

A Novel Series of Organic Semiconductors for OPV and OFET applications

Submitted by:

Diego Cortizo Lacalle

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Department of Pure and Applied Chemistry, University of Strathclyde

2012

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed:

Date:

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Professor Peter J. Skabara for guiding me throughout my PhD. I would like also to thank the Basque Government for funding my PhD studies at the University of Strathclyde.

Special thanks as well to all the current and past post-docs (Dr. Neil J. Findlay, Dr Alexandre Kanibolotsky and Dr. Filipe Vilela) and PhD students of Professor Peter J. Skabara's group (2008-2012). I would like also to recognise the work carried out by the technicians in the Department of Pure and Applied Chemistry at the University of Strathclyde.

All the device work described in Chapter 2 and the ongoing work described in Chapter 4 have been carried out by Calvyn T. Howells and Dr. Salvatore Gambino under the supervision of Professor Ifor D. W. Samuel at the University of St. Andrews.

All the device work described in Chapter 3 has been carried out by Mr. Sasikumar Arumugam and Dr. Anto Regis Inigo under the supervision of Professor P. J. Skabara at the University of Strathclyde. A meu Pai, mi Madre y mi Hermana.

Eta zuri.

ABSTRACT

In the last three decades, the search for alternative energy for common fuel sources has been greatly developed. Among the already well-established and developing technologies (wind energy, hydrogen, geothermal energy or hydropower), solar cells have attracted enormous interest. This interest is due to the potentially vast solar energy that can be harvested on the Earth's surface. Currently, solar cells based on inorganic materials are widespread due to their high efficiency, whereas the power conversion efficiency of organic photovoltaics (OPVs), being new technology, is continuously increasing towards that of their inorganic counterparts.

The improvement of this promising field is strongly linked to the development of new materials to increase the harvesting properties of the organic solar cell, as well as a better understanding of the physics and the behaviour of every component within the device.

In that sense, this thesis presents the synthesis and characterisation of three novel series of organic materials and their performance in organic photovoltaics. Chapter 2 describes the incorporation of a well-known dye (BODIPY) into conjugated polymers. A BODIPY core was co-polymerised with bis-EDOT and bis-EDTT units and their performance in OPVs was studied. Chapter 3 shows the effective fusion of TTF units *via* a thiophene unit to the main conjugated polymer chain. A fused thieno-TTF moiety was copolymerised with a soluble derivative of DPP and tested in organic photovoltaics and OFETs showing excellent results. Finally, the synthesis and characterisation of two new "small molecules" based on BODIPY-DPP-BODIPY triads are described in Chapter 4. The performance of these two novel compounds in OPVs is currently under study.

ABBREVIATIONS

AFM	Atomic Force Microscopy
AM1.5	Air Mass 1.5 spectrum
a.u.	arbitrary units
BEDT-TTF	Bis-(ethylenedithio)-tetrathialfulvalene
BHJ	Bulk Heterojunction
BLA	Bond Length Alternation
BODIPY	Boron-dipyrromethene
CIGS	Chalcogenide Copper Indium Gallium Diselenide
cod	Cyclooctadiene
CuPc	Copper Phthalocyanine
CV	Cyclic voltammetry
D-A	Donor-Acceptor
DCM	Dichloromethane
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DFT	Density Functional Theory
DMF	N,N-Dimethylformamide
DMSO	Dimethyl Sulfoxide
DSC	Differential Scanning Calorimetry
DPP	Diketopyrrolopyrrole
ECD	Electrochromic Devices
EDOT	Ethylenedioxythiophene
EDTT	Ethylenedithiathiophene
Eg	Band gap
EPR	Electron paramagnetic resonance

EQE	External Quantum Efficiency
eV	Electron-volt
Fc/Fc ⁺	Ferrocene/Ferrocenium
FF	Fill factor
GPC	Gel Permeation Chromatography
HPLC	High Pressure Liquid Chromatography
НОМО	Highest Occupied Molecular Orbital
HT	Head-to-Tail
ICT	Internal Charge Transfer
IPCE	Incident Photon to Current Efficiencies
IR	Infrared
ir	Irreversible
I _{SC}	Short Circuit Current
ISC	Intersystem Crossing
ITO	Indium Tin Oxide
LDA	Lithium Diisopropylamide
LUMO	Lowest Unoccupied Molecular Orbital
Μ	Molar
MALDI	Matrix-Assisted Laser Desorption Ionisation
МО	Molecular Orbital
MS	Mass Spectrometry
NCS	N-Chlorosuccinimide
n-doped	Negatively-Doped
NBS	N-Bromosuccinimide
NMR	Nuclear Magnetic Resonance
OFET	Organic Field-Effect Transistor

OLED	Organic Light Emitting Diode
ONSH	Oxidative Nucleophilic Substitution of Hydrogen
OPV	Organic Photovoltaic
OSC	Organic Solar Cell
OTS	Octadecyltrichlorosilane
p-doped	Positively-Doped
РЗНТ	Poly(3-hexylthiophene)
РСВМ	Phenyl-C ₆₀ -butyric acid methyl ester
PCE	Power Conversion Efficiency
PDI	Polydispersity index
PEDOT	Poly(ethylenedioxythiophene)
PITN	poly(isothianaphthene)
ppm	Parts Per Million
PPV	Poly(<i>p</i> -phenylene vinylene)
PSS	Polystyrene Sulfonate
qr	Quasi-reversible
r	Reversible
TBAPF ₆	Tetrabutylammonium hexafluorophosphate
TCNQ	7,7',8,8'-Tetracyano- <i>p</i> -quinodimethane
TFA	Trifluoroacetic acid
TGA	Thermal Gravimetric Analysis
THF	tetrahydrofuran
TMTSF	Tetramethyl tetraselenafulvalene
TOF	Time of Flight
TTF	Tetrathiafulvalene
UV	Ultraviolet

Open Circuit Voltage

V_{OC}

LIST OF FIGURES

Figure 1.1. Chemical structure of perylene (1), TCNQ (2), TTF derivative (3	i) 3
and TMTSF (4)	
Figure 1.2. Chemical structure of BEDT-TTF (5) and C_{60} (6)	4
Figure 1.3. Schematic representation of the valence and conducting bans in	6
solids	
Figure 1.4. Schematic representation of the doping effect in semiconductors	7
Figure 1.5. Schematic representation of the parameters that govern the band	9
gap	
Figure 1.6. Aromatic and quinodal conformations of PITN (7)	10
Figure 1.7. Donor-Acceptor approach	11
Figure 1.8. Mechanism of the Stille cross-coupling reaction	13
Figure 1.9. Mechanism of the Suzuki-Miyaura cross-coupling reaction	15
Figure 1.10. Mechanism of the Yamamoto reaction	17
Figure 1.11. Mechanism of the Sugimoto oxidative polymerisation reaction	19
Figure 1.12. Mechanism of the electropolymerisation of five-member rings	20
Figure 1.13. Photon flux and integrated current as a function of wavelength	22
Figure 1.14. Schematic of a BHJ type solar cell	26
Figure 1.15. Contour plot showing the calculated energy-conversion efficier	cy 29
(contour lines and colours) versus the band gap and the LUMO level of the	
donor polymer	
Figure 1.16. Chemical structure of some donor units	30
Figure 1.17. Chemical structure of some acceptor units	31
Figure 1.18. Chemical structure of PC ₆₁ BM	31
Figure 1.19. Typical OFET architectures: a) bottom contact-bottom gate, b)	33
top contact-bottom gate and c) bottom contact-top gate	
Figure 1.20. Typical output characteristics of OFETs	35
Figure 1.21. Schematic of a simple OLED	36
Figure 1.22. Typical structure of an electrochromic device (ECD)	37
Figure 2.1. Chemical structure of BODIPY (24), indacene (25) and porphyrid	n 47
(26)	

Figure 2.2. Bodipy polymers used in OPVs	52
Figure 2.3. Normalised UV-vis absorption spectra (for better comparison) of	57
the open- and close- Bodipy monomers (13-16) and 11 and 12. Open-EDOT	
(blue), open-EDTT (green), close-EDOT (black), close-EDTT (red), 11	
(orange) and 12 (grey)	
Figure 2.4. Cyclic voltammograms of open-EDOT (blue) and open-EDTT	60
(green)	
Figure 2.5. Cyclic voltammograms of close-EDOT (black) and close-EDTT	61
(red)	
Figure 2.6. Cyclic voltammograms of the electrochemically grown polymers	63
p(open-EDOT) (blue), p(open-EDTT) (green), p(close-EDOT) (black),	
p(open-EDTT) (red)	
Figure 2.7. H-NMR spectra of the close-EDTT (a) and p(close-EDTT)	67
(Sugimoto (b), polymerisation with nitrosonium cation (c) and Yamamoto (d))	
Figure 2.8. UV-visible absorption spectra of p(BDP-bisEDOT) (red) and	72
p(BDP-bisEDTT) (black) in solution (top) and as a thin-film (bottom)	
Figure 2.9. Cyclic voltammograms of p(BDP-bisEDOT) (red) and p(BDP-	74
bisEDTT) (black)	
Figure 2.10. J-V characteristics for polymer and polymer-fullerene devices	76
under 100 mW cm-2 illumination with standard AM1.5G source	
Figure 2.11. Incident photon to electron conversion efficiency (IPCE) for	77
polymer-fullerene devices with and without bias p (BDP-bisEDOT) (top) and	
p(BDP-bisEDTT) (bottom)	
Figure 2.12. Tapping mode AFM height images of p(BDP-bisEDOT) on	79
ITO/PEDOT substrate	
Figure 2.13. Electron (squared dots) and hole (circular dots) mobilities of	80
p(BDP-bisEDOT) against the electric field	
Figure 3.1. TTF (45, oxidation-reduction system: neutral molecule, radical	91
cation and dication), TCNQ (46) and BEDT-TTF (47)	
Figure 3.2. Derivatisation of tetrathiafulvaneyllithium, where X= Br, I and	96
Y=Se, Te	
Figure 3.3. Cyclic voltammograms of p(DPP-TTF) in solution (black) and in	104

solid state (red)	
Figure 3.4. Spectroelectrochemistry of p(DPP-TTF)	106
Figure 3.5. UV-vis absorption spectra of p(DPP-TTF) in solution (red) and in	107
solid (black)	
Figure 3.6. Output characteristics of p(DPP-TTF) measured at gate voltage	109
intervals of 20 V	
Figure 3.7. Transfer characteristics of p(DPP-TTF) were measured at 90 V	109
(source-drain) in an ambient laboratory conditions. The data shown here were	
measured on the 1st, 8th and 15th days	
Figure 3.8. Tapping mode AFM height images of p(DPP-TTF) on OTS	110
treated SiO ₂ surfaces after annealing at 200 °C for 20 min	
Figure 3.9. J-V characteristics for p(DPP-TTF):PC70BM under illumination	111
with standard AM 1.5G source	
Figure 3.10. J-V characteristics for p(DPP-TTF) as a single component OPV	112
Figure 4.1. Schematic OPV device (above) and chlorophyll-a 65 (below)	123
Figure 4.2. Chemical structure of 66	125
Figure 4.3. Chemical structure of 67	125
Figure 4.4. Donor-Acceptor approach	126
Figure 4.5. Series of BODIPY derivatives used in OPVs	128
Figure 4.6. Series of DPP derivatives (71-73) studied in OPVs	129
Figure 4.7. Triad based on a BODIPY-DPP-BODIPY 74	130
Figure 4.8. Cyclic voltammograms of 63 (black) and 64 (red) in solution	135
Figure 4.9. Cyclic voltammograms of 63 (black) and 64 (red) in solid	136
Figure 4.10. Normalised UV-vis absorption spectra (for better comparison) of	139
63 (black), 64 (red) and DPP core (35, green) in dichloromethane solution	
Figure 4.11. UV-vis absorption spectra of 63 (black) and 64 (red) core in solid	140
Figure 4.12 DFT calculations for 63	142
Figure 4.13 DFT calculations for 64	143
Figure A.1. Electropolymerisation of open-EDOT (13)	182
Figure A.2. Electropolymerisation of open-EDTT (14)	182
Figure A.3. Electropolymerisation of close-EDOT (15)	183
Figure A.4. Electropolymerisation of close-EDTT (16)	183

Figure A.5. UV-vis absorption spectra in solution of **p(BDP-EDTT)** 184 synthesised *via* Sugimoto polymerisation

Figure A.6. UV-vis absorption spectra in solution of **p(BDP-EDTT)** 184 synthesised using nitrosonium ion

Figure A.7. UV-vis absorption spectra in solution of **p(BDP-EDTT)** 185 synthesised *via* Yamamoto polymerisation

Figure A.8. Holes photocurrent transients of p(BDP-EDOT) at electric field 185 of $1.8 \times 10^5 \text{ V cm}^{-1}$ in linear scale

Figure A.9. Holes photocurrent transients of p(BDP-EDOT) at electric field 186 of $1.8 \times 10^5 \text{ V cm}^{-1}$ in log-log scale

Figure A.10. Electrons photocurrent transients of p(BDP-EDOT) at electric 186 field of $1.8 \times 10^5 \text{ V cm}^{-1}$ in linear scale

Figure A.11. Electrons photocurrent transients of p(BDP-EDOT) at electric 187 field of $1.8 \times 10^5 \text{ V cm}^{-1}$ in log-log scale

CONTENTS

TITLE	i
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABBREVIATIONS	vi
LIST OF FIGURES	х
CONTENTS	xiv

CHAPTER 1: INTRODUCTION	1
1.1. GENERAL INTRODUCTION	2
1.2. BAND THEORY	5
1.3. ENGINEERING OF THE ENERGY GAP IN π -CONJUGATED SYSTEMS	8
1.4. SYNTHESIS OF π -CONJUGATED SYSTEMS	12
1.4.1 Stille Coupling	13
1.4.2 Suzuki Coupling	14
1.4.3 Yamamoto Coupling	16
1.4.4 Sugimoto Polymerisation	18
1.4.5 Electropolymerisation	19
1.5. ORGANIC SOLAR CELLS	21
1.5.1 Solar Energy	22
1.5.2 Mechanism to turn Light into Electricity	23
1.5.3 Device Architecture	25
1.5.4 Physics of Organic Solar Cells	26
1.5.5 Optimum Alignment of the Orbital Levels	28
1.5.6 Materials	30
1.6. ORGANIC FIELD-EFFECT TRANSISTORS (OFETs)	32
1.7. ORGANIC LIGHT EMITTING DIODES (OLEDs)	35
1.8. ELECTROCHROMISM	36
REFERENCES	38

CHAPTER 2: SYNTHESIS AND CHARACTERISATION OF LOW	43
BAND-GAP BASED ON BODIPY DERIVATIVES AND FABRICATION	
OF OPVS	
2.1. ABSTRACT	44
2.2. SYNTHESIS	45
2.3. INTRODUCTION	46
2.4. SYNTHESIS OF MONOMERS 13-16	52
2.5. CHARACTERISATION OF MONOMERS 13-16	56
2.5.1 UV-Visible Absorption Spectroscopy of Monomers 13-16	56
2.5.2 Electrochemical Properties of Monomers 13-16	58
2.6. ELECTROPOLYMERISATION OF MONOMERS (13-16) AND	62
ELECTROCHEMICAL PROPERTIES OF THE POLYMERS	
2.7. CHEMICAL SYNTHESIS OF POLYMERS P(BDP-EDOT) AND P(BDP-	65
EDTT) AND THEIR CHARACTERISATION	
2.7.1 Polymerisation Processes	65
2.7.2 Characterisation of p(BDP-EDOT) and p(BDP-EDTT)	71
2.8. DEVICE FABRICATION AND CHARACTERISATION	75
2.8.1 Photovoltaic Properties of p(BDP-EDOT) and p(BDP-EDTT)	75
2.8.2 Atomic Force Microscopy (AFM) and Time of Flight (TOF)	78
Measurements of p(BDP-EDOT)	
2.9 CONCLUSIONS AND FURTHER WORK	82
REFERENCES	84
CHAPTER 3: SYNTHESIS AND CHARACTERISATION OF A LOW	88
BAND-GAP COPOLYMER BASED ON DPP AND FUSED THIENO-TTF	
UNITS FOR ORGANIC PHOTOVOLTAICS AND ORGANIC FIELD-	
EFFECT TRANSISTORS	
3.1. ABSTRACT	89
3.2. SYNTHESIS OF P(DPP-TTF)	90

91

92

96

3.3. INTRODUCTION

3.3.2 TTF in Polymers

3.3.1 Synthesis of TTF and Its Derivatives

3.4. SYNTHESIS OF MONOMERS AND P(DPP-TTF) COPOLYMERS	98
3.5. THERMAL PROPERTIES	103
3.6. ELECTROCHEMICAL AND UV-VIS ABSORPTION SPECTROSCOPY	103
OF P(DPP-TTF)	
3.7 PERFORMANCE OF P(DPP-TTF) IN OFETS AND OPVS	108
3.7.1 Field-Effect Transistor Properties and Surface Morphology	108
3.8. ORGANIC PHOTOVOLTAICS	111
3.9. CONCLUSIONS AND FURTHER WORK	113
REFERENCES	114
CHAPTER 4: SYNTHESIS OF TWO BODIPY-DPP-BODIPY TRIADS	120
FOR ORGANIC PHOTOVOLTAICS	
4.1. ABSTRACT	121
4.2. SYNTHESIS	122
4.3. INTRODUCTION	123
4.4. SYNTHESIS OF BODIPY-DPP-BODIPY TRIADS (63-64)	129
4.5. ELECTROCHEMICAL AND OPTICAL PROPERTIES OF BODIPY-DPP-	134
BODIPY TRIADS (63-64)	
4.6. DFT CALCULATIONS	141
4.7. CONCLUSIONS AND FURTHER WORK	144
REFERENCES	145
CHAPTER 5: EXPERIMENTAL	148
GENERAL EXPERIMENTAL	149
REFERENCES	180
APPENDIX	181
A.1. ELECTROPOLYMERISATION OF COMPOUNDS 13-16	182
A.2. UV-VIS ABSORPTION SPECTROSCOPY OF CHEMICALLY GROWN	184
P(BDP-EDTT) POLYMERS	
A.3. TIME OF FLIGHT MEASUREMENTS OF P(BDP-EDOT)	185
A.4. FABRICATION OF OFETS USING P(DPP-TTF)	187