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Abstract

The evaporation of a spherical-cap shaped sessile droplet has been extensively stud-

ied. However, there is a growing interest in the evaporation of sessile droplets with

more complicated geometries, such as an annular droplet. Not only is the evap-

oration of annular droplets of intrinsic scientific interest in its own right, but it

also arises in several practical and industrial contexts, such as the evaporation of a

droplet in a well, which occurs in the manufacturing of organic light-emitting diode

(OLED) displays, and in the context of a droplet evaporating on a patterned sub-

strate. In the present work, we formulate and analyse a mathematical model for the

evaporation of a thin, axisymmetric annular droplet with two circular contact lines.

A numerical solution for the concentration of vapour in the atmosphere is discussed,

as well as numerical, asymptotic and approximate solutions for the local and total

evaporative flux in the diffusion-limited regime. The evolution, and therefore the

lifetime, of the droplet in various modes of evaporation, as well as the nature of the

deposit left behind on the substrate after the droplet has entirely evaporated, are

described both for a spatially-uniform and a diffusion-limited evaporative flux.
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Chapter 1

Introduction

1.1 Evaporation of sessile droplets

The evaporation of a sessile droplet (i.e. a droplet lying on a substrate) has been

extensively studied (see, for example, the review articles by Routh [67], Larson

[44], Giorgiutti-Dauphiné & Pauchard [35], Lohse [48], and Wilson & D’Ambrosio

[79]). When a sessile droplet evaporates vapour escapes from the free surface of the

droplet and into the surrounding atmosphere. The evaporation of a sessile droplet

is a fundamental problem which occurs in a wide variety of natural and industrial

contexts such as the spraying of plants with pesticides [86], blood stain pattern

analysis [7], spray cooling [50], and ink-jet printing [77]. Some examples of sessile

droplets are shown in Figure 1.1.

Various theoretical models have been proposed for the evaporation of a sessile

droplet, however the model that is the most widely studied (and is perhaps the

most widely applicable) is the diffusion-limited model. The diffusion-limited model

describes the situation in which the limiting factor in the evaporation process is the
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(a) (b)

(c) (d)

Figure 1.1: Examples of sessile droplets: (a) water droplets on a window [33], (b)
a droplet on a hydrophobic substrate [39], (c) droplets on a leaf [1], and (d) coffee
stains resulting from an evaporating coffee spill [37].

diffusion of vapour away from the surface of the droplet and into the atmosphere (see,

for example, the recent review article by Wilson & D’Ambrosio [79]). An underlying

assumption in the diffusion-limited model is that the diffusion of vapour is quasi-

static, meaning that the timescale for the diffusion of vapour is much shorter than

the lifetime of the droplet (i.e. the time it takes for the droplet to evaporate fully).

Under this assumption, the concentration of vapour in the atmosphere, denoted by

ĉ, satisfies Laplace’s equation

∇2ĉ = 0, (1.1)

alongside boundary conditions describing the behaviour of the concentration of

vapour on the surface of the droplet, in the far-field, and on the substrate. Through-

out, hats will denote dimensional variables.

Figure 1.2 shows a sketch of a spherical-cap shaped droplet. In particular, it

2



ẑ

r̂θ̂ θ̂ b̂

Substrate

Atmosphere

Droplet

Local Evaporative Flux

Figure 1.2: Sketch of a spherical-cap droplet

shows the contact angle, i.e. the angle that the droplet makes with the substrate,

denoted by θ̂, the radius of the contact line of the droplet at r̂ = b̂, and the profile

of the droplet ẑ = ĥ.

The simplest case of the diffusion-limited model involves a spherical-cap shaped

droplet, which was first studied by Picknett & Bexon [62]. Assuming that the droplet

has a spherical-cap shape simplifies the problem by ensuring that the problem for ĉ

is axisymmetric (around the central axis of the droplet) and has a known domain.

Figure 1.2 shows a sketch of a spherical-cap shaped droplet. In particular, it

shows the contact angle, i.e. the angle that the droplet makes with the substrate,

denoted by θ̂, the radius of the contact line of the droplet at r̂ = b̂, and the profile

of the droplet on ẑ = ĥ.

In practice, spherical-cap shaped droplets occur for small values of the Bond and

capillary numbers. The Bond number, Bo, characterises the ratio of the magnitude

of the force of gravity and the surface tension forces acting on the droplet, and

ensures that gravity does not play a role in the profile of the droplet. The capillary

number, Ca, characterises the ratio of the magnitude of viscous and surface tension

forces acting at the free surface of the droplet, and ensures that the shape of the

droplet is determined by surface tension. Picknett & Bexon [62] utilised a series

3



solution for the evolution of the droplet to obtain an approximate expression for the

lifetime an evaporating droplet. When their approximate expression was compared

to the results of their own experiments Picknett & Bexon [62] found errors ranging

from 0.8% to 19.7%. They did, however, note that the droplets in some of the

experiments were not a perfect spherical-cap shape due to the Bond number being

too large to ensure that gravity did not play a role in the droplets’ shapes.

Lebedev [45] first gave the exact solution to the concentration of vapour in the

atmosphere, in the context of a mathematically equivalent problem in electrostatics.

Deegan et al. [26, 27] then used the exact solution for ĉ from Lebedev [45] to derive

analytical expressions for the local and total evaporative fluxes, denoted by Ĵ and

F̂ respectively.

The case of a thin droplet for which the contact angle is small (i.e. when θ̂ � 1) is

of particular interest, since more analytical progress can be made in this case (see, for

example, Hu & Larson [38], Dunn et al. [29, 28], and Wilson & Duffy [80]). Taking

D̂ to be the diffusion coefficient, ĉsat to be the constant saturation concentration

of vapour in the atmosphere, ĉ∞ to be the constant far-field concentration, and b̂0

it be the initial radius of the droplet, Ĵ can be nondimensionalised according to

D̂(ĉsat− ĉ∞)/b̂0. The non-dimensional expression for J for a thin droplet is given by

J =
2

π
√
b2 − r2

for 0 ≤ r ≤ b, (1.2)

which has an (integrable) square root singularity at the contact line r = b. A local

analysis near the contact line (see, for example, Jackson [40]) shows that

J ∝ (b− r)λ−1, (1.3)
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where λ (> 1/2) is a function of the contact angle of the droplet θ,

λ =
π

2(π − θ)
. (1.4)

In the limit of a thin droplet (i.e. in the limit θ → 0) then λ→ 1/2, recovering the

square root singularity at the contact line seen in (1.2).

If F̂ is nondimensionalised according to b̂0D̂(ĉsat − ĉ∞), the non-dimensional

expression for F̂ for a thin droplet is given by

F = 2π

∫ b

0

Jr dr = 4b. (1.5)

Hu & Larson [38] used the Finite Element Method (FEM) to numerically solve

Laplace’s equation (1.1) subject to the associated boundary conditions for the con-

centration of vapour, for a droplet with a contact angle within 0 < θ̂ ≤ π/2 and

hence determined the local and total evaporative fluxes. Their numerical solution

for the lifetime of the droplet was in good agreement with the approximate theoret-

ical solution of Picknett & Bexon [62], with a maximum relative error of 1.3% when

considering the same range of contact angles. Their approximate solution for Ĵ was

in very good agreement with the exact solution from Lebedev [45] with a maximum

relative error of 1.5%.

Dunn et al. [29, 28] provided further theoretical analysis of the diffusion-limited

evaporation of a spherical-cap droplet with a pinned contact line, generalising the

work of Deegan et al. [26, 27] to include the effects of evaporative cooling. Evapo-

rative cooling describes the effect in which latent heat of vaporisation (the energy

that is required for phase change) is obtained from the droplet and its surroundings.

They found that the total evaporative flux F̂ depends on the thermal conductiv-
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ity of the substrate. Their results were found to be in good agreement with the

experimental results of David et al. [24].

There has been substantial subsequent work on the diffusion-limited model, ex-

panding on topics such as: the effects of heat loss (Ait Saada et al. [3]), evolution

and lifetime (Murisic and Kondic [59] and Armstrong et al. [5]), the shielding effect

(Schofield et al. [68] and Wray et al. [81, 84]), droplet geometry (Sáenz et al. [75],

D’Ambrosio et al. [22] and Wray & Moore [82]), the effects of various substrate

properties (Stauber et al. [74] and Armstrong et al. [6]), and deposition patterns

(Siregar et al. [72], Sefiane [70], Pradhan & Panigrahi [66], Moore et al. [57, 58]).

A spatially-uniform evaporative flux is sometimes used as a simple approximation

to the spatially non-uniform evaporative flux (1.2) predicted by the diffusion-limited

model (see, for example, Okuzono et al. [61]). There are also some physical situa-

tions in which the local evaporative flux Ĵ is approximately spatially uniform. For

example, a spatially-uniform evaporative flux has also been observed experimentally

in cases in which a droplet evaporates on a hydrogel (see, for example, Boulogne

[12]). Moreover, note that in the special case of a hemispherical droplet with contact

angle θ̂ = π/2, the diffusion limited flux Ĵ is spatially uniform and proportional to

1/b̂ (see, for example, Stauber et al. [74]).

1.2 Modes of evaporation and the evolution of

evaporating droplets

The manner in which a droplet evaporates has a considerable effect on its lifetime.

There has been a great amount of research into the evolution, and hence the lifetime,

of droplets in various modes of evaporation, which describe the dynamics of the
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contact line and contact angles during the evaporation (see, for example, Stauber et

al. [74], Armstrong et al. [5, 6], and Schofield et al. [68]).

In the special case of a thin droplet, time is non-dimensionalised according to

ρ̂b̂20θ̂0/(D̂(ĉsat − ĉ∞)), where ρ̂ is the constant density of fluid in the droplet, and

θ̂0 is the initial contact angle of the droplet. The “extreme” modes of evaporation,

identified by Picknett & Bexon [62], are the Constant Contact Radius (CR) mode

and the Constant Contact Angle (CA) mode. In the CR mode, shown in Figure

1.3(a), the contact line remains pinned (i.e. b̂ = b̂0 throughout the evaporation), and

the contact angle decreases from the initial contact angle θ̂ = θ̂0 to θ̂ = 0. In this

mode, the non-dimensional lifetime of the droplet is π/16 (see, for example, Stauber

et al. [74]). In the CA mode, shown in Figure 1.3 (b), the contact angle of the

droplet remains fixed throughout the evaporation and the radius of the contact line

decreases from the initial radius r̂ = b̂0 to r̂ = 0. In this mode, the non-dimensional

lifetime of the droplet is 3π/32 (see, for example, Stauber et al. [74]). A great deal

of research has focused on these extreme modes of evaporation, including Aboubakri

et al. [2], Armstrong et al. [5, 6], Barmi & Meinhart [8], Birdi & Vu [11], Birdi et

al. [10], Dash & Garimella [23], Erbil et al. [31, 32], McHale et al. [52, 53], Picknett

& Bexon [62], Pittoni et al. [63], Shanahan et al. [71], Sobac & Brutin [73], Stauber

et al. [74], and Wray et al. [81].

In practice, however, when a droplet evaporates, it will often do so in a “mixed

mode”. Experimental studies of droplet evaporation (including Picknett & Bexon

[62], Hu & Larson [38], McHale et al. [53], Bhardwaj et al. [9], Dash & Garimella

[23], and Vlasko-Vlasov [76]) report that a droplet that initially evaporates in a

CR phase will typically have a critical contact angle, denoted by θ̂∗, at which the

contact line becomes unpinned and thereafter the droplet evaporates in a CA phase.

This particular mixed mode of evaporation is known as the stick-slide (SS) (or, more
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(a) (b)

Figure 1.3: Sketches of the evolution of a droplet evaporating in (a) Constant Con-
tact Angle (CA) mode and (b) Contant Contact Radius (CR) mode. The arrows
represent the direction of increasing time.

loosely, as the stick-slip) mode (see, for example, Stauber et al. [74]).

The lifetime of a thin droplet evaporating in the SS mode is constrained by

the lifetimes of an initially identical droplet evaporating in the CA and CR modes,

and depends on the critical contact angle of the droplet. More generally, however,

for a droplet evaporating with an initial contact angle satisfying π/2 < θ̂0 < π,

the lifetime of the droplet can be longer than that of an initially identical droplet

evaporating in either the CA or the CR mode and depends on the critical contact

angle and the initial contact angle, as described by Stauber et al. [74].

Other mixed modes such as the stick–jump (SJ) mode can also occur in practice.

The stick–jump is the name of the mode of evaporation in which the droplet has

several “stick” phases in which the droplet evaporates in a CR mode, separated by

several short “jump” phases in which the radius of the contact line rapidly jumps

to a new (smaller) value.
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Figure 1.4: Examples of various possible deposition patterns, reproduced from Yang
et al. [85].

1.3 The deposition patterns resulting from the

evaporation of particle-laden droplets

The evaporation process induces a flow within the droplet which, when the droplet

contains suspended particles, leaves behind a deposition pattern on the substrate

after the droplet has fully evaporated. These deposition patterns are of significant

interest (see, for example, Deegan [25], Deegan et al. [26, 27], Popov [65], Wray

et al. [83], Boulogne et al. [12], and Moore et al. [57, 58]) with the widely studied

“coffee-ring” being the most well-known deposition pattern, though there are many

different possible deposition patterns that can occur (see, for example, the review

by Wilson & D’Ambrosio [79]). Figure 1.4 shows examples of the various deposition

patterns that can be observed.

Yang et al. [85] described some of the various possible deposition patterns that

can be observed such as: a “coffee-ring” formed at the contact line of the droplet;
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multi-ring deposits, where multiple coffee-rings are formed on the substrate; and a

mountain-like pattern, where all of the deposit gathers near the centre of the droplet.

Popov [65] analytically and numerically studied the evaporation of a particle-

laden droplet. In particular, he derived expressions for the concentration of sus-

pended particles in bulk of the droplet, and described the coffee-ring left behind

after the droplet had fully evaporated. In his work, he assumed that presence of

the suspended particles within the droplet did not affect the local evaporative flux

Ĵ , and that the suspended particles were advected by the flow within the droplet.

Popov found there was a good agreement between his results and the experimental

results of Deegan et al. [27].

Boulogne et al. [12] theoretically and experimentally studied the deposition pat-

terns left behind after a particle-laden droplet had evaporated with either a spatially-

uniform flux and diffusion-limited evaporative flux. They found that, while the

timescale of evaporation varied between the two cases, both fluxes produced a de-

posit at the contact line of the droplet

1.4 The effect of droplet geometry on droplet life-

times and deposition patterns

In recent years, the evaporation of one or more droplets with more complicated

geometries than a spherical cap have been the subject of increasing interest, specif-

ically in regards to the evaporation of droplets with a non-circular contact line and

of multiple droplets.

Sáenz et al. [75] studied the evaporation of, and deposition patterns resulting

from, droplets with non-circular contact lines, specifically triangular, square, and
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kidney-shaped droplets. The study found that the local and total evaporative fluxes,

and the density of the resulting deposition patterns, depend on the shape of the

droplet. In particular, they found that there is a denser deposit at the contact line

in regions in which the curvature of the contact line is the greatest.

Wray et al. [81] provided an analysis, based on previous work by Fabrikant [34],

of the evaporation of an arbitrary arrangement of multiple thin droplets with cir-

cular contact lines. The theoretical analysis of Wray et al. [81] was shown to give

predictions for the evolution of the shape of the droplets which are in good agree-

ment with the experimental results of Khilifi et al. [42] for an array of seven droplets

in an I-shaped configuration. These results illustrate that droplets within an array

experience a “shielding” effect due to the presence of nearby droplets, causing them

to experience a lower rate of evaporation, and hence a droplet in proximity to other

droplets has a longer lifetime than it would do in isolation.

Wray et al. [84] built upon the work of Wray et al. [81] to study the deposition

patterns from an arbitrary arrangement of thin, circular, particle-laden droplets. By

solving the hydrodynamic problem within the droplets, they showed that the density

of the deposits at the contact lines of the droplets is reduced in the regions of the

contact lines that are closest to the other droplets. The theoretical predictions of

Wray et al. [84] were found to be in good agreement with the experimental results

of Pradhan & Panigrahi [66] for the density of the deposit at the contact lines of a

pair of identical droplets in close proximity.

Masoud et al. [51] generalised the work of Wray et al. [81] to include droplets

that are not thin, utilising Green’s Second Identity and the Method of Reflections

to obtain a general approximate solution for the total evaporative flux of a droplet

within an array of evaporating droplets.
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Figure 1.5: An annular droplet

1.5 Annular droplets

The present work is concerned with the evaporation of a sessile annular droplet

(i.e. an axisymmetric droplet with two concentric circular contact lines, henceforth

referred to as the inner and the outer contact lines) as shown in Figure 1.5. The radii

of the inner and the outer contact lines are denoted by â and b̂(> â), respectively.

Sessile annular droplets are found in real life scenarios such as: a result of applying

a jet of air or rotating the substrate (McKinley et al. [54, 55, 56]), on patterned

surfaces (Lenz et al. [46], Jokinen et al. [41], and Schäfle et al. [69]), in the presence

of an electric fields (Edwards et al. [30]), as well as during the evaporation of a

droplet in a cylindrical well (Vlasko-Vlasov et al. [76] and D’Ambrosio et al. [22]).

McKinley et al. [54, 55, 56] analysed the effects of an air-jet blowing down onto

a thin droplet and of the rotation of a thin droplet, and found that an annular

droplet can form for a sufficiently strong air flow or sufficiently rapid rotation. By

conducting a linear stability analysis, they found that an annular droplet created
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in these ways is unconditionally unstable for small perturbations of the inner and

outer contact lines.

While the results of McKinley et al. [54, 55, 56] conclude that an annular droplet

is not stable on a planar substrate, stable annular droplets have created experimen-

tally on textured substrates. Specifically, an annular droplet can be created by

depositing a droplet onto substrate that has been patterned with a lyophobic and

lyophillic coating (or hydrophobic and hydrophillic if the droplet is specifically a

droplet of water). Lenz et al. [46] studied the changes in the shape of an annular

droplet on a patterned lyophobic and lyophilic substrate as the volume of the droplet

was increased. Their theoretical and experimental results showed that a single, non-

axisymmetric bulge in the droplet can form for sufficiently large volumes.

Jokinen et al. [41] also studied the changes in the shape of an annular droplet

on a substrate patterned with a hydrophobic and hydrophilic coating as the volume

was increased. They reported that annular droplets could: form a single, non-

axisymmetric bulge on the annular droplet; collapse into a spherical-cap shaped

droplet; or form a “lens” shape in which an air bubble is trapped within a spherical-

cap shaped droplet. They gave the ranges of volume and aspect ratios that corre-

spond to each of the three outcomes.

Schäfle et al. [69] experimentally created annular droplets on a substrate pat-

terned with a lyophobic coating. Building upon the work of Lenz et al. [46] and

Jokinen et al. [41], they studied the differences in the evaporation of annular droplets

for various values of k = â/b̂ (where, by definition, 0 ≤ k ≤ 1), i.e. for various values

of the ratio of the radii of the two contact lines. They found that for values of k

close to unity, annular droplets collapse into a spherical-cap shaped droplet, while

for sufficiently small values of k, they found that a single, non-axisymmetric bulge
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forms.

Chen et al. [15] experimentally studied the deposition of various droplets with

two contact lines (including an annular droplet) created using inkjet printing. While

they observed irregular bulges in the droplets as a result of the inkjet printing

process, their results showed that the particles are advected to both the inner and

outer contact lines for all shapes of droplet they studied.

Edwards et al. [30] used non-uniform electric fields to create annular droplets.

They found that these initial annular droplet broke up into a ring of droplets when

the electric field is turned off. The number of resulting droplets depends on the

volume of the initial droplet. They found that larger numbers of small droplets

would form for lower volumes of the initial droplet.

More recently, Vlasko-Vlasov et al. [76] and D’Ambrosio et al. [22] studied the

evaporation of a droplet in a well, during which the droplet can become annular with

an inner contact line after the free surface makes contact with the bottom of the

well (referred to as touchdown). Vlasko-Vlasov et al. [76] studied the evaporation of

a droplet evaporating in a cylindrical well. They found that the inner contact line

moves radially outwards after touchdown and undergoes a stick-slide motion during

the evaporation, and examined the resulting deposition patterns. D’Ambrosio et

al. [22] undertook a theoretical and experimental study of the evaporation of a thin

droplet in a well. D’Ambrosio et al. [22] obtained a numerical solution for the

concentration of vapour, and hence the local and total evaporative flux of the system,

and calculated the evolution and hence the lifetime of the droplet. They determined

the conditions for touchdown to occur (dependent on the shape of the well), and

described the evolution before and after either depinning (for “shallow” wells) or

touchdown (for “steep” wells). If touchdown occurred, the inner contact line moved
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towards the outer wall of the well and the contact angle at the inner contact line

is zero throughout the evaporation, while the outer contact line was pinned at the

outer wall of the well and the outer contact angle varies throughout the subsequent

evaporation.

1.6 Analogous problems to droplet evaporation

While there has not been any previous work on the evaporation of a sessile annular

droplet, there has been work on problems that are mathematically equivalent to the

corresponding evaporative problem. Specifically, the potential around an electrified

disc and the force on an annular punch satisfy the same governing equations and

boundary conditions as the concentration of vapour in the atmosphere.

Cooke [20], generalising the work of Noble [60], expressed the electrostatic prob-

lem as three coupled integral equations for equivalent of the concentration of vapour

ĉ. Which he then reduced to a single integral equation that could be solved for the

equivalent to the total evaporative flux F̂ using Chebyshev-Gauss quadrature.

Collins [18] expressed the electrostatic problem in terms of a Fredholm equation.

He then derived the asymptotic solution of the equivalent to F̂ in the limit k → 0+.

Leppington & Levine [47] used Green’s Theorem to obtain an integral equation

that is accurate in the limit k → 1− which could be solved for the first-order asymp-

totic solution for Ĵ , and hence for F̂ , in that limit. However, as we shall describe in

Chapter 4.3 of the present work, they made an error when calculating the leading

order term in the solution for Ĵ . However, their error is antisymmetric about the

midpoint of the annulus, and so their asymptotic solution for F̂ is still correct.

Clements & Love [17], using a similar method to Cooke [20] and Noble [60],
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expressed Ĵ as a single integral equation. While both Noble [60] and Cooke [20]

utilised Bessel functions to approximate the integral equations, Clements and Love

used a Laurent series. As a result of this, Clements and Love’s approximate solution

is only accurate for values of k satisfying 0 < k ≤ 0.6.

Gladwell & Gupta [36] obtained accurate approximate solutions for Ĵ and F̂

in the limit k → 0+. The asymptotic expansion of their approximate solution for

F̂ agrees with the asymptotic solution for F̂ up to order k4. Since an asymptotic

solution for Ĵ has not yet been found in the limit k → 0+, they did not discuss the

accuracy of Ĵ . However we will discuss the accuracy of this approximate solution

compared to a numerical solution for Ĵ in Chapter 4.4.

Antipov [4] reduced the electrostatic problem to a Riemann problem (an initial

value problem with piecewise constant initial data [14]), which was then solved to

obtain the exact solution for Ĵ . However, to obtain this solution Antipov [4] took

the total evaporative flux to be a prescribed constant, which contradicts the results

of other authors, such as Cooke [20], who have shown F̂ to be a function of k.

Laraqi [43], working in the context of electrostatics, combined the behaviour of

F̂ for a spherical-cap droplet (for which F = 4b) and the behaviour of F̂ for an

annular droplet in the limit k → 1− (for which F = 0) and used a correlation

method, described by Churchill & Usagi [16], to obtain an approximate solution for

F̂ . The accuracy of this approximate solution will be discussed in Chapter 4.4.

Willert et al. [78], working in the context of an annular punch, obtained an

approximate solution for F by posing a simple form of F , namely F = 4(1− kn)m.

They used Boundary Element Method (BEM) simulations to determine best possible

values of n and m, which were found to be n = 2.915, and m = 0.147. The accuracy

of this approximate solution will be discussed in Chapter 4.4.
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Popov et al. [64, Chapter 10] give a very useful review of numerical, asymptotic

and approximate solutions for the local and total evaporative flux, including the

work of Cooke [20], Collins [18], Clements & Love [17], Gladwell & Gupta [36], and

Willert et al. [78] discussed previously.

1.7 Presentation of work

Aspects of the following work have appeared in oral presentations by the author at

the following scientific meetings: Droplets 2021 in August 2021, presented virtually

from Darmstadt, Germany; British Applied Mathematics Colloquium in April 2022,

presented virtually at the hybrid event in Loughborough; 35th Scottish Fluid Me-

chanics Meeting in May 2022, held in person in Oban; and UK Fluids Conference

2022 in September 2022, held in person in Sheffield.

1.8 Thesis Overview

The aim of this thesis is to consider the evaporation of a sessile annular droplet in

different modes of evaporation, and to determine the resulting deposition patterns

that occur for both spatially-uniform and diffusion-limited evaporative fluxes.

In Chapter 2, we formulate the mathematical problem of an evaporating annular

droplet, namely the governing equations, associated boundary conditions and the

local and total evaporative fluxes.

In Chapter 3, we determine geometry of an annular droplet, deriving the expres-

sion for the profile, volume and inner contact angle of a thin annular droplet.

In Chapter 4, we derive expressions for the concentration of vapour in the atmo-

sphere and the local and total evaporative fluxes. We obtain numerical solutions,
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utilising COMSOL Multiphysics® [19] for ĉ and hence obtain numerical solutions

for Ĵ and F̂ . We also make use of the method described by Cooke [18] to solve for

F̂ without having to first solve for either ĉ or Ĵ . We also discuss the asymptotic

solution for F̂ in the limit k → 0+ obtained by Collins [18], and the asymptotic

solutions for Ĵ and F̂ in the limit k → 1− obtained by Leppington & Levine [47].

Finally, we discuss several formulations of approximate solutions of F̂ , including

those obtained by Gladwell & Gupta [36], Laraqi [43], and Willert et al. [78].

In Chapter 5, we consider four modes of evaporation for an evaporating annular

droplet, and derive expressions for the evolution and lifetime of the droplet in each

of these modes for both spatially-uniform and diffusion-limited evaporative fluxes.

We also compare the lifetimes of the droplet in the different modes with those of a

spherical-cap shaped droplet.

In Chapter 6, we consider the evaporation of a particle-laden annular droplet. We

solve the hydrodynamic problem within the droplet to determine the depth-averaged

velocity and derive expressions for the concentration, and therefore the mass, of

suspended particles in the bulk of the droplet. We then derive the expressions for

the mass of suspended particles at both of the contact lines. We then compare the

theoretical predictions for the spatially-uniform and the diffusion-limited evaporative

fluxes.

Finally, in Chapter 7, we summarise the results obtained, draw conclusions and

suggest possible directions for future work.
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Chapter 2

Problem Formulation

Consider the evaporation of a thin, axisymmetric, annular droplet on a planar sub-

strate. We work relative to cylindrical coordinates (r̂, ẑ) with the substrate located

at ẑ = 0 and the axis of symmetry aligned with the axis of the droplet, perpen-

dicular to the substrate, as sketched in Figure 2.1. The annular droplet has an

inner contact line located at r̂ = â(t̂), an outer contact line at r̂ = b̂(t̂), a profile

ĥ(r̂, t̂), and a volume V̂ (t̂), where t̂ denotes time. At t̂ = 0, â and b̂ take the initial

values â(0) = â0 and b̂(0) = b̂0. The droplet occupies the region â ≤ r̂ ≤ b̂ and

0 ≤ ẑ ≤ ĥ(r̂, t̂), as shown in Figure 2.1.

The inner contact angle that the free surface of the droplet makes with the

substrate at the inner contact line is denoted by θ̂a = θ̂a
(
t̂
)
, and the outer contact

angle that the droplet makes with the substrate at the outer contact line is denoted

by θ̂b = θ̂b(t̂). The droplet is assumed to be thin, and so, in particular, the inner

and outer contact angles are small (i.e. θ̂a � 1 and θ̂b � 1). At t̂ = 0, θ̂b takes the

initial value θ̂b(0) = θ̂b0 and θ̂a(0) takes the initial value θ̂a0. Note that θ̂a and θ̂b will,

in general, not be equal. Throughout, variables with hats will denote dimensional
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ẑ = ĥ
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θ̂a

Ĵ(r̂)

Figure 2.1: A sketch of the geometry of an annular droplet.

variables.

Working in the diffusion-limited regime (see, for example, the recent review by

Wilson & D’Ambrosio [79]), and assuming that the diffusion coefficient of vapour

in the atmosphere D̂ is constant, the concentration of vapour ĉ(r̂, ẑ, t̂) in the atmo-

sphere satisfies Laplace’s equation,

∇2ĉ =
1

r̂

∂

∂r̂

(
r̂
∂ĉ

∂r̂

)
+
∂2ĉ

∂ẑ2
= 0, (2.1)

subject to the mixed boundary conditions

ĉ = ĉsat on ẑ = 0 for â ≤ r̂ ≤ b̂, (2.2)

ĉ→ ĉ∞ as r̂2 + ẑ2 →∞, (2.3)

∂ĉ

∂ẑ
= 0 on ẑ = 0 for 0 ≤ r̂ < â, b̂ < r̂, (2.4)

where the boundary condition (2.2) imposes that ĉ takes the constant saturation
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concentration ĉsat (> ĉ∞) on the free surface of the droplet, (2.3) imposes the con-

stant far-field vapour concentration ĉ∞, and (2.4) corresponds to zero flux of vapour

through the substrate. Note that since the droplet is thin, the boundary condition

(2.2) imposed on ẑ = 0 is asymptotically equivalent to imposing it on ẑ = ĥ.

The local evaporative flux Ĵ = Ĵ(r̂, t̂) from the free surface of the droplet is given

by

Ĵ = −D̂ ∂ĉ

∂ẑ
on ẑ = 0 for â ≤ r̂ ≤ b̂. (2.5)

The total evaporative flux F̂ = F̂ (t̂) of vapour from the droplet is given by the

integral of the local evaporative flux (2.5) over the free surface of the droplet, namely

F̂ = 2π

∫ b̂

â

Ĵ(r̂, t̂)r̂ dr̂. (2.6)

Note that ĉ, Ĵ and F̂ depend on time parametrically via â, b̂, θ̂a and θ̂b. We scale

and non-dimensionalise the problem as follows. In the atmosphere we write

ĉ = ĉ∞ + (ĉsat − ĉ∞) c, Ĵ =
D̂ (ĉsat − ĉ∞)

b̂0
J, F̂ = b̂0D̂ (ĉsat − ĉ∞)F,

t̂ =
ρ̂b̂20θ̂b0

ˆ̂
D (ĉsat − ĉ∞)

t, r̂ = b̂0r, ẑ = b̂0z, â = b̂0a, b̂ = b̂0b, (2.7)

where ρ̂ is the constant density of the fluid within the droplet. Within the droplet,

the non-dimensionalisation of the variables are the same except that ẑ = b̂0θ̂b0z and

with the additions

p̂ = p̂a +
σ̂θ̂b0

b̂0
p, û = (û, ŵ) =

(
D̂(ĉsat − ĉ∞)

ρ̂b̂0θ̂b0
u,
D̂(ĉsat − ĉ∞)

ρ̂b̂0
w

)
, (2.8)

ĥ = b̂0θ̂b0h, θ̂a = θ̂b0θa, θ̂b = θ̂b0θb, V̂ = b̂30θ̂b0V,

21



where p̂(r̂, ẑ, t̂) is the pressure in the bulk of the droplet, σ̂ is the constant surface

tension, and û(r̂, ẑ, t̂) is the velocity of the fluid in the bulk of the droplet.

As a consequence of the scalings used b0 = 1 and θb0 = 1. We define the ratio of

the radii of the contact lines as

k(t) =
a(t)

b(t)
. (2.9)

The initial value of k is k(0) = k0 = a0/b0 = a0, and 0 ≤ k ≤ 1. Using (2.7),

Laplace’s equation (2.1) remains unchanged and the boundary conditions (2.2)–

(2.4) become

c = 1 on z = 0 for a ≤ r ≤ b, (2.10)

c→ 0 as r2 + z2 →∞, (2.11)

∂c

∂z
= 0 on z = 0 for 0 ≤ r < a, b < r, (2.12)

and the local evaporative flux from the free surface of the droplet is

J = −∂c
∂z

on z = 0 for a ≤ r ≤ b. (2.13)

In the diffusion-limited case the local evaporative flux can be expressed in the

form

JDL =
1

b
JDL

(r
b
, k
)

(2.14)

and the total evaporative flux can be expressed in the form

FDL = bFDL(k), (2.15)
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where JDL will be obtained numerically, asymptotically, and approximately, and FDL

will be obtained numerically and asymptotically in the asymptotic limits k → 0+

and k → 1− in Section 4.

In addition to diffusion-limited evaporation, we also consider the case of a spatially-

uniform evaporative flux in which JU ≡ J0 is a constant. In order to compare the

evolution and lifetimes between a spatially-uniform evaporative flux and a diffusion-

limited evaporative flux, we chose a spatially-uniform evaporative flux that has the

same total evaporative flux, FDL, as the diffusion-limited flux in the limits k → 0+

and k → 1−. We therefore choose

JU = J0 =
4

πb
, (2.16)

then, using (2.6), FU is

FU = bFU(k), (2.17)

where

FU(k) = 4(1− k2). (2.18)

The volume of the droplet is given by

V (t) = 2π

∫ b

a

h(r)r dr, (2.19)

and V evolves according to the global mass balance condition,

dV

dt
= −F = −2π

∫ b

a

J(r)r dr. (2.20)

The droplet begins evaporating at t = 0 with initial volume V0 and the lifetime

of the droplet, i.e. the time at which the droplet has fully evaporated, denoted by
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t = tlifetime, is determined by

V = 0 at t = tlifetime. (2.21)
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Chapter 3

Droplet Geometry

In situations in which the droplet is sufficiently small, and surface tension is suf-

ficiently strong (i.e. in situations where the droplet is smaller than the capillary

number l = σ/(ρg)1/2, where g denotes the magnitude of the acceleration due to

gravity), the Stokes equations reduce to the statement that the leading order pres-

sure p = p(r, z, t) within the droplet satisfies

∇p = 0, (3.1)

subject to the Young–Laplace equation at the free surface of the droplet, namely

p = κ on z = h, (3.2)

in which the dimensional pressure p̂ has been scaled according to (2.8) and where

κ = ∇ ·n denotes the mean curvature of the gas-liquid interface of the droplet, and

n denotes the outward unit normal vector to the free surface.

Equation (3.1) shows that the pressure is independent of r and z, and so p is a
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function of time only. At leading order in the limit θ̂b0 → 0, (3.2) reduces to

p = −1

r

∂

∂r

(
r
∂h

∂r

)
on z = h, (3.3)

which by using the fact that ∂p/∂r = 0 and differentiating with respect to r yields

the following equation for the profile of the droplet,

∂

∂r

(
1

r

∂

∂r

(
r
∂h

∂r

))
= 0. (3.4)

The general solution to (3.4) is of the form

h(r) = c1r
2 + c2 + c3 log r, (3.5)

where ci for i = 1, 2, 3 are coefficients to be determined by the boundary conditions.

The boundary conditions at the inner and outer contact lines are

h = 0 at r = a, (3.6)

∂h

∂r
= θa at r = a, (3.7)

h = 0 at r = b, (3.8)

∂h

∂r
= −θb at r = b. (3.9)

Here (3.6) and (3.8) represent the free surface of the droplet touching the substrate

at the contact lines, while (3.7) and (3.9) represent the contact angles that the

droplet makes with the substrate at the contact lines.

Note that there are four boundary conditions on the profile of the droplet and

only three unknown coefficients ci, and so a, b, θa and θb are not independent of each

other. In practice, we therefore use (3.6), (3.8) and (3.9) to find an expression for
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Figure 3.1: H given by equation (3.11) as a function of r, with b = 1 and for
k = 0.05, 0.10, . . . , 0.95. The arrow the direction of increasing k.

the profile of the droplet, and use (3.7) to find an expression for the inner contact

angle of the droplet in terms of k and θb.

Imposing the boundary conditions (3.6), (3.8) and (3.9) on the general solution

for h(r, t) (3.5) yields

h(r, t) = bθbH
(r
b
, k
)
, (3.10)

where H is given by

H
(r
b
, k
)

=

(
1− r2

b2

)
log k − (1− k2) log

(
r
b

)
2 log k + 1− k2

. (3.11)

Figure 3.1 shows H given by (3.11) for various values of k for b = 1. This figure

shows that in the limit k → 0+, the profile of the droplet is skewed to the right

(i.e. the maximum value of the profile corresponds to a value of r lower than the

midpoint between the contact lines), and in the limit k → 1− the profile of the
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droplet becomes symmetric. This figure clearly illustrates that the inner and the

outer contact angles are never equal. In particular, Figure 3.1 shows that the outer

contact angle is the same for all values of k, but that the inner contact angle is a

decreasing function of k. This difference in the contact angles is a consequence of the

quasi-static shape of the droplet; a quasi-static shape with equal contact angles is

impossible. By examining the behaviour of (3.11) in the limits k → 0+ and k → 1−,

we can see that H(r) tends to

H =
(1− r2) log k − log r

1 + 2 log k
+
k2 log k(1− r2 + 2 log r)

(1 + 2 log k)2
+O

(
k4 log k

(1 + 2 log k)3

)
→
(

1− r2

2

)−
(3.12)

in the limit k → 0+, showing that at leading order H reduces to the expression for

the profile of a spherical-cap droplet, and

H = R(1−R)(1− k) +
R(1−R)2

3
(1− k)2 +O

(
(1− k)3

)
→ 0+ (3.13)

in the limit k → 1−, where r = k + (1− k)R.

Using the boundary condition (3.7) on (3.10) yields the expression for the inner

contact angle θa(t),

θa = θbT (k), (3.14)

where T (k) is given by

T =
2k2 log k + 1− k2

k (k2 − 1− 2 log k)
. (3.15)

Figure 3.2 shows T = θa/θb given by (3.14) plotted as a function of k. In

particular, Figure 3.2 shows that the inner and outer contact angles are not equal

and, in particular, that their ratio, θa/θb satisfies θa/θb > 1 for all 0 ≤ k < 1. In the
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Figure 3.2: T = θa/θb given by equation (3.14) as a function of k. The dashed line
represents T = 1.

limit k → 1−, Figure 3.2 shows that T → 1+, i.e. that the contact angles tend to

the same value. Figure 3.2 also shows that T is a monotonically decreasing function

of k. Specifically, T satisfies

T =
−1

k(1 + 2 log k)
−
(

2 log k

2 log k + 1

)2

k +O

(
k3(log k)2

(1 + 2 log k)3

)
→∞ (3.16)

in the limit k → 0+, and

T = 1 +
1− k

3
+

2 (1− k)2

9
+O

(
(1− k)3

)
→ 1+ (3.17)

in the limit k → 1−.

Evaluating the volume of the droplet (2.19) using the expression for the h(r, t)

(3.10) gives the volume of the droplet to be

V = b3θbV(k), (3.18)
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Figure 3.3: V given by equation (3.19) as a function of k.

where V is given by

V =
π (1− k2) [(1 + k2) log k + 1− k2]

2 [2 log k + 1− k2]
. (3.19)

Figure 3.3 shows V plotted as a function of k. Analysing the behaviour of (3.18)

in the limits k → 0+ and k → 1− shows that V(t) reduces to the corresponding

value for V for a spherical-cap droplet (namely V = π/4), satisfying

V =
π

2

1 + log k

1 + 2 log k
− π (3 log k + 1)

2 (2 log k + 1)2
k2 +O

(
k4

log k3

(1 + 2 log k)3

)
→ π

4

−
(3.20)

in the limit k → 0+, and

V =
π

3
(1− k)2 − 1

9
π (1− k)3 +O

(
(1− k)4

)
→ 0+ (3.21)

in the limit k → 1−.
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Chapter 4

Solutions for c, J and F

In order to determine the evolution of an annular droplet, we first need to deter-

mine the local evaporative flux J and hence the total evaporative flux F . While

no simple, closed-form solution for c (i.e. a solution to the problem (2.1), (2.11)–

(2.12)) is available, numerical, asymptotic and approximate solutions for J and F

can all be determined. In Chapter 4.1, we discuss numerical solutions for c, J and

F . In Chapter 4.1.1 we discuss how to obtain numerical solutions for c, J and F us-

ing Finite Element Methods (FEM) implemented within COMSOL Multiphysics®

[19]. In Chapter 4.1.2, we discuss how to obtain a numerical solution for F using

Chebyshev–Gauss quadrature based on the approach of Cooke [20]. In Chapter 4.2

we describe the asymptotic solutions for F in the limit k → 0+. In Chapter 4.3 we

describe the asymptotic solutions for J and F in the limit k → 1−, and in Chapter

4.4 we describe several approximate solutions for F .
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4.1 Numerical solutions for c, J and F

4.1.1 Solutions for c, J and F using COMSOL Multiphysics

COMSOL Multiphysics [19] was used to directly solve Laplace’s equation (2.1) nu-

merically subject to the boundary conditions (2.11)–(2.12) for c(r, z, t) using the

Finite Element Method (FEM), and hence calculate the numerical solutions for J ,

denoted by JCOMSOL, and F , denoted by FCOMSOL. In order to create the plots of

the numerical results, the numerical data from COMSOL was imported into Maple™

[49], which was used to create a series of cubic spline fits to the data. These splines

were then plotted to generate Figures 4.1 and 4.2.

Figure 4.1 shows a contour plot of the concentration of vapour c obtained using

COMSOL for k = 0.2. In particular, this figure shows that in the far-field the

contours become circular, as they would be for a spherical-cap droplet.

Figure 4.2 shows plots of JCOMSOL as a function of r for k = 0, 0.2, 0.4, 0.6, 0.8. In

the case of a thin droplet there is a square root singularity in J at the contact line.

In the case of an annular droplet, a singularity exists at both the inner and outer

contact lines. A local analysis of the contact lines shows that these singularities are

also square-root singularities, as in the case of a spherical-cap droplet. Figure 4.2

shows that J is smaller close to the inner contact line than it is close to the outer

contact line. This is due to a “self-shielding” effect, in which the proximity of the

rest of the droplet inhibits evaporation at the inner contact line relative to that the

outer contact line. A corresponding “shielding” phenomenon is well known in the

context of multiple spherical-cap droplets (see, for example, Wray et al. [81] and

Masoud et al. [51]).
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Figure 4.1: Contour plot of c(r, z) obtained by solving (2.1), (2.11)–(2.12) using
COMSOL for k = 0.2. Contours are plotted at c = 0.25, 0.30, 0.35, . . . , 0.95, where
the arrow indicates the direction of decreasing c.
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Figure 4.2: Numerical solutions JCOMSOL(r) for k = 0, 0.2, 0.4, 0.6, 0.8 obtained
using COMSOL plotted as a function of r. The dash-dot lines show the approximate
solution of Gladwell & Gupta [36] given by (4.18) for k = 0.2, 0.4, 0.6, 0.8 and the
dashed lines show the asymptotic solution for J in the limit k → 1− given by (4.16)
for k = 0.6, 0.8.
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4.1.2 Numerical solution for F using Chebyshev–Gauss

quadrature

To confirm the results from COMSOL we use a second numerical method to solve

for F without first having to solve for c, as described by Cooke [20]. By taking a

Hankel transform of Laplace’s equation (2.1) and imposing the far-field condition

(2.11), c can be expressed as

c(r, z) =

∫ ∞
0

A(ξ)e−ξzJ0(ξr) dξ, (4.1)

where A(ξ) is an unknown function of ξ, and J0(·) is a Bessel function of the first

kind of order zero. Substituting the expression of c given in (4.1) into the boundary

conditions (2.10) and (2.12) yields

∫ ∞
0

A(ξ)J0(ξr) dξ = 0 for 0 ≤ r < a, (4.2)∫ ∞
0

ξ−1A(ξ)J0(ξr) dξ = 1 for a ≤ r ≤ b, (4.3)∫ ∞
0

A(ξ)J0(ξr) dξ = 0 for b < r <∞. (4.4)

Cooke [20], extending to approach of Noble [60] to a system of three (rather

than two) integral equations, reduced the integral equations (4.2)–(4.4) to a single

Fredholm integral equation of the first kind, and expressed the total evaporative

flux F as

F = 4

∫ b

a

sG(s)

(s2 − a2)1/2
ds, (4.5)

where G(s) satisfies the integral equation

G(s) =
s√

s2 − a2
− 4

π2

s√
s2 − a2

∫ b

a

q G(q)√
q2 − a2

K(s, q) dq, (4.6)
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in which we have defined

K(s, q) =
1

2(s2 − q2)

[
s2 − a2

s
log

(
s+ a

s− a

)
− q2 − a2

q
log

(
q + a

q − a

)]
. (4.7)

Cooke [20] showed that the integrals in equations (4.5) and (4.6) can be solved

using quadrature. To do this, we introduce the substitutions

s(x) =
1

2
((b− a)x+ b+ a), G(s) = f(s)

√
s+ a√
b− s

. (4.8)

The integral equation for G(s) given by (4.6) becomes an integral equation for

f(s(x)), namely

f(s(x))
(s(x) + a)

√
s(x)− a

s(x)
√
b− s(x)

= 1− 4

π2

∫ 1

−1

s(y) f(s(y))√
1− y2

K(s(x), s(y)) dy, (4.9)

where y is a variable of integration. The integral in (4.9) can be approximated

using Chebyshev–Gauss quadrature with n Chebyshev points, where the Chebyshev

points are defined by

cos

(
(2i− 1)π

2n

)
for i = 1, 2, . . . , n. (4.10)

Then approximating the integral on the right hand side of (4.9) yields

∫ 1

−1

s(y) f(s(y))√
1− y2

K(s(x), s(y)) dy ≈
n∑
i=1

π

n
s(yi) f(s(yi))K(s(x), s(yi)). (4.11)

With this, and evaluating at x = xj, j = 1, 2, . . . , n where xj are Chebyshev points
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defined by (4.10), (4.9) becomes

f(s(xj))
(s(xj) + a)

√
s(xj)− a

s(xj)
√
b− s(xj)

≈ 1− 4

π

n∑
i=1

1

n
s(yi) f(s(yi))K(s(xj), s(yi)). (4.12)

The system of equations (4.12) comprises n equations for the n unknown values

of f(s(yi)) for i = 1, 2, . . . , n. We approximate (4.5) using the same procedure,

substituting (4.8) into (4.5). Using Chebyshev–Gauss quadrature on (4.5), the ap-

proximate expression for the total evaporative flux, denoted by FCooke, is then

FCooke = 4

∫ 1

−1

s(y) f(s(y))√
1− y2

dy ≈ 4π

n

n∑
i=1

s(yi) f(s(yi)), (4.13)

where f(s(yi)) are obtained by solving the system of equations (4.12). Note that

this method yields FCooke without having to calculate either c or J .

Figure 4.3 shows FCooke calculated using n = 300 Chebyshev points in Maple™

[49]. Convergence of this method was verified by repeating the calculations using

n = 600 Chebyshev points, which resulted in changes to FCooke of O(10−9).

Figure 4.4 shows a log-log plot of the relative error, erel, between FCOMSOL and

FCooke, calculated according to

erel =

∣∣∣∣FCooke −FCOMSOL

FCooke

∣∣∣∣. (4.14)

This figure shows that FCOMSOL is in excellent agreement with FCooke for most

values of k, with the maximum error in FCOMSOL in 0 ≤ k ≤ 0.9 being erel ≈ 0.003

at k = 0.9. However, the agreement between FCOMSOL and FCooke worsens in the

limit k → 1+, and erel ≈ 0.201 when k = 0.9996.
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figure. A dash-dot line shows FU given by (2.18).
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Figure 4.4: A log-log plot of the relative error, erel, between FCOMSOL and FCooke

given by (4.14), plotted as a function of k.
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4.2 Asymptotic solution for F in the limit k → 0+

By reducing the problem (2.1), (2.11) and (2.12) to a Fredholm integral equation,

which was then solved iteratively, Collins [18] gave the asymptotic solution for F as

F = 4

(
1− 4

3π2
k3 − 8

15π2
k5 − 16

27π4
k6
)

+O
(
k7
)
→ 4− (4.15)

in the limit k → 0+.

4.3 Asymptotic solutions for J and F in the limit

k → 1−

Leppington & Levine [47] detailed a method for deriving the asymptotic solutions

for J and F in the limit k → 1−. However, in doing so, they made a small but

significant error when calculating the leading order term of J . The details of this

mistake, and the corrected solution are included in Appendix A. The corrected

asymptotic solutions for J and the asymptotic solution for F are

J =
4(1− k) log 2− log

(
32k
1−k

) [
(1− k) log

(
32k
1−k

)
log 2(r − kb) + 2− 2 log 2

]
16π log 2 log

(
32k
1−k

)
r
√(

r
b
− k
) (

1− r
b

) +o(1−k)

(4.16)

and

F = π2

 1 + k

log
32

1− k

− 1− k(
log

32

1− k

)2

+ o(1− k). (4.17)

Figures 4.2 and 4.3 show plots of J (4.16) and F (4.17), respectively.
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4.4 Approximate solutions for J and F

Previous work on the solution of Laplace’s equation in an annular geometry provides

approximate solutions for J and F .

By utilising a Papkovich–Neuber solution, and imposing suitable boundary con-

ditions, Gladwell & Gupta [36] gave a very accurate approximate solution for J in

the range 0 < k ≤ 0.8,

JGG(r) =
2

π

b√
b2 − r2

− 12

9π2 − 4k2

[
2k3b3

πr3
S
(r
b

)
+ 3S

(
kb

r

)]
, (4.18)

where the function S(x) is given by

S(x) = arcsin(x)− x√
1− x2

for 0 < x < 1. (4.19)

Figure 4.2 shows a comparison between JGG given by (4.18) and JCOMSOL. Fig-

ure 4.2 shows that the approximate solution for JGG (4.18) agrees very well with

JCOMSOL, particularly for smaller values of k. However this accuracy is reduced as

k increases.

Using (4.18), the corresponding approximate expression for F is given by

FGG =
√

1− k2 +
3k

9π2 − 4k3

(
2πk2 − 4k arcsin k +

3π

2
k +

3

k
arcsin k + 3

√
1− k2

)
.

(4.20)

Expanding for small k gives the asymptotic solution for FGG (4.15) in the limit

k → 0+, with an error of O(k4).

Approximate solutions for F have also been given by Laraqi [43] and Willert et

al. [78]. Laraqi [43] used a correlation method (from Churchill & Usagi [16]) to
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Figure 4.5: Plot of the relative error, erel, between FLaraqi and FCooke, shown with a
dotted line, and the relative error between FWillert and FCooke, shown with a dashed
line.

combine the behaviour of F in the case of a spherical-cap droplet (i.e. FDL → 4−

when k → 0+) and the behaviour of F in the limit k → 1− (i.e. F → 0+ in the

limit k → 1−). Willert et al. [78] posed an approximate form for F , namely

F = 4(1− kn)m and used BEM simulations to find best possible values of n and m.

The expressions due to Laraqi [43] (FLaraqi) and Willert et al. [78] (FWillert) are

FLaraqi =
2πn

log
[
(8 exp (3/2)k

1−k )n + exp nπ2

2

] where n = 1.3, (4.21)

FWillert = 4
(
1− k2.915

)0.147
. (4.22)

Figure 4.5 shows the relative error, erel, between FLaraqi and FCooke, and the

relative error between FWillert and FCooke, calculated according to

erel(F) =

∣∣∣∣FCooke −F
FCooke

∣∣∣∣. (4.23)

40



This figure shows that both FLaraqi and FWillert are in good agreement with FCooke,

except in the limit k → 1−, where the relative error of both approximations increases.
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Chapter 5

Evolution and lifetime of an

annular droplet

We now determine the evolution, and hence lifetime, of an annular droplet. To

do this, we first need to specify the mode in which the droplet is evaporating.

Due to the presence of the second (inner) contact line, there is a wider variety of

possible modes in which an annular droplet can evaporate in when compared to a

spherical-cap droplet. In the present work we consider the following four modes of

evaporation:

• The pinned–pinned mode, in which both contact lines at r = a and r = b are

fixed, and the contact angles θa(t) and θb(t) vary over time.

• The free–pinned mode, in which the outer contact line at r = b is pinned and

the inner contact angle θa is pinned and the radius of the inner contact line

r = a(t) and the inner contact angle θb(t) vary over time.

• The pinned–free mode, in which the inner contact line at r = a is pinned and

the outer contact angle θb is fixed, and the inner contact angle θa(t) and the
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radius of the outer contact line r = b(t) vary over time.

• The free–free mode, in which both contact angles θa and θb are fixed, and the

positions of both of the contact lines at r = a(t) and r = b(t) vary over time.

5.1 Evolution and lifetime of an annular droplet

evaporating in the pinned–pinned mode

In the pinned–pinned mode a ≡ a0 and b ≡ b0 so that k ≡ k0 = a0/b0 = a0 and

F = F(k0) are both constant throughout the evaporation. As a consequence of the

scalings used in (2.7), θb = θb0 = 1. The evolution of the droplet is determined from

(2.20),

−dV

dt
= −∂V

∂θb

dθb
dt

= −V(k0)
dθb
dt

= F(k0). (5.1)

Rearranging (5.1) gives

dθb
dt

= −F(k0)

V(k0)
, (5.2)

which can be solved subject to the initial condition, θb(0) ≡ θb0 = 1, to yield

θb = 1− F(k0)

V(k0)
t. (5.3)
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Using this expression for θb(t) (5.3), the evolution of h(r, t), θa(t) and V (t) can be

determined from (3.10), (3.14), and (3.18),

h(r, t) =
(1− r2) log k0 − (1− k20) log r

2 log k0 + 1− k20

(
1− F(k0)

V(k0)
t

)
, (5.4)

θa(t) =
2k20 log k0 + 1− k20
k0 (k20 − 1− 2 log k0)

(
1− F(k0)

V(k0)
t

)
, (5.5)

V (t) =
π(1− k20) [(1 + k20) log k0 + 1− k20]

2(2 log k0 + 1− k20)

(
1− F(k0)

V(k0)
t

)
. (5.6)

Then from (2.21) the expression for the lifetime of an annular drop evaporating in

the pinned–pinned mode is

tlifetime =
V(k0)

F(k0)
. (5.7)

5.1.1 Evolution of an annular droplet evaporating in the

pinned–pinned mode with a spatially-uniform evapo-

rative flux

In the case of a spatially-uniform evaporative flux, the form of F from (2.17) can be

used, alongside (5.3), to give the explicit expression for θb, namely

θb(t) = 1− F(k0)

V(k0)
t = 1− 8 (2 log k0 + 1− k20)

π (1− k20 + (1 + k20) log k0)
t, (5.8)
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from which we can determine the evolution of h(r, t), θa(t) and V (t) from (3.10),

(3.14), and (3.18),

h(r, t) =
(1− r2) log k0 − (1− k20) log r

2 log k0 + 1− k20

(
1− 8 (2 log k0 + 1− k20)

π (1− k20 + (1 + k20) log k0)
t

)
, (5.9)

θa(t) =
2k20 log k0 + 1− k20
k0 (k20 − 1− 2 log k0)

(
1− 8 (2 log k0 + 1− k20)

π (1− k20 + (1 + k20) log k0)
t

)
, (5.10)

V (t) = 4(1− k20)t+
π (1− k20) [(1 + k20) log k0 + 1− k20]

2 log k0 + 1− k20
. (5.11)

The lifetime of the droplet, defined on (5.7), is given by

tlifetime =
V(k0)

F(k0)
=
π (1− k20 + (1 + k20) log k0)

8 (2 log k0 + 1− k20)
. (5.12)

Figure 5.1 shows the evolution of an annular droplet with a spatially-uniform

evaporative flux evaporating in the pinned–pinned mode, in particular plots of (a)

θa(t), (b) θb(t) and (c) V (t), plotted as functions of t for k0 = 0.2, 0.4, 0.6, 0.8, (d)

h(r) plotted as functions of r at time intervals t = tlifetime/10 for k0 = 0.2, and (e)

tlifetime plotted as a function of k0, where arrows indicates the direction of increasing

t.

5.1.2 Evolution of an annular droplet evaporating in the

pinned–pinned mode with a diffusion-limited evapo-

rative flux

In the case of a diffusion-limited evaporative flux, we use FCooke to determine the

evolution of an annular droplet evaporating in pinned–pinned mode. A consequence

of this is that all calculations in the diffusion-limited regime must be performed

numerically.
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Figure 5.1: Evolution of an annular droplet with a spatially-uniform evaporative
flux evaporating in the pinned–pinned mode. (a) A plot of θb(t), given by (5.8),
(b) a plot of θa(t), given by (5.10), (c) a plot of V , given by (5.11), plotted as a
function of time, where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8,
(d) a plot of h(r), given by (5.9), with k0 = 0.2 at time intervals of t = tlifetime/10,
where arrows indicate direction of increasing time, (e) a plot of tlifetime plotted as a
function of k0. 46



The asymptotic solutions for F in the limits k → 0+ and k → 1−, given by (4.15)

and (4.17), respectively, can be used to determine the behaviour of the lifetime in

each limit. In the limit k0 → 0+, tlifetime given by (5.7) approaches

tlifetime =
π(1 + log k0)

8(1 + 2 log k0)
− π (1 + 3 log k0)

8 (1 + 2 log k0)
2k

2
0 +O

(
k30(1 + log k0)

(1 + 2 log k0)

)
→ π

16

−
, (5.13)

which tends to π/16 as k0 → 0+, the value for a spherical-cap droplet evaporating

with a pinned contact line (i.e. in the CR mode). Similarly, in the limit k0 → 1−,

tlifetime given by (5.7) approaches

tlifetime =
1

6π
log

(
32

1− k0

)
(1− k0)2 +O

(
(1− k0)3

[
3− log

(
32

1− k0

)])
→ 0+.

(5.14)

Figure 5.2 shows the evolution of an annular droplet with a diffusion-limited

evaporative flux evaporating in the pinned–pinned mode, calculated with FCooke. In

particular, plots of (a) θb(t), (b) θa(t) and (c) V (t), plotted as functions of t for

k0 = 0.2, 0.4, 0.6, 0.8 where arrows indicates the direction of increasing t, (d) h(r)

plotted as functions of r at time intervals t = tlifetime/10 for k0 = 0.2, where the

arrow indicates direction of increasing t, and (e) tlifetime plotted as a function of k0,

where dashed lines show the asymptotic results given by (5.13) and (5.14).

5.2 Evolution and lifetime of an annular droplet

evaporating in the free–pinned mode

In this case θa ≡ θa0 and b ≡ b0 ≡ 1 so that k = a(t)/b0 = a(t) throughout. As a

consequence of the scalings used in (2.7), b = b0 = 1. From (25), the initial value
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Figure 5.2: Evolution of a droplet with a diffusion-limited evaporative flux evapo-
rating in the pinned–pinned mode. (a) A plot of θb(t), given by (5.3), (b) a plot
of θa(t), given by (5.5), (c) a plot of V (t), given by (5.6), plotted as a function of
time, where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8, (d) a plot
of h(r, t), given by (5.4), with k0 = 0.2 at time intervals t = tlifetime/10, where arrows
indicate direction of increasing time, (e) a plot of tlifetime plotted as a function of k0,
where dashed lines represent the asymptotic solution for tlifetime in the limit k0 → 0+

and k0 → 1−. 48



θa0 is

θa0 = T (k0), (5.15)

and the outer contact angle θb is

θb =
θa0
T (k)

=
T (k0)

T (k)
. (5.16)

The evolution of the droplet is then determined from (13)

−dV

dt
= −T (k0)

d

dk

(
V(k)

T (k)

)
dk

dt
= F(k). (5.17)

Then (5.17) gives

dk

dt
= − F
T (k0)

[
d

dk

(
V(k)

T (k)

)]−1
, (5.18)

which can be solved implicitly to give an integral equation for k(t).

t = −T (k0)

∫ k

k0

1

F(k̃)

d

dk̃

(
V(k̃)

T (k̃)

)
dk̃. (5.19)

Then from (2.21) the expression for the lifetime of an annular drop evaporating in

the free–pinned mode is

tlifetime = −T (k0)

∫ 1

k0

1

F (k)

d

dk

(
V(k)

T (k)

)
dk. (5.20)
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5.2.1 Evolution of an annular droplet evaporating in the

free–pinned mode with a spatially-uniform evapora-

tive flux

Since the evolution of k(t), and hence tlifetime, are expressed as an integral equation,

no expressions in the free–pinned mode can be expressed explicitly. The evolution

of k(t), and hence a(t), can be determined by numerically integrating (5.19), from

which the evolution of θb(t), h(r, t) and V (t) may be determined. Figure 5.3 shows

the evolution of a droplet with a uniform flux evaporating in the free–pinned mode,

in particular the evolution of (a) θb(t), (b) a(t), (c) h(r), (d) V , and (e) tlifetime.

Figure 5.3(a) shows that θb tends to θa0 throughout the duration of the evaporation

process.

5.2.2 Evolution of an annular droplet evaporating in the

free–pinned mode with a diffusion-limited evaporative

flux

The asymptotic behaviour of (5.20) in the limit k0 → 0+ is

tlifetime ∼
1

2 log k0 + 1
k−10

∫ 1

k0

1

F (k)

d

dk

(
V (k)

T (k)

)
dk. (5.21)

Similarly, the asymptotic behaviour of (5.20) in the limit k0 → 1− is

tlifetime ∼
(

1 +
1− k0

3

)∫ 1

k0

log
(
32k
1−k

)
(k − 1)

3π
dk. (5.22)

The evolution of k(t) and hence a(t) can be found by numerically integrating

(5.19). Then θb(t), h(r, t) and V (t) can be found. Figure 5.4 shows the evolution
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Figure 5.3: Evolution of a droplet with a spatially-uniform evaporative flux evap-
orating in the free–pinned mode. (a) A plot of a(t), (b) a plot of θb(t), (c) a
plot of V (t), plotted as a function of time, where arrows indicate direction of in-
creasing k0 = 0.2, 0.4, 0.6, 0.8, (d) a plot of h(r, t), with k0 = 0.2 at time intervals
t = tlifetime/10, where arrows indicate direction of increasing time, (e) a plot of tlifetime

plotted as a function of k0. 51



of a droplet with a diffusion-limited flux evaporating in the free–pinned mode with

FCooke, in particular the evolution of (a) a(t), (b) b(t), (c) h(r, t), (d) V (t), and (e)

tlifetime, where dashed lines show the asymptotic results given by (5.21) and (5.22).

5.3 Evolution and lifetime of an annular droplet

evaporating in the pinned–free mode

In this case θb ≡ θb0 and a ≡ a0 so that k(t) = a0/b(t) throughout. As a consequence

of the scalings used in (2.7), θb ≡ θb0 ≡ 1. The evolution of the droplet is determined

by (2.20)

−dV

dt
= b(t)2

db

dt
(kV ′(k)− 3V(k)) = b(t)F(k), (5.23)

so

b
db

dt
=

F(k)

kV ′(k)− 3V(k)
. (5.24)

As in the free–pinned case, from (5.24) we can obtain an implicit solution for k(t),

t = k20

∫ k(t)

k0

3V(k̃)− kV ′(k̃)

k̃3F(k̃)
dk̃. (5.25)

The evolution of k(t) can be found by solving (5.25) numerically.

From (2.21), the expression for the lifetime of an annular drop evaporating in

the pinned–free mode is

tlifetime = k20

∫ 1

k0

1

k3F (k)
[3V (k)− kV ′ (k)] dk. (5.26)

52



0

0.2

0.4

0.6

0.8

1

a

0 0.02 0.04 0.06 0.08 0.10 0.12

t

(a)

0 0.02 0.04 0.06 0.08 0.10 0.12

t

θb

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

(b)

0 0.02 0.04 0.06 0.08 0.10 0.12

t

0

0.1

0.2

0.3

0.4

V

(c)

0 0.2 0.4 0.6 0.8 1

r

0

0.1

0.2

0.3

h

(d)

0 0.2 0.4 0.6 0.8 1

k0

0

0.05

0.1

0.15

0.20

0.25

t l
if
et
im

e

(e)

Figure 5.4: Evolution of a droplet with a diffusion-limited flux evaporating in the
free–pinned mode. (a) A plot of a(t), (b) a plot of θb(t), (c) a plot of V (t), plotted as
a function of time, where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8,
(d) a plot of h(r, t), with k0 = 0.2 at time intervals t = tlifetime/10, where arrows
indicate direction of increasing time, (e) a plot of tlifetime plotted as a function of k0,
where the dashed lines denote the asymptotic solutions in the limit k0 → 0+ and
k0 → 1−.
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5.3.1 Evolution of an annular droplet evaporating in the

pinned–free mode with a spatially-uniform evapora-

tive flux

The evolution of k(t) and hence b(t) can be determined by numerically integrating

(5.25), with which the evolution of θa(t), h(r, t) and V (t) are found. Figure 5.5 shows

the evolution of a droplet with a spatially-uniform evaporative flux evaporating in

the pinned–free mode, in particular the evolution of (a) θa(t), (b) b(t), (c) h(r, t),

(d) V (t), and (e) tlifetime. Figure 5.5(a) shows that θa will tend to θb0 = 1, similar to

the free–pinned case.

5.3.2 Evolution of an annular droplet evaporating in the

pinned–free mode with a diffusion-limited evaporative

flux

The asymptotic behaviour of (5.26) in the limit k0 → 0+ is

tlifetime ∼
k20π

8

∫ 1

k0

1

k3F (k)
[3V (k)− kV ′ (k)] dk. (5.27)

Similarly, the asymptotic behaviour of (5.26) in the limit k0 → 1− is

tlifetime ∼
1

3π

∫ 1

k0

log

(
32

1− k

)
(k − 1) dk. (5.28)

Figure 5.6 shows the evolution of a droplet with a diffusion-limited evaporative flux

evaporating in the pinned–free mode with FCooke. In particular, plots of (a) a(t), (b)

b(t), (c) h(r, t), (d) V (t), and (e) tlifetime, where dashed lines show the asymptotic

results given by (5.27) and (5.28).
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Figure 5.5: Evolution of a droplet with a spatially-uniform evaporative flux evapo-
rating in the pinned–free mode. A plot of (a) b(t), (b) θa(t), (c) V (t), plotted as a
function of time, where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8,
(d) h(r, t), with k0 = 0.2 at time intervals t = tlifetime/10, where arrows indicate
direction of increasing time, (e) tlifetime plotted as a function of k0. The dashed lines
in (a) and (b) show the final values of b and θa, respectively.
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Figure 5.6: Evolution of a droplet with a diffusion-limited evaporative flux evapo-
rating in the pinned–free mode. A plot of (a) b(t), (b) θa(t), (c) V (t), plotted as a
function of time, where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8,
(d) h(r, t), with k0 = 0.2 at time intervals t = tlifetime/10, where arrows indicate di-
rection of increasing time, (e) tlifetime plotted as a function of k0,where dashed lines
represent the asymptotic solution for tlifetime in the limit k0 → 0+ and k0 → 1−. The
dashed lines in (a) and (b) show the final values of b and θa, respectively.
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5.4 Evolution and lifetime of an annular droplet

evaporating in the free–free mode

In this case θb ≡ θb0 and θa ≡ θa0. As a consequence of the scalings used in

(2.7), θb = θb0 = 1. Then from (3.14), k must be constant throughout, and so

k ≡ k0 = a0/b0 = a0. The evolution of the droplet is determined from (2.20)

dV

dt
=

d

dt

(
b3V(k0)

)
= 3V(k0)b

2db

dt
= bF(k0). (5.29)

Then (5.29) gives

b
db

dt
= − F(k0)

3V(k0)
. (5.30)

Since k0 is a constant, (5.30) can be integrated to obtain

b(t) =

(
1− 2tF(k0)

3V(k0)

) 1
2

. (5.31)

By using k0 = a(t)/b(t), a(t), h(r, t), and V (t) are then

a(t) = k0b(t) = k0

(
1− 2tF(k0)

3V(k0)

) 3
2

, (5.32)

h(r, t) =
b(t)

((
1− r2

b(t)2

)
log k0 − (1− k20) log

(
r
b(t)

))
2 log k0 + 1− k20

, (5.33)

V (t) =

(
1− 2F(k0)t

3V(k0)

) 3
2

V(k0). (5.34)

57



From (2.21) the expression for the lifetime of an annular drop evaporating in the

free–free mode is

tlifetime =
3V(k0)

2F(k0)
=

3π(1− k20)((k20 + 1) log k0 + 1− k20)

4(2 log k0 + 1− k20)F(k0)
. (5.35)

5.4.1 Evolution of an annular droplet evaporating in the

free–free mode with a spatially-uniform evaporative

flux

Using (2.18), we can obtain explicit expressions for b(t)

b(t) =

(
1− 16t (2 log k0 + 1− k20)

3π ((1 + k20) log k0 + 1− k20)

) 1
2

, (5.36)

and hence a(t), h(r, t), and V (t) are

a(t) =k0

(
1− 16t (2 log k0 + 1− k20)

3π ((1 + k20) log k0 + 1− k20)

) 1
2

, (5.37)

h(r) =
b(t)

((
1− r2

b(t)2

)
log k0 − (1− k20) log

(
r
b(t)

))
2 log k0 + 1− k20

, (5.38)

V (t) =

(
1− 16t (2 log k0 + 1− k20)

3π ((1 + k20) log k0 + 1− k20)

) 3
2 π (1− k20) [(1 + k20) log k0 + 1− k20]

2 [2 log k0 + 1− k20]
.

(5.39)

Figure 5.7 shows the evolution of a droplet with a spatially-uniform evaporative

flux evaporating in the free–free mode, in particular, the evolution of (a) a(t), (b)

b(t), (c) h(r, t), (d) V (t), and (e) tlifetime.
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Figure 5.7: Evolution of a droplet with a spatially-uniform evaporative flux evapo-
rating in the free–free mode. (a) A plot of a(t) given by (5.32), (b) a plot of b(t)
given by (5.31), (c) a plot of V (t) given by (5.34), plotted as a function of time,
where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8, (d) a plot of
h(r, t) given by (5.33), with k0 = 0.2 at time intervals t = tlifetime/10, where arrows
indicate direction of increasing time, (e) a plot of tlifetime given by (5.35) plotted as
a function of k0.
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5.4.2 Evolution of an annular droplet evaporating in the

free–free mode with a diffusion-limited evaporative

flux

The asymptotic behaviour of (5.35) in the limit k0 → 0+ is

tlifetime =
3π(1 + log k0)

16(2 log k0 + 1)
+O

(
k20(1 + 3 log k0)

1 + 2 log k0

)
→ 3π

32

−
, (5.40)

which gives the solutions for a spherical-cap droplet evaporating with a constant

contact angle (i.e. in the CA mode). Similarly, the asymptotic behaviour of (5.35)

in the limit k0 → 1− is

tlifetime =
log
(

32
1−k0

)
4π

(1− k0)2 +O

(
(1− k0)3

(
3− log

(
32

1− k0

)))
→ 0+. (5.41)

Figure 5.8 shows the evolution of a droplet with a diffusion-limited evaporative

flux evaporating in the free–free mode with FCooke, in particular the evolution of

(a) a(t), (b) b(t), (c) h(r, t), (d) V (t), and (e) tlifetime, where dashed lines show the

asymptotic results given by (5.40) and (5.41).

5.5 Comparison between diffusion-limited and

spatially-uniform evaporative fluxes

Figure 5.9(a) shows a plot of the lifetimes of an annular droplet in all four modes

of evaporation for the spatially-uniform evaporative flux plotted as functions of k0.

Figure 5.9(b) shows a plot of the lifetimes of an annular droplet in all four modes of

evaporation with the diffusion-limited evaporative flux plotted as functions of k0.
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Figure 5.8: Evolution of a droplet with a diffusion-limited evaporative flux evapo-
rating in the free–free mode. (a) A plot of a(t) given by (5.32), (b) a plot of b(t)
given by (5.31), (c) a plot of V (t) given by (5.34), plotted as a function of time,
where arrows indicate direction of increasing k0 = 0.2, 0.4, 0.6, 0.8, (d) a plot of
h(r, t) given by (5.33), with k0 = 0.2 at time intervals t = tlifetime/10, where arrows
indicate direction of increasing time, (e) a plot of tlifetime given by (5.35) plotted as
a function of k0, where dashed lines represent the asymptotic solution for tlifetime in
the limit k0 → 0+ and k0 → 1−. 61
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Figure 5.9: Plot of the lifetimes of an annular droplet in all four modes of evapora-
tion, plotted as functions of k0 for (a) a spatially-uniform evaporative flux given by
(2.16), and (b) the diffusion-limited evaporative flux given by (4.13). Pinned–pinned
mode is shown with a solid line, free–pinned mode with a dashed line, pinned–free
mode with a dash-dot line and free–free mode with a dotted line

For the spatially-uniform evaporative flux, shown in Figure 5.9(a), annular drop-

lets evaporating in the pinned–free mode and the free–free mode tend to the same

lifetime in the limit k → 0−, while in free–pinned mode, tlifetime → ∞ as θa0 → ∞

in the limit k → 0+.

For the diffusion-limited evaporative flux, shown in Figure 5.9(b), in the limit

k → 0+, the lifetime of a droplet evaporating in the pinned–pinned mode tends to

π/16, the lifetime for a spherical-cap droplet evaporating in the CR mode. In both

cases where the outer contact line is not pinned (i.e. pinned–free and free–free mode)

the lifetime tends to 3π/32, the lifetime for a spherical-cap droplet evaporating in

the CA mode. The lifetime of a droplet evaporating in the free–pinned mode does

not tend to the lifetime of a spherical-cap droplet evaporating in one of the extreme

modes of evaporation.

The modes of evaporation in which the lifetimes coincide for both the diffusion-

limited flux and the spatially-uniform flux in the limit k → 0+, namely the pinned–
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pinned and the free–free mode, are the two modes in which k ≡ k0 throughout

the lifetime of the droplet. This is due to the fact that FU was chosen such that

FDL = FU in that limit.

The modes of evaporation in which the lifetimes do not coincide for both the

diffusion-limited and spatially-uniform evaporative fluxes, namely the free–pinned

and the pinned–free modes, are modes in which k ≡ k(t) and hence the total evap-

orative fluxes change throughout the lifetime of the droplet.

In the limit k → 0+, the pinned–pinned mode reduces to the CR mode of a

spherical-cap droplet (in which the outer contact line is pinned and the outer contact

angle varies with time), and so in this limit the lifetime reduces to that of the CR

mode. Similarly the pinned–free and free–free modes reduce to the CA mode of a

spherical-cap droplet (in which the outer contact line varies with time and the outer

contact angle is constant) and so in this limit the lifetime reduces to that of the

CA mode. The free–pinned mode is the only mode which does not reduce to either

the CA or the CR mode of a spherical-cap droplet in the limit k → 0+. The inner

contact angle is fixed in the free–pinned mode, and is determined by θa0 = T (k0)

(3.14). Noting that T (k0) is singular in the limit k → 0+, the factor of T (k0) in the

expression for the lifetime in the free–pinned mode (5.19) causes the lifetime to be

singular in this limit. This directly contrasts with the free–free mode in which the

inner contact angle is finite.

In practice, diffusion-limited evaporation is more common than spatially-uniform

evaporation. As mentioned in Chapter 1.1, spatially-uniform evaporation only oc-

curs for rather specialised conditions, such as a droplet evaporating on a hydrogel

(see, for example, Okuzono et al. [61]), or the evaporation of a hemispherical droplet

(see, for example, Stauber et al. [74]). In contrast, diffusion-limited evaporation is

63



controlled by the diffusion of vapour into the atmosphere, and has been observed in

a wide range of real-world situations, as discussed in Chapter 1.
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Chapter 6

Deposition

We now consider a particle-laden annular droplet. We assume that the suspended

particles are passive (see, for example, Boulogne et al. [12]), so that they do not

affect the flow within the droplet. The evaporation of the droplet induces a flow

within it, which advects the particles suspended in the bulk of the droplet. In the

following, we will find that the suspended particles are advected to the contact lines

for both the diffusion-limited flux and the uniform flux.

In the case of a spherical-cap droplet with either a spatially-uniform or diffusion-

limited evaporative flux, all of the mass of suspended particles are advected to

the (single) contact line; in the case of an annular droplet, the mass of suspended

particles is split, generally unequally, between the inner and outer contact lines. The

suspended particles build up at the contact lines during the evaporation process, and

at t = tlifetime, all of the mass of the suspended particles has been advected to the

contact lines of the droplet.

We discuss the deposition in the case of the spatially-uniform evaporative flux

(2.16) and the diffusion-limited evaporative flux (2.15). Specifically, we consider the
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case in which the droplet is evaporating in the pinned–pinned mode, and so both

contact lines are fixed and the ratio of the radii of the contact lines, k, takes the

constant value k0 = a0/b0 = a0. As we have already seen, in the pinned–pinned

mode, the evolution of θb(t) is given by (5.3), the evolution of h(r, t), V (t) and θa(t)

are given by (5.4)–(5.5), and the lifetime of the droplet is given by (5.7).

In Chapter 6.1, we solve the hydrodynamic problem within the droplet, and

determine the velocity u = (u,w) and depth-averaged radial velocity ū. In Chapter

6.2, we then solve the advection problem to derive the solution for the concentration

of suspended particles φ(r, z, t) within the droplet. In Chapter 6.3, we use the

solution for φ to derive an expression for the mass of suspended particles in the

droplet M and the masses of particles at the inner and outer contact lines, Ma and

Mb. In Chapter 6.4, we look at the deposition in the case of the spatially-uniform

evaporative flux discussed in Chapter 2. In Chapter 6.5, we look at the deposition

in the case of the diffusion-limited evaporative flux discussed in Chapter 2.

6.1 Solving the hydrodynamic problem within the

droplet

The continuity equation is given by

1

r̂

∂

∂r̂
(r̂û) +

∂ŵ

∂ẑ
= 0. (6.1)

By considering Stokes flow in a thin droplet the lubrication equation are

µ̂
∂2û

∂ẑ2
=
∂p̂

∂r̂
(6.2)
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and

∂p̂

∂ẑ
= 0, (6.3)

where µ̂ is the constant viscosity. We scale and non-dimensionalise the variables

according to (2.7) and (2.8).

To determine u, we first integrate (6.2) with respect to z,

∂u

∂z
− ∂u

∂z

∣∣∣∣
z=h

=
∂p

∂r
(z − h). (6.4)

By imposing the tangential stress condition on the surface of the droplet,

∂u

∂z
= 0 on z = h, (6.5)

equation (6.4) gives

∂u

∂z
=
∂p

∂r
(z − h). (6.6)

Integrating (6.6) with respect to z from 0 to h and imposing the no slip condition

on the substrate, u = 0 on z = 0, yields

u =
1

2

∂p

∂r

(
z2 − 2hz

)
. (6.7)

Define the radial flux Q(r, t) as

Q =

∫ h

0

u dz. (6.8)
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The depth-averaged radial velocity ū(r, t) is then

ū =
Q(r, t)

h
=

1

h

∫ h

0

u dz = −h
2

3

∂p

∂r
. (6.9)

Rearranging (6.9) gives

∂p

∂r
= −3ū

h2
. (6.10)

Substituting (6.10) into (6.7) yields

u =
3Q

2h3
(2hz − z2). (6.11)

To find an explicit expression for Q, we first use the kinematic condition,

∂h

∂t
+

1

r

∂

∂r
(rQ) = −J. (6.12)

Expressing ∂h/∂t in terms of dθb/dt yields,

∂h

∂t
=
∂h

∂θb

dθb
dt

= H(r, k0)
dθb
dt
, (6.13)

then by using (5.2) to write dθb/dt in terms of V and F , (6.13) gives

∂h

∂t
= −H(r, k0)F(k0)

V(k0)
. (6.14)

Substituting (6.14) into (6.12), multiplying through by r, and integrating from

r = k0 to r gives

−F(k0)

V(k0)

∫ r

k0

H(r̃, k0)r̃ dr̃ + rQ = −
∫ r

k0

Jr̃ dr̃, (6.15)
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which gives Q(r, t) to be

Q(r, t) =
1

rV(k0)

∫ r

k0

[F(k0)H(r̃, k0)− V(k0)J(r̃, t)] r̃ dr̃, (6.16)

and so using the expression for Q from (6.16), ū(r, t) can be calculated from (6.9),

giving

ū(r, t) =
1

rθb(t)H(r, k0)V(k0)

∫ r

k0

[F(k0)H(r̃, k0)− V(k0)J(r̃, t)] r̃ dr̃. (6.17)

The sign of ū determines whether the flow travels towards the inner or outer

contact line: if ū(r, t) < 0, the flow within the droplet advects the suspended parti-

cles to the inner contact line, and if ū(r, t) > 0, the flow within the droplet advects

the suspended particles to the outer contact line. If ū(r, t) = 0 for some value of

r in 0 < k < 1, this would indicate that the sign of ū changes within the domain,

and hence the suspended particles would be advected to both the inner and outer

contact lines.

6.2 Solving the advection problem for the concen-

tration of suspended particles

We denote the concentration of the suspended particles as φ = φ(r, z, t), where φ

is nondimensionalised according to φ̂ = φ̂0φ and φ̂0 denotes the initial value of φ̂.

The Péclet number, Pe, is a dimensionless number which describes the ratio of the

diffusion and advection timescales,

Pe =
diffusion timescale

advection timescale
=
D̂ (ĉsat − ĉ∞)

D̂pρ̂θ̂b0
in the r direction, (6.18)
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where D̂p is the diffusivity of the suspended particles. For the present purposes, we

are interested in the case where the effects of advection dominate in the r direction

(i.e. Pe � 1). However, as a result of the scales used for r and z (namely r̂ = b̂0r

and ẑ = b̂0θ̂b0z), the diffusion timescales differ in the r and z direction by a factor

of θ̂2b0. We therefore assume that θ̂2b0Pe satisfies θ̂2b0 � θ̂2b0Pe� 1 (i.e. that θ̂2b0Pe is

sufficiently small).

The governing equation for the leading-order concentration of particles φ (see,

for example, Wray et al. [84]), is then given by

∂φ

∂t
+ ū

∂φ

∂r
=
Jφ

h
. (6.19)

The derivation of (6.19) is given in Appendix B. Equation (6.19) has the character-

istic equations

dr

dt
= ū and

dφ

dt
=
Jφ

h
. (6.20)

By dividing the first of the characteristic equations (6.20) by dθb/dt (5.2), we obtain

dr/dt

dθb/dt
=

dr

dθb
= − Q(r, t)V(k0)

θb(t)H(r, k0)F(k0)
. (6.21)

Integrating from r = k0 to r gives

−
∫ r

r0

H(r, k0)F(k0)

Q(r, t)V(k0)
dr =

∫ r

r0

1

θb

1
dr
dθb

dr =

∫ θb

1

1

θb
dθb = log θb, (6.22)

where r0(r, t) is the initial radial position of a particle that is at the radial position

r at time t.
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The second of the characteristic equations (6.20) gives

dφ/dt

dr/dt
=

dφ

dr
=
Jφ

h

h

Q
=
Jφ

Q
, (6.23)

which leads to ∫ r

r0

J

Q
dr =

∫ r

r0

1

φ

dφ

dr
dr = log

(
φ

φ0

)
, (6.24)

where φ0 is unity by definition. Adding together the two results from (6.22) and

(6.24), we obtain

log θb(t) + log

(
φ(r, t)

φ0

)
= log

r0(r, t)Q(r0, t)

rQ(r, t)
. (6.25)

Taking the exponent of (6.25) and rearranging for φ gives

φ(r, t) =
φ0r0(r, t)Q(r0, t)

θb(t)rQ(r, t)
, (6.26)

where r0(r, t) is determined by solving (6.22) for r0(r, t).

6.3 Solving for the mass of suspended particles

The total mass of suspended particles in the bulk of the droplet, M(t), is non-

dimensionalised according to M̂ = ρ̂b̂3θ̂b0M , and is given by

M(t) = 2π

∫ 1

k0

φhr dr = 2π

∫ 1

k0

rφ(r, t)θb(t)H(r, k0) dr, (6.27)

and the initial mass of suspended particles in the droplet, M(0) = M0, is given by

M0 =

∫ 1

k0

rφ0H(r, k0) dr. (6.28)
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The masses of particles at the inner contact line, Ma, and the outer contact line, Mb,

can be found by calculating the flow of the suspended particles through the contact

lines,

Ma(t) = −
∫ t

0

lim
r→k0

∫ h

0

φ(r, t)ū(r, t)r dz dt = −
∫ t

0

lim
r→k0

φ(r, t)Q(r, t)r dt, (6.29)

Mb(t) =

∫ t

0

lim
r→1

∫ h

0

φ(r, t)ū(r, t)r dz dt =

∫ t

0

lim
r→1

φ(r, t)Q(r, t)r dt, (6.30)

respectively.

6.4 Deposition of an annular droplet with a spatially-

uniform evaporative flux

In the case of a spatially-uniform evaporative flux, where J is given by (2.16), ū, Q,

and φ, given by (6.9), (6.16) and (6.26), respectively, are

Q =
2(1− r2)(k20 + r2) log k0 − 4r2(1− k20) log r

rπ((k20 + 1) log k0 + 1− k20)
, (6.31)

ū =
(2 log k0 + 1− k20) (2(1− r2)(k20 + r2) log k0 − 4r2(1− k20) log r)

θbrπ [(k20 + 1) log k0 + 1− k20] [(1− r2) log k0 − (1− k20) log r]
, (6.32)

φ =
φ0r0Q(r0)

θbrQ(r)
=
φ0 ((1− r20)(k20 + r20) log k0 − 2r20(1− k20) log r0)

θb ((1− r2)(k20 + r2) log k0 − 2r2(1− k20) log r)
. (6.33)

There is a critical value of r, denoted by r = R, at which ū = 0. This critical

value R refers to the position in the droplet at which there is a change in direction

of the flow of suspended particles. Since Q = 0 when ū = 0, this critical value of R

can be found by solving Q(R, k0) = 0, which is satisfied when

[
R4 − k20 +R2(k20 − 1)

]
log k0 + 2R2(1− k20) logR = 0, (6.34)
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and has the solution R =
√
k0. Note that R = −

√
k0 is also a solution to (6.34),

however this solution is not physically relevant. Experimentally, the critical value

R could be found using dyes and tracers. This would involve injecting the droplet

with a dye that makes the flow within the droplet visible. In this case, investigating

the region around the critical value r = R =
√
a would reveal flow on either side of

R in different directions.

To determine the direction in which the liquid is moving, and hence in which

the suspended particles are convected, we first need to determine the sign of ū at

either side of the critical position r = R. Since there is only one physically relevant

solution for (6.34), we can instead calculate the sign of ū in the limits r → k+0 and

r → 1− without the loss of generality. In the limits r → k+0 and r → 1−, ū tends to

lim
r→k+0

ū = lim
r→k+0

(
Q

h

)
= − 4k0(k

2
0 − 1− 2 log k0)(log k0(k

2
0 + 1)− k20 + 1)

[k20(2 log k0 − 1) + 1] [(1− k20)(π − 8t)− (π(1 + k20)− 16t) log k0]
< 0,

(6.35)

and

lim
r→1−

ū = lim
r→1−

(
Q

h

)
=

4[1− k20 + (1 + k20) log k0]

(1− k20)(π − 8t)− (π(1 + k20)− 16t) log k0
> 0. (6.36)

Equations (6.35) and (6.36) illustrate that the limiting values of ū at r = k+0 and

r = 1− are finite, and satisfy ū < 0 near the inner contact line and ū > 0 near the

outer contact line. Since there is only one value for R in k0 < R < 1, in k0 < r < R

the flow within the droplet is towards the inner contact line, and that in R < r < 1

the flow within the droplet is towards the outer contact line.
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Figures 6.1, 6.2 and 6.3 show (a) J(r, t) from (2.16), (b) Q(r, t), (c) φ(r, t), (d)

φh(r, t), (e) Mdroplet(t), Ma(t), and Mb(t) and (f) Ma/(2πk0) and Mb/(2π) for a

droplet with a spatially-uniform evaporative flux with k0 = 0.2, 0.5, 0.8.

Figures 6.1(b), 6.2(b) and 6.3(b) confirm that Q(r, t) < 0 near the inner contact

line r = k0 and Q(r, t) > 0 near the outer contact line r = 1. Therefore suspended

particles are advected towards both contact lines. Figures 6.1(c), 6.2(c) and 6.3(c)

show the concentration of suspended particles φ plotted as a function of r at time

intervals of tlifetime/10. Figures 6.1(e), 6.2(e) and 6.3(e) show the decrease in M , and

the increase of Ma and Mb, as the suspended particles are advected to the contact

lines of the droplet and leave the bulk of the droplet. Figures 6.1(f), 6.2(f) and

6.3(f) illustrate that while during the evaporation process the density of the deposit

at the outer contact line is higher than that at the inner contact line, at t = tlifetime

the density of the deposits at the two contact lines are equal. As k0 is increased

(i.e. in the limit k0 → 1−), the density at the inner and outer contact lines become

more alike throughout the evaporation process.

6.5 Deposition of an annular droplet with a

diffusion-limited evaporative flux

In the diffusion-limited case, the presence of square root singularities in J at the

contact lines mean that now J(r, t) → ∞ at r = k0 and r = 1, rather than being

finite, as was the case for the spatially-uniform evaporative flux. This means that

in the limits r = k0 and r = 1, ū will not approach a finite limit. The limit of ū at
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Figure 6.1: (a) J(r) = J0 = 4/π from (2.16), (b) Q(r, t), (c) φ(r, t) (d) φh(r, t), (e)
M(t), Ma(t) and Mb(t) and (f) Ma/(2πk0) and Mb/(2π). Here k0 = 0.2 and (a)–(d)
are plotted as functions of r, and (e) and (f) are plotted as functions of t, where
arrows indicate direction of increasing t. In (e) and (f), the mass and density of the
inner contact line is represented with a dotted line, and the mass and density of the
outer contact line is represented with a dashed line.
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Figure 6.2: (a) J(r) = J0 = 4/π from (2.16), (b) Q(r, t), (c) φ(r, t) (d) φh(r, t), (e)
M(t), Ma(t) and Mb(t) and (f) Ma/(2πk0) and Mb/(2π). Here k0 = 0.5 and (a)–(d)
are plotted as functions of r, and (e) and (f) are plotted as functions of t, where
arrows indicate direction of increasing t. In (e) and (f),the mass and density of the
inner contact line is represented with a dotted line, and the mass and density of the
outer contact line is represented with a dashed line.
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Figure 6.3: (a) J(r) = J0 = 4/π from (2.16), (b) Q(r, t), (c) φ(r, t) (d) φh(t), (e)
M(t), Ma(t) and Mb(t) and (f) Ma/(2πk0) and Mb/(2π). Here k0 = 0.8 and (a)–(d)
are plotted as functions of r, and (e) and (f) are plotted as functions of t, where
arrows indicate direction of increasing t. In (e) and (f), the mass and density of the
inner contact line is represented with a dotted line, and the mass and density of the
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the contact lines is

lim
r→k+0

ū = lim
r→k+0

(
Q

h

)
= −∞, (6.37)

lim
r→1−

ū = lim
r→1−

(
Q

h

)
=∞. (6.38)

Note that in these calculations a specific expression of J has not been assumed, just

that J(r, t)→∞ as r → k+0 and r → 1−.

Figures 6.4, 6.5 and 6.6 show numerically calculated solutions for (a) J(r, t)

obtained via COMSOL (b) Q(r, t), (c) φ(r, t), (d) φh(r, t), (e) M(t), Ma(t) and Mb(t)

and (f) Ma/(2πk0) and Mb/(2π) for a droplet with diffusion-limited evaporative flux

with k0 = 0.2, 0.5, 0.8.

Figures 6.4(b), 6.5(b) and 6.6(b) shows that Q(r, t) < 0 near the inner contact

line r = k0 and Q(r, t) > 0 near the outer contact line r = 1. Figures 6.4(e), 6.5(e)

and 6.6(e) show the decrease in M(t) over time, and the increase of Ma(t) and Mb(t),

as suspended particles are advected to the contact lines of the droplet and leaves

the bulk of the droplet. Figures 6.4(f), 6.5(f) and 6.6(f) show that the density of

the deposit at the contact lines is no longer equal at t = tlifetime (as was the case

with the spatially-uniform evaporative flux). Instead the density of deposit at the

outer contact line stays higher than that at the inner contact line.

6.6 Comparison between spatially-uniform and

diffusion-limited evaporative fluxes

Figures 6.7(a) and 6.8(a) show plots of the critical value of r,R, plotted as a function

of k0. The critical value R is strictly greater for the spatially-uniform evaporative
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Figure 6.4: Numerically calculated solutions for (a) J(r, t), (b) Q(r, t), (c) φ(r, t) (d)
φh(r, t), (e) M(t), Ma(t) and Mb(t) and (f) Ma/(2πk0) and Mb/(2π). Here k0 = 0.2
and (a)–(d) are plotted as functions of r, and (e) and (f) are plotted as functions of
t, where arrows indicate direction of increasing t. In (e) and (f), quantities at the
inner contact line is represented with a dotted line, and those at the outer contact
line is represented with a dashed line.
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Figure 6.5: Numerically calculated solutions for (a) J(r, t), (b) Q(r, t), (c) φ(r, t) (d)
φh(r, t), (e) M(t), Ma(t) and Mb(t) and (f) Ma/(2πk0) and Mb/(2π). Here k0 = 0.5
and (a)–(d) are plotted as functions of r, and (e) and (f) are plotted as functions of
t, where arrows indicate direction of increasing t. In (e) and (f), quantities at the
inner contact line is represented with a dotted line, and those at the outer contact
line is represented with a dashed line.
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Figure 6.6: Numerically calculated solutions for (a) J(r, t), (b) Q(r, t), (c) φ(r, t) (d)
φh(r, t), (e) M(t), Ma(t) and Mb(t) and (f) Ma/(2πk0) and Mb/(2π). Here k0 = 0.8
and (a)–(d) are plotted as functions of r, and (e) and (f) are plotted as functions of
t, where arrows indicate direction of increasing t. In (e) and (f), quantities at the
inner contact line is represented with a dotted line, and those at the outer contact
line is represented with a dashed line.
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flux than for the diffusion-limited evaporative flux for all 0 < k0 < 1, however, they

do coincide when k0 = 0 and k0 = 1.

Figures 6.7(b) and 6.8(b) show a comparison of the final split of mass between

the inner and outer contact lines at t = tlifetime and the initial mass of suspended

particles in the bulk of the droplet. The final mass of suspended particles at the

outer contact line is strictly greater than that at the inner contact line for all k0. In

the limit k0 → 0+, we expect the final split in mass to return to that of a spherical-

cap droplet, and indeed, Ma(tlifetime)→ 0 in this limit, and the suspended particles

in the bulk of the droplet is all advected to the outer contact line. In the limit

k0 → 1−, both Ma(tlifetime)→ 0 and Mb(tlifetime)→ 0 as V → 0, and so M0 → 0.

Figure 6.7(c) shows that the ratio of masses at the inner and outer contact lines

at t = tlifetime is equal to k0 (i.e. Ma/Mb = k0) and hence that the ratio of densities

at t = tlifetime, is equal to unity for all values of k. Figures 6.7(d) and 6.8(d) show the

ratio of the densities at the inner and contact lines, Ma/(2πk0) and Mb/(2π), plotted

as a function of time. These plots show that for a spatially-uniform evaporative flux,

density of the deposit at the outer contact line is higher than at the inner contact

line during the evaporation. However, at t = tlifetime the densities are equal. In

the case of the diffusion-limited evaporative flux, shown in Figure 6.8(c), the final

density is lower for smaller values of k0, and lower than 1 for all values of k0, showing

that the density of suspended particles at the outer contact line is greater than that

at the inner contact line throughout the evaporation for all values of k0.
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Figure 6.7: (a)R(k0) =
√
k0, the solution to (6.34), (b) the initial mass of the droplet

M0 ( solid line), and the final masses at the contact lines Ma(tlifetime) (dotted line),
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evaporative flux (2.16).
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Figure 6.8: (a) R(k0), for the numerical solution for J (solid line), the asymptotic
solutions in the limit k0 → 1− (dashed line), and the solution in the spatially-
uniform evaporative flux case (dotted line), (b) M0, Ma(tlifetime) and Mb(tlifetime),
for the numerical solution to J (solid line), the asymptotic solution for Ma(tlifetime)
and Mb(tlifetime) in the limit k → 1− (dashed line), (c) Ma/Mb and (d) Ma/(k0Mb),
where dashed lines represent asymptotic solutions in the limit k0 → 1− (4.16).
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Chapter 7

Conclusions and further work

7.1 Conclusions

In this thesis we have analysed the evolution of, and deposition from, an evaporating

sessile annular droplet.

In Chapter 2 we formulated the mathematical problem of an evaporating annular

droplet, namely the governing equations, associated boundary conditions and the

local and total evaporative fluxes.

In Chapter 3 we determined the geometry of an annular droplet, deriving the

expressions for the profile, volume and inner contact line of a thin droplet.

In Chapter 4 we derived expressions for the concentration of vapour in the atmo-

sphere and the local and total evaporative fluxes. We obtained numerical solutions,

utilising COMSOL Multiphysics® [19] for c and hence obtained numerical solutions

for J and F . We also made use of the method suggested by Cooke [20] to solve for

F without first having to solve for either c or J . We also discussed the asymptotic

solutions for F in the limit k → 0+ obtained by Collins [18], and the asymptotic
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solution for J and F in the limit k → 1− obtained by Leppington & Levine [47].

Finally, we discussed several formulations of approximate solutions of F , including

those obtained by Gladwell & Gupta [36], Laraqi [43], and Willert et al. [78].

In Chapter 5, we considered four modes of evaporation for an evaporating annu-

lar droplet and derived expressions for the evolution and lifetime of the droplet in

each of these modes for both a spatially-uniform and a diffusion-limited evaporative

flux. We also compared the lifetimes of the droplet in the different modes with those

of a spherical-cap shaped droplet. In the limit k → 0+, the lifetime of an annular

droplet evaporating with both spatially-uniform and diffusion-limited evaporative

fluxes tend to the lifetime of a spherical-cap droplet. Specifically, modes of evapora-

tion in which the outer contact line is pinned tend to the lifetime of a spherical-cap

droplet evaporating in the CR mode, while modes in which the outer contact line is

free tend to the lifetime of a spherical-cap droplet evaporating in the CA mode.

In Chapter 6 we discussed the evaporation of a particle-laden annular droplet,

and consider the deposition from such a droplet with either a spatially-uniform or

a diffusion-limited evaporative flux. In both cases we show there will be deposits

at both contact lines, and determine the critical value of r = R, which determines

the radial position at which the flow changes direction. In the case of a spatially-

uniform evaporative flux, the density of the final deposits at the contact lines are

the same, while in the case of a diffusion-limited evaporative flux the density of the

deposit at the outer contact line is strictly greater than that at the inner contact

line throughout the evaporation.
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7.2 Further work

While this work described four modes of evaporation for an annular droplet, other

more complicated modes of evaporation are, of course, possible. The approach used

in this thesis could be extended to include mixed modes of evaporation. A stick–

jump motion of one or both of the contact lines is of particular interest due to the

experimental findings of Vlasko-Vlasov et al. [76] who, as discussed in Chapter 1.5,

observed a stick–jump motion of the outer contact line of an annular droplet in a

well.

This work described the deposition patterns due to both spatially-uniform and

diffusion-limited evaporative fluxes, both of which resulted in the well-known coffee-

ring effect at both the inner and outer contact lines. Further work could expand

on this to consider more complicated evaporative fluxes, which could result in more

complicated deposition patterns.

The present work only studied the deposition patterns arising in the pinned–

pinned mode of evaporation. The approached used in this thesis could be extended to

include the deposition patterns of both the other modes of evaporation described in

this thesis, and other mixed modes of evaporation. In the pinned–pinned mode, the

critical value of R was shown to be constant, however in other modes of evaporation

R will, in general, be a function of k (and possibly b), which might well lead to more

complicated deposition patterns.

Future research on this topic can also include testing the theoretical predictions of

this work experimentally. Experimental results for the lifetimes of an annular droplet

in each of the four modes of evaporation, and the deposition from an annular droplet

in the pinned–pinned mode are of particular interest. Moreover, as discussed in

Chapter 1.6, annular droplets can be created experimentally by utilising a substrate
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patterned with a hydrophobic coating (see, for example, Lenz et al. [46], Jokinen et

al. [41], Schäfle et al. [69]). This configuration would allow for the pinning of various

contact lines depending on the pattern of the coating.
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Appendix A

Aymptotic Solutions for J and F

in the limit k → 1−

In this Appendix we will derive the asymptotic solutions for J and F in the limit

k → 1− given in (4.16) and (4.17) in the main text. Following the method of

Leppington & Levine [47], we correct their error in calculating J .

Applying Green’s Theorem to Laplace’s equation (2.1) yields an integral equation

for J , and imposing the boundary condition (2.10) gives

1 = − 1

4π

∫ b

a

K(r, r1)J(r)r dr, (A.1)

where the kernel K(r, r1) is given by

K(r, r1) =
8

r + r1
K
(

4rr1
(r + r1)2

)
, (A.2)
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where K(α) is the complete elliptic integral of the first kind,

K(α) =

∫ π/2

0

1√
1− α sin2(t)

dt, (A.3)

where

α =
4rr1

(r + r1)2
. (A.4)

To analyse the limit k → 1−, we write

ε =
b

a
− 1 =

1

k
− 1, (A.5)

and take the limit ε→ 0+. We introduce the change of variables

r = a(1 + εR), r1 = a(1 + εR1), J(r) = −4πW (R)

r
. (A.6)

Using (A.6), integral equation for J(r) (A.1) becomes

1 = aε

∫ 1

0

K(R,R1)W (R) dR. (A.7)

To obtain the asymptotic solution for W (R) in the limit ε → 0+, we expand

K(R,R1) and W (R) in terms of ε,

K(R,R1) = K0(R,R1) + εK1(R,R1) + o(ε), W (R) = W0(R) + εW1(R) + o(ε),

(A.8)

where the elliptic integral in (A.3) can be expanded using

K(α) ∼ log

(
4√

1− α

)
(A.9)

in the limit α→ 1 (see, for example, Carlson & Gustafson [13]). Expanding K given
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by (A.2) using (A.9) gives

K0(R,R1) = −4

a

[
log ε+ log

(
|R−R1|

8

)]
, (A.10)

K1(R,R1) = −4

a

[
−1

2
(R +R1) log ε− 1

2
(R +R1) log

(
e|R−R1|

8

)]
. (A.11)

The error in Leppington & Levine’s work [47] came from the expression for K1,

where instead of the (A.11), they wrote

K1(R,R1) = −4

a

[
−1

2
(R +R1) log ε− 1

2
log

(
e|R−R1|

8

)]
, (A.12)

which omits the second R +R1 term.

The expressions for K0 and K1 given by (A.10) and (A.11) can be used to

calculate the expressions for W0 and W1, appearing in (A.8). Once these are known

we can then derive expressions for J(r, t) and F (t).

First, to calculate W0(R), we evaluate (A.7) at leading order in ε,

1 = aε

∫ 1

0

K0(R,R1)W0(R) dR, (A.13)

resulting in

− 1

4ε
= log

(ε
8

)∫ 1

0

W0(R) dR +

∫ 1

0

log |R−R1|W0(R) dR. (A.14)

Cooke [21] gave the solution for an unknown function Φ(R) in an integral equation

of the form ∫ 1

0

log |R−R1|Φ(R) dR = πf(R1), (A.15)
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where f(R1) is a known function of R1. In particular, he gave the solution as

Φ(R) =
1

πR1/2

d

dR

(∫ 1

R

S(x)√
x−R

dx

)
− 1

2π log 2
√
R(1−R)

∫ 1

0

f(R1)√
R1(1−R1)

dR1,

(A.16)

where

S(x) =

∫ x

0

R
1/2
1 f ′(R1)

(x−R1)1/2
dR1. (A.17)

The integral equation (A.14) can be written in the form of (A.15) by writing

f(R1) = − 1

π

(
1

4ε
+ log

(ε
8

)∫ 1

0

W0(R) dR

)
. (A.18)

However, since f is actually independent of R1 (and thus f ′(R1) ≡ 0 and S(x) ≡ 0),

the solution for W0 is independent of R1 and is given by

W0 = − 1

2π log 2
√
R(1−R)

(
1

4ε
+ log

(ε
8

)∫ 1

0

W0(R) dR

)
, (A.19)

which, by integrating with respect to R between 0 and 1, gives

∫ 1

0

W0(R) dR = − 1

4ε log
(
32
ε

) . (A.20)

Substituting the expression for
∫ 1

0
W0(R) dR from (A.20) into the right hand side of

(A.19) gives

W0 = − 1

4επ log(32
ε

)

1√
R(1−R)

. (A.21)

To find W1, we evaluate (A.7) at order ε,

0 =

∫ 1

0

(K0(R,R1)W1(R) +K1(R,R1)W0(R)) dR. (A.22)
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By substituting K0, K1 and W0, given by (A.10), (A.11) and (A.21) respectively,

into (A.22) we obtain

2 + (1 + 2R1) log( ε
32

)

16ε log(32
ε

)
− log

(ε
8

)∫ 1

0

W1 dR =

∫ 1

0

log |R−R1|W1 dR, (A.23)

which is of the same form as (A.15) with

f(R1) =
2 + (1 + 2R1) log

(
ε
32

)
16επ log

(
32
ε

) − 1

π
log
(ε

8

)∫ 1

0

W1(R) dR. (A.24)

In this case the function f(R1) is linear in R1 and using Cooke’s solution (A.16)

yields

W1 =
1

πR1/2

d

dR

(∫ 1

R

S(x)

(x−R)1/2
dx

)
− 1

2π log 2
√
R(1−R)

∫ 1

0

f(R1)√
R1(1−R1)

dR1.

(A.25)

Calculating S from (A.17) and substituting into (A.25) gives

W1 =
8ε log

(
ε
8

) ∫ 1

0
W1 dR− 1− log

(
ε
32

)
+ 2 log 2 log

(
ε
32

)
(1− 2R)

16επ log 2 log
(
32
ε

)√
R(1−R)

, (A.26)

which can be integrated with respect to R from 0 to 1 to determine
∫ 1

0
W1 dR.

Substituting this expression into (A.26) gives

W1 =
[2R log 2 + 1− log 2]

(
log
(
32
ε

))2 − log
(
8
ε

)
log
(
32
ε

)
− 2 log 2

8πε log 2
(
log
(
32
ε

))2√
R(1−R)

. (A.27)

So the first-order-accurate solution for W = W0(R) + εW1(R) + o(ε) is

W =
−2 log 2 log

(
32
ε

)
+ ε

[(
log
(
32
ε

))2
[1− (1− 2R) log 2]− log

(
8
ε

)
log
(
32
ε

)
− 2 log 2

]
8πε log 2

(
log
(
32
ε

))2√
R(1−R)

+o(ε).

(A.28)
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If, however, the incorrect expression for K1 that Leppington & Levine gave (A.12)

is used, Leppington & Levine’s solution for W is

W =

−4 log 2 log
(
32
ε

)
[5 + 5ε(1− 2R) log 2]

+ ε
[(

log
(
32
ε

))2
[(1− 2R) log 2 + 1] + log

(
8
ε

)
log
(
32
ε

)
+ 2 log 2

]
16πε log 2

(
log
(
32
ε

))2√
R(1−R)

, (A.29)

which includes an additional factor of R and ε on the numerator multiplying the

log 2 log(32/ε) term on the numerator.

Integrating (A.28) with respect to R from 0 to 1 yields the equivalent for the

total evaporative flux,

∫ 1

0

4πaεW dR =
π2a

[
(2 + ε) log

(
32
ε

)
− ε
](

log
(
32
ε

))2 + o(ε). (A.30)

Using (A.6) to change the variables of (A.28) yields the asymptotic expressions

for J and F in the limit k → 1−,

J = b
4(1− k) log 2− log

(
32k
1−k

) [
(1− k) log

(
32k
1−k

)
log 2(r − kb) + 2− 2 log 2

]
16π log 2 log

(
32k
1−k

)
r
√

( r
b
− k)(1− r

b
)

+ o(1− k),

(A.31)

F =
bπ2
[
(1 + k) log

(
32k
1−k

)
− 1 + k

](
log
(
32k
1−k

))2 + o(1− k), (A.32)

which gives (4.16) and (4.17) in the main text.
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Appendix B

Derivation of the governing

equation for the advection of

suspended particles

In this Appendix we derive the advection-diffusion equation (6.19) appearing in the

main text. We first simplify the advection-diffusion equation and the associated

boundary conditions using the kinematic condition and derive the leading-order

expression, in the limit of a thin droplet, for the advection for the concentration of

suspended particles in the bulk of the droplet.

The concentration of suspended particles within bulk of the droplet satisfies the

(scaled) advection-diffusion equation

∂φ

∂t
+∇· (−∇φ+ φu) =

θ̂2b0Pe

(
∂φ

∂t
+ u

∂φ

∂r
+ w

∂φ

∂z

)
−
(
θ̂2b0

(
∂2φ

∂r2
+

1

r

∂φ

∂r

)
+
∂2φ

∂z2

)
= 0, (B.1)
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where φ = φ(r, z, t) is the concentration of suspended particles in bulk of the droplet.

There is no flux of suspended particles through the substrate

∂φ

∂z
= 0 on z = 0, (B.2)

and no flux of suspended particles through the free surface (see, for example, Wray

et al. [83, equation 10])

−∇φ · n + φ (u− us) · n = 0 on z = h, (B.3)

where us = (0,−∂h/∂t) denotes the vertical velocity of the (evolving) free surface

of the droplet, n is the unit outward normal to the free surface of the droplet given

by

n =
1√

1 + ∂h
∂r

2

(
−∂h
∂r
, 1

)
, (B.4)

Utilising the kinematic condition, (u− us) · n can be written as

(u− us) · n = −
w − ∂h

∂t
− u∂h

∂r√
1 +

(
∂h
∂r

)2 = J on z = h, (B.5)

so the boundary condition for zero flux of suspended particles on the free surface,

(B.3), can be written as

1√
1 + θ2b0

∂h
∂r

2

(
−θ2b0

∂h

∂r

∂φ

∂r
+
∂φ

∂z

)
= θ2b0PeφJ on z = h. (B.6)

As in the main text, we look at the case where θ2b0 � θ2b0Pe � 1. Then in the
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limit θb0 → 0, we seek a solution for φ in the form

φ(r, t) = φ0(r, t) + θ2b0Peφ2(r, z, t) +O(θ4b0Pe
2). (B.7)

Substituting (B.7) into the governing equation (B.1) gives

θ2b0Pe

(
∂φ0

∂t
+ u

∂φ0

∂r

)
= θ2b0

(
∂2φ0

∂r2
+

1

r

∂φ0

∂r

)
+
∂2φ0

∂z2
+ θ2b0Pe

∂2φ2

∂z2
+O(θ4b0Pe

2),

(B.8)

and the leading and first order solution for the boundary conditions (B.2) and (B.6)

become

∂φ0

∂z
= 0 and

∂φ2

∂z
= 0 on z = 0, (B.9)

and

−
(
∂h

∂r

∂φ0

∂r

)
+ Pe

∂φ2

∂z
= Peφ0J +O(θ2b0Pe

2) on z = h. (B.10)

The leading order equations for φ0, (B.9) show that φ0 is independent of z. By

considering the first-order terms in the governing equation (B.8) and the boundary

conditions (B.9) and (B.10), we obtain

∂2φ2

∂z2
=
∂φ0

∂t
+ u

∂φ0

∂r
, (B.11)

subject to the boundary conditions

∂φ2

∂z
= 0 on z = 0 (B.12)

and

∂φ2

∂z
= φ0J on z = h. (B.13)

Integrating (B.11) with respect to z from z = 0 to z = h and imposing (B.12)
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yields,

∂φ2

∂z
=
∂φ0

∂t
+
∂φ0

∂r
ū. (B.14)

Finally, by substituting (B.13) into (B.14) and dropping subscripts, equation (B.14)

becomes

∂φ

∂t
+ ū

∂φ

∂r
=
φJ

h
, (B.15)

which gives (6.19) in the main text.
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