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Abstract 

Wind turbines are leading the way in helping to reduce the dependency on fossil fuel 

energy sources. However to compete with other energy sources there is a need to 

reduce the cost of energy from wind turbines. It has been shown in the literature that 

as wind turbines increase in size their reliability decreases. As wind turbines move 

further offshore and into deeper water this becomes more of an issue as carrying out 

maintenance becomes more challenging and costly. One way of improving the 

reliability of wind turbines is through the use of condition monitoring systems 

(CMS) which can continually monitor the health of the machine and allow more 

optimised maintenance and repair scheduling.  

Although the benefits of using a CMS may seem evident, operators have been slow 

in the uptake of such systems. One reason for this is due to issues with the reliability 

of CMS themselves. As stated in the literature, CMS must accurately detect 60-80% 

of faults to be economically justifiable. Not detecting faults or the occurrence of false 

alarms is detrimental to the effectiveness of CMS. The work presented in this thesis 

aims to address the issue of CMS reliability.    

Through the installation of two CMS in operational wind turbines the author of this 

thesis has gained valuable insight into the design, build and installation of CMS 

which has facilitated the novel contributions from this work.  

The first contribution comes from the formulation of an engineering design process 

which incorporates five categories of robustness which were identified by the author 

through Failure-Mode Effects Analysis on a wind turbine CMS that was installed in 

an operational wind turbine. The engineering design process incorporating the 

robustness categories will allow wind turbine CMS to be designed which are capable 

of operating reliably in the harsh environment they are subjected to.  

The second contribution comes from the development of three techniques which will 

increase CMS reliability by reducing false alarms and introducing the ability to 

detect erroneous data.       
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1 Introduction 

 

1.1 The cost of Wind Energy 

Almost every publication in recent years that relates to wind energy will open with a statement 

describing the desire to reduce the dependency on fossil fuels as an energy source and move 

towards a cleaner, more sustainable alternative. Wind energy, being the most mature 

renewable energy technology [1], is so far leading the way in providing this alternative. Until 

very recently however, the advancement of the wind energy sector has been very much aided 

by Government support mechanisms, namely, feed-in tariffs and renewable obligation 

certificates (ROCs) which ensure investors of a reasonable return on their investment in the 

technology. With these feed-in tariffs now being phased out [2], it is more imperative than 

ever to reduce the cost of energy from wind turbines. 

Wind turbines are continually increasing in size which is beneficial for lowering the cost per 

MW; however this is countered in offshore wind turbines by the increase in installation and 

connection costs. Until 2003 there was a trend of reducing capital costs for offshore wind 

farms [3]; however more recent trends have shown capital costs of offshore wind farms 

doubling from £1.5-3m/MW in 2009 [4].  This increase in capital costs is the result of moving 

further offshore and into deeper waters which not only increases capital costs but the costs 

associated with the operation and maintenance (O&M) of the wind farms. This is where the 

advantage of condition-based maintenance over the more traditional time-interval-based 

maintenance becomes more apparent and emphasises the need for wind turbine condition 

monitoring systems (CMS). 

 

1.2 The Cost and Justification of Condition Monitoring 

According to a survey into the technical and commercial challenges of wind turbine condition 

monitoring (CM) [5], the price of the majority of wind turbine CMS is over £10k. For a 

traditional fossil-fired or nuclear power plant the justification of this expenditure is fairly 

obvious; however for wind farms it may not be so apparent. To equip an entire wind farm with 

CMS the wind farm developer would have to invest millions of pounds. As noted by [6] wind 

farm operators are wary of blindly adopting CMS without a reasonable economic justification.  

McMillan and Ault [7] attempt to quantify the economic benefits of implementing CMS on 

offshore 5 MW wind turbines through the use of probabilistic models. The authors begin by 
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modelling a base case with an optimistic figure for the O&M costs for offshore wind turbines 

as three times that of onshore wind turbines and a CMS which is 100% effective. The results 

showed that the benefits of implementing a CMS were quite clear given this optimistic 

scenario. The effect of varying the O&M costs were then investigated which showed that the 

benefit of implementing a CMS reduced as the O&M costs for the wind turbine increased. 

This investigation however did not account for the effectiveness of the CMS itself. The authors 

concluded by exploring the capability of the CMS to perform its function in order to evaluate 

its impact on the cost effectiveness of implementing a CMS on offshore wind turbines. The 

results from this study indicated that for a CMS to be economically beneficial it must 

accurately diagnose 60-80% of cases, depending on the maintenance actions taken. 

Crabtree [8] provides a brief cost justification for the use of a CMS on a wind turbine based 

on the price of a commercial SKF Windcon CMS. The author makes the comparison between 

monitoring the condition of a 500 MW nuclear or fossil fuel turbo generator and a 3 MW wind 

turbine. The initial comparison is based on downtime of the equipment as the result of a failure. 

Downtime of a 500 MW turbo generator may cost the operator £360k per day in lost energy 

revenue. Where the value of implementing a CMS may be around £14k, the cost of 

implementing such a system is easily justifiable. The downtime of a 3 MW wind turbine 

however may only cost the operator £4.32k per day in lost energy revenue which makes the 

cost of implementing a CMS at £14k seem unjustifiable.  

Crabtree however, provides a scenario of two gearbox failures, one on a wind turbine that had 

a CMS installed and one that did not. It was assumed that the wind turbine with the CMS 

installed was able to detect deterioration at an early stage and therefore only a bearing had to 

be replaced. The system without the CMS required a complete gearbox replacement which 

cost the operator approximately £170k without taking into consideration the cost of labour, 

access equipment and more importantly downtime. Therefore it could be said that the overall 

savings as a result of implementing a CMS in this case were over £170k which would cover 

the cost of installing CMS at £14k on 12 wind turbines.  

The author concludes by stating that although downtime alone may not be justification for 

implementing a CMS the potential savings through avoiding major component failures are. A 

similar statement is made in McMillan et al. [9] which states that the value of implementing a 

CMS on a wind turbine may be more than just informing maintenance but may also provide 

information on how wind turbines react to specific operating conditions. The question of when 

to monitor is put simply by Tavner et al. [10]: “One should monitor when it is cost-effective 

to do so, or when there are over-riding safety considerations to be observed”.       
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1.3 Increasing the Reliability of Wind Turbine Condition Monitoring Systems 

According to Yang et al. [11] commercial wind turbine CMS have not performed as well as 

anticipated; mainly due to false alarms and not demonstrating satisfactory performance in 

detecting incipient faults. The occurrence of false alarms can lead to significant cost 

implications due to unnecessary downtime and labour hours occurring through the necessity 

for investigatory actions by a technician. Furthermore, not detecting an incipient fault could 

result in any level of damage or failure to the wind turbine. As already stated, McMillan and 

Ault [7] found that wind turbine CMS must accurately diagnose 60-80% of impending faults 

to be economically beneficial. The failure of a wind turbine CMS to the extent that it is not 

operational not only results in a wind turbine being left unprotected but also means that a 

significant capital asset is ineffective.  The issues associated with wind turbine CMS failures 

become even more apparent for offshore wind turbines where access is limited by the location 

and impact of harsh weather conditions. 

1.4 Thesis Contributions 

The key novelty of this thesis comes from providing methods of increasing the reliability and 

robustness of CMS for wind turbines. Through the installation of two CMS in operational wind 

turbines the author of this thesis has gained valuable insight into the design, build and 

installation of CMS. These insights have firstly allowed the author to provide guidance on the 

design, build and installation of wind turbine CMS and secondly to develop techniques for 

reducing false alarms from wind turbine CMS.   Increasing the reliability of wind turbine CMS 

is crucial in lowering the cost of energy from wind turbines and this is the main focus of the 

research presented in this thesis.  

1.4.1 An Engineering Design Process Incorporating Five Categories of 

Robustness 

Through performing Failure Mode Effects Analysis (FMEA) on the first system installed, five 

categories of robustness have been identified by the author and incorporated into an 

engineering design process which will increase the reliability of wind turbine CMS through 

better design. The categories of robustness identify areas in which a CMS will be vulnerable 

if not designed correctly. 
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 The five types of robustness defined by the author are:  

 Weather robustness  

 Operational robustness  

 Personnel handling robustness  

 Electrical signal robustness  

 System software robustness     

 

To further aid researchers who may wish to install a system in an operational wind turbine, 

advice is given based on lessons learnt by the author which will prepare them for the challenges 

likely to be faced during the installation process.   

1.4.2 Techniques for Reducing False Alarms from Wind Turbine CMS 

In working with the data captured by the installed CMS the author has developed three 

techniques which can further increase the robustness of CMS. The purpose of these techniques 

is to allow a CMS to detect the presence of erroneous data, which may be the result of a faulty 

sensor, and allow the data to be discarded or repaired so that it may still be used for fault 

detection. The detection of erroneous data is essential in the prevention of false alarms. In the 

case of a faulty sensor it may not always be possible to access the wind turbine to repair the 

sensor so being able to correct any erroneous data may be crucial in determining the health 

status of a wind turbine.   

Through increasing the reliability of CMS it is hoped that there would be a greater uptake in 

use of these systems which would ultimately lead to better reliability of wind turbines 

themselves.  Not only can a CMS prevent catastrophic failures but it will allow the wind farm 

operator to carry out maintenance far more efficiently through enhanced scheduling regimes.       
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1.5 Research Questions 

The work in this thesis aims to address the following research questions: 

1. Having identified from literature that wind turbine CMS need to be more reliable, can 

a design process be constructed that would facilitate this through better design with 

an awareness for the environment in which the system must operate? 

2. Given that false alarms from CMS are hindering their uptake, how could the 

occurrence of false alarms be reduced in order to give the operator greater confidence 

in the information provided by a CMS? 

3. Given the occurrence of erroneous data, how could this data be removed or corrected 

to allow the remaining non-erroneous data to be used for determining the health status 

of the wind turbine?  

  

1.6 Thesis Overview 

The key aim of the work presented in this thesis is to increase the reliability and robustness of 

wind turbine CMS; firstly through better design of the systems, and secondly through the 

introduction of data handling techniques.   

This introduction, Chapter 1, has introduced the overall desire of reducing the cost of energy 

from wind energy and indicated how the implementation of WTCMS can help achieve this. It 

has also illustrated that in order for WTCMS to do the job for which they are intended their 

reliability must be increased. 

Chapter 2 begins by discussing the main components and principles of operation of the typical 

wind turbine. It then discusses wind turbine reliability and again shows the need for condition-

based maintenance over the traditional maintenance strategies. It discusses the different types 

of condition monitoring leading on to introduce the instrumentation used by WTCMS and the 

common signal processing techniques used to analyse their data. It then gives the findings of 

a review of the literature into wind turbine condition monitoring systems, finishing with what 

the foreseeable future may be for WTCMS. 

Chapter 3 introduces five categories of robustness and their incorporation into an engineering 

design process to aid in the design and build of WTCMS. Through the use of a case study 

where two WTCMS are compared: one which is designed using the five categories and the 

other which is not; it is shown how the use of the five categories can improve the reliability 

and robustness of a WTCMS.    
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Chapter 4 introduces the first data analysis technique which is used to detect the presence of 

erroneous data within a dataset and remove this erroneous data through the use of a model 

which is based on the principles of operation of a WT. 

Chapter 5 discusses Pearson’s correlation analysis and shows through a case study how it can 

be used to give an indication of a change of state of health of a wind turbine or to indicate a 

faulty sensor. 

Chapter 6 introduces a technique for repairing signals from sensors which have been clipped. 

The technique in this case is applied to a voltage signal which has been clipped due to an issue 

with the voltage transducer.  

Chapter 7 summarises the research in this thesis, and presents potential areas of future work. 
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2 Wind Turbine Monitoring 

2.1 The modern wind turbine 

The modern wind turbine is a complex system encompassing electrical, electronic, 

mechanical, hydraulic, aerodynamic, and civil engineering disciplines. Bringing each of these 

disciplines together has allowed a system to be created which is capable of extracting kinetic 

energy from the wind and converting it into useful electrical energy. Each of the engineering 

disciplines stated have their own complexities involved in combining with the others to create 

a system which can generate electrical energy efficiently. As the work in this PhD has focussed 

primarily on the wind turbine drive train the main disciplines involved are electrical and 

mechanical engineering and this section will introduce each relevant piece of equipment. 

2.1.1 Rotor 

The modern wind turbine market predominantly consists of three bladed horizontal axis 

upwind rotors which are most commonly known as the Danish concept [12]. Arguably the 

most crucial part of the wind turbine, the rotor captures the kinetic energy of the wind by its 

three blades which are optimised to capture the wind by careful design of aerofoil sections and 

twist rate. The hub of the rotor, which is where the three blades come together to attach to the 

main shaft, is positioned upwind of the nacelle in the Danish concept. This has the benefit of 

avoiding turbulent and irregular air flow which would be caused by the tower if it were located 

downwind.  

The rotor is kept facing directly into the prevailing wind by the wind turbine’s yaw system 

[13]. Yaw motors, located on the yaw ring underneath the nacelle, will receive a signal from 

the wind turbine controller telling them what position to rotate the nacelle to. This position is 

determined by the controller based on a signal from a wind vane located on the nacelle roof. 

The optimal rotational speed of a wind turbine is determined by the wind speeds on a given 

site usually described by the Weibull distribution [14]. The blades are designed to operate most 

efficiently at the most common wind speed at the given site. Most wind turbines begin 

generating power at 4 or 5 meters per second; generate maximum ‘rated’ power somewhere 

between 12 and 17 meters per second; and shut down at 25 meters per second to prevent storm 

damage [15]. In high wind speeds, wind turbines must reduce the aerodynamic efficiency of 

their blades in order to reduce the amount of energy captured so that structural damage is 

prevented. This can be done in one of two ways [16]: the first is through stall regulation, which 

involves designing the blades so that their aerodynamic efficiency is reduced at excessive wind 
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speeds causing the rotor to go into stall. The second is through active pitch control, which 

involves changing the pitch angle of the blades, which in turn reduces the aerodynamic 

efficiency of them resulting in less energy from the wind being captured. As well as using 

pitch control to avoid structural damage at excessive wind speeds it is also used to increase 

the wind turbine efficiency by allowing it to track the optimum rotational speed more closely.     

2.1.2 Gearbox 

The function of the gearbox is to step up the rotational speed of the rotor to the required range 

for the generator. The advantage of using gearboxes is that it allows smaller more robust 

induction generators to be used which are lighter and relatively cheaper [17]. Typically a 

gearbox can be required to have a step up ratio anywhere between 1:31 and 1:88 determined 

by the generator being used. These ratios are usually achieved by three stages each with ratios 

between 1:3 and 1:5 [14].   

The first stage of a wind turbine gearbox, known as the low speed stage, will consist of a 

planetary configuration with either spur or helical gears. The low speed stage is then followed 

by the intermediate stage which is has an intermediate shaft driven by the sun pinion which 

drives the high speed stage. Helical gears are used to drive both the intermediate and high 

speed stages [18].  

There are also wind turbines on the market that avoid the use of a gearbox, known as direct-

drive machines [19], through the use of much larger permanent magnet synchronous 

generators. The reason for avoiding the use of a gearbox is due to the potential economic 

savings by the reduction of gearbox failures.   

2.1.3 Bearings 

Bearings play a crucial role throughout the drivetrain and are located in the main bearing, 

which supports the shaft of the rotor as it enters the nacelle, the gearbox, and in the generator. 

The role of bearings is to allow rotational movement with minimal friction. A typical bearing 

is made up of an inner race, an outer race and a number of rolling elements in between that 

allow the inner and outer races to rotate in relation on one another. The main bearings used in 

wind turbines are roller bearings, where double-row swivel-joint roller bearings are the most 

frequently used rotor bearing [20].   

As crucial as bearings are within a wind turbine they are also known for being problematic 

and have been identified by [18] as the source of the majority of gearbox failures. This is an 
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issue that the industry is well aware of [21] and which work such as that by Fuentes et al. [22], 

which focusses on detecting damage of bearings, aims to address.    

2.1.4 Generator 

The efficiency of a wind turbine is very much dependant on how well the generator can convert 

the kinetic energy delivered from the main shaft into electrical energy.  The induction (or 

asynchronous) generator is generally the generator of choice for wind turbine applications due 

to a number of advantages including robustness and its relatively low cost [23]. The basic 

principle of operation of an induction generator is that an electric field is induced by a relative 

movement between the rotor and the rotating stator field which produces a voltage across the 

rotor windings.  A connection to the rotor is usually made by slip rings which allow the 

electrical characteristics of the rotor to be influenced from the outside. By altering the 

resistance of the rotor windings the slip can also be altered which gives some control of the 

rotor speed which is important when directly coupling to the fixed-frequency power grid [24]. 

There are several different electrical configurations that are used in modern wind turbines 

however the doubly-fed induction generator (DFIG) as illustrated by Figure 1, is widely used 

due to a number of benefits [25].  In this variable speed configuration the stator of the generator 

is connected directly to the grid and so the output of the stator must therefore be at grid 

frequency.  The rotor is also connected to the grid however this time indirectly via a pulse 

width modulation (PWM) converter. The PWM converter monitors the rotational speed of the 

rotor and generates a frequency which is superimposed on the rotating field of the rotor, so 

that the resulting superimposed frequency remains constant, regardless of the rotor speed. This 

ensures that a constant (grid) frequency is fed into the grid.  An added benefit of the DFIG is 

that the rating of the converters can be reduced since only approximately 1/3 of the rated power 

of the machine is passing through them thus reducing costs associated with the electronics. 
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2.2 Wind Turbine Reliability 

Since O&M costs can account for 10-20% of the total cost of energy for wind projects [26], 

reliability levels of a wind turbine can have a significant impact on a wind farm’s profits, 

especially when competing with conventional energy generation sources. Numerous studies 

[27, 28] have been carried out to try and quantify the reliability of wind turbines and their sub 

components with most results giving output similar to that of Figure 2. 

 

Figure 2: Failure Frequency and Downtime of Components (reproduced from [28]) 
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Without doubt gearbox and generator failures account for the highest level downtime which 

will result in significant financial loss to the wind turbine owner. This is because failures of 

gearboxes or generators will generally require a full replacement of that component which 

requires heavy lifting equipment as well as suitable weather conditions for carrying out such 

operations.  Failures of the electrical system on the other hand, although frequent, result in 

relatively little down time due to the ease with which these faults can be corrected. Crucially 

the failures which occur most often tend to have the lowest associated downtime.     

The reliability of wind turbines and their sub-assemblies will differ for on and offshore 

locations but for offshore wind turbines the need for greater reliability is even more crucial. A 

study by Tavner et al. [29] found that a failure rate of 1-3 failures per wind turbine per year 

onshore is common yet for offshore the failure rate per turbine per year is necessary to be 0.5, 

since planned maintenance visits need to be kept at or below 1 per year, in order for them to 

be economical. Unscheduled maintenance can have a significant impact on the financial return 

of a wind turbine due to the high costs associated with deploying technicians offshore.  

Reliability of assets is generally assumed to follow a bathtub curve, as shown in Figure 3, and 

describes the failure intensity over the lifetime of a plant. As can be seen, failure rates are 

highest at the beginning and end of the lifespan. Failures at the beginning of the life cycle are 

likely due to manufacturing defects whereas failures at the end of the life cycle are due to 

deterioration. The failure intensity function, λ(t), describes the failure rate of the wind turbine 

where β is a parameter that describes the shape of the intensity function [30].  In the 

deterioration stage, where failure intensity is increasing due to the age of the machine, a 

decision will have to be made on when the wind turbine should be decommissioned due to the 

maintenance costs being greater than the revenue received.  

 

 

 

 

 

 

Figure 3: Bathtub curve illustrating the reliability of wind turbines 
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Not only do failure rates vary between on and offshore wind turbines, and between different 

stages of a wind turbine’s operating life as seen in Figure 3, but they also vary for different 

sizes of wind turbines.  Tavner et al. [31] in their attempt to quantify the reliability of different 

wind turbine concepts find that as wind turbines increase in size so too does the failure rate. 

In Figure 4 it can be seen that the failure rate more than doubles when the size of the wind 

turbine increases from 250 kW to 1000kW. This increase in failure rate is not purely a result 

of the increase in size but is due to the change in the electrical configuration of the generator 

and power electronics being used in modern wind turbines. With wind turbines rated at 8MW 

generating power at present and wind turbines rated at 10MW likely to be deployed 

commercially in the coming years this trend is concerning. Not only is the reliability of these 

wind turbines reducing as their size increases but they are also being located further and further 

offshore making maintenance and repair more difficult. Improving reliability rates of these 

wind turbines will be crucial to sustaining their economic viability.       

 

Figure 4: Distribution of failure frequencies between different turbine models, sorted by turbine size 

(reproduced from [31]) 

The literature indicates that failure rates of offshore wind turbines have a critical impact on 

the operation and maintenance costs and ultimately the economic efficiency of wind energy as 

a viable option for increasing electricity generation from renewable sources.  In order to ensure 

failure rates and resulting downtime are minimised, an effective strategy is required which will 

optimise the available resources for carrying out maintenance and repair works. 
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2.3 Maintenance Strategies 

There are three maintenance strategies that are used in asset management in general to 

determine when maintenance should be carried out, each having its advantages and 

disadvantages [32]. Figure 5 below shows the three strategies and the principles of their use. 

The choice of which strategy to use is very much dependent on the implications of a failure to 

that system, such as the resulting cost of a failure. The objective of performing maintenance 

can be described in three ways: 

 Ensure equipment performs its intended function in a satisfactory manner;  

 Reduce long term costs by servicing equipment before deterioration causes avoidable 

damage; 

  Avoid unexpected outages by detecting failures in advance.  

 

2.3.1 Repair Maintenance 

The most simplistic form of system maintenance is the repair on breakdown strategy described 

by the well-known saying “if it isn’t broken, then don’t fix it”. This maintenance strategy is 

still widely used in a number of industrial sectors for a number of reasons. Failure based 

maintenance has low costs associated with it, requires a lower number of staff, allows 

equipment to run until failure thus utilising its maximum life, and is a very simple method if 

the consequences of failure are minimal. There are of course a number of drawbacks associated 

with failure based maintenance mainly as a result of the unpredictable nature of activities. 

Drawbacks of this maintenance strategy also include increased labour costs with overtime 

working hours being likely, inefficient use of maintenance staff, inventory problems due to 

the difficulty of planning requirements, consequential damage such as engine seizure due to 

oil pump failure, and also safety issues that may result from a failure.   

Maintenance 
Strategies

Failure

Repair on 
Breakdown

Preventative

Maintain at Fixed 
Time Intervals

Predictive

Maintain on 
Condition of 

System

Figure 5: Maintenance strategies 
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2.3.2 Time-Interval-Based Maintenance 

The majority of maintenance carried out in differing industrial sectors is on a time-interval 

basis [33] meaning that routine maintenance is carried out at set time intervals based upon the 

manufacturer’s guidelines. This type of maintenance can be very effective when the system 

condition is very closely related to the time and/or duty and is easily justifiable when the 

impact of failure is high. An advantage of this type of maintenance is that no condition 

monitoring equipment is required to be bought, installed or monitored making the 

implementation of this strategy simple. The disadvantage however is that a large amount of 

time and money is spent inspecting wind turbines and carrying out maintenance that is not 

immediately necessary. It also does not allow manifesting major faults to be identified at an 

early stage which could potentially result in prolonged downtime. There is also a belief that 

inappropriate maintenance actions may cause increased failure rates similar to that shown in 

Figure 6. This may be the result of damage to adjacent equipment during a maintenance task; 

installing material that is defective or could essentially be the result of introducing infant 

mortality by installing new parts or materials.   

Figure 6: Possible impact of scheduled maintenance 

 

2.3.3 Condition Based Maintenance 
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maintenance in this way will increase efficiency by avoiding wind turbines being taken offline 

for maintenance that is not necessarily needed at that moment in time and freeing up time for 

wind turbines that require maintenance and repair work.  

Although the benefits of condition-based maintenance are evident the justification for 

implementing such a system may not be so straight forward. Issues which hinder the uptake 

of condition monitoring include the lack of knowledge required to interpret the data obtained. 

The operator must know what to look for in the data and what the characteristics of a fault 

look like. A more significant issue with implementing such a system is the occurrence of false 

alarms which may in turn lead to unnecessary shutdowns thus neutralising the benefits of the 

system.   
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2.4 Review of Wind Turbine Condition Monitoring 

Following the consideration of the economics behind condition monitoring, this section 

considers the technical aspects associated with condition monitoring systems for wind 

turbines.  

The monitoring of a wind turbine can typically be broken down into four classes of system 

[34], as shown in Figure 7, each having different data rates that are sent to the wind turbine 

operator or monitoring engineer.   

 

Figure 7: Structural health and condition monitoring of wind turbines (reproduced from [34]) 
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the sampled data. SCADA systems are capable of raising alarms when thresholds are exceeded 

such as component temperatures. According to Zaher et al. [6] the parameters below are 

commonly monitored by commercial wind turbine SCADA systems. 

 Active power output (10 min average and standard deviation (SD) over 10 min 

interval) 

 Anemometer-measured wind speed (10 min average and SD over 10 min interval) 

 Nacelle temperature (1 h average) 

 Gearbox bearing temperature (10 min average) 

 Gearbox lubricant oil temperature (10 min average) 

 Generator winding (10 min average) 

 Power factor (10 min average) 

 Reactive power (10 min average) 

 Phase currents (10 min averages)  

Whilst the standard SCADA systems can alert operators when faults or failures occur they 

may not always be able to identify the root cause of a failure. The data provided by SCADA 

needs further interpretation to extract detailed information about the health of a wind turbine 

such as when a component may need replaced. 

2.4.2 Structural Health Monitoring  

Structural health monitoring (SHM) is a very important aspect during the operation of a wind 

turbine due to the catastrophic events that may result from a weakening or failure of the 

structure. Causes of structural damage on a wind turbine may include moisture absorption, 

fatigue, wind gusts [35], thermal stress, corrosion, fire and even lightning strikes [36]. By 

implementing a SHM system the structural health of the wind turbine can be continually 

monitored allowing any structural weaknesses to be revealed before catastrophic damage. 

According to Ciang et al. [37] an ideal SHM system typically consists of two major 

components: a built-in network of sensors for collecting response measurement, and a data 

analysis algorithm/software for interpretation of the measurements in terms of the physical 

conditions of the structure.  

When discussing the structure of a wind turbine the main assemblies to be monitored consist 

of the foundations, the tower and the blades. Various techniques are used to monitor the 

condition of these assemblies including visual inspection, C-scan, acoustic emissions, and 

shearography [35]. These techniques however can be labour intensive, inaccurate and difficult 

to use and research is therefore looking into new methods for structural health monitoring [35]. 
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One potential new method for damage detection on the blades in particular is vibration 

measurement which can allow damage to be identified without having to scan over the entire 

blade with a sensor [35]. Other benefits of implementing a SHM system in general include: 

avoidance of premature breakdown, reduced maintenance costs, supervision of remote sites 

and remote diagnosis, and improvement of capacity factor [37].  

2.4.3 Condition Monitoring and Diagnosis 

The third and fourth classes of system are the condition monitoring and diagnosis systems 

which can be grouped together due to their dependence on one another. Condition monitoring 

and diagnosis systems essentially have the same transducer inputs however have different 

internal functions and outputs as will be discussed.  

A condition monitoring system differs from a conventional protection system in that it is 

designed to pre-empt failure whereas a protection system is essentially retroactive [10]. A 

condition monitoring system should also provide essential information regarding the 

operational health of a wind turbine. The success of a condition monitoring system may be 

based on its ability to reliably identify the presence of a fault and indicate the location and 

severity of that fault. Based on the severity of the fault the monitoring engineer will make the 

decision whether or not a more thorough investigation is required.  

Condition monitoring systems may be capable of providing data of high sampling rates 

however these large quantities of data are generally not of key importance to a wind farm 

operator. An operator is essentially concerned with the reliability of any alarms that indicate a 

fault so that a definite decision can be made regarding the actions to be taken when a fault is 

present i.e. reduce power capture or shut down the wind turbine. A condition monitoring 

engineer on the other hand may use the detailed data to gain an understanding of the wind 

turbine’s operational health allowing maintenance to be scheduled prioritising those wind 

turbines in greater need. The high frequency data may also allow the condition monitoring 

engineer to monitor the progression of a fault further enabling the efficient scheduling of 

maintenance with the wind farm operator. As wind farms increase in size reliable alarms 

triggered by data from condition monitoring systems will be crucial to allow efficient 

scheduling of maintenance in order to keep the operational and maintenance costs to a 

minimum.  

In order to reduce the level of data transmitted and since operators are generally only interested 

in alarm signals, not all condition monitoring data has to be collected on a high frequency 

basis. High frequency data may only be recorded intermittently when a fault is present to allow 
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detailed investigation thus reducing the requirement for greater transmission bandwidth and 

storage capabilities.       

Following the initial alarm from the condition monitoring system a diagnosis system could be 

activated to begin capturing the high frequency data. This would initially give an indication of 

the location and severity of the fault, and then allow the condition monitoring engineer to carry 

out a detailed analysis into the root cause and precise location of the fault. An effective 

condition monitoring system should provide the correct amount of data to be able to identify 

the fault without overloading the CM engineer with copious amounts of data.     

Based on reliability data from Crabtree et al. [38], there are three sections of a wind turbine 

that may require monitoring. These consist of: 

 Electrical system monitoring  

 Conventional rotating machine monitoring 

 Blade and pitch monitoring 

Although stated as separate entities each of these sections will merge into the one condition 

monitoring system to provide a holistic view of the wind turbine health. 

2.5 Condition Monitoring Instrumentation 

Tavner et al. [10] state that there are four essential tasks in a condition monitoring system: 

1. The measurement or transduction task (sensing of primary variables). 

2. The data acquisition task (conversion of sensed variables into digital data in condition 

monitoring system). 

3. The data processing task (identifying of information buried in data). 

4. The diagnostic task (acting on processed data). 

 

This section will focus mainly on the first of these tasks which is carried out during the normal 

operation of a wind turbine. The condition monitoring approach taken on wind turbines is non-

obtrusive meaning that no signals are injected and all monitoring is done using transducers 

which have no effect on the normal operation of the wind turbine.  

2.5.1 Temperature Measurement 

Temperature sensing is one of the most widely monitored parameters in any type of system 

due to the low cost and good reliability of the sensors [39]. According to [10], when 

temperature measurement is combined with information about the loading and ambient 

conditions of the machine, it provides valuable monitoring information. A rise in temperature 
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above the normal operating temperature, can indicate excessive grinding and wear between 

metal components which is likely the result of a fault or general wear. To measure temperature 

within a system there are three principle methods: 

 Resistance temperature detectors (RTDs) 

 Thermistors 

 Thermocouples 

According to Zaher [40], the commonly measured temperatures within a turbine include the 

gearbox oil, gearbox bearing, generator winding and ambient nacelle temperature. Feng et al. 

describe in [41] how gearbox failure can be predicted by monitoring transmission efficiency 

and rotational speed, and relating them to the rise in temperature of the gearbox. It should be 

noted that due to the variable nature of a wind turbine the operating conditions for the moment 

in time being analysed must always be taken into consideration. 

The two CMS discussed in this thesis use PT100 sensors, also known as RTDs, to measure 

temperature across the drive-drain and on the nacelle roof for measuring ambient temperature.  

There are different materials used for the sensing element of RTD however platinum is deemed 

to be the best metal for a stable, linear and repeatable sensor [42]. As the temperature of the 

sensing metal changes the resistance of it will change when there is an excitation current (less 

than 1mA) applied to it and this change in resistance allows the temperature to be measured. 

Figure 8 below shows the PT100 patch sensor being used to measure the temperature of the 

main bearing.       
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Figure 8: PT100 sensor (red patch) and accelerometer mounted on the main bearing 

One example of the use of temperature monitoring is presented by Guo et al. [43] who use it 

for the detection of generator faults. To begin with a normal operating model for the wind 

turbine generator temperature is developed through the use of the nonlinear state estimate 

technique (NSET). This normal behaviour model is then used at each time step to predict the 

generator temperature. Using the estimated and real temperature values a time series of 

residuals can be found. In the presence of a fault the evolution and distribution of these 

temperature residuals will differ from that during normal operation.  To reduce the sensitivity 

of this method to isolated model errors a moving average window is used to smooth the time 

series of the residuals.    

A method that is being used more often in the field of wind turbine condition monitoring is 

thermography. It is a technique which, at the moment, is only applied offline but is used for 

detecting hot spots particularly in electronic and electrical components [44]. At present it is 

not widely used due to the high cost of the thermographic camera and difficulties in practical 

application on an operational wind turbine [39]; however according to [45] cameras and 

diagnostic software that are suitable for online monitoring are beginning to become available. 

Ciang et al. [37] touch on the use of thermography for structural health monitoring stating that 

acquiring reliable data for detecting impending failure or damage of certain components 

requires optimally placing sensors in the appropriate places i.e. hot spots.    
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2.5.2 Vibration & Acoustic Measurement 

Vibration monitoring is the most commonly used technique [46] for the condition monitoring 

of rotating machinery such as gearboxes, shaft couplings, bearings and rotor unbalance. It can 

also be used to detect broken rotor bars [47] due to the axial force generated through the 

interaction of the interbar current and stator flux. Used with spectral analysis vibration 

monitoring is the typical choice particularly for gearbox monitoring and diagnostics within a 

wind turbine [48].   

Acoustic measurement is a technique which is closely related to vibration monitoring and has 

recently been used for monitoring wind turbine bearings [22]. Acoustic emission monitoring 

takes place when vibration monitoring is not effective enough due to the relatively slow speed 

of the wind turbine which results in vibrations being less obvious. Vibration sensors work by 

registering local motion on the component whereas acoustic sensors “listen” for high 

frequency vibration and can therefore give an indication of defects in their developing stages 

[40]. 

According to Tavner et al. [10] vibration monitoring revolves around the measurement of three 

quantities that are related by numerical integration or differentiation: displacement, velocity 

and acceleration. Which quantity to measure depends on the plant size to be measured and the 

frequency range of interest. Tavner et al. provide the following approximate ranges for using 

each quantity: 

 Displacement - ~0 to ~7000Hz 

 Velocity - ~8 to ~7000Hz 

 Acceleration - ~20 to ~100,000+Hz 

 

The wind turbine drive-train is a complex electromechanical system giving rise to a range of 

frequencies of vibration. For vibration monitoring it is essential to identify these frequencies 

so that any abnormal frequencies can be detected.  Most incipient faults within a wind turbine 

produce some level of vibration therefore making vibration monitoring an effective tool for 

the detection of faults. The faults that are commonly detected by vibration monitoring include 

gearbox bearing and gear wheel damage, the main bearing associated with the main shaft of 

the turbine, torsion and oscillation of the main tower and in some cases acoustic vibration on 

the blades through the use of spectral emitted energy sensors which measure at very high 

frequencies [40]. 
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Figure 9 shows the type of accelerometer used in the system designed by the author for 

measuring vibration on the main bearing of the wind turbine. The accelerometer is attached to 

a mounting stud which is secured to the casing of the bearing using an epoxy resin. This type 

of sensor has a frequency response of 2 Hz to 10 kHz which will allow all frequencies of 

interest within the bearing to be detected. 

 

Figure 9: Accelerometer mounted on main bearing 

 

2.5.3 Force and Pressure Measurement 

Force and pressure are another common form of monitoring technique for condition 

monitoring in general asset management [40]. Force is measured through the application of 

strain gauges which consist of a length of resistance wire formed into a zigzag shape and 

securely bonded to a surface that will change shape when a force is applied [10]. As the 

resistance wire changes shape its cross-sectional area and length change therefore altering its 

resistance. As the change in resistance is related to the force applied the force on a particular 

component can be measured. One application for the use of strain gauges on a wind turbine is 

to measure the strain on the blades [49]. This however would be an expensive measurement 

method to implement on a wind turbine due to large area of the blades which is one reason 

that this type of measurement on blades is not common place in this specific area. Research 

such as that in [50-52] illustrates how strain gauges can be used to monitor the loads on blades 

and further research like this will likely lead to the wider application of blade monitoring.  
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Within one of the CMS discussed in this thesis two load pins are used to measure the torque 

in each of the gearbox mounting arms. Used with an amplifier these load cells can measure a 

force of up to 30 tonnes which can be measured as a 4-20mA or ±10V signal.  

 

Figure 10: Load pin used in CMS for monitoring gearbox reaction torque [53] 

Oil Pressure is a parameter commonly measured within the hydraulic system of the wind 

turbine [6]. The pitch control system within a wind turbine uses hydraulics to alter the pitch 

of the blades so it is therefore desirable to monitor the oil pressure when performing actuations 

of the pitch system. A fault within the pitch control system may result in increased mechanical 

force on the structure of the wind turbine leading to reduced energy capture or in a worst case 

scenario structural damage. The pressure of the oil in the gearbox is also measured since low 

oil pressure could result in catastrophic failure [41]. 

The pressure sensor shown in Figure 11 was used in one of the CMS discussed in this thesis 

to measure the oil pressure that is applied to actuate the emergency brake on the wind turbine. 

Being able to see when the emergency brake had been applied was seen as a useful parameter 

for understanding the health of the wind turbine since emergency stops have a significant 

detrimental effect on the health of a wind turbine [54].   
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Figure 11: Pressure sensor used to measure the oil pressure applied to the emergency brake [55] 

 

2.5.4 Wear and Debris Measurement 

In many electromechanical machines information about the condition can be assessed through 

the monitoring of the lubricant or coolant. As wear on a component increases or a fault occurs 

it is likely that increased debris or contamination will be seen in the lubricant or coolant. In 

the case of wind turbine, oil is the main lubricant and coolant of the gearbox and is also used 

within the hydraulics of the pitch control system making it an important parameter to monitor. 

The oil within a wind turbine is commonly monitored for moisture [46] and other particles in 

order to obtain an indication of the health and rate of deterioration. According to Hameed et 

al. [46], oil monitoring has two main purposes: safeguarding the oil quality and safeguarding 

the components involved. Since the price of the sensors to monitor oil quality has come down 

it is now at a point that makes it justifiable [40] to implement them for online monitoring.  

The most common way of monitoring the oil within the gearbox is through the use of a debris 

sensitive sensor [10]. The oil will pass through the device which is suited to that particular oil 

and will usually use either an electrical transducer to measure changes in inductance 

capacitance, or conductivity, or optically by measuring changes in the turbidity of the lubricant 

[10]. A detailed review of oil analysis techniques was carried out by Hamilton et al. [56] and 

a recommendation given that a combination of different types of oil monitoring sensor be used 
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to give a better picture of the condition of the oil. Following this review the same authors go 

on to present a novel wear detection system in [57]. The system which incorporates a webcam 

has the aim of being able to capture the size and shape of contaminants in the oil; 

characteristics deemed crucial for indicating the type of wear occurring within a gearbox.  

Online monitoring of the oil within the gearbox can give an indication of gear tooth damage 

and any other contamination within the oil [40]. Contamination within the gearbox oil can 

significantly reduce the lifetime of the gearbox. Also, water in the oil can have the effect of 

reducing the effectiveness of the lubrication properties of the oil [40]. The ability to detect this 

contamination at an earlier stage may prolong the operational life of the system by ensuring it 

is well lubricated. 

2.5.5 Voltage and Current Measurement 

Voltage and current monitoring are not techniques that are commonly discussed when WT 

CMS are reviewed; possibly because of the lack of experience of analysing these signals in 

the WT industry [39]. They are however commonly monitored in the field of rotating electrical 

machines [10, 58].  Within a wind turbine voltage and current will typically be measured by 

the SCADA system [6] so that the performance of the wind turbine can be assessed through 

analysing the power curve which describes the power output in relation to the wind speed.  

Measuring a voltage is carried out by measuring the electrical potential at one point with 

reference to another point. On a wind turbine generator this other point is either neutral or one 

of the other phases. Measuring the voltage in the two CMS discussed in this thesis was carried 

out using probes that attached over the nuts on the generator terminals, as can be seen in Figure 

12. The output from these probes are then fed into a voltage transducer board which uses a 

current transformer to step the voltage to a lower range that can be safely inputted to the digital 

to analogue converter. Further details of the transducer boards are given in Section 6.1. 

Measuring the current within a conductor can be fundamentally described as measuring the 

movement of charge carriers [59] and done by counting the number of charges per unit of time. 

Rogowski coils, as seen in Figure 12 and used in the CMS discussed later, are one method of 

measuring current and have the advantage over current transducers of not requiring a physical 

connection. A Rogowski coil consists of a wire wound on a non-magnetic core which is placed 

around the conductor whose current is to be measured [60]. The output voltage from the coil 

can then be defined if the core of the coil has a constant cross-section and the wire is wound 

perpendicular on the core centre line with constant density [60].  
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Figure 12: Voltage and current being measured on the generator terminals using voltage probes and 

Rogowski coils 

One condition monitoring technique that relies on a current signal and which is seeing greater 

use [61, 62] in the field of wind turbine monitoring is motor current signature analysis 

(MCSA). MCSA is a technique where the spectrum of the current signal is analysed to detect 

faults which may become apparent by the occurrence of harmonics in the frequency domain 

when a fault is present. MCSA can be used for detecting faults in generators such as broken 

rotor bars, shorted turns in low voltage stator windings, and airgap eccentricity [63].    

 

2.6 Common Signal Processing Techniques 

Wind turbine condition monitoring, compared to conventional condition monitoring, is a 

complex task due to the stochastic and aerodynamic effects of the wind [64]. To effectively 

monitor the condition of the wind turbine a clear understanding of the effects of variable speed 

and variable load conditions is crucial. Therefore the condition monitoring engineer must 

develop processing techniques and algorithms with non-stationary and erratic, stochastic 

signals in mind.   

This section will discuss the common techniques used in condition monitoring for analysing 

signals with the aim of extracting useful information about the health of a machine. The 

principles and applications of each technique will be provided along with the advantages and 

disadvantages of their implementation. 

Voltage measurement 

between phases 

Rogowski coils on each 

phase 
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2.6.1 Spectral Analysis 

Spectral analysis refers to the analysis of signals in the frequency domain which have been 

transformed from the time domain. The spectral representation of a time series signal is made 

up of a number of components in the frequency domain each having a specific frequency, 

amplitude and phase angle. A well-known technique for transforming signals from the time 

domain to frequency domain representation is the Fourier transform [10]. Fourier analysis is 

based on the rule that any periodic and sinusoidal function can be broken down into its 

harmonic components. Separating a function into its harmonic components allows each 

frequency component present in the function to be identified. It should also be noted that as 

the number of harmonic components increases so too does the accuracy of the transformation 

[10]. The Fourier transform for a continuous signal, x(t), can be given by: 

Equation 1 

ℱ{𝑋(𝑡)} = 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 

The calculation consists of evaluating the signal, x(t), against sine and cosine functions of 

positive and negative frequencies over the entire function length, from negative to positive 

infinity. 

This form of Fourier transform is not suitable for many engineering applications. Since the 

signals have been sampled in time at a specific sampling rate they are no longer strictly 

continuous in time and therefore the discrete Fourier transform (DFT) must be used.  

To carry out discrete analysis the continuous signal x(t) is replaced by a discrete signal, x(nt), 

which has a sampling period T. This gives the transform [65]: 

Equation 2 

𝑋(𝑓) = ∑ 𝑥(𝑛𝑡)𝑒−𝑗2𝜋𝑓𝑛𝑇

∞

𝑛=−∞

 

It is now implied by the discrete time domain nature of the signal that the signal is now discrete 

in the frequency domain also. The DFT of the discrete signal is therefore given as [65]: 

Equation 3 

𝑋(𝑓𝑘) =
1

𝑁
∑ 𝑥(𝑡𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0
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where fk defines the frequency components being analysed. In practice the DFT is 

implemented using the fast Fourier transform technique which is a very efficient way of 

achieving the DFT [10]. 

One problem however concerning the use of DFT for wind turbine condition monitoring is 

that it relies on stationary signals. During this transform the total sampling length must be 

taken into consideration and therefore any small, time-localised signatures will likely be 

insignificant compared to the overall signal length. Therefore, by using the FFT, the time 

location of characteristic frequency components or impulsive responses cannot be examined 

[48].  

It is favourable in many situations to know the time information when analysing the frequency 

content of a signal, however this is something the DFT cannot provide. For this reason the 

short-time Fourier transform (STFT) was developed to allow time-frequency analysis of non-

stationary, time varying signals [8].  

The STFT calculates the spectral content for a short time sample of a particular signal. This is 

done iteratively in the time domain until the entire signal has been processed in these short 

samples. The resulting spectra are then plotted in time to produce a 3D (time, frequency, 

amplitude) representation of the signal’s spectral content [8]. However since the STFT is 

essentially an iterative DFT process, there are certain limitations on the frequency resolution 

applied, such that a longer time window allows for a greater frequency resolution. For the 

STFT, however, the frequency resolution is not the only factor to consider and a certain degree 

of compromise is required. A higher resolution may be obtained through a longer time 

window, and therefore an accurate representation of frequency content, however this will 

result in reduced resolution in the time domain. Time accuracy of analysis may be improved 

through the use of a smaller window such that the signal is effectively stationary during 

analysis [8]. Based on the signal under analysis it is up to the user to select a suitable time 

window or frequency resolution for their analysis. 

2.6.2 Wavelet Analysis 

The STFT has many advantages over the DFT however still has the limitation of providing a 

constant resolution for all frequencies since it uses the same window for the entire signal and 

therefore is only suitable for quasi stationary signals. Wavelet analysis overcomes this issue 

and can be used for multi-scale analysis of a signal through dilation and translation, so it can 

extract time-frequency features of a signal effectively [66]. Therefore, in the case of wind 
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turbine condition monitoring, where there are non-stationary signals, wavelet analysis is more 

suitable. 

Over the past decade wavelet analysis has become a popular mathematical and signal 

processing tool due to its many distinct merits. The first wavelet concept was put forward by 

Morlet in 1984 [66] before it was formalised as the continuous wavelet transform (CWT) with 

the help of Grossman.  The CWT is given in [66] as 

Equation 4 

𝑊𝑥(𝑎, 𝑏; 𝜓) = 𝑎−1/2 ∫ 𝑥(𝑡)𝜓∗ (
𝑡−𝑏

𝑎
) 𝑑𝑡, 

Where a is the scale parameter, b is the time parameter, ψ(t) is an analysing wavelet, and ψ*(•) 

is the complex conjugate of ψ(•). As parameter a is changed, signatures at different frequencies 

in the signal are revealed. As parameter b is varied the x(t) is scanned through in terms of time 

[10]. 

The CWT expands the concept of Fourier analysis by considering that a time domain signal, 

not necessarily periodic, can be reconstructed using a series of small waveforms that can be 

transitioned in time and scaled in amplitude [10]. These waveforms are called wavelets and do 

not require periodicity like sine waves. By correlating between the signal and analysing 

wavelet at each stage the wavelet content of the signal can be identified.  

The basic wavelet, known as the mother wavelet, is usually chosen as an oscillatory waveform 

that decays in both directions from the centre of the wavelet [10]. It is also stated by [67] that 

the mother wavelet should have no DC component, be a band-pass filter, decay rapidly towards 

zero with time and be invertible. A commonly used wavelet is the Morlet wavelet. In many 

mechanical dynamical signals, impulses are always the symptoms of faults and the Morlet 

wavelet is very similar to an impulse component [68]. Figure 13 illustrates the shape of a 

Morlet waveform, which appears as an impulse. 
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Figure 13: Morlet waveform 

The Morlet wavelet has a mother wavelet defined as: 

Equation 5 

Ψ(𝑡) = 𝑒−𝑗𝜔0𝑡𝑒−𝑡2/2 

And has the Fourier transform: 

Equation 6 

𝐻(𝜔) = √2𝜋𝑒−(𝜔−𝜔0)2/2 

The mother wavelet is scaled to give a family of mother and baby wavelets so that each baby 

wavelet is given by: 

Equation 7 

1

√𝑐
Ψ {

𝑡 − 𝜏

𝑐
} 

 

where c is a variable scaling constant and τ is a constant of translation. The scaling parameter, 

c, is approximately inversely related to its frequency such that high values of c correspond to 

low frequencies and vice versa.  
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By increasing c the wavelet is dilated in time and therefore contains lower frequencies. By 

increasing the value of τ the wavelet is moved in time along the x-axis such that the CWT is 

given as: 

Equation 8 

𝐶𝑊𝑇(𝑐, 𝜏) = (
1

√𝑐
) ∫ 𝑠(𝑡)Ψ {

𝑡 − 𝜏

𝑐
} 𝑑𝑡 

Amirat et.al [69] review a number of different applications of the CWT. These include the 

detection of stator turn faults in a DFIG, the detection of damage on a blade, and also to remove 

noise and intervening neighbouring features in an induction motor to detect rotating shaft 

frequencies. It can therefore be seen that wavelet analysis is a valuable tool for the analysis of 

non-stationary signals where there is a requirement of the time-frequency information.   

2.6.3 Correlation Analysis 

Correlation analysis is a time domain technique and is mathematically very similar to 

convolution [10]. The auto-correlation function can be used to measure the similarity between 

a waveform and a time shifted version of itself, whereas the cross correlation function refers 

to two different time functions. The auto-correlation function of a time signal f(t) is given by 

[10]: 

Equation 9 

𝑅𝑓𝑓(𝜏) = ∫ 𝑓(𝑡 − 𝜏)𝑓(𝑡)𝑑𝑡
∞

−∞

 

The function f(t – τ) is a time-shifted version of f(t), by a time τ. The process may be thought 

of as one signal searching through another to find similarities. The correlogram of the auto-

correlation function will show when τ is around the time it takes the signal to show some 

repetition, given that there is repetition in the signal. Auto-correlation is therefore a very useful 

tool for identifying any repeating features that can be hidden in a signal mixed with noise and 

disturbances. 

The cross-correlation function of two different signals f(t) and h(t) is given by [10]: 

Equation 10 

𝑅𝑓ℎ(𝜏) = ∫ 𝑓(𝑡 − 𝜏)ℎ(𝑡)𝑑𝑡
∞

−∞
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The cross-correlation function, as with the auto-correlation function, can be used to recover 

both the amplitude and phase of signals lost in a noisy background [10]. Therefore in wind 

turbine condition monitoring correlation functions may be used to reveal the similarity in 

signals that may be inherently related but are phase shifted due to transmission delay. In 

particular, correlation functions are suited to the monitoring of faults such as bearing 

degradation and can provide a means of relating the condition monitoring signatures to the 

causes of faults.  

Correlation analysis will be further discussed in Chapter 5 with a greater focus on the 

application of correlation for fault detection for both that of the wind turbine and the CMS 

itself.              

2.6.4 Time Synchronous Averaging 

Time Synchronous Averaging (TSA) is an algorithmic tool for the analysis of signals captured 

from rotating equipment. Used particularly with vibration signals, TSA involves averaging the 

time domain signal in synchronisation with the running speed of the machinery being 

monitored [70]. The main advantage of using TSA is that it allows periodic signals to be 

separated from background noise [71], particularly useful for gearbox monitoring. This is done 

by averaging together a series of segments each corresponding to one period of a synchronising 

signal [71]. The synchronising signal is generally provided by a tachometer which provides an 

n per revolution signal. It is however also possible to perform TSA without this signal by using 

a time domain feature, such as a gear mesh as is described in [72]. That being said, having a 

once per revolution signal is by far the preferred option as is pointed out in [73] where almost 

every partner of a collaborative project stated that their vibration analysis of a gearbox was 

significantly challenged due to the absence of this signal.  

An application of TSA for monitoring planetary gearboxes is presented by Ha et al. [74]. Due 

to the complexity in monitoring planetary gearboxes, caused by multiple contacts and axis 

rotation of planet gears [75], Ha et al. propose the pre-processing technique of autocorrelation-

based TSA (ATSA). Autocorrelation analysis is used on the vibration signal in order to 

identify the instances when a similar pattern of vibration occurred. By using a window with 

an optimised size and shape the performance of the TSA is greatly improved. This was 

illustrated by the successful identification of a fault signature in the tooth domain for a 

simulated dataset.   
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2.7 Review of Research into Wind Turbine Condition Monitoring 

Condition monitoring of wind turbines is a continually developing field with a number of 

researchers attempting to define technology and methods suited to this complex application. 

There are a number of different areas of wind turbine condition monitoring which can be 

developed in isolation particularly the different areas of the wind turbine requiring monitoring, 

i.e. blades, gearbox, generator and tower structure etc. This section will discuss the findings 

from a review of the literature regarding the research that has been and is currently being 

undertaken for the development of wind turbine condition monitoring systems.  

This PhD project is the continuation of work carried out by two previous PhD students who 

produced two papers on the subject. The first of these two papers was written by Swiszcz et 

al. [76]. This paper begins by discussing the requirements of the CMS with regards to safety, 

leading on to the selection of the measurands. The measurands were selected partly based on 

the capabilities of the chosen data acquisition (DAQ) cards. The DAQ cards do not allow 

sampling rates to be set for individual channels and therefore the parameters to be measured 

were divided into two groups - low speed and high speed. The low speed parameters would be 

sampled at a rate of 50 Hz whereas the high speed parameters would be sampled at a rate of 

20 kHz. The low speed parameters include temperature sensors, rotational speeds, wind speed 

and direction, and tower movement. The high speed parameters include the generator voltage 

and current output, and 7 vibration sensors. The authors then describe different techniques for 

storing large volumes of data, highlighting the reasons for the choice of using the MySQL 

database, namely due to its two types of tables available that allowed 2TB of data to be stored 

and easily read. The authors go on to provide an overview of the data acquisition platform and 

the associated user interface which was developed using National Instruments Labview 

software. 

The second paper relating to the project was written by Zaher et al. [77]. This paper places 

more focus on the design and layout of the system hardware. The system is divided between 

two computers, one at the base of the tower and the other in the nacelle of the turbine. The 

computer at the base of the tower acts as the data storage device, transferring all the data 

recorded onto a 2TB external hard drive. The computer in the nacelle acts as the main data 

acquisition unit with both the low speed and high speed DAQs directly connected to it. The 

two computers are then connected via a fibre-optic cable which allows high speed data transfer 

of 1 GB/s between them. The authors discuss the data acquisition software architecture which 

is crucial to the efficient capturing of the data.  
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It is the combination of work by the two previously discussed authors that led to the 

development of the first condition monitoring system built within the university. The work 

carried out on the system in relation to this PhD project will be discussed in Chapter 3.       

The advantages of the implementation of the system discussed is that it would provide 

continuous high frequency data from a live wind turbine; therefore one which has been 

subjected to all the naturally occurring processes caused by the stochastic nature of the 

weather. Based on a review of the literature it is common practice to develop condition 

monitoring systems through the use of test rigs. Test rigs have been used in a number of 

research projects in an attempt to verify findings from research studies. 

One such test rig is described by Crabtree and Tavner [78]. This paper describes a test rig for 

the development of condition monitoring techniques for wind turbines. The test rig has features 

of a wind turbine such as variable speed and torque, a gearbox, induction generator and a grid 

connection. Although the test rig cannot provide a true representation of data from a live wind 

turbine it can provide very realistic conditions. It does this through the use of a Labview control 

environment which allows conditions obtained from a 2MW wind turbine model to drive the 

test rig. To illustrate the capability of the test rig the authors provide an example where 

asymmetry with differing severity is applied periodically whilst the test rig is run with varying 

wind conditions. Twice the slip frequency (2sfse) of the generator was tracked as it is a known 

fault frequency. Through the use of an energy tracking method based on the wavelet transform 

it was shown that asymmetry could be detected in the electrical power signal.  

A similar test rig is discussed by Wilkinson et al. [79] which was established to act as a model 

for a wind turbine and to allow the investigation of failure modes found in previous work to 

develop an appropriate CMS. The test rig consists of a DC motor rated around 50 kW, a two 

stage gearbox, and the prototype Slim generator. The authors state that although the generator 

is of unusual topology, it is harmonic rich and has a number of clearly identifiable modes, 

determined through modal analysis. Similarly to the previous test rig discussed, this test rig 

can also simulate the torque input that is seen as a result of transient and gusting wind 

conditions. This can be applied using either real or simulated wind speed data using the 

computer-controlled DC drive system. Therefore, again this test rig can give a good 

approximation of real wind conditions; however, as stated by Swiszcz et al. [76], the data may 

not necessarily reflect processes happening in the real turbine application.   

In an attempt to assess the added value of various techniques of health monitoring to optimise 

the maintenance procedures of offshore wind farms an investigation was carried out as part of 
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the EU funded Condition Monitoring for Offshore Wind Farms (CONMOW) project [80]. 

This was a collaborative project carried out by a number of large and well established institutes 

working in the area of wind turbine condition monitoring. The project involved the 

implementation of CMS along with the “traditional” measurement systems for measuring 

mechanical loads and power performance, on five wind turbines on a small wind farm.  The 

authors stated that at the time of drafting the state of the art CM techniques report, no 

successful applications of wind turbine CM examples were found in the literature. Therefore 

unlike the previous test rigs discussed this would be the first project to implement CMS on 

live wind turbines with the aim of obtaining data that would allow the added value of CM 

techniques to be determined along with the development of new techniques for wind turbine 

applications. In particular the project was aimed at developing data analysis algorithms which 

would aid operation and maintenance, and at the same time lower the cost of CMS. 

Unfortunately, however, the project was hampered by mainly non-technical issues, such as the 

lack of time, which resulted in less data being captured than had been hoped.  

There have been several reviews in the literature which attempt to summarise the state-of-the-

art advancements in condition monitoring and fault diagnosis of wind turbines. One of these 

reviews was carried out by Lu et al. [48] which gives a thorough review of recent advances at 

the time of writing. The authors split the wind turbine into five of the major subsystems in 

order to summarise the monitoring and diagnostic methods applicable to each of them. The 

authors draw a number of conclusions from the review stating that wavelet transforms are a 

necessary tool for time-frequency analysis and that acoustic emission is considered a more 

robust approach for monitoring low-speed operation compared to classic vibration based 

methods. The authors conclude by advising that grey-box modelling and a multi-agent system 

approach deserve more study for analysing such a system.  

Similar reviews are provided by [46, 58], and a continual effort is required to summarise the 

state-of-the-art technology due to the continual development in a relatively immature area of 

the condition monitoring sector.  Amirat et al. [81], again, review well established techniques 

for the condition monitoring and fault diagnosis of wind turbines; however, with increased 

emphasis on the monitoring of the generator terminals. In particular, the authors measure the 

output from a doubly-fed induction generator (DFIG) and uses the well-established techniques 

developed for induction motors to show that drive train faults can be detected in this manner. 

It is also stated that imbalances and defects in small wind turbine blades can be detected 

through measuring the power spectral density at the generator output. Finally the authors state, 
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as do many others, that wind turbine operations are predominantly transient and the use of 

non-stationary techniques is necessary for fault detection.      

A paper by Popa et al. [82] also discusses the application of monitoring a DFIG in order to 

detect different types of fault. The authors use a test rig in order to apply three different faults: 

a stator phase unbalance using a variable resistance and inductance in series on one phase, a 

rotor phase unbalance using a resistance of the same value as the rotor phase resistance inserted 

in series on one rotor phase, and finally a turn-to-turn fault using an inductance in parallel on 

one stator phase. Machine current signature analysis (MCSA) was chosen as the fault detection 

technique due to its powerful merits in fault detection and diagnosis [82]. The authors 

confirmed that the experimental results clearly demonstrated the ability to diagnose turn-to-

turn faults as well as inductive and resistance unbalance in one stator and rotor phase through 

the use of MCSA. Monitoring of DFIGs is a commonly occurring theme throughout the 

literature; however more work is related to the signal analysis and data interpretation which 

will be discussed in the following section.  

A substantial review of techniques and methods of condition monitoring of wind turbines was 

carried out by Márquez et al. [45]. The authors begin by discussing the different maintenance 

strategies: corrective (repair), scheduled (time-interval-based) and condition based 

maintenance, discussing the main differences between them and the reasons for their use. It is 

then highlighted how that the implementation of a CMS can minimise costs of maintenance, 

improve operational safety, and reduce the quantity and severity of in-service system failures. 

A review of the technology for condition monitoring is given, discussing the different 

techniques and methods, and providing an indication of their level of deployment.  The authors 

also state that vibration analysis continues to be the most popular technology employed in WT 

CM, especially for rotating equipment, which is backed up by [40]. Another similar method 

described is the measurement of acoustic emission which measures elastic waves that are given 

off when the structure of metal is altered.  It is stated that these sensors have been used 

successfully not only in the monitoring of bearings and gearboxes but also for damage 

detection in WT blades.  

Ultrasonic testing (UT) is another technique discussed in [45] which can be used for the 

structural evaluation of WT towers and blades. UT is generally used for the detection and 

qualitative assessment of surface and subsurface structural defects. Using signal-processing 

algorithms, including time-frequency techniques and wavelet transforms, more information 

can be extracted from the measured signal.   
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As mentioned earlier a technique for the monitoring of WT blades is strain measurement which 

involves the installation of strain gauges on the blades. Assessment of the strain gauge signal 

can allow lifetime forecasting and protection against very high stress levels. Márquez et al. 

[45] state that although optical fibre sensors are very expensive, new cost-effective systems 

are being designed based on fibre optics. Another technique that is described for the 

monitoring of the blades, and also the tower, is radiographic inspection however this technique 

is rarely used as it is not easy to implement [45].  

Márquez et al. [45] conclude by defining the main obstacles facing the designers of CMS 

which include: 

i. Selection of the number and type of sensors; 

ii. Selection of effective signal processing methods associated with the selected sensors;  

iii. Design of an effective fusion model (i.e., the combination of sensors and signal 

processing methods which give an improved performance). 

 

The technical and commercial challenges of condition monitoring in the wind energy sector 

are also discussed by Yang et al. [5]. The paper was written with the aim of providing industry 

with a detailed analysis of the current practical challenges with existing wind turbine condition 

monitoring technology. As well as providing industry with an analysis of the current 

challenges it also identifies the areas in which further research is required in order to develop 

CMS to a state that makes its implementation economically justifiable for wind farm operators. 

Yang et al. discuss the practicality and deployment status of a number of monitoring methods 

including techniques that are in the early stages of development, namely: ultrasonic testing, 

for tower and blades; torsional vibration, for the main shaft and gearbox; and shaft torque 

measurement for the blades, main shaft and main bearing. From the techniques identified, 

vibration analysis is still the most advantageous due to its low cost, its capability for online 

monitoring and fault diagnosis, and the large number of WT components it can be used to 

monitor.  

The authors also identify a number of techniques for signal processing and those which are 

presently being researched. With regards to the future work required for the development of 

WT CM, the authors break it down into three subsections: CM techniques for other key 

assemblies, WT prognosis, and WT CMS reliability. It is stated that more work is required 

into the techniques for monitoring the electrical and power electronic systems as well as the 

yaw and pitch systems due to the long downtime caused by failures in these areas. One of the 

major areas identified as requiring work is the processing of the data from CMS, in particular, 
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non-linear CM signals. This includes analysis of time-domain and frequency domain signal 

changes under incipient fault conditions as faults progress from detection to failure, thereby 

providing information necessary to validate CM techniques. Crabtree [34] also believes this 

to be a key area for future work stating that major innovation will occur in terms of developing 

signal processing techniques following his survey of commercially available condition 

monitoring systems for wind turbines.  

The literature so far has identified that vibration monitoring remains the standard method of 

monitoring the health of wind turbine drive-trains. More sophisticated processing techniques 

are required however, to understand the data being captured due to the stochastic nature of 

wind turbine operation. Test rigs are often used to develop CM techniques, due to the lack of 

data from operational wind turbines, and have the benefit of allowing faults to be artificially 

generated. These generated faults however may not necessarily represent a true fault as would 

be seen in a wind turbine and it is still therefore essential that data is obtained from a 

monitoring system installed in a live wind turbine.   

  



40 

 

2.8 Review of Wind Turbine Condition Monitoring Data Analysis and 

Interpretation 

As identified in the previous section, an increasing amount of research is being focused on the 

data analysis and interpretation for condition monitoring systems. This section will cover the 

research found in the literature that is related to the data analysis and interpretation of wind 

turbine CM, particularly the techniques used to identify faults or abnormalities in the acquired 

signals from the gearbox and generator.  

Table 1: Summary of reviewed literature 

Author/s 

Test rig or 

field 

Components/Faults 

addressed Techniques applied 

Yang et al. 

[83] 

No Data 

Required Whole turbine 

Platform using SCADA 

systems 

Yang et al. 

[11] 

SCADA 

Data Blades & drivetrain Correlation based analysis 

Feng et al. 

[84] 

SCADA & 

CMS Gearbox 

Algorithm using vibration & 

oil debris 

Guo et al. 

[43] 

SCADA 

Data Generator 

Normal model and 

comparison of residuals 

Wilkinson et 

al. [85] 

SCADA 

Data Drivetrain 

Signal trending, self-

organising maps, physical 

model 

Zaher et al. 

[6] 

SCADA 

Data  

Gearbox & 

Generator 

Normal behaviour models 

using Neural Networks 

Djurovic et 

al. [86]  Test rig DFIG Unbalance FFT, spectrum analysis 

Crabtree et al. 

[87] Test rig WRIG FFT, spectrum analysis 

Yang et al. 

[64, 88] Test rig Generators Wavelet transforms 

Al-Ahmar et 

al. [89] Test rig 

DFIG, elec/mech 

faults Wavelet transforms 

Watson et al. 

[90] 

Test rig & 

field 

Generator 

eccentricity Wavelet transforms 

Yang et al. 

[91] Test rig 

Power quality & 

drivetrain  

Fast Individual Harmonic 

Extraction (FIHE) 

Crabtree & 

Tavner [92] Test rig 

Generator 

imbalance 

Frequency tracking, Fourier 

analysis, IDFT 

Wang et al. 

[93] Not specified Gearbox 

Vibration, time-frequency, 

order, envelope analysis 

Round Robin 

Project [73] Test rig Gearbox 

Numerous vibration-based 

techniques 
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There is a large amount of literature available relating to techniques for diagnosing faults 

within a wind turbine however this section aims to provide a brief overview of techniques used 

for detecting faults within the drivetrain. Table 1 provides a summary of the literature reviewed 

in this section and shows that analysis and interpretation techniques are typically developed 

using either SCADA data or data obtained from test rigs.   

 

2.8.1 SCADA Data Based Techniques     

One particular trend in the research into the monitoring of WTs is to make use of the data from 

SCADA systems which are already installed in the majority of WTs. Using data from an 

already installed SCADA system removes the requirement to install a potentially expensive 

CMS. Yang et al. [83] describe, at a high level, how wind farm SCADA systems can contribute 

to a Reliability Centred Maintenance strategy. The authors state that SCADA data is useful for 

the detection of an occurrence of a fault but may not be able to accurately diagnose a fault.  

Leading on from this work, the authors in [11] present a method of using SCADA data for 

condition monitoring. The method begins by pre-processing the data in order to extract the 

true information within the SCADA data that may be hidden or smeared as a result of operating 

conditions of the wind turbine. The technique for identifying a fault is derived based on the 

correlation between SCADA data parameters and defined as the condition monitoring 

criterion, c. The key to this technique however is that analysis is only performed on data 

captured at wind speeds lower than the WT’s rated wind speed where it will begin to pitch its 

blades and thus introducing nonlinearities. If these nonlinearities were able to influence the 

data used, the correlation between parameters would be greatly affected.  

To test the technique it was applied to fault data generated from two failure scenarios created 

using a test rig. The first was a winding fault on the rotor of a generator. Through adjusting 

the phase resistances in load bank electrical imbalance was created. The results of the test 

showed that the presence of the fault caused a reduction in the efficiency of the generator and 

the application of the technique allowed this reduction to be clearly visible when plotting 

power output against generator speed: two parameters which are directly correlated. The 

second test involved detecting the presence of a gear tooth fault in a gearbox. This was again 

tested using the test rig to generate data where the damage on a gear tooth was progressively 

increased. To detect this fault, correlations between both generator torque and DC motor 

speed, and generator power and DC motor speed were used. The results of this test showed 
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that the model could clearly detect an increase in damage.  This could be seen from the position 

of the model curves and the resulting CM criterion value.  

The idea of using both SCADA data and CMS data is applied in a paper by Feng et al. [84] 

for failure detection and diagnosis of a wind turbine gearbox. SCADA and CMS measurement 

methods for the gearbox are identified, with the main measurements from the CMS being 

vibration and oil debris, and with temperature and oil pressure being the main measurements 

taken by the SCADA system. The author introduces a new algorithm based on SCADA oil 

and bearing temperature, and the relationship between temperature, efficiency, and power 

output or rotational speed. The authors were able to show that the temperature rise of one of 

the gears is proportional to the power output provided the efficiency of the gear has not 

changed; since when a fault occurs the efficiency decreases. The authors’ findings show that 

observable trends are available six months before the failure of the gearbox planetary gear. 

Based on the results of the case study carried out the author states that analysis of SCADA 

signals using simple algorithms can give early warning of failures in gearboxes and that 

analysis of CMS signals can locate and diagnose failures with detailed information. 

Another example of the use of SCADA data for the fault detection of a generator bearing is 

presented by Guo et al. [43] as was already discussed in Section 2.5.1. Adding to that in Section 

2.5.1, NSET is a non-parameter model construction method which was first proposed by Gross 

et al. [94] for use in nuclear plant signals. In order to construct the NSET model, the variables 

in the observation vector must be chosen carefully. Since it is the generator bearing 

temperature that is of interest anything that has a relationship with this should be taken into 

account. Therefore, the five variables that were selected to construct the observation vector 

were: power, wind speed, ambient temperature, the generator temperature, and the generator 

bearing temperature. The paper used 10-minute average SCADA data, of which there were 

3,952 effective 10-minute average records.  Faults using this method are detected by looking 

at the difference between the observation vector of NSET and the normal working space; as 

the fault worsens the residual will increase. This method has the advantage of not requiring a 

time-consuming training procedure and allows direct physical interpretation. The author 

shows that this method can identify incipient WT generator bearing failure well ahead of 

serious damage occurring.  

As stated already, the benefit of using SCADA systems for condition monitoring is that they 

are already installed making it an economical way of monitoring the health of a wind turbine. 

There are different methods of using SCADA data, three of which are reviewed by Wilkinson 

et al. [85], namely: signal trending, self-organising maps and physical model. The signal 
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trending approach involves comparing one turbine against another or one time period against 

another. Although simple to implement it was found that it was not accurate or reliable enough 

to account for intermittent changes in temperature that resulted from varying operational 

modes or environmental conditions. The self-organising map method is a type of artificial 

neural network used to group similar phenomena within a dataset; in this case between 

SCADA parameters. In the comparison the self-organising map was found to be more sensitive 

to faults than the other approaches. The drawback of this method however was its inability to 

identify the nature of abnormal operation, making it difficult to identify impending failures. 

The physical model method predicts a signal, such as temperature, based on all the properties 

which may influenced that parameter. Contrary to the signal trending approach, this method 

was more difficult to implement however once established it was found to have the most 

success in identifying abnormal conditions.          

As identified by Zaher et al. [6], most techniques using SCADA data are specific to a 

component, i.e. gearbox or generator. In order that all these techniques can be brought together 

as one system, Zaher et al. present a platform for wind farms which brings together a number 

of independent analysis techniques, processes data from multiple sources and focuses on a 

wider range of components or problems than systems do presently; thus providing a single 

decision support environment for the operator.   In addition to presenting anomaly-detection 

techniques, the authors bring together normal behaviour models, in this case for the gearbox 

and generator, which are captured through the use of neural networks (NN). These techniques 

are then integrated through a framework known as a multi-agent system (MAS) which 

provides a flexible and extensible structure for designing such systems, allowing different 

tasks to be encapsulated into separate modules (agents) with independent objectives. The 

author states that the system will provide a ‘yellow-pages’ like facility known as the directory 

facility which allows each agent to register with it the services it provides along with the 

information or services it is interested in. This allows other agents to also learn about a newly 

introduced agent’s existence and the services it can provide that may be of use to them. In this 

way a system is developed which can make fault detection and diagnosis based on a view of 

the entire wind turbine’s condition.  Results from the paper show that the system can be used 

to automatically interpret large volumes of SCADA data presented to an operator and highlight 

only the important aspects that would be of interest to them; therefore increasing the efficiency 

of the operation and maintenance of a wind farm. 
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2.8.2 Test Rig Based Techniques  

One trend throughout the literature is the analysis of signals in the frequency domain to extract 

meaningful information. As discussed in Section 2.6, a well-known technique for transforming 

time domain signals into the frequency domain is the Fourier transform. As will be discussed 

in this section, although well-used, basic Fourier analysis has its limitations in wind turbine 

applications due to the nature of the signals captured.     

An example of the use of the standard Fast Fourier Transform (FFT) is given by Djurovic et 

al. [86] who present the results of a comparison of the use of DFIG steady state stator line 

current and instantaneous power as a means of generator condition monitoring, based on an 

examination of their frequency spectrums. In order to carry out the work the authors developed 

an analytical model which makes it possible to simulate DFIG operation under a range of 

supply and winding balanced/unbalanced operating conditions. A DFIG test rig was also built 

to allow results of the model to be verified experimentally. The authors compare current and 

power spectra for a DFIG operating with a stator open-circuit fault using simulation data from 

the time-stepped model. The authors found from the study that harmonic components are 

present in both the current and power spectrums which are directly related to the presence of 

the type of winding unbalance that would arise in the case of a winding fault. It was also found 

that by comparison the power spectrum contained more potential fault-specific information 

than that of the line current spectrum. As stated by the authors however, measurement of the 

power spectrum requires greater attention to the reduction of noise. The authors of this paper 

also contributed to a paper by Crabtree et al. [87] which also proposes a method for using the 

standard FFT to analyse the electrical signals from a wind turbine DFIG.  

Crabtree et al. [87] use analytical expressions previously derived by Manchester University 

[95] to find the frequency content of the line current and instantaneous power for healthy and 

faulty wound rotor induction generators. These expressions, which show all possible 

frequencies, were evaluated against experimental data using two test rigs; one from the 

University of Durham and the other from the University of Manchester. The Manchester test 

rig consisted of a 4-pole, three phase 30kW wound-rotor induction generator (WRIG) 

mechanically coupled to a 40kWDC motor by a common shaft. The DC motor speed is 

controlled by an industrial variable speed drive allowing a range of operating points to be 

achieved. Similarly the Durham test rig consisted of a 4-pole, 30kW WRIG of identical 

manufacture and altered winding arrangements but driven through a 5:1 two stage gearbox by 

a 54kWDC motor. A variable speed drive allowed the rig to achieve similar steady state 

operating points as those used at Manchester. In each case two phase voltages and line currents 
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were sampled by the same set of voltage and current probes and a precision oscilloscope. Using 

the test rigs, data was recorded for 10 seconds at 2 kHz and analysed offline using the 

proprietary FFT function in MATLAB. The results showed that healthy and faulty wound rotor 

induction machines have clearly defined and calculable frequencies in current and power 

signals which can be predicted using the analytical expressions that were described. The 

authors also found that rotor electrical unbalance faults can be detected during variable speed 

operation, representative of that experienced on a wind turbine, using frequency tracking based 

on the same analytical expressions.   

In attempt to overcome the limitations associated with standard Fourier analysis Yang et al. 

[64, 88] introduce a technique based on wavelet analysis as was discussed in Section 2.6.2. 

Yang et al. discuss the application of wavelet transforms for use in the monitoring of 

synchronous generators and synchronous generator drive trains. Investigations into the use of 

wavelet transforms are carried out using a test rig at the University of Durham [88]. The results 

showed that wavelet transforms allowed the issues associated with use of spectral analysis and 

the stochastic nature of wind turbines to be overcome. The authors find that the use of a 

discrete wavelet transform (DWT) is useful for noise reduction in the highly variable torque 

and speed signals; whereas the continuous wavelet transform (CWT) is effective for the 

extraction of time-frequency features from the highly variable signals.     

Al-Ahmar et al. [89] also use the DWT in their work; in this case for the electrical and 

mechanical fault diagnosis in a DFIG based wind turbine. They propose a transient technique 

which is a combination of the DWT, statistics and energy. Experiments are carried out using 

a 1.1kW induction generator based test rig. The results showed that a technique based on the 

variance and energy analysis of wavelet decomposition stator current signals is very useful for 

condition monitoring and failure diagnosis in wind turbine generators.  

Watson et al. [90] continue the work in use of wavelets for monitoring the power output of 

wind turbine generators. In this case it is shown how measuring the power at relatively low 

frequencies (~30Hz) and by applying a CWT to the resulting data, the magnitude of the 

component at twice slip frequency divided by pole pairs (2sf1/p) may be tracked as an indicator 

of rotor eccentricity in a DFIG. As stated by the authors, rotor eccentricity is often the result 

of increased bearing wear and an indication of potential failure. The main advantage of using 

a wavelet is that it can be used to track the 2sf1/p frequency component under varying rotor 

frequency, which is more problematic when using the more traditional frequency Fourier 

transform. Therefore the method described by the author could be applied to any variable speed 

wind turbine using an induction generator and would not require a great deal of 
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instrumentation over the already used SCADA systems, since power will already be monitored 

by the wind turbine control system [90].   

One drawback of wavelet based analysis however, as identified by Yang et al. [91], is the 

computational demands imposed on a system.  Yang et al. [91] present a technique named Fast 

Individual Harmonic Extraction (FIHE) with the aim of efficiently detecting faults and also 

monitoring power quality, something which is not commonly addressed by condition 

monitoring systems. The authors believe that the use of power signal monitoring will reduce 

the need for monitoring using vibration-based techniques which produce large amounts of data 

that are difficult to transmit, analyse and store. The authors state that any defects existing in 

the system should be evident in the power flow; therefore justifying the proposal of a more 

efficient condition monitoring method – FIHE. Through the monitoring and analysing of the 

line current signals from the wind turbine generator, an improvement on the FIHE has been 

made in order to meet a more generic purpose. The authors lead on to describe how FIHE can 

be used for detecting the shift of grid frequency and the harmonics contained in WT electrical 

signals. The FIHE method in comparison to the traditional method, which calculates the 

spectrum of the electrical signal first and then measures the frequency shift from the spectral 

diagram, has two main advantages. Firstly the FIHE method does not have any special 

requirements on the sampling rate whereas the traditional method requires a minimum 

sampling rate of 20 kHz. And secondly, whilst the traditional method only takes into account 

a limited number of higher order harmonics the FIHE based method considers all harmonics 

without increasing any additional calculation. Both of these advantages enhance the online 

analysis capability of the proposed technique. For the purpose of WT CM using the FIHE 

method a new concept called Instantaneous Variance (IV) is introduced. Through calculating 

the IV it was shown that mechanical fault indicating harmonics could be extracted from the 

power signals. Therefore it can be said that the IV is an effective tool for detecting the effects 

of harmonics in FIHE results. 

Similarly to [91], Crabtree and Tavner [92] also identify the necessity to process data more 

efficiently, particularly as the volume of data captured by wind turbines increases. The authors 

present an algorithm for frequency tracking which is based on Fourier principles. The 

algorithm is successfully applied to detect changes in fault level in electrical and mechanical 

monitoring signals on a variable speed laboratory test rig, as was used in previous papers. By 

only analysing the instantaneous frequency of interest and a narrow frequency band around it, 

the processing requirements are significantly reduced, compared to the STFT and CWT 

techniques. The algorithm proposed by the authors is an improvement on a previously 
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proposed method in [96], and attempts to overcome some of these issues faced. The new 

algorithm differs from the previous through the use of Fourier-based frequency tracking 

instead of CWT-based frequency tracking. As for any Fourier transform analysis the signals 

must be sinusoidal, which according to the author, WT drive-trains are. The signals must also 

be analysed in short time samples of data for the Fourier-based method as signals must be 

stationary. Due to the iterative and frequency localised nature, the final algorithm is referred 

to by the author as the iterative localised discrete Fourier transform (IDFTlocal). In order to 

verify the algorithm, non-stationary experimental data was required which contained known 

fault information. To obtain this the test rig described in [78], was driven at a variable speed 

using data derived from a 2MW variable speed WT model. The experiments found that the 

IDFTlocal compared favourably with the CWTlocal due to the fact that the CWTlocal failed to 

produce acceptable results for electrical asymmetry when data at the original sampling rate of 

5 kHz was analysed. The authors found that the analysis of high speed shaft mass unbalance 

data was successful and suggest that this algorithm is ideally suited to WT CM. 

 So far, the literature reviewed has mainly focussed on the detection of faults through analysing 

the electrical signals captured at the generator terminals i.e. voltage, current and power. 

Although it is has been mentioned that faults outwith the generator can be detected from these 

signals, the majority of gearbox monitoring is carried out using vibration based analysis.    

Wang et al. [93] discuss the development of a gearbox data analysis and fault diagnosis system. 

The majority of the monitoring on the system is carried out using vibration sensors; the data 

of which is analysed using a combination of methods. The system itself is made up of a number 

of modules including the signal pre-processing module, the signal analysis module and the 

fault diagnosis module. Firstly the pre-processing module works to remove the noise from the 

signal since vibration signals are inherently noisy. The de-noising method is selected based on 

singular value decomposition — which is a factorisation of a real or complex matrix. 

Following the de-noising, three functions are used within the signal analysis module: time-

frequency analysis, order analysis and the envelope spectrum analysis. The time-frequency 

analysis is carried out using the Hilbert-Huang transformation in order to obtain time-

frequency spectrum.  Order analysis is then carried out on the signal either with or without a 

speed signal. According to the author the order analysis based on instantaneous frequency 

estimation is used without a speed signal. Envelope demodulation is then carried out on the 

signal using the envelope spectrum. The aim of the paper is to develop a system capable of 

predicting faults earlier and therefore assisting in the operation and maintenance of wind 

farms. 
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One substantial piece work which focussed on the vibration monitoring for gearboxes was 

presented by the Round-Robin Study [73]. Started by the National Renewable Energy 

Laboratory of the U.S Department of Energy, collaborative work by a number of authors [97-

104] was carried out in an effort to evaluate different vibration analysis algorithms and whether 

typical practices are effective for gearbox condition monitoring. Through the testing of two 

identical wind turbine gearboxes, one of which experienced significant damage to bearings 

and gears as a result of two oil loss events, data was collected which would provide an insight 

into the health condition of the gearboxes. One factor which was highlighted as having 

significant impact on the output of the analysis, as was mentioned in Section 2.6.4 was the 

absence of a once per revolution signal and an accurate speed signal. These are crucial to be 

able to carry out time-synchronous averaging: a technique which is useful for gear health 

condition diagnostics. This issue illustrates how the technique discussed in Chapter 4 is useful 

in allowing the signal from an RPM sensor to be used for analysis even when it contains 

erroneous readings.  

Another key point made in the study, regarding diagnosing gearbox faults, is that due to the 

complexity in gearbox design and the dynamic operating conditions, an integrated approach 

must be taken whereby diagnostic information from all components (gears, bearings and 

shafts) of the system is used. A final point made is that fusing vibration results with those from 

other sensors, such as oil debris, oil temperature and casing temperature, would improve 

diagnostic coverage and provide additional evidence of impending failures.           

In relation to the Round Robin project discussed above Zhang et al. [105], who were involved 

in the project, also produced a paper which further discusses data mining algorithms and 

statistical methods for the analysis of vibration data. Data obtained from the NREL test rig 

was used to carry out fault identification analysis in both the time and frequency domains. The 

vibration data used was captured at a very high sampling rate of 40 kHz which is higher than 

the sampling rates used for the CMS discussed in this thesis.   

Three test cases with differing rotational speed and electrical powers for different torque 

levels, were analysed. Jerk data which describes the rate of acceleration change and is often 

used to indicate the excitement of vibration is used for the tests. Since the sampling period of 

40 kHz is very high, the vibration jerk data of 40 kHz is converted into much lower frequency 

data (1/15 Hz) by computing the mean of jerk at 15 second intervals. The standard deviation 

and maximum value of the jerk data in each 15 second interval are also calculated.  
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For the time domain analysis the authors use the correlation coefficient and clustering analysis 

to investigate the failed components of the gearbox. The correlation coefficient analysis 

analyses the linear dependence between parameters and according to the authors is widely 

used in research. The cluster analysis, used to further analyse the jerk patterns, is an 

unsupervised method of data analysis. Clustering algorithms work on the basis of grouping 

observations into clusters by evaluating similarities among the observed data.  

Root cause analysis which looks at both the correlation and clustering analysis indicates the 

failure of components in the gearbox at the intermediate and high-speed stage. The analysis 

finds that the possible root cause is lubrication starvation and damaged gears which is proved 

by the inspection report of the disassembled gearbox provided by the NREL.   

The frequency domain analysis is carried out using the fast Fourier transformation with time 

windows to develop power spectrums based on the original vibration and acceleration data 

measured from two of the cases. The author describes how the frequency domain analyse is 

able to identify damage in the intermediate and high-speed stages of the gearbox through 

analysing the power spectrum of the vibration data; however it is unable to identify the details 

of the damage and this would require the disassembly of the gearbox.   

The authors conclude the paper by describing the shortcoming of the work. Since the drive 

train was fixed to the floor, other factors such as force from the wind and tower that could 

impact the vibration excitement were not accounted for. Therefore to develop a more accurate 

model gearbox vibration acceleration data collected from a field operated wind turbine is 

needed. This furthers the justification of the need to install a CMS in an operational wind 

turbine for more accurate analysis; since test rigs may not truly represent the conditions in a 

wind turbine.   

Based on this review of literature it can be stated that the majority of research being carried 

out into WT CM data analysis and interpretation is being done so through the use of test rig or 

simulation data. This is likely due to the lack of extensive historical data sets and fault records 

due to the relatively immaturity of the wind energy sector. It is also because test rigs have the 

ability to allow faults to be simulated on-demand whereas it may take a long time to obtain 

data for a specific fault from an operational wind turbine. 
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2.9 Review of Research into the Design of Wind Turbine Condition 

Monitoring Systems 

All of the literature so far has focussed on a CMS’s ability to detect and diagnose faults within 

the wind turbine; firstly through the selection of appropriate sensing technologies and secondly 

through the application of algorithms to the acquired data to extract meaningful information 

that can be used by a wind farm operator. However in order to perform these tasks the system 

itself must be designed in such a way that it can operate reliably for long periods of time with 

minimal human intervention and allow the wind farm operator to confidently make 

maintenance decisions based on the information received from the system.  

In a review of the technical and commercial challenges of wind turbine condition monitoring 

systems (WTCMS) Yang et al. [39] make the reader aware of the harshness of the WT nacelle 

environment and the reliability issues this causes for not only the WT but for the CMS also. 

Coupled with a lack of maintenance and recalibration to the CMS itself [39], the CMS 

reliability may be significantly reduced over time.  CMS must therefore be carefully designed 

taking these factors into consideration. 

In an attempt to advance the uptake of CMS Hameed et al. [106] evaluate their viability along 

with important parameters to consider with regards to design, system architecture, testing and 

installation. The authors discuss the requirements of an efficient and robust CMS including 

factors such as: modularity, ease of configuration, generic interfaces, and being self-starting 

and stable. Apart from the very last word in the previous sentence, these factors only describe 

functionality as opposed to increasing the reliability of a CMS. According to [107], reliability 

can be defined as “the probability of success or the probability that the system will perform its 

intended function under specified design limits”. Given that this definition uses functionality 

to describe reliability suggests that reliability and functionality are two different properties of 

a system.   The authors fail to mention the environmental conditions imposed on the system 

as a result of its installation in a wind turbine nacelle. The authors go on to discuss the other 

aspects of implementing a CMS including system architecture with examples from 

commercial systems, however these aspects again relate more to functionality than increasing 

reliability.  

Throughout the reviewed literature the trend in work relating to the design of CMS, such as 

[108, 109], primarily focuses on the functionality of the system, i.e. which instrumentation 

was required to monitor a given parameter, or which data analytical techniques should be used 

for the detection of faults within the wind turbine. Although these factors are crucial to the 
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development of an effective CMS they do not aid in increasing the reliability of the CMS. It 

is also apparent when reviewing the literature that the authors do not have real working 

experience of the environment in which a wind turbine CMS must operate. The work presented 

in this thesis will address this gap in the knowledge in order to increase the reliability of wind 

turbine CMS.        

 

2.10 The Future of Wind Turbine Condition Monitoring 

Wind turbine condition monitoring differs from the condition monitoring of conventional 

electrical generation technologies due to the complexity introduced by the stochastic nature of 

the wind. It is clear that there are potential benefits for the implementation of these systems 

however their immaturity and lack of evidence proving their worth has hindered their 

deployment. Since there is not a lot of experience in the condition monitoring of variable speed 

and load machines, it seems common practice to install a large number of sensors in order to 

obtain as much data as possible. This however will significantly increase capital costs of the 

system without necessarily improving reliability or functionality.   

Based on a number of papers there are several areas of wind turbine condition monitoring that 

require greater research resources invested. One of these areas is the development of condition 

monitoring techniques for wind turbine sub-assemblies that are not so commonly monitored. 

It is common for CMS to mainly focus on the gearbox, generator and main bearings; however 

more problems within a wind turbine are actually associated with the electrical and power 

electronic systems and also the yaw and pitch systems. The failure of these systems can cause 

prolonged downtimes, particularly offshore, emphasising the need for their monitoring.  Also, 

greater attention should be focused on the monitoring of sub-assemblies which have higher 

failure rates regardless of the ease with which they can be replaced.   

Another area which requires attention is the development of the ability of CMS to predict 

failures well in advance of them occurring. Increased prognostic ability will increase safety by 

reducing the risk of catastrophic failure, and improve the scheduling of maintenance in wind 

farms. Therefore if the progression of a fault can be predicted then a predictive condition-

based maintenance strategy will be realistic. 

In addition to the ability to predict faults CMS must increase their reliability by reducing the 

number of false alarms occurring and accurately identifying the presence of a fault. As stated 

in Section 1.2 it was found in [7] that CMS must provide correct diagnosis in around 60-80% 
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of cases, depending on the cost of maintenance actions, to be cost-effective. As the price of 

maintenance increases it becomes more essential for CMS to be reliable.  

 

2.11 Chapter Summary 

It is evident that there is a need to reduce the cost of wind energy in an attempt to meet the 

intensifying demand to increase the level of energy generated by renewable sources. One way 

of reducing the cost of energy from wind turbines is by reducing O&M costs through the use 

CMS to reduce the number of unexpected faults or outages and allow for optimised 

maintenance scheduling. This chapter has introduced the main components of a wind turbine 

and the techniques used to monitor their health.  

A review of the literature has been carried out into both condition monitoring instrumentation, 

and the data analysis and interpretation techniques used for detecting faults within the wind 

turbine. There was a greater focus on literature that discussed the monitoring of WT drive 

trains, particularly the gearbox and generator, due to these sub-assemblies being the main 

components monitored by the systems discussed in this research.  

The reviewed literature also identified a number of areas which researchers themselves believe 

require future work and investment. A key area commonly discussed as needing significant 

further work was the development of techniques which analyse large volumes of data in the 

time and frequency domain efficiently. Furthermore, it is essential that a large amount of data 

from operational wind turbines is available in order to validate these techniques, highlighting 

the need for CMS for research purposes. 

It was identified from the literature that most research projects into condition monitoring 

techniques validate the techniques through the use of test rigs or simulation data. Test rigs 

provide a controllable environment in which to carry out analysis, allowing faults to be 

simulated and the diagnostic techniques to be tested; however these simulated conditions may 

not necessarily precisely replicate that of an operational wind turbine. It was also apparent 

from the literature that there is a lack of research being carried out which is using data from 

operational wind turbines and any field data that is used typically coming from SCADA 

systems. This was the reason that the initial work carried out as part of this PhD project 

involved the deployment of a comprehensive CMS on an operational wind turbine which was 

capable of capturing continuous high frequency data to allow diagnostic techniques to be 

accurately tested.     
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One significant outcome from reviewing the literature was the lack of focus towards increasing 

the reliability of WTCMS themselves. Clearly, the overriding objective is to increase the 

reliability of wind turbines which, as identified in literature, can be done through the 

implementation of condition-based maintenance regimes. This however relies significantly on 

WTCMS which must themselves become more reliable to allow this to happen and this is the 

area that the work in this thesis aims to address. 
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3 Designing Robust Wind Turbine Condition Monitoring 

Systems: 5 Categories of Robustness 

3.1 Introduction 

A system may be considered robust if it is able to function normally in adverse conditions. 

Wind farms by their nature are located in areas which are inevitably subject to these adverse 

conditions. This chapter addresses research question one of this thesis by presenting five 

categories of robustness [110], which have been identified by the author, and 

incorporated into an engineering design process. Each of the categories are introduced and 

it is shown how incorporating then into a design process can ensure a reliable system is built. 

This is done by way of two case studies, the first being a CMS built without using a design 

process, then the second being built using a design process which incorporates the categories 

of robustness, highlighting the improved system design.   

The five categories of robustness are: 

1. Weather robustness 

2. Operational robustness 

3. Personnel handling robustness 

4. Electrical signal robustness 

5. System software robustness 

Each category has been identified through the process of performing failure mode effects 

analysis (FMEA) on the first system that was built and installed.   

3.1.1 Weather Robustness 

Electrical and electronic systems come in many forms and applications, and as a result the 

environmental conditions in which they must operate vary significantly. Understanding the 

environmental conditions that the system will be subjected to is crucial in order to design a 

system that can operate without failure. Spacecraft present an extreme case where failure to 

consider the environmental conditions can result in catastrophic failure not only in terms of 

financial loss but also loss to human life. Although phenomena such as spacecraft charging, 

plasma interactions and radiation interactions [111] aren’t a concern for most systems there 

are many factors which pose challenges to system design, particularly in the offshore 

environment.    
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Offshore systems are faced with a number of conditions such as high humidity, high salt level 

and extreme wind conditions, all of which make careful design more crucial. As stated by 

[112], “Careful selection of equipment, design and materials for equipment exposed to the 

elements is essential”. This may involve decisions such as keeping electrical equipment in a 

controlled environment, using space heaters and stainless steel hardware [112].  

A publication by the American Bureau of Shipping [113], having identified the challenges of 

the offshore environment, provides rules for the design and installation of offshore oil 

platforms which will increase the reliability and safety of these systems. Looking specifically 

at the rules for the electrical systems the rules include guidance for choosing equipment and 

enclosures, equipment earthing, and for material selection to name a few. A more detailed 

focus on the effects of weather on connectors is given by Callen et al. [114] who look at 

different connector types and how they fail as a result of harsh environmental conditions.  

The key, regardless of the application and resulting environment, in designing a suitable 

system is to understand the conditions that the system will face. Wind turbines are subject to 

a wide range of weather conditions all of which must be considered when designing a CMS. 

Temperatures on a wind farm in Scotland can easily range between -27 and 32 degrees Celsius 

[115]. These extreme temperatures can have a serious detrimental effect on electrical or 

moving equipment. The solution to this issue is the use of heaters and fans. Heaters are mainly 

used on external instrumentation (namely anemometers and wind vanes) and will be built into 

the device itself. Under normal circumstances the temperature within the nacelle will be 

sufficient to protect internal equipment from low temperatures.  

Fans are crucial to prevent electrical equipment from overheating. According to [116] 

generators can reach 150°C before a high temperature alarm leads to shut down. This gives a 

good indication of the internal nacelle heat sources a CMS is exposed to during operation; 

therefore fans are required to prevent computers and other circuitry from overheating which 

may result in a system malfunction.  

A common occurrence on wind farms is lightning strikes. A study by the National Renewable 

Energy Association found that up to 8 out of 100 wind turbines could expect to receive one 

direct lightning strike every year [117]. To mitigate the damage caused by lightning strikes all 

wind turbines are fitted with lightning protection which provides a low impedance path to 

ground. This will shunt the lightning current away from the components susceptible to 

lightning damage [118]. Equipment fitted on top of the nacelle, such as the anemometer or 

wind vane, are very vulnerable to lightning strikes due to their elevated position and therefore 
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must be robust enough to receive and withstand a strike. The enclosure of the CMS itself 

should have a good connection to earth in order to reduce the impact of any current from a 

lightning strike.       

Rainfall and precipitation are other parameters which can have a detrimental impact on 

electrical equipment within a CMS. If a printed circuit board (PCB) surface was to be 

contaminated with a conducting material in the presence of moisture and an applied voltage, 

the result could cause the lowering of resistance between tracks and pads which could lead to 

corrosion of metals [119]. Similarly any water ingress to internal electrical terminals can cause 

short-circuits resulting in damage of equipment through over-currents. IEC Standards known 

as IP ratings classify how well a product or system can protect against the intrusion of solid 

objects, dust and water. As illustrated by Table 2 the rating is made up by two numbers; the 

first describing the protection against solid objects and the second describing the protection 

against liquids. Due to field experience, this thesis recommends that a CMS located within the 

nacelle of a turbine has a minimum rating of IP54 which will sufficiently protect it from dust 

and will protect it against splashing water which may result from any leak within the nacelle 

[120]. 

Table 2: IP Ratings Chart – IEC Standard 60529:1989 

First 

Number 

Protection Against Solid Objects Second 

Number 

Protection Against Liquids 

0 No protection 0 No protection 

1 Protected against solid objects 

over 50mm 

1 Protected against vertically 

falling drops of water 

2 Protected against solid objects 

over 12mm 

2 Protected against direct sprays up 

to 15 degrees from vertical 

3 Protected against solid objects 

over 2.5mm 

3 Protected against direct sprays up 

to 60 degrees from vertical 

4 Protected against solid objects 

over 1mm 

4 Protected against sprays from all 

directions – limited ingress 

permitted 

5 Protected against dust-limited 

ingress 

5 Protected against low pressure 

jets of water from all directions – 

limited ingress permitted 

6 Totally protected against dust 6 Protected against strong jets of 

water – limited ingress permitted 

  7 Protected against the effects of 

temporary immersion between 

15cm and 1m. Duration of test 30 

minutes 

  8 Protected against long periods of 

immersion under pressure 
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Weather Robustness Criteria  

In order to use this robustness category within an engineering design process the following 

criteria have been defined: 

 The components/system can function satisfactorily for prolonged periods of 

time when subjected to the extreme temperature fluctuations that occur within 

the nacelle as a result of the ambient temperature. 

 The components/system can function satisfactorily for prolonged periods of 

time when subjected to high levels of moisture. 

 The components/system must have suitable IP ratings for the nacelle 

environment. 

 Lightning protection is in place to avoid damage from extreme over-currents. 

 

     

3.1.2 Operational Robustness 

As it was with weather conditions, depending on the application, engineering systems will be 

subjected to different challenges specific to the environment in which they have to operate. 

Operational factors relate to the conditions brought about by the operation of the system itself.  

One sector which is well aware of the challenges posed by operational conditions is the defence 

sector. High vibration and noise levels from military aircraft are undesirable and a great effort 

has been applied in reducing these effects. One way of doing this, which was proposed by the 

Defence Advanced Research Projects Agency, is through the use of smart materials which can 

allow aerodynamic and hydrodynamic flow control [121].  

Selecting and designing the correct hardware is crucial when the operational conditions created 

by the system are challenging. One area where this is very much the case is subsea power. In 

an attempt to overcome the challenges work by [122] aims to standardise subsea connectors. 

By standardising components which meet a specified standard, the reliability of the 

components will be increased - a concept which could be applied to wind turbine CMS.  

The rules and guidance set out in [113] for offshore systems also address the challenges of 

operational conditions by providing guidance on temperature ratings and the use of 

temperature sensors. It also gives guidance on the use of ventilation to guard against high 

temperatures.     
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As with all systems a wind turbine CMS must be robust enough to withstand the conditions 

applied through normal operation of the WT.  A wind turbine during operation will have 

significant levels of vibration and tower movement. Vibration levels in particular can have a 

negative impact on components such as connectors as a result of fretting. Fretting occurs when 

two touching surfaces move relative to one another and connectors experiencing this will have 

high contact resistance as a result of a build-up of debris from base metal that has worn from 

the connector surface [123]. A high contact resistance on sensor connectors may result in poor 

quality signals. To avoid fretting, connectors should be used which have contact materials 

which have a strong ability to resist the formation of insulating films such as oxides so that 

metallic contact can be maintained. Common metals chosen for this characteristic include 

gold, copper, tin, and tin-lead [123].            

As discussed previously the temperature within the nacelle of the WT can reach significant 

levels. This is mainly due to the heat given off by the gearbox and generator during operation. 

Fans are therefore required within CMS enclosures to ensure operating temperature limits of 

the individual components are not exceeded. These limits can be determined from 

manufacturer guidelines and a thermostat can be set accordingly to control the fan.   

Another operational parameter which must be taken into consideration during the design of 

CMS is the effect of the WT yaw motion. In the case where cables have to be run from the 

nacelle to the base of the tower it is crucial that cables can move freely without becoming 

trapped or being put under tension resulting in a breakage. WT yaw systems have limit 

switches to prevent them from rotating too far in one direction; however even with these limits 

in it is essential that there is enough slack in any cables that are running from the nacelle to 

the base of the WT so that they are not damaged should the WT yaw to its limit. 
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Operational Robustness Criteria 

In order to use this robustness category within an engineering design process the following 

criteria have been defined: 

 The components/system can function satisfactorily for prolonged periods of 

time when subjected to the high levels of vibration that occur within the 

nacelle. 

 The components/system can function satisfactorily for prolonged periods of 

time when subjected to the extreme temperature fluctuations that occur within 

the nacelle as a result of the heat given off by the wind turbine components, 

i.e. the gearbox and generator. 

 The system takes into account the yaw movement of the nacelle and the effect 

this may have on the system. 

 

3.1.3 Personnel Handling Robustness 

The need for robustness is increased within a system when there is going to be a high level of 

personnel activity in and around the system. This is particularly the case for aerospace and 

defence applications where electrical equipment such as switches, sensors or cabling is 

subjected to regular usage and impacts from personnel. Manufactures such as Honeywell 

provide entire ranges suited to these applications [124] where the equipment is more rugged 

and suited to these environments. Offshore platforms are also to an extent faced with the need 

for robust hardware due to the cramped conditions [112] and increased likelihood of 

inadvertent impact from personnel.  

Within military applications, the design of connectors is very important to reduce the 

likelihood of failure when being used in such a harsh environment. The United States of 

America, to ensure connectors are suitable for the military environment, set a standard which 

is known as the military standard often denoted “MIL-SD”, “MIL-SPEC” or “MilSpecs” 

[125]. Depending on the specific application within the military there are different military 

standards which should be used for connectors which define characteristics such as 

temperature limits, mating type, locking type and the type of contacts used [126].    

A wind turbine CMS, over its lifetime, will be handled many times by anyone working with 

or around it. This will begin at the testing stage before the system is even installed. Sensor 

connectors will be connected and disconnected a considerable number of times during the 
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testing process. This makes it essential that the connectors are robust enough and secured 

tightly enough to cables or harnesses to ensure they do not break or become loose. Following 

the testing stage the sensors will then be handled during installation further highlighting the 

need for their robustness. During any maintenance work being carried out on the WT, it is 

likely that sensors may be knocked or tugged and therefore must be of sufficient build and 

lockable to prevent inadvertent disconnection.   

It is not only connectors but the CMS enclosures also which must be robust. The enclosure 

will be particularly vulnerable during the installation stage. Initially the system must be 

transported from where it is built to the WT where it is to be installed, usually by van or 4x4 

vehicle. Roads or tracks up to wind farms are typically very rough making the CMS enclosure 

liable to knocks and bumps. Once at the WT the CMS enclosure will have to be lifted from 

the ground up to the nacelle by a winch, another stage where the CMS enclosure is vulnerable 

to mechanical shock. The main CMS enclosure should therefore be built of a strong resilient 

material.  

Personnel Handling Robustness Criteria 

In order to use this robustness category within an engineering design process the following 

criteria have been defined: 

 Cables and connectors are of a build which allows high levels of connection 

and disconnection without the integrity of the connection being weakened.  

 Connectors, sensors and fixings are of a build which can withstand being 

inadvertently knocked or tugged.  

 All connections are lockable to present inadvertent disconnection. 

 The main system enclosure is of a build which protects the system during 

transport and within the nacelle.    

 

3.1.4 Electrical Signal Robustness 

Systems engineers are well aware of the issues associated with electrical noise and the need to 

meet electromagnetic interference (EMI) or electromagnetic compatibility (EMC) standards. 

In an attempt to provide guidance to spacecraft engineers NASA produced a technical 

handbook specifically looking at the grounding architecture [126]. The aim of which provides 

a good definition of the need for electrical signal robustness: “to aid in the minimization of 

electromagnetic interference (EMI) and unwanted interaction between various spacecraft 
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electronic components and/or subsystems” [126]. The document discusses different 

architectures for grounding and makes the point that different architectures are more suited 

depending on the characteristics of the application such as spacecraft size in this case.   

Referring again to the military standard, work by Crawford and Ladbury [127], look at a 

technique for measuring the shielding effectiveness of cables and connectors as defined by 

MIL-STD 1344A. Military standards not only define the requirements of the system or 

component itself but also provide methods and techniques for assessing the standard. Crawford 

and Ladbury look specifically at the mode-stirred method, discussing problems encountered 

when using this method for measuring the shielding effectiveness. 

EMI standards are particularly important within Navy vessels. Dixon [128], having discussed 

the challenges faced by manufacturers and engineers to meet EMI standard for naval 

applications, proposes that rather than all equipment having to meet the strict military standard 

for EMI, equipment which is particularly susceptible to the effects EMI should be better 

designed to be immune from the noise effects.              

For accurate measurements from a wind turbine CMS, signals must be relatively free from 

electrical noise, something which is hard to avoid within a wind turbine nacelle. Noise, or 

interference, can be defined as undesirable electrical signals which distort or interfere with the 

desired signal [129]. Vijayaraghavan et al. [129] categorise noise sources into internal noise, 

which comes from the system itself, and external noise, which comes from an outside source. 

Internal noise may include thermal noise due to electron movement within the electrical 

circiuts or may be caused by imperfections in the electrical design. External noise on the 

otherhand may be caused by electromagnetic interference from currents in cables, radio 

frequency interference from radio systems radiating signals, or crosstalk which is interference 

from other cables close-by. The level of noise within a signal is defined by the signal to noise 

ratio (SNR), a measure (usually dB) of the signal strength relative to background noise.       

The main likely causes of electrical noise within a signal cable are power cables [130] within 

the CMS enclosure itself (an internal noise), and the WT generator [131] along with its 

associated cables (external noise).  The difficulty in keeping signal cables away from power 

cables and the generator is due to the lack of space within both the CMS enclosure (see Figure 

15) and the WT nacelle. To aid against noise, signal cables and power cables should be kept 

separate within the CMS enclosure where possible. Furthermore, if a signal cable has to cross 

a power cable (such as one from the generator) it should cross at a 90 degree angle in order to 

reduce inductive coupling [130]. Another key factor in reducing noise is the use of screened 
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or shielded cable. There are different types of screened and shielded cable but all will generally 

consist of twisted pairs; a theory invented by Alexander Graham Bell in order to reduce noise 

on cables [132]. A fully shielded cable, described as shielded foil twisted pair (S/FTP), which 

has a metallic shield on the outside of the bundle of twisted pairs as well as each twisted pair 

having its own foil screen, is now gaining popularity over the traditionally used unshielded 

twisted-pair (UTP) [133] due to its ability to reduce noise in cables. As important as it is to 

use screened cable however; it is just as important as to where the screen is connected [134] 

which should be to a suitable ground [133]. Care should be taken to avoid “ground-loops”, a 

phenomenon that can occur when there is a potential difference between the ground at the 

sensor and the ground at the acquisition module or amplifier.  

Electrical Signal Robustness Criteria 

In order to use this robustness category within an engineering design process the following 

criteria have been defined: 

 The system can acquire usable data with an acceptable signal to noise ratio. 

 

 

3.1.5 System Software Robustness 

Software now plays a critical role in most engineering systems. For certain applications this is 

often termed critical software, where a failure by the software system would result in 

catastrophe. To reduce the likelihood of failure it is imperative that the validation stage of 

software design detects any flaws. This requirement is discussed by Pingree et al. [135] in the 

area of spacecraft design. The growing complexity of systems and the resulting software 

means that it is becoming more difficult to validate and test software efficiently. Pingree et al. 

aim to overcome this through the use of model checking as a validation technique for assessing 

mission critical software.  

Work presented by Shi et al. [136], in the application area of rail transportation, similarly 

present a method for verifying software design. In this case a software and hardware co-design 

flow is presented which is able to simulate hardware faults in order to test how the software 

reacts to these faults.   

Validating software design is crucial for any system and ongoing validation throughout the 

design process can increase the success of the system as stated by Fritz and Shocket [137]. In 

designing a major weapon system for the US Navy, they found that the software for the system 

was far more maintainable as a result of disciplined planning and design.         
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The software for the wind turbine CMS is a crucial part of the system required to facilitate a 

number of functions, such as, setting acquisition rates, acquiring samples from sensors, 

formatting the sampled data and storing the data in a database of some sort. Other tasks may 

also include synchronising the system with other subsystems, allowing remote access via a 

virtual private network (VPN), or actuating control devices. Regardless of the tasks to be 

performed, for a system which must operate in a wind turbine, it is crucial that the software is 

able to carry them out indefinitely without the need for human intervention.  The software 

used for the two CMSs discussed in this thesis was created using National Instruments 

Labview, so this section may bias towards increasing software robustness for this type of 

programming. As opposed to programming languages such as C or Java, Labview is a 

graphical programming language which uses a dataflow model rather than lines of sequential 

text code [138].  

In terms of designing a program there are three characteristics of a bad design, defined by 

Robert Martin [139], which should be avoided: 

 Rigidity - It is hard to make changes as every change affects too many other parts of 

the system. 

 Fragility - When you make a change, unexpected parts of the system break. 

 Immobility - It is hard to reuse in another application because it cannot be disentangled 

from the current application.   

These characteristics apply to any programming language however the use of Labview makes 

these characteristics easier to avoid through the use of design patterns. Design patterns are 

basically templates that can be used as a starting point when designing a program. According 

to National Instruments using a design pattern will simplify the development process but more 

importantly increase reliability since many of the patterns are very much tried and tested [140].  

According to Blume [141] there are seven aspects to consider when designing a program: 

 Ease of use – the ease in which the end user operates the software and accomplishes 

their objectives 

 Efficiency – how well the program makes use of the processor, memory, and 

input/output resources 

 Readability – how easily the developer can comprehend the source code 

 Maintainability – how easily the author or someone else can understand and modify 

the source code 
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 Reliability – being free from bugs and never crashing 

 Simplicity – relating to the quantity of nodes and terminals that comprise an 

application 

 Performance – how well the application completes its intended mission 

It is believed that the most important aspect for a wind turbine CMS is reliability due to the 

remote location of wind turbines and the difficulty in gaining access to them should a fault 

arise. Blume states that an application is robust if it is bug free and never crashes. One way to 

ensure this is through the use of fundamental constructs which promote reliable applications; 

namely subVIs (virtual instruments) and error handling. SubVIs, which are similar to 

subroutines in textual based programming languages, allow modularisation by taking a portion 

of code which performs a specific task and enclose it in a subVI. The use of SubVIs makes it 

easier to test and debug code since single tasks are contained in a single subVI. By using 

subVIs that have been previously designed and tested reliability can be further increased. 

Error handling within Labview is facilitated through the use of an error cluster which contains 

any information relating to an error and allows decisions to be made of what action to take 

depending on whether an error is present or not. Errors may be passed to a dedicated error 

handling loop which evaluates, reports and logs the error.  Managing errors in this way may 

be the difference between a program crashing or continuing to operate having notified the 

operator of an error.    

System Software Robustness Criteria 

In order to use this robustness category within an engineering design process the following 

criteria have been defined: 

 The system can operate for prolonged periods of time without human 

intervention 

 The software is readable to allow faults to be easily identified 

 The system has built-in error-handling to allow the system to continue to 

operate in the presence of an error 
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3.2 Vestas V47 Condition Monitoring System 

3.2.1 System Overview 

The first condition monitoring system designed and built by the University of Strathclyde was 

installed in a Vestas V47 wind turbine in collaboration with the Supergen Wind Consortium 

[76]. The wind turbine for the installation was located at Hare Hill Wind Farm in Ayrshire 

which was selected due to the harsh weather conditions it was exposed to.  

It should be noted that this system was designed as a research tool as opposed to a commercial 

system that would be produced in high numbers. It was therefore known that although certain 

components were suitable for this application they would not be suitable for a commercial 

product.  

The system which is also described in [77] was the first wind turbine condition monitoring 

system that had been built by the university. The objective of the system was to continuously 

acquire high frequency measurements taken from an array of sensors located on and around 

the wind turbine drivetrain. Since it was not known yet what fault signatures or degradation 

patterns were likely to be seen or what data was required to investigate these parameters it was 

deemed best practice to capture as much data as technically and logistically possible. It was 

decided that two acquisition rates would be used for capturing the data: a higher rate of 20 kHz 

and a lower rate of 50Hz. The sensors and corresponding acquisition rates are given in Table 

3.  
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Table 3: Sensors and acquisition rates 

Sensors sampled at 20kHz Sensors sampled at 50Hz 

Accelerometer – Main bearing X PT100 Temperature – Main bearing 

Accelerometer – Main bearing Y PT100 Temperature – Gearbox 

Accelerometer – Gearbox X PT100 Temperature – Generator 

Accelerometer – Gearbox Y PT100 Temperature – Nacelle ambient 

Accelerometer – Generator X PT100 Temperature – CMS internal 

Accelerometer – Generator Y PT100 Temperature – Nacelle external 

ambient 

Accelerometer – Nacelle base plate Dual axis accelerometer – Tower XY 

movement 

Voltage – Generator Phase 1 Wind Vane 

Voltage – Generator Phase 2 Accelerometer 

Voltage – Generator Phase 3 Humidity 

Current – Generator Phase 1 Atmospheric Pressure 

Current – Generator Phase 2 LSS Rotational Speed 

Current – Generator Phase 3 Digital Compass 

        

Having discussed the design and build of this system with the authors of [76] and [77] it was 

apparent that were a number of factors which made the design challenging, the first being the 

lack of space within the wind turbine nacelle which was also coupled with the requirement of 

high data acquisition speeds.  According to the previous authors an industrial computer 

initially seemed like the obvious choice however; the high capital costs and limited processing 

power combined with the bulkiness of the enclosure soon ruled this option out. It was then 

decided that a standard desktop Dell Optiplex would be used as this could provide the 

processing capability at low cost. To make it more suitable for the nacelle environment the 

outer casing of the PC was removed and it was fitted into a purpose built enclosure (Figure 

14). This enclosure would also house the other components that would make up the condition 

monitoring system.  
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Figure 14: System enclosure unwired 

The enclosure, made out of aluminium, also housed an uninterruptable power supply (UPS) 

which was essential to prevent sudden power loss which field experience suggests is a common 

occurrence within a wind turbine. The UPS used was an APC RS-800 which could provide 

approximately 1 hour of back-up power. This was deemed enough back-up power as power 

losses within a wind turbine will tend to be either very short outages i.e. seconds for a 

momentary power loss, or hours or even days for a grid trip or more major outage.  

 

Figure 15: Inside main enclosure 

Also, contained within the system enclosure was a switch mode power supply (SMPS). This 

was required to deliver a range of DC voltages to the sensors, each having different voltage 

input requirements.  

Two essential parts of the system were the data acquisition modules. These consisted of a 

National Instruments USB-6218 acquisition module which was used for the low speed data 

acquisition and a National Instruments PCI-6251 module which was used for the high speed 



68 

 

data acquisition. Due to the number of sensors and the requirement for two different 

acquisition rates (50Hz and 20 kHz) it was not possible to have a single acquisition module.  

The other main components within the system enclosure were mainly focused towards signal 

conditioning. PT100 signal conditioner cards were used to take the signals from the PT100 

temperature sensors and convert them into a voltage that could be read by the low speed data 

acquisition module. Frequency to voltage converters were used to convert the frequency 

received from the RPM and anemometer signals into voltage that the low speed acquisition 

module could read. A vibration sensor interface module was also located within the system 

enclosure and was required to obtain an accurate measurement from the accelerometers.  

Separate from the main CMS enclosure is the Host PC enclosure which is located at the base 

of the tower. This enclosure has two main functions: to allow communications with the nacelle 

equipment and to receive the data from the main CMS enclosure and store it on Ethernet drives 

which are also located within the enclosure. Figure 16 shows the system architecture. 
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Figure 16: System Overview [76] 
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3.2.2 Failure Mode Effects Analysis Applied to System One 

The first system was installed in the wind turbine for almost a year however was not 

operational for a significant proportion of that time. The length of downtime was due to system 

failures coupled with not being able to gain access to it due to weather restrictions.  Having 

lost communications between the nacelle enclosure and the tower base enclosure it was 

decided that it was not economically viable to continue to troubleshoot issues as they arose 

within the wind turbine. It was therefore decided that it would be better to uninstall the system, 

learn from the experience and put the equipment to better use in an environment which allowed 

for easier CMS fault diagnosis and debugging.   

The system was removed by Vestas technicians whilst they carried out routine maintenance. 

This avoided the need for an additional wind turbine shut down and the expense of having two 

Vestas technicians taken out of performing more crucial work on the wind farm. 

An FMEA is a step-by-step process for identifying all possible failures within a design, 

product or service [142]. The purpose of carrying out the FMEA is to take actions to eliminate 

or reduce failures, starting with the highest priority ones [142]. Performing an FMEA is 

advantageous in identify high level failures however it does have its limitations in being able 

to include every trivial failure mode [143]. That said it is a useful tool and has been used on 

the first system in order to identify the causes of its failure and to allow improvements to be 

made to future systems based on the findings. 

The first step of the FMEA is to identify the parts of the system which have failed or not 

functioned satisfactorily and the effects these have had. For a mechanical part this may simply 

be visual inspection however for an electrical part or for a larger system such as a computer 

this may be a lengthier process which involves testing individual pieces of electrical circuitry. 

It may also involve replacing known failed components or bypassing them in order to test parts 

of the system where the status is unknown. Having identified these parts the focus then moves 

onto identifying the cause of the failure or unsatisfactory performance. It may not always be 

possible to definitively confirm the exact cause of failure but quite often the nature of the 

failure leads one to the cause of the failure. For example, a cable that has snapped could be 

assumed to have come under too much strain. Or a corroded connector could be assumed to 

have been exposed to high moisture levels.   Having identified the failure and the cause of the 

failure the aim is then to identify what can be done to prevent these failures or under 

performance happening again. In terms of a wind turbine CMS this usually involves selecting 

different component which are more suited to the task. It may also involve redesigning the 

architecture of the system to avoid certain problems.            
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This section discusses the FMEA under each of the robustness categories highlighting how the 

different failures of the first system allowed the five categories to be identified.  

Weather Robustness 

On decommissioning the CMS several factors were found that could have caused signal 

degradation. One of these factors was the build-up of corrosion on the pins within one of the 

connectors (Figure 17). It is notable that the sensor with this corrosion was located at the hub 

of the wind turbine where the main shaft enters the nacelle. This increased corrosion may be 

the result of increased moisture levels at the hub where precipitation can more easily penetrate 

the nacelle.  

 

Figure 17: Connector corrosion 

It was also noted that on the junction box for the weather instruments one of the connectors 

had signs of sparking (Figure 18). There are several explanations as to why this may have 

happened. One explanation and the most likely is that a build-up due to corrosion caused a 

short circuit between the terminals resulting in over-currents. Another explanation may be that 

(prior to any corrosion) moisture had seeped in, possibly due to rainfall, and this caused short 

circuiting between the terminals.  
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Figure 18: Connector sparking 

An observation made when removing the weather instruments from the met mast bracket was 

that the mast had been struck by lightning. A lighting rod that had been welded to the met mast 

was no longer present and there was evidence of hot sparks from markings on the fin of the 

wind vane (Figure 19). It is believed that the extreme currents and heat caused by the lightning 

strike had caused the weld to fail and thus allow the lightning rod to break off.  

 

Figure 19: Wind vane following suspected lightning strike 
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Table 4: FMEA that identified the need for Weather Robustness 

Component/

Function 

Failure 

mode 

Effects of 

FM 

Cause of 

FM 

Preventativ

e action 

Robustness 

Categories 

Connector Lost signal,  

Noisy data 
Data 

loss/corrupt

ion 

Corrosion 

from 

moisture 

ingress 

Improved 

connector 

Weather 

Lightning 

rod 

Broken 

lightning 

rod 

Equipment 

left 

vulnerable 

to over-

currents  

Lightning 

strike, 

inadequate 

build    

Stronger 

lightning 

rod, 

appropriate 

earthing 

Weather 

 

Operational Robustness 

Having collected several months’ worth of data it became apparent when comparing the later 

datasets to the initial datasets that false readings were being obtained. Initially it was not 

known whether the sensors themselves had failed or whether it was another issue between the 

sensor and data acquisition module. Upon further investigation it was found that for the PT100 

temperature sensors false readings were being obtained due to loose connections entering the 

signal conditioning modules. These modules use spring loaded terminals to clamp the 

incoming wires. It is believed that high levels of vibration due to normal wind turbine 

operation combined with a small downward force from the weight of the wire caused these 

connections to work loose. It would therefore be recommended that spring loaded terminals 

are not used within a wind turbine nacelle environment.   

On one visit to the wind turbine for data collection it was found that the entire CMS was 

switched off. It became apparent that there was no power from the auxiliary power supply 

within the wind turbine. On speaking to the wind farm site supervisor it was discovered that 

there had recently been a grid trip meaning that the turbine had been disconnected from the 

electrical grid and had been without power. This in turn had caused the circuit breakers for the 

auxiliary power supply within the wind turbine to trip. This meant that the UPS batteries for 

the CMS had been drained of all power and the CMS therefore shut down. It was not until the 

circuit breakers were reset that the UPS could receive power and switch the CMS back on. 

When a CMS is being run from an auxiliary power supply that is susceptible to power losses 

it is important that the power status is monitored to ensure that it can be restored as soon as 

possible following an outage. This issue may not always be something that can be avoided 

through the system design as it depends on the site’s communications network but it 

emphasises the need for good communication between the condition monitoring team and the 

wind farm site supervisor.   
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On uninstalling the system from the wind turbine it was discovered that the fibre optic cable 

running between the main CMS enclosure and the Host PC had snapped. The way in which 

the cable was frayed suggests that the cable had snapped after coming under excessive strain 

as opposed to general wear and tear (Figure 20). It was therefore obvious that this break of the 

fibre optic cable had resulted in the loss of communications between the enclosure in the 

nacelle and the enclosure at the base of the tower. This was in fact the second fibre optic cable 

that had broken this way. It is believed that the reason for this breakage was due to a lack of 

slack in the cable. The fibre optic cable ran down the tower alongside the four power cables 

which are separated by a circular spacer (Figure 21). This spacer allows the cables to twist at 

the same time as the turbine yaws and prevents them from coming under excessive strain 

through twisting.  

 

Figure 20: Frayed fibre optic cable 

 

Figure 21: Wind turbine tower with power cables in centre 
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Fibre optic cable by its nature does not have a lot of flex in it and therefore when subjected to 

excessive strain will break relatively easily. To prevent the fibre optic cable from coming under 

excessive strain it must be installed in a way that allows it to have enough slack to prevent 

over straining yet be secured in the right places to avoid any one part bearing the weight of the 

cable below it. Where possible any new fibre optic cable being installed should follow as 

closely as possibly the path of the existing fibre optic cable which is used for the wind turbine 

control communications. The most likely location in the wind turbine for the fibre optic cable 

to come under excessive strain is at the yaw deck. It is therefore crucial within this area to 

leave sufficient slack to be taken up as the wind turbine yaws.  

With the system uninstalled from the wind turbine it was brought back to the university so that 

it could be further tested and the reasons for its failure identified. The cabinet located at the 

base of the tower was tested first. This cabinet housed the Host PC which had the purpose of 

allowing communications with the system in the nacelle and also of receiving the data from it 

and storing it on an external Ethernet drive. When power was supplied to the enclosure, the 

PC and Ethernet drives started up as normal and all files and folders could be accessed. This 

enclosure is less susceptible to issues caused by the rising and falling of temperature which 

would be experienced by the nacelle enclosure whenever the wind turbine was shut down or 

started up. To protect this base cabinet from low temperature conditions a heater had been 

fitted inside it along with fans to draw out any moisture.  

After confirming that the tower base cabinet was functioning as normal attention was moved 

onto the nacelle enclosure. This is the main enclosure for the CMS and houses all the crucial 

data acquisition hardware including a PC. On removing the enclosure cover it was found that 

there was a large volume of thick black dust covering everything (Figure 22).  
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Figure 22: Large volume of dust inside enclosure 

Power was supplied to the UPS and an attempt was made to switch it on however it would not 

power on. The UPS supplies the power to all components of the CMS within the nacelle and 

therefore with it not switching on, nothing else could receive power. The battery for the UPS 

was replaced in an attempt to get it to switch on however it still would not, suggesting a more 

serious fault within the UPS.  

When the CMS was designed and built a fan was fitted on top of the UPS air inlet in an attempt 

to increase the circulation of cool air and prevent the UPS from overheating. However it 

became apparent from the level of dust within the UPS that the fan had in fact caused more 

harm than good by drawing dust inside of it (Figure 23). Part of the reason for drawing in so 

much dust was due to the absence of the correct fan filter which would have prevented such a 

level of dust passing through. However given the excessive volume of dust, even with a filter 

in place, airflow would soon have been restricted as the dust saturated the filter. It is therefore 

believed that the dust drawn inside the UPS by the fan caused the fan to overheat, resulting in 

its failure. Replacing the UPS within the nacelle would have been very difficult, time 

consuming and economically not viable and therefore this further underpins that it was the 

correct decision to have the system uninstalled from the wind turbine.  
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Figure 23: Failed UPS due to excessive dust 

To continue to test the rest of the system, the working UPS from the tower base enclosure was 

used to replace the faulty UPS. Power to the UPS is supplied via a connection and switch on 

the outside of the enclosure. The enclosure is also fused and the mains supply enters a terminal 

block before connecting to a slow-start relay and the UPS. On trying to switch on the UPS a 

clicking noise could be heard from inside and it would not switch on. This clicking noise is 

likely to be the automatic voltage regulator (AVR) attempting to correct the input voltage 

level. The UPS has an AVR boost function which uses the internal transformer to increase that 

voltage and an AVR trim function which uses the internal transformer to decrease the input 

voltage. Bypassing the enclosure external connection, switch, fuse and slow start relay stopped 

this clicking and allowed the UPS to switch on as normal. A voltage drop within the enclosure 

caused the UPS to attempt to correct the voltage however it was unable to correct it to a level 

that allowed it to switch on.  

With the UPS now powering the rest of the system attention was turned to testing the sensors. 

As stated previously the signals from the sensors are acquired via two data acquisition (DAQ) 

modules: a high speed module acquiring at 20 kHz and a low speed module acquiring at 50Hz. 

On attempting to run the acquisition software it was found that the DAQ modules were not 

being seen by the computer. On closer inspection it was found that the DAQ modules were 

not powering up. To confirm this, the low speed USB DAQ module was removed and 

connected to another PC. Surprisingly the module powered up as normal and could be seen by 

the PC. On connecting it back into the CMS and after further investigation it was discovered 

that the reason the DAQ modules were not being seen by the CMS PC was due to an NI MAX 

database corruption. NI MAX is the measurement and automation explorer that allows 

hardware to be connected to the PC and managed. Database corruption can occur if the system 
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is not shut down properly, which is usually caused by a power loss and in this case this 

corresponds to the failure of the UPS.  Under normal circumstances if the UPS had simply run 

out of battery the system would have shut down safely prior to this. However since the UPS 

failed it is likely that no signal to shut down safely was received by the PC.  

With the corrupted database restored the sensors could then be tested. Of the six PT100 

temperature sensors it was found that only one was faulty. It was not the sensor itself that was 

faulty but the corresponding signal conditioning module. The cause of failure of this module 

is unknown however due to the other issues associated with the terminals (discussed in section 

3.2.2) of this module it would not be recommended for use again for such an application.   

Another notable observation was the difference between enclosures that were IP rated 

compared to those that were not. The enclosures that had an IP rating of 56, which prevents 

dust and splashing liquid, had no dust inside them at all (Figure 24) compared to those that 

had no IP rating (Figure 22). The reason that there were enclosures with no IP rating is because 

they were purpose built in-house.     

 

Figure 24: IP56 rated enclosure 
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Table 5: FMEA that identified the need for Operational Robustness 

Component/

Function 

Failure 

mode 

Effects of 

FM 

Cause of 

FM 

Preventativ

e action 

Robustness 

Categories 

PT100 

Sensor 

Disconnecti

on 

Loss of 

signal 

Vibration & 

spring 

connection 

Improved 

connector 

Operational  

Power 

supply 

Power loss CMS 

shutdown 

Grid trip  Better 

communicat

ion 

Operational  

Uninterrupt

able power 

supply 

(UPS) 

Burnout UPS failure,  

power loss.  

Dust build 

up, lack of a 

filter   

Use of 

appropriate 

filters 

Operational  

Data 

acquisition 

modules 

Corruption Data loss Unexpected 

shutdown, 

no shutdown 

procedure 

Error 

handling, 

use of 

shutdown 

procedure 

Operational  

Software 

Fibre-optic 

cable 

Snap, break Data/comms 

loss 

Excess 

strain on 

cable 

Improved 

routing, 

breakpoints  

Operational  

 

 

Personnel Handling Robustness 

Manual handling robustness is applicable at different stages of the systems’ lifetime. The first 

stage was when the system was being tested. During this stage the sensors were connected and 

disconnected from the system numerous times which resulted in some fatigue to the cable 

where it enters the connector. It was also found that some cables were coming loose from their 

connectors due to the cable diameter not being a perfect fit for the connector. It is therefore 

essential that when cables and connectors are specified during the design that they are a 

suitable match for one another.  

The testing stage was the only stage that resulted in issues with the system. There were no 

issues caused to the system by personnel at either the installation or maintenance stages. The 

main enclosure had been designed so that it was capable of supporting the weight of any 

personnel working within the wind turbine nacelle to reduce the risk of damage to equipment 

inside should it be stood on.   
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Table 6: FMEA that identified the need for Personnel Handling Robustness 

Component/

Function 

Failure 

mode 

Effects of 

FM 

Cause of 

FM 

Preventativ

e action 

Robustness 

Categories 

Connector Connector/ 

cable break 

Signal loss Poor cable/ 

connector 

match 

Careful 

selection of 

components 

Personnel 

handling 

Cable Snap, break Signal loss  Repeated 

bending 

during use    

Stronger 

cable 

/sheathing 

Personnel 

handling 

 

Electrical Signal Robustness  

As discussed in the introduction of this chapter, the wind turbine nacelle is an inherently noisy 

environment in terms of electrical signals. The main causes of this noise being the power 

cables [130] within the CMS enclosure and also the WT generator [131] along with its 

associated cables. The system was originally designed and built using only twisted pair cable 

which would not provide the level of noise cancellation that a fully shielded cable could 

provide. Due to the complexity of this system and the limited space within the main CMS 

enclosure, as can be seen from Figure 15, it was almost impossible to ensure that power cables 

and signal cables were kept separate. Furthermore the UPS for the CMS was also located 

within the main enclosure which would contribute further to noise within the signal cables. 

Table 7: FMEA that identified the need for Electrical Signal Robustness 

Component/

Function 

Failure 

mode 

Effects of 

FM 

Cause of 

FM 

Preventativ

e action 

Robustness 

Categories 

Electrical 

signals 

Electrical 

noise 

Poor signal 

quality  

Cable type, 

cable 

routing 

Shielded 

cable, 

careful 

routing 

Electrical 

signal 

 

System Software Robustness  

Shortly after the completion of the installation of the system and having left it acquiring data 

for one week it was found that the acquisition program for logging data had crashed. After 

some time troubleshooting the issue it was found that it had crashed due to a one of the virtual 

instruments (VI) (similar to a subroutine in C programming) in the software being unable to 

establish a serial connection with the electronic compass. Rather than the VI accepting that it 

could not connect to the compass and flagging an error then carrying on with the rest of the 

program, it became “stuck” and continued to try to connect to the compass which prevented 

the rest of the program from running leading to the system crashing.  

This problem with the electronic compass highlighted a potential area for improvement early 

on. The concern was not due to the fact that the sensor was not being read but was due to the 
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fact that the program had not handled the error well. A well designed software program should 

be able to handle an error in a way that allows the rest of the program to run uninterrupted 

rather than causing a complete system crash.   

One difficulty in troubleshooting a CMS within a commercial wind turbine is the time-

pressured environment brought about by the loss of revenue being accrued for every minute 

that the blades are not turning. Wind farm operators are very reluctant to shut down a wind 

turbine unless it as absolutely necessary. The wind turbine must be shut down any time access 

to the nacelle is required. 

Troubleshooting within this time-pressured environment highlighted another area for 

improvement with the system software: readability. Trying to identify a problem within a large 

program under pressure and having not written the program was challenging. National 

Instrument’s Labview is a graphical programming environment which prides itself on its 

usability and ease in which engineering problems can be implemented. This however relies on 

the careful use of subVIs; as discussed in the previous section, using subVIs increases the 

modularity of the program making it more readable and easier to debug. In this case subVIs 

were not used as well as they could have been which resulted in a very large and difficult to 

read main VI. 

Table 8: FMEA that identified the need for Software Robustness 

Component/

Function 

Failure 

mode 

Effects of 

FM 

Cause of 

FM 

Preventativ

e action 

Robustness 

Categories 

Main 

software 

program 

Crash Full system 

crash, data 

loss 

No error 

handling 

Error 

handling 

Software 

  

3.3 Formulation of Engineering Design Process 

Five categories of robustness have been identified through the process of carrying out an 

FMEA. Criteria for each category have been defined in order that the categories may be used 

during the design of a wind turbine CMS. Addressing the first research question of this thesis, 

this section will introduce and discuss the formulation of an engineering design process which 

integrated the categories of robustness.  

An engineering design process is a formulation of a plan to aid an engineer in creating a 

product [144]. There are a number of variants of the steps included in the design process 

however the process should guide the engineer in developing a system or product which is 

able to perform its desired function. The design process may vary depending on the application 
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of system or product being created. An example of this being a safety-critical system which 

may be defined as a system whose failure may result in danger to human life, lead to substantial 

economic loss, or cause extensive environmental damage [145]. A safety-critical system will 

require a more rigorous validation stage of the design process to significantly reduce the risk 

of failure.  

In an attempt to aid the design process for renewable energy systems, Chandler and Matthews 

[146] present a solution to system design based on holistic Model Based System Engineering 

using SysML (System Modelling Language). By defining system interconnections decision 

making will be improved which will allow designs to be better tailored to the environment in 

which they are to operate.   

   

Figure 25: Systems Engineering Process Derived by Chandler and Matthews [146]. (Reproduced from [146]) 

Figure 25 shows the 5 stage process derived by Chandler and Matthews. This holistic approach 

uses all available data in order to progressively strengthen the design starting with the 

definition of requirements which includes data from stakeholder or market demands. The final 

stage of the process involves comparing system requirements with the potential system 

solution and it is at this stage of designing a wind turbine CMS that the five categories of 

robustness should be implemented.     

To aid in the design of wind turbine CMS an engineering design process is presented in Figure 

26. This design process incorporates the five categories of robustness which were identified 

through the process of an FMEA.  

 

(1) Definition of 
Requirements

(2) Operational 
Requirements 

Analysis

(3) Functional 
Definition

(4) Physical 
Definition

(5) Design 
Validation
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Defining the functionality of the system is the first step of the design process. Examples of 

functional requirements for a wind turbine CMS may include: 

 Capture sensor data at a specified sampling rate 

 Transmit acquired data to wind farm control centre for analysis 

 Backup a specified volume of data locally 

 Allow remote access to check system status 

 Alert wind farm operator when specified thresholds are exceeded 

  

The next stage of the design process is to define the system architecture, hardware and software 

design.  The architecture of the system relates to the hardware layout and therefore how parts 

of the system are linked to other parts of the system. The hardware design identifies the actual 

components that are used within the system. And finally the software design is what allows 

each part of the system to interact in order to carry out the required functions. Although each 

Figure 26: Design Process for implementing Robustness Categories 
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of these areas are related to one another they are designed independently and therefore should 

be validated independently which is the final step of the design process.  

System validation is the crucial stage which will ensure that the design specified will allow 

the specified functionality to be carried out satisfactorily. Not only should this stage ensure 

that the system can carry out the required functionality but it must also ensure that the system 

is designed suitably for the environment in which it has to operate. For this reason the five 

categories of robustness identified by the author have been integrated into this validation stage 

as shown in Figure 26. For the system to carry out its required functions and to operate reliably 

in the environment in which it has to operate: 

(1) System architecture should comply with criteria for operational and electrical signal 

robustness 

(2) System hardware should comply with criteria for weather robustness, operational, 

personnel handling and electrical signal robustness 

(3) System software should comply with criteria for system software robustness  

By using an engineering design process and more specifically the five categories of robustness 

within the validation stage, designers of wind turbine CMS will be able to design systems 

which can operate far more reliably even although they may not have any knowledge of the 

environmental conditions within a wind turbine nacelle. This design process addresses the first 

research question by aiding engineers in the design of wind turbine CMS.  

 

3.4 New and Improved CMS for a Vestas V42 Wind Turbine 

Following the experience with the first CMS system the university was involved in another 

collaborative project to design, build and install a CMS in a Vestas V42 wind turbine [110]. 

The V42 is almost identical to the V47, except for a slightly smaller generator of 600kW. The 

difference this time being that the system designed would have to operate in conjunction with 

two other systems designed and built by different project partners which added its own 

challenges.  

3.4.1 System Overview 

The system designed by the university has the task of capturing data from 29 sensors which 

are spread across the nacelle. These included vibration, temperature, voltage and current, and 

meteorological parameters. The system will also act as the master to the two other systems 

designed by the other project partners. This means that the system will provide a valid 
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timestamp taken from a GPS signal, monitor the status of the UPS which supplies power to all 

three systems, monitor the health status of all three systems, and manage the data storage for 

all three systems.  

One key requirement for the new system, based on the experience from the last system, was 

to reduce the complexity and increase robustness. The previous system required a significant 

number of signal processing interfaces prior to the signals entering the DAQ modules. These 

additional interfaces increased the complexity of the system and the number of areas in which 

issues could occur. The key component in the new system which allows simplification and 

ruggedisation is a National Instruments CompactRIO (cRIO).  

The cRIO, which is a ruggedized real-time embedded industrial controller [147], was deemed 

to be the best option for the CMS given the acquisition requirements and the environment in 

which it was to operate.  With the wide range of sensors to be used for acquiring data, the 

cRIO would allow acquisition modules to be used which the sensors could connect to directly 

avoiding the need for any additional pre-processing or conditioning circuitry. The requirement 

for high acquisition rates is achieved through the use of the built-in FPGA module. This 

module allows high performance data processing by implementing the program on a re-

programmable silicon chip as opposed to running the program as a software application [148].  

The use of a cRIO also allowed the main CMS enclosure to be significantly smaller in size.  

Figure 27 shows the new CMS enclosure. The cRIO can be seen located in the centre of the 

enclosure with its power supply sitting to its immediate right. The 24Vdc power supply for the 

cRIO is also used to supply power to all of the sensors. A DC-DC converter seen on the right-

hand side of the enclosure is used to convert the 24Vdc in to ±12Vdc and 5Vdc required for 

different sensors.   

 

Figure 27: New CMS enclosure 
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3.3.2 Improvements using the five categories of robustness 

Although the first CMS installed was limited in success in terms of data capture it was a very 

worthwhile project in terms of learning about the environment and challenges faced by a wind 

turbine CMS. The new system was designed and built with the five categories of robustness 

in mind and the improvements made are discussed in this section.     

Weather Robustness 

There were two main issues that occurred as a result of the weather on the system:  

 Corrosion on connectors 

 Lightning strike 

The main enclosure for the new system was selected to have an IP rating of 66 which means 

it is completely dust tight and capable of withstanding powerful water jets (see Table 2). 

Although it is unlikely that the system will be exposed to powerful jets of water there is a 

chance that it could be exposed to an oil leak or precipitation dripping from the nacelle roof.  

As can be seen from Figure 27 the connector panel was brought inside of the main enclosure 

which will reduce the chances of moisture entering at the connectors which could result in 

corrosion. The sensor cables enter the enclosure via a brushed entry system which although 

reduces the enclosure’s ability to prevent water ingress from powerful jets it will still prevent 

large volumes of dust entering. To prevent any moisture ingress through drips from above a 

rubber seal with a flap which extends over the cable entrance was fitted to the enclosure.    

As discussed in the previous section the lightning rod that was attached to the met mast was 

knocked off by a lightning strike. It was decided that for the new system it would be better not 

to have a lightning rod at all on the met mast. The reason for this was that unless the rod was 

fully capable of absorbing the full lightning strike and diverting the extreme current into the 

wind turbine’s lightning system, it would do more harm than good by attracting a lightning 

strike. Since there was already a lightning rod on the wind turbine’s own existing met mast, 

which sits higher than the new met mast, it would be better to allow it to absorb the lightning 

strike and direct the over-currents down the wind turbine’s lightning protection system. 

Another precaution taken with regards to lightning strikes is that every part of the CMS 

equipment is well grounded so that any over-currents that they are exposed to can find an easy 

path to ground in order to prevent any damage to crucial parts of the system.   
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Operational Robustness 

There were two main issues that occurred as a result of normal wind turbine operation on the 

system:  

 Overheating due to excessive dust intake  

 Snapped fibre optic cable 

By locating the UPS in a separate enclosure, the main CMS enclosure has no requirement for 

cooling which reduces the risk of excess dust being drawn in by fans. Mounting the UPS in a 

separate enclosure means that the main CMS enclosure can be smaller, lighter and have 

reduced electrical noise. Having an additional enclosure for the UPS means that it can also be 

used for the networking equipment such as the network switch. The enclosure now housing 

the UPS is IP65 rated and has fans built into it with appropriate filters to reduce the level of 

dust that could enter and risk over-heating. Each of the systems are also fitted with 

dehumidifiers to reduce moisture levels inside of them. 

As stated previously the fibre optic cable was susceptible to coming under excessive strain 

causing it to break and therefore prevent data from being sent to the Ethernet data storage 

drives. To reduce this risk the routing and fixing of the cable was revised. Break points have 

been added to the fibre optic cable by way of patch cables and couplers. These break points 

have been added at the locations most susceptible excessive strain. If the fibre optic cable 

comes under excessive strain the coupler will allow the main cable and patch cable to separate 

and avoid a breakage. In addition to the break point a spare fibre optic cable was installed but 

not connected. If the one cable is damaged then the replacement can be simply connected in, 

again reducing data loss.  

To reduce the risk of data loss a 2TB USB drive has been incorporated into the main CMS 

enclosure and connected directly to the cRIO. In the case that the fibre optic cable is damaged 

as it was previously, the USB hard drive will allow approximately one months’ worth of data 

to be stored locally, significantly reducing the risk of losing valuable sensor data.  

A final addition to the new system, to further increase reliability, is the use of three NAS 

(network attached storage) drives. Data from the three systems is able to write directly to these 

NAS drives with no dependency on the Host PC. Although the Host PC directs the three 

systems to write to a specific drive, they would still be able to write to the drives should the 

Host PC fail. All three systems in the nacelle will write to the one selected NAS drive. Once 

this drive is nearing capacity they will all simultaneously begin writing to the newly selected 
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drive. Should all three drives reach capacity prior to being replaced each of the systems has 

the capability to store their own data locally until an empty NAS drive is installed.   

Manual Handling Robustness  

There were two main factors which, although they did not cause any issues, were identified as 

potential areas in which a fault or failure could occur.    

 Connectors on the connector panel 

 Wear and tear of sensor cables running across the nacelle  

In Figure 27 the connector panel can be seen on the left hand side of the main CMS enclosure. 

On the previous system the connector panel was mounted on the outside of the enclosure. This 

however meant that the sensor connectors were susceptible to being knocked off or damaged 

whilst maintenance work was being carried out in the nacelle. For this reason it was decided 

that it would increase system robustness to have the connector panel inside the enclosure. The 

sensor connectors enter the enclosure via a brushed opening which allows the connectors to 

pass through but reduces the exposed area in which dust may enter. 

To reduce the risk of sensor cables being damaged within the nacelle all cables have been run 

inside protective conduit. This will protect cables from general wear and tear which may result 

from any work carried out within the nacelle due to the limited space. 

Electrical Signal Robustness  

Two areas in which noise reduction could be improved were identified: 

 Noise from the UPS 

 Noise from power supplies within the CMS enclosure 

The main change to the CMS to reduce electrical noise on the monitored signals was to keep 

the UPS separate from the main CMS enclosure. To do this a separate enclosure was used 

which would house the UPS and the network equipment. The UPS can introduce a significant 

amount of noise due to the mains supplies in and out of it. By having it separate it meant that 

only one mains cable had to enter the main CMS enclosure to power the 24V power supply. 

To further reduce electrical noise in the signals the connector panel was mounted as far away 

as possible from the power supplies – this is difficult given the limited space available. As 

with the previous system shielded cables were used throughout the system to reduce noise 

levels as far as possible.   

 



89 

 

System Software Robustness  

System software robustness was identified as a key area for improvement in the new CMS. 

There were two main requirements on the new software: 

 Ability to handle errors 

 Ability to debug more easily 

The software for the new CMS can be split into three parts. The first is the software for the 

Host PC, located at the bottom of the tower, which is used to communicate with the systems 

in the nacelle. This program will tell the three systems in the nacelle which NAS drive they 

should be writing data to. It will also monitor the health of each of the systems by continuously 

receiving a health status pulse from each of them as well as any other information about errors 

in any of the systems. It can then send out a status email detailing the state of each system and 

if any errors have occurred. As well as monitoring the health of the systems in the nacelle it 

will also monitor the status and volume of data on the NAS drives. Although the Host PC is 

required to send out key information, the systems in the nacelle are not wholly reliant on it and 

are still able to function should communications with the Host PC be lost. 

The second part of software is the FPGA (Field-Programmable Gate Array) program. 

Programming an FPGA is slightly different from other programming in that it is all based on 

digital logic. This logic is applied on the FPGA by re-wiring the chip itself which is why such 

high processing speeds can be achieved. Within the FPGA program there are two main loops: 

one to acquire the high speed data at 10.24 kHz and the other to acquire low speed data at 

50Hz. These loops are initiated and triggered to begin acquiring data by the real-time program 

on the cRIO controller. Within each loop data is read from the sensors, combined into an array, 

converted into an appropriate data type and loaded into a direct memory access (DMA) first 

in first out (FIFO) queue, which can be read out by the cRIO controller’s real-time application.  

The third and main part of the software is the real-time application that runs on the cRIO 

controller. This application performs a number of key tasks including: defining system 

configuration, interfacing to the FPGA to acquire data, handling data logging, and 

communicating with the Host PC. The application is designed so that it can run for long periods 

of time without any human interaction. The main configuration for the system is written to a 

text file and stored on the cRIO to be read at the initialisation stage.   

A key feature in the new system software is the built-in error handling. Should any error occur, 

such as an FPGA overrun, an error will be flagged and sent to the Host PC. The program will 



90 

 

then carry on acquiring data as normal and not be brought to a halt by this error. The system 

also handles errors that are not related to the software. For example, if communications are 

lost with the Host PC (possibly due to fibre optic damage) then the cRIO will attempt to find 

a NAS drive to write to for itself. If a NAS drive cannot be found then it will begin writing 

data to the local USB drive.    

The new software was designed to be easy to read and allow bugs to be easily identified. This 

was done through the careful use of subVIs (virtual instruments) which increased the 

program’s modularity. By careful use of subVIs, the main VI, shown in Figure 28, gives a very 

high level view and only by entering each subVI will a lower level view be obtained.  This 

makes the program more readable for a user who may not fully know the workings of the 

system.       

 

Figure 28: Main VI for new CMS 

 

3.5 Research Methods for Undertaking Work on Commercial Wind Turbines 

Obtaining operational data from commercial wind turbines for research purposes is difficult 

due to the commercial sensitivity surrounding wind turbine failures. The work discussed in 

this chapter involving the installation of two CMS in commercial wind turbines not only 

allowed invaluable data to be captured but also provided an opportunity to gain an insight into 

the challenges faced when working with commercial wind turbines on an operational wind 

farm for research purposes. The aim of this section is therefore to document the challenges 

involved and to provide advice to anyone who may want to carry out research on an operational 

wind turbine or farm.      

The most significant factor that makes working with an operational wind turbine challenging 

is availability. There are different senses of this term availability: 
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1. Availability of a weather window which allows work to be carried out on the wind 

turbine 

2. Availability of a weather window which the wind farm operator will be willing to 

lose the wind turbine’s generation capacity. 

3. Availability of road/track access to the wind turbine/farm  

4. Availability of wind turbine technicians to accompany the person carrying out the 

work 

 

Each of the availability’s given above are effected by weather conditions which is what makes 

working with an operation wind turbine so challenging. To carry out work on a wind turbine 

and to climb into the nacelle to work the wind speed must be below a specified value which, 

given that wind turbines are situated in locations chosen for their high wind speeds, creates a 

challenge. There also must not be a high risk of lightning strikes during the period work is to 

be carried out.  

It may be that the wind speed is low enough to allow work to be carried out within the wind 

turbine however it also relies on the wind farm operator being willing to shut down the wind 

turbine. If there has been a long period of low wind speeds the operator may not be willing to 

lose the revenue lost through shutting down the wind turbine whilst work is carried out. 

Given that a weather window is available which allows work to be carried out in the wind 

turbine and the wind farm operator is willing to allow the wind turbine to be shut down, it 

must then be possible to access the wind turbine by driving on the wind farm road. Wind farms 

are often located at the top of hills which experience greater snowfall and wind turbines will 

often become inaccessible because there is too much snow on the roads. When these roads are 

miles long it is often not economically feasible to have them cleared. Clearing them with a 

machine also results in damage to the road resulting in more costly repairs.  

To carry out any work within a wind turbine an authorised technician must be present. 

However when there are limited weather windows to carry out maintenance and repair work 

to wind turbines, technicians will have a large work list trying to keep as many wind turbines 

on the windfarm operating as possible. Work on research projects may therefore not always 

be of highest priority.         

Although the challenges brought about by the reliance on suitable weather windows cannot be 

avoided they must be taken into consideration when planning work on an operational wind 

turbine. The following advice is given to aid in planning this work: 
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1. Avoid key/major work during winter months when the weather is unpredictable and 

there are long periods of no access the wind farm 

2. Be prepared to go to work at very short notice – weather windows often become 

available at short notice 

3. When a weather window becomes available it is essential to be well prepared so that 

as much work as possible can be done in a short time 

4. Wind turbine downtime is an expense to the operator, therefore the operator will push 

to keep downtime to a minimum which add pressure in carrying out the work 

5. Test, test and test again. If a system is to be installed in the wind turbine perform as 

much rigorous testing in as realistic conditions as is possible prior to the installation. 

It is extremely difficult and costly to fault find in a commercial wind turbine.   

6. Prepare for all eventualities. Be prepared for things breaking, i.e. sensors, cables, 

brackets. Have spare hardware and plenty consumables. Take every possible tool that 

might be needed. Hardware stores aren’t often located near a wind farm.    

 

3.6 Conclusion 

The wind turbine nacelle is a particularly harsh environment, more so that one would initially 

suspect. This is due to a number of factors including high vibration levels, high volumes of 

dust, extreme temperature fluctuations and also the risk of damage through personnel working 

within the nacelle. Through careful design and consideration of key factors it should be 

possible to design a reliably robust CMS that is capable of operating for long periods of time 

without human intervention whilst providing the wind farm operator with an accurate 

description of the state of the wind turbine’s health.    

Addressing the first research question of this these, five categories of robustness were 

introduced in this chapter: weather robustness, operational robustness, personnel handling 

robustness, signal robustness, and software robustness.  These categories of robustness were 

identified through the process of an FMEA and highlight where there is a need for careful 

design of each aspect of a wind turbine CMS to ensure that it is not vulnerable due to the 

environment in which it has to operate. Through the introduction of the first CMS, which was 

designed without using a design process and the categories of robustness, it was evident that 

not considering these crucial factors lead to a system being built that was unable to operate 

reliably in a wind turbine nacelle. The detrimental effects included connector corrosion, 

overheating, and noisy signals.  
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The second system introduced in this chapter, which was designed using the engineering 

design process which incorporates the five categories of robustness, has at the time of writing, 

been operating reliably for 18 months and providing data that can be analysed to assess the 

condition of the wind turbine. Key improvements made using the categories of robustness as 

summarised in Table 9 included: simplification of the main CMS enclosure through the use of 

a ruggedized industrial controller, the use of IP rated enclosures, de-noising of signal cables 

through the separation of the UPS and power cables, and careful design of the software that 

incorporates error handling.  

Table 9: Summary of improvements from System 1 to System 2 

System 1 System 2 

Complex design with many components Simplified design by using cRIO 

One large main enclosure Separate enclosure for UPS and network 

equipment 

Signal and power cables grouped 

together 

Signal cables and power cables separated 

Single unshielded fibre-optic  Shielded fibre-optic cable & spare 

installed 

Poorly matched cable & connectors Well matched cable & connectors 

Very large unreadable software program Simple high level main program 

No error handling in software Error handling in software 

Single data storage device 3 Main storage devices and local USB 

backup storage 

 

The process of installing a CMS in an operational commercial wind turbine is very challenging 

due to a number of factors but mainly as a result of the reliance on suitable weather windows. 

In addition to giving designers of CMS guidance in the design of these systems themselves 

this chapter also gave advice for those planning to carry out research projects with commercial 

wind turbines. Highlighting that meticulous preparation is key to a successful project.  
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4 Erroneous Data handling Techniques 

4.1 Overview 

One significant deterrent to wind turbine operators deploying condition monitoring systems 

throughout their fleet is the problems associated with false alarms.  The occurrence of a false 

alarm may lead the operator to take unnecessary actions resulting in additional expenditure 

that was not required. A false alarm could also result in the wind turbine being shut down and 

out of service for a period of time unnecessarily until the cause of the alarm can be investigated 

by an on-site technician. False alarms may be caused by a sensor or software malfunction and 

are corrected by replacing a sensor or reconfiguring software.   

This section of work presents a novel technique which is able to detect erroneous data and 

remove it. The technique presented addresses research questions two and three of this thesis. 

Firstly by showing how erroneous data can be detected in order to reduce false alarms and 

secondly how this data can be removed to allow the remaining healthy data to be used for 

condition monitoring and fault detection.  

It is essential to be able to differentiate between erroneous data i.e. data which does not truly 

represent the parameter that is being monitored, and data that may look erroneous but is 

actually a fault or extreme condition within the wind turbine. Although the application in this 

section focuses on the removal of erroneous data outputted by an RPM sensor, the same 

principles may apply for removing data from any dataset where the normal operation of the 

machine is understood.  By using multiple parameters and principles of operation for a wind 

turbine, confidence can be gained that the data identified as being erroneous is in fact 

erroneous. An example of a principle of operation could be a wind turbine’s physical inability 

to produce rated power at a low rotational speed thus signifying an erroneous reading. By 

identifying true erroneous data, techniques can then be used to filter it out from the dataset so 

that the remaining healthy data can still be used.  By reducing the number of false alarms wind 

farm operators will have a greater confidence in the ability of condition monitoring systems to 

accurately detect true faults which will increase the uptake of the use of condition monitoring 

systems and ultimately reduce the operating costs of wind turbines.    

The technique described in this section is based on the relationship between rotor speed and 

both wind speed and generator output current. Using the relationship between parameters is a 

useful way of analysing data since certain parameters will always be directly related. The most 

common relationship used in wind turbine monitoring is the relationship between the power 

output and the wind speed known as the wind turbine’s power curve. Power curves, which are 
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provided by manufacturers, can be used for planning, forecasting, performance monitoring 

and control of wind turbines [149]. A typical power curve (Figure 29 [150]) can be split into 

4 principle regions: below cut-in wind speed where the wind speed is too low to generate 

power efficiently, between cut-in and rated wind speed where the wind turbine is increasing 

its power output as the wind speed increases, above rated wind speed where the rotational 

speed of the wind turbine is controlled to maintain the rated power output, and finally above 

cut-out speed where the wind turbine is shut down to protect it against high wind speeds. 

 

Figure 29: Typical wind turbine power curve [150] 

The power curves supplied by the OEM will have been created following standard IEC 61400 

[151] which indicates how to measure wind speed and power; however these power curves 

can be difficult to use for direct comparisons with operational wind turbines of differing ages. 

Manufacturer’s power curves will have been developed under standard conditions using 

specific methods. Given that each wind turbine site can be very different in terms of terrain, 

wind and atmospheric conditions mean it is unlikely that the power curve for a given 

operational wind turbine will match that of the manufacturer. Given the necessity for an 

accurate power curve there have been a number of studies carried out to improve the modelling 

of wind turbine power curves.  

The development of power curves is often categorised into parametric and non-parametric 

techniques. Parametric techniques are built on a set of mathematical expressions where the 

parameters required for the expression are found using advanced algorithms [152]. Non-

parametric techniques on the other hand attempt to find the relationship between wind speed 

and power output with no assumption of the functional form of any distribution [149].   An 
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algorithm developed by Thapar et al. [153] allows comparisons to be made on the output of 

wind turbines which have been modelled on the concept of linear variation of power, Weibull 

parameters, the method of least squares and cubic spline interpolation.   Summarising the 

output of their analysis using this algorithm they state that modelling methods in which the 

actual power curve of an individual wind turbine is used for developing characteristic 

equations, by utilising various curve fitting techniques, accurately predicts the power output 

of the wind turbine. In particular they find that the method of least squares [154] and cubic 

spline interpolation [155] replicate the output of the wind turbine most accurately. The 

accuracy of the method of least squares was also confirmed by Kusiak et al in [156] who found 

that the model developed using the least squares method outperformed that which was 

developed using the maximum likelihood [155] approach.  

Carrillo et al. [157] also review commonly used equations for modelling power curves by 

analysing their ability to approximate the manufacturer’s power curve. The equations 

compared consisted of polynomial, exponential, cubic and approximate cubic power curve. 

The result of their analysis showed that exponential and cubic equations provided the best 

approximation when the coefficient of determination and the error in energy density are taken 

into consideration. They also concluded that the polynomial provided the worst results in terms 

of fitting due to its sensitivity to the values of parameters such as the wind speed.     

One point apparent from reviewing the literature is that each wind turbine’s power curve will 

be quite different from other power curves even for the same model of wind turbine 

experiencing similar wind conditions. Another point to note was that all analysis carried out 

was based on variable speed wind turbines whereas the sensor in the application discussed 

below is situated in a fixed speed turbine. While the power curve will not be any different for 

a fixed speed wind turbine, this application uses the relationship between generator current 

output and rotor speed which will differ significantly from that of a variable speed wind 

turbine. So although there are similarities to modelling power curves, this application focusses 

on modelling the relationship between rotor speed and generator current for which there is 

very little literature.     
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4.2 False Data Detection Model for Rotor Speed Sensor 

A Hall-Effect Sensor (shown in Figure 30) was used as part of the condition monitoring system 

to measure the rotational speed of the low speed shaft. To obtain the rotational speed in 

revolutions per minute the Hall-Effect sensor was used to detect and count the holes on the 

rotor locking disc. By measuring the time between holes the rotational speed in revolutions 

per minute could be calculated.    

 

Figure 30: Hall-Effect Sensor for measuring rotational speed 

On analysing the data from the CMS it was apparent that false low rotational speed 

measurements were being captured. Given that the false measurements were always low as 

opposed to high, it indicated that the reason for the false measurements was due to the Hall-

effect sensor not detecting every hole on the locking disc. The sensor was mounted using a 

clamp which, given the high level of vibration within the wind turbine nacelle, means it could 

be possible for the sensor position to move if the clamp was not secured tightly enough. For 

an accurate measurement this sensor must be positioned with millimetre accuracy [158]. 

Looking at data from different periods of time shows that the sensor moves in and out of good 

positions. Figure 31, which shows RPM plotted against current, shows a period where the 

sensor was outputting very high levels of erroneous data due to a bad position of the sensor. 

Figure 32 however shows a period of time where the position of the sensor is obviously in a 

far better position resulting in significantly less erroneous data.       
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Figure 31: RPM Vs Generator Current for November Week 3 

 

Figure 32: RPM Vs Generator Current for December Week 1  

 

Although some of the datasets are very poor with a large number of false measurements, there 

is a clear difference between the healthy and false measurements when plotting RPM against 

generator RMS current. This has aided in the development of a normal behaviour model which 
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was required so that thresholds could be set for detecting erroneous data. The process of how 

this model was developed is shown in Figure 33.   

 

 

To begin with a dataset was chosen for a period of time which had the least amount of 

erroneous data in it and this was loaded into the Matlab Curve Fitting toolbox. Matlab’s 

Curve Fitting toolbox allowed different types of curves to be fitted using the least squares 

method (identified as the most accurate method in the literature) and the goodness of fits 

statistics, as shown in Table 10, compared. Based on these statistics a 4th order Gaussian 

curve was deemed the best curve to use due to its goodness of fit and its simplicity over 

some of the alternatives. 

 

Table 10: Comparison of goodness of fit for fitted curves 

Curves SSE R^2 Adjusted R^2 RMSE 

Gaussian 4th Order 4.577E+07 0.9824 0.9822 70.97 

Gaussian 5th Order 4.622E+07 0.9823 0.9822 70.98 

Gaussian 6th Order 4.619E+07 0.9823 0.9824 70.63 

Gaussian 7th Order 4.681E+07 0.982 0.982 71.46 

Fourier 3 Terms 4.859E+07 0.9813 0.9813 72.76 

Fourier 4 Terms 4.652E+07 0.9821 0.9821 71.2 

Fourier 5 Terms 4.606E+07 0.9823 0.9823 70.85 

Polynomial 5th Degree 6.187E+07 0.9762 0.9762 82.09 

Polynomial 6th Degree 4.884E+07 0.9812 0.9812 72.94 

Polynomial 7th Degree 4.859E+07 0.9813 0.9813 72.76 

 

 

Load data into Matlab Curve Fitting toolbox 

Manually remove erroneous data 

Fit a curve to the data 

Generate upper & lower prediction bounds for curve 

Fit curve to the bounds to obtain threshold functions 

Figure 33: Flowchart for developing Error Detection 

model 
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Prior to fitting the curve, clear outliers were manually excluded from the fitting so that it 

had no impact on the fitted curve.  Having fitted the Gaussian curve to the data, upper and 

lower confidence bounds of response values of the data were then added. The bounds are 

calculated using 𝐶 = 𝑏 ± 𝑡√𝑆 where b are the coefficients produced by the fit, t depends on 

the confidence level, and S is a vector of the diagonal elements from the estimated 

covariance matrix of the coefficient estimates. These bounds can be added with differing 

confidence levels. It was found that by setting the confidence level to 99% a threshold was 

obtained which would be at the correct level for removing erroneous data since it excluded 

all the data points that were eliminated as clear outliers and included all the remaining data 

points. To use these prediction bounds as thresholds a function would be required for each. 

To obtain the function a curve was fitted to both the upper and lower prediction bounds – 

once again a Gaussian curve was used for the fitting. Figure 34 shows the model with the 

curve fitted to the data shown by the purple/pink line and the upper and lower thresholds 

shown by the red lines. 

 

 

Figure 34: False Data Detection Model 

 

Having obtained upper and lower thresholds levels for detecting erroneous data the next stage 

was to remove this data from the dataset. Initially the erroneous data was removed in one stage 

as is shown in the top box of Figure 35. Within this stage the dataset which is to have the 

erroneous data removed is imported into Matlab. The RPM data which contains the erroneous 

values along with the corresponding generator current data are taken in one data point at a 

time. The RPM value is used along with the functions for the thresholds to find a “healthy” 
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range for the current value. If the current does not lie within this range then the RPM value is 

deemed erroneous. In addition to exceeding the thresholds to be deemed erroneous the value 

of the current must also be greater than 1 amp. This is because during normal operation the 

wind turbine can rotate between 0 and 29 RPM before it starts generating any power; therefore 

without this additional rule all data generated whilst the turbine is not generating power would 

be deemed erroneous. Having determined whether the data is erroneous or not it is then placed 

in either a “filtered data” array or a “false data” array. 

 

Figure 35: Flowchart showing process of removing erroneous data 

NO 

YES 

NO 

YES 

Add data to “False Data” array 

Load raw dataset 

Take each data point 

Is current > OR < 

than thresholds 

AND > 1? 

Add data to “Filtered Data” array 

Is wind speed > 

16m/s AND  

RPM < 30.75? 

Add data to “False Data” array Add data to “Healthy Data” array 

Load filtered dataset 

Take each data point 

STAGE 1 

STAGE 2 
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After applying the model to the data initial observations seemed to show that all false data was 

being detected and effectively filtered out as shown in Figure 36. However when the RPM 

data was plotted against the corresponding wind speed measurements as shown in Figure 37 

it could be seen that false data (circled) was being missed by the initial model. 

 

Figure 36: One Stage Erroneous Data Detection Model - Current Vs RPM 

 

Figure 37: Filtered RPM Vs Wind Speed Data 

The data being missed was erroneous low signals that were occurring when the wind turbine 

was operating at rated power. A second stage was added to the initial model shown in the 

lower box of Figure 35 that would use the RPM data filtered in stage 1 along with wind speed 

in order to remove the false data. This erroneous data was captured by the detection model by 
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adding two linear thresholds to the Wind Speed Vs RPM plot as shown by the black lines in 

Figure 37 at a wind speed of 16m/s and rotational speed of 30.75 RPM. Therefore any data 

point that had a wind speed greater than 16m/s and a rotational speed of less than 30.75 RPM 

will be classed as erroneous.    

 

Figure 38: Two Stage False Data Detection: RPM Vs Wind Speed 

 

Figure 38 shows the result of adding a 2nd stage to the false data detection model. It can be 

seen that false data in the region where the wind speed is above 16m/s is now detected and 

filtered. There is a small region around 15m/s where higher-variance data is not filtered by 

the model. In this region the wind turbine will be beginning to pitch its blades to maintain 

rated power. Due to the act of pitching the blades there is likely to be more variability in the 

rotational speed and so the data is not filtered in this region due to the risk of removing 

healthy data.   By plotting current against RPM again as shown in Figure 39 it can now be 

seen that a significant level of erroneous data is now detected at rated power (2850 Amps) 

which was not so apparent following the first stage of the model. 
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Figure 39: 2 Stage False Data Detection Model: RPM Vs Generator Current 

 

4.3 Discussion of Results 

The aim of the model presented is to remove erroneous data from a dataset. In this case the 

erroneous data consists of false low rotational speeds from a Hall-effect sensor. The first stage 

of the model uses the relationship between rotor speed and generator output current to identify 

the erroneous data. A wind turbine will always have a power curve which describes how the 

power output should vary with rotor speed or wind speed. Since the condition monitoring 

system used did not measure power output, the generator phase current which also has a 

relationship to rotor speed has been used instead.  

By using the relationship between rotor speed and generator output current the erroneous data 

could be easily identified. There are several reasons why this relationship can be used with 

confidence to identify the erroneous signals. The first reason is that a wind turbine generator 

can only generate a certain level of output current for a given range of rotor speeds, i.e. it 

would not be possible for the generator to reach its rated current at half the rated rotational 

speed. This reason is even stronger for the wind turbine used in this case study due to it being 

a fixed speed wind turbine, meaning that it is designed to only generate power within a very 

narrow (29-31 RPM) rotational speed range.   

The second reason is established by the relationship between the type of erroneous data that is 

occurring and the operating principles of the wind turbine. The erroneous data only ever 

consists of false low signals and never false high signals. It is only ever false low signals 
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because the Hall-effect sensor can only miss holes on the rotor locking disc, it cannot count 

more holes than are actually present. This is very useful in terms of ensuring that the system 

does not filter out data that is actually detecting a true wind turbine fault. As mentioned in the 

previous paragraph, a wind turbine cannot generate rated current at a low RPM; however it 

could be possible for a lower generator current to be generated at a higher RPM if there is a 

fault in the generator.     

For the relationship between RPM and generator current a Gaussian curve was fitted to the 

data and thresholds of normality defined. Due to this being a fixed speed wind turbine and 

operating at (or very close to) 31 RPM a simple linear threshold could be used for removing 

the erroneous data using the relationship between RPM and wind speed. It was found that the 

first stage of the model removed all the erroneous data that occurred before the turbine reached 

rated power output and therefore the 2nd stage of the model removes the erroneous data that 

occurred at rated output.  Comparing Figure 36 and Figure 39 the erroneous data that was 

missed by the first stage of the model and not apparent in Figure 36 at rated output becomes 

more obvious in Figure 39.    

4.4 Conclusion 

For wind turbine condition monitoring systems to be cost effective they must be able to provide 

the wind farm operator with a reliable indication of the state of health of a wind turbine. The 

occurrence of false alarms or erroneous data could result in significant loss of revenue caused 

by unnecessary downtime. Being able to tell the difference between erroneous data and a true 

wind turbine fault would increase the reliability of the condition monitoring system by 

reducing false alarms. The model discussed in this section addresses research question two by 

using thresholds and rules established by the principles of operation of a wind turbine, and in 

this scenario more specifically by that of a fixed-speed wind turbine. The thresholds and rules 

that this technique relies on are set based on contextual data i.e. they are determined based on 

how a wind turbine operates and the physical limitations of the sensor. So for the rotational 

speed sensor discussed in this chapter it was known that it was not physically possible for the 

sensor to count more holes on the rotor locking disc than were actually present. Also, it would 

not be possible for a wind turbine to generate rated output power and half the rated rotational 

speed.   

 By using relationships between the faulty signal and other parameters the erroneous data was 

effectively detected by the two-stage model.  The techniques applied in this model may 
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similarly be used for the removal of erroneous data in other applications by using principles 

of operation of the machine being monitored. 
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5 Correlation Analysis for Faulty RPM Sensor 

5.1 Introduction 

Correlation analysis is a technique used to study the relationship between two or more 

parameters [159]. There are three types of correlation commonly used, namely, Pearson, 

Kendall and Spearman correlation [160] of which this section will focus on the use of Pearson 

correlation due to its widespread use [161, 162]. The Pearson coefficient, given below, can 

give a measure of the strength of this relationship. 

Equation 11: Pearson's Coefficient 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝜌) =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

where X and Y are the two parameters, cov is the covariance and σX is the standard deviation 

of X.  

 A Pearson’s coefficient of zero would indicate that there is absolutely no relationship between 

parameters, a coefficient of one would indicate that there is total positive correlation i.e. when 

one parameter increases, the other parameter also increases, and a coefficient of negative one 

would indicate total negative correlation as seen in [163]. This is a useful parameter when 

monitoring the health of a wind turbine as the drop in correlation between two parameters may 

indicate a fault or deterioration of a component of the wind turbine such as gears or bearings 

[164].  

 

Figure 40: Pearson's Correlation [163] 

The most common and simplistic way in which correlation analysis is used is to compare two 

parameters such as wind speed and generator power output.  At a system level, a drop in 

correlation between these two parameters may indicate that something somewhere in the 



108 

 

system is causing a reduction in the wind turbine’s operating efficiency. It may also be used 

at a component level to investigate a particular piece of equipment. Zhang et al. [164] use the 

correlation coefficient along with clustering analysis to investigate failed components within 

a gearbox. The correlation coefficient is used in this case to examine the linear relationship 

between accelerometers for two different cases of acceleration data. Correlation coefficients 

were obtained to show the relationship between 12 accelerometers distributed along the wind 

turbine drivetrain. The analysis showed that there was low correlation between the main 

bearing and the low and intermediate speed stages of the gearbox indicating that there may be 

health issues within these areas of the gearbox, since the main bearing was known to be 

healthy.  

Correlation is not only useful for investigating faults that have already occurred but can also 

be used to predict an impending fault. Since many wind turbine signals are closely correlated 

with other simultaneously measured signals, Schlechtingen and Santos [165] use cross-

correlation (as do many others such as [6],[166],[167]) to develop the regression model shown 

in Figure 41 to predict a generator fault. Using linear cross-correlation, related signals and 

their lag with the signal to be predicted could be found. Having a strong correlation between 

stator and bearing temperature meant that the linear model was very accurate. Using the power 

output, nacelle temperature and shaft speed the number of prediction outliers could be reduced.  

Although a simple model, it shows how correlation can be used in effectively predicting faults.  

 

 

 

 

 

 

Another method which uses correlation analysis at system level is discussed in [39] where the 

correlation coefficient between neighbouring wind turbines is used to detect changes in wind 

turbine health. When the wind turbines are in a healthy state the correlation coefficient will be 

high however when the condition of one deteriorates the correlation coefficient will reduce. 

This method however does have drawbacks since the operational state of each wind turbine is 

Modelled Bearing 

Temperature 

Measured Bearing 

Temperature 

Error 

Stator Temp. 

Power Output 

Nacelle Temp. 

Shaft Speed 

Figure 41: Regression model (reproduced from [153]) 
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very much determined by local terrain factors such as the wind direction, wind shear and wind 

speed at that specific wind turbine.  

Although correlation analysis is a useful and simple tool for analysing wind turbine condition 

monitoring data the output of such analysis can be significantly affected in two ways. The first 

is by wind turbine downtime. When the turbine is shut down either for maintenance or simply 

low wind speeds the sensors will no longer output correlated data but instead will be producing 

uncorrelated noise. This must be therefore factored in when designing any fault detection 

model which uses correlation analysis, a point which has not been highlighted in any of the 

literature above.  

The second way in which the output of the analysis may be affected, which is not identified in 

literature, is by erroneous data being used in the analysis, most likely from a faulty sensor, and 

this is the issue that will be addressed in this chapter.  Although correlation analysis may be 

sensitive to erroneous data when trying to detect a fault, this drawback can have its advantages 

in that it can be used to detect erroneous data.    

By understanding the relationship between different sensors and their distribution across the 

wind turbine, correlation analysis may be used to detect erroneous data through a drop in 

correlation. This is shown in this chapter through the application of two sets of data from a 

faulty rotor speed sensor: one set of data is erroneous due to false low measurements captured 

by the sensor; the second set has had the false low measurements filtered out by the Error 

Detection Model discussed in the previous chapter.  The work in this chapter addresses the 

second research question by showing how the presence erroneous data can be identified. 

Although correlation can be used for detecting faults within the wind turbine the main focus 

of the technique in this application is for detection of erroneous data. 
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5.2 Correlation Analysis 

The condition monitoring system collected data from a total of 29 sensors which were 

distributed across the wind turbine nacelle of a Vestas V42 600kW wind turbine. Out of the 

29 sensors, nine were chosen to use in the correlation analysis because of their high likelihood 

of having strong correlation. The sensors chosen were: 

 Hall-effect sensor measuring rotor speed of the low speed shaft  

 Anemometer measuring wind speed on the nacelle roof 

 Accelerometer 1 located on the main bearing 

 Accelerometer 3 located on the low speed side of the gearbox casing 

 Accelerometer 5 located on the forward end of the generator casing 

 Accelerometer 7 located within the gearbox 

 Load Pin 1 located on the gearbox port side support arm  

 Load Pin 2 located on the gearbox starboard side support arm 

 Generator current phase 1 

Pearson’s correlation coefficient was found for the following 8 pairs of sensors: 

1. Rotor Speed and Wind Speed 

2. Rotor Speed and Accelerometer 1 

3. Rotor Speed and Accelerometer 3 

4. Rotor Speed and Accelerometer  5 

5. Rotor Speed and Accelerometer 7 

6. Rotor Speed and Current 1  

7. Load Pin 1 and Load Pin 2 

8. Load Pin 1 and Current 1 

Rotor speed is the sensor which was known to be outputting erroneous data in the form of false 

low signals as discussed in the previous chapter. By plotting rotor speed against generator 

output current it became very visually apparent by an obvious divide between healthy and 

erroneous data that the sensor was missing pulses and therefore outputting erroneous low 

signals. It is therefore the sensor which this analysis is focusing on with the majority of the 

analysis looking at this sensor’s correlation with other sensors. Pairs 7 and 8 were included to 

be used as controls since these sensors should always have a very high correlation unless the 

turbine is shut down or there is a fault with these sensors. 
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The data for the analysis was initially captured by the condition monitoring system at 10.24 

kHz for accelerometers and 50 Hz for everything else, then a mean was taken for each minute 

of data. The averaged data was then used to find correlation coefficients for daily, hourly and 

10-minutely time periods which was done by taking the following numbers of minutely 

averaged data points: 

 Daily – 1440 values 

 Hourly – 60 values 

 10 Minutely – 10 values 

Taking correlations over different time periods provides a better understanding of the data, as 

short term events may have a significant impact on the 10 minute correlation coefficient, but 

the effect will be diluted over an hourly or daily period.  

The Pearson’s coefficient, as given by Equation 11, was computed in Matlab for each sensor 

pair for the different time periods for both the raw data, which contained the erroneous 

measurements, and for the filtered data which had the erroneous data points removed by Error 

Detection Model described in the previous chapter.   

The analysis was performed for 10 one-weekly batches of data from September 2015 to 

January 2016 with one daily, hourly and 10-minutely sample taken from each week for the 

analysis. This was deemed a long enough period to see how the correlation changed over time 

as the position of the sensor changed. It was also expected that over this period of time there 

would be months with greater downtime as a result of lower wind speeds and that this would 

have a notable impact on the correlation levels. 

5.3 Results 

The Pearson’s coefficients that were obtained can be seen plotted in Figure 42 for the Daily, 

Hourly and 10-Minutely periods where the Pearson’s coefficient ‘r’ is given on the y-axis for 

each week. The raw data, which contains erroneous data, is given by the blue trace and the 

filtered data, in which the erroneous data has been removed, can be seen by the orange trace. 

During normal operation the parameters that were chosen for the analysis are always likely to 

have some level of correlation. As expected this correlation dropped in the presence of 

erroneous data as can be seen in Figure 42 which shows that raw data on average has a much 

lower level of correlation than the filtered data.    



112 

 

 

Figure 42: Pearson's Coefficients for Rotor Speed and Wind Speed 

It can also be seen, as mentioned previously, that the correlation differs, sometimes 

considerably, depending on the time period the correlation is performed for.  There are several 

occasions where the correlation is higher for the raw data than it is for the filtered data, for 

example, in week 8 of the Daily plot, where the blue trace is higher than the orange. One 

explanation for this is low wind speeds. When the wind speed is low and the wind turbine is 

operating below rated speed there is far more variation in shaft rotational speed, power output 

and the resulting vibrations, than in higher wind speed conditions. This increased variation 

causes a drop in the correlation between parameters. Another explanation for the filtered data 

having lower levels of correlation and for the raw data having a higher level of correlation is 

that when a sensor is outputting very high levels of erroneous data it means that there is not a 

lot of true data left for analysis in the filtered dataset after the erroneous data has been removed. 

If there is very little true data left to carry out the analysis on then it is more likely that the 

correlation level will be lower since the covariance of the parameters will most likely be lower.   

The correlation between rotor speed and each of the accelerometers provides the clearest 

results due to the acceleration being proportional to the rotor speed as can be seen from Figure 

43 where the acceleration increases with rotor speed. Taking Figure 44, it can be seen that the 

correlation is significantly higher for most weeks and for each correlation period when the 

erroneous data has been filtered out, as shown by the orange trace, which is almost always 

higher than the raw data, shown by the blue trace. The traces for Accelerometers 3, 5 and 7 

(see Appendix) all follow the same pattern as that for Accelerometer 1 shown in Figure 44. 
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Figure 43: Rotor speed plotted against acceleration of the main bearing 

Notably, at week 6 it can be seen (Figure 44) that the correlation of the filtered data actually 

drops significantly and is almost the same as the unfiltered data, particularly for the 10-

Minutely correlations. As mentioned previously this is due to the fact that there is a very high 

level of erroneous data coming from the rotor sensor in this period, which results in there being 

less data to perform the analysis on which is likely to cause the covariance to drop resulting in 

lower correlation. 

 

Figure 44: Pearson's Coefficients for Rotor Speed and Accelerometer 1 

Figure 45 below is the output from the Error Detection Model for Week 6 which shows rotor 

speed plotted against generator current and the extremely high number of erroneous values 
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being outputted by the RPM sensor in this week. There is such a high level of erroneous data 

(red) that there is very little healthy data (blue) left to carry out the correlation analysis on 

particularly for the 10-Minutely period. 

 

Figure 45: Rotor Speed plotted against Generator Current for Week 6 

Another discrepancy in the results can be seen at week 8. Investigating additional data for this 

week showed that the slight drop in correlation was due to a prolonged period of low wind 

speed. The wind turbine will only generate power at its rated value when the wind speed is at 

or above its rated wind speed of 16 m/s. As can be seen from Figure 46 the wind speed is 

below the rated wind speed (shown by the red line) for a significant proportion of that week 

resulting in more variation of rotor speed, power output and vibration on the drivetrain.  It can 

also be seen in Week 8 of Figure 44 that there is very little difference in correlation between 

the raw and filtered data, this is because the rotor sensor was working well during this period 

with very little erroneous data being outputted and therefore the raw and filtered datasets were 

almost the same.  
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Figure 46: Wind Speed Vs Current (top) and Wind Speed (bottom) for Week 8 

Two parameters which, based on their correlation, are able to provide a good insight into the 

health of their measurements and the health of the wind turbine itself are rotor speed and 

generator current. Although the data for this analysis is from a constant speed wind turbine, in 

general as the rotor speed increases so too does the current. Different information is also gained 

depending on the period of time the correlation analysis is performed over. Taking Figure 47 

it can be seen from the Daily plot that the correlation level is more variable than the Hourly 

and 10-Minutely plots. This is because the Daily plot is more sensitive to wind turbine 

downtime and periods of low wind speeds (such as in weeks 2 and 8) where the wind turbine 

is producing power below the rated power output or producing no power at all. It is more 

sensitive to these events because it may include a number of these events within a day whereas 

the Hourly and 10-Minutely periods may miss these events entirely depending on when the 

sample of data was taken for the analysis. This Daily plot highlights the need for performing 

the analysis over different periods of time since the Daily plot at Week 5 has detected the 

presence of high levels of erroneous data by the drop in correlation yet this would not be so 

easily detected in the Hourly and 10-Minutely plots.     

Looking at the plots in Figure 47 for the Hourly and 10-Minutely periods, it can be seen from 

the orange trace that the correlation of the sensors is considerably higher when the erroneous 

data has been removed.  This example shows that the presence of erroneous data could be 

detected by a drop in correlation between these sensors. If however the data was known to be 

free of erroneous measurements then it may be that there is a fault with the wind turbine itself 

such as the generator not producing the correct current level for a given rotor speed.  
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Figure 47: Pearson's Coefficients for Rotor Speed and Current 

Load Pin 1 and Load Pin 2 as mentioned previously were used as a control because they should 

almost always be strongly correlated, except during wind turbine downtime or periods of high 

erroneous data. Figure 48 shows this strong correlation particularly for the analysis performed 

for Daily correlation. The Hourly analysis shows a drop in correlation for the raw data at week 

5 which indicates that there was a high level of erroneous data. Although the Load Pin data is 

not erroneous the data points that are at the corresponding timestamp of the erroneous rotor 

speed data points are filtered out.  The drop in correlation for both the raw and filtered data for 

the Hourly and 10-Minutely correlations in weeks 6 and 10 are caused by wind speeds being 

below the cut-in wind speed of 4 m/s and the wind turbine being shut down.   

Load Pin 1 and Current 1 are also sensors that can be used as a control due to their high 

correlation with each other as can be seen from Figure 49. Comparing Figure 48 and Figure 

49 both have high correlation and the only difference being that Load Pin 1 and Current 1 are 

negatively correlated meaning that as one increases the other decreases. It should also be noted 

that in both Figure 48 and Figure 49 there is a difference in correlation between the raw and 

filtered data at Week 5. Although none of the sensors included in these graphs are outputting 

erroneous data, any data at a timestamp corresponding to that of the timestamp at which the 

rotor speed sensor outputs an erroneous reading is removed for this analysis. Therefore once 

again there is less healthy data to carry out the analysis on resulting in a lower covariance and 

correlation.  
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Figure 48: Pearson's Coefficients for Load Pin 1 and Load Pin 2 

 

Figure 49: Pearson's Coefficients for Load Pin 1 and Current 1 

Figure 48 and Figure 49 show how using sensors that are almost always very strongly 

correlated as controls can aid in confirming for other parameters whether the sensors are at 

fault or whether the change is due to normal operation of the wind turbine i.e. if the correlation 

between two sensors drops and the correlation of the control sensors also drop then it is 

reasonable to conclude that the correlation is only dropping due to normal operation such as a 

shutdown; however if the correlation between two sensors drop yet the correlation of the 

control sensors stays the same then it may be concluded that there is a fault with a sensor or 

the wind turbine itself.   
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5.4 Conclusion 

Due to many wind turbine parameters being correlated with each other, Pearson’s correlation 

coefficient is a useful measure which is able to give an indication of a change of state of 

operation or health within a wind turbine. Correlation analysis may not give enough 

information to diagnose a fault but can indicate with minimal computation that a change has 

occurred. This section has addressed research question two by showing how the correlation 

between parameters will drop in the presence of erroneous data thus allowing erroneous data 

to be detected and false alarms to be avoided. It has also been shown that control sensors can 

be used to distinguish between erroneous data and normal wind turbine operations.  

Both of the techniques presented in this chapter and the previous chapter can be used to detect 

erroneous data however the techniques do differ from one another and there are times when 

one may be more suited over the other. The False Data Detection Model is more suited when 

the erroneous data can to an extent be determined by the characteristics of the sensor and the 

parameter being monitoring. For example, in the case discussed in this chapter, the rotational 

speed could only ever be falsely low and not high because it is not possible for the sensor to 

count more holes than are present in the rotor locking disc. So although this technique is very 

effective for a specific application it requires certain characteristics of the application. Given 

the correct application, this technique can be used for online erroneous data detection and 

removal.   

Correlation analysis on the other hand provides a higher level erroneous data detection 

capability based on the relationship between parameters. Although this technique cannot be as 

accurate in terms of detecting erroneous data from a specific sensor for a specific parameter 

as the False Data Detection Model can, it can provide a simpler erroneous data detection 

method that can cover a wider variety of monitored parameters. With the correct thresholds in 

place for detection and rules applied that are based on the operating state of the wind turbine 

it would be possible to apply this technique to online monitoring.   

The two techniques presented provide different levels of erroneous data detection however 

both are very much dependant on contextual information. Because of the variable and 

stochastic nature of a wind turbine it is not suitable, for example, to set a fixed threshold for a 

temperature sensor as it is essential when setting the threshold that the ambient temperature 

and the load on the generator are taken into consideration. A temperature that may be deemed 

high for a low generator load may only be the result of an abnormally high ambient 
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temperature.  It is therefore crucial for any error detection technique to consider the whole 

goings-on and operating state of the wind turbine.     

Table 11: Summary of False Data Detection and Correlation Analysis techniques 

False Data Detection Model Correlation Analysis 

Low level detection High level detection 

Application specific Wider range of applications 

Key information required Simple to implement 

Provides clear output More knowledge required to interpret 

output 

Rely on contextual information 

Provide online detection 

  



120 

 

6 Clipped Voltage Signal Correction 

6.1 Overview 

Signal clipping is a term that is used in a number of different applications but generally it tends 

to imply that the amplitude of a signal is stopped from reaching its natural peak value and is 

limited past a certain threshold. One might assume that the clipping of a signal is a negative 

result of something going wrong; however within the field of digital communications signal 

clipping is a technique that is commonly being used particularly in conjunction with 

Orthogonal Frequency Division Multiplexing (OFDM) [168, 169], a method for encoding 

digital data on multiple carrier frequencies. Clipping of the OFDM signal reduces the high 

Peak-to-Average Power Ratio which occurs as a result of the OFDM method [170]. The 

method of clipping however does have its drawbacks such as causing distortion and a number 

of publications have focussed on these effects [171, 172].  

In relation to the work in this section, clipping is seen as an undesirable occurrence with 

regards to the output from a sensor. Ni et al. quite rightly describe clipping, not as a fault of 

the sensor, but as the environment exceeding the limits of the analogue to digital convertor 

[173]. When discussing different system faults that data from a sensor can show, Ni et al. state 

that clipping may be detected as a “stuck at” fault whereby the data remains at, or close to, a 

certain value for a period of time.  

Another way of describing the clipping of a signal from a sensor is sensor saturation, again 

meaning that the operating range of the sensor has been exceeded. An area where saturation 

can have detrimental impact is Active Noise Control (ANC). ANC systems are used to reduce 

the noise levels being outputted by industrial machinery through the principles of 

superposition, where a secondary loudspeaker creates a cancelling noise of the same amplitude 

but opposite phase [174]. If the reference sensor is subject to noise greater than the dynamic 

range of the sensor it will saturate. To study the effects of sensor saturation on an ANC system, 

Kuo et al. [175] model a saturated signal by nonlinearly clipping the output of the reference 

sensor. Through the use of a Fourier series it is shown that the clipping, or saturation, of a 

sensor signal produces extra harmonics on the frequency spectrum, a point which will be 

picked up on later in this chapter.  

This chapter will focus on the clipping of signals outputted from voltage sensors that are 

mounted on the terminals of a 600 kW generator, one on each phase. The voltage was 

measured using the circuit shown in Figure 50 which incorporated an LV25P voltage 

transducer, which is actually a closed loop current transducer that uses the Hall Effect – a 
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phenomenon where a voltage is induced proportional to a current which is passed through a 

magnetic field. Since the generator outputs approximately 400Vac at rated power this voltage 

had to be stepped down so that it fell within the input range of ±10V for the analogue to digital 

converter on the data acquisition device. The resistors on the input side of the transducer were 

chosen to bring the maximum input current to 10mA. Measuring the voltage across the 

measurement resistor Rm would give a voltage proportional to the input current. The value of 

Rm must be selected based on the input voltage range so that a voltage between ±10V can be 

measured. There is a trade-off between accuracy and range when selecting the value of Rm 

i.e. measuring a larger range will result in lower accuracy.    

 

 

Figure 50: Voltage transducer board 

 

On analysing the first batch of data from the system it was found that the voltage signals were 

being clipped when the turbine was operating at rated power which corresponds to a voltage 

of 400V. Without accessing the wind turbine nacelle to confirm the cause of the clipping it is 

suspected that the clipping is being caused by a limitation in the current draw from the power 

supply to the LV25P transducer. The reason for suspecting this is because the clipping is not 

a flat response caused by reaching a maximum range, but instead there are oscillations, as seen 

in Figure 51, which suggest a lack of current to the transducer.    
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Figure 51: Clipped peak of the voltage signal 

Regardless of the reason for the clipping occurring, the ability to still use the clipped data may 

be crucial to detecting a fault. The clipped signal itself may be required to simply detect an 

over-voltage or it may be that the signal is used in conjunction with other parameters for fault 

detection. A technique presented by Yang et al [96] uses both generator power output and rotor 

speed to derive a fault detection signal. To obtain the output power of the generator the voltage 

signal is required along with the current. Therefore if the voltage signal has been clipped this 

may have an effect on the output of their detection algorithm.     

The current signal from a generator is a parameter widely used for detecting fault harmonics 

in the frequency domain, commonly known as current signature analysis [63, 176]. Crabtree 

et al [87] derive analytical equations for the frequency content for both line current and 

instantaneous power for healthy and faulty induction generators. Through the use of data from 

test rigs the authors show how spectra for these two parameters can be used to detect faults in 

the frequency domain. Once again, a clipped current or voltage signal could have an effect on 

the outcome of these detection methods either through harmonics being added to the frequency 

spectrum or through an inaccurate instantaneous power signal.    

This chapter introduces a voltage clipping correction model which will allow a clipped signal 

to be used for analysis.  Addressing research question three, this technique will allow data that 

contains erroneous data to continue to be used for condition monitoring. The clipped signal in 
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this application is a voltage signal however the technique developed may be used to correct 

clipping in any sinusoidal signal such as current or power signals. 

 

6.2 Clipping Correction Model 

The aim of the clipping correction model was to take the raw voltage signal and replace only 

the data where clipping had occurred so that the corrected signal was as close to the original 

as possible. This is similar to the process of interpolation, a curve fitting technique, where 

there is the need to infer the values of a signal between discretely sampled points.  An example 

of this is given by Barszcz and Randall [177] who use linear interpolation to resample a 

vibration signal at a higher sampling rate. This was done in order to obtain a higher number of 

samples that were needed to carry out time synchronous averaging for a three-stage gearbox 

with the aim of detecting a cracked gear tooth.  

Time synchronous averaging, a technique that enables periodic waveforms to be extracted 

from noisy signals [178], also uses interpolation to resample a signal so that all samples are 

taken at the same point of a revolution of a piece of rotating equipment such as a gear. Decker 

and Zakrajsek [179] compare three different interpolation techniques used for time 

synchronous averaging namely: linear, cubic and spline interpolation, stating that there are 

two constraints whilst choosing a method – accuracy and computation time. Linear 

interpolation is the fastest computationally due to its simplicity; however is the least accurate. 

The cubic interpolation, which fits a cubic curve to the data then solves the equation for the 

desired point, is the second fastest and depending on the accuracy of the curve fit can be more 

or less accurate than linear interpolation. Finally cubic spline interpolation is the most accurate 

method, at the expense of computation time. This method uses a series of functions to 

determine the interpolated data points.   

The interpolation methods described above are all used to infer a value between two discrete 

points. These methods of interpolation however, would not work for the clipped voltage signal 

discussed in this chapter since interpolation or even averaging over the clipped area would still 

result in some level of clipping. For this reason a method which would reconstruct the signal 

based on knowledge of the expected function, in this case a sine wave, had to be considered.          
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The correction of the clipped signal is carried out as follows: 

1. Find the first data point where clipping occurs. 

2. Take the X value (time index) for the two data points before and 43 data points after 

the first data point where clipping occurs. These are the data points which will be 

corrected. 

3. Fit a single sine curve of the form 𝑓(𝑥) = a ∗ sin (𝑏𝑥 + 𝑐) to the voltage signal using 

the method of non-linear least squares with the data points where clipping has 

occurred excluded.  

4. Take the X values of the excluded data points and use the function of the fitted curve 

to find the Y values (voltage amplitude) of the fitted curve. 

5. Replace the data points where clipping has occurred with the new data points from the 

fitted curve.  

The voltage signal that the curve had to be fitted to is a single sine wave with a frequency of 

50 Hz as defined by the frequency of the local electricity network. The length of the signal 

used to fit the curve had to be at least 205 data points (1/50Hz * Sampling frequency of 10.24 

kHz). This ensures that a whole period of the signal is used so that both a peak and trough are 

included - since this is the data that is needed for the correction. Strictly speaking there is no 

limit to the size of sample that the curve fitting can be applied to, however the accuracy of the 

fitted curve may decrease as the sample size increases due to variations in the signal frequency 

being averaged out over the length of the sample. The amplitude of the signal should vary very 

little as the voltage of the generator is fixed and should only ever change when the wind turbine 

is shut down. 

Since the signal was only clipped as it approached rated power a threshold was set so that no 

clipping correction could be applied to the signal where it was not actually being clipped. The 

window size to apply the clipping correction to was chosen to be 46 data points. This window 

size meant a smooth transition between the original signal and the new corrected section of 

the signal. It was found that if too large a window size was used, i.e. greater than 46 data 

points, the accuracy of the correction was reduced as the transition between the raw and 

corrected data would be less smooth. However, it is better to err on the side of using a larger 

window than a smaller window since using a smaller window could risk missing part of the 

clipped signal as shown in Figure 52 where a window of only 15 data points is used. 
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Figure 52: Corrected signal where too small a correction window has been used 

The original signal which was clipped is shown in Figure 53 by the blue dotted line. The 

clipping of the signal occurs at an unconverted voltage of just over 6100 (which corresponds 

to a real voltage of just over 367V) and can be seen by the green crosses. Each green cross is 

a data point which is removed and replaced by the corresponding value of the fitted curve. The 

fitted sine curve is shown in red and it can be seen that the original signal and fitted curve align 

very closely.  
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Figure 53: Clipped voltage signal with curve fitted 

Using the values of the fitted curve, the points where clipping had occurred were removed and 

the new points inserted to give the corrected signal shown by the red dotted line in Figure 54. 

The raw clipped signal is shown in blue and can be easily seen at the peaks and troughs of the 

signal where the clipping occurs.  

 

Figure 54: Clipped and corrected signals 
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6.3 Discussion of Results   

The main aim of the clipping correction model was to repair the clipped signal so that it could 

still be used for condition monitoring of the wind turbine. From Figure 54 it can be seen that 

there is a smooth transition where the signal correction has been carried out which should 

mean that no harmonics in the frequency domain have been added as a result of the correction. 

Also since clipping only occurred approximately 22V below the expected peak value it is 

believed that a significant amount of information is not lost from the signal.   

In an attempt to examine what effect clipping may have on the frequency domain 

representation of the signal, a Fast Fourier Transform (FFT) was carried out on both the 

clipped and corrected signals. Figure 55 below shows the spectrum for the clipped signal. As 

would be expected the most significant peak is located at 50Hz which is the frequency of the 

power grid that power is being supplied to.  There are also notable, though considerably 

smaller, peaks seen at multiples of the grid frequency, namely 100, 150, 200, 250, 350 and 

450Hz.  

 

Figure 55: Frequency spectrum of clipped signal 

The spectrum for the corrected signal where clipping has been removed is shown in Figure 56. 

When compared with the clipped signal in Figure 55 it can be seen that the amplitude of the 

main peak is higher for the corrected signal since clipping reduces the amplitude of the signal 

at each peak. It can also be seen when comparing the two spectrums that the peaks seen at 

multiples of the grid frequency are significantly reduced following the correction of the 

clipped signal. During the sections where clipping is occurring the signal oscillates at a greater 

frequency which will introduce higher frequency harmonics into the signal. By removing the 

clipped sections these harmonics are removed from the signal.   



128 

 

 

Figure 56: Frequency spectrum of corrected signal 

 

In the case where there had been a fault with the generator such as a short circuit in a winding, 

a harmonic may appear in the frequency spectrum of the signal. Since the clipping correction 

model is only applied to the small sections where clipping occurs it is expected that it will still 

be possible to detect the fault harmonic. Having applied the clipping correction model it may 

be easier to detect the fault harmonic since the harmonics caused by clipping have been 

removed, thus providing a cleaner signal for fault detection. As mentioned previously, 

although the technique has been applied to a voltage signal in this work, it could also be applied 

to a current signal which is more commonly used for spectral analysis.  

Instantaneous power as used in [96] for fault detection is calculated by the equation: 

Equation 12: Instantaneous Power 

𝑃(𝑡) = ∑ 𝐼𝑖(𝑡) ∗ 𝑉𝑖(𝑡)

3

𝑖=1

 

Where I1(t) and V1(t) are the current and voltage for phase 1 at a given instant in time. Given 

the presence of a clipped voltage signal the power on each phase will be altered as shown in 

Figure 57 where the power calculated using clipped voltage data is shown by the dotted traces 

for each phase and the power calculated using corrected data is shown by the solid traces. The 

result of clipping is mainly seen as a reduction in phase power however there are some 

instances seen at the peaks of the waveforms where the power is higher for the clipped data.    
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Figure 57: Phase power for clipped and corrected voltage data 

 

The use of clipped voltage data results in an apparent reduction in instantaneous power over 

the majority of the signal, as shown by the red trace in Figure 58 and calculated using Equation 

12. It also, at some instances, has the result of showing the power to be slightly higher than 

the corrected data shown by the blue trace.  The main issue caused by this apparent drop in 

power will be the appearance of the wind turbine to be operating at reduced efficiency which 

could result in unnecessary costly investigative actions. A technique developed by Gill et al. 

[180] uses the power curve of the wind turbine and empirical copulas with the aim of being 

able to detect incipient faults such as blade degradation, yaw, and pitch errors. If the power 

curve used for this analysis was artificially altered due to an erroneous sensor reading the 

output of this technique could be wrongly interpreted. For example, it can be seen from Figure 

58 that the instantaneous power is more variable when the clipped voltage data has been used. 

Gill et al. state that a pitch mechanism fault is likely to “show up as a greater variability at all 

wind speeds, or may lead to over or under production of power at high wind speeds” [180]. 

Therefore the use of clipped voltage data could be wrongly interpreted as a fault in the pitch 

system.    
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Figure 58: Instantaneous power for clipped and corrected voltage data 

 

Transforming the instantaneous power generated using the clipped data into the frequency 

domain, detects the presence of a harmonic at 297 Hz, as shown in Figure 59, which is the 

result of clipping since it is not present in the spectrum of the instantaneous power generated 

using the corrected data. The presence of this harmonic may result in cause for alarm by an 

operator if it is not known that it is only the result of an erroneous measurement.     

 

Figure 59: Frequency spectrum of instantaneous power generated using clipped voltage data 
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6.4 Conclusion 

This section has addressed research question three by introducing a technique for the 

correction of a signal which has been clipped at its peaks and troughs. It may not always be 

possible to access the wind turbine in order to perform remedial work to stop the clipping from 

occurring. Also, it may be that an operator wishes to use historic data which has been clipped 

to investigate a particular fault or even to assess the performance efficiency of the wind 

turbine. Correcting a clipped signal, which potentially contains insightful information, will 

allow it to be used for analysis. The technique introduced here only performs the correction 

on the small period of data where clipping has actually occurred, therefore reducing loss of 

information in the rest of the signal. This section has shown that without correcting the 

clipping, the use of the data could potentially give false diagnoses to the health status of the 

wind turbine.  
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7 Conclusions and Further Work 

7.1 Conclusions 

Wind energy is a leading provider of renewable energy and is able to help meet the demands 

of reducing reliance on fossil fuel energy sources. However even as the most mature renewable 

technology, it is still hampered with reliability issues, even more so as turbines increase in 

size. Installing wind turbines offshore has great potential for increasing energy capture due to 

the more favourable wind conditions; however the further offshore they go the greater the 

costs of operating and maintaining them will be.  

SCADA systems are currently the main way in which the health of wind turbines is monitored; 

however the main function of a SCADA system is for control and performance monitoring. A 

significant amount of work has been carried out in order to make greater use of SCADA 

systems and increase their diagnostic capabilities. However in order carry out detailed 

diagnostics through the use of more sophisticated data processing techniques, dedicated 

systems are required which can capture and efficiently process high frequency data. In 

processing this high frequency data and extracting useful information about the health of the 

wind turbine, operators will be better informed, allowing for more optimised maintenance and 

repair scheduling, and the avoidance of unplanned wind turbine downtime. This in turn will 

reduce O&M costs which will ultimately lead to a reduced cost of energy from wind turbines.   

Although there is great potential in the use of condition monitoring systems to reduce O&M 

costs, it has been stated in the literature that operators have been wary of blindly adopting such 

systems. This may be due to high capital costs of implementing these systems or because of 

reliability issues such as systems giving false alarms. A number of studies have been carried 

out to try to quantify the benefits of implementing such systems with one stating that CMS 

must accurately diagnose 60-80% of potential faults to be economically beneficial.  

A review of the literature identified that most of the work in developing wind turbine 

diagnostic techniques was done through the use of test rig data. Test rigs have the advantage 

of being able to provide on-demand data for a given type of fault allowing diagnostic 

techniques to be tested very easily. The conditions of the test however are reliant on a model 

which accurately depicts the conditions within a wind turbine. As accurate as the model may 

be, it will never truly provide the fault conditions experienced in an operational wind turbine. 

The lack of real fault data from an operational wind turbine was the reason that two wind 

turbine CMS were installed during this PhD. Through the installation of these CMS and a 
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review of literature into wind turbine condition monitoring three research questions were 

defined which identified where work was need to increase the reliability of wind turbine CMS: 

1. Having identified from literature that wind turbine CMS need to be more reliable, can 

a design process be constructed that would facilitate this through better design with 

an awareness for the environment in which the system must operate? 

2. Given that false alarms from CMS are hindering their uptake, how could the 

occurrence of false alarms be reduced in order to give the operator greater confidence 

in the information provided by a CMS? 

3. Given the occurrence of erroneous data, how could this data be removed or corrected 

to allow the remaining non-erroneous data to be used for determining the health status 

of the wind turbine?  

 

The installation of the two CMS provided a valuable insight into the design, build and 

installation of CMS. It could be seen how poor understanding of the environment in which the 

CMS was to operate could have a detrimental impact on its reliability. Through the process of 

working with these CMS and carrying out an FMEA on the first system, five categories of 

robustness were identified and then incorporated into an engineering design process. 

Addressing research question one, this novel piece of work provides guidance to anyone 

designing a CMS for a wind turbine by ensuring that they design the system in a way that will 

allow it to operate reliably within the wind turbine environment.  

In reviewing the literature into the reliability of CMS themselves, it was found that work which 

focussed on the design of CMS, primarily focussed on the functionality of the system as 

opposed to its long-term reliability. Functionality may be described as its ability to capture 

data and diagnose faults, whereas reliability is the system’s ability to carry out these functions 

satisfactorily for an indefinite period of time without the need for human intervention. It is this 

need for improved reliability of CMS that the work in this thesis has addressed. 

As previously mentioned, one form of poor reliability might be the generation of false alarms. 

False alarms from CMS are detrimental to the O&M of wind turbines as they may lead the 

operator to take unnecessary actions which result in additional expenditure that was not 

required. The occurrence of false alarms may be caused by erroneous data captured by sensors. 

Chapters four and five of this thesis have addressed research question two and the issue of 

false alarms caused by erroneous data by presenting two data analysis techniques. The first of 

these techniques identifies erroneous data through the use of multiple parameters and 

principles of operation, allowing the data to be removed from the dataset.  The second of these 
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techniques is based on Pearson’s correlation analysis and shows that a drop in correlation may 

indicate the presence of erroneous data, or the occurrence of a fault within the wind turbine. 

The key to these techniques is the use of contextual data in order to allow accurate rules and 

thresholds to be set.       

Chapter six of this thesis presented another data analysis technique, this time for repairing 

signals which have been clipped and therefore addressing research question three. Signal 

clipping may occur due to a fault with the sensor or simply because the measuring range of 

the parameter which it has been designed for has been exceeded. In an ideal situation, upon 

detecting (remotely) that a signal is being clipped, a technician could be deployed to fix or 

adjust the sensor. In reality however it may not be possible to access the turbine due to 

restrictions caused by the weather conditions or it may not be economically justifiable to 

deploy a technician for one sensor.  Regardless of the reason for clipping, the information 

contained within the clipped signal may be crucial for the detection of an impending failure. 

To address this issue a novel technique was presented which repairs the clipped signal, but 

crucially, only in the periods that clipping is actually occurring so that as little information as 

possible from the signal is lost. It was shown that using the signal without removing the 

clipping could potentially result in false alarms as a result of the harmonics added from 

clipping.  

The research presented in this thesis was carried out with the aim of improving the reliability 

of wind turbine CMS, as the literature identified a need for this. This has been done in two 

ways; firstly by improving the design of these systems and secondly through the development 

of data analysis techniques. Improved design will reduce the likelihood of a failure which 

would stop the system carrying out its intended function. Analysis techniques which can detect 

and remove or repair erroneous data will further increase the reliability of the system.  This 

increase in CMS reliability will have a knock on effect of allowing wind turbines themselves 

to become more reliable, therefore reducing O&M costs and the overall cost of energy from 

wind turbines. 

 

 

 



135 

 

7.2 Further Work 

In relation to the work presented in this thesis, two areas of further work in the following areas 

are proposed. 

 False alarms were identified as an issue hindering the uptake of wind turbine CMS by 

operators. Therefore further work should be carried out into identifying the causes of 

false alarms and research applied to minimising them. To do this substantial data 

would be required from wind farm operators detailing false alarms and their likely 

cause. This would allow models to be developed similar to that in Chapter 4 which are 

able to detect the difference between true and erroneous data. 

 As the volume of data captured by wind turbine CMS increases it will become more 

of a challenge to work with the data. Research should therefore be applied to improve 

Big Data techniques for the application to wind turbine condition monitoring. This 

will require substantial work into determining a framework suited to the wind farm IT 

infrastructure. Additionally, successful diagnostic techniques will have to be selected 

and implemented in a Big Data format, choosing how to categorise the map and reduce 

tasks.     
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Appendix 

The following appendices show the correlation between rotor speed and acceleration for 

accelerometers three, five and seven as discussed in Chapter 0.  As was discussed, there is a 

clear difference between the raw data and filtered data due to the acceleration being directly 

proportional to the rotor speed. 

 

Appendix Figure 1: Correlation between rotor speed and accelerometer 3 

 

 

Appendix Figure 2: Correlation between rotor speed and accelerometer 5 
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Appendix Figure 3: Correlation between rotor speed and accelerometer 7 


