives the NP), however it should be

noted that this is a lower bound and as such more complex instances are possible. This

means that the complexity in the Big O notation is at least O(nk) for some value k ∈ N.

5.2.2.2 Complexity During Runtime

During the I2A’s execution process at runtime, computational efficiency is exceptionally

important. As previously discussed, with the complex requirements of managing a 3D

game world, rendering it on the screen and all the other requirements involved in en-

gaging a player with a simulated world experience there is limited computational power

available, and so efficiency is a significant factor in ensuring that techniques developed

are relevant and usable in industry. This was the entire motivation behind the I2A,

and in the remainder of this section, each component of the I2A that is used during the

game’s execution will be assessed.

Game World

During runtime, the main computational power of the device is dedicated to running the

Unity engine that powers the game world. Crucially however, this is the case regardless

of what AI technique is in use, so will not change between different implementations. As

a result, a thorough complexity analysis of Unity can be set aside. Instead, what must

be considered is the process by which the state variables discussed in Section 5.1.2.2 are

updated. Since this process involves simply assessing the current situation, and looking

Chapter 5. Evaluation - Robustness and Efficiency 168

up locations and states for specific objects it will be a linear process based on needing

to update v values, or O(v)

Environmental Sensing

The Environmental Sensing component is responsible for detecting those hazards and

items within a certain range from the Goat. As noted above, the best way to achieve

this is through the Physics.OverlapSphere method native to Unity, however this

obfuscates its implementation inside the Unity engine. Naively though, in the worst

case it is possible to imagine an implementation of this routine that steps across every

GameObject present in the Unity scene and compares that object’s location with the

coordinate range of the sphere being described. It would be expected that there are

more subtle and elegant solutions to this, but in the worst case then, this routine is

O(m), being a linear process against all m of the GameObjects within the scene.

For the n GameObjects that are within the sphere each one must be assessed to deter-

mine its type and for those whose type is one that will generate influence, its location

should be noted. However, this too is a linear process since there are simply several

steps that may be taken for each of the n GameObjects, meaning that this part of the

process can be captured as O(n). For this component as a whole, the n GameObjects

inside the sphere reflect a subset of the m GameObjects in the scene, so without better

understanding of the proprietary approach taken by Unity’s Physics.OverlapSphere

method, it is plausible that this is the computationally dominant part of the process.

As a result, the Environmental Sensing component can best be approximated as O(m).

Asynchronous Replanning

In terms of computation, by far the most expensive piece will be the Asynchronous Re-

planning component since it is solving a planning problem. However, with that said, it is

Chapter 5. Evaluation - Robustness and Efficiency 169

important to recall that this component is using the abstracted Common Representation

as the basis for the planning problem being undertaken, and regardless of its complexity,

this is a process that is expected to occur over multiple frames meaning that although

its complexity may seem high, the impact of this will be ameliorated over time.

With reference again to Helmert’s “Understanding Planning Tasks”[35], it is of note

that although optimal planning is NP-Hard, approximation of such plans under cer-

tain constraints can be achieved much more quickly. In particular Helmert lists in

his Conclusion 7.1.5: “Optimal plans in the Transport and Route domains can be

approximated by some constant factor if all mobiles have the same capabilities and mo-

bile capacities (for Transport are either all 1 or all unrestricted) ”. In the case of

Mountain Goat Mountain, there is a single mobile element that constitutes part of the

planning problem, namely the Goat, so this constraint is satisfied. As a consequence,

the Asynchronous Replanning component is working with a problem whose complexity

class is APX which is to say that it is a Non-Deterministic Polynomial Time task, being

approximated in (deterministic) Polynomial Time. Technically speaking this means that

it still has O(nk) complexity similar to the Initial Planning component, but importantly

it is now no longer a non-deterministic process, which will mean that its behaviour at

runtime is significantly more predictable. Additionally, because the number of nodes

in the state space has been reduced through the abstraction factor. Equation 3.4 put

the number of clusters as being contingent on the square root of the number of nodes

in the graph, meaning that the reduction in complexity carries through to actually give

O(
√
n
k
) or simplified, O(nk/2).

IIL

Updating the IIL is undertaken as necessary, when new sources of influence are detected

Chapter 5. Evaluation - Robustness and Efficiency 170

or old ones require updating. When that updated information is coming from the Envi-

ronmental Sensing component there will be m sources of influence to propagate across

n nodes in the Common Representation. This process will be driven in large part by

the reward propagation method in use, but intuitively each source of influence will first

apply at its relevant location, and will radiate across the network. At each node, the

influence being applied is contingent purely on the influence that its parent received, so

there is no necessity to consider other nodes. As a result, each propagation step will

be a straightforward set of calculations. As a result updating based on Environmental

sensing will be linear complexity based on m and n or O(m ∗ n).

If the influence updated is from the Asynchronous Replanning component, then the

process undertaken is slightly different in that the plan generated must be analysed to

determine which of its steps pass through a Focal Node so that that Focal Node can

be deemed an Active Focal Node and a source of influence. The process of determining

whether a plan step passes through a Focal Node will involve a linear time operation

based on the number of steps in the plan, s. This will determine how many Active

Focal Nodes there now are, which will all become sources of influence as in the previous

paragraph represented by m. As such, the IIL update generated by Asynchronous

Replanning is approximated by O(s + m ∗ n).

Action Choice

As discussed above, the choice of action for the I2A is determined using an A* search,

modified to be a localised expansion-bound process of determining the best square in

the nearby vicinity for the Goat to move towards. The typical A* search has its com-

putational complexity measured in terms of the perceived imprecision in the heuristic

calculations, which makes intuitive sense since a provably accurate heuristic will turn the

Chapter 5. Evaluation - Robustness and Efficiency 171

search problem into a very straightforward depth-first tree traversal to the goal state.

Equally for a wholly inaccurate heuristic, the whole tree must be explored in order to

discover the goal state. For the I2A, the process is somewhat different since the aim is to

effectively leverage the best-first search strategy to find a locally optimal result within

a specific horizon. This means that in the general case, the A* implementation will be

limited to at most e node expansions. In broad terms, the A* algorithm starts from the

initial state, which for the I2A in this case is the Goat’s current location as a node in the

IIL. It will then consider each of the nodes reachable in one step and add each one, with

an assigned heuristic value of its perceived influence value (factoring in the steps taken

from the initial state to reach it) and add them to a list. From that list it will select the

highest scoring node, and consider each subsequent node reachable in that list, adding

them to the internal list with their respective values. The algorithm progresses, always

selecting the best scoring node from the list first. After it has repeated this process e

times, it has determined the best candidate node for the I2A to attempt to reach and can

pass the initial action required to reach it as the action choice. Because this utilisation

of the A* algorithm is not about optimal searching, the efficacy of the heuristic is not a

factor in the computational complexity, and the process as a whole can be approximated

as O(e).

5.2.3 Complexity Summary for Mountain Goat Mountain

To summarise the above, it has been demonstrated that during development by far the

most computationally complex piece of the process is the Initial Planning required in

order to pre-seed the I2A with a sense of how to achieve its objectives. This was an

expected result, since a large part of the motivation for the I2A is that planning is far too

costly from a computational point of view. Because this process is undertaken during

Chapter 5. Evaluation - Robustness and Efficiency 172

development however, the impact of it is dramatically lessened since there are significant

resources available for this kind of ”off-line” process.

More interesting is the complexity analysis of the runtime components of the I2A which

clearly show that - with the exception of the Asynchronous Replanning component, the

complexity involved is kept very manageable and in fact is linear in relation to the num-

ber of nodes and sources of influence in the environment. The Asynchronous Replanning

component is the most complex but again this is as expected. The complexity and over-

head of this component is the motivator for it being asynchronous and executing in such

a way that the I2A is able to continue its operation while the AR is generating a new

set of data to incorporate into the IIL. Utilising the abstracted CR representation as

a planning formulation also allows for a considerable efficiency gain since there are far

fewer nodes to consider. As noted above, this changes an O(nk) process to O(nk/2).

This mitigates the potential impact of the AR on the runtime performance of the I2A.

Given these safeguards, and the low complexity of the remaining components, the I2A

is provably a lightweight approach to decision making at runtime.

One final aspect of note is the complexity of the Action Choice component, which is

O(e). This value e is the only value that is both a limiting factor on the complexity

of the system and a tunable, designer led parameter. This means that by varying e

directly, the I2A can be tuned to have a slightly lower or higher computation time, and

consequently have a longer or shorter lookahead horizon in its choice of action. This

flexibility is another key strength of the I2A, and having a direct impact on runtime

complexity in this manner is an exceptionally powerful tool.

Chapter 5. Evaluation - Robustness and Efficiency 173

5.2.3.1 Generalising to Larger Problems

Mountain Goat Mountain is in some regards a well behaved game world in that it is not

especially complex. There is an amount of dynamism as there are hazards to be avoided,

but none of these hazards have agency - there is no malevolent intelligence attempting to

confound the Goat, nor are there particularly convoluted actions within the game world.

There are no deep intricate layers of logical thinking required in order to address the kind

of scenario described by the Sussman Anomaly described in Section 2.1.3.1. This makes

the MGM example a little simplistic in some ways compared to richer environments,

however the core operation of the I2A would remain the same in more conceptually

complex games. The likelihood is that such features would cause the planning and re-

planning components to require more computation, but this extra complexity would not

cause an undue burden on the processing time in the other components since they are

not bound to the complexity of the planning task being attempted. Similarly, more

complex games might have multiple mobile objects that can be moved (analogous to

having multiple goats), or more varied hazards, but in either case, these would expand

the linear-time components of the I2A’s reasoning system so would be unlikely to cause

significant impact.

One potential point of concern when considering larger problems is that typically, the

issue of complexity is considered to be a trade-off. Above the emphasis has been put on

so called “Time Complexity” which is to say the amount of time that the algorithm takes

to run, but another factor to consider is “Space Complexity” or the memory required

in order to perform the algorithmic task. In essence this concept is the key to the I2A

since the Common Representation, based as it is on the Cartesian Product of multiple

Domain Transition Graphs, is expanding the memory usage of the algorithm in order to

Chapter 5. Evaluation - Robustness and Efficiency 174

decrease its runtime. For the kinds of problems described, this has generally not proven

to be a problem but the approach taken is unlikely to scale indefinitely and may in fact

be a contributing factor to the results seen in Table 4.2. This will be discussed in more

depth in Section 6.1.2.

5.2.3.2 Comparative Complexity of Alternate Techniques

In Section 5.1.3 comparison was drawn to three techniques that could be used to power

the agent in the Mountain Goat Mountain example presented. Of course, not only is

the behaviour of the agent under each of these algorithms an important consideration

but also the complexity of these alternatives, which will be addressed here. Automated

Planning is perhaps the simplest of these to address since its complexity has already been

discussed above as part of the Initial Planning component. A system based purely on this

approach would be equivalent to running just this component once. This would mean

that it would have complexity O(nk), but would as mentioned previously be exceptionally

high risk. A Subsumption architecture as described in Section 2.3.1 has b prioritised

behaviours with those with a higher priority “subsuming” the output of the lower priority

ones. The architecture works by iterating across the list of behaviours and determining

which is active given the current world state, and each behaviour is a simplistic mapping

to an output. As a consequence, the Subsumption architecture is clearly O(b). This is a

very clear statement on the Deliberative and Reactive paradigms, one that presents an

NP-Hard algorithm that is vulnerable to dynamic threats and invalidation, the other

that is a linear-time algorithm but has no concept of long-term strategy.

In these terms it’s easy to see the parallels between the I2A and a Three Layer Archi-

tecture, as well as the distinctions between them. A traditional TLA approach will first

solve the deliberative problem which may be through planning, an O(nk)algorithm. It

Chapter 5. Evaluation - Robustness and Efficiency 175

will then monitor execution in order to detect a threat to the execution of the generated

plan and when such a situation is detected, it will pass control over to a reactive system

such as a Subsumption architecture in order to adequately deal with the threat, which

is O(b). Authority then passes back to the deliberative component which will now have

to start from scratch using the resulting state after the reactive operation as the initial

state in a new planning problem, another O(nk) operation. Having to repeatedly solve

an NP-Hard problem is clearly a suboptimal approach. This serves to reinforce that

solutions derived from neither Reactive nor Deliberative paradigms alone are well suited

to the kinds of problems described above, and demonstrates that in the context of com-

putational complexity, attempts at hybridisation such as the Three Layer Architecture

have combined the worst of both world rather than the best.

5.3 Overview of Algorithmic Analysis

This chapter has presented a detailed assessment of the I2A both from an implementation

and complexity point of view, in the context of an example application that was recently

created in an industry setting. This allowed for the flow of the I2A to be demonstrated

and for each of the components to be clearly described, with particular reference to

their interdependency and interoperation. Additionally, the computational complexity

of each component was assessed in order to determine the overall complexity of the

I2A with comparison drawn between this and alternative approaches. This serves to

highlight the strengths of the I2A, in that it is a relatively lightweight architecture

that is flexible and well suited to scenarios that need to combine both reactive and

deliberative forms of reasoning. It is designed to be resistant to the kinds of threats

that typically invalidate a purely deliberative solution by constantly being informed by

Chapter 5. Evaluation - Robustness and Efficiency 176

influence from both paradigms. This lessens the reliance on the complex deliberative

reasoning process since information from this component is not simply thrown out when

such a threat is tackled. This means that there is a significant increase in the system’s

ability to operate in dynamic environments when compared to alternative approaches,

but crucially due to moving much of the computationally complex calculations into the

development process, this does not come with a punitive increase in computation against

typical reactive solutions. As noted above, the Asynchronous Replanning component is

the single largest piece of computation that must be tackled during the I2A’s runtime

execution, and by design this piece is intended to be used infrequently and given time

to perform its task since it is asynchronous from the main execution of the core of the

I2A. Aside from this component, the I2A executes in linear time, making it comparable

to solutions such as Subsumption Architectures in terms of computational complexity,

whilst retaining the ability to perform long term reasoning that Subsumption lacks.

With reference to the research statement presented in Section 1.3, and particularly to the

evaluation criteria presented, this chapter has fulfilled the third and fourth points in that

it has clearly demonstrated both the computational efficiency of the I2A against accepted

deliberative solutions as well as a clear ability to handle a dynamic environment by being

able to react to the changing environment that cannot be reasoned about deliberatively.

Chapter 6

Discussion

The I2A has the power and flexibility to offer a much more sophisticated approach to

robust agent execution than previous architectures have provided. Most significantly,

the idea of combining information from the Deliberative and Reactive paradigms, rather

than arbitrating between the two, represents a significant step forwards.

However, with that said, what has been presented still requires further work to be fully

fleshed out. This broadly falls into three categories: ways that the technique could be

further improved, considerations to bear in mind as the I2A is developed further and

finally a discussion of the aspects of the I2A that are parameterised and the impact of

varying these parameters.

6.1 Immediate Improvements

The work undertaken to date has indicated that the I2A appears to be viable as a

technique, but that is not to say that the design of the architecture is perfect. There are

currently a number of areas that could be improved upon, such as being able to handle

177

Chapter 6. Discussion 178

a wider range of domains, a broader selection of sources of influence or reformulating

the architecture to take advantage of advances in modern technology such as general

purpose computation on graphics processing units (GPGPU).

6.1.1 Influence Propagation as a Vector Operation

One of the core advantages of the I2A approach is that because it can represent the

graph of the state space as an adjacency matrix, it is possible to represent the influence

propagation steps as a number of iterated instructions that act on that matrix. This is

significant because this means that it can be easily adapted to operate in an inherently

parallel manner and make use of systems designed for the “Single Instruction Multiple

Data” (SIMD) paradigm such as modern Graphics Processing Units, which typically

implement GPGPU either through NVidia’s CUDA or OpenCL.

6.1.1.1 Worked Example

As an example, in this section, the Reward Sharing method of propagation shown in

Chapter 3 will be shown as a sequence of vector operations, which implicitly lend them-

selves to being processed on these platforms.

For this example, the small example used in Section 3.7.1.1 will be revisited. The

underlying graph is shown in Figure 6.1. This can be represented quite easily as what

is called an ”Adjacency Matrix”, which indicates which nodes are connected together

using a boolean-style representation. A value of 1 indicated an edge exists, and a 0 that

it does not. Note that edges are not bidirectional in this representation.

Chapter 6. Discussion 179

Figure 6.1: The Basic Propagation Example - Node 1 is a Goal Node

0 1 2 3 4

0 0 1 0 0 0

1 1 0 1 1 0

2 0 1 0 0 0

3 0 1 0 0 1

4 0 0 0 1 0

It is also possible to express the current Influence Landscape as a vector showing the

influence value of each node as well as identify a specific node as a vector whose com-

ponents are 0 except for nth component, to represent node N. Below, V represents the

initial value of the IL and G highlights that Node 1 (the Goal Node) has been modified

and is pending propagation. The adjacency matrix is represented by M.

Chapter 6. Discussion 180

V =



0

100

0

0

0


G =



0

1

0

0

0



M =



0 1 0 0 0

1 0 1 1 0

0 1 0 0 0

0 1 0 0 1

0 0 0 1 0



The parent nodes, those having edges terminating at the node referenced by G can be

found as N in the equation below.

Chapter 6. Discussion 181

N = M ×G (6.1)

=



0 1 0 0 0

1 0 1 1 0

0 1 0 0 0

0 1 0 0 1

0 0 0 1 0


×



0

1

0

0

0



=



1

0

1

1

0



Where I is an Identity column vector, the dot product of I with N provides the number of

parents that the current node has. Similarly taking the dot product of V and G gives the

amount of influence that the current node has. Subtracting 1 from the current influence

at the node, and dividing by the number of parents gives the amount of influence that

the parents should share in. Using this as a scalar multiple with N gives a new vector

reflecting the updated influence for each parent node.

Chapter 6. Discussion 182

I =



1

1

1

1

1



N • I =



1

0

1

1

0


•



1

1

1

1

1


= 3 (6.2)

V •G =



0

100

0

0

0


•



0

1

0

0

0


= 100 (6.3)

N ∗
(
b(V •G)

N • I
c − 1

)
=



1

0

1

1

0


∗
(
b100

3
c − 1

)
=



32

0

32

32

0


(6.4)

The result is then compared against V, which is the established landscape from which

is being propagated, and components-wise the maximum amount of influence at each

Chapter 6. Discussion 183

node is selected to produce a new view of the landscape.

U = max

(
N ∗

(
b(V •G)

N • I
c − 1

)
, V

)
(6.5)

= max(



32

0

32

32

0


,



0

100

0

0

0


)

=



32

100

32

32

0



As three nodes have had their values updated, the effect propagation will have on these

values must be considered, so where G was initially a single vector, it can instead be

thought of as a set of vectors whose initial size was one. The relevant nodes to add to

{G} can be calculated by considering the column vectors of an n x n Identity Matrix (

IM below) and taking each with the new influence values calculated for the parent nodes

at this step, as in Equation 6.4. If the value found is 0, then influence has not been

updated at this node, otherwise it has and the relevant In must be added to {G}. In

the equation below this process is shown using {G′} to represent the updated contents

of {G}.

Chapter 6. Discussion 184

IM =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(6.6)

I1 =



1

0

0

0

0


I2 =



0

1

0

0

0


I3 =



0

0

1

0

0


I4 =



0

0

0

1

0


I5 =



0

0

0

0

1


(6.7)

∀In : ((
N ∗

(
b (V •G)

N•I c − 1
))
− V

)
• In > 0 =⇒ {G′} = {G} ∪ In (6.8)((

N ∗
(
b (V •G)

N•I c − 1
))
− V

)
• In ≤ 0 =⇒ {G′} = {G} (6.9)

Chapter 6. Discussion 185

{G} = {}

I1

((
N ∗

(
b(V •G)

N • I
c − 1

))
− V

)
• I1 =





32

0

32

32

0


−



0

100

0

0

0




•



1

0

0

0

0


(6.10)

= 32

{G′} = {G} ∪ I1 (6.11)

{G′} =





1

0

0

0

0





(6.12)

I2

((
N ∗

(
b(V •G)

N • I
c − 1

))
− V

)
• I2 =





32

0

32

32

0


−



0

100

0

0

0




•



0

1

0

0

0


(6.13)

= −100

{G′} = {G} (6.14)

likewise for I3, I4, I5

Chapter 6. Discussion 186

{G} =





1

0

0

0

0


,



0

0

1

0

0


,



0

0

0

1

0





(6.15)

Continuing the example, G now contains three vectors as shown. For each one, the result

of sharing the influence at the relevant node to that node’s parents is computed. Note

that for G1, since the influence calculated for Node 1 is lower than that which is already

recorded for that node, the original value is kept and the result of the propagation for

the vector G1 remains V. G2 produces identical results and is omitted.

Chapter 6. Discussion 187

G1 =



1

0

0

0

0


V =



32

100

32

32

0


(6.16)

N = M ×G1 =



0

1

0

0

0


(6.17)

N • I = 1 (6.18)

V •G1 = 32 (6.19)

U = max

(
N ∗

(
b(V •G1)

N • I
c − 1

)
, V

)
(6.20)

= max





0

32

0

0

0


,



32

100

32

32

0





=



32

100

32

32

0


= V

Chapter 6. Discussion 188

When the resultant influence vector is calculated for G3, Node 4 receives an updated

influence score of 15. As this is higher than the previous recorded value, this is updated

by the maximum operation.

G3 =



0

0

0

1

0


V =



32

100

32

32

0


(6.21)

N = M ×G3 =



0

1

0

0

1


(6.22)

N • I = 2 (6.23)

V •G3 = 32 (6.24)

Chapter 6. Discussion 189

U = max

(
N ∗

(
b(V •G3)− 1

N • I
c − 1

)
, V

)
(6.25)

= max





0

15

0

0

15


,



32

100

32

32

0





=



32

100

32

32

15



In the next iteration, Node 4 shares its influence to its sole parent, giving Node 3 a value

of 15. Since this is lower than the current 32, this is not recorded, and the network has

reached stability.

This process is functionally identical to the Reward Sharing Propagation described above

but demonstrates that because one of the fundamental structures underpinning the I2A

is a matrix representation of the state-space, this means that it can relatively easily

become a process very well suited to the more advanced processor architectures available

now. In particular, note that the SIMD system was leveraged to evaluate an update to

the whole landscape as one step, whereas a traditional model would have considered

each node separately.

If the I2A were to be adapted to follow this processing paradigm, it is likely that there

would be even further reductions in processing required to drive the architecture, which

Chapter 6. Discussion 190

would allow even more to be done with it.

6.1.2 Memory Constraints

The results presented have shown that in domains that resemble typical game environ-

ments the I2A system is able to reliably reformulate a PDDL description of the game

world into the Common Representation. However, due to the combinatorial explosion of

the reformulation and especially the Cartesian Product process, it has been shown that

this can under certain domains (especially those with a high number of entities), be-

come too large a problem for the existing preprocessing system to work with. This is the

likely cause of the results shown in Table 4.2 and briefly alluded to in Section 5.2.3.1.

As the number of DTGs being combined increases, the amount of space required to

represent this grows exponentially meaning that effectively computational efficiency is

being gained by sacrificing storage efficiency.

To some extent, solving this could be a simple matter of creating a more efficient ap-

plication to undertake the preprocessing, and as such be a relatively simple software

engineering challenge, but this is likely to only be a stop-gap that simply allows more

domains to be processed without solving the underlying issue. More sophisticated meth-

ods would likely have to analyse the manner in which the Cartesian Product of the graphs

is calculated during preprocessing alongside the clustering system and attempt to find

a solution that allowed for an interleaving of clustering whilst the combinatorial explo-

sion was occurring so that at no point could the representation being stored in system

memory get too unwieldy. This is likely to be an appropriate approach since by far

the majority of the edges within the full Common Representation are contained with

the individual DTGs that contribute to the whole state space. By alternating between

Chapter 6. Discussion 191

clustering and the Cartesian product process, each DTG can be added and then reduced

into the abstract representation.

This solution is likely to only be appropriate for specific domains, and further work

would need to be undertaken to establish the viability of this process, and whether

those domains for which it was suitable shared the characteristics of those that seem to

cause the memory issues in the first place.

6.1.3 Extensibility

It should also be noted, that much like the previously mentioned Infinite Axis Utility

system discussed in Section 2.2.2.2, the I2A is a very extensible approach - Deliberation

and Reaction represent two of the most prominent information sources that might in-

form reasoning, however there are many other potential sources of influence. For NPC

characters an example might be an influence source that notates which states represent

more “human-like” behaviours, naturally biasing the I2A system towards these areas and

provide more realistic action sequences for NPCs. For more traditional applications, it

might be a representation of some other expert knowledge, such as an intuition based

on years of experience with a manufacturing process.

Regardless of the meaning of these other sources of influence, the I2A is designed in such a

way that their values can be incorporated into the reasoning system easily and without

any particular bias towards one paradigm or another. The I2A, and the underlying

representation of the world, provides a common robust system through which these

other sources can easily be captured, converted into Influence Landscapes and factored

into the results.

Chapter 6. Discussion 192

It is worth highlighting that some techniques for combining the landscapes will ensure

that the upper and lower bounds used in the individual landscape are respected, whilst

others violate these. Consider an addition method against a maximal value method in a

situation where a node has a high positive score in both landscapes. Under addition, the

new value will exceed the possible values in either landscape, whilst under a technique

that selects the maximal value, the highest possible value in either landscape remains

the boundary in the IIL. This becomes more of a significant issue when further extensi-

bility is considered and additional sources of influence landscapes are brought into the

architecture. This is largely the kind of issue that the Infinite Axis Utility System has

already overcome, but care must be taken as there is a fundamental distinction between

the two in that a score of 0 in an I2A landscape does not explicitly negate the input from

other landscapes as it does in the IAUS. More formally, the landscapes are designed to

inform the decision, but no landscape should have the ability to override the informa-

tion from any other landscape, and care must be taken when combination techniques

are implemented to preserve this.

6.2 Future Considerations

Future work on the I2A should not be undertaken in a vacuum, and as such it is impor-

tant to point out several things that should be kept in mind as the technique is developed

further that will help to signpost the direction that this work should be developed in.

6.2.1 Black Swans

In his book The Black Swan, Nassim Nicholas Taleb presents the idea of events that

have extremely low probability of occurrence yet whose impact on the outcome is very

Chapter 6. Discussion 193

significant.[100] In general, their low probability causes these potential events to be

overlooked when modeling systems and interactions, and yet their consequences are so

great that this oversight can cause drastic consequences to the model. Taleb refers to

the events of September 11th 2001 as a classical Black Swan - something never predicted

or given credibility due to the perceived low likelihood of occurrence, and yet having

occurred has had far reaching implications.

Taleb goes further and also discusses what he terms “The Ludic Fallacy”, which is best

exemplified with an example taken from The Black Swan which describes a Las Vegas

casino. The casino employed sophisticated systems in an attempt to detect cheating in

order to manage the risk of loss that the company was exposed to. However, a simple

look at their paperwork would show that by far the greatest losses in the casino came not

from the gaming but instead from more mundane sources - theft by a former employee,

on-stage accidents, fines due to incorrectly filed paperwork and a kidnap ransom.

Taleb postulates that the idea that a situation can be modeled and the act of modeling it

create something that can be solved or a game to be played and beaten (hence the term

’Ludic’ which derives from the Latin term for play). This in turn blinkers us into having

something that as humans we insist on solving. The casino became fixated on the gaming

aspect of their business because it was something that they could model, quantify and

reason about despite the fact that objectively, it was not necessarily the most important

part - the most important parts were excluded from the model altogether. In general

the field of AI is very highly susceptible to the Ludic Fallacy, modeling a problem and

then attempting to solve the model to optimality, with at times a flagrant disregard for

the necessity that this solution be relatable to the real world.

In 2002, US Secretary of Defense Donald Rumsfeld made an often quoted statement,

Chapter 6. Discussion 194

at the time ridiculed for its obtuseness. “There are known knowns; there are things we

know that we know. There are known unknowns; that is to say, there are things that

we now know we don’t know. But there are also unknown unknowns – there are things

we do not know we don’t know.”[101] In fact, Rumsfeld is making an astute observation

about the nature of the models:

• Unforeseen Consequences - This class of flaw is simply when executed actions do

not have the expected effect. If a robot attempts to pick up a box and the box

slips and falls, this is an unexpected effect - the box is supposed to be in the

robot’s gripper, instead has been left on the shelf. Unforeseen Consequences mean

that the world will not necessarily transition in the ways that the system expects,

but its possible to describe the resulting effects because they are still part of the

enumerated state of possibilities.

• Unanticipated States - The limitations of any model are that it is bound up in the

states that can be enumerated, which is only as good as the domain knowledge

provided. Consider a coin being flipped, traditionally it is stipulated that there

is a 50% chance of it landing on heads, and a 50% chance of it landing on tails.

However, this is not strictly true, it is an abstract representation. There is a

vanishingly small, but importantly non-zero, chance that a flipped coin will land

on its edge, however due to its low likelihood, this is never modeled Equally for

the gripper robot, if during its attempt to pick the box up it were to fall on the

ground, and if the ground were to not be part of the modeled locations that the

box was expected to occupy, the robot is now in an Unanticipated State.

In general, the nature of game worlds creates a natural solution to these problems

inasmuch as they themselves are modeled, so for the most part the assumptions made

Chapter 6. Discussion 195

about the world hold true - the noise of the real world is not replicated. With that said,

a lot of gameplay is inherently emergent, and the interoperation of a number different

mechanics can create Unanticipated States. As an example, consider the behaviour

exhibited in The Elder Scrolls V: Skyrim (introduced in Chapter1), in which the player

could take any item in the world, but if the NPC who the item belonged to saw it being

taken, it would cause the player to be accused of theft. At the same time, players were

able to manipulate items within the world, move them and place them down. As you

will recall, players quickly discovered that by interacting with buckets, carrying them

to the NPCs and carefully placing them on their heads, they could break the perceived

line of sight to the thefts occurring; there was no scope in the AI system driving the

NPCs to reason about them having a bucket placed over their head, so the AI found

itself unable to adequately act because it was in a Unanticipated State.

This notion of the Black Swan, and its potential impact, is highly relevant for the I2A as

it is for all AI systems with aspirations to act in a realistic environment. Typically our

models are built in a manner that is borne of the Ludic Fallacy. That is to say, simplified

in such a way that they are more easily computed and more easily ”beaten”, and to an

extent this is necessary in order to formulate an abstract representation, however it is

not a ”lossless compression”. The I2A inherently is designed to cope with the concept

of Unforeseen Consequences, however it is not currently able to handle Unanticipated

States. This weakness means that models must be designed carefully to ensure that

these circumstances, such as those found in Skyrim do not occur and create a situation

where the agent is forced into a state outside of that which has been modeled

It should also be noted that tackling this challenge directly is likely well outwith the

scope of the I2A, since it remains one of the big challenges remaining in the quest for

General AI. The ability to adapt and update the internal model of the world, as well as

Chapter 6. Discussion 196

reason about connections within that model and states that might result, is a significant

piece of work in itself.

6.2.2 Procedural Content Generation

An important contemporary game design paradigm being used by a number of developers

now is Procedural Content Generation (PCG), with examples such as Warframe (Digital

Extremes, 2013) in large productions[102] and Easy Money (Robot Overlord Games,

2015).[103]. Rather than creating content such as a level design during development,

instead the developer creates a systemic way of generating this content at runtime. From

the developer’s perspective this allows them to create a game that has ever-changing

content, enhancing the game’s value to players and allowing for it to constantly feel

fresh. It allows for players to play even simple games without ever being able to learn

the level.

Typically (although not exclusively) PCG uses an algorithmic approach to place prefab-

ricated pieces of a level together as a sort of jigsaw. For example endless runner games

such as Stampede Run (Zynga, 2013) see the player running through a maze and having

to make their character dodge around obstacles and follow the path by turning corners.

The layout of the path through the maze is not fixed in advance, but it is assembled from

a series of ready-made components at runtime. As was mentioned in Section 5.1.1, this

method is actually the way that the commercial version of Mountain Goat Mountain

functions, with the slightly simplified version described in the previous chapter being

used to remove the concerns that will be laid out below.

Figure 6.2 shows two sections of maze in Stampede Run which have been positioned

within the level procedurally. The individual ”jigsaw” pieces are designed to fit together

Chapter 6. Discussion 197

Figure 6.2: An example from Stampede Run, each section of path is laid out
procedurally and many are reused

seamlessly, meaning that the maze as a whole can be almost endlessly generated in

different configurations. Many games reuse this philosophy and within one piece allow

different configurations of obstacles and items to be positioned, creating a significantly

large number of distinct levels. The process by which this is achieved uses a semi-random

selection in order to ensure that certain constraints are met, and that the maze is both

structurally sound and also fun (whereas a true random placement of the jigsaw pieces

would not be able to guarantee this).

Because the level, and even the characters and objects within that level, are placed

at runtime, this presents a fundamental challenge to the I2A which anticipates being

able to pre-compute much of its infrastructure, such as the Common Representation,

during development. As such, this is not immediately compatible with the I2A, but

there are likely some techniques that could be taken that might yield interesting results.

Chapter 6. Discussion 198

Specifically, as the Common Representation is an exhaustive enumeration of the possible

states in the game world, it may be that it is possible to build the CR piece-wise at

runtime from sections that are based on the possible states within each of the pieces

available for procedural combination. This would at least simplify the process of creating

the CR at runtime, since it would become a problem of connecting graph segments

together in a coherent way, rather than trying to calculate the CR from scratch. This

may prove to be an effective technique and allow the I2A to continue to be performant

even when combined with the PCG paradigm, but further work must be undertaken to

explore this.

6.2.3 Generation of Entities

One final thing to bear in mind when considering the I2A and its applications is a

fundamental limitation of PDDL that could potentially be problematic. PDDL is, as

has previously been discussed, a symbolic representation of a game world, but it should

be noted that it has no ability to represent the creation of entities as part of its reasoning.

That is to say that the elements that occupy a game world at the start of the plan will

always occupy the game world at the end (but could be in some terminal state that

removes them from the world as perceived by the player), and no additional entities will

be added to the world.

This has a significant impact on the way certain situations and games can be modelled.

Consider a real time strategy game in which the object is to build a base and an army

and then attack. In PDDL, there is no way to symbolically represent the result of

building units for the army since the language cannot have entities added to it. As a

consequence, abstract representations are required, perhaps representing army strength

as a PDDL fluent to be increased, with the various units adding to that, however this

Chapter 6. Discussion 199

is clearly a level of reasoning removed from what might otherwise be used to represent

the problem.

This isn’t an insurmountable issue, but does highlight that there are modelling challenges

inherent in the I2A due to some of the underpinning technologies, and that these must

be taken into account when looking to build an I2A agent for a game environment.

6.3 Parameters and Tuning

One of the key elements of the I2A as it has been specified in this work is its flexibility to

empower designers and developers to implement it in a way that makes sense for their

specific game, rather than forcing certain decisions as part of the architecture. This

does however mean that there is significant scope for tuning of parameters within the

architecture in order to elicit the desired behaviours.

The three most significant aspects that can be altered are the influence propagation

system, the method by which influence landscapes are combined and the localised search

algorithm that is used to determine the best action for the agent to take.

• Influence Propagation - The method by which influence propagates across the

CR is important for determining the manner in which the agent will act. The work

undertaken has used a simple reward sharing heuristic, but alternatives could be

used in place of this which would perhaps more quickly (or slowly) decay the

perceived value of a state as it propagates, possibly based purely on edge distance

rather than sharing proportional to the number of parent nodes.

Chapter 6. Discussion 200

• Combining Landscapes - As discussed previously, the way that landscapes are

combined to create the Integrated Influence Landscape will have a significant im-

pact on the behaviour of the agent as this is where traits such as caution (taking a

minimal value of all landscapes) and confidence (taking a maximal value) can be

introduced. It would also be possible to weight one landscape more than another,

which would give behaviour that was more spontaneous or deliberate. The manner

in which the IIL is calculated from its constituent parts will have a great impact

on the tone of the agent.

• Localised Search - The mechanism by which the agent performs its search for

a nearby state to reach will also have great bearing on the tone of the agent. As

noted in Section 5.2.3 this parameter represents is a trade-off between lookahead

search and computational complexity, and invariably a larger number of permitted

expansions in which this search is conducted will slow down the process but also

remove much of the flexibility of the technique, since before a far away state is

reached, there is likely to be disruption to the agent’s perception of the world.

In general the specific horizon for how far ahead this search should look will be

implementation-dependent, and will be impacted most by how much disruption

there is likely to be; the more disrupted the agent’s actions are likely to be, the

smaller the search neighbourhood should be.

Different combinations of approaches for each of these three will generate very different

behaviour in agents even within the same scenario. It is up to the game developer to

experiment and determine what combination best suits the tone that is required for the

behaviour of the agent.

Chapter 6. Discussion 201

6.4 Summary

This chapter has highlighted some areas where the I2A could be improved, as well

as several things that must be considered when both extending or implementing the

system. As mentioned previously, the work to date has emphasised showing the viability

of the I2A rather than finding optimal parameters, and as a result there are a number

of open questions as to how best to implement the systems that have been discussed

above. Moving forwards, these will become more important now that the I2A has

been demonstrated to be a robust methodology, and subsequent work can explore more

thoroughly these questions and how they relate to specific instances of implementation.

With that said, it should be clear that the I2A has significant potential to be developed

beyond what has been accomplished in this work.

Chapter 7

Conclusions

The necessity for more emphasis on AI in games is inarguable. Games that have good AI

typically are noticed for this, and those that have bad AI will often have this mentioned

specifically as a criticism as part of reviews. Consumers want games to have good AI -

not in the sense of presenting a tough challenge, but in the sense of allowing a realistic

and immersive environment to be portrayed.

With that said, one of the biggest challenges facing AI in games is the computational

power available. Ever increasing specifications in consumer-level hardware are alleviating

this to some extent, but as has been shown, many state of the art techniques in academia

require orders of magnitude more time in order to adequately perform their processing

than is available during the execution of a game. Projects such as IBM’s Deep Blue tackle

this as primarily a hardware problem, creating a super-computer that can perform the

computation necessary in an appropriate amount of time, but for a commercial industry

this isn’t currently viable since this technology is not in every household.

The proposed Integrated Influence Architecture is an attempt to leverage three key

observations. Firstly that game characters need to have long term goals and plans

202

Chapter 7. Conclusions 203

for achieving them, so the kinds of deliberative reasoning Deep Blue performs are still

essential. Secondly that there are a range of AI techniques designed to act quickly,

and although these are typically relatively naive in their decision-making power, they

operate in a manner that is more aligned with what is needed for decision making

in games. Finally, because of the manner in which games are developed, there are

effectively limitless resources during this period, which provides a valuable opportunity

by allowing many aspects of decision making to be pre-computed, thereby reducing the

computational overhead needed during the game’s execution.

The I2A aims to utilise deliberative reasoning in a lightweight architecture, performing

the intensive computation upfront during development and allowing the result of this to

be reused during runtime to provide guidance to the execution system.

This represents a relatively novel approach to execution, since previously the predomi-

nant method that an agent would use to incorporate these aspects would be more along

the lines of arbitration, with the circumstances dictating whether the agent should act

in the context of its long term reasoning or short term reactions. Instead, the I2A tries

to ensure that this is not an either/or proposition and instead an agent is able to react

to changing circumstances, with information about its long term goals.

The work presented has explained the method by which the I2A achieves this kind of

execution, and has also shown that there is both evidence to support the nature of

the I2A in that fundamentally an architecture built in this manner can achieve what is

intended, as well as highlighting the core challenges to integrating this technique within

a game developed using industry-standard tools and ways that these can be overcome.

In Section 1.3 four key points were outlined by which the I2A would be evaluated. To

reiterate, they were as follows:

Chapter 7. Conclusions 204

• It must be functional, which is to say that it must be able to actually make decisions

informed by both Reaction and Deliberation in dynamic environments.

• It must be applicable to industry. One of the core motivations of the work is

addressing a shortcoming in contemporary solutions in use by industry, so any

proposed solution must in turn be able to address that shortcoming in the industry

directly.

• It must be able to handle dynamic environments by reacting to threats and op-

portunities in a timely manner

• It must demonstrate computational efficiency against deliberative solutions

In the first case, Section 4.1 clearly demonstrated the viability of the technique and

showed it to be functional in that it could create a Common Representation and In-

tegrated Influence Landscape for a variety of problems. Its applicability to industry

was demonstrated in Section 4.2 where it was demonstrated that an I2A agent could be

developed based on one of the most common game development engines in the industry

at the time of writing. The third criteria for evaluation was satisfied in Section 5.1 a

worked example of how the I2A could be applied to a recent game that clearly demon-

strated the type of environment the I2A is designed to address. This also reinforced its

applicability to industry. The final point of the evaluation is the need for computational

efficiency which was addressed in Section 5.2. On all points, the I2A has been demon-

strated to effectively fulfill the evaluation criteria established, and so is deemed to be an

appropriate solution to the initial problem described.

Chapter 7. Conclusions 205

7.1 Final Thoughts

The necessity for a new approach to decision making is clear, and in this work the case

for the I2A has been argued. It has the potential to be a powerful technique given that it

is based on a strong theoretical grounding, leveraging elements of existing methods, and

there is evidence that it will prove applicable in practice as well. There is significant scope

for the technique to be developed further, tailored for specific problems and extended

to include other types of reasoning, as well as be adapted to be more suited to the new

types of parallel processing systems becoming increasingly available even at a consumer

level.

Overall, the I2A shows significant promise, and appears to be a significant and feasible

solution to a fundamental weakness in artificial intelligence, namely that of the deep

disconnect between deliberative and reactive reasoning. Although this approach has

been argued to be a viable strategy for bridging this gap specifically in the domains

of games and simulated worlds, it is also reasonable to suspect that the I2A may have

potential beyond these, in any application field where fast reaction in the context of long

term reasoning is a key factor in exhibiting “intelligent” behaviour.

Bibliography

[1] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 2009.

[2] How to Play Three-handed Bridge, sep 1922. URL http://news.google.com/

newspapers?nid=1314&dat=19220924&id=PKxVAAAAIBAJ&sjid=t-EDAAAAIBAJ&

pg=2099,6243793.

[3] Nick Montfort. Twisty Little Passages: An Approach to Interactive Fiction. The

MIT Press, 2005.

[4] Michael Mateas. Expressive AI: Games and Artificial Intelligence. In Proceedings

of Level Up: Digital Games Research Conference, 2003.

[5] Frank Cifaldi. id’s John Carmack Chooses Framerate Over Graphical Fidelity.

Gamasutra. URL http://www.gamasutra.com/view/news/126649/ids_John_

Carmack_Chooses_Framerate_Over_Graphical_Fidelity.php.

[6] Amanda Coles, Andrew Coles, A Olaya, S Jimenex, C L Lopex, S Sanner, and

S Yoon. A survey of the seventh international planning competition. AI Magazine,

33(1):83–88, 2012.

[7] Fenghsiung Hsu. Behind Deep Blue: Building the Computer that Defeated the

World Chess Champion. Princeton University Press, 2002.

206

http://news.google.com/newspapers?nid=1314&dat=19220924&id=PKxVAAAAIBAJ&sjid=t-EDAAAAIBAJ&pg=2099,6243793
http://news.google.com/newspapers?nid=1314&dat=19220924&id=PKxVAAAAIBAJ&sjid=t-EDAAAAIBAJ&pg=2099,6243793
http://news.google.com/newspapers?nid=1314&dat=19220924&id=PKxVAAAAIBAJ&sjid=t-EDAAAAIBAJ&pg=2099,6243793
http://www.gamasutra.com/view/news/126649/ids_John_Carmack_Chooses_Framerate_Over_Graphical_Fidelity.php
http://www.gamasutra.com/view/news/126649/ids_John_Carmack_Chooses_Framerate_Over_Graphical_Fidelity.php

Bibliography 207

[8] Mikael Hedberg. Creating the Battlefield AI Experience. In Paris Game AI

Conference, 2010.

[9] J. Orkin. Three states and a plan: the AI of FEAR. In Game Developers Confer-

ence. Citeseer, 2006.

[10] Steam Forum Discussion - Is their[sic] a game with better ai?, 2013. URL http:

//steamcommunity.com/app/21090/discussions/0/846957366840442743/.

[11] Matt Barton. Dungeons and Desktops: The History of Computer Role-Playing

Games. A K Peters/CRC Press, 2008.

[12] Jeff Cork. In Skyrim, Bucket + Head = The Perfect Crime. Game In-

former, 2011. URL http://www.gameinformer.com/b/news/archive/2011/11/

11/in-skyrim-bucket-head-the-perfect-crime.aspx.

[13] R Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal

of Robotics and Automation, 1986.

[14] V Braitenberg. Vehicles, Experiments in Synthetic Psychology. MIT Press, 1984.

[15] B Bouzy. Computer Go: An AI oriented survey. Artificial Intelligence, 132(1):

39–103, oct 2001.

[16] Morton D. Davis. Game Theory: A Nontechnical Introduction (Dover Books on

Mathematics). Dover Publications Inc., 2003. ISBN 0486296725.

[17] L Kocsis and C Szepesvari. Bandit Based Monte-Carlo Planning. Springer Lecture

Notes in Computer Science, 2006.

[18] D. Nau, M. Ghallab, P. Traverso, and Ebooks Corporation. Automated Planning:

Theory & Practice. Morgan Kaufmann Publishers, 2004.

http://steamcommunity.com/app/21090/discussions/0/846957366840442743/
http://steamcommunity.com/app/21090/discussions/0/846957366840442743/
http://www.gameinformer.com/b/news/archive/2011/11/11/in-skyrim-bucket-head-the-perfect-crime.aspx
http://www.gameinformer.com/b/news/archive/2011/11/11/in-skyrim-bucket-head-the-perfect-crime.aspx

Bibliography 208

[19] Luke Dicken and John Levine. Applying Clustering Techniques to Reduce Com-

plexity in Automated Planning Domains. In Proceedings of the 11th International

Conference on Intelligent Data Engineering and Automated Learning, 2010.

[20] Luke Dicken and John Levine. Influence Landscapes - From Spatial to Conceptual

Representations. In Proc. AISB AI and Games Symposium, 2011.

[21] Luke Dicken, Peter Gregory, and John Levine. Abstraction through clustering:

complexity reduction in automated planning domains. International Journal of

Data Mining, Modelling and Management, 4(2):123–137, 2012.

[22] Luke Dicken. The Integrated Influence Architecture - Combining Reactive and

Deliberative AI for NPC Control. In Proceedings of the 2012 AltDevConf, 2012.

[23] Luke Dicken, Dino Dini, and Dave Mark. Architecture Tricks: Managing Behaviors

in Time, Space, and Depth. In Proceedings of the Game Developers Conference,

2013.

[24] D McDermott, M Ghallab, A Howe, C Knoblock, A Ram, M Veloso, D Weld,

and D Wilkins. PDDL — The Planning Domain Definition Language. Technical

Report, Yale Center for Computational Vision and Control, 1998.

[25] Patrick Hayes. The Frame Problem and Related Problems in Artificial Intelligence.

Technical report, Stanford University, 1971.

[26] Raymond Reiter. The Frame Problem in Situation the Calculus: A Simple Solution

(Sometimes) and a Completeness Result for Goal Regression. In Vladimir Lifschitz,

editor, Artificial Intelligence and Mathematical Theory of Computation, pages 359–

380. 1991.

Bibliography 209

[27] M Fox and D Long. PDDL2. 1: An extension to PDDL for expressing temporal

planning domains. Journal of Artificial Intelligence Research, 2003.

[28] Stefan Edelkamp and Jorg Hoffman. PDDL 2.2: the language for the classical part

of IPC-04. Proceedings of the International Conference on Automated Planning

and Scheduling, 2004.

[29] Alfonso E Gerevini and Derek Long. Preferences and Soft Constraints in PDDL3.

In ICAPS-2006 Workshop on Preferences and Soft Constraints in Planning, pages

46–54, 2006.

[30] Malte Helmert. IPC-2008, Deterministic Part - Changed in PDDL 3.1, 2008. URL

http://ipc.informatik.uni-freiburg.de/PddlExtension.

[31] Sara Bernardini and David E Smith. Developing Domain-Independent Search Con-

trol for Europa2. In Workshop on Heuristics for Domain-independent Planning:

Progress, Ideas, Limitations, Challenges at ICAPS-2007, 2007.

[32] Michael Brenner. A Multiagent Planning Language. In Workshop on PDDL at

ICAPS-2003, 2003.

[33] M Fox and D Long. PDDL+ level 5: An extension to PDDL2. 1 for modelling

planning domains with continuous time-dependent effects. Technical Report, U.

of Durham, 2001.

[34] C Bäckström and B Nebel. Complexity results for SAS+ planning. Computational

Intelligence, 1995.

[35] M Helmert. Understanding Planning Tasks : Domain Complexity and Heuristic

Decomposition. Springer LNAI, 2008.

http://ipc.informatik.uni-freiburg.de/PddlExtension

Bibliography 210

[36] R Fikes and NJ Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial intelligence, 1971.

[37] PE Hart and NJ Nilsson. A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4

(2):100–107, 1968.

[38] James Matthews. Basic A* Pathfinding Made Simple. In AI Game Programming

Wisdom, pages 105–113. 2002.

[39] A Blum and M Furst. Fast planning through planning graph analysis. Artificial

Intelligence, 90(1-2):281–300, 1997.

[40] J Hoffmann and B Nebel. The FF Planning System: Fast plan Generation Through

Heuristic Search. Journal of Artificial Intelligence Research, 2001.

[41] M Helmert. The Fast Downward Planning System. Journal of Artificial Intelli-

gence Research, 2006.

[42] Silvia Richter and Matthias Westphal. The LAMA Planner Using Landmark

Counting in Heuristic Search. In Proceedings of the IPC 2008, 2008.

[43] Fahiem Bacchus. AIPS 2000 Planning Competition: The Fifth International Con-

ference on Artificial Intelligence Planning and Scheduling Systems. AI Magazine,

22(3):47–56, 2001.

[44] GJ Sussman. A Computer Model of Skill Acquisition. 1975.

[45] Clive Dawson and Laurent Siklossy. The role of preprocessing in problem solving

systems: ”An ounce of reflection is worth a pound of backtracking”. In Proceedings

of the 5th international joint conference on Artificial intelligence, pages 465–471,

1977.

Bibliography 211

[46] Adi Botea, Markus Enzenberger, Martin Muller, and Jonathan Schaeffer. Macro-

FF: Improving AI Planning with Automatically Learned Macro-Operators. Jour-

nal of Artificial Intelligence Research, 24:581–621, 2005.

[47] Andrew Coles and Amanda Smith. MARVIN: A heuristic search planner with

online macro-action learning. Journal of Artificial Intelligence Research, 28:119–

156, 2007.

[48] Steven Minton. Selectively generalising plans for problem-solving. In Proceedings

of the International Joint Conference on Artificial Intelligence, 1985.

[49] J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and usage

of landmarks in planning. Proc. European Conf. on Planning, 2001.

[50] HLS Younes and ML Littman. PPDDL1.0: An Extension to PDDL for Expressing

Planning Domains with Probabilistic Effects. Technical report, Carnegie Mellon

University, 2004. URL http://www.tempastic.org/papers/CMU-CS-04-167.

pdf.

[51] R Bellman. A Markovian Decision Process. Journal of Mathematics and Mechan-

ics, 6, 1957.

[52] S Yoon, A Fern, and R Givan. FF-Replan: A baseline for probabilistic planning.

17th International Conference on Automated Planning and Scheduling, 2007.

[53] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Replan-

ning versus plan repair. In Proceedings of International Conference on Automated

Planning and Scheduling, pages 212–221, 2006.

[54] Mat Buckland. Programming Game AI by Example. Wordware Publishing Inc.,

2004. ISBN 1556220782.

http://www.tempastic.org/papers/CMU-CS-04-167.pdf
http://www.tempastic.org/papers/CMU-CS-04-167.pdf

Bibliography 212

[55] Alex Champandard. 10 Reasons the Age of Finite State Machines is Over, 2007.

URL http://aigamedev.com/open/article/fsm-age-is-over/.

[56] Brian Schwab. AI Game Engine Programming. Delmar, 2nd edition, 2009. ISBN

1584505729.

[57] John Krajewski. Creating All Humans: A Data-Driven AI Framework for Open

Game Worlds, 2009. URL http://www.gamasutra.com/view/feature/130279/

creating_all_humans_a_datadriven_.php?print=1.

[58] O. Ahmad, J. Cremer, J. Kearney, P. Willemsen, and S. Hansen. Hierarchical,

concurrent state machines for behavior modeling and scenario control. Fifth An-

nual Conference on AI, and Planning in High Autonomy Systems, pages 36–42,

1994.

[59] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8(3):231–274, 1987.

[60] Luke Dicken. HCSM: A Framework for Behavior and Scenario Control

in Virtual Environments, 2009. URL http://aigamedev.com/open/review/

hcsm-concurrent-state-machine/.

[61] Bjoern Knafla. Introduction to Behavior Trees, 2011. URL http://www.

altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/.

[62] Damian Isla. Managing Complexity in the Halo 2 AI System. In Game Developers

Conference, 2005.

[63] Michael Dawe, Steve Gargolinski, Luke Dicken, Troy Humphreys, and Dave Mark.

Behavior Selection Algorithms. In Game AI Pro, pages 47–60. 2013.

http://aigamedev.com/open/article/fsm-age-is-over/
http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php?print=1
http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php?print=1
http://aigamedev.com/open/review/hcsm-concurrent-state-machine/
http://aigamedev.com/open/review/hcsm-concurrent-state-machine/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/

Bibliography 213

[64] Brian Schwab, Alex Champandard, Luke Dicken, Rez Graham, Kevin Dill, Michael

Dawe, Ben Sunshine-Hill, and Dave Mark. Turing Tantrums - AI Developers Rant.

In Game Developers Conference, 2014.

[65] Phillipa Avery, Sushil Louis, and Benjamin Avery. Evolving Coordinated Spa-

tial Tactics for Autonomous Entities using Influence Maps. IEEE Symposium on

Computational Intelligence and Games, 2009.

[66] Paul Tozour. Influence Mapping. In Mark DeLoura, editor, Game Programming

Gems vol. 2, pages 287–297. Charles River Media, 2001.

[67] Ian Millington and John Funge. Artificial Intelligence for Games. CRC Press, 2nd

edition, 2009.

[68] Liam Kelly, Luke Dicken, and John Levine. StrathPac - An Automated Player

for Ms. Pac-Man. In IEEE Symposium on Computational Intelligence and Games,

Competition Track, 2009.

[69] Dave Mark. Behavioral Mathematics for Game AI. Charles River Media, 2009.

[70] Luke Dicken. Redshirt AI Developer Diary, 2012. URL http://mitu.nu/2012/

06/20/guest-post-luke-dicken-on-redshirt-ai/.

[71] Dave Mark and Kevin Dill. The Dark Art of Mathematical Modeling. In Game

Developers Conference, 2012.

[72] Chris Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.

ISBN 0198538642.

[73] T Thompson, J Levine, and G Hayes. EvoTanks: Co-Evolutionary Development

of Game-Playing Agents. IEEE Symposium on Computational Intelligence and

Games, 2007.

http://mitu.nu/2012/06/20/guest-post-luke-dicken-on-redshirt-ai/
http://mitu.nu/2012/06/20/guest-post-luke-dicken-on-redshirt-ai/

Bibliography 214

[74] Richard Evans. The Future of AI in Games: A Personal View. Game Developer

Magazine, pages 46–49, aug 2001.

[75] Steven Woodcock. Game AI: The State of the Industry 2000 - 2001. Game

Developer Magazine, pages 36–44, aug 2001.

[76] Michael Robbins. Using Neural Networks to Control Agent Threat Response. In

Game AI Pro, pages 391–399. 2013.

[77] Alex Champandard. This Year in Game AI: Analysis, Trends from 2010 and

Predictions for 2011 — AiGameDev.com, 2011. URL http://aigamedev.com/

open/editorial/2010-retrospective/.

[78] Troy Humphreys. Exploring HTN Planners through Example. In Game AI Pro,

pages 149–167. 2013.

[79] Remco Straatman, Tim Verweij, Alex Champandard, Robert Morcus, and Hylke

Kleve. Hierarchical AI for Multiplayer Bots in Killzone 3. In Game AI Pro, pages

377–390. 2013.

[80] Guy Van Den Broeck, Kurt Driessens, and Jan Ramon. Monte-Carlo Tree Search

in Poker using Expected Reward Distributions. pages 1–15.

[81] Nick Birnie. Opponent Modelling in Poker. PhD thesis, University of Strathclyde,

2010.

[82] Luke Dicken, Nicky Johnstone, John Levine, and Phil Rogers. SPREE : The

Strathclyde Poker Research Environment. In Proc. AISB AI and Games Sympo-

sium2, 2011.

http://aigamedev.com/open/editorial/2010-retrospective/
http://aigamedev.com/open/editorial/2010-retrospective/

Bibliography 215

[83] O. Macindoe, L.P. Kaelbling, and T. Lozano-Perez. POMCoP: Belief Space Plan-

ning for Sidekicks in Cooperative Games. In Proceedings of the 8th Annual AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment, 2012.

[84] E Gat. On Three-Layer Architectures. Artificial Intelligence and Mobile Robots,

1997.

[85] C McGann, F Py, K Rajan, H Thomas, and R T-rex: A model-based archi-

tecture for auv control. Proceedings of ICAPS Workshop, 2007.

[86] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Intro-

duction to Algorithms. MIT Press; 3rd Revised edition edition, 2009. ISBN

0262033844.

[87] Edsger Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerichse

Mathematik, pages 279–271, 1959.

[88] KV Mardia, JM Bibby, and JT Kent. Multivariate Analysis. Academic Press,

1979.

[89] L Lamport, R Shostak, and M Pease. The Byzantine Generals Problem. ACM

Transactions on Programming Languages and Systems, 1982.

[90] Melanie Mitchell. An Introduction to Genetic Algorithms. 1998.

[91] Mobile game developer survey leans heavily toward iOS, Unity, 2012. URL

http://www.gamasutra.com/view/news/169846/Mobile_game_developer_

survey_leans_heavily_toward_iOS_Unity.php.

[92] Mike Rose. Obsidian’s Project Eternity is the most-backed video game Kickstarter,

2012. URL http://www.gamasutra.com/view/news/179461/Obsidians_

Project_Eternity_is_the_mostbacked_video_game_Kickstarter.php.

http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php
http://www.gamasutra.com/view/news/169846/Mobile_game_developer_survey_leans_heavily_toward_iOS_Unity.php
http://www.gamasutra.com/view/news/179461/Obsidians_Project_Eternity_is_the_mostbacked_video_game_Kickstarter.php
http://www.gamasutra.com/view/news/179461/Obsidians_Project_Eternity_is_the_mostbacked_video_game_Kickstarter.php

Bibliography 216

[93] Aung Sithu Kyaw, Clifford Peters, and Thet Naing Swe. Unity 4.x Game AI

Programming. Packt Publishing, 2013.

[94] Daniel Kline. The AI Director in Dark Spore. In Paris Game AI Conference,

2011.

[95] Dean Takahashi. Zynga launches Mountain Goat Mountain, its latest game

in its climb into mobile, 2015. URL http://venturebeat.com/2015/07/16/

zynga-launches-mountain-goat-mountain-mobile-game/.

[96] Jaymes Carter. Mountain Goat Mountain by Zynga is quite enjoyable,

2015. URL http://www.droidgamers.com/index.php/game-reviews/

9535-game-review-mountain-goat-mountain-by-zynga-is-quite-enjoyable.

[97] Mountain Goat Mountain - Google Play Store Entry, 2015. URL https://play.

google.com/store/apps/details?id=com.zynga.mountaingoat&hl=en.

[98] Mountain Goat Mountain - iOS App Store Entry, 2015. URL https://itunes.

apple.com/us/app/mountain-goat-mountain/id979415701?mt=8.

[99] Elizabeth Knowles, editor. The Oxford Dictionary of Phrase and Fable. 2 edition,

2014.

[100] Nassim Nicholas Taleb. The Black Swan: The Impact of the Highly Improbable.

Penguin, 2010. ISBN 978-0-1410-3459-1.

[101] Donald Rumsfeld. DoD Briefing - February 12th 2002. URL http://www.

defense.gov/transcripts/transcript.aspx?transcriptid=2636.

[102] Daniel Brewer, Alex Cheng, Aleissia Laidacker, and Richard Dumas. AI Post-

mortems: Assassin’s Creed III, XCOM: Enemy Unknown, and Warframe. In

Game Developers Conference, 2014.

http://venturebeat.com/2015/07/16/zynga-launches-mountain-goat-mountain-mobile-game/
http://venturebeat.com/2015/07/16/zynga-launches-mountain-goat-mountain-mobile-game/
http://www.droidgamers.com/index.php/game-reviews/9535-game-review-mountain-goat-mountain-by-zynga-is-quite-enjoyable
http://www.droidgamers.com/index.php/game-reviews/9535-game-review-mountain-goat-mountain-by-zynga-is-quite-enjoyable
https://play.google.com/store/apps/details?id=com.zynga.mountaingoat&hl=en
https://play.google.com/store/apps/details?id=com.zynga.mountaingoat&hl=en
https://itunes.apple.com/us/app/mountain-goat-mountain/id979415701?mt=8
https://itunes.apple.com/us/app/mountain-goat-mountain/id979415701?mt=8
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636

Bibliography 217

[103] Luke Dicken and Heather Decker. Procedural Processes - Lessons Learnt From

Automated Content Generation in ”Easy Money”. In NoShow Conference, 2012.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 A History of Artificial Intelligence in Video Games
	1.1.1 The First Artificially Intelligent Games
	1.1.2 Artificial Intelligence in Contemporary Video Games

	1.2 Motivation
	1.2.1 Reactive Systems
	1.2.2 Deliberative Systems
	1.2.3 The Necessity to Bridge the Gap

	1.3 Research Statement
	1.3.1 Concept
	1.3.2 Research Process
	1.3.3 Applicability
	1.3.4 Evaluation
	1.3.5 Summary

	1.4 Papers and Presentations Used
	1.5 Thesis Layout

	2 Related Work
	2.1 Automated Planning
	2.1.1 Problem Representation
	2.1.1.1 PDDL
	2.1.1.2 SAS+
	Generating SAS+ From PDDL

	2.1.2 Classical Planning
	2.1.2.1 Heuristic Search and A*

	2.1.3 Contemporary Planning - Planning Graphs and DTGs
	2.1.3.1 Fast Forwards
	The Relaxed Planning Graph
	Helpful Actions

	2.1.3.2 Macro Actions
	2.1.3.3 Landmark Analysis

	2.1.4 Planning For Uncertainty
	2.1.4.1 Probabilistic Planning
	Markov Decision Processes

	2.1.4.2 Plan Repair
	2.1.4.3 Partial Observability

	2.1.5 Automated Planning Summary

	2.2 AI Techniques in Games
	2.2.1 State-based Techniques
	2.2.1.1 Basic Finite State Machines
	2.2.1.2 Hierarchical Finite State Machines
	2.2.1.3 Hierarchical Concurrent State Machines
	2.2.1.4 Behaviour Trees
	Behaviour Trees and FSMs

	2.2.2 Mathematical Techniques
	2.2.2.1 Influence Maps
	2.2.2.2 Utility-based Architectures
	Reasonable vs Optimal Play

	2.2.2.3 Neural Networks

	2.2.3 Deliberative Techniques
	2.2.3.1 Goal Oriented Action Planning
	2.2.3.2 HTN
	2.2.3.3 Monte Carlo Tree Search
	Monte Carlo in Games
	POMCoP

	2.2.4 Game AI Summary

	2.3 Other Relevant Architectures for AI Agents
	2.3.1 Subsumption
	2.3.2 Three Layer Architecture
	2.3.3 T-REX

	2.4 Summary of Existing Systems
	2.4.1 I2A and GOAP
	2.4.2 I2A and Influence Maps
	2.4.3 I2A and Utility
	2.4.4 I2A and Markov Decision Processes

	3 Method
	3.1 Concept
	3.2 Overview
	3.2.1 Components
	3.2.1.1 Develop-time
	3.2.1.2 Run Time

	3.2.2 The I2A In Practice
	3.2.2.1 Develop Time
	3.2.2.2 Run Time

	3.3 The Common Representation - Compiled PDDL
	3.4 Abstraction of States
	3.4.1 Abstraction Through Clustering
	3.4.2 The Adapted Fuzzy c-Means Algorithm
	3.4.2.1 Consequences of Operation in a Discrete Space

	3.5 Types of Graph Nodes
	3.5.1 Goal Nodes
	3.5.2 Focal Nodes
	3.5.3 Super Nodes

	3.6 Sources of Influence
	3.6.1 Deliberative Influence
	3.6.1.1 “Active” Focal Nodes
	3.6.1.2 Goal Nodes

	3.6.2 Sources of Reactive Influence

	3.7 Influence Propagation
	3.7.1 Propagation Techniques
	3.7.1.1 Reward Sharing Propagation
	3.7.1.2 Example
	3.7.1.3 Influence Propagation Through Super Nodes

	3.8 The Integrated Influence Landscape
	3.8.1 Mechanics for Combining Landscapes

	3.9 Implicit Contingency Planning
	3.9.1 The Nature of Contingencies
	3.9.2 Finding Contingencies
	3.9.3 Functional Equivalence of Focal Nodes

	3.10 The I2A Executive
	3.10.1 Action Choice
	3.10.1.1 Localised Expansion-bound A* Search

	3.10.2 Acting

	3.11 Summary

	4 Evaluation - Functionality and Viability
	4.1 Results of Processing
	4.1.1 Logistics+ Problems
	4.1.1.1 Decoupling Worlds and Problems
	4.1.1.2 The Logistics+ Worlds

	4.1.2 Domain Preprocessing
	4.1.3 Clustering Analysis
	4.1.4 Time to Execution Analysis

	4.2 Unity Case Study
	4.2.1 Unity Overview
	4.2.1.1 GameObjects
	4.2.1.2 Component-based Architectures
	4.2.1.3 MonoBehaviours
	4.2.1.4 Editor Extensions

	4.2.2 Developing an Agent in Unity with I2A
	4.2.3 Creating a PDDL Game Representation
	4.2.3.1 The PDDLManager GameObject
	4.2.3.2 The PDDLObject Component
	4.2.3.3 Automated PDDL Generation

	4.2.4 Executing Actions
	4.2.5 Retrieving and Updating the Plan
	4.2.6 Execution Monitoring

	4.3 Summary

	5 Evaluation - Robustness and Efficiency
	5.1 Worked Example
	5.1.1 An Example From Industry
	5.1.1.1 Movement in MGM
	5.1.1.2 Hazards and Items in MGM

	5.1.2 Algorithmic Example
	5.1.2.1 During Game Development
	5.1.2.2 During Runtime

	5.1.3 Summary

	5.2 Complexity Analysis
	5.2.1 Introduction to Computational Complexity
	5.2.2 Complexity Analysis of the I2A System
	5.2.2.1 Complexity During Development
	5.2.2.2 Complexity During Runtime

	5.2.3 Complexity Summary for Mountain Goat Mountain
	5.2.3.1 Generalising to Larger Problems
	5.2.3.2 Comparative Complexity of Alternate Techniques

	5.3 Overview of Algorithmic Analysis

	6 Discussion
	6.1 Immediate Improvements
	6.1.1 Influence Propagation as a Vector Operation
	6.1.1.1 Worked Example

	6.1.2 Memory Constraints
	6.1.3 Extensibility

	6.2 Future Considerations
	6.2.1 Black Swans
	6.2.2 Procedural Content Generation
	6.2.3 Generation of Entities

	6.3 Parameters and Tuning
	6.4 Summary

	7 Conclusions
	7.1 Final Thoughts

	Bibliography

