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Abstract

The objective within this thesis is the bringing to bear of functional analytic tech-
niques to the rigorous analysis of fragmentation and coagulation-fragmentation
models involving a mass cut-off. In the models we examine, particles which have
a mass exceeding the cut-off are able to fragment in the usual way. However, par-
ticles with mass below the cut-off are unable to break up any further. This results
in a dual regime model, with one regime consisting of the above cut-off particles,
and another containing the sub cut-off particles.

Initially we consider the case of pure fragmentation. The model setup leads to a
system of two integro-differential equations. These equations are reformulated as
two abstract differential equations within the setting of physically relevant function
spaces. The two separate equations are then combined to form a single abstract
Cauchy problem involving a 2 × 2 operator matrix acting on the product of our
function spaces. This operator matrix is then shown to generate a strongly contin-
uous semigroup on the product space, providing us with a unique set of strongly
differentiable solutions. The solutions given by this semigroup are shown to pre-
serve positivity and conserve mass.

Having considered the case of pure fragmentation, we then introduce a coagula-
tion process to the dual regime model. The analysis of this combined model is
most readily carried out in a revised pair of function spaces, and the first task
is to establish that the fragmentation system still generates a semigroup in the
revised product space. The additional coagulation terms are then treated as a
nonlinear perturbation of the pure fragmentation system. Our choice of space al-
lows us to establish the desired Lipschitz and Fréchet differentiability properties
of the nonlinear coagulation operator, giving us the existence of a local in time,
strongly differentiable solution. This solution is shown to preserve positivity over
its maximal interval of existence. Finally, using a Gronwall type inequality, we
demonstrate that the solution does not blow up in finite time, and hence is a
strongly differentiable global solution.
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Chapter 1

Introduction

Coagulation and fragmentation processes are commonly observed phenomena amo-
ngst physical systems, arising in areas such as colloidal chemistry, polymer science
and astrophysics. Mathematical models of such processes generally characterise
the particles within the system by some physical state variable, for example their
volume or mass. The aim is then to determine the dynamical behaviour of the
system with respect to this variable as time progresses. Models can be classified
as either discrete or continuous depending on the nature of the state variable of
interest. In this thesis we shall be examining continuous models exclusively.

1.1 Pure Fragmentation Equations

In a pure fragmentation process, particles can break up into smaller pieces but are
unable to coalesce to form larger particles. A commonly studied model of such
processes is the multiple fragmentation equation

∂u(x, t)

∂t
= −u(x, t)

∫ x

0

y

x
γ(x, y) dy +

∫ ∞
x

γ(y, x)u(y, t)dy, x > 0, t > 0. (1.1)

This description of fragmentation was first formulated by Blatz and Tobolsky [10]
and was subsequently analysed by Melzak [28]. The function u(x, t) represents the
density of particles of mass x at time t, so that u(x, t)dx is the average number of
particles with mass in the interval (x, x+ dx) at time t. The multiple fragmenta-
tion kernel γ(x, y), 0 ≤ y ≤ x < ∞, provides the rate at which particles of mass
y are produced due to the break-up of a particle of mass x. The first term on the
right-hand side of equation (1.1) is a loss term, accounting for the particles of mass
x lost due to them fragmenting. The second term is a gain term which accounts
for the gain in particles of mass x arising from the break-up of larger particles.
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Chapter 1 2

A special case of fragmentation is that of binary fragmentation. In binary frag-
mentation, each fragmentation event produces exactly two particles. We can adapt
(1.1) to model such a process by setting

γ(x, y) = F (x− y, y), 0 ≤ y ≤ x <∞.

The symmetric function F (x, y) is the binary fragmentation kernel which provides
the rate at which particles of mass x+ y fragment into particles of mass x and y.
If we replace γ(x, y) with F (x − y, y) in the first integral of (1.1), and make the
substitution y′ = x− y, we obtain∫ x

0

y

x
γ(x, y) dy =

∫ x

0

y

x
F (x− y, y) dy =

∫ x

0

x− y′

x
F (y′, x− y′) dy′.

Utilising the symmetry of F , we have∫ x

0

y

x
F (x− y, y) dy =

1

2

∫ x

0

F (x− y, y) dy.

Making these changes in (1.1) we obtain the binary fragmentation equation

∂u(x, t)

∂t
= −1

2
u(x, t)

∫ x

0

F (x− y, y) dy +

∫ ∞
0

F (x, y)u(x+ y, t)dy. (1.2)

The application of semigroup theory to the study of fragmentation equations was
pioneered by Aizenman and Bak [1]. They considered the binary fragmentation
equation (1.2) in the case of F being a constant. Their approach involved examin-
ing the problem with x restricted to a sequence of truncated intervals. They then
established that each truncated problem gave rise to a semigroup, and that this
sequence of semigroups converged to a limit semigroup which provided a solution
to the full problem. Using a similar approach, McLaughlin et al. [26] were able to
establish the existence of a unique non-negative, mass-conserving solution to the
multiple fragmentation equation (1.1) under the constraint∫ x

0

y

x
γ(x, y) dy ≤ Cn <∞ for all x ∈ (0, n], n > 0,

where the sequence {Cn} may be unbounded.

An alternative formulation for a continuous fragmentation equation is provided by

∂u(x, t)

∂t
= −a(x)u(x, t) +

∫ ∞
x

a(y)b(x|y)u(y, t)dy, x > 0, t > 0. (1.3)

Here a(x) represents the fragmentation rate for a particle of mass x, b(x|y) gives
the distribution of particles of mass x resulting from a break-up of a particle
of mass y. The first term on the right-hand side is the loss term, which takes
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account of the particles of mass x lost due to them breaking up. The second term,
involving the integral, is the gain term and gives the gain in particles of mass x due
to the break-up of larger particles. Since each individual particle resulting from
a fragmentation event cannot have mass exceeding that of the original particle,
we require that b(x|y) = 0 for x > y. Also, for mass to be conserved during
fragmentation events we must impose∫ y

0

xb(x|y)dx = y for y > 0.

The expected number of particles resulting from the fragmentation of a particle of
mass y is given by the integral

n(y) =

∫ y

0

b(x|y)dx.

We can recover our original multiple fragmentation equation, that is (1.1), by
setting

a(x) =

∫ x

0

y

x
γ(x, y) dy and b(x|y) =

γ(y, x)

a(y)
,

and the binary fragmentation equation, (1.2), by setting

a(x) =
1

2

∫ x

0

F (x− y, y) dy and b(x|y) =
F (y − x, x)

a(y)
.

A setup such as (1.3) was first presented by McGrady and Ziff in [25], where explicit
solutions were sought in the case of a and b having the following power-law forms

a(x) = xα, α ∈ R, and b(x|y) = (ν + 2)
xν

yν+1
, −2 < ν ≤ 0. (1.4)

Solutions were found to be mass-conserving for α > 0. However, for α < 0 there
was an unaccounted for loss of mass due to a phenomenon known as ‘shattering’.
Using semigroup theory, and in particular a perturbation theorem derived from
work by Voigt [38], Banasiak, in [2], was able to confirm these results rigorously for
the case ν = 0. This approach has proved fruitful, having been used by Lamb [22]
and Banasiak and Arlotti [4] to establish the existence of unique mass-conserving
positive solutions to equation (1.3) under a range of constraints on the fragmenta-
tion rate a. In [22], the semigroup obtained using the aforementioned perturbation
result is shown to be the very semigroup that is obtained in [26] using the trunca-
tion/limit approach. The perturbation approach has also been successfully applied
to variations of the standard fragmentation equation (1.3). For example, in [5] Ba-
nasiak and Lamb apply the method to a fragmentation model with built-in mass
loss.
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When the fragmentation rate blows up at zero we encounter unexpected mass loss
due to the aforementioned shattering. The unbounded fragmentation rate results
in a runaway fragmentation process and the creation of infinitesimally small ‘dust’
particles which carry positive mass. In [18], Huang et al. suggest that such run-
away fragmentation is unphysical and that there must be some point at which
particles are unable to break up any further. They propose the introduction of a
cut-off mass xc, above which particles are able to fragment as usual, but once a
particle’s mass drops below xc it ceases to fragment, becoming dormant. Such a
setup produces a dual regime model. Particles of mass x > xc form a ‘fragmen-
tation regime’. The density of particles in this regime is denoted by uF (x, t), the
evolution of which is governed by the standard equation

∂uF (x, t)

∂t
= −a(x)uF (x, t) +

∫ ∞
x

a(y)b(x|y)uF (y, t)dy, x > xc, t > 0. (1.5)

Particles of mass 0 < x ≤ xc form a ‘dust regime’; we denote by uD(x, t) the
density of particles in this regime. The dust regime density is governed by the
equation

∂uD(x, t)

∂t
=

∫ ∞
xc

a(y)b(x|y)uF (y, t)dy, 0 < x ≤ xc, t > 0. (1.6)

In [18], equations (1.5) and (1.6) were examined in the particular case that a and
b are as given in (1.4). Explicit solutions were provided in terms of the confluent
hypergeometric function.

1.2 Coagulation–Fragmentation Equations

Introducing a coagulation process to the model leads to integro-differential equa-
tions of the form

∂u(x, t)

∂t
= (Fu)(x, t) +

1

2

∫ x

0

k(x− y, y)u(x− y, t)u(y, t)dy

− u(x, t)

∫ ∞
0

k(x, y)u(y, t)dy, (1.7)

where Fu is one of the fragmentation models from (1.1), (1.2) or (1.3). The func-
tion k(x, y) is the coagulation kernel and provides the rate at which particles of
mass x and mass y come together to form a particle of mass x + y. Physical
constraints indicate that k should be non-negative and symmetric. The first of
the coagulation terms is a gain term, accounting for the new particles of mass x
created when two smaller particles of combined mass x join together. The factor
of 1

2
is included so as to avoid double counting due to symmetry. The second

coagulation term is a loss term, which takes account of the loss of particles of mass
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x due to such particles joining with other particles to create still larger particles.
It was Smoluchowski in [35] who first modelled coagulation in this manner, albeit
with a discrete model with summations in place of integrals. The pure coagulation
equation (which is obtained from (1.7) by removing the term Fu) is known as the
Smoluchowski coagulation equation.

When the fragmentation component of (1.7) is provided by (1.1) we get the coag-
ulation and multiple fragmentation equation, introduced by Blatz and Tobolsky
[10]. This equation was later analysed by Melzak [28], who, by assuming that both
kernels γ and k were bounded and by seeking solutions in the form of a series, es-
tablished existence and uniqueness of solutions.

With Fu being given by (1.2), equation (1.7) becomes the coagulation and binary
fragmentation equation. In [1], Aizenman and Bak apply a semigroup method in
the case that both F and k are constants. The coagulation and binary fragmenta-
tion equation is the subject of investigation in both [36] and [37], where the kernels
F and k are allowed to be unbounded, but must satisfy certain growth conditions.

The semigroup work of McLaughlin et al. in [26] was extended in [27] to consider
the coagulation and multiple fragmentation equation under the assumptions that
the coagulation kernel k is constant and the multiple fragmentation kernel γ is
bounded.

In [22], Lamb considers equation (1.7) with fragmentation terms from (1.3). The
equation is formulated as a semilinear abstract Cauchy problem by treating the
coagulation terms as a nonlinear perturbation of the pure fragmentation equation.
Using a truncation/limit technique, Lamb was able to establish global existence
and uniqueness of solutions under the constraints that the fragmentation rate a
satisfies a linear growth bound, n(y) is equal to a finite constant and the fragmen-
tation kernel k is bounded.

1.3 Outline

The purpose of this thesis is to apply functional analytic techniques from the the-
ory of semigroups and operator matrices to the rigorous analysis of dual regime
fragmentation and coagulation-fragmentation models. The body of this thesis is
formed by four chapters.

In Chapter 2, we introduce the required preliminary material on operator semi-
groups, operator matrices and their application to the solution of equations in
abstract spaces.
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In Chapter 3, we apply the results and techniques introduced in Chapter 2 to the
dual regime fragmentation model described earlier. Using an operator matrix, the
system is cast as a linear abstract Cauchy problem in a suitable product space.
Under certain restrictions on the fragmentation rate a, we prove the existence of
a unique positive solution which conserves mass between the two regimes.

In Chapter 4, a coagulation process is introduced to our dual regime model. Treat-
ing the coagulation terms as a perturbation to the pure fragmentation system, we
form a semilinear abstract Cauchy problem in a revised product space. Under a
combined linear growth condition on the fragmentation rate a(y) and the quantity
n(y), in addition to assuming that the coagulation kernel k is bounded, we prove
the existence of a unique positive, strongly differentiable, global solution.

In Chapter 5, we examine the growth condition on a(y) and n(y), introduced in
Chapter 4. We compare this condition with the standard constraint imposed in
the literature, under a selection of forms for the kernel b(x|y). We are able to show
that for a certain choice of b, our condition permits a wider range of fragmentation
rates a, than is allowed under the standard conditions.



Chapter 2

Preliminaries – Spaces, Operators
and Semigroups

In this chapter we provide a summary of the terminology and theory which shall be
employed in the later chapters when we come to examine our problems of interest.
We are assuming a familiarity with the basic concepts and results of functional
analysis covered in an introductory course, such as that provided by [21, Chapters
1 and 2].

2.1 Spaces

The analysis of the later chapters will be carried out within the setting of various
function spaces. In this section we introduce the class of spaces we shall be working
with and detail the key properties for our interests.

Definition 2.1.1. (Lebesgue spaces) Let (Ω, µ) be a measure space with positive
measure µ. For 1 ≤ p <∞, we denote by Lp(Ω, µ) the set of (equivalence classes
of) µ-measurable (real-valued) functions f defined almost everywhere on Ω, such
that

‖f‖p =

{∫
Ω

|f(x)|p dµ(x)

} 1
p

<∞. (2.1)

With (2.1) as a norm, Lp(Ω, µ) (1 ≤ p <∞) forms a Banach space, [33, Theorem
3.11]. By L∞(Ω, µ) we denote the set of (equivalence classes of) µ-measurable
(real-valued) functions f defined almost everywhere on Ω, for which there exists a
finite constant M such that

|f(x)| ≤M for almost all x ∈ Ω. (2.2)

We can define a norm on L∞(Ω, µ) as follows

‖f‖∞ = inf {M : (2.2) holds} .

Under this norm, L∞(Ω, µ) forms a Banach space [33, Theorem 3.11].

7
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Definition 2.1.2. For 1 ≤ p < ∞ (p = ∞) we denote by Lp,loc(Ω) the set of
functions f which satisfy the condition (2.1) ((2.2)) on all compact subsets K ⊂ Ω.

Definition 2.1.3. Let X be a vector space of real-valued functions defined on a
domain Ω. The set X+, defined as

X+ = {f ∈ X : f(x) ≥ 0 for all x ∈ Ω} ,

is called the positive cone of X.

• The positive cone is closed under addition and multiplication by non-negative
scalars.

• If the space X is an Lp space then the condition is replaced by f(x) ≥ 0 for
almost all x ∈ Ω.

• The positive cone of an Lp space forms a closed subset.

• The concept of a (positive) cone can be generalised in the case that X is a
general real Banach space; see [19, Definition 8.3.1].

Definition 2.1.4. Let X1 and X2 be two vector spaces. The product space X =
X1 ×X2, consists of the set of ordered pairs

X1 ×X2 = {(f, g) : f ∈ X1, g ∈ X2} .

• If (X1, ‖ · ‖1) and (X2, ‖ · ‖2) are both Banach spaces, then so is the product
space X, with norm

‖(f, g)‖ = ‖f‖1 + ‖g‖2 for f ∈ X1, g ∈ X2;

see [8, Lemma 1.62].

• When X1 and X2 are vector spaces of real-valued functions, then we define
the positive cone of the product space X as X+ = X1+ ×X2+.

Definition 2.1.5. Let X be a vector space and let both ‖ · ‖ and ‖ · ‖0 be norms
defined on X. We say that the norms are equivalent if there exist positive constants
a and b such that

a‖f‖ ≤ ‖f‖0 ≤ b‖f‖ for all f ∈ X.
Such norms define the same topology on X; hence notions of convergence with
respect to both norms are equivalent.

2.2 Calculus of Vector-Valued Functions

In this section we shall consider functions which map from some interval I in R
into a normed vector space (X, ‖·‖). We will generalise a number of concepts from
standard real-valued calculus. This generally involves simply substituting a norm
in place of the modulus in the standard definitions.
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Definition 2.2.1. Let u : I → X. Then we say that u is strongly continuous at
c ∈ I if, for each ε > 0, there exists δ > 0 such that

‖u(t)− u(c)‖ < ε whenever t ∈ I and |t− c| < δ.

• The function u is strongly continuous on I if u is strongly continuous at each
c ∈ I.

• The set of all u : I → X which are continuous on I is denoted by C(I,X).

• In the case that X is a Banach space and I = [α, β] with −∞ < α < β <∞,
then C([α, β], X) forms a Banach space under the norm

‖u‖∞ = sup {‖u(t)‖, t ∈ [α, β]} ;

see [8, Theorem 1.39].

Definition 2.2.2. The function u : I → X is said to be strongly differentiable
at c ∈ I if there exists an element v ∈ X such that, for all ε > 0, we can find a
corresponding δ > 0 such that∥∥∥∥u(c+ h)− u(c)

h
− v
∥∥∥∥ < ε whenever c+ h ∈ I and 0 < |h| < δ.

The element v is referred to as the strong derivative of u at c and is denoted by
u′(c).

• The function u is strongly differentiable on I if u is strongly differentiable at
each c ∈ I.

Definition 2.2.3. Suppose that u : [α, β]→ X where −∞ < α < β <∞. Let us
denote by Pn the following partition of [α, β]

Pn : α = t0 < t1 < t2 < . . . < tn = β,

and define
‖Pn‖ = max

1≤m≤n
(tm − tm−1).

Just as with real-valued functions we can form a Riemann sum based on this
partition and hence we define

S(u;Pn) =
n∑

m=1

u(tm)(tm − tm−1),

where tm is an arbitrary point chosen from [tm−1, tm]. If S(u;Pn) converges in X as
‖Pn‖ → 0, and if the limit is independent of the manner in which ‖Pn‖ → 0, then

we denote the limit by
∫ β
α
u(t) dt and refer to it as the strong Riemann integral of

u on [α, β].
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Theorem 2.2.4. Let X be a real Banach space and let u : [α, β]→ X be strongly

continuous. Then the strong Riemann integral
∫ β
α
u(t) dt exists as an element of

X.

Proof. See [8, Theorem 1.43].

Theorem 2.2.5. Let X be a real Banach space and let u : [α, β]→ X be strongly
continuous. Then ∥∥∥∥∫ β

α

u(t) dt

∥∥∥∥ ≤ ∫ β

α

‖u(t)‖ dt,

where the right-hand integral is a standard real-valued Riemann integral.

Proof. See [8, Theorem 1.44].

Improper integrals on infinite or semi-infinite intervals can be handled in the usual
way. For example, if u : [α,∞)→ X is continuous, then

∫∞
α
u(t) dt is defined as∫ ∞

α

u(t) dt = lim
τ→∞

∫ τ

α

u(t) dt, if this limit exists.

Theorem 2.2.6. Let X be a real Banach space and let u : [α,∞)→ X be strongly
continuous. If the real integral

∫∞
α
‖u(t)‖ dt exists, then

∫∞
α
u(t) dt exists in X and

we have ∥∥∥∥∫ ∞
α

u(t) dt

∥∥∥∥ ≤ ∫ ∞
α

‖u(t)‖ dt.

Proof. See [8, Theorem 1.45].

Theorem 2.2.7. (Fundamental Theorem of Calculus) Let X be a real Banach
space and let u : [α, β]→ X be strongly continuous. Then, for each t ∈ [α, β], the
integral

∫ t
α
u(s) ds exists in X and

d

dt

∫ t

α

u(s) ds = u(t).

Proof. See [23, Page 340].

2.3 Operators

By way of background, we assume a familiarity with basic concepts such as lin-
earity and boundedness. In this section we provide an overview of some of the
required concepts relating to operators which may be considered less standard.

Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be (real) normed vector spaces.
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Definition 2.3.1. The operator A : D(A) ⊆ X1 → X2 satisfies a Lipschitz condi-
tion on D(A) if there exists a positive constant M such that

‖Af − Ag‖2 ≤M‖f − g‖1 for all f, g ∈ D(A).

Definition 2.3.2. The operator A : D(A) ⊆ X1 → X2 is closed if whenever
{fn}∞n=1 ⊂ D(A) is such that fn → f in X1 and Afn → g in X2, then we have
f ∈ D(A) and Af = g.

Definition 2.3.3. The graph of the operator A : D(A) ⊆ X1 → X2 is the subset
G(A) of X1 ×X2 defined by

G(A) = {(f, g) : f ∈ D(A), g = Af} .

Lemma 2.3.4. The operator A : D(A) ⊆ X1 → X2 is closed if and only if its
graph G(A) is a closed subset of X1 ×X2.

Proof. See [8, Theorem 1.64].

Definition 2.3.5. Let A : D(A) ⊆ X1 → X2. A sequence {fn}∞n=1 ⊂ D(A) is said
to be A-convergent to f ∈ X1 if {fn}∞n=1 converges in X1 to f and {Afn}∞n=1 is a
Cauchy sequence in X2.

Definition 2.3.6. Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be Banach spaces. We say that
the linear operator A : D(A) ⊆ X1 → X2 is closable if it has a closed extension.
When A is closable we call its smallest closed extension the closure of A, which we
denote by A. An element f ∈ X1 is in D(A) if and only if there exists a sequence
{fn}∞n=1 in D(A) which is A-convergent to f . In this case Af = limn→∞Afn; see
[20, page 166].

Definition 2.3.7. Suppose that (X1, ‖ · ‖1) and (X2, ‖ · ‖2) are real Banach spaces
equipped with positive cones X1+ and X2+, respectively. We say that the operator
A : D(A) ⊆ X1 → X2 is a positive operator if it maps D(A)+ = D(A) ∩X1+ into
X2+.

Definition 2.3.8. Let X be a Banach space and A : D(A) ⊆ X → X a linear
operator. Then the resolvent set, ρ(A), of A is defined by

ρ(A) =
{
λ ∈ C : (λI − A)−1 ∈ B(X)

}
.

The spectrum of A, σ(A), is defined as the complement of the resolvent set, ρ(A),
in C, that is

σ(A) = C\ρ(A) = {λ ∈ C : λ /∈ ρ(A)} .

For λ ∈ ρ(A) the resolvent operator of A is

R(λ,A) = (λI − A)−1 .
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Definition 2.3.9. Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be Banach spaces and let
A : D(A) ⊆ X1 → X1 and B : D(B) ⊆ X1 → X2 be operators with D(A) ⊆ D(B).
We say that B is A-bounded (or B is relatively A-bounded) if there exist non-
negative constants a and b such that

‖Bf‖2 ≤ a‖Af‖1 + b‖f‖1 for all f ∈ D(A).

• The infimum of the values of a for which such a bound exists is known as
the A-bound of B.

Lemma 2.3.10. Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be Banach spaces and let the
operators A : D(A) ⊆ X1 → X1 and B : D(B) ⊆ X1 → X2 be linear, with D(A) ⊆
D(B) and ρ(A) 6= ∅. Then B is A-bounded if and only if BR(λ,A) ∈ B(X1, X2)
for some λ ∈ ρ(A).

This is a more general version of the result given in [4, Lemma 4.1], therefore we
include the following proof.

Proof. Suppose that B is A-bounded and let g ∈ X1. Then for λ ∈ ρ(A) we have
R(λ,A)g ∈ D(A). Hence

‖BR(λ,A)g‖2 ≤ a‖AR(λ,A)g‖1 + b‖R(λ,A)g‖1.

Since we can write

AR(λ,A)g = (A− λI)R(λ,A)g + λR(λ,A)g = λR(λ,A)g − g,

we have

‖BR(λ,A)g‖2 ≤ a‖λR(λ,A)g − g‖1 + b‖R(λ,A)g‖1

≤ (a|λ|+ b)‖R(λ,A)g‖1 + a‖g‖1.

As λ ∈ ρ(A), there exists a constant M ≥ 0 such that ‖R(λ,A)g‖1 ≤ M‖g‖1, for
any g ∈ X1. Therefore

‖BR(λ,A)g‖2 ≤ (Ma|λ|+Mb+ a)‖g‖1.

Hence BR(λ,A) ∈ B(X1, X2).

Now let us suppose that BR(λ,A) ∈ B(X1, X2) for some λ ∈ ρ(A), with
‖BR(λ,A)‖ = K. If f ∈ D(A), then f = R(λ,A)g for some g ∈ X1. Therefore

‖Bf‖2 = ‖BR(λ,A)g‖2 ≤ K‖g‖1 = K‖(λI − A)f‖1 ≤ K‖Af‖1 + |λ|K‖f‖1.

Hence B is A-bounded, as defined in Definition 2.3.9.

Lemma 2.3.11. Let X be a Banach space and let A : D(A) ⊆ X → X and
B : D(B) ⊆ X → X be such that A is closed and B is A-bounded with A-bound
strictly less than 1. Then (A+B,D(A)) is a closed operator.
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Proof. See [14, Chapter 3, Lemma 2.4].

Definition 2.3.12. Let X be a Banach space and let A : D(A) ⊆ X → X.
Suppose that D0 is an open subset of D(A) and that f, f + δ ∈ D0. If there exists
an operator Af ∈ B(X) such that

A(f + δ) = Af + Afδ +G(f, δ),

where the remainder term G satisfies

lim
‖δ‖→0

{
‖G(f, δ)‖
‖δ‖

}
= 0,

then we say that A is Fréchet differentiable at f with Af being the Fréchet deriva-
tive of A at f . If the operator A is Fréchet differentiable at each f ∈ D0, then we
say it is Fréchet differentiable on D0.

2.4 Semigroups

The main tools we shall use in the following chapters are provided by the theory
of semigroups. This section gives an account of the key results in this area and
how they can be used to tackle problems of the type we shall be considering.

2.4.1 Introduction to Semigroups

In order to motivate what follows let us consider a dynamical system evolving
with time. Suppose that we can represent the state of the system at time t by an
element u(t) from a Banach space X. We can then think of the evolution of the
system as defining a family of transition operators (T (s))s≥0, such that applying
T (s) has the effect of advancing the system state through a time interval of length
s. If u0 = u(0) denotes the initial state of the system, then the state of the system
at time t ≥ 0 would be given by

u(t) = T (t)u0, (t ≥ 0).

Let us now consider some of the properties that the operators (T (s))s≥0 should
possess. Since no transition can take place in zero time, application of T (0) must
leave the system state unchanged and hence T (0) = I, where I is the identity
operator on X. If the system evolves for a period of length t, before evolving for
a further period of length s, then we would expect it to arrive at the same state
as it would, had it simply evolved over an interval of length s + t. We therefore
require that T (s+ t) = T (s)T (t) for all s, t ≥ 0.
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2.4.2 Strongly Continuous Semigroups

Definition 2.4.1. Let X be a Banach space. Then a family of operators (T (t))t≥0 ⊂
B(X) forms a C0-semigroup (strongly continuous semigroup) of operators on X, if
it satisfies the following conditions

(i) T (0) = I where I is the identity operator on X ;

(ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0;

(iii) ‖T (t)f − f‖X → 0 as t→ 0+ for any fixed f ∈ X.

Conditions (i) and (ii) are motivated by the above consideration of a system
evolving with time. Having T (t) ∈ B(X) for all t ≥ 0 ensures that errors in initial
states remain under control, since

‖T (t)u0 − T (t)v0‖ ≤ ‖T (t)‖‖u0 − v0‖.

The continuity condition (iii) may appear light. However, in conjunction with
conditions (i) and (ii) it can be used to establish further results. Having said this,
we may consider replacing condition (iii) with the alternative

‖T (t)− I‖B(X) → 0 as t→ 0+.

The resulting semigroup is then known as a uniformly continuous semigroup. This
condition is stronger than (iii) above, with each uniformly continuous semigroup
automatically forming a C0-semigroup, whilst the converse is not, in general, true.
However, for most applications this condition is too strong and so we restrict our
attention to strongly continuous semigroups and their properties.

Theorem 2.4.2. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X.
Then there exist constants M ≥ 1 and ω ∈ R such that

‖T (t)‖ ≤Meωt for t ≥ 0. (2.3)

Proof. See [24, Theorem 2.16].

In the special case of M = 1 and ω = 0, we say that we have a semigroup of
contractions. The infimum of the values of ω for which such a bound can be
formed, is called the growth bound of the semigroup.

Definition 2.4.3. Let X denote a Banach space of the type L1(Ω, µ) with positive
cone X+. Let (T (t))t≥0 be a C0-semigroup on X. We say that (T (t))t≥0 is a
substochastic semigroup if, for each t ≥ 0, ‖T (t)‖ ≤ 1 and T (t)f ∈ X+ for all
f ∈ X+. If additionally ‖T (t)f‖ = ‖f‖ for all t ≥ 0 when f ∈ X+, then we say
that (T (t))t≥0 is a stochastic semigroup.
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Lemma 2.4.4. Let X be a Banach space and let (T (t))t≥0 be a C0-semigroup on
X. Then for each fixed f ∈ X, the mapping φf : [0,∞)→ X, defined by

φf (t) = T (t)f (t ≥ 0),

is continuous on the non-negative real line.

Proof. See [8, Lemma 2.4].

2.4.3 Generators

Suppose that the function φ : [0,∞)→ C satisfies the following properties

• φ(0) = 1;

• φ(s+ t) = φ(s)φ(t) for all s, t ≥ 0;

• φ is continuous on [0,∞).

Then, as was suggested by Cauchy in [12], the function φ has the form eta, where a
is any complex constant. Examining the above conditions we cannot help but no-
tice their resemblance to the conditions for a C0-semigroup together with Lemma
2.4.4. Therefore, it is perhaps not unreasonable to expect that, given a C0-
semigroup (T (t))t≥0, the operators have the form T (t) = exp(tA), where A is
some operator.

Theorem 2.4.5. Let X be a Banach space and suppose that the power series
φ(z) =

∑∞
n=0 anz

n has radius of convergence r > 0. Then for A ∈ B(X) such that
‖A‖ < r, the series

φ(A) =
∞∑
n=0

anA
n (2.4)

converges in B(X), where An signifies composition of the operator A applied n
times. Further, if the coefficients (a0, a1, a2, ...) are real and non-negative, then
‖φ(A)‖ ≤ φ(‖A‖).

Proof. See [8, Theorem 1.86].

Recall that the exponential function exp(z) has the power series representation∑∞
n=0 z

n/n! with infinite radius of convergence. Hence if A ∈ B(X), then tA ∈
B(X) for each fixed t ≥ 0, and therefore

exp(tA) =
∞∑
n=0

tnAn

n!
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converges in B(X). When A ∈ B(X), then the family of operators (T (t))t≥0,
where T (t) = exp(tA), forms a uniformly continuous semigroup on X. In fact, it
may be shown that every uniformly continuous semigroup on a Banach space takes
this form; see [14, Chapter 1, Theorem 3.7]. We note that given this semigroup,
we can differentiate term-by-term to obtain

d

dt
{T (t)} = A+

∞∑
n=1

tnAn+1

n!
(t ≥ 0).

If we evaluate this at t = 0 then we get

T ′(0) =

[
d

dt
{T (t)}

]
t=0

= A.

Therefore we have recovered the operator A by taking the (right) derivative of the
semigroup at t = 0. In the preceding discussions we assumed that A ∈ B(X).
However in general this will not be the case. We now proceed to consider the more
general case where A need not be bounded, using what has gone before as a guide.

Definition 2.4.6. Let (T (t))t≥0 be a C0-semigroup on a Banach space X. Then
the (infinitesimal) generator of (T (t))t≥0 is the operator A : D(A) ⊆ X → X
defined as follows.

For t > 0 and f ∈ X, let Atf = {T (t)f − f} /t. Then

D(A) = {f ∈ X : limt→0+Atf exists in X}
Af = limt→0+Atf for f ∈ D(A)

}
.

Here we have taken our lead from the uniformly continuous case, where the gen-
erator is given by the derivative of the semigroup at t = 0. However, in keeping
with the continuity conditions, we have moved from the operator space B(X) to
the Banach space X. It is easily shown that D(A) is a vector subspace of X and
that A is a linear operator.

We shall now consider the generator further and establish some more of its prop-
erties. This will lead us to the most significant results concerning C0-semigroups
and their generators, namely the Hille–Yosida Theorem and its generalisation.
These theorems provide both necessary and sufficient conditions for an operator
to generate a strongly continuous semigroup.

Definition 2.4.7. Let X be a Banach space. Then for real numbers M ≥ 1 and
ω ∈ R, G(M,ω;X) is the set of operators A which generate a C0-semigroup on X
that satisfies the bound (2.3).
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Theorem 2.4.8. (Rescaled Semigroups) Let A be the generator of a C0-semigroup
(T (t))t≥0, which satisfies the bound (2.3). Then for any µ ∈ R, (S(t))t≥0 :=
(eµtT (t))t≥0 provides a C0-semigroup which satisfies

‖S(t)‖ ≤Me(ω+µ)t for t ≥ 0.

The generator of this new semigroup is B = A+ µI, with D(B) = D(A).

Although this result is stated in [14, page 60], no explanation is given and therefore
we include the following proof.

Proof. It is easily shown that (S(t))t≥0 satisfies conditions (i)-(iii) from Defini-
tion 2.4.1. Firstly,

S(0) = eµ0T (0) = e0I = I,

giving us (i). For all s, t ≥ 0, we have (ii) as follows

S(s+ t) = eµ(s+t)T (s+ t) = eµseµtT (s)T (t) = eµsT (s)eµtT (t) = S(s)S(t).

Finally, for all f ∈ X, we get

‖S(t)f − f‖ =
∥∥eµtT (t)f − f

∥∥ =
∥∥eµtT (t)f − eµtf + eµtf − f

∥∥
≤

∥∥eµtT (t)f − eµtf
∥∥+

∥∥eµtf − f∥∥
= eµt ‖T (t)f − f‖+ |eµt − 1| ‖f‖
→ 0 as t→ 0+.

Hence condition (iii) is satisfied, completing the requirements for a C0-semigroup.
The bound given above for ‖S(t)‖ is easily established, as is shown below:

‖S(t)‖ =
∥∥eµtT (t)

∥∥ = eµt ‖T (t)‖ ≤ eµtMeωt = Me(ω+µ)t for t ≥ 0.

We now aim to determine the generator of this semigroup, which we shall denote
by B. Recalling the explanation given in Definition 2.4.6, for any f ∈ D(A), we
have

S(t)− I
t

f =
eµtT (t)− I

t
f = eµt

(T (t)− I)

t
f +

eµt − 1

t
f

→ Af + µf = (A+ µI)f as t→ 0+,

where we have used L’Hôpital’s rule to obtain the limit of the second term. There-
fore D(A) ⊆ D(B) and Bf = (A + µI)f for f ∈ D(A). Now, if f /∈ D(A), then
the limit of the right-hand side does not exist and hence neither does the limit of
the left-hand side, implying that f /∈ D(B). Therefore the semigroup (S(t))t≥0,
has generator B = A+ µI with domain D(B) = D(A).
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Theorem 2.4.9. Let (T (t))t≥0 be a C0-semigroup on a Banach space X and let
A be the generator of this semigroup. Then, for all f ∈ D(A), we have

T (t)f ∈ D(A) and A(T (t)f) = T (t)(Af) for all t ≥ 0,

d

dt
{T (t)f} = A(T (t)f) = T (t)(Af),

where the derivative is the strong derivative with respect to the norm on X, two-
sided for t > 0 and right-sided at t = 0.

Proof. See [8, Theorem 2.12].

Theorem 2.4.10. Let A : D(A) ⊆ X → X be the generator of a C0-semigroup
(T (t))t≥0 on a Banach space X. Then A is a closed operator with domain D(A)
which is dense in X.

Proof. See [8, Theorem 2.13].

Lemma 2.4.11. Let A : D(A) ⊆ X → X be the generator of a C0-semigroup
(T (t))t≥0 on a Banach space X. Then for all t ≥ 0 and f ∈ X, we have∫ t

0

T (s)f ds ∈ D(A),

with

T (t)f − f = A

∫ t

0

T (s)f ds.

Moreover, if f ∈ D(A), we have

T (t)f − f = A

∫ t

0

T (s)f ds =

∫ t

0

T (s)Af ds.

Proof. See [14, Chapter 2, Lemma 1.3].

Theorem 2.4.12. Let (T (t))t≥0 and (S(t))t≥0 be two C0-semigroups on the Banach
space X. Supposing that these two semigroups have the same generator A, then they
are in fact the same semigroup, that is T (t)f = S(t)f for all t ≥ 0 and f ∈ X.

Proof. See [31, Theorem 2.6].

Theorem 2.4.13. Let (T (t))t≥0 be a C0-semigroup on a Banach space X. Suppose
that the semigroup satisfies the bound (2.3) and has generator A. If λ > ω, then
λ ∈ ρ(A), the resolvent operator is given by

R(λ,A)f =

∫ ∞
0

e−λsT (s)fds for all f ∈ X,

and we have

‖R(λ,A)‖ ≤ M

λ− ω
.
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Proof. See [14, Chapter 2, Theorem 1.10].

Definition 2.4.14. Let A : D(A) ⊆ X → X be the generator of a C0-semigroup.
Then, for sufficiently large λ > 0, we define the Yosida approximation Aλ of A by

Aλ = λ2R(λ,A)− λI = λAR(λ,A).

• For large enough λ, we have λ ∈ ρ(A). Therefore R(λ,A) ∈ B(X) and hence
Aλ ∈ B(X) for such values of λ.

• The equality above is justified as follows.

λ2R(λ,A)− λI = λ(λI − A)R(λ,A) + λAR(λ,A)− λI
= λI + λAR(λ,A)− λI
= λAR(λ,A).

• The numerical analogue of the Yosida approximation is

λ2

λ− a
− λ =

λ2 − λ(λ− a)

λ− a
=

λa

λ− a
→ a as λ→∞.

These points suggest that the Yosida approximations may provide bounded linear
approximations to our generator A and that these approximations improve as λ
increases. In the following lemma we shall consider this further.

Lemma 2.4.15. Let A : D(A) ⊆ X → X be a closed linear operator with D(A)
dense in the Banach space X. Suppose there exist ω ∈ R and M > 0 such that
[ω,∞) ⊂ ρ(A) and ‖λR(λ,A)‖ ≤M for all λ ≥ ω. Then the following statements
hold as λ→∞:

(i) λR(λ,A)f → f for all f ∈ X;

(ii) λAR(λ,A)f = λR(λ,A)Af → Af for all f ∈ D(A).

Proof. See [14, Chapter 2, Lemma 3.4].

To recap, if the operator A : D(A) ⊆ X → X is the generator of a C0-semigroup,
then it must be a closed linear operator with domain D(A) which is a dense vector
subspace of X. Also, it must satisfy the conditions set out in Theorem 2.4.13. We
have now reached the point where we shall introduce the Hille–Yosida Theorem.
As mentioned previously, this theorem gives not only sufficient but also necessary
conditions for A to generate a strongly continuous contraction semigroup.

Theorem 2.4.16. (Contraction Semigroup; Hille [16], Yosida [39]) The operator
A generates a C0-semigroup of contractions (T (t))t≥0, that is A ∈ G(1, 0;X), if
and only if
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(i) A is a closed linear operator with domain D(A) which is dense in X;

(ii) for all real numbers λ > 0, we have λ ∈ ρ(A) and

‖R (λ,A)‖ ≤ 1

λ
.

Proof. See [14, Chapter 2, Theorem 3.5]

Theorem 2.4.17. (General Semigroup; Feller [15], Miyadera [29], Philips [32])
Let X be a Banach space. Then A ∈ G(M,ω;X) if and only if

(i) A is a closed linear operator with domain D(A) which is dense in X;

(ii) for all real numbers λ > ω, we have λ ∈ ρ(A) and for n = 1, 2, . . .

‖(R(λ,A))n‖ ≤ M

(λ− ω)n
.

Proof. In order to prove the general case, one can apply a rescaling technique and
introduce a new norm under which our general semigroup becomes a contraction
semigroup. We are then able to apply Theorem 2.4.16. For details, see [14, Chapter
2, Theorem 3.8].

In the general case, determining whether or not an operator A satisfies the re-
quirements of Theorem 2.4.17 is not straightforward. In particular, establishing
condition (ii) often proves difficult. However in the case of contraction semigroups
the task is achievable. Such semigroups are significant as they arise regularly
in practice. Therefore we shall now spend some time considering them and their
generators further. It is possible to characterise the generators of contraction semi-
groups without recourse to the resolvent operator. However before we do so, it is
necessary to introduce some additional terminology.

Definition 2.4.18. Let X be a Banach space and A : D(A) ⊆ X → X a linear
operator.

• A is dissipative if

‖(λI − A) f‖ ≥ λ ‖f‖ for all λ > 0 and f ∈ D(A).

• A is m-dissipative if it is dissipative and

Rg (λI − A) = X for all λ > 0.

Theorem 2.4.19. (The Lumer-Philips Characterisation of Generators of Contrac-
tion Semigroups) The linear operator A generates a C0-semigroup of contractions
(A ∈ G(1, 0;X)) if and only if

(i) A is a closed operator with domain D(A) which is dense in X;

(ii) A is m-dissipative.

Proof. See [31, Chapter 1, Theorem 4.3].
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2.4.4 Constructing the Semigroup

Supposing we have an operator A which generates a C0-semigroup, we are then
faced with the matter of actually constructing the semigroup. If our generator
A ∈ B(X), then the semigroup (T (t))t≥0 is simply given by

T (t) = exp(tA) =
∞∑
n=0

tnAn

n!
. (2.5)

However, for an unbounded operator A, we cannot guarantee the convergence of
this series. Therefore we must seek alternative construction methods. The first
method we shall consider was proposed by Hille, and takes as its inspiration an
alternative definition of the standard scalar exponential function. For a real or
complex scalar a it is well known that

exp(ta) = (exp(−ta))−1 =

{
lim
n→∞

(
1− t

n
a

)n}−1

= lim
n→∞

{(
1− t

n
a

)−1
}n

.

If we replace the scalar a with the operator A, then we might expect

exp(tA)f = lim
n→∞

{[(
I − t

n
A

)−1
]n}

f = lim
n→∞

{[
n

t

(n
t
I − A

)−1
]n}

f,

for f ∈ X. Let us note the appearance of the resolvent operator within the last
expression on the right.

Theorem 2.4.20. Let X be a Banach space and let A ∈ G(M,ω;X) generate the
C0-semigroup (T (t))t≥0. Then for all f ∈ X

T (t)f = lim
n→∞

{[n
t
R
(n
t
, A
)]n}

f,

where convergence is uniform with respect to t on [0, t0], for any t0 > 0.

Proof. See [31, Chapter 1, Theorem 8.3].

The second approach we shall consider was proposed by Yosida. In this method,
we approximate our generator A by the family of Yosida approximations {Aλ}.
As bounded operators, each Aλ generates a C0-semigroup via (2.5). It is our hope
that by taking these semigroups and letting λ → ∞, we shall obtain our desired
semigroup.

Theorem 2.4.21. Let X be a Banach space and let A : D(A) ⊆ X → X be the
generator of a C0-semigroup (T (t))t≥0. Then for all f ∈ D(A)

lim
λ→∞
Aλf = Af,
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and
T (t)f = lim

λ→∞
exp (tAλ) f for all t ≥ 0 and f ∈ X.

Proof. The case when A ∈ G(1, 0;X) is covered in the standard proof of the Hille–
Yosida Theorem; see [31, Chapter 1, Lemma 3.3]. The general case when A ∈
G(M,ω;X) is handled by renorming and rescaling; see [31, Chapter 1, Theorem
5.5].

2.4.5 Abstract Cauchy Problem

Definition 2.4.22. Let X be a Banach space and let A : D(A) ⊆ X → X be some
linear operator. Then the homogenous abstract Cauchy problem (ACP) associated
with this operator is

d

dt
u(t) = Au(t) (t > 0) ; u(0) = u0, (2.6)

where u0 is some given fixed element of X.

Definition 2.4.23. By a strong solution to this problem, we mean a function
u : [0,∞)→ X such that

(i) u is (strongly) continuous on [0,∞);

(ii) u is (strongly) differentiable on (0,∞);

(iii) u(t) ∈ D(A) for all t > 0;

(iv) d
dt

[u(t)] = A [u(t)] for t > 0 and u(0) = u0.

Theorem 2.4.24. Let X be a Banach space and let A : D(A) ⊆ X → X be the
generator of a C0-semigroup (T (t))t≥0. Then if u0 ∈ D(A), the homogenous ACP
associated with A has the unique strong solution

u(t) = T (t)u0 (t ≥ 0) .

Proof. See [8, Theorem 2.40 and Theorem 2.41].

Theorem 2.4.25. Let (T (t))t≥0 be a C0-semigroup with generator A ∈ G (M,ω;X).
Then the ACP (2.6) is uniformly well posed on finite time intervals. That is, if
{gn}∞n=1 is a sequence in D(A) such that gn → g ∈ D(A), and if {vn}∞n=1 and v
are, respectively, the unique solutions of the ACP (2.6) when u0 = gn (n ∈ N) and
u0 = g, then for any t0 > 0 we have

sup
0≤t≤t0

‖vn(t)− v(t)‖ → 0 as n→∞.

Proof. See [8, Theorem 2.42].
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This result tells us that if {gn}∞n=1 is a sequence of increasingly accurate approxima-
tions to the true initial condition g, then the discrepancy between the approximate
solution vn, and the true solution v, gets uniformly small as n→∞. That is, small
perturbations in our initial conditions do not lead to extremely differing solutions
in finite time.

2.4.6 Systems of Equations

The particular problems we shall be considering involve systems of evolution equa-
tions. These equations are reformulated as systems of abstract differential equa-
tions within the setting of the appropriate function spaces. Just as we can express
a linear system of n scalar differential equations as a single equation in Rn using
matrix notation, so we can transform our system of abstract equations into a sin-
gle equation of the form (2.6). The space X becomes a product space and the
operator A is a matrix whose entries are themselves operators which map from
and to the relevant spaces.

In our case we obtain a 2×2 operator matrix of upper triangular form. The
following result gives sufficient conditions for such an operator to be a generator,
as well as giving the semigroup generated.

Theorem 2.4.26. Let X and Y be Banach spaces. Consider the operator matrix

A=

(
A B
0 D

)
with domain D(A) = D(A)×D(D) ⊆ X × Y.

Suppose that the following hold:

(i) A : D(A) ⊆ X → X generates a C0-semigroup (T (t))t≥0 on X;

(ii) D : D(D) ⊆ Y → Y generates a C0-semigroup (S(t))t≥0 on Y ;

(iii) B : D(B) ⊆ Y → X is relatively D-bounded;

(iv) (A, D(A)) is a closed operator;

(v) the operator R̃(t) : D(D) ⊆ Y → X given by R̃(t)f =
∫ t

0
T (t− s)BS(s)f ds,

has a unique extension R(t) ∈ B(Y,X) which is uniformly bounded as t↘ 0.

Then A generates a strongly continuous semigroup (T(t))t≥0 on the product space
X × Y . Moreover, this semigroup is given by

T(t) :=

(
T (t) R(t)

0 S(t)

)
, t ≥ 0.

Proof. See [30, Proposition 3.1].
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2.4.7 Perturbations

In applications, when formulating our equation of interest as an abstract Cauchy
problem, it is often the case that the terms involved are more naturally expressed
as separate operators, leading to an equation of the form.

d

dt
u(t) = Au(t) +Bu(t) (t > 0) ; u(0) = u0.

Usually checking the conditions of Theorem 2.4.17 directly for A+ B is too com-
plicated. In this situation, it is often easier to consider the operators A and B
individually, making use of a set of theorems known as perturbation results. The
aim of such results is to answer the following question. Supposing that A gener-
ates a C0-semigroup, under what conditions does the combined operator A + B
(or some related operator) form a generator?

Perhaps the most obvious example is where the operator B is bounded, and such
a case is covered in the following theorem.

Theorem 2.4.27. Let (A,D(A)) generate a C0-semigroup (T (t))t≥0 which satisfies
bound (2.3) on a Banach space X. If B ∈ B(X), then A+B with D(A+B) = D(A)
generates a C0-semigroup, (S(t))t≥0, satisfying

‖S(t)‖ ≤Me(ω+M‖B‖)t for t ≥ 0.

Proof. See [14, Chapter 3, Theorem 1.3].

For the applications we shall be considering, the condition that B is bounded
turns out to be too strong. We therefore require an alternative perturbation result,
namely the Kato–Voigt Perturbation Theorem. This result does not require that
B be bounded. However, in giving this up we lose A+ B as a generator. Instead
we have that some extension of A+B is a generator.

Theorem 2.4.28. (Kato–Voigt Perturbation Theorem) Let X = L1(Ω, µ) and
suppose the operators A and B satisfy the conditions

(i) (A,D(A)) generates a substochastic semigroup (GA(t))t≥0 on X;

(ii) B is a positive linear operator with D(A) ⊆ D(B);

(iii) for all f ∈ D(A)+ ∫
Ω

(Af +Bf) dµ ≤ 0.

Then there exists some extension (K,D(K)) of (A + B,D(A)) which generates a
substochastic semigroup (GK(t))t≥0.

Proof. See [4, Corollary 5.17].
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We note that condition (iii) above can always be expressed as∫
Ω

(A+B)f dµ = −c(f) for f ∈ D(A)+, (2.7)

where c is some non-negative functional defined on D(A).

This result gives only the existence of a generator K and provides no indication
of how this operator relates to A + B. The nature of the generator K is closely
related to the concept of semigroup honesty, as defined in [4, Definition 6.4].

Definition 2.4.29. The positive semigroup (GK(t))t≥0, generated by the exten-
sion K of A + B, is honest if the functional c, given by (2.7), extends to D(K),
and for all u0 ∈ D(K)+, the solution u(t) = GK(t)u0 to

d

dt
u(t) = Ku(t), t > 0; u(0) = u0,

satisfies

d

dt

∫
Ω

u(t) dµ =
d

dt
‖u(t)‖ = −c(u(t)).

Theorem 2.4.30. The semigroup (GK(t))t≥0 is honest if and only if K = A+B.

Proof. See [4, Theorem 6.13].

2.4.8 Semilinear Abstract Cauchy Problem

In the previous section our generator A was perturbed by a linear operator B. We
now consider the case where the perturbation is nonlinear.

Definition 2.4.31. Let X be a Banach space, A ∈ G(M,ω;X) and N : D → X
be some (nonlinear) mapping from D into X, where D is a subset of X such that
D(A) ∩D 6= ∅. Then the equation

d

dt
u(t) = A[u(t)] +N [u(t)], t > 0; u(0) = u0 ∈ D(A) ∩D, (2.8)

is known as a semilinear abstract Cauchy problem.

Definition 2.4.32. By a strong solution on [0, t0) of (2.8), we mean a function
u : [0, t0)→ X such that

(i) u is (strongly) continuous on [0, t0);

(ii) u is (strongly) differentiable on (0, t0);
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(iii) u(t) ∈ D(A) ∩D for all t ∈ [0, t0);

(iv) u(t) satisfies (2.8) for 0 ≤ t < t0.

Suppose that u(t) is a strong solution of (2.8) and that N [u(t)] is a strongly
continuous function of t ∈ [0, t0). Then, by following [7, pages 109-110], u(t) can
be shown to satisfy the integral equation

u(t) = T (t)u0 +

∫ t

0

T (t− s)N [u(s)] ds, 0 ≤ t < t0, (2.9)

where (T (t))t≥0 is the semigroup generated by A.

Definition 2.4.33. A mild solution on [0, t0) of (2.8) is a function u : [0, t0)→ X
such that

(i) u is (strongly) continuous on [0, t0);

(ii) u(t) ∈ D for all t ∈ [0, t0);

(iii) u(t) satisfies (2.9).

Having defined a semilinear abstract Cauchy problem, as well as both strong and
mild solutions to such problems, we now consider the conditions under which such
solutions exist.

Theorem 2.4.34. Let A be a generator of class G(M,ω;X) and let N satisfy a
local Lipschitz condition on the closed ball B̄(u0, r) ⊂ D. Then the semilinear
abstract Cauchy problem (2.8) has a unique, local in time, mild solution.

Proof. See [8, Theorem 3.22].

Theorem 2.4.35. Suppose that A and N satisfy the conditions of Theorem 2.4.34.
Additionally, suppose

(i) N is Fréchet differentiable at each f ∈ B(u0, r), with Fréchet derivative Nf

such that ‖Nfg‖ ≤ k‖g‖ for all f ∈ B(u0, r) and g ∈ X, where k is a positive
constant independent of f and g;

(ii) the Fréchet derivative Nf is continuous with respect to f ∈ B(u0, r), that is

‖Nfg −Nf ′g‖ → 0 as ‖f − f ′‖ → 0 (f, f ′ ∈ B(u0, r)),

for all g ∈ X;

(iii) u0 ∈ D(A).

Then equation (2.8) has a unique, local in time, strong solution.
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Proof. See [8, Theorem 3.30 and Theorem 3.32].

Theorem 2.4.36. Let A and N satisfy the conditions of Theorem 2.4.35 and let
u(t) be the solution to (2.8) provided by Theorem 2.4.35. Suppose that [0, T̂ ) is the
maximal interval of existence of u(t), if T̂ <∞ then we have

lim
t↗ T̂
‖u(t)‖ =∞.

Proof. See [31, Chapter 6, Theorem 1.4].
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Dual Regime Continuous
Fragmentation

3.1 Dual Regime Fragmentation Model

We are considering a model of fragmentation which involves a cut-off particle mass
xc > 0, whereby only those particles with mass exceeding this cut-off are able to
fragment. A model of this nature was examined in [18]. Such a setup produces two
regimes; a fragmentation regime for particles of mass x > xc, in which particles
may break into smaller pieces, and a dust regime for particles of mass 0 < x ≤ xc,
in which particles are unable to break up any further.

By uF (x, t) we denote the particle mass density within the fragmentation regime,
the evolution of which is described by the following rate equation

∂uF (x, t)

∂t
= −a(x)uF (x, t) +

∫ ∞
x

a(y)b(x|y)uF (y, t)dy, x > xc, t > 0, (3.1)

uF (x, 0) = f0(x).

Here a(x) represents the fragmentation rate for a particle of mass x, b(x|y) gives the
distribution of particles of mass x resulting from a break-up of a particle of mass
y and f0(x) gives the initial mass distribution within the fragmentation regime.
The first term on the right-hand side of equation (3.1) is the loss term, which
gives the rate at which we lose particles of mass x due to their fragmentation into
smaller particles. The second term, involving the integral, is the gain term and
gives the rate at which we gain particles of mass x due to the break-up of larger
particles. We assume that the functions a and b are non-negative, measurable
functions defined on (xc,∞) and (0,∞)× (xc,∞), respectively.

28
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We also have for b that

b(x|y) = 0 for x > y and

∫ y

0

xb(x|y)dx = y for y > xc. (3.2)

These conditions reflect the fact that after a fragmentation event, resulting parti-
cles cannot have a mass exceeding that of the initial particle, and the total mass
of all resulting particles must equal the mass of the initial particle.

Turning now to the dust regime. If uD(x, t) denotes the particle mass density
within this regime, then its evolution is governed by the equation

∂uD(x, t)

∂t
=

∫ ∞
xc

a(y)b(x|y)uF (y, t)dy, 0 < x ≤ xc, t > 0, (3.3)

uD(x, 0) = d0(x),

where a and b are as before and d0(x) is the initial mass distribution within the
dust regime. The integral on the right-hand side of equation (3.3) provides the
rate at which particles in the fragmentation regime break and produce particles of
mass x ≤ xc.

In order to facilitate the use of semigroup techniques we must select spaces in
which to study equations (3.1) and (3.3). Therefore we introduce the spaces
XD = L1 ((0, xc], xdx) and XF = L1 ((xc,∞), xdx), corresponding to the dust and
fragmentation regimes respectively. These are natural spaces in which to study
the problem as their norms, when applied to the particle mass densities, provide
a measure of mass.

3.2 Fragmentation Regime

Looking initially at equation (3.1), we introduce the following expressions

(Af)(x) = −a(x)f(x) and (Bf)(x) =

∫ ∞
x

a(y)b(x|y)f(y)dy for x > xc.

From these expressions we form the maximal operator, Kmax, as A + B defined
on Dmax = {f ∈ XF : Af + Bf ∈ XF}. We also define the individual operators A
and B as follows

(Af)(x) = (Af)(x), D(A) = {f ∈ XF : Af ∈ XF} ,

(Bf)(x) = (Bf)(x), D(B) = D(A).
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Lemma 3.2.1. The operator B with domain D(A) is well-defined. Moreover,
‖Bf‖XF

≤ ‖Af‖XF
for f ∈ D(A).

Proof. Let f ∈ D(A). Then

‖Bf‖XF
=

∫ ∞
xc

∣∣∣∣∫ ∞
x

a(y)b(x|y)f(y)dy

∣∣∣∣xdx
≤
∫ ∞
xc

(∫ ∞
x

a(y)b(x|y) |f(y)| dy
)
xdx

=

∫ ∞
xc

a(y) |f(y)|
(∫ y

xc

xb(x|y)dx

)
dy (3.4)

≤
∫ ∞
xc

a(y) |f(y)| ydy = ‖Af‖XF
.

We are permitted to swap the order of integration in the second step by Fubi-
nis’s Theorem, [33, Theorem 7.8], since the integrand is non-negative. The final
inequality follows since

∫ y
xc
xb(x|y)dx ≤ y, because of (3.2). This reflects the fact

that upon fragmentation of a particle of mass y, the mass remaining within the
fragmentation regime cannot exceed y.

This allows us to form the minimal operator, Kmin, as A + B defined on D(A).
Equation (3.1) is then reformulated in the setting of XF as the abstract Cauchy
problem

d

dt
uF (t) = K[uF (t)], t > 0; uF (0) = f0, (3.5)

where K is some operator lying between the minimal and maximal operators.
The following result gives the existence of such an operator K which generates a
substochastic semigroup.

Theorem 3.2.2. There exists an extension (K,D(K)) of (A + B,D(A)) which
generates a substochastic semigroup (GK(t))t≥0 on XF .

Proof. To establish this result we show that the operators A and B satisfy the
conditions of Theorem 2.4.28.

(i) It is clear that (A,D(A)) generates a substochastic semigroup (GA(t))t≥0 on
XF , where (GA(t)f) (x) = exp(−a(x)t)f(x).

(ii) By definition, we trivially have D(A) ⊆ D(B). The non-negativity of a and
b make B a positive operator, so that Bf ∈ XF+ for all f ∈ D(B)+.
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(iii) For all f ∈ D(A)+ we have that∫ ∞
xc

(Af +Bf)xdx =

∫ ∞
xc

(
−a(x)f(x) +

∫ ∞
x

a(y)b(x|y)f(y)dy

)
xdx

=−
∫ ∞
xc

a(x)f(x)xdx+

∫ ∞
xc

(∫ ∞
x

a(y)b(x|y)f(y)dy

)
xdx

=−
∫ ∞
xc

a(x)f(x)xdx+

∫ ∞
xc

a(y)f(y)

(∫ y

xc

xb(x|y)dx

)
dy

=−
∫ ∞
xc

(
x−

∫ x

xc

yb(y|x)dy

)
a(x)f(x)dx =: −c(f) ≤ 0. (3.6)

The change of order of integration in the third line can be justified as before. We
have introduced the notation c to represent the final integral expression, and this
functional appears regularly in what follows. The non-negativity of c comes as a
result of the earlier statement regarding

∫ x
xc
yb(y|x)dy ≤ x.

This result gives only the existence of a generator K and provides no indication
of where this operator lies within the range between Kmin and Kmax. The nature
of the generator K is closely related to the concept of semigroup honesty and has
implications for the behaviour of solutions provided by the semigroup. This matter
is examined in [3], where various possibilities for K are considered.

Recalling Definition 2.4.29, we define semigroup honesty within the current con-
text. The positive semigroup (GK(t))t≥0, generated by the extension K, is honest
if the functional c, given by (3.6), extends to D(K), and for all u0 ∈ D(K)+, the
solution u(t) = GK(t)u0 to (3.5) satisfies

d

dt

∫ ∞
xc

u(t)xdx =
d

dt
‖u(t)‖XF

= −c(u(t)).

In order to establish the honesty of our semigroup (GK(t))t≥0, we make use of

Theorem 2.4.30. To show that K = A+B, we adopt the approach taken in [4,
Section 6.3]. Let E denote the set of measurable functions defined on (xc,∞)
which take values in the extended reals [−∞,∞]. By Ef , we denote the subspace
of E consisting of functions which are finite almost everywhere. We also introduce
F ⊂ E, defined such that f ∈ F if and only if for any non-negative, non-decreasing
sequence {fn}∞n=1 with supn∈N fn = |f |, we have supn∈N (I − A)−1 fn ∈ XF . We
also make the following assumptions regarding the operator B and its domain
D(B),

f ∈ D(B) if and only if f+, f− ∈ D(B), (3.7)

where f+ = max {f, 0} and f− = −min {f, 0}. For non-decreasing sequences
{fn}∞n=1 and {gn}∞n=1 of functions in D(B)+, we have
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sup
n∈N

fn = sup
n∈N

gn implies sup
n∈N

Bfn = sup
n∈N

Bgn. (3.8)

Lemma 3.2.3. The operator (B,D(A)) satisfies (3.7) and (3.8).

Proof. Initially let us assume that both f+, f− ∈ D(A) = D(B). Then since we
can write f = f+ − f−, we obtain

‖Af‖XF
= ‖Af+ − Af−‖XF

≤ ‖Af+‖XF
+ ‖Af−‖XF

.

Therefore f ∈ D(A) when f+, f− ∈ D(A). Now suppose that f ∈ D(A). Since
0 ≤ f± ≤ |f |, we have that

‖Af±‖XF
=

∫ ∞
xc

a(y)f±(y)ydy ≤
∫ ∞
xc

a(y)|f(y)|ydy = ‖Af‖XF
.

Hence if f ∈ D(A), then f+, f− ∈ D(A). Taken together, these two results give us
(3.7). The second condition, (3.8), follows from Lebesgue’s monotone convergence
theorem, [33, Theorem 1.26], which gives us

sup
n∈N

Bfn = B sup
n∈N

fn = B sup
n∈N

gn = sup
n∈N

Bgn.

We also define the set G ⊂ E to be the set of functions f ∈ XF such that if
{fn}∞n=1 is a non-negative, non-decreasing sequence of functions in D(B) such that
supn∈N fn = |f |, then supn∈NBfn <∞ almost everywhere.

Finally, we introduce the mappings B : D(B)+ → Ef,+, with D(B) = G, and
L : F+ → XF+ by

Bf := sup
n∈N

Bfn, f ∈ D(B)+,

Lf := sup
n∈N

R(1, A)fn, f ∈ F+,

where 0 ≤ fn ≤ fn+1 for all n ∈ N and supn∈N fn = f . These mappings can be
extended to positive linear operators on all of D(B) and F, respectively, via [4,
Theorem 2.64].

Theorem 3.2.4. Let c be the functional defined by (3.6). If for all f ∈ F+ such
that −f + BLf ∈ XF and c(Lf) exists, we have∫ ∞

xc

Lfxdx+

∫ ∞
xc

(−f + BLf)xdx ≥ −c (Lf) , (3.9)

then K = A+B.
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Proof. See [4, Theorem 6.22].

Theorem 3.2.5. If the fragmentation rate, a(x), is such that

lim sup
x→xc+

a(x) <∞ and a ∈ L∞,loc(xc,∞),

then (GK(t))t≥0 is honest.

Proof. The proof of this result follows closely that of [4, Theorem 8.5] and makes
use of Theorem 3.2.5. Since Af = −af , as in [2, Corollary 3.1], we have F =
{f ∈ E : (1 + a)−1f ∈ XF} and Lf = (1 + a)−1f . Also, by Lebesgue’s monotone
convergence theorem, the operator B is given by the integral expression B. For
f ∈ F+, we set g(x) = (Lf)(x) = (1 + a(x))−1f(x) ∈ XF+. Then we see that (3.9)
is satisfied if for all g ∈ XF+ such that −ag + Bg ∈ XF and c(g) exists, we have

∫ ∞
xc

(−a(x)g(x) + (Bg) (x))xdx ≥ −c (g) . (3.10)

By our assumptions regarding a, we have ag ∈ L1 ((xc, R], xdx) for any R ∈
(xc,∞), which along with −ag + Bg ∈ XF gives us Bg ∈ L1 ((xc, R], xdx). We
may write the left-hand side of (3.10) as∫ ∞

xc

(−a(x)g(x) + (Bg) (x))xdx = lim
R→∞

∫ R

xc

(−a(x)g(x) + (Bg) (x))xdx

= lim
R→∞

{
−
∫ R

xc

a(x)g(x)xdx+

∫ R

xc

(∫ ∞
x

a(y)b(x|y)g(y)dy

)
xdx

}
. (3.11)

If we change the order of integration in the second term, which is justified by
Fubini’s Theorem, we get

−
∫ R

xc

a(x)g(x)xdx+

∫ R

xc

(∫ ∞
x

a(y)b(x|y)g(y)dy

)
xdx

=−
∫ R

xc

a(y)g(y)ydy +

∫ R

xc

a(y)g(y)

(∫ y

xc

xb(x|y)dx

)
dy

+

∫ ∞
R

a(y)g(y)

(∫ R

xc

xb(x|y)dx

)
dy.
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Replacing this within (3.11) yields∫ ∞
xc

(−a(x)g(x) + (Bg) (x))xdx

=− lim
R→∞

∫ R

xc

(
y −

∫ y

xc

xb(x|y)dx

)
a(y)g(y)dy

+ lim
R→∞

∫ ∞
R

a(y)g(y)

(∫ R

xc

xb(x|y)dx

)
dy

=− c(g) + lim
R→∞

∫ ∞
R

a(y)g(y)

(∫ R

xc

xb(x|y)dx

)
dy.

The non-negativity of the final term gives us (3.10), and with it the honesty of the
semigroup (GK(t))t≥0.

3.3 Dust Regime

We now consider the dust regime and equation (3.3). With the aim of recasting
(3.3) in our abstract setting, we introduce the operator C : D(C) ⊆ XF → XD

defined by

(Cf)(x) =

∫ ∞
xc

a(y)b(x|y)f(y)dy, 0 < x ≤ xc,

D(C) = {f ∈ XF : Cf ∈ XD} .

Equation (3.3) is then reformulated as

d

dt
uD(t) = C[uF (t)], t > 0; uD(0) = d0. (3.12)

Lemma 3.3.1. The operator C is defined on D(A), with ‖Cf‖XD
≤ ‖Af‖XF

for
f ∈ D(A).

Proof. Let f ∈ D(A). Then

‖Cf‖XD
=

∫ xc

0

∣∣∣∣∫ ∞
xc

a(y)b(x|y)f(y)dy

∣∣∣∣xdx
≤
∫ xc

0

(∫ ∞
xc

a(y)b(x|y) |f(y)| dy
)
xdx

=

∫ ∞
xc

a(y) |f(y)|
(∫ xc

0

xb(x|y)dx

)
dy (3.13)

≤
∫ ∞
xc

a(y) |f(y)| ydy = ‖Af‖XF
,
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where once again the change of integration order is justified by Fubini’s Theorem.
The final step is similar to that in Lemma 3.2.1; however, the integral now rep-
resents the mass lost from the fragmentation regime to the dust regime during a
fragmentation event.

Lemma 3.3.2. The operator C is (A+B)-bounded on D(A).

Proof. By (3.4) and (3.13), for f ∈ D(A) we have

‖Bf‖XF
+ ‖Cf‖XD

≤
∫ ∞
xc

a(y) |f(y)|
(∫ y

xc

xb(x|y)dx

)
dy

+

∫ ∞
xc

a(y) |f(y)|
(∫ xc

0

xb(x|y)dx

)
dy

=

∫ ∞
xc

a(y) |f(y)|
(∫ y

0

xb(x|y)dx

)
dy

=

∫ ∞
xc

a(y) |f(y)| ydy = ‖Af‖XF
.

Subtracting ‖Bf‖XF
from both sides we get

‖Cf‖XD
≤ ‖Af‖XF

− ‖Bf‖XF
= ‖Af‖XF

− ‖−Bf‖XF

≤ ‖Af − (−Bf)‖XF
= ‖(A+B)f‖XF

. (3.14)

Lemma 3.3.3. The operator C can be extended to D(K), with this extension being
K-bounded on D(K), satisfying

‖Cf‖XD
≤ ‖Kf‖XF

for f ∈ D(K).

Proof. Let f ∈ D(K). Then there exists a sequence {fn}∞n=1 ⊂ D(A) such
that fn → f and (A + B)fn → Kf in XF . By linearity of the operators and
Lemma 3.3.2, we have that

‖Cfm − Cfn‖XD
≤ ‖(A+B)fm − (A+B)fn‖XF

.

Since the sequence {(A+B)fn}∞n=1 converges, it must be a Cauchy sequence. As
a result {Cfn}∞n=1 must also be Cauchy. Since we are working in the Banach space
XD, the sequence {Cfn}∞n=1 must therefore converge to a limit, which we denote
by Cf , with this limit being independent of the sequence {fn}∞n=1. To establish
the latter, suppose that {gn}∞n=1 ⊂ D(A) shares the attributes of {fn}∞n=1. Then
we can write
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‖Cgn − Cf‖XD
≤ ‖Cgn − Cfn‖XD

+ ‖Cfn − Cf‖XD

≤ ‖(A+B)gn − (A+B)fn‖XF
+ ‖Cfn − Cf‖XD

≤ ‖(A+B)gn −Kf‖XF
+ ‖Kf − (A+B)fn‖XF

+ ‖Cfn − Cf‖XD
.

From this we can establish that {Cgn}∞n=1 also converges to Cf . TheK-boundedness
of C follows from its (A+B)-boundedness simply by applying (3.14) with the se-
quence {fn}∞n=1, and then passing the limit through the norms.

3.4 Full Fragmentation System

We now combine equations (3.1) and (3.3), writing them as the following abstract
Cauchy problem on the product space X = XD ×XF :

d

dt
u(t) = A[u(t)], t > 0; u(0) = u0 ∈ D(A), (3.15)

where

u(t) =

(
uD(t)
uF (t)

)
, A=

(
0DD C
0DF K

)
and u0 =

(
d0

f0

)
∈ D(A) =XD ×D(K).

The subscripts on the zero operators indicate the spaces they map from and to; for
example 0DF maps from XD into XF . It is now our aim to show that the operator
A is a generator on the space X. Before doing so, however, we shall establish the
following lemma.

Lemma 3.4.1. The operator (A, D(A)) is closed in X.

Proof. To show that (A, D(A)) is closed, we express it as the sum of two operators
(K, D(A)) and (C, D(A)), as follows

A =

(
0DD 0FD
0DF K

)
︸ ︷︷ ︸

K

+

(
0DD C
0DF 0FF

)
︸ ︷︷ ︸

C

.

As the generator of a C0-semigroup, (K,D(K)) is closed, and this is easily shown
to carry over to (K, D(A)).

We now equip the space X with the norm ‖f‖α = α‖f1‖XD
+ ‖f2‖XF

, where
f =

(
f1
f2

)
∈ X and 0 < α < 1. This new norm is equivalent to the standard
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norm on X. Hence the closedness of (K, D(A)) is maintained. Now for any
f =

(
f1
f2

)
∈ D(A), Lemma 3.3.3 gives us

‖Cf‖α = α‖Cf2‖XD
≤ α‖Kf2‖XF

= α‖Kf‖α.

Hence (C, D(A)) is K-bounded with K-bound less than 1. By Lemma 2.3.11,
(A, D(A)) is closed with respect to the norm ‖ · ‖α, and therefore is closed in X
with respect to the standard norm, due to the equivalence of these two norms.

Theorem 3.4.2. The operator A, as given above, generates a C0-semigroup (T(t))t≥0

on X.

Proof. In order to establish that A is a generator, we make use of Theorem 2.4.26.
Conditions (i) to (iv) of Theorem 2.4.26 are easily verified in this case.

(i) The operator 0DD generates the semigroup consisting solely of the identity
operator, ID, on XD.

(ii) We know that the operatorK generates the substochastic semigroup (GK(t))t≥0

on XF .

(iii) We have shown in Lemma 3.3.3 that C is K-bounded.

(iv) The operator (A, D(A)) is closed in X, as was shown in Lemma 3.4.1.

We now verify that condition (v) of Theorem 2.4.26 is satisfied for this example.
Consider R̃(t) : D(K) ⊆ XF → XD defined by R̃(t)f =

∫ t
0
CGK(s)f ds. For

f ∈ D(K) we can write

R̃(t)f =

∫ t

0

CGK(s)f ds

=

∫ t

0

C(λIF −K)−1(λIF −K)GK(s)f ds (λ > 0)

= C(λIF −K)−1

∫ t

0

(λIF −K)GK(s)f ds

= C(λIF −K)−1

{
λ

∫ t

0

GK(s)f ds−
∫ t

0

KGK(s)f ds

}
= C(λIF −K)−1

{
λ

∫ t

0

GK(s)f ds−
∫ t

0

GK(s)Kf ds

}
= C(λIF −K)−1

{
λ

∫ t

0

GK(s)f ds−GK(t)f + f

}
.

We are permitted to take C(λIF − K)−1 outside the integral, as it is a bounded
operator by Lemma 2.3.10. The switching of the generator K and the semigroup
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operator GK(t) is allowed by Theorem 2.4.9. The final step is as a consequence
of Lemma 2.4.11. From this, recalling that (GK(t))t≥0 consists of contractions, we
obtain

‖R̃(t)f‖XD
≤ ‖C(λIF −K)−1‖

{
λ

∫ t

0

‖GK(s)f‖XF
ds+‖GK(t)f‖XF

+‖f‖XF

}
≤ ‖C(λIF −K)−1‖ (λt+ 2) ‖f‖XF

. (3.16)

Therefore R̃(t) is bounded on D(K). As a densely-defined, bounded linear opera-
tor, R̃(t) can be uniquely extended to a bounded linear operatorR(t) inB(XF , XD).
Further, (3.16) holds for all u ∈ XF with R̃(t) replaced by R(t). As a consequence
we see that R(t) is uniformly bounded as t↘ 0. By Theorem 2.4.26, A generates
a C0-semigroup (T(t))t≥0 on the product space X. Furthermore, this semigroup
is given by

T(t) :=

(
ID R(t)

0DF GK(t)

)
, t ≥ 0.

The existence of the semigroup (T(t))t≥0, provides us with a unique strong solu-
tion, u(t) = T(t)u0, to the abstract Cauchy problem (3.15). For this solution to
be physically relevant we would expect it to display a number of properties. In
particular, we would hope that it preserves positivity and provides conservation of
mass.

Lemma 3.4.3. Given initial data u0 =
(
d0
f0

)
∈ D(A)+ = XD+ × D(K)+, the

solution u(t) = T(t)u0, emanating from u0, remains positive, that is u(t) ∈ D(A)+

for all t ≥ 0.

Proof. Let u0 ∈ D(A)+. The components of u(t) are given by

uD(t) = d0 +

∫ t

0

CGK(s)f0 ds = d0 +

∫ t

0

CuF (s) ds,

uF (t) = GK(t)f0.

Since (GK(t))t≥0 is a substochastic semigroup, it preserves positivity. Therefore
GK(t)f0 ∈ D(K)+ for all t ≥ 0, hence uF (t) ∈ D(K)+ for all t ≥ 0.

As an integral operator with a non-negative kernel, the operator C is a positive
operator. Hence CuF (t) ∈ XD+ for all t ≥ 0. The integral

∫ t
0
CuF (s) ds is the

limit of a Riemann sum of elements from XD+. Given that the positive cone is
closed under addition and multiplication by positive scalars, any such Riemann
sum will itself be an element in XD+. Since the space XD is a Lebesgue space,
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its positive cone is a closed subset. Hence
∫ t

0
CuF (s) ds ∈ XD+. As mentioned,

the positive cone is closed under addition and therefore uD(t) ∈ XD+. Together
uD(t) ∈ XD+ and uF (t) ∈ D(K)+ give us that u(t) ∈ D(A)+.

Let u(t) =
(
uD(t)
uF (t)

)
be the solution to the abstract Cauchy problem (3.15) with

positive initial data. The masses in the dust and fragmentation regimes, at time
t, are given by

MD(t) =

∫ xc

0

(uD(t)) (x)xdx and MF (t) =

∫ ∞
xc

(uF (t)) (x)xdx,

respectively, with the total mass in the system being M(t) = MD(t) + MF (t). In
any fragmentation event, mass is simply redistributed from the larger particle to
the smaller resulting particles, but the total mass involved should be conserved.
Therefore, although MD(t) may increase and MF (t) decrease as mass is transferred
from the fragmentation regime to the dust regime, we would expect the total mass,
M(t), to remain constant.

Lemma 3.4.4. The total mass within the system is conserved, that is M(t) re-
mains constant.

Proof. Since (GK(t))t≥0 is an honest semigroup, by Definition 2.4.29 we have

d

dt
MF (t) =

d

dt

∫ ∞
xc

(uF (t)) (x)xdx = −c (uF (t))

= −
∫ ∞
xc

(
x−

∫ x

xc

yb(y|x)dy

)
a(x) (uF (t)) (x)dx. (3.17)

The solution u(t) of the abstract Cauchy problem (3.15) is strongly differentiable,
and this property is inherited by the component uD(t). Therefore we can take the
time-derivative through the integral in MD(t), which gives us

d

dt
MD(t) =

∫ xc

0

d

dt
[(uD(t)) (x)]xdx

=

∫ xc

0

(CuF (t)) (x)xdx

=

∫ xc

0

(∫ ∞
xc

a(y)b(x|y) (uF (t)) (y)dy

)
xdx

=

∫ ∞
xc

a(y) (uF (t)) (y)

(∫ xc

0

b(x|y)xdx

)
dy. (3.18)

The positivity of the integrand permits the change of integration order in the final
step. The rate of change of the total mass M(t) is given by the addition of (3.17)
and (3.18), which by (3.2) yields
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d

dt
M(t) =

∫ ∞
xc

a(y) (uF (t)) (y)

(∫ xc

0

b(x|y)xdx

)
dy

−
∫ ∞
xc

a(y) (uF (t)) (y)

(
y −

∫ y

xc

b(x|y)xdx

)
dy

=

∫ ∞
xc

a(y) (uF (t)) (y)

(∫ y

0

b(x|y)xdx

)
dy

−
∫ ∞
xc

a(y) (uF (t)) (y)ydy

= 0.

This confirms that M(t) is a constant and so mass is conserved.
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Dual Regime Continuous
Coagulation–Fragmentation

4.1 Dual Regime Coagulation–Fragmentation

Model

Having considered a model involving only fragmentation in Chapter 3, we now in-
troduce a coagulation process whereby pairs of particles can join to form a larger
particle. As before, uD and uF denote the particle mass density within the dust
and fragmentation regimes, respectively. The coagulation kernel k(x, y) provides
the rate at which a particle of mass x joins with one of mass y. The function k is
defined on (0,∞)× (0,∞) and should be non-negative and symmetric.

Within the fragmentation regime, the change in the particle mass density, uF , due
to coagulation is given by

(NF (uD, uF )) (x, t) =
χI(x)

2

{∫ x−xc

0

k(x− y, y)uF (x− y, t)uD(y, t)dy

+

∫ xc

x−xc
k(x− y, y)uD(x− y, t)uD(y, t)dy +

∫ x

xc

k(x− y, y)uD(x− y, t)uF (y, t)dy

}
+
χJ(x)

2

{∫ xc

0

k(x− y, y)uF (x− y, t)uD(y, t)dy

+

∫ x−xc

xc

k(x− y, y)uF (x− y, t)uF (y, t)dy +

∫ x

x−xc
k(x− y, y)uD(x− y, t)uF (y, t)dy

}
− uF (x, t)

{∫ xc

0

k(x, y)uD(y, t)dy +

∫ ∞
xc

k(x, y)uF (y, t)dy

}
,

where I = (xc, 2xc] and J = (2xc,∞). Those terms involving the characteristic
functions χI and χJ are gain terms and account for the increase in particles of
mass x due to the joining of two smaller particles whose combined mass is x. The

41
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requirement for multiple gain terms arises since the joining particles may come
from either regime, and we must consider all possible combinations which result
in a particle of mass x. For a fuller explanation of these terms, see Appendix A.
The last two terms are loss terms, corresponding to the particles of mass x which
are lost when such a particle joins with a particle from the dust or fragmentation
regimes, respectively. The evolution of the density uF is then governed by the
following rate equation

∂uF (x, t)

∂t
= (FFuF ) (x, t) + (NF (uD, uF )) (x, t), x > xc, t > 0, (4.1)

uF (x, 0) = f0(x),

where FFuF is a fragmentation term which is given by the right-hand side of equa-
tion (3.1).

We now consider the effect of coagulation on the dust regime. The change in the
particle mass density, uD, due to coagulation can be expressed as

(ND(uD, uF )) (x, t) =
1

2

∫ x

0

k(x− y, y)uD(x− y, t)uD(y, t)dy

− uD(x, t)

{∫ xc

0

k(x, y)uD(y, t)dy +

∫ ∞
xc

k(x, y)uF (y, t)dy

}
.

Similar to before, the first term is the gain term, accounting for the particles of
mass x created from the joining of two smaller particles. However, here we only
require one gain term, as any particles which join together to form a dust particle
must themselves be dust particles. The final two terms are again loss terms,
accounting for the loss of particles of mass x due to them joining with another
particle. The change in the particle density uD is then described by the equation

∂uD(x, t)

∂t
= (FDuF ) (x, t) + (ND(uD, uF )) (x, t), 0 < x ≤ xc, t > 0, (4.2)

uD(x, 0) = d0(x),

where the fragmentation term FDuF is provided by the right-hand side of equation
(3.3).

Having carried out our analysis of the pure fragmentation system within the
weighted L1 spacesXD andXF , we now relabel these spaces as well as introduce the
new spaces in which we shall analyse the combined coagulation and fragmentation
system. For k = 0, 1, let YD,k = L1

(
(0, xc], x

kdx
)

and YF,k = L1

(
(xc,∞), xkdx

)
,

so that YD,1 and YF,1 correspond to our original spaces. We also define the in-
tersection spaces YD = YD,0 ∩ YD,1 = L1 ((0, xc], (1 + x)dx), corresponding to the
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dust regime, and YF = YF,0 ∩ YF,1 = L1 ((xc,∞), (1 + x)dx), for the fragmentation
regime. Additionally we define the product space Y = YD×YF . By working in the
intersection spaces YD and YF , the norms now take account of the total number of
particles in addition to the total mass. The choice of spaces YD and YF allows us to
establish the required Lipschitz continuity and Fréchet differentiability properties
of the nonlinear coagulation operator.

4.1 Fragmentation System

The first step in our analysis is to verify that the fragmentation system which
provided a strongly continuous semigroup in X = XD × XF , also produces a
semigroup in the new space Y .

Lemma 4.1.1. As sets, YF = XF , with the norms on these spaces being equivalent.

Proof. By definition YF = YF,0∩YF,1, where YF,1 = XF . Hence YF ⊂ XF . Also, for
all f ∈ YF we have ‖f‖XF

= ‖f‖YF,1
≤ ‖f‖YF,0

+ ‖f‖YF,1
= ‖f‖YF . Now suppose

that f ∈ XF . Then

‖f‖YF = ‖f‖YF,0
+ ‖f‖YF,1

≤ 1

xc

∫ ∞
xc

|f(x)|xdx+ ‖f‖YF,1

=

(
1

xc
+ 1

)
‖f‖XF

<∞.

Therefore f ∈ YF , so that XF ⊂ YF , which along with the previous statement
gives us XF = YF and

‖f‖XF
≤ ‖f‖YF ≤

(
1

xc
+ 1

)
‖f‖XF

for all f ∈ XF = YF . (4.3)

As a result, the operators A,B and K, and their domains, carry over to the space
YF , as does the C0-semigroup (GK(t))t≥0 generated by K, under the conditions of
the previous chapter.

We have shown that the spaces YF and XF are equivalent. However the same
cannot be said of YD and XD, as our interval domain is no longer bounded away
from zero, although we do have YD ⊂ XD. Therefore we must restrict the operator
C, as defined in the previous chapter, and so introduce the restricted operator C|.

Definition 4.1.2. We define the restriction C| of the operator C by

C|f := Cf f ∈ D(C|),

D(C|) := {f ∈ D(C) : Cf ∈ YD} .
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Definition 4.1.3. For y > xc, we define n(y) by

n(y) =

∫ y

0

b(x|y) dx.

The quantity n(y) represents the expected number of daughter particles resulting
from the fragmentation of a particle of mass y.

Lemma 4.1.4. If a and b are such that

a(x) (n(x)− 1) ≤ β(x+ 1), (4.4)

for x > xc, where β is a positive constant, then the restricted operator C| is defined
on D(A).

Proof. Let f ∈ D(A). Then

‖C|f‖YD ≤
∫ xc

0

(∫ ∞
xc

a(y)b(x|y)|f(y)| dy
)

(1 + x)dx

=

∫ ∞
xc

a(y)|f(y)|
(∫ xc

0

b(x|y)(1 + x)dx

)
dy (4.5)

≤
∫ ∞
xc

a(y)|f(y)| (n(y) + y) dy

=

∫ ∞
xc

a(y)|f(y)| (n(y)− 1) dy +

∫ ∞
xc

a(y)|f(y)| (y + 1) dy

≤ β

∫ ∞
xc

|f(y)| (y + 1) dy +

∫ ∞
xc

a(y)|f(y)| (y + 1) dy

= ‖Af‖YF + β‖f‖YF <∞.

Therefore D(A) is contained within D(C|).

The condition (4.4) is satisfied, if for example, a is bounded by a linear polynomial
with positive coefficients and n(y) is bounded by a positive constant. This matter
is considered further in the following chapter.

Lemma 4.1.5. If a and b satisfy condition (4.4), then the restricted operator C|
is K-bounded on D(K).

Proof. The first step is to show that C| is (A+B)-bounded onD(A). Let f ∈ D(A).
Then

‖Bf‖YF ≤
∫ ∞
xc

(∫ ∞
x

a(y)b(x|y)|f(y)| dy
)

(1 + x)dx

=

∫ ∞
xc

a(y)|f(y)|
(∫ y

xc

b(x|y)(1 + x)dx

)
dy.
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Combining this with (4.5), we obtain

‖C|f‖YD + ‖Bf‖YF ≤
∫ ∞
xc

a(y)|f(y)|
(∫ xc

0

b(x|y)(1 + x)dx

)
dy

+

∫ ∞
xc

a(y)|f(y)|
(∫ y

xc

b(x|y)(1 + x)dx

)
dy

=

∫ ∞
xc

a(y)|f(y)|
(∫ y

0

b(x|y)(1 + x)dx

)
dy

=

∫ ∞
xc

a(y)|f(y)| (n(y) + y) dy

=

∫ ∞
xc

a(y)|f(y)| (y + 1) dy

+

∫ ∞
xc

a(y)|f(y)| (n(y)− 1) dy

≤ ‖Af‖YF + β‖f‖YF .

Subtracting ‖Bu‖YF from both sides we get

‖C|f‖YD ≤ ‖Af‖YF − ‖Bf‖YF + β‖f‖YF = ‖Af‖YF − ‖−Bf‖YF + β‖f‖YF
≤ ‖Af − (−Bf)‖YF + β‖f‖YF = ‖(A+B)f‖YF + β‖f‖YF .

By a similar approach to that taken in Lemma 3.3.3, we can extend C| to D(K),
with C| being K-bounded on D(K), satisfying

‖C|f‖YD ≤ ‖Kf‖YF + β‖f‖YF , for f ∈ D(K). (4.6)

The fragmentation system is then cast as the following abstract Cauchy problem
on the product space Y = YD × YF

d

dt
u(t) = A|[u(t)], t > 0; u(0) = u0 ∈ D(A|), (4.7)

where

u(t) =

(
uD(t)
uF (t)

)
, A|=

(
0DD C|
0DF K

)
and u0 =

(
d0

f0

)
∈D(A|) =YD ×D(K).

The subscripts on the zero operators indicate the spaces they map from and to;
for example 0DF maps from YD into YF . To verify that A| is a generator on the
space Y , we invoke Theorem 2.4.26.



Chapter 4 46

Theorem 4.1.6. Assuming that a and b satisfy condition (4.4), the operator A|,
as given above, generates a C0-semigroup

(
T|(t)

)
t≥0

on Y .

Proof. By employing the same argument as used in Lemma 3.4.1, and utilising
(4.6), we can show that (A|, D(A|)) is a closed operator on Y . Conditions (i)-(iv)
of Theorem 2.4.26 are then easily shown to be satisfied.

We now look to verify that condition (v) of Theorem 2.4.26 holds. Consider the
operator R̃|(t) : D(K) ⊆ YF → YD defined by R̃|(t)f =

∫ t
0
C|GK(s)f ds. Since C|

is K-bounded on D(K), following the steps in Theorem 3.4.2, for f ∈ D(K) we
can write

R̃|(t)f = C|(λIF −K)−1

{
λ

∫ t

0

GK(s)f ds−GK(t)f + f

}
.

Then, since (GK(t))t≥0 consists of contractions on the space XF , by the equivalence
condition (4.3), we get

‖R̃|(t)f‖YD ≤ ‖C|(λIF −K)−1‖
{
λ

∫ t

0

‖GK(s)f‖YF ds+‖GK(t)f‖YF +‖f‖YF
}

≤ ‖C|(λIF −K)−1‖
(

1

xc
+ 1

){
λ

∫ t

0

‖GK(s)f‖XF
ds+‖GK(t)f‖XF

+‖f‖XF

}
≤ ‖C|(λIF −K)−1‖

(
1

xc
+ 1

)
(λt+ 2) ‖f‖XF

≤ ‖C|(λIF −K)−1‖
(

1

xc
+ 1

)
(λt+ 2) ‖f‖YF . (4.8)

This shows that R̃|(t) is bounded on D(K). As a densely-defined, bounded linear

operator, R̃|(t) can be uniquely extended to a bounded linear operator R|(t) in

B(YF , YD). Further, (4.8) holds for all f ∈ YF with R̃|(t) replaced by R|(t). As a
consequence, we see that R|(t) is uniformly bounded as t↘ 0. By Theorem 2.4.26,
A| generates a C0-semigroup

(
T|(t)

)
t≥0

on the product space Y , with the semi-
group being given by

T|(t) :=

(
ID R|(t)

0DF GK(t)

)
, t ≥ 0.

Employing the same arguments as in Lemma 3.4.3, the semigroup
(
T|(t)

)
t≥0

can
be shown to preserve positivity.
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4.2 Combined Coagulation–Fragmentation Sys-

tem

We now introduce the nonlinear coagulation operator N , which is defined on Y by

Nf =

(
ND(f1, f2)
NF (f1, f2)

)
, for f =

(
f1

f2

)
∈ Y.

The combined coagulation fragmentation system from equations (4.1) and (4.2) is
then expressed as the semilinear abstract Cauchy problem

d

dt
u(t) = A|[u(t)] +N [u(t)], t > 0; u(0) = u0 ∈ D(A|), (4.9)

where, as before

u(t) =

(
uD(t)
uF (t)

)
, A|=

(
0DD C|
0DF K

)
and u0 =

(
d0

f0

)
∈D(A|) =YD ×D(K).

To more easily enable our analysis of the coagulation operator we introduce the
following bilinear operators which act on the space Y × Y . For f =

(
f1
f2

)
and

g =
(
g1
g2

)
in Y , let

N1(f, g) =

(
1
2

∫ x
0
k(x− y, y)f1(x− y)g1(y)dy

0

)
,

N2(f, g) =

(
f1(x)

∫ xc
0
k(x, y)g1(y)dy

0

)
,

N3(f, g) =

(
f1(x)

∫∞
xc
k(x, y)g2(y)dy

0

)
,

N4(f, g) =

 0
χI(x)

2

∫ x−xc
0

k(x− y, y)f2(x− y)g1(y)dy

+χJ (x)
2

∫ xc
0
k(x− y, y)f2(x− y)g1(y)dy

 ,

N5(f, g) =

(
0

χI(x)
2

∫ xc
x−xc k(x− y, y)f1(x− y)g1(y)dy

)
,

N6(f, g) =

 0
χI(x)

2

∫ x
xc
k(x− y, y)f1(x− y)g2(y)dy

+χJ (x)
2

∫ x
x−xc k(x− y, y)f1(x− y)g2(y)dy

 ,
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N7(f, g) =

(
0

χJ (x)
2

∫ x−xc
xc

k(x− y, y)f2(x− y)g2(y)dy

)
,

N8(f, g) =

(
0

f2(x)
∫ xc

0
k(x, y)g1(y)dy

)
,

N9(f, g) =

(
0

f2(x)
∫∞
xc
k(x, y)g2(y)dy

)
.

In addition to the individual terms introduced above, we also define the following
combined bilinear operator, N , on Y × Y .

N (f, g) =N1(f, g)−N2(f, g)−N3(f, g) +N4(f, g) +N5(f, g)

+N6(f, g) +N7(f, g)−N8(f, g)−N9(f, g).

The coagulation operator N is then given by

Nf = N (f, f), for f ∈ Y.

If we make the assumption

k ∈ L∞ ((0,∞)× (0,∞)) , (4.10)

then the terms N1 to N9, introduced above, satisfy the following norm bounds.

‖N1(f, g)‖Y ≤
1

2

∫ xc

0

(∫ x

0

k(x− y, y)|f1(x− y)||g1(y)|dy
)

(1 + x)dx

=
1

2

∫ xc

0

|g1(y)|
(∫ xc

y

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

=
1

2

∫ xc

0

|g1(y)|
(∫ xc−y

0

k(x, y)|f1(x)|(1 + x+ y)dx

)
dy (4.11)

≤ 1

2
‖k‖∞

∫ xc

0

|g1(y)|
(∫ xc−y

0

|f1(x)|(1 + x+ y)dx

)
dy

≤ 1

2
‖k‖∞

(
‖f1‖YD ‖g1‖YD,0

+ ‖f1‖YD,0
‖g1‖YD,1

)
≤ ‖k‖∞ ‖f1‖YD ‖g1‖YD ≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,
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‖N2(f, g)‖Y ≤
∫ xc

0

|f1(x)|
(∫ xc

0

k(x, y)|g1(y)|dy
)

(1 + x)dx

=

∫ xc

0

|g1(y)|
(∫ xc

0

k(x, y)|f1(x)|(1 + x)dx

)
dy (4.12)

≤ ‖k‖∞
∫ xc

0

|g1(y)|
(∫ xc

0

|f1(x)|(1 + x)dx

)
dy

= ‖k‖∞ ‖f1‖YD ‖g1‖YD,0
≤ ‖k‖∞ ‖f1‖YD ‖g1‖YD

≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,

‖N3(f, g)‖Y ≤
∫ xc

0

|f1(x)|
(∫ ∞

xc

k(x, y)|g2(y)|dy
)

(1 + x)dx

=

∫ ∞
xc

|g2(y)|
(∫ xc

0

k(x, y)|f1(x)|(1 + x)dx

)
dy (4.13)

≤ ‖k‖∞
∫ ∞
xc

|g2(y)|
(∫ xc

0

|f1(x)|(1 + x)dx

)
dy

= ‖k‖∞ ‖f1‖YD ‖g2‖YF,0
≤ ‖k‖∞ ‖f1‖YD ‖g2‖YF

≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,

‖N4(f, g)‖Y ≤
1

2

∫ 2xc

xc

(∫ x−xc

0

k(x− y, y)|f2(x− y)||g1(y)|dy
)

(1 + x)dx

+
1

2

∫ ∞
2xc

(∫ xc

0

k(x− y, y)|f2(x− y)||g1(y)|dy
)

(1 + x)dx

=
1

2

∫ xc

0

|g1(y)|
(∫ 2xc

y+xc

k(x− y, y)|f2(x− y)|(1 + x)dx

)
dy

+
1

2

∫ xc

0

|g1(y)|
(∫ ∞

2xc

k(x− y, y)|f2(x− y)|(1 + x)dx

)
dy

=
1

2

∫ xc

0

|g1(y)|
(∫ ∞

y+xc

k(x− y, y)|f2(x− y)|(1 + x)dx

)
dy

=
1

2

∫ xc

0

|g1(y)|
(∫ ∞

xc

k(x, y)|f2(x)|(1 + x+ y)dx

)
dy (4.14)

≤ 1

2
‖k‖∞

∫ xc

0

|g1(y)|
(∫ ∞

xc

|f2(x)|(1 + x+ y)dx

)
dy

=
1

2
‖k‖∞

(
‖f2‖YF ‖g1‖YD,0

+ ‖f2‖YF,0
‖g1‖YD,1

)
≤ ‖k‖∞ ‖f2‖YF ‖g1‖YD ≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,
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‖N5(f, g)‖Y ≤
1

2

∫ 2xc

xc

(∫ xc

x−xc
k(x− y, y)|f1(x− y)||g1(y)|dy

)
(1 + x)dx

=
1

2

∫ xc

0

|g1(y)|
(∫ y+xc

xc

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

=
1

2

∫ xc

0

|g1(y)|
(∫ xc

xc−y
k(x, y)|f1(x)|(1 + x+ y)dx

)
dy (4.15)

≤ 1

2
‖k‖∞

∫ xc

0

|g1(y)|
(∫ xc

xc−y
|f1(x)|(1 + x+ y)dx

)
dy

≤ 1

2
‖k‖∞

(
‖f1‖YD ‖g1‖YD,0

+ ‖f1‖YD,0
‖g1‖YD,1

)
≤ ‖k‖∞ ‖f1‖YD ‖g1‖YD ≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,

‖N6(f, g)‖Y ≤
1

2

∫ 2xc

xc

(∫ x

xc

k(x− y, y)|f1(x− y)||g2(y)|dy
)

(1 + x)dx

+
1

2

∫ ∞
2xc

(∫ x

x−xc
k(x− y, y)|f1(x− y)||g2(y)|dy

)
(1 + x)dx

=
1

2

∫ 2xc

xc

|g2(y)|
(∫ 2xc

y

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

+
1

2

∫ 2xc

xc

|g2(y)|
(∫ y+xc

2xc

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

+
1

2

∫ ∞
2xc

|g2(y)|
(∫ y+xc

y

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

=
1

2

∫ 2xc

xc

|g2(y)|
(∫ y+xc

y

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

+
1

2

∫ ∞
2xc

|g2(y)|
(∫ y+xc

y

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

=
1

2

∫ ∞
xc

|g2(y)|
(∫ y+xc

y

k(x− y, y)|f1(x− y)|(1 + x)dx

)
dy

=
1

2

∫ ∞
xc

|g2(y)|
(∫ xc

0

k(x, y)|f1(x)|(1 + x+ y)dx

)
dy (4.16)

≤ 1

2
‖k‖∞

∫ ∞
xc

|g2(y)|
(∫ xc

0

|f1(x)|(1 + x+ y)dx

)
dy

=
1

2
‖k‖∞

(
‖f1‖YD ‖g2‖YF,0

+ ‖f1‖YD,0
‖g2‖YF,1

)
≤ ‖k‖∞ ‖f1‖YD ‖g2‖YF ≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,



Chapter 4 51

‖N7(f, g)‖Y ≤
1

2

∫ ∞
2xc

(∫ x−xc

xc

k(x− y, y)|f2(x− y)||g2(y)|dy
)

(1 + x)dx

=
1

2

∫ ∞
xc

|g2(y)|
(∫ ∞

y+xc

k(x− y, y)|f2(x− y)|(1 + x)dx

)
dy

=
1

2

∫ ∞
xc

|g2(y)|
(∫ ∞

xc

k(x, y)|f2(x)|(1 + x+ y)dx

)
dy (4.17)

=
1

2
‖k‖∞

∫ ∞
xc

|g2(y)|
(∫ ∞

xc

|f2(x)|(1 + x+ y)dx

)
dy

=
1

2
‖k‖∞

(
‖f2‖YF ‖g2‖YF,0

+ ‖f2‖YF,0
‖g2‖YF,1

)
≤ ‖k‖∞ ‖f2‖YF ‖g2‖YF ≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,

‖N8(f, g)‖Y ≤
∫ ∞
xc

|f2(x)|
(∫ xc

0

k(x, y)|g1(y)|dy
)

(1 + x)dx

=

∫ xc

0

|g1(y)|
(∫ ∞

xc

k(x, y)|f2(x)|(1 + x)dx

)
dy (4.18)

≤ ‖k‖∞
∫ xc

0

|g1(y)|
(∫ ∞

xc

|f2(x)|(1 + x)dx

)
dy

= ‖k‖∞ ‖f2‖YF ‖g1‖YD,0
≤ ‖k‖∞ ‖f2‖YF ‖g1‖YD

≤ ‖k‖∞ ‖f‖Y ‖g‖Y ,

‖N9(f, g)‖Y ≤
∫ ∞
xc

|f2(x)|
(∫ ∞

xc

k(x, y)|g2(y)|dy
)

(1 + x)dx

=

∫ ∞
xc

|g2(y)|
(∫ ∞

xc

k(x, y)|f2(x)|(1 + x)dx

)
dy (4.19)

≤ ‖k‖∞
∫ ∞
xc

|g2(y)|
(∫ ∞

xc

|f2(x)|(1 + x)dx

)
dy

= ‖k‖∞ ‖f2‖YF ‖g2‖YF,0
≤ ‖k‖∞ ‖f2‖YF ‖g2‖YF

≤ ‖k‖∞ ‖f‖Y ‖g‖Y .
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From these estimates, using an extended triangle inequality, we have for all f and
g in Y that

‖N (f, g)‖Y ≤ 9 ‖k‖∞ ‖f‖Y ‖g‖Y . (4.20)

Hence for all f ∈ Y

‖Nf‖Y = ‖N (f, f)‖Y ≤ 9 ‖k‖∞ ‖f‖
2
Y . (4.21)

Therefore N(Y ) ⊂ Y , with ‖Nf‖Y ≤ 9 ‖k‖∞ ‖f‖2
Y for all f ∈ Y .

Lemma 4.2.1. The operator N satisfies a local Lipschitz condition on the closed
ball B̄(u0, ρ), where u0 ∈ Y and ρ > 0.

Proof. Let f and g be two elements from Y . Then, exploiting the bilinear structure
of N and the bound (4.20), we have

‖Nf −Ng‖Y = ‖N (f, f)−N (g, g)‖Y
= ‖N (f, f − g) +N (f − g, g)‖Y
≤ ‖N (f, f − g)‖Y + ‖N (f − g, g)‖Y
≤ 9 ‖k‖∞ (‖f‖Y + ‖g‖Y ) ‖f − g‖Y .

Now suppose that both f, g ∈ B̄(u0, ρ), then

‖f − u0‖Y ≤ ρ⇒ ‖f‖Y − ‖u0‖Y ≤ ρ⇒ ‖f‖Y ≤ ‖u0‖Y + ρ.

Similarly, ‖g‖Y ≤ ‖u0‖Y + ρ. Therefore ‖f‖Y + ‖g‖Y ≤ 2 (‖u0‖Y + ρ), hence

‖Nf −Ng‖Y ≤ 18 ‖k‖∞ (‖u0‖Y + ρ) ‖f − g‖Y
= qρ,u0‖f − g‖Y ,

where qρ,u0 = 18‖k‖∞(‖u0‖Y + ρ).

From Theorem 2.4.34, since A| is a generator and N is locally Lipschitz, the
semilinear ACP (4.9) has a unique (local in time) mild solution, u(t), on [0, t0),
such that u(t) ∈ B(u0, ρ0) for all t ∈ [0, t0), where t0 and ρ0 are suitably chosen.

Lemma 4.2.2. The operator N is Fréchet differentiable at each f ∈ Y .

Proof. Let f, δ ∈ Y , then

N(f + δ) = N (f + δ, f + δ)

= N (f, f) +N (f, δ) +N (δ, f) +N (δ, δ)

= Nf +Nfδ +R(f, δ), (4.22)

where
Nfδ = N (f, δ) +N (δ, f) and R(f, δ) = N (δ, δ) = Nδ.
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The bilinear structure of N means that, for fixed f , Nf is a linear operator.
Further, from the definition of Nfδ and the bound (4.20), we have that

‖Nfδ‖Y = ‖N (f, δ) +N (δ, f)‖Y
≤ ‖N (f, δ)‖Y + ‖N (δ, f)‖Y
≤ 18 ‖k‖∞ ‖f‖Y ‖δ‖Y . (4.23)

Therefore Nf is a bounded linear operator on Y . Also, the remainder term R(f, δ)
from (4.22), using (4.21), satisfies

‖R(f, δ)‖Y
‖δ‖Y

=
‖Nδ‖Y
‖δ‖Y

≤ 9 ‖k‖∞ ‖δ‖2
Y

‖δ‖Y
= 9 ‖k‖∞ ‖δ‖Y → 0 as ‖δ‖Y → 0.

Hence the coagulation operator N is Fréchet differentiable at each f ∈ Y , with
Fréchet derivative Nf . We note that when f ∈ B̄(u0, ρ), then (4.23) implies
‖Nfδ‖Y ≤ qρ,u0 ‖δ‖Y .

Lemma 4.2.3. The Fréchet derivative, Nf , of N is continuous with respect to f .

Proof. Let f, g and δ be elements from Y . Then, the bilinear structure of N and
(4.20) give us

‖Nfδ −Ngδ‖Y = ‖N (f, δ) +N (δ, f)−N (g, δ)−N (δ, g)‖Y
= ‖N (f − g, δ) +N (δ, f − g)‖Y
≤ ‖N (f − g, δ)‖Y + ‖N (δ, f − g)‖Y
≤ 18 ‖k‖∞ ‖δ‖Y ‖f − g‖Y .

Therefore Nf is continuous with respect to f .

The results established in Lemmas 4.2.2 and 4.2.3 mean that the local in time mild
solution, u(t), satisfies the conditions of Theorem 2.4.35, and hence is, in fact, a
local in time strong solution of (4.9).

Having established the existence of the local in time (strong) solution, u(t), of
equation (4.9), we now show that when the initial condition is positive, that is
u0 ∈ D(A|)+ = YD+ ×D(K)+, then the solution belongs to Y+ for all t ∈ [0, t0).
The approach adopted follows the ideas presented in [6].
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Suppose that u(t) is the solution on [0, t0) of (4.9), with positive initial condition
u0 ∈ D(A|)+. Then, we note that u(t) is also the unique strongly differentiable
solution of

d

dt
u(t) =

(
A|[u(t)]− αu(t)

)
+Nα[u(t)], α ∈ R, (4.24)

where Nα denotes N+αI. Therefore u(t) is also the unique solution of the integral
equation

u(t) = e−αtT|(t)u0 +

∫ t

0

e−α(t−s)T|(t− s)Nα[u(s)] ds, 0 ≤ t < t0. (4.25)

Lemma 4.2.4. Let u0 ∈ Y and ρ0 > 0 be arbitrary. If we select α ≥ ‖k‖∞ (‖u0‖Y + ρ0),
then Nαf ∈ Y+ for all f ∈ B(u0, ρ0) ∩ Y+.

Proof. First we note that, if f =
(
f1
f2

)
∈ B(u0, ρ0), then

‖f − u0‖Y < ρ0 ⇒ ‖f‖Y − ‖u0‖Y < ρ0 ⇒ ‖f‖Y < ‖u0‖Y + ρ0.

Expressing Nαf in terms of its constituent operators gives

Nαf = αf +N1(f, f)−N2(f, f)−N3(f, f) +N4(f, f) +N5(f, f)

+N6(f, f) +N7(f, f)−N8(f, f)−N9(f, f).

If f ∈ Y+, so that the components f1(x) and f2(x) are non-negative a.e. on (0, xc]
and (xc,∞) respectively, then it is clear that N1(f, f) + N4(f, f) + N5(f, f) +
N6(f, f) +N7(f, f) ∈ Y+. Considering the remaining terms and expressing them
fully, we obtain

αf −N2(f, f)−N3(f, f)−N8(f, f)−N9(f, f)

=

αf1(x)− f1(x)
{∫ xc

0
k(x, y)f1(y)dy +

∫∞
xc
k(x, y)f2(y)dy

}
αf2(x)− f2(x)

{∫ xc
0
k(x, y)f1(y)dy +

∫∞
xc
k(x, y)f2(y)dy

}
 . (4.26)

Looking more closely at the integral expressions appearing above, we see that∫ xc

0

k(x, y)f1(y)dy +

∫ ∞
xc

k(x, y)f2(y)dy

≤ ‖k‖∞
(
‖f1‖YD,0

+ ‖f2‖YF,0

)
≤ ‖k‖∞‖f‖Y

≤ ‖k‖∞ (‖u0‖Y + ρ0) .

Therefore if we select α ≥ ‖k‖∞ (‖u0‖Y + ρ0), then both components of (4.26) are
non-negative. Hence Nαf ∈ Y+.
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Theorem 4.2.5. Let u0 ∈ D(A|)+, and suppose that u : [0, t0)→ B(u0, ρ0) is the
unique strong solution of equation (4.9). Then there exists t1 ∈ (0, t0] such that
u(t) ∈ Y+ for all t ∈ [0, t1).

Proof. Let us define the space Z := C([0, t1], Y ) and equip it with the norm
‖v‖Z := max {‖v(t)‖Y : 0 ≤ t ≤ t1}, where t1 ∈ (0, t0] will be chosen later. Also,
we introduce the set Σ :=

{
v ∈ Z : v(t) ∈ B(u0, ρ1) ∩ Y+ ∀t ∈ [0, t1]

}
, where

0 < ρ1 < ρ0.

As the positive cones of Lebesgue spaces, both YD+ and YF+ are closed. Therefore
the product Y+ = YD+ × YF+ is also closed. Clearly the ball B(u0, ρ1) is closed.
Hence the intersection B(u0, ρ1) ∩ Y+ is a closed set. Now, suppose that the
sequence {νn}∞n=1 ⊂ Σ converges to ν in Z. Then, for all ε > 0, there exists M ∈ N
such that

max
0≤t≤t1

‖νn(t)− ν(t)‖Y < ε for n ≥M,

⇒ ‖νn(t)− ν(t)‖Y < ε, ∀t ∈ [0, t1] for n ≥M.

Hence for each fixed t ∈ [0, t1], the sequence {νn(t)}∞n=1 ⊂ B(u0, ρ1)∩Y+ converges
to ν(t) in Y . Since B(u0, ρ1) ∩ Y+ is closed, the limit ν(t) must also belong to
B(u0, ρ1)∩Y+ for all t ∈ [0, t1]. Therefore ν ∈ Z is such that ν(t) ∈ B(u0, ρ1)∩Y+

for all t ∈ [0, t1], that is ν ∈ Σ. Hence Σ is a closed subset of Z.

Having established that Σ is closed, we define the mapping Q on Σ by

(Qv)(t):= e−αtT|(t)u0 +

∫ t

0

e−α(t−s)T|(t− s)Nα[v(s)]ds, 0 ≤ t ≤ t1, D(Q) := Σ,

where α ≥ ‖k‖∞ (‖u0‖Y + ρ0). As v ∈ Σ, the local Lipschitz condition on
N implies that Nα[v(s)] is strongly continuous on [0, t1]. In combination with
Lemma 2.4.4, this gives us continuity of the above integrand on [0, t1]. Therefore,
by Theorem 2.2.4, the integral term appearing in Q is an element in Z. It is now
easily seen that Q(Σ) ⊂ Z. The positivity of v(s), along with Lemma 4.2.4 and
the positivity of the semigroup

(
T|(t)

)
t≥0

, mean that the integrand above is posi-
tive. Following from the discussion in Lemma 3.4.3, this implies that the integral
term from Q is a positive element of Y . If we recall that the initial condition u0 is
positive, then we have (Qv)(t) ∈ Y+ for all t ∈ [0, t1]. Let v, w ∈ Σ. By the local
Lipschitz condition on N , we have for all s ∈ [0, t1] that

‖Nα[v(s)]−Nα[w(s)]‖Y = ‖αv(s) +N [v(s)]− αw(s)−N [w(s)]‖Y
≤ α‖v(s)− w(s)‖Y + ‖N [v(s)]−N [w(s)]‖Y
≤ (qρ1,u0 + α) ‖v(s)− w(s)‖Y ,
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where qρ1,u0 = 18‖k‖∞(‖u0‖Y + ρ1). By Theorem 2.4.2, there exists M ≥ 1 and
ω ≥ 0 such that

‖T|(t)‖ ≤Meωt for all t ≥ 0.

Therefore for t ∈ [0, t1] we obtain

‖(Qv)(t)− (Qw)(t)‖Y ≤
∫ t

0

e−α(t−s)‖T|(t− s)‖‖Nα[v(s)]−Nα[w(s)]‖Y ds

≤M (qρ1,u0 + α)

∫ t

0

e(ω−α)(t−s)‖v(s)− w(s)‖Y ds

≤M (qρ1,u0 + α) t1e
ωt1‖v − w‖Z .

Hence
‖Qv −Qw‖Z ≤M (qρ1,u0 + α) t1e

ωt1‖v − w‖Z . (4.27)

Similarly to before, using the Lipschitz condition for N in addition to the fact that
v ∈ Σ, we have for all s ∈ [0, t1] that

‖Nα[v(s)]‖Y = ‖Nα[v(s)]−Nαu0 +Nαu0‖Y
≤ ‖Nα[v(s)]−Nαu0‖Y + ‖Nαu0‖Y
≤ α‖v(s)− u0‖Y + ‖N [v(s)]−Nu0‖Y + ‖Nαu0‖Y
≤ (qρ1,u0 + α)ρ1 + ‖Nαu0‖Y .

This gives us the following inequality for t ∈ [0, t1]:

‖(Qv)(t)−u0‖Y ≤‖e−αtT|(t)u0−u0‖Y +

∫ t

0

e−α(t−s)‖T|(t−s)‖‖Nα[v(s)]‖Y ds

≤‖e−αtT|(t)u0−u0‖Y +Mt1e
ωt1 ((qρ1,u0 + α)ρ1 +‖Nαu0‖Y ) .

(4.28)

Now let us define

ζ(t1) :=
1

ρ1

max
0≤t≤t1

‖e−αtT|(t)u0 − u0‖Y +
1

ρ1

Mt1e
ωt1((qρ1,u0 + α)ρ1 + ‖Nαu0‖Y ).

Then (4.27) implies that

‖Qv −Qw‖Z ≤ ζ(t1)‖v − w‖Z , (4.29)

and (4.28) implies that

‖(Qv)(t)− u0‖Y ≤ ρ1ζ(t1) for all 0 ≤ t ≤ t1. (4.30)
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Since ζ(t1) → 0+ as t1 → 0+, we can select t1 such that 0 < ζ(t1) < 1. Then
(4.30) implies that Qv ∈ B(u0, ρ1) for all 0 ≤ t ≤ t1. Having already noted that
(Qv)(t) ∈ Y+ for all such t, this gives us that Qv ∈ Σ, and hence Q(Σ) ⊂ Σ. We
have shown that Σ is a closed subset of the Banach space Z, hence it is complete. If
we have 0 < ζ(t1) < 1, then (4.29) shows that Q is a contraction on Σ. Therefore,
by the Banach fixed point theorem, [21, Theorem 5.1-2], there exists a unique
fixed point u ∈ Σ such that u = Qu, and so equation (4.25) has a unique solution
u ∈ C ([0, t1], Y+).

Having shown that the solution of equation (4.9) with positive initial data remains
positive for a non-zero period of time, we now extend this and show that the
solution is positive on the entirety of its maximal interval of existence.

Lemma 4.2.6. Let [0, T̂ ) be the maximal interval of existence for the solution,
u(t), to the equation (4.9). Then u(t) ∈ Y+ for all t ∈ [0, T̂ ).

Proof. Fix T0 ∈ (0, T̂ ) arbitrarily and define

τmax := sup {0 < τ ≤ T0 : u(t) ∈ Y+ for all t ∈ [0, τ ]} .

Now suppose that τmax < T0 and consider the equation

d

dt
v(t) = A|[v(t)] +N [v(t)], t > 0, (4.31)

v(0) = u(τmax).

The solution to this equation on [0, T0 − τmax] is given by v(t) = u(t + τmax). We
can construct a sequence in Y+ which converges to u(τmax), which, since Y+ is
closed, implies that u(τmax) ∈ Y+. Therefore v is the solution to equation (4.31)
with positive initial data. By Theorem 4.2.5, v(t) ∈ Y+ for sufficiently small but
non-zero t, and hence u(t + τmax) ∈ Y+ for such t. However, this contradicts the
maximal property of τmax, proving that we must have τmax = T0. Since T0 ∈ (0, T̂ )
was arbitrary, we obtain the required result.

We have shown the existence of a local in time, strong solution to equation (4.9),
which, provided the initial condition is positive, remains positive over its maximal
interval of existence. In order to prove the existence of a global in time, strong, non-
negative solution, we apply Gronwall’s inequality to show that the local solution
does not blow up in finite time. However, prior to this, it is necessary to establish
the following two lemmas.
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Lemma 4.2.7. Suppose f =
(
f1
f2

)
∈ Y+. Then∫ xc

0

(ND(f1, f2))(x)(1 + x)dx+

∫ ∞
xc

(NF (f1, f2))(x)(1 + x)dx ≤ 0.

Proof. The first integral is given by∫ xc

0

(ND(f1, f2))(x)(1 + x)dx

=

∫ xc

0

(
1

2

∫ x

0

k(x− y, y)f1(x− y)f1(y)dy

)
(1 + x)dx

−
∫ xc

0

(
f1(x)

∫ xc

0

k(x, y)f1(y)dy

)
(1 + x)dx

−
∫ xc

0

(
f1(x)

∫ ∞
xc

k(x, y)f2(y)dy

)
(1 + x)dx.

Performing essentially the same manipulations as those carried out in (4.11), (4.12)
and (4.13), gives us∫ xc

0

(ND(f1, f2))(x)(1 + x)dx

=
1

2

∫ xc

0

f1(y)

(∫ xc−y

0

k(x, y)f1(x)(1 + x+ y)dx

)
dy

−
∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

−
∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy. (4.32)

The second integral is given by∫ ∞
xc

(NF (f1, f2))(x)(1 + x)dx

=

∫ 2xc

xc

(
1

2

∫ x−xc

0

k(x− y, y)f2(x− y)f1(y)dy

)
(1 + x)dx

+

∫ ∞
2xc

(
1

2

∫ xc

0

k(x− y, y)f2(x− y)f1(y)dy

)
(1 + x)dx

+

∫ 2xc

xc

(
1

2

∫ xc

x−xc
k(x− y, y)f1(x− y)f1(y)dy

)
(1 + x)dx

+

∫ ∞
2xc

(
1

2

∫ x−xc

xc

k(x− y, y)f2(x− y)f2(y)dy

)
(1 + x)dx
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+

∫ 2xc

xc

(
1

2

∫ x

xc

k(x− y, y)f1(x− y)f2(y)dy

)
(1 + x)dx

+

∫ ∞
2xc

(
1

2

∫ x

x−xc
k(x− y, y)f1(x− y)f2(y)dy

)
(1 + x)dx

−
∫ ∞
xc

(
f2(x)

∫ xc

0

k(x, y)f1(y)dy

)
(1 + x)dx

−
∫ ∞
xc

(
f2(x)

∫ ∞
xc

k(x, y)f2(y)dy

)
(1 + x)dx.

If we carry out the same manipulations as have been used to derive (4.14)-(4.19),
then we obtain∫ ∞

xc

(NF (f1, f2))(x)(1 + x)dx

=
1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x+ y)dx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ xc

xc−y
k(x, y)f1(x)(1 + x+ y)dx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x+ y)dx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x+ y)dx

)
dy

−
∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

−
∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy. (4.33)

Addition of (4.32) and (4.33) then gives us∫ xc

0

(ND(f1, f2))(x)(1 + x)dx+

∫ ∞
xc

(NF (f1, f2))(x)(1 + x)dx

=
1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x+ y)dx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ xc

xc−y
k(x, y)f1(x)(1 + x+ y)dx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x+ y)dx

)
dy
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+
1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x+ y)dx

)
dy

−
∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

−
∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ xc−y

0

k(x, y)f1(x)(1 + x+ y)dx

)
dy

−
∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

−
∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy.

The second and seventh terms combine and we get

∫ xc

0

(ND(f1, f2))(x)(1 + x)dx+

∫ ∞
xc

(NF (f1, f2))(x)(1 + x)dx

=
1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x+ y)dx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)(1 + x+ y)dx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x+ y)dx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x+ y)dx

)
dy

−
∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

−
∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

−
∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

−
∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy
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= −1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

− 1

2

∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

− 1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

− 1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)ydx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)ydx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)ydx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)ydx

)
dy.

If we change order of integration and switch the variables x and y in the final four
terms, noting that k is symmetric, we get

∫ xc

0

(ND(f1, f2))(x)(1 + x)dx+

∫ ∞
xc

(NF (f1, f2))(x)(1 + x)dx

= −1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

− 1

2

∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

− 1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)(1 + x)dx

)
dy

− 1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)(1 + x)dx

)
dy

+
1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)xdx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)xdx

)
dy
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+
1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)xdx

)
dy

+
1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)xdx

)
dy

= −1

2

∫ xc

0

f1(y)

(∫ ∞
xc

k(x, y)f2(x)dx

)
dy

− 1

2

∫ xc

0

f1(y)

(∫ xc

0

k(x, y)f1(x)dx

)
dy

− 1

2

∫ ∞
xc

f2(y)

(∫ ∞
xc

k(x, y)f2(x)dx

)
dy

− 1

2

∫ ∞
xc

f2(y)

(∫ xc

0

k(x, y)f1(x)dx

)
dy

≤ 0.

Lemma 4.2.8. For f =
(
f1
f2

)
∈ Y with f2 ∈ D(K)+, we have∫ xc

0

(
C|f2

)
(x)(1 + x)dx+

∫ ∞
xc

(Kf2) (x)(1 + x)dx ≤ β‖f‖Y ,

where β comes from (4.4).

Proof. Let us define the operator (Ã,D(Ã)) = (A− βIF , D(A)). For h ∈ D(Ã)+,
we have

∫ ∞
xc

(
Ãh+Bh

)
(1 + x)dx =

∫ ∞
xc

(Ah− βh+Bh) (1 + x)dx

=

∫ ∞
xc

(
−a(x)h(x)− βh(x) +

∫ ∞
x

a(y)b(x|y)h(y)dy

)
(1 + x)dx

= −
∫ ∞
xc

(a(x) + β)h(x)(1 + x)dx+

∫ ∞
xc

(∫ ∞
x

a(y)b(x|y)h(y)dy

)
(1 + x)dx

= −
∫ ∞
xc

(a(x) + β)h(x)(1 + x)dx+

∫ ∞
xc

a(y)h(y)

(∫ y

xc

b(x|y)(1 + x)dx

)
dy

= −
∫ ∞
xc

{(
y + 1−

∫ y

xc

b(x|y)(1 + x)dx

)
a(y) + β(y + 1)

}
h(y)dy =: −c̃(h).
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Considering the expression appearing within the braces, condition (4.4) gives us(
y + 1−

∫ y

xc

b(x|y)(1 + x)dx

)
a(y) + β(y + 1)

≥ (y + 1− n(y)− y) a(y) + β(y + 1)

= β(y + 1)− a(y) (n(y)− 1) ≥ 0,

for y > xc. Therefore the functional c̃ given above is non-negative. It is now easily
verified that Ã and B satisfy the conditions of Theorem 2.4.28. Hence there exists
an extension T of Ã+B which generates a substochastic semigroup (GT (t))t≥0 on
YF . Let ã(x) = a(x) +β. If we follow the calculations of Theorem 3.2.5, with ã(x)
replacing a(x), the space YF in place of XF , and the functional c̃ as given above,
then we obtain∫ ∞

xc

(−ã(x)g(x)+(Bg)(x)) (1 + x)dx = lim
R→∞

∫ R

xc

(−ã(x)g(x)+(Bg)(x)) (1 + x)dx

= lim
R→∞

{
−
∫ R

xc

ã(x)g(x)(1 + x)dx+

∫ R

xc

(∫ ∞
x

a(y)b(x|y)g(y)dy

)
(1 + x)dx

}
.

(4.34)

Looking at the terms contained within the braces above, we have

−
∫ R

xc

ã(x)g(x)(1 + x)dx+

∫ R

xc

(∫ ∞
x

a(y)b(x|y)g(y)dy

)
(1 + x)dx

=−
{∫ R

xc

ã(y)g(y)(1 + y)dy −
∫ R

xc

a(y)g(y)

(∫ y

xc

b(x|y)(1 + x)dx

)
dy

}
+

∫ ∞
R

a(y)g(y)

(∫ R

xc

b(x|y)(1 + x)dx

)
dy

≥−
∫ R

xc

{
ã(y)(1 + y)− a(y)

(∫ y

xc

b(x|y)(1 + x)dx

)}
g(y) dy.

Replacing this in (4.34), we get∫ ∞
xc

(−ã(x)g(x) + (Bg) (x)) (1 + x)dx

≥ − lim
R→∞

∫ R

xc

{
ã(y)(1 + y)− a(y)

(∫ y

xc

b(x|y)(1 + x)dx

)}
g(y) dy = −c̃(g).

Therefore, by [4, Theorem 6.22], we have that T = Ã+B. By following the
argument presented in [4, Theorem 6.13], for v ∈ D(T ) we have∫ ∞

xc

(Tv)(x)(1 + x)dx = −c̃(v(x)). (4.35)
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Let v ∈ D(K). Since K = A+B, there exists a sequence {vn}∞n=1 ⊆ D(A) = D(Ã)
such that vn → v and (A+B)vn → Kv in YF as n→∞. We then have

(Ã+B)vn = (A+B)vn − βvn → Kv − βv.

Therefore {vn}∞n=1 is (Ã+B)-convergent to v. Hence v ∈ D(T ) with Tv = Kv−βv.
This proves that T is an extension of K − βIF . By reversing this argument, we
can show that K − βIF is an extension of T , which together with the previous
statement gives us (T,D(T )) = (K − βIF , D(K)).

Let v ∈ D(K). From (4.35) we obtain∫ ∞
xc

(Kv)(x)(1 + x)dx =

∫ ∞
xc

(Tv)(x)(1 + x)dx+ β

∫ ∞
xc

v(x)(1 + x)dx

= −
∫ ∞
xc

{(
y + 1−

∫ y

xc

b(x|y)(1 + x)dx

)
a(y) + β(y + 1)

}
v(y)dy

+ β

∫ ∞
xc

v(x)(1 + x)dx

= −
∫ ∞
xc

(
y + 1−

∫ y

xc

b(x|y)(1 + x)dx

)
a(y)v(y)dy.

Therefore if f =
(
f1
f2

)
∈ Y with f2 ∈ D(K)+, we have

∫ xc

0

(
C|f2

)
(x)(1 + x)dx+

∫ ∞
xc

(Kf2) (x)(1 + x)dx

=

∫ xc

0

(∫ ∞
xc

a(y)b(x|y)f2(y)dy

)
(1 + x)dx

−
∫ ∞
xc

(
y + 1−

∫ y

xc

b(x|y)(1 + x)dx

)
a(y)f2(y)dy

=

∫ ∞
xc

(∫ xc

0

b(x|y)(1 + x)dx

)
a(y)f2(y)dy

−
∫ ∞
xc

(
y + 1−

∫ y

xc

b(x|y)(1 + x)dx

)
a(y)f2(y)dy

=

∫ ∞
xc

(∫ y

0

b(x|y)(1 + x)dx− y − 1

)
a(y)f2(y)dy

=

∫ ∞
xc

a(y)f2(y) (n(y)− 1) dy ≤ β

∫ ∞
xc

f2(y) (y + 1) dy

= β‖f2‖YF ≤ β‖f‖Y .
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Theorem 4.2.9. The strong non-negative local solution, u(t) =
(
uD(t)
uF (t)

)
, to equa-

tion (4.9) does not blow up in finite time and hence is a global solution.

Proof. The solution u(t) is strongly differentiable and this property is inherited
by the two components uD(t) and uF (t). This allows us to take a time derivative
through the integrals which appear in our norms, which along with Lemmas 4.2.7
and 4.2.8 gives us

d

dt
‖u(t)‖Y =

d

dt
‖uD(t)‖YD +

d

dt
‖uF (t)‖YF

=
d

dt

∫ xc

0

(uD(t))(x)(1 + x)dx+
d

dt

∫ ∞
xc

(uF (t))(x)(1 + x)dx

=

∫ xc

0

(
C|uF (t)

)
(x)(1 + x)dx+

∫ xc

0

(ND(uD(t), uF (t)))(x)(1 + x)dx

+

∫ ∞
xc

(KuF (t)) (x)(1 + x)dx+

∫ ∞
xc

(NF (uD(t), uF (t)))(x)(1 + x)dx

≤ β‖u(t)‖Y .

Applying Gronwall’s inequality, [34, Lemma D.3], yields ‖u(t)‖Y ≤ ‖u0‖Y eβt for
all t ∈ [0, T̂ ). Therefore ‖u(t)‖Y does not blow up in finite time, hence by Theo-
rem 2.4.36, u(t) is a global solution.
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Constraint on Fragmentation
Kernels

In Chapter 4 we imposed the constraint on a and b that

a(y) (n(y)− 1) ≤ β(y + 1), (5.1)

for some positive constant β, where n(y) is the expected number of particles re-
sulting from the fragmentation of a particle of mass y, given by

n(y) =

∫ y

0

b(x|y)dx.

Physically, a(y) is the rate at which particles of mass y fragment, whilst (n(y)−1)
gives the expected gain in particles when such a fragmentation event occurs. There-
fore, condition (5.1) acts as a restriction on the rate of increase in the number of
particles.

As was mentioned, this condition is satisfied if a is bounded by a linear polyno-
mial with positive coefficients and n(y) is bounded by a positive constant. These
two demands are common in the study of coagulation–fragmentation equations;
appearing, for example, in [6], [9] and [22]. In this chapter we shall investigate
whether condition (5.1) allows a wider choice for a and b than is the case with the
standard restrictions.

Within [4, Section 8.2], three possible forms of the function b(x|y) are introduced.
We shall now consider each of these forms in turn and examine the implications
for condition (5.1).

66
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5.1 Power Law Case

The first form considered for b(x|y) is the power law case, given by

b(x|y) = xνf(y),

for some function f(y). The mass conservation condition (3.2) demands that
f(y) = (ν + 2)/yν+1, with ν > −2. Now, if we compute the quantity n(y) under
these conditions, we get

n(y) =

∫ y

0

b(x|y) dx =

∫ y

0

(ν + 2)xν

yν+1
dx =

ν + 2

ν + 1
.

We must make the restriction ν > −1 in order that the above integral exists, in
which case n(y) is equal to some constant. The condition (5.1) then requires that
a(y) be linearly bounded. As such, (5.1) is equivalent to the standard constraints.

5.2 Homogenous Case

The second form proposed in [4] is the homogenous case, in which b(x|y) takes the
form

b(x|y) =
1

y
h

(
x

y

)
,

for some function h. Considering the mass conservation condition (3.2), making
the change of variable t = x/y gives us

y =

∫ y

0

xb(x|y) dx =

∫ y

0

x

y
h

(
x

y

)
dx = y

∫ 1

0

th(t) dt.

Therefore, we must have
∫ 1

0
th(t) dt = 1. With a kernel b of this form, we get

n(y) =

∫ y

0

b(x|y) dx =

∫ y

0

1

y
h

(
x

y

)
dx =

∫ 1

0

h(t) dt,

where again the substitution t = x/y has been made. Hence n(y) is again a
constant, and so, as before, the bound (5.1) is equivalent to the standard conditions
for a and b.

5.3 Separable Case

The final form for the kernel b(x|y), covered in [4], is the separable form given by

b(x|y) =
yB(x)∫ y

0
B(s)s ds

, x ≤ y,
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for some function B. It is easily verified that any b of this form satisfies the usual
mass conservation condition (3.2). If we select B(x) = ex then, using integration
by parts on the denominator, it is simple to show that

b(x|y) =
yex

yey − ey + 1
,

and hence

n(y) =

∫ y

0

yex

yey − ey + 1
dx =

y
∫ y

0
exdx

yey − ey + 1
=

yey − y
yey − ey + 1

.

Our constraint for a(y) then becomes

a(y)
ey − y − 1

yey − ey + 1
≤ β(y + 1).

Assuming that the factor multiplying a(y) is positive (true for large y; also the
constraint is satisfied automatically if the factor is negative), we can divide through
to get

a(y) ≤ β
(y + 1)(yey − ey + 1)

ey − y − 1
= β

(y + 1)(y − 1 + e−y)

1− ye−y − e−y
. (5.2)

Therefore a(y) is allowed to grow quadratically as y increases. Hence, in this case,
condition (5.1) represents a weaker restriction than the standard constraints. The
figure below shows plots of the bound in (5.2), with β = 1, over a range of values
for y.

Although this example may not be physically relevant, giving n(y)→ 1 as y →∞,
where we expect n(y) ≥ 2, it does demonstrate the potential of the new condition.
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Conclusion and Further Work

The goal of this work was the rigorous analysis of fragmentation and coagulation–
fragmentation equations involving a mass cut-off. In Chapter 3 we examined a
dual regime pure fragmentation model as introduced by Huang et al. [18]. By
using the theory of semigroups and operator matrices, we were able to establish
the existence of a unique strong solution to the system. This solution was shown
to preserve positivity and also to conserve mass, confirming the assertion made in
[18]. As an aim of further study, it would be interesting to obtain the explicit solu-
tion produced by the semigroup for the case of power law fragmentation kernels, as
given by (1.4). Once obtained, this solution could be compared with that provided
in [18], with the analysis of [9] suggesting agreement between the solutions.

As an addition to the pure fragmentation system, a mass loss mechanism could
be introduced to the model. In the case of fragmentation without a mass cut-off,
such a process was first modelled by Edwards et al. [11, 13, 17], who introduced
the following equation

∂u(x, t)

∂t
= −a(x)u(x, t) +

∫ ∞
x

a(y)b(x|y)u(y, t)dy +
∂

∂x
[r(x)u(x, t)].

This differs from the mass conserving equation (1.3), by the addition of the con-
tinuous mass loss term ∂

∂x
[r(x)u(x, t)], where r is the continuous mass loss rate.

Further, the usual mass conservation condition can be replaced by∫ y

0

xb(x|y)dx = y(1− λ(y)), 0 ≤ λ(y) ≤ 1,

allowing for discrete mass loss to occur during fragmentation. This equation was
rigorously analysed, using the theory of semigroups, by Banasiak and Lamb in [5].
In the case of fragmentation with a mass cut-off, the article [18] by Huang et al.
considers a dual regime model with continuous mass loss. The authors provide
explicit solutions in the specific case that a, b and r are given by power laws;
however, the methods applied in this study are not fully rigorous. The rigorous
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analysis of the general dual regime fragmentation model with mass loss remains
to be carried out.

In Chapter 4 we introduced a coagulation process to the dual regime model. As
far as we are aware, this represents the first example of the derivation and analysis
of a full coagulation–fragmentation model with fragmentation mass cut-off. The
main effort of this task involved the setting up of the coagulation terms in the
model. Once the model was in place, using the analysis of the standard case as
a guide, we were able to prove the existence of a unique, strongly differentiable,
global in time, positive solution.

Also in Chapter 4, we introduced an alternative constraint, (4.4), on the frag-
mentation kernels a and b. The appeal of this condition lies both in the physical
interpretation that can be attached to it, and also in the way in which it allows
the boundedness to be spread between a(y) and n(y). In Chapter 5 we were able
to show that the constraint (4.4) permits a wider choice for the functions a and
b, than is the case with the standard conditions. In terms of further study on
this matter, it would be pleasing to find an admissible form for b which gives n(y)
proportional to yα for α ∈ (0, 1), which in turn would allow a(y) to grow like
y1−α. Such an example would further illustrate the advantages of condition (4.4),
providing us with an unbounded n(y), where the standard constraints require n(y)
be bounded.



Appendix

A - Explanation of Coagulation Terms

Recall the coagulation operator for the fragmentation regime given in Chapter 4.
It is our aim here to clarify the construction of this expression. First consider the
terms involving the characteristic function χI(x). If xc < x ≤ 2xc, then subtracting
xc throughout we get 0 < x − xc ≤ xc (< x). In the diagram below we consider
how the quantities y and x− y change as the variable y moves through the range
of integration

y : 0 −→
D

x− xc −→
D

xc −→
F

x

x− y : x −→
F

xc −→
D

x− xc −→
D

0.

The subscripts D and F indicate the regime in which the values y and x − y
lie, motivating the choice of functions appearing within the first three integrals.
Turning now to the terms involving the characteristic function χJ(x). Suppose
2xc < x, subtracting xc on both sides gives us (0 <) xc < x − xc (< x). This
provides the ordering in the diagram below

y : 0 −→
D

xc −→
F

x− xc −→
F

x

x− y : x −→
F

x− xc −→
F

xc −→
D

0.

Again D and F indicate to which regime the variables belong, guiding us in our
function selection for the second three integrals.
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