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Abstract 

 

This research developed efficient applications of portable measurement systems to assess 

human exposure to traffic-related air pollution through direct measurement, and evaluation 

of exposure models. 

 

Passive NO2 samplers are deployed at large numbers of sites in epidemiological studies to 

estimate typical concentrations over 1-4 weeks.  I found that deployment time could be 

reduced to 2 days with limited impact on the accuracy and precision of exposure estimates.  

This shorter measurement time enabled observation of wind-speed effects leading to 

overestimation of ambient concentrations by passive samplers.  Through development of a 

post-processing technique and/or inclusion of a membrane I improved sampler accuracy. 

 

Portable sensors can provide detailed estimates of personal exposures to air pollution.  

Many sensor-based monitors have not been subject to rigorous testing procedures to quantify 

their accuracy.  I observed that the most accurate estimates of concentrations from NO2 and 

O3 sensor-based monitors required regular, intermittent calibration against reference 

analysers under similar environmental conditions to field measurements.  I also found 

deterioration in BC monitor accuracy and precison when the attenuation of the collection 

filter exceeded 40 and no improvement in monitor accuracy was observed when filter 

darkness correction algorithms were applied. 

 

Portable sensors can be used to identify locations with higher concentrations, which may 

require more detailed monitoring.  I established that repeated 6-minute measurements of BC 

and particle number concentrations estimated similar spatial trends to 1-week NO2 

measurements using passive samplers. 

 

Dispersion models can be used to estimate pollution exposure at multiple locations over a 

study area.  I found that initial user parameterisation in a weather model had limited effect on 

pollution estimates from a dispersion model.  I evaluated a new GIS-based dispersion model 

(5 x 5 m NO2 estimates for a 3,500 km2 area, with model run times of under 10 minutes).  I 

demonstrated that inclusion of discrete street canyon models and geospatial surrogates 

(accounting for urban morphology) improved model accuracy. 
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The measurement and modelling evaluation research in this thesis complimented each other 

by providing efficient ways to directly measure population exposures. 
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1. Introduction 

 

Air pollution refers to any substances introduced in the air which, in high enough 

concentrations, have an impact on the environment.  There is growing literature showing that 

air pollution exposure leads to detrimental impacts on human health and has been estimated 

to have caused 3 million deaths in 2012 (World Health Organization, 2016).   

The smog in London in 1952, caused by emissions from power stations, transport and 

household heating, in combination with a period of very stable atmospheric conditions, lead 

to the mortality rates 40 % higher than for the same period the previous year, and continued 

to cause elevated rates for several months (M. L. Bell et al., 2004).  The Clean Air Act 1956 

was introduced to prevent this avoidable-disaster from occurring again, and included laws to 

prevent smoky fuels being burned in towns and cities, relocation of large industries to 

outside of urban areas and the use of taller chimneys on industrial sites.  This act was the 

first to tackle the problem of air pollution, and since this time many others have followed, 

including the Ambient Air Quality Directive (2008/50/EC) in place today, which limits the 

concentrations of pollutants allowed in ambient air.  Generally the trends in air pollutants 

have decreased over recent years as a result of the legislation introduced (Bigi and Harrison, 

2010; Guerreiro et al., 2014). 

Today, one of the main contributors to air pollution is from transport emissions (including 

air, road, rail and sea transport), which have been estimated to account for 21 % of the 

concentrations in the UK in 2015, up from 15 % in 1990.  Ninety-three percent of these 

traffic emissions are estimated to be attributed to road transport (Department for Transport, 

2015).  Cleaner engine technology is reducing the concentrations of pollutants in vehicle 

exhaust fumes (Department for Transport, 2015).  However despite this improvement 

ambient concentrations have not decreased by as much as these emissions reductions would 

have us to believe, leading to some urban areas being unable to meet the strict limit values 

for air pollution concentrations imposed by the European Union (for example 86 % of 

exceedance of EU ambient nitrogen dioxide limit values occurred at traffic sites (Guerreiro 

et al., 2014)).  This could be attributed to an increase in the number of vehicles on the road 

and the number of vehicle miles travelled, inefficiencies in the emission testing procedure 

and an increase in the number of diesel vehicles on the road has lead to a slower rate of 

reduction in traffic-related air pollutants in recent years (Beevers et al., 2012). 

Diesel vehicles are making up a larger proportion of the UK transport fleet, with an 

increase from 7 % to 36 % between 1994 and 2014 (Department for Transport, 2015).  The 

proportion of petrol vehicles on the road is falling, with a 20 % decrease in vehicles 
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composition to 63 % between 1994 and 2014 (Department for Transport, 2015).  Diesel 

vehicles produce lower emissions of carbon monoxide, but higher oxides of nitrogen and 

particulate emissions than petrol vehicles (European Environment Agency, 2016). 

The test procedure for vehicle emissions has been suggested to be inefficient in 

determining real-world emissions which have been shown to be seven times greater for 

oxides of nitrogen in comparison to the legal limits for emissions concentrations for the most 

recent European Union emissions standards (Degraeuwe and Weiss, 2017; Franco et al., 

2014; Williams and Carslaw, 2011).  It has recently come to light that certain diesel vehicles 

had been fitted with a system to detect when an emissions test was being carried out and 

consequently cheat the system by reducing the vehicles emissions below the limit values 

under test conditions but not in real-world driving scenarios (Degraeuwe and Weiss, 2017).   

The difference in vehicle emissions under test and real-world driving conditions will lead 

to elevated concentrations of air pollutants in areas in close proximity to traffic sources 

(Beevers et al., 2012; Brand, 2016).  These elevated concentrations could result in greater 

health impacts on those breathing in this air, and, as previously mentioned, non-compliance 

with legislation controlling the concentrations of pollutants in ambient air.  This failure to 

meet the limit values has resulted in a public lawsuit which found the UK governments 

guilty of not doing enough to tackle air pollution (Carrington, 2016).   

 

1.1. Traffic-related air pollutants 

The focus on this PhD is traffic-related air pollutants due to their large contribution to the 

overall ambient air pollutant concentrations.  These pollutants can be emitted directly in the 

exhaust of vehicles, known as primary pollutants, or can be produced when primary 

pollutants react with other gases in the atmosphere, secondary pollutants.  I discuss some of 

the common traffic-related air pollutants below, but limit these to the pollutants of focus in 

this thesis: oxides of nitrogen, ozone, and particulate matter.  The health effects of the 

pollutants are also discussed, though it should be noted that the spatial and temporal auto-

correlation between different pollutants can lead to confounding, making it difficult to assign 

health effects to a specific pollutant (Sheppard et al., 2012). 

 

1.1.1. Oxides of nitrogen 

Oxides of nitrogen (NOx) are the collective name for the gaseous pollutants nitric oxide 

(NO) and nitrogen dioxide (NO2).  NO is formed at high temperatures, such as those in a 

vehicle engine, when oxygen (O2) and nitrogen (N2) gas in the air react with one another, or, 

to a lesser extent, when nitrogen present in fuel reacts with oxygen in the air (Equations 1 & 
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2 below).  NO is a primary pollutant as it is released directly from vehicle engines.  The NO 

emitted in exhaust fumes quickly reacts with ozone (O3) in the atmosphere, in the presence 

of UV light from the sun’s rays, to form NO2, thus NO2 a secondary pollutant (Equation 3 

below).  However, nitrogen dioxide can also be classed as a primary pollutant as this is 

emitted directly from diesel engines during the combustion.  Nitrogen dioxide can break 

down in the presence of light, in other words the reaction only occurs during the day, to 

produce nitric oxide and ozone (Equation 4 below).  This means these three pollutants are in 

photo equilibrium with one another, with NO and NO2 concentrations elevated at locations 

in close-proximity to traffic and O3 concentrations anti-correlated with these. 

�� + �� → �� + � [Equation 1] 

� + �� → �� + � [Equation 2] 

�� + ��
��	
 ��� + ��[Equation 3] 

���
��	
 �� + �� [Equation 4] 

Inhalation of nitrogen dioxide can lead to inflammation of the lungs, which in turn makes 

a person more susceptible to infection and gives rise to an increase in wheezing, difficulty 

breathing, hospital admissions and in some cases death (Bayer-Oglesby et al., 2006; Brauer 

et al., 2002; Mills et al., 2015).  Those with pre-existing respiratory conditions, such as 

asthma, are at higher risk of experiencing these detrimental health effects (Lipsett et al., 

1997; Trasande and Thurston, 2005).  For the Greater Glasgow area, where the work which 

will be presented in this thesis was carried out, a reduction of 8 µg/m3 in NO2 concentrations 

was estimated to be able to lead to a reduction in hospital admission by approximately 10 % 

(Lee et al., 2009). 

 

1.1.2. Ozone 

Although not directly emitted in vehicle exhausts, ozone (O3) is classed as traffic related 

pollutant as it is involved in reactions with primary pollutants such as oxides of nitrogen as 

discussed above (Equation 3 above).  The natural process of ozone formation involves UV 

light rays from the sun break down oxygen gas into individual oxygen atoms, which then 

react with other molecules of oxygen to form ozone (Equations 5 & 6 below).  It can also be 

produced when NO2 in the air is photolysed, meaning ozone is anti-correlated with nitrogen 

dioxide (Equation 4 above).  As ozone is generated during photochemical reactions, on 

sunny days ozone concentrations can become elevated quickly. 

 ��
��	
 � + � [Equation 5] 
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 �� + � → �� [Equation 6] 

When breathed in, ozone can cause oxidisation of lung tissue, leading to irritation and 

constriction of the airways, shortness in breath, reduced lung functions and can cause 

increases in death rates (M. Bell et al., 2004; Doherty et al., 2009; Fann et al., 2012).  

Exposure to O3 can also exacerbate pre-existing respiratory conditions such as asthma which 

can lead to increased hospital admissions, especially in children (Gent et al., 2003; 

McConnell et al., 2002; Petroeschevsky et al., 2001). 

 

1.1.3. Particulate air pollution 

Particulate air pollution is produced from both natural (e.g. forest fires) and 

anthropogenic (e.g. traffic) sources.  Particulate matter (PM) includes solid and liquid 

particles produced during the combustion process and re-suspension of dust from the roads 

suspended in the air.  There are several methods used to measure particulate pollution from 

road transport, including direct measurement of the particulate matter, a count of the number 

of particulate particles in a sample of air or measurement of black carbon which is a 

pollutant produced only by combustion sources.  These three classes of particulate pollutant 

are discussed below in more detail. 

 

1.1.3.1. Particulate Matter 

Particulate matter can describe particles produced from a wide variety of sources, 

including natural (e.g. dust) and anthropogenic (e.g. combustion, industrial) sources.  There 

are different size fractions of PM – commonly measured are PM10, PM2.5 and PM1
 - the 

numbers represents the size of aerodynamic particles being measured, for example PM2.5 

measures particles in the air with aerodynamic diameter less than 2.5 µm.  Those particles 

produced during combustion have small diameters (less than 0.1 µm) and disperse in a 

similar manner to gases over large distances from their road sources, while the larger 

particles (e.g. PM10 produced during re-suspension) do not disperse as far from their source. 

When inhaled, particles travel into the lungs and cause respiratory illness, with the 

smaller particles able to penetrate deeper into the lungs and cause greater impacts (Dockery 

et al., 1989).  These small particles can also be absorbed from the lungs into the circulation, 

where they can lead to increased local and systemic inflammation which can lead to 

detrimental health effects including cardiovascular illness (Brook et al., 2010; Dockery et al., 

1993; Oberdörster et al., 2005; Pope and Dockery, 2006).    Black smoke concentrations (a 

historic measure of particle concentrations) have been shown to lead to increased all-cause 

and respiratory mortality in Greater Glasgow (Beverland et al., 2012a, 2012b) while 
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particulate concentration have been linked to hospital admissions in the same area (Lee et al., 

2009).  Reductions in particulate matter concentrations can lead to improvements in the 

respiratory health of children, however there has been no safe threshold concentration of 

particulate matter where no negative impacts on health have been observed (Bayer-Oglesby 

et al., 2005). 

Another important factor associated with the exposure to particulate matter is the 

chemical constituents of the particles, which often contain metals that are toxic to human 

health (Valavanidis et al., 2008).  If particles are absorbed into the blood stream these can 

lead to oxidative stress which can increase the risk of a stroke or cardiovascular illness 

(including coronary heart disease) (Lodovici and Bigagli, 2011), while a relationship 

between particular matter and lung cancer has also been demonstrated which is thought to be 

attributed to metals in the particles leading to DNA damage and promoting inflammation 

(Raaschou-Nielsen et al., 2016). 

 

1.1.3.2. Particulate Number 

Ultra-fine particles (UFP) are also produced from road traffic during the combustion 

process. Due to their small size (diameters of < 100 nm), direct measurement using mass 

based methods is difficult as the UFP mass is negligible in comparison to other, larger, 

particulates emitted from road traffic (Harrison et al., 2010; Kumar et al., 2010; Kumar et al., 

2014).  In comparison, particles with diameters less than 300 nm (i.e. including UFPs) have 

been estimated to contribute over 99 % of total particle numbers (Kumar et al., 2009) 

therefore particle number count has been used to represent UFP concentrations. 

There small size causes UFP to behave similarly to gases – namely they can persist in the 

atmosphere for longer periods of time than larger particle sizes and they can disperse over 

larger areas than the particulate matter discussed above (Birmili et al., 2013; Constabile et 

al., 2009). 

UFPs can penetrate deep into the lung where they can deposit (Manigrasso and Avino, 

2012; Oberdorster, 2000), or alternatively can enter the blood stream where they can be 

transported to other organs including the brain (Oberdorster et al., 2004), leading to increases 

in hospital emissions, morbidity and mortality (HEI, 2013; Heusinkveld et al., 2016; Hoek et 

al., 2010; Li et al., 2003; Pagano et al., 1996). Toxic metals can also be attached to these 

pollutants which come with additional health problems including causing damage  to cells 

(Canepari et al., 2013; Wiseman and Zereini, 2009). 
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1.1.3.3. Black Carbon 

Particulate matter can be produced by a variety of sources.  Recent studies have suggested 

that black carbon (BC), a constituent of particles, is a more representative metric to measure 

particles from combustion sources, including diesel road traffic.  BC is an organic 

constituent of particulate matter which is produced during the incomplete combustion of 

fossil fuels and is one of the main constituents of soot. 

The spatial variability of BC has been found to greater than PM2.5 as a result of the 

localised emissions sources (Hoek et al., 2002; Janssen et al., 2008), meaning that fine-scale 

variations of BC concentrations are likely to be a better indicator of exposure to traffic-

related air pollution than the equivalent variations in PM2.5 concentrations. 

Exposure to BC has been found to be significantly correlated with both all-cause and 

cardiovascular mortality and also cardiac hospital admissions.  These associations were also 

found to be more pronounced for BC than PM2.5, for example estimates of all-cause 

mortality per 1 µg/m3 were 5-15 times higher for BC compared to PM2.5 (Janssen et al., 

2011). 

 

1.2. Assessing population exposure to air pollution  

To minimise the health effects described above governing authorities have set strict limit 

values for the main pollutants which must be adhered to.  The limit values are set at a level at 

which there has been no observable adverse effects observed.  Different concentrations have 

been set as limit values between the European Union, UK government and Scottish 

government.  The limit values for traffic related air pollutants are shown in Table 1 below 

(DEFRA, 2007).  The compliance with these limit values is assessed at several static 

monitoring stations located across the UK and funded by local authorities (https://uk-

air.defra.gov.uk/networks/).   
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Table 1: Annual average limit values set by the EU, UK and Scottish Governments to 

regulate the concentrations of traffic-related air pollutants in ambient air. 

Pollutant EU  

(µg/m
3
) 

UK  

(µg/m
3
) 

Scotland  

(µg/m
3
) 

NO2 (annual) 40 40 As UK 

PM10 (annual) 40 40 18 

PM2.5 (annual) 25 25 12 

O3 (8 hour mean) 120 (not to be exceeded  

more than 25 days over 3 

years)  

100 (not to be 

exceeded more than 

10 times in a year) 

As UK 

 

Epidemiology studies aim to relate measured pollution concentrations to effects on 

human health.  The exposure assessment methods used in these epidemiology studies, and 

the techniques commonly used to estimate population exposure to air pollution, as discussed 

below. 

 

1.2.1. Exposure assessments 

Exposure assessment studies are used to determine the health effects identified previously 

through analysis of an individual or populations estimated exposure to air pollution 

compared with recorded health data, such as hospital admissions or mortality.  Short-term 

studies identify health effects that occur during the period immediately following times with 

elevated pollution concentrations (hours, days or weeks), and these usually impact 

individuals with pre-existing health problems to a greater extent that the general population.  

Long-term studies (usually over a year) identify chronic health effects within the general 

population which are attributed to a build-up of exposures leading to illness. 

Epidemiology studies utilising available data on the general population do not suffer from 

any population bias as no specific individuals are chosen to be studied, making the results 

very generic and representative.  However, the large size of these groups means that detailed 

pollution assessments cannot be carried out for all individuals and concentrations are often 

based on general trends in atmospheric concentrations and model predicted pollution 

concentrations.  

Cohort studies produce detailed exposure estimates of study participants and can be 

combined with medical records for example, to study health effects in detail. Three of the 

most important cohorts to date (Harvard Six Cities, ACS-II and ASHMOG) found 

relationships between mortality and air pollution for cohorts of between 7,000 and 500,000 

people that were followed for between 7 and 15 years (Dockery et al., 1993; Pope et al., 
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1995; Abbey et al., 1999). The selection of those within the cohort is crucial and must not be 

subjected to any bias which could undermine any results observed.  The length of time of 

these is the main challenge in collecting and analysing large volumes of data, and if specific 

individuals are followed, this can be intrusive (Brunekreef, 2003). 

The assignment of pollution concentrations to the study participants above can take two 

main forms: monitoring or modelling.  The former provides detailed information on 

concentrations at the location at which the measurements were made, for example the home 

address of participants, however these can be time consuming and costly to set up and 

maintain.  Modelling exposure estimates allows retrospective analysis of health effects and 

allows estimates for pollution concentrations at all locations in a study area to be made.  The 

common methods used in air pollution monitoring and modelling, and the epidemiology 

studies in which these have been applied, are discussed below. 

 

1.2.2. Monitoring population exposure 

As previously stated, air pollution concentrations are measured real-time at automatic 

monitoring stations located at several locations over the UK to assess compliance with 

legislative values.  These automatic stations are expensive to set up, run and maintain thus 

there are only around 100 currently operational in the UK.  Historically, the concentrations 

measured at a single fixed location, such as these automatic stations, have been used in 

epidemiology studies to assess population exposure in the surrounding area, such as in the 

Harvard Six Cities, ACS-II and SAPALDIA epidemiology studies (Dockery et al., 1993; 

Pope et al., 1995; Zemp et al., 1999).  In these studies, concentrations from a centrally-

located automatic monitoring station within the study areas were used to assess mortality or 

respiratory illness due to air pollution.  The use of a single station to assess exposure is 

limited as this does not take into account fine-scale spatial variations in pollution 

concentrations (Baxter et al., 2013).  The ASHMOG study (Abbey et al., 1999) improved 

upon this approach by assigning participant exposures to the average concentration measured 

at several sites located within the study area instead of using concentrations from a single 

site only. 

Passive samplers can be used to supplement fixed-site monitoring locations (indoor or 

outdoor) and, due to their low cost, can be deployed readily at a large number of locations, 

such as the residences of individuals in an exposure study.  This allows more detailed 

information about an individual’s exposure to air pollution to be ascertained and takes into 

account fine-scale variations in pollutant concentrations.  They can also be used in personal 

monitoring, whereby the samplers are deployed on the participant and directly measures the 
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concentrations they are exposed to.  As their name suggests, passive samplers work through 

diffusion of air and do not require any mains or battery power to operate, however their main 

disadvantage they only provide time-averaged concentrations for the period they are 

deployed, which is typically 1 week in duration (Palmes et al., 1976).  Additionally the 

samplers are subject to uncertainties including interferences from chemicals and atmospheric 

conditions (Cape, 2009), which can lead to less accurate estimates of ambient pollution 

concentrations and hence population exposures.  Concentrations of gaseous air pollutants, 

such as NOx and O3, have been measured using this technique.  The use of passive samplers 

in epidemiology studies is limited to short-term studies with small numbers of participants 

due to the resource-intensive process associated with the deployment and consequent 

analysis of passive samplers, making their use for larger (and longer) cohort studies 

impractical (Brunekreef et al., 1990; Farrow et al., 1997).  The use of passive samplers for 

personal monitoring is limited due to the time/cost restraints and the reliance on participants 

to engage with the study (including keeping samplers close to themselves and accurately 

recording time-activity diaries), however this has been successfully used to measure personal 

exposure of NO2 (Linaker et al., 2000; Van Roosbroeck et al., 2007).  The main use of 

passive samplers in epidemiology assessments is to obtain detailed spatial information about 

the concentrations within the study area, which are then used to develop modelled pollution 

concentrations (these are discussed in more detail below) (Beelen et al., 2013; Brauer et al., 

2007, 2002). 

The estimation of the personal exposure of a participant at their home address makes the 

assumption that the individual remains in the same place throughout the study, which can be 

incorrect such as in the case of working-age participants who can spend a large proportion of 

their time away from home, for example travelling (Dons et al., 2014).  The passive samplers 

discussed above can be used to give time-averaged exposures to pollution however they do 

not allow detailed temporal concentrations to be estimated.  Developments in technology 

have allowed the generation of low power, portable, real-time instruments which can be used 

to provide temporally-resolved personal concentration measurements.  These active systems 

require a pump to pass air into the instrument for measurement, meaning batteries or mains 

power is required which is a limiting factor.  The main advantages of these real time 

samplers are they are designed to be easily deployed or wearable and provide information on 

real time pollutant concentrations, similarly to the automatic analysers.  Limitations of these 

real time instruments include their battery life, unknown or vague methods describing 

concentration derivation and the relatively unknown ability of these instruments to measure 

‘true’ ambient concentrations (Lewis and Edwards, 2016; Lewis et al., 2016).  Their small 
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size, however, permits their use in rapid identification of pollution variations within a study 

area (Gillespie et al., 2017; Wu et al., 2015), citizen-science projects (CITI-SENSE Project, 

2015; Snik et al., 2014), and personal monitoring (Montagne et al., 2013; Steinle et al., 2015; 

Van Roosbroeck et al., 2007).  Additionally, they can also be used to obtain measurements 

for use in air pollution modelling (Deville Cavellin et al., 2016; Dons et al., 2013). 

In order to make accurate estimates of an individuals exposure using monitoring, the 

researcher needs to understand the limitations of each technique and consequently chose the 

method that suits their requirements.  The more accurate the measurement data the less 

uncertainty in the health effect relationships identified in the epidemiology study (Zeger et 

al., 1999).  The measurement data needs to be representative of the environment in which the 

individual being assessed is exposed to.  For example, the static automatic monitors cannot 

capture fine-scale spatial information and could lead to a potential underestimation of an 

individuals exposure as these sites are often located away from direct sources of pollution.  

The measurement of pollution at multiple fixed locations, for example the use of diffusion 

tubes at an individuals home address, cannot account for fine scale changes a participant is 

exposed to during the day (Marshall et al., 2008).  The real-time sensors have potential 

merits in that they can address the need for fine scale spatial resolution, however the 

accuracy of these instruments is a questionable factor (Snyder et al., 2013).  These are likely 

to require frequent calibrations against reference instruments to ensure their accuracy, 

however this is a time consuming process and the regularity that the calibrations should be 

made at in order to maintain high monitor accuracy remains relatively unknown.  

Additionally, the accuracy of the monitors and the calibration remains relatively unknown 

when the portable monitors are removed from the reference stations used for calibration, 

which leads to an unquantifiable uncertainty in the measurements of an individual’s 

exposure.  Currently there is no standardised testing regime for these portable real-time 

monitors, meaning there are many sensors available with limited information available to 

compare these and to identify the accuracy and uncertainty of the sensors.  This can mean 

individuals are using the monitors without making detailed calibration measurements (which 

relies on access to an automatic monitoring station which is not publically available) and 

using the result without the understanding of the confidence of the measurements made, 

leading to larger errors in the measurement data and consequently more uncertain 

relationships between exposures and health effects. 
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1.2.3. Modelling population exposure 

Monitoring air pollution provides information about the true pollution concentrations in 

the study area; however, its cost and time consuming nature means that only a small number 

of sites can be monitored.  Modelling is advantageous as it allows predictions of pollution 

concentrations to be made over a whole study area, meaning concentrations at specific 

locations (such as home addresses) can be rapidly obtained for a very large number of 

participants.  However modelling requires computing power, which can often be very 

intense, complex understanding of fundamental concepts and can also be very demanding in 

the volume of data required to generate an accurate model.  Additional limitations of 

modelling for use with epidemiology studies include the large volume of data required to 

generate the models, the model is limited by the quality of the input data, and these models 

can only estimate outdoor exposures, which is unlikely to be a true estimate of individuals 

exposure as, in the UK, research has found that an individual spends approximately 1-2 

hours (Diffey, 2011). 

The models are developed from monitoring within the study area, using fixed sites or a 

pre-designed network (e.g. using passive samplers or portable instruments to obtain 

concentration estimates), with the latter being preferable as a larger number of sites over a 

wider range of pollution environments can be used.  The ESCAPE study used a dedicated 

monitoring campaign for 36 countries in Europe following the same site selection protocol to 

obtain pollution models, allowing comparisons between the pollution and health effects 

observed in each country (Beelen et al., 2013).   

There are three main modelling processes which are used in population exposure 

assessments – interpolation of monitoring data using Geographical Information Systems 

(GIS); Land Use Regression (LUR) modelling; and Dispersion modelling.  Interpolation 

techniques, such as inverse distance weighting, use pollution concentration from fixed 

monitoring stations and assign concentrations to the surrounding area based on weighted 

concentrations from close proximity monitoring stations.  However, this relatively simple 

approach does not take into account other factors (such as terrain, or urban morphology) and 

can become less reliable in areas with limited monitoring data, and its use in epidemiology 

studies has been in decline since the start of the 21st century (Jerrett et al., 2004).  The more 

recent epidemiology studies have typically used LUR or dispersion modelling, which have 

become more readily available with improvements in computation power, to model pollution 

concentrations in the study area.  Both these methods use monitoring data as inputs, and use 

either statistical (LUR) or empirical (dispersion) mathematical technique to allow a more 

complex and accurate pollution model to be derived.  When compared to each other, the 
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LUR and dispersion models have generally been found to perform similarly (Beelen et al., 

2010; de Hoogh et al., 2014; Gulliver et al., 2011; Marshall et al., 2008), with some studies 

combing the two approaches in order to obtain fine scale, area-specific spatial variation from 

the LUR in combination with the high temporal resolution provided by the dispersion model 

(Mölter et al., 2010). 

Land use regression modelling was introduced in the SAVIAH project in 1997 (Briggs et 

al., 1997), and since this time has been adopted in epidemiology studies, including the 

ESCAPE project (Aguilera et al., 2008; Brauer et al., 2002; Robinson et al., 2015; Wang et 

al., 2013).  Using monitoring sites, the relationship between pollutant concentrations and the 

surrounding environment are determined, which can then be applied to estimate pollution 

concentrations elsewhere.  Environmental factors often included in LUR models include 

traffic sources (for example proximity to roads), building heights and land-use type.  This is 

a relatively low cost process, however requires access to large volumes of data (GIS and 

monitoring) and has limited transferability between study areas, meaning new models should 

be developed for each specific area (Allen et al., 2011; Poplawski et al., 2008).  The 

combination of LUR and fixed-site real time monitoring has recently demonstrated the 

potential to include temporal resolution in LUR models (Cordioli et al., 2017). 

Dispersion models can be relatively complex as they take into account a wider range of 

environmental factors (including monitored pollution, emissions and meteorology) when 

estimating pollution concentrations.  The greater volumes of data required introduces 

uncertainty in the model when, for example assumptions about emissions have to be made 

when data is unavailable, or when other models are used to provide input to the dispersion 

model.  However, the complexity of this model allows highly resolved spatial and temporal 

pollution estimates to be determined with less monitoring sites required than LUR 

modelling.  Dispersion models, therefore, have potential for use in epidemiology estimates 

and can provide models for historic studies (Bellander et al., 2001; Gulliver and Briggs, 

2011; Nyberg et al., 2000). 

 

1.3. Thesis Aims and layout 

The aims of this thesis are to assess the evaluation and deployment of air pollution 

measurement systems for the assessment of human exposure to traffic-related air pollution.  

This PhD develops the literature evaluating the ability of portable sensor technologies and 

passive samplers to assess spatial and temporal variations in fine-scale pollution 

concentrations (through calibration, static and mobile monitoring), and evaluates the use of 

rapid GIS-dispersion models in population exposure assessment. 
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This thesis is comprised of five self-contained chapters written in the style of 

manuscripts, and some of these manuscripts have been submitted to journals.  A brief 

summary paragraph is provided at the start of each of the chapters to explain the context of 

the work, the contribution of any co-authors to the work and the status of any submitted 

manuscripts at the time of the submission of this PhD thesis.  The objectives of the research 

presented in each of these chapters are to evaluate: 

- common passive diffusion samplers used to measure NO2 and an 

investigation of the bias factors associated with monitoring of NO2 concentrations 

using these samplers. 

- performance of portable real-time monitors measuring NO2, O3 and BC at an 

automatic monitoring station and determine the optimal calibration methods for 

these monitors. 

- ability of short-duration monitoring using the portable monitors evaluated 

above to predict spatial and longer-term temporal trends of NO2 using peripatetic 

monitoring. 

- impact of user choices during weather modelling on the pollution estimates 

from a commercial dispersion modelling. 

- newly-developed kernel dispersion model (based on open-source software) 

and investigation into the ability of surrogate variables to estimate the location of, 

and correct for the influence of, street canyons. 
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2. Description of Measurement Systems 
 

This section describes the principles of the portable measurement systems used in this PhD 

research.  Further details regarding the operational settings used for the real-time instruments 

are discussed in the individual results chapters. 

 

2.1. Aeroqual S500 NO2 and O3 monitors 

 

The Aeroqual S500 monitor is a portable real-time monitor that combines a ‘standard’ 

monitor body (containing battery and data storage) with interchangeable sensor heads 

measuring different gases, allowing the user to create a monitor that meets their required 

specifications (Aeroqual, 2017).  Ambient air is drawn into the sensor head using a fan to 

ensure constant flow rates, and the air is passed over the sensor and concentrations of the 

pollutant to be measured are recorded.  The technology used in the sensors is dependent on 

the sensor and the gas to be measured. 

The NO2 sensor used in this research was an electrochemical sensor (ENW2, 0 – 1 ppm 

range).  When the sensor is exposed to NO2 it is oxidised, leading to reductions in the 

concentrations of electrons and consequently increases in the current measured by the sensor.  

The current measured is proportional to the concentrations of NO2 in the ambient air. 

The O3 sensor used was a gas-sensitive semiconductor sensor (OZU, range 0 – 0.15 ppm). 

Ozone in the sampled air absorbs onto the surface of the sensor, resulting in a rapid change 

in the measured conductivity and increased resistance.  The change in resistance is 

proportional to the concentrations of O3 in the ambient air (Williams et al., 2013). 

 

2.2. microAeth AE51 black carbon monitor 
 

The microAeth AE51 is a portable, real-time monitor that uses aethalometer technology to 

measure BC concentrations. Black carbon concentrations of between 0 and 1 mg/m3 (± 0.1 

µg) can be measured with the AE51, with a measurement resolution of 0.001 µg (Aethlabs, 

2016). 

Air is drawn into the instrument and passed through a T60 Teflon-coated borosilicate glass 

fiber filter, where particles deposit.  A 880 nm LED light sources is passed through the 

centre of the deposition spot and the absorption of light in the spot is measured relative to an 

adjacent clean spot on the filter (Aethlabs, 2016).  The increase in the absorbance of light 

(the Attenuation, ATN) in the deposition spot as more particles accumulate is used to 

calculate a concentration of black carbon (Virkkula et al., 2007; Hansen, 1982): 



2. Methodology 

25 

 


� =  1
∝���

�
�

∆���
∆�  

Where BC is the concentration (µg/m3), αabs is the mass absorption cross section of BC 

(m2/g), A is the area of the deposition spot (cm2), Q is the flow of air drawn through the filter 

(lpm), ΔATN is the change in attenuation with time (Δt). 

 

2.3. TSI CPC3007 particle number count monitor 
 

Particle number count was measured using the TSI Condensation Particle Counter (CPC) 

3007.  The concentration range is 0 – 100000 particles / cm3 (± 20 %) with a minimum 

detectable particle size of 10 nm (TSI, 2012). 

The CPC draws ambient air into the instrument where it is passed over through a heated 

chamber, with walls soaked in isopropyl alcohol.  The heat causes the alcohol to evaporate, 

and then both the ambient air and evaporated alcohol pass to a cooled condensation chamber.  

The fine particles suspended in the sampled air act as nuclei for the condensation of the 

alcohol droplets, thus increasing the particle size.  These larger particles are then easily 

counted using an optical detector.  The CPC provides a count of the number of particles in 

the air, but does not provide any information about the original size of the counted particles 

(TSI, 2012).  

 

2.4. Passive sampling devices 

Passive sampling devices have been used to measure NO2 concentrations in ambient air since 

the 1970’s (Palmes et al., 1976).  The measurement of gases is passive, i.e. does not require 

any active systems to sample the air.  The rate of diffusion into the tubes is controlled by 

Fick’s Law: 

� =  −� ���
4!  

Where F is the sampling rate (m3/s), D is the diffusion coefficient of NO2 in air (cm2/s), d is 

the diameter of the sampling device, and l is the length (both in cm).  This theoretical 

sampling rate has a number of assumptions, including no chemical reactions occurring 

within the sampler, no absorption of the gas by the sampler body and that the collection 

material collects 100 % of the gas (Cape, 2009). 

The measurement of NO2 using the passive samplers has commonly used triethanolamine 

(TEA) as the collection medium.  TEA reacts with NO2 and, with exception of at very high 

concentrations of ambient NO2, gives 100 % capture of the gas (Cape, 2009). 
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The initial design of the passive sampler was a tube, which was successfully used to measure 

average NO2 concentrations over a period of weeks.  These hollow tubes were approximately 

7 cm long, capped at one end which contained grids coated with TEA and left open at the 

other end.  Ambient air diffuses up the length of tubes where NO2 in the air is captured by 

the coated grids located in the caps.  The most commonly used diffusion tube is the Palmes 

tube (Palmes et al., 1976) and these tubes are used in the UK to provide measurements to 

demonstrate compliance with the National Air Quality Objectives (DEFRA, 2016).  

Recent developments to passive sampler designs has aimed to reduce the length of sampling 

time required through shortening of the diffusion tube path, increasing the surface area of 

sampling and hence increasing the uptake rate of gas by the sampler.  Badge-type samplers, 

including the Ogawa sampler used in this research (www.ogawausa.com), have shorter path 

lengths of 1-2 cm, therefore faster sampling rates and thus can be used to measure exposures 

over shorter periods of time such as 24-hours (Sather et al., 2006).  

Developments to passive sampler design have change the sampling design from axial 

sampling (as in the tube and badge samplers) to radial sampling.  Radial samplers, such as 

the Radiello sampler (Cocheo et al., 1996), have the largest diffusion surface of the types of 

passive sampler designs as the collection medium is stored in a cartridge in the centre of the 

sampler, allowing diffusion to occur through a larger surface area. 

 

2.4.1. Laboratory preparation and analysis of passive sampling devices 
 
After exposure the diffusion samplers are analysed in a laboratory to determine the exposure-

average concentration of NO2 measured by the samplers.  The most commonly used analysis 

procedure is based on colorimetry whereby the intensity of a coloured dye is used to 

determine the ambient concentrations of NO2 measured by the samplers.  Briefly, the trapped 

gaseous NO2 molecules on the collection medium are extracted into water as nitrite ions. 

Acidified sulphanilamide and NEDA solutions react with the nitrite ions to create a pink azo-

dye which has a maximum absorbance at a wavelength of 540 nm.  The intensity of the azo-

dye absorbance is linearly related to the mass of nitrite, and consequently using sampler 

geometries can be used to calculate the average concentrations of ambient NO2 the samplers 

were exposed to.  

The laboratory analysis procedures followed during this research for the analysis of the 

passive sampling devices is discussed below.  Two separate methods were followed – the 

Palmes analysis method followed statutory guidance (DEFRA, 2008) while the Ogawa 

analysis followed manufacturer guidance (Ogawa, 2006). 
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2.4.1.1. Palmes diffusion tubes 

 

Preparation of Palmes tubes: 

1) A solution of 1:1 TEA:acetone was prepared on each occasion tubes were being prepared.  

The solution was thoroughly mixed in a beaker to ensure the TEA fully dissolved in the 

acetone. 

2) The required number of stainless collection grids was added to the beaker using tweezers 

and ensuring no contact between skin and the grids (which can lead to contamination of the 

grids from chemicals such as nitrite present on the skin). 

3) The grids were immersed in the solution for a few minutes, before transferring to tissue 

paper on the bench.  Excess solution was removed from the grids by gently pressing another 

layer of tissue on top of the grids. 

4) Two grids were placed in the cap of the Palmes diffusion tube using tweezers.  The tubes 

were then assembled, ensuring the caps of the tubes were securely in place to ensure air 

could not enter and contaminate the tubes. 

5) Between preparation and tube exposure the tubes were sealed in double-bags in a 

refrigerator. 

6) For each batch of tubes prepared, spare tubes were also prepared to act as laboratory 

blanks.  These tubes were prepared as above, and stored in the fridge without exposure.  

These tubes were then analysed (see below) along with the exposed tubes to ensure no 

contamination occurred during the preparation process. 

 

Exposure of the Palmes tubes: 

1) The cap of the tube containing the collection grids should be labelled with a unique 

identifier. 

2) The tubes were attached vertically to lampposts (or similar), with the cap not containing 

the grids facing down. 

3) The bottom cap of the tube was then removed, and the time at which the cap was removed 

was accurately recorded. 

4) Two tubes (minimum) were deployed at each location to provide an indication of the 

precision measurements. 

5) After the required exposure time, the tubes should be recapped and the time accurately 

recorded.  The capped tubes should be secure to ensure no contamination. 

6) Exposed tubes were stored in the refrigerator between retrieval and analysis. 
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Analysis of the Palmes tubes: 

1) Standard nitrite solutions were prepared to act as calibration standards.  Two standard 

solutions were prepared following the method in steps 2 – 4 below.  These were then used to 

create two sets of calibration standards (steps 10 - 14) which were then analysed by UV to 

obtain calibration equations.  If the calibrations for the two bulk solutions were coincident 

then the bulk was accepted – if the calibrations were not coincident the process was repeated 

until this was achieved. 

2) Analytical grade solid sodium nitrite was dried in a 110 °C oven overnight, followed by 

cooling in a dessicator. 

3) 1.500 g of the dried sodium nitrite was accurately weighed into a 1L volumetric flask.  To 

the flask, 0.09 g of sodium hydroxide and 1 mL chloroform was added.  The flask was 

agitated to ensure all the solids dissolved, before making up to the mark with deionised 

water.  This bulk solution was 1000 mg/L nitrite. 

4) A 1 mg/L nitrite solution was then prepared by taking 1 mL of the bulk solution and 

adding to 1 L of deionised water. 

The bulk solutions can be stored in the fridge for a few months when not in use. 

5) A sulphanilamide solution was prepared by dissolving 20 g sulphanilamide and 50 mL 

orthophosphoric acid (88 %) in a 1 L volumetric flask, made up to the mark with deionised 

water. 

The sulphanilamide solution can be stored in the fridge for a few months when not in use. 

6) A NEDA (N-1-naphthyl ethylene diamine dihydrochloride) solution was preared by 

dissolving 0.7 g NEDA in a 500 mL volumetric flask made up to the mark with deionised 

water.   

The NEDA solution can be stored in the fridge for approximately 1 month. 

The analysis of the exposed tubes, blank tubes and calibration standards all follow the 

method below: 

8) Diffusion tubes placed with caps containing grids facing down and upper caps removed.   

9) 1.5 mL deionised water was added to each tube and the tubes recapped securely.  The 

tubes were then agitated and left to stand for 30 minutes. 

10) Six additional empty tubes (clean tubes containing no grids) should be prepared for 

calibration standards, and the following reagents added: 

 a) Tubes A and B: 1.5 mL deionised water only 

b) Tube C: 1.125 mL deionised water and 0.375 mL of 1 mg/L nitrite standard 

prepared in step 4 above (leading to a 375 ng nitrite / tube)  
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c) Tube D: 0.750 mL deionised water and 0.750 mL of 1 mg/L nitrite standard (750 

ng nitrite / tube) 

d) Tube E: 0.375 mL deionised water and 1.125 mL of 1 mg/L nitrite standard (1125 

ng nitrite / tube) 

e) Tube F: 1.500 mL of 1 mg/L nitrite standard (1500 ng nitrite / tube) 

11) After the exposed tubes have sat for 30 minutes, remove the caps from both the exposed 

tubes and the calibration tubes.  Add 1.50 mL sulphanilamide solution (prepared in step 5) to 

all tubes, quickly followed by 0.15 mL NEDA solution (prepared in step 6). 

12) Replace the end caps for all tubes and shake briefly.  Leave for 30 minutes to allow the 

pink azo dye to develop in colour. 

13) After 30 minutes transfer the solutions to the cuvettes used for UV analsyis. Place one of 

the 0 ng nitrite / tube solution into the ‘blank’ space in the dual-beam spectrometer if using.  

Measure the absorbance of all of the tubes (including calibrations and blanks) and record the 

absorbance.  The absorbance of all tubes should be measured twice – once at the start and 

end of the sequence of absorbance measurements. 

14) Construct a calibration graph using the average absorbance (start and end) measured for 

each of the calibration samples (B – F). 

15) Calculate the ambient concentration of NO2 from the measured absorbance for each 

sampler using: 

� =  �"
��� 

Where C is the average ambient concentration of NO2 during the sampler exposure (ng/cm3); 

Q is the mass of nitrite measured in the tube determined from the calibration graph (ng); L is 

the length of the diffusion tube (Palmes tubes = 7.1 cm); D is the diffusion coefficient of 

NO2 in air (0.151 cm2/s); A is the cross sectional area of the tube (0.916 cm2 for Palmes 

tubes); and t is the exposure time of the tube (s). 

 

Cleaning of Palmes samplers: 

The Palmes sampler parts can all be reused.  The sampler caps and bodies should be 

scrubbed then soaked in Decon-50 detergent solution overnight, followed by air drying in a 

clean environment on a tissue-paper covered bench and covering the parts with clean tissue 

paper until dry. 

The collection grids should be rinsed and soaked in Decon-50 detergent solutions.  A fresh 

Decon-50 solution should then be added to the grids, and these should be agitated in an 

ultrasonic bath for a minimum of 30 minutes.  The grids should then be transferred to a clean 

beaker using tweezers and dried in an oven overnight, followed by cooling in a dessicator.  
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The grids should be stored in an air-tight container, while the caps and tubes should be stored 

in double-bags. 

 

2.4.1.2. Ogawa badge samplers 
 
Preparation of Ogawa samplers: 
 
1) The collection medium for the Ogawa samplers is collection pads available to purchase 

from the manufacturer.  These pads are supplied pre-coated in TEA solution. 

2) The sampler should be assembled in a clean environment using tweezers and not handling 

the sampler parts with bare hands.  The Ogawa sampler has 2 identical chambers which 

should be prepared simultaneously.  The collection pads should be inserted between the two 

stainless steel meshes of the Ogawa sampler. 

3) The prepared Ogawa samplers were stored in air-tight opaque plastic containers in the 

fridge between preparation and exposure. 

4) Laboratory blanks (prepared but not exposed) should be prepared at the same time and 

stored in the fridge until the sampler laboratory analysis.  These act as controls to determine 

no contamination occurred during sampler preparation. 

 

Exposure of Ogawa samplers: 

 

5) The containers of the samplers were removed from the fridge approximately 12 hours 

prior to sampler exposure and allowed to equilibrate to room temperature.  The containers 

were then transported to site. 

6) The samplers were mounted on lampposts (or similar) using the support clip available to 

purchase from the manufacturer. 

7) The samplers were removed from their containers and attached to the clip.  An opaque 

weather shelter (available to purchase from the manufacturer) was placed over the exposed 

sampler in an attempt to minimise wind-speed effects.  The time of sampler exposure was 

accurately noted. 

8) After the required exposure time, the samplers were removed from the site, placed in the 

air-tight opaque containers and the time accurately recorded. 

9) Between exposure and analysis the samplers were stored in their containers in the fridge. 
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Analysis of Ogawa samplers: 

 

10) A standard stock solution of 1000 mg/L nitrite was prepared following steps 1 – 3 of the 

Palmes analysis procedure. A working nitrite solution was prepared by taking 1 mL of the 

standard stock and making up to 100 mL with deionised water.  

11) A sulphanilamide solution was prepared by dissolving 80 g of sulphanilamide in 200 mL 

of phosphoric acid and made up to 100 mL with deionised water. 

12) A NEDA solution was prepared by dissolving 0.56 g of NEDA in 1000 mL deionised 

water. 

13) Remove the collection pads and surrounding stainless steel meshes from the exposed and 

blank Ogawa samplers and place into extraction vials containing 8 mL deionised water.  Seal 

and shake the extraction vials then leave for 30 minutes. 

14) Prepare calibration solutions by taking 0, 0, 2, 4, 6, 8 and 10 mL of the working solution 

and making up to 100 mL with deionised water (giving calibration solutions of 0 – 1 µg/mL 

nitrite).  Place 8 mL of each calibration solution into a new extraction vial. 

15) After 30 minutes place all vials (including calibrations) into the refrigerator to cool 

(approximately 15 minutes). 

16) Prepare the colour-producing reagent.  Mix sulphanilamide and NEDA solutions in a 10: 

1 ratio. 

17) Once the vials have cooled, add 2 mL of colour producing reagent to each vial.  Shake 

the vials and place back into the fridge for 30 minutes. 

18)  Remove vials from the fridge and allow to equilibrate to room temperature. 

19) Transfer the solution from each vial to a cuvette and measure the absorbance at 545 nm.  

The absorbance should be measured twice – one at the start and end of the sequence of 

sample vials. 

20) Create a calibration slope by dividing the product of the concentrations of the calibration 

standards (µg/ml) by the measured absorbance for each calibration sample minus the blank 

by the sum of the concentrations of calibration standards squared. 

21) The concentration of the exposed samples is calculated using 

� = # ∗ % ∗ 1000 ∗∝
�  

Where C is the concentration of NO2 (ppb); W is the mass (ng) of nitrite collected by the 

sampler (obtained by dividing the measured absorbance by the calibration slope); V is the 

extraction volume (8 mL); α is a conversion coefficient dependent on temperature and 

humidity; t is the exposure time (minutes). 

The conversion coefficient α is calculated as follows: 
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∝ = 10000
'0.677 ∗ +,- ∗ +./-0 + '2.009 ∗ +�-0 + 89.8 

Where [RH] is the average relative humidity during sampler the exposure (%); [T] is the 

average temperature during sampler exposure (°C); and [P] is: 

+,- =  4 2,5
,6 + ,5

7
� �8

 

Where PN is the water vapour pressure in mm Hg at 20°C (17.353); and PT is the vapour 

pressure of water at the ambient temperature measured during the study (constant provided 

for a range of ambient temperatures in the manufacturer manual). 

 

Cleaning of Ogawa samplers: 

The sampler parts of the Ogawa samplers can be reused after thorough cleaning.  The 

samplers should be deconstructed, rinsed then left to soak in Decon-50 solution.  The parts 

should then be placed on a tissue-paper covered bench under more tissue-paper and left to air 

dry.  The collection pads were not reused. 
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3. Evaluation of passive sampling devices to measured nitrogen 

dioxide concentrations 

 

This chapter is comprised of two manuscripts, which are described below: 

 

Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa 

passive diffusion samplers 

In this work we investigated the influence of the common bias factors on passive 

diffusion samplers at an urban background location.  The main finding of this work was that 

wind speed has a linear relationship with the sampler uptake rates, and in order to obtain 

accurate pollution estimates the effect of wind speed needs to be corrected for.   

N. Masey designed the experiment, carried out the field measurements and laboratory 

analysis, analysed the data and produced the manuscript.  J. Gillespie discussed the 

experimental design, helped with field measurements and provided discussion about the data 

analysis and editorial comments.  S. Hamilton, M. Heal and I. Beverland provided assistance 

with data analysis and editorial comments.  

This manuscript was published in Atmospheric Environment in April 2017 (DOI: 

http://doi.org/10.1016/j.atmosenv.2017.04.008) 

 

Minimising the impact of wind-speed effects on NO2 passive diffusion samplers through 

sampler modification 

The second paper evaluates the relationship between wind speed and uptake rate 

identified above at a second, roadside, site and additionally tests designs of passive samplers 

thought to minimise the effects of wind speed through modification of sampler geometry.   

N. Masey designed the experiment, was involved with the field measurements and 

laboratory analysis, and carried out the data analysis and produced the manuscript.  F. 

Sutherland and S. Grainger assisted with field and laboratory analysis and were involved 

with the interpretation during data analysis.  I. Beverland assisted with experimental 

planning and provided feedback on the manuscript.  S. Hamilton and M. Heal provided 

discussion about the data analysis and manuscript editing. 

This paper has been formatted to meet Atmospheric Environment guidelines. 
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Influence of wind-speed on short-duration NO2 measurements using 
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Research highlights: 

• A variant on the standard Ogawa passive diffusion sampler was also tested 

• Wind-induced turbulence increased passive sampler uptake rates. 

• In general, relationships between wind speed and uptake rates were linear. 

• Estimation of wind speed variations allowed correction of wind speed effects. 

• Wind protection of samplers appears necessary when wind speed variations are 

unknown. 

 

Abstract   

We assessed the precision and accuracy of nitrogen dioxide (NO2) concentrations over 2-

day, 3-day and 7-day exposure periods measured with the following types of passive 

diffusion samplers: standard (open) Palmes tubes; standard Ogawa samplers with 

commercially-prepared Ogawa absorbent pads (Ogawa[S]); and modified Ogawa samplers 

with absorbent-impregnated stainless steel meshes normally used in Palmes tubes 

(Ogawa[P]).  We deployed these passive samplers close to the inlet of a chemiluminescence 

NO2 analyser at an urban background site in Glasgow, UK over 32 discrete measurement 

periods.  Duplicate relative standard deviation was < 7% for all passive samplers.  The 

Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal 

variation in analyser concentrations respectively.  Uptake rates for Palmes and Ogawa[S] 

samplers were positively and linearly associated with wind-speed (P < 0.01 and P < 0.05 

respectively).  Computation of adjusted uptake rates using average wind-speed observed 

during each sampling period increased the variation in analyser concentrations explained by 
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Palmes and Ogawa[S] estimates to 90% and 92% respectively, suggesting that measurements 

can be corrected for shortening of diffusion path lengths due to wind-speed to improve the 

accuracy of estimates of short-term NO2 exposure.  Monitoring situations where it is difficult 

to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown 

exposures to local winds, and personal exposure monitoring, are likely to benefit from 

protection of these sampling devices from the effects of wind, for example by use of a mesh 

or membrane across the open end.  The uptake rate of Ogawa[P] samplers was not associated 

with wind-speed resulting in a high correlation between estimated concentrations and 

observed analyser concentrations.  The use of Palmes meshes in Ogawa[P] samplers reduced 

the cost of sampler preparation and removed uncertainty associated with the unknown 

manufacturing process for the commercially-prepared collection pads. 

 

Keywords Air pollution; passive samplers; uptake rates; Palmes; Ogawa 

 

1. Introduction 

Exposure to nitrogen dioxide (NO2) has been associated with adverse effects on human 

health, including cardio-respiratory illness, hospital admissions and mortality (World Health 

Organization, 2013).  Passive samplers, because of their relatively low cost and simplicity of 

deployment, have been used in studies to estimate outdoor NO2 concentrations over large 

geographical areas (Cyrys et al., 2012; Gillespie et al., 2017, 2016; Lewné et al., 2004)  and 

for indoor and personal exposure (Yu et al., 2008).  However the temporal resolution of 

passive samplers is limited, and a number of potential issues may affect their accuracy and 

precision (Cape, 2009). 

Passive samplers can be grouped into tube and badge designs (Cape, 2009; Tang et al., 

2001; Yu et al., 2008).  Tube samplers, including the commonly-used Palmes sampler 

(Palmes et al., 1976), have relatively long diffusion paths and low uptake rates, and are 

typically used for measuring concentrations over 1 - 5 week periods.  Badge samplers, 

including Ogawa samplers (http://ogawausa.com/), have relatively short path lengths and 

higher uptake rates facilitating measurement of relatively low NO2 concentrations and 

exposures over shorter intervals (e.g. 24 hours). 

Palmes samplers have often been observed to overestimate concentrations measured by 

automatic analysers during co-location studies (Cape, 2009).  Possible reasons for such 

overestimations include: wind-speed induced turbulence effectively shortening the diffusion 

path; and chemical reactions within the diffusion path that result in misrepresentation of 

external photochemical conditions.  Chamber and wind-tunnel studies have reported positive 
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associations between wind-speed and sampler uptake rates for open tube samplers (Buzica et 

al., 2005; Martin et al., 2014; Plaisance et al., 2004).  Field studies using wind shelters and/or 

protective meshes or membranes to minimise turbulence within the diffusion path have noted 

reduced sampler overestimation and higher correlations between sampler and analyser 

measurements (Bush et al., 2001; Martin et al., 2014; Plaisance et al., 2004).  Concentrations 

of NO2 determined using UV-transmitting quartz tubes have shown smaller overestimations 

than standard acrylic tubes suggesting reduction in NO2 photolysis in the former (Heal et al., 

1999, 2000), although this effect has been observed to only occur in summer (Kirby et al., 

2000).  Collectively there is limited observational evidence regarding whether a single factor 

is the dominant cause of the overestimations in NO2 concentrations frequently observed by 

Palmes tubes, or if they are the consequence of multiple site-specific environmental factors. 

The order-of-magnitude shorter diffusion path length in Ogawa samplers is anticipated to 

limit within-tube chemical effects.  The manufacturer of the Ogawa samplers provides 

shelters to minimise the effect of wind on the relatively large face area of the badges.  

Temperature, absolute humidity, and wind-speed have been observed to be positively 

associated with the uptake rate of Ogawa samplers (Hagenbjörk-Gustafsson et al., 2010). 

Our study deployed standard Palmes and Ogawa samplers (the latter hereafter referred to 

as Ogawa[S]) at an urban background monitoring site in Glasgow, UK.  We also prepared 

and deployed modified Ogawa samplers with absorbent-impregnated stainless steel meshes 

normally used in Palmes tubes (hereafter referred to as Ogawa[P]) to: (a) eliminate one of 

the technical differences in our comparison between Palmes and Ogawa samplers (namely 

the difference between collection medium used in the two techniques); (b) reduce 

operational costs; and (c) eliminate uncertainty in our scientific description of the methods 

associated with the undisclosed preparation methods of the pre-coated collection pad sold by 

the manufacturer.  The samplers were deployed for 2-day and 3-day exposure times; and 7-

day exposure times matched to consecutive 2-day and 3-day periods.  Potential influences of 

meteorological and atmospheric composition factors on agreement between sampler and 

reference chemiluminescence analyser measurements were investigated.  The 2-day and 3-

day deployments increased the range of meteorological and chemical conditions sampled by 

avoiding the reduction in variation of these conditions resulting from longer-term averaging, 

and allowed evaluation of the precision and accuracy of the samplers at these short exposure 

periods. 

 

  



 

2. Methods 

Duplicate Palmes, Ogawa[S] and Ogawa[P] samplers were deployed next to the inlet to 

reference gas analysers at the Townhead air quality monitoring site in Glasgow, UK 

(latitude: 55.866°, longitude: 

were deployed under shelters purchased from the manufacturer.  The Palmes tubes were 

unsheltered, as is standard practice.  The Townhead site is in an urban background location, 

approximately 1 km north of the city centre and 122 m from t

Concentrations of NO2

200A NOx chemiluminescent analyser and a Thermo Scientific Model 49i O

respectively.  Both analysers undergo regular Quality Assurance and Qualit

assessments as part of the UK Automatic Urban and Rural Network 

(www.scottishairquality.co.uk

were averaged to the same time periods as 

(a) 

Figure 1:  Location of passive NO

site, Glasgow.  (a) Location of passive samplers (highlighted by grey square) close to the 

inlets of the automatic analyser.  (b) Deployment of samplers: A = Ogawa[S]; B = 

Ogawa[P]; C = Palmes.  Temper

sensors, located on the railing opposite the passive samplers.

   

The passive samplers were mounted on a railing at a common height

horizontal distance from the analyser inlets.  Temper

measured at 1-minute intervals using an Onset HOBO U23 Pro v2 External Data logger 

located on the railing under a solar radiation shield, from which hourly

calculated.  Hourly wind

site at Glasgow airport (approximately 10 km west of the Townhead site).  Both Glasgow 

airport and Townhead monitoring sites are in open locations, therefore the wind
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Duplicate Palmes, Ogawa[S] and Ogawa[P] samplers were deployed next to the inlet to 

reference gas analysers at the Townhead air quality monitoring site in Glasgow, UK 

, longitude: −4.243°) (Figure 1).  The Ogawa[S] and 

were deployed under shelters purchased from the manufacturer.  The Palmes tubes were 

unsheltered, as is standard practice.  The Townhead site is in an urban background location, 

approximately 1 km north of the city centre and 122 m from t

2 and O3 were measured as hourly averages using a Teledyne

chemiluminescent analyser and a Thermo Scientific Model 49i O

respectively.  Both analysers undergo regular Quality Assurance and Qualit

assessments as part of the UK Automatic Urban and Rural Network 

www.scottishairquality.co.uk).  The concentrations measured by the analysers at Townhead 

were averaged to the same time periods as the passive sampler exposures.

(b) 

:  Location of passive NO2 samplers on the roof of Townhead automatic monitoring 

site, Glasgow.  (a) Location of passive samplers (highlighted by grey square) close to the 

inlets of the automatic analyser.  (b) Deployment of samplers: A = Ogawa[S]; B = 

Ogawa[P]; C = Palmes.  Temperature and relative humidity were measured using HOBO 

sensors, located on the railing opposite the passive samplers. 

The passive samplers were mounted on a railing at a common height

horizontal distance from the analyser inlets.  Temperature and relative humidity were 

minute intervals using an Onset HOBO U23 Pro v2 External Data logger 

located on the railing under a solar radiation shield, from which hourly

calculated.  Hourly wind-speed data was obtained from the nearest Meteorological Office 

site at Glasgow airport (approximately 10 km west of the Townhead site).  Both Glasgow 

airport and Townhead monitoring sites are in open locations, therefore the wind
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Duplicate Palmes, Ogawa[S] and Ogawa[P] samplers were deployed next to the inlet to 

reference gas analysers at the Townhead air quality monitoring site in Glasgow, UK 

) (Figure 1).  The Ogawa[S] and Ogawa[P] samplers 

were deployed under shelters purchased from the manufacturer.  The Palmes tubes were 

unsheltered, as is standard practice.  The Townhead site is in an urban background location, 

approximately 1 km north of the city centre and 122 m from the nearest road.  

were measured as hourly averages using a Teledyne-API 

chemiluminescent analyser and a Thermo Scientific Model 49i O3 analyser 

respectively.  Both analysers undergo regular Quality Assurance and Quality Control 

assessments as part of the UK Automatic Urban and Rural Network 

).  The concentrations measured by the analysers at Townhead 

the passive sampler exposures. 

samplers on the roof of Townhead automatic monitoring 

site, Glasgow.  (a) Location of passive samplers (highlighted by grey square) close to the 

inlets of the automatic analyser.  (b) Deployment of samplers: A = Ogawa[S]; B = 

ature and relative humidity were measured using HOBO 

The passive samplers were mounted on a railing at a common height approximately 1 m 

ature and relative humidity were 

minute intervals using an Onset HOBO U23 Pro v2 External Data logger 

located on the railing under a solar radiation shield, from which hourly-average data were 

from the nearest Meteorological Office 

site at Glasgow airport (approximately 10 km west of the Townhead site).  Both Glasgow 

airport and Townhead monitoring sites are in open locations, therefore the wind-speeds 
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recorded at Glasgow airport were anticipated to provide a reasonably reliable indication of 

relative temporal changes in wind-speed at Townhead. 

We made passive sampler measurements over 32 discrete periods, ranging in duration 

from 2 days to 8 days, between February 2015 and October 2015.  Five of the week-long 

passive sampler exposure periods were contemporaneous with cumulative 2, 2 and 3 day 

exposure periods (Supplementary Information Table S1).  The 2 and 3-day exposure times 

provided a wider range of field conditions to test the passive samplers as the impact of 

averaging over longer exposures was reduced. The ranges (and relative standard deviations) 

of exposure-averaged wind-speed for all 2 & 3-day and all 7-day exposure periods were 1.1 

– 8.2 m/s (46%) and 2.1 – 5.4 m/s (29%) respectively. 

We prepared Palmes samplers with two stainless-steel collection meshes dipped in a 1:1 

triethanolamine (TEA):acetone solution (Heal, 2008).  We assembled Ogawa[S] samplers 

using pre-coated TEA collection pads purchased from the manufacturer, and Ogawa[P] 

samplers using two Palmes meshes prepared using the same process as the Palmes samplers.  

Samplers were prepared in 8 batches and were stored in a refrigerator in sealed bags 

(Palmes) and containers (Ogawa) before deployment, and between deployment and 

laboratory analysis.  

We analysed the 8 batches of samplers separately.  Nitrite collected by Palmes samplers 

was extracted into aqueous solution and quantified by the Saltzman reaction and colorimetric 

absorption at 540 nm.  The nitrite mass was converted to ambient concentration of NO2 

using the diffusion coefficient for NO2 in air, the internal length and cross-sectional area of 

the tube, and the exposure time (Targa and Loader, 2008).  The nitrite mass collected by 

Ogawa[S] samplers and calculation of ambient NO2 were determined using aqueous 

extraction and colorimetric absorption following the manufacturer’s protocol (Ogawa, 2006).  

The laboratory determination of nitrite mass collected by Ogawa[P] samplers followed the 

method in Targa and Loader (2008), while the subsequent conversion to ambient NO2 used 

the Ogawa protocol.  The volumetric mixing ratios (ppb) of NO2 calculated from the Ogawa 

protocol were converted to gravimetric units (µg/m3) using a factor of 1.9125 (conversion at 

20 °C and 1013 mb) to match the reporting conditions of the reference analyser 

concentrations. 

Duplicate laboratory blanks (for both Ogawa absorbent pads and Palmes coated meshes) 

were prepared with each batch of samplers and stored in the refrigerator during sampler 

deployments.  The blanks were analysed in an identical manner to the samples and the 

average masses of nitrite in the blanks were subtracted from the appropriate samples prior to 

calculation of sampler NO2 concentration. 
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The masses of nitrite collected by the Ogawa[P] sampler were lower than those collected 

by the Ogawa[S] sampler.  Linear regression indicated that Ogawa[P] nitrite = 0.62 × 

Ogawa[S] nitrite (R2 = 0.93) (Figure S1).  The slope of this regression line was of similar 

magnitude to the ratio of the area of the Palmes mesh to the area of the Ogawa[S] collection 

pad (0.916 cm2 / 1.65 cm2 = 0.56).  Therefore the lower nitrite masses collected by the 

Ogawa[P] samplers was consistent with this difference in collection areas between the 

Ogawa[S] pad and Palmes mesh. 

An empirical passive sampler uptake rate (UR) for each exposure was calculated from 

measured nitrite mass as follows: 

 9. ':;� ;<=>?0 = @ ABCDBCE F��� 'AG0
H+5IJ- 'AG FKL0×C 'FBA0NO × 10P ':;� ;>�0                           '10 

where [NO2] = exposure-averaged analyser NO2 concentration, and t = exposure duration.  

Associations between meteorological variables and uptake rates were examined using linear 

regression. 

 

3. Results and Discussion 

3.1. Precision and limits of detection 

The average Limit of Detection (LoD), calculated as three times the standard deviation of 

the blank concentration plus average blank concentration using the shortest exposure time in 

the calculation, was 1.1 µg/m3 for the Ogawa samplers and 10.1 µg/m3 for the Palmes 

sampler (Table 1).  These LoDs were substantially lower than the minimum concentrations 

measured by the samplers. 

The mean relative standard deviation (RSD) for duplicate measurements was < 7% for all 

samplers and exposure durations (Table 1, Figure S2).  These mean RSD values for our 

measurements were within the 2.8% to 11.0%  range of published statistics for exposure 

periods of 1-week or greater (Bush et al., 2001; Buzica et al., 2005; Heal et al., 1999a, 1999, 

2000; Kirby et al., 2000; van Reeuwijk et al., 1998; Vardoulakis et al., 2009), and were 

lower than the mean RSD of 12.6% reported by Heal et al. (1999a) for 2-day indoor Palmes 

measurements (this was the only study using Palmes tube exposures of less than 3-days that 

we located).  Our good precision data highlight the potential for passive sampling to provide 

greater temporal resolution than the time periods normally used.  In the remainder of this 

paper the duplicate mean is used as the NO2 concentration for a given sampler and exposure 

period. 
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Table 1:  Limits of detection (LoD) and duplicate relative standard deviation (RSD) statistics 

for the three passive sampler types and their root mean square error (RMSE), normalised 

mean bias (NMB), regression forced through the origin (and 95 % confidence interval) and 

R
2 statistics with respect to the analyser measurements.  The RSD, NMB and RMSE 

statistics are presented for all studies, for exposures of 3 days and less (t ≤ 3), and for 

exposures of greater than 3 days (t > 3).  Statistics are presented for sampler NO2 

concentrations before and after correction of uptake rates (second and third panels 

respectively – see text for details of correction procedure). 

 Palmes Ogawa[S] Ogawa[P] 
LoD All (µg/m3)  10.8 1.1 1.1 
Mean duplicate RSD All (%) 5.6 2.5 5.9 
Mean duplicate RSD t ≤ 3 (%) 6.0 2.2 6.4 
Mean duplicate RSD t > 3 (%) 4.7 3.0 4.5 
    
Data using theoretical uptake rates:     
RMSE sampler vs. analyser All 
(µg/m3) 

9.6 4.8 8.9 

RMSE sampler vs. analyser t ≤ 3 
(µg/m3) 

11.1 5.6 8.9 

RMSE sampler vs. analyser t > 3 
(µg/m3) 

4.9 2.3 8.8 

NMB sampler vs. analyser All 0.28 0.11 −0.33 
NMB sampler vs. analyser t ≤ 3 0.30 0.17 −0.33 
NMB sampler vs. analyser t > 3 0.20 −0.04 −0.32 
Regression slope (95 % CI) 1.25 (1.15-1.35) 1.11 (1.06-1.17) 0.67 (0.64-0.69) 
R

2 sampler vs. analyser All 0.59 0.87 0.93 
    
Data using empirical uptake rates:    
RMSE sampler vs. analyser All 
(µg/m3) 

3.9 3.4 2.7 

RMSE sampler vs. analyser t ≤ 3 
(µg/m3) 

4.5 3.2 3.1 

RMSE sampler vs. analyser t > 3 
(µg/m3) 

2.4 3.7 1.1 

NMB sampler vs. analyser All 0.03 0.02 0.02 
NMB sampler vs. analyser t ≤ 3 0.05 0.08 0.03 
NMB sampler vs. analyser t > 3 −0.01 −0.11 −0.02 
Regression slope (95 % CI) 1.06 (1.00-1.09) 1.05 (1.00 – 1.09) 1.03 (0.99 – 1.07) 
R

2
 sampler vs. analyser All 0.90 0.92 0.93 
 

3.2. Sampler accuracy 

Using the measured nitrite masses and standard protocols for computation of atmospheric 

concentrations described in the Methods section, concentrations derived from Palmes and 

Ogawa[S] samplers were generally higher than reference analyser observations, and 

concentrations from Ogawa[P] samplers were generally lower than the analyser observations 

(Figure 2, Table 1).  Our observation of Palmes sampler overestimation of analyser 

concentrations was consistent with the previous studies reviewed in Section 1.  Closer 
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inspection of the Ogawa[S] data showed that while the 2 and 3-day Ogawa[S] exposures 

overestimated analyser concentrations, the 7-day exposures underestimated, as has been 

noted previously (Hagenbjörk-Gustafsson et al., 2010; Mukerjee et al., 2008; Sather et al., 

2006, 2007; van Reeuwijk et al., 1998).  Overall, however, Ogawa[S] samplers had the 

lowest Root Mean Square Errors (RMSE) and Normalised Mean Bias (NMB) values, while 

the Palmes samplers had the largest deviations from the analyser (Table 1). The Ogawa[P], 

Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of temporal variation in 

analyser concentrations respectively.  Preparation of the Ogawa[P] meshes according to 

standard procedures (Heal, 2008; Targa and Loader, 2008) eliminated scientific uncertainty 

associated with the unspecified preparation method for the commercially-available collection 

pads used in Ogawa[S] samplers, and reduced the cost of sampler preparation. 

 

 

Figure 2:  Concentrations of NO2 measured by automatic analyser and by Palmes, Ogawa[S] 

and Ogawa[P] samplers (prior to correction for observed wind-speed effects) for 32 separate 

exposure periods. Symbols with a dark border are measurements from exposures of greater 

than 3 days. 

 

3.3. Long-term vs. cumulative short-term measurements 

The time-weighted weekly average from the three cumulative short-term exposures 

showed close agreement with the corresponding simultaneous 1-week exposure (Figure S3).  

Our results are consistent with Heal et al. (1999a) who did not observe significant 

differences between cumulative 2 or 3-day and 1-week indoor exposure measurements.  In 

contrast, significantly lower concentrations have been observed between 1-month 
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measurements and cumulative 1 or 2 week measurements in parallel, which have been 

attributed to loss in the long term of absorbed NO2 from the TEA absorbent (Bush et al., 

2001; Heal et al., 1999a, 1999, 2000; Kirby et al., 2000). 

 

3.4. Correction of sampler uptake rates by wind-speed 

We examined correlations between empirical sampler uptake rate, calculated using 

Equation 1, and the following meteorological and atmospheric composition variables (Table 

2) previously reported to be associated with passive sampler uptake rate: air temperature; 

relative and absolute humidity (Cape, 2009; Hagenbjörk-Gustafsson et al., 2010); wind-

speed (Bush et al., 2001; Buzica et al., 2005; Martin et al., 2014; Plaisance et al., 2004); 

atmospheric NO2 concentration; and an atmospheric chemistry metric representing the 

potential for within-tube formation of additional NO2 [ratio of analyser NO2 plus minimum 

of analyser NO or O3, to analyser NO2 (Ratio(Min(NO,O3)+NO2)/NO2)] (Heal et al., 1999). 

Palmes sampler uptake rates were correlated with temperature and absolute humidity in 

the opposite direction to that expected from the literature (Cape, 2009) (Table 2).  This likely 

resulted from confounding by negative correlations between temperature and wind-speed, 

and between absolute humidity and wind-speed (Figure S4).  The empirical Ogawa[S] 

sampler uptake rate was also correlated with temperature in the opposite direction to that 

expected (Hagenbjörk-Gustafsson et al., 2010).  Similarly, the positive correlations between 

Ogawa[S] and Ogawa[P] sampler uptake rates and relative humidity were contradictory to 

expectations (Cape, 2009; Hagenbjörk-Gustafsson et al., 2010).  The Ogawa[P] sampler was 

the only sampler whose uptake rate was significantly correlated with ambient NO2 

concentrations – the reasons for this correlation are unclear. 
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Table 2:  Pearson correlation coefficients for bivariate relationships between passive sampler 

empirical uptake rates and exposure-averaged observed meteorological and atmospheric 

composition variables. 

 Palmes_UR Ogawa[S]_UR Ogawa[P]_UR 
T −0.69** −0.48** −0.22 

RH 0.32 0.51** 0.46** 
AH −0.62** −0.31 −0.04 
WS 0.78** 0.40* 0.04 
NO2 −0.15 0.20 0.41* 

Ratio(Min(NO,O3)+NO2)/NO2 −0.39* −0.04 0.18 
Variables are exposure means of: air temperature (T, °C); relative humidity (RH, %); 

absolute humidity (AH, g/m
3
); wind-speed (WS, m/s); analyser NO2 (NO2, ppb), ratio of 

analyser NO2 plus minimum of analyser NO (ppb) or O3 (ppb) to analyser NO2 

(Ratio(Min(NO,O3)+NO2)/NO2); uptake rates (UR) for Palmes, Ogawa[S] & Ogawa[P] 

samplers.  *Correlation coefficient significant at P < 0.05; **Correlation coefficient 

significant at P < 0.01. 

 

The correlations between the empirical Palmes and Ogawa[S] uptake rates and wind-

speed were significant.  The general pattern of increased sampler uptake rate as wind-speed 

increased (Figure 3a) is consistent with increasing wind-speeds reducing effective diffusion 

path length (and hence increasing effective uptake rate) because of induced turbulence, and 

consistent also with similar patterns noted in previous field measurements (Bush et al., 2001; 

Buzica et al., 2005; Martin et al., 2014; Plaisance et al., 2004).  The reduced, but still 

positive, correlation between the Ogawa[S] sampler uptake rate and wind-speed (Figure 3c) 

suggested that the wind shelter provided by the manufacturer might not fully protect the 

sampler from wind effects.  On the other hand, there was negligible correlation between 

Ogawa[P] sampler uptake rate and wind-speed (Figure 3e), despite both types of sampler 

being deployed under the same type of shelter. 

For wind-speeds > 2.3 m/s, the empirical uptake rates for the Palmes sampler were 

greater than the theoretical uptake rate of 1.2 cm3/min calculated from sampler geometry 

(Figure 3a), resulting in large overestimations of NO2 concentrations at these wind-speeds 

(Figure 3b).  The empirical uptake rates calculated for the Ogawa[S] sampler (Figure 3c) 

were mostly smaller than the theoretical uptake rate of 12.1 cm3/min calculated from sampler 

geometry (Tang et al., 2014) but larger than the uptake rate of 9.3 cm3/min calculated using 

manufacturer conversion factors (conversion factor of 56 ppb min/ng for NO2 at 20 ºC and 

70 % RH – see Supplementary Information for details). 
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From the above analyses of our observations, wind-speed was the variable with the most 

consistent and pronounced correlation with sampler uptake rate in the anticipated direction 

(Table 2).  Therefore, we corrected sampler uptake rate for wind-speed influence following a 

similar approach to that used in an evaluation study of Ogawa samplers in Sweden 

(Hagenbjörk-Gustafsson et al., 2010).  We calculated the linear regression between empirical 

uptake rate (computed from Equation 1) and exposure-period-average wind-speed across the 

set of measurement periods (Figures 3a, 3c, 3e).  This regression line was used to correct the 

uptake rate using the measured average wind-speed for each exposure period, and the 

corrected uptake rate then used to correct the estimates of atmospheric concentrations from 

measured nitrite mass and exposure time by rearrangement of Equation 1.  We then 

compared the corrected NO2 concentrations to analyser measurements using linear regression 

lines forced through the origin (Figures 3b, 3d, 3f)..  Following reasoning given by Martin et 

al. (2014) and Pfeffer et al. (2010) we forced the regression lines through the origin because 

of insignificant laboratory blank concentrations for our passive samplers and incomplete 

temporal coverage by the reference analyser (resulting from analyser calibration and/or 

maintenance activities).  

After we corrected uptake rates for wind-speed we observed a 30% increase in the 

explained variation in the bivariate relationship between the corrected Palmes concentrations 

and analyser concentrations (Figure 3b).  We noted a smaller (~ 5%) increase in explained 

variation for Ogawa[S] after wind-speed correction (Figure 3d).  The absence of substantial 

correlation between the Ogawa[P] sampler uptake rate and wind-speed (Figure 3e) meant 

that correction was only appropriate by adjusting the uptake rate to the average empirical 

uptake rate of 5.9 cm3/min, which was approximately half of the theoretical Ogawa uptake 

rate because of the approximately factor 2 smaller Ogawa[P] sampler NO2 capture surface 

area noted in Section 2. 
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Figure 3:  Correction of NO2 passive sampler measurements using average wind-speed 

measured during each exposure period (Palmes and Ogawa[S]) and using an average uptake 

rate (5.9 cm3/min) for Ogawa[P] due to the lack of a relationship with wind-speed.  The 

uptake rate for each sampler was calculated from the nitrite mass collected by individual 

samplers divided by the product of exposure time and average analyser concentration and 

plotted against wind-speed (Graphs: a; c; e).  The linear regression line was used to derive a 

corrected uptake rate for the samplers for the wind-speed during a given exposure period.  

The corrected uptake rate was then used to calculate a corrected passive sampler NO2 

concentration which is plotted against the automatic analyser concentration, alongside the 

concentration of NO2 calculated using the standard method for each sampler (Graphs: b; d; 

f).  Symbols with a dark border are measurements from exposures of greater than 3 days. 

 

The above observations highlight the importance of evaluation of samplers under field 

conditions and suggest that it may be beneficial to calibrate uptake rates for the Palmes and 

(a) (b)

(c)

(e)
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Ogawa samplers to the conditions under which measurements are made.  Our study used 

wind-speed data from a single meteorological station, at an open site at the edge of the urban 

conurbation containing the pollution monitoring site, to correct the passive sampler data.  

Ideally we would have made wind speed measurements at the pollution monitoring site, 

however we anticipate the meteorological station data provided a reasonably reliable 

indication of relative temporal changes in wind-speed at the similarly open monitoring site, 

and any systematic difference in wind-speed between the two locations would have been 

accommodated by the empirical nature of the corrections that we developed.  We anticipate 

the correlation between sampler uptake rates and wind speed will be apparent at other 

locations with similar outlooks to Townhead (i.e. relatively open urban background 

locations).  The method identified in this work could be readily transferred to these other 

areas, however the linear regression equations identified are likely to be dependent on the 

magnitude and range of wind speeds at other locations.  Future work should investigate the 

transferability of the method presented in this paper at other locations and/or different 

seasons. 

In some exposure assessment situations the influence of wind-speed can be dealt with by 

the type of calibration we describe in this paper using measured or estimated wind-speeds 

(e.g. where passive diffusion samplers are used to record relative temporal changes in gas 

concentrations at a single site). 

In other situations the correction required may be more difficult to implement, for 

example when the objective is to compare pollution concentrations at multiple sites with 

different exposure to prevailing wind conditions.  In this latter type of situation it would be 

necessary to record wind measurements at the multiple sites or use a weather model to 

estimate the wind-speeds to allow site-specific correction of the sampler uptake rates.  If the 

passive samplers were to be used over multiple sites without reliable information on wind 

speed variations, or in personal sampling to monitor in individuals with different levels and 

types of physical activity patterns (e.g. comparison of pollution exposures in cyclists, 

pedestrians and car drivers where the passive sampling device will have different relative 

speeds compared to the surrounding air), our observations suggest that it appears necessary 

to use field calibrated passive sampling devices with some form of modification to prevent 

wind-induced turbulence within the diffusion path.  Previous studies have attempted to 

reduce the effect of wind-speed on sampler precision and accuracy through use of shelters 

over sampler inlets (Bush et al., 2001; Martin et al., 2014; Plaisance et al., 2004).  However, 

shelters may increase the risk of vandalism by their conspicuous appearance; air under the 

shelter may be of a different composition to ambient air (Kirby et al., 2000); and for personal 



 3. Evaluation of passive sampling devices 

48 

 

sampling it may be difficult to expose the samplers under a shelter.  The use of a mesh or 

membrane across the open end of the diffusion sampler is an alternative, and perhaps more 

practical, modification to the samplers to reduce the effect of wind-speed turbulence on 

sampler precision and accuracy. 

 
4. Conclusions 

We used standard (open) Palmes tubes, standard Ogawa[S] samplers with commercially-

available absorbent pads, and modified Ogawa[P] samplers with TEA-impregnated meshes 

normally used in Palmes tubes to measure NO2 at an urban background automatic 

monitoring site in Glasgow for exposure periods ranging from 2 days to 1-week. 

Duplicate relative standard deviation was < 7% for all passive samplers for both short (t ≤ 

3 days) and long (t > 3 days) exposures demonstrating good potential for application of 

passive NO2 sampling at finer temporal resolution than the time periods commonly used. 

The Ogawa[P], Ogawa[S] and Palmes samplers explained 93%, 87% and 58% of 

temporal changes in analyser concentrations respectively.  Palmes and Ogawa[S] sampler 

uptake rates were positively and linearly correlated with wind-speed, which enabled 

empirical correction of the uptake rates and subsequent re-estimation of corrected NO2 

concentrations.  After these corrections the Palmes and Ogawa[S] sampler estimates 

explained a larger proportion (additional 30% and 5% respectively) of variation in analyser 

concentration, with regression lines closer to 1:1.  The Ogawa[S] sampler uptake rate was 

similarly, but less markedly, influenced by wind-speed.  Our observations suggest that if 

Palmes and Ogawa[S] samplers are exposed in windy environments (e.g. > 2 m/s) field 

calibrated uptake rates appear to be necessary to account for the effect of wind-speed on 

sampler concentration estimates. 

The Ogawa[P] uptake rate was not correlated with wind-speed and explained a slightly 

higher proportion of variation in analyser concentrations than the Ogawa[S] sampler.  After 

adjustment of individual Ogawa[P] uptake rates to the average observed Ogawa[P] uptake 

rate (5.9 cm3/min) the regression between the Ogawa[P] and analyser NO2 measurements 

was closer to the 1:1 line and maintained a high R2 value (R2 = 0.93).  Therefore, the use of 

Palmes meshes in Ogawa samplers was a successful adaptation of the Ogawa sampler 

providing a reduction in cost of sampler preparation with specified preparation protocols.  

Further field-testing will help to establish if this observed average uptake rate for the 

modified Ogawa[P] sampler allows accurate estimation of analyser concentrations at other 

times and locations. 

This research has highlighted that passive samplers require field evaluation at automatic 

pollution monitoring station to calibrate uptake rates to environmental conditions.  In 
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particular Palmes and Ogawa[S] sampling uptake rates were substantially influenced by 

wind-speed and we have suggested a method to correct the sampler uptake rates when 

estimates of wind-speed variations are available.  Monitoring situations where it is difficult 

to reliably estimate wind-speed variations, e.g. across multiple sites with different unknown 

exposures to local winds; or in personal exposure monitoring; are likely to benefit from 

protection of the sampling device from the effects of wind, for example by placing a mesh or 

membrane across the open end prior to field calibration.  In light of these findings we would 

recommend the use of the Palmes sampler (after correction for wind-speed) or the Ogawa[P] 

sampler to obtain the most accurate estimates of ambient NO2 concentrations for short-

duration exposures. 
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Table S1: Details of passive sampler deployments between February and October 2015.   

 Exposure 
number 

Sampler exposure dates Sampler exposure 
time (days) 

Exposure details 

1 25 Feb – 27 Feb 2015 2 Measurements made 
consecutively 2 27 Feb – 02 Mar 2015 3 

3 02 Mar – 04 Mar 2015 2 
4 04 Mar – 06 Mar 2015 2 
5 25 Mar – 27 Mar 2015 2 Measurements made 

consecutively.  Ogawa[P] 
sampler not available for 
exposure number 8  

6 27 Mar – 30 Mar 2015 3 
7 30 Mar – 1 Apr 2015 2 
8 1 Apr – 07 Apr 2015 6 
9 01 May – 7 May 2015 6 Measurements made 

consecutively 10 7 May – 15 May 2015 8 
11 15 May – 21 May 2015 6 
12 21 May – 28 May 2015 7 
13 6 Jul – 13 Jul 2015 7 Simultaneous 

measurements of 7-day 
and cumulative 2- and 3-
day exposures of samplers 

14 6 Jul – 8 Jul 2015 2 
15 8 Jul – 10 Jul 2015 2 
16 10 Jul – 13 Jul 2015 3 
17 27 Jul – 3 Aug 2015 7 Simultaneous 

measurements of 7-day 
and cumulative 2- and 3-
day exposures of samplers 

18 27 Jul – 29 Jul 2015 2 
19 29 Jul – 31 Jul 2015 2 
20 31 Jul – 3 Aug 2015 3 
21 10 Aug – 17 Aug 2015 7 Simultaneous 

measurements of 7-day 
and cumulative 2- and 3-
day exposures of samplers 

22 10 Aug – 12 Aug 2015 2 
23 12 Aug – 14 Aug 2015 2 
24 14 Aug – 17 Aug 2015 3 
25 14 Oct – 21 Oct 2015 7 Simultaneous 

measurements of 7-day 
and cumulative 2- and 3-
day exposures of samplers 

26 14 Oct – 16 Oct 2015 2 
27 16 Oct – 19 Oct 2015 3 
28 19 Oct – 21 Oct 2015 2 
29 26 Oct – 02 Nov 2015 7 Simultaneous 

measurements of 7-day 
and cumulative 2- and 3-
day exposures of samplers 

30 26 Oct – 28 Oct 2015 2 
31 28 Oct – 30 Oct 2015 2 
32 30 Oct – 2 Nov 2015 3 

 

  



 

Figure S1:  Relationship between mass of nitrite collected by the Ogawa[S] and Ogawa[P] 

samplers (95 % confidence intervals of slope = 0.60

 

 

Figure S2:  Scatter plot of duplicate Palmes, Ogawa[S] and Ogawa[

Symbols with a dark border are measurements from exposures of greater than 3 days.  

Confidence intervals (95 %) of the equations were: Palmes slope = 0.90

-2.98 – 3.90; Ogawa[S] slope = 0.93

0.89-1.11 and intercept = 
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:  Relationship between mass of nitrite collected by the Ogawa[S] and Ogawa[P] 

samplers (95 % confidence intervals of slope = 0.60-0.64). 

plot of duplicate Palmes, Ogawa[S] and Ogawa[P] sampler deployments. 

Symbols with a dark border are measurements from exposures of greater than 3 days.  

Confidence intervals (95 %) of the equations were: Palmes slope = 0.90-

3.90; Ogawa[S] slope = 0.93-1.01 and intercept = -0.64-1.64; and Ogawa[P] slope = 

1.11 and intercept = -3.02-2.76.   
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y = 1.00x + 0.05, R2 = 0.96, n = 31
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:  Relationship between mass of nitrite collected by the Ogawa[S] and Ogawa[P] 

P] sampler deployments. 

Symbols with a dark border are measurements from exposures of greater than 3 days.  

-1.12 and intercept = 

1.64; and Ogawa[P] slope = 

= 0.97, n = 32

= 0.99, n = 32

= 0.96, n = 31

Palmes

Ogawa[S]

Ogawa[P]
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Figure S3:  Linear regression between the NO2 concentrations derived from simultaneous 7-

day and cumulative 2 & 3-day exposures.  The 95 % confidence intervals for the regressions 

were: Palmes slope = 1.03 – 1.24 and intercept = -8.08 - -1.27; Ogawa slope = 0.85 – 1.15 

and intercept = -1.47 – 7.13; and OgawaPalmes slope = 0.96 – 1.51 and intercept = -8.39 – 

1.42.  

  

y = 1.14x - 4.73, R2 = 1.00, n = 5
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Calculation of Ogawa[S] uptake rate using the manufacturer supplied concentration 

conversion coefficient in the Ogawa sampler protocol: 

 

Sampler uptake rate can be defined (from equation (1) in this paper) as: 

9. ':;� ;<=>?0 = =<�Q<�R ;STT '=U0
H+���- '=U ;>�0 × � ';<=0N × 10P ':;� ;>�0        'V10 

 

[NO2] concentration is defined in volumetric units in the Ogawa analytical protocol 

(http://ogawausa.com/protocols/) as: 

 

+���- 'WWX0 = Y5IJ  'WWX ;<=  =U>?0 × =<�Q<�R ;STT '=U0
� ';<=0         'V20 

 

where αNO2 is the concentration conversion coefficient provided in the protocol, and t is the 

duration of the exposure. 

 

A standard conversion factor (CF) can be derived from the gas laws to convert 

concentrations from volumetric to gravimetric units, hence: 

 

+���- '=U ;>�0 = Z[ HAG FKL \\�K]N×^_`J  H\\� FBA AGK]N×ABCDBCE F��� 'AG0
C 'FBA0         'V30  

 

Substituting [NO2] in equation (S1) with the expression in equation (S3), gives: 

 

9. ':;� ;<=>?0 = ?
bZ[ 'AG FKL \\�K]0×^_`J  '\\� FBA  AGK]0c × 10P ':;� ;>�0       'V40  

 

Using a volumetric to gravimetric conversion factor (CF) = 1910 ng m-3 ppb-1 and a 

concentration conversion coefficient (αNO2) = 56 ppb min ng-1 (from Ogawa analytical 

protocol for 20 ºC and 70 % RH) gives UR(calculated from Ogawa protocol) = 9.3 cm3 min-

1. 
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Figure S4:  Pearson correlation coefficient matrix for bivariate relationships between 

observed meteorological and atmospheric composition variables and empirical passive 

sampler uptake rates.  Variables are exposure means of: air temperature (T, °C); relative 

humidity (RH, %); absolute humidity (AH, g/m3); wind-speed (WS, m/s); analyser NO2 

(NO2, ppb), analyser NO (NO, ppb), analyser O3 (O3, ppb);  ratio of analyser NO2 plus 

minimum of analyser NO or O3, to analyser NO2 (Ratio(Min(NO,O3)+NO2)/NO2 –  

abbreviated to Ratio); uptake rates for Palmes (P_UR), Ogawa[S] (Og_UR) and Ogawa[P]  

(OgP_UR) samplers.  The P-value for the correlation is shown in brackets below the 

correlation coefficient.   
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Research Highlights: 

• Palmes NO2 tubes and modifications tested at two reference analyser sites 

• Membranes over tube entrances and post-processing for wind-speed effects tested 

• Post-processing for wind-speed improved sampler accuracy (NMB 0.27 vs. 0.13) 

• Inclusion of membrane most effective (NMB = 0.17 vs. 0.00) 

• Palmes samplers should be deployed with membranes during field trials 

 

Abstract 

Passive samplers measuring NO2 were deployed at an urban background (Townhead) and 

roadside (High Street) reference analyser sites in Glasgow, UK, for 30 discrete periods.  

Samplers were deployed for 2-3 days on each occasion, and concurrent meteorological 

measurements were made at Townhead during each study.  We compared concentrations 

measured by the Ogawa sampler and a Palmes sampler, Palmes sampler with a membrane 

over the open end to minimise wind-speed effects and a half-length Palmes sampler 

including membrane (anticipated to minimise both wind-speed effects and any impact of 

within-tube chemistry).  The Palmes sampler overestimated concentrations at both sites, 

however greater overestimations were observed at the most exposed Townhead site.  We 

tested a post-processing correction method to take wind-speed effects on uptake rates into 

account, which was found to improve the agreement between the standard Palmes sampler 

and reference analyser NO2 concentrations (NMB = 0.27 vs. 0.13 (Townhead) and 0.08 vs. -

0.06 (High Street)).  Inclusion of a membrane over the Palmes tube entrance improved the 
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sampler accuracy (NMB = 0.17 vs. 0.00 for both sites data combined), and removed the 

significant impact of wind-speed on the Palmes sampler.   The short Palmes sampler suffered 

from significant wind-speed effects (anticipated to be due to the shorter sampler path length) 

however still improved upon the standard Palmes sampler (NMB = 0.17 vs. -0.05 for both 

sites).  The Ogawa sampler provided accurate estimates of the reference analyser 

concentrations (NMB = -0.03 for both sites).  We suggest that Palmes samplers should be 

deployed with a membrane over their exposed entrance to minimise the effects of wind-

speed and consequently improve the sampler ability to estimate ambient NO2 concentrations. 

 

Keywords:  Air pollution; Palmes; Ogawa; uptake rate; passive sampling; wind-speed 

 

1. Introduction 

Passive samplers have been widely used to measure nitrogen dioxide (NO2) over large 

study areas and numbers of sites, for example during epidemiology studies (Cyrys et al., 

2012; Gillespie et al., 2017, 2016; Lewné et al., 2004) and for indoor or personal monitoring 

(Yu et al., 2008).  The low-cost, small-size and simple deployment of these samplers make 

them well suited for deployments in large numbers and study areas.  However passive 

samplers are only able to provide time-averaged concentrations over the exposure period and 

previous studies have highlighted factors that can influence sampler accuracy and precision 

(Cape, 2009). 

The main factors thought to influence passive sampler accuracy are wind-speed effects 

and within-tube chemistry.  Reactions within the diffusion path of the samplers can lead to 

the formation of additional NO2, which is not present in ambient conditions, which can lead 

to samplers overestimating ambient concentrations (Heal et al., 2000, 1999; Kirby et al., 

2000): 

�� + ��  → ��� 

In the atmosphere the reaction above normally occurs at the same time as NO2 is broken 

down in UV light to NO and O, however when the reaction above occurs in the passive 

sampler the NO2 generated cannot be broken down as UV light cannot penetrate through the 

tube material.  This leads to increased concentrations of NO2 in the sampler in comparison to 

those in the ambient air outside the tube, and consequently sampler overestimation. 

This effect is present in samplers with longer path lengths, for example Palmes passive 

diffusion tubes, while shorter path length badge samplers (such as the Ogawa sampler) do 

not suffer from these effects due to shorter residence times of air within the samplers 

(Brown, 2000).  Wind-speed effects, which shorten the effective path length of the samplers 
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through generation of turbulence at the entrance to the sampler, can also lead to passive 

sampler overestimation.  Previous studies have tried to minimise the impact of wind-speed 

on passive samplers through use of protective shelters (Gerboles et al., 2006; Plaisance et al., 

2004), membranes covering the entrance to the tube (Gerboles et al., 2005; Martin et al., 

2014) and correction of sampler uptake-rates post deployment (Masey et al., 2017).  Shelters 

have reduced the bias in concentrations measured by Palmes diffusion tubes, however these 

are conspicuous (limiting their use in field studies due to making them more prone to theft) 

and have previously been suggested to have a different composition of air under the shelter 

compared to ambient concentrations (Kirby et al., 2000) therefore these will not be discussed 

further.  Post-processing sampler uptake rates for wind-speed effects has advantages in that it 

is a simple approach requiring no modifications to the sampler design and this can be back-

extrapolated; however this requires information about wind-speed at each measurement site 

(which is unlikely to be available for large numbers of sites) or relies on the use of a single 

meteorological site which may not be representative of all locations within the study area 

(Masey et al., 2017).  The inclusion of a membrane over the tube entrance is simple in 

practice and removes the requirement for detailed wind-speed information for each site, 

however it is not possible to determine how much the membrane reduces the uptake rate.  

Consequently this cannot be calculated from first principles and hence calibrations are 

required before these modified samplers can be used in the field. 

This work compares Palmes samplers, Palmes samplers modified using membranes and 

post-processing Palmes uptake rates to account for wind-speed effects at an urban 

background and a roadside reference analyser site.  We also deployed shorter Palmes 

samplers and Ogawa samplers at the site to identify any impact of within-tube chemistry.  

The impact of using meteorological data collected from the nearest weather station and on-

site during the sampler investigation was also investigated.  A large proportion of the 

published literature have carried out investigations under controlled laboratory conditions 

(Buzica et al., 2005; Martin et al., 2014; Plaisance et al., 2004)  or have used wind-speed 

data collected at meteorological stations distant to the measurement site (Hagenbjörk-

Gustafsson et al., 2010; Masey et al., 2017; Vardoulakis et al., 2009).  Both of these are not 

necessarily representative of the true conditions experienced by a passive sampler at the 

study location, and little work has investigated sampler bias using meteorology collected on-

site. 
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2. Methods 

Passive diffusion samplers were deployed at two automatic monitoring stations in 

Glasgow, UK, for 30 discrete deployment periods.  The automatic monitoring stations were 

part of the UK Automatic Urban and Rural Network (AURN) and reference analysers at 

these sites undergo regular detailed quality assurance and quality control procedures 

(DEFRA, 2017).  Townhead (latitude 55.866°, longitude -4.23°) is an urban background 

station located in central Glasgow 122 m from the nearest road.  High Street (latitude 

55.861°, longitude -4.238°) is a roadside station located 5.5 m from the kerb and ~640 m 

South-East of Townhead.  Concentrations of NO2 were measured at both sites using a 

Teledyne-API 200A NOx chemiluminescent analyser and concentrations of O3 were 

measured (at Townhead only) using a Thermo Scientific Model 49i O3 analyser.  Study-

average concentrations for the site were calculated from the hourly-average concentrations, 

available to download from www.scottishairquality.co.uk.  The Townhead station has a large 

roof space on which instruments can be securely deployed, while High Street is a smaller site 

with limited space for affixing monitoring instruments on the cages protecting the analyser 

inlets. 

Hourly wind-speed measurements were available to download from 

https://mesonet.agron.iastate.edu/request/download.phtml?network=GB__ASOS for 

Glasgow Airport, the closest weather station to the sites.  Five minute temperature and 

relative humidity measurements were recorded at Townhead using an Onset HOBO U23 Pro 

V2 External data logger deployed on the railing at Townhead under a solar radiation shield.  

We measured wind-speed every minute at Townhead using a WindSonic anemometer (Gill 

Instruments Ltd, Hampshire, UK) located on the railing.   These meteorological 

measurements could not be made at High Street due to the limited space and unsecured 

access to the site.  Study-average meteorological values were calculated for each deployment 

period to allow assessment of the variables in relation to passive sampler accuracy. 

A Kestrel® 5500 Weather Meter was deployed at each site for the duration of passive 

sampler deployment periods to provide a snapshot of the meteorological conditions 

(including temperature, relative humidity and wind-speed) at the site.  In practice, this gave 

approximately 10-15 minutes of 1-second measurements at each site for each site visit.  This 

provided a brief comparison of the conditions at Townhead and High Street to allow 

estimates of longer duration trends at the sites to be made. 
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(a) (b) 

Figure 1: Deployment of the passive diffusion samplers at (a) Townhead and (b) High 

Street.  Townhead samplers were mounted on a railing on the roof of the site located ~1 m 

from the analyser inlets, while High Street samplers were located on the cage on the roof of 

the site which also contained the analyser inlets. 

 

Four designs of passive samplers were deployed concurrently at these sites for 2-3 day 

exposures, with Townhead visited first on each study date (Table S1).  The samplers were 

located on a railing on the roof of the Townhead AURN station, approximately 1 m from the 

analyser inlets (Figure 1a).  At High Street the samplers were deployed on the cage housing 

the analyser inlets on the roof of the monitoring station (Figure 1b).  At each site the 

samplers were deployed in duplicate.  For studies 21 and 29 we were unable to access the 

roof of High Street to retrieve the samplers due to ladders being unavailable, therefore no 

data was collected at High Street for these studies and consequently studies 20 and 28 

samplers were deployed for two consecutive deployment periods. 

The designs of samplers tested were: standard Palmes diffusion tubes (referred to as 

Palmes); Palmes diffusion tubes with an amorphous polyethylene membrane covering the 

open end of the tube (referred to as Palmes[M]);  a half-length diffusion tube (traditionally 

used to measure Ammonia), which was slightly opaque, deployed with a membrane over the 

end (referred to as Palmes[S]); and a modified Ogawa sampler using Palmes meshes as the 
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collection medium instead of the commercially available Ogawa collection pads (referred to 

as Ogawa[P]).  The variations on the Palmes tube were purchased from Gradko International 

Limited (www.gradko.com) while the Ogawa sampler parts were purchased from Ogawa & 

Company USA (www.ogawausa.com).  The Ogawa[P] sampler was deployed under a 

weather shelter, available from Ogawa USA, to minimise wind-induced turbulence.  Those 

samplers utilising a membrane over the tube entrance were assembled on-site to ensure the 

exposure time of the tube was similar to the standard Palmes sampler – sealed tubes were 

taken to the site and, at the time of deployment, the tubes were uncapped and the membrane 

fitted (care was taken not to touch the membrane by hand to prevent transfer of any nitrite 

present on the technicians hands to the membrane). 

The passive samplers were prepared in-house at the University of Strathclyde, with one 

week of samplers prepared at a time.  For each week of samplers, two laboratory blanks were 

also prepared to act as control samples that would not be exposed.  Between preparation and 

deployment, and retrieval and analysis, the samplers were stored in sealed double-bags in the 

fridge.  The meshes used to collected ambient nitrite were prepared using the 1:1 

TEA:acetone dipping method, with two coated meshes assigned to each sampler (Heal, 

2008).  The analysis of the samplers was also carried out in-house, using the Saltzman-

Greiss reagent and UV analysis for all four sampler types (Targa and Loader, 2008).  

Laboratory analysis of the samplers was carried out each week, and the laboratory blank 

prepared each week was also analysed during the procedure.  The mass of nitrite collected by 

the blank samplers was subtracted from that collected by the exposed sampler prior to 

calculation of ambient NO2 concentrations.   

The tubes and membranes were reusable – after each use the tubes and caps were soaked 

in Deacon solution overnight and then were covered and left to air dry.  The membranes and 

grids were put in Deacon solution and agitated in an ultra-sonic bath for 30 minutes.  The 

membranes were then left to air-dry with the tubes and caps, while the meshes were dried in 

an oven overnight. 

The ambient concentration of NO2 was calculated using the method in Targa and Loader 

(2008) for the Palmes samplers and using the Ogawa protocol (2006) for the Ogawa[P] 

samplers.  The concentrations measured by the Palmes[M] and Palmes[S] could not be 

calculated empirically due to a lack of information about the diffusion area and associated 

path length when an amorphous polyethylene membrane was used (Martin et al., 2014).  The 

uptake rate of each of the samplers was empirically calculated from the mass of nitrite 

collected (Equation 1), which was used to estimate the pollution concentrations measured by 

the Palmes[M] and Palmes[S] samplers. Additionally, linear regression was used to 
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investigate the relationship between uptake rates and the meteorological and chemical 

conditions at the site. 

9. ':;� ;<=>?0 = d =<�Q<�R ;STT '=U0H+���- '=U ;>�0 × � ';<=0Ne × 10P ':;� ;>�0                           '10 

Where [NO2] is the analyser exposure-averaged concentrations and t is the exposure time.   

 

3. Results & Discussion 

 

3.1. Precision and limit of detection 

The limit of detection (LoD) of the analysis procedure was calculated using three times 

the standard deviation of the blank concentrations, plus the blank concentration for the 

shortest exposure time in order to obtain the worst case scenario LoD.  The study-average 

limit of detection for each passive sampler was 7.4 µg/m3, 17.9 µg/m3, 13.9 µg/m3 and 3.3 

µg/m3 for Palmes, Palmes[M], Palmes[S] and Ogawa[P] respectively (Table 1).  The reasons 

for the large difference between the LoD of the Palmes and Palmes[M] samplers is unclear 

as both tubes were stored and analysed similarly.  As stated above, the mass of nitrite 

calculated for the blank samplers was subtracted from the exposed sampler nitrite mass.  The 

Palmes, Palmes[S], Ogawa[P], and the majority of the Palmes[M] sampler measured 

concentrations for all studies were above the LoD. 

The relative standard deviation (RSD) for duplicate measurements was below 15 % for all 

samplers, with the Ogawa[P] samplers having the most similar duplicate concentrations (8.1 

%) and the Palmes[M] samplers showing the largest variation between duplicates (14.7 %) 

(Table 1).  The Palmes RSD values are slightly poorer than reported from our previous 

Palmes study (Masey et al., 2017) however these still fall within the range of RSD values 

reported for weekly exposed Palmes samplers (Bush et al., 2001; Buzica et al., 2005; Heal et 

al., 2000, 1999, 1999a; Kirby et al., 2000; van Reeuwijk et al., 1998; Vardoulakis et al., 

2009).  We observed that the membranes over the end of the tubes did not, in all instances, 

fit snugly over the exposed end and could lead to slight movement in the membrane, which 

could be a reason for the higher RSD values for the tube samplers with the membrane.  In the 

remainder of this paper the mean concentration from the duplicate samplers for each 

deployment is reported. 
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Table 1: Limits of detection (LoD) and duplicate relative standard deviation (RSD) statistics 

for the passive samplers and (a) their root mean square error (RMSE, in µg/m3), normalised 

mean bias (NMB) and coefficient of determination (R2) with respect to the analyser 

measurements at Townhead (Th) and High Street (HS) stations. 

 Palmes Palmes[M] Palmes[S] Ogawa[P] 
LoD All (µg/m3) 7.4 17.9 13.9 3.3 
Mean duplicate RSD (Th) (%) 11.7 14.7 14.2 8.1 
Mean duplicate RSD (HS) (%) 10.4 11.9 9.8 8.1 
     
Data using standard analysis methods: 
RMSE sampler vs. analyser (Th) 13.6 5.8 11.9 10.6 
RMSE sampler vs. analyser (HS) 10.6 7.9 12.0 12.5 
RMSE sampler vs. analyser (All) 12.3 6.9 12.0 11.5 
NMB sampler vs. analyser (Th) 0.27 0.02 0.04 0.01 
NMB sampler vs. analyser (HS) 0.08 -0.01 -0.12 -0.06 
NMB sampler vs. analyser (All) 0.17 0.00 -0.05 -0.03 
Regression slope 
   [95 % C.I.] (Th) 

1.22 
[1.13, 1.32] 

1.03 
[0.97, 1.08] 

0.97 
[0.86, 1.08] 

0.94 
[0.84, 1.04] 

R
2 sampler vs. analyser (Th) 0.57 0.89 0.12 -0.03 

Regression slope  
   [95 % C.I.] (HS) 

1.03 
[0.94, 1.11] 

0.97 
[0.91, 1.04] 

0.85 
[0.78, 0.93] 

0.92 
[0.83, 1.02] 

R
2 sampler vs. analyser (HS) 0.36 0.78 0.51 0.52 

 

3.2. Sampler accuracy 

The concentrations for the Palmes and Ogawa[P] samplers were calculated as described 

in Section 2, while the concentrations for the Palmes[M] and Palmes[S] samplers were 

calculated using the study-average uptake rates for each site (Townhead Palmes[M] = 0.92 

cm3/min, Palmes[S] = 1.46 cm3/min; High Street Palmes[M] = 0.88 cm3/min, Palmes[S] = 

1.20 cm3/min).  Our calculated uptake rate is lower than that estimated for Palmes[M] under 

controlled laboratory conditions (1.11 cm3/min) (Martin et al., 2014), highlighting the 

importance of calibrating the samplers under similar conditions to which they will be 

exposed in the field.  The higher uptake rates by the Palmes[S] sampler compared to the 

Palmes[M] sampler is not unexpected as the shorter tube will reduce the path length and 

hence increase the uptake rate.  The Palmes[M] sampler measured more consistent nitrite 

masses vs. reference analyser NO2 concentrations than the Palmes sampler (as represented 

by the higher R2 value) (Figure S2). 

The concentrations measured by the passive samplers generally followed the temporal 

trends in analyser concentrations at both sites (Figure 2).  Scatter plots showing the 

correlation between study-average NO2 concentrations measured by the passive samplers and 

reference analyser at each site were generated (Figure 3).  The regression lines in Figure 3 

were forced through the origin following the reasoning of Martin et al. (2014) and Pfeffer et 
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al. (2010) of insignificant laboratory blanks and incomplete temporal measurements by the 

analyser (as a result of e.g. maintenance or calibration activities).  Despite the difference in 

the site classification (Townhead = urban background, High Street = roadside) the 

concentrations measured at the sites were more similar than anticipated (Figure S1), however 

the sampler accuracies at the two sites were different.  Both sites measured an elevated 

concentration (approximately 100 µg/m3 NO2) during study 2, which coincided with a period 

of low temperatures (study-average temperature measured at Townhead = -1.2 °C) and low 

wind-speeds (study-average wind-speed measured at Townhead = 0.39 m/s).  During this 

study the diffusion tubes at Townhead had a visual layer of frost present, however we have 

retained these measurements in the analysis to test the extreme conditions. 

The Palmes sampler overestimated NO2 concentrations measured at both sites, however 

this was much more pronounced for Townhead (slope = 1.22 vs. 1.03 for Townhead and 

High Street respectively) (Figures 2 and 3).  The overestimation of NO2 concentrations by 

the Palmes samplers was consistent with published literature (reviewed in Section 1), with 

similar overestimations reported by Kirby et al. (2000) and Gerboles et al. (2005, 2006).  The 

regression line and correlation coefficient between the Palmes measurements at Townhead 

were similar between this and our previous studies (slope = 1.22 vs. 1.25, R2 = 0.57 vs. 0.59 

(current vs. previous study)) despite the different study (with slightly different exposure 

times) and different season (Masey et al., 2017).  The regression slopes for Palmes[M] and 

Palmes[S] were closer to one than the standard Palmes sampler at Townhead, however for 

High Street the Palmes[S] sampler regression slope was further from one (Figure 3).  The 

Ogawa[P] sampler produced the most similar regression equations between the two sites 

(slope = 0.94 and 0.92 at Townhead and High Street).  These slopes were closer to one than 

reported for a previous study at the same site (slope = 0.67) (Masey et al., 2017).  The root 

mean square error (RMSE) and normalised mean bias (NMB) values were smallest for the 

Palmes[M] sampler and largest for the Palmes sampler (NMB = 0.00, -0.03, -0.05 and 0.17 

for the Palmes[M], Ogawa[P], Palmes[S] and Palmes samplers respectively) (Table 1). 
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(a) 

 

(b) 

 

Figure 2: Time series plots showing exposure-averaged NO2 concentrations measured by 

each of the samplers and the automatic analyser located at (a) Townhead and (b) High Street.  

The Palmes and Ogawa[P] concentrations were calculated empirically, while the Palmes[M] 

and Palmes[S] concentrations were calculated using the study-average uptake rates at each 

site. 
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(a) 

 

(b) 

 

Figure 3: Scatter plots showing regression between passive samplers and analyser exposure-

averaged NO2 concentrations at (a) Townhead and (b) High Street.  Palmes and Ogawa[P] 

were calculated empirically while the Palmes[M] and Palmes[S] samplers were calculated 

using the study average uptake rates. 

 

3.3. Comparison of on-site and meteorological station wind-speed measurements 

The hourly-average wind-speed measurements at Townhead and at the meteorological 

station located at Glasgow Airport (over the whole study period) were highly correlated, 

with the Airport measurements being higher as a result of the site being more exposed 

(Townhead wind-speed = 0.27*Airport wind-speed + 0.26, R2 = 0.68, n = 1681 h) (Figure 

4a).  The study-average wind-speed measurements at the two sites were also highly 
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correlated with similar regression coefficients (Townhead wind-speed = 0.30*Airport wind-

speed + 0.15, R2 = 0.80, n = 30) (Figure 4b).  In our previous study we utilised wind-speed 

measurements at the Airport to correct the uptake rate of the Palmes samplers on the 

assumption that the Airport data provided an indication of relative temporal trends in wind-

speed at the site, and the observations in Figures 4a and 4b support this assumption. 

The ‘spot’ measurements made during the visits to the sites to change the diffusion 

samplers were averaged to provide a study estimate of wind-speed by averaging the 

measurements made during sampler deployment and retrieval dates.  The spot measurements 

had moderate correlation with the study-average wind-speeds measured at Glasgow Airport 

(R2 = 0.45 and 0.42 for Townhead and High Street) with similar regression coefficients 

between the spot measurements and study-average Townhead wind-speed measurements 

(Townhead kestrel wind-speed = 0.24*Airport wind-speed - 0.04, n = 30) (Figure 4b).   The 

spot measurements at High Street showed less variation in wind-speed over the study than 

Townhead, with wind-speeds at the former site approximately 40 % of the wind-speeds 

recorded at the latter (Figure 4c). 

Previous studies (Hagenbjörk-Gustafsson et al., 2010; Masey et al., 2017; Vardoulakis et 

al., 2009) have used meteorological information obtained from the nearest station when 

evaluating passive sampler accuracy and bias factors.  We have demonstrated that if 

meteorological information is collected at sites with similar urban conditions to the pollution 

site (such as Glasgow Airport and Townhead) then measurements from the meteorological 

station can be used to provide a reasonable estimate of the ‘true’ conditions at the pollution 

site.  However, the use of a single weather station is not necessarily representative of all 

locations (such as High Street) and, if detailed meteorological information is required, 

weather measurements should be made on-site. 
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(a) 

 

(b) 

 

(c) 

 
Figure 4: (a) Correlation between hourly-average wind-speed measurements made 

concurrently at Glasgow Airport and at Townhead for all deployment periods combined (n = 

1681). (b) Correlation between wind-speed measurements made at Glasgow Airport and 

those measurements made by the wind sonic (Townhead) and the kestrel measurements at 

Townhead and High Street during the kestrel peripatetic measurement periods.  Kestrel 

measurements are the average of those made at the start and end of deployment periods (n = 

30). (c) correlation between wind-speed measurements made using the kestrel instrument at 

Townhead and High Street (average of those made at start and end of deployment periods). 
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3.4. Correction of Palmes uptake rates for wind-speed 

In our previous study we proposed a method to post-process the concentrations measured 

by the Palmes sampler for the effects of wind-speed (Masey et al., 2017).  We evaluated 

three correction methods following the method in our previous paper: 

a) The equation relating Palmes uptake rate (UR) and wind-speed (measured at Glasgow 

Airport) from our previous publication was applied to the present study to test the 

transferability of the derived equation (referred to as ‘UR_prev’). 

UR (cm
3
/min) = 0.16*Airport WS (m/s) + 0.83, R

2
 = 0.60 

b) Using the method from our previous paper, we derived new equations to relate wind-

speed measured at Glasgow Airport to the measured uptake rates of the Palmes sampler at 

Townhead (referred to as ‘UR_Airport’) (Figure 5a). 

UR (cm
3
/min) = 0.08*Airport WS (m/s) + 1.24, R

2
 = 0.16 

c) The method from the previous paper was used to derive a new equation between wind-

speed measured at Townhead to the measured uptake rates of the Palmes sampler at 

Townhead (referred to as ‘UR_Townhead’) (Figure 5b). 

UR (cm
3
/min) = 0.30*Townhead WS (m/s) + 1.17, R

2
 = 0.22 

The relationship between UR and wind-speed measured at the Airport was weaker than 

demonstrated during our previous study, which could be attributable to generally lower 

wind-speeds and fewer values above 6 m/s wind-speed, or the different meteorological 

conditions changing the correlations with other meteorological or chemical variables 

(discussed in Section 3.5 below). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 5: (a) UR vs. wind-speed (WS) measured at the Airport (Townhead data only); (b) 

UR vs. WS measured at Townhead (Townhead data only); and AURN vs. Palmes 

concentrations for standard Palmes, and Palmes UR corrected for WS (using Airport 

(UR_Airport) and Townhead (UR_Townhead) WS) and using the equation derived for 

Airport wind-speeds from our previous study (UR (cm3/min) = 0.16*WS_Airport (m/s) + 

0.83, R2 = 0.60 (UR_prev)) applied to (c) Townhead and (d) High Street locations. 
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The three uptake-rate correction equations were applied to the Palmes measurements at 

Townhead (Figure 5c) and High Street (Figure 5d).  The regression lines were forced 

through the origin for the reasons previously discussed.  At Townhead, correcting the Palmes 

sampler uptake rate for the effects of wind-speed improved the regression slope and 

statistics, regardless of the correction equation applied.  This suggests that the correction 

derived during our previous study is transferable temporally at this site, and can improve the 

accuracy of Palmes diffusion tubes.  At High Street, however, only UR_prev slightly 

improved the RMSE and NMB values compared to the standard Palmes sampler, yet the 

standard Palmes sampler had the regression slope closest to one (Table 2).  This suggests 

that the impact of wind-speed effects on the uptake rates is lower at High Street compared to 

Townhead.  As discussed above, the difference in NO2 concentration between the two sites is 

relatively small, leading us to suggest that a change in the meteorological conditions between 

the sites is the most likely cause of the difference.  Based on the spot measurements made at 

the two sites we believe that wind-speed is the most likely cause of the difference (Figure 4c 

and Figure S3).  These results show the method presented in our previous paper is 

transferrable to different study areas providing a new regression between wind-speed and 

uptake rate is calculated based on the typical wind-speeds experienced at the site.  In reality 

this may mean multiple UR vs. wind-speed equations if measurements are to be made at 

exposed sites and those within streets for example.  Further work could aim to make more 

measurements at a wider range of concentrations and wind-speeds to determine if a single 

equation could be provided for all realistic wind-speeds or identify the wind-speed at which 

changes in this relationship occurs. 
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Table 2:  Regression slope (and 95 % confidence interval) and statistics describing the 

relationship between NO2 concentrations measured by the analyser and the Palmes samplers 

after correction for wind-speed effects at (a) Townhead and (b) High Street.  Corrections 

made for wind-speed using equation from previous study (UR_prev) (Masey et al., 2017); 

equation derived from Airport wind-speed (UR_Airport); and equation derived from 

Townhead wind-speed (UR_Townhead).  Statistics provided are: Root mean square error 

(RMSE), coefficient of determination (R2) and normalised mean bias (NMB). 

 Palmes Palmes 
(UR_prev) 

Palmes 
(UR_Airport) 

Palmes 
(UR_Townhead) 

Measured WS range 
(m/s) 

- 0.5 - 8 0.5 - 8 0.5 – 3 

(a) Townhead 
Regression slope 
[95 % C.I.] 

1.22  
[1.13, 1.32] 

1.16  
[1.08, 1.24] 

0.98  
[0.92, 1.04] 

0.98  
[0.92, 1.04] 

R
2
 sampler vs. analyser 0.57 0.85 0.80 0.81 

RMSE sampler vs. 
analyser (µg/m3) 

13.60 10.53 6.65 6.41 

NMB 0.27 0.13 -0.01 -0.01 
(b) High Street 
Regression slope  
[95 % C.I.] 

1.03  
[0.94, 1.11] 

0.95  
[0.87, 1.02] 

0.81  
[0.75, 0.87] 

0.81  
[0.75, 0.88] 

R
2 sampler vs. analyser 0.36 0.76 0.63 0.69 

RMSE sampler vs. 
analyser (µg/m3) 

10.61 9.79 11.95 12.37 

NMB 0.08 -0.06 -0.17 -0.17 
 

3.5. Uptake rates relationship with chemical and meteorological variables 

The average uptake rate for the Palmes, Palmes[M], Palmes[S] and Ogawa[P] samplers 

were 1.4 cm3/min, 0.90 cm3/min, 1.3 cm3/min and 5.7 cm3/min respectively.  The order of 

the uptake rates was as anticipated with the Ogawa[P] badge sampler, which has the shortest 

path length, having the fastest uptake rate, and the Palmes[M] sampler uptake rate being 

lower than the open Palmes tube.  The Palmes[S] sampler uptake rate is similar to the open 

Palmes tube as the shorter path length reduces the impact of the reduced surface area as a 

result of inclusion of the membrane. 

We investigated the relationship between the uptake rates calculated for all four samplers, 

and the chemical and meteorological conditions measured at the sites (Table 3).  The 

correlation between Airport wind-speed and Palmes UR was lower than was observed in our 

previous study (Masey et al., 2017)(this study r = 0.40, previous study r = 0.78 for 

Townhead), while the correlation with temperature was larger in this study and in the 

opposite direction (this study r = 0.62, previous study r = -0.69 for Townhead) (Table 3).  

The strong confounding between temperature and wind-speed was present in both our 
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studies, however in the current study lower wind-speeds coincided with low temperatures (r 

= 0.40, P < 0.05) (Figure S4), while previously the opposite was true (r = -0.52, P < 0.01) 

(Masey et al., 2017).  The previous study was carried out during spring/summer (February to 

November) while the current work was carried out November to February and this difference 

in seasonality of the work could be the cause of the difference in temperature - wind-speed 

relationship observed.  The Palmes[M] sampler UR were not correlated with wind-speed at 

Townhead, suggesting that the membrane provides an effective barrier to turbulent eddy 

formulation and consequently the impact of wind-speed on uptake rate is minimised.  This is 

consistent with findings from a chamber study published by Martin et al. (2014) for longer 

(28 day) exposure periods.  The Palmes[S] sampler shows a significant relationship with 

wind-speeds measured at Townhead (r = 0.42, P < 0.05) however not with wind-speed 

measured at the Airport.  The greater relationship between UR and wind-speed in the 

Palmes[S] compared to the Palmes[M] sampler could arise from the shorter path length 

associated with the Palmes[S] sampler which makes these more susceptible to turbulent 

effects.  The Ogawa[P] UR showed significant correlations with temperature, absolute 

humidity (r = 0.52 and 0.55 respectively, P < 0.01) and NO2 (r = 0.55, P < 0.05) at 

Townhead.  Our previous study found no impact of temperature on the Ogawa[P] samplers 

(Masey et al., 2017), however low temperatures (and low absolute humidities) have 

previously been shown to impact Ogawa sampler uptake rate (Hagenbjörk-Gustafsson et al., 

2010).  This was suggested to be due to lower water content of air at low temperatures which 

reduces the reaction of TEA with NO2 (Hagenbjörk-Gustafsson et al., 2010).  The 

temperatures measured in our current study were lower than our previous work which 

suggests that this effect has less impact with increasing temperature.   

At High Street, however, the relationships identified above were not apparent.  The 

Palmes[M], Palmes[S] and Ogawa[P] sampler uptake rates were not significantly correlated 

with any of the variables tested, while the Palmes UR were only significantly correlated with 

High Street NO2 (Table 3).  This correlation could suggest that overestimations by the 

Palmes samplers could be attributed to within-tube chemistry, whereby the rapid changes in 

NO concentrations (from local traffic sources) mean that reactions occur between NO and O3 

within the diffusion tube, leading to the formation of excess NO2 within the tube.  The 

negative correlation between Palmes sampler bias and analyser NO2 has been report by Heal 

et al. (1999), who suggested that at high concentrations the overestimation of ambient NO2 

by the diffusion tubes is less important and this relationship be attributed to either NO2 

contributing a larger amount to NOx as NO2 concentrations increase, or O3 concentrations are 

lower at higher NOx concentrations so there is less impact of NO to NO2 conversion within 
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tubes.  However, we anticipate that, if bias in diffusion tubes was solely attributable to 

within-tube reactions, the Palmes[M] would also suffer from these effects, which is not the 

case.  Additionally, if within-tube chemistry was the sole cause we would expect the Palmes 

sampler concentrations to be close to those predicted by the analyser at the urban 

background site, where higher ambient O3 concentrations and an absence of local sources of 

NO would suggest that the majority of NOx is made up of NO2 and hence the diffusion tubes 

should measure analyser concentrations accurately (Heal et al., 1999). 

When both High Street and Townhead were considered together, the variable with the 

most significant correlation with UR was analyser NO2 for all except the Palmes[M] 

sampler, while the Palmes[M] UR was most correlated with absolute humidity.  However as 

previously discussed, the Ogawa[P] and Palmes[S] samplers have shorter path lengths then 

the Palmes samplers and consequently were not anticipated to suffer from within-tube 

chemical reactions due to the short residence times of the gases within the samplers.  

Therefore, we suggest that the observed correlation between analyser NO2 and sampler 

uptake rates was a result of confounding of analyser NO2 concentrations with another 

variable, with wind-speed having the highest correlation (r = -0.79, P < 0.01 for airport 

wind-speeds) (Figure S4). 
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Table 3: Pearson correlation coefficients for relationships between passive sampler uptake 

rates and exposure-averaged observed meteorological and chemical conditions. No O3 

monitors at High Street therefore the ratio between (Min(NO, O3)+NO2)/NO2 cannot be 

calculated.  The highest correlations for each sampler at each site highlighted in bold. 

Townhead (n = 30 ) Palmes Palmes[M] Palmes[S] Ogawa[P] 
T Townhead 0.62** 0.38* 0.33 0.52** 
RH Townhead 0.04 0.27 0.05 0.25 
Abs RH Townhead 0.60** 0.42* 0.33 0.55** 
WS_Airport 0.40* -0.28 0.30 0.21 
WS_Townhead 0.47** -0.25 0.42* 0.34 
WS_Kestrel 0.27 -0.31 0.34 0.29 
NO2 Townhead -0.42* 0.23 -0.39* -0.45* 
Ratio(Min(NO, O3)+NO2)/NO2

 Townhead 0.01 0.09 -0.18 0.07 
High Street (n = 27) Palmes Palmes[M] Palmes[S] Ogawa[P] 
T Townhead 0.37 0.35 -0.07 0.21 
RH Townhead -0.15 -0.09 -0.31 -0.03 
Abs RH Townhead 0.31 0.31 -0.17 0.23 
WS_Airport 0.29 0.14 0.20 0.03 
WS_Townhead 0.10 0.21 0.18 0.06 
WS_Kestrel 0.38 0.09 0.12 0.08 
NO2_High Street -0.55** -0.23 -0.29 -0.28 

Combined (n = 57) Palmes Palmes[M] Palmes[S] Ogawa[P] 
T Townhead 0.47** 0.36** 0.17 0.37** 
RH Townhead -0.05 0.11 -0.05 0.12 
Abs RH Townhead 0.43** 0.37** 0.15 0.39** 
WS_Airport 0.33* -0.09 0.24 0.12 
WS_Townhead 0.26* -0.05 0.31* 0.20 
WS_Kestrel 0.33* -0.13 0.27* 0.21 
NO2_AURN -0.53** -0.02 -0.40** -0.40** 

Variables are exposure means of: air temperature (T, °C); relative humidity (RH, %); 

absolute humidity (AH, g/m
3
); wind-speed (WS, m/s); analyser NO2 (NO2, ppb), ratio of 

analyser NO2 plus minimum of analyser NO (ppb) or O3 (ppb) to analyser NO2 

(Ratio(Min(NO,O3)+NO2)/NO2); uptake rates (UR) for Palmes, Ogawa[S] & Ogawa[P] 

samplers.  *Correlation coefficient significant at P < 0.05; **Correlation coefficient 

significant at P < 0.01. 

 

Based on the findings above, we suggest that the predominant cause of overestimation by 

the Palmes sampler is attributed to wind-speed.  At the more exposed Townhead urban 

background site, with higher wind-speed measurements, the overestimation of NO2 

concentrations by the Palmes sampler was larger than observed at the High Street roadside 

site.  The application of post-processing techniques to correct Palmes uptake rates for wind-

speed effects improve regression coefficients and statistics at the former site, while at the 

latter the improvement was limited.  Modification of the design of the Palmes sampler to 
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reduce turbulent effects, through inclusion of a membrane over the exposed tube end, 

improved regression coefficients at statistics at Townhead however at High Street the 

opposite was true.  This suggests that there may be compromises to make in terms of sampler 

accuracy if a membrane is included for sites anticipated to have low wind-speeds (High 

Street wind-speeds were approximately 40 % of those measured at Townhead during the spot 

measurements, suggesting the whole study average wind-speed at High Street would be 

approximately 0.5 m/s), however the consistency (represented by R2) of the measurements 

made with the membrane in place was greater. 

 

4. Conclusions 

Four types of passive sampler were co-located with NO2 reference analysers at an urban 

background (Townhead) and a roadside (High Street) sites for 2-3 day exposures over 30 

consecutive periods.  The samplers tested were: a standard Palmes tube; a Palmes tube with 

an amorphous polyethylene membrane to minimise the impact of wind-speed (Palmes[M]); a 

half-length Palmes tube (anticipated to prevent any within-tube chemistry) with membrane 

(Palmes[S]); and an in-house prepared Ogawa sampler (Ogawa[P]).  We measured 

temperature, relative humidity and wind-speed at the urban background continuously over 

the deployment periods, and additionally made short duration measurements using a hand-

held weather station during the site visits to change the passive samplers. 

The overestimation of reference analyser concentrations by the Palmes samplers were 

larger at the urban background site compared to the roadside site, which could be attributed 

to higher wind-speeds recorded at the site.  We applied a method to post-process the 

collected NO2 concentrations from the Palmes samplers for wind-speed effects on sampler 

uptake rate, which improved the regression equation and statistics between sampler and 

reference NO2 (NMB = 0.27 vs. 0.13 (Townhead) and 0.08 vs. -0.06 (High Street)). 

Using a membrane over the open end of the Palmes sampler removed the relationship 

between sampler uptake rate and wind-speed observed for the standard Palmes tube and 

improved the statistics describing the sampler and reference analyser concentrations (NMB = 

0.17 (Palmes) vs. 0.00 (Palmes[M]) for both sites combined).  However, the Palmes[S] 

sampler showed significant relationship with wind-speed, suggesting that the shorter tube 

length is more influenced by winds-speed, and consequently had larger bias statistics than 

the Palmes[M] sampler (NMB = -0.05 (Palmes[S] for both sites combined).  The regression 

coefficients for the Palmes[M] and Palmes[S] samplers were poorer than the standard 

Palmes at High Street (Regression slope = 1.03, 0.97 and 0.85 for Palmes, Palmes[M] and 

Palmes[S] respectively).  The wind-speed measurements at High Street were approximately 
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40 % lower than those recorded at Townhead and showed less variation throughout the study 

period.  At low (approximately <0.5 m/s) wind-speeds the membrane acts as a barrier to 

diffusion and reduces the uptake rates below the standard samplers, however the scatter in 

the collected concentrations was much lower when the membrane was included (R2 = 0.36 

vs. 0.78 vs. 0.51 for Palmes, Palmes[M] and Palmes[S] respectively at High Street).  The in-

house Ogawa[P] sampler provided a suitable alternative to the Palmes sampler with less 

impact of wind-speed (NMB = 0.17 vs. -0.03 for both sites combined). 

We suggest that for passive sampler deployments when wind-speed information is 

unavailable (due to, for example, a large number of sites or mobile monitoring) the use of an 

amorphous polyethylene membrane will reduce turbulent effects and produce more accurate 

estimates of pollution concentrations than the standard Palmes samplers. 
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Table S1: Exposure dates for the passive samplers.  Sites were visited on foot, and on each 

occasion Townhead was visited first (approximately 30 minutes between Townhead and 

High Street deployment times).  On some occasions we were unable to access High Street 

due to ladders being unavailable – on these dates the samplers were consequently exposed 

for 2 deployment periods. 

Exposure number Exposure dates Exposure details 
1 21 Nov – 23 Nov 2016  
2 23 Nov – 25 Nov 2016 Townhead diffusion tubes were frosty 
3 25 Nov – 28 Nov 2016  
4 28 Nov – 30 Nov 2016  
5 30 Nov – 2 Dec 2016  
6 2 Dec – 5 Dec 2016  
7 5 Dec – 7 Dec 2016  
8 7 Dec – 9 Dec 2016  
9 9 Dec – 12 Dec 2016  

10 12 Dec – 14 Dec 2016  
11 14 Dec – 16 Dec 2016  
12 16 Dec – 19 Dec 2016  
13 9 Jan – 11 Jan 2017  
14 11 Jan – 13 Jan 2017  
15 13 Jan – 16 Jan 2017  
16 16 Jan – 18 Jan 2017  
17 18 Jan – 20 Jan 2017  
18 20 Jan – 23 Jan 2017  
19 23 Jan – 25 Jan 2017  
20 25 Jan – 27 Jan 2017  
21 27 Jan – 30 Jan 2017 No access to High Street on 27th January 
22 30 Jan – 1 Feb 2017 High Street analyser off 
23 1 Feb – 3 Feb 2017  
24 3 Feb – 6 Feb 2017  
25 6 Feb – 8 Feb 2017  
26 8 Feb – 10 Feb 2017  
27 10 Feb – 13 Feb 2017  
28 13 Feb – 15 Feb 2017  
29 15 Feb – 17 Feb 2017 No access to High Street on 15th February 
30 17 Feb – 20 Feb 2017  
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Figure S1: Scatter plots showing hourly average NO2 concentration measured by the 

analysers located at Townhead and High Street AURN stations between 20th November 2016 

and 22nd February 2017 inclusive.  The solid line represents the reduced major axis trend 

line, while the dashed line represents 1:1 concentrations.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure S2:  Mass of nitrite collected by (a) Palmes, (b) Palmes[M], (c) Palmes[S] and (d) 

Ogawa[P] samplers against corresponding study-average NO2 concentrations measured by 

the analyser.  Data is shown for Townhead and High Street on each plot. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure S3:  correlation between study-average spot measurements of (a) temperature and (b) 

relative humidity made by the kestrel instrument at Townhead and the static meteorological 

measurements made at the site; and between the spot measurements of (c) temperature and 

(d) relative humidity made at Townhead and High Street.  
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4. Calibration of portable real-time air pollution monitors 

This chapter is comprised of two manuscripts, which are discussed below in more detail: 

 

Temporal changes in field calibration relationships for Aeroqual S500 O3 and NO2 sensor-

based monitors 

This paper examines the optimal calibration procedure for Aeroqual S500 sensor-based 

monitors measuring NO2 and O3 at an urban background station in Glasgow, UK.  

Calibration of these monitors has previously been demonstrated to improve concentration 

estimate; however no work has investigated the impact of the time or duration of the 

calibration.  Appendix A: Evaluation of Little Environmental Observatory (LEO) sensors 

describes the evaluation of a different portable real-time sensor (also measuring NO2 and O3) 

and highlights the difference in accuracy between different portable monitors and shows the 

accuracy of the Aeroqual monitors to be superior to the LEO monitors. 

N. Masey, the main author, designed the experiment, carried out the practical work and 

associated data analysis and wrote the paper.  J. Gillespie provided advice about 

experimental design, helped with data collection and provided discussion about the data 

analysis.  E. Ezani helped with data collection.  C. Lin and H. Wu provided discussion about 

data analysis and interpretation.  S. Hamilton, M. Heal and I. Beverland provided advice on 

data analysis and comments during preparation of the manuscripts. 

This paper has been formatted to meet the criteria of Environmental Science and 

Technology. 

 

Consistency of urban background black carbon concentration measurements by portable 

AE51 and reference AE22 Aethalometers:  Effect of corrections for filter loading 

Aethalometers measuring black carbon have been shown to suffer from filter loading 

effects which lead to these monitors overestimating true concentrations without correction 

for these effects.  We investigate two commonly applied correction methods on the accuracy 

of microAeth AE51 portable Aethalometers at an urban background station in Glasgow, UK. 

N. Masey, the main author, designed the experiment, carried out the practical work and 

associated data analysis and wrote the paper.  J. Gillespie provided advice about 

experimental design, helped with data collection and provided discussion about the data 

analysis.  E. Ezani helped with data collection.  S. Hamilton, M. Heal and I. Beverland 

provided advice on data analysis and comments during preparation of the manuscripts. 

This paper has been formatted with the aim of submission of the manuscript to the 

Journal of Exposure Science and Environmental Epidemiology.  
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Temporal changes in field calibration relationships for Aeroqual 
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Abstract:   

Sensor-based monitors are increasingly used to measure air pollutant concentrations, but 

require calibration under field conditions.  We made intermittent comparisons (6 times over 

6-month period) between ozone and nitrogen dioxide concentrations measured by Aeroqual 

gas-sensitive semiconductor (O3) and electrochemical (NO2) sensors (two of each) and 

reference analysers in the UK Automatic Urban and Rural Network.  Each deployment 

period was split into equal (n = 48 h) training and test datasets, to derive and test calibration 

equations respectively.  We observed significant bivariate linear relationships between 

Aeroqual O3 and Reference O3 concentrations, and significant multiple linear relationships 

between Aeroqual NO2 and both Reference NO2 and Aeroqual O3 concentrations.  Changes 

in monitor responses over time resulted in relatively inaccurate concentrations estimates (cf. 

reference concentrations) from calibration equations derived in the first training period and 

applied to subsequent test deployments (e.g. RMSE = 47.2 µg m-3 (n = 286) for a dataset of 

all test periods combined, for one of the two monitor pairs).  Substantial improvements in 

accuracy of estimated concentrations were achieved by combination of repeated intermittent 

training data into a single calibration dataset (RMSE = 8.5 µg m-3 for same test dataset 

described above).  This latter approach to field calibration is recommended. 
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1. Introduction 

The concentrations of gaseous air pollutants with deleterious health effects, including 

nitrogen dioxide (NO2) and ozone (O3), are monitored to estimate human exposure and to 

assess compliance with legislation and guidelines.  Monitoring is usually conducted at static, 

automatic monitoring stations that record concentrations at high temporal resolution.  

However, the cost of these stations, together with practical considerations regarding suitable 

sites, invariably limits the spatial coverage of automatic networks.  Wider geographical 

networks of passive diffusion samplers (PDS) can mitigate restrictions on spatial coverage1,2; 

however PDS provide limited temporal information, and can be subject to measurement 

inaccuracies associated with changing meteorological3 and atmospheric chemistry 

conditions.4 

Battery-powered real-time hand-held sensor-based monitors for air pollutants are 

continually being developed, which have potential to supplement data from existing 

monitoring networks.5  Hand-held monitors usually have lower capital costs than automatic 

analysers, meaning that more could be made available for deployment, potentially increasing 

the spatial resolution of measurement networks with high temporal resolution concentration 

measurements.6–9  The use of such instruments in mobile and personal monitoring has been 

reported.8,10 

The reference analysers in automatic monitoring stations are usually subject to 

documented quality control and assurance (QC/QA) procedures that aim to ensure the 

recorded pollutant concentrations are within specified ranges of accuracy and precision.  The 

control of uncertainty requires resource and effort, so it is not unreasonable to anticipate that 

outputs from lower-cost, portable monitors are also subject to uncertainties, which may also 

vary with time.  Thus, it is important that portable monitors are subject to calibration checks 

at least as much as reference analysers.  An important additional potential limitation of gas 

sensor-based monitors is their cross-sensitivity to other pollutants and/or to changing 

environmental conditions.11,12  For example, the responses of some electrochemical sensors 

have been shown to be susceptible to variations in temperature or relative humidity.8,13–15  

Sensors for NO2 have been shown to be cross-sensitive to O3, meaning that both pollutants 

must be measured simultaneously to allow correction of the NO2 sensor response.8–10,16–18  

Consequently, for accurate estimation of ambient concentrations, sensor-based monitors 

require field calibration under representative ambient conditions. 

In this study we evaluated the responses of two pairs of Aeroqual S500 O3 and NO2 

monitors over time and repeated exposure to outdoor conditions, by deployment adjacent to 

reference gas analysers.  The monitor deployments were designed to be representative of 
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their likely use in practical field measurements: namely repeated cycles of calibration and 

monitoring (involving switching monitors on and off, removal from a reference site and 

usage in other field measurements at different locations and mobile monitoring, and return to 

the reference site).  Additionally, we investigated the effects of combination and timing of 

field calibration of the monitors on the accuracy of calibrated estimates.  Our analyses 

provide insight to the refinement and use of field calibration relationships for these Aeroqual 

monitors in mobile measurements across geographical areas with widely varying pollution 

microclimates. 

 

2. Methods 

We evaluated two pairs of Aeroqual (www.aeroqual.com) S500 O3 and NO2 monitors at 

the UK Automatic Urban and Rural Network (AURN) Townhead urban background site in 

Glasgow city centre (55.866 ºN, 4.244 ºW).  Hourly-average concentration data from the 

reference analysers (API200A chemiluminescence analyser for NO2 and Thermo 49i 

photometric analyser for O3) at this site were downloaded from 

www.scottishairquality.co.uk. All AURN measurements were subject to documented 

national QC/QA procedures.19 

We deployed the Aeroqual monitors within ventilated waterproof enclosures provided by 

Aeroqual attached to the galvanised steel safety railings surrounding the roof of the AURN 

monitoring cabin (Supporting Information Figure S1).  The NO2 monitors contained 

electrochemical sensors (ENW2, range 0 – 1 ppm) and are referred to as NO2_1 and NO2_2.  

The O3 monitors contained gas-sensitive semiconductor sensors (OZU2, range 0 – 0.15 ppm) 

and are referred to as O3_3 and O3_4.  Monitors NO2_1 and O3_3 were located next to one 

another on the eastern railing while monitors NO2_2 and O3_4 were located on the western 

railing.  Mains power was available allowing the monitors to operate continuously.  We set 

the monitors to record gravimetric concentrations (µg/m3) at 1-minute intervals, prior to 

computation of hourly-average concentrations for comparison with the analysers. 

Six separate monitor co-location deployment periods were undertaken intermittently over 

6 months (November 2015 – May 2016) (Table S1).  We truncated each deployment period 

to the first 96 h of field deployment to simplify comparison between periods. 
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3. Results 

3.1. Calibration of Aeroqual O3 monitors 

Aeroqual O3 measurements closely followed temporal trends in the Reference O3 

concentrations, with O3_3 generally over-predicting and O3_4 generally under-predicting the 

analyser concentrations (Figure 1). 

 

 

Figure 1: Time series of unadjusted hourly-averaged O3 concentrations measured by the two 

O3 Aeroqual monitors and by the reference analyser for the full duration of each deployment 

period. Different deployment periods are separated by gaps in time series.  The coefficient of 

determination between the concentrations measured by duplicate Aeroqual O3 instruments 

was 0.90. 

 

We calibrated the response of the O3 monitors by calculating Ordinary Least Squares 

(OLS) regression equations between unadjusted Aeroqual O3 measurements and O3 

concentrations measured by the reference analyser.  We compared three methods of 

calibration - in each method the first 48 h for each deployment period was used as ‘training’ 

data to generate calibration equations, and the second 48 h was used as ‘test’ data to evaluate 

the accuracy of the calibrated predictions.   

1) The first calibration method used the training data [0-48 h] for each deployment period 

to correct the test data [49-96 h] for the same deployment period i.e. a unique calibration 
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for each deployment period (referred to as ‘Aq_corr_u’).  This method represented 

calibrations computed at close time intervals to the measurements being corrected.   

2) The second calibration method used a combination of training data from all deployment 

periods to derive a single global calibration equation for each monitor, which was then 

applied to the training data for each period (referred to as ‘Aq_corr_a’).  This method of 

calibration, involving interspersed intervals during the extended set of deployments, had 

a larger number of data points in the calibration, spread over a longer time period, and 

thus incorporated a larger range of pollution conditions.   

3) The third calibration method used the calibration equation derived from the training data 

from the first study period (November) to correct the test data from all of the subsequent 

studies (referred to as ‘Aq_corr_N’).  This method represented a ‘one-off pre-

measurement campaign’ calibration, and was included to assess how the accuracy and 

precision of a single calibration might deteriorate over time during extended field 

measurements.   

The calibration equations are summarised in Table 1 and are shown in Figure S3.  Similar 

to the findings observed by Lin et al.16 we observed limited and inconsistent effects of 

temperature and relative humidity on the calibration regression equations across the monitors 

and deployments (data not shown) and therefore these meteorological variables were not 

considered further in our analyses. 

The OLS calibration equations calculated for each of the three methods were used to adjust 

the test data.  We observed similar overall temporal patterns in the time series of adjusted 

Aeroqual and Reference O3 concentrations (adjusted concentration estimates shown for both 

training and test data in Figure S4).  The Reference O3 and adjusted Aeroqual O3 

concentrations deviated for a short period at the end of the December deployment, when the 

reference analyser measured very low O3 concentrations and the adjusted Aeroqual values 

were slightly negative.  This period corresponded to a winter pollution episode with elevated 

NO2 concentrations (Figure S5).  None of the three calibration methods accurately adjusted 

the Aeroqual measurements at these very low O3 concentrations, presumably as a result of 

the marked change in pollution concentrations between the training and test data. 

All three calibration methods yielded high correlation coefficients (R2 > 0.90) and slopes 

close to 1 (slope: 0.91 – 1.07) for the evaluation of adjusted test data against analyser-

measured O3 concentrations (Figures 2 and S7).  However, the scatter plot for the Aq_corr_N 

calibration (for both Aeroqual units) had a relatively large negative intercept compared to the 

scatter plots for the other two calibration methods, resulting from underestimation of 

reference analyser O3.  The root mean square error (RMSE), mean bias (MB) and normalised 
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mean bias (NMB) for Aq_corr_N were correspondingly larger than for the other two 

calibration methods (Table 2, Figure S7). 

These evaluation statistics indicate that calibrations derived from training data interspersed 

regularly throughout the deployment periods provide a more accurate estimate analyser 

concentrations in the test periods than a single calibration at the start of the deployment 

periods.  For these O3 monitors there were only small differences in R2, RMSE, MB, and 

NMB statistics between Aq_corr_u and Aq_corr_a methods, which were partly monitor 

dependent.  For O3_3, all four statistics for the Aq_corr_u method indicated a slightly better 

fit between adjusted sensor and analyser data.  There was a less consistent pattern between 

calibration methods for the statistics for O3_4 although differences were negligible.  Hence 

we conclude that both Aq_corr_u and Aq_corr_a methods provide useful adjustment to the 

O3 monitor data. 
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(a) 

 

(b) 

 

(c) 

 
Figure 2: Scatter plots of adjusted hourly Aeroqual O3 concentration estimates vs. reference 

analyser O3 concentrations for the test data (i.e. 2nd half of deployment periods only).  (a) 

O3_aq adjusted using calibration derived from training data in each unique deployment 

period (O3_aq_corr_u). (b) O3_aq adjusted using calibration derived from training data 

combined from all deployment periods (O3_aq_corr_a). (c) O3_aq adjusted using calibration 

derived from the first deployment period (November) only (O3_aq_corr_N). 
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3.2. Calibration of Aeroqual NO2 monitors 

We previously showed that an Aeroqual NO2 monitor was also sensitive to O3 

concentrations, and demonstrated a linear relationship between (Aeroqual_NO2 – 

Reference_NO2) vs. Aeroqual_O3 which we used to correct the Aeroqual NO2 

concentrations.16  Preliminary investigations of the Aeroqual NO2 monitors used in the 

present work also revealed clear sensitivity of output on O3 concentration.  In our previous 

method,16 the coefficient for Reference_NO2 was effectively constrained to 1, which reflects 

the expectation that when the Aeroqual sensors are new and recently factory-calibrated their 

output concentration values should be close to True (i.e. reference) NO2 concentrations: 

 �RQfghS! ��� − �QhR ��� = S? ∗ �RQfghS! �� + X?   [Equation 1] 

Therefore, we can calibrate Aeroqual NO2 by rearranging Equation 1: 

 �QhR ��� = �RQfghS! ��� −  S? ∗ �RQfghS! �� −  X?  [Equation 2] 

A potential shortcoming of this approach is that it does not allow for an Aeroqual NO2 

monitor to have a relationship to True NO2 (i.e. to reference analyser NO2) that is not equal 

to 1; for example if the response of the sensor in the NO2 monitor has reduced in time since 

its factory calibration.  A more general model for the Aeroqual NO2 monitor response is 

therefore based on the following two underlying relationships: 

1)  Aeroqual O3 has a linear response to True (reference analyser) O3, i.e. 

  �RQfghS! �� =  ;? ∗ �QhR �� +  :?   [Equation 3] 

2)  Aeroqual NO2 has linear responses to both NO2 and O3, and with its response to O3 

being different to the response of the Aeroqual O3 monitor to O3, i.e. 

 �RQfghS! ��� = ;� ∗ �QhR ��� + ;� ∗ �QhR �� + :� [Equation 4] 

 

Substituting for True O3 from Equation 3 into Equation 4 yields: 

 �RQfghS! ��� = ;� ∗ �QhR ��� + FLF] '�RQfghS! �� − :?0 + :� [Equation 5] 

Rearrangement of Equation 5 into a similar form to Equation 2 gives: �QhR ��� = ?FJ ∗ �RQfghS! ��� − FLF]∗FJ ∗ �RQfghS! �� −   b iJFJ − i]∗FLF]∗FJc [Equation 6] 

where 
FLF]∗FJ and (

iJFJ − i]∗FLF]∗FJ) are constants. 

 

Equation 6 is very similar to Equation 2 produced in the Lin et al. method, except that there 

is now a coefficient for the Aeroqual NO2 term that may not be equal to 1.  To account for 

this coefficient for Aeroqual NO2 in practice, a multiple linear regression was fitted to the 

Aeroqual NO2 values to derive three fitted parameters: 
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 �RQfghS! ��� = j? ∗ �QhR ��� + j� ∗ �RQfghS! �� + j� [Equation 7] 

The best estimates for k1, k2 and k3 were then used to calibrate Aeroqual NO2 concentrations 

as follows: 

 �QhR ��� = ?k] '�RQfghS! ��� − j� ∗ �RQfghS! �� − j�0 [Equation 8] 

 

As for the O3 monitors, the impact of temperature and relative humidity on NO2 calibration 

regression equations was limited and inconsistent and was therefore not considered further 

(data not shown). 

The Aeroqual monitors were arbitrarily paired in this correction (reflecting the arbitrary 

pairing when a pair of monitors is used for field measurements), with NO2_1 corrected using 

O3_3 and NO2_2 corrected using O3_4.  The three different calibration methods described in 

Section 3.1 were used; leading to Aeroqual NO2 concentrations adjusted using the 

Aq_corr_u, Aq_corr_a and Aq_corr_N selections of training data (Table 1). 

 

Table 1: OLS equations for calibration equations for each training period (equivalent to 

aq_corr_u) and a global calibration for a combination of ‘All’ training periods (aq_corr_a) 

for the two pairs of Aeroqual O3 and NO2 monitors.   The range of concentrations measured 

during each study period in shown in Table S1. 

Pollutant Study period O3_3 O3_4 
O3 Nov 0.94*Ref_O3 + 16.11, R2 = 0.85 0.53*Ref_O3 + 16.73, R2 = 0.95 

 Dec 1.07*Ref_O3 + 9.34, R2 = 0.96 0.59*Ref_O3 + 12.19, R2 = 0.90 
 Feb 1.08*Ref_O3 + 5.41, R2 = 0.98 0.51*Ref_O3 + 15.27, R 

2= 0.96 
 April 1.06*Ref_O3 + 3.61, R2 = 0.99 0.53*Ref_O3 + 13.12, R2 = 0.94  
 May1 1.05*Ref_O3 – 0.07, R2 = 0.99 0.60*Ref_O3 + 11.20, R2 = 0.98 
 May2 1.00*Ref_O3 +0.83, R2 = 0.99 0.60*Ref_O3 + 5.41, R2 = 0.95 
 O3_corr_all 1.02*Ref_O3 + 6.26, R2 = 0.93 0.56*Ref_O3 + 12.66, R2 = 0.91 
    
 Study period NO2_1 NO2_2 

NO2 Nov 0.10*Ref_NO2 + 0.17*O3_3 + 8.99, 
R

2 = 0.34 
0.38*Ref_NO2 + 0.84*O3_4 + 

53.78, R2 = 0.50 
 Dec 0.32*Ref_NO2 + 0.28*O3_3 - 3.29, R2 

= 0.33 
0.07*Ref_NO2 + 0.19*O3_4 + 

87.99, R2 = 0.02 
 Feb 0.51*Ref _NO2 + 0.49*O3_3 – 18.95, 

R
2 = 0.92 

0.35*Ref_NO2 + 1.02*O3_4 + 
51.98, R2 = 0.63 

 April 0.50*Ref_NO2 + 0.48*O3_3 – 20.24, 
R

2 = 0.72 
0.15*Ref_NO2 + 0.53*O3_4 + 

70.82, R2 = 0.36 
 May1 0.54*Ref_NO2 + 0.57*O3_3 – 23.28, 

R
2 = 0.91 

0.38*Ref_NO2 + 1.05*O3_4 + 
47.73, R2 = 0.93 

 May2 0.17*Ref_NO2 + 0.27*O3_3 + 2.32, 
R

2 = 0.63 
0.15*Ref_NO2 + 0.66*O3_4 + 

71.21, R2 = 0.74 
 NO2_corr_all 0.42*Ref_NO2 + 0.43*O3_3 – 13.19, 

R
2 = 0.67 

0.33*Ref_NO2 + 0.81*O3_4 + 
58.00, R2 = 0.62 

    
 



4. Calibration of portable real-time monitors 

99 

 

The adjusted Aeroqual NO2 and Reference NO2 concentrations were well correlated 

temporally, with the exception of some concentrations adjusted using Aq_corr_u (Figure 

S5).  The Aq_corr_u (NO2_1 only), Aq_corr_a and Aq_corr_N (NO2_2 only) calibration 

methods resulted in clearly defined linear relationships between adjusted Aeroqual and 

Reference NO2 concentrations with R2 values ranging from 0.70 to 0.85 (Figure 3 & Table 

2).  The regression slopes were closest to 1, R2 values highest, and RMSE values lowest for 

the Aq_corr_a selection of training data, for both Aeroqual NO2 monitors (Figures 3 & S7 

and Table 2).  The period of deviation between Aeroqual NO2_2_corr_u and Reference NO2 

is from the December deployment, during which there was a very poor training data 

regression fit with small coefficients for Reference_NO2 and O3_4 and a large offset (Table 1 

& Figure S6).  The cause of the poor calibration regression during this particular deployment 

is not known but may be due to transient errors in one or other of the Aeroqual monitor 

measurements in this period.  
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(a) 

 

(b) 

 

(c) 

 
Figure 3: Scatter plots of adjusted hourly Aeroqual NO2 concentration estimates vs. 

reference analyser NO2 concentrations for the test data (i.e. 2nd half of deployment periods 

only).  (a) Aeroqual data adjusted using calibration derived from training data in each unique 

deployment period (aq_corr_u). (b) Aeroqual data adjusted using calibration derived from 

training data combined from all deployment periods (aq_corr_a). (c) Aeroqual data adjusted 

using calibration derived from the first deployment period (November) only (aq_corr_N). 
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Table 2: OLS linear regression parameters (and 95% confidence intervals), coefficient of 

determination and summary statistics for adjusted Aeroqual NO2 and O3 concentrations 

compared to reference analyser concentrations.  The calibration adjustments applied were: 

the second 48 h of each deployment period corrected using the unique calibration derived 

using the first 48 h of that deployment period (Aq_corr_u); the second 48 h of each 

deployment period corrected using the calibration derived when the first 48 h of data from all 

studies were combined (Aq_corr_a); and the second 48 h of each deployment period 

corrected using the calibration derived from the first 48 h in the first (November) study only 

(Aq_corr_N). 

Monitor Correction 
Slope  

[95 % C.I.] 
Intercept /µgm-3 

[95 % C.I.] 
R

2 
RMSE / 
µg m-3 

MB / 
µg m-3 

NMB n 

O3_3 O3_corr_u 
1.07 

[1.06, 1.09] 
-5.75 

[-6.77, -4.72] 
0.98 4.59 -2.10 -0.04 286 

 O3_corr_a 
0.97 

[0.94, 1.00] 
-0.89 

[-2.50, 0.72] 
0.94 6.25 -2.17 -2.17 286 

 O3_corr_N 
1.06 

[1.03, 1.09] 
-11.44 

[-13.19, -9.68] 
0.94 10.72 -8.54 -8.54 286 

         

O3_4 O3_corr_u 
0.93 

[0.91, 0.95] 
-2.14 

[-3.20, -1.07] 
0.97 6.94 -5.56 -0.11 286 

 O3_corr_a 
0.91 

[0.89, 0.93] 
-1.46 

[-2.57, -0.35] 
0.96 7.22 -5.68 -0.12 286 

 O3_corr_N 
0.96 

[0.94, 0.99] 
-9.24 

[-10.41, -8.07] 
0.96 11.80 -10.99 -0.23 286 

         

NO2_1 NO2_corr_u 
1.09 

[0.98, 1.20] 
1.25 

[-2.06, 4.56] 
0.59 15.75 3.65 0.14 286 

 NO2_corr_a 
1.03 

[0.98, 1.08] 
3.60 

[2.03, 5.17] 
0.85 8.50 4.45 0.17 286 

 NO2_corr_N 
1.33 

[1.04, 1.63] 
11.79 

[2.62, 20.96] 
0.22 47.23 20.47 0.78 286 

         

NO2_2 NO2_corr_u 
0.80 

[0.58, 1.02] 
11.02 

[4.29, 17.75] 
0.16 31.69 5.79 0.22 286 

 NO2_corr_a 
0.97 

[0.89, 1.04] 
11.46 

[9.24, 13.68] 
0.71 14.73 10.59 0.41 286 

 NO2_corr_N 
0.87 

[0.80, 0.93] 
16.97 

[15.09, 18.88] 
0.73 16.21 13.47 0.52 286 

 

3.3. Temporal changes in Aeroqual O3 and NO2 monitor responses 

We calculated the difference between unadjusted Aeroqual O3 and Reference O3 

concentrations to assess drift in the output of the Aeroqual O3 sensors during this study 

(Figure 4a).  The difference generally declined over the 6 months of measurements.  This 

decline may have resulted from deterioration in the sensitivity of the O3 monitors as the 

sensors age.  However, the calibration procedures overcome these effects to enable 

reasonably accurate representation of reference analyser concentrations. 
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We also plotted the difference between Aeroqual and Reference NO2 concentrations for 

Aeroqual concentrations adjusted using Aq_corr_u and Aq_corr_a training data selections 

(Figures 4b and 4c). The residual concentrations varied more using the Aq_corr_u 

calibration method than for the Aq_corr_a method, with periods of large residual values 

corresponding to deployments with lower correlations between reference and Aeroqual NO2 

concentrations in the data (Table 1).  The residual NO2 concentrations showed no trend 

across the deployment periods for the Aq_corr_u correction method, as this calibration 

procedure partly corrects for the temporal drift in the Aeroqual O3 sensors identified above, 

while for the Aq_corr_a correction method the residuals generally increase within each 

individual deployment and across all the deployments. 

Daily averages of the hourly residuals for the Aeroqual O3 and NO2 measurements adjusted 

using the first set of training data (Aq_corr_N) were calculated for all of the available study 

data (including data for deployments > 96 h in length) (Figure S8).  The daily O3 residuals 

became more negative during each deployment; however at the start of some deployment the 

residuals appeared to revert to close to zero, as measured for the first residual values in the 

Aq_corr_N calibration period in November 2015.  This may be indicative of changes in the 

O3 sensor response after the monitor has been turned on, and of repeated instances of this 

effect for all of the individual deployments.  The Aeroqual NO2 sensors exhibit a general 

increase in the daily residuals during each deployment that is likely to have resulted from the 

use of the Aeroqual O3 data in the calibration of the Aeroqual NO2 sensor. 

Overall, these observations suggest that it is beneficial to make calibration and field 

measurements after consistent time periods following monitor start-up (as was done here). 
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(a) 

 

(b)

(c) 

 
Figure 4: Residual plots of (a) unadjusted Aeroqual O3 concentrations – reference O3 

concentrations; (b) Aq_corr_u – reference concentration and (c) Aq_corr_a – reference 

concentration over the 96-h deployments for NO2 (left) and O3 (right).  Both training and test 

data sets are included (training data indicated by grey boxes).  Different deployment periods 

are separated by gaps in time series. Residual plots of the unadjusted Aeroqual NO2 

concentrations are not provided due to the highly variable results which highlight the 

requirements for calibration. 

 

4. Discussion 

As a result of technological developments portable monitors are increasingly used to 

measure ambient pollution concentrations over extended geographical areas, and for mobile 

and personal monitoring.  Field calibration procedures are necessary to improve and quantify 

the accuracy of estimates of ambient pollution concentrations from portable monitors.  In 

this study we investigated changes in calibration relationships for two pairs of Aeroqual O3 

and NO2 monitors vs. reference analysers over a period of 6 months as the sensors 
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approached the manufacturer’s specified 2-year lifetime.  We developed a multiple linear 

regression calibration method that allowed the Aeroqual NO2 sensor to have a regression 

slope with ‘true’ NO2 that is not equal to 1 (as was assumed in the method of Lin et al.16), 

due for example to sensor aging, in addition to allowance for a non-unity response to O3.  

The inclusion of O3 in the calibration of NO2 concentrations measured by portable sensors 

has been previously reported in the literature – both O3 and NO2 invoke a similar response at 

the monitoring electrode and thus the sensor measures both gases simultaneously.  Some 

studies have reported this effect to result in the sensor measuring the sum of ambient NO2 

and O3 concentrations.8,21,22,23  The use of multiple linear regression compared to linear 

regression to correct other portable NO2 sensors has been observed to produce higher 

correlation between calibrated sensor estimates and reference NO2 concentrations.15 

Correction of the Aeroqual O3 and NO2 monitor estimates using each of the calibration 

methods tested in this work resulted in improved sensor accuracy and higher correlation with 

reference analyser measurements, compared to the unadjusted concentrations from the 

monitors.  This highlights the importance of calibration of monitors in the sorts of urban 

pollution environments where they are to be used, as has been adopted in previous 

studies.9,10,16  One recent study20 used uncalibrated concentrations from the Aeroqual 

monitors to measure NO2 and O3 in indoor office environments with low O3 concentrations 

which may have removed the need to adjust the Aeroqual NO2 monitors for O3 cross-

sensitivity.  

Our observations suggest that a single calibration study may not be able accurately to 

represent the relationship between monitor and reference analyser over an extended period, 

for example because of unidentified measurement problems during a particular calibration 

deployment period.  In contrast, we have observed that combination of several short 

calibration deployments over a period of 6 months into a single calibration dataset provided 

adjusted Aeroqual concentration estimates that agreed more closely with the reference 

analyser concentrations, provided that for the NO2 monitors concurrent O3 monitor 

measurements were also used as input to the calibration relationship.  We observed 

differences in Aeroqual NO2 calibrations over shorter time periods (e.g. within 1 month), 

which may be attributable to the age of the sensors or differences in the pollutant 

composition at the sites during the calibration periods.  However, during a winter pollution 

episode with elevated NO2 concentrations none of the calibration methods tested for the O3 

monitor could accurately represent the analyser concentrations, highlighting the importance 

of (when possible) calibrating the Aeroqual monitors using pollution concentrations similar 

to those anticipated during intended field application. 
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In conclusion, our observations indicate that the benefit [in terms of improved accuracy of 

calibrated estimates] of calibration averaged by pooling data from a number of calibration 

periods over a period of a few months (increased size of calibration dataset and potentially 

increased concentration range) outweighed the disadvantage arising from any monitor drift 

throughout the overall measurement period.  It is possible that the combination of several 

calibration periods interspersed within the overall measurement period mitigated the risk of 

only relying on calibration data from short periods when the range of concentrations may 

have been limited or otherwise unrepresentative.  Therefore this pooling of interspersed 

calibration data is recommended as a pragmatic approach to calibration of Aeroqual sensor-

based monitors for field deployment.  Although the sensors used in this work were 

approaching the 2-year working lifetime specified by the manufacturer (Aeroqual, 2015 

personal communication), our observations suggest that frequent intermittent calibrations as 

presented above would appear to allow the sensors to remain useable beyond this specified 

lifetime. 

 

Supporting Information 

The supporting information contains details of the study dates and site information, 

precision of Aeroqual O3 monitors, discussion of justification of multiple linear regression 

approach to calibrate Aeroqual NO2 monitor concentrations, time series plots of adjusted 

Aeroqual NO2 and O3 concentrations, scatter plots of Aeroqual vs. reference analyser NO2 

concentrations for each deployment period, calibration statistics for the methods, temporal 

change in calibration over the 6 month study period and investigation into daily NO2 and O3 

calibrations derived using alternate days. 
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1. Deployment details 

The four Aeroqual S500 monitors (two NO2, two O3) were deployed on the roof of the Defra 

(Department for the Environment, Food and Rural Affairs) Automatic Urban and Rural 

Network monitoring station at Townhead, Glasgow (Figure S1).  Monitors NO2_1 and O3_3 

were located in the enclosures on the right hand (eastern) side of the roof.  Monitors NO2_2 

and O3_4 were located in the enclosures on the left hand (western) side of the roof.  The 

dates of the six deployments at Townhead are given in Table S1. The site is classified as 

urban background. 

 

 

Figure S1: Deployment of Aeroqual monitors on the roof of Glasgow Townhead AURN 

station.  The monitors were deployed within ventilated waterproof enclosures provided by 

Aeroqual attached to the galvanised steel safety railings surrounding the roof of the AURN 

monitoring cabin. 
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Table S1: Dates of 96-hour deployments of Aeroqual monitors at Glasgow Townhead 

AURN site and the range concentrations of NO2 and O3 measured by the automatic analysers 

located at Townhead during the training (first 48 hour) and test (second 48 hour) periods. 

Study Name Dates of Study Range of measured 

NO2 concentrations 

Training [Test] 

(µg/m3) 

Range of 

measured O3 

concentrations  

Training [Test] 

(µg/m3) 

November 11/11/2015 – 

15/11/2015 

4 – 41 

[8 – 49] 

25 – 72 

[12 – 74] 

December 09/12/2015 – 

13/12/2015 

4 – 24 

[25 – 91] 

34 – 66 

[1 – 46] 

February 09/02/2016 - 

15/02/2016 

13 – 74 

[15 – 79] 

5 – 56 

[4 – 62] 

April 31/03/2016 – 

04/04/2016 

8 – 37 

[9 – 45] 

24 – 69 

[22 – 80] 

May1 04/05/2016 – 

08/05/2016 

6 – 61 

[7 – 35] 

3 – 86 

[41 – 95] 

May2 18/05/2016 – 

22/05/2016 

7 – 54 

[4 – 21] 

12 – 69 

[38 – 80] 
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2. Aeroqual O3 calibration 

The observations from the two Aeroqual O3 monitors were highly correlated (R2 > 0.90) but 

with O3_4 reporting concentrations approximately half the magnitude of those measured by 

O3_3 and with a significant positive offset (Supporting Information Figure S2).  

 

 

Figure S2:  Scatter plot of unadjusted hourly data from the two O3 Aeroqual monitors. 

 

Scatter plots of hourly Aeroqual O3 vs. reference analyser O3, using the first 48 h of data in 

each deployment period only (training data), were used to generate calibration equations to 

adjusted the Aeroqual O3 concentrations.  The equations derived for the three calibration 

methods tested in this work (and described in the main paper) are shown in Figure S3.  
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(a) 

(b)

 

(c) 

 

(d)

 

Figure S3: Scatter plots of hourly Aeroqual O3 vs. reference analyser O3: (a) and (b) 

calibrations using training data in each unique deployment period (O3_aq_corr_u) (panels 

(a) and (b) show data for Aeroqual monitors O3_3 and O3_4 separately); (c) calibrations 

using training data combined from all deployment periods (O3_aq_corr_a), for monitors 

O3_3 and O3_4 separately; (d) calibrations using the first deployment period (November) 

only (O3_aq_corr_N), for monitors O3_3 and O3_4 separately. 
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The calibration equations shown in Figure S3 were used to adjust the test data (second 48 h 

period in the deployments).  Figure S4 shows time series plots for the adjusted Aeroqual O3 

(aq_corr_u, aq_corr_a and aq_corr_N) and reference analyser O3 concentrations. 

(a) 

 

(b) 

 

(c) 

 
Figure S4:  Time series of adjusted Aeroqual O3 concentrations and reference analyser O3 

concentrations using: (a) training data from each unique deployment period (aq_corr_u); (b) 

training data from all deployment periods (aq_corr_a); (c) training data from the first 

(November) deployment period (aq_corr_N).  Both training and test data sets are included 

(training data indicated by grey boxes).  Different deployment periods are separated by gaps 

in time series. 
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3. Aeroqual NO2 calibrations 

Time series for adjusted Aeroqual concentrations and reference analyser NO2 concentrations 

are shown in Figure S5 for each of the three methods of using the test datasets that were 

tested (aq_corr_u, aq_corr_a and aq_corr_N). 

The time series in Figure S5 show there are periods where the adjusted Aeroqual NO2 

concentrations show deviations from those concentrations measured by the reference 

analyser.  Scatter plots of adjusted hourly Aeroqual NO2 concentration estimates vs. 

reference analyser NO2 concentrations for the test data (i.e. 2nd half of deployment periods 

only) from each deployment show these deviations are more pronounced in the 

concentrations adjusted using aq_corr_u (Figure S6). 
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(a) 

 

(b) 

 

(c) 

 
Figure S5: Time series of adjusted hourly Aeroqual NO2 concentrations and reference 

analyser NO2 concentrations using the following calibrations: (a) training data from each 

unique deployment period (aq_corr_u); (b) training data from all deployment periods 

(aq_corr_a); (c) training data from the first (November) deployment period (aq_corr_N).  

Both training and test data sets are included (training data indicated by grey boxes).  

Different deployment periods are separated by gaps in time series. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 

  
Figure S6: Scatter plots of adjusted hourly Aeroqual NO2 concentration estimates vs. 

reference analyser NO2 concentrations for the test data (i.e. 2nd half of deployment periods 

only).  Left hand plots show Aeroqual data adjusted using calibration derived from training 

data in each unique deployment period (aq_corr_u), while right hand plots show Aeroqual 

data adjusted using calibration derived from training data combined from all deployment 

periods (aq_corr_a).  Plots (a) to (f) represent the six deployment periods: November, 

December, February, April, May1 and May2 respectively. 
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4. Calibration statistics 

The normalised mean bias (NMB) and coefficient of determination (R2) calculated for the 

adjusted data for each test period and each Aeroqual monitor were plotted to examine if there 

were trends (Figure S7). 

Figure S7: Plots of NMB (left) and R2 (right) values for each of the test deployment periods 

for each Aeroqual monitor (top to bottom: O3_3, O3_4, NO2_1 and NO2_2) against their 

respective reference analyser. 
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5. Temporal changes in calibration over 6 months 

To examine the long-term trend in validity of a calibration from the time the underlying data 

were collected, we plotted the difference between Aeroqual and reference O3 and NO2 

concentrations, the former adjusted using aq_corr_N (Figure S8). 

(a) 

 

(b) 

 
Figure S8: Daily average difference between hourly Aq_corr_N adjusted Aeroqual monitor 

and reference analyser concentrations for each measurement day for (a) O3 and (b) NO2.  The 

Aq_corr_N calibration period (November) is indicated by grey boxes.  All data measured for 

each deployment period, before truncation to the first 96 h, are shown.  Different deployment 

periods are separated by gaps in time series. 
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6. Daily NO2 and O3 calibrations derived using alternate days 

We investigated the effect of short-term (< 2 weeks) temporal drift on the calibration of the 

Aeroqual monitors by applying 24-h calibration procedures in the first of the deployment 

periods in May 2016.  This deployment period, which extended over 10 days of 

measurements, was the longest in the study.  The 24-h calibration calculations located test 

and training data close in time to one another, minimising the extent of drift in monitor 

responses over time, to establish if calibrations improved when the smallest practical length 

of time between calibration and measurements is used.  However the smaller number of data 

points (24) and reduced concentration ranges may limit the performance of the calibration 

and consequently result in poorer corrected data. 

The observations were split into training and test datasets, with alternative days assigned to 

each category (training data = 5, 7, 9, 11, and 13 May; test data = 6, 8, 10, 12 and 14 May).  

Three calibration methods were investigated: (a) individual test days adjusted using 

calibrations computed from the preceding training day i.e. alternative day correction 

(Aq_corr_alt); (b) all test days adjusted using calibrations computed from training data from 

all training days combined (Aq_corr_all_alt); and (c) all test days adjusted using calibrations 

computed from the first day of training data [5 May 2016] (Aq_corr_first).  The regression 

equations calculated for each of these calibration procedures (Figure S9 and Table S2) were 

different from the 48 h calibrations for the first deployment period in May 2016 (Figure S3 

and main article Table 1), with the 24-h calibrations generally having smaller slope and R2 

values. 

We noted similar temporal variations in adjusted Aeroqual and Reference O3 

concentrations for all three calibration methods (Figures S10).  However there were periods 

when the adjusted Aeroqual O3 concentrations deviated from the reference analyser 

concentration.  These deviations were most apparent when the O3 data was adjusted using 

the Aq_corr_first training data selection method (Figure S11).  The time series for adjusted 

Aeroqual NO2 concentrations showed deviations from the reference analyser, the most 

pronounced of these was during the 9-10th May 2016 which corresponded to a period with 

calibration equations with low coefficients of determination (Figure S12, Table S2). 

The highest R
2 values for the comparisons of adjusted Aeroqual O3 vs. reference O3 

concentrations occurred for the Aq_corr_all_alt and Aq_corr_first calibration methods 

(Figure 11, Table S3).  The Aq_corr_all_alt method resulted in adjusted Aeroqual O3 

concentrations that underestimated analyser concentrations at low concentrations (Figure 

S11) with a regression slope and intercept significantly different from 1 and 0 respectively 

(Table S3).  The Aq_corr_first method produced a regression line closer to 1:1 and the 
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smallest RMSE values (Figure S11, Table S3).  The potential benefit of using shorter 

(Aq_corr_alt) calibrations to address the issue of monitor drift appeared to have been 

outweighed by fewer data and narrower concentration ranges, which hampered interpretation 

of the overall patterns in these data. 

The scatter plots of adjusted NO2 test data vs. reference analyser NO2 were relatively 

consistent between the Aq_corr_all_alt and Aq_corr_first calibration methods (Figure S12).  

The large positive (> 200 µg/m3) and negative (< 200 µg/m3) NO2_2_corr_alt 

concentrations, the result of the data corrected using the 9th May calibration, contribute to the 

slope value less than one, large negative intercept and correlation of 0 observed in this 

calibration.  For both Aeroqual NO2 monitors the RMSE values were highest for the 

NO2_aq_corr_alt calibration while the NO2_aq_corr_all_alt and NO2_aq_corr_first 

calibrations RMSE values were similar to one another (range: 13.7 – 16.2 µg/m3 (Table S3)). 

It would be laborious to make calibration measurements the day before every set of field 

measurements, especially for a long-term trial, and our observations suggest that, for a 10-

day study such as this, there is no benefit to making and applying calibrations on every 

alternate day.  However, the combination of several calibration periods interspersed within 

the overall measurement period (as outlined in section 3.1 of the main article) would appear 

to mitigate the risk of only relying on calibration data from a short period when the range of 

concentrations may be limited or otherwise unrepresentative. 

It was difficult to discern trends in the daily residual plots between Aeroqual and reference 

analyser concentrations for O3 and NO2, (Figure S13) indicating that on the short time scales 

of a single deployment period the apparent drift of the sensor response may sometimes be 

less evident. 
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Figure S9: Aeroqual O3 vs. reference analyser O3 calibration lines calculated from the first 

study period in May: (a) alternate days used as training data (O3_3); (b) alternate days used 

as training data (O3_4); (c) all alternate days training data combined; (d) training data from 

first alternate day only. 
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(a) 

 

(b) 

 

(c) 

 
Figure S10: Time series, from the first study in May, of adjusted Aeroqual O3 

concentrations and reference analyser O3 concentrations using the following calibrations: (a) 

training data from alternate days training data (aq_corr_alt); (b) training data from all 

alternate days training data (aq_corr_all_alt); (c) training data from first alternate day 

training data (aq_corr_first).  Both training and test data sets are included (training data 

indicated by grey boxes). 
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Figure S11: Scatter plots for short-term adjusted Aeroqual O3 vs. reference analyser O3 

concentrations (left) and adjusted Aeroqual NO2 vs. reference analyser NO2 concentrations 

(right) using three calibration procedures (aq_corr_alt, aq_corr_all_alt, aq_corr_first).  

Only the test data (for 6, 8, 10, 12 and 14 May 2016) is shown in these Figures. 
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(a) 

 

(b) 

 

(c) 

 
Figure S12: Time series, from the first period in May, of adjusted Aeroqual NO2 

concentrations and reference analyser NO2 concentrations using the following calibrations: 

(a) training data from alternate days training data (aq_corr_alt); (b) training data from all 

alternate days training data (aq_corr_all_alt); (c) training data from first alternate day 

training data (aq_corr_first).  Both training and test data sets are included (training data 

indicated by grey boxes). 
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(a) 

 

(b) 

 
Figure S13: Time series of hourly differences between Aeroqual monitor concentration after 

correction using Aq_corr_first and respective reference analyser concentration for (a) O3 and 

(b) NO2 (training periods highlighted in grey). 
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Abstract 

We collected over 1000 hourly-averaged black carbon (BC) measurements from co-

located duplicate portable AethLab AE51 Aethalometers and a government reference Magee 

Scientific AE22 Aethalometer (latter adjusted for filter darkening effects using a standard 

procedure) at an urban background site in Glasgow, UK.  AE51 and reference AE22 

Aethalometer concentrations were highly correlated (R2 ≥ 0.75) for 3 of the 4 deployment 

periods.  Application of two previously-reported methods for correction of underestimation 

of concentrations by AE51 monitors associated with filter loading generally overestimated 

[corrected] reference AE22 Aethalometer concentrations (average normalised mean bias = 

0.22 and 0.09 for both instruments for two correction methods cf. 0.00 for unadjusted data 

across the full range of measurements).  At ATN values > 40, RMSE increased for both 

unadjusted and adjusted BC measurements (e.g. RMSE for unadjusted measurements was 

0.16 and 0.48 µg/m3 below and above ATN of 40 respectively).  Our observations suggest 

that AE51 monitors may not require correction in environments with low concentrations. 
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1. Introduction 

Black carbon (BC) is a constituent of airborne particulate matter (PM) produced during 

incomplete combustion of carbon-based fuels.  The health effects associated with exposure 

to PM and BC include respiratory and cardiovascular diseases1,2, including associations 

between health outcomes and proximity to roads where BC concentrations are frequently 

elevated.3–5  In the UK, BC concentrations are measured continuously at 14 sites in a 

nationally-coordinated network (https://uk-air.defra.gov.uk) using a mains-powered rack-

mounted Aethalometer (AE22, Magee Scientific, CA, USA).  The number of BC 

measurements at these fixed sites is limited because of the high installation, equipment and 

maintenance costs and because BC does not need to be measured under current UK air 

quality compliance legislation. 

Battery-powered, hand-held Aethalometers have also been developed to measure real-

time concentrations of BC.  The small size and light weight of these monitors make them 

suitable for use in a variety of applications including static locations in a network6–8, mobile 

monitoring9–11 and/or personal monitoring.12–15  In this study, we evaluated two microAeth 

AE51 portable BC Aethalometers (AethLabs, San Francisco, CA, USA). 

The Aethalometers measure the concentration of BC using optical absorption techniques.  

Air is sampled through a filter and the concentration of BC is estimated by comparing the 

attenuation (ATN) of light passing through the particles deposited on the filter to that passing 

through an unloaded reference point on the same filter.  However, the relationship between 

ATN and BC loading is not linear at higher attenuation values.  Different methods to correct 

Aethalometer data to account for these filter loading effects have been proposed16,17 but few 

studies have compared the correction algorithms to determine which provides the most 

accurate correction.18 

Another potential source of error for the portable AE51 Aethalometers is rapid change in 

temperature and/or relative humidity, such as those experienced during personal monitoring, 

which can lead to large spurious positive and negative readings because of water 

condensation on the monitor filters or optics.19  This source of error may be of limited 

importance for reference Aethalometers situated within air-conditioned cabins and sampling 

air in fixed locations.  Cai et al. (2013) reduced the impact of condensation errors on the 

AE51 monitor through use of a diffusion dryer on the inlet.  They also noted that drier 

efficiency improved when the monitors were used as personal monitors, which was 

attributed to heating (and thus reduction of relative humidity) of the sampled air. 
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Instrument noise from mechanical shocks, again manifested as large spurious positive 

and negative readings, have also been observed during mobile monitoring.9  Cushioning the 

monitors, e.g. using foam padding, has been used to minimise the vibrations experienced by 

the monitor during mobile measurements10, together with correction algorithms to remove 

these erroneous concentration peaks.9,20   

The aim of our study was to compare the efficacy of methods commonly used to correct 

BC measurements from portable AE51 Aethalometers and to establish the ATN value at 

which filters require to be changed to maintain consistent AE51 Aethalometer accuracy.   

We build on the study of Good et al.18, who evaluated correction algorithms for filter 

darkening, by evaluating some of these correction methods during repeated Aethalometer 

field deployments.  Good et al.18 used an online photoacoustic extinctiometer (PAX Droplet 

Measurement Technologies, Boulder, CO, USA) as a reference instrument under controlled 

laboratory conditions.  In contrast, we deployed duplicate AE51 Aethalometers close to the 

inlet of an AE22 ‘reference’ Aethalometer at an urban background site in the city of 

Glasgow, UK, for approximately 50 days of co-located measurements over a 5 month period.  

The static outdoor deployment of the AE51 Aethalometers avoided mechanical vibrations, 

and was anticipated not to have been unduly affected by abrupt temperature or relative 

humidity changes, enabling focus on field based assessment of filter loading effects on the 

agreement between measurements from portable and reference Aethalometer instruments. 

 

2. Methods 

2.1. Site description; AE22 Aethalometer operation 

Measurements were made at the Glasgow Townhead monitoring site, an urban 

background location in central Glasgow (55.866 ºN, 4.244 ºW) that is part of the UK black 

carbon monitoring network.  Hourly-averaged reference BC measurements made at this site 

using a Magee Scientific AE22 Aethalometer are publicly available (https://uk-

air.defra.gov.uk/networks/network-info?view=ukbsn).  AE22 instrument operation and data 

ratification are subject to national QA/QC protocols.21  Unadjusted data at 5-min averaging 

were also obtained from personal communication with King’s College London to evaluate 

the accuracy of the AE51 Aethalometers at higher temporal resolution.22  The hourly-

averaged reference concentration data are corrected prior to publication for filter darkening 

effects using a standard correction procedure based on Virkkula et al.17,23  The unadjusted 5-

min AE22 concentration data were corrected in a similar way prior to use in our analyses 

(see Supplementary Information). 
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2.2. AE51 Aethalometer set up and operation 

Two microAeth AE51 Aethalometers (https://aethlabs.com/), subsequently named 

‘BC1204’ and ‘BC1303’, were deployed in waterproof boxes on the roof of the monitoring 

station and sampled ambient air through a 1 m length of tubing supplied by the 

manufacturer.  A conductive asbestos sampling inlet (SKC Ltd, UK) was connected to the 

inlet of the tubing as a rain shield to prevent water ingress.  The flow rate of the AE51 

Aethalometers was set to 50 mL/min and data were recorded each minute. 

The AE51 Aethalometers were co-located at the monitoring station on 4 occasions in 

2016 (Table 1): April (94 hours – BC1303 only), May (726 hours), July (68 hours) and 

August (334 hours).  During each deployment the site was visited approximately every 5 

days to download the AE51 data and to change filters.  The AE51 filter attenuation did not 

exceed a value of 65 during these deployment periods. 

The 1-min data collected by the AE51 Aethalometers were averaged to produce 5-min 

and hourly averaged concentrations for comparison with reference AE22 BC concentrations. 

 

Table 1: Dates and descriptive statistics for co-located AE51 and reference AE22 BC 

Aethalometer deployments at the Glasgow Townhead network monitoring site. 

Study 
name 

Start date Duration 
(hours) 

Min hourly 
concentration 
(µg/m3) 

Max hourly 
concentration 
(µg/m3) 

Mean hourly 
concentration 
(µg/m3) 

Median 
hourly 
concentration 
(µg/m3) 

April 31/03/2016 94 0.10 1.70 0.61 0.60 

May 29/04/2016 651 0.00 3.80 0.57 0.50 

July 01/07/2016 68 0.10 0.70 0.37 0.40 

August 08/08/2016 318 0.00 4.20 0.75 0.60 

 

 

2.3. Correction of AE51 black carbon data 

Prior to filter darkening correction procedures we smoothed the AE51 data to minimise 

the number of negative values in the dataset using Optimized Noise Algorithm (ONA) 

software from the AethLabs website (https://aethlabs.com/dashboard).20  We set the change 

in attenuation value used to average BC concentration data in this ONA method to 0.05. 

We then applied one of two alternative filter darkening correction procedures to the 

ONA-adjusted BC data from the portable AE51 Aethalometers to account for potential 

underestimation of BC as the darkness of the filter increased: 

(a) Correction procedure published by Kirchstetter and Novak16 using the standard 

coefficients (subsequently referred to as K&N): 
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�ilDDEiCEm =  
�I5n''0.88 × RoWH>n65 ?pp8 N0 + 0.120>? 

where BCONA is the AE51 concentration after ONA correction (outlined above) and ATN is 

the attenuation of the AE51 filter.  We used the ATN values directly from the AE51 

monitors as clean filters were used on each occasion, in comparison to Good et al.18 who 

used the percent change in attenuation between the start and end of the study to account for 

the use of preloaded filters. 

 

(b) Correction procedure developed by Virkkula et al.17 based on the concept that increasing 

ATN results in a linear underestimation of the correct BC concentration: 
�ilDDEiC = '1 + j ∗ ���0
�FE��qDEm 

We estimated k from the linear regression slope between the ratio of AE22 Aethalometer 

concentrations divided by AE51 BCONA concentrations vs. corresponding AE51 ATN values 

with a fixed intercept value of 1.24  When all available data were included in the regression 

analyses the values of k calculated were 0.0011 and 0.0045 for 1 h average data, and -0.0014 

and -0.0019 5-min average data, for BC1204 and BC1303 monitors respectively.  Negative k 

values imply that non-corrected BC concentrations overestimate the ‘true’ BC concentrations 

and have been suggested to occur in summer months when the ratio of black carbon to 

aerosol volume concentrations are lower.17  The range of k values that we calculated was 

consistent with estimates calculated in other studies (e.g. k = -0.0039 24 and k = 0.0033 25) 

and slightly lower than one recent study (k = 0.01 26), however these previous studies have 

been carried out a roadside sites in comparison to the urban background site in our work.  

We then corrected BCONA values as follows: 
�ilDDEiCEm = '1 + j ∗ ���0
�I5n 

 

3. Results  

3.1. Precision and accuracy of AE51 Aethalometers 

For the full dataset, unadjusted concentrations measured by the two duplicate AE51 

Aethalometers were highly correlated (R2 = 0.93) with both instruments reporting similar 

values (slope = 1.05, intercept = 0.00, n = 1053) (Figure 1b).  Similarly high correlations 

between duplicate AE51 Aethalometers have been reported in other studies, e.g. R2 values > 

0.95 between 13 co-located monitors.12 

  



 

(a) 

(b) 

Figure 1: (a) Time series of adjusted hourly

AE22 Aethalometer and unadjusted concentrations measured by two AE51 BC 

Aethalometers.  Gaps in plot separate non

reduced major axis (RMA

by duplicate AE51 BC Aethalometers.

 

Time series of hourly

Aethalometers and the reference AE22 Aethalometer showed very similar tem

(Figure 1a).  During the deployments in April, May and August the correlation coefficients 

between each AE51 and AE22 Aethalometer were greater than 0.75

A previous study at a BC network monitoring site in 

correlation (R2 = 90) between AE51 and reference AE22 Aethalometer concentrations over a 

similar range of reference analyser BC concentrations (0 

concentrations observed 

accurate AE51 measurements (NMB = 0.04 for BC1303) (Table 2).  The lower 

observed during our deployment in July (Table 1, Figure 2c) may have been the result of 

relatively low BC concent

4. Calibration of portable real

Time series of adjusted hourly-average BC concentrations from reference 

AE22 Aethalometer and unadjusted concentrations measured by two AE51 BC 

Aethalometers.  Gaps in plot separate non-consecutive time series. (b) Scatter plot with 

reduced major axis (RMA) regression of hourly-average unadjusted concentrations measured 

by duplicate AE51 BC Aethalometers. 

Time series of hourly-average unadjusted concentrations from the duplicate AE51 

Aethalometers and the reference AE22 Aethalometer showed very similar tem

).  During the deployments in April, May and August the correlation coefficients 

between each AE51 and AE22 Aethalometer were greater than 0.75 (left panels of Figure 2).  

A previous study at a BC network monitoring site in Birmingham, UK reported high 

= 90) between AE51 and reference AE22 Aethalometer concentrations over a 

similar range of reference analyser BC concentrations (0 – 5 µg/m

concentrations observed during our deployments.  The August deployment had the most 

accurate AE51 measurements (NMB = 0.04 for BC1303) (Table 2).  The lower 

observed during our deployment in July (Table 1, Figure 2c) may have been the result of 

relatively low BC concentrations (< 1 µg/m3) and the correspondingly limited range of 
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average BC concentrations from reference 

AE22 Aethalometer and unadjusted concentrations measured by two AE51 BC 

consecutive time series. (b) Scatter plot with 

average unadjusted concentrations measured 

average unadjusted concentrations from the duplicate AE51 

Aethalometers and the reference AE22 Aethalometer showed very similar temporal patterns 

).  During the deployments in April, May and August the correlation coefficients 

(left panels of Figure 2).  

Birmingham, UK reported high 

= 90) between AE51 and reference AE22 Aethalometer concentrations over a 

5 µg/m3)27 to the BC 

during our deployments.  The August deployment had the most 

accurate AE51 measurements (NMB = 0.04 for BC1303) (Table 2).  The lower R2 values 

observed during our deployment in July (Table 1, Figure 2c) may have been the result of 

) and the correspondingly limited range of 
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concentrations.  However, the AE51 measurements during April showed the largest 

deviations from the AE22 Aethalometer concentrations (NMB = 0.19 for BC1303) (Table 2). 

There was more scatter in the 5-min average concentrations measured by the AE51 and 

the AE22 Aethalometers, leading to lower coefficients of determination (R2 = 0.08 – 0.58) 

than for comparisons using hourly averages (R2 = 0.58 – 0.92) (Table 2).  Despite the lower 

coefficients for 5-min average BC concentrations the NMB values were similar between the 

two temporal averages (e.g. NMB = −0.14 (hour) vs. −0.15 (5-min) for BC1204 during the 

July study). 

 

Table 2: OLS regression equations [and 95% confidence intervals] between (a) hourly-

average and (b) 5-min average AE51 Aethalometer (unadjusted) and reference AE22 

Aethalometer BC concentrations for each deployment period.  Descriptive statistics: 

coefficient of determination (R2), root mean square error (RMSE), mean bias (MB), 

normalised mean bias (NMB) and number of hourly observations (n).  Monitor BC1204 was 

not deployed in April 2016. 

Monitor 
 # 

Study Slope 
 [95 % C.I.] 

Intercept [95 % C.I.]  
(µg m-3) 

R
2
 RMSE  

(µg m-3) 
MB  

(µg m-3) 
NMB n 

(a) Hourly        
1204 May 0.98 [0.94, 1.03] 0.04 [0.01, 0.06] 0.76 0.19 0.03 0.05 651 

 Jul 0.76 [0.64, 0.88] 0.04 [-0.01, 0.09] 0.70 0.10 -0.05 -0.14 68 
 Aug 0.86 [0.83, 0.88] 0.08 [0.05, 0.10] 0.92 0.16 -0.03 -0.04 318 

1303 April 1.18 [1.09, 1.27] 0.01 [-0.05, 0.07] 0.88 0.17 0.12 0.19 94 
 May 1.00 [0.96, 1.05] 0.04 [0.01, 0.07] 0.75 0.21 0.04 0.08 648 
 Jul 0.79 [0.63, 0.97] 0.06 [-0.01, 0.12] 0.58 0.11 -0.02 -0.05 68 
 Aug 0.92 [0.89, 0.95] 0.09 [0.06, 0.12] 0.91 0.16 0.03 0.04 318 

(b) 5-min        
1204 May 0.80 [0.78, 0.82] 0.14 [0.13, 0.15] 0.51 0.34 0.02 0.04 7642 

 Jul 0.18 [0.14, 0.23] 0.25 [0.23, 0.27] 0.08 0.38 -0.06 -0.15 791 
 Aug 0.59 [0.58, 0.61] 0.26 [0.25, 0.28] 0.58 0.46 -0.04 -0.06 3934 

1303 April 0.83 [0.78, 0.89] 0.22 [0.18, 0.26] 0.43 0.37 0.12 0.19 1105 
 May 0.81 [0.79, 0.83] 0.14 [0.13, 0.16] 0.51 0.34 0.04 0.07 7588 
 Jul 0.21 [0.16, 0.26] 0.27 [0.25, 0.30] 0.09 0.38 -0.03 -0.07 791 
 Aug 0.64 [0.62, 0.66] 0.29 [0.27, 0.31] 0.52 0.50 0.02 0.02 3934 

 
  



 

(a) 

(b) 

(c) 

(d) 

Figure 2: Scatter plots of unadjusted BC concentrations from AE51 BC Aethalometers 

adjusted BC concentrations measured by the AE22 reference Aethalometer (graphs on left 

hand side show hourly averaged data and graphs on right hand side show 5

data) for each individual deployment: (a) April; (b) May; (c) July; and (d) August.  Solid 

lines are ordinary least squares (OLS) regressions and dashed lines are the 1:1 line.
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: Scatter plots of unadjusted BC concentrations from AE51 BC Aethalometers 

adjusted BC concentrations measured by the AE22 reference Aethalometer (graphs on left 

hand side show hourly averaged data and graphs on right hand side show 5

for each individual deployment: (a) April; (b) May; (c) July; and (d) August.  Solid 

lines are ordinary least squares (OLS) regressions and dashed lines are the 1:1 line.
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: Scatter plots of unadjusted BC concentrations from AE51 BC Aethalometers vs. 

adjusted BC concentrations measured by the AE22 reference Aethalometer (graphs on left 

hand side show hourly averaged data and graphs on right hand side show 5-min average 

for each individual deployment: (a) April; (b) May; (c) July; and (d) August.  Solid 

lines are ordinary least squares (OLS) regressions and dashed lines are the 1:1 line. 
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3.2. Effect of filter loading corrections 

The correlation between the unadjusted AE51 and reference AE22 Aethalometer 

concentrations was higher for the hourly averaging compared to the 5-min averaging (Figure 

3a). 

The ONA-correction had very little impact on the regression lines, or regression 

statistics for either averaging resolution compared to the unadjusted concentrations (Figure 

3b and Table 3).  The ONA-algorithm is designed to remove noise in the AE51 

Aethalometer data, such as that caused by vibrations when walking.  In this work the 

Aethalometers were deployed statically, so the small impact of the ONA-algorithm is not 

unexpected.  A similar observation was noted by Cheng and Lin24 for a static AE51 

Aethalometer deployed at a roadside location with higher concentrations than in this present 

work. 

The K&N corrected AE51 Aethalometer data increases the regression slopes for both 

temporal resolutions, with higher correlation between the AE51 hourly data and the AE22 

Aethalometer (R2 = 0.80 vs. 0.42 for 1 h and 5-min averaging respectively) (Figure 3c).  

Both AE51 hourly-data and 5-min data overestimate the concentrations measured by the 

reference AE22 Aethalometer (NMB = 0.16 vs. 0.15 for hourly and 5-min average BC 1204 

concentrations) (Table 3).     

Similarly, the Virkkula et al. correction increased the regression slope between the AE51 

and AE22 Aethalometers (Figure 3d).  The accuracy of the AE51 monitors was similar for 

hourly averaging compared to 5-min averaging (NMB = 0.02 vs. -0.03 for BC1204 for 

hourly and 5-min averaging) (Table 3).  For the hourly-averaged data the corrected 

regression slopes are closer to unity than for the K&N correction; however for 5-min 

averaging the K&N correction slope is closer to unity.  There was no impact on the R2 values 

from unadjusted to Virkkula et al. corrected concentrations however the NMB values were 

larger after correction (NMB = −0.002 (unadjusted) vs. 0.02 (Virkkula et al.)) (Table 3). 

The K&N corrected hourly AE51 Aethalometer concentrations have the largest RMSE 

and NMB for both hourly and 5-min concentrations (NMB = 0.16 for BC1204), while the 

unadjusted and ONA-corrected data have the lowest values (NMB = 0.00 for BC1204) 

(Table 3).  The K&N equation overcorrects the AE51 Aethalometer concentrations for filter 

loading effects while the Virkkula et al. correction overcorrects the concentrations by a 

lesser amount (NMB = 0.02 for BC1204) but still shows lower correlation with the reference 

Aethalometer concentrations than the unadjusted or ONA-corrected data.   

  



 

(a) 

(b)

(c) 

(d)

Figure 3: Scatter plots of BC concentrations from AE51 BC Aethalometers 

concentrations measured by the AE22 reference Aethalometer (graphs on left hand side 

show hourly averaged data and graphs on right hand side show 5

deployment periods combined, for the following correction methods: (

AE51 data; (b) noise corrected using ONA; (c) 

corrected (using k value derived from all studies [hourly or 5 min measurements]).
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: Scatter plots of BC concentrations from AE51 BC Aethalometers 

concentrations measured by the AE22 reference Aethalometer (graphs on left hand side 

show hourly averaged data and graphs on right hand side show 5-min average data), for all 

deployment periods combined, for the following correction methods: (

AE51 data; (b) noise corrected using ONA; (c) K&N corrected; and (d) Virkkula et al. 

value derived from all studies [hourly or 5 min measurements]).
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: Scatter plots of BC concentrations from AE51 BC Aethalometers vs. adjusted BC 

concentrations measured by the AE22 reference Aethalometer (graphs on left hand side 

min average data), for all 

deployment periods combined, for the following correction methods: (a) no corrections to 

corrected; and (d) Virkkula et al. 

value derived from all studies [hourly or 5 min measurements]). 
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Table 3: OLS regression equations [95% confidence intervals] between the (a) hourly 

average and (b) 5-min average AE51 Aethalometer and reference AE22 Aethalometer BC 

concentrations for each filter loading correction method.  Descriptive statistics: coefficient of 

determination (R2), root mean square error (RMSE), mean bias (MB), normalised mean bias 

(NMB) and number of hourly observations (n). 

Monitor 
# 

Correction Slope [95 % C.I.] Intercept [95 % C.I.] 
(µg m-3) 

R
2
 RMSE 

(µg m-3) 
MB  

(µg m-

3) 

NMB n 

(a) Hourly        
1204 Unadjusted 0.91 [0.88, 0.93] 0.06 [0.04, 0.08] 0.83 0.18 0.00 0.00 1038 

 ONA 0.91 [0.89, 0.93] 0.06 [0.04, 0.08] 0.84 0.17 0.00 0.00 1038 
 K&N 1.12 [1.08, 1.15] 0.03 [0.00, 0.05] 0.80 0.26 0.10 0.16 1038 
 Virkkula et al. 0.89 [0.87, 0.92] 0.05 [0.04, 0.07] 0.83 0.18 0.01 0.02 1038 

1303 Unadjusted 0.97 [0.94, 0.99] 0.06 [0.04, 0.08] 0.83 0.19 0.04 0.07 1129 
 ONA 0.97 [0.94, 0.99] 0.06 [0.04, 0.08] 0.83 0.18 0.04 0.07 1129 
 K&N 1.24 [1.21, 1.28] 0.02 [0.00, 0.05] 0.81 0.32 0.17 0.28 1129 
 Virkkula et al. 0.77 [0.75, 0.79] 0.07 [0.05, 0.08] 0.83 0.23 0.10 0.16 1129 

(b) 5-min        
1204 Unadjusted 0.67 [0.66, 0.68] 0.20 [0.19, 0.21] 0.52 0.38 -0.00 -0.00 12367 

 ONA 0.66 [0.65, 0.67] 0.20 [0.20, 0.21] 0.56 0.36 -0.00 -0.00 12367 
 K&N 0.81 [0.79, 0.82] 0.21 [0.20, 0.22] 0.54 0.42 0.09 0.15 12367 
 Virkkula et al. 0.65 [0.64, 0.66] 0.20 [0.19, 0.21] 0.53 0.38 -0.02 -0.03 12367 

1303 Unadjusted 0.71 [0.70, 0.72] 0.21 [0.20, 0.22] 0.50 0.40 0.03 0.06 13417 
 ONA 0.71 [0.69, 0.72] 0.22 [0.21, 0.22] 0.53 0.38 0.04 0.06 13417 
 K&N 0.90 [0.88, 0.91] 0.23 [0.22, 0.24] 0.51 0.49 0.17 0.27 13417 
 Virkkula et al. 0.68 [0.66, 0.69] 0.21 [0.20, 0.22] 0.50 0.39 0.01 0.02 13417 

 

3.3. Effect of ATN values on AE51 corrections 

Different studies have recommended a range of ATN values (from 40 to 80) at which the 

filter in the portable AE51 Aethalometer should be changed.13,17,24  We investigated the 

difference between the AE51 and reference AE22 Aethalometer concentrations as a function 

of ATN (Figure 4) to establish the range of ATN values at which the AE51 Aethalometer 

can reproduce the AE22 Aethalometer reference BC concentrations and if there is a limit to 

the ATN range under which the correction investigated can be successfully applied. 

At low (< 30) ATN values the unadjusted, ONA-corrected and Virkkula et al. corrected 

BC concentrations residuals were all close to 0 (Figures 4a, 4b & 4d).  The K&N corrected 

BC concentrations in this ATN range showed an increase in residual concentrations with 

increasing ATN range (Figure 4c). 

The RMSE values between the AE51 and AE22 concentrations were similar (~0.18 

µg/m3) for ATN values up to 40 for the unadjusted, ONA-corrected and Virkkula et al. 

corrected BC concentrations (Figure 5, Table S1).  Above ATN values of 40 the RMSE 

increased for these three methods, with the increase more pronounced for BC1204 (RMSE > 

0.4 µg/m3).  The RMSE for the K&N corrected BC concentrations were similar to the other 



 

methods for ATN < 10, however above this ATN value the 

and was much greater than for the other methods (Figure 5, Table S1).

 

(a) 

(b) 

(c) 

(d) 

Figure 4:   Scatter plots of the difference between the hourly BC concentrations measured by 

the AE51 Aethalometers and by the AE22 reference Aethalometer 

by AE51 Aethalometers.  Plots are shown for: (a) unadjusted AE51 measurements; (b) 

ONA-corrected AE51 measurements; (c) K&N corrected AE51 measurements; and (d) 

Virkkula et al. corrected AE51 measurements; with all study data included.  The average 

ratio for each ATN integer value is shown for ease of visualisation.
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methods for ATN < 10, however above this ATN value the K&N corrected RMSE increased 

and was much greater than for the other methods (Figure 5, Table S1). 

:   Scatter plots of the difference between the hourly BC concentrations measured by 

the AE51 Aethalometers and by the AE22 reference Aethalometer vs. ATN values measured 

by AE51 Aethalometers.  Plots are shown for: (a) unadjusted AE51 measurements; (b) 

corrected AE51 measurements; (c) K&N corrected AE51 measurements; and (d) 

Virkkula et al. corrected AE51 measurements; with all study data included.  The average 

ratio for each ATN integer value is shown for ease of visualisation. 
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:   Scatter plots of the difference between the hourly BC concentrations measured by 

ATN values measured 

by AE51 Aethalometers.  Plots are shown for: (a) unadjusted AE51 measurements; (b) 

corrected AE51 measurements; (c) K&N corrected AE51 measurements; and (d) 

Virkkula et al. corrected AE51 measurements; with all study data included.  The average 



 

(a) 

(b) 

Figure 5: Root mean square error (RMSE) between hourly BC concentrations measured by 

the (a) BC1204 and (b) BC1303 AE51 Aethalometers and the AE22 reference Aethalometer.  

The RMSE values are shown for ATN values < 10; 10 

50.  The number of hourly values contributing to each group of RMSE values is given above 

each group. 

 

4. Discussion 

Portable AE51 Aethalometers have been increasingly used in mobile and personal 

monitoring.  However, there have been limited field evaluations of 

conditions representative of personal monitoring.  Our evaluation of the AE51 monitor at 5

min and hourly averaged concentrations showed the higher temporal resolution 

concentrations to have more scatter, and consequently lower 

evaluations.  A similar observation was observed for AE51 monitors evaluated at a site with 

a larger concentration range, with higher scatter present at concentrations <2 µg/m

temporal resolutions are required for mobile and personal monitoring in order to record 

rapidly changing pollution environments, and this sugg

may be subject to greater noise at these high temporal resolutions.

At lower concentrations (< ~1.5 µg/m

Aethalometers showed larger deviations from the reference Aethalometer th

concentrations.  The use of AE51 for personal monitoring may be subject to varying error 

4. Calibration of portable real

Root mean square error (RMSE) between hourly BC concentrations measured by 

the (a) BC1204 and (b) BC1303 AE51 Aethalometers and the AE22 reference Aethalometer.  

The RMSE values are shown for ATN values < 10; 10 – 20; 20 – 30; 30 

The number of hourly values contributing to each group of RMSE values is given above 

Portable AE51 Aethalometers have been increasingly used in mobile and personal 

monitoring.  However, there have been limited field evaluations of the AE51 monitors under 

conditions representative of personal monitoring.  Our evaluation of the AE51 monitor at 5

min and hourly averaged concentrations showed the higher temporal resolution 

concentrations to have more scatter, and consequently lower R
2 values, than the hourly 

evaluations.  A similar observation was observed for AE51 monitors evaluated at a site with 

a larger concentration range, with higher scatter present at concentrations <2 µg/m

temporal resolutions are required for mobile and personal monitoring in order to record 

rapidly changing pollution environments, and this suggests the AE51 portable Aethalometer 

may be subject to greater noise at these high temporal resolutions. 

At lower concentrations (< ~1.5 µg/m3) the concentrations measured by the AE51 

Aethalometers showed larger deviations from the reference Aethalometer th

concentrations.  The use of AE51 for personal monitoring may be subject to varying error 
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Root mean square error (RMSE) between hourly BC concentrations measured by 

the (a) BC1204 and (b) BC1303 AE51 Aethalometers and the AE22 reference Aethalometer.  

30; 30 – 40; 40 – 50; and > 

The number of hourly values contributing to each group of RMSE values is given above 

Portable AE51 Aethalometers have been increasingly used in mobile and personal 

the AE51 monitors under 

conditions representative of personal monitoring.  Our evaluation of the AE51 monitor at 5-

min and hourly averaged concentrations showed the higher temporal resolution 

values, than the hourly 

evaluations.  A similar observation was observed for AE51 monitors evaluated at a site with 

a larger concentration range, with higher scatter present at concentrations <2 µg/m3.24  High 

temporal resolutions are required for mobile and personal monitoring in order to record 

ests the AE51 portable Aethalometer 

) the concentrations measured by the AE51 

Aethalometers showed larger deviations from the reference Aethalometer than at higher 

concentrations.  The use of AE51 for personal monitoring may be subject to varying error 
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according to the pollution environment being monitored.  For example, greater errors may be 

observed at lower BC concentrations such as the 0.5 µg/m3 encountered by Williams and 

Knibbs15 during indoor personal monitoring.  Smaller errors may be seen in high-pollution 

scenarios such as the BC concentrations of 4-6 µg/m3 reported by Dons et al.12 during 

personal monitoring of commuting. 

The correlation between the AE51 and AE22 reference Aethalometer ranged from 0.58 

to 0.92 when hourly averaging was used.  Higher R2 values (> 0.75) between AE51 monitor 

and Thermo Multi-Angle Absorption Photometer (Carusso, MAAP) BC concentrations have 

been reported for 10-min average concentrations when the minimum concentration was 1.5 

µg/m3.28  The lower correlations observed in our study could be attributed to a difference in 

the reference method used or, as discussed above, greater noise in the AE51 monitor 

measurements at these low concentrations and high temporal resolutions.  A study evaluating 

the AE51 against a similar reference instrument to used in this work found the R2 between 

the instruments at an urban background site to be > 0.9.27 As previously discussed the lower 

concentrations of BC measured in this work by the reference analyser may be in part cause 

of the lower R2 values in this study, with lower values occurring when the range and 

absolute concentration of BC measured by the analyser was small.   

We compared the correction algorithms to account for filter shadowing effects in the 

Aethalometer under ambient pollution conditions.  The AE51 Aethalometer concentrations 

after correction for filter darkening overestimated the reference Aethalometer concentrations 

for K&N correction and both the K&N and Virkkula et al. correction had larger errors than 

the unadjusted BC concentrations.  The underestimation of BC using the Virkkula et al. 

correction has been reported previously in a chamber experiment comparing BC 

concentrations measured using a loaded and unloaded filter.18  Correction using the K&N 

formula has previously been shown to underestimate the filter loading effects when a clean 

filter was used, but overestimate the loading effects when pre-loaded filters were used, under 

controlled chamber-experiments.18  We suggest that at the lower concentrations in this study, 

or under static monitoring, the K&N correction should be avoided. The deviations between 

portable AE51and reference AE22 Aethalometer concentrations were minimal at ATN < 40 

for unadjusted and Virkkula et al. adjusted BC concentrations.  This suggests that, under the 

conditions of this work (static monitoring of low ambient concentrations using low flow 

rates), correction algorithms do not need to be applied at these low attenuation values.  This 

finding is in contrast to those by Good et al.18, who stated that corrections for filter 

shadowing effects should be applied over the range of ATN values tested (0 – 125). 
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Above ATN values of 40 the BC residuals and RMSE increased for the unadjusted and 

Virkkula et al. corrected BC concentrations.  Good et al.18 showed that an ATN value of 80 

should not be exceeded in order to maintain accurate BC measurements using the AE51 

Aethalometer, and also noted some divergence in the measurements for ATN values greater 

than 60.  Our work suggests that changing the filter at a value of 60 could still lead to 

underestimation by the AE51 Aethalometer at this higher attenuation value, and that the 

filters should be changed before ATN reaches 40 in order to ensure filter darkening effects 

do not adversely affect the AE51 Aethalometer accuracy. 

In summary, we compared field measurements of BC concentrations at an urban 

background site using 2 portable AE51 Aethalometers and 1 reference AE22 Aethalometer.  

After correction for filter loading corrected AE51 Aethalometer concentrations generally 

overestimated reference AE22 Aethalometer concentrations (hourly NMB = 0.00 and 0.10 

for unadjusted and adjusted BC1204 concentrations respectively).    Our observations appear 

to suggest that AE51 Aethalometer measurements may not require correction for filter 

loading to maintain consistency with reference AE22 concentrations when AE51 ATN 

values are less than 40. 

 

Acknowledgements 

Nicola Masey is funded through a UK Natural Environment Research Council (NERC) 

CASE PhD studentship (NE/K007319/1), with support from Ricardo Energy and 

Environment.  Eliani Ezani is funded by the Ministry of Higher Education Malaysia 

(KPT(BS)860126295394).  Jonathan Gillespie is funded through an Engineering and 

Physical Sciences Research Council Doctoral Training Grant (EPSRC DTG EP/L505080/1 

and EP/K503174/1) studentship, with support from the University of Strathclyde and 

Ricardo Energy and Environment.  Chun Lin is funded through NERC/Innovate UK grant 

NE/N007352/1.  We acknowledge access to the reference black carbon measurement data, 

which were obtained from uk-air.defra.gov.uk and are subject to Crown 2014 copyright, 

Defra, licenced under the Open Government Licence (OGL).  We thank Kings College 

London for providing access to the 5-min temporal resolution black carbon concentrations. 

 

Supplementary Information is available at Journal of Exposure Science and Environmental 

Epidemiology’s website. 

 

The authors declare no conflict of interest.  



4. Calibration of portable real-time monitors 

144 

 

References 

1.  World Health Organization. Air quality guidelines. Global update 2005. Particulate 

matter, ozone, nitrogen dioxide and sulfur dioxide [Internet]. Copenhagen, Denmark; 2006 

[cited 2017 Feb 27]. Available from: 

http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf. 

2.  World Health Organization. Review of evidence on health aspects of air pollution – 

REVIHAAP Project: Technical Report [Internet]. Copenhagen, Denmark; 2013 [cited 2017 

Feb 27]. Available from: 

http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-

report-final-version.pdf. 

3.  Grahame TJ, Klemm R, Schlesinger RB. Public health and components of 

particulate matter: The changing assessment of black carbon. J Air Waste Manag Assoc. 

2014;64(6):620–60.  

4.  Janssen N, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, et al. 

Black carbon as an additional indicator of the Adverse Health Effects of Airborne Particles 

Compared with PM10 and PM2. 5. Environ Health Perspect. 2011;119(12):1691–9.  

5.  Janssen N, Gerlofs-Nijland M, Lanki T, Salonen R, Cassee F, Hoek G, et al. Health 

effects of black carbon [Internet]. World Health Organisation; 2012 [cited 2017 Jan 19]. 

Available from: http://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf 

6.  Gillespie J, Masey N, Heal MR, Hamilton S, Beverland IJ. Estimation of spatial 

patterns of urban air pollution over a 4-week period from repeated 5-min measurements. 

Atmos Environ. 2017 Feb;150:295–302.  

7.  Montagne DR, Hoek G, Klompmaker JO, Wang M, Meliefste K, Brunekreef B. 

Land Use Regression Models for Ultrafine Particles and Black Carbon Based on Short-Term 

Monitoring Predict Past Spatial Variation. Environ Sci Technol. 2015 Jul 21;49(14):8712–

20.  

8.  Weichenthal S, Farrell W, Goldberg M, Joseph L, Hatzopoulou M. Characterizing 

the impact of traffic and the built environment on near-road ultrafine particle and black 

carbon concentrations. Environ Res. 2014 Jul;132:305–10.  

9.  Apte JS, Kirchstetter TW, Reich AH, Deshpande SJ, Kaushik G, Chel A, et al. 

Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, 

India. Atmos Environ. 2011 Aug;45:4470–80.  

10.  Hankey S, Marshall JD. On-bicycle exposure to particulate air pollution: Particle 

number, black carbon, PM2.5, and particle size. Atmos Environ. 2015 Dec;122:65–73.  



4. Calibration of portable real-time monitors 

145 

 

11.  Van den Bossche J, Peters J, Verwaeren J, Botteldooren D, Theunis J, De Baets B. 

Mobile monitoring for mapping spatial variation in urban air quality: Development and 

validation of a methodology based on an extensive dataset. Atmos Environ. 2015 

Mar;105:148–61.  

12.  Dons E, Int Panis L, Van Poppel M, Theunis J, Wets G. Personal exposure to Black 

Carbon in transport microenvironments. Atmos Environ. 2012 Aug;55:392–8.  

13.  Dons E, Temmerman P, Van Poppel M, Bellemans T, Wets G, Int Panis L. Street 

characteristics and traffic factors determining road users’ exposure to black carbon. Sci Total 

Environ. 2013 Mar;447:72–9.  

14.  Dons E, Van Poppel M, Kochan B, Wets G, Int Panis L. Implementation and 

validation of a modeling framework to assess personal exposure to black carbon. Environ 

Int. 2014 Jan;62:64–71.  

15.  Williams RD, Knibbs LD. Daily personal exposure to black carbon: A pilot study. 

Atmos Environ. 2016 May;132:296–9.  

16.  Kirchstetter TW, Novakov T. Controlled generation of black carbon particles from a 

diffusion flame and applications in evaluating black carbon measurement methods. Atmos 

Environ. 2007 Mar;41(9):1874–88.  

17.  Virkkula A, Mäkelä T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hämeri K, et al. A 

Simple Procedure for Correcting Loading Effects of Aethalometer Data. J Air Waste Manag 

Assoc. 2007 Oct 1;57(10):1214–22.  

18.  Good N, Mölter A, Peel JL, Volckens J. An accurate filter loading correction is 

essential for assessing personal exposure to black carbon using an Aethalometer. J Expo Sci 

Environ Epidemiol [Internet]. 2016 Dec 21 [cited 2017 Jan 18]; Available from: 

http://www.nature.com/jes/journal/vaop/ncurrent/abs/jes201671a.html 

19.  Cai J, Yan B, Kinney PL, Perzanowski MS, Jung K-H, Li T, et al. Optimization 

Approaches to Ameliorate Humidity and Vibration Related Issues Using the MicroAeth 

Black Carbon Monitor for Personal Exposure Measurement. Aerosol Sci Technol. 2013 Nov 

1;47(11):1196–204.  

20.  Hagler GSW, Yelverton TLB, Vedantham R, Hansen ADA, Turner JR. Post-

processing Method to Reduce Noise while Preserving High Time Resolution in 

Aethalometer Real-time Black Carbon Data. Aerosol Air Qual Res. 2011 Oct;11:539–46.  

21.  Butterfield D, Beccaceci S, Quincey P, Sweeney B, Lilley A, Bradshaw C, et al. 

2014 Annual Report for the UK Black Carbon Network [Internet]. 2015 Jul. Report No.: 

NPL Report AS 97. Available from: https://uk-

air.defra.gov.uk/library/reports?report_id=844 



4. Calibration of portable real-time monitors 

146 

 

22.  Environmental Research Group, King’s College London, Font A. High Temporal 

Resolution BC and ATN data for Glasgow Townhead AURN - Email. 2016.  

23.  Butterfield D, Beccaceci S, Quincey P, Sweeney B, Lilley A, Bradshaw C, et al. 

2015 Annual Report for the UK Black Carbon Network [Internet]. National Physical 

Laboratory; 2016 Jun. Available from: https://uk-

air.defra.gov.uk/library/reports?report_id=920 

24.  Cheng Y-H. Real-Time Performance of the microAeth® AE51 and the Effects of 

Aerosol Loading on Its Measurement Results at a Traffic Site. Aerosol Air Qual Res 

[Internet]. 2013 [cited 2014 Feb 25]; Available from: 

http://www.aaqr.org/Doi.php?id=23_AAQR-12-12-OA-0371&v=13&i=6&m=12&y=2013 

25.  Cheng Y-H, Liao C-W, Liu Z-S, Tsai C-J, Hsi H-C. A size-segregation method for 

monitoring the diurnal characteristics of atmospheric black carbon size distribution at urban 

traffic sites. Atmos Environ. 2014 Jun;90:78–86.  

26.  Morales Betancourt R, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, 

Gallo-Murcia SM, et al. Exposure to fine particulate, black carbon, and particle number 

concentration in transportation microenvironments. Atmos Environ. 2017 May;157:135–45.  

27.  Delgado-Saborit JM. Use of real-time sensors to characterise human exposures to 

combustion related pollutants. J Environ Monit. 2012;14(7):1824.  

28.  Viana M, Rivas I, Reche C, Fonseca AS, Pérez N, Querol X, et al. Field comparison 

of portable and stationary instruments for outdoor urban air exposure assessments. Atmos 

Environ. 2015 Dec;123, Part A:220–8.  

  



4. Calibration of portable real-time monitors 

147 

 

 

Supplementary Information 

Consistency of urban background black carbon concentration 

measurements by portable AE51 and reference AE22 

Aethalometers: Effect of corrections for filter loading 

 

Nicola Masey
1
, Eliani Ezani

1,2
, Jonathan Gillespie

1
, Chun Lin

3
,  

Scott Hamilton
4
, Mathew R. Heal

3
, Iain J. Beverland

1
* 

 

1Department of Civil and Environmental Engineering, University of Strathclyde, James Weir 

Building, 75 Montrose Street, Glasgow, G1 1XJ, UK 
2Department of Environmental and Occupational Health, Faculty of Medicine and Health 

Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, MALAYSIA 
3School of Chemistry, Joseph Black Building, University of Edinburgh,  

David Brewster Road, Edinburgh, EH9 3FJ, UK 
4Ricardo Energy and Environment, 18 Blythswood Square,  

Glasgow, G2 4BG, UK 

 

*CORRESPONDING AUTHOR:  Dr Iain J. Beverland,  

Department of Civil and Environmental Engineering, University of Strathclyde, 505F James 

Weir Building, 75 Montrose Street,  

Glasgow, G1 1XJ, UK;  

Email: iain.beverland@strath.ac.uk; Tel: +44 141 548 3202 

 

 

  



 

The 5-min data provided by King’s College London for the Glasgow Townhead AE22 

reference Aethalometer was the raw BC concentrations prior to correction using the Virkkula 

et al. (2007) correction as specified in the Annual Reports

Network.1  Figure S1 compares the hourly averages of thes

this correction, against the hourly averages downloaded from the UK

 

Figure S1: Scatter plots between hourly

concentrations vs. hourly

database website.  Fig (a) plots hourly averages computed using unadjusted 5

(b) plots hourly averages computed using 5

correction.  Solid lines are ordinary least squares (OLS) regressions and dashed lines are 1:1 

lines. 

 

4. Calibration of portable real

min data provided by King’s College London for the Glasgow Townhead AE22 

reference Aethalometer was the raw BC concentrations prior to correction using the Virkkula 

et al. (2007) correction as specified in the Annual Reports for the UK Black Carbon 

Figure S1 compares the hourly averages of these 5-min data, with and without 

this correction, against the hourly averages downloaded from the UK-air website.

: Scatter plots between hourly-average concentrations derived from the 5

hourly-average BC concentration downloaded from the UK air quality 

database website.  Fig (a) plots hourly averages computed using unadjusted 5

(b) plots hourly averages computed using 5-min data after correction using Virkkula et al. 

ction.  Solid lines are ordinary least squares (OLS) regressions and dashed lines are 1:1 
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min data provided by King’s College London for the Glasgow Townhead AE22 

reference Aethalometer was the raw BC concentrations prior to correction using the Virkkula 

for the UK Black Carbon 

min data, with and without 

air website. 

 

 

average concentrations derived from the 5-min 

average BC concentration downloaded from the UK air quality 

database website.  Fig (a) plots hourly averages computed using unadjusted 5-min data.  Fig 

min data after correction using Virkkula et al. 

ction.  Solid lines are ordinary least squares (OLS) regressions and dashed lines are 1:1 
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Table S1: Descriptive statistics between hourly average BC concentrations measured by 

AE51 ((a) BC1204 and (b) BC1303) and AE22 Aethalometers split by ATN values 

measured by the AE51 instruments. 

  ATN 

  < 10 10 - 20 20 - 30 30 - 40 40 – 50 > 50 
(a) BC1204       

n  494 272 150 85 43 8 

RMSE Unadjusted 0.16 0.16 0.15 0.17 0.38 0.57 
(µg/m3) ONA 0.15 0.15 0.15 0.17 0.40 0.52 

 K&N 0.15 0.19 0.25 0.40 0.73 0.77 
 Virkkula 0.16 0.18 0.13 0.21 0.41 0.51 

MB Unadjusted 0.00 0.00 0.01 0.03 0.05 -0.25 
(µg/m3) ONA 0.00 0.00 0.01 0.03 0.05 -0.30 

 K&N 0.01 0.08 0.16 0.33 0.39 0.58 
 Virkkula 0.00 0.00 0.01 0.07 0.08 -0.16 

NMB Unadjusted -0.01 0.00 0.01 0.04 0.07 -0.14 
 ONA -0.01 0.00 0.01 0.04 0.07 -0.14 
 K&N 0.02 0.14 0.25 0.41 0.56 0.31 
 Virkkula 0.00 0.00 0.02 0.09 0.12 -0.09 

(b) BC1303       
n  343 322 261 134 45 38 

RMSE Unadjusted 0.19 0.19 0.15 0.19 0.23 0.26 
(µg/m3) ONA 0.18 0.18 0.15 0.19 0.26 0.31 

 K&N 0.19 0.23 0.29 0.42 0.70 0.72 
 Virkkula 0.20 0.21 0.20 0.28 0.40 0.33 

MB Unadjusted 0.03 0.0.4 0.05 0.06 0.11 -0.02 
(µg/m3) ONA 0.03 0.04 0.05 0.06 0.11 -0.04 

 K&N 0.05 0.12 0.20 0.31 0.61 0.43 
 Virkkula 0.04 0.08 0.12 0.17 0.32 0.18 

NMB Unadjusted 0.05 0.06 0.08 0.09 0.11 -0.03 
 ONA 0.05 0.06 0.08 0.09 0.12 -0.05 
 K&N 0.10 0.21 0.34 0.46 0.64 0.55 
 Virkkula 0.07 0.13 0.20 0.26 0.34 0.23 
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5. Spatial variations in urban concentrations of NO2, O3, BC and 

PN: interpretation of repeated co-located measurements of 

concentrations measured over 6-minute and 1-week averaging 

periods 

 

The ability of the portable sensors evaluated in Chapter 3 to estimate spatial variations in 

pollution concentrations over an urban area in Glasgow were investigated.  Additionally, the 

ability of the peripatetic measurements to estimate longer duration concentrations, derived 

from study-average and longer-term static measurements, was investigated.  This was a 

follow-on study to our published paper (Appendix B), and we developed upon the published 

work by investigating a larger number of portable monitors (measuring both gaseous and 

particulate concentrations) and in a different study area. 

The post-processing of the black carbon data in this work used the Kirschetter and Novac 

process, which (in the previous chapter) I showed to suffer from larger errors than some of 

the other correction algorithms available.  However, in order to allow comparison between 

this study and our previously published work (to evaluate transferability of the previous 

findings to different locations and at a different time) the same method as presented in the 

published paper was used.  The research evaluating the different post-processing algorithms 

presented in Chapter 4 was carried out after the publication of our paper therefore could not 

be used in the experimental design.   

In addition, this research used standard Palmes tubes in the measurement of weekly NO2 

concentrations (with no modification of design or uptake rate to account for the wind-speed 

effects demonstrated in Chapter 3).  The research presented in Chapter 2 was carried out 

after the design of the research and collection of data presented in this chapter.  We 

anticipate that any wind-speed effects experienced by these tubes will be minimal as it was 

shown in Chapter 3 that the wind-speed effects were much lesser for tubes that were exposed 

for 1 week (as is the case in this work). 

N. Masey was responsible for experimental design, data collection, data analysis and 

preparation of the manuscript.  J. Gillespie provided input on the design of the experiment 

and data analysis, and helped with field measurements.  E. Ezani assisted with field 

measurements.  S. Hamilton, M. Heal and I. Beverland provided advice about data analysis 

and editorial comments on the manuscript. 

This manuscript has been formatted with the intention of submission to Atmospheric 

Environment.  
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Research highlights: 

• Similar spatial pattern in repeated 1-week NO2 and 6-min NO2, BC & PN 

concentrations 

• Relatively high correlation between 6-min BC, PN and NO2 concentrations 

• Highest correlations between measurements during morning ‘rush hour’ periods 

• Overall-average BC and NO2 concentrations highly correlated (R2 ≥ 0.70) 

 

Abstract 

We measured black carbon (BC), particle number (PN), nitrogen dioxide (NO2) and 

ozone (O3) concentrations at 10 sites over a 0.5 x 0.5 km area in Glasgow, UK, using hand-

held monitors.  Measurements were made for 6-minute periods at three times of day (AM, 

Noon and PM) during one day at the start and end of each week over 6 consecutive weeks.  

We used passive diffusion tubes (PDTs) to measure NO2 concentrations for the 6 x 1-week 

periods between monitor measurements at the same sites.  Similar spatial patterns were noted 

in the average of 6-min BC, PN and NO2 measurements at the start and end of each week 

and 1-week PDT NO2 measurements.  Average 6-min BC, PN and NO2 concentrations, over 
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all weeks at each site, were highly correlated, especially during morning measurements (R2 = 

0.94 [BC vs. PN], 0.77 [BC vs. NO2], 0.71 [PN vs. NO2]).  Over the 6-week period average 

6-min BC and average 1-week NO2 were highly correlated (R2 ≥ 0.70 for all times of day) 

suggesting that it may be possible to use repeated short-term BC measurements to estimate 

longer-term NO2 concentrations. 

 

Keywords: air pollution; hand-held monitors; passive samplers; peripatetic monitoring 

 

1. Introduction 

Detrimental health effects are associated with exposure to air pollution (World Health 

Organization, 2013), thus pollutants are monitored and their concentrations assessed against 

legislative limits.  Historically, monitoring has taken place at government funded automatic 

monitoring stations, which provide real-time but spatially limited pollutant concentrations.  

These automatic networks can be supplemented using passive monitoring systems, which 

can be deployed at higher spatial density due to their low cost and simple siting requirements 

(Gillespie et al., 2016, 2017), but whose measurements are at considerably lower temporal 

resolution than the automatic monitors.  Population exposures to pollution have been 

estimated using concentrations measured at the nearest monitoring station or through 

pollution modelling; however these can only provide estimates of an individual’s exposure at 

limited spatial and temporal resolutions. 

Portable real-time monitors are continually being developed to help address the need for 

high spatially and temporally resolved monitoring networks and population exposure 

estimates.  These have been used to measure mobile pollution concentrations, via 

deployments on platforms of bicycles or vehicles (Hankey and Marshall, 2015; Van den 

Bossche et al., 2015), or statically when deployed for short periods at selected locations 

within a study area (Deville Cavellin et al., 2016; Norris and Larson, 1999).  The data from 

these monitors have been used to model concentrations over an extended study area 

(Montagne et al., 2015) or in personal exposure assessments (Delgado-Saborit, 2012; Dons 

et al., 2013).  To date, only limited study of the relationships between hand-held monitors 

measuring different pollutants or the representativeness of these relatively-short duration 

monitor measurements of longer-term concentrations has been reported (Beckerman et al., 

2008; Durant et al., 2014; Gillespie et al., 2017; Klompmaker et al., 2015; Riley et al., 2016). 

In an earlier study we investigated the relationship between short-duration peripatetic 

measurements of black carbon and particle number, and longer-term average nitrogen 

dioxide concentrations in central Glasgow, UK (Gillespie et al., 2017).  Here we extend our 
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earlier work through study of a different geographical area (to identify the transferability of 

our previous findings), inclusion of short-term gaseous (in addition to particle) pollutant 

measurements, and investigation if the time of day when short-duration measurements are 

made influences observed bivariate relationships between different pollutants and averaging 

periods. 

 

2. Methods 

2.1. Study Design 

The study was carried out in the city centre of Glasgow, UK (55.87° N, 4.26° W.  The 

study measurements were made around the University of Strathclyde campus, which 

encompasses Cathedral Street and George Street, which have annual average daily flows of 

approximately 20,000 and 9,500 vehicles day-1 respectively (Figure 1).   

 

 

Figure 1:  Location of sites in central Glasgow where 6-minute monitor and 1-week PDT 

measurements were made.  Site 10 is located at the Townhead monitoring station, which is 

part of the UK Automatic Urban and Rural (AURN) Network 

(http://www.scottishairquality.co.uk/latest/index?site_id=GLKP).  Sites were visited in 

numerical order in repeated sets of measurements over approximately 1.5 hour periods.  Sites 

2, 3, 8 and 9 were located within 2 m of major roads. 

 

Measurements were made during six consecutive 1-week study periods between 27th 

October 2015 and 8th December 2015.  Weekly-exposed passive diffusion tubes (PDTs) for 

NO2 were located at 10 sites anticipated to have different pollution environments (Figure 1).  

Sites 2, 3, 8 and 9 were located within 2 m of the major roads of Cathedral and George 
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Streets, while Site 5 was located within 2 m of a side road with lower traffic flows.  Site 4 

was located ~35 m from Cathedral Street with an area of grass separating the site from the 

road, while Site 1 was set ~15 m from Cathedral Street separated by a hedge and a wall.  

Sites 6 and 7 were located in park areas not in direct proximity to traffic sources.  Site 10 

was located within 10 m of the Glasgow Townhead monitoring station that is part of the UK 

Automatic Urban and Rural Network and which contains real-time analysers reporting 

hourly-average concentrations of NO2, O3 and BC (DEFRA, 2017).  All aspects of the 

operation and data ratification of these analysers are subject to published network-wide 

QA/QC procedures (DEFRA, 2017).  The AURN station is located in an urban background 

location with no roads in close proximity. 

On the Tuesday of each week, peripatetic measurements of PN, BC, NO2 and O3 were 

made at each PDT site during morning (AM), lunchtime (Noon) and afternoon (PM) periods 

by walking around all sites with portable monitors.  Tuesday was selected as representative 

of ‘typical’ traffic flows during the week.  The AM and PM measurements took place during 

peak times with anticipated higher traffic flows (0800 – 0930 and 1600 – 1730), while Noon 

measurements were off-peak (1300 – 1430).  A static, 6-minute ‘spot’ measurement of NO2, 

O3, BC and PN was made at each site on each weekly visit, giving 7 repeat peripatetic 

measurements at each site over the full study. The portable monitors were: for NO2, an 

Aeroqual S500 with electrochemical sensor (ENW2, range 0 – 1 ppm); for O3, an Aeroqual 

S500 with gas-sensitive semi-conductor sensor (OZU2, range 0 – 0.15 ppm), for BC, an 

Aethlabs microAeth AE51 portable Aethalometer; and for PN, a TSI Condensation Particle 

Counter (CPC 3007).  The clocks of the monitors were synchronised before each 

measurement occasion.  Sites were visited in numerical order on each measurement 

occasion, and the times at each site were accurately recorded. 

In the rest of this paper, the measurements made on each of the 7 spot measurement days 

will be referred to using ‘w/c X’ which corresponds to the week commencing X, where X is 

the week number of the study.  The concentrations measured during consecutive days of 

peripatetic measurements were averaged to provide a single concentration for each site and 

week, referred to as ‘Week X’, where X corresponds to the number of the start of the week 

(e.g. Week 1 refers to the average concentrations from w/c 1 and w/c 2). 

 

2.2. Preparation, deployment and analysis of passive samplers 

Static measurements of NO2 were measured at each site using Palmes-style PDTs.  The 

tubes were prepared in-house, using the dipping method to coat the stainless steel collection 

meshes with 1:1 TEA:acetone solution (Heal, 2008), for each week of the study.  Duplicate 
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PDTs were deployed on a lamppost (~2 m height) at each site, using foam to provide a gap 

between the post and the PDTs, and secured using cable ties.  This setup was selected to 

minimise the likelihood of theft of the PDTs as the sites in this work are located on busy 

streets.  The PDTs were exposed for 1 week, to give six weekly measurements.  Between 

preparation and deployment, and retrieval and analysis, the PDTs were stored in sealed bags 

in a fridge.  Two laboratory blank PDTs were prepared and stored in the fridge unexposed 

for the duration of each study, then analysed with the field PDTs.   

Laboratory analysis of the PDTs was carried out in-house using the Griess-Saltzman 

colorimetric method following guidelines provided by DEFRA (2008).  Analysis was carried 

out for each week of PDT exposure as close to the date of retrieval as possible.  The average 

NO2 concentration during the PDT exposure, C0 (ng/cm3) was determined using the 

equation: 

�p = �"��� 

where Q is the nitrite mass measured in each PDT (ng), L and A are the length and area of 

the PDT (7.1 cm and 0.916 cm2 respectively), D is the diffusion coefficient of NO2 in air 

(0.151 cm2/s), and t is the exposure time (s). 

The limit of detection was below the concentrations of field samplers for all study weeks 

(study-average limit of detection (concentration of blank + 3*standard deviation of blanks) = 

6.9 µg/m3). 

 

2.3. Measurements using portable monitors 

The BC monitor was carried inside a backpack and sampled air through 1 m of 

conductive tubing attached to the shoulder strap of the backpack.  The inlet was shielded 

using a conducting asbestos sampling inlet (SKC Ltd, UK) to prevent water ingress.  Data 

was recorded every second and air was sampled at a flow rate of 150 mL/min.  The filters in 

the BC monitor were changed each week.  The raw BC data was post-processed using the 

Optimised Noise-Reduction Algorithm (ONA) on the Aethlabs website 

(https://www.aethlabs.com/dashboard).  This algorithm, based on the equations published by 

Hagler et al. (2011), corrects the BC data for spurious peaks introduced by mechanical shock 

and vibrations by averaging the concentrations over a user-defined range of change in filter 

attenuation value (we used ∆ATN = 0.01).  The BC data was further processed to account for 

filter darkening effects, which leads to an underestimation of BC concentrations at high filter 

attenuation values, using the method described by Kirchstetter and Novakov (2007): 
� = 
�p'0.88�Q + 0.120>? 
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where �Q = exp '− n65?pp 0,  BC0 is the concentration measured by the instrument after ONA 

smoothing, and ATN is the filter attenuation value. 

The PN monitor, which recorded data every second, was carried by hand as it requires to 

be kept horizontal to prevent solvent running into the detector.  The isopropyl alcohol 

cartridge, used to grow the particles via condensation before they are counted, was 

replenished after each use.  The PN data was downloaded from the monitor and was not 

post-processed prior to use. 

The two Aeroqual monitors (NO2 and O3) were located in external mesh pockets on either 

side of the backpack, and thus sampled air at approximately chest height.  Data was recorded 

at the highest temporal resolution of an instantaneous value every 1 minute (i.e. not an 

average of concentrations measured throughout the minute).  Previous studies have identified 

that the Aeroqual monitors require calibration, particularly the NO2 monitor which has cross-

interference from O3 (Lin et al., 2015; Masey et al., Submitted).  We deployed the Aeroqual 

monitors at repeated intermittent intervals at Townhead between November 2015 and May 

2016 to establish calibration equations to correct the mobile Aeroqual monitor 

concentrations (Table 1).  The use of a global calibration equation derived from repeated 

calibration deployments has previously been shown to yield better agreement of adjusted 

concentrations with ambient measurements (Masey et al., Submitted).  Therefore, the 

Aeroqual O3 monitor concentrations were adjusted using a global ordinary least-squares 

calibration equation between Aeroqual O3 vs. Reference O3 concentrations derived from the 

amalgamated calibration deployments.  The Aeroqual NO2 monitor measurements were 

corrected for their cross-sensitivity to O3 concentrations using a global multi-linear 

regression calibration equation between the Aeroqual NO2 vs. Reference NO2 + Aeroqual O3 

(Masey et al., Submitted).  It should be noted that the pairing of the instruments in this 

research was different from that presented in Chapter 4 of this thesis as a result of one of the 

O3 instruments being broken.  As a result, the calibration equations presented in Table 1 

below are different from those presented in the earlier chapter as a result in the change of 

Aeroqual NO2-O3 pairings. 
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Table 1: Dates of calibration deployments of Aeroqual instruments at the Townhead AURN 

site.  The concentrations collected during deployments were amalgamated into a single data 

set and a global calibration equation derived for O3_aq and NO2_aq (following the procedure 

detailed in (Masey et al., Submitted)). 

Calibration study Date 
November 11/11/2015 – 15/11/2015 
December 09/12/2015 – 13/12/2015 
February 09/02/2016 – 15/02/2016 

April 31/03/2016 – 04/04/2016 
May1 04/05/2016 – 08/05/2016 
May2 18/05/2016 – 22/05/2016 

Global calibration equations 

NO2_aq = 0.33*NO2_ref + 0.68*O3_aq – 12.34 
O3_aq = 0.53*O3_ref + 12.53 

 

None of the portable monitors used in this work are waterproof, meaning additional 

precautions had to be taken during adverse weather.  On those days, the backpack housing 

the BC and Aeroqual monitors was worn on the front and was shielded from the rain using 

an umbrella.  The PN monitor was also held in the shelter of the umbrella. 

 

2.4. Corrections for temporal variations in background concentrations 

To allow comparison between measurements made each week, the concentrations 

measured at each site were corrected for the background concentrations measured by the 

portable monitors at site 10 (Townhead) using a ‘difference’ method (Gillespie et al., 2017; 

Klompmaker et al., 2015).  Briefly, the average concentration for each pollutant at site 10 

was calculated and the difference between the study-average concentration and the 

concentration measured at site 10 each week was added to the concentrations measured at 

the other sites. 

During w/c 5 the NO2 and O3 monitors failed at site 10 so no data was available for 

background correction using the method above.  The concentration measured by the analyser 

at Townhead was used to estimate the concentration that would have been measured during 

the spot measurement if the instruments were operational, and these estimates of site 10 

peripatetic concentrations were used (see Section 3.1 below). 
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3. Results and Discussion 

3.1. Agreement between peripatetic measurements and automatic analyser 

concentrations 

The weekly NO2 concentrations measured by the PDT at the Townhead AURN station 

(site 10) were highly correlated with the exposure-averaged concentrations from the 

reference NO2 analyser at this site (R2 = 0.77, n = 6), although there was overestimation by 

the PDTs (Figure 2a).  The higher correlation than reported previously at this site may be 

attributed to longer exposures and higher NO2 concentrations (Masey et al., 2017). 

The concentrations measured during site 10 peripatetic measurements were compared to 

the analyser concentrations measured during the 2-hour peripatetic measurement period.  

However note that no measure of reference PN was available at the Townhead AURN site.  

Linear relationships between the peripatetic and analyser concentrations were identified, 

with R2 values of 0.72, 0.41 and 0.83 for BC, NO2 and O3 respectively (Figure 2b to 2d, n = 

21).  The correlation between the microAeth portable Aethalometer and reference BC 

concentrations was of similar magnitude to previously published co-location studies, whose 

R
2 values ranged from 0.75 to 0.90 (Cheng, 2013; Delgado-Saborit, 2012; Viana et al., 

2015), and to co-location of this BC monitor at Townhead (R2 = 0.80)  (Masey et al., In 

preparation).  The correlation between measurements from the Aeroqual monitors and 

reference analysers was slightly lower than published co-locations, which have R2 values > 

0.60 for NO2 and R2 > 0.90 for O3 (Delgado-Saborit, 2012; Lin et al., 2015; Masey et al., 

Submitted).  The large (~ 22 µg/m3) intercept in the O3 data suggests that the calibration 

applied overestimates the lower concentrations, which could be attributed to the long (6-

month) temporal span of the data used to derive the O3 calibration.  It has previously been 

suggested that using a global calibration is better than a single dataset due to the wider range 

of pollution concentrations anticipated to be covered and the greater number of points 

(Masey et al., Submitted). 

The high correlations between the 2-hour average analyser and the 6-minute (adjusted) 

peripatetic concentrations give confidence that the portable real-time instruments provide an 

estimate of the true values. 
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(a) (b) 

 
(c) 

 
(d) 

Figure 2:  Relationship between measurements made at site 10 (Townhead) during this study 

and near-simultaneous measurements from AURN reference pollution monitors.  (a) 1-week 

NO2 measured using PDTs vs. 1-week chemiluminescence analyser (n = 6).  (b) 6-min BC 

vs. reference AE22 Aethalometer (n = 21).  (c) 6-min NO2 vs. chemiluminescence analyser 

(n = 21 (AM, Noon & PM for 7 measurement periods).  (d) 6-min O3 vs. reference analyser 

(n = 21).  AURN reference monitor measurements were selected from 2-hour ‘window’ 

during which the 6-min measurements were made.  The solid lines are ordinary least-squares 

regression lines, and the dashed lines are 1:1 lines. 

 

3.2. Temporal variations in pollution concentrations 

3.2.1.  Weekly variations 

Similar spatial variations in pollution concentrations were observed each week, with high 

NO2, BC and PN concentrations and low O3 concentrations at roadside sites (Supplementary 

Information Figure S1).  The stability of NO2 and O3 concentrations over the duration of our 

study were less pronounced than those published by Lin et al. (2016), who demonstrated 

relatively stable concentrations over consecutive study weeks, which could be attributed to 

the longer time-averaging of the measurements in the latter study.  The similarity in BC and 

PN spatial trends between weeks was similar to our previously published work (Gillespie et 

al., 2017).  During w/c 6 the lower concentration sites had negative BC and PN 

y = 0.72x + 20.30
R² = 0.77

0

10

20

30

40

50

0 10 20 30 40 50

PD
T

 N
O

2
(µ

g/
m

3
)

Townhead NO2 (µg/m3)

y = 1.11x + 0.55
R² = 0.72

0

1

2

3

4

5

6

0 1 2 3 4 5 6

6-
m

in
 B

C
 (

µ
g/

m
3 )

Townhead BC (µg/m3)

y = 1.00x - 10.83
R² = 0.41

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

6-
m

in
 N

O
2

(µ
g/

m
3 )

Townhead NO2 (µg/m3)

y = 0.79x + 22.17
R² = 0.83

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
6-

m
in

 O
3

(µ
g/

m
3 )

Townhead O3 (µg/m3)



5. Spatial variations in urban concentrations 

160 

concentrations, which was a result of elevated particle concentrations during the background 

measurements at site 10. 

The correlation between weekly and study-average peripatetic measurements was used to 

estimate the ability of the peripatetic measurements to predict longer-term concentration 

trends (Table S1 and Table 2).  The average correlation between the weekly and study-

average peripatetic BC measurements was R2 ≥ 0.60 for all times of day (weekly range: 0.01 

to 0.96) (Table 2).  The correlation between the peripatetic and study-average PN 

concentrations was slightly poorer than for the BC measurements (R2 = 0.09 – 0.91), with the 

peripatetic PN measurements less able to represent the study-average concentrations during 

the off-peak measurements (average R2 = 0.35).  The average correlation between peripatetic 

and study-average O3 concentrations decreased as the day went on and consequently the 

opposite was true for NO2 as these pollutants are anti-correlated.  For all hand-held 

instruments, the concentrations that were the average of the three periods throughout the day 

showed best agreement with the study-averaged concentrations (Table 2), which is also 

highlighted by the similarities in daily-average concentrations (Figure S1).   This suggests 

that short, static measurements using these portable monitors can be used to give an 

indication of the pollution environment in an area and generally provide representative 

information about the spatial trends; however the concentrations recorded by the monitors 

should only be used as an indication as there are large variations between the concentrations 

each week.  The hand-held instruments could be used to help identify monitoring sites for 

longer–term measurements, which could provide better indications of the ‘true’ pollution 

concentrations at the sites. 

The weekly PDT NO2 measurements were highly correlated with the study-average 

concentrations (R2 > 0.7 for all weeks, average R2 = 0.88) (Table S1), indicating the ability of 

the weekly PDT NO2 measurements to predict longer-duration concentrations. 
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Table 2: Average coefficient of determination between concentrations measured each 

individual week (w/c x) and the overall study-average concentrations (n = 7 weeks for BC, 

PN, O3 & NO2 and n = 6 for PDT NO2). 

Pollutant AM R2
  

(min – max) 
Noon R2

  

(min – max) 
PM R2

  

(min - max) 
Ave R2

  

(min – max) 
BC 0.60 (0.24 – 0.80) 0.65 (0.37 – 0.96) 0.61 (0.01 - 0.92) 0.79 (0.56 – 0.94) 
PN 0.58 (0.11 – 0.85) 0.35 (0.09 – 0.68) 0.52 (0.17 - 0.73) 0.62 (0.30 – 0.91) 
O3 0.66 (0.38 – 0.94) 0.53 (0.09 – 0.80) 0.46 (0.32 - 0.66) 0.74 (0.50 – 0.92) 
NO2 0.42 (0.05 – 0.77) 0.92 (0.81 – 0.96) 0.93 (0.86 - 0.98) 0.91 (0.86 – 0.98) 
PDT NO2 - - - 0.88 (0.72 – 0.97) 

 

3.2.2.  Daily variations 

Regardless of the time of day of the measurements, similar spatial trends were observed 

between the study-average pollutant concentrations measured at each site (Figure 3).  The 

spatial trends of BC, PN and NO2 were broadly similar to those measured by the PDTs, with 

higher concentrations present at roadside sites (e.g. site 2) and lower concentrations at sites 

further from roads (e.g. site 6).  The measurements made during lunchtime periods generally 

had lower concentrations at each site for NO2, BC and PN, which we anticipate is due to 

fewer vehicles on the road (Department for Transport statistics, 2015; Wu et al., 2015).  The 

opposite was the case for O3 which generally had higher concentrations during the lunchtime 

periods when less nitric oxide, emitted in traffic exhausts, was present to react photo 

chemically with O3.  Measured BC concentrations were similar between morning and 

afternoon periods, with the exception of sites 1-3, located in close proximity to a busy road, 

which had elevated concentrations during the afternoon.  In comparison, the PN 

concentrations were largest during the morning measurements at sites 1-3 (Figure 3), which 

could suggest an additional source of PN compared to the BC measurements in the morning, 

such as a greater number of buses on the road, localised industrial sources or a larger number 

of diesel cars.  The NO2 measurements were similar between the noon and afternoon 

measurements, with elevated concentrations at site 1 in comparison to those NO2 

concentrations measured during the morning measurements and the BC and PN 

concentrations.  The similarities in the spatial trends for measurements made at different 

times of day suggest that spatial information about pollution concentrations can be 

accurately gathered independent of the measurement time. 
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Figure 3:  Study-average concentrations of pollutants measured at each site during the 7 

peripatetic BC, PN, NO2 and O3 measurements and 6 weekly passive sampler NO2 

concentrations.  Concentrations are shown for AM, Noon and PM measurements separately. 
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The ratio of within-site to between-site variance was calculated for each of AM, Noon, 

PM and daily-average measurements and compared to previously published values (Table 3) 

(Gillespie et al., 2017; Klompmaker et al., 2015).  Our ratios of BC (all times) and PN (AM, 

PM and Average) concentrations were lower than previously published results, including 

those from our previous study which used the same instruments (Gillespie et al., 2017).  The 

Noon measurements for PN showed much larger ratios which could, in part, be attributed to 

the very low concentrations of PN recorded during week 6 which, as previously discussed, 

was due to elevated concentrations at the background site (Figure S1).  Those measurements 

made during peak times showed lower ratios for the particle metrics than the Noon studies, 

however the opposite was true for the gaseous pollutants.  For all measurements the ratios 

for the daily-average concentrations had the lowest values, suggesting that in order to get the 

best estimate of long-term pollution concentrations from peripatetic measurements, 

measurements should be made at a variety of times throughout the day and a daily-average 

calculated.  For a large number of sites this may not be practical due to time restraints, in 

which case particle measurements made during rush-hour are more representative of longer-

term concentrations, while the opposite is true for gaseous pollutants.  Our previous study 

also observed lower than anticipated variance ratios, based on the short-duration of the spot 

measurements, which we previously suggested could be due to the small size of the study 

area and short measurement period (Gillespie et al., 2017).  However, the measurements in 

the current study were made at a different location to our previous work, and over a slightly 

longer duration, suggesting the temporal-stability of the pollutants at these short-time scales 

may be greater than those measurements made over longer durations. 

 

Table 3: Ratio of within-site to between-site variation (after adjustment for temporal 

variation) from this study compared with other published studies (based on table published 

by Klompmaker et al. (2015) and Gillespie et al. (2016)).  Na = not available. 

Study (Within:Between) BC PN O3 NO2 PDT NO2 
This study – AM 0.13 0.33 1.25 0.69 - 

This study – Noon 0.20 1.88 0.35 0.04 - 
This study – PM 0.15 0.22 0.91 0.06 - 

This study – av 0.07 0.19 0.17 0.03 0.04 

Gillespie et al. (2016) 0.21 0.77 - - 0.05 
Klompmaker et al. (2015) 
 

MUSiC 2.44 2.17 - - - 
ESCAPE 0.09 - - - - 
RUPIOH - 0.31 - - - 
VE3SPA 0.69 Na - - - 
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3.3. Correlations between mobile measurements of air pollutants 

Greater correlations were observed between BC and PN during the afternoon and ‘all’ 

measurements in comparison to the morning and noon measurements (range R2 = 0.50, 0.46, 

0.73 and 0.84 for AM, Noon, PM and All) (Figure 4).  The correlation between NO2 and O3 

was similar between the AM, Noon and PM measurements (range R2 = 0.40 – 0.41), with the 

highest correlation when the average of these measurement times was used (R2 = 0.62).   The 

correlation between the particle metrics and NO2 was significant, with the exception of the 

PN noon measurements, with the highest R
2 values observed during the morning 

measurements (R2 = 0.50 and R
2 = 0.28 for BC-NO2 and PN-NO2 respectively).  The R

2 

value between BC and O3 have been reported to be 0.29 (Riley et al., 2016), which was 

similar to our AM measurements (R2 = 0.29), however our correlations were much lower 

during Noon (R2 = 0.15) and non-significant during PM (R2 = 0.04). 

Less scatter around the regression line, and consequently stronger correlations, were 

observed when study-average pollutant concentrations for each site were used (Figure 5).  

The correlation between BC and PN was consistently high (R2 > 0.65) for all times of day 

and suggested that BC concentrations could provide an estimate of the particle number at a 

given location.  Significant correlations of a similar magnitude (R2 = 0.49 – 0.77) between 

BC and PN have been published by Wu et al. (2015), however some studies report lower 

correlation coefficients between these pollutants as a result of differences in the sources of 

the pollutants such as wood-burning in rural areas (R2 =  0.08 – 0.86 reported by Gramsch et 

al.(2014)) and changes in fleet compositions (proportion of diesel / petrol cars, HGV and 

buses for example) and time of day measurements were made in urban areas (Reche et al., 

2011). The BC concentrations also provided an estimate of NO2 concentrations, which was 

more pronounced during the morning measurements (R2 = 0.77).  An outlier in the lunchtime 

and afternoon measurements degraded the correlations - excluding this outlier increased the 

R
2 values > 0.90 (data not shown).  The R

2 values from our AM measurements were of 

similar magnitude to those reported by Beckerman et al. (2008) for 10 minute pooled 

measurements at peak time for BC-PN and BC-O3 but lower for BC-NO2, PN-O3, and PN-

NO2 which could be attributed to the difference in study size, site number and the difference 

in the data collection (Beckerman used less portable instruments mounted in a vehicle).  The 

BC-O3 correlation exceeded that reported by Riley et al. (2016) during the morning and noon 

measurements.  The correlation between NO2 and O3 was greater than 0.60 for each time of 

day, with the highest R2 (0.83) when a daily average concentration was calculated from the 
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AM, Noon and PM measurements, however this large correlation was anticipated as O3 is 

used to correct for the NO2 monitor cross-sensitivity to O3. 

The above observations suggest that it may be possible to estimate the concentrations of 

PN and, to a lesser extent, NO2 from BC measurements.  However, the robustness of this 

estimation may be dependent on the time of day the measurements, with generally more 

accurate estimates during rush hour periods.  The more repeat measurements made, the 

greater the ability to explain a higher proportion of the variance in a different pollutants 

concentration.  The results presented in this research may be transferred to other urban 

locations anticipated to experience meteorological conditions, fleet compositions and 

emissions from domestic and industrial sources similar to Glasgow.  Changes in fleet 

compositions or emission sources will likely change the concentrations of pollutants emitted 

and the proportions of these pollutants to one another in the ambient air will thus change, 

leading to changes in the correlations observed (Reche et al., 2011).  Changes in 

meteorological conditions could change the dispersion of these pollutants from their sources 

thus changing their ratios in the ambient air.  The results presented in this research are 

unlikely to be transferable to rural locations where the predominant sources of these 

emissions are not traffic-related.  However for all cases above the methodology presented 

would be suitable to obtain estimates of these pollutant relationships under different 

conditions, which can help identify the key drivers influencing the relationships of these 

pollutants. 
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Concentrations during all AM periods Concentrations during all Noon periods 

Concentrations during all PM periods Daily average concentrations during all days

Figure 4: Correlation between average of 6-min measurements (BC, PN, O3 and NO2) 

made at the start and end of each week and 1-week passive sampler (PDT) concentrations for 

all measurement periods and sites (n = 60), subdivided by the time of day during which the 

6-min measurements were made.  The coefficient of determination (R2) and p value for the 

relationships are shown.  Measurements have been adjusted by ‘difference’ method using 

temporal variations observed at site 10 (outlined in detail in text). 
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Average concentrations over all AM periods 
 

Average concentrations over all Noon periods 

Average concentrations over all PM periods Average concentrations over all periods 

Figure 5:  Correlation between 6-min and 1-week PDT measurements at each site (n = 

10) averaged across all measurement periods, categorised by different times of day. The 

coefficients of determination (R2) and p values for the relationships are also shown.  The 

variables in the graph are described in the caption of Figure 4. 

 

3.4. Peripatetic vs. weekly passive sampler concentrations 

When all measurement periods are considered, the particle metrics had the strongest 

correlation with the longer-term PDT NO2 concentrations (Figure 4).  These correlations 

were greatest for measurements made during the peak times.  The correlations between BC 

and PDT NO2 concentrations in this work were greater than those reported by Riley et al. 

(2016) for winter measurements (R2 = 0.38).  We identified similar correlations between the 

BC, PN and PDT NO2 concentrations for the weekly studies to our previous study: this study 

AM R2 (BC, PN) = 0.48, 0.31; previous study R2 (BC, PN) = 0.50, 0.24 (measurements also 
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made during morning rush-hour) (Gillespie et al., 2017).    The slope and intercept between 

PDT NO2 and BC in our previous study was larger than in the present study (slope = 9.0 vs. 

7.1, intercept = 26.4 vs. 25.6 (previous vs. present)), while for PN the slope was larger while 

the intercept was smaller in our previous study (slope = 1.9 vs. 1.3, intercept = 15.0 vs. 19.8 

(previous vs. present)) (Table S2).  The broadly similar regression values and correlations 

between our two studies suggest that there is a relationship between these short-duration 

particle measurements made using the portable monitors and longer-term concentrations of 

NO2 measured using passive diffusion samplers. 

The correlations between the study-average peripatetic and PDT NO2 concentrations 

were greater than when study weeks were considered independently, highlighting the 

importance of repeat measurements (Figure 5).  The greater the number of repeat 

measurements peripatetic measurements combined the larger the correlation between the 

peripatetic and PDT measurements (R2 = 0.71 vs. 0.59 vs. 0.52 when seven, four and two 

repeat BC measurements were considered – Figure S2).  The correlation between BC and 

PDT NO2 was similar between the AM, Noon and PM measurements (R2 range 0.60 – 0.74), 

while for PN the correlation was more variable (R2 range 0.57 – 0.84).  These correlations 

were greater than those reported in our previous work (R2 = 0.75 (BC-PDT NO2) and R2 = 

0.33 (PN-PDT NO2) for non-background adjusted concentrations (Gillespie et al., 2017).  

This suggests that the number of repeat peripatetic measurements was more important for 

deriving representative estimates of longer duration concentrations than the time of day 

during which the measurements were made.  The correlation between these particle metrics 

and NO2 measured using passive samplers were within the range of values reported from the 

ESCAPE and SAPALDIA studies, which co-located NO2 and PM2.5 measurements for 14 

days (R2 ranging from 0.21 to 0.79) (Durant et al., 2014; Eeftens et al., 2015), and, for the 

SAPALDIA study only, R2 range 0.47 – 0.82 for NO2 and PN (Eeftens et al., 2015).  This 

suggests that longer-term concentrations of NO2 can be estimated using short-duration (6-

minute) particle measurements, with BC providing more accurate estimates than PN 

concentrations. 

The O3 and PDT NO2 measurements were anti-correlated, with the highest correlations 

occurring during the Noon studies when O3 concentrations are higher (R2 = 0.14 - 0.21) 

(Figure 5).  This correlation, however, was poorer than the results of Riley et al. (2016), 

which could be attributed to fewer sites and the different sampling methods used between the 

two studies.  The correlation between peripatetic and PDT NO2 concentrations was improved 

when the study-average concentrations are used compared to the all study data, however the 

correlations were not significant (Figure 5).  There was an elevated spot NO2 concentration 
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during the noon and PM studies at site 1 (Figure 3) which was inconsistent with the spatial 

trends of the BC, PN and PDT NO2 concentrations.  The Aeroqual monitors were left 

running in a laboratory between the AM, Noon and PM measurements and we suggest the 

elevated concentrations could be a result of rapid changes in exposure conditions when the 

Aeroqual monitors were moved from indoor to outdoor environment.  Removing this outlier 

at site 1 increased the R2 values to greater than 0.65 (data not shown).  A limitation of this 

type of short-duration, peripatetic measurement is that a single outlier, such as in this 

example, can have a large influence on the results.  We suggest that the Aeroqual monitors 

require time to equilibrate when moving between indoor and outdoor environments in order 

to prevent the occurrence of these non-representative measurements. 

The correlation between the short peripatetic measurements and the longer-term NO2 

concentrations suggest that short-duration monitoring of BC and PN could be used as an 

indicative measure of longer-term NO2 pollution concentrations in an area.  However, 

peripatetic NO2 and O3 concentrations were not significantly correlated with PDT NO2 

concentrations and could not be used to estimate these longer-term concentrations.  The 

short-duration monitoring tested in this work highlights the ability of these portable monitors 

to estimate spatial trends in pollution concentrations and these could be used to identify 

candidate sites for further monitoring. 

 

4. Conclusions 

Portable, real-time monitors measuring BC, PN, NO2 and O3, were used to make short 

duration (6-minute) peripatetic measurements at 10 sites around Glasgow city centre.  We 

additionally made longer duration (1-week) measurements of NO2 at the sites using passive 

diffusion tubes (PDTs).  Measurements were made during morning peak time (AM), mid-

day (Noon) and evening peak time (PM) to assess if time of day of the measurement has an 

impact on the relationships.   

The peripatetic measurements made next to an urban background automatic monitoring 

station showed linear relationships with reference analyser concentrations with correlations 

of similar magnitude to previously published co-location studies.  After accounting for 

changes in background concentrations, the spatial trends measured each week were similar, 

with roadside sites having elevated BC, PN and NO2 concentrations in comparison to sites 

located further from traffic sources.  The spatial trends measured by the portable BC, PN and 

NO2 monitors were broadly consistent to those concentrations measured by the week-

exposed NO2 PDTs, showing the ability of peripatetic measurements to provide estimates of 

spatial trends over a geographical area. 
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The correlations between study-average peripatetic concentrations were highest during 

the AM measurements, with R2 values of 0.94 (BC-PN), 0.49 (BC-O3), 0.77 (BC-NO2), 0.43 

(PN-O3), and 0.71 (PN-NO2).  This suggests that estimates of PN and NO2 concentrations 

can be derived from BC measurements, with the most accurate estimates being measured in 

during the morning peak time.   

The correlation between study-average peripatetic and passive longer-duration NO2 

concentrations poor (R2 range 0.13 to 0.53), which was suggested to be due to an elevated 

NO2 concentration at site 1 during the peripatetic measurements, highlighting the limitation 

of this short-duration measurements which can be influenced by atypical pollution 

occurrences during measurements.  The correlation between weekly PDT NO2 and 

peripatetic O3 concentrations was not significant.  The study-average peripatetic BC and PN 

measurements were correlated with weekly-average NO2 concentrations from PDTs, 

regardless of measurement time (R2 = 0.70 – 0.74 for BC, and R
2 = 0.57 – 0.84 for PN), 

suggesting that particle metrics can be used as an indicator of longer term NO2 

concentrations.  Using many repeat measurements during peripatetic monitoring is more 

important than the time of day during which the measurements were made in order to obtain 

the best characterisation of the pollution trends at a site and minimising the impact of any 

atypical concentration measurements. 
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Figure S1:  6-min concentrations measurements measured during each week categorised by 

time of day (a) AM, (b) Noon (c) PM (d) average of all three periods in a given day.  

Concentrations are shown after adjustment for temporal variation using the ‘difference’ 

method (explained within main text). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure S2:  Scatter plots showing concentrations measured by 1-week PDT NO2 

measurements and 6-minute average concentrations of (a) BC, (b) PN, (c) O3 and (d) NO2 

when seven (n=7), four (n=4) and two (n=2) weeks were used in the averaging process.  Data 

is shown for the morning measurements, however results were observed for the other times 

of day. 
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6. Influence of Weather Research Forecasting model 

parameterization on predictions from an air pollution dispersion 

model 

 

The use of models to estimate population exposure to air pollution has been widely used 

in epidemiology studies.  The inclusion of meteorology in these models allows higher 

temporal resolution and more accurate estimates to be made.  Meteorological measurements 

can be obtained from the nearest weather station; however these can often be located far 

from the study area in question.  The Weather Research Forecasting (WRF) model can be 

used to estimate meteorology in a study area that lacks a nearby weather station in order to 

allow these models to be run.  We investigate if the WRF set up used impacts the outcome of 

a dispersion model. 

N. Masey designed the experiment, ran the models, carried out data analysis and 

produced the manuscript.  S. Hamilton assisted with experimental design, provided support 

for model running and data analysis; and both S. Hamilton and I. Beverland provided 

editorial comments on the manuscript. 

This manuscript has been formatted with the intention to submit to Atmospheric 

Environment.  
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Influence of WRF model parameterization on predictions from an 

air pollution dispersion model 

Nicola Masey
1
, Iain J. Beverland

1
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2 

1Department of Civil and Environmental Engineering, University of Strathclyde, James Weir 

Building, 75 Montrose Street, Glasgow, G1 1XJ, UK 
2Ricardo Energy and Environment, 18 Blythswood Square, Glasgow, G2 4BG, UK 

 

Highlights: 

• WRF over predicted temperature and under predicted wind speed observations 

• Fine-scale (< 1.5 km) horizontal WRF resolution did not improve model evaluation 

statistics 

• No detrimental effect on dispersion model accuracy using fewer vertical levels 

• WRF suitable AERMOD input to model dispersion from 10 m stacks 

• Addition of urban canopy model had limited effect on modelled concentrations 

 

Glossary: 

WRF (Weather Research Forecasting), UCM (Urban Canopy Model), MMIF (Mesoscale 

Model Interface Programme) 

 

Abstract 

The Weather Research Forecasting (WRF) model has been used to estimate 

meteorological information for air pollution models in the absence of observations.  We 

evaluated the effects of changing the configuration of a WRF model on air pollution 

concentrations predicted in a hypothetical dispersion study in Glasgow, UK; including the 

effects of horizontal grid resolution, the number of vertical levels and inclusion of an Urban 

Canopy Model (UCM).  The WRF predicted temperature, wind speed and wind direction 

measurements were compared to observations at two meteorological stations in Glasgow to 

establish the accuracy of the WRF model.  Predictions from an AERMOD pollution 

dispersion model using WRF predicted meteorological variables were compared against the 

same model run with observed meteorological variables.  Reduction of the horizontal grid 

from 3 x 3 km to 1.3 x 1.3 km had only small effects on the agreement between modelled 

and observed meteorological variables (Temperature mean bias -1.22 °C (3 km), -1.40 °C 

(1.3 km)).  Reducing the number of vertical levels from 45 to 20 had minimal effect on 

modelled wind speed and temperature; however deviations in wind direction were observed 
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for fewer vertical levels.  Despite these less accurate wind direction estimates, dispersion 

models using fewer vertical levels estimated similar monthly-average concentrations to the 

model using 45 levels suggesting that, for pollution modelling, the number of levels can be 

reduced, minimising run times and file sizes (e.g. approximately 30 % saving in time).  

Adding a UCM to the WRF model reduced the accuracy of temperature (-1.22 (no UCM) vs. 

-1.55 (UCM) °C), improved the wind speed estimates (1.08 (no UCM) vs. 0.63 (UCM) m/s) 

but had little effect on the AERMOD dispersion model (MB = 0.01 µg/m3 for 10 and 50 m 

stacks for WRF with and without UCM).  The concentrations estimates from the AERMOD 

dispersion model using WRF as the input meteorological data was correlated with 

concentrations estimated by AERMOD using observation meteorological input data (Index 

of Agreement = 0.90) for 10 m stack height.  However, concentrations estimated for 50 m 

and 100 m stack heights using WRF input to AERMOD were approximately 1.5 times 

greater than equivalent predictions using observed meteorological data. 

 

Keywords: WRF, AERMOD, Air pollution, sensitivity analysis, dispersion model. 

 

1. Introduction 

Air quality dispersion models have been used to estimate public exposure to air pollution 

to help identify the health effects of air pollution (Batterman et al., 2014; de Hoogh et al., 

2014).  Detailed surface and vertical meteorological data is important to enable accurate 

model estimates of the dispersion of pollutants (Tiwari et al., 2013).  However, 

meteorological data is often only available at a small number of observation stations which 

can be located a distance from the area to be modelled and often lack vertical measurements.  

Recent studies have used weather models to estimate meteorological conditions over study 

areas rather than relying on nearby weather stations (Appel et al., 2010; Baker et al., 2013; 

Borge et al., 2008).  Weather models provide advantages of finer spatial resolution, upper 

level weather estimates, and capability to predict short-term forecasts. 

In previous studies the Weather Research Forecasting model (WRF) has provided 

accurate predictions of surface wind speed/direction (Tartakovsky et al., 2015) and 

temperatures (Carbonell et al., 2013).  However Carbonell et al. (2013) noted that WRF 

overestimated wind speeds and wind direction estimates deviated from observations at 

several meteorology stations.  An Urban Canopy Model (UCM) can be added to the WRF 

model to improve simulation of convective and turbulent processes associated with urban 

land use, however the parameters assigned to the UCM have to be derived from available 

land use data (Lee et al., 2011). 
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Relatively few studies have investigated the effect of WRF model set up on the 

predictions of pollution models.  Changing the Planetary Boundary Layer (PBL) scheme 

used in the WRF model influenced the dispersion and concentrations of a pollution plume 

estimated using the FLEXPART dispersion model (Madala et al., 2015).  A tracer study 

evaluating the WRF model combined with a chemistry pollution model (WRF-CHEM) 

optimised the WRF set up to increase the accuracy of temperature, wind speed, and pollution 

estimates (Saide et al., 2011). 

We investigated the effect of initial WRF model set up on estimates from the AERMOD 

dispersion model, including horizontal and vertical resolution, and inclusion of a UCM.  

Firstly we examined the agreement between WRF predictions and observed data at two 

meteorological stations in Glasgow, UK.  We then examined the effect of WRF set up on 

AERMOD pollution estimates, to establish if pollution modelling has different WRF 

requirements and acceptance criteria to weather modelling. 

 

2. Methods 

2.1. WRF model set up and data 

WRF-Environmental Modelling System (EMS) (v 3.4.1.14.16) was used to run the WRF 

model.  This uses code from WRF model (Skamarock et al., 2008) in combination with 

scripts to acquire boundary conditions to make modelling more user-friendly while retaining 

the same modelling accuracy as the WRF model (Qiu et al., 2015).  The settings used for the 

WRF model are listed in Table 1.  Three domains were used in the work - the largest over 

the UK (27 km grid), the second over Scotland (9 km grid) and a third over Greater Glasgow 

(Figure 1).  The model setup of domain three was changed in this work to investigate the 

effect of horizontal and vertical resolutions, and inclusion of a UCM.  The ratio of the grid 

size of domain two to domain three was changed from 3 to 5 to 7 to vary the horizontal 

resolution in domain three (leading to horizontal resolutions of 3 km, 1.8 km and 1.3 km).  

The number of vertical levels tested was 45, 30 and 20 (the height of these was automatically 

assigned by the model).  The UCM model requires additional user information, such as 

average building heights for different land use classes, and the user specified values are 

given in Supplementary Information Table S1.  Some default values were used (due to better 

values being unknown) while other values were identified using Geographical Information 

Systems and CORINE land cover data (available from https://eip.ceh.ac.uk/). 

 

 

 



 6. Influence of WRF parameterization 

183 

 

 

Figure 1:  Location of WRF domain three over Glasgow (resolution varied from 3 x 3 km to 

1.8 x 1.8 km to 1.3 x 1.3 km).  The locations of Bishopton (latitude 55.90°, longitude -4.53°) 

and Glasgow Airport (latitude 55.87°, longitude -4.43°) meteorological stations in relation to 

the city of Glasgow are also shown. 

 

Table 1: Details of setup of WRF models. 

 Experiment  

Parameter Hor3 Hor5 Hor7 Vert45 Vert30 Vert20 UCM References 

Boundary Data Climate Forecast System Reanalysis and Reforecast 
Saha et al. 

(2010) 
PBL Mellor-Yamada-Janjic Janjic (1994) 

Microphysics 
scheme 

Lin et al. 
Lin et al. 
(1983) 

Cumulus 
scheme 

Kain Fritsh (domains 1 and 2 only) Kain (2004) 

Long wave 
radiation 

Rapid Radiative Transfer Model 
Mlawer et al. 

(1997) 
Short wave 
radiation 

Dudhia scheme Dudhia (1988) 

Surface Physics Noah Land Surface Model 
Chen and 

Dudhia (2001) 

Land Use Data United States Geographical Survey 
Grossman-
Clarke et al. 

(2005) 
Horizontal 

resolution (km) 
3x3 1.8x1.8 1.3x1.3 3x3 3x3 3x3 3x3  

Vertical 
Resolution 

(levels) 
45 45 45 45 30 20 45  

UCM No Yes  

 

Hourly WRF model outputs were extracted at Glasgow Airport (Latitude 55.872°, 

Longitude -4.433°) and Bishopton (Latitude 55.900°, Longitude -4.533°) meteorological 

Greater 

Glasgow
Glasgow 

Airport

Bishopton
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stations using Integrated Data Viewer (IDV) software (Unidata and UCAR, 2015).  The 

WRF predicted temperature, wind speed and wind direction were compared to the 

observation data (downloaded from http://mesonet.agron.iastate.edu/sites/locate.php for 

Glasgow Airport and from http://www.ncdc.noaa.gov/ for Bishopton). 

The model was run for June 2015 as a wide range of meteorological conditions were 

observed at the sites in this month (temperature range: 3.0 – 25.5 °C, wind speed: 0.3 – 13.4 

m/s).  The model was run for 8 days before reinitialisation, as shorter WRF model runs have 

been shown previously to perform better than a single longer run (Mohan and Sati, 2016).  

The first 24-hour period of each model overlapped the previous model to allow a day for 

model to spin up before using the modelled data. 

 

2.2. Dispersion model setup 

The dispersion model used in this work was AERMOD, and its’ associated 

meteorological pre-processor AERMET (USEPA, 2015).  This model uses meteorological 

observations to estimate dispersion curves and predict concentrations at receptors.  

AERMOD was run for flat terrain with no nearby buildings to influence downwash to 

simplify the model.  A hypothetical stack was located at the Glasgow Airport meteorological 

station with the following parameters: emission rate 1 g/s; stack exit temperature 150 

degrees; exit velocity 15 m/s; and diameter 1 m.  The stack height was varied from 10 m to 

50 m to 100 m to determine if the height of the stack influences the choice of WRF model set 

up required. 

Receptors were located every 50 m up to a distance of 2 km from the stack, giving a total 

of 6561 receptor locations, to compare the models at a localised scale.  Concentrations of a 

passive tracer were reported hourly and then a monthly-average pollutant concentration was 

calculated for each receptor.  The passive tracer can be thought to represent chemically inert 

pollutants such as carbon monoxide or particulate matter. The concentrations predicted when 

WRF generated meteorology (for the different set ups discussed above), referred to as WRF-

AERMOD, was used was compared to those predicted when meteorological observations 

were used, referred to as Observed-AERMOD.  The meteorological data used for Observed-

AERMOD was from Glasgow Airport for surface observations, and upper air data was 

obtained from the radiosonde station at Albemarle (data available from 

http://esrl.noaa.gov/raobs/).  In order to get the WRF data in an AERMET readable format 

for WRF-AERMOD, the MMIF (Mesoscale Model Interface) programme was used.  MMIF 

can also be used to transform the WRF data into data directly readable by AERMOD, 
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however this is not advised by the EPA for air quality modelling (U.S. Environmental 

Protection Agency, 2015).     

   

2.3. Model evaluation 

The metrics used to assess model performance against the observation data were Mean 

Bias (MB), Root Mean Square Error (RMSE) and Index of Agreement (IoA): 

MB =  ?u ∑ ∑ H,wB − �wBNxBy?zwy?  

.{V| =  }1= ~ ~H,wB − �wBN�x
By?

z
wy? �? �8

 

��� = 1 −  � = ∗ .{V|�∑ ∑ �,wB − {l|+|�wB − {l�xBy?zwy? � 

 

Where: �wB is individual observed quantity at site i and time j, n is the number of 

observations (i.e. the number of sites multiplied by the number of time periods); ,wB is the 

individual predicted quantity at site i and time j; and Mo is the mean observation which is 

calculated from all sites with valid data within region and for given time period:  

{l =  1= ~ ~ �wB
x

By?
z

wy?  

 

Model statistics were calculated using the R package ‘openair’ (Carslaw and Ropkins, 2012). 

 

3. Results and discussion 

3.1. Agreement between WRF predictions and meteorological observations  

The temperatures predicted by the WRF model generally under predicted temperature and 

over predicted wind speeds at the weather stations (Figures 2 & 3 (Glasgow Airport), and 

Supplementary Information Figures S2 & 3 (Bishopton)).  At low wind speeds (~0.5 m/s) 

this effect is less pronounced and the over estimation increased with greater wind speeds 

(Figure 3).  These general trends in WRF accuracy for temperature and wind speed have 

been commonly reported in the literature  (Borge et al., 2008; Mohan and Sati, 2016; Ritter 

et al., 2013).  The WRF estimated wind direction is different from the observed data, 

especially at the airport site (Figures 3 & S4).  The WRF modelled wind roses for Bishopton 

and the Airport sites are similar to each other, whereas the observed wind roses are quite 

different, despite the reasonably close proximity of the two sites (approximately 7 km from 
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each other).  Quartile-Quartile (Q-Q) plots comparing the observations at the two sites show 

they have similar measurements for temperature and wind speed yet large deviations in their 

measured wind directions (Supplementary Information Figure S1).  This suggests that there 

may be some shielding of the site at the airport, leading to wind directions predominately 

from the North West and very different wind directions to those measured at Bishopton.  The 

WRF models meet the IoA acceptance criteria proposed by Emery and Tai (2001) for all 

three meteorological variables tested, regardless of the setup (Table 2).  This is not the case 

for the MB and RMSE value, which often do not meet the criteria.  The use of IoA alone to 

assess model accuracy is not appropriate. 
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3.1.1. Effect of Horizontal Resolution on WRF meteorological estimates 

Increasing the horizontal resolution resulted in an increase in run time (approximately 

twofold and threefold increase when increasing the resolution of the finest grid from 3 km to 

1.8 km and 3 km to 1.3 km respectively) and the size of the files produced by the WRF model 

(Table 3).  The most resolved horizontal grid produced temperature estimates that were 

furthest from the observed values at Glasgow Airport; however the IoA values were 

uninfluenced (Figure 3, Table 2).  At Bishopton, however, the MB and RMSE values were 

reduced when more resolved horizontal grids were used, however no discernible difference is 

observed in the Q-Q plots (Supplementary Information Figure S3 and Table 2).  The land use 

data may be inaccurate at the finer scales resulting in lower model accuracy at higher 

resolutions which may be more pronounced for the Airport site, located in mixed urban-rural 

location, in comparison to Bishopton, located in a predominantly rural location (De Meij and 

Vinuesa, 2014; Zhang et al., 2011).  Regardless of the site and horizontal resolution used, the 

temperature MB values do not meet the acceptance criteria of Emery and Tai (2001). 

The 3 km and 1.3 km grids performed similarly for wind speed, while the 1.8 km had the 

lowest error values (Figures 3 & S3 and Table 2).  No change in IoA values was observed 

with changing the horizontal resolution (Table 2).  The RMSE acceptance criterion was met 

at the airport site however neither site met the MB criteria. 

The Q-Q plots showed little change in the airport wind direction when the resolution was 

increased from 3 km to 1.8 km, however using a horizontal grid of 1.3 km showed the largest 

deviations between the modelled and observed wind directions (Figures 3 and S3).  As a 

result, the error values improve from 3 km to 1.8 km, and are poorest for 1.3 km (Table 2).  

The noticeably poorer accuracy for wind directions for the most highly resolved grid has 

been reported previously in the literature by Wu et al. (2008). 

Changing the horizontal resolution from coarse grids to intermediate grids (e.g. 36 km to 

12 km) has been shown to improve model accuracy for temperature, wind speed and wind 

direction, however further increasing the grid resolution to e.g. 4 km generally has much less 

of an impact (Tartakovsky et al., 2015; URS Corporation, 2008; Wu et al., 2008).  Higher 

horizontal grid resolutions are required if weather models are to be used for e.g. complex 

terrain or urban forecasting (Baklanov et al., 2002).  Saide et al. (2011) found no influence of 

increasing the resolution beyond 4 km while Gibbs et al. (2011) found poorer model 

performance with increased resolution from 4 k to 1 km.   

Our results suggest that there may be a small improvement in the predictive power of the 

WRF model when the horizontal resolution is increased from 3 km to 1.8 km, however 

further increasing the resolution to 1.3 km had little or a negative effect on model accuracy.  
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This suggests that, at these detailed scales, the horizontal resolution has little effect on model 

accuracy and supports published findings that the associated increases in model run times 

and cost with higher resolution are not necessary (Kain et al., 2008; Schwartz et al., 2009). 

 

Table 3:  Approximate size and model run times per week (note time dependent on other 

processes running and on computer specifications) for WRF models. 

 Hor3 Hor5 Hor7 Vert30 Vert20 UCM 

Approximate run time 
(per week) 

3 
hours 

7  
hours 

10  
hours 

2  
hours 

1  
hours 

5  
hours 

File size final model (per 
week) 

6.9 
Gb 

7.2  
Gb 

7.4  
Gb 

6.4  
Gb 

6.0  
Gb 

8.0  
Gb 

 

3.1.2. Effect of Vertical Resolution on WRF meteorological estimates 

Changing the number of vertical levels had little impact on the Q-Q plots however 

reducing the number of vertical levels lead to an increase in MB and RMSE and a reduction 

in IoA at the airport (Figure 3 and Table 2).  Fewer vertical levels may not be able to 

accurately reproduce the conditions in the boundary layer resulting in poorer model 

accuracy.  However, at Bishopton the reduction in vertical levels to 20 improved the bias and 

IoA values (Table 2).  The fewer vertical levels used in this instance may average out the 

effect of interactions with land use data meaning if the land use is inaccurate fewer vertical 

levels could perform better. 

Using fewer vertical levels lead to a reduction in MB, but an increase in RMSE, values at 

the airport (Table 2, Figure 3).  At Bishopton the opposite was true, where fewer vertical 

levels resulted in increased bias values (Table 2).  The RMSE values at the airport meet the 

Emery and Tai acceptance criteria, but for the Bishopton site the bias criteria are not met. 

The greatest similarity between the measured and modelled wind roses observed when 45 

vertical levels were used (Figures 3 & S3).  There were deviations between the WRF 

predicted and observation wind rose plots when the number of vertical levels was reduced 

(Figures 4 & S4).  The RMSE values for both sites increased and IoA decreased when fewer 

vertical levels were used (Table 2).  The MB acceptance criterion is only met for wind 

direction estimates at Bishopton using 45 vertical levels. 
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(a) 

 

  

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 
Figure 4: Wind rose plots for the observation at the meteorological stations and the 

predictions from the different setups of the WRF model.  Roses are shown for Glasgow 

Airport for (a) Observation, (b) Hor3, (c) Hor5, (d) Hor7, (e) Vert30, (f) Vert20 and (g) 

UCM. 
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A similar study by Saide et al. (2011) focusing on temperature and wind speed 

measurements found little difference between WRF model results run with 44 and 39 levels 

and consequently the lower resolution was used in the remainder of their study.  Similar 

findings were published by Floors et al. (2013) who found no improvement in agreement 

between the vertical wind speed profile predicted by WRF and measured by LIDAR 

measurements when the number of vertical levels was increased from 41 to 63.   

Our study found reducing the number of vertical levels used in the model resulted in 

higher bias values and lower IoA values.  This suggests that reducing the number of vertical 

levels in order to reduce run times and minimise output files (Table 3) is likely to 

compromise the accuracy of the model.  It is possible the number of vertical levels could be 

reduced below 45 if the optimal heights of the layers were determined; however, the 

influence of vertical level height was not examined in this work.  

 

3.1.3. Effect of UCM on WRF meteorological predictions 

Adding the UCM to the WRF model resulted in an increase in the model run time from 

~3 to 5 hours and increased the size of the model by approximately 1 Gb (Table 3).  The Q-Q 

plots for these relationships show little visual difference when the UCM was included 

(Figures 3 & S3).  At the Airport, including the UCM increased the temperature bias values 

and reduces the IoA values, while the opposite was true for the Bishopton site (Table 2).  

The difference in the results between the two sites was attributed to different site types - Lee 

et al. (2011) compared results from a WRF model run with and without a UCM and, for 

commercial/industrial sites, found the MB values to decrease but the RMSE to increase 

during the day.  However, for rural sites adding the UCM resulted in a reduction in both MB 

and RMSE. 

At the airport, adding the UCM reduced the wind speeds predicted by the model, bringing 

the Q-Q plot closer to 1:1 and reducing the bias values (Figure 3 and Table 2).  At 

Bishopton, however, the Q-Q plot showed little improvement when the UCM was added 

however a slight increase in MB values was observed (Figure S3, Table 2).  The lowering of 

wind speeds has been reported by Kim et al. (2015) for urban sites in Paris and Holt and 

Pullen (2007) in New York when a UCM was included in the WRF model.  The Q-Q and 

wind rose plots including the UCM were poorer than those for the WRF model without the 

UCM (Figures 3 & 4 and Figures S3 & S4), and the UCM model had larger MB and RMSE 

values and lower IoA values (Table 2).   

The inclusion of the UCM model generally lowered the accuracy of the WRF model at 

these sites.  The literature illustrates the improvement in model performance when the UCM 
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is added, however most of this work has focussed on urban locations in large cities.  

Therefore, the UCM should be run only in urban areas as this work has shown the impact of 

the UCM to be negative for the rural or semi-rural location of the sites tested. 

  



 

(a) 

(b) 

(d) 

(f) 

Figure 5: Monthly average dispersion plume concentrations (µg/m

located in the centre of 

AERMOD; (b) WRF-AERMOD (Hor3); (c) WRF

(Hor7); (e) WRF-AERMOD (Vert30); WRF

(UCM).  The road network in the study area is shown in gr
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(c) 

 

(e) 

 

(g) 

: Monthly average dispersion plume concentrations (µg/m3

located in the centre of the study area, emitting at 1 g/s predicted by: (a) Observed

AERMOD (Hor3); (c) WRF-AERMOD (Hor5); (d) WRF

AERMOD (Vert30); WRF-AERMOD (Vert20); and WRF

(UCM).  The road network in the study area is shown in grey. 
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3) for a 50 m stack, 

the study area, emitting at 1 g/s predicted by: (a) Observed-

AERMOD (Hor5); (d) WRF-AERMOD 

AERMOD (Vert20); and WRF-AERMOD 
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3.2. Dispersion modelling using WRF and meteorological inputs 

The dispersion plumes estimated using WRF-AERMOD were more dispersed with a 

higher concentration of pollution closer to the source, regardless of WRF set up, than those 

predicted using the Observed-AERMOD (Figures 5, S5 & S6).  We showed above that the 

estimates of wind speed using WRF over predicted the observation data, which could lead to 

the dispersion plume bending over and depositing pollutants closer to the stack.  The wind 

directions estimated using WRF showed deviations from the observation data which could 

explain the larger plume widths in WRF-AERMOD compared to Observed-AERMOD.  The 

underestimation of temperature by WRF may influence the AERMOD model, as lower 

temperatures lead to lower Monin-Obukhov lengths which in turn increase the surface 

friction velocity and convective scale velocity, however this effect is expected to be 

negligible (Kesarkar et al., 2007).  Table 4 provides summary statistics for the concentrations 

predicted by each AERMOD model and model evaluation statistics. 
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Table 4: Model statistics for the monthly average pollution concentrations predicted at the 

6561 receptor sites from AERMOD for each of (a) 10 m stack, (b) 50 m stack and (c) 100 m 

stack heights.  The percentiles, max and min concentrations in the model are provided along 

with MB, RMSE, and IoA for AERMOD estimates using WRF input and observation 

meteorological input (the latter is assumed to represent the true concentrations). 

Statistic Obs-

AMOD 

Hor3-

AMOD 

Hor5-

AMOD 

Hor7-

AMOD 

Vert30-

AMOD 

Vert20-

AMOD 

UCM-

AMOD 

(a) 10 m stack 
25th percentile 0.03 0.02 0.02 0.02 0.02 0.03 0.03 
50th percentile 0.06 0.05 0.05 0.05 0.05 0.06 0.06 
75th percentile 0.15 0.10 0.11 0.14 0.11 0.12 0.11 

Min 0 0 0 0 0 0 0 
Max 6.77 6.97 6.95 12.14 7.12 6.58 6.85 
MB - -0.03 -0.03 -0.02 -0.03 -0.03 -0.03 

RMSE - 0.21 0.22 0.29 0.22 0.20 0.20 
IoA - 0.91 0.90 0.88 0.90 0.91 0.91 

(b) 50 m stack 

25th percentile 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
50th percentile 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
75th percentile 0.07 0.08 0.08 0.09 0.08 0.08 0.08 

Min 0 0 0 0 0 0 0 
Max 0.46 0.75 0.76 1.20 0.76 0.71 0.74 
MB - 0.01 0.01 0.03 0.01 0.01 0.01 

RMSE - 0.06 0.06 0.10 0.06 0.06 0.06 
IoA - 0.85 0.85 0.73 0.84 0.86 0.86 
(c) 100 m stack       

25th percentile 0.01 0.01 0.01 0.02 0.01 0.01 0.01 
50th percentile 0.02 0.03 0.03 0.04 0.02 0.03 0.03 
75th percentile 0.04 0.06 0.06 0.08 0.06 0.06 0.06 

Min 0 0 0 0 0 0 0 
Max 0.13 0.22 0.23 0.39 0.23 0.21 0.23 
MB - 0.01 0.01 0.03 0.01 0.02 0.02 

RMSE - 0.03 0.03 0.06 0.03 0.03 0.03 
IoA - 0.79 0.78 0.59 0.79 0.78 0.80 

 

3.2.1. Effect of horizontal resolution on WRF-AERMOD pollution estimates 

The size and shape of the plume predicted by the WRF-AERMOD using different 

horizontal grid resolutions was similar for the 10 m and 50 m stack (Figure 5 & S5).  Some 

deviations in plume shape with changing WRF horizontal resolution are apparent for the 100 

m stack, with the finest horizontal grid producing different predictions than the other models 

(Figure S6).  The plume pattern predicted using Observed-AERMOD showed a longer but 

generally narrower plume than the WRF-AERMOD estimates (Figures 5, S5 & S6).  The 

average concentrations predicted at each site using WRF-AERMOD (Hor3 and Hor5 

horizontal resolution) were close similar to concentrations predicted using Observed-

AERMOD for the 10 m stack height, while for the finest horizontal grid WRF-AERMOD 

over predicted the concentrations from Observed-AERMOD above concentrations of ~1.5 
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µg/m3 (Figure 6a).  For stack heights of 50 m and 100 m the WRF-AERMOD model over 

predicted the concentrations estimated by Observed-AERMOD (Figures 6b & 6c). 

Increasing the stack height resulted in larger differences between concentrations 

estimated using WRF-AERMOD and Observed-AERMOD, leading to larger RMSE and 

lower IoA values (Figure 6 and Table 4).  Irrespective of the stack height modelled, the 

coarsest horizontal grid WRF-AERMOD model was most similar to the Observed-

AERMOD concentrations.  This suggests that, similarly to the comparison between WRF 

and observed meteorological data, the associated increase in run time and file size for 

increased horizontal resolution is not required as it does not necessarily improve model 

accuracy.  Saide et al. (2011) found some improvement in predicted WRF-CHEM carbon 

monoxide concentrations increasing from 6 km to 2 km grid resolution, but moving to 667 m 

had little impact. Similar tests using the MM5 weather model as input for the CMAQ 

pollution model found the effect of horizontal resolution to be pollutant dependent (Wu et 

al., 2008).  Ozone predictions were not influenced by horizontal resolution in the winter, 

however in the summer months the larger grid sizes produced pollution estimates closer to 

observations.  However, for PM2.5 the finer model produced the best agreement with the 

observations.  Another study using similar scale grids to this work found no influence on 

ozone model accuracy with changing resolution (Shrestha et al., 2009).   

This work shows that for small stacks, e.g. 10 m, WRF modelled weather data can be 

used instead of observation data as these produce similar concentrations data.  However, for 

the larger stacks tested (50 m and 100 m) the pollution concentrations estimated using WRF 

as input weather data were greater than the concentrations predicted using the observations 

meteorological data (approximately 1.5 times larger for the 100 m stack) suggesting that 

observation data should be used in preference to WRF for taller stacks.  If observation data is 

not available, using WRF will provide an over-estimate of the modelled concentrations with 

meteorological data. 

 

3.2.2. Effect of vertical resolution on WRF-AERMOD pollution estimates 

Changing the WRF vertical resolution had little effect on the final plume shape and 

concentrations predicted by WRF-AERMOD (Figures 5, S5 and S6).  There was also limited 

effect of changing the number of vertical levels on the Q-Q plots between WRF-AERMOD 

and Observed-AERMOD concentrations (Figure 6).  Table 4 also shows very little change in 

MB, RMSE or IoA values when the number of vertical levels used in the WRF set up is 

changed for all three stack heights tested.  This suggests that it may be possible to reduce the 

number of vertical levels from 45 to 20, saving run time, without compromising dispersion 
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model accuracy.  As discussed previously, the height of the vertical levels may be important 

and should be investigated further to determine if there is an optimal height for the levels in 

order to get improved agreement between the modelled and measured concentrations for the 

taller stacks.  Saide et al. (2011) found reducing the number of levels from 44 to 39 had little 

effect on carbon monoxide concentrations however a marked jump in performance was 

found when 28 levels were used.  Teixeira et al. (2015) found that increasing the number of 

vertical levels from 30 to 60 resulted in an improvement in the ability of the model to predict 

dust storms, however if more levels were used no further improvement or some deterioration 

in model accuracy was found. 
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3.2.3. Effect of UCM on WRF-AERMOD pollution estimates 

Adding the UCM had little impact on the size or shape of the plume predicted by WRF-

AERMOD (Figures 5, S5 & S6) nor was there a visible change in the Q-Q plot comparing 

pollution estimates between WRF-AERMOD and Observed-AERMOD (Figure 6).  Adding 

the UCM resulted in no change in the mean bias values and slight improvements in RMSE 

and IoA (improved by 0.01) compared to when the WRF-AERMOD model was run without 

the UCM (Table 4).  The small improvement gained when the UCM is added does not 

outweigh the additional run time and information required for the UCM (Table 3).  De Meij 

et al. (2015) tested WRF-CHEM using more detailed land use data in the UCM and found 

that the more resolved land use data gave better model agreement with PM10 concentrations, 

and similar model accuracy for carbon monoxide however these results were found to vary 

between areas and for different time periods.  The lack of improvement when the UCM is 

added in this work may be due to the rural location and flat terrain of the Airport site. 

 

4. Conclusions 

We investigated the effect of initial WRF set up on the predictions of meteorological and 

pollution dispersion modelling.  We compared WRF estimates of temperature, wind speed 

and wind direction to observations at two meteorological stations in Glasgow, UK.  The 

WRF model generally underestimated temperature, overestimated wind speed and had a 

pronounced pattern of discrepancy with wind direction measurements at the two 

meteorological stations.  Increasing the horizontal resolution from 3 x 3 km to 1.8 x 1.8 km 

and 1.3 x 1.3 km had little effect on temperature and wind speed predictions.  However, the 

wind direction predictions from the 1.3 x 1.3 km horizontal resolution model were more 

discrepant with observations than equivalent predictions from the coarser resolution 

horizontal WRF models.  The apparent loss of accuracy when a finer-scale horizontal 

resolution was used illustrated that the associated increased in model run time and file size 

provided no additional benefit for model predictions.  Reducing the number of vertical levels 

used in the WRF simulation had little effect on the WRF temperature and wind speed 

estimates, but larger deviations between observed and modelled wind direction were 

observed when fewer vertical levels were used.  Reducing the number of vertical levels from 

the default 45 to 30 approximately reduced the run time by 30 % and reduced the model 

output file size by 500 Mb.  Adding the UCM detrimentally impacted the ability of the 

model to predict wind direction (Index of Agreement reduced from 0.77 to 0.34 with 

inclusion of the UCM) at the weather stations which were located in a rural environment.  

This suggests that if WRF if to be run in rural areas the UCM should not be included.   
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The plume shapes predicted when WRF estimates were used as meteorological input to 

AERMOD (WRF-AERMOD) were wider and showed higher concentrations closer to the 

source than equivalent AERMOD concentration predictions when observed meteorological 

data was used as input (Observed-AERMOD).  Increasing the horizontal resolution of the 

WRF model used for WRF-AERMOD input did not improve the correlation between WRF-

AERMOD and Observed-AERMOD estimated concentrations (Table 4).  The closest 

pollution estimates between the WRF-AERMOD and Observed-AERMOD concentrations 

was for the coarsest WRF grid for the stack heights investigated.  The pollution estimates 

when the number of vertical levels in the WRF model was changed from 45 to 30 to 20 

showed negligible changes suggesting that if WRF is to be used for pollution modelling then 

number of vertical levels can be reduced to 20 without detrimental effects on predictions of 

passive tracer concentrations.  Similarly, adding the UCM to WRF had negligible effect on 

the WRF-AERMOD pollution estimates compared to the WRF-AERMOD model run 

without the UCM.  Therefore, the associated time and file size required to run the UCM does 

not appear necessary for pollution modelling in rural or semi-urban locations.  WRF can be 

used instead of observed meteorological data as input to AERMOD to predict concentrations 

from small stack heights (10 m).  In contrast, the WRF-AERMOD concentrations predicted 

for stack heights of 50 m and 100 m were greater than Observed-AERMOD concentrations 

by a factor of approximately 1.5. 

This study highlights that WRF can be used as input to dispersion modelling and found 

that changing the WRF setup had only small effects on dispersion model predictions for 10 

m stack height.  In the absence of meteorological observations WRF could act as an 

appropriate surrogate but the concentrations predicted for taller heights may be 

overestimated. 
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Figure S1:  Q-Q plots showing the temperature (top), wind speed (middle) and wind 

direction (bottom) measured at the Airport and Bishopton site.  The solid black line 

represents the 1:1 relationship between Airport and Bishopton measurements. 
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(a) 

 

  

(b) 

 

(c) 
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(e) 
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Figure S4: Wind rose plots for Bishopton for the month of June: (a) observed meteorology 

data; (b) Hor3; (c) Hor5; (d) Hor7; (e) Vert30; (f) Vert20; and (g) UCM. 

  



 

(a) 

(b) 

(d) 

(f) 

Figure S5: Monthly average dispersion plume concentrations (µg/m

located in the centre of the study area, emitting at 1 g/s predicted by: (a) Observed

AERMOD; (b) WRF-AERMOD (Hor3); (c) WRF

(Hor7); (e) WRF-AERMOD (Vert30); WRF

(UCM).  The road network in the study area is s
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(c) 

 

(e) 

 

(g) 

: Monthly average dispersion plume concentrations (µg/m3

centre of the study area, emitting at 1 g/s predicted by: (a) Observed

AERMOD (Hor3); (c) WRF-AERMOD (Hor5); (d) WRF

AERMOD (Vert30); WRF-AERMOD (Vert20); and WRF

(UCM).  The road network in the study area is shown in grey. 
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3) for a 10 m stack, 

centre of the study area, emitting at 1 g/s predicted by: (a) Observed-

AERMOD (Hor5); (d) WRF-AERMOD 

AERMOD (Vert20); and WRF-AERMOD 
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Figure S6: Monthly average dispersion plume concentrations (µg/m

located in the centre of the study area, emitting at 1 g/s predicted by:   (a) Observed

AERMOD; (b) WRF-AERMOD (Hor3); (c) WRF

(Hor7); (e) WRF-AERMOD (Vert30); WRF

(UCM).  The road network in the study area is shown in grey.
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(g) 

: Monthly average dispersion plume concentrations (µg/m3) for a 100 m stack, 

located in the centre of the study area, emitting at 1 g/s predicted by:   (a) Observed

AERMOD (Hor3); (c) WRF-AERMOD (Hor5); (d) WRF

AERMOD (Vert30); WRF-AERMOD (Vert20); and WRF

(UCM).  The road network in the study area is shown in grey. 
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located in the centre of the study area, emitting at 1 g/s predicted by:   (a) Observed-
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AERMOD (Vert20); and WRF-AERMOD 
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Figure S7: The average concentration (in µg/m3) at each unique (a) x and (b) y is compared 

in Q-Q plots for the predicted and observed concentrations (n = 81). 
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Table S1:  Urban Canopy parameters used in the UCM setup. 

 High density 
residential 

Low density 
residential 

Commercial 

Roof height (m) 17 9 11 
SD roof height (m) 10 4 7 
Width of roof (=sqrt roof area) 22 16 33 
Road width (m)* 15 14 16 
Anthropogenic heat (default) 50 20 90 
Fraction urban landscape with no natural vegetation 
(default for commercial and low.  Change high from 
default value of 0.90). 

0.85 0.5 0.95 

Heat capacity of roof / building wall / ground (default 
for all) 

1E6 / 1E6 / 1.4E6 

Thermal conductivity of roof / wall / ground (default) 0.67 / 0.67 / 0.4004 
Surface albedo of roof / wall / ground (default) 0.2 / 0.2 / 0.2 
Surface emissivity roof / wall / ground (default) 0.9 / 0.9 / 0.95 
Roughness length for momentum over ground / roof 
(default) 

0.01 / 0.01 

Coefficient modifying kanda approach to computing 
surface layer exchange coefficients (default) 

1.29 

Thickness of building wall / building wall layer 
(default) 

0.05 / 0.05 

Thickness of road layer (default) 0.05, 0.25, 0.50 and 0.75 
Boundary condition for roof layer temperature / wall 
layer temperature / ground layer temperature 
(default) 

1 / 1 / 1 

Lower boundary condition for roof temperature / wall 
temperature / ground temperature (default) 

293 / 293 / 293 

Ch of wall and road (default) 2 
Surface and layer temperatures (default) 1 
Ahoption (default) 0 
Anthropogenic heating profiles (default) 0.16, 0.13, 0.08, 0.07, 0.08, 0.26, 0.67, 0.99, 

0.89, 0.79, 0.74, 0.73, 0.75, 0.76, 0.82, 0.90, 
1.00, 0.95, 0.68, 0.61, 0.53, 0.35, 0.21, 0.18 
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7. Evaluation of the RapidAir dispersion model in London and the 

use of geospatial surrogates to represent street canyon effects 

 

The use of air pollution models to assess population exposures to air pollutants has 

advantages over measurements including the ability to be able to estimate concentrations 

over a large number of sites.  However, there are a number of limitations associated with the 

use of models, including the high costs in terms of licensing and computing requirements 

which can make their use limited for large study area.  RapidAir® is a dispersion model 

developed by Ricardo Energy & Environment which can produce highly spatially resolved 

pollution estimates in relatively short computation times through use of modern scientific 

computing developments.  We evaluate the RapidAir model in London, UK, at 107 receptor 

locations to assess the model performance, and additionally we investigate if the inclusion of 

models or surrogates to account for street canyon morphologies can be applied to dispersion 

models for large study areas and the impact the inclusion of these has on modelled 

concentrations. 

This manuscript has been produced as a joint effort between Ricardo Energy & 

Environment and the University of Strathclyde.  The experiment was designed by, model 

run, data analysed and manuscript written by N. Masey.  The model was developed by S. 

Hamilton and Ricardo Energy & Environment.  S. Hamilton provided model code, 

discussion about experimental design, data analysis and editorial comments on the 

manuscript.  I. Beverland provided editorial comments on the manuscript. 

 This manuscript has been prepared for submission to Environmental Modelling and 

Software.  
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Research Highlights: 

•••• RapidAir® dispersion model evaluated for annual NOx and NO2 in London, UK 

•••• 5 x 5 m resolution model generated for 3,500 km2 area in under ten minutes 

•••• Annual NO2 NMB = -0.12 µg/m3 with larger underestimation at kebside sites (-0.31 

µg/m3) 

•••• Inclusion of canyon models reduced bias in street canyons (NMB -0.15 vs. -0.21 µg/m3) 

•••• Geospatial surrogates used to represent urban morphology over large geographical areas 

 

Abstract  

We developed a dispersion model (RapidAir®) to estimate air pollution concentrations at 

fine spatial resolution over large geographical areas with fast run times.  RapidAir® was 

evaluated by estimating NOx and NO2 at 107 locations in London, UK (consisting of 12 

reference analyser and 95 passive diffusion tube sites).  Concentrations were modelled at 5 m 

spatial resolution over an area of ~3,500 km2 in < 10 minutes per run.  We included discrete 

canyon models or geospatial surrogates (sky view factor, hill shading and wind effect) to 

improve the accuracy of model predictions at kerbside locations.  Geospatial surrogates 

provide alternatives to discrete street canyon models where it is not practical to run canyon 

models for hundreds to thousands of separate streets within a large city dispersion model 

(with advantages including: ease of operation; faster run times; and more complete / 

transparent treatment of building effects). 

 

Keywords: Dispersion modelling; Air pollution; GIS; NOx; NO2; street canyon 
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1. Introduction 

The estimation of population exposures to air pollution is increasingly important as 

numerous studies highlight the detrimental effects of air pollution on human health (World 

Health Organization, 2013, 2016).  The use of air pollution monitors allows direct 

measurement of ambient concentrations, and the on-going development of portable real-time 

monitors is providing improvements in temporally resolved concentration estimates (Dons et 

al., 2012; Spinelle et al., 2017, 2015).  However, monitoring only provides concentration 

estimates at specific locations, whereas it has been observed that pollution concentrations 

can vary substantially over small areas (Gillespie et al., 2017; Lin et al., 2016).  Models can 

overcome some of the limitations associated with monitoring as concentrations can be 

estimated at multiple locations within a study area.  However, inherent uncertainties within 

models require to be quantified by comparison of predictions against air pollution 

measurements. 

Two main types of models are commonly used to estimate urban air pollution – land use 

regression (LUR) models and dispersion models (we do not include discussion of 

Computational Fluid Dynamics (CFD) models in this paper as CFD models have not been 

used widely in operational predictions of spatial patterns of urban air pollution due to 

excessive computational constraints when operating over large geographical areas). 

Land use regression (LUR) models use Geographical Information Systems (GIS) to 

quantify relationships between measured pollutant concentrations and land use variables 

(including traffic and population), which can then be extrapolated to estimate human 

exposure to air pollution at fine spatial resolution (Briggs et al., 1997).  LUR models have 

been widely applied in in cohort epidemiological studies (Gillespie et al., 2016; Johnson et 

al., 2013; Wang et al., 2013) and in personal monitoring studies (Dons et al., 2014a, 2014b).  

LUR models are frequently used to estimate longer-term (e.g. annual) pollution exposure and 

often do not take into account the effects of meteorology.  Additionally the transfer of LUR 

models between study areas has been shown have substantial limitations (Gillespie et al., 

2016; Mukerjee et al., 2012; Patton et al., 2015).  Many regulatory organisations are 

interested in source apportionment to inform policy on air pollution controls, which requires 

preparation of spatially accurate multi-source air quality emissions.  However, LUR models 

seldom use direct quantitative estimates of emissions from sources (instead more commonly 

they assess the effects of receptor proximity to sources) and consequently LUR models have 

had limited application in air quality management policy development. 

Dispersion models simulate atmospheric transport and transformation of air pollutants 

emitted from sources to allow estimation of concentrations at receptors.  The most 
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commonly used models are based on Gaussian plume concepts.  Dispersion models can be 

used to estimate short term (e.g. hourly) variations in pollution concentrations (Gibson et al., 

2013), and to estimate population exposures in cohort studies (Bellander et al., 2001; Nyberg 

et al., 2000).  Additionally, projected emissions estimates (if available) can be used to 

estimate future concentrations.  Commercially available software packages have been 

developed to simplify user inputs and modelling procedures, however this has often resulted 

in high license costs (Gulliver and Briggs, 2011), particularly when it is necessary to apply 

models over large geographical areas.  Furthermore, Gaussian dispersion model run-times 

for large urban area can quickly become prohibitive due the computational demands of 

calculating concentrations at what can extend to millions of discrete locations.  This may 

necessitate the use of GIS interpolation routines which may introduce other errors into 

estimated exposures. 

Some studies have addressed these challenges to achieve fine spatial and temporal 

resolution by combining dispersion and LUR models (Beevers et al., 2012a; Korek et al., 

2016; Michanowicz et al., 2016; Wilton et al., 2010); and/or including meteorological 

information within LUR models (Su et al., 2008a; Tan et al., 2016).  For example a hybrid 

GIS-dispersion model (STEMS-AIR) has been developed to enable fine spatial and temporal 

resolution while minimising run times with readily-available computer software (Gulliver 

and Briggs, 2011).  The STEMS-Air model estimates pollution concentrations from emission 

sources in 45 degree upwind ‘wedge’ shaped GIS-buffer areas, scaled by the distance 

between sources and receptors. 

In built-up urban areas air pollution can become trapped in street canyons surrounded by 

tall buildings, especially if the wind is blowing from a direction perpendicular to the street, 

leading to recirculation of pollutants within the canyon.  As a result, pollution concentrations 

in street canyons can become elevated and may be underestimated by ‘standard’ air pollution 

models.  Exposure estimates may be improved by combining additional models that take into 

account urban topography in such locations with background pollution estimates from 

Gaussian-based air pollution models.  Street canyon models range from complex 

computational fluid dynamic (CFD) models to simpler empirical (e.g. USEPA STREET box-

model (Dabberdt et al., 1973; Johnson et al., 1973)) and semi-empirical models (e.g. Danish 

Operational Street Pollution Model (OSPM) (Vardoulakis et al., 2003)).  Some dispersion 

models include additional software modules for street canyon effects, however these may 

increase model run time (Fallah-Shorshani et al., 2017; Jackson et al., 2016). 

Geospatial surrogates can be used to estimate the effect of street canyons on air quality in 

urban locations.  Such metrics are commonly used in studies of urban climate where 
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temperature, and hence comfort levels, are affected by building density and height.  For 

example, sky view factor (SVF, which estimates the percentage of sky that can be observed 

using a fish-eye lens pointed vertically, with areas with low SVF corresponding to the 

presence of tall buildings (Carrasco-Hernandez et al., 2015)) has been incorporated into a 

LUR model to estimate the presence of street canyons (Eeftens et al., 2013).  Building height 

and/or volume information has also been observed to improve the accuracy of LUR model 

estimates (Gillespie et al., 2016; Su et al., 2008b; Tang et al., 2013).  Geospatial surrogates 

can be readily applied across entire cities in automated processes which are likely to be less 

susceptible to human error than use of currently available street canyon models, as the latter 

require user judgement to identify street canyon locations and detailed information (e.g. on 

traffic flow) for each location.  The use of geospatial surrogates also has potential to improve 

the reproducibility of dispersion model pollution estimates as the number of model design 

choices is reduced substantially (with corresponding substantial reduction in manpower 

costs). 

In this paper we describe the development and evaluation of a new dispersion model 

(RapidAir®, Ricardo-AEA Ltd) that uses modern scientific computing methods based on 

open-source Python libraries (www.python.org).  A key motivation for the development of 

RapidAir was our experience of a lack of a cost-effective operational city-scale dispersion 

model with convenient run times, which does not require large amounts of manpower to 

operate.  We focused on operational convenience of the modelling process and accuracy of 

model predictions in a case study and compared our results to results from other published 

studies which evaluated other modelling codes in a similar study area.  The design concept 

for RapidAir is similar to the STEMS-Air model described by Gulliver and Briggs (2011) 

with some additional enhancements.  RapidAir includes a dispersion model (AERMOD), 

with detailed treatment of boundary layer meteorology, and street canyon models.  

Additionally, we investigated the incorporation of geospatial surrogates to represent street 

canyon effects on spatial variation of pollution climates; and established methods to 

efficiently post-process the output from fine resolution dispersion models over large 

geographical areas using these surrogates. 

 
2. Methods 

2.1. Study area and receptor locations 

We modelled concentrations of oxides of nitrogen (NOx) in Greater London (urban 

conurbation approximately bounded by the M25 orbital motorway).  Greater London was 

chosen as the study area because it contains a large network of air pollution monitoring sites, 

and has detailed open-access traffic and building height data.  Additionally this was the study 
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area used in a previous Department for Environment, Food and Rural Affairs (DEFRA) 

Urban Model Evaluation exercise, which evaluated several commercially available and 

industry accepted models (Carslaw, 2011).  We modelled annual average NOx and NO2 

concentrations for 2008, which was the same year as used in the DEFRA study to enable 

comparison between RapidAir and the models assessed in the DEFRA comparison.  

We evaluated the RapidAir model at 107 receptor locations: 12 Automatic Urban and 

Rural Network (AURN) sites; and 95 passive diffusion tube sites (Figure A1, Table A1).  

These sites are maintained by the Environmental Research Group, Kings College London 

(London AURN stations) and local authorities (diffusion tubes).  The data collected were 

subject to national-ratification and detailed QA-QC procedures (DEFRA, 2017; Targa and 

Loader, 2008) and are available at https://uk-air.defra.gov.uk/ (AURN) and 

https://data.london.gov.uk/dataset/air-quality-summary-statistics (diffusion tubes).  For 

model evaluation purposes the monitoring sites were designated as receptors classified as 

kerbside, roadside, suburban and urban background according to their proximity to road 

traffic: kerbside sites were located within 1 m of a busy road; roadside sites were located 

within 1 – 5 m of a busy road; suburban sites were located in a residential area on the edge of 

a urban conurbation; and urban background sites were located in urban areas but were free 

from the immediate influence of local sources to provide a good indication of background 

concentrations (DEFRA, 2016). 

It was not possible to use exactly the same locations as the DEFRA Urban Model 

Evaluation (Carslaw, 2011).  When we imported the locations used in the DEFRA into a GIS 

programme some were incorrect, in a few cases up to several kilometres from their true 

location.  We relocated receptors to our best approximation of their true location using aerial 

photography and street level photographs but small discrepancies in the locations may still 

persist.  This may have affected our evaluation of the accuracy of model predictions at 

measurement sites, and comparisons of our estimates with the estimates of other groups in 

this paper. 

 

2.2. Model description 

The RapidAir dispersion and decision support model uses open source Python libraries to 

rapidly estimate concentrations at high spatial resolution (5 m in this study) over extended 

geographical areas.   RapidAir is conceptually similar to the STEMS-Air model published by 

Gulliver and Briggs (2011), with a number of technical developments.  In RapidAir we 

control AERMOD (and its associated meteorological pre-processor AERMET) in a custom 

Windows, Linux or MacOS environment written in Python 2.7 (available from 
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www.python.org).  The modelling system makes extensive use of the numpy, scipy and 

pandas libraries which enable very efficient scientific computation (partly due to their use of 

the C programming language).   

AERMOD is an internationally recognised air dispersion modelling code and is a 

mandated USEPA model of choice for road traffic air quality assessments (U.S. 

Environmental Protection Agency, 2015).  The USEPA impose strict guidelines on use of 

dispersion models and the use of AERMOD is written into law in ‘Appendix W’ of the 

Guideline on Air Quality Models (U.S. Environmental Protection Agency, 2017).  RapidAir 

is parameterised using guidance from the USEPA in their ‘Hotspot Conformity’ guidance 

(U.S. Environmental Protection Agency, 2015, Appendix J).  This sets out methods for 

dispersion modelling of road traffic emissions - for example prescriptive methods are given 

for setting release height, initial plume depth and other factors.  The combination of using a 

tried and tested kernel modelling core and parameterising it to international statutory 

requirements makes RapidAir a robust modelling platform for dispersion modelling for road 

traffic sources. 

RapidAir includes an automated meteorological processor based on AERMET which 

obtains and processes meteorological data of a format suitable for use in AERMOD.  A 

major advantage of this approach is reproducibility as human error can often lead to 

problems when working with the AERMOD/AERMET suite.  Surface meteorological data 

was obtained from Heathrow Airport (available from ftp://ftp.ncdc.noaa.gov/pub/data/noaa/) 

and upper air data from Camborne (available from http://www.esrl.noaa.gov/raobs/) which 

were the nearest meteorological stations to the study area. 

The dispersion model uses a kernel convolution procedure which is similar to algorithms 

used in image processing software.  A moving-window dispersion model plume (the kernel) 

calculated for a small idealised area source in AERMOD is passed over a road traffic 

emission raster at the same resolution pixel by pixel so the final city wide model comprises 

millions of overlapping plumes from the road source emissions.  A weighted kernel (55 x 55 

cells of size 5 m) was created to characterise concentrations at progressively lower resolution 

with distance from the source.  A theoretical source was located at the centre of the kernel in 

AERMOD, assigned with a constant emission rate of 1 g/s. 

Link based NOx emissions data were obtained for London in 2008 from the London 

Atmospheric Emissions Inventory (LAEI) website (https://data.london.gov.uk/dataset/laei-

2008) (Figure A1).  In this study the link-based emissions from the LAEI were converted to 

a 5 m raster using the ESRI ArcGIS ‘Line Density’ tool (ESRI, 2014) though RapidAir has 

since moved to open source routines for preparing the emissions grid.  During the AERMOD 
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step we rotated the wind direction by 180 degrees to represent the contribution of cells 

within the kernel to the central cell i.e. the cell in which we are trying to estimate the 

pollution concentration.  This produced a plume which identifies pollution sources that 

contributed to the central cell and estimated a scaling factor for each source that fell within 

the plume based on its distance and location to the source. 

For each receptor cell (in this case at 5 m resolution) the sum of concentrations falling 

within the kernel plume, which are by definition weighted by their distance to the source, are 

written to the centre cell of the concentrations raster.  In this way the pollution surface is 

created by the convolution step iterating over the gridded emission data.  This means that 

model run time is linearly dependent on the spatial resolution of the output number of cells 

and is unaffected by the number of emissions sources in the domain.  This is a key benefit 

compared with other Gaussian models whose run time is linearly dependent both on 

resolution/number of receptors and number of sources.  Our experience suggests that run 

times in the order of several days/weeks can be expected for city scale Gaussian models with 

only a few hundred thousand receptor locations, which are then interpolated to provide 

continuous pollution surfaces.  In contrast, the RapidAir model computes concentrations at > 

100 million discrete receptors in less than 10 minutes.  

Regional background concentrations calculated by the Pollution Climate Mapping (PCM) 

model were added to the pollution raster (Figure A2).  PCM concentrations (at 1 x 1 km grid 

resolution) are available to download from https://uk-air.defra.gov.uk/data/modelling-data).  

The PCM model estimates background concentrations taking into consideration a variety of 

pollution sources and breakdowns of the sources are provided.  We removed those sources 

attributed to road transport prior to adding the PCM model to the modelled pollution 

concentrations above to prevent double-counting of traffic related air pollutants. 

 

2.3. Surrogates for street canyons 

Building height data were used to calculate simple surrogates that could readily be 

applied to a study area to indicate those locations that were located within street canyons, 

and consequently allow the modelled concentrations in these areas to be corrected for 

resulting urban morphological effects on air pollution.  Building height data for London was 

downloaded from http://buildingheights.emu-analytics.net/ and a 5 m raster created of the 

maximum building height within each cell.  The building height data was derived by the 

suppliers from national scale LiDAR surveys published by the Environment Agency for 

England (http://environment.data.gov.uk/ds/survey/index.jsp#/survey).  We investigated 

three surrogates for street canyons (Figure A3): 
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- Sky view factor (SVF) produces a value representing the amount of sky 

visible from each location when looking vertically up to the sky and using a fish eye 

lens (a value between 0 and 1, where 1 is all visible sky).  The Relief Visualization 

Toolbox (RVT) (Kokalj et al., 2011; Zaksek et al., 2011) was used to calculate this 

value using the building height raster as the input and a search radius of 200 m 

(Eeftens et al., 2013). 

- Hill shading (HS) is commonly used to identify areas in shade as a result of 

surrounding topographical features (Zaksek et al., 2011).  In our analysis we used 

wind direction in place of the direction of the sun and the ‘shading’ identified was 

anticipated to represent areas of higher concentration on the windward side of the 

canyon.  The Analytical hill-shading option was run within RVT using an elevation 

angle of 45 degrees (suggested to be most appropriate for steep terrain as is 

encountered in an urban environment (Kokalj et al., 2013)).  We calculated HS 

values for 8 sectors (i.e. every 45 degrees) and averaged the HS values calculated to 

produce estimated HS value over the study area. 

- Wind Effect (WE) is a module in SAGA GIS (Conrad et al., 2015) which 

predicts if an area is wind shadowed or exposed, where values below 1 area 

shadowed and above 1 are exposed (Böhner and Antonić, 2009).  As above for HS, 

WE values were calculated for 8 sectors and the average if these values were used.  

A search radius of 200 m was used. 

The surrogate values for 5 m buffers around each receptor location were extracted to 

allow for slight errors in the coordinates of receptor locations (e.g. receptors located ‘within’ 

buildings rather than on lampposts on the road). 

 

2.4. Model evaluation 

Modelled concentrations of NOx and NO2 were extracted from the model outputs at the 

gird references for the monitoring sites to enable comparison. The R package OpenAir 

(Carslaw and Ropkins, 2012) was used to generate model evaluation statistics commonly 

used to evaluate pollution models, including FAC2, mean bias (MB), normalised mean bias 

(NMB), root mean square error (RMSE), coefficient of efficiency (COE) and index of 

agreement (IOA) (Carslaw, 2011; Chang and Hannah, 2004; Derwent et al., 2010). 

 

3. Results and Discussion 

The baseline RapidAir kernel model (i.e. no urban morphology treatment) highlighted 

contributions from major roads in London, and Heathrow Airport in the west of the study 
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area (Figure A4), however systematically underestimated observed NOx concentrations at the 

receptor locations.  The systematic underestimation of the PDT concentrations by the kernel 

model may be the result of uncertainties in background concentrations, road traffic emissions 

or monitoring locations.  However, as we used publicly available open source data to 

generate the model we did not investigate these uncertainties further to ensure 

reproducibility of the model results and comparability with other groups who also used the 

same data sets.  

It is likely that road traffic NOx emissions data are underestimated in the inventory we 

used.  These data were prepared by a statutory body (Greater London Authority (GLA)) and 

are the officially recognised emissions dataset for London.  The European Environment 

Agency’s COPERT road traffic emissions model has been observed to under-predict 

historical NOx emissions from diesel vehicles in the UK fleet (Carslaw et al., 2011).  Given 

the date of the data used in the model, the fact that evidence for COPERT under predicting 

traffic NOx only came to light around 2011, and the fact that COPERT was used by the GLA 

to make the emissions estimates in 2008, it is likely that reported under-prediction of 

emissions in the diesel fleet biased the inventory towards under-prediction.  We corrected the 

NOx kernel model for systematic underestimation bias using the regression equation derived 

between the modelled and measured concentrations following UK statutory operational 

guidance provided by DEFRA (2016), which included forcing the intercept through the 

origin.  The receptor locations were split randomly into training (n = 63) and test (n = 32) 

data sets, with the latter used as an independent verification data set.  The linear regression 

(using the training data) for the model adjustment of the raw model was: ,�� ;RSThQR� ��o = 1.79 ∗ �RQ=R! ;f�R!!R� ��� , .� = 0.88  [1] 

Where PDT measured NOx and Kernel modelled NOx are concentrations in µg/m3. 

 

Legislative limit values specified by the European Union and UK government are for 

NO2, and not NOx, therefore we converted RapidAir NOx concentrations to NO2 

concentrations using the DEFRA NOx to NO2 calculator (version 3.2 downloaded from 

https://laqm.defra.gov.uk/archive/archiveno-calculator.html on 20/3/2017).  The calculator 

was set to use the built-in fleet composition for London (which automatically sets the 

fraction of NOx emissions as NO2 (f-NO2)) and the average NOx background concentration 

over the study area from the PCM model.  Estimated NO2 concentrations were plotted 

against NOx concentrations and fitted with a polynomial regression equation (Equation 2 and 

Figure A5) subsequently applied to the kernel model output to estimate NO2 concentrations 

over the study area: 



 

��� = −0.0001

where NOx and NO2

The calculator uses estimates of regional NO

model for the local authority area being modelled.  We compared NO

for two local authorities within our study area, which had different regional NO

O3 concentrations, and found little effect on the NO

The concentrations of NO

concentrations measured at the receptor locations described in Table A1.  The remaind

this manuscript focuses 

tables and figures for NO

Information. 

 

Figure 1: NO2 concentrations estimated by RapidAir model over the Greater London 

conurbation for the RapidAir kernel model after correction for systematic biases.
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� � 0.2737 ∗ ��� � 18.648,			.� � 1

2 concentrations are in µg/m3. 

The calculator uses estimates of regional NO2, NOx and O3 concentrations from the PCM 

model for the local authority area being modelled.  We compared NO2 

for two local authorities within our study area, which had different regional NO

concentrations, and found little effect on the NOx to NO2 conversion rate (Figure A5).  

The concentrations of NO2 estimated from RapidAir (Figure 1) were compared to NO

concentrations measured at the receptor locations described in Table A1.  The remaind

this manuscript focuses on the analysis of the model for NO2 concentrations.  Corresponding 

tables and figures for NOx model evaluation are provided in Appendix A: Supplementary 

concentrations estimated by RapidAir model over the Greater London 

conurbation for the RapidAir kernel model after correction for systematic biases.
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concentrations from the PCM 

 conversion estimates 

for two local authorities within our study area, which had different regional NO2, NOx and 

conversion rate (Figure A5).   

Figure 1) were compared to NO2 

concentrations measured at the receptor locations described in Table A1.  The remainder of 

concentrations.  Corresponding 

n are provided in Appendix A: Supplementary 

 
concentrations estimated by RapidAir model over the Greater London 

conurbation for the RapidAir kernel model after correction for systematic biases. 
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Figure 2: Scatter plot of NO2 estimated by RapidAir kernel model vs. observed 

concentrations at PDT receptor locations (n = 95).  Receptors are colour coded to represent 

the different site types.  Solid line represents 1:1.  Dashed lines represent FAC2 values. 

 

3.1. Kernel model evaluation at receptor locations 

NO2 concentrations predicted by RapidAir were similar to measured NO2 concentrations 

at PDT receptor locations; however the model underestimated concentrations at some very 

high concentration kerbside measurement sites (Figure 2, Table 1).  Underestimation by 

RapidAir model could be attributed to urban morphologies (including street canyon effects) 

or underestimation in the emissions rates used to predict the NOx concentrations (Beevers et 

al., 2012b).  The correlation between modelled and observed NO2 concentrations was high (r 

= 0.78) and of similar magnitude to previous evaluations of dispersion models (e.g. r = 0.74 

during an evaluation of NOx dispersion models carried out during the ESCAPE study (de 

Hoogh et al., 2014)). 
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Table 1:  NO2 kernel model evaluation statistics (after adjustment for systematic bias) for 

PDT  receptor locations categorised by site type, and for AURN receptor locations. 

 
Site type 

 
n 

 
FAC2 

 
MB 

(µg/m3) 

 
NMB 

 
RMSE 
(µg/m3) 

 
r 

 
COE 

 
IOA 

PDT All 95 0.99 -6.12 -0.12 18.32 0.78 0.43 0.71 
PDT Kerbside 10 0.90 -27.49 -0.31 44.88 0.68 0.13 0.56 
PDT Roadside 45 1.00 -7.36 -0.13 15.57 0.69 0.23 0.62 
PDT Suburban 13 1.00 1.03 0.03 3.46 0.90 0.33 0.67 
PDT Urban 
background 27 1.00 0.43 0.01 5.02 0.88 

0.57 0.78 

         
All AURN 9 1.00 -0.55 -0.01 6.93 0.97 0.73 0.86 

 

DEFRA recommend that an air quality model is acceptable for use if more than half of its 

observations fall within a factor of 2 of the observations (Williams et al., 2011).  The NO2 

RapidAir model meets the FAC2 criterion for all site types, with the lowest FAC2 value 

calculated for kerbside sites (FAC2 = 0.90) (Table 1).  Kerbside concentrations represent the 

worst-case exposure scenarios that are not representative of population exposures over 

extended periods, and consequently annual limit values do not apply at these sites (DEFRA, 

2016).  Similar findings were reported in the DEFRA urban model evaluation exercise for 

NO2 which found that FAC2 values were lower for the kerbside sites than the three other site 

types tested, however all models met the criteria at the different site types (Carslaw, 2011).  

One of the groups participating in the DEFRA exercise included queuing emissions 

(presumably as an additional emission source), which resulted in higher emission rates at 

some locations than the other models and consequently improved the model agreement 

(FAC2 = 1.00).  We made no attempt to include queuing emission (which are not included in 

the official release of the LAEI 2008).  However, had data been available, RapidAir could 

have been used to estimate dispersion from queuing traffic.  It should be noted that the 

number of sites tested in the DEFRA model evaluation was less than the number of sites 

evaluated in our study – DEFRA only included receptor locations where all models predicted 

however no details were provided about the sites not included in the published report. 

Another criterion proposed by DEFRA to identify acceptable models is that NMB values 

should lie between -0.2 and 0.2 (Williams et al., 2011).  NMB values for RapidAir meet this 

criterion when all sites were considered together; and for the individual site types, with the 

exception of the kerbside sties (Table 1).  None of the models tested during the DEFRA 

model evaluation exercise met the NMB ‘acceptance values’ proposed by DEFRA at the 

kerbside sites.  The numbers of models meeting the criteria gets progressively higher for 
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kerbside, roadside and urban background site classifications – with all models meeting the 

NMB values at urban background locations (Carslaw, 2011). 

Model evaluation statistics were calculated for the AURN stations, using annual mean 

concentrations from hourly measurements (Table 1).  The correlation between modelled and 

measured concentrations was greater for the AURN sites (r = 0.97) compared to the PDT 

sites (r = 0.78), with lower bias values.  It is possible that the added uncertainty associated 

with PDT measurements can reduce correlation between observed and modelled 

concentrations.  Annual average NO2 concentrations were similar in magnitude for co-

located PDT and AURN measurements (data not shown), however annual average NOx 

concentration measured by PDTs were lower than concentrations measured using the AURN 

analysers (Figure A9).  The underestimation of NOx concentrations measured using diffusion 

tubes has been attributed to incomplete oxidation of nitric oxide in the tube, which is most 

pronounced at roadside locations with high nitric oxide concentrations (Jimenez et al., 2011). 

 

3.2. Accounting for street canyon effects in RapidAir 

We investigated the inclusion of two techniques within the RapidAir model to describe 

the effects of street canyons on pollution concentrations.  The first technique used geospatial 

surrogates to account for building morphologies within a study area, and the second applied 

industry-standard street canyon models to user-defined street canyon geometries.  These 

techniques are discussed in the following sub-sections. 

 

3.2.1. GIS-surrogates for street canyons 

We investigated if street canyon surrogates measured at each receptor could be used to 

estimate, and subsequently correct for, the effects of urban morphology on modelled NOx 

concentrations, and NOx concentrations converted to NO2 concentrations using the method 

described above. 

The PDT NOx receptors were split randomly into training (n = 63) and test (n = 32) 

datasets with the former used to develop to surrogate-correction equations and the latter used 

as an independent dataset to test the correction equations derived.  A multiple-linear 

calibration equation was derived between Unadjusted modelled NOx vs. both PDT NOx and 

Surrogate for each of the three surrogate values investigated (Table 2a).  Applying the 

calibration equations to the test PDT NOx data resulted in similar coefficients of 

determination and regression equations to the RapidAir estimates (Table 2b).  The 

correlation between the concentrations and surrogates was unaffected by the surrogate used 

(R2 = 0.66). 
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Table 2: Panel (a) shows the linear regression equations between measured and modelled 

NOx for the training data (n = 63) for the baseline model, and the baseline model after 

inclusion of the surrogates.  These equations were used to adjust the test data, and the linear 

regression between the measured and modelled NOx after this adjustment for linear bias is 

shown in panel (b).  Where non-significant intercepts were calculated, the regression lines 

have been forced through the origin. 

(a) Surrogate Measured NOx R
2
 

 RapidAir 1.79*RapidAir_NOx 0.88 
 SVF 1.55*RapidAir_NOx – 49.53*SVF + 53.61 0.66 

 WE 1.62*RapidAir_NOx – 83.56*WE + 93.97 0.66 
 HS 1.61*RapidAir_NOx – 78.14*HS + 88.73 0.66 

(b) Model Measured NOx R
2
 

 RapidAir 1.16*RapidAir_NOx 0.88 
 SVF 1.14*RapidAir_NOx 0.89 
 WE 1.13*RapidAir_NOx 0.88 
 HS 1.14*RapidAir_NOx 0.88 

   

3.2.2. Street canyon models 

Of the 95 PDT receptor locations we identified 23 sites that were located within urban 

street canyons through observations of the urban morphology using GIS and Google Maps 

Street View (Map data ©2017 Google) (Table A1).  Concentrations of NOx within these 

street canyons were estimated using two street canyon models: the STREET model 

(Dabberdt et al., 1973; Johnson et al., 1973) and the AEOLIUS Model (Buckland and 

Middleton, 1999).  CFD models are complex and have long run times therefore are not an 

operationally feasible solution for large scale model correction for canyon effects, therefore 

were not considered during this study. 

The STREET model estimates pollution concentrations empirically within a street canyon 

based on the emissions estimates within the canyon, and takes into account vehicle-induced 

turbulence and entry of air from the top of the canyon.  Concentrations were calculated for 

the windward (CW) and leeward (CL) sides of the canyon using equations 3 and 4:   

   �" = �∗�'��p.�0∗d'�J��J0]J���e    [3] 

   �# = �∗�∗'�>�0�∗'��p.�0∗�    [4] 

Where K is a scaling constant (set to 14 here); Q is the emission rate (g/m/s); U is the 

wind speed (m/s); L0 is the length of individual vehicles (set to 3 m); W is the width of the 
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canyon (m); H is the average building height of the canyon (m); x is the distance from 

emission source to receptor (m); and z is the receptor height (set to 1 m). 

The AEOLIUS model was developed by the UK Meteorological Office in the 1990s and 

was originally developed as a nomogram procedure (Buckland and Middleton, 1999).  The 

scientific basis for the model is presented in a series of papers (Buckland, 1998; Manning et 

al., 2000; Middleton, 1999, 1998a, 1998b).  The AEOLIUS model  shares many common 

features with the Operational Street Pollution Model (OSPM) (Berkowicz, 2000; Hertel and 

Berkowicz, 1989) which underpins many street canyon models included in commercial road 

source dispersion models.  There are three principal contributions to concentrations 

estimated by the AEOLIUS model: a direct contribution from the source to the receptor; a 

recirculating component within a vortex caused by winds flowing across the top of the 

canyon; and the urban background concentration.  The RapidAir model only takes the 

recirculating component from the canyon model and sums this with the kernel derived 

concentrations.  The AEOLIUS model is written in python 2.7 and the implements the 

equations as described in the reference Met Office papers.  We gratefully acknowledge the 

work of Professor Bryan Harris at the University of Bath, who previously developed a 

Mathcad version of the model and who diligently described the model formulations he 

obtained from the Met Office’s original author Dr D. R. Middleton; and much of our work 

was based on Professor Harris’ description of the system of equations which make up 

AEOLIUS (Harris, 2004) (see Appendix A). 

A subset of 383 hours of the annual hourly meteorological data was used in the street 

canyon models to reduce model run times (Appendix A).  The effect of using a subset of 

meteorological data on computed annual average concentrations compared to the whole 

dataset was minimal for both canyon models.  AEOLIUS was slightly more sensitive to the 

use of a sampled meteorological record (STREET model: slope = 1.00, intercept = -0.13, R2 

= 1.00; AEOLIUS model: slope = 0.91, intercept = 0.58, R2 = 0.99) (Figure A6). 

The windward and leeward concentrations predicted by each of the street canyon models 

were averaged on the assumption that over a year concentrations are well mixed within the 

street canyon.  The concentrations predicted within by the canyon model were then added to 

the baseline NOx concentrations predicted by the RapidAir model (representing the urban 

background in the area), and the models corrected for systematic bias following the guidance 

in DEFRA Technical Guidance 2016 (DEFRA, 2016) (Table 3). 
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Table 3: Linear adjustment equations to account for systematic bias in kernel model 

performance.  Equations are shown for the kernel model; the kernel model corrected for 

surrogates; and kernel model including street canyon model.  Intercept was not significant 

for Kernel therefore this has not been included.  Corrections following guidance in TG16 

(DEFRA, 2016). 

Model Model_NOx (μg/m3) 
Kernel 1.79*PDT_NO, R2 = 0.63 

STREET 1.07*PDT_NOx + 35.97, R2 = 0.68 
AEOLIUS 1.46*PDT_NOx + 19.13, R2 = 0.68 

 

3.2.3. RapidAir evaluation after accounting for street canyon effects 

At the receptor locations identified as being located within street canyons the 

underestimation of the receptor concentrations is lowest for the street canyon models, with 

the surrogates model and kernel models similarly under predicting the concentrations (NO2 

NMB = -0.21 for kernel and surrogates, -0.11 for STREET and -0.15 for AEOLIUS models 

(n = 23)) (Table 4 (NO2) and Table A2 (NOx)).  The STREET model predicted higher 

concentrations than the AEOLIUS model which resulted in the smaller NMB values (Figure 

A8).  The difference in modelled concentrations between the STREET and AEOLIUS 

models was very small which is similar to previously published findings (Ganguly and 

Broderick, 2011, 2010; Gualtieri, 2010; Zhu et al., 2015). 

When all receptor locations were considered, there was little difference between the 

pollution concentrations estimated at the receptor locations for the RapidAir model, 

surrogates and the street canyon models (Figure 3 (NO2) and Figure A7 (NOx)).  There was 

also little difference in the model evaluation statistics when the surrogates and street canyon 

models were included (Table 4 (NO2) and Table A2 (NOx)).  Inclusion of the street canyon 

models reduced the NO2 NMB values compared to the standard kernel model, however 

inclusion of the surrogates had little impact on NMB values at the kerbside sites (Kernel = -

0.31, Surrogates = -0.30, STREET = -0.24 and AEOLIUS = -0.25) (Table 2 (NO2) and Table 

A2 (NOx)).  LUR models for NO2 incorporating SVF street canyon surrogates also found 

little improvement in coefficient of determination values after surrogate inclusion (R2 = 0.76 

vs. 0.78) (Eeftens et al., 2013).   
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Figure 3:  Scatter plot of NO2 estimated by RapidAir kernel model vs. observed 

concentrations at PDT receptor locations (NO2) (n = 95): (a) uncorrected concentrations 

from the base-kernel model; and the kernel model after correction using the surrogates for 

street canyons: (b) sky view factor (SVF), (c) hill shading (HS), (d) wind effect (WE), (e) 

STREET canyon model and (f) AEOLIUS canyon model.  The solid line represents 1:1, 

while the dashed lines represent FAC2 values. 

 

Despite the negligible change in model evaluation statistics the canyon models require 

less adjustment for systematic bias than the kernel model (Table 3).  Therefore, when this 

model is applied to areas of the city which do not have any measurements the model is less 

likely to be subject to over or under estimation than the standard model which does not 

attempt to address urban morphology.  The smallest systematic adjustments were required 

for the two separate street canyon models combined with the kernel model (Table 3).  For 

instance the run including the USEPA STREET model required adjustment using the linear 

regression equation Adjusted NOX = 1.07 * Modelled NOx + 35.58.  The slope is significantly 

lower than the regression equation used to correct the raw model (1.07 vs 1.79).  The 

measured concentrations of NOx in the street canyons were typically very high (up to 520 

µg/m3) so the reduction of the slope required in the adjustment is an acceptable trade-off for 
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a small increase in the intercept.  The results were similar for the AEOLIUS model.  The 

inclusion of the street canyon models is therefore an important step in accounting for urban 

morphology which can in practice be as influential to concentrations as emission density for 

air pollution concentrations in an urban setting.   

The use of surrogates to account for urban morphology effects, such as street canyons, 

have advantages over the more traditional street canyon models in that they can be more 

readily applied to large study areas.  Using GIS means that surrogate values can rapidly be 

calculated across a large study area, and consequently correct the model quickly over the 

study area.  Canyon models, however, require user input to select canyon locations (and 

therefore cannot be easily computed for large areas), and require additional information 

about canyon widths, heights, and traffic information such as speed.  Additionally, the 

transition from “built up” to “open” within the city (for example at the boundary between a 

park and buildings) is treated in a gradual manner- unlike normal street canyon models 

which impose a hard boundary at the canyon edge which is “smoothed” artificially in a GIS 

with interpolation routines. 

Currently these surrogates do not take wind speed into account which, for annual 

averages, we anticipate to have little influence on the model accuracy.  However, if the 

surrogates were to be applied to a dispersion model with higher (e.g. hourly) temporal 

resolution then some modification of the surrogates to account for wind speed effects may be 

required in order to obtain similar modelled and measured pollution concentrations. 
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Table 4: Summary model evaluation statistics for annual mean NO2 at receptor locations: (a) 
PDT locations (all sites and split by site type); (b) AURN sites only; (c) street canyon sites 
only.  Statistics are given for the bias corrected Kernel only model, the kernel model after 
correction using the surrogates for street canyons and then bias corrected, and using the 
street canyon models with bias correction. 

Site type Model n FAC2 
MB 

(µg/m3) 
NMB 

RMSE 
(µg/m3) 

r COE IOA 

(a) all sites:          

PDT All 

Kernel 95 0.99 -6.12 -0.12 18.32 0.78 0.43 0.71 
SVF 95 0.99 -4.98 -0.09 17.80 0.80 0.45 0.73 
WE 95 0.98 -4.97 -0.09 18.24 0.78 0.44 0.72 
HS 95 0.98 -5.10 -0.10 18.38 0.78 0.43 0.72 

 STREET 95 1.00 -4.10 -0.08 16.25 0.84 0.41 0.71 
 AEOLIUS 95 0.99 -4.10 -0.08 16.54 0.83 0.42 0.73 

PDT 
Kerbside 

Kernel 10 0.90 -27.49 -0.31 44.88 0.68 0.13 0.56 
SVF 10 0.90 -26.24 -0.29 44.28 0.69 0.17 0.59 
WE 10 0.90 -26.62 -0.30 45.10 0.66 0.16 0.58 
HS 10 0.90 -27.21 -0.30 45.64 0.66 0.15 0.58 

 STREET 10 1.00 -21.12 -0.24 35.58 0.84 0.45 0.65 
 AEOLIUS 10 0.90 -22.59 -0.25 39.03 0.77 0.33 0.62 

PDT 
Roadside 

Kernel 45 1.00 -7.36 -0.13 15.57 0.69 0.23 0.62 
SVF 45 1.00 -6.65 -0.12 14.60 0.73 0.30 0.65 
WE 45 0.98 -6.40 -0.11 15.04 0.70 0.30 0.65 
HS 45 0.98 -6.53 -0.11 14.97 0.71 0.29 0.64 

 STREET 45 1.00 -6.07 -0.11 15.57 0.66 0.19 0.60 
 AEOLIUS 45 1.00 -5.55 -0.10 14.65 0.70 0.25 0.64 

PDT 
Suburban 

Kernel 13 1.00 1.03 0.03 3.46 0.90 0.33 0.67 
SVF 13 1.00 2.55 0.08 4.38 0.91 0.16 0.58 
WE 13 1.00 3.20 0.10 4.76 0.90 0.14 0.57 
HS 13 1.00 3.17 0.10 4.87 0.88 0.09 0.55 

 STREET 13 1.00 4.86 0.15 6.57 0.90 -0.26 0.37 
 AEOLIUS 13 1.00 3.51 0.11 5.15 0.90 0.23 0.54 

PDT Urban 
background 

Kernel 27 1.00 0.43 0.01 5.02 0.88 0.57 0.78 
SVF 27 1.00 2.05 0.05 4.89 0.91 0.53 0.77 
WE 27 1.00 1.49 0.04 5.42 0.87 0.48 0.74 
HS 27 1.00 1.48 0.04 5.69 0.85 0.47 0.73 

 STREET 27 1.00 1.16 0.03 5.95 0.88 -0.04 0.73 
 AEOLIUS 27 1.00 1.49 0.04 5.24 0.88 -0.12 0.76 

(b) AURN sites only:         
 Kernel 9 1.00 -0.55 -0.01 6.93 0.97 0.73 0.86 
 SVF 9 1.00 -0.54 -0.01 7.31 0.97 0.73 0.86 
 WE 9 1.00 -0.23 -0.00 7.50 0.97 0.71 0.86 
 HS 9 1.00 -0.80 6.25 7.26 0.97 0.71 0.86 
 STREET 9 1.00 2.06 0.04 9.71 0.94 0.45 0.80 
 AEOLIUS 9 1.00 2.05 0.04 8.32 0.95 0.50 0.83 

(c) street canyon sites only:         
 Kernel 23 0.96 -17.20 -0.23 32.68 0.70 0.20 0.59 
 SVF 23 0.96 -15.37 -0.20 31.68 0.72 0.25 0.63 
 WE 23 0.96 -16.10 -0.21 32.46 0.70 0.22 0.61 
 HS 23 0.96 -16.33 -0.22 32.72 0.69 0.21 0.61 
 STREET 23 1.00 -8.62 -0.11 26.23 0.80 0.34 0.64 
 AEOLIUS 23 0.96 -11.03 -0.15 28.24 0.76 0.33 0.64 
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3.3.  Advantages and limitations of RapidAir 

The central focus of this work is to evaluate an air quality modelling platform aimed at 

the operational setting where time is often a priority and manpower/computational resources 

are limited.   An example of an operational use of RapidAir is given in Appendix A.  The 

RapidAir model succeeds as an operational air quality model in the context of very large 

urban areas and as a decision support tool but the efficiency comes with some drawbacks.  

Therefore, it is appropriate to outline the key benefits and limitations of the approach to 

enable practitioners to interpret this work in light of their current experiences in running city 

scale dispersion models.  

Clearly a significant benefit with RapidAir is reduced computational burden.  Run times 

of 10 minutes or less for a very large city with > 8 million inhabitants present a significant 

benefit for the operational modeller and decision makers who require fast but robust 

analyses.  The RapidAir platform allows extremely efficient policy testing and other “what 

if” model runs for new emission scenarios to be undertaken in a few minutes on a standard 

office computer which is to our knowledge not possible using existing platforms.  The model 

performance metrics for RapidAir in Table 4 are very similar to those computed for other 

dispersion modelling systems in the DEFRA inter comparison exercise.  For example the 

RapidAir outputs for kerbside locations in London have NO2 RMSE values of 35.58 – 45.64 

µg/m3 (r = 0.66 - 0.84, n = 10) where the models in the inter comparison have RMSE values 

ranging from 29.39 to 67.09 µg/m3 (r = 0.15 - 0.93, n = 7).  At roadside locations the 

RapidAir outputs have NO2 RMSE values of 14.60 – 15.57 µg/m3 (r = 0.66 - 0.73, n = 45) 

where the models in the inter comparison have RMSE values ranging from 9.94 to 19.69 

µg/m3. (r = 0.38 - 0.89, n = 30).  Some of the variation between RapidAir and the other 

models will be due to the different number of receptors in each category (which in reality 

may help or hinder our model performance) but it is impossible for us to match the locations 

exactly for the reasons explained earlier.  The model results also yielded good results for the 

COE and IOA when compared with the definitions for these metrics provided by Carslaw 

and Ropkins (2012).  Suffice to say the key model metrics for the 2008 model run in London 

are very similar to standard modelling suites used in the UK and which are used and 

accepted by DEFRA for use in compliance assessments at the highest level of statutory 

European air quality reporting. 

In our view the potential drawbacks of the model must be balanced against the benefits 

described above.  There may be the suggestion that the kernel based model represents a 

significantly simplified treatment of urban dispersion compared with models currently in use 

in the UK which iterate over thousands of receptors and calculate contributions at those 
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receptors as a function of those sources (with very significant run times).  In fact all 

Gaussian and empirical models are already a greatly simplified picture of reality in urban 

settings and the methodology in RapidAir does not significantly alter the overall level of 

simplification compared with the real situation.  In any case the model results are compared 

against pollution measurements as with all other models using the same metrics and the 

results of that performance assessment are comparable with other platforms.  We therefore 

suggest that in the operational setting these perceived deficiencies in the methodology are 

greatly outweighed by the benefits and the model is demonstrably fit for purpose for use in 

air pollution modelling in the urban environment. 

The performance statistics for the surrogates for urban morphology are reasonably close 

to those from the models which treat canyons discretely.  Again our focus is on operational 

modelling where reproducible and efficient workflows are as important as the tools selected 

for use.  Based on this work we would suggest that for compliance assessment RapidAir is 

used with either the STREET or AEOLIUS model options included as the run times are not 

significantly impacted by including these models.  The model results should be compared 

with measured concentrations and the modeller may choose the best performing street 

canyon model for their case.  The surrogate models should be used as screening tools and 

perhaps to spatially delineate locations where the street canyon models should be invoked, 

which is often difficult for a large and complex urban environment where resources do not 

permit thorough investigation and spatial treatment of the morphological conditions. 

 

4. Conclusions 

We developed a kernel-based dispersion model (RapidAir) combining AERMOD and 

open-source scientific computing methods to estimate pollution concentrations at fine spatial 

resolution.  Model input data was sourced from public domains to facilitate comparison with 

pollution estimates by other research groups modelling the same location with the same input 

data.  The RapidAir dispersion model took approximately 7 minutes to model the Greater 

London conurbation (~ 3,500 km2) at 5 x 5 m resolution. 

We evaluated NOx and NO2 model predictions at 107 sites (12 automatic monitoring and 

95 passive sampling tube sites) across this conurbation.  After correction for systematic 

under estimation bias in the initial RapidAir model, FAC2 values for modelled 

concentrations were > 0.90 at the 107 evaluation sites.  RMSE values decreased through the 

site categories: Kerbside, Roadside, Urban Background and Suburban (RMSE = 45, 16, 5 

and 4 µg/m3 respectively) and the correlations between predicted and observed 

concentrations were higher for the less built up sites than the Roadside or Kerbside sites (r = 
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0.68, 0.69, 0.88 and 0.90 for Kerbside, Roadside, Urban Background and Suburban 

respectively).  This finding is consistent with results from other modelling groups 

participating in the DEFRA inter comparison, whose RMSE and r values ranged from 3-70 

µg/m3 and 0.15 – 0.93 respectively. 

The larger RMSE values at the sites in proximity to traffic sources may have resulted 

from the presence of street canyons that trap pollutants leading to elevated concentrations – 

an effect that cannot be described in dispersion models unless urban morphologies are taken 

into consideration.  Correspondingly, we used geospatial surrogates (sky-view factor, hill 

shading and wind effect) and separate street canyon models (STREET and AEOLIUS) to 

improve modelled concentrations at roadside sites.  The street canyon models increased the 

model accuracy while the street canyon surrogates had limited effect on model prediction 

accuracy (NMB kerbside: RapidAir base-kernel = -0.31, surrogates = -0.30, STREET model 

= -0.24 and AEOLIUS = -0.25).  Consequently, the combined models may be anticipated to 

provide more accurate estimates when extrapolated to locations without monitoring.  The 

geospatial surrogates have potential as simple means of incorporating canyon effects into a 

large city scale dispersion model.  The advantage of using simple geospatial surrogates for 

street canyons instead of modelling canyons discretely include: reduced run times, smaller 

user input required and the transition from ‘built up’ to ‘open’ environments is treated 

gradually. 

Overall the RapidAir model performance statistics were consistent with those found by 

other groups in London in 2008. 
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Figure A1:  NOx emissions for each road link in London, generated from LAEI emissions 

data.  The points on the plot represent the location of the receptors (n = 107). 
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Figure A2:  Annual average background concentrations of NOx from non-road traffic 

sources in London in 2008 from the DEFRA Pollution Climate Mapping dataset. The main 

visible emissions source sectors are Heathrow Airport to the west and various domestic, 

commercial, industrial and other non-road traffic source types around the centre of the city. 
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(a) 

 

(b) 

 

(c) 

 

Figure A3:  Geospatial surrogate values at Marylebone Road for (a) sky view factor (SVF), 

(b) hill shading (HS) and (c) wind effect (WE).  The point shown represents the PDT 

monitoring site located at Marylebone Road.  



 

 

(a) 

(b) 

 

Figure A4: Concentrations of NO

(a) the Kernel model after correction for systematic biases; and (b) the kernel model + SVF 

correction, and then adjusted for systematic bias.

7. RapidAir evaluation

Concentrations of NOx estimated using RapidAir over the London study area for 

(a) the Kernel model after correction for systematic biases; and (b) the kernel model + SVF 

correction, and then adjusted for systematic bias.. 
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estimated using RapidAir over the London study area for 

(a) the Kernel model after correction for systematic biases; and (b) the kernel model + SVF 
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(a) 

 

(b) 

 

Figure A5:  Regression between hypothetical NOx and NO2 concentrations based on the 

DEFRA NOx to NO2 calculator (version 3.2, 6 September 2012, available from 

https://laqm.defra.gov.uk/archive/archiveno-calculator.html).  (a) shows the regression when 

the study district was set to Camden (estimated regional concentrations of NO2 and O3 29 

and 47 μg/m3 respectively) and (b) shows when the study district used was Bromley 

(estimated regional concentrations of NO2 and O3 17 and 55 μg/m3 respectively). 

  

y = -0.0001x2 + 0.2737x + 18.648
R² = 0.9971

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

N
O

2
(μ

g/
m

3 )

NOx (μg/m3)

y = -0.0001x2 + 0.2719x + 18.586
R² = 0.9972

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

N
O

2
(μ

g/
m

3 )

NOx (μg/m3)



7. RapidAir evaluation 

252 

 

AEOLIUS model parameterisation 

The AEOLIUS model is a semi-empirical model to account for street canyon effects, and as 

such is more complex than the STREET model.  Concentrations are calculated for the 

windward and leeward sides of the road using the equations detailed below (based on 

equations from Harris (2004).  The leeward and windward concentrations described below 

are only calculated for streets that were perpendicular to the direction of the wind.  

Concentrations calculated in ppb, and were converted to µg/m3 by multiplication by 1.91. 

Inputs: 

Emission rates (Q, µg/m/s); traffic speeds (vt, mph), traffic density (f, vehicles per hour), % 

of cars and heavy good vehicles (fc and fh respectively), wind speed at roof level (ur, m/s), 

street canyon width (w, m), street canyon height (h, m), and angle of street (θ). 

 

Leeward concentrations: 

The leeward concentrations = sum(Cdlee + Crec) where Cdlee is the direct contribution from 

vehicles and Crec is the pollution associated with recirculation. 

Direct contribution (Cdlee): .R:<Q:h!S�<f=�f=R'!D0 = ;<= H�, !� ∗ T<='�0N  (meters) 

Where: �fQ�Ro!R=U�ℎ'!�0 = 2 ∗ Q ∗ ℎ   (meters) 

And r = wind speed dependence factor = 1 if ur > 2 m/s and = ur/2 otherwise. 

If the recirculation zone is greater than the width of the canyon: 

�m�EE = � 2� ∗ �'� ∗ ��0 ∗ != @��� ∗ �ℎl ∗ h�� + 1O 

Where: 

σw = mechanical turbulence from wind and traffic (m/s) = �'� ∗ h�0� + ��l� 

λ = constant for removal at the top of the canyon = 0.1 

σwo = traffic-created turbulence (m/s) = X ∗ �� ∗¡¢∗�¢�� ∗¡£∗�£�  

where sc = mean surface area of cars (4 m2), sh = mean surface area of heavy vehicles 

(16 m2) and b = aerodynamic constant (0.18) 

us = wind speed at street level (m/s) = hD ¤�Ab£¥¦¥c�Ab £¦¥c§ H1 − � ∗ T<='�0N 

ho = effective height of emissions (2 m)  

zo = effective roughness length (0.6 m) 

d = model dependence (0.45) 
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If the recirculation zone is less than the width of the canyon: 

�m�EE = �2� �'� ∗ ��0 ©̈©©
ª!= @��� ∗ �?ℎl ∗ h� � + 1O + . ∗ != «ℎl + �� ∗ �Ph��� ∗ !Dh� + ℎl ¬ + ��­C d1 − Rb>® m¯q°� ce±²²

²³ 
 Where: 

d1 (m) = min(w, lr) 

R = max(0, Cang) 

Cang = cos(2*r* θ) 

d6 (m)= min(max(lmax, lr), x1) 

lmax = w/sin(θ) 

x1 = vertical distance (m) at which pollutants can escape canyon = 
q°'�>�¥0´µ  

ωt = removal at top of the canyon (m/s) = �'� ∗ hD0� + 0.4'��l0� 

d7 (m) = max(lmax, x1)-x1 

Recirculation contribution (Crec): 

��EE = ¶b��c �?·­C ∗ �� + ­� ∗ �� 

Where 

d2 (m) = min(w, 0.5*lr) 

d3 (m) = 
0, ���¸ − 1;So ' 0!�

 

ls (m) = �'0.5 ∗ !D0� + ℎ� 

ωs = removal speed at the side of the canyon (m/s) = �h�� + ��l� 

 

Windward concentrations (Cdwind): 

Final windward concentrations = Cdwind + Crec.  Cdwind = 0 if lr ≥ w, else: 

�m�BAm = �2� �� ∗ �� �!= ��� + �ºh� + ℎl + 1� + ��­C d1 − Rb>® m»q°� ce� 

 

d4 (m) = min[(w – lr), x1] 

d5 (m) = [max[(w – lr),x1]]-x1  
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Impact of using a subset of meteorology on street canyon model predictions 

We used a subset of the annual hourly meteorology data in the two street canyon models to 

improve model run times, without detrimentally impacting the predicted concentrations 

(Israel, 1992; Tejada and Punzalan, 2012; Yamane, 1967).  The number of meteorological 

hours required to provide a representative sample size (n) was calculated using: 

= = �1 + �'R�0 

Where N = the number of samples in the whole population (N = 8600 hours) and e is the 

level of precision (e = 0.05 for a 95 % confidence interval).   

This leads to a representative sample size of 383 hours of meteorology data, which was 

randomly selected from the complete data set. 

(a) 

 

(b) 

 

Figure A6:  Scatter plots showing the agreement between (a) STREET NOx and (b) 

AEOLIUS estimates when a subset of meteorological data was used (y-axis) compared to the 

whole meteorological data (x-axis). 
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Figure A7:  Scatter plots showing the NOx concentrations measured by the passive diffusion 

tubes and those estimated by the kernel model: (a) concentrations from the kernel model; and 

the raw kernel model after correction using the surrogates for street canyons: (b) sky view 

factor (SVF), (c) hill shading (HS), (d) wind effect (WE), (e) STREET canyon model and (f) 

AEOLIUS canyon model.  The solid line represents 1:1, while the dashed lines represent 

FAC2 values. 
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Figure A8:  Scatter plot showing a comparison of NOx concentrations predicted in the street 

canyon locations by the STREET model and the AEOLIUS model. 
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(a) 

 

(b)

 

(c) 

 

(d)

 

Figure A9:  Scatter plots showing NOx concentrations measured by the AURN stations 

against concentrations predicted by (a) the adjusted kernel model; (b) SVF kernel; (c) 

STREET kernel; and (d) co-located PDTs.  
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Example use case for the RapidAir model- estimating number of buildings in London 

with levels of NO2 above the annual mean standard 

The speed of the modelling systems allows very efficient decision support analyses. For 

instance, we can use GIS based zonal statistics on the generated NO2 concentration surface 

to determine the average for all buildings, and then the number of buildings in London which 

exceeded the annual mean NO2 standard of 40 µg/m3 in 2008. 

The building height layer used in the analysis contains 764,308 building footprints as 

polygons in Esri Shapefile format. Using the zonal statistics (available from 

https://docs.qgis.org/2.2/en/docs/user_manual/plugins/plugins_zonal_statistics.html)  plugin 

in the QGIS software we compute the maximum, minimum and average NO2 concentration 

from the RapidAir dispersion model for concentration cells which lie within each building 

polygon (Figure S10). This step is again very computationally efficient and only adds about 

5 minutes onto the analysis time. In this instance we use the NO2 concentration rasters from 

the linearly adjusted RapidAir model though the process is exactly the same for all of the 

model outputs. We used the pandas library in python 2.7 to calculate the from the total 

number of buildings. The average concentration across every building in the city was 33 

µg/m3 (Figure S11).  



 

Figure A10: Maximum modelled NO

2008.  Buildings with orange or red symbology are > 40 

shows the whole city model; 2 shows the area around Heathrow Airport; 3 is the city centre; 

and 4 is around the Dartford Crossing. Most buildin

centre with more isolated pockets of higher concentrations around key roads and the airport.

7. RapidAir evaluation

: Maximum modelled NO2 values (μg/m3) in building footprints in London in 

2008.  Buildings with orange or red symbology are > 40 μg/m3 annual mean standard. Box 1 

shows the whole city model; 2 shows the area around Heathrow Airport; 3 is the city centre; 

and 4 is around the Dartford Crossing. Most buildings exceeding the standard are in the city 

centre with more isolated pockets of higher concentrations around key roads and the airport.
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footprints in London in 

annual mean standard. Box 1 

shows the whole city model; 2 shows the area around Heathrow Airport; 3 is the city centre; 

gs exceeding the standard are in the city 

centre with more isolated pockets of higher concentrations around key roads and the airport. 



 

Figure A11: Frequency distribution of maximum annual average (

>700,000 buildings in London. The

annual average standard of 40 µg/m

 

7. RapidAir evaluation

: Frequency distribution of maximum annual average (NO2) concentrations at 

>700,000 buildings in London. The vast of majority of buildings in the city are below the 

annual average standard of 40 µg/m3. 
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Table A1: Details of receptor used for model evaluation.  The type of receptor (PDT or 

AURN), name of site, site type, coordinates and measured NOx as NO2 are provided for each 

site.  The PDT sites marked with an asterisk (*) were used as test data (i.e. they were not 

used to derive the surrogate correction equations).  SC denotes PDT sites that were identified 

as street canyon locations. 

Receptor  Site name Site type Easting Northing 

NOx as 

NO2 

(μg/m
3
) 

AURN Camden Kerbside urban traffic 526633 184390 178 
 Haringley Roadside urban traffic 533894 190707 76 
 London Bexley suburban  551859 176381 57 
 London Eltham suburban  543981 174655 40 
 London Harlington urban industrial 508295 177800 64 
 London Hillingdon urban background 506941 178610 111 
 London Marylebone  urban traffic 528126 182015 313 
 London N Kensington urban background 524045 181749 49 
 Tower Hamlets urban traffic 535927 182218 141 

PDT BG1* suburban 551053 187233 41 
 BG2 suburban 548043 183320 57 
 BG3 kerbside 543955 184432 102 
 BL0 urban background 530123 182014 94 
 BN1SC kerbside 526342 192223 139 
 BN2* urban background 524370 189640 54 
 BT1* suburban 519560 189271 52 
 BT4* roadside 520866 185169 253 
 BT6* roadside 521619 183554 104 
 BT7 urban background 525173 183297 53 
 BX1 suburban 551864 176379 57 
 BX2 suburban 549980 179064 49 
 BX7 roadside 552615 175416 106 
 BX8* roadside 552566 175384 84 
 BY7 roadside 540518 169324 81 
 CD1*SC kerbside 526629 184391 177 
 CD3*SC roadside 530057 181285 169 
 CD4 urban background 530511 181665 104 
 CD5 urban background 530511 181665 101 
 CR2 roadside 531123 164299 127 
 CR4*SC roadside 532583 165636 95 
 CR5*SC kerbside 530626 169707 173 
 CR6 suburban 531369 166096 59 
 CT1 urban background 532235 180892 80 
 CT3* urban background 533480 181186 91 
 CT6SC roadside 532527 180789 431 
 CY1* roadside 533901 171290 112 
 EA1 urban background 517541 180738 67 
 EA2*SC roadside 520304 180054 127 
 EA6 roadside 518537 182708 370 
 EA7* urban background 511677 180071 52 
 EL1 urban background 511403 164915 36 
 EL2SC roadside 514024 164792 92 
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 EN1 suburban 533900 195800 47 
 EN3 urban background 535440 195000 46 
 EN4 roadside 535056 192470 98 
 EN5 roadside 529894 192223 171 
 GB6 roadside 544997 175098 109 
 GN0* roadside 544084 178881 101 
 GN2 urban background 540169 178999 73 
 GN3*SC roadside 545560 178526 90 
 GR4 suburban 543978 174655 40 
 GR5* roadside 538960 177954 101 
 GR7 roadside 538141 176710 112 
 GR8* roadside 540200 178367 223 
 GR9* roadside 541879 175016 101 
 HF1 roadside 523420 178590 186 
 HF2* urban background 523625 179010 61 
 HG1SC roadside 533891 190707 75 
 HG2 urban background 529894 189125 49 
 HI0 suburban 506945 178609 110 
 HI1 roadside 510835 184916 104 
 HI2 roadside 506990 181925 72 
 HI3 roadside 509551 176974 84 
 HK4 urban background 534830 186234 89 
 HK6SC roadside 532947 182575 145 
 HR1 urban background 517877 192314 39 
 HR2SC roadside 513504 188998 111 
 HS2* suburban 510371 177198 66 
 HS4*SC roadside 521083 178501 165 
 HS5* roadside 517423 178070 145 
 HS6 roadside 513653 176842 130 
 HS7 urban background 509332 174997 63 
 HV1* roadside 553110 182516 80 
 HV3SC roadside 551105 188261 76 
 IS2SC roadside 530698 185735 158 
 IS6* urban background 531325 186032 58 
 KC1 urban background 524045 181752 49 
 KC2 roadside 526524 178965 156 
 KC3 roadside 527518 179395 229 
 KC4*SC roadside 527268 178089 217 
 KC5SC kerbside 525695 178363 295 
 LB1 roadside 530628 173368 115 
 LB3 urban background 532137 175701 54 
 LB4*SC kerbside 531070 175593 519 
 LH0 urban background 508300 177800 19 
 LH2 urban background 508393 176742 115 
 LW1 urban background 537675 173689 101 
 LW2*SC roadside 536241 176932 148 
 MY1SC kerbside 528125 182016 312 
 RB1* urban background 544377 187647 57 
 RB3 kerbside 544555 190402 123 
 RB4* roadside 540823 188369 95 
 RB5 roadside 540017 190488 115 
 RI1SC roadside 522498 177165 83 
 RI2 suburban 522989 176729 43 
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 SK1 urban background 532240 178561 78 
 ST3 suburban 527776 164513 51 
 ST4*SC kerbside 528925 163804 175 
 ST6SC kerbside 522557 165787 167 
 TD0 suburban 515115 170778 38 
 TH1 urban background 537509 180867 56 
 TH2 roadside 535927 182221 141 
 TH3 urban background 535100 182664 57 
 TH4* roadside 538290 181452 166 
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Table A2: Summary model evaluation statistics for annual mean NOx at the test receptor at 

(a) PDT locations (all sites and split by site type) and (b) AURN stations.  Statistics are 

given for the Kernel model, the kernel model after correction using the surrogates for street 

canyons and using the street canyon models. 

Site type Model n FAC2 
MB 

(µg/m
3
) 

NMB 
RMSE 

(µg/m
3
) 

r 
COE IOA 

(a) PDT 
All 

Kernel 95 0.95 -8.13 -0.07 50.16 0.80 0.41 0.71 
SVF 95 0.97 -3.84 -0.03 48.26 0.81 0.43 0.71 
HS 95 0.97 -4.33 -0.04 49.46 0.80 0.41 0.71 
WE 95 0.96 -3.81 -0.03 49.14 0.80 0.42 0.71 

 STREET 95 0.96 0.00 0.00 46.54 0.82 0.41 0.71 
 AEOLIUS 95 0.97 0.00 0.00 46.37 0.82 0.42 0.71 

PDT 
Kerbside 

Kernel 10 0.80 -46.06 -0.21 96.54 0.71 0.18 0.58 
SVF 10 1.00 -41.46 -0.19 91.68 0.73 0.29 0.64 
HS 10 0.90 -43.13 -0.20 95.49 0.70 0.24 0.62 
WE 10 1.00 -45.65 -0.21 97.17 0.70 0.23 0.61 

 STREET 10 1.00 -17.74 -0.08 61.15 0.88 0.45 0.73 
 AEOLIUS 10 1.00 -24.43 -0.11 76.41 0.80 0.33 0.66 

PDT 
Roadside 

Kernel 45 0.96 -16.50 -0.12 52.20 0.73 0.24 0.62 
SVF 45 0.96 -13.82 -0.10 50.32 0.74 0.32 0.66 
HS 45 0.96 -12.76 -0.09 51.26 0.72 0.29 0.65 
WE 45 0.96 -13.24 -0.10 51.16 0.73 0.28 0.64 

 STREET 45 0.93 -11.34 -0.08 57.79 0.63 0.19 0.59 
 AEOLIUS 45 0.96 -9.23 -0.07 52.53 0.70 0.25 0.63 

PDT 
Suburban 

Kernel 13 1.00 -1.52 -0.03 7.30 0.92 0.47 0.73 
SVF 13 1.00 4.27 0.08 9.74 0.88 0.25 0.62 
HS 13 1.00 6.75 0.12 9.63 0.93 0.34 0.67 
WE 13 1.00 6.63 0.12 10.32 0.90 0.26 0.63 

 STREET 13 1.00 13.08 0.24 16.32 0.92 -0.26 0.37 
 AEOLIUS 13 1.00 7.91 0.14 11.09 0.92 0.23 0.61 

PDT Urban 
background 

Kernel 27 0.96 16.69 0.25 28.91 0.84 0.00 0.50 
SVF 27 0.96 22.83 0.34 28.55 0.87 -0.27 0.36 
HS 27 0.96 20.59 0.31 26.33 0.86 -0.18 0.41 
WE 27 0.96 20.56 0.31 26.39 0.84 -0.19 0.41 

 STREET 27 0.96 19.17 0.29 23.25 0.84 -0.04 0.48 
 AEOLIUS 27 0.96 20.62 0.31 27.30 0.84 -0.12 0.44 

(b) Kernel 9 1.00 16.54 0.14 36.95 0.96 0.65 0.83 
 SVF 9 1.00 16.26 0.14 35.59 0.96 0.68 0.84 
 HS 9 1.00 15.16 0.13 34.10 0.96 0.64 0.82 
 WE 9 1.00 17.42 0.15 36.15 0.96 0.65 0.82 
 STREET 9 1.00 27.09 0.24 47.25 0.94 0.45 0.72 
 AEOLIUS 9 1.00 27.49 0.24 47.83 0.95 0.50 0.75 

(c) Kernel 23 0.91 -23.89 -0.13 73.82 0.77 0.27 0.63 
 SVF 23 1.00 -16.87 -0.09 69.21 0.79 0.37 0.68 
 HS 23 1.00 -20.75 -0.12 73.15 0.77 0.31 0.66 
 WE 23 0.96 -19.82 -0.11 72.51 0.77 0.32 0.66 
 STREET 23 0.96 12.21 0.07 58.22 0.85 0.34 0.67 
 AEOLIUS 23 1.00 2.06 0.01 62.77 0.82 0.33 0.66 
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8. Conclusions 

 

As a result of detrimental impacts associated with exposure to air pollution, including 

cardiovascular and respiratory illness, ambient concentrations that members of the public are 

exposed to need to be assessed.  Such assessment involves monitoring or modelling studies, 

with the former providing measures of ambient concentrations at a limited number of 

locations, while the latter provides estimates at multiple locations within a study area.  It is 

important that the pollution estimates from these techniques are accurate to avoid exposure 

misclassification, which may lead to underestimation of health effects associated with actual 

exposures. 

Monitoring by government and local authorities in the UK involves static real-time 

monitors supplemented by Palmes passive sampling devices.  Typically Palmes samplers 

provide an average concentration over a 4-5 week period, which is appropriate to determine 

annual average concentrations and thus can be used to estimate longer-term exposures.  

However, short-duration exposures to pollution can also impact human health.  Therefore I 

deployed Palmes passive samplers for 2-3 day exposures and demonstrated that the precision 

and accuracy of the samplers were not affected compared with samplers exposed for longer 

(1 week) durations.  This opens up the possibility of using passive samplers for short 

duration personal monitoring including periods when people are mobile, thus providing more 

accurate estimates of exposure for those individuals.  This can be used by epidemiologists to 

identify locations or individuals with higher exposures and provide more evidence describing 

the relationships between exposure and health.  Alternatively, the shorter exposure times can 

be used to rapidly measure a large number of sites within a study area to provide information 

about the spatial gradients in pollution concentrations.  However, I observed that the Palmes 

samplers overestimated ambient concentrations as a result of wind-speed effects causing 

turbulence within the diffusion tube, consequently reducing the effective tube length and 

hence increasing the uptake rate.  I established that the relationship between uptake rate and 

wind-speed could be used to post-process the measurements to minimise this effect.   

However, this approach relied on wind-speed estimates at the diffusion tube location (which 

are generally not available for large networks of sites) and would be unlikely to be applicable 

for personal monitoring when turbulence could be different during different activities e.g. 

walking vs. indoors.  Modification of the design of the Palmes sampler, through use of a 

membrane over the open end of the passive sampler reduced the turbulent effects associated 

with wind-speed, provided more accurate estimates of ambient concentrations for both the 

exposed urban background site and less exposed roadside location.  Therefore I suggest that 
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Palmes samplers could be deployed with a membrane over the open end during 

measurements to minimise wind-speed effects and consequently improve the accuracy of the 

sampler measurements to measure ambient concentrations under all static pollution 

measurements.  As part of these studies I also deployed badge type Ogawa samplers, whose 

shorter path length and faster uptake rates make them more suited to shorter exposure 

durations.  After correction of the Palmes sampler for wind-speed effects, the two sampler 

types produced similar estimates of pollution and therefore there is no necessity to change 

the regulatory diffusion tubes to badge samplers if shorter duration exposures are required.  

The passive sampler research was carried out at two monitoring locations in Glasgow that 

were anticipated to have different pollution concentrations (urban background vs. roadside) 

and experience different wind-speeds at the site (higher wind-speeds anticipated at the more 

open urban background locations).  The correction of uptake rate for wind-speed had a more 

positive effect at the urban background location than the roadside site, however this may 

have been a result of inaccurate estimates of wind-speed at the roadside location (wind-speed 

measurements at the urban background site were used).  Future work should aim to make 

concurrent wind-speed and passive sampler measurements at the roadside location to 

determine the ‘true’ wind-speed at these sites.  These results may show that when a site 

experiences low wind-speeds the correction processes applied may not be necessary. 

Recently, portable real-time sensors have been developed to improve upon the temporal 

limitation of the diffusion samplers.  These real-time sensors provide fine temporally 

resolved (generally 1-minute) concentration estimates while their small size enables use in 

personal monitoring campaigns.  The accuracy of many if not all portable sensors is 

relatively unknown as a result of limited field-evaluation (in contrast to government real-

time reference analysers, which go through rigorous quality assurance and quality control 

procedures).  I demonstrated that calibration of these sensors under representative field 

conditions is essential in order to obtain accurate pollution estimates at an urban background 

site.  For example, Aeroqual NO2 sensors required correction for cross-sensitivity to O3.  I 

also identified that the most accurate pollution estimates from Aeroqual sensors were 

obtained when frequent, intermittent calibrations were used; and that estimated 

concentrations from a single calibration at the start of a monitoring campaign were subject to 

larger errors as a result of instrument drift over the study period.  I also evaluated AE51black 

carbon aethalometers at the same site and found deterioration in accuracy when the 

attenuation of the collection filter was higher than 40.  Application of reported correction 

algorithms designed to account for darkening AE51 filters did not improve the sensor 

accuracy above these ATN values in my measurements.  In highly polluted environments a 
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filter attenuation of 40 could be reached quickly and my observations suggest that filters 

should be changed regularly to ensure black carbon concentrations are estimated accurately.  

The above calibration measurements were made at a single urban background site that is 

unlikely to be representative of conditions in more polluted locations.  Correspondingly it is 

not known how well these calibrations represent instrument responses over the wider range 

of pollutant concentrations observed in urban environments.  Future research would benefit 

from access to a reference site in a more polluted location.  If inaccurate calibration 

equations or procedures are used, the real-time monitors will not report accurate pollution 

concentrations.  If these were to be used for personal monitoring in epidemiology studies, for 

example, this could lead to personal exposures being underestimated (resulting in individuals 

at risk of detrimental health effects being missed) or overestimated (resulting in a larger 

number of ‘at-risk’ individuals identified).  Alternatively if these inaccurately calibrated 

sensors were used to measure ambient concentration this could lead to pressures on Local 

Authorities or Governments to improve air quality in the areas where concentrations were 

overestimated (leading to financial implications for the budgets of the areas in question), or 

areas with unacceptable air quality may be missed if the sensors underestimate the ambient 

concentrations. 

Additionally, there may be other sources of error when these sensors are used in personal 

mobile monitoring, for example the impact of turbulence or rapidly changing concentrations 

is unknown and in practice would be difficult to quantify.  To gain a more general and 

practical understanding of the scale of such errors I used the real-time monitors to make 

short (6-min) static measurements at sites where I also made measurements of 1-week NO2 

concentrations using passive diffusion tubes (PDT).  The short BC measurements followed 

the general spatial trends in weekly NO2 concentrations, however the 6-min Aeroqual NO2 

and O3 concentrations trends were less similar.  The discrepancy in spatial pattern between 

Aeroqual and PDT measurements partly resulted from higher than anticipated NO2 Aeroqual 

concentrations (probably associated with lower than anticipated O3 Aeroqual concentrations) 

at the first study site, which may have resulted from moving the monitors from an indoor to 

an outdoor environment.  The potential implications for use of the Aeroqual sensors in 

personal monitoring require further investigation, particularly if sensors require time to 

adjust to rapidly changing conditions (e.g. temperature and/or concentration).  BC 

measurements appeared unaffected by the indoor-outdoor changes in my measurements, and 

hence appeared to be useful for provision of rapid estimation of pollution concentrations 

over a large study area through short duration peripatetic monitoring.  In the absence of more 

detailed field evaluation, pollution estimates from real-time sensors are indicative only.  
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However, the real-time sensor concentrations could be used to help quickly build up a 

picture of relative spatial ranges in concentrations in a study area, and identify areas of 

elevated pollution concentrations that would benefit from more detailed monitoring.  This 

could potentially save Local Authorities money on these costly, long-term, detailed 

measurement campaigns by ensuring these are only carried out in the required locations.  

The measurements were made repeatedly in a single urban area and the relationships 

between pollutants identified will be specific for this area, and may be transferable to other 

urban areas with similar sources of emissions.  The methods described, however, could be 

readily applied to other study areas to build a rapid picture of the ambient concentrations for 

that area. 

Pollution models can be used to estimate concentrations at multiple locations within a 

given study area.  These normally use estimates of pollution emission and background 

concentrations to predict concentrations over the study area.  To obtain more accurate 

estimates, meteorology should be taken into consideration which can take the form of 

measurements from local weather stations.  Alternatively weather models can be used to 

predict local meteorology in the absence of a weather station, and to forecast future 

meteorological conditions.  This allows pollution forecasts to be issued, which in turn can 

help individuals who are most at risk to health effects from air pollution (e.g. people with 

pre-existing respiratory conditions) to make informed changes to minimise the impact of 

elevated concentrations on their health.  In my research, the initial user parameterisation of 

the Weather Research Forecasting model had limited effect on the pollution estimates from a 

dispersion model (AERMOD) for low level (10 m) sources.  Consequently parameters can 

be selected to minimise run times and allow faster generation of weather data for the models.  

The optimal parameterisation of the weather model identified in this work is only applicable 

to low height emissions sources (such as roads) and should not be applied without further 

validation to taller emission sources (such as industrial stacks). Conventional dispersion 

models have high costs associated with them (including license, computational and user 

input costs) restricting the modelling of large study areas.  Developments in computing have 

allowed improvements in computation time, and I evaluated a computationally efficient 

model for estimation of NO2 concentrations at 5 x 5 m resolution over a 3,500 km2 study 

area in less than 10 minutes.  The accuracy of this model (compared to measurements made 

at 107 receptor sites) was similar to previously published model evaluation studies.  These 

short run times and high spatial resolution concentration estimates open up possibilities to 

use models to rapidly assess proposed pollution mitigation schemes in areas with high 

pollution concentrations identified by the mobile monitoring techniques discussed above.  
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For example, the impact of changing a road layout or the introduction of a low emission zone 

could be quickly estimated.  Inclusion of street canyon models improved the accuracy of 

model predictions at roadside and kerbside locations; however it is practically challenging to 

discretely model individual canyons within large study areas.  Geospatial surrogates for 

urban morphology can be used to rapidly identify, and apply correction to, locations falling 

within canyon locations; however the normalised mean bias errors were lower when the 

canyons were discretely modelled.  Further work could optimise geospatial surrogate 

parameters, which in turn may improve the accuracy of combined dispersion-surrogate 

model predictions to match the accuracy of combined dispersion and canyon models.  A 

benefit of dispersion models is that these can be readily transferred between study areas 

providing the appropriate input data for the individual area is provided.  The RapidAir model 

can be quickly parameterised for each unique study area to allow pollution estimates to be 

made quickly.  In its current release, however, the RapidAir model may not be transferrable 

to countries whose main sources of emissions are not traffic-related (other predominant 

sources could include industry or natural sources such as particles from dust storms) – future 

work aims to further develop the model to allow incorporation of these additional sources to 

allow the model to be more widely applicable. 

In summary, exposure of populations to air pollution can be assessed using measurement 

and modelling techniques.  Newly-developed portable real-time sensors have the potential to 

provide detailed personal exposure estimates to complement spatial measurements from 

passive sampling devices, however more research into real-time sensor accuracy is required.  

The use of portable instruments to provide rapid estimates of spatial patterns in pollution 

concentrations can be used to help identify locations where more detailed monitoring should 

be carried out.  Using this approach, areas of high pollution concentrations can be identified 

and mitigation strategies designed to reduce pollution concentrations.  The development of 

rapid high resolution dispersion models will allow the impact of mitigation schemes to be 

estimated prior to their implementation and will help to identify the most effective and 

efficient methods to reduce ambient concentrations and population exposures. 
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Appendix A – Field evaluation of Little Environmental Observatory 

(LEO) monitors 

 

Abstract: 

Four Little Environmental Observatory (LEO) monitors were provided on loan to the 

University of Strathclyde from the Institute of Occupational Medicine (IOM) during August 

2016.  The instruments were evaluated by: a co-location study at an automatic monitoring 

station to assess accuracy of O3 and NO2 measurements; and a set of mobile measurements 

to measure O3 and NO2 exposure of an individual researcher in transects moving away from 

busy roads.  In the co-location study we observed that the LEO sensors appear to have 

pronounced cross sensitivity to O3 in an unexpected direction (higher observed LEO O3 

resulting in lower observed LEO NO2).  However (unlike our experience with Aeroqual 

sensors), corrected LEO NO2 concentrations still had relatively low correlation with analyser 

NO2 concentrations.  In the transect study concentrations of NO2 measured by the LEO 

instruments were lower than the Aeroqual instruments, including many negative 

concentrations observed by each of the LEO instruments.  LEO O3 concentrations were 

much higher than Aeroqual O3 concentrations.  In accordance with prior expectations 

Aeroqual instruments observed slightly lower O3 concentrations at the road side sites.  

However this pattern was not apparent in the LEO measurements.  Correlations between 

LEO and Aeroqual NO2 and O3measurements were low (R2 < 0.1). 

 

Collocation study at automatic monitoring station 
The four LEO instruments were deployed on the roof of the Townhead automatic monitoring 

station (urban background site north of Glasgow city centre latitude/longitude: 55.865782, -

4.243631).  The instruments were suspended from the roof of a passively-ventilated 

enclosure to prevent water ingress damage while ensuring that the sensor inlets were not 

obstructed (Figure 2).  Measurements were made by the sensors at 1-min intervals.  The 

mobile phones paired with the LEO’s to upload data to a server computer system were sealed 

in a waterproof box next to the instrument enclosure.  LEO instruments were run off mains 

power available on the roof of the monitoring station.  Instruments were deployed between 

8-22 August 2016; with site visits approximately every 5 days to check on instrument 

operation.  Hourly pollution data from the Townhead site was available from 

www.scottishairquality.co.uk and at the time this report was written the data was still 

provisional (the availability of ratified data is approximately 3 months).  Additionally, we 

deployed a HOBOware temperature and relative humidity sensor at the site during the 

measurements to record these variables every 5 minutes.  The HOBO meteorological 
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measurements and the LEO sensor measurements were averaged to produce hourly 

measurements. 

 

Of the 4 LEO sensors deployed data from 2 sensors did not upload to the server so were 

unavailable for analysis.  We are not clear as to the reason why this data was not available on 

the server as clicking on ‘Verify Data’ within the Expo App showed data being recorded by 

the LEO sensor.  The remaining 2 sensors for which data was available did not record for the 

full duration of the deployment – upon returning to the site both the blue and orange lights 

on the front of the instruments were continuously lit and the sensors required to be reset.  

Similar to the data upload problem described above - for unknown reasons the remaining 2 

sensors did not upload data to the server beyond 14 and 15 August. 

 

The temperature and RH measured by the two LEO sensors and measurements made using 

the HOBO Ware instrument were in reasonably close agreement (Figure 3 and Figure 4). 

 

The LEO sensors recorded a large number of negative NO2 concentrations.  NO2 and NO 

concentrations recorded by the two LEO sensors were highly correlated, with LEO_980266 

estimating higher concentrations than LEO_9801275.  The correlation for O3 measurements 

was much lower (Figure 5).  The concentrations of NO2, O3 and NO estimated by the LEO 

sensors were plotted against concentrations measured by the Townhead analysers during the 

same period (Figure 6).  The correlation between the sensor and analyser concentrations was 

low for all pollutants (R2 < 0.15 in all instances). 

 

Some studies have found NO2 sensors to be cross-sensitive to ozone and have suggested 

correction methods to take this into account (e.g. Lin et al. 20151).  We followed the process 

described in this paper and observed that the LEO sensors appear to have pronounced cross 

sensitivity to O3 in an unexpected direction (higher observed LEO O3 resulting in lower 

observed LEO NO2).  However (unlike our experience with Aeroqual sensors; and despite 

clearly defined cross sensitivity relationships in the difference between LEO NO2 and 

analyser NO2 vs. LEO O3), corrected LEO NO2 concentrations still had relatively low 

correlation with analyser NO2 concentrations (Figure 7). 

 

  
                                                           
1
 Lin, C., Gillespie, J., Schuder, M.D., Duberstein, W., Beverland, I.J. and Heal, M.R., 2015. Evaluation 

and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient 

ozone and nitrogen dioxide. Atmospheric Environment, 100, pp.111-116. 
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Mobile monitoring study 
The mobile monitoring study was designed as part of an MSc dissertation project.  

Measurements were made using a LEO sensor (LEO_980275 carried using the arm band) 

alongside Aeroqual NO2 and Aeroqual O3 sensors (carried in a backpack).  We measured 

concentrations of NO2 and O3 at 13 sites located at different distances from busy roads in the 

West End of Glasgow (Figure 8).  5-min ‘spot’ measurements were made at each of the sites 

during the afternoon of Friday 26 July 2016 and average concentrations at each location 

calculated.  It was anticipated that those sites located closest to the main road would have the 

highest NO2 concentrations and the lowest O3 concentrations.  Measurements were repeated 

twice at each site (Repeat 1: site 1 – 13, Repeat 2: site 13 – 1).  A third repeat set of 

measurements was incomplete as the LEO instrument stopped recording data (Repeat 3: site 

1 – 3 only). 

 

The Aeroqual NO2 instruments are cross-sensitive to O3 and therefore were corrected 

following the procedures in Lin et al. (2015).  The calibration equations were derived from 

the deployment of the instruments at Townhead during the same period as discussed in the 

previous section: 

Aeroqual_NO2_corrected = Aeroqual_NO2_uncorrected – ((1.15*Aeroqual_O3) + 35.04) 
 

Concentrations of NO2 measured by the LEO instruments were lower than the Aeroqual 

instruments, including many negative concentrations observed by each of the LEO 

instruments (Figure 9).  LEO O3 concentrations were much higher than Aeroqual O3 

concentrations.  In accordance with prior expectations Aeroqual instruments observed 

slightly lower O3 concentrations at the road side sites. However this pattern was not apparent 

in the LEO measurements.  Correlations between LEO and Aeroqual measurements were 

low for both NO2 and O3 (R
2 M1 = 0.03, M2 = 0.00, All = 0.00 for NO2; R

2 M1 = 0.00, M2 = 

0.06, All = 0.03 for O3).  
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Figure 2:  Deployment of the four LEO instruments (two instruments located back to back) 
in a passively ventilated enclosure on the roof of Townhead automatic monitoring station. 
  



 

Figure 3:  LEO sensor temperature measurements.  Top: scatter plot between two
instruments; bottom: scatter plot between LEO instruments and HOBO temperature 
measurements. 
 

:  LEO sensor temperature measurements.  Top: scatter plot between two
instruments; bottom: scatter plot between LEO instruments and HOBO temperature 
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:  LEO sensor temperature measurements.  Top: scatter plot between two LEO 
instruments; bottom: scatter plot between LEO instruments and HOBO temperature 



 

Figure 4:  Top: Scatter plot between LEO RH measurements; bottom: scatter plot between 
LEO and HOBO RH measurements.
 

:  Top: Scatter plot between LEO RH measurements; bottom: scatter plot between 
LEO and HOBO RH measurements. 
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:  Top: Scatter plot between LEO RH measurements; bottom: scatter plot between 



 

Figure 5:  Scatter plots between duplicate LEO sensors for hourly concentrations of (from 
top to bottom): NO2, NO and O
 

:  Scatter plots between duplicate LEO sensors for hourly concentrations of (from 
, NO and O3. 
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:  Scatter plots between duplicate LEO sensors for hourly concentrations of (from 



 

Figure 6:  Scatter plots between pollution concentrations measured by LEO sensors and 
Townhead analysers.  Top to bottom: NO
 

:  Scatter plots between pollution concentrations measured by LEO sensors and 
Townhead analysers.  Top to bottom: NO2, NO, O3. 
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:  Scatter plots between pollution concentrations measured by LEO sensors and 



 

Figure 7:  Correction of LEO NO
Lin et al. 2015).  Top graphs show NO
the concentrations measured by the analyser at Townhead 
the LEO sensors.  The equation of this line was used t
and this corrected concentration is shown plotted 
graphs. 
 

 

 

:  Correction of LEO NO2 sensor for cross-sensitivity to O3 (following method from 
Lin et al. 2015).  Top graphs show NO2 concentrations measured by the LEO sensors minus 
the concentrations measured by the analyser at Townhead vs. O3 concentrations measured by 
the LEO sensors.  The equation of this line was used to correct the LEO NO
and this corrected concentration is shown plotted vs. Townhead analyser NO
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(following method from 
concentrations measured by the LEO sensors minus 

concentrations measured by 
o correct the LEO NO2 concentrations, 
Townhead analyser NO2 in the bottom 
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Figure 8:  Location of the thirteen sites during the West End mobile measurements.  These 
are located in two transects moving away from busy roads (Byres Road running 
approximately North-East to South-West and Dumbarton Road running approximately East-
West).  Five minute spot measurements were made at each site, and two or three repeat 
measurements were made at each site over the course of one afternoon. 
  



 

Figure 9:  Line plots showing the average LEO and Aeroqual concentration measured during 
the 5 minute spot measurement at each site in the West End work.  Top: 

:  Line plots showing the average LEO and Aeroqual concentration measured during 
the 5 minute spot measurement at each site in the West End work.  Top: 
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:  Line plots showing the average LEO and Aeroqual concentration measured during 
the 5 minute spot measurement at each site in the West End work.  Top: NO2, bottom: O3. 
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Appendix B – Technical Note: Estimation of spatial patterns of 

urban air pollution over a 4-week period from repeated 5-minute 

measurements 

 

The Technical Note below describes our earlier published study investigating the ability of 

repeated short duration measurements of black carbon and particle numbers to estimate 

spatial and temporal variations in nitrogen dioxide concentrations measured using passive 

samplers.  This work provided the basis for the study presented in Chapter 4. 

The technical note was published in Atmospheric Environment in 2017 (DOI: 

10.1016/j.atmosenv.2016.11.035) 
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Abstract  

Determination of intra-urban spatial variations in air pollutant concentrations for exposure 

assessment requires substantial time and monitoring equipment.  The objective of this study 

was to establish if short-duration measurements of air pollutants can be used to estimate 

longer-term pollutant concentrations.  We compared 5-min measurements of black carbon 

(BC) and particle number (PN) concentrations made once per week on 5 occasions, with 4 

consecutive 1-week average nitrogen dioxide (NO2) concentrations at 18 locations at a range 

of distances from busy roads in Glasgow, UK.  5-min BC and PN measurements (averaged 

over the two 5-min periods at the start and end of a week) explained 40 - 80%, and 7 - 64% 

respectively, of spatial variation in the intervening 1-week NO2 concentrations for individual 

weeks.  Adjustment for variations in background concentrations increased the percentage of 

explained variation in the bivariate relationship between the full set of NO2 and BC 

measurements over the 4-week period from 28% to 50% prior to averaging of repeat 

measurements.  The averages of five 5-min BC and PN measurements made over 5 weeks 

explained 75% and 33% respectively of the variation in average 1-week NO2 concentrations 

over the same period.  The relatively high explained variation observed between BC and 

NO2 measured on different time scales suggests that, with appropriate steps to correct or 

average out temporal variations, repeated short-term measurements can be used to provide 

useful information on longer-term spatial patterns for these traffic-related pollutants.  

 

Keywords: Black carbon; nitrogen dioxide; microaethalometer; air pollution; mobile; 

particle number.  
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1 Introduction 

A major challenge in quantifying the effect of air pollution on human health is the 

resource required reliably to measure spatial and temporal variations in pollutant 

concentrations within urban environments (Hoek et al., 2008).  The development of 

lightweight, lower-power portable monitoring equipment provides new opportunities to 

design monitoring studies that supplement static monitoring networks by using mobile 

measurements.  Two approaches are possible: continuously mobile monitoring, where the 

monitoring equipment is moved throughout the duration of the study; and peripatetic 

monitoring, where mobile equipment is deployed at specific sites for short time periods 

before moving to another site.   

Peripatetic measurements allow collection of observations through a monitoring network 

over a period of time and over relatively large areas with limited equipment.  This approach 

has been used to monitor air pollution at sequential locations in studies in Canada 

(Abernethy et al., 2013; Deville Cavellin et al., 2016; Larson et al., 2009), Germany (Merbitz 

et al., 2012), India (Saraswat et al., 2013), the Netherlands (Klompmaker et al., 2015), Spain 

(Rivera et al., 2012), Switzerland (Ragettli et al., 2014) and the USA (Riley et al., 2016).  A 

limitation with this approach is the difficulty in accounting for fluctuating background 

concentrations, although this can be mitigated by using a static background site during the 

study (Hoek et al., 2008; Klompmaker et al., 2015).  

The objective of our study was to examine the quantitative relationships between short-

term peripatetic measurements made with handheld equipment and longer-term average 

spatial air pollutant patterns, to assess if one can be used as a surrogate for the other.  We 

combined peripatetic 5-min ‘spot’ measurements of black carbon (BC) and particle number 

(PN) [using portable low-power equipment] with weekly nitrogen dioxide (NO2) 

measurement [using passive diffusion tubes (PDT)] over four 1-week periods at 18 sites of 

varying distance from major roads in Glasgow, UK.  Five-minute static measurements were 

made at each site during deployment and retrieval of the PDTs.  The combination of PDT 

and peripatetic measurements enabled investigation of spatial correlations between different 

pollutants at different averaging periods. 

 

2 Methods: 

2.1 Monitoring plan: 

The study was conducted in the city of Glasgow (population ~ 600,000) in the west of 

Scotland (55.87° N, 4.26° W), for four consecutive weeks beginning on 24 October 2013.  

Eighteen monitoring sites were selected in a mixed residential and commercial area in the 
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West End of the city to provide a range of local traffic influence (Figure).  The two busiest 

roads in the study area, Byres Road and Dumbarton Road, have annual average daily flows 

(AADF) of approximately 10,000 vehicles.  A background site (Site 18) in a nearby park 

provided measurements free from immediate influence of local traffic sources. 

Duplicate NO2 PDTs were located at each site and changed approximately weekly at times 

that avoided adverse weather to avoid damage to real-time equipment.  Therefore, weeks 1 

and 2 spanned 8 and 6 days respectively, while weeks 3 and 4 spanned 7 days.  During PDT 

exchange, while stationary at each site, 5-min peripatetic measurements were made using 

handheld BC and PN instruments (section 2.2).  PDT changeovers began around 08:00 local 

time and took approximately 2.5 hours to complete.  All real-time instrument clocks were 

synchronized prior to measurements.  Peripatetic measurements were made during this time 

of the morning when many people were traveling on roads to get to work to maximise the 

range of observed concentrations.  To reduce the possibility of systematic bias, sites 1 to 17 

were visited in opposite order on alternate weeks (starting with site 1 in w/c week 1).  

Because of its distance from the other sites, the background site, 18, was always visited last.  

A duplicate PN instrument at the background site provided an indication of changes in 

background concentration during each measurement period (Supplementary information – 

Figure S4).  A duplicate BC instrument was not available, so for consistency we made 

background adjustments for both pollutants using 5-min measurements made at site 18 at the 

end of each measurement period. 

In this Technical Note the notation ‘week X’ and abbreviation ‘wX’ refer to PDT 

measurements throughout week X or to ‘weekly spot’ measurements derived from averaging 

the mobile measurements made at the beginning and end of week X, while ‘w/c week X’ and 

abbreviation ‘w/cX’ refer to mobile measurements made at the start of week X only.  For 

example, ‘w/c week 5’ refers to mobile measurements made at the end of the fourth week of 

the study when PDTs were collected for the final time. 

 

2.2 Instruments and data processing: 

BC concentrations were measured using a microaethelometer (Model AE51, Aethlabs, San 

Francisco, CA) carried in a backpack, with the manufacturer-supplied 1 m conductive plastic 

tubing inlet mounted on the shoulder strap.  BC was recorded at 1-min resolution during w/c 

week 1, and 1-s resolution during subsequent weeks.  This change made it easier to 

synchronise arrival and departure times at PDT sites with logged data.  At 1-s temporal 

resolution microaethelometers are prone to measurement artifacts (Hagler, 2011).  

Consequently 1-s BC data were processed using an optimised noise adjustment (ONA) 
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method (Δ ATN = 0.01) to retain the highest possible temporal resolution (AethLabs, 2013; 

Hagler, 2011).  A second adjustment, to account for non-linear response with increasing BC 

deposition, was also applied (Apte et al., 2011): 


� = 
�l'0.88 exp'− ���100 0 + 0.120>? 

where BC = adjusted BC concentration, BC0 = unadjusted BC concentration, and ATN = 

attenuation value from the instrument.  A single filter strip was sufficient for all 

measurements and gave an ATN value of < 50 at the conclusion of the study.  The AE51 

instrument was evaluated by deployment next to an AE22 aethalometer used for black 

carbon measurements at the UK government Automatic Urban and Rural Network (AURN) 

monitoring site at Townhead, Glasgow (Figure S2) 

PN was measured using two handheld condensation particle counters (CPC 3007, TSI Inc., 

Shoreview, MN).  Before each set of measurements the CPCs were checked for zero reading, 

supplied with fresh isopropyl alcohol, and allowed to warm up for 10 min.  Precision of the 

duplicate PN instruments was assessed by walking them together through urban 

environments with a similar range of pollutant concentrations to those in this study.  

Duplicate instruments exhibited a high degree of precision (R2 = 0.93, Figure S1) and < 2% 

normalised mean bias between the paired instruments. 

Palmes NO2 PDTs were deployed in duplicate at 2.5 m elevation at each site.  PDTs were 

prepared as a single batch at the beginning of the campaign by dipping stainless steel mesh 

grids into 50% triethanolamine-acetone solution (Heal, 2008) and stored double bagged in a 

refrigerator pre and post deployment.  Two ‘travel’ blanks were carried during deployment 

and retrieval of PDTs, and kept in a laboratory refrigerator during the intervening period.  

Two ‘field’ blanks were deployed close to site 13, and two ‘laboratory’ blanks were kept in 

the refrigerator during the exposure period.  PDTs and blanks were analysed within 3 or 4 

days of retrieval using a standard protocol (Targa et al., 2008).  Laboratory and travel blanks 

showed no significant concentration values.  The mean relative standard deviation (± 1 sd) 

for all 70 duplicate PDT measurements was 6.4 (± 6.8)%, comparable with that reported in 

the literature (e.g. Lewne et al., 2004).   Four out of 144 (3%) PDTs were lost during 

measurements, consisting of pairs of duplicate tubes lost in week 1 and week 4 from sites 17 

and 16 respectively.  Consequently statistics in weeks 1 and 4 were not fully comparable 

with other weeks, as data from two of the highest concentration sites were missing during 

these weeks. 

We used four approaches to assess if short-term measurements could provide useful 

information on longer-term spatial trends in pollutant concentrations.  Firstly, we compared 

5-min BC and PN ‘spot’ measurements made in each week to the average of all 5-min 
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measurements for BC and PN over the study.  Secondly, we calculated the average of BC 

and PN spot measurements made at the start and end of each week (subsequently referred to 

as ‘weekly spot’ measurements) and compared this average to weekly NO2 concentrations 

measured by PDTs throughout the intervening period.  Thirdly, we corrected weekly ‘spot’ 

BC and weekly NO2 concentrations to allow for changes in background concentrations 

measured at site 18 at the end of each measurement period.  This was done by using a 

‘difference’ method (Klompmaker et al., 2015) that involved: (a) computation of the overall 

mean concentration for the full set of 5-min measurements at the background site (site 18) 

for each pollutant (Cref,ave); (b) computation of differences between period specific 

measurements at the background site (Cref,t) and the estimated overall background mean 

(Cref,ave) for each pollutant for each period (t) (Cdiff,ref,t = Cref,ave - Cref,t); (c) correction of the 

period measurement at each site (x) by addition of the difference calculated in step (b) 

(Cx,t,corrected = Cx,t,measured + Cdiff,ref,t).  A ‘ratio’ method of temporal adjustment (Klompmaker et 

al. 2015) was also examined but found to produce less consistent reduction in within-

site/between-site variance ratios (Table 2); therefore most of our analyses with temporal 

adjustments were focused on the difference method.  In a fourth approach we examined the 

bivariate relationships between estimates of the overall averages of NO2, BC and PN 

concentrations for the 4-week period across the 18 sites.  Reduced major axis (RMA) 

regression was used to compare pollutant metrics in the above approaches (Ayers, 2001).  

One-way analysis of variance (ANOVA) was used to compare within-site 

(temporal)/between-site (spatial) variance ratios (Klompmaker et al. 2015). 

 

3 Results and discussion 

3.1 NO2, BC and PN by site 

Descriptive statistics and discussion of the time series of measurements are provided in the 

Supplementary Information. 

Relatively high NO2 concentrations were consistently observed across all weeks at sites 

closest to main roads (sites 1, 6, 7, 16, 17) (Figure ).  The lowest NO2 concentration each 

week was observed at the background site (Site 18), where NO2 concentration varied 

markedly between weeks, but was always 2 - 3 times lower than the maximum observed 

concentration for each week (Figure 2, Table S1).  Despite large variations in average NO2 

concentrations between weeks, spatial patterns of relative concentrations across the sites 

remained consistent from week to week (concentrations were highly correlated between pairs 

of successive weeks (R2 = 82%, 88% and 82%)).   
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5-min averaged ‘spot’ measurements for BC and PN demonstrated qualitatively similar 

spatial patterns to NO2 (Figure ).  However, the spot measurements showed a less consistent 

spatial pattern between successive weekly measurements than was observed for NO2 (R2 

ranges of 29 – 81% and 0 – 29% for BC and PN respectively). 

Background concentrations measured at site 18 at the end of each weekly monitoring 

period were, on average across all weeks, ~65%, 40% and 30% of the mean concentration of 

all other sites for NO2, PN and BC respectively suggesting that, of those pollutants measured 

in this study, BC was the metric with spatial variations that are most influenced by proximity 

to local traffic sources. 

 

3.2 Longer-term predictions from 5 minute measurements 

The linear relationship between 5-min PN measurements and the average of five 5-min 

spot PN was not significant for 1 out of 5 weeks (Table 1a).  Relatively low week-to-week 

correlations between PN measurements (section 3.1) may have resulted from changes in 

atmospheric processes that determine the formation of ultrafine particles through changes in 

meteorology between and within weeks.  Meteorological conditions also influence NO2 

concentrations but the influence will be reduced for the 1-week averaged PDT measurements 

compared with the short-term PN measurements.  Correlations between ‘weekly spot’ PN 

and 1-week NO2 concentrations were not significant on 2 of 4 weeks, and explained < 25% 

of variation in 1-week NO2 concentrations during all but one week (Table 1b).  Consequently 

the remainder of this Technical Note focuses on the more clearly observed relationships 

between BC and NO2. 

5-min BC measurements were significantly associated with the average of five 5-min spot 

measurements taken once per week (average explained variation 55%, range 44 – 87%) 

(Table 1a).  ‘Weekly spot’ measurements of BC explained between 40% and 80 % (average 

= 62%) of the variation in 1-week NO2 concentrations (Table 1b, Figure 3a).  The lowest 

explained variation was observed during week 4 and may have resulted from limited 

variation in BC concentration and missing data at one of the higher concentration NO2 sites 

(Site 16).  The regression slope and intercept varied between weeks, with the y-axis intercept 

providing a good approximation of the background NO2 concentration measured at Site 18 

(Table 1).  This suggests that (subject to confirmation using observations for larger areas and 

longer periods) it may be possible to estimate urban background NO2 concentration using 

short-term BC measurements alongside weekly NO2 PDTs.  

Correlation between background-adjusted BC and NO2 was highly significant and 

explained 50% of the variation in weekly NO2 concentrations for the full set of 
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measurements (cf. 28% explained variation prior to background adjustment) (Table 1, Figure 

3).  The overall average of 5-min BC spot measurements over the full study period (5-min 

measurements repeated 5 times over 4 weeks) explained 75% of the variation in overall 

average NO2 concentrations (Table 1, Figure 3c).  Averaging selected subsets of repeated BC 

spot measurements interspersed evenly within the 5 measurement periods (to simulate a 

lower repeat peripatetic measurement frequency) resulted in a lower percentage of explained 

variation in overall average NO2 concentrations (69% and 59% using weeks 1, 3 & 5 and 

weeks 1 & 5 respectively (Figures 3d & 3e)).  

Our results and conclusions are broadly coherent with comparisons of mobile real-time 

and static passive measurements of traffic-related pollutants in Baltimore, USA using 

different measurement approaches over different time and geographical scales (Riley et al., 

2016).  Our findings can also be set in the context of quantitative analyses of within-

site/between-site variance ratios for BC and PN peripatetic measurements in the Netherlands 

(Klompmaker et al. 2015).  Our 5-min peripatetic observations have lower within-

site/between-site variance ratios (i.e. exhibit more temporal consistency in spatial patterns) 

than 30-min peripatetic observations in the MUSiC study in the Netherlands (Table 2).  The 

magnitudes of the ratios we observed are relatively close to those observed with 14 day 

measurement periods in the European ESCAPE project (Table 2).  The reasons for the 

relatively limited temporal variation in the observations in our study are not fully clear, but 

may be related to the relatively small geographical area and short time period over which 

measurements were conducted.  The relatively limited temporal variation in our 

measurements are also consistent with temporally persistent spatial variations in NO2 and O3 

concentrations observed in PDT measurements in the nearby city of Edinburgh, UK (Lin et 

al., 2016). 

Collectively the relatively high correlations observed between NO2 and BC measurements, 

and relatively low within-site/between-site variance ratios suggest that short-term 

measurements with limited repetition are capable of partly characterising pollution 

concentration gradients in the urban environment.  However, some limitations are relevant 

for consideration.  Firstly, in the absence of continuous longer-term measurements of BC to 

compare with short-duration measurements, our study made use of the relationship between 

BC and NO2 to assess the effectiveness of 5-min measurements for estimation of longer-term 

spatial contrasts.  Other studies have shown BC and NO2 to be highly correlated over 

extended time periods (Durant et al., 2014).  Secondly, each week of mobile measurements 

was completed in approximately 2.5 hours, around the time of the morning rush hour.  Our 

measurements may have been affected by changing traffic and meteorological conditions.  
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We attempted to minimise systematic bias by reversing the order in which sites were visited 

on alternate weeks.  Thirdly, there is uncertainty regarding the optimal duration for ‘spot’ 

measurements, and whether the sampling period should be the same for all site 

classifications.  We observed limited variation in concentrations during the 5-min ‘spot’ 

measurements at sites adjacent to roads with lower traffic flows (Figure S3), where a shorter 

duration ‘spot’ measurement may have been sufficient.  Conversely, ‘spot’ measurements 

made at sites near higher and variable traffic flows were more variable (Figure S3) and may 

benefit from a longer measurement period.  Additionally, when measurements are made in 

areas where traffic is influenced by local traffic signals, increasing the ‘spot’ measurement 

period to encompass the full cycle of signals may be beneficial.  

 

4 Conclusions: 

This study compared 5-min ‘spot’ measurements of black carbon (BC) and particle 

number (PN) concentrations, measured at weekly intervals at 18 locations in the city of 

Glasgow, against 1-week measurements of NO2 concentrations.  On average, 5-min BC 

measurements during individual measurement periods explained 55% variation of the overall 

average of five 5-min spot measurements taken once per week over the 4-week period.  BC 

measurements of 5-min duration at the beginning and end of weeks explained 40 - 80% of 

spatial variations in NO2 during the intervening 1-week periods.  Equivalent measurements 

of PN explained 7 to 64% of 1-week NO2 spatial variations.  After adjusting for changes in 

background NO2 and BC concentrations, spot measurements of BC and PN conducted 

repeatedly over a 4-week period, explained 50% and 24% respectively of the spatial 

variation in the complete set of corresponding 1-week NO2 concentrations.  The average of 5 

replicate 5-min BC and PN spot measurements explained 75% and 33% respectively of the 

spatial variation in 4-week average NO2 concentrations.  Reducing the number of replicate 

peripatetic BC measurements to 3 and 2 replicates reduced the percentage of explained 

variation in spatial variation in 4-week average NO2 concentrations to 67% and 59% 

respectively.  Collectively these observations (with appropriate allowance for their relatively 

limited duration and spatial extent) suggest that short-term peripatetic measurements can be 

used to estimate longer term spatial contrasts in traffic-related air pollution provided that 

appropriate steps are taken to correct or average out temporal variations. 

  



 

 

Figures: 

 

Figure 1:  Locations in the West End of Glasgow of NO

monitoring locations for BC and PN concentrations.

:  Locations in the West End of Glasgow of NO2 passive diffusion tubes and ‘spot’ 

monitoring locations for BC and PN concentrations. 
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passive diffusion tubes and ‘spot’ 



 

Figure 2: Concentrations of (A) NO

averages and BC and PN concentration are averages of 5

 

: Concentrations of (A) NO2, (B) BC and (C) PN at each site.  NO2 concentrations are 1

averages and BC and PN concentration are averages of 5-min ‘spot’ measurements.
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concentrations are 1-week 

min ‘spot’ measurements. 
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Figure 3  

RMA linear regression analyses between NO2 and 
BC metrics: 
(a) Unadjusted 1-week NO2 vs. 1-week (start & 
end) BC; 
(b) 1-week NO2 adjusted by difference method vs. 
1-week (start and end) BC adjusted by difference 
method (Klompmaker et al. 2015); 
(c) 4-week average NO2 vs. average of BC w/c 1, 
2, 3, 4, 5; 
(d) 4-week average NO2 vs. average of BC w/c 1, 
3, 5; 
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Table 1 Reduced major axis regression statistics between longer-term average pollution 

measurements and 5-min BC (μg m-3) and 5-min PN (# x 103 cm-3) spot measurements.   

Pollutant n R
2

 (p) Slope (95 % CI) 
Intercept (95 % 

CI) 

Background 

[NO2]
1 

(a) Spot metrics for specific weeks vs. overall average of spot measurements for all weeks: 

BC(all) vs. BC(w/c1) 18 0.84 (1 x10-7) 1.49 (1.31- 2.01) -0.4(-1.2 - 0.27) - 

BC(all) vs. BC(w/c2) 18 0.75 (3 x 10-6) 1.07 (0.82 - 1.39) -0.6(-1.3 - -0.1) - 

BC(all) vs. BC(w/c3) 18 0.87 (2 x 10-8) 1.18 (0.98 - 1.43) -0.7(-1.2 - -0.3) - 

BC(all) vs. BC(w/c4) 18 0.57 (2 x 10-4) 0.55 (0.39 – 0.77) -0.2(-0.7 - 0.1) - 

BC(all) vs. BC(w/c5) 18 0.44 (0.003) 1.60 (1.09 – 2.35) -0.2(-1.8 - 0.9) - 

      

PN(all) vs. PN(w/c1) 18 0.62 (1 x 10-4) 1.26(0.92 - 1.74) -4.7(-13.5 – 1.7) - 

PN(all) vs. PN(w/c2) 18 0.38 (0.007) 1.78 (1.19 – 2.68) -19.9(-36.4 - -8.9) - 

PN(all) vs. PN(w/c3) 18 0.31 (0.014) 1.15 (0.75 - 1.75) -4.4(-15.6 - 2.8) - 

PN(all) vs. PN(w/c4) 18 0.16 (0.10) 0.85 (0.53 - 1.35) -7.6(-17.0 - -1.8) - 

PN(all) vs. PN(w/c5) 18 0.61 (1 x 10-4) 2.45 (1.77 – 3.40) -9.4(-26.8 - 3.1) - 

      

(b) NO2 for specific weeks vs. spot metrics for equivalent weeks: 

NO2(w1) vs. BC(w1) 17 0.67 (6 x10-5) 9.8 (7.2-13.4) 14.6 (7.3-19.9) 16.7 

NO2(w2) vs. BC(w2) 18 0.61 (1 x 10-4) 9.0 (6.5-12.5) 36.8 (31.9-41.1) 37.9 

NO2(w3) vs. BC(w3) 18 0.80 (6 x 10-7) 11.0 (8.7-14) 30.0 (26.0-33.2) 28.6 

NO2(w4) vs. BC(w4) 17 0.40 (6 x 10-3) 7.2 (4.7-10.8) 25.4 (18.0-30.3) 29.1 

NO2(all) vs. BC(all) 70 0.28 (3 x 10-6) 10.7 (8.8 – 13.2) 24.1 (19.8 – 27.6)  

NO2(ave) vs. BC(ave)2 18 0.75 (4.0 x 10-6) 9.1 (7.0-11.9) 24.6 (18.8-29.0)  

      

NO2(w1) vs. PN(w1) 17 0.07 (0.31) 1.5 (0.9-2.5) 12 (-2.9-20.9) - 

NO2(w2) vs. PN(w2) 18 0.23 (0.05) 1.2 (1.3-3.3) 20.5 (2.4-32.0) - 

NO2(w3) vs. PN(w3) 18 0.64 (7 x 10-5) 2.4 (1.8-3.3) 15 (3.91-23.1) - 

NO2(w4) vs. PN(w4) 17 0.18 (0.09) 1.2 (0.7-1.9) 13.8 (-2.39-23.7) - 

NO2(all) vs. PN(all) 70 0.07 (0.03) 1.5 (1.2 – 1.8) 9.4 (0.7 – 16.2) - 

NO2(ave) vs. PN(ave)1 18 0.33 (0.013) 2.0 (1.3-3.1) 6.4 (-13.1-19.2) - 

      

(c) Background-adjusted NO2 for specific periods vs. background-adjusted spot metrics for equivalent 

periods3: 

NO2(w1) vs. BC(w1) 16 0.60 (4 x10-4) 9.0 (6.3 – 12.9) 27.7 (19.6 – 33.4) - 

NO2(w2) vs. BC(w2) 17 0.59 (4 x10-4) 8.8 (6.2 – 12.4) 26.6 (19.7 – 31.4) - 

NO2(w3) vs. BC(w3) 17 0.79 (2 x 10-6) 10.4 (8.2 – 13.4) 27.6 (22.5 – 31.5) - 

NO2(w4) vs. BC(w4) 16 0.36 (0.014) 7.0 (4.5 – 11.0) 25.4 (17.5 – 30.5) - 
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Pollutant n R
2

 (p) Slope (95 % CI) 
Intercept (95 % 

CI) 

Background 

[NO2]
1 

NO2(all) vs. BC(all) 66 0.50 (3 x 10-11) 9.0 (7.6-10.8) 26.4 (23.1 – 29.2) - 

      

NO2(w1) vs. PN(w1) 16 0.01 (0.91) 1.4 (0.8 – 2.4) 22.5 (4.9 – 32.7) - 

NO2(w2) vs. PN(w2) 17 0.16 (0.11) 2.2 (1.4 – 3.6) 7.1 (-15.3 – 21.0) - 

NO2(w3) vs. PN(w3) 17 0.59 (0.003) 2.3 (1.7 – 3.3) 14.4 (1.6 – 23.4) - 

NO2(w4) vs. PN(w4) 16 0.10 (0.24) 1.3 (0.8 – 2.2) 11.5 (-7.7 – 22.9) - 

NO2(all) vs. PN(all) 66 0.24 (4 x10-5 ) 1.9 (1.5-2.4) 15.0 (8.0 – 20.6) - 
1 NO2 measurements at background site are listed alongside intercepts for non-background-adjusted 

NO2 vs. BC regression lines. 

2 ‘ave’ represents the average of all NO2 PDT and BC/PN spot measurements over the full study 

period at each site. 

3 Background adjusted data represent observed concentration for specific period adjusted for 

temporal changes in concentrations at background (site 18) using the ‘difference’ method described 

in Methods Section 2.2 (based on method described by Klompmaker et al., 2015). 

 



Appendix B 

 296 

Table 2 Comparison of within:between site variance ratios from this study, and other European 

studies (MUSiC, ESCAPE, RUPIOH, VE3SPA) summarised by Klompmaker et al. (2015). 

 

Study: Repeats x 

duration 

NO2 NO2(adj1) BC BC(adj1) PN PN(adj1) 

Present study  

(‘ratio’ 

5 x 5-min BC & 

PN 

0.14 0.31 0.28 0.13 1.17 0.64 

Present study  

(‘difference’ 

5 x 5-min BC & 

PN 

0.14 0.05 0.28 0.21 1.17 0.77 

MUSiC 3 x 30- min PN   3.25 2.44 2.21 2.17 

ESCAPE 3 x 14-day PM2.5 

absorbance 

  0.39 0.09   

RUPIOH 3 x 1-day PN     0.5 0.31 

VE3SPA 6 x 4-day PM2.5 

absorbance 

  2.55 0.69   

1 Adj = adjustment for temporal variation. For overview of different methods used to adjust for temporal variation 

see Klompmaker et al. (2015). 
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