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Abstract

The simulation of nonequilibrium hypersonic gas flow is important for the aero-

dynamic design of space and re-entry vehicles. These flows are most successfully

simulated by the Direct Simulation Monte Carlo method; however, the compu-

tational cost of this method is expensive in comparison to Computational Fluid

Dynamics (CFD), which solves the Navier–Stokes–Fourier equations. This thesis

investigates the slip/jump boundary conditions for use with the Navier–Stokes–

Fourier equations applied to hypersonic aerodynamics. All slip/jump boundary

conditions considered are implemented into a CFD solver in the OpenFOAM

code for high speed viscous flows, named rhoCentralFoam. Simulations are car-

ried out for sharp and blunt geometries, including the sharp-leading-edge flat

plate, the sharp wedge, the circular cylinder and the blunt cone. The cases con-

sidered are studied for Mach number, Ma, ranging from 6 to 22, and for argon,

nitrogen and air as working gases. In the present work, new slip/jump boundary

conditions are proposed by inserting the Langmuir adsorption isotherm into the

slip/jump Maxwell/Smoluchowski conditions. These new boundary conditions,

the Maxwell/Smoluchowki conditions, and the second order slip/Smoluchowski

conditions, are applied at the solid surfaces. The comparative results show that

combining the Smoluchowski jump condition using a thermal accommodation co-

efficient σT = 1.0, a tangential momentum accommodation coefficient σu = 0.7 in

the Maxwell slip condition, and the values of first-order A1 = 1.5 and second-order

A2 = 1.0 coefficients in the second order slip condition, give a good prediction

for the surface pressure distribution. Moreover, the new boundary conditions

give better predictions for the surface pressures, compared with experimental

data and the DSMC data published in the literature. This comprehensive and

comparative investigation may lead to more accurate boundary conditions and

subsequent aerodynamic drag predicitions for the design of future space vehicles.
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Chapter 1

Introduction and motivation

1.1 Introduction

On Thursday, 24 February 1949, the V-2/WAC multi-stage rocket was success-

fully launched in the United States with a velocity faster than five times the

speed of sound (i.e. Mach number Ma ≥ 5). It became the first object of human

origin to achieve hypersonic flight [1]. Nowadays, hypersonic flight vehicles are

used for both civilian and military applications, including both reconnaissance

and surveillance. NASA is currently designing a new generation of space shut-

tles, known as hypersonic vehicles, to replace the earlier space shuttles [2].

The design of hypersonic vehicles requires accurate prediction of the surface prop-

erties in flight. These quantities are typically the surface temperature, the surface

pressure and the shear stress. The surface pressure and the skin friction forces

acting on the surface of the hypersonic vehicles are integrated to calculate the

aerodynamic forces and the moment as lift, drag and pitching moments [3]. The

peak surface temperatures or heat fluxes are integrated over time and mapped

over the vehicle surface as part of the process to design the thermal protection

system.

Hypersonic aerodynamics (or hypersonic gas flow) is different from the more

conventional regimes of supersonic aerodynamics. This means the shape of hy-

personic vehicles is different from the shape of supersonic vehicles. Vehicles flown

at hypersonic speeds will be affected by high temperature gas [1]. This strongly

influences the heat energy flux and the forces acting on the surface, such as the

1
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pressure and the skin friction. Hypersonic gas flows are usually characterized by

strong shocks, and both equilibrium and nonequilibrium gas chemistry [3].

Hypersonic vehicles will experience different gas flow regimes in the earth’s atmo-

sphere, because the gas density varies as a function of altitude. The vehicles will

travel from a very rarefied atmosphere to a denser atmosphere i.e. from the free

molecular regime, where individual molecule impacts on the surface are impor-

tant, to the transition regime, where slip effects are important, and then to the

continuum fluid regime [1]. At low altitudes, the gas density is relatively high in

the aerodynamic flow around hypersonic vehicles. The basic parameter governing

these different flow regimes is the Knudsen number, defined as the ratio of gas

mean free path (i.e. the average distance a molecule moves between successive

intermolecular collisions) to a characteristic length of the vehicle body.

The typical methods used to simulate hypersonic gas flows are the Direct Simu-

lation MonteCarlo (DSMC) method and Computational Fluid Dynamics (CFD).

The DSMC method has successfully simulated hypersonic gas flows in all the

different regimes, but the computational effort is quite expensive. The CFD

method, which solves the Navier-Stokes-Fourier equations with appropriate sur-

face boundary conditions, may simulate successfully a hypersonic gas flow in the

continuum regime, up to a Knudsen number of 0.1. The computational effort of

CFD is much less than the DSMC method, especially for three dimensional flows.

This thesis will focus on the surface boundary conditions for the CFD method

using the N–S–F equations, and low-enthalpy flows where chemical nonequilib-

rium is not important. The accuracy of the N–S–F simulations depends on that

of the surface boundary conditions, and also the constitutive relations supplied,

such as the viscosity-temperature relation, thermal conductivity and heat capac-

ity. In the CFD method, it is not able that a computational mesh and a level

of convergence which result in accurate surface pressure and shear stress values,

does not necessarily guarantee accurate surface temperature and heat transfer

values at the same time [4].
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1.2 Survey of surface boundary conditions in

rarefied gas flows

In this section, some research reported in references [5–13,15–17] concerning slip

velocity and temperature jump boundary conditions are reviewed. Their advan-

tages and disadvantages are briefly discussed.

The first-order conventional slip condition was developed by Maxwell in 1890 for

a flat plate, based on his earlier work on the theory of viscosity in gases [5]. Al-

though it is not perfect, it is still the simplest and most useful description of the

slip condition that we have. It is designed to work with the continuum governing

equations in the CFD method, such as the N–S–F equations. The Maxwell slip

condition is a simple form and is expressed by the normal gradient of velocity

at the surface and a thermal creep term. The other first-order slip condition

described by Shen et al. [12], was derived using the Chapman-Enskog solution

of the Boltzmann equation under the relaxation time approximation (the Krook

equation described in reference [14]). In this condition the slip velocity depends

not only on the velocity gradient in the surface-normal direction but also on the

pressure gradient in the flow direction. Moreover, a general slip condition for a

solid surface in rarefied multi-component gas flows, reported by Zade et al. [11],

was developed using the kinetic theory of gases. It can be simplified for particu-

lar problems, such as a single-component gas flow. An alternative slip condition

developed by Gökçen et al. [7] aims a) to reduce to the classical Maxwell slip con-

ditions as the continuum limit is approached, and b) yield the correct shear stress

of free molecule flow in the limiting case of very large Knudsen numbers. In all

these first-order slip conditions mentioned above, the accuracy of the simulation

results is decided by a free parameter in the slip equation, namely the tangential

momentum accommodation coefficient, which varies from 0 to 1.0. The tangential

momentum accommodation, σu, determines the proportion of molecules reflected

from the surface specularly (1− σu) or diffusely σu.

Second-order slip boundary conditions were developed for a planar surface [8,

15–17]. They include an additional second-order term of normal gradient of ve-

locity. A similar problem to that of the first-order slip conditions is that the

free coefficients of the first-order and second-order terms are still the subject of

much discussion. The Maxwell–Burnett slip condition, reported by Lockerby et
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al. [8], was proposed as a higher order boundary condition based on the con-

ventional Maxwell equation and the constitutive relations derived by Burnett.

This condition is formally second-order in space and stable in its solution. The

Maxwell–Burnett slip condition gives good agreement for Poiseuille flow, and can

also predict Sone’s thermal stress slip flow, which cannot be captured by the con-

ventional Maxwell slip condition [8]. In the Maxwell–Burnett slip condition, the

free coefficient of the second order term depends on the Prandtl number of the gas.

The temperature jump condition was an early development by Smoluchowski [6],

and was driven by the heat flux to the surface in the normal direction. A general

temperature jump condition for rarefied multi-component gas flows is described

by Zade et al. [11], based on the kinetic theory of gases, and can be simplified

according to a particular problem such as a single-component gas flow. Gökçen

et al. proposed a temperature jump condition a) to simplify the Smoluchowski

jump condition, and b) to yield the correct heat transfer of free molecule flow in

the limiting case of very large Knudsen numbers [7]. All these temperature jump

conditions also depend on a free parameter, namely the thermal accommodation

coefficient, which varies from 0 to 1.0, and decides the accuracy of the simulation

results. The thermal accommodation coefficient is used to ascribe the tempera-

tures of the receding molecules. Specularly reflected molecules recede from the

surface with their original incident energy, and diffusely reflected molecules have

their energies adjusted to those would arise in a mass of gas in equilibrium at the

temperature of the surface.

Alternative slip velocity and temperature jump conditions which overcome the

problem of free parameters in the conditions presented above were proposed by

Myong and co-workers [9, 10]. These are the “Langmuir conditions” developed

based on the Langmuir adsorption isotherm, and give good results for some mi-

croflow rarefied gas flows. However, the problem in applying these conditions is

the choice of reference values of either the velocity or the temperature, depending

on the particular case being considered. The reference values might be evaluated

either a mean free path away from the surface or in the freestream.

In addition, the reader can refer to other slip velocity and temperature jump

boundary conditions, which were developed for a) the higher order governing

Burnett equations [18,20], b) the Grad moment equations [19], and c) the Boltz-
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mann governing equation [21].

1.3 Motivation and scope of the present work

In preliminary work it was found that applying the surface boundary conditions

in solving the N-S-F equations gives rise to some problems that may have a major

affect the accuracy of the simulation results. Considering the surface boundary

conditions described above, the problems are a) the desired values of the free

parameters of tangential momentum accommodation coefficient, thermal accom-

modation coefficient and the free coefficients in the second-order slip condition,

and b) the reference values to be used in the Langmuir boundary conditions.

Comparing the Langmuir conditions with the Maxwell/Smoluchowski boundary

conditions, it is seen that a) the adsorption of gas on a solid surface is ignored in

developing the Maxwell/Smoluchowski boundary conditions, which is considered

as a kind of diffuse reflection [22, 23], and b) the Langmuir boundary condi-

tions only consider the adsorption of gas on to a solid surface, resulting in the

choice of the reference values in the equations, while they lack the kinetic theory

developed in the Maxwell/Smoluchowski conditions. For sharp-leading-edge ge-

ometries, surface boundary conditions in the CFD method are expected to agree

reasonably well with experimental data, and to capture the increased nonequilib-

rium behaviour near the leading edge.

The scope of this thesis, which addresses the problems described above, is set out

in detail below.

1. The tangential momentum accommodation coefficient and thermal ac-

commodation coefficient of the Maxwell/Smoluchowski boundary conditions are

numerically investigated to find good agreement with experimental data and in-

dependent DSMC data.

2. The Langmuir boundary conditions developed by Myong and co-workers [9,

10] are tested for the sharp-leading-edge flat plate case to assess their perfor-

mance.

3. The free coefficients of the second order slip condition developed for a pla-
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nar surface are investigated to find reasonable agreement with experimental and

DSMC data. The results obtained are compared with the results of the conven-

tional Maxwell slip condition to ascertain whether or not the second order slip

condition is better than the conventional Maxwell slip condition in simulating

hypersonic gas flows using the N–S–F equations.

4. New boundary conditions are proposed by inserting the Langmuir adsorp-

tion isotherm into the Maxwell/Smoluchowski condition equations, with the aim

of achieving a more realistic physical model. The new boundary conditions ad-

dress the lack of the adsorption of gas with in the Maxwell/Smoluchowski bound-

ary conditions and the problem of the reference values required by the Langmuir

boundary conditions. Due to high nonequilibrium conditions near leading edges,

the new boundary conditions are expected to give good agreement with the ex-

perimental data for sharp-leading-edge geometries.

1.4 Outline of the thesis

Chapter 2 Background and theory for simulating hypersonic gas flow are intro-

duced as a) a summary of kinetic theory of gases, b) various governing equations

modelled hypersonic gas flows, and c) different simulation methods. The ad-

vantages and disadvantages of the two latter ones are briefly discussed. The

viscosity–temperature relations used for all subsequent simulations are also pre-

sented in this chapter.

Chapter 3 Common boundary conditions are reviewed. They are a) the Maxwell/

Smoluchowski conditions, b) the second order slip condition, and c) the Langmuir

conditions. The Langmuir conditions are tested for a laminar sharp-leading-edge

flat plate case to assess their performance. New boundary conditions, named

the “Langmuir–Maxwell” slip condition and the “Langmuir–Smoluchowski” jump

condition, are proposed. The implementation numerically of slip/jump conditions

into the OpenFOAM CFD solver is also presented.

Chapter 4 The surface boundary conditions presented in Chapter 2 are tested

and validated for laminar sharp-leading-edge flat plate cases. Tests are done with

different working gases, such as argon, nitrogen and air. The free parameters

of the Maxwell/Smoluchowski conditions and the second-order slip condition are
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numerically investigated to find their proper values in simulating hypersonic gas

flows. The performance of the second-order slip condition is compared with that

of the conventional Maxwell slip condition. The new boundary conditions are

validated, and no-slip/jump tests are also carried out for the flat plate cases.

Chapter 5 This chapter records the results of simulations of rarefied hypersonic

cross-flow past a circular cylinder. The desired values of the free parameters

of the Maxwell/Smoluchowski conditions obtained in the previous chapter are

tested for this case. The new boundary conditions also are validated for circular

cylindrical geometries. The curvature effect of the slip conditions is investigated

for the cylinder case, as well as no slip/jump tests.

Chapter 6 This chapter has the same structure as Chapter 5. Simulations

of hypersonic gas flows about a wedge and a blunt cone are presented. The

Maxwell/Smoluchowski conditions with the desired values of free parameters and

the new boundary conditions are tested. The curvature effect of slip conditions

and the no slip/jump tests also are also investigated for the wedge and the blunt

cone cases. An analysis of the relative effect of thermal creep on satellite-on-a-

chip is presented by an analytical solution.

Chapter 7 Conclusions from this work on the surface boundary conditions in

simulating hypersonic gas flows. The contribution to the advancement of knowl-

edge made by this work is presented and the future work suggested.

1.5 Presentations

The results of the present work were presented at 1) the Research Presenta-

tion Day, the University of Strathclyde, 2009, 2) the 3rd EUropean Conference

AeroSpace Sciences (EUCASS), France, 2009, 3) The 22nd Scottish Fluid Me-

chanics Meeting, Scotland, 2009, and 4) the Research Presentation Day, the Uni-

versity of Strathclyde, 2010. The results were also published in the Proceedings

of the 3rd EUropean Conference for AeroSpace Sciences, EUCASS2009-86, 2009.
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Chapter 2

Simulation of hypersonic gas

flows: Background and Theory

2.1 Introduction

The computational simulation of nonequilibrium hypersonic gas flows requires

a knowledge of the kinetic theory of gases and an understanding of different

simulation methods. This chapter will outline the concepts of equilibrium and

nonequilibrium gas flows, and the Knudsen number, Kn, that characterizes the

regimes of nonequilibrium flows. A basic brief summary of the kinetic theory of

gases is presented, including the velocity, internal energy, the velocity distribution

function and collision models. Various governing equations for nonequilibrium gas

flows are also presented such as: the Boltzmann equation, the Chapman–Enskog

expansion (producing the Euler equations, the Navier–Stokes–Fourier (N–S–F)

equations and the Burnett equations), and the moment equations. Three sim-

ulation methods, the Direct Simulation Monte-Carlo (DSMC), Computational

Fluid Dynamics (CFD), and the CFD-DSMC hybrid method are outlined. Hy-

personic gas flows are most successfully simulated through DSMC, however the

computational time is much longer than when using CFD, which solves the N–S–

F equations. The viscosity–temperature relations used for all simulations in this

thesis are also presented in this chapter.
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2.2 Equilibrium and nonequilibrium gas flows

A gas in equilibrium will not change its molecular properties in time and space.

This means that there are no gradients in the macroscopic properties such as

velocity, temperature and mass density. A gas in equilibrium will also have a

Maxwellian velocity distribution, f0 [24,25]:

f0 =

(
m

2πkBT

)3/2

exp

[
− mu2

2kBT

]
, (2.1)

where m is the mass of a real molecule, kB is Boltzmann’s constant, T is the gas

temperature and u is the molecular velocity.

In contrast, a gas in nonequilibrium will have strong gradients in the macroscopic

properties. In hypersonic gas flows, the main causes of significant nonequilibrium

may be high velocities, high temperatures and the low gas density. A velocity

gradient in a viscous fluid will cause a transfer of momentum; a temperature

gradient will transport heat energy. For a diatomic gas, thermal non-equilibrium

occurs in internal energy modes, such as rotational and vibrational energy modes
1. The transfer of momentum and energy is due to translational nonequilibrium

and appears as the effect of viscosity and thermal conductivity. Mass transport

is driven by species concentration gradients, but this is neglected for the simple

single species gases studied here.

Translational nonequilibrium of a rarefied gas flow can be characterized by the

Knudsen number, Kn, that is the ratio of the molecular mean free path, λ, to

either the macroscopic characteristic length, L, or the length scale of a macro-

scopic gradient, φ/|dφ/dl|, of the flow:

Kn =
λ

L
∼= λ

φ

∣∣∣∣
dφ

dl

∣∣∣∣ , (2.2)

where l represents a suitable spatial domain direction and φ is a quantity of in-

terest, such as the gas density, pressure, velocity or temperature.

At low altitudes, the gas density is relatively high and Kn is small, and gas flows

1Chemical nonequilibrium will, however, not be presented in this thesis
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may be simulated by solving the Euler (Kn ≤ 0.001) or the N–S–F equations

with no-slip boundary conditions (0.001 ≤ Kn ≤ 0.01). At high altitudes, the

gas density is lower and the gas is rarefied. The mean free path, λ, is large

resulting in Kn being large and the nonequilibrium behaviour being appreciable.

There are fewer collisions between molecules in the flow around air vehicles. The

lack of collisions means the N–S–F equations become inappropriate in rarefied

regimes indicated by a large Knudsen number. An approach to improve the

N–S–F equations in the range of 0.01 ≤ Kn ≤ 0.1 is to use velocity slip and

temperature jump boundary conditions. When Kn rises into the range 0.1 ≤
Kn ≤ 1, this is called the transition-continuum regime: the N–S–F equations

become inappropriate because the near-equilibrium fluid assumption for flows

has broken down. A schematic of these regimes, and their solution methods, is

shown in Figure 2.1.

Transition −
 

(Extended 
  

   Euler  Navier − Stokes − Fourier
    

 Navier − Stokes 

0.001 0.01 0.1   1

equations with slip/jump 

Knudsen number.

   Molecular

 Free molecular

0 10

 Intermediate−Kn       Continuum fluids

equations − Fourier equations
boundary conditions

Continuum regime

hydrodynamics )

   dynamics

Figure 2.1: Schematic of flow regimes and fluid simulation models over the range
of Knudsen numbers.

2.3 Kinetic theory of gases

In this section, a brief summary of relevant parts of the kinetic theory of gases is

presented, with consideration for monatomic gases (such as argon) and diatomic

gases (such as nitrogen). For more details of other gases, the reader is refered to

the literature [24,25].

In kinetic theory, a gas flow is considered on the molecular level and the molecules
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are assumed to be very small relative to their spacing. The individual gas

molecules (or particles) are considered to be in constant random motion, with

binary collisions with other molecules and surfaces.

The individual molecules have physical properties, such as mass and energy, and

these properties are assumed to depend essentially on the motion of molecules

and not on the internal structure [22]. The individual molecule velocity, u, can be

divided into two components: random and average velocities, as follows [24,26]:

u
′
= |u− 〈u〉 |, (2.3)

where u’ is the random velocity of the molecules, known as the thermal velocity,

and 〈u〉 is the average velocity of the molecules in the considered volume, known

as the bulk velocity.

Each molecule can have several energy modes, such as a) translational energy,

which is described by the random motion of molecules, b) rotational energy, due

to the rotation of the atoms around an axis, and c) vibrational energy, due to

the vibration of the atoms along the internuclear axis. Diatomic molecular gases

consist of three energy modes while monatomic gases have only a translational

energy mode.

The translational temperature (thermodynamic), Ttra, is a measure of the kinetic

energy due to the random motion of gas molecules, and is computed as [24,26]:

etra =
1

2
m 〈u〉2 =

3

2
kBTtra, (2.4)

where etra is the average translational energy per molecule.

The rotational, Trot, and vibrational, Tvib, temperatures are measures of the in-

ternal rotational and vibrational energy of a diatomic gas [24, 26]:

erot = kBTrot, (2.5)
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evib =
kBΘ

exp(Θ/Tvib − 1)
, (2.6)

where erot and evib are the average rotational and vibrational energies per molecule,

and Θ is the characteristic vibrational temperature.

The rotational and vibrational energy modes are activated through the processes

of intermolecular collisions. At very low temperatures, the rotational and vibra-

tional modes are frozen. By increasing the temperature they become excited at,

e.g., above 4000K for nitrogen [1].

The velocity distribution function (VDF) is important in the kinetic theory of

gases. The VDF is used for a probabilistic description of velocity and position of

a single molecule. It is considered that there are Nm identical molecules in phys-

ical space. Each molecule can be represented by its velocity vector in space [26].

A volume element in velocity space is denoted by du. The VDF, f(u), is then

defined by [26]:

dNm = Nmf (u) du, (2.7)

where dNm is the number of molecules.

The macroscopic properties presented by a molecular quantity, Q, can be ob-

tained from this VDF. The relationship between the VDF and the average of any

molecular quantity, Q, can be determined as given below [26].

The quantity, Q, is either a constant or a function of the molecular velocity and

its average value is computed as:

〈Q〉 =
1

Nm

∫

Nm

QdNm. (2.8)

Substituting for dNm from equation (2.7). The general relationship is obtained.

〈Q〉 =

∫ ∞

−∞
Qf (u) du. (2.9)

The collision or interaction of two or more molecules requires the orientation of
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the individual molecules to be known. There are different models for these to an-

alyze the collision mechanics. Two common models presented here are the Hard

Sphere (HS) model, and the Variable Hard Sphere (VHS) model. The HS model

assumes each gas molecule to be a perfectly elastic sphere with a fixed diameter,

without any force acting on the molecules until two molecules come into contact.

The HS model has the advantage of easily calculated collision mechanics because

of the isotropic scattering in the centre of mass frame [26]. The disadvantage

of the HS model is the fixed total collision cross-section. Experimental obser-

vations show that the total collision cross-section is dependent on the relative

velocity between the molecules involved in the collisions. The relative velocity is

dependent on temperature, so there is a temperature dependence on the collision

cross-section and on the molecular diameter. It is important to reproduce this

behavior to successfully model the temperature dependence of viscosity [26]. To

overcome this problem, the VHS model is proposed with a molecular diameter

that is a function of the relative velocity. The VHS model for a particular gas

may be defined by the effective diameter of the molecule at a particular reference

temperature. In the VHS model, the inverse power law model, with the total

cross-section inversely proportional to the relative velocity, is chosen to match

the experimental viscosity data [26].

The reader can refer to the literature for other collision models, such as the

Variable Soft Sphere (VSS) model, the generalized hard sphere model and the

Maxwell model given in reference [26].

2.4 The governing equations of gas flows

This section describes a summary of the various governing equations, which are

used to model nonequilibrium gas flows. The advantages and disadvantages of

each equation are briefly discussed.

2.4.1 The Boltzmann equation

The Boltzmann equation uses classical mechanics to describe velocity, position

and state of a gas molecule in a flow at any given time [24] as:

∂f

∂t
+ u · ∂f

∂r
+ F · ∂f

∂u
= C (f) , (2.10)
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where the function f(r,u, t) describes the number density of gas molecules with

position r and velocity u at a certain time t under influence of a body force F.

The term C(f) describes binary collisions.

The Boltzmann equation is valid for all regimes of a gas flow from the continuum

to the rarefied regime. However, it is derived with assuming binary collisions, that

will limit its validity to dilute gases. The main challenge in using the Boltzmann

equation for simulating gas flow is the collision integral term, C(f). In solving the

Boltzmann equation, the collision integral term can be replaced by a simplified ki-

netic model of the collision processes in the flow as in the Bhatnagar-Gross-Krook

model [27]. The idea of this model is that modified collision terms are constructed

so that each collision conserves particle number, momentum, and energy; other

characteristics such as persistence of velocities and angular dependence may be

included and lead to irreversible behavior [27]. Linearizing the Boltzmann equa-

tion using the kinetic models can give accurate solutions for some fundamental

cases, but it is rarely appropriate for a complex geometry or flow system.

2.4.2 The Chapman–Enskog expansion

The Chapman–Enskog (C–E) expansion obtains nonequilibrium distribution func-

tions, f , of gas molecules as a perturbation of the local Maxwellian distribution

function, f0, using a series expansion. The C–E expansion is written in terms of

Kn [2] as:

f = f0

(
1 + a1 (Kn) + a2

(
Kn2

)
+ ...

)
, (2.11)

where the coefficients ai are functions of density, velocity and temperature. The

most important success of the C–E expansion is that it allows for computation

of transport coefficients for macroscopic laws from the microscopic details of the

gas. This expansion shows that viscosity and heat conductivity depend only on

temperature and not on density. The temperature dependence is linked to the

interaction potential between the molecules [19].

The C–E expansion produces the Euler equations in zeroth-order of Kn, which

are inviscid constitutive relations. It also produces the viscous N–S–F equations,

the Burnett equations and the Super-Burnett equations in the first, the second
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and the third order of Kn, respectively. The two latter models are also known as

the “higher-order models” and include more complex constitutive expressions for

stress and heat flux [28]. Unfortunately, the higher order equations are numeri-

cally unstable [19].

2.4.3 Moment equations

Moment equations (or equations of transfer) are obtained by multiplying the

Boltzmann equation by a molecular moment quantity Q and are written [26] as:

∂Q

∂t
+
∂ (uQ)

∂r
+ F · ∂Q

∂u
= ∆ (Q) , (2.12)

where ∆(Q) is the moment of the collision integral terms.

When a complete set of moments is considered, that is, if the moments are based

on a complete functional space, the description of the gas through moments is

equivalent to the description through the phase density. [19]

From the general moment equation (2.12), if five moments are considered as

the moments of density, three components of velocity and temperature then this

method is equivalent to the Euler equations from the C–E expansion. If thirteen

moments are considered as the moments of density, momentum density, energy

density, stress and heat flux then we have Grad’s 13 moment method. Grad’s 26

moment method is derived from the 26 moments. These moment methods are

numerically stable, but produce unphysical discontinuous shocks for high Mach

numbers because of its hyperbolic structure. The discontinuity appears when the

flow speed is above the fastest signal speed of the equations. For 13 moments this

is at Ma = 1.65, but for higher moment number the critical velocity grows [19].

Struchtrup [19] combined Grad’s 13 moment method with the C–E expansion to

produce the Regularized 13 moment equations, which avoids the problem men-

tioned above of the Grad moment methods.
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2.4.4 The Navier–Stokes–Fourier equations

The N–S–F equations can be derived from the C–E solution of the Boltzmann

equation at first order in Kn. The N–S–F equations are typically used to describe

gas flows in the continuum fluid regime. They are valid with no-slip boundary

conditions in the range 0.001 ≤ Kn ≤ 0.01, and valid with the slip and tempera-

ture jump boundary conditions in the range 0.01 ≤ Kn ≤ 0.1. These equations,

neglecting body forces, can be expressed [1] as:

Conservation of mass

∂ρ

∂t
+ ∇ · [uρ] = 0, (2.13)

Conservation of momentum

∂ (ρu)

∂t
+ ∇ · [u (ρu)] + ∇p+ ∇ · τ = 0, (2.14)

Conservation of total energy

∂(ρE)

∂t
+ ∇ · [u(ρE)] + ∇ · [up] + ∇ · (τ · u) + ∇ · q = 0, (2.15)

where ρ is the mass density; p is the pressure; the total energy E = e + |u2| /2,

with e the internal energy per unit mass, which includes the translational, rota-

tional and vibrational energy; q is the diffusive flux of heat; τ is the shear stress

tensor. For inviscid flows, τ = 0 and q = 0, then equations (2.13, 2.14, 2.15)

reduce to the Euler equations.

For viscous flows, the stress tensor can be represented by Newton’s law [1]:

τ = −µdev
(∇u + (∇u)T

)
, (2.16)

where µ is the dynamic viscosity, and the superscript T denotes the transpose.

The diffusive flux is represented by Fourier’s law [1]:

q = −k∇T , (2.17)
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where k is the thermal conductivity. A calorically perfect gas is considered for all

simulations in the present study, so p = ρRT and e = cvT = (γ − 1)RT , where

cv is the constant volume specific heat; R is the specific gas constant and γ is the

ratio of specific heats at constant pressure.

2.5 Simulation methods

In this section, simulation methods are described for modelling nonequilibrium

gas flows, i.e. the Direct Simulation Monte Carlo method (DSMC), the Compu-

tational Fluid Dynamics method and the hybrid method.

2.5.1 The direct simulation Monte Carlo method

The DSMC method was originally proposed by Bird [26] and is a statistical ap-

proach. It is considered to be the most accurate method for the computation

of rarefied gas flows in all regimes. The DSMC method is also regarded as a

numerical method for solving the Boltzmann equation, rather than solving it di-

rectly [26]. Instead of simulating each real molecule in a gas flow, the DSMC

method employs a large number of DSMC molecules to represent real gas behav-

ior. Each DSMC molecule is assumed to be representative of a fixed number of

real molecules and has a specific position, velocity and internal energy (including

rotational and vibrational). The intermolecular collisions and molecule surface

collisions are calculated using probabilistic theory. The collision models are com-

monly used in the DSMC method such as the HS model, the VHS model and the

VSS model.

In the DSMC method, the physical space is divided initially into finite size cells

that are populated by DSMC molecules. The number of DSMC molecules is much

smaller than the number of real molecules. The DSMC molecules move with dif-

ferent microscopic velocities for a short time, and then DSMC molecules that re-

side in the same space cell are allowed to interact. For the interaction, molecule

pairs are picked randomly, and then undergo collisions where the collision pa-

rameter is chosen from statistical models. After the collisions are performed,

the molecules undergo the next short period of free flight with new velocities [19].

Surface collisions are taken into account through the surface boundary conditions

presented in the next chapter. A typical DSMC flowchart is shown in Figure 2.2.
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Move individual molecule and compute interactions with boundaries

Output results

Index molecules into cells

 START

Sample flow properties

No

Yes

N > Niteration

STOP

              Set up cell network and set initial molecule state

Distribute particles into cells with their initial position and velocity

Select collision pairs and perform intermolecular collisions

Figure 2.2: A typical DSMC flowchart [29]. N is the number of DSMC molecules.

The DSMC method is very powerful and can model complex nonequilibrium flows

and chemical reactions. However, it has the limitations that a) the collisions are

chosen based on the molecules in each cell, resulting in a cell size dependence on

local mean free path, b) each cell needs to contain sufficient molecules in order to

preserve collision statistics, and c) the time step must be chosen so that molecules

only traverse a fraction of the average cell length per time step [29].
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The DSMC method has two types of errors described as a) statistical errors due

to the nature of the method, and b) a deterministic error, that depends on the

selection of numerical parameters such as the time step, cell volume and the

number of DSMC molecules. Increasing the latter will significantly reduce this

error, but the computational time will increase. The computational effort of the

DSMC method is expensive and requires greater computational facilities.

2.5.2 The computational fluid dynamics method

Typically, the governing equations solved by the CFD method are based on the as-

sumptions that the fluid is a continuum, that the perfect gas law applies, and the

only forces are due to pressure, viscous effects and body forces. It is possible for

the CFD method to accurately predict the aerodynamic environment for conven-

tional air vehicles (including surface pressures and forces), but is severely limited

in accurately predicting the aerothermodynamic environment of hypersonic vehi-

cles that have high-enthalpy flows, surface catalycity, jet/airflow interaction [3].

In the CFD method, the governing equations are often numerically solved by the

finite volume (FV) method. A variety of numerical algorithms have also been

developed to deal with the shocks at hypersonic velocity.

In this thesis, the N–S–F equations are numerically solved with the high-resolution

central scheme described by Greenshields et al. [30]. The results in [30] indicate

that this central scheme is competitive with the best method previously pub-

lished, and is simple and well-suited to a collocated, polyhedral FV framework.

The FV discretisation and this central scheme are described in [30] and the most

important aspects outlined below.

The FV method discretizes the differential equations in the N–S–F equations, on

meshes containing polyhedral cells with an arbitrary number of faces, each with

an arbitrary number of vertices. The spatial domain is therefore divided into a

number of control volumes, or cells. There is no alignment of the mesh with the

co-ordinate system and the number of neighbouring cells can vary from cell to

cell. The cell connectivity is that a cell face is either internal and intersects two

cells only or comprises an external boundary and belongs to a single cell only.

Each face is assigned by an owner cell and a neighbour cell. The face area vector

Sf is a vector normal to the face surface pointing out of the owner cell, whose
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magnitude is that of the area of the face, as seen in Figure 2.3. In this collocated

system, all dependent variables and the material properties are stored at each

cell centroid, ‘P’ in Figure 2.3. The vector d connects the centroid of the owner

cell P to that of the neighbouring cell N , and the vector dfN connects the centre

of the face to the centroid of the cell N [30].

  N

Sf

f

d

dfN
P

.

Figure 2.3: Finite volume discretisation [30].

The FV method solves the flow differential equations within an integral over

a fixed cell volume V . Divergence and gradient terms are then converted to

integrals over the cell surface S using a generalised form of Gauss’s theorem. The

integration requires fluxes at cell faces, evaluated by interpolation of cell centre

values to the faces. For polyhedra with an arbitrary number of faces, it is desirable

that the interpolation to a given face is between owner and neighbour cells only,

otherwise it becomes complex. The second order semi-discrete, non-staggered

schemes of Kurganov and Tadmor (KT) [31] and Kurganov, Noelle and Petrova

(KNP) [32] permit this. Below, we outline discretisation of a general dependent

tensor field Ψ of any rank by interpolating the values ΨP at cell centres to values

Ψf interpolated to cell faces [30].

The convective terms in equations (2.13, 2.14, 2.15) i.e. ∇· [uρ] ,∇· [u (ρu)],

∇· [u (ρE)], and ∇· [up] are treated as a critical aspect of central schemes. Each
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is integrated over a control volume and linearized as follows [30]:

∫

V

∇· [uΨ] dV =

∫

S

dS · [uΨ] ≈
∑

f

Sf·ufΨf =
∑

f

φfΨf, (2.18)

where
∑

f denotes a summation over cell faces and φf = Sf·uf is the volumetric

flux (i.e. the volume of fluid flowing through the face per second).

For compressible flows, fluid properties are not only transported by the flow but

also by the propagation of waves. This requires the flux interpolation to be

stabilized, based on transport that can occur in any direction. The KT and KNP

methods are applied to do this in their original form. The interpolation procedure

is divided into directions corresponding to flow outward and inward of the face

owner cell. These directions are denoted as f+, coinciding with the direction +Sf

and f– coinciding with –Sf. The discretisation is then as follows [30]:

∑

f

φfΨf =
∑

f

[θφf+Ψf+ + (1− θ)φf–Ψf– + ωf (Ψf– −Ψf+)] , (2.19)

The first two terms on the right hand side of equation (2.19) are flux evaluations

in the f+ and f– directions, respectively. The third term is strictly only required

in cases where the convection term is part of a substantive derivative, ∇· [u (ρu)]

in equation (2.14), for which ∂(ρu)/∂t completes the substantive derivative of

ρu. It is an additional diffusion term using a volumetric flux ωf based on the

maximum speed of propagation of any discontinuity that may exist at a face

between values interpolated in the f+ and f– directions [30].

In the KT method, the f+ and f– contributions are weighted equally so that the

weighting coefficient θ = 0.5, hence its description as a central scheme. The KNP

method calculates θ based on one-side local speeds of propagation. The weighting

is then biased in the upwind direction, hence these schemes are called central-

upwind. Volumetric fluxes associated with local speeds of propagation can be

calculated as follows [30]:

ψf+ = max (cf+ |Sf|+ φf+, cf– |Sf|+ φf–, 0) ;

ψf– = max (cf+ |Sf| − φf+, cf– |Sf| − φf–, 0) .
(2.20)
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Here, cf± =
√
γRTf± are the speeds of sound of the gas at the face, outward and

inward of the owner cell. The weighting factor is:

θ =

{
1
2

for the KT method;
ψf+

ψf++ ψf–
for the KNP method.

(2.21)

The diffusive volumetric flux is calculated according to:

ωf =

{
θ max (ψf+, ψf–) for the KT method;

θ (1− θ) (ψf+ + ψf–) for the KNP method.
(2.22)

The method involves f+ and f– face interpolations of a number of variables

(T, ρ, ...) from values at neighbouring cell centres. The interpolation procedure

uses a limiter to switch between low and high order schemes based on a flux

limiter function ϑ(r), where r represents the ratio of successive gradients of the

interpolated variable, constrained to r ≥ 0. On a polyhedral mesh, r can be

described as follows for the f+ direction [30]:

r = 2
d · (∇Ψ)P

(∇dΨ)f

− 1, ( scalar Ψ) , (2.23)

where (∇Ψ)P is the full gradient calculated at the owner cell P with linear inter-

polation and (∇dΨ)f = ΨN −ΨP is the gradient component normal to the face,

scaled by |d|.

The f+ and f– interpolation are based on limiting standard first order upwind

and second order linear interpolations. The chosen limiters are total variation

diminishing and symmetric, for which ϑ(r)/r = ϑ(1/r), namely Minmod [33]

and van Leer [34], whose limiter functions are ϑ(r) = max[0, min(1, r)] and

ϑ(r) = (r + |r|)/(1 + r), respectively. Then, the f+ interpolation of Ψ is simply

computed as [30]:

Ψf+ = (1− gf+)ΨP + gf+ΨN. (2.24)

where gf = ϑ(1−ωf), 0 ≤ ϑ ≤ 2. It is seen that ϑ = 0 gives upwind interpolation,

ϑ = 1 gives linear interpolation and ϑ = 2 gives downwind interpolation.
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The gradient terms present in the N–S–F equations are ∇p in equation (2.14)

and are usually integrated over a control volume and discretised as follows: [30]

∫

V

∇ΨdV =

∫

S

dSΨ ≈
∑

f

SfΨf, (2.25)

The KT and KNP methods divide the interpolation procedure into f+ and f-

directions according to:

∑

f

SfΨf =
∑

f

[θSfΨf+ + (1− θ)SfΨf-] , (2.26)

where f+ and f- interpolation uses the limiter described above.

For completeness, the Laplacian terms are initially discretised with diffusion co-

efficient Γ for polyhedral meshes as follows [30]:

∫

V

∇· (Γ∇Ψ) dV =

∫

S

dS · (Γ∇Ψ) ≈
∑

f

ΓfSf · (∇Ψf) . (2.27)

The Γf is interpolated linearly from cell centre values. For the general case where

a face is non-orthogonal (i.e. Sf is not parallel to d), the evaluation of Sf · (∇Ψ)f

is divided into an orthogonal component in terms of neighbour and owner cell

values and a non-orthogonal component in terms of a full gradient, calculated at

cell centres and itself interpolated to the face [30]:

Sf · (∇Ψ)f = A (ΨN −ΨP)︸ ︷︷ ︸
orthogonal

+ a·(∇Ψ)f︸ ︷︷ ︸
non−orthogonal

, (2.28)

where A = |Sf|2/(Sf · d) and a = Sf − Ad

The N–S–F equations are implemented and solved numerically in OpenFOAM [35]

as the solver rhoCentralFoam for simulating high speed viscous flows. Open-

FOAM is a open source CFD toolbox, written in C++. All solvers developed

within OpenFOAM are, by default, 3-dimensional, but can be used for 1- or 2-

dimensional problems by the application of particular boundary conditions lying

on the plane of directions of no interest.
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2.5.3 The hybrid method

The DSMC method simulates successfully hypersonic gas flows in all regimes but

with high computational cost. In the transition-continuum regime (0.1 ≤ Kn ≤
1), the N–S–F equations become inappropriate. Thus, either CFD or the DSMC

method on its own fails to provide both a comprehensive and numerically-efficient

computational modelling capability across all regimes. A natural solution to this

problem is to develop a hybrid CFD–DSMC method [36,74].

The accuracy of a hybrid CFD–DSMC method relies on the proper positioning of

the CFD–DSMC interfaces. The interfaces must lie in near-equilibrium regions

where solutions of the N–S–F equations will introduce minimal error. Typically,

molecule and continuum regions are determined by evaluating a continuum break-

down parameter in the flow field. In [36,74], the hybrid method uses the Knudsen

number defined with the length scale of a macroscopic gradient in equation (2.2)

as a continuum breakdown parameter.

In regions of the flow field where Kn ≤ 0.05, the discrepancy between a CFD and

DSMC solution can be less than 5%. Thus, these regions could be solved using

a continuum approach. The hybrid method begins with a CFD solution of the

entire flow field and then uses equation (2.2) to decompose the domain into CFD

and DSMC regions. State-based coupling can be used to transfer information

between molecular and continuum regions. After evaluation of the breakdown

parameter, the molecular region is extended by a few extra cells into the contin-

uum domain to create an overlap region. The overlap regions help to improve the

accuracy of the DSMC fluxes. One row of CFD and two rows of DSMC bound-

ary cells are initialized, and then the DSMC and CFD domains are coupled by

transferring information across the interfaces. With state-based coupling, this in-

volves updating the boundary conditions of each solver. In this way, information

transfer into both the molecular and continuum solvers is handled through ex-

isting boundary procedures already used by both solvers. The DSMC boundary

cells are continually filled with molecules consistent with the flow properties in

the corresponding CFD cells. As molecules in the DSMC domain interact and

their distributions evolve in time, the hybrid also tracks the macroscopic variation

in each DSMC cell. These averaged DSMC properties are then used to update

boundary conditions for the CFD solver [74].
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The hybrid method is able to reproduce successfully the results of the DSMC

simulations at a smaller computational effort [74]. However, it faces difficult

challenges in identifying a reliable continuum breakdown parameter for switching

from one scheme to the other, and the matching condition at the interface between

the two domains [36]. Moreover, the high computational expense of DSMC still

dominates the hybrid technique, and simulating flows around realistic geometries

remains practically intractable [75].

2.6 The viscosity-temperature relation

The viscosity-temperature relation is important in the continuum-fluid modelling

of hypersonic gas flows. For gases, the viscosity increases with increasing tem-

perature. This thesis focuses on the Power and the Sutherland Laws describing

the viscosity-temperature relationship in simulations.

The Power Law is simple, and expressed as:

µ = APT
s, (2.29)

where AP (Pa.s Ks) is a constant of proportionality. The accuracy of the Power

Law depends on the exponent s over the range of temperature, T . The value

s is suitably chosen to satisfy experimental data. For argon, s = 0.68 over the

temperature range, T , from 80 to 2000 K, and s = 0.76 at temperatures, T , up

to 15000 K [37]. Values of s for helium and xenon can also be found in [37].

Sutherland’s Law is more complicated than the Power Law. It adds a weak attrac-

tive component to the intermolecular force, which is more realistic. Sutherland’s

Law is expressed as:

µ = AS
T 1.5

T + TS
, (2.30)

where AS and TS are constants. This law is valid only if the attractive compo-

nent to the intermolecular force is small. So Sutherland’s Law does not fit the

experimental data well for gases like hydrogen and helium, in which the Power

Law is a better fit over the temperature range, T , from 20 to 500 K [1]. However,

25



CHAPTER 2. SIMULATION OF HYPERSONIC GAS FLOWS:
BACKGROUND AND THEORY

Sutherland’s Law is accurate for air over a range of several thousand degrees and

is certainly appropriate for hypersonic viscous-flow calculations [1]. The values

AS and TS for different gases in the range of gas temperature, T , from 58 to 1000

K are given in Table 2.1 taken from references [38–41].

Table 2.1: Value of AS and TS in Sutherland’s Law, equation (2.30)

Gas AS (Pa.s K−1/2) TS (K)
Air 1.46× 10−6 110.4
Nitrogen 1.41× 10−6 111
Oxygen 1.69× 10−6 127
Argon 1.93× 10−6 142

Whichever model for viscosity is adopted, the coefficient of thermal conductivity

may be determined from the formula:

k =
cpµ

Pr
, (2.31)

where the Prandtl number, Pr, is assumed to be constant and cp is the constant

pressure specific heat.

2.7 Summary

In this chapter, relevant kinetic theory of gases, different fluid governing equa-

tions and different simulation methods for modelling nonequilibrium gas flows

were reviewed. The advantages and disadvantages of these equations and meth-

ods were briefly described. It is clear that modelling nonequilibrium gas flow

is both challenging and, using traditional approaches, computational intensive.

One of the major challenges, whatever the simulation method adopted, is choos-

ing the correct surface boundary conditions. These are critical to obtaining good

simulated results, and will be discussed in detail in the next chapter. To develop

a realistic model, it is necessary to understand the physics and chemistry of in-

terfacial phenomena.

In the present work, we focus on the surface boundary conditions in CFD, which

solves the N–S–F equations. The simulation results of CFD are compared with

DSMC and experimental data given in literature.
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Chapter 3

Nonequilibrium boundary

conditions

3.1 Introduction

Surface slip/jump boundary conditions are important for calculating the slip ve-

locity, surface temperature and surface pressure for re-entry vehicles designs. In

the CFD method, such boundary conditions should increase the maximum Knud-

sen number from 0.01 to 0.1 for accurate N–S–F solutions. The accuracy of the

full-field computational results depends on the surface boundary conditions ap-

plied. The appropriate treatment of the boundary conditions is critical when

comparing DSMC or experimental data to the CFD results.

In this chapter, the common slip velocity conditions and temperature jump con-

ditions are revisited. These are the Maxwell slip [5] condition, the Smoluchowski

jump [6] condition and the second-order slip condition [16]. The latter slip con-

dition is developed following kinetic theory applied to rarefied gas micro-flows

in planar surface geometries. The second-order temperature jump in [76] only

appears to produce solutions in conjunction with high-order BGK-Burnett con-

stitutive equations for hypersonic gas flows. Alternative slip/jump conditions,

such as the Langmuir boundary conditions, are based on the adsorption isotherm

given in [9, 10], and are also reviewed below. Simple tests of all these conditions

are done for a laminar sharp-leading-edge flat plate case to investigate how they

perform in hypersonic gas flows.
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New slip/jump conditions are also proposed by combining the kinetic theory of

gases with the Langmuir adsorption isotherm.

3.2 Gas–Surface interactions

When a gas molecule collides with a surface, it is reflected at a specific angle, ve-

locity and temperature. If the molecule is reflected elastically, with an incoming

angle equal to the receding angle, and with an unchanged momentum and energy,

then this collision is known as a specular interaction [23]. This corresponds to

smooth and adiabatic surfaces. The surface shear stress and heat transfer are

zero in this case.

On the other hand, if the molecule is reflected inelastically, with an incoming

angle unequal to the receding angle, and with a changed momentum and energy,

then this collision is known as a diffuse interaction [23]. This corresponds to a

rough surface held at constant temperature. The surface shear stress and heat

transfer are not zero in this case.

In fact, the molecules collide with the surface in both specular and diffuse in-

teractions. The accommodation coefficient is the fraction of incoming molecules

that are reflected diffusely.

Moreover, if the molecules collide with a surface they may a) either stick per-

manently or b) remain at the surface long enough to reach thermal equilibrium,

then leaving the surface. The latter case is known as “trapping”. If the molecules

stick on the surface held at constant temperature, this case is the adsorption

isotherm [47]. The fraction of molecules that stick on the surface can be deter-

mined by the Langmuir adsorption isotherm. These may be considered as diffuse

interactions [22,23,47]. In the present work, the solid surfaces are assumed to be

isothermal.
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3.3 Nonequilibrium surface boundary conditions

3.3.1 Surface boundary conditions in the CFD method

Most nonequilibrium slip/jump boundary conditions can be expressed in the form:

φ+ a∇n (S · φ) = ΦL, (3.1)

where φ is the variable of interest, e.g. velocity or temperature; with bold type

denoting a vector or tensor quantity; ∇n ≡ n ·∇ is the component of the gradient

normal to the boundary surface, with n being the unit normal vector defined

as positive in the direction pointing out of the flow domain; a is a coefficient

specific to each boundary condition and ΦL is the limiting value in the case of

no slip/jump, e.g. the surface velocity or temperature. The tensor S = I − nn,

where I is the identity tensor, removes normal components of any non-scalar field,

e.g. velocity, so that slip only occurs in the direction tangential to the surface.

The normal gradient can be expressed numerically as:

∇nφ = C∆ (φ− φi) , (3.2)

where the subscript ‘i’ denotes a value in the numerical cell adjacent to the bound-

ary face of the solid surface, and C∆ = 1/|dB|, with dB the distance from the

numerical cell centre to the boundary face centre of the solid surface.

In the present work, all nonequilibrium boundary conditions will be expressed in

the form of the general equation (3.1) above.

Slip velocity

In gas-surface interactions, the gas molecules can be grouped into two streams:

approaching and receding. The viscous drag on the surface is due to the difference

between the tangential momentum of the approaching stream and that carried

away by the receding stream. The tangential momentum of the gas molecules

is responsible for the shear stress, τ . Maxwell makes the assumption that the

approaching gas molecules and the receding gas molecules have equal influence

on the total shear stress at the surface:

[
1

2
τ

]

approaching

+

[
1

2
τ

]

receding

= [τ ]total . (3.3)
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The stream of molecules receding from the surface is assumed to be equivalent to

a simple effusive flow. A typical effusive velocity distribution will be that of a flow

of individual molecules through a small hole in a planar surface with diameter of

the order of the mean free path. The total number of molecules that impinge on

the surface may be expressed in terms of the mean molecular velocity, v̄, and the

number density of molecules in the flow, η as [23]:

Γn =
1

4
ηv̄. (3.4)

This number of molecules leaving the surface must be added to the momentum

due to the slip velocity, u, to produce the receding stream’s contribution to the

total shear stress at the surface. The observation of a slip velocity shows that

some tangential momentum is retained by the gas at the surface. To determine

the slip velocity while conserving momentum, Maxwell introduces the tangen-

tial momentum accommodation coefficient, σu. Incorporating density ρ = ηm,

equation (3.3) becomes:

σu

[
1

2
τ +

1

4
ρv̄u

]
= τ , (3.5)

which can be re-arranged as,

u = 2

(
2− σu
σu

)
τ

ρv̄
. (3.6)

Substituting the mean molecular velocity, v̄, from a Maxwellian equilibrium dis-

tribution [23], gives

v̄ = 2
√

(2RT/π). (3.7)

The definition of the mean free path depends on collision models such as VHS,

HS, and VSS models. The definition of λ from the HS model is commonly used

for CFD in simulating hypersonic gas flows, and calculated in terms of macro-

scopic quantities as [23],

λ =
µ

ρ

√
π

2RT
. (3.8)

This definition of λ is used for all the CFD simulations in this thesis. From equa-

tions (3.6), (3.7) and (3.8), the most common form of the Maxwell slip boundary
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condition in rarefied gas flows is obtained [5]:

u =

(
2− σu
σu

)
λτ

µ
. (3.9)

The tangential momentum accommodation coefficient determines the proportion

of molecules reflected from the surface specularly (equal to 1 − σu) or diffusely

(equal to σu), and 0 ≤ σu ≤ 1.

This formulation neglects the thermal creep, a process whereby a temperature

gradient tangential to the surface generates additional slip flow in the direction

of increasing temperature. The gas would then slide over a surface from colder

to hotter regions (see also Section 6.7). Maxwell’s general equation for use in

three-dimensional geometries, including thermal creep, can be written in tensor

form as follows:

u =

(
2− σu
σu

)
λτ

µ
− 3

4

Pr(γ − 1)

γp
q + uw, (3.10)

where uw is the surface velocity; the tangential shear stress is τ = −S · (n ·Π)

and the heat flux is q = Q ·S at the surface; Π is the stress tensor at the surface;

Q is the heat flux vector along the surface; p is the gas pressure at the surface.

Equation (3.10) can be expressed in the general form of equation (3.1) by substi-

tuting τ = −S ·(n ·Π) and Π = µ∇u+Πmc, with Πmc = µ(∇u)T−(2/3)Itr(∇u)

into equation (3.10), where the superscript T denotes the transpose, and tr de-

notes the trace. Noting that S · ∇nφ ≡ ∇n(S · φ), equation (3.10) then becomes:

u+

(
2− σu
σu

)
λ∇n(S ·u) = uw−

(
2− σu
σu

)
λ

µ
S · (n ·Πmc)− 3

4

µ

ρ

S · ∇T
T

. (3.11)

The right hand side of equation (3.11) contains 3 terms that are associated with

(in order): the surface velocity, the so-called curvature effect [8], and thermal

creep.

The second order velocity slip boundary condition for planar surfaces [16] can be

expressed as follows:

u + A1λ∇n(S · u) + A2λ
2∇2

n(S · u) = uw, (3.12)
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where A1 and A2 are slip coefficients for the first and second order terms respec-

tively. Their values are proposed either from theory or from experiment and are

still the subject of much discussion. Equation (3.12) can be expressed in the

general form of equation (3.1) by substituting ∇nu = C∆(u − ui) into equation

(3.12):

u + (A1λ+ A2λ
2C4)∇n(S · u) = uw + A2λ

2C∆∇n(S · u)i. (3.13)

Both the above slip conditions are “fictitious slip” conditions at the surface.

When the Navier-Stokes-Fourier equations are used with a fictitious slip condi-

tion at the surface, the prediction of the velocity in the Knudsen layer is not

accurate by linear constitutive relations. The Knudsen layer is a near-surface

region approximately one to two mean free paths in thickness where local ther-

modynamic equilibrium is not maintained. However, the fictitious slip condition

does capture the velocity outside the Knudsen layer, as seen in Figure 3.1.

Figure 3.1: The dash line presents the velocity profile using the N-S-F equations
with a “fictitious slip’ velocity us, and the solid line corresponds to the actual
velocity profile.

Temperature jump

Experimental observations show that the temperature of a rarefied gas at a surface

is not equal to the surface temperature, Tw. This difference is called the “temper-
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ature jump” and is driven by the heat flux normal to the surface. By analogy with

Maxwell’s arguments for the slip velocity, the energy of approaching molecules

impinging on a unit area of surface is responsible for the heat conducted through

the surface. Smoluchowski assumes that the approaching stream of molecules

conducts the same level of heat and does dissipative work as that within the re-

gion of gas some distance away from the boundary. The approaching and receding

streams contribute to half of the conduction of heat. Similar to the derivation of

slip velocity, to determine the temperature jump while conserving the energy, a

thermal accommodation coefficient, σT , is introduced (with 0 ≤ σT ≤ 1) [23].

Perfect energy exchange between the gas and the solid surface corresponds to

σT = 1, and no energy exchange to σT = 0. Therefore we have:

−[k∇nT ]total = σT (−[
1

2
k∇nT ]approaching + [

1

2
k∇nT ]receding), (3.14)

The internal energy of the molecules will be normally e = cvT per unit mass.

The translatory energy of molecules colliding with unit area of boundary is 4/3

times as great as the mean translatory energy of molecules in equilibrium at

the same temperature [23]. The energy of colliding molecules is then higher by

a factor (γ + 1)/2 corresponding to an energy (cv + R/2)T . The mass of the

molecules colliding with unit area of boundary is ρv̄/4, so the intergal energy per

unit area is ρv̄(γ + 1)e/8. The conduction of heat of the receding stream is a

difference between the internal energy of the gas e and that of the surface ew and

is calculated [23]:

[
1

2
k∇nT ]receding =

1

8
ρv̄(γ + 1)(e− ew), (3.15)

which is re-arranged by replacing ρv̄ = 2µ/λ, e = cvT and ew = cvTw as,

[
1

2
k∇nT ]receding =

1

4

µ

λ
(γ + 1)cv(T − Tw). (3.16)

Inserting equation (3.16) into equation (3.14) gives the Smoluchowski tempera-

ture jump in rarefied gas flows, which in the form of equation (3.1) is [6, 23],

T +
2− σT
σT

2γ

(γ + 1)Pr
λ∇nT = Tw. (3.17)
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Langmuir boundary conditions

Adsorption is the process by which free gas molecules attach to a surface. The

gas molecule that adsorbs is the “adsorbate” and the surface is the “adsorbent”.

Adsorption is usually described through isotherms, that is, the amount of adsor-

bate on the adsorbent as a function of its pressure at constant temperature.

The Langmuir adsorption isotherm model proposed for gases adsorbed on the

surface described in references [9,10,42–45] is based on the following assumptions:

• adsorption cannot proceed beyond monolayer coverage of the surface.

• all surface sites are equivalent and can accommodate one adsorbed atom.

• there are no interactions between the occupied sites.

The adsorption isotherm process between the gas molecules and the surface is

shown in Figure 3.2. Here M is the chemical name of the free gas molecules, Sv is

Surface

Sv

M

SM

Figure 3.2: Schematic of the Langmuir adsorption isotherm model.

a vacant surface sites (adsorbent) and SM is an occupied surface site (adsorbate).

The gas-surface interaction process can be regarded as a chemical reaction [42]:

Sv +M À SM. (3.18)

A chemical equilibrium constant KL for this chemical reaction depends on the

M , Sv, and SM and is determined by:

KL =
SM

SvM
. (3.19)

If α is the fraction of coverage (occupied surface sites) (0 ≤ α ≤ 1), [SM] is

proportional to α, [Sv] is proportional to the number of vacant sites (1−α), and
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[M] is proportional to the pressure of the gas, p. This fraction α can be calculated

for different gases as follows:

For a monatomic gas:

α =
βp

1 + βp
, (3.20)

where β is defined below.

For a diatomic gas, a molecule approaching the surface may be adsorbed on the

surface only if two particular elementary sites are vacant. The chance of one of

these sites being vacant is (1−α) and the chance that both sites will be vacant is

(1− α)2. Thus the rate of condensation is proportional to (1− α)2. Evaporation

only occurs when adsorbed atoms are in adjacent sites. The chance that an atom

shall be in a given site is α and therefore the chance that atoms will be in adjacent

sites is equal to α2. Thus the rate of evaporation of molecules from the surface

is proportional to α2. From this reasoning, the following adsorption isotherm for

a diatomic gas can be found [10,45]:

α =

√
βp

1 +
√
βp
, (3.21)

For a gas mixture, consisting of two gas components, for example, nitrogen and

oxygen, with Vg denoting the volume fraction of the components (i.e. VgN2 +

VgO2 = 1), then the fraction α can be expressed [10,45]:

α = VgN2

√
βN2p

1 +
√
βN2p

+ VgO2

√
βO2p

1 +
√
βO2p

, (3.22)

where β is an equilibrium constant relating to the surface temperature, given by:

β =
KL

RuTw
, (3.23)

where Ru is the universal gas constant (J/kmol K) and KL is [10, 42]:

KL = Amλ exp

(
De

RuTw

)
, (3.24)

so that

β =
Amλ

RuTw
exp

(
De

RuTw

)
, (3.25)
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where Am is the mean area of a site (m2/mol) and is either measured or calculated

approximately by NAπd
2/4 for gases [10, 45], with d the molecular diameter and

NA the Avogadro number; De is the measured value of the heat of adsorption

(J/mol): for argon and nitrogen gases De = 5255 (J/mol) given in references [9,

42,45].

With α determined, the boundary values for temperature and velocity are calcu-

lated as [9, 10,42]:

φ = αφw + (1− α)φg, (3.26)

or

φ+
(1− α)

α
(φ− φg) = φw, (3.27)

where φ can represent either u or T . The subscript g represents either a reference

value or a local value adjacent to the surface (i.e. at a mean free path’s distance

from the surface). Depending on a particular case, the reference value may be

either a freestream value or a outflow value to obtain accurate results. Thus,

this is not a general way to derive the Langmuir boundary conditions. Moreover,

the Langmuir conditions developed with the reference value using the N–S–F

equations did not give good results in simulating hypersonic gas flows in [77]. So,

the Langmuir boundary conditions are expressed with a local adjacent value. If

φg is the value of φ a mean free path away in the direction normal to the surface,

then φ− φg ≈ λ∇nφ. The Langmuir model is then:

φ+ λ
(1− α)

α
∇nφ = φw. (3.28)

Expressed this way, the Langmuir boundary conditions have the same form as

the Smoluchowski jump condition, and the Maxwell boundary condition with-

out the thermal creep term and the curvature effect, but with (2 − σu)/σu and

(2 − σT )/σT in equations (3.11) and (3.17), respectively replaced by (1 − α)/α.

The coefficient for the Langmuir boundary condition is calculated from equation

(3.25), which depends on the values of Am and De, whereas σu and σT are the

only free parameters in the Maxwell/Smoluchowski conditions.
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3.3.2 Surface boundary condtions in the DSMC method

The surface boundary conditions in the DSMC method simulate gas-surface in-

teractions: DSMC molecules are adsorbed by the surface and then re-emitted.

There are two general types of interactions: specular and diffuse, as presented in

Section 3.2.

In fact, DSMC molecules collide with the surface and experience both specular

and diffuse interactions. The accommodation coefficients represent the fraction

of incoming DSMC molecules that are reflected diffusely and the remainder are

reflected specularly [50–52]. Velocity slip and the temperature jump (including

translational, rotational and vibrational temperature jumps) in [50–52] are cal-

culated using Bird’s DSMC implementation [26]. There is no difference between

the DSMC and real molecule velocity, and the mass of a real molecule m is used

for calculating slip/jump quantities [78]. When accommodation coefficients are

equal to 1,

us =

∑
((m/un) up)∑

(m/un)
− uw, (3.29)

Ttra,j =
1

3R

∑
((m/ |un|) (||u||))−∑

(m/ |un|) u2
s∑

(1/ |un|) − Ttra,w, (3.30)

Trot,j =
1

R

∑
(erot/un)∑
(1/ |un|) − Trot,w, (3.31)

Tvib,j =
Θ

ln
(
RΘ
Evib

+ 1
) − Tvib,w, Evib =

∑
(evib/ |un|)∑

1/ |un| , (3.32)

where un is the velocity normal to the surface; up is the velocity parallel to the

surface; ||u|| is the velocity magnitude; Ttra,j, Trot,j and Tvib,j are the translational,

rotational and vibrational temperature jumps, respectively; and Ttra,w, Trot,w and

Tvib,w are the translational, rotational and vibrational surface temperature, re-

spectively.

The un and up in the equations are taken prior to and after the collision with the
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surface, and the summations include pre- and post-collision molecules.

The viscosity and thermal conductivity are calculated in [50–52] according to a

power law viscosity/temperature relationship, through the equations:

µ = µref

(
T

Tref

)ω

, (3.33)

where

µref =
15

√
πmkBTref

2πd2
ref (5− 2ω) (7− 2ω)

, (3.34)

where ω is the temperature exponent; dref is the reference diameter of a real

molecule; and Tref is the reference temperature.

3.4 Testing the boundary conditions

In this section, the Maxwell slip, the second-order slip, the Smoluchowski jump

with various coefficients σu, σT , A1 and A2, and the Langmuir slip/jump condi-

tions are tested for a laminar flat plate flow that is a simple test case. Experimen-

tal data is available from Becker [46] with an uncertainty of ±1%. The freestream

flow conditions of test case are λ∞ = 0.23 mm, p∞ = 3.73 Pa, T∞ = 64.5 K,

u∞ = 1893.7 m/s, Tw = 292 K, and argon as the working gas. The Lang-

muir models are tested with the covalent and the Van der Waals diameters of a

molecule. The covalent diameter is a measure of the size of the molecule which

forms part of a covalent bond, while the Van der Waals diameter of a molecule

is the diameter of an imaginary hard sphere. The rectangular mesh with the

cell size ∆x = ∆y = 0.1λ∞ is used for simulations. The viscosity is calculated

by the Sutherland law with the values As = 1.93× 10−6, and Ts = 142 K from

Table (2.1) for equation (2.30). The results of simulations are compared with the

experimental data in Figures 3.3 and 3.4.
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Figure 3.3: Becker’s case [46] with various boundary conditions, the surface pres-
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From the results obtained, the values σu, σT , A1 and A2 very sensitively affect the

surface pressure and the slip velocity. They decide the accuracy of the simula-

tion results. The results of the Langmuir models did not give as good agreement

with the experimental data as the Maxwell/Smoluchowski models or the second

order/Smoluchowski models, as they overpredict the surface pressure, and un-

derpredict the slip velocity. The no-slip/jump test also overpredicts the surface

pressure. It is seen that the covalent diameter gives better results than the Van

der Waals diameter in the Langmuir models, however.

3.5 New surface boundary conditions for CFD

The surface boundary conditions used in the above tests depend on free param-

eters σu, σT , A1 and A2. In calculating the slip/jump, the Langmuir conditions

only consider the molecules adsorbed on the surface and ignore diffuse reflection

at the surface. The adsorption of molecules on a surface is classified as a kind

of diffuse reflection [22,23]. In the Maxwell slip conditions, specular reflection of

molecules is given indirectly by tangential momentum accommodation coefficient

and does not affect the slip velocity. New boundary conditions are developed

after obtaining the desired values of σu, σT , A1 and A2 in the present work. Our

earlier simulation results in [79] proposed the value σT = 1.0 in the Smoluchowski

jump condition for simulating hypersonic gas flows.

The above observation suggests that, only diffuse reflection and perfect energy

exchange are taken into account for developing modified slip/jump conditions (i.e.

σu = σT = 1.0), in which the molecules adsorbed at the surface are considered as

diffusely reflected. The molecules adsorbed that are determined by the fraction

α, only contribute to the part of the total fluid shear stress at the surface due

to the approaching molecules (i.e. τ receding due to the molecules adsorbed is

zero) [47]. The temperature of these emitted molecules is equal to the surface

temperature (T = Tw). So following equations (3.3), (3.14) and (3.16), with the

fraction (1− α) added to the terms involving receding molecules, gives.

[
1

2
τ

]

approaching

+

[
1

2
(1− α)τ

]

receding

= [τ ]total , (3.35)
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and

−[k∇nT ]total = (−[
1

2
k∇nT ]approaching + [

1

2
(1− α)k∇nT ]receding). (3.36)

Following the algebraic manipulations similar to those employed on the Maxwell/

Smoluchowski conditions, the new slip boundary condition in the form of equation

(3.1) is obtained as follows:

u +

(
1

1− α

)
λ∇n(S · u) = uw −

(
1

1− α

)
λ

µ
S · (n ·Πmc)− 3

4

µ

ρ

S · ∇T
T

. (3.37)

The right hand side of this new slip condition, named the “Langmuir-Maxwell

slip condition”, also contains 3 terms that are associated with (in order): the

surface velocity, the so-called curvature effect [8], and thermal creep. The new

temperature jump condition may also be expressed in the form of equation (3.1),

and named the “Langmuir-Smoluchowski jump condition”:

T +
1

1− α

2γ

(γ + 1)Pr
λ∇nT = Tw. (3.38)

In the present work, we only consider physical adsorption, which implies that

gases have no chemical interaction with a surface. The gases will be adsorbed

by the solid surface as a result of purely physical forces [48]. Therefore, the

value of heat of adsorption, De, is small and falls within the range from 0.1 to

10 kcal/mol [10, 45] that leads to a small value of α. This guarantees that the

coefficient (1 − α) does not become close to zero in these new surface boundary

conditions.

From equations (3.11, 3.13, 3.17, 3.28, 3.37, 3.38), the specific coefficients a for

the different models for velocity slip and temperature jump in the form of gen-

eral equation (3.1) are collated in Table 3.1. The Langmuir-Maxwell/Langmuir-

Smoluchowski conditions are called the “new Boundary Conditions” (BCs) in the

following chapters.
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Table 3.1: Coefficient a in equation (3.1) for various slip/jump boundary condi-
tions

Velocity slip Temperature jump Coefficient a
– Smoluchowski λ((2− σT )/σT )(2γ/((γ + 1)Pr))

Maxwell – λ(2− σu)/σu
Langmuir Langmuir λ(1− α)/α

Second-order – A1λ+ A2λ
2C∆

Langmuir-Maxwell – λ/(1− α)
– Langmuir-Smoluchowski (λ/(1− α))(2γ/((γ + 1)Pr))

3.6 Numerical implementation of boundary con-

ditions

The open source CFD software, OpenFOAM [35], is used in the present work.

It uses finite volume (FV) numerics to solve systems of partial differential equa-

tions ascribed on any 3-dimensional unstructured mesh of polygonal cells. The

FV discretisation is based on Gaussian integration and so uses values and normal

gradients of fields at cell faces. If the face belongs to a boundary, the face value

and gradient required by the discretisation procedure, must be obtained from the

boundary condition. Various fundamental types of boundary conditions are im-

plemented in OpenFOAM, including one called “partial slip”; that is a mixture

of a fixed value, or Dirichlet, condition and a zero gradient condition ( i.e. a Neu-

mann condition where the normal gradient is zero). The “mixing” is controlled

by a fraction coefficient σ (0 ≤ σ ≤ 1) where σ = 0 for the zero gradient condition

and σ = 1 for a fixed value condition. A reference value is also required that is

assigned to the fraction of the boundary condition that is a fixed value.

For the case of scalar fields, this OpenFOAM boundary condition can be used as

the basis for any slip/jump boundary condition described by equation (3.1), by

setting [49]

σ = 1− aC∆

1 + aC∆

, (3.39)

and setting the value ΦL to be the reference value for the fixed value component.

For the case of vector fields, the standard partial slip condition was modified

to include the tensor S, so that only the tangential components of the field are

“slipped”. In either case, the fraction values, σ, for the boundary conditions

considered are simply determined by equation (3.39) with the values of a from
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Table 3.1. In the present work, the Langmuir models, the second order slip

condition and the new slip/jump conditions were originally implemented into the

solver rhoCentralFoam in OpenFOAM for simulating high speed viscous flows.

3.7 Conclusions

In this chapter, a summary of the common slip/jump boundary conditions based

on the kinetic theory of gases and the Langmuir adsorption isotherm was pre-

sented. The results of the simple test in Section 3.4 show that a) there are difficul-

ties in choosing the correct values of the free parameters σu, σT , A1, and A2 and

b) the covalent diameter should be used in the Langmuir models in hypersonic

gas flows. New surface boundary conditions have been proposed by inserting the

Langmuir adsorption isotherm into the Maxwell/Smoluchowski equations. Their

validation, and the desired values of free parameters σu, σT , A1 and A2, will be

considered in the following chapters. It is seen that the DSMC translational

temperature jump only depends on the components of velocity while the CFD

temperature jump depends on the normal gradient of the temperature.
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Chapter 4

Simulations of flow over a

sharp-leading-edge flat plate

4.1 Introduction

Rarefied hypersonic flow over a flat plate with a sharp leading edge has been the

subject of several experimental and theoretical investigations in past years. The

results of experiments carried out very near the leading edge have generated much

interest in the problem. At the leading edge, the frequency of collisions with the

flat plate dominates the frequency of collisions between molecules. When the gas

passes over the flat plate, there are initially very few collisions with it and the

behaviour is free-molecular. Following more collisions, the gas flow behaviour is

more transitional and reaches equilibrium further along the plate.

This chapter presents two-dimensional CFD simulations of rarefied hypersonic

flow over a sharp-leading-edge flat plate at zero angle of attack, which are com-

pared with experiments [46, 53–57] and DSMC data [60] over a Mach number

range Ma = 6 to 22. Under low density conditions, both pressure and heat

transfer data indicate large rarefied flow effects, with both a slip velocity and a

temperature jump at the flat plate surface. Values of the accommodation coef-

ficients (σu and σT ) in the Maxwell velocity slip and Smoluchowski temperature

jump boundary conditions were investigated in the range [0 – 1] to find good

agreement with experimental and DSMC data. Moreover, the second-order slip

condition is also investigated to obtain the desired values of first (A1) and second

(A2) order coefficients. Due to limited experimental values of the heat adsorption
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(De) in literature, the new slip/jump conditions (Langmuir-Maxwell/Langmuir-

Smoluchowski) are tested for argon and nitrogen working gases in the flat plate

cases given in [46, 53, 56]. From the results obtained, the covalent diameters of

argon gas, dCov = 0.21 nm [58], and nitrogen gas, dCov = 0.142 nm [58], are used

for calculations using the new boundary conditions.

4.2 Experimental arrangements and data

4.2.1 Experimental arrangements

In general, the experimental arrangements described in [46, 53–57] consist of: a)

an apparatus for producing the flow under the desired test conditions, such as

a heat stagnation chamber and a conical nozzle, b) measuring equipment such

as pressure transducers, heat transfer gauges, thermocouples, optical lenses and

electron beam gun, c) data acquisition equipment such as a spectrometer, PC

and monochromator, and d) other equipment such as coolant pipes and pumps.

These are shown schematically in Figure 4.1.

Conical
nozzle Flat plate

Working gas
supply

Electric supply
for heat

Photomultiplier

Pressure gauges, thermocouples

Heat staganation

Electron beam
gun

Amplifier
Monochromator

Vacuum tank

Optical
lenses

Analog − Digital
card

Thermocouples

PC stand

Figure 4.1: Schematic of experimental setup [57].

The flow conditions used in the experiments described in [46, 53–57], such as

freestream temperature, T∞, freestream pressure, p∞ and freestream mean free

path, λ∞, are shown in Table 4.1. The experiment [53] was carried out for two

different surface temperatures.
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Table 4.1: Comparison of experimental flow conditions

Ma T∞ (K) p∞ (Pa) λ∞(mm) Tw (K) Gas
Becker [46] 12.7 64.5 3.73 0.23 292 Argon
Metcalf et al. [53] 6.1 83.4 2.97 0.35 77 Nitrogen
Metcalf et al. [53] 6.1 83.4 2.97 0.35 294 Nitrogen
Vidal et al. [54] 22.0 41 0.51 0.83 308 Air
Becker et al. [55] 10.2 138 2.67 1.0 300 Air
Lengrand et al. [56] 20.2 13.32 0.068 2.35 290 Nitrogen
Tsuboi et al. [57] 4.89 116 2.12 0.86 290 Nitrogen

A low density wind tunnel was constructed for use in the experiments [46,53–57].

The heat stagnation (reservoir) chamber, the conical nozzle, optical lenses, the

flat plate and electron beam gun are mounted in the wind tunnel. The work-

ing gas is driven into heat stagnation by the heat supply, which will produce a

stagnation temperature T0 and pressure p0. These are measured in the heat stag-

nation chamber by a pressure gauge and thermocouple. Their values are chosen

to ensure that any thermochemical non-equilibrium effects in the nozzle expan-

sion are small, and to prevent liquefaction. A conical nozzle is connected to the

stagnation chamber at the throat of the nozzle and the freestream flow issues

at the exit of the conical nozzle, as seen in Figure 4.1. It is possible to change

the area ratio of the throat to nozzle exit to take account of the thick boundary

layer. The hypersonic flow through the conical nozzle is isentropic. The relation-

ship of flow variables such as temperature, pressure and density between the heat

stagnation chamber (T0, p0, ρ0) and the exit of the conical nozzle (or freestream

conditions T∞, p∞, ρ∞) are expressed by isentropic expansion relations as follows:

Pressure
p0

p∞
=

(
1 +

(γ − 1)

2
M2
∞

)(γ/γ−1)

, (4.1)

Density

ρ0

ρ∞
=

(
1 +

γ − 1

2
M2
∞

)−1/γ−1

, (4.2)

Temperature
T0

T∞
=

(
1 +

(
γ − 1

2
M2
∞

))
, (4.3)

Ma =
||u||
c
, (4.4)
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where Ma is the Mach number and c is the speed of sound.

As described in references [46, 53–57] the flat plate is made of brass or copper

with a length varying from 55 to 308 mm, while the sharp leading edge angle

varies from 10 to 30 degrees. The thickness at the leading edge is less than 0.01

mm to ensure the flow field is not disturbed by shock detachment at the leading

edge. The flat plate is mounted on the centreline of the wind tunnel, just behind

the exit of the conical nozzle.

The electron beam gun and optical lenses are connected to each other in the

wind tunnel. The light signal of the fluorescence created by the electron beam

gun passes through optical lenses and is recorded by the spectrometer and photo-

multiplier located outside the wind tunnel, and this optical data is stored in the

PC. The electron beam gun is perpendicular to the flow direction and parallel

with the flat plate (Figure 4.1). The gun and optical lenses can be fixed or mov-

able in the wind tunnel. If fixed, as in [53], then the heat stagnation chamber,

the conical nozzle and the flat plate move together; otherwise, if the electron

beam gun and optical lenses move, then the chamber, nozzle and flat plate are

fixed in the wind tunnel. Coolant pipes maintain the flat-plate wall temperature

Tw presented in Table (4.1) by water-cooling in [46, 53–57]. The working gas is

driven into the heat stagnation chamber and passed through the conical nozzle.

At the conical nozzle exit, the working gas at freestream conditions travels across

the flat plate.

4.2.2 Measurements

The density of gas in the flow is determined from the intensity of fluorescence

of the working gas under the influence of electrons in the diagnostic beam. The

beam travels across the flow, parallel to the plane of the plate, or otherwise the

flat plate moves if the beam is fixed. By measuring the intensity of fluorescence

at points along the beam, the local density can be determined because the inten-

sity of fluorescence measured is almost proportional to the local density of the

gas [46, 53–57].

The surface pressures can be measured using inductive pressure transducers con-

nected to small holes (pressure orifices) with diameters of 0.5 to 1 mm drilled
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into the flat plate surface and located along the longitudinal symmetry axis of

the flat plate. In these transducers, a change in pressure produces a movement

that changes the inductance of an electrical circuit. The variation is due to the

displacement of a diaphragm inserted between two cavities of transducers. One

cavity is connected to the pressure orifices on the flat plate surface, the other

one is connected to a reference vacuum. The error of the measuring equipment

is given in reference [46] as ±1%.

In the experiments described by Metcalf et al. [53], capacitative pressure trans-

ducers were used, which have a thin diaphragm, usually metal, as one plate of

a capacitor. The diaphragm is exposed to the process pressure on one side and

to a reference pressure on the other. Changes in pressure cause it to deflect and

change the capacitance. The inductance and capacitance variation can be moni-

tored by electric signals at the transducer outputs.

In the experiment reported by Vidal et al. [54], piezoelectric pressure transduc-

ers with flush diaphragms drive a modified lead-zirconium-titanate crystal. The

transducers have a dummy mass loading a second crystal to provide acceleration

compensation. The transducers are connected through a short cable to a minia-

turized cathode follower installed within the flat plate. When pressure is applied

to the crystal, it is elastically deformed. This deformation results in a flow of

electric charge. The resulting electric signal can be measured as an indication of

the pressure which is applied to the crystal. The output signals of the transduc-

ers are recorded by a source follower. The pressure transducers usually generate

output signals in the millivolt range. These are often then amplified to the volt

level and recorded by the data acquisition system.

The surface temperature is measured by a series of thermocouples inserted just

below the surface and located along the longitudinal axis of the flat plate. The

output signals of the thermocouples are amplified and recorded by the data ac-

quisition system.

The gas molecule rotational temperature in Tsuboi and Matsumoto’s experi-

ment [57] is measured by using the electron beam fluorescence method, with an

uncertainty between 1 and 2%. When an electron beam is passed through the

working gas, a molecule in an initial electronic state is excited to an ionized gas
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molecule, caused by an inelastic collision with an electron. Emission of a pho-

ton from this inelastic collision state brings the molecule back to an ionized gas

molecule at the ground state. The fluorescence in the R branch of the band spec-

trum is measured by the monochromator and the rotational temperature deduced

through a calculation presented in [57].

The surface slip velocity is inferred by the measured surface pressure, pw, and

extrapolating the pitot pressure to the surface, ptw. The Pitot pressure is the

sum of dynamic and static pressures. The Pitot tubes faces the gas flow and the

pitot pressure is fed into it, known as total head pressure or impact pressure.

From the equations of state, continuity and momentum, the slip velocity, us, is

calculated in [55] by:

us =
(
ptw/

(
ρw

(
1− εw/2 + pw/ρwus

2
)))1/2

, (4.5)

wher ρw is the gas density at the surface and εw is the density ratio across a

normal shock.

4.3 Direct simulation Monte-Carlo simulations

Due to the lack of direct experimental data for either slip velocity or surface

temperature in the work of Becker [46] or the Metcalf et al. case Tw = 294

K [53], DSMC simulations have been run in OpenFOAM by White [60] to enable

comparison fully with the CFD simulation results using new boundary conditions.

A regular rectangular mesh is used in the DSMC simulations. The cell size is

determined by the mean free path. A cell size approximately λ∞/3 is used in the

DSMC simulations [60]. The surface boundary conditions presented in Section

3.3.2 are applied with accommodation coefficients equal to 1. The variable hard

sphere (VHS) model is used in the DSMC calculation with the parameters taken

from [61] as follows:

Table 4.2: The VHS model parameters [61].

Species Diameter (m) ω Tref (K) µref (Nsm−2)
Argon 4.17×10−10 0.81 273 2.117×10−5

Nitrogen 4.17×10−10 0.74 273 1.650×10−5
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The mean free path in the DSMC simulations of the flat plate cases is calculated

in [61] as:

λ =
2µ

15
(7− 2ω)(5− 2ω)

√
2πRT

ρ
, (4.6)

with a viscosity µ = T ω [26].

4.4 Choice of data

The experimental results given in [46, 53–55] show that the surface pressures

reach a peak value near the leading edge and then decrease steadily along the flat

plate, whereas in Lengrand et al.’s experiment [56], the surface pressures reach

a peak value near the leading edge and then plateau. Tsuboi and Matsumoto’s

experiment [57] presents good data for translational and rotational temperatures

for the surface-normal distances at different locations along the flat plate. The

present work focuses on surface pressure, slip velocity and temperature jump data

in order to test surface boundary conditions, therefore Tsuboi and Matsumoto’s

data are not used. The experimental data of surface pressures in Becker’s, Metcalf

et al.’s, Vidal et al.’s, Becker and Boylan’s, and Lengrand et al.’s cases [46,53–56]

are presented in Figure 4.2.

Six sets of experimental data from [46, 53–56] are selected for our simulations.

The experimental data consists of the pressure, temperature jump and slip ve-

locity. The flow conditions in these experiments are presented in Table 4.1. The

experimental data for the temperature jump and slip velocity of the selected cases

will be shown in the following sections.

The DSMC data in [60] are used for comparing with the CFD results in the

Becker case [46] and the Metcalf et al. [53] case Tw = 294K.

4.5 Case setup

4.5.1 Boundary conditions

Various nonequilibrium boundary conditions are applied on the surface of the

flat plate for the flow variables (T , u). The boundary condition for the pressure

p at the flat plate is zero normal gradient. This condition satisfies the equation
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Figure 4.2: Surface pressure distribution along the flat plate, experimental data.

(2.14) in normal direction at steady state. At the inflow boundary, the freestream

conditions were maintained throughout the computational process. At the top

boundary and the outflow boundary, fluid is allowed to leave the computing

region. This condition specifies that the normal gradients of the flow variables

(p, T , u) vanish at these boundaries. At the bottom boundary in front of the

flat plate, a symmetry boundary condition is applied to all flow variables. A

schematic diagram of the boundary conditions applied in the flat plate cases is

shown in Figure 4.3.

4.5.2 Mesh

In the flat plate simulations, the computational results are sensitive to the numer-

ical mesh sizes near the leading edge. A fine mesh is required at the leading edge

to compute the flow field accurately. A typical mesh for a flat plate simulation is

regular rectangular.

Four different meshes were employed to achieve mesh independence of the sim-

ulation results. A mesh study was conducted for all flat plate cases. Here, the

results of Metcalf et al.’s case [53] are presented as an illustration. Four different

mesh sizes are used with the grid spacing points in the x direction, ∆x, and in
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Figure 4.3: Numerical case setup for the flat plate problem.

the y direction, ∆y, of the order of a freestream mean free path (λ∞ = 0.35 mm).

The computational meshes are listed in Table 4.3.

Table 4.3: Mesh sizes tested to obtain converged solutions.

Mesh ∆x (mm) ∆y (mm)
1 1.7λ∞ 3.6λ∞
2 0.9λ∞ 1.8λ∞
3 0.6λ∞ 1.2λ∞
4 0.4λ∞ 0.9λ∞

It is seen in Figure 4.4 that the surface pressure distributions are different for

each of these four mesh sizes, especially near the leading edge x/λ∞ ≤ 80. The

final mesh was selected on the basis of 5% difference of the peak value of surface

pressure. The resolution distance from the plate tip versus cell size for the con-

verged solution is shown in Figure 4.5. This distance shows that the flow has to

pass through about 50 boundary faces to reach the spatial convergence.

52



CHAPTER 4. SIMULATIONS OF FLOW OVER A SHARP-LEADING-EDGE
FLAT PLATE

0

1

2

3

4

5

0 40 80 120 160 200 240 280

S
u
rf

ac
e

p
re

ss
u
re

,
p/
p ∞

Distance from leading edge, x/λ∞

Experiment
∆x = 1.7λ∞, ∆y = 3.6λ∞
∆x = 0.9λ∞, ∆y = 1.8λ∞
∆x = 0.6λ∞, ∆y = 1.2λ∞
∆x = 0.4λ∞, ∆y = 0.9λ∞

Figure 4.4: The surface pressure distribution along the flat plate for different
mesh spacings ∆x and ∆y.

0

50

100

150

0.0 0.5 1.0 1.5 2.0

D
is

ta
n
ce

fr
om

ti
p

(λ
∞

)

Cell size (λ∞)

∆x = 1.7λ∞, ∆y = 3.6λ∞
∆x = 0.9λ∞, ∆y = 1.8λ∞
∆x = 0.6λ∞, ∆y = 1.2λ∞

Resolution

Figure 4.5: Resolution of mesh sensitivity.

53



CHAPTER 4. SIMULATIONS OF FLOW OVER A SHARP-LEADING-EDGE
FLAT PLATE

A convergence solution indicates the appropriate mesh size is ∆x =0.4λ∞ and

∆y =0.9λ∞. Similar investigations are done for the other cases to find the final

mesh for the convergence solution. The final mesh sizes of the cases are shown in

Table 4.4.

Table 4.4: Final mesh sizes required to obtain converged solutions.

∆x (mm) ∆y (mm)
Becker [46] 0.1λ∞ 0.1λ∞
Metcalf et al. [53] 0.4λ∞ 0.9λ∞
Vidal et al. [54] 0.5λ∞ 1.3λ∞
Becker and Boylan [55] 0.05λ∞ 0.1λ∞
Lengrand et al. [56] 0.1λ∞ 0.1λ∞

4.5.3 Transport properties

Dynamic viscosity is calculated by Sutherland’s law for all simulations of the flat

plate cases. The coefficient of thermal conductivity is then computed from the

standard equation (2.31). A calorically perfect gas is considered for all simulations

of the flat plate cases. The values AS, TS needed for equation (2.30), R, γ and

Pr for all flat plate cases are given in Tables 4.5 and 4.6.

Table 4.5: Coefficients of transport properties R, γ and Pr [24].

R (m2s−2K−1) γ Pr Gas
Becker [46] 208.1 1.67 0.67 Argon
Metcalf et al. [53] 296.8 1.40 0.71 Nitrogen
Vidal at al. [54] 287.0 1.40 0.74 Air
Becker and Boylan [55] 287.0 1.40 0.74 Air
Lengrand et al. [56] 296.8 1.40 0.71 Nitrogen

Table 4.6: Coefficients of AS, TS needed for equation (2.30) from Table 2.1.

AS (Pa.s K−1/2) TS (K)
Becker [46] 1.93× 10−6 142
Metcalf et al. [53] 1.41× 10−6 111
Vidal at al. [54] 1.46× 10−6 110.4
Becker and Boylan [55] 1.46× 10−6 110.4
Lengrand et al. [56] 1.41× 10−6 111
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4.6 Computational results and comparison

In the flat plate case, we might choose L to be the length of the flat plate in

calculating Kn, but its length has no effect on the slip near the tip. The flat

plate case is in fact a simple test case for boundary conditions with Kn calcu-

lated through x/λ = Kn−1. In the figures below the CFD simulation, DSMC,

and experimental results are plotted against x/λ∞= Kn−1.

Various coefficients (σu, σT , A1 and A2) were tested to obtain their desired values

for reproducing hypersonic gas flows over the flat plate. A study of various

coefficients was conducted for all the flat plate cases. Here, the results of Metcalf

et al.’s case [53] are presented as an illustration.

4.6.1 Metcalf et al.’s case (a), Tw = 77 K [53]

Simulations were run with σu = σT = 1.0, 0.8 and 0.7, and also different accom-

modation coefficient values σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski

conditions. For surface pressure, the values σu = 0.7 and σT = 1.0 give reason-

able agreement with experimental data for x/λ∞ ≥ 15 (i.e. Kn ≤ 0.067), as

seen in Figure 4.6. For surface gas temperature, the values σu = σT = 0.8 give

good agreement with experimental data for x/λ∞ ≥ 50 (i.e. Kn ≤ 0.02), the

values σu = 0.7 and σT = 1.0 give good agreement with experimental data at the

leading-edge of the flat plate for x/λ∞ ≤ 50 (i.e. Kn ≥ 0.02), as shown in Figure

4.7.

For the slip velocity, it is seen that the reduction of the values σu and σT will

increase the slip velocity, as seen in Figure 4.8. In the simulation for the case

with σu = σT = 0.7 and the case with σu = 0.7 and σT = 1.0, the slip velocity is

nearly constant with different values σT .

From testing the Maxwell/Smoluchowski conditions, the value σT = 1.0 gives

good results with experimental data of surface pressure. Therefore, this value

will be retained for testing the second order slip condition to find the desired

values of coefficients A1 and A2. As seen in Figure 4.9, no slip/jump boundary

conditions overpredict the surface pressure. Various values of the coefficients A1

and A2 were tested. The values A1 = 1.5 and A2 = 1.0 give good agreement with

experimental data of surface pressure and surface gas temperature at the tip of
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the flat plate, as seen in Figure 4.10. The computational results of slip velocity

with various values A1 and A2 are shown in Figure 4.11. When the value of either

A1 or A2 increases, then the slip velocity will increase. The no slip/jump test

overpredicts surface pressure. In this test, the gas temperature at the surface is

equal to Tw = 77 K along the flat plate, as seen in Figure 4.10.

The values σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski conditions and

the values A1 = 1.5, A2 = 1.0 and σT = 1.0 in the second order slip/Smoluchowski

conditions give good agreement with experimental data of surface pressure and

surface temperature. It should, however, be noted that none of the boundary

conditions tested here, with whatever values of the parameters, gives a good full-

field prediction of both the pressure and temperature along the plate. These

desired values will be tested now for other flat plate cases to ascertain whether

or not they also perform well. The results are presented in the next sections.
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Figure 4.6: Metcalf et al.’s case [53] with Maxwell/Smoluchowski boundary con-
ditions, the surface pressure distribution along the flat plate.
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Figure 4.7: Metcalf et al.’s case [53] with Maxwell/Smoluchowski boundary con-
ditions, the surface gas temperature along the flat plate.
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Figure 4.9: Metcalf et al.’s case [53] with second-order slip and Smoluchowski
boundary conditions, the surface pressure distribution along the flat plate.
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Figure 4.11: Metcalf et al.’s case [53] with second-order slip and Smoluchowski
boundary conditions, the calculated slip velocity along the flat plate.

4.6.2 Vidal et al.’s case [54]

From this point the curves in the figures indicated by black, cyan and blue lines

represent the results of the no slip/jump test, the results using σu = σT = 1.0,

and the results using σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski condi-

tions, respectively. The red, green and the pink lines correspond to results using

second-order slip/Smoluchowski conditions using the values A1 = 1.5, A2 = 1.0

and σT = 1.0, of results using the new conditions and of White’s DSMC data,

respectively.

In Vidal et al.’s case for surface pressure [54] shown in Figure 4.12, the results

of the Maxwell/Smoluchowski conditions with σu = 0.7 and σT = 1.0; and the

values A1 = 1.5, A2 = 1.0 and σT = 1.0 in the second-order slip/Smoluchowski

conditions give good agreement with experimental data for x/λ∞ ≥ 35 (i.e. Kn ≤
0.028). The Maxwell/Smoluchowski conditions give better results than the second

order/Smoluchowski conditions at the tip of the flat plate. However, the no

slip/jump case overpredicts surface pressure.
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Figure 4.12: Vidal et al.’s case [54] with various boundary conditions, the surface
pressure distribution along the flat plate.

4.6.3 Becker and Boylan’s case [55]

Figures 4.13 and 4.14 compare the experimental data reported by Becker and

Boylan [55] with the three previously described boundary conditions, with σu =

0.7 and σT = 1.0 in the Maxwell/Smoluchowski conditions, and the values A1 =

1.0, A2 = 1.0 and σT = 1.0 in the second-order/Smoluchowski conditions. It is

seen that a) they both give good agreement with experimental data of surface

pressure for x/λ∞ ≥ 10 (i.e. Kn ≤ 0.1), b) they overpredict the slip velocity that

is inferred by the experimentally measured surface pressure, and c) the results of

the no slip/jump conditions massively overpredict surface pressure.
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Figure 4.13: Becker and Boylan’s case [55] with various boundary conditions, the
surface pressure distribution along the flat plate.
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Figure 4.14: Becker and Boylan’s case [55] with various boundary conditions, the
slip velocity along the flat plate.
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4.6.4 Metcalf et al.’s case (b), Tw = 294 K [53]

For the surface pressure, the Maxwell/Smoluchowski conditions with σu = σT =

1.0 generally do not give good agreement with experimental data, as seen in Fig-

ure 4.15. The results of the White DSMC data [60] with σu = σT = 1.0, CFD with

the new boundary conditions, with the Maxwell/Smoluchowski conditions with

σu = 0.7 and σT = 1.0, and with the second-order slip/Smoluchowski conditions

with A1 = 1.5, A2 = 1.0 and σT = 1.0 are close together and give relatively good

agreement with experimental data for x/λ∞ ≥ 25 (i.e. Kn ≤ 0.04). However,

the no slip/jump case overpredicts surface pressure.

Considering the surface temperature, the DSMC data [60] and the results with

the Maxwell/Smoluchowski conditions with σu = σT = 1.0 do not give good

agreement with experimental data towards the tip of the flat plate. By compar-

ison, the results using the Maxwell/Smoluchowski conditions with σu = 0.7 and

σT = 1.0, the second-order slip/Smoluchowski conditions with A1 = 1.5, A2 = 1.0

and σT = 1.0 and the new boundary conditions are close together and give good

agreement with the experimental data, as seen in Figure 4.16. The gas tempera-

ture at the surface of the no-slip/jump test is equal to Tw = 294 K along the flat

plate.

For slip velocity, the DSMC data are close to the results of the Maxwell/Smolu-

chowski conditions with σu = σT = 1.0. The results from these two cases are

lower than the other CFD results, as seen in Figure 4.17. The results of the

Maxwell/Smoluchowski conditions with σu = 0.7 and σT = 1.0 are close to the

results using the new boundary conditions.
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Figure 4.15: Metcalf et al.’s case [53] Tw = 294K, various boundary conditions,
the surface pressure distribution along the flat plate.
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Figure 4.16: Metcalf et al.’s case [53] Tw = 294K, various boundary conditions,
the surface gas temperature along the flat plate.
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Figure 4.17: Metcalf et al.’s case [53] Tw = 294K, various boundary conditions,
the computational slip velocity along the flat plate.

4.6.5 Becker’s case [46]

In Becker’s case for the surface pressure data, simulations are completed with dif-

ferent accommodation coefficient values: σu = 0.7 and σT = 1.0 in the Maxwell/

Smoluchowski conditions, and the values A1 = 1.5, A2 = 1.0, and σT = 1.0 in

the second order slip/Smoluchowski conditions give good agreement with exper-

imental data for x/λ∞ ≥ 18 (i.e. Kn ≤ 0.055), as seen in Figure 4.18. The

results using the Maxwell/Smoluchowski conditions are better than those using

the second-order slip/Smoluchowski conditions at the tip of the flat plate. The

results using the new boundary conditions are a) in good agreement with ex-

perimental data, b) provide much better results than the Maxwell/Smoluchowski

conditions with the values σu = σT = 1.0, and c) also close to the results using the

Maxwell/Smoluchowski conditions with σu = 0.7 and σT = 1.0, and the second-

order slip/Smoluchowski conditions with A1 = 1.5, A2 = 1.0 and σT = 1.0. On

the other hand, the White DSMC data [60] with σu = σT = 1.0 do not give par-

ticularly good agreement with experimental data. The results of the no-slip/jump

case strongly overpredict surface pressure, as seen in Figure 4.18.
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As shown in Figure 4.19 for slip velocity, the White DSMC data do not give

good agreement with experimental data and give the lowest slip value of any of

the simulations used here. The values σu = 0.7 and σT = 1.0, and A1 = 1.5,

A2 = 1.0 and σT = 1.0 give good agreement with experimental data. The

Maxwell/Smoluchowski conditions with σu = σT = 1.0 undepredict the slip ve-

locity while the new boundary conditions predict a higher slip velocity than the

experimental data.

As seen in Figure 4.20 for the surface temperature, the predictions of the Maxwell/-

Smoluchowski conditions with σu = 0.7 and σT = 1.0, and the second-order

slip/Smoluchowski conditions with the values A1 = 1.5, A2 = 1.0, and σT = 1.0

are close together and lower than the results provided by the new boundary con-

ditions. At the tip of the flat plate, a) there is a difference between the results

of the Maxwell/Smoluchowski conditions with σu = σT = 1.0 and the other CFD

results, and b) there is a relatively large difference between the DSMC data and

the CFD results.

For completeness, the computed temperature field using the new boundary con-

ditions is shown in Figure 4.21, which has a maximum temperature Tmax ≈ 787

K.

A comparison of velocity profiles in the surface-normal direction a) near the

leading edge, x = 0.01 m, and b) near the trailing edge, x = 0.042 m, along the

length of the flat plate L = 0.055 m, are presented in Figures 4.22 and 4.23. It

is seen that there are differences between the DSMC and the CFD data in the

Knudsen layer at the two locations. A near surface function such as that given

in [59] might overcome this problem concerning hypersonic gas flows.
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Figure 4.18: Becker’s case [46] with various boundary conditions, the surface
pressure distribution along the flat plate.
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Figure 4.21: Becker’s case [46] with the new boundary conditions, the tempera-
ture field.
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Figure 4.22: Becker’s case [46] with various boundary conditions, the velocity
distribution along the surface-normal line at x = 0.01 (m).
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Figure 4.23: Becker’s case [46] with various boundary conditions, the velocity
distribution along the surface-normal line at x = 0.042 (m).
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4.6.6 Lengrand et al.’s case [56]

In the case described by Lengrand et al., the no slip/jump conditions over-

predict surface pressure, as seen in Figure 4.24. The results using the new

boundary conditions give a) good agreement with experimental data of sur-

face pressure for x/λ∞ ≥ 10 (i.e. Kn ≤ 0.1), b) much better results than the

Maxwell/Smoluchowski conditions with σu = σT = 1.0 and c) good agreement

with the results of the Maxwell/Smoluchowski conditions with σu = 0.7 and σT =

1.0 and the second order slip/Smoluchowski conditions with the values A1 = 1.5,

A2 = 1.0 and σT = 1.0.
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Figure 4.24: Lengrand et al.’s case [56] with various boundary conditions, the
surface pressure distribution along the flat plate.

4.7 Summary and discussion

In this chapter, six flat plate cases were chosen for simulations with various work-

ing gases such as argon, nitrogen and air, various values of tangential σu and ther-

mal σT accommodation coefficients in the Maxwell/Smoluchowski conditions, and

vairous first A1 and second A2 order terms in the second order slip condition. For

surface pressure, the values σu = 0.7 and σT = 1.0, and A1 = 1.5, A2 = 1.0 and

σT = 1.0 give generally good agreement with experimental data for all cases up
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to Kn ≤ 0.1. The value σT only affects the surface pressure, but does not affect

the slip velocity. The results obtained show that the slip/jump conditions with

the Navier-Stoke-Fourier model are appropriate in the range 0.01 ≤ Kn ≤ 0.1.

The new boundary conditions give good agreement with experimental data of

surface pressure in Becker’s, Lengrand et al.’s and Metcalf et al.’s (Tw = 294 K )

cases [46, 53, 56]. For a diatomic gas (nitrogen), the calculated slip velocity and

surface gas temperature from the new conditions agree with the results using the

Maxwell/Smoluchowski conditions and the second-order slip/Smoluchowski con-

ditions with their desired coefficients (σu = 0.7, A1 = 1.5, A2 = 1.0 and σT = 1.0)

while the argon gas does not provide such good agreement.

Considering the surface temperature, there is a large difference between the

DSMC data and the results of the CFD method at the tip of the flat plate

in Becker’s case [46] with argon as working gas. For nitrogen gas in Metcalf

et al.’s (Tw = 294 K ) [53], compared with experimental data, the results of

the new boundary conditions, the Maxwell/Smoluchowski, and the second order

slip/Smoluchowski conditions with their desired coefficients, are much better than

the DSMC data.

From the results obtained so far, it is seen that the second order slip condition

is not much better than the conventional Maxwell slip condition used with the

Navier-Stokes-Fourier equations in simulating hypersonic gas flows. By compar-

ison, the results of the no-slip/jump test are unacceptable for simulating hyper-

sonic gas flows.

Comparing the experimental data of surface pressure and temperature in Becker’s

and Metcalf et al.’s (Tw = 294 K ) cases [46, 53], the new boundary conditions

gave better results than those using the Maxwell/Smoluchowski slip/jump con-

ditions and the White DSMC data [60] with σu = σT = 1.0, instead of varying

the values σu and σT to obtain reasonable agreement. In the following chapters,

the new boundary conditions continue to be tested for other geometries and their

simulation results are compared with those using the Maxwell/Smoluchowski con-

ditions with σu = 0.7 and σT = 1.0, the Maxwell/Smoluchowski conditions and

the Lofthouse DSMC data [51,52] with σu = σT = 1.0.
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Chapter 5

Simulations of a circular cylinder

in cross-flow

5.1 Introduction

In the previous chapter, rarefied hypersonic flows over a sharp-leading-edge flat

plate were investigated. This chapter presents rarefied hypersonic flow simula-

tions about a blunt body, in particular, a circular cylinder in cross-flow. From the

conclusions obtained in Chapter 4, the second-order slip condition developed for

a planar surface is no longer investigated. The Maxwell/Smoluchowski slip/jump

conditions, with the values σu = 0.7 and σT = 1.0 obtained from the numerical

simulations of the flat-plate case, are tested here for all the circular cylinder cases.

The Maxwell/Smoluchowski slip/jump conditions are also simulated with the val-

ues σu = σT = 1.0, to compare with the Lofthouse DSMC data (σu = σT = 1.0)

given in [51, 52] and the CFD results using the new slip/jump boundary condi-

tions. In the cylinder case, the curvature effect in the velocity slip conditions

presented in Chapter 3, is tested to investigate how it affects the near-surface

properties. The no slip/jump test is also performed. In the cylinder case, the

Knudsen number, Kn, is calculated as follows:

Kn =
λ

D
, (5.1)

where D is the diameter of the cylinder.
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5.2 Experimental arrangement

The experimental arrangement given in [62] consists of the principal equipment:

1) a heat stagnation chamber and conical nozzle for producing flow at the de-

sired test conditions, 2) measuring equipment such as pressure transducers, heat

transfer gauges, thermocouples, optical lenses and electron beam guns, 3) instru-

mentation for data acquisition, such as a spectrometer, PC and monochromator,

and 4) other equipment such as coolant pipes and pumps. The installation and

operation of the experimental system are the same as in the flat plate case pre-

sented in Figure 4.1, with flat plate replaced by the circular cylinder.

The surface pressure in experiments was measured using inductive pressure trans-

ducers connected to pressure orifices located around the perimeter of the cylinder.

The principles of these measurements are the same as in the flat plate case de-

scribed in detail in Chapter 4.

5.3 The Direct Simulation Monte-Carlo cases

Several researchers have successfully computed the hypersonic flow around a

cylinder using the DSMC method. In the numerical model for simulating the

circular cylinder flow by Lofthouse et al. [51,52], molecular collisions are treated

by the variable hard sphere (VHS) model, and gas-surface interaction is treated

by Maxwell’s model with an accommodation coefficient of 1. The VHS model is

consistent with a power law viscosity/temperature relationship. The viscosity is

calculated through equations (3.33) and (3.34), with the working gas as argon,

the temperature exponent ω = 0.734, reference diameter dref = 3.595× 10−10 m

and reference temperature Tref = 1000 K taken from [51,52]. Then, the thermal

conductivity is calculated through equation (2.31).

The surface boundary conditions used in the DSMC simulations for a cylinder

case are given by equations (3.29), (3.30), (3.31) and (3.32).

5.4 Boundary conditions

In the present CFD simulations, boundary conditions are applied on the surface

of the cylinder for the flow variables (T , u). The boundary condition for the
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pressure p at the surface is zero normal gradient. At the inflow boundary, the

freestream conditions are maintained throughout the computational process. At

the outflow boundary, fluid is allowed to leave the computing region; this condi-

tion specifies that the normal gradients of the flow variables (p, T , u) vanish at

that boundary. At the bottom boundary in front of and behind the cylinder, a

symmetry condition is applied to all flow variables. A schematic diagram of the

boundary conditions applied in the cylinder cases is shown in Figure 5.1. The

cylinder angle is presented by Φ, with 0◦ ≤ Φ ≤ 180◦. The flow conditions for

the four test cases investigated are given in Table 5.1.

Symmetry Plane

Cylinder angle

Nonequilibrium
boundary conditions

Freestream (p, T, u)

Zero Gradient (p, T, u)

Stagnation line

Figure 5.1: Numerical case arrangement for the cylinder in cross-flow.

Table 5.1: Flow conditions, Kn and diameters of the cases described in [51, 52,
62,63].

D (mm) Ma T∞ (K) p∞ (Pa) Tw (K) Gas Kn
DSMC [51,52] 304.8 10 200 1.17 500 Argon 0.01
DSMC [51,52] 304.8 10 200 0.047 500 Argon 0.25
Experiment [62] 76 6.47 241.5 627.5 278 Air 0.001
Experiment [63] 5.1 11.76 37.99 13.67 652.4 Air 0.0056
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5.5 Numerical mesh

The computational mesh is constructed to wrap around the leading bow shock.

For all the cases described in [51, 52, 62, 63], a mesh independence study was

conducted. The final mesh encompassing the boundary layer has a linear grading

in the surface-normal spacing over the number of cells near the surface. When

a OpenFOAM nonuniform mesh grading is used, the cell sizes are calculated

using a geometric progression. Along the length of grading cells lc, if nc cells

are requested with a ratio of Rc between the last and first cells, the size of the

smallest cell, ∆y is given by [80]:

∆y = lc
rc − 1

αcrc − 1
, (5.2)

where rc is the ratio between one cell size and the next which is given by [80]:

rc = R
1

nc−1
c , (5.3)

and

αc =

{
Rc for Rc > 1

1− rc
−nc + rc

−1 for Rc < 1.
(5.4)

The smallest mesh sizes near the surface of the cases are shown in Table 5.2. A

typical mesh of cells for cylinder simulations is shown in Figure 5.2.

Table 5.2: Linear grading of the mesh near the surface and total number of cells.
Kn nc lc (mm) ∆x (mm) ∆y (mm) Total cells

DSMC [51,52] 0.01 25 100 2.40 0.05 → 0.25 39 200
DSMC [51,52] 0.25 50 100 2.40 0.01 → 2.5 40 000
Experiment [62] 0.001 50 2.65 0.12 0.0135 → 0.135 49 000
Experiment [63] 0.0056 25 0.31 0.08 0.005 → 0.025 5000

5.6 Transport properties

A calorically perfect gas is considered, and the viscosity is calculated a) by Suther-

land’s law for experimental cases [62,63], and b) by the Power Law for the DSMC

cases given in [51, 52]. The coefficient of thermal conductivity is then computed
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Figure 5.2: Computational mesh for the circular cylinder case, 40 000 cells.

through equation (2.31).

The Prandtl number, Pr, is assumed to be constant throughout the flow. The

values AS = 1.46× 10−6 Pa.s K1/2, TS = 110.4 K from Table 2.1 are adopted for

Sutherland’s equation (2.30) taken from Chapter 2. The values AP = 0.31× 10−6

Pa.s Ks and s = 0.734 are adopted for the Power Law equation (2.29), where AP

is calculated equivalently from equations (3.33) and (3.34), with the values ω =

0.734, dref = 3.595× 10−10 m, Tref = 1000 K and m = 6.63× 10−26 kg given

in [51,52].

The values of R, γ and Pr of various working gases for calculation of the transport

properties are taken from Table 4.5.

5.7 Simulation results

In the circular cylinder cases Kn = 0.01, 0.0056 and 0.25, the simulations are

carried out for a half of cylinder (0◦ ≤ Φ ≤ 180◦) including forebody and the wake

behind the cylinder. A wake region is a recirculating region, beginning from the

separation point to the reattachment point, as shown seen in Figure 5.3 [64, 65].

At the separation point, then the flow starts to separate, which continues to

flow downstream of the reattachment point, from that which turns back and

75



CHAPTER 5. SIMULATIONS OF A CIRCULAR CYLINDER IN
CROSS-FLOW

recirculates, as seen in Figure 5.3 [65]. For blunt bodies that are travelling at

hypersonic speeds, the flow behind a bow shock in the stagnation region becomes

subsonic and the temperature in this region is usually quite high. Then, the gas

flow is often dominated by chemical reactions, such as dissociation, and it no

longer behaves like a perfect gas [66,67,73]. Due to limited experimental data of

the surface pressure in [62], the simulations of the cylinder case Kn = 0.001, are

run for a quarter of cylinder, 0◦ ≤ Φ ≤ 90◦.

frestream

stagnation point

bow shock

expansion fan

lip shock

recompression shock

reattachment point

separation point

recirculating region

diving streamline

u = 0

free shear layer

(rear stagnation point)

Figure 5.3: Schematic of the near wake behind a circular cylinder in cross-
flow [65].

5.7.1 The DSMC cylinder case, Kn = 0.01

The no slip/jump conditions, the new slip/jump boundary conditions and the

Maxwell/Smoluchowski conditions with the values σu = 0.7 and σT = 1.0, and

σu = σT = 1.0 are tested here. All the slip boundary conditions are investigated

with and without the curvature effect indicated by the term Πmc in equations

(3.11) and (3.37). In Figures 5.4 to 5.6, the thin lines represent the results without

“curvature” and the thick lines the corresponding results with “curvature” effects.

Considering the surface pressure, all the CFD simulated results give good agree-

ment with the DSMC data given in [51,52], as seen in Figure 5.4. However, all the
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CFD tests predict a higher slip velocity than the DSMC data, as seen in Figure

5.5. The DSMC and CFD slip velocities increase gradually from 0◦ ≤ Φ ≤ 135◦,

reaching peak normalized values around the location Φ = 135◦ as follows: a) 0.21

and 0.23 using the Maxwell/Smoluchowski conditions (σu = 0.7 and σT = 1.0)

with and without the curvature effect, respectively, b) 0.145 and 0.152 again us-

ing the Maxwell/Smoluchowski conditions (σu = σT = 1.0) with and without the

curvature effect, respectively, c) 0.18 and 0.20 for the new conditions, with and

without the curvature effect, respectively, and d) 0.09 for the DSMC data. For

each slip condition in the CFD method, the curvature effect reduces the peak

value of the slip velocity.

Considering the temperature jump, all the CFD results predict a higher temper-

ature jump than the DSMC data for cylinder angles 0◦ ≤ Φ ≤ 100◦, and the

new conditions give the highest predictions, as seen in Figure 5.6. The gas flow

begins to expand between 110◦ ≤ Φ ≤ 130◦, and all the CFD temperature jumps

decrease while the DSMC temperature jump increases. At the location of the

separation point (around Φ = 130◦), the gas flow begins to enter the wake region.

Then all the CFD temperature jumps rise towards Φ = 170◦ and give nearly con-

stant finite values in 170◦ ≤ Φ ≤ 180◦. However, the DSMC temperature jump

decreases to the location Φ = 170◦ and is a nearly constant finite value between

170◦ ≤ Φ ≤ 180◦. There are differences between the CFD temperature jumps and

the DSMC temperature jump at the wake-surface. These differences may be ex-

plained by a) the inability of the laminar N–S–F solver to model the temperature

jump at the wake-surface and b) the fact that the translational temperature jump

in the DSMC method is calculated by the components of gas velocity and the

slip velocity only, while the translational temperature jump in the CFD method

is calculated by the normal gradient of gas temperature, and is independent of

the gas velocity. The latter leads to the profile of the DSMC temperature jump

being very similar to that for the slip velocity, as seen by comparison between

Figures 5.5 and 5.6.

The curvature effect is important for predicting the slip velocity at the surface

of the circular cylinder in cross-flow. However, the curvature effect in the slip

conditions does not affect the temperature jump or the surface pressure, as seen

in Figures 5.4 and 5.6.
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Figure 5.4: Surface pressure distribution around the cylinder surface, Kn = 0.01.
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Figure 5.5: Computational slip velocity distribution around the cylinder surface,
Kn = 0.01.
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Figure 5.6: Computational temperature jump distribution around the cylinder
surface, Kn = 0.01.

5.7.2 The DSMC cylinder case, Kn = 0.25

Figure 5.7 shows the DSMC and CFD simulation results for the surface pressure.

It can be seen that there is no difference in using the Maxwell/Smoluchowski con-

ditions with σu = 0.7 and σT = 1.0, and σu = σT = 1.0. For surface pressures at

the stagnation point, the no slip/jump conditions give the highest normalized sur-

face pressure of 172 while the new conditions predict lowest normalized pressure,

153. The normalized surface pressure at the stagnation point using the DSMC

data and for the Maxwell/Smoluchowski condition are 161 and 165, respectively.

In the region 0◦ ≤ Φ ≤ 40◦, the Maxwell/Smoluchowski conditions and the no

slip/jump conditions predict higher surface pressures than the DSMC data, while

the new conditions predict values lower than those given by the DSMC data. As

seen in Figure 5.7, for Φ = 40◦ to Φ = 180◦, the no slip/jump conditions and the

new conditions are close to the DSMC data, while the Maxwell/Smoluchowski

conditions are not.

Considering the simulations of the slip velocity, Figure 5.8, all the CFD slip ve-

locities increase gradually from the location Φ = 0◦ to Φ = 95◦, and reach peak

normalized values around the location Φ = 95◦, while the DSMC slip velocity
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increases and reaches a peak normalized value at Φ = 130◦. The peak normal-

ized values of slip velocity are a) 0.42 with the new conditions, b) 0.23 using

the Maxwell/Smoluchowski conditions with σu = 0.7 and σT = 1.0, c) 0.20 for

the Maxwell/Smoluchowski conditions with σu = σT = 1.0 , and d) 0.17 for the

DSMC data. After these reaching peak normalized values, the slip velocities of

the CFD and the DSMC simulations decrease quickly to zero value. There are

large differences between the DSMC slip velocity and CFD slip velocities at this

large Knudsen number, Kn = 0.25, as seen in Figure 5.8.

When the temperature jumps are considered, Figure 5.9, the new conditions pre-

dict the highest temperature jump, 4730 K at the stagnation point. For other

simulations, the temperature jumps at this point are a) 500 K using the DSMC

data, b) 1540 K using the Maxwell/Smoluchowski conditions with σu = σT = 1.0,

and c) 1625 K for the Maxwell/Smoluchowski conditions with σu = 0.7 and

σT = 1.0. Therefore, there is not much difference between the temperature

jumps for the Maxwell/Smoluchowski conditions using the values of σu = 0.7 and

σT = 1.0, and of σu = σT = 1.0. However, there are large differences between the

CFD temperature jumps and the DSMC temperature jump. In the wake region

(125◦ ≤ Φ ≤ 180◦), the DSMC temperature jump decreases while that for the

CFD increases gradually. At such a large Knudsen number as this case, the wake

region is more rarefied leading to the breakdown of the continuum hypothesis in

the N–S–F equations. The profile of the DSMC temperature jump in Figure 5.9

is similar to that for the DSMC slip velocity in Figure 5.8.

Figure 5.10 shows the simulation results for the velocity varying with distance

normal to the cylinder surface, at Φ = 90◦. There are considerable differences

between the CFD results and the DSMC data in the Knudsen layer.
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Figure 5.7: Surface pressure distribution around the cylinder surface, Kn = 0.25.
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Figure 5.8: Computational slip velocity distribution around the cylinder surface,
Kn = 0.25.
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5.7.3 Experimental cylinder case, Kn = 0.0056

Because the value of the heat of adsorption, De, for air is not available in the

literature for the new boundary conditions, only the Maxwell conditions are tested

with σu = 0.7 and σu = 1.0, and σT = 1.0 in the Smoluchowski jump condition.

The no slip/jump condition test is also simulated. Due to the results obtained

in Section 5.7.1, the slip conditions without the curvature effect were no longer

investigated. At small Kn, all the simulation results show agreement with the

experimental data of the surface pressure. However, at the forward stagnation

point, Φ = 0◦, the simulation results predict slightly higher surface pressures than

experimental data, as seen in Figure 5.11.
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Figure 5.11: Surface pressure distribution around the cylinder surface, Kn =
0.0056.
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5.7.4 Experimental cylinder case, Kn = 0.001

The same simulations were carried out for a smaller Kn value. All the simu-

lation results again give reasonably good agreement with experimental data for

the pressure along the cylinder surface, as seen in Figure 5.12. The bow shock

predicted by the Maxwell/Smoluchowski conditions with the values σu = 0.7 and

σT = 1.0 are somewhat thicker than the bow shock seen in experiment, as shown

in Figure 5.13.
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Figure 5.12: Surface pressure distribution along the cylinder, Kn = 0.001.
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Figure 5.13: Comparison of the bow shocks between the numerical simulations
with σu = 0.7 and σT = 1.0 and experiment. Top is the density field calculated
by CFD, and the bottom is the experimental result.
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5.8 Summary and discussion

In this chapter, four simulations for a circular cylinder in cross-flow (Kn = 0.001,

0.0056, 0.01 and 0.25) are reported using the Maxwell/Somoluchowski boundary

conditions and the new conditions. The CFD results obtained were compared

with experimental data and DSMC data. There is a good agreement for surface

pressure between the DSMC data, the experimental data and the CFD results

in the cases where Kn = 0.001, 0.0056 and 0.01. A reduction in the value of

σu leads to an increase in the slip velocity. In this case, the curvature effect is

important for predicting the slip velocity, but does not affect the surface pressure

or the surface gas temperature. There are large differences in the predictions

of surface quantities between the DSMC data and the CFD results for the case

where Kn = 0.25. From the results obtained in the cases where Kn = 0.01 and

0.25, the simulations of the temperature jump at the wake-surface and of the

slip velocity in the Knudsen layer leave scope for substantial further work and

improvement.
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Chapter 6

Simulations of flow past a sharp

wedge and a blunt cone

6.1 Introduction

In the two previous chapters, external rarefied hypersonic flows sharp-leading-

edge and blunt geometries were studied. In this chapter, flows past a sharp

wedge and a blunt cone are investigated, with various slip/jump and no slip/jump

conditions applied, in which the blunt cone is the practical hypersonic vehicle

shape. The Maxwell/Smoluchowski conditions are tested with the values σu =

0.7 and σT = 1.0, and σu = σT = 1.0. The simulation results are compared

with experimental data of surface pressure given in [70, 71] and the Lofthouse

DSMC data (σu = σT = 1.0) taken from [51,52]. The curvature effect in the slip

conditions is also investigated. The Knudsen number, Kn, is calculated for the

wedge and the blunt cone as follows:

Kn =
λ

H
, (6.1)

where H is the length of the base of either the wedge or the blunt cone.

An analysis of the relative effect of thermal creep on a satellite-on-a-chip is pre-

sented by an analytical solution.
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6.2 Experimental arrangement and the DSMC

cases

The experimental arrangement for the wedge and the blunt cone cases is the

same as for the flat plate and the circular cylinder cases presented in the previous

chapters. The measurement of surface pressure requires the pressure transducers

connected to pressure orifices located at the surface of the wedge and the blunt

cone, as described in Chapter 4. A typical experiment set-up for the blunt cone

case is shown in Figure 6.1.

Figure 6.1: Experimental set-up for the blunt cone case [71].

The DSMC cases described in [51,52] are explored with the same freestream flow

conditions, Kn, and numerical model as in of the circular cylinder cases presented

in Chapter 5. The geometries and dimensions of the wedge and the blunt cone are

shown in Figure 6.2 and Table 6.1. The freestream flow conditions, the working

gases, surface temperatures, and Kn for these cases are shown in Tables 6.2 and

6.3.
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         a) Wedge                                                                                            b) Blunt cone 

L

    L

Figure 6.2: Geometries of the wedge and the blunt cone, where L is the length of
the top surface, H is the height of the base, and RN is the radius of curvature of
the nose of the blunt cone.

Table 6.1: Geometrical dimensions of the wedges and the blunt cone.
L (mm) H (mm) Angle (deg.) RN (mm)

Wedge of experimental case [70] 90.0 46.4 30 0
Wedge of the DSMC cases [51,52] 877.64 304.8 20 0
Blunt cone [71] 137.25 42.16 16 2

Table 6.2: Freestream flow conditions of the wedge and the blunt cone cases.
p∞ (Pa) T∞ (K) Ma

Wedge of experimental case [70] 0.76 17 24.2
Wedge of the DSMC case [51,52] 1.17 200 10
Wedge of the DSMC case [51,52] 0.047 200 10
Blunt cone [71] 5.39 57.5 9.81

6.3 Boundary conditions

Various nonequilibrium boundary conditions are applied on the surface of the

sharp wedge and the blunt cone for the flow variables (T , u). The boundary

condition for the pressure p at the surfaces is zero normal gradient. At the inflow

boundary, the freestream conditions are maintained throughout the computa-

tional process. At the top boundary and the outflow boundary, fluid is allowed

to leave the computing region. This condition specifies that the normal gradients

of the flow variables (p, T , u) vanish at these boundaries. At the bottom bound-

ary, in front of and behind the sharp wedge, a symmetry boundary condition is

applied to all flow variables. For the two-dimensional axi-symmetric blunt cone
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Table 6.3: The surface temperatures, the working gases and Kn in the various
sharp wedge and the blunt cone cases.

Twall (K) Gas Kn
Wedge of experimental case [70] 294 Nitrogen 0.002
Wedge of the DSMC case [51,52] 500 Argon 0.010
Wedge of the DSMC case [51,52] 500 Argon 0.250
Blunt cone [71] 298 Nitrogen 0.0026

case, the geometry is specified as a wedge of one cell thickness running along the

plane of symmetry. A schematic diagram of the boundary conditions applied in

the two-dimesional sharp wedge and blunt cone cases is shown in Figures 6.3 and

6.4.

Shock wave

Zero Gradient (p, T, u)

Symmetry Plane
  (p, T, u)

Freestream
  (p, T, u)

Symmetry Plane
  (p, T, u)

     (T, u)

Zero Gradient p

Nonequilibrium BCs

Figure 6.3: Numerical case arrangement for the sharp wedge case.
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Shock wave
Zero Gradient
   (p, T, u)

Freestream
 (p, T, u)

Nonequilibrium BCs 

Axis of symmetry Axis of symmetry

   (T, u)
Zero Gradient p 

Wedge type

Figure 6.4: Numerical case arrangement for the blunt cone case.

6.4 Numerical mesh

The computational mesh is constructed to wrap around the shocks. For all the

sharp wedge and the blunt cone cases described in [51,52, 70, 71], mesh indepen-

dence studies were conducted. The final mesh encompassing the boundary layer

has a linear grading a) in the surface-parallel spacing for the wedge case, and

b) in the surface-normal spacing at the nose for the blunt cone case, over the

numbers of cells near the surface. As presented in Section 5.5, the values of nc

and lc, and the smallest mesh sizes (∆x and ∆y) near the surfaces of the sharp

wedge and at the nose of the blunt cone, for all cases are shown in Table 6.4.

Typical meshes of cells for the sharp wedge and the blunt cone simulations are

shown in Figures 6.5, 6.6 and 6.7.

Table 6.4: Smallest cell size of the mesh near the surface.
Case Kn nc lc (mm) ∆x (mm) ∆y (mm) Total cells
Wedge [70] 0.002 75 15 1.0 0.05 → 0.5 20 100
Wedge [51,52] 0.01 120 50 2.2 0.10 → 1.0 88 000
Wedge [51,52] 0.25 100 100 5.85 0.03 → 5.0 77 100
Cone [71] 0.0026 30 2.5 0.026 → 0.26 0.2 5300
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Figure 6.5: Computational mesh for the sharp wedge case, 77 100 cells.

Figure 6.6: Computational mesh for the blunt cone case, 5300 cells.
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(a)

(b)

Figure 6.7: a) Mesh at the nose of the blunt cone and b) a partial side view of
the mesh for simulation of the blunt cone case, showing the axi-symmetric wedge
arrangement.
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6.5 Transport properties

A calorically perfect gas is considered and the viscosity is calculated a) by Suther-

land’s law for the experimental cases [70, 71], and b) by the Power Law for the

DSMC cases given in [51, 52]. The coefficient of thermal conductivity is then

computed from equation (2.31).

The Prandtl number, Pr, is assumed to be constant throughout the flow. The

values AS = 1.41× 10−6 Pa.s K1/2, TS = 111.0 K from Table 2.1 are adopted for

Sutherland’s equation (2.30) in Chapter 2. The values AP = 0.31× 10−6 Pa.s Ks

and s = 0.734 are adopted for the Power Law equation (2.29) also in Chapter

2, where AP is equivalently calculated from equations (3.33) and (3.34) with the

values ω = 0.734, dref = 3.595× 10−10 m, Tref = 1000 K and m = 6.63× 10−26

kg using in the DSMC simulations in [51,52].

The values of R, γ and Pr of various working gases used for calculation of the

transport properties are given as before in Table 4.5.

6.6 Simulation results

In the sharp wedge and the blunt cone cases, a wake region is a recirculating

region adjacent to the base bounded on either side by the flow which has sepa-

rated from the body [64]. For the wake behind slender bodies, such as wedges

and cones, the temperature changes are relatively small [68,69].

For the sharp wedge cases, the results of the surface properties in each case are

plotted as a function of the distance, S, along the wedge surface, normalized by

the length, L, of the top surface. Therefore S/L = 1 is the location of the wedge

shoulder and the beginning of the wake.

6.6.1 Experimental sharp wedge case Kn = 0.002 [70]

In this wedge case, the curvature effect in the slip conditions indicated by the

term Πmc in equations (3.11) and (3.37) are investigated for all tests, to assess

how it affects these in simulations of hypersonic gas flow.

94



CHAPTER 6. SIMULATIONS OF FLOW PAST A SHARP WEDGE AND A
BLUNT CONE

Considering the surface pressures, Figure 6.8 shows the new BCs give results in

reasonable agreement with experimental data . The results when using the value

σu = 0.7 in the Maxwell slip condition are close to the results of the new BCs at

the leading edge. The no slip/jump conditions overpredict the surface pressure at

the leading edge, as in the flat plate cases. All simulated results are close together

in the wake-surface (1 ≤ S/L ≤ 1.2), as seen in Figure 6.8. The curvature effect

of slip conditions does not affect the surface pressure.

Figure 6.9 shows that the surface gas temperatures are highest at the leading

edge with the peak temperature of a) about 545 K for the new conditions with

and without the curvature effect, b) about 540 K when σu = σT = 1 in the

Maxwell/Smoluchowski conditions with and without the curvature effect, and c)

about 460 K when σu = 0.7, σT = 1 in the Maxwell/Smoluchowski conditions with

and without the curvature effect. Past the leading edge, the gas temperatures

gradually decrease to an almost constant value along the surface. The results of

the new conditions are 21% higher than results using the Maxwell/Smoluchowski

conditions in the region (0.2 ≤ S/L ≤ 0.95), as seen in Figure 6.9. The curvature

effect in the slip conditions does not affect the surface gas temperature.

Considering the slip velocity in Figure 6.10, all tests predict a peak normalized

slip velocity at the leading edge of a) about 0.79 for the new conditions with and

without the curvature effect, b) about 0.60 when using σu = σT = 1 with and

without curvature, and c) about 0.75 and 0.77 when using σu = 0.7, σT = 1 with

and without curvature effect, respectively. Past the leading edge, the slip velocity

very quickly reduces to a nearly constant finite value until the wedge shoulder.

The curvature effect in the slip conditions has a slight effect about 5% in the slip

velocity around the wedge shoulder for the test using the value of σu = 0.7 in the

Maxwell condition, and the other two pairs of curves overlap, as seen in Figure

6.11. On the surface of the base of the wedge, the slip velocities of all tests are

close together.
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Figure 6.8: Pressure distribution along the wedge surface.
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Figure 6.9: Gas surface temperature distribution along the wedge surface, Kn =
0.002.
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Figure 6.10: Slip velocity distribution along the wedge surface, Kn = 0.002.
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6.6.2 The DSMC sharp wedge case Kn = 0.01 [51,52]

In this case, simulations are run with the curvature effect in the slip conditions.

The curvature effect seems not to strongly affect the surface quantities in the

previous case. Therefore, only one more simulation without the curvature effect

is carried out for the new conditions.

Considering the surface pressures in Figure 6.12, the results with the new con-

ditions give good agreement with the DSMC data before the wedge shoulder.

The no-slip/jump simulation and the test results with σu = σT = 1 in the

Maxwell/Smoluchowski conditions overpredict the surface pressures at the lead-

ing edge. In the region, 1.0 ≤ S/L ≤ 1.17 all CFD results are closed together

and there is a slight difference with the DSMC data, as seen in the figure.

The temperature jumps in all the CFD results and the DSMC data are highest

at the leading edge, as seen in Figure 6.13, with a peak temperature jump of

a) about 750 K when using σu = 0.7 and σT = 1 in the Maxwell/Smoluchowski

conditions, b) about 1150 K with the new conditions with and without curva-

ture, c) about 1250 K when using σu = σT = 1 in the Maxwell/Smoluchowski

conditions, and d) about 2129 K for the DSMC test. In Figure 6.13, past the

leading edge, the temperature jumps gradually decrease along the surface and

in addition, show a slight bump around the wedge shoulder. In the region

0.1 ≤ S/L ≤ 0.95 the new conditions predict higher temperature jump than

those given by the Maxwell/Smoluchowski conditions and the DSMC data. In

the region 1.0 ≤ S/L ≤ 1.17, all CFD results are close to the DSMC data.

Figure 6.14 shows that, at the leading edge, all the CFD results and the DSMC

data show a peak normalized slip velocity of a) about 0.89 when using σu = 0.7

and σT = 1 in the Maxwell/Smoluchowski conditions , b) about 0.79 for the new

conditions with and without curvature, c) about 0.68 when using σu = σT = 1

in the Maxwell/Smoluchowski conditions, and d) about 0.25 for the DSMC test.

Past the leading edge, the slip velocities very quickly reduce to a nearly con-

stant finite value until the wedge shoulder, after the shoulder the DSMC data

are lower than all the CFD results. The slip velocities when using σu = 0.7 and

σT = 1 in the Maxwell/Smoluchowski conditions and for the new conditions are

close together and they are higher than both the slip velocities of the test with
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Figure 6.12: Pressure distribution along the wedge surface, Kn = 0.01.

σu = σT = 1 in the Maxwell/Smoluchowski conditions and the DSMC data until

the wedge shoulder position is reached. On the surface of the base of the wedge

(1.0 ≤ S/L ≤ 1.17), all the CFD results are close to the DSMC data, as seen in

Figure 6.14.

The results of the tests of the new conditions show that the curvature effect does

not affect the surface pressure, the temperature jump or the slip velocity, as seen

in Figures 6.12, 6.13, and 6.14.
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Figure 6.13: Temperature jump distribution along the wedge surface, Kn = 0.01.
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Figure 6.14: Slip velocity distribution along the wedge surface, Kn = 0.01.
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6.6.3 The DSMC sharp wedge case, Kn = 0.25 [51,52]

In the results obtained for the two previous wedge cases, the no slip/jump condi-

tions overpredicted the surface pressures at the leading edge and therefore these

conditions were no longer investigated. All subsequent tests on the wedge case

were undertaken with the curvature effect in the slip conditions for Kn = 0.25.

Considering the surface pressure and the slip velocity, there are large differences

between all the CFD results and the DSMC data until the location S/L = 1.06,

as seen in Figures 6.15, 6.17. All the CFD results predict a large spike in the

surface pressure at the wedge shoulder, S/L = 1, as the flow begins to expand

into the wake region. There are also large differences in the temperature jumps

between the CFD results and the DSMC data along the wedge surface, as seen

in Figure 6.16.

All the CFD results obtained here show that the N–S–F equations fail in the

simulation of this hypersonic gas flow at large Kn, as explained in Section 2.2.
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Figure 6.15: Pressure distribution along the wedge surface, Kn = 0.25.
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Figure 6.16: Temperature jump distribution along the wedge surface, Kn = 0.25.
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Figure 6.17: Slip velocity distribution along the wedge surface, Kn = 0.25.
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6.6.4 Blunt cone case Kn = 0.0026 [71]

The simulation results of surface properties are plotted as a function of the dis-

tance, S, along the blunt cone surface, normalized by the nose radius, RN . In

this case, S/RN = 68.5 is the location of the cone shoulder and the beginning

of the wake of the flow. The three boundary condition models with and without

the curvature effect, and the no-slip/jump model are tested for the blunt cone

configuration.

The experiment in [71] studied the interaction of jets issuing from a vehicle in

low density hypersonic flow. A conic jet interaction model was developed and

tested with, and without the jet. The centre of the jet is near the cone base,

S/RN = 65. The pressure transducers to measure the surface pressures around

the jet are installed in the region 36 ≤ S/RN ≤ 63. The experimental data of

pressure distribution of the test without the jet are chosen to compare with all

the CFD results.

Considering the surface pressure results in Figure 6.18, all the CFD results are

close together and predict peak normalized pressures from 22.8 to 23.0 at the

leading edge. Past the leading edge, the surface pressures very quickly reduce to

a nearly constant finite value until the cone shoulder. All simulation results give

good agreement with the experimental data in the region 36 ≤ S/RN ≤ 63. On

the surface of the base of the cone (68.5 ≤ S/RN ≤ 79), the simulation pressures

are close to zero, as seen in Figure 6.18. The curvature effect does not affect the

surface pressure or the surface gas temperature (see Figure 6.19). At the leading

edge, the surface gas temperatures are highest, with a peak temperature of a)

about 650 K for the new conditions, and b) about 460 K for the tests using the

Maxwell/Smoluchowski conditions. Past the leading edge, the surface gas tem-

peratures reduce along the surface and a slight bump is found around the cone

shoulder, as seen in Figure 6.19. The new boundary conditions predict higher

surface gas temperatures than the Maxwell/Smoluchowski conditions.

At the leading edge the slip velocities reach a peak normalized value and then de-

crease along the cone surface, see Figure 6.20. The peak slip normalized velocities

are a) about 0.34 for the new boundary conditions, b) 0.29 when using σu = 0.7

and σT = 1 with the Maxwell/Smoluchowski conditions , and c) about 0.18 when
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Figure 6.18: Pressure distribution along the blunt cone surface.

using σu = σT = 1 in the Maxwell/Smoluchowski conditions. The new boundary

conditions predict a higher slip velocity than do the Maxwell/Smoluchowski con-

ditions until the location S/RN = 75. In addition, the Maxwell slip results are

affected by the curvature effect around the cone shoulder, as seen in Figure 6.20.
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6.7 Thermal creep effect for a satellite-on-a-chip

So far, all the CFD simulations have been carried out assuming isothermal sur-

faces. In this section an analysis of the relative effect of thermal creep on a

satellite-on-a-chip (chipsat) is presented by an analytical solution. A chipsat is

a very small satellite with a mass between 1 and 100g, and is fabricated onto a

single chip. The chipsat normally orbits at altitudes from 500 km to 1000 km,

which is the free molecular flow regime. The energy absorbed from the Sun on

one side of the chipsat is different to the energy absorbed from the Earth on the

other side. This difference in temperature creates a temperature gradient across

the chipsat surface. Gas molecules on the surface move from the cold region of the

surface towards the hot region. This motion will induce a tangential momentum

to the surface, known as thermal momentum creep, 3
4
µ
ρ

S·∇T
T

, in equation (3.11).

So, a thermal creep force, Fcreep, on the surface from the hot side towards the

cold side is calculated through [81]:

τ creep =
Fcreep
Across

=
µ

λ

3

4

µ

ρ

S · ∇T
T

, (6.2)

where τ creep is the thermal creep shear stress, and Across is the cross-sectional

area of the surface normal to the direction of motion.

In the present work a chipsat with dimensions (1 cm × 1 cm × 0.0025 cm) is

considered, and the chipsat material is silicon. Depending on the chipsat surface

normal to the direction of motion, there are two thermal creep effects for two

different configurations, called cases I, and II, as seen in Figure 6.21. The working

gas is air, and the Sutherland law, equation (2.30), is used for calculating the

viscosity. The freestream flow conditions for the two cases at different altitudes

are given in Table 6.5.

As seen in the schematic in Figure 6.21 for both cases, the left side of the chipsat

surface receives direct solar energy from the Sun, Esun (W), and the right side

receives the energy from the Albedo, EAlbedo (W), and the Earth’s infrared radi-

ation, EIR (W). The Earth is constantly losing heat as part of its energy cycle.

About 30 ± 5% of the solar energy that arrives at the top of the atmosphere is

reflected back to the space, known as the Albedo energy. The chipsat also emits

radiation, Ee (W), and has the dissipated energy, Edissipated (W). A general energy
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Table 6.5: Flow conditions of the chipsat at various altitudes [81,84].
Altitude (km) ρ∞ (kg/m3) T∞ (K) u∞ (m/s)

100 5.30× 10−7 195.08 7840
150 2.07× 10−9 634.39 7810
200 2.79× 10−10 854.56 7780
250 7.25× 10−11 941.33 7750
300 2.42× 10−11 976.01 7730
350 9.52× 10−12 990.06 7700
400 3.73× 10−12 995.83 7670
450 1.59× 10−12 998.22 7640
500 6.97× 10−13 999.24 7610
550 3.18× 10−13 999.67 7590
600 1.45× 10−13 999.85 7560
650 7.25× 10−14 999.93 7530
700 3.61× 10−14 999.97 7500
750 2.06× 10−14 999.99 7480
800 1.17× 10−14 999.99 7450
850 7.83× 10−15 1000.0 7430
900 5.25× 10−15 1000.0 7400
950 3.98× 10−15 1000.0 7380
1000 3.02× 10−15 1000.0 7350

balance equation for the chipsat is shown below,

Eabsorbed + Edissipated − Ee = 0. (6.3)

The temperature gradients across the chipsat surface are calculated by solving

this energy balance equation [83, 85], and the results of the temperature gradi-

ents of two cases at various altitudes are shown in Figure 6.22. The temperature

gradients increase with increasing altitudes in both cases. The temperature gra-

dients in case II are higher than those in case I.

Then, the thermal creep forces are calculated by equation (6.2) in the two cases,

and may be compared with the drag forces, FD, computed as,

FD = 0.5ρu2ArefCD, (6.4)

where CD is the drag coefficient, with CD = 2.1 for the chipsat geometry [84], and

Aref is the reference area (i.e. a plane perpendicular to the direction of motion).
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Figure 6.21: Geometry and energy balances for the chipsat for its orbit in two
different configurations.

The thermal creep forces and the drag forces in the two cases at different altitudes

are presented in Figure 6.23. The drag forces in the two cases decrease quickly

with increasing altitudes, while the creep forces increase slightly with increasing

altitudes. At altitudes from 100 km to 550 km the creep forces are less than the

drag forces for both cases. However, the creep forces are greater than the drag

forces at altitudes from 550 km to 1000 km, where the chipsat normally travels.

These results show the importance of the thermal creep effect for a complete

understanding of the dynamics and accurate prediction of the orbit of certain

satellites.
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6.8 Summary and discussion

From the results obtained in this chapter, it is clear that the no slip/jump model

is unacceptable for simulating hypersonic gas flows. The new boundary con-

ditions give reasonably good agreement for the surface pressure when compar-

ing with DSMC and experimental data for both the wedge cases (Kn = 0.002

and 0.01) and the blunt cone case. Using σu = 0.7 and σT = 1 with the

Maxwell/Smoluchowski conditions also gives good predictions for surface pres-

sure. Furthermore, the curvature effect does not appear to affect the surface

pressure or gas surface temperature; it just affects the slip velocity around the

wedge shoulder and the cone shoulder.

A smaller value of σu in the Maxwell slip condition leads to a decrease in the

surface gas temperature and an increase in the slip velocity along the surface.

Reducing σu also decreases the surface pressure at the sharp leading edge, to rea-

sonable agreement with the DSMC data and experimental data in Figures 6.8,

6.12, 6.15.

It is seen that the DSMC profile of the temperature jump is very similar to that

for the slip velocity, because the temperature jump is calculated as a function of

velocity, as presented in Chapter 3. For the sharp wedge cases near the leading

edge, the DSMC method predicts much higher gas temperature than the CFD

method. There is a large difference between the CFD results and the DSMC data

at large Kn number. This shows that the N–S–F equations themselves fail at

large Kn because the assumptions of a continuum-fluid flow are not preserved.

It has also been shown that the thermal creep can be an important consideration

in the design of future micro spacecraft.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, various slip/jump boundary conditions have been presented and

investigated for their usefulness in the simulation of hypersonic flows of air, ar-

gon and nitrogen over both sharp and blunt bodies. The Knudsen numbers have

varied from 0.001 to 0.25, and characterize the extent of translational nonequi-

librium of the rarefied gas flows.

For sharp geometries, such as the sharp-leading-edge flat plate and the sharp

wedge, the new boundary conditions derived in the thesis give reasonable predic-

tions, compared to both experimental and DSMC data for surface pressure [46,

53–56,60] and gas surface temperature [53]. However, the Maxwell/Smoluchowski

conditions give good predictions of the surface pressures if the values σu = 0.7

and σT = 1.0 are used. Together with the Smoluchowski jump condition with

the value σT = 1.0, the second order slip condition with the coefficients A1 = 1.5

and A2 = 1.0 predicts well the surface pressures, compared with experimental

and DMSC data, in the flat plate cases.

However, the simulation results in this thesis show that using the second-order

slip condition is not much better than using the conventional Maxwell slip con-

dition with the N–S–F equations.

The reduction of the value σu in the Maxwell slip condition decreased the gas

surface temperature and increased the slip velocity along the surfaces. Overall,
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the new boundary conditions developed here predicted a higher slip velocity and

a higher gas temperature than do the Maxwell/Smoluchowski conditions and the

second-order slip/Smoluchowski conditions. For the sharp wedge case, the curva-

ture effect in the slip boundary conditions does not affect the surface pressure or

the gas surface temperature predictions. However, it does affect the slip velocity

at the wedge shoulder. In the wedge case with Kn = 0.25, the simulation results

have shown that the N–S–F equations fail at large Knudsen number, as the hy-

pothesis of the continuum-fluid is broken. For sharp leading edge geometries, the

DSMC model predicted a much higher temperature than the CFD method.

Considering blunt geometries, such as the cylinder and the blunt cone, the Maxwel-

l/ Smoluchowski conditions with values of σu = 0.7 and σT = 1.0, and σu = σT =

1.0 and the new boundary conditions all gave good predictions for the surface pres-

sures of the circular cylinder when Kn = 0.001, 0.0056 and 0.01, and for the blunt

cone case, compared with the DSMC and experimental data. The new boundary

conditions predicted higher temperatures than the Maxwell/Smoluchoski condi-

tions did. The curvature effect only affected the slip velocity in the circular

cylinder cases and the blunt cone case at the cone shoulder. In the cylinder

cases, the DSMC temperature jump profiles were similar to those for the DSMC

slip velocity. On the wake-surface, there is a difference for predictions of the

temperature jump of the cylinder case between the CFD results and the DSMC

data. A reduction of in σu, in the Maxwell slip condition also decreased the gas

temperature and increased the slip velocity along the surfaces. There were also

differences in predictions of the surface quantities between the CFD results and

the DSMC data in the circular cylinder case when Kn = 0.25.

This comprehensive investigation points to the first important conclusion. Re-

gardless of the chosen simulation geometries, the no slip/jump boundary con-

ditions are unacceptable for simulating hypersonic gas flows. The no slip/jump

conditions overpredict the surface pressures at a sharp-leading-edge and the stag-

nation points of blunt bodies. There is also a difference in the velocity profile

through the Knudsen layer between the DSMC data and the CFD results. The

boundary condition tests show that the Langmuir conditions cannot be used in

simulating hypersonic gas flows, as they are not fully compatible with the fluid

dynamic situation.
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From the simulation results obtained, we can conclude the new boundary condi-

tions based on a combination of the Langmuir adsorption isotherm and Maxwell/

Smoluchowski conditions give reasonably good predictions for surface pressures,

which would then lead to reasonably accurate predictions of drag. The new

conditions, however, predict higher surface gas temperatures than either the

Maxwell/S-moluchoski conditions or the second-order slip/Smoluchowski condi-

tions.

In the design of space vehicles, a precise prediction of gas surface temperature,

though desirable, may not be essential, in that the thermal protection will be de-

signed to withstand higher temperatures than are absolutely necessary. However,

accurate prediction of drag, as obtained through surface pressure distribution, is

important for a complete understanding of flight vehicle dynamics and accurate

prediction of the vehicle’s trajectory. The thermal creep effect is also important

for the dynamics and the accurate prediction of the orbit of certain satellites.

7.2 Contributions

The outcomes of the present work provide contributions concerning the usefulness

of certain surface boundary conditions in simulating hypersonic gas flows:

1. New, more realistic boundary conditions are proposed by combining the

Langmuir adsorption isotherm with the Maxwell/Smoluchowski conditions. These

address the problem of the values of free parameters such as the tangential mo-

mentum, σu, and the thermal, σT , accommodation coefficients in the first order

slip/jump conditions. These new boundary conditions give better predictions of

the surface pressure in sharp-leading-edge geometries.

2. The results obtained in this thesis indicate different options for the slip/jump

conditions in simulating hypersonic gas flows. The choice can be one of the fol-

lowing options:

a) using the new boundary conditions proposed in this thesis.

b) using the Maxwell/Smoluchowski conditions with the values σu = 0.7 and

σT = 1.0.
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c) using the second slip/Smoluchowski conditions with the values A1 = 1.5,

A2 = 1.0 and σT = 1.0. This should only be used in a planar surface simulation.

7.3 Future work

In this section, future work is suggested to improve the capability of the N–S–F

model to simulate hypersonic gas flows.

It is seen that none of the nonequilibrium boundary conditions tested in this the-

sis give very good full-field predictions. Even using the new boundary conditions

developed in this thesis, there is still a difference of the velocity profile through the

Knudsen layer between the DSMC method and the CFD method. To overcome

this problem, a modification of the viscosity in the Knudsen layer with a surface

function was proposed in reference [59]. This new surface function was evaluated

for isothermal micro-flows. Using this surface function for non-isothermal flow

and hypersonic rarefied gas flows should be considered, to provide a possible im-

provement.

The two-temperature model (translational/rotational and vibrational tempera-

tures) described in [72] should be implemented into the N–S–F solver, so that it

can predict the rotational and vibrational temperatures for diatomic and poly-

atomic gases at higher temperatures (i.e. greater than 4000 K [1]).

This research has been restricted to a perfect gas model only. Thus, the real gas

models need to be studied and implemented into the solver so that it can model

real hypersonic gas flows. The present work just considers thermal nonequi-

librium. At the higher temperatures that often occur in hypersonic gas flows,

chemical reactions become important (dissociation and recombination). Further

research into chemical reactions are necessary to model them as accurately as

possible. The effects of chemical nonequilibrium and catalysis on the surface of

the hypersonic vehicle should then be studied. It is necessary to consider any

relations between vibrational energy activation and dissociation rates.
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