
An Investigation Into The Stability and Accuracy of 

Boundary Approximations Used In The Numerical Solution 

Of Hyperbolic Initial-Boundary Value Problems 

Scott McMillan Jamieson 

A Thesis Submitted In Partial Fulfilment 

Of The Requirements For The 

Degree Of Doctor of Philosophy 

Department Of :\lathematics 

l'niH)rsit~ Of Strathclyde 

1984 



To 

My Parents 

Thank You 



Acknowledgements 

My sincere thanks go to my tutor Dr. David M. Sloan for his 

encouragement and support throughout my time at university and 

especially in the work of this thesis. 

Thanks are due also to Mrs. Lynne Westwood who, with incredible 

patience, typed the manuscript. 

I am indebted to Strathclyde University for the necessary 

financial support. 



"Aye free~ aff han' your story tell~ 

When wi' a bosom crony; 

But still keep something to yoursel 

Ye scarely tell to ony ... " 

from "Epistle to a Young Friend" 

Robert Burns 1759-1796 



CONTENTS 

ABSTRACT 

0.1 Introduction I 

0.2 Notation and Definitions VI 

CHAPTER 1 : THEORETICAL RESULTS FOR THE CONTINUOUS AND 

DISCRETE PROBLEMS 1 

1.1 The Differential Problem 1 

1.1.1 The Cauchy Problem 1 

1.1.2 The Initial Boundary Value Problem 3 

1.2 The Discrete Problem 7 

1.2.1 The Cauchy Problem 7 

1.2.2 The Initial Boundary Value Problem 13 

CHAPTER 2 : METHODS FOR VERIFYING STABILITY RESULTS 26 

2.1 Polynomial Resultant Approach 27 

2.2 Continuation 29 

2.2.1 Standard Continuation 30 

2.2.2 Parameterized Continuation 34 

2.2.3 A Composi te Continuation ~Iethod 42 

CHAPTER 3 : BOUNDARY TECHNIQUES FOR THE LAX.-WENDROFF METHOD 49 

3.1 Boundary Approximations and Stability Analysis 52 

3.1.1 The Left Boundary Problem 52 

3.1.2 The Right Boundary Problem 59 

3.2 Numerical Results 62 

3.3 Extrapolation of Characteristic Variables 65 

3.4 Accuracy Analysis 75 



CHAPTER 4 . A SEMI-IMPLICIT METHOD Al'ID BOUNDARY APPROXI~1ATIONS 83 . 
4.1 Description and Application of the SILF Method 85 

4.2 Description and Stability Analysis of Some 

Boundary Approximations 95 

4.3 Numerical Results 102 

4.4 Skollermo Accuracy 106 

CHAPTER 5 : A FINITE ELE11ENT METHOD AND BOUNDARY APPROXIMATIONS ill 

5.1 The Advection Equation III 

5.1.1 Stability Analysis and Boundary Approximations 117 

5.1.2 Numerical Results 122 

5.2 The Fast-Wave Problem 126 

5.2.1 Stability Analysis and Boundary Approximations 128 

5.2.2 Numerical Results 132 

5.2.3 Skollermo Accuracy Results 136 

CHAPTER 6 : NON-LINEAR PROBLEMS 140 

SUMMARY 145 

Appendix I - The Resultant Method 149 

Appendix II - The Differential-Difference Equations of the ABC 

Method Applied to a Non-Linear Problem 152 

PLOTS 157 

REFERENCES 163 



ABSTRACT 

A comparison of boundary approximations used in numerical solution 

of one-dimensional hyperbolic systems of partial differential equations 

is undertaken. Stability and accuracy studies of the boundary 

approximations are conducted for a variety of interior schemes. A new 

fourth order accurate finite-element scheme is proposed. 
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0.1 INTRODUCTION 

In this thesis we examine some of the difficulties inherent in 

the construction of a numerical approximation to the solution of one-

dimensional initial-boundary value hyperbolic problems. The governLng 

system of partial differential equations may be written as 

a 
A(u,x,t) a au(x,t) = a u(x,t) t 'V 'V X 'V 

, (x,t) ED x [O,TJ 

u(x,O) = f(x) 
'V 'V 

(0.1 ) 

B(x,t)u(x,t) = g(x,t) 
'V 'V 

, (x, t) E aD x [0, TJ 

where D is some bounded interval of ~ and B is a matrix operator of 

appropriate dimensions. Multi-dimensional analogues of (0.1) occur 

frequently in the equations of fluid dynamics, and by studying system 

(0.1) we seek to develop results that may be extended to practical 

situations. 

We are primarily concerned with the construction and comparison 

of the approximate boundary values required to obtain the numerical 

solution of system (0.1) when D is a bounded region. In particular 

we examine those systems (0.1) that exhibit differing time scales. 

The physical problems we are concerned with are therefore those which 

exhibit solution waves, travelling through the physical domain with 

different speeds and directions and are identified by the matrix A 

possessing non-equal eigenvalues. A typical example being the 

equations of the atmosphere in meteorology where there are relatively 

high speed gravity waves. These waves have a negligible effect on 

the solution of the governing differential equations but can have a 



II 

crucial effect on any numerical method of solution. In this thesis 

we consider the effect the nature of the incident waves on any 

boundary has on any required boundary approximation. 

Many numerical difference schemes can be shown to provide an 

unstable approximation to the pure initial-value problem given by a 

linearised version of (O~l) unless an inequality involving the mesh 

ratio and largest eigenvalue, in modulus, of A is satisfied. This 

is commonly termed the Courant, Fredrichs, Lewy (CFL) condition. The 

importance of the concept of stability is encapsulated in the Lax 

equivalence theorem which guarantees that any numerical solution 

obtained from a consistent, stable approximation to a linear, constant 

coefficient difference scheme will converge to the exact differential 

solution. It should be emphasized that the use of a finite difference 

scheme that is stable for the pure initial-value problem in no way 

ensures that the approximation, to a problem defined on a bounded 

domain, will be stable. Instabilities may be introduced, through the 

boundary representation, which will be transported along the 

characteristics and destroy the entire approximation. To ascertain the 

stability properties of any formulation used on aD we invoke the results 

of Gustafsson, Kreiss and Sundstrom [1972J when A has distinct real 

eigenvalues. In this case the stability condition reduces to an 

algebraic determinant equation, the roots of which may be analysed 

according to various stability criteria. 

In Chapter 1 we rev~ew the requirements necessary to guarantee 

the existence and uniqueness of the solution u(x,t) of (0.1). The 
~ 

primary pursuit of this thesis is the study of numerical boundary 

approximations used in the solution of hyperbolic problems exhibiting 
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differing time-scales and to this end the determinant condition or 

Gustafsson et al [1972J for finite difference approximations is 

derived. The extension of this result (Strikwerda [1980J) to a 

method-of-lines approximation is also given. A further approach uses 

the results of Cronin [1980J and provides a partial stability analysis 

by examining the eigenvalues of the amplification matrix. 

The roots of the algebraic determinant equation derived in 

Chapter 1 can be obtained analytically only in the simplest of cases. 

In the majority of situations numerical methods are required and in 

Chapter 2 a variety of new and existing techniques are presented. 

As a test problem for the remaining chapters of this thesis we 

consider the initial-value problem 

d 
-u at 'V 

= [q-l ~ q+l 
q+lJ a -u 
q-l ax 'V 

u(x,O) = f(x), q(> 1) E JR 
'V 'V 

T 
~(x,t) = (u(x,t),v(x,t» 

(x,t) E D x [O,T] 

(0.2) 

which has characteristic velocities 1 and -q and so exhibits differing 

time-scales, as required. Any two variable constant-coefficient linear 

hyperbolic problem (0.1) can be reduced to this form by an appropriate 

rescaling. We examine the model left boundary problem, where 

D = {x E JR: x ;::.. O} and where the fast wave is incident at x = 0, 

separately from the model right boundary problem given by 

D = {x E lR: x ~ I} which has the slow wave incident at x = 1. This 

separation is performed to allow the computational significance or 

the fast wave being incident or reflected to be determined. Along 

. . dx dx .. . 
the character1st1cs - = 1 and -- = -q the respect1ve quant1t1es dt dt 
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u(x,t) - v(x,t) and u(x,t) + v(x,t) are conserved. These define the 

so-called Riemann Invariants. 

In Chapter 3 the results of Chapters 1 and 2 are invoked when 

the interior difference scheme applied to (0.2) is that devised by 

Lax and Wendroff [1960J. A variety of boundary approximations are 

examined and those that are based on the Riemann Invariants are shown 

to be the most desirable. For a particular class of boundary 

approximations describing the extrapolation of a linear combination 

of u(x,t) and v(x,t) the right boundary is shown to be more sensitive 

to the choice of the extrapolated quantity. The results of this 

chapter may be considered as an extension of the work of Sloan [1980J. 

Whilst the Lax-Wendroff method is simple to apply and provides 

accurate results its use may, as a result of the associated CFL 

condition, be computationally expens~ve. This is due to the 

restriction on the time increment ~t, especially when q »1. This 

drawback may be avoided by filtering the quantity transported along 

the fast characteristic out of the initial data using the Bounded 

Derivative method of Kreiss [1979J. This approach has been applied 

successfully in meteorological problems by Browning, Kreiss and 

Kasahara [1980J. For such suitably initialised problems numerical 

solutions may be obtained using the asymptotic expansion of 

Gustafsson [1980J. To solve the problem in the original, non-

filtered, form the split-explicit approach of Ookochi and Xatsumura 

[1980J could be adopted. This technique involves the partitioning 

of the differential equations into separate fast and slow wave 

components. The resulting numerical integration is performed 

separately on each partition for a different value of ~t. The authors 
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demonstrate that accurate results can be obtained with a signi:icant 

reduction in computational cost. We, however, adopt the seml-

implicit approach of Kwizak and Robert [1971J where that part of the 

differential equations contributing the fast wave component is 

approximated by an implicit technique and all others treated explicitly. 

In Chapter 4 the standard Leap-frog method is modified using the above 

approach and is enhanced further through the use of a staggered mesh. 

Stable and accurate boundary approximations are developed with those 

relating to the characteristic formulation being among the most 

appropriate. 

In Chapter 5 we present a new finite element method which is 

designed specially for problems of the form (0.2). A fourth order 

approximation in both space and time to the solution of the scalar 

advection equation is developed first. For the appropriate extension 

to (0.2) accurate and stable boundary techniques are constructed. 

For symmetric problems, boundary approximations based on a finite 

element reasoning are the most accurate, however as q increases we 

again show the desirability of characteristic formulations. 

In Chapter 6 we apply the results of the three previous chapters 

to a simple non-linear system. 
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0.2 ~otation and Definitions. 

In this thesis we consider various problems defined on the sets 

of integer, real or complex numbers, denoted by Z, ~ and C 

respectively, or multidimensional extensions thereof. A vector 

function u, defined on such a space, will have the specific domain of 

dependence defined in the text and will be denoted by u. 
'V 

Consider now the continuous differential problem. To develop 

the theory in Chapter 1 we require the L (D) norm defined by 
p 

II u II - rJ I ~l (x) I p dxJ 1 / p , 
'V p,D - L DV 

(0.3) 

where D is some set of real numbers. Unless stated otherwise we will 
, 

consider p = 2 and will drop the first subscript in the left side of 

(0.3). The continuous Fourier transform of a function u E Lry(ffim) 
'V 

is defined by 

with the associated inverse defined by 

A ~wx 
u(x)e dw. 
'V 

m 
It is of interest to note that for }t E L2 (lR) we have that 

'" m ~ E L2 (lR) and Parseval f s equality 

IIQII = 

holds. 

We also requ~re the Laplace transform of u, defined by 

A fOO -st u = 0 e u(t)dt, JRe(s) > some constant c, 
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to remove the time variable in several situations. \.J'e use the symbol 

A arbitrarily to denote a transformed variable. The precise transform 

being applied will be made clear in the text. 

A system of the form (0.1) is said to be hyperbolic if all the 

eigenvalues of A are real and there exists a continuous transformation 

S such that S-lAS is diagonal and for some constant k, we have 

II S II < k and 

System (0.1) is strictly hyperbolic if it is hyperbolic with distinct 

eigenvalues. The definition of hyperbolicity extends to multi-

dimensional problems by effectively requiting that the problem is 

hyperbolic in each one-dimensional direction. The results reproduced 

~n Chapter 1 are given for such multidimensional problems. 

Consider now the discrete problem defined on JR x [0, TJ. We 

construct a two-dimensional mesh with increments ~x and ~t upon which 

we approximate ~(x,t) by the grid function ~~. The discrete L2 norm 

denoted by L2(~x) is defined 

= z ~xIU(x.) 12 
• 'V J 
J 

and where I. \2 is the Euclidean norm of a vector. We reserve the 

subscript h and the argument ~x for discrete norms. 

In Chapter 1 we requ~re the one-dimensional discrete Fourier 

transform defined by 

W E lR 

where the summation ~s performed over the spatial grid points. 



For conven~ence we denote by ~j the value of ~6. at x = x
j

' 

t = t (j E ~, t = Z+) and we define the shift operator EU 
by 

n 

\'1 II 

U. = EUU. (u E Z). 
""J +u ""J 

We also define the centred difference operators 

a2
U. 

1 
2U. + u. 1)' = -2(~j+1 -

'VJ ""J 'VJ-
6.x 

6. U. = _l_(U - u. 1)' o'VJ 2llx ""j+1 'VJ-
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CHAPTER 1 

THEORETICAL RESULTS FOR THE CONTINUOUS AND DISCRETE PROBLEMS 

1.1 The Differential Problem 

In this section we consider what requirements are necessary for 

the solution of the linear hyperbolic system of partial differential 

equations 

~t = 
m 

l: 
j=l 

A.(x,t)u + F(x,u,t), 
J ~ ~x. ~ ~ ~ 

J 

u(x,O) = f(x), 
~ ~ ~ "'-' 

X E: D 
~ 

(~,t) E: D x [O,TJ 

(1.1) 

T where u(x,t) = (ul(x,t), ... ,u (x,t)) and x = (xl, ... ,xm), each 
~ ~ ~ n ~ 'V 

Aj(~,t) is a square matrix of order nand D is some arbitrary real 

smooth bounded region, to exist and be uniquely determined. In other 

words,_ what additional information do we require, including boundary 

conditions on aD, so that (1.1) defines a well-posed problem. If 

the problem (1.1) ~s not well-posed then it will not be possible to 

obtain a meaningful well-behaved numerical solution to (1.1). The 

vague adjectives will be given precise definitions later. 

1.1.1 The Cauchy Problem 

Initially we consider D to be the infinite domain lRm and (1.1) 

~s said to be a pure Cauchy problem. This type of problem is said 

to be well-posed if the solution, for all time, can be estimated in 

terms of the initial data. This may be expressed as 

Definition 1.1. The Cauchy problem of (1.1) with Z = ~ is well-posed 

for all bounded initial values, if there exists a constant K such t~1at 



for all solutions u(x,t) and all time, the estimate 
'V 'V 

holds. 

(1.2) 

The theory necessary to verify (1.2) is only well developed 

for constant coefficient systems, symmetric or strictly hyper-

bolic variable coefficient systems. One possible approach is 

through the method of characteristics. For m > 1 however this ~s 

not straightforward and it is eas~er to use Fourier analysis. 

The constant coefficient homogeneous form of (1.1) written as 

where P(~) = ax 

>Ct 
a = P(~)u 
oX 'V 

'V 

, 

u(x,O) = f(x), X E ]Rm 
'V 'V 'V 'V 'V 

m 
2: 

j=l 

a A. , is well-posed. 
J ax. 

J 

(1.3) 

This may be seen by 

2. 

Fourier transforming with respect to the spatial variables ~, us~ng 

the real dual variable ~, and verifying that there are constants K 

and a. such that 

max 
w 
-'i 

I P(i~)tl K a.t e ~ e . (1.4) 

Inequality (1.4) is a necessary and sufficient algebraic condition 

for well-posedness of the Cauchy problem (Kreiss and Oliger ~1973~). 

For symmetric or strictly hyperbolic variable coefficien~ 
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problems we have 

Theorem 1.1 (Kreiss [1979J). Assume for each j that 

A.(x,t) € CP(x,t) and f(x) € C?(x) then (1.1) has a un~que solution 
J ~ ~ ~ ~ ~ 

~(~,t) and it can, with its first p derivatives, be estimated, ~n 

the L2 norm, by Aj , f and its derivatives up to order p. 

Therefore the continuous dependence of ~(~,t) on the initial 

data is assured. 

1.1.2 The Initial Boundary Value Problem 

We now consider the initial boundary value problem form of (1.1) 

where some or all of the spatial variables x. lie in bounded domains. 
~ 

The appropriate Cauchy problem is always assumed to be well-posed. 

Specifically we consider the constant coefficient quarter-plane 

problem defined in D = [0,00) x JRm-l. In other words xl ~ 0 and 

x. € 1R i = 2,3, ... ,m. Since the problem is hyperbolic the matrix 
~ 

Al can be diagonalised to 

A = 

where AI = diag(;\l,···,A Q) and All = diag(AL+l,···,An) are positive 

definite matrices and each diagonal element of A is an eigenvalue of Al . The 

boundary conditions along xl = 0 are arbitrary and each set of 

conditions will define a different solution ~(~,t). From the theory 

of characteristics we have that the number of solution waves enter-

ing the domain at the hyperplane xl = 0 is given by the number of 

negative eigenvalues of Al . The boundary conditions define the 



ingoing solutions ln terms of the outgoing solutions and they take 

the form 

I 
u (O,x ,t) = 
"v -

with 

II 
S)C (O,x, t) + ,z(x_, t), (~, t) E: oD x [0, TJ 

II 
u 
"v 

T 
= (u ll + 1 , ••• , U ) 

'" ... n 

x = (x2 ,x
3

, .•. ,xm)T and oD= (xl =0) xlR
m- 1 . 

(1.5) 

S is an ~ x (n-~) matrix and can be thought of as the operator 

I 

-+ • 

defining the reflection of the incident waves against xl = 0. It is 

assumed that no discontinuities are introduced at the intersection 

of the initial and boundary domains. 

The strictly hyperbolic problem given above by (1.5),(1.1) is 

well-posed if for some constant K, possibly dependent on T, we have 

the estimate 

f: 11~(O,x_,t) II 2 
dt + f: 2 

aD 1I~(~,t) II D dt 

(1.6) 

KU: dt + C 
'\ 

11~(x_,t) II 2 21 
~ cD 

1\ F(x, t) \I D idt 
"v "v 

) 

For the one-dimensional case well-posedness is assured if all 

the boundary expressions are disjoint from the reflected waves 

(Hersh [1963J). This means that if the boundary conditions at x = ° 
are written as Bu = g then wel1-posedness follows from the 

"v "v 

disjointness of the null space of B and the negative eigenspace of 

AI' For higher dimensional problems we can introduce Fourier 



transforms with respect to x and a Laplace transform with respect 

to time (dual variables s m-l 
E JR and SEC respectively) . 

"-

denote by a the transform of a then from (1.1) and (1.5) 

+ i 

+ g 
'V 

m 

L 
j=2 

"-

A·s.u + F, 
J J'V 'V 

, 

If we 

(1.7) 

(1.8) 

+ 
If we denote by ~ E L2 (JR) an eigenfunction corresponding to 

the eigenvalue s then ~ and s necessarily satisfy the linear 

differential eigenvalue problem 

~ 
m 

s~ = Al dX
l 

+ l. L A·s·~ , xl ~ 0 (1.9) 
j=2 J J 

~I = S~II (1. 10) 

. h ~I __ ( ~)T d ~II 
Wl.t ~ ~l' ... '~~ an ~ 

Note that we are able to drop the inhomogeneous terms g and F 

(Kreiss [1970]). 

Hersh [1963] quotes an example to indicate that no well-

posedness estimate (1.6) can hold if there exists an eigensolution 

~ associated with an s ~ Re(s) > O. He also shows that for 

..l-

Re (s) > 0 there are exactly ~ solutions ~ E L2 (JR'). Therefore the 

general solution of (1.9) can be written 

~ 

~ = L 
j=l 

B. ~. 
J J 

(1.11) 

:J • 



Clearly then, if there exists a non-trivial set of constants 

t 
{Sj}j=l so that (1.11) satisfies (1.10), the problem is not well-

posed. This may be expressed algebraically by constructing the 

order t linear system 

M(s) S = 0 
'V 'V 

6. 

by inserting (1.11) into (1.10). Well-posedness then requ~res that 

det}f(s) :/: 0 for any s such that Re(s) > O. If ¢ and s satisfy 

(1.9) and (1.10) with Re(s) = 0 (we assume lim ¢(s+s) E L2(~+)) 
s-+O+ 

then s ~s said to be a generalised eigenvalue. We then have the 

ma~n result 

Theorem 1.2 (Kreiss [1970J). The problem defined by (1.1) and (1.5) 

is well-posed if and only if the eigenvalue problem (1.9) 'and (1.10) 

has no eigenvalues or generalised eigenvalues with Re(s) ~ o. 

The above result was extended to the case of variable complex 

strictly hyperbolic operators by Ralston [197lJ. The variable 

coefficient problem can be considered by examining all of the 

linearized constant coefficient problems at every point on the 

boundary (Coughran [1980J). Non-strictly hyperbolic problems have 

been considered by Majda and Osher [1975J. 

Although problems ~n general will not be of the semi-infinite 

form considered above, at any particular boundary we can locally 

consider the domain of definition to be so (Kreiss [1979J), 

(Oliger and SundstrHm [1978J). 

An older technique for determining well-posedness is the energy 

method (Richtmyer and ~orton [1967J). Although this method requires 
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skill in its use to provide sufficient ccnditions it can also handle 

non-linear problems. Elvius and Sundstrom [1973J proved well-

.. 
posedness for the shallow-water equations and Oliger and Sundstrom 

[1978J handled some complicated systems in fluid dynamics. Griffin 

and Anderson [1977J studied the influence of boundary conditions on 

one-dimensional fluid flows through a nozzle. 

1.2 The Discrete Problem. 

1.2.1 The Cauchy Problem. 

We first approximate the strictly hyperbolic one-dimensional 

problem 

u = Au + F ( x, t), ( x , t) E 1R x [0 , 00 ) 

rvt 'VX 'V 

u(x,O) = f(x) 
'V 'V 

, X E 1R 

with A a constant, square matrix of order nand 

u(x, t) 
'V 

T 
= (u

l 
(x, t) , ... ,un (x, t)) . 

(1.12) 

(1.13) 

We cover the domain with a rectangular mesh or grid where the 

spatial grid spacing is denoted by ~x > 0 and the time step by 

~t > 0, assuming a constant mesh ratio of A = ~t/~x. At each knot 

we define U~ to be the finite difference approximation of 
'VJ 

+ 
u(jQX, n~t), J E Z, n E Z . 
'V 

the multi-step method 

In practice the U~ will be defined by 
'VJ 
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Q Ur:+ l = 
-l'VJ 

r 
L 

0'=0 
Q Ur:-o + 6.t F~, 

o"-'J 'VJ Vj E iZ'; n = r,r+l, ... (1.14) 

where Q = a EU. = U. 1 are difference operators 'VJ 'VJ+ 

and Q_l 1S non-singular. 

To initialise the method the following (r+l) levels of data 

are required 

a = O,l, ... ,r; Vj E Z (1.15) 

The values in (1.15) will usually be supplied by Taylor 

expansions about UO, or by using other finite difference schemes 'V 

that involve fewer time levels. We assume that the initial data will 

not introduce any loss of accuracy or instability. 

As in the previous section we consider first the Cauchy problem 

approximation (1.14). It will become clear that many of the stability 

results and methods for the finite difference approximations are 

synonymous with those of well-posedness in the differential problem. 

We initially make clear definitions of some of the properties 

of a difference approximation. 

Definition 1.2. The difference scheme given by (1.14),(1.15) is 

accurate of order (Ql,Q2) for the particular solution u(x,t) if there 

is a function c(t) and constants c ~ 0, bounded on every finite a 

interval [O,TJ ' such that for all sufficiently small 6.x, 6.t 

r ql q2 
L Q Ur:-o II'n ~ 6.t C(t) {(~x) + (~t) }, (1.16) 

o'VJ 
0=0 
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In many cases we say that the order of accuracy ~s g~ven 

Whilst it may seem desirable to maxlm~se the order of accuracy 

possible, in practice methods more than sixth order accurate become 

computationally too expensive (Kreiss and Oliger [1972J). 

Using (1.16) we say 

Definition 1.3. The difference scheme (1.14), (1.15) is said to be 

consistent if it is accurate at least of order (1,1). We assume all 

methods considered here are consistent. 

An essential property of any approximation to a well-posed 

problem is that it be stable, that is, it does not grow unboundedly 

in time. The importance of stability is illustrated by 

Theorem 1.3 (Lax's Equivalence Theorem). Given a well-posed linear 

differential problem and a finite difference approximation to it that 

~s consistent then the approximation is convergent if and only if it 

is stable. 

Accordingly we make the following 

Definition 1.4. A finite difference method ~s stable for the Cauchy 

+ 
prob lem if there are constants K > 0 and a. E JR such that the 

following estimate holds 

r 
I 

0=0 

(1.17) 

Therefore the numerical solution at any point ~n time must rema~n 

bounded in terms of the initial data. 

As before \{e require implementable algebraic conditions for 

the estimate(1.17) to hold. To do this we first Laplace transform the 
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time variable using the dual variable s, which ~s akin to seeking a 

solution of the form 

t 
llt " 

= z U., Vj E Z, 
tV] 

sllt 
z = e E C, Jl E L2(llx), t = nllt. (1.18) 

Inserting this in the homogeneous form of (1.14) yields the resolvent 

equation 

r 
zQ lU, - L 

- tV] 
0=0 

-0 
z Q U. = 0, Vj E Z. 

otVJ 

Equation (1.19) has the associated eigenvalue problem 

[ zQ --1 

r 
L 

0=0 
= 0, 

(1.19) 

(1.20) 

Again it is clear that there cannot be any eigenvalues z with Izl > 1 

associated with an eigenfunction i E L2(llx). If this were so then a 

solution (1.18) would grow unboundedly in time. We have 

Lemma 1.1 (Gustafsson et a1 ~972J). For Izl > 1 the number of 

linearly independent solutions t in (1.20) is np~. We shall see later 

that this lemma is important when dealing with the stability of the 

initial and boundary va1u~ problem . 

" If we seek a solution in (1".19) of the form Jlj 

we obtain the characteristic polynomial 

det[zQ KJ­-1 

r 

0=0 
(1.22) 

Polynomial equation (1.22) is the requirement for the existence of 

non-trivial ~ in (1.21) and will invariably decouple into separate 
tV 

characteristic equations involving z and K. From this we get 
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Theorem l3a (Von-Neumann Theorem) . The difference scheme (1.14), 

(1.15) has no exponentially growlng solutions if all the solutions 

ln (1.22) satisfy Izl ~ 1. 

Although this is a necessary condition it happens also to be 

sufficient in the case of two-level schemes where the amplification 

. -1 
matrlx Q lQ is normal. As all multi-level schemes can be written 

- 0 

-1 
as two-level schemes this result is important however Q_lQo may not 

always be normal (Richtmyer and Morton [1967J). 

Difference schemes can be classified by 

Definition 1.5. The approximation (1.14) is said to be dissipative of 

order 2~ if there exists, for the solutions z of (1.22), an estimate 

IW6x\ < 'IT 

for some positive constant 8 and whole number a. 

The solution of a dissipative scheme will tend to zero as t + 00 

whereas for a non-dissipative method each mode in the initial data 

will be transported, through time, with its amplitude conserved. 

Clearly the choice of difference method, in any particular case will 

depend on apriori knowledge of the unknown analytic solution. A 

dissipative method for example, will not provide an acceptable 

approximation to a long term steady state solution. A non-dissipative 

method on the other hand would be expected to do so, however round-

ing errors may cause some of the eigenvalues z to exceed one ~n 

modulus. Thus, at best, non-dissipative methods are marginally 

stable in practice. 

The physical interpretation of dissipation ~s that the high 
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frequency Fourier components associated with large values of ~~x 

are damped and the difference solutions will compose ma1.·nly Of smo t' 
~ 0 ~ 

low frequency components. See Plot 2, (page 158) where the dissipative 

Lax Wendroff method is used in conjunction with an unstable boundary 

approximation. Although serious inaccuracies are occurring at the 

boundaries the interior method prevents this transfer of energy 

throughout the domain. We have 

Theorem 1.4. If A in (1.12) 1.S hermitian and the approximation 1.S 

also dissipative of order 2a and accurate of order 2a-l, (or order 

2(a-l) for strictly hyperbolic problems) then the difference method 

1.S stable. 

Theorem 1.4 still applies if the operator A 1.S uniformly bounded 

and Lipschitz continuous 1.n x. 

Dissipation is important when solving non-linear problems in that 

non-dissipative methods invariably suffer from non-linear instabilities. 

Fornberg [1973J displayed this behaviour with the Leap-Frog scheme. 

Garp [1977J gives similar examples with the method-of-lines and 

Galerkin approximations. Majda and Osher [1978J proposed a method of 

introducing non-linear dissipation to the standard Lax Wendroff method 

to avoid this type of instability. As an alternative, it is known 

that solving the governing equations in their conservation form is 

less likely to produce non-linear instabilities (Garp [1977J), however 

they do not guarantee its non-occurrence. The addition of dissipation 

to a non-dissipative method is popular (Kreiss and Oliger [1973J). 

The ability to control the degree of dissipation being regarded as 

more favourable than using a dissipative method initially. 

Alternative sufficient stability definitions for the Cauchy 



problem are g~ven by Richtmyer and :lorton [1967J and Kreiss and 

Oliger [1973J. 

1.2.2 The Initial Boundary Value Problem. 

13. 

Consider the mixed initial boundary value quarter-plane problem 

u = Au + ~ (x, t) (x, t) 
+ + 

tVt tVx , E JR x JR , 

l1(x,O) f(x) + = X E JR (1.23) tV tV , 
I II + 

~ (O,t) = S~ (O,t) + g( t) , t E JR 
tV 

where 

[

_}\I ° ] 
A = ° }\ II ' 

}\I = diag(Al, ... ,A~) > 0, 

}\II = diag(A~+l, ... ,An) > 0, 

~I(x,t) = [ul(x,t), ... ,u~(x,t)JT, 

~II(x,t) = [u~+l(x,t), ... ,un(x,t)JT, 

S an ~ x (n-Q,) real reflection matrix. 

We solve us~ng finite differences by choosing a scheme that is 

stable, albeit possibly under certain grid S1ze restrictions, for 

the Cauchy problem. The introduction of boundary approximations 

may cause the overall difference scheme to be unconditionally stable, 

conditionally stable or unstable. We assume homogeneous initial data. 

We make the 

Definition 1.6. A boundary condition is an express10n along the 

boundary required by the differential problem to ensure well-posedness. 



A boundary approximation is an additional equation required only by 

the numerical method. 

To solve (1.23) we use the multi-step method (1.14), (1.15) 

with the boundary information 

ur:+ l 
r 

S(j)Un- a 
2: 

n . 
l-p £.' ... ,0 (1.24) = + g., J = 

tV] 
a=-l a 'VI 'V] 

S (j) 
8 

C(j)Ell. with = 2: (1.25) a 
ll=O lla 

Notice that (1.24) incorporates £. boundary conditions and (n-£.) 

boundary approximations on x = 0 as well as any approximations 

required at interior points. 

A heuristic stability analysis of (1.14), (1.15) and (1.24) 

was given by Trapp and Ramshaw [1976J by taking the !i~Cessary 

stability restriction to be the minimum Von-Neumann restriction for 

14. 

each separate difference expression. That is, treating the interior 

method and each boundary approximation as though they were applied 

to a separate Cauchy problem. More rigourously we shall consider 

three methods of analysing the effect of any boundary approximation 

on stability. Namely 

(a) The Normal Mode Analysis of Kreiss; 

and if a method of lines approximation is used, then 

(b) The approach of Strikwerda, and lastly the 

(c) The Matrix Eigenvalue method. 
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1.2.2a Normal Mode Analysis 

In 1968 Kreiss gave a stability theory for dissipative 

approximations to the quarter-plane problem by extending the work of 

Godunov and Ryabenkii [1963J. This theory was then extended by 

Gustafsson et al [1972J to either fully dissipative or fully non-

dissipative approximations to the twin boundary problem in one 

dimension. The definition of stability that they based their results 

upon allows, in certain cases, exponentially growing solutions when 

~x and ~t are not sufficiently small. By modifying the ideas of 

Gustafsson et al [1972J into a definition of so-called P-stability 

Beam, Warming and Yee [1981J were able to exclude this possibility. 

As in the well-posedness discussion the idea behind the theory 

is to consider all solutions belonging to L2(~x) but which are 

unbounded in time. If any of these unacceptable solutions satisfies 

the boundary approximations then the overall approximation will be 

unstable. 

Therefore we Laplace transform in time which, as stated before, 

1S akin to seeking a solution of the form ~j = Z~j in equations 

(1.14) and (1.24). Accordingly we obtain the resolvent equations 

r 
A -0' A " zQ lU. L z Q U. = F. , 

- 'VJ 0'=0 O'''-'J 'VJ 
(1.26) 

r 
z-O's(j)~. and Z~j L = g. , 

0'=-1 0' J 'VJ 
J = 1 -p i ' . . . ,0. (1.27) 

. 
Assuming a solution ~j = KJZ € L2(~x), K € ~ of the difference 

( 6) d (1 27) f ~nd that Un, n J~ , . equations 1.2 an . we ~ 'VJ = Z K ~ 1S a solut10n 
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of (1.14) and (1.24) if the following equalities 

. r 
z -oQ Kj ] q, [zQ_ l K

J L: = F. , Vj ~ 1 (1.28) o 'V 'VJ 0=0 

r 
z -0 S (j) KJ q, [ZKJ L = ~j , J = l-p 2' ... ,0, (1.29) 

0=0 o 'V 

are satisfied. 

We are interested In solutions of (1.28) for which Izl >1, 

u. E L2(~x) and the general solution will then be of the form 
'VJ 

(1.30) 

where the polynomial coefficient will reflect the multiplicity of 

any K •• 
l 

Note that stability of the associated Cauchy problem 

ensures that there are no solutions U. such that IK.I = 1 for Izl > 1. 
'VJ l 

From Lemma 1.1 solution (1.30) becomes 

(1.31) 

We have now determined all the unacceptable solutions of the interior 

difference scheme. This leads to 

Theorem 1.5 (Godunov-Ryabenkii). If solution (1.31) for Izi > 1 while 

I K. I < 1 satisfies equations (1.28) and (1.29) for some non-trivial 
1-

then the approximation (1.14) and (1.24) 
. unstable for vector q, • 1S 

'V l 

the quarter-plane problem. Such 
. 

a z 1S said to be an eigenvalue. 

This result is only a necessary stability condition as we have 

yet to consider the possibility of z lying on the unit circle. This 
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extension was performed by Kreiss [1968J and Gustafsson et al [1972J. 

The latter authors base their results on 

Definition 1.7. The difference approximation to the initial-boundary 

value problem (1.23) is stable if there are constants K > 0 and 

+ 
a E 1R such that for all ~t > 0 and a > a there exists the estimate o 0 

(a-a ) 
o 

(l+a~t) [ 
~ II e -a tu . II 2 + 

j=l-p ~J t 
Q, 

(a-a ) 
o 

(1.32) 

/ In general (1.32) allows for the existence of exponentially 

growing solutions unless a = o. 
o The form of (1.32) allowed the 

authors to construct a straightforward algebraic stability condition 

for all Izl ~l. 

Definition 1.8. If Izl = 1 and there is an associated value of Ki 

such that IK. I = 1 and z = (1+0)ei8 implies that IK. I < 1 for some 0, 
~ ~ 

o < 0 « 1, and (Z,K.) satisfy (1.28) and (1.29) then z is said to 
~ 

be a generalised eigenvalue. ~ve then have 

Theorem 1.6 (Gustafsson et al [1972J). The difference scheme (1.14) 

and (1.24) is a stable approximation of the quarter plane problem 

(1.23) if and only if (1.28) and (1.29) have no eigenvalues or 

generalised eigenvalues for Izl ~ 1. 

The familiar algebraic condition ~s obtained, by inserting (1.21) 

~n the homogeneous form of (1.28) to form the linear system 

:1(Z,K)<P = o. 
~ 

(1.33) 
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Theorem 1.6 is satisfied if no eigenvalue or generalised eigenvalue 

satisfies det ~(ZsK) = 0 for Izi ~ 1. 

This linear system (1.33) is simple in practice to construct 

however it often proves difficult to check Theorem 1.6. Possible 

procedures for doing so are given in Chapter 2. 

Kreiss [1968J proved that it was sufficient, when the interior 

approximation is dissipative, to consider the possible existence of 

a generalised eigenvalue at z = 1. However for non-dissipative 

methods the entire unit circle has to be examined (see for example 

the SILF method at z = i as described ~n Chapter 4 of this thesis). 

Gustafsson et a1 [1972J prove that the two-boundary problem is 

stable if each separate quarter-plane problem, obtained by extending 

the other boundary to + 00 as applicable, is stable. In practice it 

is necessary to check both quarter-plane problems (Jamieson and 

Sloan [1983J and Chapter 3). 

For scalar equations it is usually possible to verify the 

conditions of Theorem 1.6 easily. This ~s particularly relevant if, 

in the constant coefficient case of (1.14), the equations and boundary 

approximations can be written in characteristic form. Gottlieb et 

a1 [1978J proved that the stability of each separate scalar 

characteristic problem was sufficient to ensure stability of the 

complete problem. This, however, is only relevant in the constant 

coefficient case, although (linearised) characteristics can play an 

important role in the construction of boundary approximations. 

Trefethen [1983J interpreted instability, as defined above, as 

amounting to the spontaneous radiation of energy from the boundary 

into the interior. In an unstable situation a rounding error may be 
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transported back into the computational domain subject to an 

unbounded amplification factor. The possibility of a generalised 

eigenvalue is shown to be equivalent to a positive group velocity 

directed from the boundary into the domain. Using this analogy 

Trefe.then [1983J was able to verify the instability of many well­

known difference approximations. This interpretation holds for both 

dissipative and non-dissipative schemes. It is not, however, able 

to guarantee stability in the sense of Definition 1.7. 

When applied to boundary approximations, used in conjunction 

with some implicit schemes, Theorem 1.6 has been shown to allm.; 

exponentially growing solutions when ~x and ~t are not sufficiently 

small (Beam, Warming and Yee [1981]). These authors introduce the 

more restrictive 

Definition 1.9. The difference scheme for an initial-boundary value 

problem is said to be P-stable if 

(a) it 1S stable for the Cauchy problem, 

(b) it is stable for the left and right quarter-plane problems (in 

the sense of definition 1.7), and 

(c) all the eigenvalues of the characteristic equation, for a finite 

number of spatial mesh intervals, lie in or on the unit circle. 

For definition 1.9 (c) the characteristic equation is constructed 

from the characteristic polynomial equation (1.22) and from all 

boundary approximations, both at the left and right spatial boundaries. 

The analysis involved in including both boundaries is only straight­

forward for scalar equations and may be very complicated for systems. 

The possible existence of growing solutions has been considered 
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by Gustafsson [1981J. He examined the relation between stability "' , 

defined . 
Definition 1.7, and the eigenvalues as ~n of the operator Q 

~n the initial and boundary-value difference scheme Un+l = QUn . 
'V "v 

If all the eigenvalues of Q are strictly inside the unit circle the 

problem is said to have only decreasing modes. He examined the 

various conclusions which may be formed concerning decreasing modes 

from an analysis of the two quarter-plane problems. 

In order to introduce Gustafsson's result we return to the 

resolvent equation (1.26) and we write the homogeneous form as the 

one-step equation in space 

= GUr: 
'VJ 

It ~s possible to transform G to the block diagonal form 

(Gustafsson et al [1972J). The blocks ~n (1.35) may satisfy 

LtLl < (1-0)1 , 
" 

L~L2 < (l-o)(lzl-l)I, 
"-

NtNl ~ (1+0) I 

N~N2 >,. (1 + 0) ( I z 1-1) I , 

(1.34) 

(1.35) 

(1.36) 

for some c > 0 and identity operator I, ~n some neighbourhood of Zo 

on the unit circle. We then have 

Theorem 1..7 (Gustafsson [1981J). If both quarter-plane problems are 

stable (in the sense of (1.32)) and inequalities (1.36) are satisfied 

then if either L~ or ~2 are empty then there are only decreasing 
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solutions to the twin boundary problem for a sufficientlv fine ~es~. 

The theory of Gustafsson et al [1972J can be applied to 

variable coefficient problems by invoking the results of Lax and 

Nirenberg [1966J. For sufficiently smooth variable coefficient 

problems then stability of the associated left and right quarter 

plane problems linearized about the boundaries implies stability of 

the original problem (Kreiss and Oliger [1973J). 

The extension of this theory to multi-dimensional problems ~s 

not clear although for the Leap-Frog method in two dimensions 

Abarbanel and Gottlieb [1979J considered the stability of various 

boundary approximations. For the strictly hyperbolic case Coughran 

[198~ and Michelson [1981J considered a dissipative multi-dimensional 

interior difference scheme. 

1.2.2b The method of Strikwerda. 

Consider the quarter-plane constant coefficient problem 

]R+ + 
U = Au + F(x, t) , (x, t) - x ]R 
'Vt 'Vx 'V 

+ (1.37) u(x,O) = f(x) , x € lR 'V 'V 

u(O,t) = ~(t) , t € lR+ 
'V 

If u.(t), regarded as a semi-discrete approximation to ~(j6x,t), 
'VJ 

satisfies the differential difference method 

and 

d 
dt ~j = 

~ U. = 
d t 'VJ 

d 
cit ~o = 

ADU. + F(j6x,t), 
'VJ 'V 

AD~. + F(j6x,t), 
J'V J 'V 

Vj ~ r 

J = O,l, ••. ,r 

AJ IT 
0'\,0 

+ h(t) with U. 'V 'VJ 
= 0, Yj 

(1.38) 

(1.39) 

(1.40) 



it is said to be a method-of-lines approximation to u(j~x,t). 

In the above 

DU. = 
J 

r 
L 

O'=-r 
d U. 

0' J+O' 
and D.U. = 

J'VJ 

2r-j 
L 

O'=-j 
d. U. , 

J 0' J +0 
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where dO' and djO' are constants. Equation (1.40) incorporates the 

boundary conditions and boundary approximations in differential form. 

We have 

Definition 1.10. If there ~s a function u(x,s) such that 
'V 

(a) su = Au 'V 'Vx on x ~ 0 

(b) Re s ~ 0 

(c) for Re s > 0, u(x,s) 

(d) for Re s = 

(e) u(O,s) = 0 
'V 

'V 

0, u(x,s) 'V 

, 

. bounded ~s as x ""* 00, 

= lim u(x, s+s) satisfying 'V + 
s+O 

then u(x,s) is said to be an eigensolution of (1.37). 'V 

(a) and (c) , 

The definition corresponds to the construction of eigenvalues 

and generalised eigenvalues of the previous well-posedness analysis. 

Parts (c) and (d) define what may be regarded as unacceptable 

solutions and (e) verifies that the boundary conditions are satisfied 

by such solutions. This leads to 

Theorem 1.8 (Strikwerda [198qJ). The quarter-plane initial-boundary 

value problem is well-posed if and only if it has no eigensolutions. 

An analogous approach allows us to determine the conditions 

necessary for stability of the method-of-lines approximation. We seek 

to construct all solutions which are bounded in space but allow 
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unbounded temporal growth. If any such solution satisfies the 

boundary approximations then instability follows. 

Laplace transformation in time yields the resolvent equations 

(1.41) 

~ 

and if any root U. E L2(~x) satisfies, for Re s > 0, the transformed 
~J 

boundary equations then the approximation is unstable. This result 

can be compared with Theorem 1.5. We also consider the existence 

of generalised eigensolutions (Strikwerda [198ci]). 

Definition 1.11. A generalised eigensolution, U.(ia) with a E ~, 
~J 

is a solution given by U.(ia) = lim U.(s+ia) where U.(s+ia) E L2(~x) 
~J + ~J ~J 

s~ 

and satisfies (1.41). 

Theorem 1.9 (Strikwerda [1980J). The method of lines approximation 

to the quarter-plane initial-boundary value problem is stable, if and 

only if it has no eigensolutions or generalised eigensolutions. 

A determinant condition, synonymous with that of Theorem 1.6 , 

can be constructed as an algebraic condition for stability. The 

characteristic equations and the secular equation for the boundary 

approximations will involve fewer terms but they are not necessarily 

any easier to solve. 

The application of the method-of-lines approximation requ1res 

the use of a stable ordinary differential equation solver or a 

stable time-stepping rule (Vichnevetsky and Bowles [1982J). The 

prev10us results concerning sufficiently smooth variable coefficient 

problems and twin boundary problems still apply. 

The final method of analysing stability is given as 



1.2.2c The Eigenvalue Method on the Method-Of-Lines. 

This approach has been used frequently (see, for example, 

Gunzburger [1977J, Yee [1981J, Gustafsson [1981J) and studies the 

method-of-lines approximation (1.38)-(1.40). We use the following 

Definition 1.12 (Cronin [1980J). For the system 
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d 
dt ~ = f (t, v) 

tV 
(1.'+2) 

in some real domain that includes positive time, let vet) denote the 
tV 

solution Vt > T > O. Then vet) is stable if there exists at> T 
o 

and positive real constant band s such that, if vet ) = vO and where 
'V 0 tV 

o vet) = v(t,t ,v), the following hold 
tV tV otV 

(a) If ly'-yOI < b then v(t,t ,v') is a solution of (1.42) and is 
'V 'V tV 0 tV 

defined for all t ~ t , 
o 

(b) There exists 0 = o(s,{,to'~o) > 0 such that 0 ~ b and if 

ly'-yOI < 0 then Iv(t,t ,v') - v(t,t ,v
o

) I < s for all t ~t . 
vv tV 0 tV tV 0 tV 0 

If (a) and (b) hold and if 

(c) there exists a = a(f,to~~ such that a < b and I~,-~ol < a 

then 

lim Iv(t,t ,v') - v(t,t ,v
o

) I = 0 
tV 0 tV tV 0 tV 

t~ 

and vet) is asymptotically stable. 
'\, 

Definition 1.12 states that given an initial solution vCt ) the 
'\, 0 

general solution vet) will be stable if, once in a neighbourhood of 
tV 

vet ), it stays in that neighbourhood and will be well-defined. The 
'\, 0 

solution vet) will be asymptotically stable if it is convergent ~n 
'\, 

that neighbourhood. In comparison with the theory of Gustafsson et al 
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[1972J stability, in terms of Definition 1.12, is equivalent to 

large-time or asymptotic stability as implied by Definition 1.7. The 

above definition therefore places a less stringent restriction upon 

the numerical approximation. 

In general the differential-difference system will be of the form 

d 
dt ~ = Av 

'V 
(1.43) 

where, for constant coefficient hyperbolic problems, A is a constant 

square matrix. If A denotes an eigenvalue of A then we have 

Theorem 1.10 (Cronin [1980J). Let v denote the solution of the 
'V 

homogeneous system (1.43). Then v is stable if, for all A, 
'V 

Re(A) ~ a and all imaginary eigenvalues are distinct. Furthermore, 

~ 1S asymptotically stable if all the eigenvalues have real parts 

that are negative. 

Theorem 1.10 is readily applicable although the evaluation of 

the eigenvalues, for large systems, can be computationally expensive. 
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CHAPTER 2 

METHODS FOR VERIFYING STABILITY RESULTS 

In the previous chapter algebraic stability conditions were 

derived that involved the roots of a system of non-linear complex 

polynomial equations. Whilst it may be possible to solve this system 

analytically (see Chapter 3), in general, numerical solution 

techniques are required. Problems of this type have been examined 

by Allgower and Georg [1980J, Ypma [1982] and Hirsch and Smale [1979J. 

Allgower and Georg reviewed various simplicial and continuation 

techniques. Ypma considered the use of Newton methods where the 

Jacobian is replaced by a difference approximation. This modified Newton 

method is then incorporated into a continuation algorithm. Hirsch 

and Smale proposed several algorithms based on Newton's method, 

including a "sure-fire" method. This method is, however, slow to 

converge and very costly computationally. Practical algorithms are 

also presented which are easier to apply though not guaranteed to 

converge. In this chapter we shall consider the use of polynomial 

resultants and various forms of continuation. Both methods work well 

in practice and are used to analyse all the boundary approximations 

considered in Chapters 3,4 and 5. Since all applications in those 

chapters involve sys terns of the form F 
\) 

n 
a:: -+ q; where 

\) = 1,2, ... ,n (2.1) 

we will assume that the numerical methods are to be applied to systems 

of the form (2.1). In the later chapters n = 3 and the 
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variables zl' z2 and z3 may be written as K
l

, K3 and z. Kl and -K
3 

are 

the only roots of the homogeneous form of (1.28) which we need to 

consider. The equations Fl (K
1

,K
3

,z) = 0 and F
2

(K
l

,K
3

,z) = 0 are the 

characteristic equations associated with the interior method of 

integration and F
3

(K
l

,K
3

,z) = 0 is the determinant condition obtained 

from (1.33). The expressions F., i = 1,2,3, may be written as 
~ 

polynomials in z with coefficients which are polynomials in Kl and )(3. 

2.1 Polynomial Resultant Approach 

This method was described by Collins [197ll and involves the 

evaluation of a succession of matrix determinants. 
m n . 

Definition 2.1. Let A(x) L: 
~ and B(x) L b.x ~ be = a.x = 

i=O ~ i=O ~ 

polynomials in x of degree m and n respectively. The Sylvester matrix 

of A and B is the square matrix of order (m+n) 

S = 

a a 1 ...... a o ........ 0 
m m- 0 

o am· ....... a1 

o 
• 

a 
o 

co 

o 

O ••• 0 ~a a 1 ....• a 
m m- 0 

b b 1 .......... b o .... 0 
n n- 0 

0 b b1 b o .. 0 
n 0 

• 

0 
• ., 

0 

• I °b b r.b o ............. 0 n n- 0 

The resultant of A and B, res(A,B), is the determinant of S. 
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Clearly res(A,B) involves only the coefficients of A and B. The 

method suggested by Collins [1971J to solve (2.1) is to construct 

polynomials 

thus eliminating z. If now P1 and P2 are written as polynomials 1n 

K3 with coefficients which are polynomials in K1 then 

P3CK1) = res(P1 ,P2) = 0 defines one po1ynomia1)a1beit of high degree, 

in one complex unknown, K1 . The solution of P
3 

= 0 using a standard 

library routine and subsequent solution for K3 and z in P1 = 0 and 

F3 = 0, respectively, will yield a collection of triples (X1 ,K3,z). 

The evaluation of F1 ,F2,F3 for each triple will identify the true 

roots of (2.1). We illustrate by the example: 

Find the roots x,y,z E t satisfying 

F1 xz - y = 0 (2.2) 

F2 ~- 1 = 0 (2.3) > 

F3 x + y + z = 0 (2.4) , 

= -(x+z+xz). Combining P1 and P2 we have 

3 = x +x+1 = 0 

Using the roots of P
3 

= 0 we obtain three values of y from (2.3) and 

then three values of z from (2.4). Only those triples (x,y,z) which 



satisfy (2.2) are roots of the system. 

This example is trivial. In practice the construction of P. 
~ 

i = 1,2,3, requires the construction of polynomial multiplication 

and determinant routines. In all applications in this thesis the 

highest degree of P
3 

= 0 was eight. 

given in Appendix I. 

2.2 Continuation 

A more detailed example is 

The basis of continuation is to split the polynomial system 

(2.1) into a simple part and a remainder. The simple part ~s 
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constructed in such a way that the problem it defines on its own may 

be solved analytically and then numerical solutions are obtained for 

a sequence of problems by successively adding increments of the 

aforementioned remainder to the simple part. When the complete 

remainder has been added a solution of (2.1) ~s then obtained. To be 

precise, system (2.1) is imbedded into a family of equations g~ven by 

H v 
n+l : C -+ a; where 

with z 
~ 

H (z,t) = n (z) + ts (z) v ~ v ~ v ~ v = 1,2, ... ,n (2.6) 

n (z) = 0 has 
v ~ 

simple roots that are readily found and H (z,l) = F (z). In order that v ~ v ~ 

no roots be lost it is necessary that the degree of n should not be v 

less than that of Fv' 

There are various ways of continuing t in (2.6). Firstly, in 

"Standard Continuation", t may be regarded as an independent variable 

and moved from 0 to 1 along a path in the complex plane. This 

approach has been used by Wasserstrom [1973J and more extensively by 
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Drexler [1978J. Secondly we can introduce a real parameter s so that 

z = z(s) and t = t(s). 
~ ~ 

The path in ~n x R defined by (z(s),t(s)) 
~ 

is the so-called homotopy path. If system (2.6) is differentiated 

with respect to s an initial-value problem is formed which may be 

integrated from the initial roots of n (7.) = 0 to the required solution 
v ~ 

triple at t = 1. This has been the more recent approach examined by 

Garcia and Zangwi11 [1980] in connection with polynomial systems and 

by Watson [1979, 1980a,b,c, 1981J in a variety of situations. 

Finally we shall consider a hybrid method of the above techniques. 

Faced with the problem of solving system (2.1), extensive 

numerical experiments were performed in order that some insight might 

be obtained into the relative merits and demerits of the different 

approaches. For the purpose of comparison the following two problems 

were used, 

(a) Drexler's First Problem: 

2 2 x -l+xy = 0; y -l-yz = 0; x,y,z E C (2.7) 

which has six real and two complex roots, and 

(b) Drexler's Second Problem: 

2 2 x +xy+y +1 = 0; x,y E ~ (2.8) 

where there are two complex roots only. 

Experience gained on the above problems led to changes in 

existing algorithms. Extensions were made to the analysis which 

permitted simplifications to be introduced. 

2.2.1 Standard Continuation 

The basic algorithm for this approach has been described by 

Wasserstrom [1973J and developed and implemented by Drexler [1978J 
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and is of a predic~or-corrector type. 

Differentiation of H(,t"t) = 0 with respect to t, together ~vit~ 

the roots of H(,t"O) = 0, forms an initial-value problem, which when 

integrated from t = 0 to t = 1, yields the desired roots. To perform 

this integration the interval [O,lJ is subdivided and in each sub-

division the integral is evaluated numerically. In Ct. ,t. lJ 
1 1+ 

typically we have the solution z(t.) to H(z,t.) = O. The crudest 
tV 1 tV 1 

predictor delivers z(t.) as an initial estimate of z(t) at t = t. l' 
tV 1 tV 1+ 

Newton's method is then used to find an accurate value of z(t. 1)' 
tV 1+ 

The union of all such subintervals forms the solution curve H 

associated with the given initial vector. To justify the use of this 

method Drexler proves that the solution curve W-{l} may always be 

chosen such that the solutions along the curve are unique, bounded, 

continuous and many times differentiable. He does so by showing 

that there are only a finite number of points where these properties 

do not hold. The point t = 1 is excluded since, if this solution 

path does not correspond to a zero of H(~,l) = 0, then a pole will 

occur. Also the presence of multiple roots will be indicated by 

two solution curves coalescing at t = 1. As stated above, it is the 

choice of W in practice which dictates the effectiveness of the 

technique. 

A program was written which used standard continuation to 

produce the curve W for a system such as (2.1). The program which 

emerged from the numerical experiments is represented by the following 

flow chart. This chart describes a method for finding ti +l in the 

interval [ti,ti+1J· 



Y :=Y 
'Vo 'V 1 

.to = ~i 
1=1 J=O , 

f=F 

t. = t+6tf 
l+l 

f 
CT :- CT+1 
Y1 := NewtonCY ,to 1) 
'V 'V0 L+ 

CT = Maxit? 
Det Fail? 
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t = t. 1 L+ 

Z = Y 
'Vi+1· 'V1 
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The Standard Continuation Flow Chart 



To explain the previous flow chart, assume a point of success 

~i has been reached at t = ti along w. The next point t. 1 ~s 
~+ 

estimated by advancing t in a straight line to t = 1 a distance ~t, 

performed by the function F(~1'~2) with ~l and ~2 representing 

movements ~n the real and imaginary directions respectively. Using 

z. as the predicted solution at t = t. we correct it by using 
~~ ~+l 
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repeated application of Newton's Method. If, in the iteration process, 

a point of difficulty is encountered then several approaches to adjust 

t. 1 are used. Moving back to the previous solution at t = t. we adopt 
~+ ~ 

the following successive procedure: 

(a) divide ~t by 2 a maximum number of four times, 

(b) move t in the positive imaginary direction a distance 6t and 

reapply (a) if necessary, 

(c) move t in the negative imaginary direction a distance ~t and 

reapply (a) if necessary, 

(d) move t towards t = 1 distance ~t and rotate by ~ and rotate 

further in multiples of ; if necessary after reapplying (a). 

If a solution point ~i+l cannot be found then go back to t = 0 and 

try moving t around the unit circle until t = 1 is reached. A change 

of direction for W is sought when any of the following occur 

(Drexler [1978J): 

(1) Newton's method fails to converge in a given number of iterations, 

(2) the determinant of the Jacobian matrix overflows, 

(3) the determinant of the Jacobian matrix increases five-fold from 

step (k) to (k+l) of the iteration, decreases by half and then 

oscillates. 

As should be apparent, the above listing of decision criteria 
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and responses is far from exhaustive. Clearly the major problem 

with this method is that it is not possible to even remotely guarantee 

that a correct solution curve for each set of initial data can be 

found numerically. 

When used on both test problems all the roots were found. 

However, while the W-curves remained bounded, the decision criteria 

could not guarantee uniqueness. For this reason, and due to the 

complexity of the algorithm,another approach was sought. 

2.2.2 Parameterized Continuation 

In the previous section the continuation parameter t was moved 

along the solution curve by a set of decision criteria that responded 

to the behaviour of the variables as the curve moved through ~n+l. 

The philosophy behind parameterized continuation is to let t move 

freely with the other variables by introducing a real parameter s 

upon which all the variables are assumed to be dependent. As a 

result it will be seen that many of the problems encountered 

previously do not occur (Watson [1980J). The parameter t is now 

constrained to be real and in this case the homotopy path, or solution 

curve, . h' If'n JR ]R.2n+ 1 
~s a pat ~n ~ x or . The success of the method 

relies on the assumption that the solution curve is regular and so 

the difficulties in dealing with bifurcation points are avoided. In 

the solution of many systems of the form (2.1) this assumption has 

never been violated. 

As before an initial value problem is constructed in which s 

~s increased from its arbitrary initial value that corresponds to 

t = 0 until the unknown zero of F(z) = 0 is obtained at t = 1. It 
'" '" '" 



should be noted that the initial and final t points may be inter-

changed. In other words we may decrease s from t = 1 until t = 0. 

This of course requires a change in the definition of H. 
'V 

Consider W(~(s) ,t(s» : JR2n x [O,lJ -'!- JR2n to be the regular 

solution curve for a given set of initial data ~(j) with teO) = 0, 

,t (0) = ~ (j). Notice that we refer to any CL E C as being equivalent to 

a pa1r of real numbers. The first defines the real part of CL the 

latter the imaginary part. Thus the solution curve W represents 

the solution of the system 

. 
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dd H(z(s),t(s» = s 'V 'V 
H'(W(s»)W(s) = 0, 
'V 

(2.9 a) 

t (0) = ° ; z(O) 
'V 

( .) 
= z J 

'V ' 
(2.9b) 

where H' denotes the Frechet derivative of H with respect to W. Thus 
'V 

the integration of (2.9) with respect to s until t = 1 is reached will 

yield the required zero point. In many cases (Watson and Wang ~982J, 

and Chow, Mallet-Parret and Yorke [1978J) the parameter s can be 

scaled to correspond to the arc length of H by normalising the vector 

[. 'J T z,t . 

This approach was first proposed by Kellog, Li and Yorke [1976J 

for prov1ng Brouwer's theorem and was adapted by Chow et al [1978J 

into a root or fixed point finding algorithm. It has subsequently 

been widely implemented in fixed-point, zero-finding, two point 

boundary value, optimization and continuum mechanics problems by 

Watson and co-workers. The method seems particularly suited to fixed 

point problems where Chow et al ~1978J have proved that, under modest 
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assumptions of regularity, it has probability one of being successful. 

Though for the location of zeros the authors advise caution. 

Specifically for root-finding in systems of polynomials Garcia and 

Zangwill [1980J have constructed a system of ordinary differential 

equations that correspnd to a solution of (2.9a). Garcia and Zangwill 

do not scale the parameter s. 

Due to the nature of system (2.1) the next method adopted will 

be that of Garcia and Zangwill with s being the arc length of W. 

Notice the domain of definition of W. In the majority of the papers 

referenced, the z v = l, .•. ,n are treated as real variables and even v 
n when z E t (2.9a) is separated into real and imaginary components 

'V 

as stated earlier (Garcia and Zangwill [1980J). Below we show that 

z may be retained as a vector in ~n. A transformation may be 

introduced which enables the system for W(s) to be treated ~n complex 

form and a proof is given in this chapter that t rema~ns real and 

strictly monotonic ~n s. This change to complex form gives an 

improvement on the Garcia and Zangwill algorithm. 

Garcia and Zangwill Algorithm: 

To aid the description the following is of use 

A polynomial f(z), Z E en, is said to be ~n maximal 
'V 

Definition 2.1. 

degree form if 3 integers v and ~ such that 

f (z) 
'V 

= z~ + 
v 

~ + where ~ E JR, r k E 'l and where ~ > max 
k 

polynomial f(~) has a dominant term z~. 

In other words the 
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In all applications in connection with this thesis n is at most 

three and so, for notational simplicity, all the following results 

will be proven for n = 3. Generalisation to arbitrary n is 

immediate. Consequently the variable z4 will be identified with the 

variable t. Garcia and Zangwill differ from Watson, and others, in 

that their homotopies have the initial point at t = 1. 

Consider the original system(2.l)imbedded in the homotopies 

Hv «;3 x [0, lJ -+ Q; where 

v = 1,2,3 (2.10) 

It is at this point that Garcia and Zangwill would have formed the 

rea 1 s y stem G \) : lR 
6 

x [ 0, 1] -+ lR v = 1,2, •.. ,6 by defining 

( ) = Re(H ),G (w) = Im(H ) 
G2v- l ~ v bY 'V V 

v = 1,2,3 

and w
2 

1 = Re(z), w2 = Im(z ) v- v v v 
v = 1,2,3 ; w7 = t. 

However, for ease of explanation we shall remain in complex form for 

the present and return to the system ~ to show compatibility of 

results later. 

d 
Clearly, if (2.10) holds for all s then ds Hv = 0 yielding 

4 
_d_ H d 

L dZ v· ds Zo = 0 
0=1 0 

Introducing the notation a = ~ ,~. 
ds 

be written 

H vo 

v = 1,2,3. (2.11) 

= ~ H system (2.11) may 
dZ \) 

o 
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HllZ l 
+ H . 

l2
z

2 + H
13

z
3 

+ H
14

z
4 = 0, (2.l2a) 

H2l zl 
+ H . 

22 z2 
+ H . 

23
z

3 + H
24

z
4 = 0, (2.l2b) 

H
3l

z
l 

+ H . 
32

z
2 

+ H . 
33 z3 + H

34
z

4 = 0, (2.l2c) 

or 

H'z = O. 
""' ""' 

A solution of (2.12) is readily shown to be 

H12 H13 H14 Hll H13 H14 
. 

H22 H
23 H24 z2 (-1) zl = = H2l H23 H24 , 

H32 H33 H34 H3l H33 H34 

(2.13) 

Hll H12 H14 Hll H12 H13 

z3 = H12 H22 H24 
. (-1) H2l H22 H

23 z4 = , 

H3l H32 H34 H3l H32 H33 

If the solutions (2.13) are inserted into the left hand side of 

(2.l2a) then the result is equivalent to evaluating the determinant 

of a matrix having linearly dependent rows. The solutions (2.13) 

may be written as 

Z• = (_l)v+l det H' 1 2 3 4 v = , , , 
v v ) 

(2.14) 

where H' is the 3 x 3 matrix obtained by removlng column v from H'. 
v ""' 

Since rank(H') = 3, from the regurality assumption, Z lS an element 
~ ""' 

of the null space N(H') having rank unity. Therefore the z In 
~ ~ 

(2.13) are determined to within a constant. 



Reconsidering the real representation of Garcia and Zangwill, 

their determinant in the expression of t = w would be 
7 

Gll G12 0 0 0 oG
16 

G2l G22 0 0 •• ?26 
where G d (2.15) .. =-G 

<- vcr dW v 
• cr 
G6l G62 0 • • 0 G66 
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Using the Cauchy-Riemann equations and some matrix manipulation, 

determinant (2.15) may be reduced to the block determinant 

B C 
(2.16) 

C -B 

where Band C are the real matrices 

and G
35

, respectively. 

We may also write (2.16) as 

iB C . 
t = w7 = 

C iB 

0 C+iB 
= 

C-iB iB 

= det(C+iB)det(C-iB) (2.17) 



It is readily shown that C-iB = H4, and if the determinant of this 

complex matrix is denoted by J, then (2.17) takes the fo~ 

• -
t = J det Hl 
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Note that this solution for t is obtained from (2.14) if (2.14) ~s 

multiplied by -J. If the real solutions of Garcia and Zangwill are 

combined in the form w2v- l + iw
2v 

(v = 1,2,3) it is readily shown 

that, using analysis similar to that above, the solutions of (2.14) 

are obtained in the modified form' 

z = (_l)v J det H' 
v v 

v = 1,2,3,4 . (2.18) 

This is a more convenient form than that used by Garcia and Zangwill 

and the dimensions of all the determinants have been halved. All 

computations were performed using the complex arithmetic facility of 

ALGOL 68, so the change to complex form causes no inconvenience. 

Garcia and Zangwill [1980J proved that, using their determinants, 

the variable t behaved monotonically between t = 1 and t = O. This 

result follows immediately from the complex formulation (2.18) . 
. 

Note that from the form of (2.18) the occurrence t = z = 0 4 

necessarily implies that z = 0 (v = 1,2,3). This being the case, 
v 

then all (3 x 3) minors of the matrix H' are zero, thus contradicting 
~ 

the regularity assumption that rank (H') = 3. It then follows that 
~ 

at all points on the path t the initial sign adopted at t = 0 or 1 

~s maintained. If the initial point is t = 0 then solution (2.18) 

~s used and t > 0 Vs E E and if the initial point is t = 1 then 



• 
(2.18) i=. negated and t < 0 'tis E lR. 

The above result therefore ensures that as we move along t~e 

path W the value of t cannot oscillate or turn back. Hence two 

possibilities remain. The curve can either remain bounded at the 

41 . 

final point or diverge to infinity as the final t-point is approached. 

The latter event indicates that there is no solution vector correspond-

ing to the given initial data. Garcia and Zangwill prove that the 

number of spurious paths will reduce if more of the F (z) (v=l, ... ,n) v '\" 

are written in maximal degree form. Since it is not always 

possible to obtain such a form spurious paths will always exist. 

The problem is then to construct the hornotopies to yield all the 

desired roots. 

Practical experience suggests that the H should be written ~n 
v 

maximal degree form thus greatly increasing the required number of 

initial vectors. This form proved completely successful for the 

test problems whereas a reduced degree form, equivalent to the degree 

of F , missed several vector zeros. v 

When integrating the differential system it is desirable to 

avoid standard packages which do not allow the progress to be 

monitored. Successful curve following involves the implementation 

of certain test criteria after each integration step from s to s+~s. 

Such criteria will be discussed in detail for the next continuation 

method. 

A third approach to the continuation problem combines features 

of the two previous methods. Again an independent parameter s ~s 

introduced upon which all the other variables are assumed to be 

dependent. An initial value problem is constructed in a manner 
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similar to that of Garcia and Zangwi11 and is solved by a predictor-

c8rrector technique. The predictor used is an r-th order Runge-

Kutta approximation. Numerical experiments were performed on 

Drexler's test problems with r = 0,2 and 4. The value r = 4 produces 

an accurate prediction and reduces the CPU time required by the 

corrector. For most of the experiments accurate results were 

obtained most efficiently using r = 0 and r = 2. This accords with 

the experience of Rheinbo1dt [1981J. Newton's method was used to 

correct the initial approximation. To minimise the computational 

effort complex arithmetic was used as far as possible throughout 

the algorithm. 

The above predictor-corrector method was discussed, among others, 

by Al1gower and Georg [1980J. Garcia and Li [1979J describe the 

algorithm in detail for a general predictor and also prove that the 

method will converge to a solution point. Li and Yorke [1979J 

discuss the practical implementation with reference to the decision 

criteria required to ensure uniqueness of the solution curve. The 

authors demonstrate the performance of the algorithm by solving 

\~ilkinson's classic unstable polynomial. 

2.2.3 A Composite Continuation Method 

As before we construct the system of homotopies 

H(z(s), t(s)) = 0 
~ 

(2.19) 



43. 

where H: «;n x [O,lJ -+ en and define''; E en x [O,lJ to represent 

the solution curve to (2.19) for any s E ~ • The path \'; is 

generated as the solution of 

. 
H' (W)W = 0 (2.20) 

• d~1 
where W = ds and H' is the matrix of complex partial derivatives. 

The parameter s corresponds to arc length on the homotopy path so 

the normalising condi tion II~~ II 2 = 1 must be used. Here Ilw II 2 

d h d E l ed Iz'12 + t·2. enotes t e square uc ~ ean norm Assume we have 
'V 

reached a point W(i) along the solution curve. To advance to 

W(i+l) we proceed as follows: calculate the unit tangent vector 

~(i) E en x lR such that 

and "~(i) II = 1 

by forming the determinants (2.18) and normalising. 

Advancing along this vector a distance ~s from W(i) we obtain the 

initial approximation, ~o = W(i) + ~s ~(i) to W(i+l) . We now use 

xO to initiate a Newton iteration for solving equation (2.19). 
'V 

Since (2.19) represents n complex equations in n+l unknowns we 

require an additional constraint. This is provided by insisting that 

o all subsequent approximations lie in the hyperplane e, through ~ , 

perpendicular to ~(i) . 



t(i) - - - - - _--r-_ 
W (i) 

I 
-) 
-~ 

I 

w 

Figure 2.1 Advancement of Wei) to W(i+l) 1n continuation method. 

This is illustrated in Figure 2.1. 

The Newtonian system is therefore 

H' (xk) (xk_xk+l) = 
'" '" '" 

H(xk ) 
'" 

) (2.2la) 

k = 0, l, ... . 
bT, (xk_xk+l) = 0 (2.2lb) 
"'(1) '" '" J • 

The above explanation has invoked the predictor r = O. However ~(i) 

could have been improved to an r-th order Runge-Kutta approximation 

by evaluating the required number of unit vectors. Clearly the more 

accurate the prediction the more efficient the Newton iteration 

becomes. The cost, however, in obtaining even ~(i)(r = 0) is high. 

To solve system (2.21) without recourse to a formulation in real 

arithmetic define ~k (v = 1,2, ... ,n) to be the complex increment 
v 

k k+l k . 
~ 1 the real increment (x I-x ). Insert1.on of n+ n+ n+1. 

k+l k 
(x -x) and 

v v 

~k in (2.2la) results in 

k - H(x). 
'" '" 

(2.22) 
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If we now remove from H' the last column representing aH denoted 
at' 

by 
n+1. k k 

J:! ,and ~f we also let y = {t;;. : i = 1, .•. ,n} then (2.22) 
'V ~ 

b . h " n+ 1 ecomes, w~t H_(n+l) = H less the column ~ , 

or, 

where 

and 

H' (xk) yk = 
-(n+l) 'V 'V 

k 
y = ~ 
'V 

-H(xk) _ t"k 
'V 'V '""n+1 

k + Nt;; 
'V n+l 

N = [H' (k)J-l n+l 
'V - -(n+l) ~ J:! 

(2.23) 

Consider equation (2.2lb). Transformation of the unit tangent 

vector R(i) into a real 

k variable t" yields '""n+1 

n 
1: 

k 0=1 
t;;n+1 = 

~ (2n+l) array R and solving for the real 
'V 

n 
R~ . Re(M ) + 1: R~ . Im(M ) 

20-1 0 0=1 20 0 

n 

L~l R~ . Re(N ) + 1: R~ . Im(N ) + R~ ] 
20-1 0 0=1 

20 0 2n+l 

Therefore solving 

. . k+l 
new approx~mat~on x 

'V 

for t;;k (v = 
v 

k k 
= ~ + ~ • 

1, ... , n) ~n (2.23) we obtain the 

For small systems (2.1) it ~s advantageous to calculate the 

inverse in '1 and N analytically making use of the location of zeros 
:>'J 'V 
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~n H'. The use, otherwise, of standard routines greatly increases 

the cost of each iteration. In practice this increase is of order 

three. Thus for large systems this method may not be the most 

appropriate. 

The crucial factor in the implementation lies in the choice 

of ~s. The homotopy path is guaranteed to be monotonic in t but 

may turn sharply in any of the other variables. Such erratic 

behaviour may require ~s to be significantly reduced in order that 

the hyperplane e still intersects the intended solution curve and 

not into the domain of convergence of another path. All experiments 

undertaken used an upper bound on AS of one. To help follow the 

path around a bend Li and Yorke [1979J suggest an "angle test". This 

involves checking the angle between any two tangent vectors at 

successive points on W. If at ~(i+l) the tangent vectors at W(i+l) 

and W (i) are greater than <po apart then the point T:J (i+l) should be 

rejected, ~s halved and the process started again at W(i)· 

Yorke suggest <p = 18. If, during the Newton iteration, the 

inequality 

Li and 

for some norm 11.11 , is violated then Li and Yorke consider that ~k 

lies outside the domain of quadratic convergence of Newton's method 

for the path W. Therefore the iteration is stopped, ~s halved and 

the process repeated at the previous point on W. If, in some interval, 

the curve is smoothly behaved, indicated by three successively equal 

values of ~s, then ~s may be multiplied by an arbitrary factor to 



~ncrease the efficiency of the method. In practice a factor 5 was 

used. 
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The above decision criteria are identical to those mentioned ~n 

the discussion of Garcia and Zangwill approach. 

Recently Zirilli (1982) has extended the parameterised approach 

by constructing the initial-value problem as a second order ordinary 

differential equation. A continuation algorithm similar to that of 

this section has been developed by Ypma [1980J, where the Jacobian 

is approximated by a difference method. The author considers the 

use of highly accurate predictors and adaptive steplength techniques. 

In practice the parameterized methods fail when the increment 

~s falls below the machine accuracy and so a possible solution point 

is lost. For this reason maximal degree homotopies are more success­

ful since a large number of initial vectors are created. All the 

zeros of the test problems were found. Examining the different 

approaches of standard and parameterized continuation we consider 

the parameterized approach to be superior. This conclusion is 

reinforced through its widespread application by Watson. The 

parameterized method has a real and monotonic parameter t and avoids 

the problems of a zero Jacobian that would cause Drexler's method 

to fail. The decision criteria are also much more problem 

dependent for the standard approach. There seems little to choose 

between the second and third methods though for small systems (2.1) 

the composite method is more efficient. 

The resultant method is guaranteed to work and will find all 

the zeros simultaneously though the method is algebraically complex. 

Both the composite continuation and the resultant methods are used 
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successfully to find stability triples (lCo l ,r(3'Z) in connection with 

various boundary approximations in later chapters. Sloan [1982J has 

used the above algorithm to this end when the interior method ~s a 

fourth order leap-frog scheme. 
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CHAPTER 3 

BOUNDARY TECHNIQUES FOR THE LAX-WENDROFF :1ETHOD 

The first interior approximation we shall consider is that 

proposed by Lax and Wendroff [1960]. Their scheme is widely used 

and, together with the Leap-Frog method (4.1), has probably become 

the most frequently analysed of all finite difference schemes; see 

for example Richtmyer [1963J, Richtmyer and Morton [1967J, Morton 

[1971J. 

The test problems, described earlier, have related Cauchy 

problems of the form 

}tt (x, t) = Au (x, t) 
'Vx 

u(x,O) = f(x) 
'V 'V 

X E JR., t > 0 (3.1) 

X E JR., 

T where u(x,t) = (u(x,t)v(x,t» and u and f are real vector functions, 
'V 'V 'V 

with A a constant real square matrix of appropriate dimensions. 

Approximating u on a mesh with spacing ~x and ~t by a mesh function 
'V 

. n n n T ?A and lett1ng U. = (U.,V.) denote the value 
v U 'VJ J J 

of U at x. = j~x, 
'V~ J 

t = n~t, the Lax-Wendroff 
n 

(L-W) approximation to the solution 

u(j~x,(n+l)~t) is given by 
'V 

n+l 
U. 
'VJ 

= (A E-l + A + 
-1 0 

n 
A1E)U. , 

'VJ 

. 
J E Z (3.2) 

. dUo. with init1al ata = 
'VJ 

f(j~x), j E Z. In standard notation E ~s 
'V 



the shift operator EVU~ = U~ and, for constant mesh ~J ~J+v ratio 

A = 6t/6X, and the identity matrix I, 

= !AA(AA-I), A 
o 

The L-W method has second order truncation error in both space and 
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time, is also explicit, dissipative of order 4 and stable if Ap(A) ~ 1, 

where peA) denotes the spectral radius of A. 

Gadd ~978J defended approximation (3.2) against "unfavourable 

appraisals" and attempted to correct the problem of large phase 

errors by devising a third order variant. Fromm [1968J has also 

produced an adaptation with very little dispersion. These extensions, 

and the others that produce fourth order modifications, invariably 

increase the support of the scheme to at least five points at the 

lower time level. When solving bounded domain problems these methods 

then require intermediate boundary approximations 1n addition to the 

usual boundary approximations. The construction of these intermediate 

expressions presents no difficulty (Strang [1980J) and their resulting 

stability analyses are no more complicated than those of the standard 

boundary approximations themselves. For simplicity, however, we 

proceed by considering boundary approximations for the standard Lax-

Wendroff method (3.2). A compact fourth order interior approximation 

1S considered in Chapter 5. 

Chu and Sereny [1974J considered var10US boundary approximations 

1n conjunction with the L-W method applied to the one-dimensional 

equations of gas dynamics. Their numerical experiments suggest 

that the 'best' boundary approximation would be based on the 
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characteristic variables of the system. Sundstrom [1975J clarified 

some errors and misunderstandings on the part of Chu and Sereny and 

established the stability of all the approximations considered using 

the theory of Gustafsson et al [1972J. 

The matrix in (3.1) is of the form 

A = [! (q-l) 

!(q+1) 

!(q+l)] , 

!(q-l) 

+ 
q E lR , q ~ 1 

and so we shall be extending the results of Sloan [1980J who considered 

the symmetric case q = 1. We are particularly interested in the 

effect that the uneven wave speeds have on the stability and accuracy 

of the boundary approximations. The selection of boundary 

approximations which we consider is different from that of Sloan; 

however we include his most successful method which was based on the 

characteristic variables. May and Morton [1976J considered the 

same problem as Sloan and, with (3.2), the most successful boundary 

approximation which they examined was that proposed by Matsuno [1966J. 

This approximation was also studied by Sloan [1980J and found to be 

competitive with the best characteristic-based technique and when 

applied, with (3.2), to system (3.1) a stable approximation resulted. 

However the approximation of Matsuno is not considered in detail here. 

Gottlieb and Turkel [1978J studied the differential system 

u + Au = 0 with q = 3. The authors transformed the system into 
'Vt 'Vx 

characteristic form and, of all the boundary approximations studied, 

recommended a one-sided Euler treatment of the outgoing characteristic 

equation. Coughran [1980J examined the off-diagonally dominant 



problem glven by (3.1) and A = (a 1), a E [-!,!]. When uSlng the 
1 a 

L-W scheme in the interior, Coughran concluded that second order 
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extrapolation at the boundary attained the best accuracy. Bramley 

and Sloan [1977J have considered the two-dimensional analogue of the 

problem in Sloan [1980J. The results again recommended the 

incorporation of characteristics into the boundary approximations. 

3.1 Boundary approximations and Stability Analysis. 

In this chapter we consider a variety of boundary approximations 

required in the implementation of the L-W method to the left and 

right quarter plane problems of (3.1). Unlike the results of 

Chapter 4 and Chapter 5 the stability of many of the approximations 

will be established analytically. This simplicity is due, in part, 

to the characteristic formulation of some of the approximations and, 

in part, to the dissipative nature of the L-W scheme. Section l3.3] 

involves the extrapolation of a quantity intermediate between the 

ingoing and outgoing characteristic variables and is taken from 

Jamieson and Sloan [1983]. 

3.1.1 The Left Boundary problem. 

We consider first the left quarter-plane problem 

+ 
X E JR , t > 0, 

u(x,O) = f(x), u(O,t) = get), 
'V 'V 

T 
u(x,t) = [u(x,t),v(x,t)] , a = !(q-l), b = ~(q+l). 
tV 

(3.3) 
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. We approximate the solution u(j~x, ~t) by U~ for n ~ ° J' > 1 
'V 'VJ' , ..... uS1.ng 

the L-W scheme (3.2). Following the theory of Gustafsson et al r19~2~ 
'- -

we analyse stability by seeking a solution to (3.2) of the form 
. 

~j = ZnKJ~, where ~ is a vector of complex constants and Z,K E C. 

Substitution of the desired solution in (3.2) yields 

[ 
-1 l 

Z I - K A -1 - A 0 - K Al J ~ = R· (3.4) 

The condition for a non-trivial solution d is that K and z satisfy 
'V 

det[zI - K-1A - A - KAlJ = 0, 
-1 0 

which reduces to the characteristic equations 

To construct a general solution we require the eigenvectors ~ 

(3.Sa,b) . 

associated with (3.Sa,b). It is readily shown that if K and z satisfy 

(3.Sa) then ~T = [l,-lJ, and if K and z satisfy C3.Sb) then 

~T = [l,lJ. Denoting by Kl (z;>..) and K 2(z;>,,) the roots of C3.Sa) and 

by K
3

(Z;>..q) and K
4

(Z;>..q) the roots of (3.Sb), for a given z, the 

general solution is given by 

(3.6) 

where n. (i = 1,2,3,4) is an arbitrary scalar. :'.Je have dropped the 
1. 

dependence of Ki in (3.6) and will continue to do so when the 
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parameter dependence ~s clear. It is essential that, for Izi > 1, 

the general solution (3.6) decays as j increases and to this end we 

quote 

Lemma 3.1. (Gustafsson et al [1972J). There ~s a 8> 0 such that 

(a) IKII < 1 for 1 z 1 ~ 1, z F 1 and Kl (1; A) = 1, 

IK21 ~ 1+8 for 1 z 1 ~ 1, and 

(b) IK31~1-8 for I z 1 >, 1, 

1K41 > 1 for Izl ~ 1, z i: 1 and K4 (1; Aq) = 1. 

The results of Lemma 3.1 then yield the desired general solution 

in the space L2(~x) as 

(3.7) 

This is a particular example of equation (1.31). 

The roots Kl and K·3 will be termed the ~nner roots and K2 and K 4 the 

outer roots. With (3.5a,b), (3.7) and Lemma 3.1 available we are now 

at liberty to analyse any boundary approximation involved in the L-1;-1 

integration of the left boundary problem (3.3). The necessity of 

.. n+l. f f h . 1 bl d f h prescr~b~ng V ~s a eature 0 t e numer~ca pro em an not 0 t e 
o 

differential problem - (3.3) being well-posed. The boundary 

approximations to v(O,(n+l)~t) to be considered are 

sth-order extrapolation (EX) 
s 

s+l n+l 
~ V = 0, with ~V. = V. l-V" (3.8) 

o J J+ J 



Characteristics (C): 

!(Aq-1) (Aq-2)R~ + Aq(2-Aq)R~ + !Aq(Aq-1)R~, (3.9) 

where R = V + U 1S the outgoing characteristic variable , 

!-Int Conservation (!IC): 

(3.10) 

Box (B): 

n+1 n+1 n n 
(l+aA)Vo + (1-aA)V

1 
= (l-aA)Vo + (1+aA)V

1 

+ Ab(Un+1_Un+1+Un_Un) 
1 0 10' (3.11) 

Characteristic Euler (CE): 

(3.12) 

Sloan [1980J analysed, for q = 1, the boundary approximations EX , 
o 

C and !IC. 

Approximation C is obtained by uS1ng quadratic interpolation 

to estimate the intersection of the line t = t and the outgoing n 

characteristic 
dx through the point x 0, t (n+l)llt. !IC - = -q = = dt 

1S constructed so that the conservation property of (3.1) 1S 
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maintained. B is the usual box integration of the second physical 

equation and approximation CE is derived from a one sided Euler 

treatment of the characteristic equation r = qr where 
t x 

r(x,t) = u(x,t) + v(x,t). 

The approximation to u(O,(n+l)~t) ~s g~ven exactly by setting 

n+l 
U = g«n+l)~t) and the value 

o 

approximations (3.8)-(3.12). 

f 
n+l . 

o V ~s g~ven by anyone of the 
o 

P ·b· h 1 n+l rescrl ~ng t e va ues of U and 
o 

n+l. . k . . h h V ~s ~n eep~ng Wlt t e result of Lemma 1.1 in Chapter 1 where 
o 
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it was proved that np~ boundary values were required at the boundary. 

For Lax-Wendroff interior method np~ is equal to 2. 

is obtained from the extrapolation condition EX . 
o 

n+l 
Suppose V 

o 

In this case we 

substitute the general solution (3.7) into the boundary conditions 

Un+l = g«n+l)~t) and Vn+l = 
o 0 

n+l 
VI to obtain 

n+l 
n3 = g«n+l)~t)/z , 

This is the algebraic system to which Theorem 1.6 applies. There-

fore we may state, using Theorem 1.6, that EXo is a stable approximation if 

vlzl ~ 1 the determinant condition 

(3.13) 

holds. For all the above boundary approximations an associated 

determinant equation, g~ven by equality in (3.13) can be constructed 

in a similar manner. These equations are contained in Table 3.1. 



Boundary Approximation Determinant Equation 

EX ( l)s+l ( l)s+l I 
(3.14) s K1- + K

3
- = 0 

C z = c + c1 K03 + 2 (3.15) 
0 

C2K.3 

!IC z = hoKl + h1K 3 + h2 (3.16) 

B b z = b I (3.17) 
0 1 

I 
CE z = l+;\.q (Ko

3 
-1) (3.18) 

I 

Table 3.1: Determinant equation of Boundary Approximations 

(3.8) - (3.12). 

In Table 3.1 we have used the notation 

c = !(;\.q-1) (;\.q-2); c
1 

= ;\.q(2-;\.q); c = !;\.q(;\.q-l); 
0 2 

h = !;\.(;\.b-l); h = !;\.q(;\.b+1); h2 = 2(1-a;\.) - 2;\.2b 2 
0 1 

b 
0 

= 2 (l+a;\.) + (l+;\')K l + (l-;\.q)K"3' and 

b l = 2(1-a;\.) + (1-;\.) KOl + (1+;\.q)K 3 · 

To illustrate the stability analysis consider the EX s 

1 

approximation. Stability of the initial-boundary value quarter-

plane difference problem will be assured if there are no solution 

triples (K
1

,K3,z), of the system 

;\. 2 2 
K (z-l) _ }(Kl-l) 2 = 0 

+ I(K1-l) 1 

K3(z-1) 
;\. 2 2 ') ') 

- 2" q (Ko 3 - 1 ) - L\ q'-(K -1)- = 0 
3 

s+l (I<. _l)s+l 0, (Kl-l) + = 
3 
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for which z is an eigenvalue or generalised eigenvalue. If such a 

triple did exist then there wouid be a general solution (3.7) which 

was bounded in space but unbounded in time, and this is an unstable 

solution. The above equations constitute the system referred to 

as (2.1) in Chapter 2. We have 

Lemma 3.2. The L-W method and the EX boundary approximation define 
s 

a stable approximation for the left quarter plane problem if Aq ~ 1 

and s < 2 for q = 1 or s ~ 2 for q > 1. 

Proof. The restriction Aq ~ 1 is the necessary stability condition 

for the L-W approximation of the pure Cauchy problem. For the 
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remainder of this chapter we assume that this inequality is satisfied. 

The result for q = 1 can be established analytically, whereas, for 

general q, numerical methods must be used on a discrete data set 

(A,q). The details are given in section [3.3J where the EXs 

approximation is a special case of the boundary approximation 

considered therein. 

Similarly, 

Lemma 3.3. The L-W method together with either the C or the CE 

boundary approximations define a stable approximation to the left 

quarter plane problem if Aq ~ 1. 

Proof. Substitution of the appropriate determinant equation into 

the characteristic equation (3.Sb) produces a polynomial in K- 3 . In 

both cases the roots of the polynomial are multiples of the root K3 

and this has the value unity. Lemma 3.1 establishes stability. 

Finally we can establish 

Result 3.1. For the discrete set {(A,q) ; q = 1~2, .. olIO; Aq = 0.9S} 

the L-W method with either the !IC or the B approximation defines a 

stable approximation of the left quarter plane problem. 



59. 

For the ~IC approximation the result for q = 1 was established 

analytically by Sloan [1980J. The remaining conclusions of Result 

3.1 were obtained by reducing the corresponding multivariate system 

to a single polynomial in one complex unknown. Using the algorithm of 

Grant and Hitchins all the roots that were obtained indicated stability. 

For the ~IC approximation the reduction to one polynomial was 

straightforward. However the B technique required the use of the 

Resultant method of Chapter 2 (an analogous application is given in 

Appendix I). 

In summary, we have established, using the stability theory of 

Gustafsson et al given in Chapter 1, the stability of the boundary 

approximations (3.8) - (3.12) when used in conjunction with the L-H 

method to approximate the left boundary problem of (3.1). For the 

extrapolation approximations stability was shown to be directly 

related to the value of q. Whilst stability of the ~IC and B 

approximations can only be guaranteed for the above data set we have 

no evidence to suggest that there exist values of A and q that would 

produce instabilities. 

3.1.2 The Right Boundary Problem 

We now consider the potentially less stable right boundary 

vers10n of (3.3). The domain is now {(x,t) : x ~ 1, t > O} and we 

specify u(l,t) = h(t). If the right boundary is at x = 1 = Jtx then 

approximation (3.2) is applied for all integers j ~ J-l. The right 

boundary problem is synonymous with a left boundary problem where 

the inward and outward characteristics have been interchanged. 

Therefore, if we seek a general solution of the form ~~_j 
n -] 

= Z t:: d 
'V 
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in (3.3), the characteristic equations are those of (3.5) with A 

negated, namely 

~ = 1 or -q. (3.l9a,b) 

If we denote by K2(Z;A) and K4(Z;Aq) the exterior roots of (3.l9a) 

and (3.l9b) respectively, then the general solution which decays as 

. . 
J 1.ncreases 1.S 

(3.20) 

Examination of (3.19) and (3.5) will show that 

-1 
~2 (Z;A) = Kl(z;-A), (3.21) 

where Kl(z;-A) and K
3

(Z;-Aq) are the respective inner roots of 

(3.l9a,b). Solution (3.20) then becomes 

(3.22) 

We then require 

Lemma 3.4. (Gustafsson et al [1972J). There is a 0> 0 such that, 

if Kl and K3 are the interior roots of (3.19) then, 

IKll < 1-0 
" 

for I Z I ~ 1 and 

and K 3 = 1 for Z = 1. 



The boundary approximations, applied to the right boundary 

problem, take the form 
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EX 
s 

vs+lVn+l = . 
J 0, wlth vv. = v. 

J J (3.23) 

C = !(A-lXA-2)~J + A(2-A)W
n
J 1 + -21A (A-l)Wn . W = U V (3 24) - J-2' -,. 

B 

CE 

= vn
J - Ab(UJn+Un

J 
1) - aA(Vn _Vn) + 2bAUn+! + 

- J-l J J 

+ A 2b 2 (Vn _Vn) 
J-l J' 

n+l n+l (l-aA)V
J 

+ (l+aA)V
J

_
l 

= (l+aA)Vn
J + (l-aA)Vn 

J-l 

(3.25) 

(3.26) 

(3.27) 

The determinant equation may be constructed as before and stability 

analysed analogously. The only result that dif~ers from the left 

boundary problem is contained in 

Lennna 3.5. The L-~v method and EX boundary approximation define a 
s 

stable approximation for the right quarter-plane problem if Aq ~ 1 

and s < 2 for all q. 

Proof. See section [3. 3J . 

Lemma 3.5 illustrates the greater sensitivity, ~n terms of 

stability, of approximations applied on the boundary at which the 

faster wave is entering the computational domain. The other boundary 

approximations, (3.24)-(3.27), can be shown to define a stable 

approximation, to the right boundary situation, using similar techniques 
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to those used in Le~a 3.3 and Result 3.1. 

Again we have established the effect that the value of q has on 

the stability properties of the boundary approximations (3.23) -

(3.27). Lemma 3.5 illustrates that it is insufficient to consider 

only one boundary of twin boundary problems of the form (3.1). We 

have shown that the numerical treatment of the boundary at which the 

slower wave is incident is more likely to induce computational 

instabilities than that which reflects the faster wave. 

In the next section we illustrate the practical application of 

the above results. 

3.2 Numerical Results 

To illustrate the stability results of the preV10US section we 

consider the numerical solution of 

~t = [: :J~x' X E [O,lJ, t ~ 0, 

u(x, t) 
'V 

T 
= (u(x,t),v(x,t)) , a = !(q-l), b=!(q+l). 

(3.28) 

In this thesis we are considering the effect that differing \Vave 

speeds have on boundary approximations. It is clear that the fastest 

wave speed has a crucial role to play on the stability of many 

interior difference schemes, including the Lax-Wendroff method. To 

control the existence and strength of the faster characteristic 

waves we introduce the parameter E E m and define the initial data 
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[: 
2IT 

, 
2'ITX + 2IT 2TIl S1n cos 

Jt ex, 0) = (3,28a) • 
2 'IT S1n 2'ITX - 2 'IT cos 2'ITX 

If E = 0 then the effect of the faster wave is filtered out of 

problem (3.28). The general solution of (3.28) and (3.28a) 1S 

given by 

u(x,t) = E 2'IT S1n 2'IT(x+qt) + 2'IT cos 2'IT(x-t) 

and (3.29) 

v(x,t) = E 2'IT sin 2'IT(x+qt) - 2'IT cos 2'IT(x-t) 

from which we obtain the boundary conditions u(O,t) and u(l,t). 

To analyse the effect of the left boundary, v(O,t) is approximated by 

any of (3.8) - (3.12) and v(l,t) is given by (3.29). The treatment 

is reversed for the right problem. We use the following error 

measurements 

a) The maximum norm, max I u (J' ~x, t ) - U~ I ' denoted by I U I' 
• 'V n ..vJ '~ i 00 ' 

J 

at any given time level t = n~t. 

b) If we define, for the exact solution ~(x~tn)' the quantity 

fo
l 

= [ u (x, t ] T E [u ( x, t ) J dx 
'V n q 'V n 

(3.30) 

where Eq 1S the positive definite matrix [_: -:] • then we can show 

= o. Therefore (3.30) 1S invariant ~n time and 

the value of (3.30) will be for all time. 
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For the initial data (3.28) 

II~(· ,0) II i = 4'IT2(q+s2). 
q,s 

The analogous norm for the discrete problem is denoted by II ~611 E 
q,s 

at any given time level and is given by a trapezoidal integration of 

right side of (3.30). This norm could have been constructed via 

the resul ts of Gunzburger and Plemons [1979J. The resul ts are 

summarized in Tables 3.2 - 3.6. 

s = 0.01 

s = 0.5 

Table 3.2: 

q = 1 q = 2 q = 5 

39.482 78.960 197.39 

49.349 88.826 207.26 

1I~(x,o) 1\ i for var~ous q,s. 
q,s 

All the integrations were performed over three fast wave cycles. 

The numerical results indicate a degree of insensitivity of 

approximation EX
2

, with q = 1, for smooth initial data. Even when 

the initial data were corrupted by a random number generator, adding 

a 25% variation, stability remained. 

It is clear that there is a degree of choice available among 

both the left and right boundary approximations. Also the 'good' 

boundary approximations are, for this smooth problem at least, 

insensitive to whether the fast characteristic is ingoing or not. 

The tables also illustrate the results of Lemmas 3.2 and 3.5. Tables 

3.3 and 3.4 indicate the increased sensitivity of the ~ight boundary 



---

Boundary 

I A . . I pprox~mat1on 
I 

Exact 

EX 
0 

EX
1 

EX 2 

C 

I-

!IC 

H 

CE 

EX 2 ((i = 1.0) 

Tahle 3.1: 

----

q = 2 q = 5 , 

i 

q = 1 
! 

Left Right Left Right 
I 

! 
I 
I 

39.485 1 0.003 79.011 1 0.023 79.011 1 0.023 197.41 1 0.023 197.41 I 0.023 I 
I 

38.995 1 0.481 78.013 1 0.496 79.121 1 0.338 197.28 1 0.490 197.41 1 0.348 

39.954 1 0.071 79.939 1 0.073 79.015 I 0.044 198.96 1 0.064 197.41 1 0.046 

39.490 1 0.002 79.020 1 0.021 1.2(16)1 5.8(8) 197.41 1 0.023 1.1(6) 1 5.5(3) 

39.485 1 0.003 79.012 I 0.023 79.013 I 0.047 197.41 I 0.023 197.41 1 0.032 

39.551 1 0.010 79.094 I 0.025 79.013 I 0.053 19 7 . L~ 1 1 0 . 02 3 197.41 I 0.027 

39.486 1 0.003 79.013 I 0.023 79.013 I 0.047 197.41 I 0.023 197.4] I 0.032 

39.485 1 0.003 79.0l2 1 0.024 79.013 I 0.052 197.41 I 0.023 197.41 1 0.c>27 

-

39 . LI 86 I 0 . 003 79.012 I 0.024 79.013 I 0.048 197.41 I 0.023 I. 9 7 . 4 I I 0 . () '3 '3 

- -- -------

II~~II E I II~L\II 00 for Aq = 0.95, 
1 

~x = -80' E: = (). 0 1 • 
q,E: 

()\ 
.p.. 
PJ 



I ---

I 

Boundary 

Approximation 

Exact 

EX 
0 

I 

1 

: EX
l 

\ 
I 
i 

I EX2 
I 

I 

:C 

~IC 
: 
..... 
I 

, 
; B 

CE 

EX 2(a = 1.0) 

Table 3.4: 

q = 2 
q = 1 

Left Right Left 

49.349 I 0.003 88.877 I 0.024 88.877 I 0.024 207.27 I 0.024 

46.038 I 0.625 88.082 I 0.718 89.037 I 0.518 207.12 I 0.854 

49.815 I 0.076 89.804 I 0.071 88.841 I 0.044 208.70 I 0.057 

49.395 I 0.008 88.885 I 0.024 1.1(17) I 2.2(9) 207.27 I 0.023 

49.373 I 0.004 88.876 I 0.026 88.883 I 0.047 207.27 I 0.024 

49.438 I 0.014 88.958 I 0.026 88.977 I 0.060 207.3L. I 0.024 

49.373 I 0.004 88.877 I 0.025 88.883 I 0.047 207.27 I 0.024 

39.373 I 0.004 88.876 I 0.026 88.922 I 0.052 207.27 I 0.024 

49.391 I 0.007 88.876 I 0.027 88.882 I 0.048 207.27 I 0.024 

" ~~t, II E I" ~~ 1\ 00 

for Aq = 0.95, 1 
~x = 80' E = 0.5. 

qlE 

---

q = 5 
~ 

Right 
: 

207.27 I~ 
208.02 I 0.042 

207.28 I 0.049 

1.2(7) I 1.8(4) 

207.23 I 0.032 

207.36 I 0.045 

207.21 I 0.032 

-

207.23 I 0.026 

----

207.22 I 0.013 

-~-------

(J\ 

-'='" 
0" 
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problem. On pages 158-160 the evolution of the initial data is 

depicted using the graphic facilities of an ICL 1904S. Plot 2 

illustrates the dissipative effect of the Lax-Wendroff interior 

method when an unstable boundary approximation is applied. 

Typical exact solutions are shown in Plots 3 and 4. 

3.3 Extrapolation of Characteristic Variables 

The work in this section has published in the Internatioanl 

Journal for Numerical Methods in Engineering (Jamieson and Sloan 

[1983J) . 

In this section we consider the boundary approximations 

s+l( n+l 
6. V 

o 
n+1) + aU = 
o 

0, a E: [-l,lJ , 

[-l,lJ . 

(3.31) 

and s+l( n+1 
'I VJ 

n+l) - aV
J 

= 0, a E: (3.32) 

When a = 1 it can be seen that the extrapolated quantity l.n (3.31) and 

(3.32) corresponds to the outgoing Riemann invariant and a = -1 

corresponds to the ingoing Riemann invariant. The value a = ° reduces 

(3.31) and (3.32) to (3.8) and (3.23), respectively. 

Gottlieb and Turkel [1978J show that the zero-order extrapolation 

of a linear combination of U and V may be unstable when the variables 

involved l.n boundary conditions and boundary approximations are nearly 

linearly dependent. Sloan [1980J has shown that, for q = 1, (3.31) 

and (3.32) are stable for all s ? ° if a = 1 and unstable for all s ~ ° 
if a = -1. In this section we wish to make precise the relationship 

between q,a and s that guarantees stability. Clearly a = 1 is the 

optimal choice, however the nature of the physical problem may, ln some 

cases, require a different quantity to be extrapolated. 
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Following the earlier approach we construct the determinant 

equations associated with the left and right quarter plane problems 

as 

s+l s+l 
(l-a.) {Kol (z;A)-l} + (l+a.) {K 3(z;Aq)-1} = ° (3.33) 

and 

s+l s+l 
(l+a.){Kl(z;-A)-l} + (1-a.){~3(z;-Aq)-1} = ° (3.34) 

respectively. 

For the symmetric problem q = 1, we have Kl(z;-A) = K3(Z;A) and 

K.3(Z;-A) = Kl (Z;A) and so (3.33) and (3.34) are, in fact, the same 

equations. Hence it is sufficient to consider only the left 

boundary problem with approximation (3.31). For q > 1, however, 

this symmetry is lost and both problems must be examined separately. 

q = 1 Stability Analysis: 

As before we seek to determine whether or not there are any 

solution triples (~1,K3'z) of the system 

KOl (z-l) 
A 

+-
2 (K~i -1) - !A2 (Ko

l
-l)2 = 0, (3.35) 

K~3 (z-l) 
A (~;-1) !A2(~3-l)2 0, (3.36) - - = 2 

s+1 s+1 (3.33) (I-a.) (K -1) + (1 +a.) (K_
3 
-1) = ° 1 

for which Z is an eigenvalue or generalised eigenvalue. The 

determinant equation (3.33) can be written as 



(3.37) 

where p = «l+a)/(l-a))l/s+l and w is any root of the equation s s 
s+l 

w = -1. Examination of (3.35) and (3.36) yields the relation 

K3 = gKl , g = (\-1)/(\+1) E (-1,0). 

We may combine (3.38) and (3.37) to obtain 

w -p 
s s 

w -gp 
s s 

(3.38) 

(3.39) 

which involves only the inner root of the characteristic equation 

(3.35) for any prescribed a, \ and s. The difference approximation 
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involving (3.31) will be stable if the right hand side of (3.39) cannot 

be identified with the inner root of (3.35). Recourse to Lemma 3.1 

indicates that Kl = 1 at z = 1 and IKII < 1 for all Izi ~ 1. Since 

g f 1 for \ E (0,1) we can therefore dispense with the unit circle 

and conclude the sufficient stability requirement of 

w -p 
s s 

w -gp 
s s 

> 1 for all w . 
s 

(3.40) 

If we use the notation Ss 
-1 = w

sPs then (3.40) may be expressed as 

Is -11 > Is -gl, for all w . s s s 



/ 

I 

/ 

The above diagram illustrates that (3.41) will be satisfied if the 
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distance, in the complex plane, from S to 1 exceeds that from 5 to g. 
s s 

This is equivalent to requiring that 

\ 
\+1 ' for all Sse (3.42) 

Examination of the roots w reveals that the largest value of Re(S ) 
s s 

will be associated with w = exp[+ iTI/(s+l)] and so (3.42) will be s -

satisfied if and only if 

\p 

cos[TI/(s+l)] < (\+~) . (3.43) 

For s = ° or s = 1 (3.43) ~s satisfied for any a E (-1,1) and \ E (0,1). 

As we observed previously the limit values a = -1 and a = 1 yield 

unstable and stable difference approximations, respectively, regardless 

of the value of s. For all s ~ 2 the sufficient stability condition 

(3.43) may be rearranged to yield the restriction 

a > 
(\+l)s+l _ [ ] 

s+l 
\ sec(TI/(s+l» (3.44) 

(\+l)s+l + [\ sec(-:T/(s+l»]s+l 
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We therefore obtain 

Lemma 3.6. For A E (0,1) and s ~ 2 then a sufficient condition for 

stability of the L-W and (3.31) difference scheme is that a satisfies 

(3.44). If we denote the right-hand side of (3.44) by a(l) for s ~ 2 
s 

and let a(l) = a(l) = 
o 1 

-1 , then the difference scheme is stable if 

a E (a ~ 1) , 1J . 

It can be seen that for s > 0 and for any A E (0,1), the sequence 

{a(l)}oo is monotonic, strictly increasing. 
s s=l 

We have therefore obtained, by requ~r~ng that IK I < 1, a 

sufficient interval relating to the degree of extrapolation ~n 

approximation (3.31) for any a E (-l,lJ. However numerical experiments 

indicate that Lemma 3.6 is over-restrictive. Namely, solution triples 

(K
1

,K
3

,z) were found which suggested that the true stability interval 

is of the form (a(l)- 0 ,1J for some 0 > o. 
s s s 

We calculated the a(l) 
s . 

as the point corresponding to K moving inside the unit circle. 

Violation of the interval in Lemma 3.6 therefore allows the possibility 

of IKI < 1; however, the approximation will only be unstable if 

I z I ~ 1. We proceed by obtaining the a-interval such that for all 

the inequality Izi < 1 be satisfied. From (3.35) we have 

(3.45) 

where K1 is given by (3.39). Equation (3.45) may be reduced to 

2 6 + g 
s 

z = 
62 - (1+g)6 + g 

s s 

(3.46) 

w , 
s 



-1 
where; = S + as . 

s s s 

;s 
= ~-~-~ ; - (l+g) , 

s 

Following the previous geometric argument ~n the complex plane, we 

obtain that Izl < 1 is equivalent to 

Re(; ) < !(l+g) = 
s 

A 
A+l (3.47) 
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From lenuna 3.6 
( 1) 

a > -1 for any s, so we need only consider s > 2 in 
s 

(3.47) • 

that Izl 
If we consider a = 0 and w = exp(iTI/(s+l)) in (3.47) we find 

s 

< 1 reduces to cos(TI/(s+l)) I 
< 2· This condition is violated 

if s ~ 2. Since (3.43) also fails we have that extrapolation of order 

s ~ 2 when a = 0 is unstable for the model problem with q = 1. This 

proves the first part of Lemma 3.2 and confirms the result of Sloan 

[1980] . The search for an extension of the stability interval 

(a(l) ,11 (s 'l2) may therefore be terminated on the left at a = O. 
s 

If (3.47) is written as 

r = Re(w ), 
s s 

we obtain the equivalent inequality 

where 

(p -~ )(p -y ) > 0, s s s s 
(3.48) 
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and L = A/(r (l+A)). 
s s 

Since Ps > 0, y s > 0 and \)Js < 0 inequality (3.48) will be satisfied 

if p > y • 
s s This is represented as a condition on a as 

l+s 
Ys - 1 

a > 
l+s 

Y s + 1 
(3.50) 

In (3.50) we need only consider those roots Ws for which the inequality 

(3.47) is violated. 

we obtain 

Denote the quotient in (3.50) by 

a 
aL 

s 

2 -1 
a = -y (L -4g) 2 < 0 

S S S 

a • s From this 

and so a is a monotonic, strictly decreasing function of L . 
s s 

Therefore we need only consider that root w , in (3.49), corresponding 
s 

to the largest value of 

If a(2) = max a, then 
s s 

w 
s 

r . 
s 
(2) 

a s 

defining relations (3.49). 

This implies that r = cos(rr/(s+l)) = r*. s - s 

1S obtained from (3.50) with r = r* in s s 

If a E (a (2), lJ, then I z I < 1 for all w 
s s 

and the difference approximation is stable. If a ~ a(2) then Izl ~ 1 
s 

(2) (1) 
and S1nce a < a 

s s 
then IK11 < 1, for ws = exp(irr/(s+l)), and the 

system is unstable. f " (2) (2) 1 h d De 1n1ng a = a = - we ave prove 
o 1 

Lemma 3.7. If q = 1, A E (0,1) and a confined to the interval [-1,lJ 

then a necessary and sufficient condition for the approximation, 

defined by the L-W method and (3.31), to the left quarter-plane 

(2) ] 
problem to be stable is that a E (as ,1. 

For any A E (0,1) we have a~2)= 0 and, for A = 0.95, the values 

of (2) d (2) are 0.568 and 0.803, respectively, to three decimal a
3 

an a4 

places. 
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q > 1 Stability Analysis: 

The previous results were established analytically due to the 

symmetry inherent in the problem. For general q however, the 

solution triples of the system composed of the two characteristic and 

the determinant equations must be found explicitly, and stability 

results obtained thereafter. Whilst the triples must be found us~ng 

numerical techniques, recourse need not be made to the methods of 

Chapter 2. In fact, for both the left and right quarter plane 

problems the appropriate 'stability' system may be reduced to a single 

polynomial equation in one complex variable. We consider first the 

left-hand boundary at x = o. 

The analysis of the left quarter-plane problem involves the 

simultaneous solution of (3.5a,b) and (3.33) for the triple 

By combining (3.5a) and (3.5b) to eliminate 

z and using the equivalent form of (3.33), equation (3.37), we obtain 

a real coefficient cubic in K3 . For any A,q,a and s the cubic has a 

root K3 = 1 leading to, after back substitution, Kl = 1 and z = 1. 

Lemma 3.1 indicates that the root K3 = 1 is actually the limit point, 

as z + 1, of the outer root K4 (Z;Aq), and thus the (1,1,1) triple may 

be regarded as 'stable'. Removing, from the cubic, the root K3 = 1 

by deflation we obtain the quadratic 

(3.51) 

where 

A = 1 - A + qS (l+Aq) s 

1> 2 2 and = A-I + 2S (l-Aq ) + qS (l+Aq), 
s s 

,~ qS (Aq-l) 
2 

= + qS (l-Aq) s s 
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For any values of A,q,s and 0, equation (3.51) is solved for 

K3, and Kl and z are obtained by back substitution. We note that 

if K3 is a root corresponding to Ws then ;'3 is a root associated with 

w. Thus we need only consider w such that Im(w ) ~ O. As before, s s s -

we consider the roots of (3.51) associated with w = exp(in/(s+l)). 
s 

The stability boundary is then the least value of 0 for which the 

solution triple satisfies IKll < 1, 1~31 < 1, Izl ~ 1. Notice that 

any lower bound will only be approximate, however it is not expected 

that the value of 0(2) would 
s 

be required to more than one decimal 

place. 

As discussed earlier the right quarter plane problem may be 

analysed by negating A in the system of equations. If we denote the 

roots K.l (Z;-A) and K.3 (z;-,\q) by Kl and tC3 respectively and we modify 

the determinant equation to 

(3.52) 

where 8
s 

= wsPs' then the system (3.5a,b), (3.31) in KOl,K3 and Z 

transforms to the system (3.l9a,b), (3.52) in Kl ,K3 and Z if A ~s 

replaced by -A and 0 by -0. The left and right boundary problems 

may therefore be handled by the previously described algorithm. 

The stability intervals are given in Table 3.5 for q = 1,2 and 

sand s = 0,1,2,3 such that Aq = 0.95. 



I 

I 
I 
I 
I 

-, 
:' -t • 

I q = 1 q = 2 q = 5 

Left and Right Left Right Left Right 

s = 0 (-l,lJ (-l,lJ (-l,lJ (-1,1.1 (-1, 1.1 

s = 1 (-l,lJ (-l,lJ (-0.7, 1 J (-1,11 (-0.7,lJ 

s = 2 (O,lJ (-0.2,1] (0.3,11 (-O.l,lJ (0.2,lJ 

S = 3 (0.6,lJ (0.2,lJ (0.7,lJ (0.2,lJ (0.6,1.1 
, 

Table 3.·5; Stability intervals with Aq = 0.95. 

Examination of the intervals will show that the boundary which has 

the fast wave outgoing has the wider stability intervals. For q > 1 

quadratic extrapolation may be stable at x = o. This concludes the 

proof of Lemma 3.2. Table 3.5 also verifies the result of Lemma 

3.5 for the right boundary problem. 

To illustrate the results of Table 3.5 we apply the bounday 

approximations (3.31) and (3.32) to the model problem integrated 

earlier. The results are given below. 

i 

(s, a) II ~llil E I II ~llil 00 I 
(s,a) II ~~ II E I II ~~ II 00 I 

(2, 0.1) 39.489 I 

(2, -0.1) 39.380 I 

Table 3.6 a: q 
n 

= 1,V
J 

= 

I 

0.0016 I 
I , 

0.530 

v(l,t ) n 

(2, -0.1) 

J (2, -0.4 

Tab 1 e 3.6 b: q 

79.022 I 0.021 

78.825 0.632 

v(l,t) n 
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(s, a) II ~611 E I "~611 00 (s , a) 
" R6 II Ell/ ~~ II 00 

(1, -0.6) 79.014 I 0.046 (1, -0.6) 197.41 I 0.046 

(1, -0.8) 79.028 0.105 (1, -0.8) 226.48 20.501 

Table 3.6 c: q = 2 Vn = v(O,t ) Table 3.6 d: q = 5 ~ = v(O,t ) , 0 n ' 0 n 

All the above results were obtained for Aq = 0.95, 6x = 8~ and 

s = 0.01. The loss of accuracy is clear if a is outwith the 

stability interval. If random 'noise' is introduced into the 

initial data then instability in the E-norm becomes obvious. Tables 

3.3 and 3.4 illustrate the desirability of setting a = 1 in the 

boundary approximation. The overall accuracy attained being 

comparable with the best alternatives·in section 3.2. 

3.4 Accuracy Analysis 

Skollermo [1975,1978J presented a partial insight into the 

measurement of the relative effect that any boundary approximation has 

on overall solution accuracy. In her analysis Skollermo identified 

three separate components of the total error. The partition consisted 

of the error associated with the pure Cauchy problem, that associated 

with the boundary approximations and a third residual error function. 

It is the second component we consider here. The results of Skollermo 

have been applied by Gottlieb and Turkel [1978J and Coughran [1980J to 

rank various boundary approximations in terms of the m~n~mum number of 

mesh intervals per wavelength to attain a prescribed accuracy. Sloan 

[1980J used both this technique and that of the wave reflection 

analysis of Chu and Ser~ny [1974J to a similar end. For the boundary 

schemes applied by Sloan to the case q = 1, there was no appreciable 
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difference in either approach and broad agreement was found with the 

numerical integrations. In this thesis we use the method of 
.. 

Skollermo since the wave reflection analysis cannot be applied to 

implicit boundary approximations used in conjunction with implicit 

difference equations. Whilst this does not effect the methods in 

this chapter, the difference methods of chapters 4 and 5 are both 

implicit. 

We proceed by defining error functions E~ = (E~, e~), where 
'VJ J J 

E = u-U, e = v-v represent the approximation error in U and V at the 

point (j~x, n~t). If the difference scheme is of the form 

n+l n h . 11 n+l n U. = GU. t en 1t fo ows that E. = GE .• 
~J ~J' ~J ~J 

If the time domain 1S 

extended to -00 and if ~(Xj'w) denotes the Fourier transform of ,t,j 

then we have 

ZE(X. ,ro) = Gs(x. ,w) 
~ J ~ J 

(3.53) 

where Z = exp(2~~ti). By as sum1ng a solution € (x. ,w·) = K
J ¢ ~G.y) of 

~ J 

the difference equation (3.53) we obtain two characteristic equations 

whose inner roots and Ka and KS' Therefore, for related eigenvectors 

~a' ~S the general solution of (3.53) which is bounded as j + 00 is 

. 
" 
E(X. ,uJ) 
~ J = daK~a + dSK~~S' (3.54) 

where d
a 

and dS are constants. The above characteristic equations 

will usually be the same equations as arise in the stability analysis. 

The differential equations can be treated in an analogous manner to 

yield general expressions for i(x,w), the Fourier transform of ~(x,t). 
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By rewriting any boundary approximation in teTI1S of E and 
'V p, after 

Fourier transformation, we obtain the Sko1lermo error function 

e(w) (3.55) 

where 

K = exp(27Tw6xi) and '\ and \)2 are the negative characteristic 

gradients of A. The function ~(Z,Ka,KS) is the determinant equation 

arising in Table 3.1, and e(w) is the relative error in the Fourier 

coefficient with frequency w. We consider (3.55) as ~t approaches 

zero, Aheld constant, and so we expand the numerator and denominator 

in powers of ~x. We need only consider the smallest power of ~x in 

the expansion so we may replace Z,Ka and K.
S 

1n the denominator by 

their respective limits as 6t approaches zero. These quantities will 

be determined from the characteristic equations uS1ng lim z = 1. 
~t~ 

For the L-W interior approximation a detailed construction of 

e(w), for q = 1, is given by Sloan [1980J. For g~neral q a similar 

analysis yields 

e(w) = 
.-1 l/q I 'J( z ,K , K ) 

:s(z,K1 ,K3) I 
(3.56) 

Using lennna 3.1, we have K_
1

(1;A) = 1 and K.3 (1;Aq) = (Aq-l)/(Aq+l) =y. 

The relative error is then 

e(w) = 
j( rnA -m rn/q) e ,e ~,:-e ____ I, m = 2'Tr~xi 

:1(l,l,y) 

which we expand in powers of ~x. 

Consider the EX boundary approximation. From Table 3.1 
s 

(3.57) 



= (K _l)s+l + (~ _l)s+l 
1 3 

By expanding e(w) and evaluating (l,l,y) as r_2/(1+).q)-1 1+s we - ~ 

obtain 

(3.58) 

where M = l/w~x measures the numbers of spatial intervals per wave-

length. In the symmetric problem, q = 1, the expression (3.58) ~s, 

for even powers of extrapolation, given by 

2rr
s

+
2 

(l+,)s+l e(w) = --- 1\ s+2 
M 

A similar procedure yields the expressions ~n Table 3.10. 

Boundary Approx. 

EX 
s 

C 

B 

CE 

(3.31) 

e(w) 

l+s 
rr [qS+1 + (-1) l+sJ (l+).q) l+s 

(qM)l+s 
s+2 

(2rr (l+).)s+l when q = 1) 
s+2 

M 

3 
rr 3 ().q-1)().q-2)(1+).q)2 

3M3q 

2rr2 (l+Aq) (Aq-Ab 2+a)/(1+)'b) 
M2q2 

l+s l+s l+s 
rr (l+Aq) (pq+(-l) ); p = 

(qM)l+s 

(3.59) 

(I-a) 
( 1 +'J.) 

i 
L-______ ------~I~---------------------------------
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Table 3.7 e(w) for boundary approximations (3.8)-(3.12), (3.31). 



Boundary Approx. 

EX 
s 

C 

B 

CE 

(3.32) 

e(w) 

s+l 
1T [qS+1 + (-l)S+lJ (l+;\)s+l 
(qM)s+l 

3 
1T (;\-1)(;\-2)(1+;\)2 
2M3 

21T2 2 
-2 (1+;\) (;\q-;\b -a) / (l+b;\) 
qM 

(1+;\) 3 2 2 2 
-----::-~ 1T q(q +1-2;\ q ) 

2M3q3 

s+l 
1T (l+;\)s+l(q + (_l)s+l (l-a)) 

(qM)s+l (l+a) 
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Table 3.8 e(~) for boundary approximations (3.23)-(3.27),(3.32) 

The above expresslons for e(w) can be used to predict the number 

of points per wavelength that will be required to maintain a preset 

error tolerance. For;\q = 0.95 and a tolerance of 0.01 the necessary 

number of intervals is given in table 3.9. 
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q = 2 q = 5 
Boundary Approximation q = 1 

Left Right Left Right 

EX 63 307 232 491 299 0 

EXI 87 69 52 63 39 

EX
2 - 28 - 29 -

C 6 3 13 2 13 

!IC 8 15 23 12 29 

B 6 10 11 8 11 

CE 10 5 28 2 31 

Tab Ie 3. 9 Minimum value of M = l/lJJ6.x to achieve a tolerance of 

0.01. 

Boundary approximations that were previously shown to be unstable 

are omitted from Table 3.9. To provide a more meaningful illustration 

of the results of Table 3.9 we integrate, using the L-W scheme, the 

differential problem 

with the 

u t = Au, 0 ~ x ~ 1, t ~ 0, 
'V 'Vx 

T u(x,t) = (u(x,t), v(x,t)) , 
'V 

u(x,O) = 0, v(x,O) = f(x) = 2~cos2TIx, 

u(O,t) = 0.5(f(qt)-f(-t)) 

u(l,t) = 0.5(f(1+qt)-f(1-t)). 

(3.60) 

The boundary conditions are homogeneous for q = 1. The results are 

contained in Table 3.10. For the symmetric problem the superlor 

performance of EXo over EXl , as predicted by Skollermo, is verified 
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Boundary q = 2 q = 5 
q = 1 Approximation 

Left Right Left Right 

Exact 0.008 0.049 - 0.049 -

EX (a.=! ) 0.317 0.608 0.388 0.451 0.387 I 0 

I EX (a.=0) 0.147 0.832 0.614 0.630 0.422 0 I 

EX (a.=1) 0.477 0.499 0.308 0.448 0.347 I 
I 0 ! 

I 
EX1 (a.=0) 0.295 0.156 0.096 0.159 0.083 

: I 
I 
I , 

(a.=1) 0.143 0.143 0.089 
, 

EX1 0.143 0.090 ! 

EX2 0.019 0.045 3951.0 0.050 23.559 

I 
B 0.015 0.047 0.094 0.049 0.063 

C 0.015 0.048 0.094 0.048 0.064 
I 
I 

I !IC 0.015 0.039 0.108 0.049 0.178 

CE 0.015 0.046 0.103 0.049 0.058 

Table 3.10: Il u II for Aq = 0.95, 'V11 00 
I1x = 1/40 

together with high accuracy non-extrapolation boundary approximations. 

Despite non-homogeneous boundary conditions for q = 2 and 5 the rank-

1ng of Sko11ermo is seen still to hold, although the superiority of 

the characteristic formulations is not as obvious. The relative 

accuracy of the left and right boundary approximations is also 

illustrated including the improved performance of extrapolation 

approximations when the fast wave is ingoing. 

For variable extrapolation boundary approximations an examination 

of the Tables 3.7~ 3.8 suggests that for q = 1 e(w) is minimised 

for s = 0, if a. = 0 and for s = 1 when a. = 1. This result is 

illustrated by the numerical results of Tables 3.6a and 3.10. 



The instability of the EX2 approximation when q = 1 can be 

established analytically however it is very difficult to induce 

numerically even when large random errors are introduced into the 

initial data. 

82. 

In this chapter we have considered various boundary approximations 

in conjunction with the Lax-Wendroff and the effects, thereon, of 

different time-scales. For twin boundary problems we have shown that 

both boundaries must be examined. Whilst there are many possible 

boundary approximations to choose from, we recommend that any choice 

must incorporate the characteristi~ variables of the differential 

system. This conclusion is based on both stability and accuracy 

results. 
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CHAPTER 4 

A SEMI-IMPLICIT METHOD k~D BOL~DARY APPROXIMATIONS 

In the previous chapter the model fast wave problem, 

= u Au u(x,t) = [u(x,t) ,V(X,t)]T (x,t) [O,lJ r -, 
""t ""X "" E x ,0, T! , - ~ 

u(x,O) = f (x) 
"" "" 
u(O, t) = g( t) , 

where 

X E [0, lJ 

u (1, t) = h(t) 

A= ~[q-l 
q+l 

q+l] , 

q-l 

, (4.1) 

t E [0, TJ 

+ 
q E JR. , 

was solved numerically using the second order explicit, dissipative, 

Lax-Wendroff method with a variety of boundary approximations for 

v(O,t) and v(l,t). Acceptable accuracy was obtained for several 

approximations when (4.1) displayed differing time-scales. However, 

for large q the Cauchy stability requirement Aq < 1 resulted in 

progress ~n the temporal domain being very slow. As an alternative 

a less restrictive interior method may be used to obtain greater 

efficiency. This was discussed in the introduction. 

Difference schemes which have weaker stability requirements 

include the implicit second-order accurate Crank-Nicolson scheme. 

This popular method has been applied to parabolic equations (Hopkins 

and Wai t [1978 J), barotropic equations (Sasky and Reddy [1979J) and 

biophysics (Joyner et al [1978J). For problems like (4.1), 

Skollermo [1975J examined the effect on the accuracy of the Crank-

Nicolson method produced by various boundary approximations. The 

interior approximation can be readily shown to be unconditionally 
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stable for the pure Cauchy problem of (4.1) for any q. Implementation 

of the implicit method requires the inversion of a block tri-diagonal 

matrix at every time step and this increases the computational 

effort by a factor four over that of the Lax-Wendroff method. A 

feature of the Crank-Nicolson scheme is that all approximations of 

the spatial derivatives are averaged over time. This can result in a 

loss of accuracy when there is a significant signal travelling on 

the fast time-scale. For fast waves that are relatively weak the 

method represents a considerable improvement over the Lax-Wendroff 

scheme (Turkel [1981J). 

An alternative approach is that of the semi-implicit method 

suggested by Kwizak and Robert [197lJ in connection with the primitive 

equations in atmospherics. The basis of the method is to identify 

the elements of the physical equations that would normally be 

responsible for the conditional stability restriction and use a 

different method of approximation from that used on the remaining 

elements. Kwizak and Robert [197lJ applied an implicit time averaging 

technique to the components of the spatial derivatives that involve 

the gravity waves and a centred differencing approach elsewhere. 

Elvius and Sundstrom [1973J applied this idea to a barotropic model 

based on the shallow-water equations, enhancing the scheme by basing 

the approximation on a staggered grid. This improvement reduces, by 

half, the computational time for problems of the form (4.1). Gauntlett, 

Leslie and Hicksman [1976J used a semi-implicit time differencing 

method to i~prove the efficiency of a six-level primitive equation 

mode 1. The authors obtained . an improvement of 2.5 in terms of 

computational cost over an explicit model for comparable accuracy. 
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In petroleum engineering, Nolen and Berry [1972J examined the problems 

relevant to the construction of a semi-implicit technique for use ~n 

reservoir simulation. Their simulator was found to be a competitive 

alternative to an explicit method being both stable and convergent 

in its linear and non-linear forms. Chappelear and Rogers [1974J 

presented practical guidelines for monitoring the time-step to 
~ 

control mathematical errors. When the semi-implicit approach is 

based on the Leap-Frog scheme the resulting method is unconditionally 

stable for the pure Cauchy problem of (4.1). Compared with the Crank-

Nicolson scheme the Semi-Implicit Leap Frog (SILF) method should, as 

a result of the decreased degree of time-averaging, be able to deal 

more successfully with strong fast waves. This is borne out by 

numerical experiments, however for very weak fast waves the Crank-

Nicolson approximation is still preferable. 

As a consequence of the work already done on boundary approximations 

by Sk~llermo [1975J and Coughran [1980J for use with the Crank-

Nicolson method, together with the limitations as described above, we 

continue by investigating the SILF approximation. 

4.1 Description and Application of the SILF method. 

The standard explicit leap frog approximation to ~t = 

g1ven by 

n+l n-l [ n n l' 1 U. = U. +"AA U. l-U, 1 ' VJ, n ~ , 
""J ""J ""J+ ""J-

Au 
""X 

. 
~s 

(.:. .2) 

where, as usual, we consider U~ to be the 
""J 

finite difference 

approximation to ~(jDx, n~t). By using a mid-point time averaging 

Ie for t he terms in A(U~ -U~ ) involving the coefficient (q+l) we 
ru ""J+l ""J-l 

obtain the SILF method 



n+l 
U. 
"'J 

(4.3) 

where a=~(q-l), b=!(q+l) d ' [OlJ an I = _1 ° . 

As in the Crank-Nicolson scheme, determination of Un+l from the two 

'" 
previous time levels involves the inversion of the matrix operating 

n+l 
on U • 

'" 
This matrix, when a full grid is used, may be treated as 

either a block tridiagonal matrix, where each block is a (2 x 2) 

86. 

matrix, or as a septa-diagonal matrix. Numerical experiments, on an 

ICL 1904S, indicate that, using either approach, the CPU time to 

d nn. . up ate ~ ~s approx~mately 0.3 seconds. Notice that the evaluation 

n+l 
of each component of U. requires only one value per grid point and 

"'J 

thus permits the use of a staggered mesh. The block representation 

is no longer appropriate. in this situation. 

Staggered or misaligned meshes have been used widely in 

meteorology (Elvius and Sundstrom [19731, Johns et al [19811). 

Nickovic [1981J suggests that solving the primitive equations in 

meteorology on a full grid, when there are severe wind changes in 

the meridional direction, may result in computational instabilities. 

Staggered grids have also been used to obtain the solution of Poisson's 

equation (Sweet, Schuman [1976J). May and Morton [1976] used 

a method of staggering which, for (4.1) with q = 1, required no 

boundary approximations. Due to the popularity of such meshes, 

especially on large domain problems, we consider the SILF method on 

a staggered mesh together with a variety of boundary approximations. 

With the exception of Gustafsson et al [1972J, very little analysis 

appears to have been performed on this type of problem in connection 
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with the choice of boundary approximations. 

The grid used throughout this chapter is of the for~ 

(n+l).6t u V u V · ... u V u V \' 

nL\ t V U V U · . . . V U V U . . . . U 

(n-l).6t u V u V · ... u V u V V 

° .6x 2.6x . . . . . . . J.6x ° .6x 2.6x . . . . JL\x 

odd time steps even time steps 

and is such that, for J even, we only require boundary approximations 

for v(O,t), v(l,t) at every other time level. If non-linear terms 

are involved then any undefined values on the grid may be supplied 

through space and/or time averaging. Initiation of the scheme 

requires ~o and ~l where ~l will be given by Taylor expansions, or 

by one sweep with a suitably accurate two-level scheme on ~o. Given 

these initial values the difference equations are defined as follows. 

Even time steps: 

b; .6jVn+l n+l 
Fl (n,j) 1,3,5, ... ,J-l, + U. = . J = , 

J 

_ bA .6 Un+l n+l 
F 2 (n, k) k 2,4,6, ... ,J-2, + V

k = = 
2 k 

n , n n 
where .6.a. = , a. . 1 - a.. 1)' 

~ , ~+ ~-

Fl(n,j) 
n-l n bA .6 Vn- l and = U. + aA.6.U + 2 j 
J J 

F2 (n,k) ~!n-l n _ bA .6 Un- l 
= - aA.6kV 

'k 2 k 

Two further equations of the form 

n+l 
V 

a. 
a. = O,J, 

(4.4) 

representing the left and right boundary approximations complete the 
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system. 

Odd-Time steps: 

bA2 AJ.un+l + vn
J
.+l = u F2(n,j) . 

J = 1,2, ... ,J-l, 

(4.5) 
bA ~ Vn+l un+l 2 k + k = Fl(n,k) ; k:: 2,4, ... ,J-2, 

n+l together with the exact boundary values U = g«n+l)~t) and 
o 

Un+l = h«n+l)~t) form the approximation on odd time levels. 

To aid further description we introduce the 

"2n-l Along time step t = 2n~t let v
2j 

(j = 0,1, ... ) 

following notation. 

"2n-l 
and U2j - l (j = 1,2, .. ) 

represent the finite difference approximations to v(2j~x,2n~t) and 

u«2j-l)~x,2n~t) respectively. Similarly along t = (2n+l)~t we 

have h .. V2n+1 
t e approx~mat~ons 2j-l (j = 1,2, .. ) 2n+l and u2j 

(j = 0,1, ... ). 

We now invoke the stability theory of Gustafsson et al [1972J 

by considering two successive time levels. Using the transforms 

n n "n n+l" w. = z w. w. = z w. 
J J J J 

and assuming solutions of the form 

2· 
= aK J, V 2j-l 

2J·-l" "2j-l" = SK , u2j - l = aK ,v2j 
" 2j 

= SK ,Z ,K E: C, 

" where a,S,a and B are arbitrary constants. 

The condition for non-trivial a,B,~ and B gives rise to the determinant 

condition 

L -N -M ° 
-N L ° -M 

= 0, 
-M ° L -N 

° -H -N L 

where 
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L (z 2 
-1), .-

M -1 .- aAz(K-K ), 

N = bA 2 -1 :2(z +1) (K-K ). 

The determinant reduces to equations defining four values of K 

for a prescribed value of z. These equations may be written as 

= _~2...:..( z_2_-_1~) __ 
2 bA(z +1) + 2aAz 

(4.6+) 

Stability of the Cauchy problem requ~res that there exists no 

root (K,Z) of (4.6~) such that IKI = 1 for Izi > 1. Substituting 

K = e i6 
into (4.6+) we obtain that IKI = 1 ~ Izl = 1 and hence 

unconditional stability. For g~ven z the two roots K of each 

equation in (4.6) are such that their product is -1. Therefore for 

lzl > 1 we denote by K1 and K2 the respective inner and outer roots 

of (4.6-) and by K3 and K4 the corresponding roots of (4.6+). 

Returning to the assumed solutions we find that the contribution to 

the general solution for 

associated with K1 , ~s given by 

(4.7) 

'" '" T The vector (a,S,a,S) is the eigenvector of the secular matrix 

associated with K
1

. To obtain the general solution for ~2j' in the 

grid function space L2(~x), we linearly combine all the vectors or 

the form (4.7) defined by each of the inner roots + KI and ~ K3" It 

may be shown that the associated eigenvectors are 
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(1, +1, 1, ,:!:.l)T and (1 -+1 1 .~l)T, , ,-, respectively. 

This completes the general solution as 

.. Zn+l Z . d Zj) Zn+l uZj = (dlK l
J + 3K3 Z J = O,l,Z , 

Zn+l (d Zj-l d Zj-l) Zn+l 
VZj - l = · 1, Z , ... lKl + 3K3 Z , J = 

(4.8) 

U2n+l 
Zj-l = (-d Zj-l 

lKl 
+ d Zj-l) Zn+Z · 1,Z, ... , 3K3 Z , J = 

VZn+l Z . d Zj) Zn+Z = {-d K J · O,l,Z, ... , 1 Zj + 3K3 Z , J = n > , 1 1 .r 

" 
with dl = <l + <l and d

3 = 8 + 8 . 

We may now use the general solution (4.8) to examine the 

stability of any boundary approximation used in conjunction with the 

SILF method. To aid any such examination, information concerning 

the behaviour of Kl ,K
3 

and Z through the characteristic equations 

(4.6+ ) is essential. 

Lemma 4.1. If K,Z E C are related through (4.6) then K(~) = K(Z), 

thus implying that in any stability analysis we need only consider 

the half plane Im(z) ~ O. 

Proof. Consider equation (4.6). By forming its conjugate as 

we obtain the result. 

Since the SILF method is non-dissipative it ~s essential to 

determine the behaviour of the eigenvalue Kl as Z is moved around 

the unit circle in accordance with the following diagram 



The point B 
. . by ~s g~ven 

cos 

and 

Im(z) 

i8B i8 
and C by e e 

. 
8B s~n 

8 -B (q-l)/(q+l) 

cos 8 = a/b. 
c 

z-p1ane 

1 Re(z) 

c 
where , 

= Ab, 

The relationship between Kl,K2 and z yields the following lemma. 

Lemma 4.2. If Kl and K2 are the respective ~nner and outer roots of 

the characteristic equation 

2 
2 2(z -l)K 

K -1 = 2 bA(z +1) - 2aAz 
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then as z 
i8 = e is moved around the unit circle Kl and K2 behave as 

follows: 

(i) when 8 = 0 

(ii) 0+8-+8 
B 

Kl = -1, K2 = 1 

Kl moves around IKI = 1 to Kl = i, and K2 

moves around IKI = 1 to K2 = i noting that 

K1 moves down the imaginary ax~s to K = o. 

K2 moves up the imaginary axis towards ~oo, 

there are two cases to consider 



(a) ° < aA < 1 ... 

(b) aA > 1 

IT 
( v) 2- -+ e ~ 'IT • 

(a) aA ~ 1 

(b) aA > 1 

Kl moves down the imaginary axis to 

i{n + l(n 2-1)} 
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K2 moves from -ioo up the imaginary ax~s to 

i{n - l(n2
-1)}. Wh \ 1 d en aA = K1 an K2 

coalesce at -i. 

having combined at -i when s~n e = A(b cos e-a) 

K1 then moves around the unit circle to 

-/(1-n
2

) + in and K2 moves around to 

.j(1-n
2

) + in , where n = - 1 
aA' 

Kl and K2 move on the imaginary axis coalescing 

at -i when sin e = -A [b cos e -a], noting 

that for aA = 1 the merging occurs at e = ; 

Kl and K2 then move around the unit circle to 

-1 and +1, respectively. 

K1 and K2 move, from their respective points 

the unit circle . (iv) with e 'IT around on ~n = -
2 

, 

the unit circle to -1 and +1, respectively. 

. + In the above we have used the notat~on for a,S,y E R that 

a-+S-+y represents the monotonic increasing variation of S between the 

fixed constants a and y (a < y). 

Proof: Part (1) follows immediately from a perturbation analysis. 

Therefore for e E [O,eBl we have, with nee) 
sln e = --..-------.'1"'" 

A [b cos e-aJ 
, that 

(4.9) 



Clearly IK l ,2 1 = 1 and n(e B) = 1 thus implying that K
l

,2 ce B) = 1, 

proving Cii). For e E [eB,e C] we have 

C4.l0) 

and since nCe) rises from unity to infinity part (iii) follows. 
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Now consider aA ~ 1. When e > eC' nee) is negative and so the signs 

in (4.10) are reversed. For eC ~ e ~ ;, nee) increases from -00 to 

1 
- aA ' thus we have part(iv) (a). As e increases monotically to ~ 

Kl and K2 continue their respective downwards and upwards movements 

on the imaginary axis until they coalesce at - i. Notice that for 

~ aA = 1 the coalescing occurs at e = 2 . This happens when 

sin e = -A[bcos e -a], that is when nee) = -1. For all remaining e, 

the roots Kl and K2 diverge around the unit circle to -1 and +1 

respectively at which point e = ~. 

Now consider aA > 1. The roots are represented by 

Kl 2 = i{n(e) + ICn
2

(e)-1) . , 

For e
C 
~ e ~ ~, nee) increases from -00, and so. Kl moves down and K2 

up the imaginary axis until they coalesce at -i when nCe) = 1, at 

which point e < ; • For all remaining e they diverge as before to 

-1 and +1 respectively. 
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This lemma may be usefully expressed pictorially as 

K2 (e;) 

~ 

Kl (0) 

\ 

\ 

\ 
K2 (0) \ 

K-plane 

Kl(e) path 

- - - K2(S) path 

.. " . :i·" 'K"l'(rr)' ' , " , , , ~~'(e~Y . " , , .... , , , , 'K'; ( e')' i' r ' " ... 

-'~ (c) 

(a) 4-

A 
'K2 (S;) 

7\ 
/ 

/ 

J 

/ 
(a),(b),(c) correspond 

S 1T 'h to = 2" w~t 
/ aA < 1, =1, >1 

respectively ~n the 
lermna. 

Lermna 4.3. The respective inner and outer roots K3 and K4 of the 

characteristic equation 

2 2(z2_ l )K 
K -1 = --~-~--

A Lb(z2+ l )+2az] 
(!t.ll) 

are g~ven by 

when z 
ie = e 

Proof. As seen earlier 

- 2 = in + .,I ( 1 -n ), 

with nee) = s~n ef [A(bcos e - a)] . 
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Now n ('rr+6) = sin 6/ [>. (bcos S + a)] = n+ (S) 

therefore Kl ,2(S+TI) = in+ + J(l-n:) = K3,4(S), All other expressions 

in Lemma 4.2 relate similarly. 

Lemmas 4.1, 4.2 and 4.3 together provide a complete insight into 

is the behaviour of K(Z) with Z = e 

4.2 Description and Stability Analysis of Some Boundary Approximations. 

The boundary approximations to be used in conjunction with the 

SILF interior difference method are, at the left boundary, 

"2n+l "2n+l V = V2 
~ 

0 
(4.12) Horizontal Extrapolation (HE): 

S=o Space Time Extrapolation (STo): "2n+1 2n+l V = VI 0 
(4.13) 

S=l Space Time Extrapolation (STl ): 

Zeroth order characteristic Space-Time Extrapolation (CST): 

"2n+l ( )2n+1 U"2n+1 
Vo = U+V 1 - 0 • 

The staggered mesh requires that space averaging be used on 

2n+l U
1 

,so 

V2n+ l 
o 

Linear Ch~racteristics (LC): 

" 2 1 2n+l 2n+l 
(U+V)on+ = (l->.q)(U+V)o + >.q(U+V)l 

(4.15) 

2n+1 2n+1 
using space and time averaging respectively on U1 ,Vo . 

We obtain 

2 1 ?n+1 "2n+1 "2n-1 2n+1 1 T2n+1) l(l+>.q)~ n+ = (l-!>'q)U- -U +!(l->'q)V +>.q(V1 +2L2 . 
~ 0 000 

(-'+.16) 



Boundary approximation of Gustafsson et al [1972J (K): 

'"'2 +1 V n 
o 
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(~.17) 

which is obtained by differencing the second differential 

Box (B): 

equation and allowing for the staggered mesh. 

We also include the crude 

V2n+ l = 
o 

The box approximation 1S obtained from the expression 

2n+1 2n+1 
(l-aA)Vo +(I+aA)VI 

+ Abru2n+l_u2n+l+u2n+l_u2n+l] 
~ I 010 

(4.18) 

by ignoring all quantities that are not defined on the grid and 

setting I + aA :: 2. The fact that this approximation excels for 

very large values of q illustrates the possible success of boundary 

approximations constructed in an arbitrary manner. Such an 

approach is not recommended as it is felt that in realistic 

differential applications problems in ensuring the consistency and 

stability of the approximation will inevitably result. 

Consider the HE approximation. Substitution of the general 

solution (4.8) into (4.12) yields 

(4.19) 

and, from the analytic boundary condition we obtain 

dl + d
3 

= g«2n+l)~t)/zn+l . (.4 • 20) 
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Equations (4.19) and (4,20) together form the system 

Md = ~ '" ~. (4.21) 

According to the stability theory we require that there be no non~ 

trivial solutions d of the homogeneous form of (4.21) for IKII < 1. 

IK31 < 1 when Izl > 1 (or no generalised eigenvalues). Equivalently 

we want no such roots of det M = O. This condition is that required 

in Theorem 1.6 of Chapter 1 to ensure stability. Hence the deter-

minant equation for the HE approximation is 

(~. 22) 

Lemma 4.4. The SILF method with the HE boundary approximation is an 

unstable approximation to the left boundary problem. 

Proof. Equality in (4.22) requires that K~ = K~ = 1 and thus, from 

2 
the characteristic equations, z = 1. Instability follows from 

Lemmas (4.2) and (4.3). 

This result holds for any degree of horizontal extrapolation and 

is an extension of the result of Gustafsson et al [197~ for the 

explicit Leap-Frog method (4.2). 

Following the previous discussion we can construct the determinant 

equation (4.22) for each of the boundary approximations considered. 

These are given in Table 4.1. 



Boundary Approx 

ST, 
J 

CST 

LC 
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Determinant Equation 

j+l J'+l 
(z+K l ) + (Z-K

3
) = 0 

4z + (K l +l)2 - (K
3
+l)2 = 0 

2 
(l+Aq) Z +Aqz(K l -K

3
) [l+! (K l +K

3
)] -(l-Aq) = 0 

K 

B 

2(z2-l)+2aAz(Kl-K3)+2aA(z2+l)-Ab(z2+l)(Kl+K3) = 0 

4z - Abz(K l +K 3) + 2(K l -K 3) = 0 

Table 4.1: Boundary approximation determinant equations. 

Uhen q = 1 we have 

Lemma 4.5. The approximation to the symmetric problem g1ven by the 

SILF interior method is stable for the STo,ST1,CST,LC,K or B boundary 

approximations. 

Proof. From (4.6+) we have that, for q = 1, both Kl and K3 are 

equivalent to K, say. For each boundary approximation we can 

construct a system of two equations in Z and K, from the characteristic 

and boundary determinant equations. Consider the ST l approximation. 

The associated determinant equation reduces to z = + iK and so we must 

consider the possible existence of a generalised eigenvalue. From 

Lemma 4.2 we ,can see that there exists no 8 such that z(8) = iK(8) 

thus establishing stability. The other proofs of stability follow 

analogously. 

The above results were relatively easy to obtain. For general q, 

however, the stability problem reverts to the evaluation of the roots 

of a multivariate system formed by the characteristic equations (4.6+) 
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and the appropriate equation of Tab1 4 1 e • . To obtain the roots we 

must resort to the continuation method of Chapter 2. Using these 

techniques we can establish whether or not a boundary approximation 

will produce an unstable approximation to t~e left boundary problem 

by being associated with a solution triple (K
l

,K
2

,z) for which z is 

an eigenvalue or generalised eigenvalue. Unfortunately any conclusions 

will hold only for a discrete set of A and q. 

The results may be summarized as 

Result 4.1. For the discrete set {(A,q) : A = 0.5. q = 2, 5. 30} the 

SILF method and anyone of the STo ' ST1 , CST, K or B boundary 

approximations produced a stable approximation to the left boundary 

problem if q = 2 or 30 and an unstable approximation for q = 5. 

For q = 2 and q = 30 Result 4.1 reflects a wide series of 

continuation experiments which yielded no solution triples to indicate 

instability. When q = 5 we have that aA = 1 and it is clear that the 

solution triple (-i,i,i) satisfies the determinant equations associated 

with all but the LC approximation. From Lemmas 4.2 and 4.3 this triple 

corresponds to a generalised eigenvalue~ thus indicating instability. 

With the LC approximation we found, using the continuation algorithm, 

the roots z = 1.091, and Kl = K3 = -0.258-0.659i, again indicating 

instability. Formulating (4.3) as a one-step method it is possible 

to determine the spectral radius of the coefficient matrix involving 

each boundary approximation. For q > 1 (q F 5) the STI method induced 

exponentially growing solutions allowed by the theory of Chapter 1 

(see (1.32)). This type of phenomenon is not allowed by the P-stability 

theory of Warming, Beam and Yee [1982J and is also evident in Chapter 5. 

This topic is not investigated any further here. Over the chosen data 
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set (q F 5) for a discrete choice of 6x , each of the 5T , CST and LC 
o 

approximations produced non-dissipative, and B a dissipative overall 

approximation to the left boundary problem where, for the latter 

boundary technique, the degree of dissipation increased with q. The 

Kreiss approximation was non-dissipative for q = 1 and dissipative 

for q = 2 and q = 30, the dissipation again increasing with q. 

Clearly the data set {(\,q)} chosen does not provide any definitive 

comment regarding the overall stability induced by any boundary 

approximation. To examine an exhaustive set of \ and q is beyond 

the scope of this study, however we have illustrated that for any fixed 

choice of parameters, we have developed an algorithm which can be 

used to examine the stability properties of any approximation. 

As has been emphasized earlier it is essential to consider 

separately the potentially less stable right boundary. For an even 

number of mesh intervals the right boundary problem is associated 

with the previous left boundary problem treated earlier, where the 

inward and outward characteristic speeds have been interchanged. The 

associated characteristic equations are 

2 
K -1 = 

2 2(1-z )K -
(4.24+) 

Deriving the general solution as in (4.8), we require the inner roots 

K , K 
-of (4.24+). satisfies (4.24-) then it ~s clear that 

a l a2 

K- l is equivalent to K
2

, and similarly K:
2

l ~s equivalent to 
a

l 

Lemma 4.6. 
-1 

K2 (\,q,z) 

K, • 
.:.t 

Proof. -1 ) . f' (4 ') I) S;nce the interior root of K') (\,q,z sat~s ~es ._.:.t-. ~ 
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Therefore we can derive all information concerning the roots 

and 
, 

the general solution Kl K3 ~n 

U2n+1 2n+l 2' 2 ' 
= z (c l K

1
J + C

3
K

3
J ), 

, 
0,1,2, .•. J-2j J = 

V2n+l 2n+l 2'-1 2j-l (-c K J . = z - c3K3 ), J = 1,2, ... J-2j+l 1 1 
(4.26) 

"2n+l 2n+2 2j-l 2j-l , 

UJ - 2j +1 = z (clKl - c3K3 ), J = 1,2, ... 

"2n+l 2n+2 2' 2' 
V J-2j = z (-c K J + c3K3J ) • J = 0,1,2, ... ;n ~ 1. 1 1 

c l ' c3 E~, from lemmas 4.1, 4.2 and 4.3. General solution (4.26) 

is obtained in a manner analogous to that of (4.8) for the roots 

-1 -1 
K2 and K4 and then by applying Lemma 4.6. 

The right boundary approximations are 

ST "2n+l 2n+l (4.27) VJ = VJ - l 0 

ST1 
"2n+l 2V2n+l "2n-1 (4.28) VJ = - VJ - 2 J-1 

"2n+l "2n+l _ 1(U2n+l+u2n+l) 2n+l (4.29) CST VJ = UJ + V 1 2 J J-2 J-

LC (~ -1) 2n+l U2n+l ! (1_A)V2n-1+A(V2n+1_1U2n+l) 
2 UJ + J +2 J J-1 2 J-2 

(4.30) 

K 
(4.31), and 

B 
= 2n+l bA(U2n+1_U"2n+1) 

VJ - 1 + 2 J J-l . 
(4.32) 

For the above boundary approximations, with q > 1, no instability 

triples were found. The triple (-i,i,i) which produced instability 
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conclusions for the left boundary problem fails to satisfy the right 

boundary determinantal equations for a value of q such that aA = 1 

(note: A = 0.5). An investigation of the spectral radius of each 

right boundary approximation revealed that Box was a dissipative 

approximation, ST , CST and LC were non-dissipative and ST and K 
o 1 

had eigenvalues exceeding unity, For both the latter boundary 

methods the spectral radius reduced with A and so the method was 

exhibiting exponentially growing solutions (1.32). ~~en we 

examine the twin boundary problem the K boundary scheme produces a 

non-dissipative approximation. Therefore the left boundary 

dissipation is, in some sense, negating the growth introduced at the 

right. This behaviour is also evident in Chapter 5. The twin ST I 

approximation still has a spectral radius exceeding unity that 

decreases with A. 

4.3 Numerical Results. 

We illustrate the results of the previous section by integrating 

. 11 h bl d f' d b (3 28) We consl.·der ~ = 0.01 and numerl.ca y t e pro em e l.ne y . . ~ 

E: = 0.5 and q = 1,2,5 and 30. The extreme value of q = 30 was 

chosen to illustrate the exceptional accuracy of the B boundary 

approximation when q is large. The results are contained in Tables 

4.2 and 4.3. The initial E norm values at q = 30 are 1184 and 1194 

for E: = 0.01 and E:= 0.5, respectively. 
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q = 2 q = 5 
Boundary q = 1 
Approximations Left Right Left Right 

Exact 38. 931 1°.213 77. 595 1°.133 197.741°.097 

ST 41.12612.674 81. 836 1°.821 77. 205 1°.546 204.7511.025 196. 43 1°.397 
0 

~ 

ST1 40. 331 1°.461 78.02°1°·135 79.66°1 4 . 484 ]95. 76 1°.221 194. 74 1°.179 

CST 39. 397 1°.438 77. 836 1°.132 76.37°1 1 . 173 194.691°.098 197. 52 1°.759 

LC 39. 335 1°.439 77. 836 1°.132 78. 515 1°.222 238.93130.158 194. 87 1°.114 

K 38. 969 1°.102 77. 597 1°.137 78. 447 1°.413 194.811°.098 194.9°1°·255 
r-
l) 39.73811.765 80. 182 1°.536 76. 594 1°.723 199. 15 1°.458 197. 47 1°.577 
~--

L--_ __ __ __ 
- -- - ------- ----- - --- -

Table 4.2: \lu A II E I Ilu 1\ 
'Vu '1,6 

q,0.01 
for A = 0.5, 1 

t::.x = 80' E = 0.01. 

q = 30 

Left 

1159 1°.431 

109111.016 

3.9(5) 1196.97 

1096.91°·597 

10364120.86 

142913.186 

1178 1°.468 
-~ 

Right 

1.3(4) 142.8 

3.9(4) 1142.4 

671511102.9 

307°1 16 .75 

9 (2 I) /9 (10) ; 

1157/0.474 
-- - ---- --- --

...... 
o 
w 



------

q = 2 q = 5 
Boundary 
Approximation q = 1 

Left Right Left Right 

Exact 48.767\0.212 88. 615 1°.177 212.991°·464 

ST 54.482\2.696 90.335\0.825 94.72111.648 207.21\0.862 244.74\3.391 
0 

ST1 51. 998 1°.458 87.317\0.150 94.804\6.424 204. 51 1°.280 220. 86 1°.863 

CST 45.52810.624 87.19910.146 86.53211.204 186.0210.826 217.56 11 •202 

LC 51.113\0.509 87.199\0.146 90.86010.344 214.46114.718 213.2810.719 

K 49.261\0.118 86.954\0.157 88.94510.232 204.9710.238 201.7311.572 

I 
51.28211.792 90.58110.550 91.64111.104 213.87\0.571 234.7412.233 :B 

I ------- - -- -- --- ------

Table 4.3: 11~l\11 E 1 11~l\lIoo 
q,0.5 

1 
for A = 0.5, l\x = 80' £ = 0.5. 

---- ----

q = 30 

Left 

847.7913.701 

16143149.39 

4(10) 17(4) 

10845139.082 
-

1.4(7)\1035 

2.5(5) 1166.77 

2067 18.106 
----- -------

Right 

2.6 (5) 1158.58 

1.7(7) 13.3(3) 

].7(5) 1150.4 
-~ 

19298167.36 

] .7(24) 12.5(12) 

1478/11.87 
--- ------------ --- -- - -------

t-' 
o 
~ 

I 
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The poor performance of the interior method . 
due 1S to some 

form of error oscillation having the same period as the fast q-~ave. 

For problem (3.28) with the non-oscillating general solution 

u(x,t) = x - t + 5 tn(x+qt+1), v(x,t) = x - t - 5 £n(x+qt+l) 

the maximum norms corresponding to a SILF integration with exact 

boundary values and A = 0.5 are, for ~x = 1/40 and ~x = 1/80, 0.00044 

and 0.00011, respectively. This illustrates the acceptable accuracy 

and second order rate of convergence. The presence of the above error 

oscillation in the SILF approximation to the original problem warrants 

further investigation. No oscillation was observed with the methods 

of Chapters 3 and 5. Despite the poor accuracy it is still possible 

to compare the relative performance of each boundary approximation. 

The improved accuracy of the K approximation over the exact boundary 

data is caused by the overall approximation being dissipative, thus 

damping the error oscillation. This behaviour is especially evident 

when there is a strong fast wave. The instability at q = 5 for the 

left LC approximation is evident (for ~x = 1/40, E = 0.01 the maximum 

norm 1S 1.935). 

The loss of accuracy when the CFL number, Aq, exceeds unity 1S 

clear when the fast wave is strengthened to 50%. Therefore whilst 

the SILF method is stable for any choice of A and q, accuracy 

considerations become the dominant criteria for large Aq. In other 

words it is not sufficient to merely ensure unconditional stability 

for even consistent approximations. 
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,. 
4.4 Skollermo Accuracy 

We repeat the method of Sectl.· on [3 4" t 
• ~ 0 attempt order, in terms 

of accuracy, the boundary approximations of this chapter. In this 

case the Fourier transformed error functions have the form 

" 
. . 

sex. ,w) = (K~-K;)¢(W) 
J 

(4.33) 
" (K~+K~) ¢ (w) e(x. ,w) = 

J 
, 

'" 
where a full grid is used, s(x ,w) = 0 and K and KS are the l.nner 

o a 

roots of the characteristic equations 

2 (z2_1) K 
K -1 = --.:---.......:----

aAz :;: (z2+1)bA 
(4.34) 

As the grid size !::.x tends to zero z, Ka and KS approach 1, -1 and -1 

respectively. We can then construct the second error function e(w), 

of Skollermo, for homogeneous boundary data, as in Table 4.4. The 

right boundary is transformed to a left boundary problem. As 1.n 

Chapter 3 we determine the minimum number of points, M, per wave-

length to achieve an error tolerance of 1%. These results are g1.ven, 

for A = 0.5, in Table 4.5. 

the functions e(w) are ~_(2!.)3 
3 M 

For the K and B approximations at q = 1, 

2 411"2 
(1+2A ) and 2' respectively. When 

(2+A)M 

A = 0.5 and q = 2 the expression associated with the CST approximation 

at the left boundary 1.S (~)2 (2A 2 + 1 - 32), 
q 



i 

i 

Boundary 
Approximation 

ST 
o 

CST 

LC 

B 

K 

Left 

.!.( 2), + 1 - .!.) 
M q 

271" [ 2 ] Mq 2).q-b )'+2a /(2+b)') 

271" (1 - ).) 
M 

Right 

107. 

271" r 2 1 Mq }).q-b ).-2aJ / (2+b)') 

2 2 
~ [1 - q - 2a). q] 
qM2 

I ______________ ~----------------------~----------------------~ 
Table 4,4: e(w) for the SILF interior approximation. 

q = 2 q = 5 q = 30 
Boundary 

q = 1 Approximation Left Right Left Right Left Right 

ST 315 472 157 - 63 618 11 
0 

ST1 45 48 36 - 28 50 8 
i 

CST 315 28 315 - 315 294 315 

LC 39 28 48 - 50 39 50 

B 140 ~ 215 15 - 126 132 256 

K 19 39 28 - 43 17 90 

Table 4.5: Minimum value of M for)' = 0.5, and a tolerance 0.01. 
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The method of Skbllermo predicts that the ST l' LC and K approxi~ations 

should be the most accurate. To provide an additional check on this 

prediction we repeat the results f T bl 4 o a e .2 for the differential 

problem (3.57), in Table 4.6. 

! 

Boundary q = 2 q = 5 q = 30 
q = 1 

Approximation Left Right Left Right Left Right 

Exact 0.140 0.807 - 1.558 - 11.408 I - , 

ST 2.468 1.229 3.583 1.109 7.439 23.805 65.670 0 
, 

ST1 1.220 0.488 6.919 1.005 17.760 20861 5906 
, 

CST 0.457 0.520 1.687 1.500 2.257 25.796 86.617 
! 

I 
I 

LC 1.084 0.520 1.127 5.357 1.744 7773 39.987 ! 

/B 2.676 0.378 1.844 0.861 4.028 10.174 14.344 

I I 
'K 0.203 0.425 0.729 0.438 4.020 474.78 1(12) i 
i ; 

I 
, 

Table 4.6: II~~ILX) with ~x = 4~' A = 0.5, problem (3.57) 

According to the theory of Skollermo the results of Table 4.6 

should be in broad agreement with those of Table 4.5, and should be 

expecia11y so for q = 1. However the observed accuracy of the CST 

approximation is much greater than predicted although the superiority 

of the approximation suggested by Kreiss is substantiated. Overall, 

the theory of the section provides unsatisfactory ranking predictions. 

The discrepancies may have occurred as a result of the Sko llermo 

analysis being applied on a full grid. This is felt to be unlikely 

and may be more related to the error oscillation induced by the 

analytic solution on the numerical approximation. The error results 

of Table 4.6 do, however, serve to reinforce the conclusions 0: 
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Chapter 3 that any boundary approximation must . 
~ncorporate the 

characteristic variables or physical equations. l.Je were only able to 

induce instability, for aA = 1, with the LC approximation; the other 

boundary schemes exhibiting more 'robust' instabilities. The very 

small data set covered in this chapter reflects the computational 

cost required to establish the stability of approximations that are 

based on three or more time levels. 

In this chapter we have modified the popular Leap-Frog method 

to obtain a semi-implicit scheme that is unconditionally stable in 

approximating the solution of the pure Cauchy problem. This method 

was, for the test problem chosen, beset by a significant error 

oscillation and did not provide a viable alternative to either of the 

other interior schemes studied in this thesis. General 'semi-

implicit' methods are frequently used by many practitioners, especially 

those working in meteorology, and this popularity was substantiated 

by the example of Section 4.3 where, for a non-oscillating analytic 

solution, an acceptably accurate numerical solution was obtained. 

Despite the reduced accuracy of the interior method (for the 

test problem chosen) we were able to illustrate some of the stability 

results concerning the choice of boundary approximations. Note that 

as a result of the staggered mesh used we only required boundary 

approximations at every other time level. Implementation of the 

boundary approximations was complicated by the use of this staggered 

mesh however the successful techniques were those that were based 
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on the physical properties of the differential syste~. 

The SILF method is straightforward to apply and may be enhanced 

by basing the approximation on a staggered grid. This results in a 

significant reduction in computational cost. The economy attainable 

is illustrated in Chapter 6. 
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CHAPTER 5 

A FINITE ELEMENT METHOD AND BO~~ARY APPROXI:lliTIO~S 

5.1 The Advection Equation 

In this chapter we develop a new finite element method suitable 

for systems with differing time scales. The test problem may be 

written in diagonalised characteristic form so, for simplicity, we 

first derive a finite element method for the scalar advection equation 

qu (x,t), 
x 

O~ x ~ 1, t rO, q E JR. (5.1) 

Any method developed to approximate the solution of equation (5.1) 

can readily be generalised to the system ~t = A~x (Morton and Parrot 

[1980J). Therefore we consider equation (5.1) with appropriate 

initial data u(x,O) and with a prescribed boundary condition that 

ensures well-posedness. 

To obtain a method which is q-dependent and which maintains the 

improvements in accuracy over a standard Galerkin scheme, we consider 

a Petrov-Galerkin approximation to the solution of (5.1). The approach 

adopted will be related to that developed by Morton and Parrot [198~ . 

We therefore seek an approximation to the solution of the weak form 

of (5.1) 

<u -qu ,1jJ> = 0 
t x 

(5.2) 

where <.,.> is t~e usual L2 inner product and 1jJ(x) is defined over 

the domain of the problem. The Petrov-Galerkin approximation to the 

weak solution u(x,t) is 

U(x,t) = \" U.(t)tI..(x), 
L J '*'J 
J 

( 
jx 

V<p. x) E S 
J 

(5.3) 
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where U E s~x, some trial space, and where the trial functions :. 
J 

f b · f 6x orm a aS1S or S . The standard Galerkin approximation is defined 

by the special case ~ -~. In the discretized problem we shall di~ide 

the region [O,lJ into J elements of equal width ~x, and the functions 

~. and ~. will generally be simple polynomials defined in the region 
J J 

of the nodal point x. = j6X. 
J 

Petrov-Galerkin approximations have been studied by Duncan 

[1982J and Morton and Parrot [1980J for the advection equation. Sanz­

Serna and Christie [1981] and Alexander and Morris [1979J considered 

the non-linear dispersive waves of the Korteweg-de Vries equation 

demonstrating the increased accuracy of a Petrov-Galerkin approximation. 

For elliptic equations, test and trial function pairings for particular 

classes of problems have been suggested by Anderssen and Mitchell 

[1979J where the polynomial functions ~(x) and ~(x) vary from piece-

wise 1inears to Hermite cubics. Whilst it is true that the higher 

the degree of ~, or ~, then the better will be the resulting 

approximation, the computational cost and complexity increases 

accordingly. In this chapter the trial function ~. will be defined 
J 

as a translation of a function ~ and the test function ~. will be 
J 

defined as a translation of a function ~. To minimise the 

computational effort further, reduce the number of additional boundary 

approximations and to simplify the generalisation to more complicated 

problems we constrain ~(x) to have compact support over two elements 

and the function ~(x) is the familiar 'hat' function 

~ (s) 
else. 
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~j(X) and ~j(x) are defined in terms of ~(x) a~d ~(x), respectively 

by ~j(x) = ~(~~ - j), ~j(x) = ~(~ - j) and the functions ~ and 

~ are normalised so that 

I~ W(x)dx = II ~(s)ds = Jl 
-1 -1 

~(s)ds = 1. (5 . .4) 

The functions Uj(t) in (5.3) are given by approximating 

u(x,t) in (5.2) by (5.3). T,~e require, for any i, the inner products 

<~.,~.> = ~x {I -Ii sign(s)s.W(s)ds}, 
~ ~ 

-1 

<~. 1'~'> = t,x I: sw(s)ds, ~+ ~ 

<<p. 1'~'> = -t,x 1° sw(s)ds, 
~- ~ 

-1 

, -t W(s)ds, <<p. 1'~'> = 
~- ~ 

-1 

<<p!,~.> = 1 - 2 J: w ( s) ds , and 
~ ~ 

1 
<<p! l'~'> = I ~(s)ds, where the dash denotes differentiation 

~+ ~ ° 
with respect to the argument. 

Using the notation 

A = I: w(s)ds, B = I: sw(s)ds, C = -fo s~(s)ds, 
-1 

(5.5) 

the above inner products and (5.2) yield the following differential-

difference approximation to the Cauchy problem (5.1) 

. 
CU + (l-B-C)U. + BU. 1 

j-l J J+ 
= ~ {(A-l)U. 1 + (1-2A)U. + AU. l}' (5.6) 

~x J - J J + 
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We have abused our notation by using the letter A. This integral 

quantity is only of a local relevance and no confusion with the 

matrix in the test problems should occur. Construction of finite 

element methods by using arbitrary constants like (5.5) has also been 

done by Duncan [1982J and Mitchell, Griffiths and Pen-Yu [1982J. 

Approximations of the derivatives in (5.6) by a stable time­

stepping rule (Vichnevetsky and Bowles [1982J) will result in a 

difference scheme involving the constants A, Band C. Here application 

of the trapezoidal rule yields 

[ 
1 ( ) ] 

n-+: 1 [ ] n+ 1 C + 2 Aq l-A Uj _l + l-B-C + !Aq(2A-l) U
j 

+ [B-!AqAJU~+ll 
- J+ 

(5.7) 

=[C - ! Aq(l-A)]uj_l + [l-B-C + !Aq(1-2A)]Uj + [B+!AqAJU~+l' 

where A = !J.t/!J.x. The choice of the constants in the "ABC" method 

(5.7) will be influenced by stability and accuracy requirements. 

To analyse the stability of (5.7) when applied to the pure 

Cauchy problem (5.1) we introduce into (5.7) the Fourier component . 1WX. 
Ur: = ~ne J, ~ E C, W E JR. This defines the amplification factor 

J 

as 

= l-y[B+C+!Aq(2A-l)] + 
~ 

l-y[B+C-!Aq(2A-l)] + 

i [B-C+~ AcW 

i [B-C-! Aq] 

2 /(2y-y ) 
2 ' i(2y-y ) 

(5.8) 

where y = l-cos(w!J.x) and the s1gn 1S + or - according as W!J.XE[O,TI] 

or w!J.xELTI,2TI] , respectively. 

In order that (5.7) be a stable approximation we requ1re 

I~I ~ lor, equivalently, with q > 0, 

y(2B-2C-2A+l) + y2 «2A-l) (B+C)-B+C) ~ 0. (5.9) 
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Clearly the product Aq plays no explicit role in the stability of 

(5.7). Stability requirement (5.9) is equivalent to the restriction 

{ 

(2A-l) (2B+2C-l) ~ 0 

(B-C-A+~) < 0 , 

if 

if 

[(2A-l)(B+C)-B+C] > 0, 

L(2A-l) (B+C)-B+C] ~ o. 

(5.l0a) 

(5.l0b) 

Any subsequent choice of A, Band C must satisfy either (5.l0a) or 

(5.l0b) to ensure stability of the pure Cauchy problem. 

Morton and Parrot [1980J developed a test function for (5.2) by 

requiring that the resulting difference scheme should satisfy the 

unit CFL condition, that is, for Aq = 1 their scheme represented 

exactly the movement of Un through one time step. Alternatively one 

could say that the unit CFL condition is the condition that 

~ = e+i~xw according as Aq = + 1. Due to the implicit nature of 

(5.7) one might hope to use values of q greater than unity to 

achieve the efficiency of the Lax-Wendroff method. The unit CFL 

"". b l' d h d"" h n+ 1 cond1t1on m1ght therefore e genera 1se to t e con 1t10n t at U 

should represent the shift of Un through one mesh length for Aq > 1. 

However to achieve this, the number of elements in the compact 

support of ~(x) becomes q dependent and violates the previous 

constraint of simplicity on the test function. We adopt the criterion 

of maximising the order of spatial accuracy of (5.7) in its 

approximation to the solution of (5.1). High spatial accuracy 1S 

more desirable than high temporal accuracy as the computational cost 

is greater to reduce ~x than ~t to achieve the desired accuracy. 

Centring the difference approximation about x = x j ' t = tn+~ ".;e 

( 4 (-2 4) l"f obtain a truncation error 0 ~x ) + 0 A ~t 
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(S. 11) 

Notice that, for (5.11) the ABC finite element is fourth order in both 

space and time and the method should be extremely accurate. For the 

constants (5.11) we see that, on returning to the stability conditions 

(5.10), that (5.10a) is not relevant and equality holds 1n (5.10b). 

Thus the ABC method is marginally stable for any choice of Aq, and is 

defined by 

where 

and 

a l = (Aq-l)(Aq-2), 

b
l 

= 8 - 2A2q2 , 

c l = (Aq+l) (Aq+2). 

Finally, uS1ng (5.11), we construct the test function as 

where 

2 2 
~(s) = ~(s) - !A q o(s), 

--1 1 
- lsi: lsi ,< 1, 

~(s) 

o else 
o(s) = 

(

1 - 21s1 

o 

I s I ~ 1 

else 

Returning to (5.8), the amplification factor takes the form 

~(w~x) 
4-A2q2+(2+A2q2)cos(w~x)+i 3Aq sin(w~x) 

= 
4-A2q2+(2+A2q2)cos(w~x)-i 3Aq sin(w~x) 

(5.12) 

(5.13) 

(5.1~) 

From (5.14) it follows that I~I = 1, an indication that the method is 

marginal stable and non-dissipative. The phase deviation of (5.12) 

from the exact solution over one time step is given by arg(~)-wq~t. 

h errors of the .~C, Crank-~icolson Ga~erkin Plot 1 illustrates the p ase 
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and CNPG (Morton and Parrot ~980J) finite element methods for wave 

numbers less than TI and a given value of Aq = 0.95. A value o~ 

Aq = 1 would yield the exact solution from the ABC and CNPG methods 

when used to approximate sufficiently smooth problems. As the CNPG 

and ABC methods are marginally stable at Aq = 1 in practice a value 

of Aq different from unity would be used. Plot 1 shows that from a 

dispersion viewpoint the ABC method is clearly superior and it is 

worthy of further investigation. 

5.1.1 Stability Analysis and Boundary Approximations 

As an alternative to the approach adopted for the L-W and 

SILF methods, we write equation (5.12) in the differential difference 

form 

, 
• 3q a,U. 1 + SU. + a.U. 1 = (U. l-U, 1) (5.15) J- J J+ 6.x J+ J-

2 2 2 2 where a. = l+!A q , S = 4-A q and U. denotes the method of lines 
J 

approximation to ~t u(j6.x,t). Equation (5.15) may now be analysed 

for stability by the method of Strikwerda (Section [1.2.2J). It lS 

clear that the stable time-stepping method to be applied to the 

differential difference approximation, will be the trapezoidal rule. 

Laplace transformation of equation (5.15) in time with the dual 

variable SEC yields the associated resolvent equation 

(za.+3q)U
j

_l + zSU j + (za.-3q)U j + l = 0, (5.16) 

where z = s6.x. Assuming a solution of the difference equation of 
. 

the form U. = dK J , K E ~, the characteristic equation of (5.16) is 
J 

(Za.-3q)K
2 

+ ZSK + za + 3q = ° (5.1~) 



Lemma 5.1. If Kl(z), K2 (Z) and Z satisfy (5.17) then 

(a) IAql < 1 (i) IKII < 1, IK21 > 1 when Re(z) > 0, 

(ii) Kl = -1 K2 = 1 for 0 , z = 

(b) Aq > 1 . 
1Kl 21 > 1 for Re(z) > 0, . , 

(c) K (z) = K(Z) 

Before we prove Lemma 5.1 we consider the case \q = 1. The 

amplification factor of the ABC method is, in this case, 

~ = 1 + e iwllx 

-iwllx 
1 + e 

iwllx and this models exactly the differential factor e unless 

110 

-willx 
1 + e = O. Thus the method is singular if wllx = (2n+l)n, n E Z. 

On a grid of size llx, the representable Fourier modes of the true 

solution are those whose wave numbers satisfy wllx + TI. Therefore, if 

the initial data involves modes corresponding to the shortest 

representable wavelength then the ABC method, with \q = 1, cannot be 

used. As a further illustration of the unsuitability of prescribing 

Aq = 1 consider the characteristic equation (5.17). For \q = 1, 

Kl = -1 and IK21 > 1 for any Z : Re(z) > O. This violates the Von­

Neumann necessary condition for stability. Another point of interest 

is Aq = 2. In this case the ABC method simplifies to 

and so one boundary condition and one boundary approximation are 

needed at x = 1. The characteristic equation (5.17) reduces to 

2 (Z-q)K + z + q = 0 (5.1:3) 
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For Re(z) > 0 it may be shown that IK l ,2 1 > 1 and so, in agreement \.;itj 

Lemma 5.l(b), there is no general solution of (5.15) belonging to 

'. Proof of Lemma 5.1: 

If K1 and K2 are the roots of (5.17) for a glven value of t, 

then their inverses satisfy 

-2 -1 (za+3q)K + Z8K + za - 3q = 0 

As z approaches 3q/a in the right half complex plane then K;l ~ 0 

and 

Thus Kl and K2 tend to f(Aq) and 00, respectively. From Lemma 5.2 of 

Gustafsson et al [1972J we require I Kli ~ 1 for Re(z) > O. From 

figure (5.1) we see that 

-I­

I 

f 

-----1------

------------~--~--~----:_~~----------7\q 
1 2 -2 -1 

I 
-1- ~------

-1 I 

\ I 

Figure 5.1: f(\q). 



If I < 1 if and only if IAql < 1. Therefore we have proved (a)(l) 

and (b), if Aq in modulus is less than unity. When Z = 0 we have 

K = + 1. To determine the exact nature of K consider Z = 8 > 0 and 

K = 1+£ > 1. From (5.17), q£ ~ 8 and so when Z = 0 the root of K = 1 

is an outer root. A similar process reveals K = -1 as an inner root. 

Part (c) is readily established. 

The significant result of Lemma 5.1 is part (b). According to 

Gustafsson et a1 [1972J the difference method (5.12) should have, 
. 

for Re(z) > 0, one solution of the form U. = dK J where IK(z) I < 1. 
J 

Thus when Aq > 1, this result is violated and the ABC method is no 

longer well-defined. The additional constraints on Aq are related 

to the invertibi1ity constraints mentioned by Iserles [1983J in his 

order-star treatment of stability. 

With the above results available we consider, for q > 0, the 

following approximations at x = 0, 

Truncated Element (TE): 

lSD 
2 0 

(5.19) 

Box (B): 

(5.20) 

Characteristics (C): 

(5.21) 

'Approximation (5.19) is the so-called 'natural' boundary approximation 

of finite element methods. It is derived by evaluating the inner 

product (5.2) with ¢(x) and a(x) set to zero when x < o. Approximation 
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(5.20) is the method of lines analogue of the 'box' integration of 

(5.1) at x = O. Turkel [1980J used this approximation in conjunction 

with the standard Galerkin scheme. The C approximation is a 

representation of the outgoing (the only in this case) characteristic 

equation centred about, in the full difference form, x = 0, t = t 1. 
n+ 2 

This approach is analogous to the semi-characteristic boundary 

approximations of Bramley and Sloan [1977J and Sloan [1980J. Apart 

from approximation C the boundary approximations are sufficiently 

inaccurate (the truncation errors of TE and B are 0(~t2) + O(~x) and 

2 2 
O(~t ) + O(~x )) to adversely affect the overall accuracy of the 

integration (Gustafsson [1975J). The truncation error of C is 

In practice, however, the box boundary method 

performs well, and being more compact than C, will be easier to apply 

to more complex situations than (5.1). 

After Laplace transforming each boundary approximation and 
. 

seeking the solution U. = dK J we obtain, in the now familiar way, 
J 

the boundary determinant equation given in Table 5.1. 

Boundary Approximation Determinant Equation 

TE K+ (3q+!Bz)/(az-3q) = 0 

B K+ (z+2q)/(z-2q) = 0 

q 234 0 C z + --(25-48K+36K -16K +2K ) = 12 

T bl 5 1 · Determinant equations of (5.19)-(5.21). a e • . 

According to section 2.2.2, the ABC method (5.15), and any of 

(5.19) - (5.21), provide a stable approximation to (5.1) if there 

are no solution pairs (K ,z) of (5.17), and the appropriate equation 

from Table 5.1, such that IK I < 1 for Re(z) > 0 or IKI = 1 for 
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~ . .., 
-- . 

Re (z) = O. 

Lennna 5.2. The approximation to the advection equation (5.1), ~.;i th 

q > 0, given by (5.15) and any choice of (5.19) - (5.21) is a stable 

approximation. 

Proof. Consider approximation TE. Substitution of the determinant 

equation into (5.17) yields the quadratic 

( ~4S2_N2)z2 6 2 '-" + qSz + 9q = 0 

whose roots are given by 

z = -6(4-A 2q2) + 3/(A4q4_4A2q2+20) 

q (22-14A 2q2_A4q4) 

For any Aq € (0,1) it is readily shown that Re(z/q) < 0 establishes 

stability. The approximations defined by (5.15) and (5.20) can be 

treated similarly. To resolve the approximation involving (5.21) 

the roots of a hexic polynomial in K
l

, arising through the 

combination of (5.17) and the determinant equation, have to be 

evaluated numerically. For the data set Aq = 0.05(0.05)0.95 no 

instability pairs (K 1 ,z) were found. 

5.1 .. '2 Numerical Results 

Equation (5.1) together with the initial data u(x,O) = 2TIcos2TIX 

and exact boundary data at x = 1 was solved numerically using the 

ABC method and each of the previous boundary approximation. The 

results are given for Aq = 0.95 in Table 5.2 where the errors were 

measured by the maximum norm II ~ II co • The error results found for 

q = 1, 2 and 5 over three wave cycles, were identical over 4 deci~a1 

places. 
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Boundary Approximation t:.x = 1/10 t:.x = 1/20 

Exact 0.0077 0.00051 

TE 0.0398 0.0105 

B 0.0109 0.0011 

C 0.0285 0.0010 

Table 5.2: lIut:.11oo for Aq = 0.95. 

The numerical results indicate the high order accuracy of the ABC 

method. To achieve accuracy comparable with the ABC method at 

t:.x = 1/10 the Lax Wendroff method required t:.x = 1/52. The respective 

CPU times were 0.44 seconds and 1.08 seconds. Clearly the ABC method 

represents a significant improvement. The C boundary approximation 

results indicate the high convergence rate however the more compact 

B approximation performs very well. 

Kreiss [1980J has shown that by prescribing 'wrong' boundary 

data at x = 0 we can introduce, into the general solution, a wave 

travelling against the characteristic direction. We show now that, 

by corrupting the analytic boundary data at x = 1, we can induce 

instability. 

Lesaint [1973J has described an alternative "weak" formulation 

of the analytic boundary condition. In this context we interpret 

this formulation as a combination of the ABC method truncated at 

x = 1, as in the TE approximation, and the analytic boundary condition. 

If c E ~ then the weak boundary condition considered is 

(5.22) 

When c = 0, condition (5.22) reduces to the analytic boundary condition 

U = g(l,t) where u(x,t) = g(x,t) is the solution of (5.1) for given 
J 
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initial data. In (5.22) the analytic boundary condition has been 

perturbed by a proportion c of the residual involved in a fir.ite-

element formulation. We prove 

Lemma 5.3. For the right boundary pr~blem of the advection equation, 

q > 0, the ABC method together with (5.22) will produce an unstable 

approximation for c t [- ~~, 0] . In practice this interval is very 

small. 

Proof: The general solution of the right boundary problem g~ven by 

(5.15) and (5.22) will, after Laplace transforming in time, be of 

. -1 
the form U

J 
. = dK-] where K is an inner root of 

-] 

(za+3q)K-2 + z8K-l + za - 3q = O. 

The determinant equation of (5.22) is 

-1 
c(za+3q)K + ~8cz - 3qc + 1 = 0 

(5.23) 

(5.24) 

-1 
For stability we require no roots (K ,z) of (5.23) and (5.24) such 

that Re(z) > 0 with IK(Z) I > 1. Therefore we consider the pair of 

equations 

2 (za-3q) K + ZBK + Z:l + 3q = 0, (5.25) 

za + 3q + (~8z-3q-c')K = 0; cc' = h (5.26) 

From (5.27), 

K = (az+3q)/(3q+c'-~BZ) (5.27) 

which~ when substituted into (5.25), yields 

(5.28) 
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Consider 

(a) c'erO,oo): z = z+ produces, from (5.26), I I 1 ~ K > for c' > 0 and 

K = 1 for c' = 0. Th . us S1nce K = 1 is an outer root 

(5.22) provides an unstable approximation for c' ~ 0, 

(b) c'e[-6q,O): z+ e C and from (5.26) IKI = 1. If c' = -0 < 0 

and n = 11~(oq-o)/(1-A2q2)J then z = E + in (E > 0) 

implies that IKI > 1 and so c'e(-6q,0) yields a 

generalised eigenfunction. For c' = -6q we have z = 0 

and from (5.26) K = -1, an inner root, so stability 

follows for c' = -6q. 

(c) c' < -6q: z = z+ yields from (5.26), with c' = -6q-0 (0) 0) 

that IKI = (3q+az)/(3q+o+!Sz) < 1 yo. Thus (5.22) 

provides a stable approximation. 

Stability for c = 0 is immediate from the Cauchy stability of the 

ABC method. 

Gustafsson et al [1972J have shown for systems of equations that 

distortion of the analytic boundary condition can render an otherwise 

unstable boundary approximation, used for the appropriate quarter-

plane problem, stable. The possibility remains for a boundary 

condition of the form (5.22) being of use if and when we consider an 

unstable boundary approximation in conjunction with the ABC 

approximation of our test problems. 

To illustrate Lemma 5.3 we apply (5.22) to the prev10us 

advection problem with Un = g(O,n~t). The results are g1ven in 
o 

Table 5.3 where the initial data was corrupted 
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c q = 1 q = 2 q = 5 
I 
1 , 

-h/q 6.095 6.090 5.680 I 
-h/6q 0.042 0.042 0.042 , 

I 

-h/600q 0.017 0.018 
! 

0.014 
, 

i 0 0.016 0.012 0.017 

0.01 3.382 412.6 5.6(6) 

Table 5.3: II u ~ II 00 res ul t s wi th A q = 0.95, ~x = 1 
10' rough data. 

. -3 by a random number of magn~tude 10 . The result of Lemma 5.3 

indicates that rounding errors induced by the interior finite-

element approximation may not only cause inaccuries but lead quickly 

to instability. Since, if q is large and a fine mesh is used, the 

allowable proportion c that corrupts the boundary data must be very 

small. 

We conclude this section by noting that the ABC method assumes 

the use of the trapezoidal time-step rule. Any stable method could 

have been used (Vichnevetsky and Bowles [1982J). If we were to use 

the Leap-frog method then the test function would have been 

2 2 
~(s) = ¢(s) + !A q o(s). 

5.2 The Fast-Wave Problem 

Having determined an accurate and stable difference method for 

the advection equation we can now generalise the ABC method to 

approximate the solution of systems of hyperbolic equations. The 

fast wave test problems are of the form 

u = Au 
'Vt 'Vx' 

O~x~l, t~O. (5.29) 



Associated with a symmetric A, there exists the orthogonal matrix 

which diagonalizes (5.29) to 

~t = A~x' O~x~l, t>""O, (5.30) 

with ~(x,t) = (vI (x,t), v2(x,t))T, ~ = ST~ and A = STAS = diag(U
l

'U2)' 

u. an eigenvalue of A. Equation (5.31) is two scalar equations in 
~ 

the characteristic variables v l ,v2 associated with each eigenvalue ui' 

We treat each equation of (5.30) in a manner similar to (5.1), that 

is we consider the approximate solution of the weak problem 

<v - Av ,ill> = 0 
I\"t I\"X '" 

T 
where the test function, vector ¢ = (~1'~2) ~s g~ven by 

I\" 

~. (s) = ¢!s) - !A2u~cr(s), i = 1,2. 
~ ~ ~ 

(5.31) 

(5.32) 

The Petrov-Galerkin approximation to V(x,t) is the solution V of 
I\" I\" 

. 
<V - Ao V, (I¢.+Bcr.)e( » = 0, r = 1,2,Vi, 

I\" Xl\" ~ ~ I\" r 

2 
where e denotes the rth unit vector of 1R and the matrix 

I\,,(r) 

A 2 • 2 2 
B = - Z- d~ag(Ul'U2)· 

from (5.33) 

• 
<U - A8 U 

I\" XI\,,' 

Since S ~s orthogonal and V 
I\" 

I\" 

(I¢.+Bcr.)e( » = 0; r = 1,2; vi 
~ ~ I\" r 

(5.33) 

(5.34) 

I\" T 
with B = SBS . The derivation of (5.34) depended upon S being 

orthogonal and A being symmetric. 
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Letting ~ = ~ ~j~j in (5.34) then evaluation of the inner products 
J 

and use of the trapezoidal rule yields the ABC approximation to 

the Cauchy problem of (5.29) as 

:\2 2 2:\2 2 2 
{6+[1 + -4.(q +l)Jo + --(q -1)0 I'}(ut;+l-ur:) = 4 IV 1. IV 1. 

(5.36) 

where I' = [~ ~] and 0
2 

and Ao are the usual difference operators. 

To utilise the results of the previous section we consider the 

differential-difference form of (5.36) 

(5.37) 

5.2.1 Stability Analysis and Eoundary Approximations 

The imposition of a boundary at x = ° creates the left quarter-

plane problem the integration of which, using (5.37), requires a 

a 
differential-difference boundary approximation to at v(O,t). We 

consider the following approximations 

2 2 • :\ 2 2 .;\ 2 2 .• 3b 3a 
(TE): [2 -i-(q +l)JV

o
+[l +"4(q +l)]Vf"4(q -1) (Uo -U1) = ~x(U1-Uo)+ 6.x(V1-Vo)· 

(5.38) 

2 • :\2 • ;\2 • I ~2 l' 
(G) :-[2a + 2 q(q-1)]U

o 
+ [2b -~(q+1)Jvo+[-a +~(q-1)JUl+ b +"4<l(q+l)~ VI 

(B):' • = 2a (V -V ) + 2b (U -U ). 
Vo + VI 6.x 1 0 6.x 1 0 

= 3q(U -u ). 
6.x 1 0 

R = U+V. 

(5.39) 

(5.40) 

( ~ ''') ).4 ... 
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The 1~, Band C boundary approximations are analogues of (5.19)-

(5.21) for the system (5.29). The BC approximation is a 'box' 

integration of the outgoing characteristic equation considered in 

(5.41). Whilst not as accurate as (5.41) the BC approximation may 

be used without destroying the compact seven-band nature of the 

implicit matrix in (5.37). Approximation (5.39) is developed by 

applying the energy conserving matrix E, associated with (5.29), to 

the test functions at the boundaries (Gunzburger [1977J). That is, 

it arises from the evaluation of 

tV 

<U - Ao U 
tV XtV' (I¢i+BOi)E~(2» = 0, 

where ¢ ,0 have been truncated as 1.n (5.38) and o 0 

1. = 0, (5.43) 

In his paper, Gunzburger considered an off-diagonal problem of the 

form (5.29) and used (5.43) to stabilise an otherwise unstable 

Galerkin method. However (5.39) is only first-order accurate and lS 

included for interest only as it 1.S not expected to be able to compete 

with any of (5.40)-(5.42). For q = 1 the G and TE approximations are 

identical. 

Returning to (5.37), Laplace transforming in time and seeking a 

solution of the difference equations of the form U. = dK J we obtain 
'\,J '\, 

the characteristic equations, associated with the left boundary 

problem, as 

(5.44a,b) 
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with a = 1 + !A2~2, 8 = 4_A2~2 and ~ = q,-l. Evaluation of the 

respective eigenvectors yields the general solution which decavs as 

j increases 

. 
u. (z) = J + n KJ 

J 
nl Kl 3 3 

(5.45) . . 
V. (z) = J - n KJ 

J 
nl K

l 3 3 , 

where K1(z;q) and K3(z;-1) are the inner roots of (5.44a) and (5.4~b) 

respectively. We denote the outer roots by K3 (Z;q) and K4(z;-1). 

Therefore, Laplace transforming any boundary approximation and using 

(5.45) will yield a determinant equation D(z,K l ,K
3

) = O. If there 

are no eigenfunctions or generalised eigenfunctions of (5.44) and 

D(Z,K
1

,K
3

) = 0 then the approximation may be regarded as stable. This 

is an application of Theorem 1.9: 

Result 5.1. The approximation to the left quarter-plane problem 

given by (5.37) and anyone of (5.38)-(5.42) is a stable approximation 

for a wide choice of A and q such that Aq < 1. 

Result 5.1 was established numerically for q = 1,2 and 5 uS1ng 

a variety of techniques. Consider (5.41). The determinant condition 

. 1S 

which, when used to replace t in (5.44a), produces a real coefficient 

= O(~) 0.95 no unstable roots polynomial in K, of degree 6. For A 20q q 

were found. Approximation (5.42) was treated similarly. For the 

same data set, approximations (5.38) and (5.40) were treated using 

the resultant approach of Section 2.1. An example of the application of 
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the resultants is given in Appendix I. Approximation (S.39) was 

resolved by using Theorem 1.10 with exact boundary values at x = 1 

and Aq = 0.9S. 

For the approximation of the right boundary problem we develop 

the characteristic equations and general solution in a manner akin 

to 3.2. 
. 

The general solution of the form U
J 

. 
~ -J 

= dK-J of the right 

boundary resolvent equations which decreases as j increases is 

-j 1 -j 1 
~J-j = nZK2 (-1) + n4K4 (-1)' where KZ(Z;q) and K4 (z;-1) are the 

outer roots of (S.44a) and (S.44b), respectively. If the equivalent 

left boundary problem were being analysed then the characteristic 

equations would be 

(za+3~)KZ + ZSK + za - 3~ = 0; ~ = q,-l (S.46) 

and we would require the inner roots of (S.47). However these 1nner 

roots are K
1

(z;-q) and K
3

(z;1) respectively and must therefore be 

1 -1 
respectively equivalent to K; (z;q) and K4 (z;-l). The general 

solution of the resolvent equations for the right boundary problem 

. 
1S 

A perturbation analysis similar to Lemma S.l shows that K1(0;-q) = 1 

and K
3

(0;1) = -1. 

The analogues of the left boundary approximations are 
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A2 2· A2 2. 2 
(TE): [2 - 4 (q + 1) ] V J + [1 + -4 ( q + 1) ] V - -4A (q 2 -1) (r -C·· ) 

J-1 J J-1 

_ 3a 3b 
- ~x(VJ-VJ 1) + --(u -u ) 

u - ~x J J-1 ' 

(G) : 
A2 • 2 • 2 

-[2a + 4 q(q-1)]UJ + [2b - A4 q(q+1)]V
J [ A - • + -a + -, q (q-l) I U 

-+ - J-l 

[
A 

2 
• _ 3q 

+ b + '"4 q(q+1)JVJ _l - ~x(UJ-UJ-l)' (5.':'8) 

( ) 2b 2a B : V
J 

+ V - (U U) ( J-l - ~x J- J-l + ~x VJ-VJ _l ) (5.49) 

(C): WJ = - 1~~x[3WJ-4 - 16WJ _3 + 36WJ _2 - 48W
J

_
1 

+ 25W
J
J; W = V-V, 

(5.50) 

(5.51) 

Result 5.2. The approximation to the right quarter plane problem 

given by (5.37) and anyone of (5.47)(5.51) is a stable approximation 

for the data set (A,q) given in Result 5.1. 

Result 5.2 was established in the manner of Result 5.1. 

5.2.2 Numerical Results 

Tables 5.4 and 5.5 below present the error results for the ABC 

integration of the test problems of Chapters 3 and 4 (cf Tables 4.2, 

4.3) . The high accuracy attained with the ABC method is clear, with 

the characteristic based boundary approximations proving to be the 

most competitive. The results also indicate a high loss of accuracy 

for the application of the TE and B approximations to the right 

boundary problem. In this case greater accuracy could be obtained by 

using the characteristic correction of Gottlieb, Gunzburger and Turkel 

[1982J • This behaviour may be explained by eX3Dining the eigen-

values of the coefficient matrix of the ABC finite difference method 



Boundary q = 2 q = 5 I 
q = 1 

Approximations Left Right Left Right 

Exact 39.481 I 0.0005 78.935 I 0.0031 87.935 I 0.0031 197.39 I 0.0017 197.39 I 
0.0017 

TE 39.539 I 0.0141 79.924 I 0.106 78.031 I 0.0453 197.80 I 0.0280 205.72 I 2.205 
(0.0037) (198.14) (0.659) 

r-

G 39.539 I 0.0141 81.036 I 0.218 78.666 I 0.164 199.50 I 0.1831 197.05 
I 

0.188 

:B 39.485 I 0.0019 78.997 I 0.0092 78.482 I 0.065 197.35 I 0.0035 197.60 I 0.357 

I 

39.481 I 78.935 I 0.0031 78.980 I 0.0023 197.39 I 0.0017 I IC 0.0005 197.41 0.0034 
I 

, 

BC 39.481 I 0.0005 78.935 I 0.0031 78.806 I 0.0156 197.39 I 0.0017 197.20 I 0.0349 
-

Table 5.4: IIRnl1 E IIJln ll (X) for Aq = 0.95, nx = 2~' £ = 0.01 
q,£ 

Figures in parenthesis were evaluated with x = 4~ . 

...... 
l.. .. ) 
W 



Boundary 
q = 1 

q = 2 q = 5 

Approximations Left Right Left Right 

Exact 49.346 I 0.0008 88.800 I 0.0035 88.800 I 0.0035 207.25 I 0.0021 207.25 I 0.0021 

TE 49.423 I 0.0140 89.936 I 0.107 88.683 I 0.456 207.69 I 0.030 219.71 I 2.639 
,.... 

G 49.423 I 0.0140 91.252 I 0.219 88.885 I 0.166 209.34 I 0.181 206.88 I 0.186 

B 49.341 I 0.0015 88.868 I 0.0086 88.868 I 0.0086 207.21 I 0.0037 208.40 I 0.902 . 

C 49.360 I 0.0036 88.803 I 0.0041 88.842 I 0.0027 207.25 I 0.0033 207.27 I 0.0033 

BC 49.344 I 0.0015 88.800 I 0.0047 88.691 I 0.0153 207.25 I 0.0025 207.08 I 0.0344 

Table 5.5: "JGll" E IIJlll ll 00 for A = 0.95, llx = 2~' E = 0.5 
q,E 

~ 
v) 
i--
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in each case. Consider the TE approximation (the box approximation 

exhibits similar results). The eigenvalues suggest that application 

of the left TE approximation results in a dissipative approximation 

while, at the right boundary, eigenvalues exist that exceed unity; 

for example, with q = 2, A = 0.475 the spectral radii for x = 1/5 

and x = 1/10 are respectively 1.13 and 1.06. Therefore exponentially 

growing solutions allowed by the stability theory exist. If we 

consider the coefficient matrix of the twin boundary problem we see 

that all eigenvalues lie on the unit circle regaining the non-

dissipative approximation. Therefore, in some sense, the dissipation 

from the left boundary is controlling the solution growth introduced 

at x = 1. 

For interest we give the integration results using the Crank-

Nicolson Galerkin and CNPG interior methods on the problem (3.27). 

Interior Method E: = 0.01 E: = 0.5 J 

, 

q = 1 q = 2 q = 5 

C-N Ga1erkin 0.344 0.131 0.016 

CNPG 0.0040 0.0129 0.0022 

ABC 0.0005 0.003 0.0017 

Table 5.6: 0.95, !1x 

q = 1 q = 2 q = 5 

0.511 0.265 0.271 

0.0040 0.0129 0.0022 

0.0008 0.004 0.002 

= 1 exact boundaries. 
20' 

The superiority of the Petrov-Galerkin methods 1S evident, and 

they are much less sensitive to the strength of the fast wave. 

small values of q the ABC method is the most accurate method. 

For 

, 
I 

! 
I 
I 

I 

, 
I 

! 

I 
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.. 
5.2.3 Skollermo Accuracy Analysis: 

To construct accuracy predictions based on the analysis or 

Skollermo as in Chapter 3 we consider the difference method (5.36). 

constructing the relevant determinant equations and determining the 

limits points of the inner roots as z + 1 (see equation (3.54)) we can 

compute the error functions e(w) associated with the left and right 

boundaries in Table 5.7,._ 

Boundary Approximation Left e(w) Right e(w) 

2 2 2 2 
(1+A 2q) TI' 2 TI' a TE 3 q2M2 

a(l+A q) 
"3 qM2 

2 2 2 2 TI' TI' 
G (q -1) (q -1) 

3q2M2 3qM2 , 
" 

I 3 22 3 2 2 TI' 1) B T1'3 3 (l+q (1-2A )) 
3q2M2 

(q (1-2A ) + 
3q M 

I 3 2 'IT 3 A2 I 'IT A 
'I 

--c l6q M3 16 M3 
I , 
I 

I 

3 
(A2q2_l) 

3 
(A 2-1) TI' TI' 

BC 
3q3M3 3M3 

I 
I 
, 

I 

Table 5.7 e(w) for left and right boundary approximations. 

The expression for the TE and G boundary approximations at q 

2 'ITS (A 4-5A 2+4). 

= 1 1S 

45 M5 

i 
I 

I 
I 
I 

, 
, , 
I 
i 

! 

I 
I 
I 
i 
I 
I 
I 

I 

I 

I 

The minimum number of mesh points per wavelength required to 

achieve an error of 0.01 for each boundary approximation is giyen 1n 

Table 5.3. 



I I 

I 
q = 2 I q = 5 

Boundary Approximation q = 1 I 

I Left IRight Left Right 
I 

TE I 4 I 
I 

G 4 
, 

i B 6 ! 
I 
I 
t C 6 

BC 5 
I 

Table 5.8 Minimum value of M = 

11 16 8 9 

16 23 18 ~o 

8 10 6 11 

3 4 2 2 

3 10 1 10 

1 
for tolerance 0.01 

w~x 

.. 
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I 

I , 
i 
I 

i 

i 

! 
I 
I 
I 

According to the above results the Skollermo analysis predicts 

that the finite element approximations are desirable only in the 

symmetric problem. The characteristic formulations are exceptional 

for an asymmetric situation. Kreiss and Oliger [1973J have shown 

that we must have two points per wavelength and so the C approximation 

is, overall, the best choice. The results of Table 5.8 
. are, 1n 

general, not supported by Table 5.4 and 5.5. The analysis pertaining 

to Table 5.8 related to a differential problem with homogeneous 

boundary conditions. An example is that of problem (3.57). The 

maximum norm results of the ABC integration of (3.57) are contained 

in Table 5.9. 
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r 
q = 2 q 5 

Boundary Approximation 
= 

q = 1 
I Left Right Left Right 
t 

Exact 0.0005 0.0016 - 0.0010 -

TE 0.0005 0.0623 0.2412 0.0169 1.3112 

G 0.0005 0.1204 0.0836 0.0904 0.0987 , 
I 
I 
I 
i B 0.0006 0.0043 0.0338 0.0018 0.2264 , 

I 
C 0.0021 0.0025 0.0014 

I 

0.0015 0.0019 , 

BC 0.0008 0.0019 0.0076 0.0011 0.0174 . 

Tab Ie 5.9 _: for Aq = 0.95, ~x 
1 

20 . 

For the symmetric problem the high accuracy of the TE (or G) 

approximation is substantiated by Table 5.9. For the B, C and BC 

boundary approximations the performance at q = 2 and q = 5 is also 

verified, however for the TE and G techniques the Skollermo analysis 

provides a less reliable guide to accuracy. 

In summary, for problem (5.29) with q > 1, the best boundary 

approximations are those derived from the associated characteristics. 

Whilst the approximation C is clearly superior the generalisation to 

non-linear problems extends the band number of the implicit matrix 

of the ABC method, akin to (5.36), beyond that required for the Cauchy 

problem. We may therefore have increased the compact support of ¢(x) 

and ~(x). The BC boundary approximation provides an accurate, stable 

and applicable alternative. 

It would be of value to extend the ABC method to multidimensional 

problems . However, the method defined in this chapter is dependent 

on the eigenvalues of the one-dimensional situation. Therefore any 

extension of the scheme, in its present form, will necessitate a 
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splitting of the differential equations. Further investigation is 

required. 

In this chapter we have developed a highly accurate finite 

element approximation to the solution of the linear fast wave test 

problems. This ABC method is superior to the standard Galerkin 

and the Petrov-Galerkin CNPG (Morton and Parrot [1980J) methods. For 

q > 1 we found that the most suitable boundary approximations, for 
, 

use in the twin boundary situation, where those that involved the 
~ 

characteristic variables and equations. These are similar conclusions 

to those of Chapters 3 and 4. 



CHAPTER 6 

NON-LINEAR PROBLEMS 

In this chapter we consider the one-dimensional shallow water 

equations 

au 
-= 
at 

au 
- u --ax 

v av 
2" ax 

l!.O. 

av 
at 

,0 < x<l, t>O, (6.1) 

= v au av 
-- - u 
2 ax ax 

where u(x,t) is the fluid velocity and v(x,t) is the scaled potential 

with v > 21ul for all x and t in the problem domain. We specify the 

solid wall boundary conditions 

u(O,t) = u(l,t) = o. (6.2) 

: System (6.1) is a non-linear example of system (3.1) to which the 

stability results of Chapter 3, 4 and 5 may be applied if the 

derivative coefficients are regarded as the constants u and v obtained 
o 0 

from the computed values for the boundary node at t = n~t. The 

characteristic speeds of this linearised system are + ~v + u. By o 0 

scaling the independent variables we can show that the fast speed of 

(3.1) can be expressed as 

q = 

(v + 2u )/(v - 2u ) 
000 0 

u ~O o 

(v - 2u )/(v + 2u ) : u 
00000 

< 0 

(6.3) 

This problem was considered by Coughran (1980) where the error 

measurement was expressed in terms of the maximum nodal value or the 

sharpest gradient appearing in the solution. This latter quantity 

was determined by approximating the derivative by a forward di£:erence 



formula. In this chapter we determine the unknown 'exact' solution 

by performing a Lax-Wendroff integration over a fine mesh and the 

boundary approximations are supplied by second order accurate 

extrapolation on the appropriate characteristic variable. This 

boundary approximation avoids the problem f . o approx~mating the quantity 

q. It can be shown that the integral 

2 (u+v )dx (6.4) 

is invariant with time for ~(O,t) = ~(l,t) and so we will use a 

trapezoidal approximation to Et as another error measurement. This ~s 

denoted by II Et II . 
For the L-W and ABC numerical methods we consider the 

conservation form of (6.1) 

au + ~(1 2 
at ax 2U 

+ 1 2) 4V = 0, 

a(v2) a 2 (6.5) 
+ - (uv ) = o. 

at av 

The SILF method is best applied to (6.1) itself. 

The application of the L-W to (6.5) is immediate us~ng the 

conservation form of the L-W difference equations (Richtmyer [1963J). 

We obtain the required boundary values by applying C and CE boundary 

approximations of Chapter 3. We also consider s = 2 variable extra-

polation with a stable and unstable extrapolated quantity. 

The SILF method is applied to (6.1) where the implicit 

approximations are applied to the spatial derivatives associated with 

h f ·· v t e coe f~c~ent 2' The approximation is based on the staggered grid 

of Chapter 4 where the missing coefficient variables are supplied by 



spatial averages. We apply the LC and CST boundary approxi~aticns. 

The ABC approximation is constructed in a manner si2.ilar to '-_:-:::: 

vation of (5.34). The resulting difference method uses the ?roduct 

approximation technique of Christie, Griffiths, ~itchell and Sanz-

Serna [1981J and is developed in Appendix II. For the linearised 

version of (6.1) the ABC method used exhibited the same degree of 

accuracy as obtained in Chapter 5. Ideally we would implement the C 

boundary approximation; however, its use would destroy the compact 

nature of the implicit matrix in the difference method. This 

difficulty was avoided for the linear problem of Chapter 5 by some 

algebraic manipulation between the C approximation and the interior 

equations. We therefore consider the compact Be boundary equations. 

The resulting method still requires an iterative method to obtain 

the solution of the non-linear implicit system of difference equations. 

This was effected using a Newton-Raphson method with the initial 

estimate at any time step given by the converged solution at the 

prev~ous time step updated by the first step of a two-step Lax-

Wendroff integration. In practice four iterative steps were sufficient 

-6 
for convergence to within a tolerance of 10 . 

h . lIt to t = 2 for the Below we present t e numer~ca resu s up 

initial data u(x,O) = 0, v(x,O) = exp[-(x-D
2
]. 



i 

I 

143. 

Interior Boundary t 1 = t 2 
Method Approximation 

= 

L-W 1 C 0.844 I 0.020 I (;\q=O. 95 ) 
0.828 0.068 

!1x = 20) 
EX2(a = -0.2) 0.840 I 0.019 0.822 I 0.080 , 
EX2(a = 0.2) 0.825 I 

i 
0.120 0.760 I 

, 
0.163 

i SILF 1 CST 0.853 I 0.021 0.844 I 0.0481 
(;\=0.9, 20) = I !1x 

I 0.069 1 K 0.812 I 0.046 0.833 

ABC 1 BC 0.923 I 0.004 0.923 I 0.023 
C\q=O. 7, !1x = 10) 

Table 6.1: "~!1ILX) for problem (6.1) 

The 'exact' solution was calculated by a Lax-Wendroff 

1 integration with !1x = 80 ' ;\q = 0.5 and second order accurate boundary 

extrapolation on the Riemann Invariants. For the problem (6.1) the 

time scales are not widely different and so for second order variable 

extrapolation the critical value of a is 1n the interval (-0.2,0.2) as 

illustrated by Table 6.1. The high accuracy of the ABC integration 

is also supported above. The desirability of characteristic 

formulated boundary approximations is clear. Any linearisation required 

in the boundary approximations was done on the boundary at the previous 

time step. Any alternative point in the interior caused a minimal 

decrease in accuracy. The CPU times were 5.94, 3.5 and 10.0 seconds 

for the L-W, SILF and ABC approximations respectively. The SILF 

method is the most economic method implemented however the greatest 

accuracy is attained from the ABC approximation. The exact solution 

is illustrated in plots 5 and 6. 
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.lr....4-. 

In Chapter 5 the ABC method was constructed to yield a fourth 

order truncation error in l.·ts approx· t' l' l.ma l.on to a l.near Cauchy 

problem. Consider the following non-linear problem of Abardanel and 

Gottlieb [1973J, 

au 
at 

= a (~) 
ax 3v2 

av a 1 
at = ax (v), ° ~ t ~ 1, 1 ~ x ~ 2 

1 -1 
with u(x,O) = X2, v(x,O) = x 2 and exact boundary conditions. The 

ABC approximation, given by (5.36), may be shown, using the Taylor 

serl.es expanSl.ons, to have a fourth order truncation error in both 

space and time. However the respective maxl.mum norm results for 

1 
x=-and 

10 

convergence. 

1 
x = 20 are 2(-5) and 5(-6) which indicates second order 

Clearly then, care must be taken in attempting to 

apply the techniques in determining accuracy, which are successful for 

linear problems, to non-linear situations. Despite the reduction in 

order of convergence the ABC method still provides a compact, accurate 

method. 
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SUMMARY 

Crucial to arriving at many of the l' conc USlons of this thesis 

was the ability to obtain the roots of a multivariate polynominal 

system of equations. Both new and existing algorithms for doing so 

were discussed in Chapter 2. The best were the Polynomial Resultant 

method of Collins and the new composite continuation approach. Given 

the availability of an algebraic manipulator the resultant technique 

would have been the first choice for our purpose. The method is 

however applicable only to polynominal systems unlike the latter 

algorithm which has widespread applications throughout applied 

mathematics. Both methods were used successfully in this thesis. 

The main object of this work was the comparison of many boundary 

approximations used in the numerical solution of one-dimensional 

hyperbolic systems. This was achieved in Chapters 3,4 and 5 for 

three different interior methods of approximation. We considered the 

well-known explicit Lax-Wendroff method, a semi-implicit adaptation of 

the Leap-Frog method, and a new finite element scheme. We were 

particularly concerned with the implications on the boundary 

approximations of the physical system exhibiting differing time-scales. 

We were able to show that the stability of many boundary approximations 

was dependent upon the speed of the wave incident on the boundary. In 

general it was clear that the faster the reflected wave the more 

restrictive were the stability constraints. 

For the Lax-Wendroff interior approximation there are many stable 

. . aval'lable among them the conservation and box boundary approxlmatlons 

integration conditions. However to achieve the best stability 3nd 

accuracy properties those boundary approximations that incorporate 
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the characteristic variab:es should be chosen. 
For the test probles 

considered, we examined intensively the extrapolate - I" 
~on or a lnear 

quantity intermediate between the ingoing and outgoing characteristic 

variables. The optimal choice at any boundary would be the extra­

polation, to infinite order, of the outgoing variable. We were able 

to show that, for an equivalent linear combination of the physical 

variables, stability was retained for a higher degree of extra-

polation at the boundary where the fast wave was incident. 

The choice of boundary approximations for the semi-implicit Leap-

Frog method was restricted by use of a staggered mesh for the interior 

approximation. The method as a whole was beset, for the physical 

problem chosen, by error oscillation which reduced the overall accuracy 

of the approximation. Nevertheless comparison of the boundary methods 

was possible, those derived from the characteristics or physical 

equations performing well. For the small data set chosen points of 

instability were found for all the boundary approximations but could 

only be verified by numerical integration in a few cases. This was 

also observed in Chapter 3 and illustrates the unreliability of a 

stability analysis through observation only. As with prev~ous 

modifications of the Leap-Frog method we were able to prove that 

horizontal extrapolation to any degree was unstable. The SILF method 

is very efficient in non-linear applications (see Chapter 6) when 

based on a staggered mesh and those boundary approximations that 

involve the minimum degree of spatial averaging should be used 

(consider for example the CST scheme). 

In Chapter 5 we developed a new finite element method specifically 

for problems of the form (0.1). The ABC method is compact, implicit, 



unconditionally stable and fourth order accurate 1n both space and 

time for a constant coefficient linear problem. The restrictio:1 

Aq < I must apply, however, to maintain a well-posed problem. 3y 

considering the scalar advection equation we were able to show the 

relatively small degree of rounding error required along the boundary 

to induce instability. We were concerned only with the ABC interior 

scheme however we conjecture that the same may also be true for many 

other implicit schemes. For the synnnetric problem the boundary 

approximation obtained from the extension of the interior method 

proved the most accurate of all the stable methods considered 

however this property was lost for q > 1. For general q it was not 

possible to develop boundary approximations that did not destroy the 

compact nature or the interior accuracy of the ABC method. However 

a box integration of the outgoing characteristic equation performed 

well both in linear and non-linear applications. 

In conclusion it is hoped that the results of this thesis will 

provide an insight into the treatment of realistic physical problems 

in that any boundary scheme chosen must reflect the properties or the 

analytic solution. 

The Next Step~ 

Clearly an infinite amount of time could be spent exam1nlng 

larger data sets {(A~q)} than are considered here. Of areater value 
-=' 

1 · . of the theory of Warming Beam and Yee ~1982J would be the app lcat10n 

to the SILF and ABC schemes. 
Such an analysis would be more complicated 

et al 119;21 but the 
than that arising from the theory of Gustafsson -

methods should still be equal ~o the task. 
continuation and resultant 

f exponentially growi:1g solutions 
This being done the possibility 0 
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would be eliminated. Of greater practical value would De the ~uiti-

dimensional studies proposed by Coughran [1980J. 

The ABC method is worthy of further study to determine the 

optimal multi-dimensional extension of the one-dimensional scheme 

proposed in Appendix II. This may requ1re an ADI-type integration 

of a succession of one-dimensional problems in conjunction with a 

time-averaging treatment of the remaining spatial dimensions. 



Appendix I -- The Resultant Method 

To illustrate the use of the resultant method of Collins !197i"1 
- -

we consider the approximation to the solution of the left boundary 

problem given by the ABC method and the Box boundary approximation. 

According to Theorem 1.10 it is essential to the stability analysis 

of the above approximation that we determine the solution triples 

of the system 

(I. 1) 

I 2 2 1 1,2 Q = 4_,2q2 and 6
1 

__ ,,_,2. where a = 1 + iA q, a1 = +2A, ~ A ~ A 

System (1.1) is constructed from the characteristic equations (S.44a) 

and (S.44b) and the determinant equation of (S.38) and is an example of 

system (2.1) in Chapter 2. Denoting the resultant of the polynomials 

hex) and g(x) by Res(h,g) we define 

3 2 (f
3

+f4K3)K 1 + fS + f6 K3 
B1 = Res (F l' F 3) = foK1 + (f1+f 2K

3
)K1 + 

3 2 + c 2K1 + c 3 
(1.2) 

= coK1 + c1K1 

and 

2 3 + 2 
gSK3 + :2:6 g4 K3 + 

B = Res (F 2' F 3) = (goK3+g1K3+g2)K1 + g3K3 
2 

(1.3) 

where 



f = q (3-2ct} 
0 , go = -3 -2", q ... , , 

fl = 6q 2a + 2q (a-S) gl = -2q6 1 
, 

f2 = 3q + 2a 
g2 = 3 - 2qa1 

, 

f3 = 2S(q-l) - q (3+2a) g3 = 2a.1 - 3 

f4 = 2S g4 = 2a1(q-1) + 261 6 , 

f5 = 2a(q-l) - 6q g5 = 261 (q-1) + ')J. + 3 ~ 1 

f6 = 2a - 3q and g6 = 2a.1 (q-1) + 6 

Polynomials (1.2) and (1.3) are independent of z and we eliminate 

another complex variable by constructing 

c 
o 

(I .4) 

150. 

A routine was written which reduced (1.4) to a single polynomial 

~n K
3

. The roots of B3 = 0 can be obtained us~ng the algorithm of 

Grant and Hitchins mentioned ~n Chapter 3. For each root K3 we can 

find the associated value of z from F2 = 0 and then that or Kl from 

F3 = o. Only those solution triples (K l ,K 3 ,z) which satisfy Fl = 0 

are roots of the system (1.1) to which the stability criteria of 

Theorem 1.10 may be applied. Using the above method we can dete~ine 

all the solution triples of (1.1) for given values of A and q 

(Collins [197lJ). 

To apply the resultant algorithm to equations of higner degree 
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than those of system (1.1) would require the use of an Algebraic 

Manipulator to construct the corresponding equation to (1.4). This 

being available, the method of Collins [1971J is then the optir::al 

choice of the algorithms in Chapter 2. 



Appendix II The Differential-Difference Equations of t~e ABC 

Method Applied to a Non-Linear Problem 

In this appendix we derive the differential-difference equations 

that define the ABC approximation to the solution of the non-linear 

problem considered in Chapter 6. As with all the differential 

problems of this thesis the governing equations are of the form 

u t + A(u)u = 0, x E IR, t >/ 0 . 'V 'V 'Vx (11.1) 

Recall that, for the linear problem of Chapter 5, the matrix 1n 

(11.1) reduced to the constant matrix A. Therein we defined the 
o 

semi-discrete ABC approximation U.(t), to the solution u(j6x,t), as 'VJ 'V 

the vector function that satisfied the inner product 

• a 'V 
<U + A ~ U, (I</>. + Ba . ) e ( ) > = 0, r = 1,2,.. Vi 

'V oX 'V 1 1 'V r 
(11.2) 

where B = SBST. The matrix A(u) is symmetric (c.f. (6.1)) and so, 
'V 

in seeking an approximate solution of (11.1), it is possible to 

follow the procedure that led to (11.2). 
'V 2 2 

In (11.2) the matrix B denotes !A A where A is the diagonal 

matrix composed of the eigenvalues of A and is a constant matrix. 

For the non-linear situation this simplicity is lost. However for 

the approximation centred at Xj = j6x we may linearise A(~) about Xj 

and thus regain the constant form of the test functions. If u and 
o 

d 1 t = J'\x then the differential-v denote the compute va ues a x. -
o J 

. b' d f the non-linear form of (11.2), difference equat10ns, 0 ta1ne rom 

are 
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and 
(II. 3) 

[ A 2 2J . T)2 2 . 1 
6 + (1 + t-£) 0 V. + 4 TlO D. + -2 A [V. 1 (D. -U. ) + 2V. (U. -U ) + V (U _;") 

J J uX J - J J -1 J J + 1 j -1 j + 1 j + 1 C j 

+ t::,
l
CD·_1 (V.-V. 1) + 2D.(V. -V. ) + U. (V. -V.)] 

x J J J- J J+1 J-1 J+1 J+l J 

A2 [ 2 2 >,.2 2 ') 
- ~T) D. -1 - 2D . (D. l-U, 1) -u . ] - -Tl [V. -2V . (V . -V . ) - V--: ] 

x J J J - J + J + 1 86x J -1 J J -1 J + 1 J + 1 

3 2 
- -8 A A ~ [V. -1 (D. l-U,) + V. (D. 1-U, 1) + V. (U. -U . ) l = 0 'v'j E Z, 

uX J J- J J J+ J- J+1 J J+1..J , 

2 2 
where ~ =!v + 2u and Tl = -!u v . 

o 0 0 0 
Approximation of the time 

derivative using the trapezoidal rule results in an implicit system of 

difference equations defines the ABC approximation to the solution of 

the Cauchy problem (11.1). 

It is clear the integration of (11.3) would requlre . a very 

complicated piece of coding. The construction of (11.3) required the 

evaluation of inner products that involved three basis functions; for 

a example, consider the inner product <U -,- U, G.>. 
eX ~ 

The approximation 

U(x,t) is defined by U(x,t) = L U.(t)¢.(x) to obtain the equivalent 
j J J 

inner product 

a «::: U.~.)(L U. 
J
. JJ k J ..... oX 

G.>. 
1 
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It was the approach of treating each term l'n a product of te~s as a 

separate variable that caused the 1 comp exity of (11.3). However, 

noting that uu 
x 

a (1 2 = ax zu) and by defining the approximation to 

2 
u (x,t) as 

(11.:+) 

we obtain 

a 
<U ~ U, 0. > = 

oX 1 

I a 2 z <~ U ,0. > = 
oX 1 

2 
-2
1 <~ U ¢ " .' .,0.> 

J J J 1. 

(I 1.5) 

The second approach is the basis of the product approximation 

technique of Christie, Griffiths, Mitchell and Sanz-Serna [1981J who 

demonstrate the desirability and accuracy of the technique. Clearly 

to take advantage of the method we require the conservation equivalent 

of (11.1) namely, 

a 
w = - - F(w) 
tVt ax tV tV 

tV 
= - A(w)w tV tVx 

h T ( 2) d FT - (1 2 I 
W ere ~ = u,w = v an - 2 U + 4W , tV 

X E lR, 

uw) . 

(11.6a) 

t >, 0 
/ 

(11.6b) 

tV 
The matrix A(w) tV 

denotes the Jacobian of F which has eigenvalues equivalent to those 
tV 

of A(u) and so A(w) = A(u). If Sea) denotes the similarity matrix 
"" tV tV tV 

composed of the eigenvectors of a matrix A(a) then A(u) = ST(u)A(u)S(u) tV tV tV tV tV 
-1 tV whereas A(w) = S (w)A(w)S(w) as S(u) is orthogonal and Sew) is not. 

tV tV "" tV tV tV 
Therefore the procedure adopted for the construction of (11.2) has to 

be modified for the situation of a non-orthogonal similarity transfur~. 

Denoting Sew) by S we define the characteristic vector v(x,t) 
tV tV 

= S-lw(x,t) and by invoking the scalar results of Chapter 5 we obtain 

"" 



the semi-discrete approximation Vet) as the solution of 
'V 

. a 
<V + ~(w)~ V, (1~.+Ba.)e( » = 0, r = 1,2,Vi 

'V 'V oX 'V ~ ~ 'V r 
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(II./) 

1..
2 2 

where B = - 2 ~o and ~o denotes the linearisation of .\(~) at point, 

about which, the approximation is centred. To relate the di~gonal 

result (11.7) to the full system (11.4) we define Wet) = SV(t) as 
'V '\; 

the semi-discrete approximation to w(x,t). Equation (11.7) becomes 
'V 

-1 • a 
(1~.+Ba.)e( » 0, 1 , 2, Vi <S (W+A(w)~), = r = 

'V 'V X 1. ~ 'V r 

. ~F T -1 0 1 ,2, 'v'i <W + ,(S) (I~.+Ba.)e(» = r = 
'V ax 'V ~ 1. 'V r 

. ~F 
'V 

<W + (1~.+Ba.)e( » = 0 r = 1 , 2, 'v'j 
ax 'V 

, 
J J 'V r 

'V 1..
2 

(ST)-l ~2 ST. where B = --2 0 

Evaluatio~ of (11.9) yields 

and 

where 

2' '). 
(l+a)o U. + aU. + BoW. = 

J J J 
_3_ tJ U~ + _3_ ~ ~.J. 
2tJx 0 J 4~x 0 J 

. 2' 
(l+a)o H. 

• 2· 
+ aW. + yo U. 

3 = - tJ (U. W.) 
tJx 0 J J J J J 

I 2( 2 + !w ), a = -A u 2 0 0 

2 
B = A u w , 

o 0 

),.2 
y = -u 4 0 

(11.8) 

(11.9) 

(11.10) 

. (11.10) are clearly eaSler 
The differential difference equat1.ons 

) App roximation of the time derivative 
to handle than those of (11.3 . 

d a difference approxi~3(ion 
in (11.10) by the trapezoidal rule pro uces 

coefficient problem of (11.4), 
that, for the linearised constant, 
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exhibits the same high degree of accuracy as found l~ Chapter ). 

For general systems of the form (II.4) we present the ABC ~inite 

element approximation, W, as the solution of the weak problem 
IV 

IV 
where A 

o 

• 2 IV2 T 
<W F, (I¢.-P\ (A ) a.)e( » = 0 V. 

IV rvX ~ 0 ~ IV r ~,r 

IV 
is the linearised form of A(w). 

IV 
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Exact 
ABC Method 
Galerkin ~ethod 

Fetrov--Galerkin ~ethod 

Aq = 0.95 

Plot 1 

Phase Comparison on Advection Equation 

~S7. 
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x 

Plot 2 

U solution us~ng EX3 boundary extr~polation; 
1 

q = 2, E = 0.01, ~x = 20' T = 5. 
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Plot 3 

Exact u solution; q = 1, ~ = 1.0, T = 5. 

'~Q 

1.) ~ • j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 



Plot 4 

Exact v solution; q = 5, E = 0.01, T = 1 
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t 

x 

Plot 5 

U solution or the non-linear problem; ~x = 1 T ~ 5. 
20' 
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Plot 6 

V solution of the non-linear problem; ~ = 1 T = 5. 
20' 
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