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Abstract

The cost of diseases is a heavy strain on society and critical to reducing this

cost is being able to effectively control disease. This in turn relies on a thorough

understanding of diseases at different levels - from the molecular interactions that

occur in an infected cell, to the spread of disease in a population.

Here, network analysis methods are used in order to determine if common meth-

ods can be applied to disease modelling at different levels (cell and population)

and further, to obtain useful information about two different diseases: rheumatoid

arthritis (RA) and avian influenza viruses (AIV).

RA in humans is investigated by considering the complex interactions that oc-

cur between molecules known to be involved in the disease. Through the use

of network analysis methods to analyse a comprehensive molecular interaction

map for the disease, it is shown that some nodes in the network that prove to be

topologically important are also known to be associated with drugs used for the

treatment of RA. Importantly, based on topological consideration, a novel poten-

tially relevant molecule for the diagnosis or treatment of RA is also suggested.

Next, the potential for AIV to spread in a population of poultry farms is inves-

tigated. Network analysis methods are also used to initially identify where to

target control as well as where further data collection is necessary. On collection

of further data, the network of interactions is updated and re-analysed through

simulation modelling. The results show that the probability of a large outbreak

occurring in the sample studied is low, thus reducing the likely threat to the

industry.

Whilst making a positive contribution to disease modelling, this thesis shows that

network analysis methods, as part of an interdisciplinary approach, can be used

to improve our understanding of diseases at multiple levels.
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Preamble

In 2007, the Engineering and Physical Sciences Research Council (EPSRC) gave

me the opportunity to study for a PhD, whilst working. I accepted the offer

with enthusiasm and began my study period at the then Veterinary Laboratories

Agency (VLA) in UK (now Animal Health and Veterinary Laboratories Agency),

under the supervision of Dr. Mark Arnold. Motivated by real concern of the

Government at the time, the focus of my work at VLA was on the poultry industry

in GB. Particular attention was given to network modelling of the industry, with

a view to improving disease control. Towards the end of 2008, I was then given

the opportunity to work in China for two years, supported by the European

Union Science and Technology Fellowship Programme. In March 2009, I moved

to China, taking 6 months break from my PhD study to learn Mandarin and,

from September 2009 to April 2011, I was based at the Chinese Academy of

Sciences - Max Planck Society Partner Institute for Computational Biology (CAS-

MPG PICB), under the supervision of Dr. Christine Nardini. Driven by the

interests of the hosting laboratory, my work in PICB was focused on rheumatoid

arthritis (RA). In order to make full use of my skills in network modelling and

analysis and to keep in line with my PhD work, at PICB I applied network

analysis methods to gene-networks for RA. The aim here was to improve our

understanding of a complex disease. Due to the fact that opportunity took me

from the UK to China and from one laboratory to another, this thesis considers

two very different diseases, at different levels. Throughout my PhD, I have worked

almost entirely on using network modelling and analysis to understand diseases,

rendering applications of the methods the main focus of this thesis.
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Chapter 1

Introduction and thesis outline

1.1 Reducing the burden of diseases

It is difficult to estimate both the amount of money that is invested in disease

research as well as the annual cost of health care throughout the world. The

Medical Research Council in Great Britain (GB) spent £704.2 million on research

in 2008/09 [Medical Research Council, 2010], with an aim to improve human

health. In the same year, the British National Health Service spent almost £48

billion [Department of Health, 2010], a rise of over £4 billion from the previous

year. The figures quoted for GB alone suggest that the worldwide figures would

be phenomenal. It is therefore in the interest of all countries to try and reduce

the cost of health care. This interest in reducing costs is not human specific, as

diseases in animals, in particular livestock reared for human consumption, can also

have devastating effects on a country’s economy. To give an example, the outbreak

of foot and mouth disease (FMD) in livestock in GB in 2001 is estimated to have

resulted in losses to agriculture and the food chain that amount to about £3.1

billion, the majority of which were met by the Government. However, agricultural

producers are estimated to have suffered losses pushing £355 million [Thompson

et al., 2002]. The most effective way to reduce the cost of disease is to try to

reduce the occurrence and duration of disease.

In order to slow (or eliminate) the spread of disease in a population, and hence to

reduce the burden of diseases, there are multiple angles from which the problem

can be attacked; first, we could try to reduce the prevalence of disease by protect-

ing the population at risk. The type of protection is dependent on the disease,

from encouraging the use of barrier contraception, such as condoms, to reduce
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the transmission of sexually transmitted infections [Inman et al., 1970], to edu-

cation about changes in diet to reduce the risk of other chronic diseases [Fraser,

1999]. Secondly, we may try to reduce disease prevalence through effective con-

trol measures. In this case, it is important to know where to target such control

measures, which means having an understanding of how a disease can transmit

from one individual to another. With this understanding, and through effective

management and control measures during an outbreak situation, the severity (and

hence cost) of disease can be reduced [Galbreath et al., 2004]. In this direction,

isolation of infected cases was practiced during the SARS outbreak in Asia in

2003 [Twu et al., 2003] and ‘stamping out’ of disease in animals is also under-

taken in some countries when there are outbreaks of notifiable diseases [Geering

and Nyakahuma, 2001].

From another point of view, we can try to reduce the cost of disease through

effective diagnosis and treatment, be it through screening to identify a disease

in its early stages to increase the chances of early and accurate diagnosis [Black

and Welch, 1997], or through the development of more effective treatments [Arap

et al., 1998]. In these cases, we need to have an understanding of how a disease

functions at the cell level as well as an understanding of how it is likely to react

to perturbations that may be caused by drugs, for example. The development of

drugs that target specific molecules in a cell is no longer a new concept [Cohen,

2002] and research in this field looks at targeting different molecules according

to the disease being treated [Moller, 2001, Kremer et al., 2003]. In addition

to understanding the reaction of a disease to treatment (be it a pathogen or

a genetic disease), it is also important to understand the potential side effects

of a treatment. In this case, the interactions that occur between molecules in

a cell -and arguably the interactions between different cells and hence the host

organism- become important.

Irrespective of whether we are interested in population or cell level research, it

is important to determine where to target control at the most effective point,

i.e. that which produces the most efficient outcome, where the exact meaning

of efficiency is to be determined. In short, we want to be able to understand

the structure and the dynamics of diseases and this requires an interdisciplinary

approach.
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1.1.1 Data standardisation issues

Advances in the biological sciences and increased collaboration between disci-

plines such as computer science, mathematics and biology have, in the last few

decades, led to an impressive, although still partial and hence incomplete, ad-

vancement in our ability to understand the structure and dynamics of diseases.

Although this improvement in our understanding has developed through advances

in disease modelling techniques, it is also partly driven by a now vast amount

of data that are available for analysis. In fact, more and more often, scientists

suggest that we are drowning in a sea of data and, already in 2001, Roos reported

this idea in Science [Roos, 2001]. Scientists continue to collect more and more

data. In the 1000 genomes project for example, the Wellcome Trust Sanger Insti-

tute, the Beijing Genomics Institute Shenzhen (BGI) and three members of the

National Human Genome Research Institute’s (NHGRI) Large-Scale Sequencing

Network will sequence the genomes of 1,000 individuals, at a cost of $30 - $50

million [Anon, 2010]. The collection of such an enormous amount of data in one

project may seem ambitious, but perhaps the more ambitious challenge lies in

determining what to do with all of these data after they have been collected.

Unless a lot of consideration is put in to the type of data that are collected, it

can be difficult to extract useful information from them. The increasing volume

of data currently being generated leads to a correspondingly increasing need for

methods by which such data can be accurately described, stored and exchanged

between experimental researchers and data repositories.

Whilst there are protocols for the standarisation of data in some fields (see [Or-

chard et al., 2005, Brazma, 2001] only for example), protocols are not always

followed and data are not always made available to other researchers and scien-

tists. This is a problem that can be extremely frustrating to data analysts and

modellers. From the point of view of modelling, a lack of data standardisation,

to make data exchange more efficient and more accessible, is a problem that se-

riously needs addressing. Parameterisation of models relies on having the right

‘type’ of data available for analysis. The ideal situation would be to have data

generated and/or collected specifically for the model parameterisation. This is

rarely possible and thus it is usually necessary to make use of data that have

been collected for other purposes; the challenge with this approach is trying to

find the best data. Despite this, it is important to remember that detailed exper-

iments would increase costs rather than reduce them, which is one of the aims of

modelling.
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With the intention of using available data, keeping costs to a minimum and

making a valuable contribution to science, one aim of this thesis is to use data

that are currently available to propose how to determine where to target control

measures for diseases. The study will enable the identification and application of

methods for targeting disease control, using data that have not previously been

analysed in this way. Methods identified for analysis will be applied in order to

improve our understanding of two case-study diseases, one at the cell level and

one at the population level.

1.2 An introduction to cell biology

n.b. Superscript reference1.1 refers to Table 1.1, which gives a summary of key

terms.

1.2.1 Building blocks of a cell

Every living organism can be defined by its genome1.1 - a long sequence of nu-

cleic acid1.1 that provides information needed to construct the organism [Lewin,

2003]. There are five nucleic acid bases, Adenine (A), Cytosine (C), Guanine

(G), Thymine (T) and Uracil (U). The sequence of nucleic acids are created by a

complex series of interactions that occur within the cell. When two long polymers

of nucleotides1.1, running in opposite directions, join together, ‘Deoxyribonucleic

acid’ (DNA) is created. The nucleotides in DNA are made from four bases, A,

C, G and T. The two strands are joined by the bases, in such a way that A and

T always bind together and C and G bind together. The sequence of the bases

contains information that specifies the sequence of amino acids1.1 that make up

proteins1.1, essential parts of organisms that participate in virtually every process

within living cells. The information that is stored in the DNA is copied and is

transformed, in a process called transcription, into a single stranded Ribonucleic

acid (RNA), in which the Thymine base is replaced with Uracil. The informa-

tion that specifies the sequence of amino acids for protein product is stored in

the RNA and carried to the site for protein synthesis (translation) by molecules

called messenger RNA (mRNA).

Before cells divide, the DNA is duplicated and stored primarily in the cell nucleus.

Genes1.1, which are made up of hereditary parts of DNA sequence within the
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cell, may lie dormant and have no active function in a particular cell and are

only reduplicated before cell division, whereas others act as house-keeping genes,

controlling different crucial functions in the cell. Dependent on the type of cell,

the time in the cell cycle and the function of the gene, different genes are expressed

differently. Gene expression can be used to tell us how the genes respond under

different conditions, enabling us to understand the interactions that occur in a

cell.

1.2.2 Interactions within a cell

The complex series of interactions that occur in a cell not only determine the

structure of the organism, but also lead to the production of other proteins that

the cell uses to control the life cycle of the cell.

Figure 1.1. Series of interactions that occur in cell. Transcription Factors1.1 (TF)
can combine with other proteins (complexes) and promote (activate) or block
(repress) recruitment of RNA polymerase (transcription of genetic information from
DNA to RNA) specific genes. (Figure provided by S. Dos Santos, pers. comm.)

At the cell level, contacts can occur between many different molecules. Relatively
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simply speaking, the cell is controlled according to the following processes (see

Figure 1.1 [S. Dos Santos, pers. comm.]):

(i) A ligand - a short protein (peptide) or a small molecule such as a hormone,

a drug or a toxin - binds to a receptor protein1.1 at the cell membrane.

(ii) The receptor changes its structure according to the type of ligand that has

bound to it, triggering a cellular response.

(iii) The cellular response begins with the activation of a transcription factor

(TF) - a protein or complex of proteins, that binds to specific DNA se-

quences in the cell nucleus. Transcription factors control the transfer of

genetic information from DNA into messenger RNA (mRNA) either by pro-

moting or blocking recruitment of RNA polymerase specific genes, required

to transform DNA into mRNA (see below).

(iv) The transcription factor binds to a specific DNA strand.

(v) The cell responds by transcription of double-stranded DNA into single-

strand RNA, containing mRNA.

(vi) The genes, first expressed as mRNA, are then translated into proteins.

(vii) The proteins give functional information about the state of the cell.

A cell is therefore controlled by a network of interactions between genes, proteins

and metabolites (a substance involved in metabolism). This network of interac-

tions, which can have important consequences for the onset of disease, is often

referred to as a ‘gene-network ’.

1.2.3 Diseases in a cell

When a cell is subject to disease, the connections that occur within the cell may

be perturbed, causing the expression of some genes to change. In genetic diseases,

this change may occur due to mutation, where DNA strands change slightly when

replicated and the new strand is ‘imperfect’ in some way. It may also occur in

response to environmental factors, such as radiation, for example. Due to the

complexity of the interactions that occur (genes, for example, cannot directly

interact with each other and an interaction between genes can only occur by
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a series of interactions involving other molecules, influenced by a signal from a

protein), a change in gene expression, which in turn determines the presence of

proteins in a cell, can lead to cell damage. In some diseases, there is a change

in gene expression that causes the cell to change and/or be damaged over a long

period of time, this is particularly important in diseases that are long lasting or

recurrent, or that have no known cure, as a change in gene expression over a long

period of time leads to long periods of disease treatment and hence an increase in

cost. Good examples of such diseases are cancer and rheumatoid arthritis (RA).

In these diseases, there is a change in the normal (healthy) interactions that

occur in molecules in a cell. In cancer, for example, accumulating multiple gene

mutations of genes that are responsible for cell growth can lead to cells growing

at an abnormal rate (see [Mendelsohn et al., 1995]). In RA, a change in the

production of particular proteins in the cell causes pain and swelling. In these

cases, we may become interested in the interactions that occur between molecules

that are known to be involved in a disease. Understanding diseases such as these

at the molecular level may help to identify specific targets for the development

of more effective treatments. Furthermore, by understanding the interactions at

this level, models can be built to hypothesize in silico the potential effect that

targeting specific genes/molecules might have on the function of the cell.

1.2.4 Gene-networks

Due to the complexity of interactions that occur within a cell, gene-networks must

show a simplified, yet representative, picture of the most important processes

involved in the cell. Gene-networks can take on one of two forms [Bansal et al.,

2007]:

The first type of gene-network is a network of influence interactions (Figure 1.2a),

in which two genes appear to be directly linked in the network. Here, the link

suggests that one gene is influenced by another, though there is no detail of how

this influence occurs (i.e. the rest of the chain of reactions, which begins at

gene A and finally results in a change in gene B, is omitted), meaning that these

networks only contain genes as nodes. In influencing networks, little a priori

information is required to build the network. For example, influencing networks

can be built from data that describe only the gene-expression levels in response to

a change in the cell. If two genes are always up- or down-regulated, by the same

amount, after a change, then we might assume there is an interaction between
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Figure 1.2. Graphical representation of a) Influence network and b) Physical
network, in genetic networks. Squares represent proteins and circles represent genes.

the two genes and hence include a link between them in an influence network,

without requiring information about the details of the interaction. The other type

of gene-interaction network (Figure 1.2b) is a physical interaction network and

these networks will contain nodes that represent other molecules as well as genes.

In this type of network, more information about how two genes are connected

is included. This information is usually represented by a common third node

(usually a protein). The non-gene nodes can be expressed as a direct link between

genes (Figure 1.2bi), or as an indirect link that influences the link between genes

(Figure 1.2bii). In physical networks, one can infer precise information, but they

also commonly require literature to support initial assumptions.

The interactions that occur within a cell are complicated and are therefore, by

nature, difficult to measure. Consequently, at the cell level, it can be difficult to

reconstruct and parameterise gene-networks, particularly on a large scale. This

means that many studies concentrate on specific genes or proteins and attempt

to reconstruct the individual pathways associated with the gene or protein in

question [Ogata et al., 1999]. Hoffmann et al. reported in 2004 that there are

already publications referencing over 30,000 different genes in PubMed [Hoffmann

and Valencia, 2004], suggesting that the volume of knowledge about specific genes

is incredibly vast. The challenge arises, therefore, not in being able to collect data,

but in being able to reconstruct gene-networks from this vast amount of data.

And furthermore, being able to validate reconstructed networks.
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Table 1.1. Definitions of biological terms used.(1.1)

Term Description

amino acid molecules (containing the elements Carbon, Hydrogen,

Oxygen and Nitrogen) that play a role as the building

blocks for proteins

antibody proteins found in the blood or other bodily fluids, used

by the immune system to identify and neutralise foreign

objects

antigen a molecule recognised by the immune system (usually as

an intruder) that binds to antibodies

autoantibody an antibody manufactured by the immune system that

is directed against one or more of the individuals own

proteins

cytokine small proteins secreted by cells in the immune system

that carry signals locally between cells

DNA a nucleic acid that contains genetic instructions used in

the functioning of living organisms

enzyme proteins that catalyse chemical reactions

gene a unit of hereditary in a living organism

genome all of an organism’s hereditary information

haemagglutin an antigenic protein involved in stimulating the produc-

tion of an antibody

ligand a short protein or small molecule that binds to a receptor

protein

lymphocyte a type of T-cell

messenger RNA a molecule of RNA encoding a chemical ‘blueprint ’ for

a protein product

metabolism the chemical processes occurring within a living cell or

organism that are necessary for the maintenance of life

neuramindase enzymes involved in splitting sialic acids into simpler

molecules

nucleic acid molecules that carry genetic information or form struc-

tures within cells

nucleotide molecules that join together to form the structural units

of RNA and DNA

Continued on next page
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Table 1.1 – continued from previous page

Term Description

protein

(or polypeptides)

organic compounds made up of amino acids. An es-

sential part of organisms, participating in almost every

process within cells

receptor protein a molecule in the cell membrane or cytoplasm, to which

signalling molecules may attach

RNA a molecule made from a chain of nucleotide units, tran-

scribed from DNA

sialic acid a group of acids to which proteins, found on the surface

of haemagglutin, may bind

synovia lubricating fluid secreted by membranes in joint cavities

T-cell

(or T-lymphocyte)

white blood cells that play a role in cell-mediated im-

munity

transcription factor a protein that binds to specific DNA, controlling the

transfer of genetic information from DNA to RNA

1.3 Introduction to population level biological

modelling

1.3.1 Interactions within a population

At the population level, disease models often describe the spread of infectious

diseases, dependent on the contacts made between individuals in a population.

At this level, we are primarily interested in being able to use analysis methods

to predict who might become infected with disease, when this might happen

and where and when intervention is likely to be both necessary and effective.

Contacts at the population level generally refer to the contacts made between

individuals or, in some cases, groups of individuals. In population level disease

modelling, every individual in the population can be classified by their disease

status. Typically, individuals are classed as susceptible to disease (S), infected

with disease (I) or recovered (sometimes referred to as removed) from disease (R).

In order to analyse the spread of disease in humans, individuals in a population
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are generally the modelling unit. In modelling the spread of disease in animals, it

may also make sense to consider a group of animals, in particular where animals

are kept in a closed, or enclosed space, such as a house or a farm, as the modelling

unit. This can also simplify the modelling of control measures for some animal

diseases, where movement restrictions of infected animals are applied to entire

holdings, irrespective of whether an individual animal on the farm is infected or

not.

1.3.2 Properties of population models

In population level models, the population can be considered as closed or open.

In a closed population, the population is restricted to a certain area, such as a

cage for animals, or an island for humans, for example. In this case, we generally

expect that the overall size of the population remains relatively constant and the

population cannot grow, through birth or immigration, or shrink, through death

or migration (as is the case in an open population, where the size of the population

is free to grow or decline). The assumption that a population is closed (a closed

model) is a desirable assumption to make when the change in the population size

is difficult to measure. In some cases closed models can include birth and death

rates [Mena-Lorcat and Hethcote, 1992] by assuming that the (closed) population

at the end of an interval is equal in size to the population at the beginning of the

interval plus the difference between births and deaths during the interval. The

way in which the population changes over time is then analysed.

The change of the disease status of individuals is described over a given time

period and the changes in the number of individuals in each group (S, I or R) is

described by the flow of individuals from one group to another. The rate of this

movement partially depends on the contact rate that infected individuals have

with susceptible individuals. The structure of the population can therefore have

a big affect on the likelihood of a disease reaching epidemic (the occurrence of

more cases of a disease, in a community or region, than would be expected during

a given time period - often caused by a sudden outbreak of a disease), endemic

(when disease is present in a community at all times, but in low frequency),

or pandemic (an epidemic that becomes very widespread and affects a whole

region, a continent, or the world) status. In a population where contact between

infected and susceptible individuals is random, predicting where a disease will

spread to is troublesome at least, making control measures difficult to implement.
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However, random mixing, referred to as mass-action mixing, in which an infected

individual is able to transmit infection with a small probability to all susceptible

individuals, has been made as an assumption in some relatively accurate models

[Keeling, 2005]. On the other hand it is also recognised [Keeling, 2005] that

diseases generally do not spread in this way and, in fact, a model that assumes

some (structured) network properties, in which infected individuals are more

likely to spread infection to a smaller number of susceptible individuals, may

be a more realistic assumption to make. In this case, we need to know how to

determine which individuals are more likely to be in contact with the infected

individual and then we can build a network based model.

1.3.3 Population level network models

The underlying network structure of a population influences not only the rate

at which a disease may spread, but also the final epidemic size. Christley et

al. show that in a random network (where the average number of connections

per individual is the same for all individuals and determined at random such

that there is no clustering in the network) initial spread of disease is slower, but

final epidemic size is larger than in networks that have a small world structure

(intuitively this indicates that most individuals are not neighbours of one another,

but most individuals can be reached from every other by a small number of

connections) [Christley et al., 2005]. Network structures have been shown to be

particularly relevant in understanding the spread of sexually transmitted diseases,

where the probability of spread of disease is based entirely on contact links that

occur between individuals as a result of their social tendencies [Mossong et al.,

2008,Liljeros et al., 2003].

The use of contact structures is also widely used in veterinary epidemiology,

where a common aim of modelling is investigation of control. It has been used in

the UK to investigate the potential for disease spread in animals such as cattle

and sheep [Kiss et al., 2006,Green et al., 2006], two industries that are worth a

significant amount of money to the British Government. Obtaining data for (non-

wild) animal movements is significantly more straight forward than obtaining

data for the movements of people and, for this reason, analysing networks of

disease spread between animals reared for agriculture may be attractive to the

network analyst. It can be argued that analysis of contact structures in animal

systems as a method for making suggestions about disease control is also of more
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practical use than attacking the same task in human contact structures, because

suggested control strategies, which often involve movement controls, are easier to

implement in farmed animals than in humans. In addition, diseases that affect

farmed animals may also be able to infect humans, such diseases include bovine

spongiform encephalopathy (mad cow disease), Salmonella and avian and swine

influenza viruses, to give only a few examples. Controlling these diseases at the

farm level will reduce the risk of the human population also becoming infected.

1.4 Objective of thesis

The primary objective of this thesis is to use a mathematical approach to improve

our understanding of diseases at multiple levels.

The economic burden that diseases can have on a society and the possibility of

reducing this burden by improving our understanding of how to control diseases

is evident. At the heart of understanding where to target control measures and,

later, determining the effectiveness of such control measures, is having an un-

derstanding of the interactions that occur between the point of reference of the

control and the rest of the population being studied. It is therefore attractive,

for both cell level and population level studies, to be able to build a network of

interactions that occur between points (genes, cells, individuals, or groups of in-

dividuals for example) that can be affected by disease. The use of such networks

-also referred to in this study as contact structures, in which there is a (usually)

physical interaction between subjects- to understand diseases is well referenced (a

PubMed search using the search terms network and analysis and disease (made

in June 2010) produced a list of 5649 articles), but a question that is not com-

monly asked is whether the same methods can be used in order to improve our

understanding of diseases at multiple levels. Certainly, no software exists that

can analyse all networks, and it is interesting to determine why this is the case.

In order to use network analysis methods to understand a disease at the molecu-

lar level, we are concerned with if, and how, the contacts or interactions between

genes in a cell can tell us something about a disease. Here, we want to be able to

use our analyses to understand how to prevent or control a disease with chemical

or perhaps physical intervention. At the other end of the spectrum, in order to

be able to use (potentially the same) network analysis methods to understand

the spread of disease between individuals, or even groups of individuals, it is ab-
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solutely necessary to be able to describe the population as a network of contacts,

where, most simply, links between individuals represent potential transmission

routes of disease.

A major strength of this thesis is the interdisciplinary approach that is adopted

to achieve both theoretical objectives and practical objectives. Theoretically

speaking, the objective of the thesis is to show that network analysis methods

are a powerful tool in improving our understanding of diseases, both at the cell

level and the population level. Practically speaking, the objective of the thesis is

to use such methods to give a valuable contribution to science, by building and

analysing networks that have not previously been analysed. In particular, two

diseases are considered. The first is that of RA. Here, a network of interactions

between molecules known to be involved in the disease is considered. The second

is that of avian influenza viruses (AIVs). In this case, a network of poultry farms

between which disease can transmit is analysed.

1.5 Rheumatoid arthritis - case study RA

Rheumatoid arthritis is the most common human systemic autoimmune dis-

ease [Jacq et al., 2007]. The disease, which has a typical age of onset of between

25 and 50 years, currently affects approximately 1% of the (human) population

worldwide, with this rate rising for the first time in 40 years. The disease is a

chronic disease that primarily affects the synovial1.1 tissue of joints, in partic-

ular those in the hands and the feet, causing inflammation and swelling over a

prolonged period of time [Arnett et al., 2005]. A complete loss of mobility and

functioning can be the final consequence of the disease [Schneider et al., 2008].

Treatment of the disease becomes less effective as the duration of the disease

increases [Anderson et al., 2001], causing the cost of treatment to potentially

increase with time. The increase in the number of confirmed cases of RA, as re-

ported at the American College of Rheumatology meeting in San Francisco (CA,

USA), could be due to one or more reasons: firstly, one might expect advances in

diagnostic tools to lead to earlier diagnosis and therefore an increase in confirmed

cases. The diagnosis of RA is however primarily based on clinical symptoms, so it

is difficult to diagnose at the very early stages of the diseases [Van Boekel et al.,

2001]. On the other hand, there is an increasing amount of data available that

can be used to help improve the diagnostic sensitivity of RA [Conrad et al., 2009]

so this hypothesis should not be dismissed. Secondly, it could be argued that the
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increase in expected lifespan [Michaud et al., 2009] is causing an increase in dis-

ease occurrence, as is the case with other diseases, such as cancer [Caruso et al.,

2006]. Thirdly, the increased number of confirmed cases could also be due to a

true increase in disease prevalence. Irrespective of the reasons for this increase,

the disease is gaining importance and is attracting the funding of governing bod-

ies. Under the European Union Seventh Framework Programme, a total of 14

projects that involve research into RA or related diseases [European Commission

- CORDIS, 2010] are being funded. In GB, the National Rheumatoid Arthritis

Society (NRAS) estimates the economic burden of the disease to be close to £8

billion per year, though they also claim that the National Health Service covers

only 9% of this cost and the actual economic burden is some 12 times more than

the investment that the UK taxpayer makes in treating the condition [National

Rheumatoid Arthritis Society, 2010]. Lundkvist et al. estimated that in 2007

the disease cost an average of €13,463 per patient per year in Europe (€16,502

on average per patient per year in UK) [Lundkvist et al., 2008], adding up to an

estimated total cost of €45.3billion per year in Europe.

The disease itself dates back several thousand years to Native America, though

may not have appeared in Europe until the 17th century [Firestein, 2003]. Al-

though the condition has been around for a long time, only more recently have

we been able to gain a better understanding of the disease at a molecular level. In

1939Waaler observed the ‘rheumatoid factor’ [Firestein, 2003], an autoantibody1.1

usually present in the serum of people affected with RA, as a clue that self-

reactivity plays a key role in the condition. Although still incomplete today,

before the introduction of advanced molecular immunology techniques, our un-

derstanding of diseases such as RA and indeed of the interactions that occur

between molecules in the cell, was more limited. Nowadays such technologies can

help to begin to answer questions such as ‘who is at risk of RA?’, and more spe-

cific molecular-biology questions such as ‘how do inflammatory cells accumulate

in the affected tissues?’, ‘what do T-cells1.1 (a group of white blood cells known

as lymphocytes1.1, which play a central role in cell-mediated immunity) do in the

synovium?’ and ‘do cells in the synovium affect tissue destruction?’ [Smith and

Haynes, 2002].

Figure 1.3 gives a simple picture of a joint affected with RA, compared to a

normal joint. In this figure, the swelling in the affected joint is caused by the

production of protein mediators, called cytokines1.1, which cause inflammation

and attract other immune cells to the site. The increase in immune cells to the
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Figure 1.3. Image to show the difference between a normal joint and a joint affected
with RA.

In an infected joint (right), the protective capsule, filled with synovial fluid, that
surrounds a joint, becomes inflamed. As disease progresses, the inflamed syn-
ovium invades and damages cartilage and bone of the joint. This causes a weak-
ening of surrounding ligaments, tendons and muscle, resulting in redness, swelling
and pain. (Image freely available at [National Institutes of Health, 2010].)

site causes the activation of cells around the joint, leading to excess production

of synovial fluid [Smith and Haynes, 2002]. T-cells that are able to pass through

the cell lining of the blood vessels pass into the synovial tissue. As a consequence,

the T-cells are able to interact with cells in the synovial tissue and produce the

cytokines. In RA, the process also leads to the production of the aforementioned

rheumatoid factor.

Specific RA associated genes have been identified and these genes are believed

to contribute not only to the likelihood of developing disease, but also to the

severity of disease. Given that the disease affects a high number of individuals

and because it can be diagnosed via a blood test, which is easy to obtain from a

patient with the condition, data on the disease is plentiful (compared to diseases

that are rarer and/or where confirmation of disease requires more complicated

procedures). Furthermore, there is currently no cure for the disease and current

treatments can have undesirable side effects, meaning that the potential identifi-

cation of new drug targets is an area of research, and one that can be enhanced

by network modelling. In addition to this, the literature is rich with information

about the disease, from the genetic level to the diagnostic and treatment level,

making it an attractive disease for the cell level case study in this thesis.
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1.6 Avian influenza viruses - case study AIV

Viruses are in fact very simple, small infectious agents that contain only pro-

teins, nucleic acid (in the form of DNA or RNA, which contains a set of genetic

instructions for the virus) and a membrane. They do not contain the chemical

machinery that they need to replicate and it is for this reason that they must

attach themselves to cells in order to replicate. At the cell level, a virus uses

proteins to attach itself to a host cell, it then uses the cell’s chemical machinery

to replicate itself. Once replicated to a sufficient level, the virus leaves the cell

by either destroying the cell completely, or taking part of the cell membrane. In

both cases, the cell is damaged and the virus is free to attack new cells. The virus

attacks different types of cells according to it’s type; some attack only respiratory

cells (common influenza viruses, including avian influenza) whereas others, such

as the AIDS virus, attack immune cells, for example.

Avian influenza viruses were first described in the late nineteenth century by

Perroncito [Suarez and Schultz-Cherry, 2000]. AIVs are highly contagious viral

infections that can affect avian species as well as other species such as pigs, cats

and humans. In birds, only the Type A influenza viruses are found. Whilst all

birds can become infected with the virus, some do not show any signs and as

a result can act as reservoirs for the disease, carrying the disease and spreading

it between flocks. In poultry, wildfowl (ducks and geese) tend to be disease

carriers [Alexander, 1995], whereas other domestic poultry tend to show signs

of disease, such as a drop in egg production, ruffled feathers and effects on the

respiratory system. The severity of the signs depends on the host species and the

virus strain. With some virulent strains of the virus, mortality can occur within

48 hours of contraction of the virus [WHO, 2010a].

Type A influenza viruses are classified by the antigenic1.1 relationships in the

haemagglutinin1.1 (H), an antigenic protein (involved in stimulating the produc-

tion of an antibody, used by the immune system to identify and neutralise foreign

objects) on the surface of the virus and neuraminidase1.1 (N) [Alexander, 1995],

enzymes involved in cleaving (splitting complex molecules into simpler molecules)

sialic acids1.1, important for influenza virus to be able to mix with blood cells.

Basically, type A influenza viruses work by manipulating the cell machinery to

replicate themselves. The replicated viruses then attach themselves to the host-

cell surface by binding between haemagglutin and sialic acid. Neuraminidase

cleaves the sialic acid molecule, thereby freeing the virus to infect other cells
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in the host organism [Encyclopædia Britannica, 2010]. Antibodies against neu-

raminidase that are generated by the host’s immune system bind to the neu-

raminidase and target the virus particles for immune destruction. The genes

encoding the neuraminidases of influenza viruses are highly susceptible to genetic

mutations and the emergence of a new neuraminidase enables an influenza virus

to escape immune recognition. Genetic alterations are of concern as they can lead

to new epidemics or pandemics. There are, at present, 15 H-types and 9 N-types

that have been isolated from avian species [Alexander, 2000]. The AIV contain

ten viral proteins, three of which are surface proteins. The surface proteins are

important as they are the proteins that are able to neutralize antibodies, hence

affecting the biological function of the host cell. The main functions of the H-type

proteins are to act as the virus receptor binding site (see Figure 1.1) and to assist

in the release of RNA into the host cell. The H5 AIV type is able to attach itself

to a number of different sites, resulting in the neutralization of antibodies. The

N-type protein is thought to be important in helping the virus to release itself

from the cell surface, as well as, in chickens, also being involved in activating the

production of neutralizing antibodies [Suarez and Schultz-Cherry, 2000].

The most severe forms of AIV are caused by highly pathogenic viruses (HPAI)

and are restricted to the H5 and H7 subtypes (although the WHO reports that

most strains of the virus are thought to have the potential to become highly

pathogenic [WHO, 2010a]). Whereas most forms of low-pathogenic AIV (LPAI)

are replicated locally and therefore cause local infection, high-pathogenic strains

(HPAI) are replicated at the systemic level [Suarez and Schultz-Cherry, 2000].

The ability of the highly-pathogenic virus to activate the production of neutral-

ising antibodies, and to be able to fix itself to more than one site at the systemic

level, makes it particularly virulent. Although LPAI strains have a lower mor-

tality rate, this renders them harder to detect, increasing the chances of silent

spread. Furthermore, the H5 and H7 subtypes of LPAI have the ability to mutate

into high-pathogenic strains as seen in 1999 in Italy, when H7N1 mutated from

LPAI to HPAI [Mannelli et al., 2006].

Here, we will concern ourselves with the HPAI forms of the virus, as these cause

the most devastating effects to industry. The H5 subtype is of most concern

from a human health perspective as this is the subtype that has most frequently

crossed the species barrier from birds to humans. The fear is that the virus

will eventually mutate itself to suit the human host more than the avian host,

resulting in the potential for a human pandemic.
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In poultry, the H5N1 strain has been reported world-wide. The Asian lineage

highly pathogenic H5N1 AIV was first detected in China in 1996 [Xu et al., 1999]

and has since been detected across the globe, from other Asian countries to Africa

and Europe, with an H5N1 virus appearing in GB in 2007 [Irvine et al., 2007].

In 1999-2000 and in 2003, large outbreaks of H7 sub-type of AIV led to the

infection and culling of hundreds of flocks of birds in Italy and the Netherlands

respectively [Mannelli et al., 2006,Stegeman et al., 2004]. Given the location and

size of outbreaks since 1996, one can conclude that the virus has the ability to

transmit over large distances and that large outbreaks of the virus are possible.

At the population level, AIV are transmitted between flocks not only by the

movement of infected birds, but also by the transportation of infected faeces on

vehicles, clothing or boots, for example. This makes the movements of people be-

tween flocks a potential transmission route for the disease, implying that it would

be worth strengthening movement restrictions to prevent spread as a key strategy

for disease control. Current control measures for AIV involve both prevention and

eradication techniques. Vaccination of birds has been shown to be an effective

control measure [Ellis et al., 2004] but vaccination is not always favourable as

available vaccines cannot match all virus strains. Eradication techniques gener-

ally involve the culling and disposal of infected birds, but where the number of

infected birds is high, methodical control is necessary in order to effectively and

efficiently eradicate the virus.

1.7 Outline of thesis

The focus of this thesis can be separated into the analysis of a cell based network

and the analysis of a population based network. At the cell level, network anal-

ysis methods are used to analyse a static network that describes the molecular

interactions that occur between molecules known to be associated with RA in

humans. At the population level, the network of poultry farms in GB, over which

AIV may spread, is analysed. Although RA in humans and AIV in poultry can

be considered as two very different case studies, the contact structures that are

built for both diseases are analysed using common network parameters, showing

the power of using contact structures and their analysis in disease control.

Chapter 2 aims to determine an appropriate analytical method to describe the

dynamic properties of disease contact structures, at both the population and
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cell levels. In particular, and after an introduction to the subject of disease

modelling, the spread of AIV is described using a simple ordinary differential

equation model. Starting with this simple model, parameterisation of the model

is briefly discussed and an analysis of the model presented. It is concluded that

when the model is extended beyond a simple case, it becomes intractable. For

the cell level model, methods typically used for reconstruction of gene-networks

from data are introduced. The limitations of these methods are also discussed

and an alternative method, based on differential equations, is presented. Based

on the differential equation models for both case studies, the alternative network

approach is proposed.

Chapter 3 and Chapter 4 introduce network theory and analysis. In Chapter

3 both cell and population level networks are discussed and the use of network

analysis in disease control is reviewed. At the end of Chapter 3, the main gaps in

the research (at the cell and population levels) are highlighted. Chapter 4 then

concentrates more heavily on network theory, giving a brief history of network

theory and analysis and, in order to show the diversity of the field, examples of

different types of networks. A more detailed description of how network analysis

methods are used at the cell level and in epidemiology (i.e. the study of diseases in

the body and in a population) is also given in Chapter 4. Following this, different

network structures are presented and network properties that are considered in

this thesis are described in detail, with definitions of how links are represented in

the networks studied as well as the mathematical formulae that are used in this

study to extract information from the networks.

In Chapters 5 and 6, the network of (known) molecular interactions involved

in RA is presented. In Chapter 5, a brief review and some further arguments

as to why we are interested in understanding RA are given. Methods for data

collection for the interaction network and a detailed description of how the map

is analysed are presented. The network is analysed as a whole and the most

important results are investigated using a simulation model. In Chapter 6, the

network is decomposed into topologically relevant submaps. The network is also

broken down by tissue type so that the topological difference between different

tissues involved in the diseases can be determined. In particular, two blood,

one cartilage and two synovial tissue networks are reconstructed from the data.

Those submaps that are considered large enough are analysed and the results,

along with their biological relevance, are presented. The chapter ends with a

discussion, in which areas for future research are identified.
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In Chapters 7, 8 and 9, the population level contact structures are explored. In

Chapter 7, a static approach is adopted. In this chapter, the network of links

between poultry farms in GB, over which AIV may transmit is analysed. The

chapter begins with a description of the poultry industry in GB, along with

further arguments as to why it is of benefit to study AIV in poultry. Topological

parameters for the network are estimated and variation of these is considered in

an attempt to determine the likely affect of control measures on virus spread over

the network. The results of the chapter are used to make suggestions as to where

to target control, as well as to identify areas where the work could be improved

and where further data collection is necessary.

Chapters 8 and 9 introduce time as a parameter into the network. In Chapter 8,

new data that have been collected for the study are presented and a descriptive

analysis of the data is given. The data describe the movements of people and

vehicles between a sample of poultry premises in GB. The descriptive analysis

investigates the frequency with which movements occur between premises and

looks for patterns between the frequency of movements and farm size. Based

on the conclusions drawn from previous chapters, the distance between premises

linked by these movements is also investigated. In Chapter 9, a simulation model

approach is taken in order to improve the robustness of the results presented in the

static network analysis in Chapter 7. This simulation model describes how AIV

might spread between farms, given information about the frequency of contacts

between farms. The effect that different potential routes of transmission have

on both the probability that an outbreak will spread to multiple farms, and the

overall size of an outbreak are investigated. The chapter ends with a discussion

and further conclusions about how best to control the disease.

The final chapter, Chapter 10, summarises the work presented. In this chapter,

the key-findings are highlighted and areas for future research are presented.
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Chapter 2

Differential equation models at

the population and cell level

2.1 An introduction to disease modelling

The aim of this Chapter is to investigate the use of analytical models, particularly

differential equation models, in the modelling of both population and cell level

structures.

2.1.1 History of disease modelling

Epidemiology is the study of the causes, distribution and control of disease in

populations. Although it might be considered a branch of medicine, epidemiol-

ogy can also be considered a branch of mathematics. Epidemiology as a concept

possibly dates back to the fifth century BC, when Hippocrates provided descrip-

tions of cases in order to try to understand the occurrence of disease. It was not

until the 1600s that quantitative methods were used by John Graunt to analyse

epidemiological data [Rothman, 2007]. E. Halley (1656 - 1742) then invented

empirical life tables whilst, in a similar period, mathematical tools were devel-

oped in France to deal with chance events and probabilities; the kind of data

observed in epidemiology [Olsen et al., 2010]. In 1838, William Farr introduced

a national system of recording death in GB, which provided a wealth of data

for analysis and development of techniques [Olsen et al., 2010]. It was in this

period that the influence of great mathematicians in the field of epidemiology
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was strongly felt for the first time. In the late 18th and early 19th century Pierre

Louis introduced the ‘numerical method’ (perhaps today referred to as ‘evidence

based’) in medicine and produced statistical evidence that the then widespread

practice of bloodletting was virtually ineffective and even dangerous. From here

on, the number of scientific articles referring to quantitative study of medical

phenomena increased dramatically [Buck, 1988]. Surprisingly though, no text

specifically relating to methodologies applied to epidemiology was available until

1960 [MacMahon et al., 1960].

Alongside numerical methods that have been developed to analyse epidemiological

data, other branches of mathematics are applied in epidemiology to predict how

disease might spread in the future in order to determine the expected health

status of a population at a given moment in time. This type of mathematical

modelling of diseases, both infectious and non-infectious, is heavily reliant on an

application of calculus and, in particular, differential equations.

Newton invented differential equations in the mid 1600’s in order to describe

physical phenomena, including the movement of particles through time (though

there is some argument that Leibniz also developed his own form of calculus

independently and at the same time as Newton [Bardi, 2007]). Newton’s famous

three laws of motion can be used to model the movement of a mass in space, under

certain assumptions regarding the force acting upon the mass. By calculating

the motion of the Earth around the Sun, Newton succeeded in solving the two-

body problem, which describes the movement of two bodies, moving together

(perhaps relating to the relationship between a susceptible individual and an

infected individual in epidemiology). After years of trying to solve the three

body problem (calculating the motion of three bodies, moving together, such

as the Sun, Earth and its moon, or the movement of multiple individuals in

a population), it was eventually realised that it was not possible to solve this

problem analytically. In the late 1800’s Poincaré suggested viewing the system

qualitatively rather than quantitatively, by considering the long-term state of the

system and asking if the system would be stable forever, or if the planets would

one day fly off to infinity [Milnor, 2003]. The geometric approach, developed

by Poincaré, is a powerful way of understanding how systems behave over time

and how one might be able to gain an understanding of complicated (although

sometimes apparently simple) systems that cannot be solved analytically. The

evolution of an epidemic can be considered in a similar way if we concern ourselves

with the long term health status of a population by considering how individuals

23



move from one health status to another. Will the population stay stable forever,

or will disease eventually drive the population to extinction?

A simple model of the evolution of an epidemic was proposed by Kermack and

McKendrick in 1927 [Kermack, 1927]. Kermack and McKendrick gave the differ-

ential equations for a deterministic general epidemic, which describes the number

of people infected with a contagious illness in a closed population over time.

Although they may have pioneered the use of differential equations in the field

of epidemiology, their model assumes that the population size is fixed, with no

birth or death rates due to disease or natural causes. Despite this, the ability to

describe populations over time has many uses and can aid our understanding of

epidemiological problems.

2.2 Differential equation models

For both population level and cell level modelling, differential equation models,

which generally describe the evolution of systems over continuous time, have been

used to describe the dynamics of diseases. (Difference equations, which apply

to systems in discrete time and are less widely used in science and engineering

are not discussed here. Further information about difference equations can be

found at [Agarwal, 2000].) As previously mentioned, differential equation models

are common in epidemiological modelling of infectious diseases [Anderson and

May, 1992] and, interestingly, differential equations are the now preferred way

of modelling interactions at the cell level [Chen et al., 1999]. A question that

thus arises is whether or not the same type of differential equation model can be

used to describe interactions that can be associated with a disease at both the

population level and the cell level.

Whilst the use of differential equations to model interactions at the cell level is

relatively new (driven by the fact that microarray experiments, which are heavily

used in analysis of gene interactions, are themselves relatively new), in epidemi-

ology, they have been used for many years [Kermack, 1927] and are therefore well

cited and well understood. In epidemiology, the basic SIR model previously men-

tioned is still used as a base for modelling most epidemiological systems (when a

differential equation model is used). In general, these models concentrate on sin-

gle nodes in the system and they lack an underlying structure to the system. Such

models are referred to as ‘mean-field’ models. Pair-level models, which assume
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a spatial structure such that transmission between pairs of neighbouring nodes

is more likely than between non-neighbouring nodes, have also been developed,

for both symmetric and asymmetric structures [Sharkey et al., 2006]. Pair-level

models have also been used to determine how a genetic disease might spread in a

population [Payne and Eppstein, 2009]. Determining what makes two neighbours

‘close’ in a pair-level model is dependent on the system being modelled. At the

population level, this might be determined by geographic distance between indi-

viduals, for example. In a cell, genes might be considered to be neighbours if they

have a similar function, or if there is a known direct interaction between them.

Here, only simple differential equation models are considered as a first step to

understanding the systems of interest.

Given a set of differential equations, which specify the dynamics of a system,

one may first attempt to solve the system analytically. At the cell level, the

solution to a set of differential equations that describe the interactions between

molecules known to be related to a disease would tell us the expression level of any

molecule, at any time point and usually after some perturbation, which may have

been induced by the introduction of a specific drug, for example, as a treatment

for disease [Jackson and Byrne, 2000]. Epidemiologically speaking, an analytical

solution would be used to inform us of the number of infected units (the number

of infected farms in a population, for example) at any given time point during an

epidemic.

Unfortunately, systems that are non-linear (that is they do not satisfy the su-

perposition principle [Weisstein, 2010], which states that the net response at a

given place and time caused by two or more stimuli is the sum of the responses

which would have been caused by each stimulus individually e.g.F (x1 + x2) =

F (x1)+F (x2)), or that are in multiple dimensions, can be difficult, or impossible

to solve analytically. They can, however, be understood by considering properties

of the system, such as stability of fixed points, as is commonly practised.

2.3 Properties of differential equation models

2.3.1 Identification of fixed points

Beginning with a simple case, let us first consider the 2-dimensional linear system,

described by Equations (2.1).

25



x′ = ax+ by, y′ = cx+ dy (2.1)

This system can be written in the matricial form shown in Equation (2.2):

X ′ = AX =

(

∂x′

∂x
∂x′

∂y
∂y′

∂x

∂y′

∂y

)(

x

y

)

=

(

a b

c d

)(

x

y

)

=

(

x′

y′

)

(2.2)

In this system, A is the Jacobian matrix of the system. The Jacobian matrix is

the matrix of all first-order partial derivatives of the vector-valued functions (in

this case x′ and y′) that describe the system. Whilst the first step to solving the

system is to try to solve the system analytically (that is, treat the set of differential

equations as a set of simultaneous equations and solve the set of simultaneous

equations for all variables, with respect to time), when this is not possible, we

look at the system in equilibrium and investigate its behaviour close to this state.

In this way we can gain a sufficient understanding of the dynamics of the system

over time, without having to concern ourselves with the exact state of the system

at all time points. This means that we can hypothesise at the population level

whether an epidemic will die out over time or drive a population to extinction or,

at the cell level, if the expression level of certain genes are likely to change over

time or remain relatively stable in response to a drug, for example. The equilibria

(or fixed points) of a system occur when the differential equations describing the

dynamics of the system over time are equal to zero.

2.3.2 Classification and stability of fixed points

The stability of a system at equilibrium can be determined by imagining a vector

field close to the equilibrium point. An equilibrium point is stable if slight pertur-

bations made sufficiently close to the point are damped out in time. That is to say

that we want to determine if, when we move slightly away from the equilibrium

point, the vector field moves towards the equilibrium point (implying stability)

or away from the point (implying that the equilibrium point is unstable). If we

assume that an equilibrium point occurs at (x, y) = x∗, then we can determine the

stability by considering the value of the differential equation x′ = f (x) around

the point.

Consider Figure 2.1. In linear systems, equilibrium points are classified into one
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Figure 2.1. Possible classification states of equilibrium points at (x′ = 0, y′ = 0). (a)
saddle (b) node (c) degenerate node (d) star (e) spiral (f) centre.

of six possible states as shown in the figure. For some positive (x, y) = a, when

f (x∗ + a) < 0, the system is moving towards the equilibrium point and the point

is said to be stable and when f (x∗ + a) > 0, the system is moving away from the

equilibrium point and the point is unstable. In some special cases, the equilibrium

point is neither stable nor unstable. When this occurs, the point is a saddle-node

or a centre.

As well as being concerned with whether or not a point is stable or unstable, we

are also concerned with the angle at which the particle is moving toward, or away

from, the fixed point. That is to ask in which direction the fixed point is being

pulled with the most force.

When determining the stability of fixed points, we are, in general, searching for

solutions to the system that are in the form
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x(t) = c1v1e
λ1t + c2v2e

λ2t (2.3)

Where vi are eigenvectors such that for eiganvalue λi, (A− λiI) vi = 0.

The eigenvectors tell us which direction the particle is travelling in and the eigen-

values tell us the type of fixed point and its stability. The eigenvalues can be

determined by finding the solution of the determinant of (A − λIn) = 0 (∆).

Where A is as described in Equation (2.2). Given the trace (τ) and determinant

(∆) (see Equation (2.4)), the solutions, or fixed points, occur at the solutions (λ)

to the characteristic equation, shown in Equation (2.5).

τ = trace(A) = a+ d,∆ = determinant(A) = ad− bc (2.4)

λ =
τ ±
√
τ 2 − 4∆

2
(2.5)

0

nodes

nodes

line of fixed points

spirals

spirals

τ

centres

τ2 − 4∆

Stable

Unstable

∆

degenerate 
nodes or stars

0
saddles

Figure 2.2. Determining the stability of fixed points using the characteristic
equation τ

2 − 4∆.

The stability of the solution can be determined by considering the characteristic

equation τ 2 − 4∆ as shown in Figure 2.2 [Strogatz, 2000].

2.3.3 Nullclines

As well as identifying and determining the stability of the fixed point, we also

want to know what the system looks like away from the fixed point. If the fixed
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point is a saddle, for which initial conditions do trajectories tend towards the

saddle point and for which initial conditions do trajectories point away from

the saddle? Furthermore, if there are multiple fixed points in the system, when

does a trajectory tend toward one fixed point and when does it tend towards

another? We begin by plotting nullclines in the system. Nullclines, which are

encountered in 2-dimensional systems, are curves along which the vector field is

either completely horizontal or completely vertical. They provide a boundary

between regions where x′ and y′ switch signs. Nullclines can be found by setting

x′ = 0 and y′ = 0. The intersections between x and y nullclines are equilibrium

points and thus finding nullclines can be a useful way to identify such points. We

then need to be able to say something about what happens between the nullclines

and the fixed points. By combining all the information that we have about the

fixed point, its stability, the eigenvectors and the nullclines, we can sketch the

dynamics of the system by sketching trajectories of flow for different starting

points within the system.

2.4 Differential equation model for AIV in GB

poultry farms

A simple differential equation model was constructed in order to determine how

AIV might spread within a population of farms in GB. In this model, farms were

grouped according to their infectious status, such that farms can be classed as in-

fected (in which birds on the farm are infected with AIV), susceptible to infection

or immune to infection (this would occur if farms were vaccinated against dis-

ease or if they were removed from the population through culling, for example).

A SIR model was used in order to describe the number of infected farms over

time. This model describes the rate of change of the population by considering

the movement of the population between three different classes: the susceptible

population (S), the infected population (I) and the removed population (R). As

the aim of the model is to describe how disease might spread between farms, it

seemed intuitive to begin by assuming that the population of interest was made

up of N poultry farms, where N = S+I+R. It was assumed that the system was

closed because we would not expect the number of poultry farms to change much,

if at all, during the course of a potential AIV outbreak. For simplicity, homoge-

nous mixing was initially assumed. The assumption of homogenous mixing is the

equivalent to assuming that for all farms, infected material from one farm was
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equally likely to come into contact with material from any other farm. Assum-

ing homogeneous mixing, farms move between classes as described by Equations

(2.6) to (2.8). Because the system is a closed system, the rate equation for the

removed population (Equation (2.8)) gives no further information than Equations

(2.6) and (2.7) combined. It is however shown here for completeness.

dS

dt
= S (−βII − ωS + αS) (2.6)

dI

dt
= I (βIS − ωI) (2.7)

dR

dt
= (ωS − αS)S + ωII (2.8)

In this model, farms move out of the Susceptible population either because the

birds on the farm are sent to slaughter (at a rate ωS) and the farm is closed for

cleaning and disinfecting, or by becoming infected with disease, the rate at which

is based on density independent strong homogeneous mixing. A ‘birth’ rate of αS

is assumed, which is the equivalent to a farm being repopulated once birds have

been sent to slaughter or have been removed due to disease. Farms can enter

the Infected class only from the class of susceptible birds. It is assumed that

farms are removed from the infected population at a ‘death’ rate ωI . It is also

assumed that there is no recovery (of birds on a farm) from AIV. This results in

farms being removed from the population either by planned slaughter from the

susceptible class, or by death from disease, as described by the removed class.

Due to the fact that, in this model, the population size was assumed to remain

constant, a mass-action model was assumed. In this case, the probability of

a contact occurring between infected and susceptible farms is independent of

the population size. Although it is more common to assume mass-action for

human diseases (than for plant and animal diseases), as the number of close

contacts an individual has is likely to be determined (and more or less fixed)

by social constraints, this model described individual farms and not individual

birds, meaning that transmission is dependent not on the density of birds, but

on the movements of people and birds between farms. Such movements will be

determined by the production cycles of farms and not by the number of farms.

On the other hand, it could be argued that if the density of farms is high, then

there is less distance between farms and more farms can be visited in a given time
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period, increasing the probability of a human visiting an infected farm and then a

susceptible farm consecutively and hence pseudo mass-action (where transmission

is dependent on farm density) could be assumed. It can also be argued that

if disease can be transmitted between two farms by airborne transmission, the

density of farms becomes important. However, assuming a pseudo mass-action

model only makes sense if the population is not closed. Another alternative,

therefore, could be to adopt the aforementioned pair-level approach, in which

farms that are geographically close are more likely to infect each other. However,

geographic location and hence travel time between farms were not accounted for

in this model.

As the population size was assumed to be constant (the number of farms does

not change over time), the birth rate (αS) of a farm can be interpreted as the

restocking rate. It was assumed that the state of the population can be measured

on a daily basis, so that if farms are restocked m weeks (n.b. production cycle

length is usually estimated in weeks, rather than days) after they have been

depopulated, then we can assume a restocking rate of a farm with no birds on it

to enter the susceptible class, on average once every m weeks, so that αS = 1/7m

per day.

It was assumed that once a farm has become infected it could become susceptible

again during the course of the epidemic (this would occur through replacing

removed birds with new, healthy birds, not via the recovery of infected birds).

The effect that restocking previously infected farms has on the results could be

considered by increasing αS (by decreasing m) to represent an increased birth

rate of susceptible farms due to restocking after depopulation of infected farms.

The death rate from the susceptible population (ωS) refers to when the entire

farm is depopulated. In this way an empty farm is classed as removed as no

birds exist on the farm and therefore the farm cannot become infected. This

parameter is determined by the production cycle of the susceptible farms, such

that a farm that has a production cycle of n weeks had a depopulation rate

of ωS = 1/7n. Generally speaking, the length of time a farm has birds on it

will exceed the amount of time a farm spends with no birds (when it is being

cleaned between cycles), implying that αS is typically larger than ωS. The death

rate from disease, ωI , was assumed to be higher than death by depopulation, as

we would expect AIV to be discovered within a few days of clinical signs being

shown. The incubation period of the disease and the probability of clinical signs

will affect this parameter but it can be assumed for highly pathogenic strains of
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AIV that disease is detected within a few days of initial infection [Sharkey et al.,

2008,Pantin-Jackwood et al., 2007].

Whilst the above re-population rates can be estimated from data that can be

obtained from the industry, disease parameters, such as transmission (βI) and

death rates (ω’s), would ideally be estimated from good quality outbreak data.

However, there is not sufficient AIV outbreak data available for GB and data

taken from other countries to estimate the number of susceptible individuals

that an infected individual is expected to infect (the basic reproductive ratio,

R0) cannot necessarily be used to estimate transmission rates for GB, due to

differences in industry structure, for example. In the absence of outbreak data,

death rates and some transmission parameters may be determined experimentally,

but this can be costly and time consuming and is, in this case, beyond the scope

of this thesis. With this in mind, rather than estimate the size of parameters such

as βI from other data sources at this stage, it was assumed that this parameter

is positive and the dynamics of the system were considered from an analytical

point of view only.

2.4.1 Analysis of the SIR model

This is a non-linear system that cannot be solved analytically and thus it is

investigated using stability analysis.

Finding nullclines and fixed points of the SIR model

By setting each of the differential equations to zero, the nullclines of the system

are characterised by Equations (2.9) and (2.10).

.

S = 0⇒ S (−βII − ωS + αS) = 0 (2.9)

.

I = 0⇒ I (βIS − ωI) = 0 (2.10)

Equation (2.9) has two solutions (2.11);

either S = 0, or I =
αS − ωS

βI

(2.11)
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Similarly, Equation 2.10 has two solutions (2.12);

either I = 0, or S =
ωI

βI

(2.12)

The alternative conditions imposed by the solutions to Equation (2.9) on the S

nullcline give two cases to work through. Firstly, considering the case in which

S = 0, the I nullcline (Equation (2.10)) gives the condition described in Equation

(2.13).

I (−ωI) = 0⇒ I = 0 (2.13)

In the case of I = αS−ωS

βI
, the I nullcline gives the condition described in (2.14).

αS − ωS

βI

(βIS − ωI) = 0⇒ S =
ωI

βI

(2.14)

So there are fixed (equilibrium) points at (2.15).

(S∗, I∗) = (0, 0) and (S∗, I∗) =

(

ωI

βI

,
αS − ωS

βI

)

(2.15)

The first fixed point is always realisable and implies an extinct population. The

second fixed point is only realisable in certain regions of the parameter space. The

conditions necessary for the fixed point to exist are given in Equations (2.16).

αS − ωS

βI

≥ 0

ωI

βI

≥ 0 (2.16)

βI 6= 0

As βI 6= 0 and there is no negative transmission, it is therefore sufficient that

αS ≥ ωS, ωI ≥ 0 and βI > 0 for the fixed point to exist. For the fixed point to

be non-zero, it must also be true that either ωI > 0 or αS > ωS.
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Stability of fixed points

The stability of fixed points is determined by the Jacobian of the system of

differential equations, given in (2.17).

J =

(

−βII − ωS + αS −βIS

βII βIS − ωI

)

(2.17)

Complete extinction

The Jacobian evaluated at the fixed point (S∗, I∗) = (0, 0) is given in (2.18).

J(0,0) =

(

αS − ωS 0

0 −ωI

)

(2.18)

The eigenvalues of this fixed point are the elements along the diagonal, so that

λ1 = αS − ωS and λ2 = −ωI . Using Figure 2.2 for reference, we see that when

ωS > αS, the fixed point is a stable node, when ωS < αS, the fixed point is a

saddle and when ωS = αS, there is a line of fixed points. Given that αS ≥ ωS

for the second fixed point to be realisable, let us consider the system under this

condition.

In order to find the eigenvectors of the first fixed point, we must solve J(0,0)v = λv.

When λ = αS − ωS, then Equation (2.19) holds.

(

αS − ωS 0

0 −ωI

)

v = (αS − ωS) v ⇒ v =

(

1

0

)

(2.19)

When λ = −ωI , then Equation (2.20) holds.

(

αS − ωS 0

0 −ωI

)

v = (−ωI) v ⇒ v =

(

0

1

)

(2.20)

The dominant eigenvalue is that with the largest absolute value and is therefore

dependent on the parameters.
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A population of infected and susceptible farms

The second fixed point occurs at equilibrium between infected and susceptible

farms. This fixed point occurs at Equation (2.21), the Jacobian of which is

evaluated at (2.22).

(S∗, I∗) =

(

ωI

βI

,
αS − ωS

βI

)

(2.21)

(

0 −ωI

αS − ωS 0

)

(2.22)

In order to find the eigenvalues, we need to find the solutions to the characteristic

equation previously defined in (2.5), that is when

λ = 0±
√

02 + 4ωI (αS − ωS) (2.23)

The stability of a fixed point is determined by the sign of the real part of the

eigenvalues. As αS ≥ ωS for the fixed point to be realisable, ∆ ≥ 0 and λ1, λ2 ∈ C

with zero real part when αS 6= ωS. This implies that, under this condition, the

fixed point is a centre. If αS = ωS, then ∆ = 0 and there is therefore a line of

fixed points at S = 0.

Assuming that αS > ωS implies that the rate at which farms are restocked with

birds is faster than the rate at which healthy farms are removed from the pop-

ulation by sending all birds to slaughter i.e. the number of weeks with no birds

on a farm (m) is less than the number of weeks with birds on a farm (n). This

assumption is reasonable as it was assumed that all farms were restocked irrespec-

tive of whether or not they have been temporarily removed from the population

by infection or by natural death. As we have assumed a constant population, we

would in fact expect αS ≈ ωS +ωI , so that the birth rate and death rates equate.

Figure 2.3 shows nullclines for the system in which there exists a population of

infected and susceptible farms, and where αS > ωS. The figure does not show the

exact numerical solution for the system, but rather shows the lines for the fixed

points, under the above assumptions, and the direction that the system moves in

close to these lines. In this figure, it was assumed that the death rate of infected

farms (ωI) and the transmission rate of disease from infected to susceptible farms
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(βI) are positive. This means that the vertical orange line, given by S = ωI/βI ,

is always positive and hence to the right of the S = 0 line. Further, under

the assumption that αS > ωS, the horizontal grey line, representing the line

I = (αS − ωS) /βI is also always positive and therefore lies above the I = 0

line. The fixed points of the system lie where these lines cross. Under these

assumptions, the figure shows that when S < ωI/βI then
.

I < 0 for I > 0 and,

when S > ωI/βI then
.

I > 0 for I > 0. When I > (αS − ωS) /βI , then
.

S < 0 for

S > 0 and, when I < (αS − ωS) /βI , then
.

S > 0 for S > 0.

Given the above information, trajectories for the system are drawn (Figure 2.4)

under the same assumptions to show that the fixed point at (S∗, I∗) =
(

ωI

βI
, αS−ωS

βI

)

(Equation (2.21)) is a centre. The direction that the systems moves in, in different

areas of the plane, is shown by the grey arrows (the length of the arrow represents

the relative speed that the flow moves in) and the centre is highlighted by plotting

the flow of the system at different starting points (blue lines). Although it should

once again be noted that this figure shows the system characteristics under these

assumptions and does not show the exact numerical solution of the system, the

dynamics of the system imply that, as long as farms are able to restock with

birds, we will see a rise and then a fall in the number of infected farms over time.

Due to the fact the fixed point is a centre, this rise and fall will continue to occur

in a cyclic manner in the absence of outside intervention.
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Figure 2.3. Nullclines and direction of flow near nullclines, for the basic SIR model.
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Figure 2.4. Dynamics of the basic SIR model. Grey line = direction and speed of flow, blue lines = path of flow for different starting points.
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2.4.2 Summary of SIR model analysis

The stability analysis of the simple system implies that there are only two possible

long-term dynamics of the system, under the initial assumptions:

(i) Complete extinction

(ii) Co-existence of healthy and infected farms (in a cyclic manner)

Complete extinction occurs only if all of the susceptible farms are removed from

the population. As the fixed point is a saddle node, with the unstable direction

in the direction of the susceptible farms, as long as there is a positive number of

susceptible farms in the system at time t=0, complete extinction will not occur

without outside intervention. Given the number of poultry farms in GB, the

results from this model suggest that AIV will not result in complete extinction of

the population, even without intervention. However, the existence of a centre at

the second realisable fixed point implies that the disease will also not completely

die out without outside intervention. Despite the simplicity of the model, these

results are as we might expect. Given that AIVs were first described in the

late 19th century [Suarez and Schultz-Cherry, 2000] and are continuing to be

recorded in poultry to date [Garske et al., 2007,Truscott et al., 2007], this confirms

the difficulty of stamping out such viruses. It has also been suggested that the

outbreak of the highly pathogenic versions of the virus (HPAI H7N7) in the

Netherlands in 2003 was brought under control only by outside intervention,

in the form of the removal of susceptible farms as a means of prevention of

spread [Stegeman et al., 2004]. This is in-line with the results obtained here.

2.4.3 Extending the basic SIR model

The previous model represented what happens when homogenous mixing occurs

in a population of equally alike farms. Although the results are promising, there

are several assumptions that need to be considered in order to improve the realism

of the model. Firstly, the model can be improved by considering the assumption of

homogenous mixing. Introducing structure at the farm level by treating different

houses as separate epidemiological units and assuming a different rate of infection

between houses on the same farm, compared to between houses on different farms

is possibly a more realistic approach to take. Under this new assumption, the
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system was re-written as shown in Equations (2.24) and (2.25). Here, each of

the n farms in the population consists of susceptible houses, infected houses and

removed houses. In this way Si describes the number of susceptible houses on

farm i and the total number of susceptible houses in the population is given by

S =
∑n

i=1 Si. Similarly Ij represents the total numbers of infected houses on

farm j and the total number of infected houses in the population is given by

I =
∑n

j=1 Ij. The system is assumed to be closed, meaning that the addition of
dR
dt

to the system gives no further information.

dS

dt
= −

(

n
∑

i=1

n
∑

j=1

βijSiIj

)

− ωSS + αSS (2.24)

dI

dt
=

(

n
∑

i=1

n
∑

j=1

βijSiIj

)

− ωII (2.25)

It is likely that different houses will house different species and/or different pro-

duction types, that is to say that we would not expect chickens and turkeys to

be housed in the same house, likewise, we would not expect chickens reared for

meat and chickens reared for egg production to be housed in the same house. In

order to incorporate different transmission rates between different species (where

species may refer to different bird species and/or different production types) into

the model, different transmission rates between species k and species l were con-

sidered, such that βijkl represented the transmission rate associated with species

k in house i and species l in house j. Inclusion of different species into the model

also resulted in the necessity for different birth and death rates for different

species. A birth rate of αSk
represented the rate at which a house was restocked

with a susceptible species Sk. Similarly, a death rate of ωSk
represented the rate

at which a susceptible species Sk was removed from a house of susceptible birds

and ωIl represented the rate at which an infected species Il was removed from

an infected house. In this model, given m species on a farm, then the number

of susceptible and infected houses on the farm is given by Si =
∑m

k=1 Sik and

Ij =
∑m

l=1 Ijl, respectively, for Sik houses of susceptible species, k, and Ijl houses

of infected species, l. The model, of n farms and m species was updated as shown

in Equations (2.26) and (2.27). In this model, it was assumed that each house

contained only one species.
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dS

dt
= −

(

n
∑

i=1

n
∑

j=1

m
∑

k=1

m
∑

l=1

βijklSikIjl

)

−
m
∑

k=1

ωSk
Sk +

m
∑

k=1

αSk
Sk (2.26)

dI

dt
=

(

n
∑

i=1

n
∑

j=1

m
∑

k=1

m
∑

l=1

βijklSikIjl

)

−
m
∑

l=1

ωIlIl (2.27)

When the assumption that there is homogeneous mixing in the population is ad-

dressed and replaced with heterogeneous mixing, where the probability of infected

and susceptible farms being in direct contact is dependent on some structure,

such that only farms of the same production type can be connected, for example,

then the model quickly becomes more and more challenging to both build, and

solve. Even the simplest form has a number of conditions regarding the existence

and stability of fixed points. For this reason, rather then attempt to solve this

more complicated model, the method of representing the population as a network

of potentially infectious links, over which the spread of AIV can be simulated,

is explored in the following chapters. Although some scientists have followed

the differential equation approach for modelling (environmental spread of low

pathogenic) AIV [Breban et al., 2009,Rohani et al., 2009], it is expected that, in

order to meet the aims of this study, a network approach will be a more appro-

priate modelling technique for the poultry industry in GB, than the traditional

dynamic equation models introduced here.

2.5 Modelling interactions between molecules in

a cell

For completeness, let us return our attention to the question of whether or not

the above methods can be used to model interactions between molecules in a cell.

At this level, Microarray experiments [Southern, 2001] can be used to collect

data that describe the changes in expression levels of molecules over time and

can therefore be used to determine the effect that small perturbations have on

a cell, by considering the expression levels in a cell in response to a change. In

brief, a microarray works by exploiting the ability of a given mRNA molecule to

bind to the DNA template from which it originated. By using an array containing

many DNA samples, the expression levels of hundreds or thousands of molecules

within a cell can be determined by measuring the amount of mRNA bound to

each site on the array. Then, with the aid of a computer, the amount of mRNA

41



bound to the spots on the microarray is precisely measured, generating a profile

of molecular (primarily gene) expression in the cell. The ability of microarray

experiments to output information on thousands of genes within a cell classifies

it as high throughput technology. Using microarray, when the expression level

of one gene changes, then the knock on effect on the expression levels of other

genes in the cell can be measured, helping one to identify where connections be-

tween genes lie, and hence allowing one to build mathematical models describing

the interactions between genes. These models can then be analysed in order to

ask similar questions to those asked about population level disease models. For

example, is the system stable, or can it be perturbed in such a way to prevent

progression of a disease?

Typically, there are four mathematical modelling methods used to model changes

in gene-expression levels over time: (i) Boolean, (ii) Bayesian, (iii) Information-

theoretic approaches and (iv) Differential equations [Bansal et al., 2007,Bansal

and di Bernardo, 2007]. In a Boolean-based model, genes are assumed to be

either (active) expressed (1) or (inactive) not-expressed (0) and relationships

between genes are described by a Boolean logic function. Such models are thus

binary and occur in discrete time. Algorithms for building Boolean models from

gene-expression data have been presented by [Akutsu et al., 1999] and [Liang

et al., 1998], to give examples. The basic models have also been built upon

by [Shmulevich et al., 2002], but these models are computationally expensive.

There are two major disadvantages to using a Boolean model to describe links

between genes (i) Boolean models are often restricted in size, because for n genes,

they require 2n data points, making algorithms for such models computationally

inefficient [Akutsu et al., 1999] and, (ii) the true relationships between genes are

not binary. However, the construction of Boolean models is not without its uses.

As argued by [Liang et al., 1998], real biological systems whose variables change

continuously in time can be approximated by Boolean models. Furthermore,

[Akutsu et al., 1999] argue that the simplicity of Boolean models makes them

flexible for extension.

In a Bayesian model, relationships between genes can be represented by a di-

rected acyclic graph (a graph that contains no cycles). These models allow for

a more realistic model to be built by using a joint probability distribution to

describe relationships between nodes. In such cases, relationships between nodes

are able to incorporate the combination of common sense and observational ev-

idence as prior information. This means that in a Bayesian model, seemingly
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needless complexity can be removed, reducing the computational cost of deter-

mining how different variables are influenced. However, due to the acyclic nature

of such models, feedback, which plays an important role in the cell-cycle, cannot

be accounted for. On the other hand, Bayesian models are effective at catching

stochasticity and dealing with noisy data. [Zou and Conzen, 2005] present a dy-

namic Bayesian model that is able to capture the time-dependent interactions

between genes. Their model is both more accurate and computationally less ex-

pensive than models previously presented by -and based on that of- [Murphy and

Mian, 1999]. However, the computational time is still likely to be high because

learning Bayesian models from data is NP hard (non-deterministic polynomial-

time hard, implying that the problem is intrinsically harder to solve than those

problems that can be solved by a nondeterministic Turing machine in polynomial

time. Refer to [NIST, 2007] for more information.) [Bansal and di Bernardo,

2007]. This is because these models rely on generating a large model space and

then screening to find the best model structure using optimisation methods [Yu

et al., 2004]. This means that heuristic search methods have to be used to identify

the best model, resulting in the possibility of not achieving the global optimal

solution.

In information-theoretic approaches, mutual information (MI) between two genes,

which describes the mutual dependence of two genes (i.e. the close, prolonged

association between genes that is usually, though not necessarily, beneficial to

both genes [Butte and Kohane, 2000]), is used to compare expression profiles from

a set of microarray experiments [Basso et al., 2005]. The interactions between

genes are assumed to be binary and are set to zero or one, according to a threshold

for the MI between the two genes [Margolin et al., 2006]. These models are not

directed, as in Bayesian models. However, an advantage of using information-

theoretic algorithms, as reported by [Margolin et al., 2006], is that the information

theoretic approach, via the use of the data processing inequality (DPI) (a property

of MI that states that if two variables, X and Y , have MI I (X, Y ), then a third

variable Z, that is a function of Y only, cannot give you more information about

X than Y can), can eliminate the majority of indirect interactions inferred by

co-expression methods, thus reducing the computational time required to build

models from data. A disadvantage, however, is that the computation of MI

requires each data point, that is, each experiment, to be statistically independent

from others. Thus it can only deal with steady-state gene expression data set

and not with time series.
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Finally, differential equation (DE) models allow for directed links and feedback

between genes to occur, as well as for deterministic relationships between genes

and non-steady state data to be analysed. According to [Chen et al., 1999], the

determination of the models has to (1) derive regulatory functions from a small

set of data samples; (2) scale up to the genome level and; (3) take into account

the time delay in transcription and translation. They propose that DE models

can incorporate the answers to all three problems. This makes differential equa-

tions a desirable and now widely used method for describing the interactions that

occur between genes (see [van Someren et al., 2000, Chen et al., 1999, Kramer

and Xu, 2008] for examples). Most DE models are linear, because introduction

of non-linear terms leads to an exponential rise in the number of parameters that

need to be estimated. This is not a problem when the experimental data obtained

for the system is close to its steady state, because at this point and with small

perturbations, the system appears approximately linear. However, it is a well-

known fact that most real world systems are non-linear, and it is expected that

the system of interactions between genes is no exception to this phenomenon. In

order to use differential equation models to effectively model gene-interactions,

we therefore need to find a method that does not rely on linearity. The char-

acteristics of the basic SIR model already presented could be explored at the

population level because the system could be described using only two dimen-

sions (namely S and I). At the cell level, similar non-linear systems become very

difficult to solve as number of variables (i.e. the number of genes) increases. With

three variables, non-linear systems display characteristics of chaos (more infor-

mation about chaotic systems can be found in [Strogatz, 2000]). Furthermore,

in some systems, when unknown parameters are varied, fixed points are created

or destroyed, meaning that the dynamics of the system are dependent on such

unknown parameters, rendering the analysis of the system even more complicated

for larger numbers of variables. Whilst transforming a non-linear system into a

linear one is an option, this increases the possibility of losing valuable informa-

tion contained in the non-linear terms. An attractive alternative to modelling

non-linear systems using differential equations models is the use of Synergistic

Systems (S-systems).

2.5.1 S-systems

S-systems, so-called because they assume the interaction of two genes can have

a combined effect on another, are a form of mathematical modelling that are
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used to model non-linear systems. Modelling with S-systems is similar to the

standard differential equation models previously used for modelling the poultry

industry (Volterra models) in the sense that when orders are higher than two, both

models have to be solved numerically, but one advantage of using S-systems over

Volterra systems is that S-systems themselves assume a multiplicative nature in

the underlying system, rather than an additive one, which is also more applicable

to many biological systems [Voit, 1991]. This enables us to overcome the problem

of modelling many variables, as well as providing a more realistic model because,

in gene-networks in particular, it is likely that when one variable increases in

value, another increases at a rate that is disproportionate (i.e. the relationship

is multiplicative). In S-systems, interactions are described based on the power-

law function. The main advantage of power-law functions in modelling is that

they are very easy to manipulate by using log transformations. In S-systems, a

power-law function is used to describe the flow between two nodes in the system,

described using Kirchhoff’s node law, which states that the difference in incoming

and outgoing flux must accumulate at the node in question with rate dx/dt [Voit,

1991]. In order to fully describe S-systems, a network assumed to represent a

network of interactions between a sub-set of (arbitrary) molecules known to be

involved in RA was analysed.

Figure 2.5. Simple network representation of gene-interactions.

In the system shown in Figure 2.5, there are five molecules, which could represent

genes or proteins for example. In this network X1 synthesizes X2 and is synthe-

sized by X5 -this type of reaction may represent the translation of mRNA into a

protein, for example- X2 is used to synthesize X3, at X3 there is some feedback,

but the synthesis of X3 back into X2 is inhibited by X4 (indicated by a − sign).

X4 is also self-regulating and, finally, X3 synthesizes X5.
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The S-system that corresponds to this network is determined by considering the

rate of change of each variable in the system. Each reaction in the system is

assumed to follow a power-law such that the rate of increase of Xi given Xj is

described by the vertex Vij , where Vij = αijX
gij
j , for some αij and gij and the

rate of decay of Xi given Xj similarly described, with corresponding values βij

and hij. Using Kirchhoff’s node law, the rate of change at node X1 and X2 can

be described as in Equations (2.28) and (2.29), respectively. Similarly for other

nodes in the system.

dX1

dt
= α15X

g15
5 − β11X

h11

1 (2.28)

dX2

dt
= α21X

g21
1 + α234X

g233
3 Xg234

4 − β22X
h22

2 (2.29)

Next, assuming generalised mass action, the α (and β) terms can be combined

into one ‘incoming’ and one ‘outgoing’ term, for each node Xi, such that the

system is represented by the following set of differential equations (2.30):

dX1

dt
= α1X

g15
5 − β1X

h11

1

dX2

dt
= α2X

g21
1 Xg23

3 Xg24
4 − β2X

h22

2

dX3

dt
= α3X

g32
2 − β3X

h33

3 Xh34

4

dX4

dt
= α4X

g44
4 − β4X

h43

3 Xh44

4

dX5

dt
= α5X

g53
3 − β5X

g55
5

(2.30)

Equations (2.30) show the S-system representation of the network in Figure 2.5.

Note that the rate at which a node degrades depends only on the amount of that

node at any time point and not on the presence of the node that it synthesizes

(i.e. hii depends only on Xi and not on Xj). It is also noted here, that the

general form for an S-system for n independent and m dependent variables is, by

definition, given by Equation (2.31) [Voit, 1991].

dXi

dt
= αi

n+m
∏

j=1

X
gij
j − βi

n+m
∏

j=1

X
hij

j i ∈ {1, ..., n} (2.31)

Parameterisation and analysis of the S-system model

Parameterisation of αi, βi, gij and hij (for all i, j) of an S-system model that

describes the interactions that occur between genes in a cell can only be done
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from experimental data. Usually, microarray data that describe the expression

levels of genes are used to infer relationships between genes. The rate at which

the expression of different genes changes over time can be estimated from steady-

state data [Kikuchi et al., 2003] or from time series data [Vilela et al., 2008,Chou

et al., 2006] but this is a relatively new field and is considered to be an extremely

challenging one also. Parameterisation of such systems is generally not possible

to do analytically, due to the high number of parameters to be simultaneously

estimated. Current programmes to estimate the parameters from time series data

do however exist [Vilela et al., 2008], but it has not been possible to use them

here as there are no freely available and working software. Whilst this has been

highlighted as an area for future study, it is beyond the scope of this study to

parameterise S-systems. More information about parameter estimation can be

found in [Voit, 2000,Voit, 1991].

Analysis of an S-system model can be achieved in much the same way as the

Volterra models previously presented. Initially, the stable points of the system

are found by equating the system to zero.

For the system in Figure 2.5, the steady states occur when Equations (2.32) are

satisfied.

0 = α1X
g15
5 − β1X

h11

1

0 = α2X
g21
1 Xg23

3 Xg24
4 − β2X

h22

2

0 = α3X
g32
2 − β3X

h33

3 Xh34

4

0 = α4X
g44
4 − β4X

h43

3 Xh44

4

0 = α5X
g53
3 − β5X

g55
5

(2.32)

By taking logarithms, we have Equations (2.33).

lnα1 + g15 lnX5 = ln β1 + h11 lnX1

lnα2 + g21 lnX1 + g23 lnX3 + g24 lnX4 = ln β2 + h22 lnX2

lnα3 + g32 lnX2 = ln β3 + h33 lnX3 + h34 lnX4

lnα4 + g44 lnX4 = ln β4 + h43 lnX3 + h44 lnX4

lnα5 + g53 lnX3 = ln β5 + g55 lnX5

(2.33)

Now substituting yi = lnXi and bi = ln βi − lnαi = ln( βi

αi
), we have stable states

characterised by Equations (2.34).
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g15y5 − h11y1 = b1

g12y1 + g23y3 + g24y4 − h22y2 = b2

g32y2 − h33y3 − h34y4 = b3

g44y4 − h43y3 = h44y4 = b4

g53y3 − g55y5 = b5

(2.34)

This set of linear equations can be solved relatively easily, but without parameter-

isation of the system, the dynamics of the solution cannot easily be determined.

If parameter values are available, a power-law analysis and simulation (PLAS)

software for the computational analysis of biochemical systems can be used to

determine the steady state of the systems as well as the expected dynamics of the

systems over time (see [Voit, 2000] for examples). However, under the assump-

tion that parameter values can be estimated, the ease of numerically solving this

system, compared to the previous example shown for the poultry industry, is

clearly demonstrated by the beauty of being able to reduce the system to a set

of linear equations. For cell-level models, parameters must be estimated from ex-

perimental data, which are currently not available for RA. Thus, in the absence

of parameter values, we reach a stumbling block and so the alternative option of

using network analysis techniques to model RA at the cell level will be explored.

2.6 Discussion

Generally speaking, models have two distinct roles: predicting and understanding.

Specifically, mathematical modelling is a powerful tool in the field of disease

control because it provides a cheap way of predicting how a disease might spread

within a population, for example. Furthermore, one can adapt a model to reflect

the effect that the introduction of perturbations might have on progression of a

disease, enabling one to predict the most effective control measure in the situation

of disease occurrence. Models, however, can never be fully accurate because

they will always contain some unknowns. One might not be able to accurately

model some environmental characteristics that might affect a disease, such as the

effect that the weather will have on (a) the probability that an organism, such

as a virus, will survive in the given environment and (b) the probability that

an individual will come into contact with the disease, given the current weather

conditions, for example. This is because it is not possible to model the movements

of all individuals (or otherwise) at all times, or to know the susceptibility of all
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individuals to a disease. This does not mean that models are not useful because,

despite being generally predictive in nature, they can still provide us with a

greater understanding of a specific problem.

In this chapter, two different types of differential equations models have been

presented. The first model, a non-linear ordinary differential equation model,

is appropriate for describing the spread of disease in a population (the poultry

industry in GB in this case). However, given the complexity of the poultry

industry (and therefore also the potential problems in estimating parameters),

it can be concluded that this type of modelling is perhaps not optimal for this

study. The second differential equation model is an S-system model. S-systems

are useful for modelling non-linear systems of a higher order than the system

described by the first model because they are based on power-laws and therefore

can be easily transformed into linear systems that are easier to solve numerically.

This is of particular relevance when the system has many dependent variables,

as in a gene-network. However, S-systems contain a high number of unknown

parameters meaning that parameter estimation of these models is time consuming

and potentially troublesome. This implies that, where parameter values are not

known an alternative method for investigating the network characteristics may

prove more fruitful.

It is noted here that there are other modelling methods, based on differential

equations, which can be used to describe disease networks. At the population

level, for example, [Sharkey et al., 2006] use pair-level approximation in order to

improve the basic SIR model by assuming an underlying structure to the contact

networks over which disease may spread. This is an interesting method as it

allows for spatial structure to be included - something which is lacking in most

differential equation models. However, the spatial structure of genes in a cell is

hard to determine and is not considered here as the most important feature of

the network. Determining the structure of interactions that occur even between

a small number of genes is a challenge and hence more work needs to be done

in order to understand such interactions. Further, skills need to be perfected in

the building of larger gene-networks before more complicated models that take

care of spatial structure within a cell can be applied. In fact, the problem of fully

understanding the interactions that occur within a cell is the biggest setback to

cell level modelling and analytical models describing the interactions that occur

within a cell are typically limited to very small networks. For these reasons,

adopting an approach that adds spatial structure to a differential equation model
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is not efficient for the cell level model that will be considered in this study.

It is evident that in both cases (although for different reasons) that differential

equation models become limited in use. An alternative method must therefore

be adopted if the thesis aim of using the same methodology at different levels is

to be achieved. In this study, we are concerned with networks of interactions, as

previously described, and so a network analysis approach should be explored. In

fact, as network simulation and analysis allows for more flexibility, the alternative

method of using network theory (simulation modelling and analysis) to describe

disease at the population and cell levels will be the focus of this thesis from here

on in.
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Chapter 3

A review of network models for

disease

Following the results from Chapter 2, from hereon in this study will concentrate

on the use of network analysis tools to gain a further insight into the two types

of networks studied here. In this chapter, a review of network models at both the

population and cell level is presented.

3.1 Contact structures in a population

3.1.1 Advantages of using networks to model disease in a

population

The contact structures of a population can have important consequences for dis-

ease transmission, such as when mixing is not homogeneous and transmission

that may normally be localised occasionally makes a long-distance jump between

two connected nodes, for example. As outlined in Chapter 2, in a standard

model for infectious disease, populations are split into susceptible (S), infected

(I), or removed (R) sub-populations (SIR model). Movement between these sub-

populations occurs with a fixed probability, assuming homogeneous mixing. In

reality, homogeneous mixing does not occur and spatial aspects can influence

the probability of individuals mixing (there may be a higher probability that an

individual will mix with a neighbour than another individual that is not geograph-

ically close). Geographic proximity may not be the only aspect that influences
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disease spread; in agriculture, disease transmission may be higher between two

farms belonging to the same company than between two farms that are geo-

graphically close. By building more complicated models, and/or by simulating

the transmission of disease over a network, we can take these heterogeneous links

into account, whilst still being able to calculate the size of the susceptible, infected

and removed sub-populations and make inferences on the spread of disease. This

approach also lends itself to more robust (theoretical) testing of control measures

in an outbreak situation.

3.1.2 Control measures considered in reviewed population-

network disease research

Effectiveness of contact tracing

Contact tracing is used in an outbreak situation to identify individuals that may

have been in contact with infectious individuals. Although contact tracing is un-

dertaken by the British Government in an outbreak situation, the order in which

tracings are identified is often dependent on the questions asked by epidemiolo-

gists and veterinarians at an infected farm and on the cooperation of farm staff

[A. Cook, pers. comm.]. Contacts that are followed up (some may not be con-

sidered to be epidemiologically dangerous) are done so based on an informal risk

assessment, dependent on the disease and the type of link that has been traced,

such that movement of animals to market the day before infection is identified

would be considered a higher priority than movement of a contractor between

two sites, for example.

In ‘peacetime’ (when a population is considered ‘free’ of the disease in question),

mathematical modelling can be used to test how tracing affects disease spread

as well as to give advice on how tracing should be prioritised in an outbreak

situation. In 2001, GB experienced an epidemic of FMD that had devastating

effects on the cattle industry. FMD affects many cloven-footed animals including

cattle, sheep, goats, deer and pigs and is caused by a highly contagious virus,

which can persist in the environment for up to one month and can be dispersed

by wind over distances of up to 60km over land and 250km over water [Fergu-

son et al., 2001]. Mathematical models that consider transmission and control of

FMD now exist [Green et al., 2006, Ferguson et al., 2001, Keeling et al., 2001].

Most consider how disease is likely to spread after control measures have been im-
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plemented, where transmission is dominated by local spread [Green et al., 2006].

Such models highlighted that contact tracing would not have been a feasible con-

trol method at the time of the epidemic as resources were insufficient to identify

and remove dangerous contacts quickly enough [Ferguson et al., 2001, Keeling

et al., 2001,Kao, 2002]. The cattle tracing system (CTS) was introduced in 1998

and, in response to the FMD outbreak, since 2001 requires that births, move-

ments between holdings (farms, markets and slaughterhouse) and deaths of all

cattle are recorded on a central computer database. The improvements to the

CTS since its introduction mean that one can now investigate the initial spread

of FMD through animal movements. In [Green et al., 2006], the authors used

the CTS database to investigate the spread of FMD via links between premises,

caused by the movements of animals or local spread. From the CTS database, the

direction of animal movements can be determined, as well as the type of nodes

included in the movement (farm, market or slaughterhouse). With this infor-

mation, scientists have been able to determine the importance of markets in an

epidemic, concluding that infection of markets is necessary for a large epidemic

to occur.

Using a structure similar to that used in [Green et al., 2006] and motivated by

the FMD outbreak in 2001, the authors in [Kiss et al., 2005, Kiss et al., 2006]

show how network analysis can be used to determine which network and disease

properties are important for contact tracing efficacy. In [Kiss et al., 2005] they

compare the final epidemic size on networks that show different characteristics

and show how the efficacy of tracing can be linked to the latency period of the

disease and removal of nodes. On a random network, where there is no clustering

(no pattern in the way nodes group together) of connected nodes, increasing the

duration of the exposed state (i.e. a long latency period) results in a reduction of

the final epidemic size, as there is extra time for contact tracing to be completed

effectively. The smaller the average number of connections per node, the greater

the effect of removing links between nodes, by isolating dangerous contacts and

therefore, the more effective contact tracing is. In clustered networks, however,

where disease is generally propagated over shorter distances, we may see a wave-

like structure of disease spread within a particular cluster of nodes. In these cases,

disease may not spread outside the cluster, reducing the number of susceptible

nodes. In clustered networks, tracing shortens the transmission period of each

node, as the probability of a dangerous contact node being successfully traced is

higher. Later, in [Kiss et al., 2006], they investigated and compared the efficacy

of contact tracing and the hierarchy of traced nodes (where nodes with higher
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degree (number of connections) are traced first) this time on random and scale-

free networks (see Chapter 4). The networks that they compared had the same

number of nodes and the same mean number of links per node, but different

structures. They showed that using contact tracing as a control measure has

varied effects, depending on the structure of the network over which contact

tracings occur. Specifically, under the assumption that infectious and exposed

farms are traced more quickly than susceptible farms, they find that contact

tracing is more effective on random networks than scale-free networks. In scale-

free networks, more effort is required to control and stop an epidemic through

contact tracing than in a random network because disease spreads to nodes with

high degree in scale-free networks. Even when disease is assumed to have a long

latency period (and therefore there is more time to identify potentially infectious

and infected premises through tracing as the turnover of newly infected premises

is slow), there is only a comparatively small improvement in the effects of contact

tracing on scale-free networks compared to random networks.

Further to this work, [Kao et al., 2006] replay movements from the CTS and show

that the network of animal movements displays small-world properties that can

be exploited to target surveillance and control. The approach that they use is

novel because it overcomes the assumptions that, typically, all infectious contacts

are the same and that the network is static. They do this by reconstructing the

network of potentially infectious contacts and assuming that disease will transmit

over a link with some probability, over a fixed time frame. This results in a

directed epidemiological network of truly infectious links, which can be analysed

like any other static network. They measure the upper limit for an epidemic by

finding the largest number of nodes that are all connected to each other in the

network. Furthermore, by considering the properties of the network, they are able

to comment on the number of infections an infected individual would generate

over the course of their infection if everyone they encountered were susceptible

(defined as the reproductive ratio, R0). If this figure is greater than 1, then the

epidemic will continue to grow, when it falls below 1, the epidemic will, eventually,

die out. Control measures can be used in an outbreak situation to bring the value

of R0 below 1. Kao et al. show that in the networks analysed, high values of R0

are possible even when the transmission rate is low. Their results are consistent

with the FMD epidemic in 2001, showing that there is potential for widespread

dissemination of virus, driven by markets and a few individuals trading between

them.
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Although contact tracing is generally not effective enough to eliminate highly

connected nodes before they become infectious, intelligent contact tracing, where

we know which premises may be highly connected, can be used to improve the

effects. Identification of such nodes can be obtained through network analyses in

peacetime.

Surveillance and protection zones

In the event of an outbreak of a notifiable animal disease in GB, regulations set

out by the Government state the areas around infected premises where surveil-

lance zones (SZ) and protection zones (PZ) must be set up. The size of the zones

will depend on the disease in question. For AIV, the SZ is a 10km ring around the

infected premises and the PZ a 3km ring. For other diseases, such as bluetongue

for example (an insect borne viral disease that causes serious illness to ruminants,

with no current efficient treatment), SZs can cover entire counties, or premises

within 20km of an infected premises [Institute for Animal Health, 2010]. Within

these zones, movements of animals may be restricted or stopped altogether, so

that disease transmission to susceptible farms is reduced. For AIV, the move-

ment of poultry products and carcasses is also restricted or banned and on-farm

biosecurity will be increased, reducing the probability of infection spreading be-

tween farms by the movements of vehicles and farm personnel. We can model

movement bans and reductions in the probability of disease spreading between

farms by either removing links from a network, or by reducing the probability

that disease transmits via an existing link. Note that removing links is equiv-

alent to setting the transmission probability to zero at certain points - this is

computationally more expensive than reducing the probability but it does allow

for one to investigate the effect that a transmission probability of zero -at certain

points in the network- has on the potential for disease spread. By investigating

the geographical spread of connected premises in a network, it is also possible

to comment on how appropriate the size of the SZ and PZ appear to be for the

control of disease. This is a very useful tool, as the movement bans introduced

in SZs and PZs can result in large numbers of animals being culled for welfare

reasons, as was seen in the 2001 FMD epidemic when over 2 million animals died

under various types of welfare cull [Thompson et al., 2002]. Thus, being able to

optimise the size of the SZ and PZ and ideally reducing them in size, could reduce

the number of susceptible animals that have to be culled, which has advantages

both morally and in terms of resources (economic and human).
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Following the introduction of SZs and PZs, increased surveillance generally oc-

curs. Increased surveillance, in the form of farmers looking for disease in their

animals, or via veterinarians testing dangerous contacts for disease, or even test-

ing farms within a SZ, will increase the likelihood of detecting disease where it is

present. This makes disease easier to control as early detection can result in fewer

premises becoming infected. By analysing contact structures, one can determine

how the rate of detection of disease will affect the final epidemic size.

Effectiveness of other control measures

Other disease control measures include the introduction of vaccination of suscep-

tible animals, contiguous culling and movement bans (in PZ and SZ zones (as

described above), but also outside of these zones). Vaccination, where available,

can be used routinely as a preventative measure (or as a control measure for

endemic diseases), or it can be used as an emergency control measure in an out-

break situation. Vaccination of susceptible individuals can be an effective way

of reducing epidemic size. An important aspect of control via vaccination (or

in fact any other control measure) is being able to identify and obtain an opti-

mal balance between maintaining local control of outbreaks while attacking new

foci of infection [Tildesley et al., 2006]. In veterinary epidemiology, vaccination

strategies can include ring vaccination, in which all farms within a given radius

of an infected farm are vaccinated, as well as vaccination of farms that are the

closest premises to a previously reported case, irrespective of the order in which

infections are reported. Both of the stated examples have been investigated using

FMD data from the 2001 outbreak in GB [Tildesley et al., 2006,Ferguson et al.,

2001]. In these cases, mathematical models have been set up in order to search

for an optimum vaccination strategy in the event of further epidemics. Both pro-

tective (vaccination to live) and suppressive (vaccination to die) policies might

be considered. Under a protective vaccination policy, the vaccinated animals live

out their normal economic lives and their meat or other products are sold and

eaten in the normal way. Under a suppressive vaccination policy, vaccination of

animals around the infected farm or other site is used to reduce the rate of infec-

tion and the amount of virus produced in the short term; the vaccinated animals

are then slaughtered and their bodies disposed of as though they were infected

with disease. Prioritisation of which farms to vaccinate need not depend entirely

on spatial proximity, but other risk factors could be used. Network analysis,

which can link premises by risk factor, lends itself to the testing of vaccination
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strategies, where spatial proximity is not necessarily a limiting factor. This is

supported by work of Bansal et al., who used a network modelling approach to

compare vaccination strategies for AIV in humans [Bansal et al., 2006].

Another control option that can be modelled and the results analysed using net-

work analysis, is contiguous culling. Contiguous premises are those premises that

have a boundary that touches any boundary of an infected farm. Some of these

premises will be dangerous contacts but others may not have had any direct con-

tact with infected premises. Contiguous culling may be effective at stamping out

diseases that have a high probability of airborne spread because such environ-

mental factors cannot be easily controlled. Contiguous culling was used to stamp

out FMD in GB in 2001. More selective ‘stamping out’ is also used in control of

Scrapie, where only infected animals are destroyed. Scrapie is a fatal, degenerate

disease that affects the nervous system of sheep and goats. It is best controlled

by destroying the infected animal but can be hard to trace as it has a long la-

tent period (months to years) and can therefore spread silently in a population.

The transmission probability per contact is, however, relatively small [Kao et al.,

2007]. The spread of Scrapie therefore occurs over a longer time scale than that

of FMD for example. For diseases that spread quickly and are highly infectious,

movement structures can be identified in the patterns of disease notifying farms.

For diseases such as Scrapie, records of sheep movements are less important for

determining disease transmission, as most transmission is horizontal. More useful

for investigating transmission of Scrapie, is determining if two farms that have in-

fected sheep are associated with each other by buying or selling sheep at the same

market, or if they belong to the same community. If farms that are ‘similar’ are

more likely to be associated with each other, then we can prioritise tracing by

farm characteristics.

Finally, in the case of a disease outbreak, movement bans may be enforced. This

is likely to be the case in specific zones, but it may be extended to wider regions

depending on the current state of the disease. Network analysis methods can also

be used to determine where to target movement bans, in the same way that they

can be used to determine the optimal size (and shape) of the aforementioned

protection and surveillance zones. In order to best determine where to target

control, it is necessary to fully understand the contact structures that exist within

the industry, over which disease can transmit.
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3.2 Gene-networks

In Chapter 2, the use of experimental data in determining the relationship be-

tween genes was introduced. The models presented can be used to describe small

networks of interactions between genes, referred to as gene-networks. However,

one major fall-back in using experimental data to reconstruct such gene-networks

is that the networks that can be reconstructed are generally small. Whilst in the-

ory some methods may be able to deal with large networks (as shown in [Bansal

et al., 2007]), obtaining enough data to parameterise these networks is expen-

sive [Peng et al., 2003]. [Marbach et al., 2010] recently highlighted that all of

the current methods for this remain partial and that further contributions and

research are necessary in this field.

In this direction, experimental data can be used to validate models when the

networks are small enough but, for larger networks, other approaches have to

be taken and databases such as the Kyoto Encyclopedia of Genes and Genomes

(KEGG), which aims to provide information about the known pathways that oc-

cur between genes and proteins in a cell, can aid in the reconstruction of larger

gene-networks. In fact, successful gene-network reconstruction requires exten-

sive data collection, manual curation and automated analysis, as seen in [Chavali

et al., 2008]. Although, through extensive data collection, it is also possible to

build larger gene interaction networks, it must be noted that -currently- the accu-

racy of the networks is likely to be compromised. However, it is also argued that

there is value in having an overall, albeit less accurate, view of the interactions

that occur at the systemic level, rather than a detailed view of the interactions

that occur between only a few genes. In a systemic interaction network, it is

likely that some nodes and links might be missing and it may not be possible to

add direction to all links, but analysis of networks at this level can guide future

research, as was the case in the use of the simple Boolean networks previously

described. Such networks can be used in particular in the identification of where

to target more detailed data collection as well as in the field of drug design.

3.2.1 Analysing gene-networks

A range of network analysis methods have been successfully applied in multiple

studies in an attempt to understand the structure of gene interaction networks,

or the effect that single genes or molecules have on such networks [Alberghina

58



et al., 2009,Barrenas et al., 2009,Sengupta et al., 2009a,Lu et al., 2009,Eschrich

et al., 2009]. Gibbs et al. [Gibbs, 2000] have shown that through knowledge about

the network properties at the cell level, genes that require further research, due

to their important role as potential drug targets for cancers, have been identified.

Cancer, a term used for a set of diseases caused by abnormalities in the genetic

material of the affected cells, is a leading cause of death world wide, accounting

for 13% of all deaths [WHO, 2010b]. Although risk factors for cancers may be

connected to factors that are easily controlled such as tobacco use, unhealthy

diet, physical inactivity and harmful use of alcohol, non-environmental causes,

such as errors in DNA replication, or a family history of disease have also been

identified [Dupont and Page, 1985]. Because of the high prevalence and the lack

of a current cure, cancer research receives a lot of attention and there is a constant

search for better treatments for the disease. The disease can affect different parts

of the body and so treatments must be developed to be specific to the type of

cancer in the host. In many cancers, the p53 tumour suppressor gene has been

reported as the gene that is at the crossroads of a network of cellular pathways,

including cell cycle checkpoints, DNA repair, chromosomal segregation (a step

in cell reproduction or division) and apoptosis (the process of programmed cell

death) [Bennett et al., 1999]. [Gibbs, 2000] also use network analysis methods to

highlight this specific gene as a potential drug target in cancer treatment. In other

cancers, other genes or gene-pathways are targeted during treatment [Tsuruo

et al., 2005]. In cancer research, network analysis methods are also used to identify

pathways of genes that are particularly important in a function associated with

diseases, such as tumour progression. Chuang et al. use a protein-network-based

approach to map the pathways that give rise to metastasis (the spread of a disease

from one part of the body to another) in breast cancer, identifying markers not as

individual genes but as subnetworks extracted from protein interaction databases.

The resulting subnetworks provide novel hypotheses for pathways involved in

tumor progression [Chuang et al., 2007]. These results suggest that a network

analysis approach at the cell level is advantageous in disease research.

Whilst there exist software for the construction of gene-networks [Funahashi et al.,

2003], there also currently exist multiple algorithms and softwares for analysing

gene expression networks [Zimmermann et al., 2005,Assenov et al., 2008], which

can be used to identify gene function as well as topologically important genes

(and sometimes proteins) in a network. The existence of such softwares means

that attention should not be focused on writing software to construct and analyse

gene-networks, but rather on using the software to extract useful information, in
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the field of drug design, for example. In particular, the widely used Cytoscape

platform [Shannon et al., 2003] -which was originally created at the Institue of

Systems Biology in Seattle in 2002 and is now developed by an international con-

sortium of open source developers- is designed for analysis and visualisation of

molecular interaction networks and biological pathways. The software is believed

to be the most powerful software for large-scale graph visualisation [Bergman,

2008] and in systems biology, to give a relevant example, it has been used to repre-

sent networks that can be analysed for drug discovery [Hood et al., 2004,Chautard

et al., 2009]. Further to this, [Hopkins, 2008] suggest that ‘integrating network

biology (which states that instead of searching for the ‘disease-causing’ genes, the

strategy should be to identify the perturbations in the disease-causing network)

and polypharmacology holds the promise of expanding the current opportunity

space for druggable targets’. Furthermore, they support the idea that analysis of

interaction networks has profound implications for drug discovery. The examples

given in their work are also represented in Cytoscape. Whilst other softwares do

exist for the representation and analysis of gene-networks [Cavalieri and De Fil-

ippo, 2005], advantages of this software are that it can be used to represent large

amounts of data, it is not restricted to only gene-gene interactions and the tool

is compatible with upcoming community standards for describing and modelling

molecular interactions. These advantages are particularly important when we are

concerned with systemic diseases, such as RA, where the analysis of large-scale

interaction maps is still to be more thoroughly explored.

The use of gene-networks in drug design

It is clear that a major output of the analysis of gene-networks is the identifi-

cation of drug targets. The field of drug design is devoted to identifying new

treatments for disease. In some cases, this may involve the identification of a

new drug according to its substance, but it more commonly refers to the identi-

fication of new ways to use existing drugs to treat a condition. It relies on new

information about biological targets that might respond well to a drug. The drug

is most commonly a small molecule that has the ability to activate or inhibit the

functioning of a protein in the cell, that in turn, activates or inhibits pathways

in the cell in such a way that the result is an effect on the host that is of a ther-

apeutic nature. In recent years, the field has expanded quickly and drug targets

have been identified [Drews, 2000,Moller, 2001,Marton et al., 1998]. Because

network analysis at the cell level strongly concentrates on identification of genes
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involved in a particular disease, it can be used to identify potential drug targets.

Identification of new drug targets relies on a multidisciplinary approach so that

targets that are identified as being topologically important in a network can also

be analysed for their biological relevance. As well as using network analysis to

identify new drug targets, it can also be used for the identification of key genes

involved in a disease, which can be targets for other methods of disease control.

Knowledge of the gene interactions can lead to advancement in disease control

via non-invasive control of the cell environment, which can have the effect of

prolonging the onset of disease, reducing the severity of symptoms or in some

cases perhaps stopping the disease from developing at all. It may be possible,

for example, to use network analysis methods to identify important genes that,

when considered from a biological point of view, have a specific function that can

be controlled to an extent by something as simple as diet.

3.3 Discussion

There are several gaps in the use of network analysis methods at the cell and

population levels.

At the cell level, current network analyses tend to concentrate on specific genes

or pathways in a cell, rather than large scale molecular interaction maps. This

is particularly interesting in the case of RA, as a systemic view of the disease

can lead to identification of potential new drug targets. Should the results from

a larger-scale analysis prove fruitful, then the results can be used to identify

areas where more detailed information should be collected. This would lead

to the possibility of building more detailed networks, possibly via the reverse-

engineering methods identified in the previous chapter, on the most interesting

parts of the map. A large-scale analysis would also allow the removal of less

important genes from more detailed networks, reducing the cost (computational

and economic) of parameterisation. This study will give a first analysis of a

large-scale molecular interaction network for RA, providing a starting point for

future research in this field. This type of analysis proves the potential of in silico

analyses able to produce highly refined hypotheses, based on vast experimental

data, to be tested further and more efficiently. As research in RA is ongoing, the

present map is in fieri, despite being -at the moment- a reflection of the state of

the art.
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At the population level, the suggestion that AIV can be transmitted by the di-

rect and indirect action of people moving equipment and birds between premises

has been documented [Alexander, 1995, Bahl et al., 1979] and network analysis

methods have been developed and applied to the spread of diseases such as FMD

and Scrapie via these mechanisms. However, data had, until recently, been in-

sufficient for the application of such methods to be applied to the spread of AIV

in the GB poultry population. This is due to the fact that there were several

gaps in our knowledge about the structure of -and movements that occur within-

the poultry industry in GB. Furthermore, there were also gaps in our knowledge

of how AIV might spread between farms in GB. Some of these gaps are filled in

this study, bringing new information to the field about the potential spread of

AIV between poultry premises in GB and furthermore, how one might go about

controlling the disease.

Given that a change in the dynamics of a disease changes the efficacy of control

measures over a network, having a good understanding of the underlying network

is a first step to identifying how strong this effect is likely to be. The use of

network analysis methods for determining the potential for the transmission of

poultry diseases such as AIV, in GB, had not been undertaken prior to this

study. However, independent work has been published in parallel to the work

undertaken here [Sharkey et al., 2008,Garske et al., 2007]. In particular, [Sharkey

et al., 2008] have made use of population data and some network data in order

to inform simulation models that describe the spread of AIV between poultry

premises in GB, which are potentially connected by the movement of people,

equipment and birds between premises. Their study does not, however, describe

the contact structures over which transmission may occur in detail. The work

presented in this thesis for the population network advances the work of Sharkey

et al. by including detailed movement data in the network models. These data,

which were obtained from areas of the poultry industry that are expected to be

involved in the potential spread of AIV, have never been collected before, making

this work unique.
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Chapter 4

Network analysis: theory and

applications

4.1 Introduction

A network is a set of items, referred to as nodes, players or vertices, depending

on the discipline, with connections between them. Connections can be direct or

indirect, such that if there is a link between A and B and another link between B

and C, then A and B, and B and C, have direct links between them, and A and C

have an indirect link between them. Connections in a network may be referred to

as links, paths, edges or ties. Edges and ties generally refer to a single connection

between two nodes whereas a link or a path may refer to a single connection, or

a string of connections (where path may be an abbreviation of pathway) between

two or more nodes, depending on the context. Networks appear everywhere. The

World Wide Web is a network of interlinked documents accessed via the Internet.

A group of people can also form a network, linked by relationships formed by

family or friends, for example. Other examples of networks include food webs,

neural networks, economic networks and networks of disease transmission.

The ‘science of networks’ is a relatively new discipline that has developed rapidly

alongside advances in computer science. With the aid of computers, it is now

possible to analyse large networks that we cannot achieve with the naked eye.

Despite this, the analysis of networks and investigation into their properties dates

back several hundred years, to approximately 1736, when Leonard Euler solved

the problem of the seven bridges of Königsberg.
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4.2 Seven bridges of Königsberg

The city of Königsberg, Prussia (now Kaliningrad, Russia) is set on the Pregal

River. The river splits the city into two large islands, which were connected to

each other and the mainland by a series of seven bridges (see [Amaral and Ottino,

2004]).

The problem was to find a way to go around the city, crossing every bridge

once and only once. In order to solve this problem, Euler used a combination of

topology and graph theory. He first simplified the image by removing all details

apart from land masses and bridges. He then replaced each land mass by a vertex

(node) and each bridge by a line (edge).

Figure 4.1. Simplified map of seven bridges of Königsberg.

For each node of the map, represented in Figure 4.1, we can count the number of

edges associated with that node (this number is called the degree of the node).

In the Königsberg bridge graph, there are three nodes of degree 3 (B, C and D)

and one node of degree 5 (A). By considering the number of links connected to

each node, Euler realised and proved that a circuit that crosses each bridge once

and only once (and visits each node exactly once) is only possible if the graph

is connected (i.e. the degree of all nodes is at least one) and there are either

zero or two nodes with an odd number of links. Such a path, where each node is

visited exactly once, is called a Eulerian path or a Euler walk. As the Königsberg

bridge graph has four nodes with an odd number of links, then it cannot have an

Eulerian path.

64



4.2.1 Euler’s proof of the Königsberg bridge problem

Begin by considering each set of vertices, joined by an edge as an ordered pair,

where the first letter represents where one starts and the second where one fin-

ishes, so that the edges joining A to B and B to A are written as AB and BA re-

spectively. In the Königsberg bridge problem, if a traveller starting at A, crosses

to B, goes on to D and finally arrives at C, then they have made the journey

ABDC and since each land area is separated from every other by a branch of

the river, the traveller must have crossed three bridges in order to complete the

journey. In general, however many bridges the traveller crosses, his journey is

denoted by a number of letters one greater than the number of bridges. Thus

the crossing of seven bridges requires eight letters to represent it. We are now

concerned with finding a sequence of eight letters (from A, B, C and D) such that

each pair of letters that represents an edge between vertices occurs the required

number of times. Before finding such a sequence, we must first determine if such

a sequence exists.

In order to find such a sequence, consider the letter B from the graph shown in

Figure 4.1. If a traveller is at B and crosses all bridges leading to B, then in the

representation of his journey, the letter B will appear twice, whether he starts

from B or not (an example pathway is given by BABD). Similarly, if he crosses

all bridges leading to A, the letter A must appear in his journey three times.

Therefore in the above problem, there must be three occurrences of the letter A

and two occurrences of the letters B, C and D in the representation of an Euler

path. This sums to a sequence of nine letters, which must be joined by eight

edges. As there are only seven edges (bridges) in Königsberg, it follows that such

a journey cannot be undertaken across the seven bridges.

4.2.2 Beyond the Königsberg bridge problem

Although this result seems rather trivial, it is often considered it to be the first

theorem in the now highly developed field of discrete mathematics known as graph

theory [Newman, 2003a], which has become the principal language for describing

the properties of networks. By using graph theory, in the way the Euler did

with the Königsberg bridge problem, we are able to remove detail and describe

important features of a network, expanded over a broad range of disciplines.

Since the 1950s, when research in sociology and anthropology looked for quanti-
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tative methods to analyse data, the field of network analysis has developed and

broadened [Luke and Harris, 2007]. In more recent years, the field has devel-

oped even further and at a greater rate, as our interests have moved away from

analysing single small graphs like those in Figure 4.1. This has perhaps occurred

as a result of better communications and computational power, giving us the

ability to both collect and analyse much larger datasets. Consequently, analysis

methods may also have changed. In a large network, the removal of individu-

als may have a lesser effect on the network as a whole than it would in a small

network. Rather than asking questions about individuals, we may choose to ask

questions about groups or clusters of individuals in a network.

4.3 Network structure

The overall structure of the network that is being analysed can have a big effect

on the results that are obtained. Some networks from a regular structure, such as

a tree, ring or lattice. However, these regular structures are likely to form part of

a more complex network structure and are therefore not discussed in detail here,

where the focus is on complex networks. The structure of a (complex) network

generally falls into one of three categories: random networks, scale-free networks,

or hierarchical networks.

Random networks (Figure 4.1(a)), also known as random graphs, were first pre-

sented by [Erdos and Renyi, 1959] and they are one of the most studied types

of graphs. The advantage of using random graphs to represent real-world net-

works is that their properties can be calculated analytically. They were the first

realisation of complex networks that seemed to have no apparent design princi-

ples [Almaas et al., 2007]. In a random, or ER, graph of N nodes, each node is

connected with some probability, p, such that approximately pN(N − 1)/2 edges

are created between nodes. Because for large values of N , the binomial distribu-

tion can be approximated by a Poisson distribution, these graphs are sometimes

referred to as Poisson random graphs.

Scale free networks (Figure 4.1(b)) are, by definition, networks in which the

number of links to a node follows a power-law distribution. This means that the

majority of nodes are directly connected to only a few other nodes, whereas some

nodes will be directly connected to hundreds or thousands of other nodes. This

property, which could arguably also be shown by fitting alternative distributions
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Figure 4.2. Graphical representation of three network models. (a) and (d) random
network, (b) and (e) scale-free network and (c) and (f) hierarchical network [Almaas
et al., 2007]. (a), (b) and (c) show how individual nodes appear in three network
structures, where as (d), (e) and (f) show how a larger version of the network may
appear.

such as the lognormal distribution [Mitzenmacher, 2004], holds for a surprisingly

large number of networks. In biology, [Jeong et al., 2000] shows how the metabolic

networks of 43 different organisms have the same topological scaling properties,

which comply with the design principles of scale-free networks. The emergence of

the power-law distribution in the networks analysed is also thought to characterise

the evolution of biological systems [Hartwell et al., 1999]. In some cases, scale-

free network may displays characteristics attributed to the small world theory

(although we note that not all small world networks are scale-free). The small

world theory says that in a connected graph or network, which has a high diameter

(the average minimum number of unique nodes which have to be crossed to reach

another node), the introduction of a very small number of random edges into

the network will greatly reduce the size of the diameter. The theory has been

tested on many networks. The actors in Hollywood are said to be, on average,

within three co-stars of each other and the spread of disease may be influenced

by the elements of a population described by the small world network [Watts

and Strogatz, 1998]. The most famous example of the small world network is

that of the six degrees of separation, as uncovered by Milgrim in 1967 [Milgram,

1967]. In the social network of the world, any person turns out to be linked to
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any other person by roughly six connections [Borgatti et al., 2009]. In scale-free

networks, it may be possible to locate localised clusters. In this case, the network

is a hierarchical network, in which there are always high levels of clustering.

Hierarchical networks (Figure 4.1(c)) are special forms of scale-free networks (also

characterised by a power-law degree distribution) that can be broken down into

different modules, where each module represents a certain task. In such networks,

the identification of the links that join clusters enables us to identify where to

attack networks in order to manipulate them. This could be particularly useful

in preventing the spread of attributes, such as infectious disease, over a network

for example.

Within all three groups, a network can be undirected or directed. In an undirected

network, the links that occur between nodes have no direction, that is to say that

if it is possible to reach A directly (not by passing through other nodes) from B,

then in an undirected network, it must therefore be possible to reach B directly

from A. In a directed network, a direct link from A to B does not imply a direct

link back from B to A. Although adding direction to links between nodes in a

network, generally speaking, makes the network more representative of real-life,

direction is not always assumed.

4.4 Real world examples of networks

In this thesis, although network analysis is used in the context of biological net-

works, it is also important to gain an insight into the power of network analysis,

as well as the importance of it across multiple disciplines. On occasions, we can

learn vast amounts from other disciplines and in order to be able to do this, we

need to at least have an understanding of the terminology and methods used

elsewhere. Here, brief examples of how network analysis is used in a range of

disciplines are given.

4.4.1 Social networks

In the social sciences, formal network analysis methods can be used to understand

political, economic and social organisations and individuals. Social network anal-

ysis covers three main areas:
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(i) Examination of the interactions between nodes.

(ii) Measurement of the resource flows between nodes.

(iii) Measurement of the information flows between nodes.

In social network analysis, nodes are known as actors and they refer to discreet

individual, corporate or collective social units. Actors are linked to one another

by social ties, which form a relation when considered as a collection of ties.

Stating that networks exist has been compared to stating that society exists [C.

Christopolous, pers. comm.]. By mapping the social structure and analysing it

using network analysis methods to understand motives and opportunities, one

can claim a better understanding of society.

Example of social network analysis: interactions between

actors.

As an example, Figure 4.3 shows a network of terrorist links between the 9/11

hijackers [Krebs, 2002]. Krebs explains that he was surprised, in this case, to

see ‘how sparse the network was and how distant many of the hijackers were

from each other. Many on the same flight were more than two steps away from

each other (in the network)’. Krebs then goes on to explain that by forming a

network in this way, i.e. by keeping members on the same flight distant from each

other in terms of social ties and distant also from other flights, should any of the

terrorists be caught or otherwise compromised, then damage to the network as a

whole is minimised.

Examples of social network analysis: measurement of the

resource flows between actors.

Van Der Gaag [Van Der Gaag and Snijders, 2005] talks about social capital as ‘the

collection of resources owned by the members of an individual’s personal social

network, which may become available to the individual as a result of the history

of the relationships’. In social network analysis, one may concern themselves

not with the size of a network, but with the amount of resource that could be

accessed through network ties. An example of this is investigating whether or

not people are more likely to know somebody who can fix their car, or lend them
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Figure 4.3. Network of terrorists involved in the 9/11 attacks, according to flight.
Each square represents a terrorist. Colours describe different flights [Krebs, 2002].

money, based on their education, income or whether or not they are married for

example. Knowing this kind of information enables people to identify what kind

of ties they need to make in order to improve their social capita and hence the

resources available to them.

Examples of social network analysis: measurement of the

information flows between actors.

In social network analysis, one may consider how the flow of information is af-

fected by social networks. Many studies have used social network analysis to

study the flow of information [Allen and Cohen, 1969, Friedkin, 1982,Galadima

and Gan, 2007]. In [Granovetter, 1973, Granovetter, 1983], Granovetter talks

about the strength and importance of weak ties. Socially, a weak tie is an ac-

quaintance rather than a friend. Granovetter suggests that more novel infor-

mation is exchanged between weak ties than through strong ties. This occurs

because weak ties are generally less similar to each other than strong ties and

they are often connected with different circles of friends. We generally will see

a lot of overlap between information exchanged between strong ties. Weak ties

70



connect us with actors that we would otherwise be unconnected to, connecting us

to the wider-world. This can be used to ones advantage, weak ties may be better

sources of information when we need to go beyond what our own friends know,

such as finding a new job, or obtaining a scarce service [Granovetter, 1973]. In

science, new information and ideas are more likely to to arise from discussions

between weak ties than between strong ties as strong ties tend to have the same

ideas as each other.

Social network analysis is limited in some ways by the complexity of social in-

teractions. Data on personal relationships is hard to quantify and sometimes

extremely sensitive. Analysis of social networks to incorporate change in an or-

ganisation for example must be carefully managed as discussion of people and

their social interactions can make people uncomfortable. Data collection also re-

lies a lot on people being willing to disclose personal information. This is true

for many data collection exercises, inside and out of social network analysis.

4.4.2 Information networks

Information networks can occur as information is passed between people, so that

ties in the sense of social network analysis are formed when information is ex-

changed between two actors. However, information networks perhaps more com-

monly refer to the links that occur between sources of information. A good

example of this is the network of citations between academic papers. The study

of information networks has become more popular with the increased availability

of network data and the rise of the World Wide Web, providing a central object

of research in computer science. The analysis of link structures in information

networks is used to tell us about the content of the network. By considering the

link structures, particularly in the World Wide Web, we can find high-quality

information resources by identifying the way in which web pages are linked, we

can also use it on citation data to find influential journals.

The study of the web as a graph is well cited [Newman et al., 2006]. In [Broder

et al., 2000], network analysis methods are used to comment on the structure

of the web. They find that over 90% of the 203 million pages included in their

analyses are connected if links are allowed to occur in any direction between two

pages. They show that the web pages are split into four similar-sized groups; a

central component in which all pages can be reached from all other pages (this is a

giant strong connected component), two other components referred to as ‘In’ and
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‘Out’, which are linked to the central component in only one direction and a

fourth group that consists of sites that are not at all connected to the central

component. This structure is called a bow tie structure. The study of component

size and how components are linked is also important in the studies undertaken

in this thesis.

4.4.3 Biological networks

In the biological sciences, networks appear everywhere and network analysis can

be used to understand structures at many levels, from the molecular level right

up to the population level, where the interactions that occur between individuals

or groups of individuals are analysed from a biological point of view, such as

the analysis of food webs or transmission of disease within a population. In

biology, all three types of network structure that were presented in section 4.3 are

studied. However, despite the fact that random networks, which are well studied

by mathematicians [Newman, 2003a], have been proposed as realistic models of

population structure (so long as they have a specified degree distribution) [Volz,

2008], most biological systems are not random. In fact, random networks are

perhaps best used in biology to prove that systems show different properties

to random networks [Li et al., 2004]. Most biological networks are believed to

be scale-free in structure [Jeong et al., 2001], though hierarchical networks also

exist. Some food webs, for example, show hierarchical properties [Dunne et al.,

2008]. Furthermore, analysis of such networks has shown that in those food webs

with hierarchical features that are positively related to the size of the consumer

compared to the size of the consumed, the structure is likely to be both stable

and persistent [Emmerson and Raffaelli, 2004, Loeuille and Loreau, 2005, Brose

et al., 2006].

Although being able to categorise a network into one of the three structural cate-

gories described above can be useful in analysis, not all networks fit comfortably

into one of these categories and being able to identify their structure may not be so

straight forward. While certain network properties can be used to help determine

the category that the network structure most closely matches, other properties

can be more informative, for example in determining the networks’ strongest and

weakest points. The properties described below are used later in this thesis to

investigate the aforementioned case study networks and are introduced here in

terms of the case studies.
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4.5 Link representation

A link between two nodes describes the way in which the nodes are connected. In

the RA case study, links represent biochemical relationships that occur between

molecules in the cell. In the AIV case study, a link represents a potential trans-

mission route of AIV, described by the movement of potentially infected material

between farms.

The original network for the molecular interaction map was manually built in

CellDesigner format (the standard format for molecular interaction maps (see

[Funahashi et al., 2003] and [The Systems Biology Institute, 2010])). In this

format, nodes can represent all types of molecules, with each molecule given a

different identification type according to the molecule type (e.g. genes and pro-

teins appear as different types of nodes in this format). The molecular interaction

map is a directed network between molecules involved in RA, where each node

represents a single molecule in one state (genes for example can occur in both

‘active’ and ‘inactive’ states). Links between two nodes may represent state tran-

sition (the transition of one node from one state to another state), transcription

(the copying of DNA into messenger RNA), translation (the process of converting

the information contained in a sequence or RNA bases into a sequence of amino

acids) or transport. For analysis, the network was read into Cytoscape software

in systems biology markup language (SBML) format (see [SBML, 2010]) where it

is represented as a physical network (in which reactions between genes are phys-

ical, and considered as separate nodes, see Figure 1.2b). It should be noted that,

in Cytoscape, activation or inhibition between two proteins in CellDesigner are

represented as separate nodes.

For the population network, the network was built -and partially analysed- using

a programme written in C language. Here, data were read into a C programme

as a two-column list representing links between nodes. When a link could occur

in either direction, that is to say that A is linked to B and B is linked to A, then

both combinations appeared separately in the list of links. In order to perform

analyses on the links, they needed to be converted into a representation of a

graph, or network. There are several options for representing graphs. Firstly,

a graph can be represented by an adjacency matrix. An adjacency matrix is

an N × N matrix of Boolean values (where N is the number of nodes in the

analysis), with the entry in row v and column w defined to be 1 if a link exists

between nodes v and w (Figure 4.4a). When one wishes to have the option
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to search for links between two known nodes, or add or remove nodes, then an

adjacency matrix would be a good way of representing the graph. On the other

hand, adjacency matrices are expensive (computationally) because they contain

as much information about links that do not exist as well as links that do exist

(i.e. a zero entry represents a null value). A better representation, particularly

when the number of nodes is high, is an adjacency list. An adjacency list is a list

N -nodes long and with varying column length. Each line in the list represents a

single node and only links that exist are included in the list. So a graph like that

in Figure 4.4 would be written as shown in Figure 4.4b.

a) b)
A B C D E F G H I J

A 0 0 0 0 0 0 0 0 0 0 A
B 1 0 1 0 0 0 0 0 1 0 B A C I
C 0 0 0 0 0 0 0 0 0 0 C
D 0 0 1 0 0 0 0 0 0 0 D C
E 0 0 0 1 0 0 0 0 0 0 E D
F 0 0 0 0 0 0 1 0 0 0 F G
G 0 0 0 0 1 0 0 1 0 0 G E H
H 0 0 0 0 0 0 0 0 0 1 H J
I 0 0 0 0 0 0 0 1 0 0 I H
J 0 1 1 0 0 0 0 0 0 0 J B C

Figure 4.4. Representation of directed graph. Top: Graph of directed links between
10 nodes (A - J). Bottom: Link representation of directed graph (top) as (a)
adjacency matrix, (b) adjacency list.

An adjacency list is computationally inexpensive but is hard to use if the user

wishes to search for links and/or remove links when there are a lot of vertices, as

all links have to be checked in a line until the desired link is found. Despite this,

adjacency lists were chosen to represents links when undertaking the population
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contact structure analyses described here.

4.6 Degree and degree distributions

The degree of a node refers to the number of links associated with that node. In

a directed network, a node will have an in-degree and an out-degree.

Figure 4.5. Degree of nodes in a directed network. In-degree = red and out-degree
= blue.

In directed networks, if it is possible to reach node B from node A, then it does

not imply that the reverse path exists. The in-degree of a node is given by the

number of links via which the node can be reached. The out-degree of a node is

given by the number of paths via which the node can be left (Figure 4.5).

As not all nodes in a network have the same number of edges, we consider the

degree distribution as a way of characterising the network [Newman et al., 2006].

The degree distribution tells us the number of nodes that we would expect to

see for a node in the network, chosen at random. In random networks, the node

degree follows a Poisson distribution, with a peak at the average (mean) number

of edges per node. In scale-free networks, which are generally more representative

of real-life, the degree distribution deviates from the expected Poisson of random

graphs and generally has a power-law tail. Hierarchical networks also have a

power-law distribution, as in the scale-free model. The clustering coefficient (see

section 4.9) is used to differentiate the scale-free from the hierarchical networks

such that the average clustering coefficient for nodes with exactly k neighbours,

Ci, is independent of i for both the random and the scale-free network model, in
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contrast, Ci is proportional to i − 1 for the hierarchical network model [Almaas

et al., 2007].

In order to determine how well connected the case study networks are, the in-

degree and the out-degree of each node was considered. At the cell level, this

was done in Cytoscape and the degree distributions for both in- and out-degree

were produced. At the population level, in order to determine the degree of

each node, two adjacency lists were produced, we call these the in graph and

the out graph. Given a pair of connected nodes, say u and v, such that u is

connected to v (i.e. the link has direction), then u is the out vertex and v is

the in vertex. The in graph is written in the form [in vertex, out vertex] and the

out graph as [out vertex, in vertex] (in fact, because the network is directed, the

list in Figure 4.4(b) shows the network described as an out graph). To find the

in-degree of a node, one simply counts the length of the list corresponding to that

node from the in graph, vice-versa for the out-degree from the out graph. The

in- and out-degrees of each node were written to a separate file and used later in

the analyses. In an undirected network, the in- and out-degree do not differ in

size. A node that is not isolated (i.e. either in-degree or out-degree are greater

than zero) from which no other node is reachable has out-degree = 0 and is called

a sink and a node which is not reachable from any other node has in-degree = 0

and is called a source.

The degree distribution, which was compared to fitted power-laws in this study,

can also be used to determine how a network is likely to react to the removal of

nodes. It seems intuitive that the higher the degree of a node, the more likely

the network is to fall apart if the node is removed as more links between nodes

are removed. Random networks are more stable than scale-free networks when

random nodes are removed. This stability is referred to as network resilience.

4.7 Network resilience

Network resilience is the ability of a network to remain stable when nodes are

removed. In many cases, networks rely on their connectivity and by playing with

the connectivity between nodes, by removing or adding nodes (and links), we can

learn where best to manipulate a network in order to cause it to break up, or on

the contrary, where to strengthen a network in order to prevent it from falling

apart should a node be removed. This is important in many networks as the
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removal of links between nodes results in an increase in the typical distance be-

tween nodes (the number of other nodes one has to cross to get from one node to

another, referred to as pathway length), which can be costly. In some networks,

we may want to prevent the removal of nodes, in computing for example, where

a hacker may identify and target the node with the highest degree in order to

increase their access to information. In other networks, removing nodes may be

used as a control measure, for reducing the rate at which disease spreads in a pop-

ulation, for example. However, in some scale-free and in particular hierarchical

networks, removal of the node with the highest degree may not be as effective in

breaking a network up as removal of nodes that join otherwise separate clusters.

The resilience of the networks to the removal of links was tested in this thesis by

removing hubs in the gene-network. In the population network, the resilience was

tested by identifying and removing the nodes with the highest degree from the

network and re-running the code for a range of probabilities based on repeated

random sampling. The effect that this had on the size of the the total number

of nodes that can be connected was investigated for a range of probabilities of a

link occurring.

4.8 Network assortativity

By looking at the mixing patterns of nodes in a network, the assortativity of a

network describes the relationship between nodes that are ‘similar’. The definition

of similarity may vary, but here it is assumed to be measured by the degree of a

node. In networks that show assortative mixing, nodes that have a similar degree

are highly correlated, in the sense that they are more likely to be connected to each

other than to nodes with different degree values, so that in assortative networks,

highly connected nodes tend to connect to other highly connected nodes. The

opposite is true for networks that display disassortative mixing, where nodes with

high degree typically connect to nodes with small degree. Social networks often

shown signs of assortativity, where there is preferential mixing such that there is

a bias for highly connected nodes to be connected to one another, or for poorly

connected nodes to be associated with other poorly connected nodes. Biological

networks however, tend to show signs of dissasortativity, with the nodes of the

highest degrees not being directly linked to each other, but typically being linked

to nodes of low degree.

In order to measure the assortativity of a network, we must first know the degrees
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of the nodes in the network. For each edge i that connects two nodes in the

network, we want to know the degrees of the two nodes it connects. In order to

avoid counting the edge itself (and hence the node that the edge connects to),

we consider the excess degrees of the nodes that the edge connects, where the

excess degree is the true degree of the node, minus one. So if for example we

have an edge i that forms a link from node j to node k and the degrees of j and

k are 3 and 5 respectively, then for edge i the excess degree of the node ji = 2

and the excess degree for ki = 4. For the whole network, we want to know how

likely an edge is to link nodes of the same degree. The assortativity measure for a

network is a value between −1 and 1, where a value of 1 implies there is a strong

positive correlation between the degrees of linked nodes and −1 a strong negative

correlation between the degree of linked nodes. We use Newman’s measure (which

resembles a correlation coefficient) [Newman, 2003b], given by Equation (4.1), to

calculate network assortativity, r1 for a network of M edges.

r1 =

∑

i jiki −M−1
∑

i ji
∑

i ki
√

[
∑

i j
2
i −M−1 (

∑

i ji)
2] [∑

i k
2
i −M−1 (

∑

i ki)
2]

(4.1)

Here ji and ki are the excess degree of the nodes that the i
th edge connects. The

square-route function is a scaling factor to force the values of r1 to range from

[−1, 0) for disassortative networks and from (0, 1] for assortative networks. For

random networks, with no degree correlation, r1 ≈ 0.

Assortativity can also tell us something about the clusters in a network: if two

networks have the same number of links and one shows assortative mixing and

the other disassortative mixing, then the connected components (the clusters) in

the assortative network will be bigger than those in the disassortative network,

even though the links are the same i.e. the size of clusters in assortative mixed

networks are bigger than those in the disassortative mixed networks. By consid-

ering the assortativity of different networks we can draw conclusions on how well

the networks may respond, in comparison to each other, to changes made to the

network structure, such as to the removal of links, for example.

4.9 Clustering and connectivity

The clustering coefficient of a network, quantified by Watts and Strogatz [Watts

and Strogatz, 1998], is used in cluster analysis to extract community structure
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from a network. The coefficient measures the degree to which nodes in a graph

tend to cluster together e.g. the degree to which people know each other in

a community. Given a network, if we select a node i in the network, that is

connected to ki other nodes within its neighbourhood, then if all ki nodes were

to form a cluster in which all nodes were connected to all other nodes, then there

would be ki(ki−1)/2 edges between the ki nodes. The local clustering coefficient of

the node i quantifies how close its neighbours (those nodes immediately connected

to it) are to being a clique. The clustering coefficient Ci for the node i is the

ratio between the number of edges that exist between the ki nodes within the

neighbourhood of i and connected to i (call this Ei) and the maximum number

of edges that would exist between the ki nodes were they all connected (given by

Equation (4.2)).

Ci =
2Ei

ki(ki − 1)
(4.2)

The clustering coefficient of the whole network is the average of the clustering

coefficients of each node, which raises the question about the variance of Ci and

what small versus large variance means. It should be noted that the clustering

coefficient does not tell us anything about the number of clusters in the network,

or the size of clusters, which might have implications in where to target the

network should we want to break down clusters in the network. This highlights

the importance of not looking at one characteristic alone in the analysis of a

network. The levels of clustering in a network will depend on the strength of

links between nodes where links within a cluster will be strong compared to

links between clusters. As well as considering the clustering coefficient, being

able to identify individual clusters in a network can give information about how

well connected the network is. Well-connected networks (networks with a high

proportion of possible edges per node) tend to have a smaller number of large

clusters (or components, which can either be clusters in which all nodes are

connected to all other nodes, or sets of nodes that are connected in only one

direction) compared to less well-connected networks of a similar size.

In any network, each node is either isolated and therefore not connected to any-

thing or it is part of a component. In a connected graph, there exists a pathway

such that any node can be reached from any other node. In a directed graph (di-

graph), if two nodes are reachable from each other, they are strongly connected.

In order to search for components in a graph, we need to search for pathways be-
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tween nodes, in the most efficient way. A well-used method for finding pathways

in a graph is to use a depth-first-search (DFS) algorithm. The basic algorithm

uses two simple implementations, a recursive one and one that uses stacks. Here,

a DFS algorithm is illustrated, showing how to find connected components in the

graphs that are of interest in this study.

Clustering: DFS algorithm

In a DFS algorithm, a node is visited, marked as having being visited and then

all nodes adjacent to it are visited and marked as being visited (in a recursive

fashion), until all nodes have been marked as having been visited. The DFS

algorithm, written in C in the programmes used for analysing the population

networks, works as follows:

Figure 4.6. Adjacency lists representation of a graph. Graph of linked nodes (a)
represented as an adjacency list (b).

The graph in Figure 4.6(a) is read into the programme as a list of linked pairs

and transformed into the adjacency list (Figure 4.6(b)). We then examine the

nodes of the graph in the order that they appear in the adjacency list, starting

at node 0. We mark 0 as having being visited and move on to 7, from here we go

to 1, which takes us back to 7. Both 7 and 1 have been visited and as 1 takes us

back to 7, we then consider 0 again. As 0 has been visited, we look for the next

non-visited node connected to 7, so we next visit 4 and so on. The algorithm

visits nodes in the order that they appear in the list.

Following this procedure, Figure 4.7 shows the order in which links between the
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0 - 0
0 - 7

7 - 1
1 - 7

7 - 0
7 - 4

4 - 6
6 - 4
6 - 2

2 - 0
2 - 6

4 - 5
5 - 0
5 - 4
5 - 3

3 - 5
3 - 4

4 - 7
4 - 3

0 - 5
0 - 2

Figure 4.7. DFS Algorithm representation. Order in which nodes and links in
Figure 4.6 are visited in DFS algorithm.

nodes in the graph in Figure 4.6 would be checked.

As all edges and all nodes that are connected to the start node are visited using

this algorithm, it does not matter what order the linked nodes are listed in if we

are looking for components. This property occurs because of the recursive nature

of the algorithm and allows us to fully explore the graph, no matter where we

choose to start. We can use this algorithm to find components within a graph.

The algorithm takes us from the node at which we started to all nodes that

are connected (i.e. there exists a path between nodes), thus giving all nodes

that are within the same component as the starting node. As not all graphs

are connected, we need a way of identifying when we have visited all nodes in a

component and when to start looking for nodes that have not been visited and

belong to a different component in the graph. Typically, we use a graph search

function that will search for nodes that have not been marked as visited and visit

and mark all nodes connected to the start node. We can mark nodes as being

visited/not visited by assigning them a positive or negative value respectively.

In a graph search function, the programme will assign a value of -1 to all nodes,
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it then loops through nodes in consecutive order, if the node has a value of -1

assigned to it, the DFS algorithm is called to search for all nodes belonging to

the same component, when the DFS algorithm returns NULL, then the graph

search moves on to find the next node that has not yet been visited until all

nodes have been visited. One can number the components by counting each

time the DFS algorithm returns NULL and label visited nodes with the count

number rather than +1. Nodes that have not been visited are still marked with

a negative number. By marking nodes with a component number, we are then

able to search for components of different sizes. In the previous example (Figure

4.7), the algorithm would mark all nodes as being in the same component. When

returning to zero at the end of the list, it would search for non-visited nodes and

see that through the DFS algorithm, no nodes remain unvisited, concluding that

there is only one component in this network.

4.9.1 Network components

When all nodes in a cluster/component can be linked to all other nodes in the

component, the component is said to be strongly connected. If some nodes cannot

be reached from other nodes i.e. the links are directed, then the component is said

to be weakly connected. The largest strongly connected component in a network

is known as the giant strongly connected component (GSCC) and this represents

an upper limit on complete connectivity within the network. In other words,

the GSCC it is the largest subset of nodes such that for any two distinct nodes

from the subset, a path exists such that these nodes can be connected. In an

undirected graph, the GSCC is referred to as the giant component (GC), the size

of which represents an upper bound of the number of nodes that can be connected

in the absence of interventions that may alter the structure of the networks. In a

directed graph, the size of the GSCC represents a lower bound on the maximum

number of nodes that can be connected. The upper bound would be given by the

combination of the GSCC plus all of the nodes in components that connect to

the GSCC in only one direction i.e. are weakly connected. The presence of such

‘weak links’ can be extremely important in holding the structure of a network

together, in particular when the network has high levels of clustering, as they

may act as crucial bridges between otherwise unconnected clusters of nodes.

Many of the algorithms described above apply to investigating the structure of

graphs where a link in one direction between two nodes implies that there is
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also a link in the opposite direction between the same nodes. In reality, this is

not always the case and a link from u to v tells us nothing about whether or

not there is a link from v to u. Although digraphs sometimes need to be treated

differently to non-directed graphs (searching a digraph can be compared to trying

to navigate around a city where all the roads are one way), the algorithms for

labelling components in an undirected graph can also be used to label strong-

components in a digraph. This is important as the presence of strong components

tells us about the structure of the graph. In a cell it can tell us about the most

important pathways in the network, in epidemiology it gives a lower bound on

the maximum number of nodes (be it farms, animals etc.) that could become

infected if disease was to get into the strong component. For both the cell and

the population networks, Tarjan’s algorithm [Sedgewick, 2001] is used to find

strong components in the networks.

4.10 Tarjan’s algorithm

Robert Tarjan introduced linear-time algorithms for strong connectivity in 1972

[Sedgewick, 2001]. Tarjan’s algorithm is an algorithm that it based on the DFS

algorithm already described. It considers nodes in reverse topological order (an

array of connected nodes is used in which each row in the array represents links

such that the source node appears to the right of the destination node) so that

when it reaches the end of the recursive function for a node, it can be sure that it

will not have missed any nodes in the same component. The algorithm searches

for paths that link one node to another and binds together strong components.

It does this firstly by using the DFS to search for nodes (and therefore edges)

that have not been visited. The algorithm adds a numerical label to nodes in the

order that they are visited. This label is called the ‘pre-order’. When a new

node is visited, it is assigned its pre-order number and added to a stack of nodes

that have already been visited. Each time a new node is added to the stack, the

algorithm uses back tracing to find the node with the lowest pre-order number

that can be reached from the node that has just been added to the stack. This

lowest pre-order number is attached to the newly added node and is referred to

as the ‘low’ number for the node. The DFS searches for new nodes to add to the

stack until it reaches a dead end (i.e. the are no more forward moves to unvisited

nodes). When a dead end is reached, the algorithm then goes backwards through

the stacked nodes until it reaches the node for which the pre-order number is equal
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to the low number. At this point, all nodes that are visited between the point

where pre-order = low number and the dead-end, belong to the same component.

The component number is noted for these nodes and they are removed from the

stack. The algorithm continues in a recursive fashion, searching for unvisited

nodes using DFS, until all nodes have been visited and have a strong component

number. The output from Tarjan’s algorithm is a unique component identifier

for each node.

Having used Tarjan’s algorithm to identify the strong components of a graph

or network, we can then search through these components in order to identify

the largest one. The GSCC can be identified either as an add-on to Tarjan’s

algorithm, or through a series of queries run on the output data from Tarjan’s

algorithm. For the cell network, strongly connected components were merged

with weakly connected nodes in order to identify weakly connected components

and the size of these components was determined manually. For the population

network, a combination of MS Access and Gnuplot was used to explore the size

distribution of strong components. The size of the GSCC was determined for

different probabilities of a link occurring between potentially connected nodes

and the rate at which the GSCC grows was investigated. If the networks are well

connected, then the size of the GSCC will grow quickly as the probability of a

link occurring increases.

4.11 Discussion

Network analysis provides a powerful tool for understanding the structure and

characteristics of complex networks, over a broad range of disciplines. Although

sociology may seem a long way from pathology and epidemiology, the same net-

work analysis theories and methodologies can be applied to multiple disciplines.

In this chapter, the methods that have been used to analyse networks at the

cell and population level have been reviewed. Two case studies are now to be

considered (RA and AIV). The methods described in this chapter will be applied

to data on the molecular interactions in a human cell and to data on the poultry

industry in GB. For both case studies, the network structure will be discussed

and network properties such as the degree-distribution will be calculated. The

degree-distribution will be compared to a power-law by using the linear regression

R2 function to assess linearity between log(n(k)) and log(k) (n nodes, k degree)

-as in [Han et al., 2005, Sengupta et al., 2009b, Zhang and Horvath, 2005]- and
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used to identify potentially important nodes in the networks. Tarjan’s algorithm

will be used to identify components in both case studies and network assortativ-

ity will be referred to for the population level network. The resilience of both

networks to change will also be explored and, for the population level data, a

dynamic network as well as a static network will be analysed.
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Chapter 5

Case study RA

Network analysis of a molecular

interaction map for RA in

humans - data collection and

initial analyses

5.1 Introduction

RA is a complex disease involving a yet unknown number of genes and affecting a

large number of organs, tissues and sites across the body. Although RA involves

the synovial joints, it presents several systemic features as, in fact, several other

organs are affected including the skin, lungs, kidneys, blood vessels and heart

[Giladi et al., 2008,Carl and Swoboda, 2008,Meltzer and Noble, 2008,Levin and

Werth, 2006]. Because of its complexity, having a broad, systemic perspective

on the biological functions activated and the molecular pathways involved in the

disease is of crucial importance.

Currently, there are multiple approaches that can be taken to improve our under-

standing of RA. Firstly, genome-wide association studies (GWAS), which scan

the whole genome in search of areas that may carry mutations related to RA,

1Work from this chapter has been published in Wu, G.*, Zhu, L.*, Dent, J. E.*, and Nardini,
C. (2010). A comprehensive molecular interaction map for rheumatoid arthritis. PLoS ONE,
5(4):e10137 *contributed equally.
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can be considered [Eyre et al., 2009,van der Linden et al., 2009,Wu et al., 2009].

Further, analysis of gene microarray data has contributed greatly to further un-

derstanding the development of the disease in the cell and the pathways that are

involved. Analysis of this type of data has also contributed to the identification

of biomarkers for diagnosis of disease and to advancements in the diagnosis and

severity of disease, according to symptoms [van Baarsen et al., 2009]. Other

studies combine information from these two approaches in order to better predict

candidate susceptibility genes of RA [Toonen et al., 2008]. Finally, some signal

transduction (the process that converts a mechanical/chemical stimulus to a cell

into a specific cellular response) pathways have also been identified as being in-

volved in the disease progression and in the effects of treatments or therapies for

RA [Pohlers et al., 2007,Koczan et al., 2008]. The signal transduction pathways

in RA and some of the important proteins of these pathways have been identi-

fied as drug targets to treat the condition [Hammaker et al., 2003, Sweeney and

Firestein, 2004,Morel and Berenbaum, 2004]. Besides the relevance of proteins

as targets, a recent study has also shown that the expression levels of certain

genes change significantly during the treatment of the condition [Stanczyk et al.,

2008], implying that some microRNA (small RNAs that bind to matching pieces

of messenger RNA to make it double-stranded and decrease the production of the

corresponding protein) may be involved in RA progression. Due to the complex-

ity of RA, however, the interactions that occur among all of these molecules and

pathways is still obscure. Furthermore, because some drugs that are commonly

used to treat RA, such as MTX (Methotrexate), have adverse side affects, such as

liver, lung and kidney damage, as well as strong immunodepression, it is highly

relevant to further understand the interactions that occur between molecules (and

their pathways). By studying and clarifying the whole structure of the molec-

ular networks involved in RA, new therapies can be identified, leading to the

development of more specific and useful drugs.

Although there are a lot of available data for RA, these data, describing inter-

actions between molecules known to be involved in the disease, need combining

in such a way that they can be used to understand the disease at a systemic

level. For this reason, a complex network of interactions that combines as much

available data as possible has been reconstructed. Given the heavy amount of

literature related to RA, and the challenge in reconstructing such a systemic net-

work, the primary objectives of this chapter were to build a map of the molecules

related to RA (in humans) based on current knowledge and to perform a static

network analysis of the map. The reconstructed network is a comprehensive map
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of molecules and pathways that have to date been found to be associated with

RA, based on systemic, high-throughput -primarily microarray- data.

5.2 Construction of a molecular-interaction net-

work map for RA

5.2.1 Data collection

Due to the fact that the technique of microarray is a mature and widely used tech-

nique in the field of biological research and because microarray data are plentiful

and accessible from the literature and databases, the search terms ‘rheumatoid

arthritis AND microarray AND expression profiling’ were chosen in order to ob-

tain information that would be used in the building of the map. Using these

search terms, an intensive literature search of papers based on high-throughput

RA experiments (mRNA, miRNA) was done using PubMed in November 2009, in

order to identify genes, proteins and small molecules that relate to RA. The con-

structed map uses the information retrieved from the results of functional genomic

analyses on RA (in the form of differentially expressed genes), as a blueprint for

the construction of a more detailed interaction map based on assessed literature

(in the form of pathways). Generally speaking, the mRNAs from which the map

has been built and hence on which the analysis is based, are identified as relevant

under different biological conditions, such as healthy versus diseased subjects, RA

versus other immune diseases, or comparing subjects before and after treatment.

Once the animal studies of RA and the expression profiling performed using tech-

niques other than microarray were removed, a total of 28 peer-reviewed articles,

containing information about molecules related to RA from a total of five different

tissues (blood peripheral blood mononuclear cell (blood PBMC), blood peripheral

blood mononuclear cell plus polymorphonuclear leukocytes (blood PBMC PMN),

cartilage, synovial fibroblast and synovial polymorphonuclear leukocytes (syn-

ovial PMN)), were identified for use in building the map. In order to extract

information from the peer-reviewed articles, the most interesting genes associ-

ated with RA were searched for, according to the results that the authors pre-

sented. These results were identified by the authors own analysis of microarray

data, where it is assumed that genes that are differentially expressed, according

to the results of the microarray experiments, are related to RA. It is beyond the
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scope of this project to process raw microarray data (in order to identify further

genes) that might be obtained from data repositories such as Gene Expression

Omnibus (GEO) [NCBI, 2010a] and ArrayExpress [European Bioinformatics In-

stitute, 2010]. Moreover, by not using data that are deposited and also not asso-

ciated with any publication, an extra guarantee of quality control on the data was

achieved by the peer-review process of publication. Table 5.1 gives a summary

of the literature, noting the tissue type and the number of genes extracted from

the reference as being relevant in RA.

Table 5.1. RA literature review summary.

Reference Tissue type Number of

genes

[Alsaleh et al., 2009] synovial fibroblast 4

[Andreas et al., 2008] cartilage 16

[Arranz et al., 2008] synovial fibroblast 47

[Auer et al., 2007] synovial PMN 11

[Devauchelle et al., 2004] synovial fibroblast 5

[Edwards et al., 2007] blood PBMC 42

[Galligan et al., 2007] synovial fibroblast 4

[Julià et al., 2009] blood PBMC plus

PMN

3

[Junta et al., 2009] blood PBMC 3

[Koczan et al., 2008] blood PBMC 24

[Lequerré et al., 2006] blood PBMC 2

[Lequerré et al., 2009] synovial fibroblast 43

[Lindberg et al., 2006] synovial fibroblast 68

[Nakamura et al., 2008] synovial fibroblast 11

[Oki et al., 2009] synovial fibroblast 61

[Olsen et al., 2004] blood PBMC 6

[Pohlers et al., 2007] synovial fibroblast,

blood PBMC

6

[Qingchun et al., 2008] synovial fibroblast 1

[Sekiguchi et al., 2008] blood PBMC plus

PMN

3

[Sha et al., 2003] synovial fibroblast 9

[Silva et al., 2007] blood PBMC 5

Continued on next page
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Table 5.1 – Continued from previous page

Reference Tissue type Number of

genes

[Stanczyk et al., 2008] synovial fibroblast 8

[Teixeira et al., 2009] blood PBMC 18

[Timmer et al., 2007] synovial fibroblast 11

[Toonen et al., 2008] synovial fibroblast,

blood PBMC

12

[van der Pouw Kraan et al., 2003] synovial fibroblast 23

[van der Pouw Kraan et al., 2008] synovial fibroblast 2

[Zer et al., 2007] synovial fibroblast,

blood PBMC

11

5.2.2 Construction of the network map

Constructing the cell model

Next, using CellDesigner software (v4.0.1 ) [Funahashi et al., 2003] (a structured

diagram editor for drawing gene-regulatory and biochemical networks), a model

cell was drawn and, according to information about molecule characteristics, in-

cluding location within a cell, available at National Center for Biotechnology

Information (NCBI) gene database [NCBI, 2010b], each of the genes and cor-

responding proteins were drawn in an appropriate location in the cell model,

based on the literature where possible and expert opinion otherwise. The no-

tation used to draw the map is based on a process diagram and uses graphical

notation designed specifically for drawing network diagrams in biology (Systems

Biology Markup Language (SBML)). SBML is a standard for representing models

of biochemical and gene-regulatory networks [SBML, 2010].

A legend describing the different types of nodes and links that can be used to draw

a map in CellDesigner, using SBML, is given in Figure 5.1. CellDesginer was

chosen as the software to use for drawing the map because it is an open-source,

popular and successful standard for the exchange of cellular maps [Klipp et al.,

2007]. For further information about maps in CellDesigner and for information

regarding the detailed process of map drawing using CellDesinger, please also

see [Kitano et al., 2005].
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Figure 5.1. SBML adopted by CellDesigner. The figure shows how different molecules and reactions are represented in CellDesigner.
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Adding connections to the nodes

The relationship among the molecules was added to the cell diagram according to

information contained within the peer-reviewed papers or according to pathways

identified by searching the Kyoto Encyclopedia of genes and genomes (KEGG)

database [KEGG, 2010] on a molecule-by-molecule basis, as described below.

Initially, connections were built among all the molecules (proteins, genes, RNAs

and simple molecules for example) presented in the literature studied. In some

cases, detailed regulatory relationships between different molecules, such as acti-

vation, inhibition and phosphorylation were available, enabling the re-construction

of part of the RA map. In the case where molecules were identified in the litera-

ture, but their interactions not identified, the KEGG database was searched for

missing connections. In order to search for connections this way, every molecule

was input as a query term and a list of different pathways that it is involved

in was obtained. For each pathway obtained, information about the molecule’s

neighbours, as well as the relationships among them, was also downloaded. If the

neighbours of the queried molecule are also related to RA, then they were added

to the interaction map, giving rise to additional nodes being added to the map.

Otherwise, this information was not included. In different pathways, it may occur

that the neighbours of the queried molecule differ. In such cases, each path was

treated independently and included in the map according to the method described

above. Where no interaction information was available from either the literature

or the KEGG database, the molecules were excluded from the map. This makes

sense from a topological point of view because an isolated molecule interacts with

nothing, meaning it has no influence on other nodes. The resulting RA map is a

directed network between molecules involved in RA, where each node represents

a single molecule and links between two nodes may represent state transition,

transcription, translation or transport. Where the transition occurs in both di-

rections between two nodes, two directed links (one in each direction) were used.

Other types of links can only occur in one direction.

RA network map summary

The constructed RA map is presented in Figures 5.2 to 5.6 in the CellDesigner for-

mat. (Figure 5.2 shows the full map. Figures 5.3 to 5.6 show sections of the map

in more detail and have been included for clarity. An on-line version of the map

is also available at the CellDesigner website). Figure 5.2 shows the molecular-
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interaction map represented as (a) a protein-protein interaction map linked by a

number of transcription factors and other molecules to (b) a gene regulation map

(discussed in Chapter 6). The resulting map has a total of 273 proteins, which

are represented in 348 distinct chemical species (248 of them are located in the

cytoplasm, 44 in the membrane, 21 in the nucleus, 25 in the outside of the mem-

brane, 4 in the mitochondrion, 1 in the cytosol, 4 in the endoplasm reticulum, 1 in

the golgi apparatus) and 255 reactions and regulations (among them, 24 protein

associations, 3 protein dissociations, 160 state transitions, 47 transcriptional reg-

ulations, 10 protein translations, 7 transportations, 2 known transition omitted,

indicating an indirect interaction and 2 unknown transitions, indicating interac-

tions predicted but not validated from literature [Arranz et al., 2008]). The genes

associated with RA distribute almost every organelle of the cell including Golgi

apparatus, endoplasmic reticulum and mitochondrion.

5.2.3 RA network map quality control

Over a period of several months, the network map was carefully manually curated

by three scientists (J. Dent, G. Wu and L. Zhu) and several strategies have been

adopted in order to control its quality. Firstly, the map was checked manually

by all three scientists familiar with the project. Prior to publication at CellDe-

signer, every molecule that is included in the map was cross-referenced with the

literature so that the relationships among these molecules can be validated in

the literature and/or via the KEGG database. Further, the ‘PubMed ID’ from

which the reference was made and/or the KEGG website from which information

was obtained were added to the map. Whilst meeting the publication criteria set

by CellDesigner, this also enables the community to work on the same models si-

multaneously, exchange comments, record discussions and eventually update the

models accurately and concurrently. However, this is likely to be a slow process

so it is unlikely that the map will change significantly from one year to the next.

In addition, the results were presented to an experienced Rheumatologist in or-

der to obtain expert opinion about the work. Finally, the topological analysis,

which was performed entirely by J. Dent, provides further validation of the map

construction.

It is acknowledged that some links may be missing from this molecular-interaction

network, due to the possibility that published results may not have been identified

in the literature search. Although every effort has been made to ensure all relevant
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Figure 5.2. Molecular-interaction map for RA. (a) protein-protein interaction map, (b) gene regulation map. The two maps are joined by
transcription factors. The map is shown in more detail in Figures 5.3 to 5.6.
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Figure 5.3. Detailed view of Figure 5.2. The image shows the top left section of the RA map.
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Figure 5.4. Detailed view of Figure 5.2. The image shows the top right section of the RA map.
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Figure 5.5. Detailed view of Figure 5.2. The image shows the bottom left section of the RA map.

97



Figure 5.6. Detailed view of Figure 5.2. The image shows the bottom right section of the RA map.
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papers have been included, by searching references to other papers for example,

the map contains, to our knowledge, information from all relevant papers. The

map has been accepted by experts as being as complete as possible, as it was

peer-reviewed prior to publication in [Wu et al., 2010]. However, by making the

map publicly available and by publishing it in an editable (open access) standard,

multiple research groups are able to access and update the map. It is of great

advantage that the scientific community are able to add any possible missing links

as this decrease the potential -and the impact of- missing studies.

In addition, there may be a small number of false positives (links that appear in

the map but do not truly exist). This is driven entirely by the published results

that have been used to build the map and is most likely to occur because the

map has been built using results from experimental data. Such experiments, in

which the changes in expression levels of genes are measured after a perturbation,

might contain false positives if the changes recorded occur for a reason that is not

connected to the actual perturbation induced in the experiment. In other words,

the differential expression of genes may not correspond to the effective presence of

the corresponding protein. This, however, is at least partially overcome as mul-

tiple samples are usually taken in order to increase the possibility of identifying

outliers and to give statistical significance to each finding. However, when mul-

tiple samples are taken, it is important to adjust for the increase in probability

that a Type 1 error occurs (in which a gene is significantly changed by chance).

This can be accounted for by using the Bonferroni correction [Holm, 1979] and

by considering the Benjamini-Hochberg’s false-discovery rate (FDR) [Benjamini

and Yekutieli, 2001]. For n independent tests, the Bonferroni correction controls

the probability that a spurious result passes the test at the significance level α by

adjusting the acceptance level for each individual test to be α
n
. The FDR proce-

dure, which gives the expected proportion of false positives among all significant

tests, controls the number of false positives (N1|0) among the top R genes at the

significance level α as:

FDR =







N1|0

R
, if R > 0

0, if R = 0
(5.1)

The number of potential false positives and/or false negatives will of course de-

crease as the quantity and quality of both the data available for improving the

map, as well as the additional layer of information retrieved from pathways stored
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in literature, increase. However, by using the Bonferroni correction and reporting

the FDR, potential Type I errors are limited.

5.3 Network analysis of RA map

5.3.1 Network structure

In order to begin to gain an understanding of the complicated structure of the map

(Figure 5.2), and hence the systemic interactions of molecules related to RA, the

molecular interaction map was first analysed as a whole, using Cytoscape v2.6.3.

After being imported into Cytoscape, tools that automatically control the layout

of networks were used in order to reveal clusters within the network.

Visual inspection of the new layout, shown in Figure 5.7, shows that there is

one very large cluster of nodes, containing many cycles, and twelve small clusters

(shown, with isolated nodes, in a row at the bottom of Figure 5.7), these clusters

contain no cycles and very few nodes. The existence of one large component

implies that the network may be very robust to change and that perturbations

to the network may not affect the stability of the network as a whole. In order

to verify this, structural properties of the network were determined.

The mean number of connections (average number of neighbours) per node is

2.281, with a network density of 0.003. The density of the network gives an index

of the degree of dyadic connections (links between two nodes) in a population.

For these data, the density is simply the ratio of the number of adjacencies that

are present divided by the number of possible pairs of nodes in the network

i.e. the proportion of all possible dyadic connections that are actually present.

This measurement gives information about how well connected the network is.

If the density is high, it suggests that many nodes are connected to many other

nodes, implying that, whilst the network might be difficult to break up, it is

relatively easy for a drug to access a higher number of nodes in a shorter amount

of time. Given that the network density is a proportion -and so close to zero

for this map- it can be concluded that most nodes are not connected to many

other nodes and there are, in this network, possibly just a few nodes that connect

to many other nodes. This might imply that the network will display scale-free

properties. Analysis of the shortest path frequency (the minimum number of

steps (the shortest path) it takes to get from one node in the network to another
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node, the longest of which is called the network diameter) shows that the mean

shortest path length is 16.042 (variance = 75.80) and the network diameter is 48.

Intuitively, if the effect that a drug has on a pathway dies out as the length of

the path increases, then these measurements may be related to how effective a

drug is likely to be in penetrating the pathway of interest and, to some extent, the

network itself. Specifically, the longer the shortest path is between two nodes, the

higher the drug concentration may need to be in order to have a significant effect

on the entire pathway. If the drug needs to affect the whole network and not just

a pathway, then the structure of the network will play a role here also. Pathways

that include nodes that are hubs, for example, may be more effective targets for

drugs than pathways that are not well-connected to the rest of the network. It

should be noted here that the network diameter and mean shortest path length

should be interpreted with some caution. This is because these measurements

assume that the number of links between any two proteins in the map is at least

two because each link includes a reaction node (that is to say that the network

is represented here as a physical network (see Chapter 1)) and the path length

between two proteins will be something closer to 8 steps (that is to say that the

diameter of the network will be increased). Other structural characteristics may

therefore have more biological significance for this network.

As discussed in Chapter 4, the structure of the network can be determined by

considering the degree distribution of links in the network. As the map is directed,

the in- and out-degree degrees were calculated for each node and a power-law

fitted to the two distributions. In order to fit a power-law to the distributions,

a least squares method was adopted using analysis tools built into Cytoscape

software. Specifically, given a function that describes the frequency, y, of nodes

with possible degree, x, as y = AxB, then the least squares fitting gives the

coefficients as in Equations (5.2) and (5.3).

b =
n
∑n

i=1 (ln xi ln yi)−
∑n

i=1 (ln xi)
∑n

i=1 (ln yi)

n
∑n

i=1 (ln xi)
2 − (

∑n

i=1 ln xi)
2 for B ≡ b (5.2)

a =

∑n

i=1 (ln yi)− b
∑n

i=1 (ln xi)

n
for A ≡ ea (5.3)

Cytoscape gives the correlation between the given data points and the correspond-

ing points on the fitted power-law curve. In addition, the R2 value is reported.

In order to calculate the R2 value, which is explained by a fitted linear model,

the power-law equation is transformed to a linear equation using a logarithmic

101



transformation, such that an equation of the form y = AxB is transformed into

the linear equation ln y = lnA+B ln x before R2 is calculated.

Figures 5.8 and 5.9 show that the degree distribution of the large map follows

a power-law distribution with in- and out-degree distributions having power-law

exponents of approximately 2.394 and 2.479 (R2 value of 0.951 and 0.948), re-

spectively. The fitting of the power-law to the degree distribution implies that

the RA network is consistent with distributions that shows scale-free properties

(i.e. it has several highly-connected ‘hubs’), as would be expected from a bi-

ological network [Reka, 2005, Jeong et al., 2001,Newman et al., 2006, Barabasi,

2009,Vallabhajosyula et al., 2009].
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Figure 5.7. Cytoscape view of RA molecular interaction map. Map shown is in ‘organic’ view, which is designed to display the clustered
structure of a network. The map shows one very large cluster, 12 small clusters and 12 isolated nodes.
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Figure 5.8. In-degree distribution for RA map. Fitted power-law represented by red
line. (Note zero values excluded in power-law fit.)

Figure 5.9. Out-degree distribution for RA map. Fitted power-law represented by
red line.(Note zero values excluded in power-law fit.)

104



5.3.2 Identification of hubs

Next, it is possible to use node degree to identify hubs in the network. Hubs

are those nodes in a scale-free network that have high degree compared to other

nodes. Typically, they hold a scale-free network together and are of interest

in the field of molecular biology because hubs in a protein-interaction network

often prove to be good targets for drugs. This does not mean that all hubs can

be drug targets, for it is likely that drugs can only target molecules that have

certain properties. As drugs most commonly work by activation or inhibition of

a biomolecule such as a protein, if it is known that the hub cannot be controlled

in such a way then it cannot be a drug target. This may occur if the hub in the

map represents a molecule that binds to a protein, rather than a protein itself, for

example. One reason that some hubs may be suitable drug targets is that they

are often involved in multiple pathways. Therefore, if they can be up- or down-

regulated by an external compound, and they are involved in multiple pathways

in the interaction network then, by targeting a hub, the effect of a drug on the

cell is potentially stronger. Targeting hubs also enables a drug to affect several

other nodes in a shorter time frame than would be possible by targeting nodes

at random.

There are several ways to determine which nodes are hubs [Vallabhajosyula et al.,

2009,Omar, 2010]. For this network, hubs were identified based on the mean de-

gree for the network (z). Following results from [Omar, 2010], where the authors

find that approximately 5% of nodes in a molecular network are hubs, a cut-off

value of (3/2)z was used to define hubs. Here, only hubs that are proteins are

considered (non-protein hubs are assumed not to be biologically significant). The

mean degree for this network is 2.281, which results in a cut-off value of 4 being

obtained for the degree cut-off. It makes sense here to also only consider the out-

degree of a node in identifying hubs. This is because the main aim of identifying

hubs in the network is to highlight potential drug targets. As the ’out’ reaction

implies that the target node affects other nodes, targeting drugs at nodes with

high out degree will result in a high number of other nodes being affected. Nodes

with high in-degree (and not high out-degree) have the properties of sinks and

thus targeting these nodes with a drug will not have a large impact on the number

of other nodes that are affected by the drug of interest. Considering out-degree

only, and using the value of 4 as a threshold, gives rise to 19 hubs, corresponding

to approximately 7% of the network. Increasing the threshold to an out-degree of

5, however, reduces the percentage of the network that hubs represent to 4.8%,
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closer to the 5% target obtained from [Omar, 2010]. With a threshold of 5, the

network has thirteen hubs, eleven of which are protein hubs (see Table 5.2) and

therefore have potentially interesting biological significance.

Biological significance of hubs

Given the identification of hubs, it is important to discuss, at least to some

extent, the biological relevance of the topological findings, from the point of view

of whether or not they are associated with drugs used to treat RA. By searching

the literature and databases such as Pharmacogenomics Knowledge Base [Klein

et al., 2001a] with the hub names, it is possible to identify if a given molecule

is a known drug target. As shown in Table 5.2, of the eleven hubs identified

via the topological analysis, four are already known drug targets for RA (further

information about these targets is given below), six are known drug targets for

other diseases (and are discussed further in [Wu et al., 2010]) and one, CRKL, is

currently not a known drug target. This result is of particular interest and will

be explored further.

Current drugs targets for RA

The biological characteristics of those hubs that are already known drug targets

for RA (see Table 5.2) are described here. An expansion to these descriptions

can be found in the published version of this chapter (see [Wu et al., 2010]).

As previously presented, the molecular-interaction map has four protein hubs

that are related to the treatment of RA (AKT2, IL6, RAC1,2 and TP53).

(i) AKT2 is generally regarded as a gene that has the ability to transform

a normal cell into a cancerous tumour cell. Because of its function, it is

related to various kinds of antitumour drugs, such as cetuximab, erlotinib,

gefitinib and lapatinib. All of these drugs are associated with the EGFR

inhibitor pathway, which plays an essential role in regulating cell division

and death [Klein et al., 2001b]. AKT2 is the second largest hub of the RA

map and belongs to over 20 different pathways in the network. AKT2 is

also one of the synovial genomic targets of bucillamine, a drug which is

used, mostly in Japan, as a treatment to reduce pain in RA patients [Oki

et al., 2009].
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(ii) IL6 (interleukin 6) is a protein that is primarily produced at sites of acute

and chronic inflammation, where it is secreted into the serum and induces

a transcriptional inflammatory response through a receptor called IL6α.

The functioning of IL6 is implicated in a wide variety of inflammation-

associated disease states, including susceptibility to diabetes mellitus and

systemic juvenile RA. It has been suggested that the functional dynamics

of IL6 might be crucial in a form of therapy called etanercept therapy,

which blocks the actions of messengers of inflammation involved in RA

[Koczan et al., 2008]. Apart from in the treatment of RA, IL6 is also

associated with immunosupressive effects of a class of steroid hormones

called glucocorticoids [Amano et al., 1993].

(iii) RAC1,2 is a complex protein, containing RAC1 and RAC2, which belong

to a sub-family of enzymes that are called GTPases. More specifically,

RAC1 and RAC2 belong to the Ras subfamily, which is involved in signal

transduction. Activation of Ras signalling causes cell growth, differentiation

and survival. Proteins found in this family of proteins are all related in

structure and they all regulate diverse cell behaviours. In relation to the

treatment of RA, it has been shown that a drug called Azathioprine can be

used to prevent the development of an effective (auto) immune response,

by targeting RAC proteins [Poppe et al., 2006,Black et al., 1998].

(iv) TP53 (tumour protein 53) is a protein that acts as a tumour suppressor

by activating the expression of genes that inhibit growth and/or invasion,

preventing cells from growing and dividing too quickly. In vitro studies

have shown that methotrexate, a drug used in treatment of cancer and

autoimmune diseases, is associated with TP53 [Li and Kaminskas, 1984,

Lorico et al., 1988,Nelson and Kastan, 1994]. The p53 pathway was also

found to be affected by bucillamine, which, as said above, is mainly used

as a treatment in Japan to reduce pain in RA patients [Oki et al., 2009].
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Table 5.2. Hubs in the RA molecular interaction map.

Molecule Out-
degree

Main function Drug target? References

IL6 14 Induces inflammatory process Yes (RA and immuno-
supressive)

[Koczan et al., 2008,
Amano et al., 1993]

AKT2 12 Transforms normal cell into can-
cer tumorous cell

Yes (RA and anti-
tumour)

[Klein et al., 2001b,
Oki et al., 2009]

RAC1,2 10 Signal transduction Yes (RA) [Poppe et al., 2006,
Black et al., 1998]

TP53 9 Tumour suppressor Yes (auto-immune
and cancer)

[Li and Kaminskas,
1984, Lorico et al.,
1988,Nelson and Kas-
tan, 1994, Oki et al.,
2009]

MAPK1 9 Integration point of multiple bio-
logical signals

Yes (immune regula-
tion and cancers)

[Huang et al., 2004,
Wilhelm et al., 2004]

EGFR 7 Regulation of cell growth Yes (treat tumour
growth)

[Murakami et al.,
2004, Pander et al.,
2007, Glaysher et al.,
2009, Ji and Roth,
2008]

MAPK8 5 Mediator for early gene expres-
sion in response to stimuli (par-
ticularly cell death)

Yes (cancer, metabolic
syndrome)

[Han et al., 2001]

MAPK14 5 Promotes inflammation Yes (kidney and liver
cancers)

[Wilhelm et al., 2004,
Sabio et al., 2008]

GNAI3 5 Involved in transmembrane sig-
nalling systems

Yes (antidepressants) [Shi et al., 2010]

CRKL 5 Activates signalling pathways and
involved in tumour growth

No [Birge et al., 2009]

FGFR1 5 Stimulates cell cycle Yes (inflammation
and ulceration of
mucous membranes)

[Chan et al., 1997,
Jones et al., 1999]
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5.4 CRKL as a potential new drug target

The most important result from the previous section is the identification of a

protein hub that is currently not a drug target for RA, namely CRKL.

CRKL is a protein that is believed to activate a number of signaling pathways and

may also be involved in tumour growth. Because it is currently not a known drug

target, it is potentially interesting for further research. This theory is supported

by work done in parallel, but independently, by another work-group [Birge et al.,

2009]. It still remains, however, to determine how good a drug target CRKL

might be. Whilst this can only really be achieved in the lab, network analysis

tools can be used to predict the likely effect of perturbing CRKL on the rest of the

network. In order to achieve this, the up-regulation of CRKL, the down-regulation

of CRKL (knock-down) and the removal of CRKL (knock-out) were simulated. As

knock-out experiments are expensive, knock-down (and up-regulation) of CRKL

were first explored.

5.4.1 Up- and down-regulation of CRKL

In order to simulate the up- or down-regulation of CRKL (or indeed any other

protein), it is necessary to first consider the pathways that the protein is involved

in. In this way, a directional network of molecular interactions between compo-

nents of a biological system that act together to regulate a cellular process can

be built. In order to obtain the network of interactions that CRKL is involved in,

the original graph was manually trimmed in Cytoscape so that isolated clusters

of nodes were removed. Next, the basis of the ‘CRKL network’ was obtained

by finding those nodes that were strongly connected to CRKL (using Tarjan’s

algorithm to find the strongly connected components of the network, of which

CRKL belonged to only one). Finally, the nodes that were weakly connected to

the CRKL component were added back to the network using a clustering algo-

rithm in Cytoscape that considers node overlap. This resulted in a network of

223 molecules that were linked to CRKL (directly or indirectly) being created.

The next step was to explore the possibility of using this pathway diagram as a

resource for simulation modelling of the CRKL network. However, due to data

constraints, the model pathway does not contain kinetic information and hence

a simulation technique that accounts for this must be used. For this reason, the

Signaling Petri Net (SPN) algorithm that has recently been proposed by [Ruths
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et al., 2008] was adopted.

5.4.2 Signaling Petri Net

SPN is an algorithm designed to model the stochastic flow of a variable number

of ‘tokens’. SPN is an extension to the Petri net model, first described in 1939,

and is based on a non-parametric model of cellular signaling networks, combined

with a signaling simulator [Ruths et al., 2008]. The simulator is basically a Petri

net-based execution strategy that aims to characterise the dynamics of signal flow

using token distribution and sampling. In particular, the simulation is comprised

of a number of time blocks and runs as shown in Figure 5.10. At time zero, nodes

are given a certain number of user-defined tokens. Then, in each time block,

which is made up of a number of runs within which tokens diffuse among nodes

(this diffusion of tokens is referred to as a transition), each transition (represented

by black bars in the figure) is fired in a random order. Each time a transition is

fired, a random number of tokens (chosen uniformly between 0 and the number

present in the parent) is passed to the place(s) downstream. In the example figure,

there are three nodes. The first node is given 100 tokens at time zero. In the

first time block, either the transition between node one and node two (T1) occurs

first, in which case tokens are transferred between nodes one and two and then

between node two and node three when the second transition (T2) is fired, or the

transitions between nodes two and three occurs first (in this case no tokens are

exchanged between nodes), and then T1 is fired, enabling tokens to diffuse only

between node one and node two. The average of the results is then used as the

input to the next time step. This basically means that there is a stochastic flow

of tokens from the starting node to connecting nodes, over time. The number of

tokens present at each node at each time point is recorded. Biologically speaking,

each node represents a molecule and the number of tokens associated with a node

at each time point represents it’s expression level.

SPN can be used to model different transition and different node types, more or

less corresponding to those available in SBML (see Figure 5.1). SPN is imple-

mented in BioLayout Express, a software for the visualisation of biological data

as networks [Theocharidis, A., van Dongen, S., Enright, A.J. and Freeman, T.C.

, 2010]. This software was used for the SPN simulation of CRKL.

110



Figure 5.10. SPN process flow.

SPN simulation of CRKL

By altering the number of tokens that CRKL starts with, it is possible to see

the potential effect that this has on the rest of the network. In order to run the

SPN simulation on the CRKL network, the network was first transformed into

the correct format. It was possible to export the nodes and links from Cytoscape

but the transition gates (the black bars in Figure 5.10) had to be added manually.

Currently, there is no way to read networks into SPN format from Cytoscape or

CellDesigner directly. This is a potential area for future research.

Having completed the building of the network with transition gates, nodes at the

edge of the network were arbitrarily assigned 100 tokens at time zero. Those nodes

that were at the end of a path were allowed to lose a random number of tokens

at each time point (chosen, as with movement of tokens downstream, uniformly

from 0 to the number of tokens present at the parent node). This is necessary

to avoid a build up of tokens at the end of a pathway, as this would lead to

biased results for nodes that have zero out-degree. Biologically, this assumption
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represents self-regulation of molecules. To mimic down-regulation, the number

of tokens was reduced to 10 and to mimic up-regulation of CRKL, the number

of starting tokens for CRKL was increased to 500. Each run of the simulation

represents how the expression level of molecules is likely to change over time. The

simulation was run for 20 time points and a total of 5000 runs at each time point

was chosen, following advice from an author of SPN [T. Freeman, pers.comm.].

The mean number of tokens per node per time point for 5000 runs was recorded.

Results

Figures 5.11 and 5.12 show the change in expression levels (the mean number of

tokens for each time point over 5000 runs) for CRKL down-regulated (10 tokens at

time zero - Figure 5.11) and CRKL up-regulated (500 tokens at time zero - Figure

5.12). Each line in the figures represents the mean expression level of a single

molecule in the RA map. There are two major outcomes to note here: firstly, the

figures show that there was little difference in the way that the expression levels of

nodes changed over the twenty time steps for the two scenarios, with both figures

showing two distinct groupings of profiles (those that are tightly bunched that

reach high levels in a short number of steps and a small number of less consistent

more scattered profiles). It is noted here that the second group of modules, which

take a longer time to reach stability, do so due to their location in map. The

molecules that appear in this second group do not vary greatly between the two

figures. Further, in both cases, the majority (75.8 % down-regulated and 76.9%

up-regulated) of nodes appeared to reach a stable threshold in the first 10 time

steps. This result implies that the stability in expression levels is not heavily

dependent on CRKL for this network. Interestingly, however, when the mean

expression levels over the time period is used as a measure of expression and the

twenty nodes (representing approximately 10% of nodes) with the highest mean

are considered, only two nodes appear in the top twenty of both lists (see Tables

5.3). This suggests that changing the expression levels of CRKL can change the

dynamics of the network, albeit in a subtle way.
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Figure 5.11. Simulated change in expression levels of molecules connected to CRKL, for low starting levels of CRKL (CRKL excluded).
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Figure 5.12. Simulated change in expression levels of molecules connected to CRKL, for high starting levels of CRKL (CRKL excluded).
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Table 5.3. Mean expression levels for the 20 nodes with highest overall mean

Down-regulated nodes Mean expression
RIPK1 1.362715455
RPS6KA5 1.361515305
TRAF2 1.361435085
ICAM1 1.360985355
ITGB3: ITGAL 1.36091538
ICAM2,3 1.35954528
PLA2G2A 1.35933526
ELK1 1.358925034
MAP2K6 1.357825275
SHC2 1.357785088
IRAK4 1.357375185
PDGFA 1.357165458
SMURF1 1.356905539
MAPK7 1.356685157
MAP3K5 1.356645195
MDM2 1.356235313
TIRAP 1.356005343
SOS1 1.355365665
PMAIP1 1.35534538
IGF1R 1.35532545

Up-regulated nodes Mean expression
YAP1 1.362844897
PTK2B 1.36248506
BLNK 1.36140504
ITGAV 1.36062553
CXCL1,2 1.360135295
TBK1 1.35967514
MAP3K2,3,4 1.359015558
FN1 1.358745417
IRAK3 1.35832523
BAD 1.35797513
MAP3K5 1.357735373
MET 1.357664935
IL8RB 1.357085347
MAP3K1 1.356475345
SERPINE1 1.35636538
VEGFC 1.356294962
IGF1R 1.3562352
IKBKE 1.356185475
ICAM1 1.355795808
RAP1B 1.35575551

Nodes appearing in both lists are highlighted in bold.
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Further to changing the expression level of CRKL, CRKL was removed from the

original network and the topological network properties recalculated. Table 5.4

gives a summary of the results. Furthermore, another hub of the network, IL6,

was also removed in order to determine if the results that are seen for CRKL

are similar to those results that might be expected from an already known drug

target.

Table 5.4. Comparison map network properties before and after removal of drug
targets.

Property Original
map

CRKL
knock out

IL6 knock
out

In degree power-law ex-
ponent

2.39 2.547 2.514

Out degree power-law
exponent

2.48 2.47 2.611

Network density 0.003 0.003 0.003
Number nearest neigh-
bours

2.28 2.26 2.24

Diameter 48 48 50
Average shortest path 16.04 15.84 15.56
Number connected com-
ponent

23 27 25

The results in Table 5.4 show that when a single node is removed from the

network, even if it is a hub and a current drug target, the topological structure of

the network remains stable. This explains why up- and down-regulating CRKL

appeared to have little effect on the network in the simulation model. When IL6

and CRKL were removed, the hubs of the network remained unchanged, implying

that the hubs of the network are not connected to each other, suggesting that

this network displays characteristics of a disassortative network, as is expected

of a biological network. Although the removal of CRKL and an already known

drug target, IL6, had little effect on the topology of the static network, the

results in this section do show that CRKL does play an important role in the

network and thus it cannot be dismissed as a potential new drug target. This is

an important result and it provides an area for further research in collaboration

with experimental biologists and Rhuematologists.

116



5.5 Discussion

In this chapter, a reconstructed molecular interaction map for RA has been suc-

cessfully analysed by considering the map as a systemic network of interactions of

the processes on-going in patients affected by RA. The network has been analysed

topologically and biologically. The topological results show that the network is

sparse, with a large number of connected components and a low number of average

neighbours.

Although the network follows a power-law distribution as anticipated (with expo-

nent 2.394 for in-degree and 2.479 for out-degree), the power-law exponent for the

out-degree distribution is slightly higher than is expected of a biological network

(typically between 2.0 and 2.4 [Newman et al., 2006]). Whilst this implies that

the probability of a node having k connections is slightly lower than expected,

potentially resulting in fewer hubs that have a high degree, it was not possible to

obtain standard error estimates around the predicted values (a downfall of using

Cytoscape for this analysis). This adds uncertainty to interpretation of results,

meaning that the small difference may not prove to be significant. Further, visual

inspection of the out-degree graph (Figure 5.9) suggests that the power law in

fact underestimates the number of nodes with low out-degree (although this is not

reflected in the R2 value as it affects a single point on the regression line). This

uncertainty highlights the importance of being able to obtain standard errors

when comparing estimated values to the expected values and this is a recom-

mended improvement to be made to the analysis tools available in Cytoscape. A

further recommended addition to Cytoscape would be to allow for other precision

measurements, such as the χ2 statistic, to be estimated (it is acknowledged that

the use of the linear regression R2 statistic was appropriate here for assessing lin-

earity between log(n(k)) and log(k), as it is an accepted standard in determining

if a protein-protein interaction network displays signs of scale free properties [Han

et al., 2005, Sengupta et al., 2009b, Zhang and Horvath, 2005]). This proposed

addition would allow for one to a) have more confidence in the results and b)

asses the fit of other distributions, that do not have a straight-forward linear

transformation, to a range of network types.

The low-density of the network and the lower number of hubs with high degree

makes the network particularly robust to change. This is reflected in the com-

parison of the topological properties of the original network with those after the

(separate) removal of the largest hub, IL6 and a potential new drug target, CRKL.
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These results, however, may change slightly over time as it is expected that the

number of links in the network is likely to increase as knowledge in the field in-

creases. With new literature, the map can be expanded and analyses should be

re-run once significantly more links have been added. This, however, is an area

of future study and the map presented here can be considered as comprehensive

as possible at this time.

This chapter also concentrates on determining if the topologically important as-

pects of the network have biological significance. Hub proteins often have spe-

cial biological properties: they tend to be more essential (i.e. they cannot be

substituted by other proteins in response to a perturbation) than non-hub pro-

teins [Jeong et al., 2001] and they are found to play a central role in modular

organisation of the protein interaction network [Albert et al., 2000]. Further-

more, hub proteins may also be evolutionarily conserved to a larger extent than

non-hubs [Wuchty and Almaas, 2005]. As a result, hub proteins can be used as

targets to design new drugs. Although not all topologically significant results can

be explained biologically, many of the hubs identified are already drug targets for

RA.

Whilst it is expected the results from the network analysis will partly confirm

information that is already known, due to the nature of the way in which the map

has been built, the topological analysis can also be used as a validation method

for the network. The analysis is not biased to prior knowledge and therefore

obtaining results that are not surprising, such as the identification of hubs that

are already known drug targets, validates the methods used to build the network.

This is an important step in the process of combining already known results into

one large, systemic picture, where model validation is a challenge. Furthermore,

any new information obtained from the analysis is of relevance and could be used

as the base of further research. Here, the topological analysis has highlighted

a potential drug target (CRKL) for RA that had not been previously identified

in the literature and databases (as a potential drug target for RA) that were

used to construct the network. This is of significant importance since it has also

been recently found independently by a second research group, using different

methods [Birge et al., 2009]. Thus this result also validates their work to some

extent. Having identified this potential new target, it would be interesting as a

further step to be undertaken by pharmacologists to validate the possible drug

target. This, however, is beyond the scope of this study.

It is interesting to note that there do exist definite topological and biological links
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for the RA network, implying that the map presented here can be used to further

understand how drugs influence RA at the molecular level. One application of

the map could be to determine the likely affect of targeting specific genes in

the map and to understand the effect that different drugs (that target nodes in

the map) have on the rest of the network. It has been shown that drug-target

proteins have higher connectivity and quicker communication with each other in

protein-protein interaction networks [Zhu et al., 2009], suggesting that the hubs

that seem to have little biological relevance for RA today may be potential targets

for future research.
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Chapter 6

Network analysis of a molecular

interaction map for RA in

humans - analysis of submaps

6.1 Introduction

Further to identifying network structure and related topological properties of the

network presented in Chapter 5, it is of interest to try to identify other properties

that might be of biological importance. In this chapter, the network analysis is

expanded by breaking the network down into potentially biologically relevant

sub-networks. Specifically, important molecular pathways, based on cycles, are

searched for. Furthermore, the network is also separated according to tissue

type and these sub-networks explored for topological motifs that have biological

significance in RA.

6.2 Biological pathways represented by the RA

map

Important molecular pathways in the network might be found in connected com-

ponents or within cycles in the network (a cycle in this sense is a subset of nodes

1Work from this chapter has been published in Wu, G.*, Zhu, L.*, Dent, J. E.*, and Nardini,
C. (2010). A comprehensive molecular interaction map for rheumatoid arthritis. PLoS ONE,
5(4):e10137 *contributed equally.
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and edges that form a continuous pathway where the first and last node in the

pathway are the same). Definition of cycles in a cell can represent biologically

significant features, such as feedback in the cell, which is an important way for

the cell to regulate different biological mechanisms, such as protein-protein in-

teractions, gene-regulation or metabolic pathways [Jacob et al., 1960,Brandman

and Meyer, 2008]. Cycles are also important in the structure of a network as

they represent communities of nodes that can play a role in network structure,

underlying the connectivity of a network. Further to identifying cycles in the

network, the identification of connected components has two potential advan-

tages: firstly, by breaking the connected components down further into strongly

connected components, the most important pathways can be identified, render-

ing the identification of such components of potential biological interest as well

as topological interest and, secondly, it may lead to the identification of where

missing links in the network might occur.

Biological relevance in these newly defined components can then be explored. Of

particular interest is whether or not the components produced show similarities

to biological sub-systems (in the sense that they may act as an independent

sub-system or perform a specific biological function in the cell) [Barrenas et al.,

2009]. Analysis of such components helps to decompose the complex network

and furthermore identify the pathways involved in RA. By careful dissection of

the pathways, novel therapeutic interventions designed to block signaling may be

developed. The previous analysis of the interaction network, without any amount

of decomposition, cannot give a full understanding of the network structure, which

is important for thorough biological interpretation.

6.2.1 Decomposition of the RA map

Due to the large and complicated nature of the graph, the RA map was decom-

posed in two different ways. Firstly, it was separated according to tissue type.

This was done manually in CellDesigner, where, for each of the five tissue types

considered (blood PBMC, blood PBMC PMN, cartilage, synovial fibroblast and

synovial PNM), those nodes that were not of the specified tissue type were deleted

from the map and the resulting maps saved as separate files before being imported

into Cytoscape for analysis. These tissue-specific maps, which were not further

decomposed before the topological analysis was performed, are discussed in sec-

tion 6.4. Secondly, and within Cytoscape, the map was broken down into a set
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of 12 smaller subgraphs, which might have biological relevance. Each of these

subgraphs were then analysed separately. Each subgraph is from here on referred

to as a module. Based on work previously published [Calzone et al., 2008], the

network was decomposed, as described below, into modules using the Cytoscape

plugin, BiNoM [Zinovyev et al., 2008].

Bow tie structures, where a network can be divided into four main regions (a

strongly connected component, links in, links out and other components and

tendrils) of more or less equal size, are commonly found in biological networks

(see [Newman et al., 2006]). Whilst we do not know the proportions of each

part of the graph, the RA network is directed and does include cycles as well

as disjoint sections. This implies that it is reasonable to expect to see the basic

bow tie structure of a central cyclic component, in components, out components

and smaller disjoint clusters in this network. Therefore, the network was first

separated into four sub-maps: namely a central cyclic part, an in-component, an

out-component and set of all other disjoint components and tendrils. In order

to achieve this, the network was first ‘pruned’, using an automated pruning

algorithm (available in Cytoscape), so that only the central cyclic part remained.

The nodes and reactions that appeared in the full version of the graph and not

the pruned version formed the set of disjoint components and tendrils, as well as

the in- and out-components that contain those parts of the network from which

the central cyclic component can be reached (IN) and those that can be reached

from the central cyclic component (OUT).

Let us begin by concentrating on the central cyclic part of the graph. Since

feedback is one of the ways that an organism uses to regulate different biologi-

cal networks, the central cyclic part of the network was decomposed into relevant

cycles, where a relevant cycle is defined as a cycle that is not the sum of shorter cy-

cles [Vismara, 1997]. Definition of relevant cycles can provide information about

feedback within the network. In order to do this, Tarjan’s algorithm (implemented

in BiNoM, though see also Chapter 4) was used to break the pruned graph down

further into strongly connected components (SCC). A SCC is a subgraph in which

there exists a directed (though not necessarily direct) path between every pair

of nodes in the subgraph. The central cyclic part of the RA map contained six

disjoint SCCs, each of which may contain cycles representing feedback. Next,

every SCC was broken down further into relevant cycles, using an algorithm im-

plemented in BiNoM and based on Vismara’s algorithm [Vismara, 1997]. This

resulted in the creation of 34 relevant cycles for the pruned graph. The set of
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relevant cycles may not be unique, so, in order to account for this -and to reduce

the final number of modules to be analysed- a simple clustering algorithm, also

implemented in BiNoM, that compares the proportion of common nodes, was

used in order to merge those cycles that shared more than half of their nodes.

This produced a set of 11 subgraphs, all with a central cyclic component, which

were used to form the core components for 11 modules that may be of biological,

as well as topological, interest.

Given the core components of the 11 potentially important modules to be anal-

ysed, the nodes (and components of nodes) that were in the IN and OUT sub-

maps were reintroduced. Here, each module was merged with the IN and OUT

sub-maps, obtained from the graph pruning step, and only those parts that were

originally connected were kept. In some cases, the introduction of the IN and

OUT graphs resulted in separate modules becoming connected. When this was

the case, the IN or OUT component was manually assigned to the module with

which the majority of nodes were connected. If a component was connected to

two different modules by the same number of nodes, it was (again manually)

assigned to the largest module. Once there was no further possibility to merge

the graphs, the union of all of the modules was compared to the original graph

to identify those nodes that had not been assigned to a module. This gave rise to

a 12th module, containing 13 connected components and 12 isolated nodes that

were disjoint from all other modules. The components in this module appear in

the outer-section of the bow tie structure. All modules can be downloaded in

Cytoscape format at: ‘www.picb.ac.cn/ClinicalGenomicNTW/software.html’. It

is noted that the existence of isolated nodes and small components suggests that

there are missing links in this map. However, quantifying the number of missing

links is not possible as there may remain many links yet to be discovered and,

as this is the first and -currently- only map of its type for RA, there is no gold

standard to which it can be compared. Making the map publicly available for

other groups to edit is therefore of major advantage here.

6.2.2 Network analysis of modules

Once the network had successfully been decomposed, the Cytoscape plugin, Net-

workAnalyzer [Assenov et al., 2008], was used to run a topological analysis on

each of the 12 modules. The topological properties that were considered to be of

most biological interest here are described below:
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(i) Module size and connectivity: The size of each module is recorded by

considering the number of nodes and edges in the module. This information

enables one to determine which modules are likely to be of interest for

further analysis, under the assumption that the largest modules are most

representative of the original graph. Identification of the largest modules

may help in the identification of the best place to look for potential new

drug targets.

(ii) Number of connected components: By considering the number of con-

nected components in the original graph and tissue subgraphs, one is able

to comment on how well-connected the graph is. A graph that is made up

of many disjoint components is less likely to be affected by outside pertur-

bations than a well-connected graph.

(iii) Average number of nearest neighbours: In a network where the aver-

age number of neighbours is high, it is expected that there are either a few

number of nodes with many links (large hubs) or a high-level of connectivity

throughout the whole network. As with network connectivity, this would

have implications for how likely the network is to be affected by outside

perturbations.

(iv) Average shortest path and network diameter: These measurements

are important as they can be used to help determine how quickly a pertur-

bation is likely to die out. Intuitively, this is related to how effective a drug

is likely to be in penetrating the network such that the longer the shortest

path is between two nodes, the higher the drug concentration needs to be

in order to have an effect.

(v) Network density: This measurement gives further information about how

well connected the network is. If the density is high, it suggests that many

nodes are connected to many other nodes, implying that, whilst the network

might be difficult to break up, it is relatively easy for a drug to access a

higher number of nodes in a shorter amount of time.

(vi) Degree distribution: If the networks analysed here are scale-free (i.e.

the degree distribution fits a power-law distribution), then their topology

should be determined by a few highly connected nodes (hubs) that link the

rest of the less-connected nodes to the system. Note that hubs are only

located in the tail of the distribution. Biologically speaking, nodes that can
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be identified as hubs in a network may lead us to be able to more readily

identify important pathways in this complex network.

Apart from structural properties defined by the above list, it may also be of

interest, from a biological point of view, to consider the molecular pathways that

are most significantly represented in each module. This may help us to determine

if the modules, which have been built based on topological properties (i.e. relevant

cycles) have particular biological significance.

The 12 modules vary greatly in size, with the number of nodes varying from 4

to 292 nodes. This confirms results from the previous chapter that the original

map has at least one large cluster of nodes, which is not well connected to other,

smaller clusters. A summary of the results from the topological analysis is given

in Table 6.1, which shows the topological properties that are considered to be of

most biological interest, for the map as a whole (presented in Chapter 5.2), all

12 modules and the tissue sub-maps (discussed in Section 6.4).

As with the initial map analysis, the in- and out-degree of nodes are used to

identify hubs in the larger of the 12 modules. However, for the three largest

modules (Modules 1, 2 and 4), there are no hubs that were not hubs in the

original map. Thus the properties of hubs are not repeated. The size of other

modules quickly decreases, with approximately half of the modules containing

fewer than 50 nodes, their topological features are not discussed here.

Module 4 is the largest module with 292 nodes and 334 edges. It has a density

of 0.008 and in- and out-degree distributions that are consistent with power-law

distributions with exponent values of 2.009 and 2.352 respectively (corresponding

R2 values 0.961 and 0.939). Module 4 has six protein hubs: AKT2, MAPK1,

EGFR, CRKL, GNAI3 and FGFR1.

Module 2 is the next largest module, with 173 nodes and 182 edges. The density

of Module 2 is 0.012 and its in- and out-degree distributions are consistent with

the power-law distribution (R2 values of 0.96 and 0.989), with exponent values

of 2.269 and 3.043 for in- and out-degree respectively. Module 2 has two protein

hubs, namely MAPK14 and IL6.

The third largest module, Module 1, has 111 nodes and 120 edges. The density

of this module is 0.019. Due to the smaller number of nodes with high degree,

degree distributions for Module 1 is less consistent with a power-law distribution,
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with R2 values dropping to 0.843 and 0.862 for in- and out-degree distributions.

Module 1 also has two protein hubs, MAPK8 and the complex containing RAC1

and RAC2.
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Table 6.1. Topological analysis of modules and tissue maps.

Network No.
nodes

No.
edges

No.
con-
nected
com-
po-
nents

Mean
no.
neigh-
bours

Mean
short-
est
path

Diam Density D in D out R in R out

Main 776 886 23 2.28 16.04 48 0.003 2.39 2.48 0.95 0.95
M 1 111 120 1 2.13 10.71 26 0.019 1.6 2.73 0.84 0.86
M 2 173 182 1 2.10 15.67 39 0.012 2.269 3.043 0.96 0.99
M 3 75 85 1 2.27 5.83 14 0.031 1.714 2.389 0.85 0.92
M 4 292 334 1 2.28 8.64 26 0.008 2.009 2.352 0.96 0.94
M 5 12 16 1 2.67 3.33 7 0.242 1.063 1.661 0.87 0.75
M 6 43 48 1 2.23 3.08 8 0.053 1.664 2.635 0.89 0.95
M 7 11 11 1 2 3.32 7 0.2 1.807 1.807 1 1
M 8 4 4 1 2 2 3 0.667 na na na na
M 9 20 23 1 2.3 2.40 6 0.121 1.07 1.594 0.84 0.88
M 10 53 59 1 2.23 4.71 12 0.043 2.175 1.576 0.93 0.88
M 11 6 6 1 2 2.2 4 0.4 na na na na
M 12 74 49 25 1.32 1.76 4 0.018 2.605 4.492 0.78 1
B PBMC 450 428 65 1.90 6.09 20 0.004 2.279 2.964 0.97 0.91
B+PMN 3 2 1 1.33 1.33 2 0.667 na na na na
Cartilage 50 30 21 1.2 2.37 6 0.024 2.634 3.7 0.987 1
SF 301 236 75 1.57 3.98 12 0.005 2.951 4.129 0.97 0.95
S PMN 16 10 6 1.25 2.36 6 0.083 1.585 na 1 na
M = Module, Diam = Diameter, D in = In-degree distribution power-law exponent, D out = Out-degree distribution power-law
exponent, R in = R2 value for in-degree distribution power-law fit, R out = R2 value for out-degree distribution power-law fit,
Main = cell interaction map, B PBMC = blood PBMC, B+PMN = blood PBMC plus PMN, SF = synovial fibroblast, S PMN =
synovial PMN. Note that the module number is not representative of any characteristic of the module.

127



6.2.3 Biological relevance of pathways

Given that modules have been built based on cycles, they are indeed expected to

have some sort of biological significance and to have different network statistics

when compared to the original map. In order to further investigate this, it is

possible to identify the role of proteins included in each module. DAVID (The

Database for Annotation, Visualization and Integrated Discovery) [Da Wei Huang

and Lempicki, 2008,Dennis Jr et al., 2003] provides a comprehensive set of func-

tional annotation tools for investigating the biological meaning behind large lists

of genes. For this map, it can be used to obtain pathway information for Mod-

ule 1, Module 2, Module 3, Module 4, Module 6 and Module 10. Using DAVID,

only those pathways that are considered to be significantly represented at the

5% level (according to the Bonferroni corrected p-value - see Section 5.2.3) and

that have a FDR of less than 5% are considered. The results for these modules

are given in Table 6.2. The remaining five modules are too small for DAVID to

be able to identify pathways that are significantly represented. From the results

shown in Table 6.2, the two most important pathways are summarised:

Table 6.2. Pathway analysis of mentioned modules .

Module Pathway Count Total Bonferroni FDR

M 1 hsa04620:Toll-like re-

ceptor signaling path-

way.

17 50 1.47E-12 9.19E-12

M 1 hsa04670:Leukocyte

transendothelial

migration.

14 50 6.78E-08 4.23E-07

M 1 hsa04010:MAPK sig-

naling pathway.

18 50 3.35E-07 2.09E-06

M 2 hsa04620:Toll-like re-

ceptor signaling path-

way.

45 64 1.58E-58 9.84E-58

M 2 hsa04010:MAPK sig-

naling pathway.

27 64 8.93E-14 5.55E-13

M 2 hsa04210:Apoptosis. 16 64 9.83E-11 6.14E-10

Continued on next page
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Table 6.2 – Continued from previous page

Module Pathway Count Total Bonferroni FDR

M 2 hsa04060:Cytokine-

cytokine receptor

interaction.

16 64 6.61E-04 0.00412486

M 3 hsa04620:Toll-like re-

ceptor signaling path-

way.

8 23 1.01E-04 6.29E-04

M 3 hsa04060:Cytokine-

cytokine receptor

interaction.

9 23 0.005 0.0316

M 4 hsa04010:MAPK sig-

naling pathway

43 104 5.05E-23 3.15E-22

M 4 hsa04510:Focal adhe-

sion

36 104 9.43E-20 5.88E-19

M 4 hsa04012:ErbB signal-

ing pathway

23 104 2.40E-15 1.50E-14

M 4 hsa05220:Chronic

myeloid leukemia

21 104 4.46E-14 2.78E-13

M 4 hsa05215:Prostate

cancer

22 104 6.69E-14 4.22E-13

M 4 hsa04664:Fc epsilon

RI signaling pathway

20 104 6.25E-13 3.90E-12

M 4 hsa05210:Colorectal

cancer

21 104 6.92E-13 4.32E-12

M 4 hsa05211:Renal cell

carcinoma

19 104 1.52E-12 9.47E-12

M 4 hsa05213:Endometrial

cancer

16 104 5.26E-11 3.28E-10

M 4 hsa05212:Pancreatic

cancer

18 104 1.20E-10 7.48E-10

M 4 hsa04620:Toll-like re-

ceptor signaling path-

way

20 104 3.40E-10 2.12E-09

M 4 hsa04912:GnRH

signaling pathway

19 104 8.54E-10 5.33E-09

Continued on next page
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Table 6.2 – Continued from previous page

Module Pathway Count Total Bonferroni FDR

M 4 hsa05214:Glioma 15 104 1.53E-08 9.53E-08

M 4 hsa04650:Natural

killer cell mediated

cytotoxicity

20 104 2.58E-08 1.61E-07

M 4 hsa05223:Non-small

cell lung cancer

14 104 2.99E-08 1.87E-07

M 4 hsa04910:Insulin sig-

naling pathway

20 104 5.09E-08 3.17E-07

M 4 hsa05218:Melanoma 15 104 1.14E-07 7.09E-07

M 4 hsa04810:Regulation

of actin cytoskeleton

24 104 1.57E-07 9.81E-07

M 4 hsa04370:VEGF

signaling pathway

15 104 1.70E-07 1.06E-06

M 4 hsa05221:Acute

myeloid leukemia

13 104 8.77E-07 5.47E-06

M 4 hsa04660:T cell recep-

tor signaling pathway

16 104 9.01E-07 5.62E-06

M 4 hsa04540:Gap junc-

tion

16 104 1.05E-06 6.54E-06

M 4 hsa04662:B cell recep-

tor signaling pathway

12 104 0.00007 0.0004

M 4 hsa04320:Dorso-

ventral axis formation

8 104 0.0007 0.004

M 4 hsa04670:Leukocyte

transendothelial

migration

14 104 0.0008 0.005

M 4 hsa04210:Apoptosis 12 104 0.0009 0.006

M 6 hsa04650:Natural

killer cell mediated

cytotoxicity.

13 22 1.90E-11 1.18E-10

M 6 hsa04660:T cell recep-

tor signaling pathway.

11 22 1.09E-09 6.79E-09

M 6 hsa04510:Focal adhe-

sion.

10 22 3.52E-05 2.20E-04

Continued on next page
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Table 6.2 – Continued from previous page

Module Pathway Count Total Bonferroni FDR

M 10 hsa04115:p53 signal-

ing pathway.

11 14 2.23E-14 1.44E-13

hsa = homo sapiens, Bonferroni = FDR = false discovery rate.

The Toll-like receptor signalling pathway, which is well represented in Modules

1, 2, 3 and 4, is thought to be important in RA. The Toll-like receptors (TLRs)

signaling pathways are membrane-bound receptors that are expressed in immune

cells that defend the host from infection by other organisms. These pathways play

an important role in the activation and direction of the adaptive immune system,

by causing those cells involved in producing antigens, necessary for an immune

response, to be up-regulated. The activation of the TLRs signaling pathway can

also trigger the activation of the pathways involved in the transcription of DNA.

Evidence is emerging that certain TLRs play a role in the pathogenesis of in-

fectious and/or inflammatory diseases. One study has shown, for example, that

TLR2 and TLR4 are expressed by RA synovial membrane cells and are able to

up-regulate inflammatory cytokine production, which promotes the inflammatory

and destructive process in RA [Sacre et al., 2007]. There is considerable evidence

from rodent models that activation of the TLRs can induce or exacerbate inflam-

matory arthritis and TLR2 deficient animals exhibited a significantly reduced

severity of arthritis [Joosten et al., 2003]. Hence, by blocking this pathway, the

severity of RA could be reduced.

Secondly, the MAPK signaling pathway, which sends information about inflam-

matory stimuli to the cell nucleus, is a key signal transduction pathway for in-

flammation. As a result, the pathway plays an important role in the development

and progress of RA. The pathway can be found in Modules 1, 2 and 4. Some of

the members of the MAPK pathway (MAPK1, MAPK8 and MAPK14) have

been identified as hubs and have already been discussed in Chapter 5. In all of

these modules, the MAPK signaling pathways are connected to (and triggered

by) IL1B, which is an important mediator of the inflammatory response and is

involved in a variety of cellular activities. IL1B is also a hub in the cartilage

tissue map (see below). Furthermore, MAPK families regulate the synthesis of

other proteins involved in cartilage damage, an important hallmark of RA. The

role of MAPK pathways in this suggests that a blockade of MAPK might have

structural benefits in arthritis [Liacini et al., 2003,Suzuki et al., 2000].
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Other pathways found in the modules and in which most of the hubs are also

contained, are connected to immunity and inflammation, focal adhesion, apop-

tosis and cancers. In Module 4, however, 26 different pathways could be found,

suggesting that there is a high level of diversity and complexity of the pathways

involved in these modules. This confirms that RA is a complex systemic disease.

6.3 The role of transcription factors

Given that transcription factors have been shown to be potential drug-targets

and that it has also been shown that it is possible to modulate some transcrip-

tion factors through signaling cascades [G. Wu, pers. comm.], it is important to

determine whether the transcription factors present in the molecular interaction

map studied have important topological properties, in the sense that they link

topologically distinct parts (i.e. different modules) of the network. If this is the

case, then it may be possible to influence the different topologically important

parts of the cell, by concentrating on specific transcription factors.

In the molecular interaction map, there are 5 transcription factors: FOS, FOXO1,

NFAT5, NFKB1 and TP53. These transcription factors are important because

not only do they link the gene regulation map with the protein-protein map

(linking Figure 5.2(a) to Figure 5.2(b) in the previous chapter), they also link

different modules obtained from the decomposition of the map.

FOS genes are proteins that are involved in regulating gene expression and more

specifically have been implicated as regulators of cell proliferation, differentiation

and transformation. Furthermore, they play a very important role in the destruc-

tion of arthritic joints [Shiozawa and Tsumiyama, 2009]. In the decomposition

of the interaction map, FOS appears in Module 2 and, when activated, it links

Modules 1, 2 and 4. Although FOS is neither a hub in the large map nor in a

closed cycle, the active state of FOS belongs to the Toll-like receptor signaling

pathway and the MAPK signaling pathway in Module 1 and Module 2, both of

which have been shown in the previous section to be important pathways. FOS

therefore not only links the modules, but also links the important pathways of

these modules, making this an important node in the network, which might not

have been identified with a simple topological analysis alone.

FOXO1 belongs to the forkhead family of transcription factors that play impor-

tant roles in regulating the expression of genes involved in cell growth, prolif-
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eration, differentiation and longevity. In particular, FOXO1 may play a role in

growth and differentiation of genes involved in muscle tissue growth, with some

FOXO family proteins promoting transcription of genes that regulate cell-cycle

progression and survival [Dijkers et al., 2000a,Dijkers et al., 2000b]. The relation-

ship between FOXO1 and RA has been studied in [Ludikhuize et al., 2007,Kuo

and Lin, 2007, Singh et al., 2008], all of which showed that FOXO1 contributed

to the inflammation and bone destruction in the affected joints of patients with

RA. In the molecular interaction map, FOXO1 appears in the largest module,

Module 4. It is connected to a hub (ATK2), but does not belong to any cycles

and belongs only to pathways that are in Module 4. This suggests that targeting

the ATK2 hub may have more of an effect than targeting FOXO1.

NFAT5 is a member of a family of transcription factors that plays a central role

in immune response. Interestingly, NFAT5 mRNA is expressed in RA synovium

- but not in normal individuals - as well as at sites of bone destruction. This

arises from the fact that NFAT5 may be related not only to cell division, but

also to the activation and invasion of RA synovial fibroblasts [Teixeira et al.,

2009]. NFAT5 links Modules 1 and 9. Despite the fact that Module 1 is relatively

large (92 nodes), in the global interaction network NFAT5 has a degree of only

3, so it is not a highly connected node. In Module 1, NFAT5 is linked to genes

FOS and JUN, which are both involved in relatively large cycles of genes (the

main cycle that forms Module 1). Module 1 can be decomposed into 7 non-unique

cycles, each cycle containing approximately 20 nodes. FOS appears in 4 of these

cycles and JUN in the other 3. This suggests that the NFAT5 transcription

pathway is closely linked to a small number of genes that have a potentially high

influence on one of the largest modules, implying that perturbations made here

could potentially affect a larger part of the cell. NFAT5 is not related to any

pathway in the module pathway analysis.

NFKB1 is a transcription regulator that is activated by various intra- and extra-

cellular stimuli such as cytokines (small proteins that are secreted by specific cells

of the immune system), ultraviolet irradiation and bacterial or viral products

[Kohoutek, 2009]. Inappropriate activation of NFKB1 has been associated with

a number of inflammatory diseases while persistent inhibition of NFKB1 leads

to inappropriate immune cell development or delayed cell growth. NFKB1 links

Modules 1 and 2. In Module 1, NFKB1 and CCL4 work together to activate the

transcription of PTGS2 in the global interaction map, which forms part of the

same cycle as JUN, mentioned above. In Module 2, NFKB1 is linked to two
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reactions, one of which is included in a large cycle in Module 2. In the global

interaction network, genes that are directly connected to NFKB1 (inclusive) have

relatively small degree (<4) and therefore are not hubs. NFKB1 is related to

the Toll-like receptor signaling pathway and the MAPK signaling pathway in

Module 1. In Module 2, NFKB1 is involved in the apoptosis pathway as well as the

above two pathways. NFKB1 is distributed among several pathways in Module 4

including the important MAPK and Toll-like receptor signaling pathways. The

role of this gene in many areas emphasizes its importance in RA.

TP53 (biological relevance discussed in Chapter 5) is in Module 10 and has a

degree of 10 in both Module 10 and the global interaction network. Although it

does not link two modules in this analysis, and it appears in the p53 pathway of

Module 10.

6.4 Analysis of tissue-specific networks

Further to analysis of the interaction map as a whole, the properties of the net-

work according to tissue type were also investigated. In doing so, the topological

and biological differences in the way in which various tissue types act within the

cell with respect to RA can be identified. By assigning a species tag to each node

in the molecular-interaction map, five tissue-specific sub-maps (blood PBMC,

blood PBMC PMN, cartilage, synovial fibroblast and synovial PMN) were pro-

duced. Unfortunately, only three (blood PBMC, synovial fibroblast and cartilage)

of the five sub-maps could be topologically analysed, due to the small amount

of data used to build the remaining two sub-maps (blood PBMC PMN and syn-

ovial PMN sub-networks contain 3 and 16 nodes, respectively). For the three

larger sub-maps, particular attention was paid to the identification of hubs by

tissue type and to areas where there is an overlap between tissue types. It is

noted here that whilst other distributions could be fitted to the degree distri-

bution of individual networks, the power-law is used specifically to determine if

the networks display scale-free properties (see section /refsec:Network Structure.

The results from this part of the study enable one to comment on whether there

exist tissue specific markers that could play a role in the diagnosis of RA.
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6.4.1 Network analysis of tissue-specific networks

The blood PBMC sub-network of the RA network is the largest of the 5 tissue-

specific networks, with 450 nodes and 428 edges. This sub-network is sparse, with

a network density of 0.004 and an average number of 1.898 neighbours. Both

the in- and out-degree distributions are consistent with power-law distributions,

with exponents of 2.279 and 2.964 (R2: 0.972 and 0.914 respectively), suggesting

the network displays scale-free properties. Figure 6.1(a) shows the out-degree

distribution for blood PBMC map. Using degree distribution to find hubs, this

network has five protein hubs (AKT2, RAC1,2, TP53, GNAI3 and CROP) with

out-degree greater than 3. AKT2, RAC1,2, TP53 and GNAI3 are also hubs in

the global interaction network and have previously been discussed. CROP is not

a drug target.

The synovial fibroblast sub-network contains 301 nodes and 236 edges. It is also

a sparse network (though slightly less so than the blood PMBC sub-network),

with a network density of 0.005. In- and out-degree distributions are consistent

with power laws with of 2.279 and 4.129 (R2: 0.97 and 0.953 respectively). Fig-

ure 6.1(b) shows the out-degree distribution for the synovial fibroblast map, with

the power-law fitted to nodes with non-negative degree. The out-degree distribu-

tion gives rise to three protein hubs, namely IL6, TLR2 and TLR4 (the number

of hubs is reduced here due to the higher power-law exponent), with out-degree

threshold set to 3. IL6 has already been discussed. TLR2 is not a drug tar-

get. However, TLR4 is a member of the TLR family, which plays a fundamental

role in pathogen recognition and activation of innate immunity by mediating the

production of cytokines necessary for the development of effective immunity.

The cartilage network is relatively small, with 50 nodes and 30 edges. The net-

work density is 0.024. A power-law distribution is shown to be consistent with the

in-degree distribution of this network with an exponent of 2.634, R2 = 0.987. It is

noted that a power law cannot be fitted to the out-degree distribution because the

maximum out-degree equals two. . Visual inspection of this network shows that

it also has two proteins with degree greater than one; IL6 (see Chapter 5) and the

complex containing IL12A, TNF, IL1B and IL6 (out-degree = 2). Of importance

in this complex is TNF and IL1B, both of which are targets in the treatment of

RA. TNF is involved in the regulation of a wide spectrum of biological processes

including cell proliferation, differentiation, apoptosis and lipid metabolism and

TNF-blocking strategies are widely used in the treatment of RA [Coenen et al.,
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2007, Kooloos et al., 2007]. The relationship between expression levels of TNF

in response to treatment has been well-studied [Mehindate et al., 1994,Nishida

et al., 2004,Lacroix et al., 2009]. IL1B is important in inflammatory responses. It

is also involved in a variety of cellular activities, including cell proliferation, dif-

ferentiation and apoptosis. In RA treatment, IL1B is targeted by certain steroid

hormones that inhibit the expression of IL6 in the synovium of patients with RA,

leading to a reduction in disease symptoms [Amano et al., 1993].

The high number of hubs in the blood network suggests that this tissue is the

best target for drugs. On the other hand, the results from the analysis of the

cartilage network suggest that there may be benefit in targeting this area also.

However, it is difficult to compare tissues that are topologically different and so

the overlap of the tissues was considered.

6.4.2 Overlap between tissue types

In order to be able to comment on whether there are significant topological (and

hence potentially biological) differences between tissue types, those nodes that

appear in multiple tissue types were considered. For all nodes that appeared

in two or more tissues, those nodes that had different topological properties in

different tissues i.e. they are linked to different nodes in different tissues, were

identified. If these nodes prove to be both topologically and biologically signif-

icant, we can draw conclusions on the necessity of targeting different tissues in

the diagnosis and treatment of RA. In total, 57 nodes were found to be present in

two different tissue types and one node in three different tissue types (Table 6.3).

Of these, 29 nodes had identical nearest neighbours in both tissue types (7 of

which were isolated nodes) and 29 had different nearest neighbours in different

tissue types.

A biological analysis of the nodes and their corresponding pathways highlighted

four important overlapping nodes as discussed below. A full list of overlapping

nodes is given in Table 6.4.

Table 6.4. Node overlap (non-reaction nodes) between different tissue types.

Node ID Tissue 1 Tissue 2

C FGF11:SF FGFR11 syn fibro cartilage

Continued on next page
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Table 6.4 – continued from previous page

Node ID Tissue 1 Tissue 2

C IGF11 blood PBMC cartilage

C IL1AA:PB IL1R11** blood PBMC syn fibro

C METT:PB VEGFCC blood PBMC cartilage

C NFKB1 blood PBMC cartilage

C NFKB11:PB MAP3K88 cartilage blood PBMC

gSF C IL1B@PB nucleus syn fibro cartilage

gSF C IL1RN@PB nucleus syn fibro cartilage

gSF C MMP1@PB nucleus syn fibro cartilage

gSF C MMP3@PB nucleus syn fibro cartilage

gSF C TNF@PB nucleus syn fibro cartilage

PB CCNB11:SF CDC22 syn fibro blood PBMC

PB CCNB11:SF CDC22 |pho blood PBMC syn fibro

PB CD3EE:SF FYNN |pho blood PBMC syn fibro

PB CDK77:SF CCNHH syn fibro blood PBMC

PB F100 |active:PB F55 |active syn fibro blood PBMC

v PB F100’:PB F55” syn fibro blood PBMC

PB HLA-A blood PBMC syn fibro

PB IKK beta blood PBMC syn fibro

PB IKK betaa:PB IKK gam-

maa:SF CHUKK

syn fibro blood PBMC

PB IL12AA cartilage syn fibro

PB IL1R1 blood PBMC syn fibro

PB ILKK:SF PARVGG blood PBMC syn fibro

PB KLRK11:PB MICBB:SF HCSTT blood PBMC syn fibro

PB PDGFAA:SF PDGFRAA blood PBMC syn fibro

PB PIK3R55 |pho:SF PIK3AP11 blood PBMC syn fibro

PB TAB11:PB TAB22:SF MAP3K77 blood PBMC syn fibro

PB TLR2,4 blood PBMC syn fibro

PB TLR2,44:SF LY966 blood PBMC syn fibro

PB TNFRSF1A,BB:SF C TNFF syn fibro cartilage

rSF C IL1B@PB nucleus syn fibro cartilage

rSF C IL1RN@PB nucleus cartilage syn fibro

rSF C IL6@PB nucleus cartilage syn fibro

Continued on next page
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Table 6.4 – continued from previous page

Node ID Tissue 1 Tissue 2

rSF C MMP1@PB nucleus syn fibro cartilage

rSF C MMP3@PB nucleus syn fibro cartilage

rSF C TNF@PB nucleus syn fibro cartilage

SF FYN |pho |active blood PBMC syn fibro

SF HCST blood PBMC syn fibro

SF PDGFRA blood PBMC syn fibro

SPM SF C IL8@default syn PMN syn fibro

SPM SF PPBP@default syn fibro syn PMN

W SF JUN |PB rs1 emp syn fibro blood PBMC PMN

W SF JUN |PB rs1 pho |active blood PBMC PMN syn fibro

** Third tissue type for this node = cartilage,

syn fibro = synovial fibroblast, Syn PMN = synovial PMN,

blood PBMC PMN = blood PBMC plus PMN, PB HHLA = PB HLA-

AA:PB PDIA33:SF B2MM@PB endoplasmic reticulum, PB IKK

beta = PB IKK betaa |pho:PB IKK gammaa |pho:SF CHUKK

|pho:SF IKBKGG, PB IL12AA = PB IL12AA:PB TNF al-

phaa:SF C IL1BB:SF C IL66@PB nucleus.

The interaction between CCNB1 and CDC2 links the blood PBMC map and

synovial fibroblast map together (node ID PB CCNB11:SF CDC22 in Table 6.4).

These two proteins are involved in regulating the cell cycle [Nurse, 1990] and over-

expression of these genes has been found to lead to features that are all typically

found in synovial cells adjacent to the affected cartilage and bone of the joint in

human RA and experimental animal models of arthritis [Kawasaki et al., 2003].

This also suggests that rheumatoid synovial cells are ‘tumor-like’ in behaviour,

as presented in [Shiozawa et al., 1983,Fassbender, 1984,Fassbender, 1998]. Here,

it is noted that the cycle containing CCNB1 (blood PBMC) and CDC2 (synovial

fibroblast) is a significant cycle both in the blood PBMC and synovial fibroblast

tissues. Identification of such a cycle could help to identify the key regulatory

process in the development and progression of RA.

The complex containing PB IKKβ, PB IKKγ and CHUK, in the largest compo-

nent of the blood PBMC tissue map, links to the synovial fibroblast tissue map
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Figure 6.1. Out-degree distribution for different tissue types. Fitted power-law
represented by red lines. a) blood PBMC (231.45x-2.964), b) synovial fibroblast
(201.76x-4.129). Nodes with zero out-degree are not included in the fitting of the
power-law. Such nodes represent isolated nodes or sinks and are represented here for
completeness. (Note zero values excluded in power-law fit.)

(see node ID PB IKK betaa:PB IKK gammaa:SF CHUKK in Table 6.4). This

node is a NF-κB complex, which is a key transcription factor involved in the

regulation of immune responses and apoptosis. Both in vivo and in vitro studies

indicate that NF-κB signaling plays an important role in the development and

progression of RA [Handel et al., 1995,Benito et al., 2004]. The binding of NF-

κB to DNA was found to be much stronger in RA compared to patients with

other forms of arthritis [Han et al., 1998]. NF-κB is a potential drug target for

the treatment of autoimmune diseases. Indeed, a number of novel therapeutic

strategies that aim at the specific inhibition of key elements in NF-κB pathway

have been developed [Atreya et al., 2008,De Bosscher et al., 2003].

In the tissue sub-maps, TLR2 and TLR4 are shared by the blood PBMC tissue
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Table 6.3. Number of nodes shared by different tissue types.

Tissue type B PBMC B+PMN Cart SF S PMN
B PBMC 450
B+PMN 0 3

Cart 6 0 50
SF 25 3 21 301

S PMN 0 0 0 4 16

B PBMC = blood PBMC, B+PMN = blood PBMC plus PMN, Cart =
Cartilage, SF = synovial fibroblast, S PMN = synovial PMN. Some nodes were
assigned to multiple tissue types. Nodes that could not be identified by tissue
type were not included in this part of the analysis.

map and synovial fibroblast tissue map (node ID PB TLR2,4 in Table 6.4). In

different tissue types, the various TLRs exhibit different patterns of expression.

TLRs were first suggested to have a role in RA in response to a pathogen initiating

the disease [van der Heijden et al., 2000]. Expression of TLR2 and TLR4 has been

shown to be increased in the synovial tissue of RA patients compared with healthy

donors or donors with other forms of arthritis [Radstake et al., 2004, Brentano

et al., 2005]. Analysis of synovial tissues of patients with RA revealed TLR2

expression in various places, including the synovial lining on fibroblasts [Seibl

et al., 2003]. Due to its apparent importance in RA and according to results

from previous studies [Zer et al., 2007], TLR4 could be a specific biomarker for

RA [Roelofs et al., 2005]. TLR4 is already associated with drugs used in the

treatment of many lymphomas, leukemias and some autoimmune disorders [Julià

et al., 2009]. The interaction between proteins in synovial tissue and TLR2 or

TLR4 in the PBMC may indicate that the interaction between these two tissues

in RA is mediated by the TLR signaling pathway.

6.5 Discussion

One of the aims of this study (this chapter and Chapter 5) was to provide a first

representation of a systemic network of complex interactions that occur between

molecules related to RA. This network has been made publicly available according

to CellDesigner and Payao standards [Matsuoka et al., 2010], so that it can

be both used and developed by other research groups. ‘Payao’, which reads

models in SBML format and displays them with CellDesigner, aims to enable a

community to work on the same models simultaneously by providing an interface
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for adding tags and comments to the models for the community members. In

this way, other people can log-in to the Payao platform (which can be accessed

directly from the CellDesginer website [The Systems Biology Institute, 2010]),

upload their own models or access existing models, add new (tagged) findings,

comments and publications in order to improve and expand the map. For the map

presented in this chapter all relevant information -including literature references-

has been added to the network in the form of tags.

Further to the on-line publication of the network, the network has been analysed

as a whole (see Chapter 5) and as multiple sub-networks, built according to

biologically meaningful assumptions.

For the first type of decomposition, according to potentially relevant cycles, there

are two pathways that appear to be relevant in the network analysed, namely the

TLR and the MAPK signalling pathways. The results found here suggest that

these two pathways are likely to be the most effective pathways to target in the

treatment of RA. This is important as the results from the previous chapter

suggest that targeting a single hub might make only subtle differences to the

network. The question of interest therefore refers to how strong a change is needed

in order to have a biologically significant effect on the network. Determining this

will enable one to come to stronger conclusions about the results.

Although on the whole the hubs in the molecular-interaction map are already

known drug targets, it is interesting to note that only one of the hubs in the

molecular-interaction map is a transcription factor, implying that the transcrip-

tion factors that act as a bridge between the gene-regulatory and the protein-

protein interaction maps, do not directly link a large number of nodes. However,

the transcription factor FOS links several important areas of the map, rendering

it a potentially successful target node in the treatment of RA.

With the exception of the cartilage sub-map, the topological patterns seen in

the interaction map as a whole can also be seen in the tissue sub-maps (see Ta-

ble 6.1). For both the blood PBMC and the synovial fibroblast map the density

is low and the power-law exponents, particularly for the out-degree distribution,

are higher than is expected for a biological network. The power-law exponents of

the out-degree distribution are also larger for the tissue specific maps than the

original interaction map. This implies that the number of out-connections per

node is, on average, less for the tissue specific maps. It is clear that all three

sub-maps have few nodes with degree higher than 2 (note the cartilage sub-map
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has no proteins of degree larger than 2), which leads to a low number of hubs

in the graphs. This implies that, from the analysis of these three sub-maps, it

is not possible to identify many potential drug target sites within each tissue

type. The higher density in the cartilage sub-map could be explained by the

low number of nodes in the map. It is to be expected that blood PBMC has

a higher number of hubs because there is more data available for blood tissue

than other tissue types. Despite this, there was little topological difference be-

tween the blood PBMC and synovial fibroblast sub-maps, suggesting that there

is no topological evidence to recommend that targeting one tissue type over the

other is advantageous. However, the different expression levels of nodes in dif-

ferent tissue types might suggest otherwise. Although there is a relatively high

amount of overlap between different tissue maps, only some of the overlapping

nodes were shown to be biologically significant. In particular the existence of

the CCNB1:CDC2 cycle in the blood PBMC and the synovial fibroblast tissues

is noted. This could lead to identification of the key regulatory process in the

development and progression of RA if investigated further. Furthermore, the

existence of TLR2 and TLR4 in both blood PBMC and synovial fibroblast are

noted as being significant because this overlap may lead to the conclusion that

the interaction between the two tissue types is mediated by the TLR signaling

pathway.

The work shown here supports previously published hypotheses that there is a

relationship between biologically and topologically significant areas of molecular

interaction maps. Without network analysis it would be impossible to visualize

such important nodes or clusters in such a complex graph as the one studied here.

The results presented here are the first (known) representation of a systematic

map for RA. The molecular interaction map improves our ability to understand

the molecular mechanisms involved in RA on the whole.
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Chapter 7

Case study AIV

Network analysis of contact

structures in the GB poultry

industry

7.1 Introduction

As is the case with RA, the arguments as to why AIV is an important research field

have been given in previous chapters. To reiterate, AIV has shown to have had

devastating effects on poultry industries worldwide, in the Netherlands and Italy

in particular. There is, on the other hand, an identified gap in our knowledge

of the potential of AIV to spread through the network of poultry premises in

GB. The network analysis methods described in this thesis are a useful tool for

investigating this problem. In addition to these arguments, it is also important

to acknowledge why the poultry industry in GB is worth studying.

7.1.1 The poultry industry in GB

The GB commercial poultry industry is important for the British Government,

the consumer and farmers alike, being worth an estimated £3.4 billion at retail

value and producing over 174 million birds for consumption per year [Anon,

1Work from this chapter has been published. See [Dent et al., 2008]
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2006]. In addition, the poultry industry can act as an important reservoir of

human pathogens, such as AIV, Salmonella and Campylobacter spp., making

this work also relevant to researchers in human health as well as those connected

with the poultry industry. With this in mind, it is therefore important to study

the potential impact of disease on the poultry industry [Alexander, 2000,Webster

et al., 1995, Bragstad et al., 2005]. Furthermore, many pathogens that affect

both poultry and humans are driven by contacts and it is therefore the contacts

that are made between premises in the industry, via the movement of birds or

of people between premises for example, that are important for the spread of

disease. Figure 7.1 shows the structure of the industry from the point of view of

the movement of birds from breeding to the consumer.

In GB, the poultry industry can be divided into the primary breeding sector

and the production sector. The primary breeding sector refers to companies

who breed birds before they are selected for production. The biosecurity levels

in the primary breeding sector are consistently high, making the probability of

introduction of pathogens into this sector extremely low. Birds selected by the

primary breeding sector for production (estimated to be 1% of males and 10%

of females [Howard Hellig, pers.comm.]) are then sent to the production sector

for rearing. Other birds may be sold as a by-product for meat. The production

sector therefore begins with the parent stock. The female and male birds are

purchased from a primary breeding company when they are one day old. Birds

then remain on specialist rearing farms until approximately eighteen weeks of

age (when they are old enough to lay eggs) and are then moved to production

farms or to hatcheries. Most birds that are reared for meat (broiler chickens)

are hatched at specialist hatcheries before being moved onto production farms at

the age of one day. Before entering the food chain, a catching company may be

brought in to assist in catching of birds to be sent to slaughter. Some catching

companies may operate on multiple farms, and some farms may not use a catching

company at all, choosing to send birds directly to the slaughterhouse. Vehicles

used to transport birds between farms and slaughterhouses are often owned by

the slaughterhouse and therefore may act as a link between different production

farms. Partly due to the increase in the number and types of movements made

on to and off production farms and partly due to increased exposure of birds to

the environment in the production sector, it is here where disease is most likely

to enter a farm and is thus the focus of this part of the thesis. It is clear, from

the above and from Figure 7.1, that the structure of the industry is not trivial

and, with potential links between different sectors of the industry, there is an
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Figure 7.1. Basic structure of the poultry industry in Great Britain. Parent flocks
send birds to multiple hatcheries, which in turn send birds to multiple farms (labelled
‘production’). Catching companies may catch birds from multiple production sites
and production sites may send birds to more than one slaughterhouse.

increased risk of disease spread between these sectors. Due to this complexity, a

network anlaysis approach lends itself to describing the spread of disease in the

GB poultry industry.

Despite understanding how birds move between premises in the poultry industry

in GB, our knowledge of how poultry farms in GB are connected to each other by

the movement of people and equipment is still limited. Improving this knowledge

-through the collection of movement data for example- is essential for the effective

prevention and control of outbreaks of diseases that can be transmitted by the
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movement of people and equipment between farms within the commercial poultry

industry.

7.1.2 Routes of disease transmission between premises

Diseases that can spread between poultry farms by the movement of people and

equipment include AIV, Newcastle disease virus (NDV), Salmonella and Campy-

lobacter species. Motivated by recent outbreaks of AIV in the UK and across the

world [Truscott et al., 2007], the potential spread of AIV between poultry farms

in GB, by the movement of people and equipment, is considered here. While there

have been no recent large outbreaks of AIV in GB, HPAI, LPAI, NDV, Campy-

lobacter spp. and Salmonella are all transmitted via the faeco-oral route and so

likely routes of transmission for AIV are inferred -with caution- by considering

the transmission of these diseases in prior outbreaks. It is noted that transmis-

sion rates for AIV cannot be inferred from other pathogens as survival times, and

hence risk of airborne transmission, will vary between pathogens. Whilst it is

also noted that Campylobacter spp. and Salmonella are bacteria whereas NDV

and AIV are viruses, the distinguishing features between bacteria and viruses lie

in the way they attack a cell. Here, the potential transmission of these organisms

is considered to be sufficiently similar because, in all cases, the aforementioned

organisms can be transferred via the transportation of infectious material, which

is the main route of transmission assumed for this study.

The presence of slaughterhouse personnel or equipment on premises during de-

population has been implicated as a risk factor for infection of remaining birds

with Campylobacter [Evans and Sayers, 2000]. Slaughterhouses have also been

implicated as a key checkpoint for the detection of organisms such as Campy-

lobacter [Hartnett et al., 2001] and Salmonella [Evers, 2004, Heyndrickx et al.,

2002] and poor biosecurity could also result in the spread of organisms between

premises where dirty equipment is reused. Catching companies (teams of peo-

ple that catch birds for slaughter) have also been implicated in Campylobacter

transmission [Ramabu et al., 2004] and within company spread includes fomite

transmission as well as transmission via personnel, which is considered a major

route of transmission of avian infection [Alexander, 1995, Bahl et al., 1979]. In

addition, ‘local spread’ may be important. Local spread has been identified in

transmission of AIV between poultry flocks in the Netherlands [Elbers et al.,

2004,Stegeman et al., 2004] and environmental factors are also a potentially im-
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portant factor for transmission of AIV between farms [Alexander, 1995,Alexan-

der, 2000,Capua et al., 2003]. Such factors include the presence and circulation

of wild birds. Here, the effects of the presence and circulation of wild birds on

the transmission of AIV in the poultry network in GB is considered only in the

context of ‘local transmission’, e.g. multiple premises infected from the same

wildlife source. By considering associations amongst sub-populations defined by

their interactions, e.g. associations with the same catching companies, slaugh-

terhouses, common ownership or by ‘local spread’, the extent to which industry

structures might influence the demographic and geographic extent of a potential

AIV epidemic in the GB poultry industry is considered. This can improve our

understanding of how poultry premises are potentially connected, enabling the

identification of where further data collection is necessary.

7.1.3 Previous mathematical models for AIV

In previous studies (for poultry industries in countries such as Italy and the

Netherlands for example), AIV outbreak data have been analysed and mod-

els have been developed to describe the spread of the virus [Stegeman et al.,

2004,Mannelli et al., 2006]. In particular, such data have been analysed to de-

termine the reproductive ratio, R0, for epidemics ocurring in both Italy and the

Netherlands [Mannelli et al., 2006, Stegeman et al., 2004]. In [Mannelli et al.,

2006] transmission parameters for H7N1 in Italy were estimated, using data that

estimates the average number of susceptible farms that were infected by each in-

fectious farm per day and the average number of newly infected farms that were

infected by a single infectious farm. In [Stegeman et al., 2004], the authors were

also able to quantify the between-flock transmission characteristics of the Dutch

H7N7 virus, using the reproductive number R0. Both authors used their analyses

to comment on the effectiveness of control measures.

In Italy, the effectiveness of different control policies and the effects of risk factors

such as proximity to infected premises, bird species and farm size, were evaluated

for different regions of Italy where HPAI infection occurred. Infection, which

mutated from a low pathogenic strain to a high pathogenic strain, was controlled

by the depopulation of susceptible flocks through a ban on re-stocking and pre-

emptive slaughter of flocks that were either within 1.5km of an infected premises,

or that were considered to be dangerous contacts to an infected premises. Al-

though [Mannelli et al., 2006] found proximity to be a major risk factor at the
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flock level, this was not the case at the population level, suggesting that viral

transmission occurred between relatively distant flocks. They put transmission

over longer distances down to transmission via contaminated people, vehicles,

equipment and products.

In [Stegeman et al., 2004], the authors modelled the effectiveness of control mea-

sures, similar to those modelled by [Mannelli et al., 2006], for outbreak data from

the Netherlands. In their study, they determine the effectiveness of banning the

movement of infected flocks, tracing dangerous contacts and screening for the

infection, followed by pre-emptive culling of flocks in a 1km surveillance zone

around infected premises. They conclude that the control measures implemented

did reduce the reproduction ratio, but that the containment of the epidemic was

probably due to the reduction in the number of susceptible flocks by culling flocks

in infected areas.

Other authors use estimation of the reproductive ratio to determine the between

farm transmission rate of HPAI virus, estimated from outbreak data from Europe

and The United States of America (USA) [Garske et al., 2007]. Missing from

these analyses is a detailed investigation of the reproduction ratio via specific

transmission mechanisms, such as the people, vehicles, equipment and products.

The above models are, in general, based on a spatial kernel and are parameterised

by outbreak data. There are, however, no outbreak data available for GB. Data

from countries such as Italy or the Netherlands could be used to parameterise GB

models, but this would need to be undertaken with caution. In addition, there

may be differences in the poultry industries, in farm density for example, between

these countries and GB. It is thus important to explore the use of other methods

for analysis of the potential for AIV to spread in the GB poultry industry .

Recent GB publications have concentrated on the development of simulation mod-

els [Truscott et al., 2007,Sharkey et al., 2008] to show the hypothetical spread of

AIV in the GB poultry industry. This is an attractive alternative when outbreak

data are not available. In [Truscott et al., 2007], the authors use poultry premises

data as an input, and transmission rates for GB estimated from other sources,

in order to assess current planned control methods should an outbreak of HPAI

occur. They conclude that the probability that controls fail to keep an outbreak

small can rise to significant levels if transmission occurs via mechanisms that are

largely independent of the local density of premises. Such mechanisms may in-

clude the movement of human and fomites, the data for which is clearly hard to
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measure. They also show that a predictor of the need to intensify control efforts

in GB is whether or not an outbreak exceeds 20 infected premises, but given

that some transmission routes and corresponding transmission rates are hard to

measure, their study cannot fully describe the detailed contact structures within

the industry, over which transmission could occur.

In [Sharkey et al., 2008], the authors also comment on the effectiveness of control

measures and, using the same data source and similar methodology as in [Truscott

et al., 2007], conclude that although the majority of randomly seeded incursions

do not spread beyond the initial infected premises, there is significant potential for

widespread infection. Here, perhaps due to the ability of ducks to act as ‘disease

carriers’, the authors highlight duck farms as a particularly high risk sector

for the spread of HPAI. As in [Truscott et al., 2007], more detailed information

regarding the contact structures within the industry over which transmission

could occur was not used as it had not been made available.

As it is unclear to what extent transmission data from other countries can be

used to parameterise transmission rates of AIV between poultry premises in GB,

a modelling approach that considers the importance of the contact structures

(i.e. the networks) that occur within the poultry industry, with respect to the

potential for disease transmission, can be adopted for modelling the spread of AIV

in GB. That is to say a network analysis approach is appropriate here. In the

absence of robust estimates of transmission parameters and in line with simulation

modelling methods adopted by [Truscott et al., 2007] and [Sharkey et al., 2008],

this approach can be used to identify combinations of parameters that could result

in a large epidemic. Critically, under those scenarios, key demographic features

that lead to determining when infectious diseases may spread can be identified,

as has previously been done in analyses of the sheep and cattle industries [Kao

et al., 2006,Kao et al., 2007,Kiss et al., 2006].

The work done in this thesis is unique in the sense that it that explores, in detail,

the potential effects that specific contact structures can have on the spread of

AIV in the poultry industry in GB. The results of which will enhance existing

models.
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7.2 Construction of contact structures for the

GB poultry industry

7.2.1 Data collection

A literature review was undertaken in order to research the British poultry indus-

try and to identify potential between farm transmission routes of AIV, so that a

network of farms that are only linked by potential AIV transmission routes could

be built. The results were combined with opinions from experts in the poultry

industry as well as experts in AIV and first categorised according to the type

of transmission route. In total, four categories were identified, namely vehicles,

people, fomites and the environment. Within each category, potential transmis-

sion routes were ranked in order of (qualitative) importance as shown in Table

7.1 [Alexander, 1995,Mannelli et al., 2006,Evans and Sayers, 2000,Ramabu et al.,

2004,Sahin et al., 2007].

Explicit quantitative data were not available to model each of these routes and

therefore, where possible, they were assigned to one or more of four groups, each of

which may connect poultry premises and hence may act as potential transmission

route of AIV between poultry premises.

(i) Catching companies responsible for catching birds before they are loaded

onto a slaughterhouse vehicle and sent for slaughter.

(ii) Slaughterhouses, whose vehicles and crates are used to collect birds from

farms before slaughter.

(iii) Multi-site companies, whose personnel and vehicles may visit multiple

sites belonging to the same company.

(iv) Farms that are geographically close.

The potential epidemiological contacts between premises that occur as a result of

premises using the same slaughterhouse, catching company, or belonging to the

same integrated company, were informed by a National Epidemiology Emergency

Group/Centre for Epidemiology and Risk Analysis (NEEG/CERA) data collec-

tion exercise. The initial data collection was done by a large team of scientists
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Table 7.1. Potential between farm transmission routes of avian diseases.

Transmission Vehicles People Fomites Environment
More likely Litter disposal Catchers and Thinners (i) Pallets (ii) Wildfowl (iv)

Catching (i) Dead bird collectors (i-ii) Containers (i-iii) Water and Feed
Disposal (ii) Farm staff (iii) Catching equipment (i) Airborne (dust) (iv)
Farm (iii) AIV* Teams Dead bird collecting (ii) Live bird markets

Dead bird collection (ii) Area Managers (iii) Culling equipment (i-ii) Flying insects (iv)
Imports Drivers (i-iii) Holding station Game birds (shows)

Hatching egg collection Cleaning teams Raw feed Material
Feed delivery Vets (iii)
Visiting (i-iii)

Cleaning
Less likely Vaccination

Transmission routes are broken down into sub-categories, which are then ranked in order of potential risk of acting as a
transmission route of disease, from most important to least important. *Artificial Insemination. (i-iv) correspond to the four
groups defined in Section 7.2 and describe the groups that each transmission route was reassigned to.
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over a period of several months during 2005. In this exercise, slaughterhouses and

catching companies were approached and asked to provide a list of the premises

from which they collect birds, as well as the species involved. A sample of single

and multi-site poultry companies were also sent a questionnaire requesting details

about the frequency and type of movements associated with their premises. The

collection of contact data was targeted at commercial poultry premises housing a

minimum of 1000 birds (as smaller premises are more likely to catch and slaugh-

ter their own birds). From a target population of approximately 9075 poultry

premises (the estimated number of premises housing >999 birds in GB), data

from a sample of 4441 poultry premises were obtained. These data were provided

as an MS Access database by NEEG/CERA, for use in this thesis, in the form

of the poultry network database (PND), the fields of which are summarised in

Table 7.2.

Also available for analysis was a second dataset, the GB Poultry Repository

(GBPR). The GBPR, which was created by Defra in parallel with the PND,

provides details including location, number of birds and bird species, for all poul-

try premises in GB, housing at least 50 birds. An update of the GBPR was

received from Defra on 02/11/2007 and the data in the PND were compared

to the GBPR, as well as with data obtained from the Food Standards Agency

(FSA) and expert opinion [Jason Gittins, Howard Hellig, Ian Brown], in order

to determine how representative the network database is of the contact struc-

tures being analysed. It is noted that the PND contains only a sample of large

farms and no smaller farms, leading to the question of how accurate the net-

work may be. However, the networks are designed to describe farms connected

by potential transmission routes of AIV and are not designed to represent the

population of poultry farms in GB as a whole. By being targeted at commercial

poultry premises, data taken from the PND can successfully be used to build the

transmission networks considered in this study. Premises in the GBPR and PND

were matched using a MSAccess query based on identifying common premises

addresses. Matching premises also enabled information on premises held in the

GBPR, e.g. bird numbers and production types, to be used in addition to the

network data in the PND. Furthermore, the matching of the two datasets also

meant that local spread between premises that are geographically close to -but

not necessarily included in- premises in the PND could be included in the network

of potential epidemiological contacts.
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Table 7.2. Summary of information included in PND (provided by NEEG/CERA).

Type of company Information requested
(# of responses) Information requested
Catching company (cc) •Geographical area covered.
(45 companies, •# of catching teams in company.
associated with •# of catchers in a catching team.
707 poultry premises) •Whether team members work for multiple

teams or remain in one team only.
•Whether or not sub-contractors are used.
•# of poultry premises associated with cc.
•# of premises within 1km (up to 5km) of cc.
•Location of cc.

Slaughterhouse •Company name.
(95 slaughterhouses, •Company location.
associated with •Species slaughtered.
2973 poultry premises) •# birds slaughtered per year.

•Minimum batch size.
•List of premises using slaughterhouse.
•# of birds received from each premises.
•Frequency each premises sends birds to
slaughterhouse.

Poultry Premises •Owner name.
(4441 poultry premises*) •Premises location.

•# birds on premises.
•Frequency of visitors to premises.
•Cleaning company used.
•Catching company used.
•Frequency Catching company visits.
•Slaughterhouse used.

Multi-site company •Company name.
(96 companies •# of sites in company.
1016 poultry premises) •Number birds the company can catch without

use of an external cc.

cc = catching company, # = Number, * 4441 premises include 1016 premises
belonging to multi-site companies

7.2.2 Data summary

Although the PND was not designed to give population data, it does provide an

accurate representation of the potential epidemiological links between premises,

such as catching companies, for example. By comparing the list of slaughterhouses

in the PND with a list of abattoirs licensed to slaughter poultry, maintained and
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provided by the FSA, it was estimated that over 90% of slaughterhouse through-

put (by number of birds) is accounted for in the PND. Further, the distribution

of slaughterhouses and customers in the PND, shown in Figure 7.2 are similar

in their overall pattern to that of the overall GB population [J. Gittins, pers.

comm.].

Figure 7.2. Poultry premises associated with slaughterhouses (a) or catching
companies (b), according to the PND. Poultry premises are represented by a red
point and slaughterhouses/catching companies are represented by yellow points.

Table 7.3 gives summary statistics for the numbers of premises in the PND associ-

ated with multi-site companies, slaughterhouses and catching companies. These

data show that the number of poultry premises associated with different parties

vary greatly between the three parties considered, implying that the structure of

the three networks considered may also vary considerably.

A total of 2018 premises in the PND could be matched to the GBPR. This

figure, which represents approximately 50% of PND premises (of 4441 individual

premises cf. Table 7.2) and approximately 25% of all premises housing >1000

birds, is -assuming data are missing at random- sufficiently large for this study

as the study is designed to investigate links between premises. (A simple sample
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Table 7.3. Summary of PND data.

Multi-site Slaughterhouses Catching
Companies Companies

# premises in PND 1016 2973 707
% of all premises in PND 23% 67% 16%
min. # customers 2 1 1
max. # customers 113 1204 192
median # customers 6 10 2.5

# = Number, min = minimum, max= maximum

size calculation assuming a confidence level of 95% and confidence interval of

2.5% on 9000 premises shows that a sample of 1313 is required for results to

be representative of the population.) The data in the GBPR will add depth

to the interpretation of analyses and so missing population data, for example,

will not compromise the ability to identify links between premises from the PND.

However, it is noted that, with the exception of the small sites (housing fewer than

50 birds), all premises should in theory be present in the GBPR if they are still

operating. The failure to match more premises may have occurred for a number

of reasons. In particular, spelling errors in the address or differences in the way

the address is given e.g. missing postcodes or where partial addresses are given,

a particular problem when using third party records, would cause the match to

fail. Furthermore, duplicate premises in the GBPR (either duplicate entries or

multiple houses on a site entered separately) meant that a single premise in the

PND could match several in the GBPR and these had to be manually corrected,

as a single PND premises could not have more than one GBPR ID.

In addition to these data, comparison with the GBPR showed that a total of 1003

individual (multi-site) poultry premises (98.7% of the 1016 individual premises

associated with a multi-site company in the PND (Table 7.3)) were matched to

the GBPR. For multi-site sources, premises were identified as being part of a

multi-site company via questionnaires (sent out as part of the aforementioned

NEEG/CERA exercise) completed by both individual premises and company

representatives. The legislation requires the owners of all premises containing

50 or more birds kept for commercial purposes to register their poultry on the

GBPR, so it was assumed that the multi-site data gives a good representation

of the multi-site population. However, from the matching of the PND to the

GBPR, the number of premises in the PND that are recorded as having sent birds

to slaughter represents only 13% of the number of premises in the GBPR. This

155



implies that a small proportion of premises in GB account for a large proportion

of birds slaughtered at off-site slaughterhouses. This is in line with expectations:

there are many small, independent farms that slaughter their own birds, without

the use of off-site slaughterhouses. These farms are believed to pose little threat to

the industry due to their ‘closed’ nature. Larger premises (housing large numbers

of birds) are, therefore, better represented in the PND. Temporal changes in bird

numbers are not accounted for in the data as it is common in large premises that

the number of birds remains relatively constant throughout the year, in order to

ensure constant production. Where farm size was considered, it was therefore

assumed to be constant.

In the dataset, there were data for 97 slaughterhouses (Figure 7.2a). Although

the mean number of premises associated with a slaughterhouse was 58, the data

are skewed and the upper quartile and median were at at 59 and 10 customers,

respectively, implying there are some slaughterhouses with a large number of

customers - a property typical in ‘fat-tailed’ distributions and hence scale-free

networks.

However, the number of customers per slaughterhouse may be inflated as the

overlap between slaughterhouses is high, with over 30% of premises (913 of 2973

premises) sending birds to more than one slaughterhouse and up to eight differ-

ent slaughterhouses, as shown in Figure 7.3. Clear patterns in the types and

numbers of birds processed by slaughterhouses were also evident. Approximately

86.4% of the slaughterhouses specialise in processing a single type of bird (e.g.

broilers, layers) and 81.4% specialise in processing a single species (e.g. chickens,

turkeys). For modelling purposes, it may be useful to distinguish between ‘spe-

cialist slaughterhouses’ (those that process only one type/species of bird) and

‘generalist slaughterhouses’ (those that process more than one type/species of

bird). There appears to be a trichotomy in the characteristics of slaughterhouses:

1) generalist slaughterhouses that process relatively small numbers of more than

one bird species, 2) specialist slaughterhouses that process relatively small num-

bers of birds and 3) specialist slaughterhouses that process large numbers of birds.

Of the 97 slaughterhouses in the PND, only 59 (60.8%) had values for all three

of the attributes that were considered to be important for modelling i.e location,

number of birds and type of bird processed (20.6% had missing location data,

37.1% were missing the number of birds processed each year and 29.9% were

missing information about the types of birds processed). This means that not all

slaughterhouses could be included in all analyses if these three attributes were
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Figure 7.3. Number of slaughterhouses used by individual poultry premises.

to be considered. Therefore a simpler model that does not consider all three

attributes was used and links between premises associated with any of the 97

slaughterhouses were modelled.

The data, which represented 25 catching companies, were also skewed for the

number of premises associated with a catching company (see Figure 7.2b and

Table 7.3) with a mean of≅ 16 customers compared to a median of 2.5 (Table 7.3).

Further analysis of the data showed that approximately 73.5% of the identified

premises that use catching companies (Figure 7.2b) house broiler (reared for

meat) chickens. This corresponds with expectations that over 50% of catchers

are involved in the broiler chicken sector. The database contains information

from 25 individual catching companies, of which 17% are missing location data.

All known large catching companies (referring to companies that catch birds from

many premises) are included in the database. It is likely that catching companies

that were not included in the database are small companies that do not necessarily
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catch from many premises. For end of lay hens, most of the larger producers use

specialist companies including those currently in the database.

The number of premises with a large number of customers can be highlighted by

considering network characteristics, such as the degree distribution for the three

networks.

7.2.3 Network characteristics - degree distributions
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Figure 7.4. Degree distribution for poultry companies. (Note zero values excluded
in power-law fit.) Fitted to power-law 0.35d−1.55, represented by the red line. The
graph, which shows the expected number (n) of companies with d premises (degree),
includes companies that consist of only one poultry farm.

Figure 7.4 shows the degree distribution of the number premises per poultry

company, to which a power-law function has been fitted using R (version 2.10.1).

The equation of the fitted power-law, which has a standard error around the

power-law exponent of 0.064, is given in Equation (7.1).

n = 0.35d−1.55, (7.1)
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where n is number of companies and d is the degree (i.e. the number of premises

in a company).

The (log transformed) fitted line for the poultry company data has an R2 value

of 0.912, suggesting that the network does display scale-free properties. The

low power implies that the mean number of premises in a company is small,

and the appearance of the fitted curve below the actual data points for high

degrees (Figure 7.4) suggests that the fitted power-law slightly underestimates

the number of companies with high degree. As discussed in Chapter 5, this

highlights the importance of estimating standard errors and precision estimates

for the fitted distribution. Here, the standard error is small (approximately 4%

of the estimated value) and a χ2 test to compare the data with the predicted

power-law gave a p-value of 0.316, suggesting that the apparent under-fitting

of the power law in Figure 7.4 is not significant and may be attributed to the

existence of two nodes with degree of greater than 100..

These results support the expectation that in this network there are hub compa-

nies implying that, should disease enter these companies, infection may spread

more rapidly to a higher number of premises. However, as there is no overlap

between companies, implying that although there are hubs in the network, these

hubs do not link to other hubs, it can be concluded that the network also shows

properties of disassortative mixing.

Figure 7.5 shows the degree distribution of the number of premises (d) associated

with each slaughterhouse (n). A power-law, as shown in Equation (7.2), was

fitted to the data with standard error around the power-law exponent of 0.044.

n = 0.123d−1.28, (7.2)

where n is number of slaughterhouses and d is the degree (i.e. the number of

premises associated with each slaughterhouse).

The fitted power-law curve has an R2 value of 0.861. This implies that the

network is consistent with a power-law distribution and may therefore display

scale-free properties. Although it is noted that the fit of the power-law is not as

good as that for poultry companies, a χ2 test to compare the fitted power-law

with the data gave a p-value of 0.39. The lower R2 value may arise due to the

higher than expected number of premises with a degree of less than 200, or a

result of a single hub with degree greater than 1200 (see Figure 7.5). However,
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Figure 7.5. Degree distribution for slaughterhouses. Fitted to power-law 0.123d−1.28

represented by the red line. (Note zero values excluded in power-law fit.)

as the null hypothesis for the χ2 test cannot be rejected, the fit is sufficient to

draw conclusions on the structure of the network and to suggest that there are

hubs in the network that connect many premises.

Figure 7.6 shows the degree distribution of the number of premises associated

with each catching company with the power-law given in Equation (7.3).

n = 0.27d−1.477, (7.3)

where n is number of catching companies and d is the degree (i.e. the number of

premises associated with a catching company).

The exponent of the fitted power-law has a standard error of 0.082, suggesting

more variation in the exponent size than for previous networks. This is also

reflected in R2 value of 0.804, obtained from the (log transformed) fitted line for

these data. However, although the R2 value is lower for the catching company

network than for the slaughterhouse and poultry company networks, the results

of a χ2 test for these data gave a p-value of 0.343, suggesting that the catching
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company network may also display some scale-free properties i.e. there may be

a few large catching companies with many customers (i.e. with a high degree).

Of the premises visited by catching companies, fewer than 2% of premises (12 of

707 premises) were recorded as using more than one catching company, with no

poultry premises using more than two different catching companies. This implies

that the catching company hubs are large companies that connect many premises

but do not necessarily connect to other catching companies. This implies that

this network also does not show assortatively mixed characteristics.
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Figure 7.6. Degree distribution for catching companies. Fitted to power-law
0.27d−1.477 represented by the red line. (Note zero values excluded in power-law fit.)

7.3 Analysis of contact structure in the GB poul-

try industry - Methods

Using the data from the PND, networks of potentially infectious links amongst

poultry premises (nodes) were built. Three main contact structures were derived,

one each for poultry premises connected by slaughterhouses, catching companies

and multi-site poultry companies. The links between nodes were defined by asso-
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ciations via one or more of the three potential routes of interaction (via catching

company, slaughterhouse or multi-site company personnel). It was assumed that

links via catching companies or multi-site companies occur either by the direct

movements of people (catching teams or company personnel) or by movements

of vehicles or equipment between premises. For slaughterhouses, connections

between poultry premises can occur when slaughterhouse vehicles and equip-

ment are used on multiple premises, to collect birds. Vehicles may visit multiple

premises en-route to the slaughterhouse, possibly connecting farms and transmit-

ting infection, or they may return to a slaughterhouse between visits to premises.

The use of slaughterhouse vehicles and equipment in the transportation of birds

to slaughter can connect farm to slaughterhouse to farm, or farm to farm to

slaughterhouse. Finally, a radius of 3km was chosen to be the limit for environ-

mental transmission, based on small probabilities of transmission of AIV via this

route [Boender et al., 2007]. This gave rise to a fourth contact structure that was

also considered separately (in order to determine the effect that local spread is

likely to have on the spread of AIV in GB). A 3km radius was chosen as this is the

radius of the protection zone that would be set around infected premises in GB,

during an outbreak situation. It was assumed that, for each contact structure,

all premises associated with the same slaughterhouse, catching company, owner

or between premises that are geographically close (within 3km of each other), are

potentially connected. This assumption enables us to determine the worst-case

scenario, where no interventions are made over time. Furthermore, because catch-

ing companies and slaughterhouses can make multiple visits to farms in one day,

links describing the movements made between farms using catching companies

and sending birds to slaughter were assumed to have no direction in this analysis

i.e. they are bi-directional.

7.3.1 Simulation model

For each of the four networks of poultry premises, potential transmission of AIV

was then included. A probability of transmission, pi, was associated with each of

the four networks (i = 1, ..., 4), giving a transmission rate per link type. Transmis-

sion across each link was assumed to follow a Bernoulli process, with probability

pi. For each network (considered separately), the value of pi was varied from 0

to 1 and for each value, the Bernoulli processes on the network were simulated

100 times (chosen to give a sufficiently large enough dataset, without heavily

compromising running time); on each iteration a u ∼ U [0, 1] random variable was
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generated for each link and if u ≤ pi then transmission occurred, otherwise trans-

mission did not occur. In this way, we would expect that, for each of the four

networks, the number of transmission links (Xi) can be considered analytically

to follow a Binomial distribution;

Xi ∼ Bin(ni, pi),

where ni is the number of links and pi the probability of transmission. The

advantage of using a simulation to investigate this variable is that the analytical

solution does not allow for geographical properties to be explored. It tells us only

the expected number of transmission links, not which premises and/or regions in

particular are most likely to be linked.

It was decided to restrict the analysis to the principal commercial species, i.e.

to premises housing turkeys, chickens, ducks and geese. This is because other

species are ‘specialist species’ and are not expected to be part of the commercial

industry and are therefore not visited by catching companies or slaughterhouses.

Premises housing fewer than 50 birds were not included because such premises

are not required to register their birds. Furthermore, such flocks are likely to be

single-site, backyard flocks, which also are not expected to be visited by catching

companies or slaughterhouse personnel. Premises with missing location data were

also excluded.

The contact structures were analysed using a simulation programme, written in

the C language, which identifies components (for each pi) in each of the networks,

in which all premises within a component were linked to any other member. The

size of a component can give an estimate of the size of an outbreak should any

member of that component become infected, in the absence of intervention. While

intervention will occur as soon as AIV is detected and therefore an epidemic that

covers all nodes in a component is unlikely, in other similar scenarios, drastic

increases in the size of the largest component (the GC) has previously been shown

to be a good indicator of when a population is vulnerable to a serious epidemic

[Kao et al., 2007]. The simulation programme therefore uses Tarjan’s algorithm

(see Chapter 4) to find the GC within the given contact structures, such that any

premises in that component can be reached directly, or indirectly, by any other

premises.

It should be noted that under the assumptions made, maximum connectivity

between premises is represented in the contact structures, implying that a po-
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tential epidemic supported by such a contact structure could be considered the

worst-case scenario.

7.3.2 Sensitivity analysis

The sensitivity of results to changes in key features of the networks were explored.

In particular, for all simulated values of pi (from 0 to 1), over 100 simulations, the

size of the GC and the connectivity of the contact structures were investigated

under the following changes:

(i) Removal of suspected key players from the slaughterhouse network. A ‘key

player’ can be defined as a member of the network whose removal has a

major impact on reducing the size of a potential epidemic, or equivalently

the size of the GC [Borgatti, 2006]. Here, there are two types of key play-

ers (1) premises that represent hubs in the network, linking many premises

with each other (nodes with high degree), such as the slaughterhouse that

links the most premises and, (2) premises that link otherwise separate com-

ponents of the network (these premises might have small degree and hence

they do not have to be hubs), such as poultry premises that are the only

links between companies using separate slaughterhouses, for example. The

effect of removing the slaughterhouse that connects the highest number

of poultry premises was investigated, as was the effect that removing the

poultry premises that use the highest number of slaughterhouses. It was

expected that these removals, which represent movement bans to and from

these premises in an outbreak situation, would cause the size of the GC of

the slaughterhouse network to fall.

(ii) Limiting the number of slaughterhouses to one slaughterhouse per poul-

try premises. Slaughterhouses generally only slaughter one type of poultry

(meat chicken or turkey, for example). By limiting the number of slaugh-

terhouses used per premises, it was assumed possible to determine whether

or not premises that house more than one species are likely to increase the

connectivity of the slaughterhouse contact structures (as such premises are

the ones likely to be sending birds to multiple slaughterhouses). Where

premises are recorded as sending birds to multiple slaughterhouses, one

slaughterhouse was chosen at random.

(iii) Treating multi-species sites as separate epidemiological units. Different
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species housed on the same site are treated as separate epidemiological

units, categorised into the five principal sectors of the British poultry in-

dustry: meat chicken, commercial layer, turkey, duck and goose industries.

It was assumed that between-species transmission could only occur via local

(i.e. short distance < 3km, representing some within-site local transmis-

sion as well as between site local transmission) spread and not via slaugh-

terhouse or catching company transmission. Under these assumptions, the

impact that the possibility of cross-species contamination, particularly on

multi-species farms, could have on the potential for disease transmission was

explored for the catching team and slaughterhouse contact structures. It is

noted that this assumption increases the number of nodes in the analysis.

(iv) Imposing a maximum distance that any catching team can travel between

two poultry premises. The Euclidean distance between two potentially

connected premises was calculated and the link could only result in dis-

ease transmission if two premises are within a given distance of each other

(distances of 25km and 50km were tested), for premises linked via catching

company. For the different radii around premises, links were only allowed to

occur within the radii. Only catching companies were chosen to be included

in the distance restriction as they represent direct links between farms that

do not involve the use of a third premises, such as a slaughterhouse. It was

assumed that premises will usually use the closest (appropriate) slaughter-

house, so applying distance restrictions here makes little sense [J. Gittins,

pers.comm.].

7.4 Analysis of contact structures in the GB

poultry industry - Results

7.4.1 Size of the GC

The size of the GC for each of the four contact structures was investigated for

the probability of transmission along a link varying from p = 0..1 and the mean

values over 100 simulations obtained.

The results shown in Figure 7.7 show that for all contact structures, a value of

p = 0.2 is sufficiently high for the maximum GC to be reached (analysis of GC

showed no rise between p = 0.2 and p = 1). This means that after this value, an
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Figure 7.7. Proportions of premises contained in the Giant Component (GC).

increase in the probability of a link occurring will not result in any more premises

being included in the GC.

The larger proportion of premises that are contained in the GC of the slaughter-

house network compared to the other networks suggests that the slaughterhouse

network has high connectivity compared to other networks. As the probability of

disease transmission occurring increases, the proportion of premises that become

infected with disease will increase, leading to an increase in the size of the GC

for each contact structure (exponentially for slaughterhouses) until a maximum

of approximately 2870 (97%) of premises linked by slaughterhouses, 295 (42%) of

premises linked by catching companies and 113 (11%) of premises linked by owner

are reached for small probabilities of a link occurring (Figure 7.7). Furthermore,

only 111 (2%) of premises are linked by being geographically close to one another,

suggesting that the number of farms within 3km of neighbouring farms is low in

GB, and hence local spread within this distance is likely to have little effect on

the potential epidemic size. This also implies that there are likely to a limited

number of premises located within the 3km protection zone that would be set

up around infected premises in an outbreak situation. This does have resource

benefits, but it also raises the question of whether or not a 3km radius around

infected premises is optimal. The effect of changing this 3km distance can be
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explored as an area of future work. The sudden increase to almost all premises

being connected in the slaughterhouse network can be explained by the connec-

tivity of the network. The slaughterhouse contact structure has a high average

number of connections per node, resulting in a large GC for small probabilities of

a link occurring. This is not the case for catching companies and owner related

links, where it has already been stated in Section 7.2 that the number of premises

associated with more than one catching company or owner is no more than 2%,

compared to 30% for slaughterhouses. For the owner based contact structure, the

GC matched the size of the largest company, confirming that there is no overlap

between companies. If there was overlap, then the number of premises linked

by multiple companies would have to be higher than the number linked by the

largest company, in order for them to be included in the GC. Furthermore, the

results suggest that all premises included in the GC that are within 3km of each

other must belong to the same company.

Figure 7.8. Location of poultry premises contained within the GC. Graph is for
premises connected by (a) Catching company, (b) Slaughterhouse and (c) Owner of
multi-site company. Premises plotted on a 100 km grid, for probability of a link
occurring between two premises pi = 1.

Figure 7.8 shows the worst-case scenario GC for each of the three contact struc-

tures. It is clear that not only is the GC much larger for the slaughterhouse con-

tact structure than it is for others (driven by the increased number of premises in

this network), but it also covers a much wider area of GB. The higher number of
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premises in the GC for the slaughterhouse network also results in more premises

in a smaller area that could potentially become infected via this route. This

has potential resource implications in an outbreak situation, as resource require-

ments will be extreme in many areas of GB should infection via slaughterhouses

be a real threat. For the case of catching companies and owner-related contact

structures, resource demands would be primarily required in the North-East of

England as this is where the poultry population is most dense (with a present,

though less strong, demand in other areas) for premises linked by catching com-

panies. Further, by comparing these results to data in the PND, it was found

that all premises in the worst-case scenario for the owner-related contact struc-

ture belong to the same company, implying that under these conditions resource

demands would be restricted to a single company.

7.4.2 Removal of key players from the slaughterhouse net-

work

Removal of the slaughterhouse with the largest number of customers (1208 cus-

tomers) resulted in the number of premises sending birds to slaughter to fall

by 883 (29%) premises, suggesting that there is justification for determining if

forward and backward tracings from large slaughterhouses could be achieved in

real time because, if a large slaughterhouse were to be involved in an outbreak,

resources should be targeted at tracing contacts to the slaughterhouse.

Figure 7.9 shows the change in proportion of premises included in the GC when

the largest slaughterhouse is removed. As seen in Figure 7.7, the growth of the GC

is very fast, even for low probabilities of transmission. The proportion of premises

included in the GC remains high (92%) when all premises in the slaughterhouse

network are included in the total number of premises (red line). However, un-

der the assumption that premises that are no longer able to use the removed

slaughterhouse would slaughter and dispose of birds on site (an assumption that

is most feasible for small sites), rather than sending them to a different slaugh-

terhouse, the proportion of premises in the GC then drops to a maximum of 65%

(blue line). In reality, and due to the problem of slaughtering many birds on site

for large farms, this may have resource and logistical implications. Despite this,

movement bans can be imposed for a limited period of time, rendering the results

useful in the short term control of an outbreak.

The three poultry premises that use the most slaughterhouses (found using a MS
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Figure 7.9. Proportions of premises in GC after removal of largest slaughterhouse.
Proportions are given as proportion of premises associated with a slaughterhouse
before (red) and after (blue) the removal of largest slaughterhouse.

Access query run on the data to be two premises using seven different slaugh-

terhouses and one using eight) were removed from the slaughterhouse network

and the simulation repeated. However, due to the high average degree of slaugh-

terhouses, this made little difference to the results and the size of the GC re-

mained close to 2870, suggesting that other premises link slaughterhouses such

that the removal of a small number of premises can have only a minor effect on the

worst-case epidemic. Removal of poultry premises from the network represents

movement bans that are imposed during an outbreak. In line with the results

obtained by [Jonkers et al., 2010], these results suggest that targeting surveillance

or imposing movement bans at the most highly connected poultry premises alone

would not necessarily have a large impact on the potential size of an epidemic.

7.4.3 The role of premises using multiple slaughterhouses

Despite the fact that owners of poultry premises are recorded as sending birds

to up to eight different slaughterhouses, according to Gittins [Agricultural De-
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velopment and Advisory Service (ADAS), pers. comm.] it is expert opinion that

only a small number of single species farms would truly send birds to more than

one slaughterhouse at any one time. When the number of slaughterhouses asso-

ciated with a premises is restricted to one, the maximum size of the GC in the

slaughterhouse transmission network is reduced to 970 (32.6%) premises. This is

a reduction of approximately 64%, giving strong evidence that multiple species

farms may act as important players in the network, because they are able to con-

nect multiple slaughterhouses, which in turn are often hubs. This gives reason to

investigate further the role of multi-species sites in the network.

7.4.4 Treating multi-species sites as separate epidemio-

logical units

When poultry premises that house more than one poultry type are separated ac-

cording to species type, then the number of epidemiological units, each of which

contains only one species type, rises from 707 to 825 for catching companies and

from 2973 to 3418 for slaughterhouses. For comparison reasons, a premises is

considered infected if one or more epidemiological units is infected, so that the

number of premises in the GC still represents poultry premises and not single

epidemiological units. After splitting multiple-species poultry premises into sep-

arate epidemiological units that are connected only by local transmission, it was

found that the size of the GC fell to 1603 (53.9%) poultry premises, for premises

connected by slaughterhouse and to 102 (14.4%) poultry premises, for premises

connected by catching company.

When Figure 7.10, which shows the distribution of premises in the GC for the

worst case-scenario, is compared with Figure 7.8, it is clear that whilst the density

and geographic distribution of premises in the GC for the catching company

contact structure does not change much, the density of poultry premises in the

GC for premises in the slaughterhouse contact structure is somewhat reduced

when multiple species are treated separately (the maps in Figure 7.10 contain

fewer poultry premises than those in 7.8). However, the location of premises in

the GC still spans GB. The reduction in the number of premises in each GC

can be explained by considering the number of premises associated with each

slaughterhouse or catching company, under the different assumptions.

When different species were not processed together (i.e. there was no between-

species transmission via catching company or slaughterhouses), the mean number
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Figure 7.10. Location of poultry premises contained within the GC, with no
between-species transmission. Graph shows premises connected by (a) Catching
company, (b) Slaughterhouse. Premises plotted on a 100 km Grid, for probability of a
link occurring between two premises equal to p = 1. It is important to note that such
GCs are also achieved for p values as low as 0.2, as previously seen.

of poultry premises linked by a catching company or slaughterhouse (degree size)

fell from 18.12 to 8.33 and from 504.95 to 28.64, respectively. As well as a

decrease in the mean degree size, the highest degree for any slaughterhouse or

catching company also fell when between-species transmission was not allowed

via slaughterhouse or catching company. In both cases, the maximum number of

poultry premises associated with a single slaughterhouse/catching company more

than halved in size (from 1457 to 700 for slaughterhouses and from 223 to 107 for

catching companies). The mean degree size, supported by the reduction in the

maximum number of poultry premises a single slaughterhouse was connected to,

tells us that connectivity of the slaughterhouse network is therefore very sensitive

to the assumption that all species can be processed at all slaughterhouses. This

drop in degree size implies a huge drop in the number of possible links in the

network, hence the drop in the size of the GC. The fall in mean degree-size is less

for catching companies than for slaughterhouses, but the maximum degree-size

is reduced by a similar proportion under the assumptions made. This supports

earlier suggestions that the catching company network is less well connected than

the slaughterhouse network, as the catching company with the most number of
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links to poultry premises appears to have less of an affect on mean degree-size.

These results have implications for the potential for a large outbreak to occur.

In disease modelling, one measure of the potential for a large outbreak to occur

is the basic reproduction number, R0. When this number, which describes the

mean number of secondary cases that a single infected case will typically cause

in an entirely susceptible population, is greater than one, then the disease can

reach an epidemic state. When it is less than one, the disease will eventually die

out. For AIV, R0 is typically greater than one [Ferguson et al., 2005, Stegeman

et al., 2004] and so to avoid an epidemic, this number must be reduced. This can

be done by either reducing the susceptibility of individuals (through vaccination

perhaps), reducing the infectiousness of infected individuals, or by reducing the

contact rates in the population [Ferguson et al., 2005]. One way to do this might

be by ensuring that multi-species premises are treated as separate epidemiological

units that are geographically close (i.e. different species and/or production types

are not allowed to mix). However, with the static data analysed here, it is difficult

to determine if the number of links is reduced by enough, under this assumption,

to bring R0 below one in an outbreak situation. These data tell us about the

structure of the industry in terms of potential links and need to be combined

with data describing the frequency of contacts in order to be used to calculate

R0 for these contact structures. In later chapters we will see how disease might

spread when the network of contacts is dynamic.

7.4.5 Defining a maximum distance that any catching team

can travel between two poultry premises

Some catching teams operate over broad regions of GB [Gittins and Canning,

2006]. This may occur when the birds to be caught require specialist catching

skills, such as for turkeys because of their size and weight. In order to determine

if the area over which a catching team operates affects the contact structure of the

poultry network, the distance over which a team could operate i.e. the distance

that any one catching team within a company can physically travel between farms,

was restricted to 25km and 50km.

Restricting this distance reduced the size of the GC from 295 (41.7%) of premises

for no restrictions to 229 (32.4%) for a restriction of 50km and 84 (11.9%) of

premises for a restriction of 25km.
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Figure 7.11. The effect on the number of premises in the GC of restricting the
distance that catching companies move between premises. (a) no restriction (red), (b)
50km restriction (green) and (c) 25km restriction (blue).

Figure 7.11 shows how the GC changes for the three different distance restrictions

with the probability of transmission varied between p = 0 and p = 0.2. As seen

previously, the GC is more or less reached at p = 0.2, so the graph is truncated

at this point for clarity when p is small. From Figure 7.11, there is evidence to

support that there is some benefit to geographic isolation. Interestingly, when

the probability of transmission increases from p = 0.05 for distances restricted to

50km, there is a change in the way that the GC grows.

Figure 7.12 shows this change in more detail. The first thing to note is the shape

of the graph, the overall shape is convex, compared to the concave shape of the

same plot over a wider parameter range. Whilst this seems counterintuitive, the

change in shape is caused by the fact that at p ≈ 0.05, the GC increases rapidly.

This can easily be explained by further exploration of the data. When the prob-

ability of transmission via catching companies is p ≈ 0.05, the mean degree for

poultry premises linked by catching company increases from less than 10 poten-

tially infectious links to more than 13 potentially infectious links. This implies

that there is a threshold in degree size after which the number of potentially

infectious links is sufficient to cause the network to become connected enough for

the GC to grow rapidly. The rapid growth of the GC for no distance restriction
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Figure 7.12. Evidence that the growth of the GC changes in character at p = 0.05,
for a maximum connectivity distance of 50km. The graph shows the size of the GC at
just below and just above the transition that occurs for transmission networks
generated when the probability of transmission via catching companies passes through
p = 0.05.

from very low probabilities of transmission suggests that when distance is not

restricted, the number of potentially infectious links is already high enough for

infection to spread. When the distance is restricted to just 25km, there is only

slow growth of the GC, suggesting that at this distance, the level of connectivity

between premises is always too low for the GC to grow rapidly. The connectivity

in the catching company contact structure is sensitive to the probability of trans-

mission, if the distance travelled by catching companies is taken into account.

It is highlighted here that an interesting area of future work would be to deter-

mine at what distance the pattern of the growth of the GC changes, so that the

importance of the ‘50km effect’ can be better determined.

7.4.6 Summary and ranking of results

In summary, potential transmission routes of poultry diseases have been used to

identify potential contact structures within the poultry industry in GB over which

AIV may transmit. The results are summarised in Table 7.4, where a ranking is
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given according to order of importance, based upon the size of the GC for contact

structures (a), and the reduction in the size of GC under different assumptions

(b).

Table 7.4. Summary of results.

a) Potential transmission route, ranked by importance according to size of GC.

Contact type % premises in worst-case GC*
Slaughterhouse associated movements 97%
Catching company associated movements 42%
Poultry company associated movements 11%
Geographical location (up to 3km) 2%

* % given as % of premises in the GC of a single contact structure, not as % of
all premises

b) Sensitivity to assumptions, ranked by importance according to change in size of
GC.

Assumption % drop in size of GC
One slaughterhouse used per poultry premises 64%
Keeping poultry type separate - slaughterhouse 43%
Distance travelled by catching teams up to 30%
Removal of key-players (slaughterhouses) 29%
Keeping poultry type separate - catching company 28%
Removal of key-players (poultry premises) < 1%

The results show that connections through slaughterhouses potentially link sur-

prisingly large numbers of premises, over long distances. Further work as to

whether these potential connections represent real risk, or are just an artifact of

the data, must be investigated. Should it prove true, surveillance should be tar-

geted at the premises connected to the largest slaughterhouse rather than those

premises connected to the highest number of different slaughterhouses, in order

to prevent disease spreading to a large number of premises.

If between-species transmission occurs, then this has implications for the poten-

tial for large epidemics as multi-species sites may play an important role in the

connectivity of otherwise separate sectors of the poultry industry, though expert

opinion suggests that they are only likely to interact at the local level. This

makes a difference to the maximum number of premises that may be connected

and hence gives rise to the importance of further investigations into this area.
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As reducing the distance that catching companies travel between premises reduces

the number of premises that are potentially connected, wide dissemination of

disease could be partly controlled by encouraging premises to use local catching

companies and slaughterhouses.

The results show that few premises are connected as a result of being geographi-

cally close to one another, which reduces the concern for local spread of AIV and

limits the validity of applying data from the 2003 outbreak in the Netherlands to

the GB situation.

7.5 Discussion

Inspired by the success of approaches used to model the spread of disease over

contact structures that exist in the cattle industry in GB (see [Green et al., 2006]

for example), this chapter has provided a 1st look at the relative potential spread

of (randomly seeded) AIV virus between poultry farms in GB. In particular,

by considering potential transmission routes of poultry diseases associated with

faeco-oral transmission (Table 7.1), possible contact structures within the poultry

industry in GB have been reconstructed based on associations amongst poultry

premises using the same slaughterhouses, catching companies and belonging to

the same multi-site companies. Environmental spread has also been included

in the analyses by assuming that disease can be transmitted between premises

that are geographically close to each other. This is an important first step in

this area of research as, due to the complexity of the poultry industry, not all

potential transmission routes can currently be realistically modelled. However,

in this thesis, data on major routes that are likely to involve the movement

of infectious material have been successfully obtained. Although the addition

of data about other routes, such as feed delivery vehicles or egg collectors, may

enhance the work done here, this analysis gives a good first impression of potential

spread of AIV between poultry premises in GB. The exclusion of small premises

is only likely to cause a significant bias in the results if the results prove to be

sensitive to local transmission, because small premises generally do not interact

with slaughterhouses and catching companies. The exclusion of premises with

missing location data causes a reduction in the number of premises that are

potentially linked. This is important if these premises were to act as hubs of the

network. However, as control measures are strongly location based, it was not

possible to include these premises at this stage.
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Outbreak data from the Netherlands shows that local transmission of HPAI

played an important role in the 2003 epidemic [Boender et al., 2007, Stegeman

et al., 2004]. Boender [Boender et al., 2007] suggests that epidemic spread is only

possible in poultry dense areas of the Netherlands. Importantly, in the analy-

ses shown here, only 2% of premises were connected (in the worst case scenario,

p = 1), via local transmission within 3km of an infected premises, suggesting that

the British poultry industry is not densely enough populated for local transmis-

sion of the HPAI virus that devastated the Netherlands in 2003.

However, if one assumes that using the same slaughterhouse company implies

a potential infectious link, up to 97% of premises sending birds to slaughter are

potentially connected, which could translate to almost the entire poultry industry,

assuming that most commercial premises do not slaughter their birds on site. In

contrast, only 42% of premises using catching companies and 11% of premises

belonging to multi-site companies are potentially linked. Although these results

suggest that slaughterhouses potentially link the largest number of premises and

therefore have the highest potential for widespread dissemination of virus, should

virus transmit via this route, the size of the GC was sensitive to the number

of slaughterhouses used per premises (when only one slaughterhouse is used per

poultry farm, the GC fell by approximately 64%).

Through discussions with experts in the poultry industry, it was concluded that it

seems intuitively unlikely that over 30% of premises truly send birds to more than

one slaughterhouse, as indicated in the network database. It is possible that when

slaughterhouses were asked to provide a list of customers, some premises were

listed that are no longer active customers. This could result in an overestimate in

the number of slaughterhouses used per premises. Whilst this is important as it

suggests that the structure of the industry may be very dynamic, with premises

changing their potential interactions regularly, expert opinion is that this is not

likely to happen more than every few years. Thus regular - though not necessarily

frequent - updating of the databases used here would be necessary if it is to be

used for contact tracing purposes. To date, there has been little apparent work

to explore how the poultry industry changes year on year and therefore how

quickly these current data will become out of date. Some analysis of the GBPR

and how it has changed since it was set up would provide more information to

allow estimation of the frequency of required updates. As time goes on, matching

the GBPR to the PND will become more difficult due to premises currently

in the PND going out of business or changing production type. Although the
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two databases have been matched here, in the event of a real outbreak when

a new GBPR update would be supplied there would be little time for manual

correction and matching of the two databases. This failure to match needs to be

addressed but requires complex algorithms and an input of resources in order to

assess the best way of doing this. It is therefore highlighted here as an area for

further study. Furthermore, if the network patterns change e.g. due to increased

integration within the industry, more updating of the PND will also be necessary.

In the absence of contact data from an AIV epidemic in GB, the probabilities of

transmission of AIV via each potential transmission mechanism are not known. It

is therefore difficult to comment on how realistic a transmission rate of 0.2, which

was sufficient to connect a large proportion of premises, is in terms of transmission

of AIV between poultry premises. Although it is generally believed that catching

company teams, for example, are a more likely mode of transmission than slaugh-

terhouses, care must be taken when comparing outputs. It is also noted that dif-

ferent research groups have approached this problem in different ways. [Truscott

et al., 2007] group movements of people and equipment together and assume a

constant, density-independent contact rate between premises, where-as [Sharkey

et al., 2008] do not incorporate the movement of catching companies in their

models but do consider the probability of transmission via slaughterhouses al-

ways to be greater than that of company movements, for example. The methods

used in this chapter more closely match those of Truscott et al.. If the approach

of Sharkey et al. was to be adopted, then the results would be similar to those

already obtained. This is due to the fact that the slaughterhouse network is so

well-connected compared to the network of contacts made by company move-

ments. However, in adopting either approach, slaughterhouses remain the most

important contact mechanism in this analysis in terms of the number of premises

that may become infected. Further data collection is required to determine why

the owners of poultry do not necessarily use local catching companies and slaugh-

terhouses and whether putting a smaller limit on the distance that live poultry

can be transported would be a feasible standard for the industry to set.

The contact structures observed here are well connected with a high number of

links between premises. This occurs because the assumption has been made that

all premises using the same slaughterhouse, catching company or belonging to

the same multi-site premises are potentially all connected. It is important to

note that this means that targeting surveillance on the poultry premises that

use the most number of slaughterhouses, in particular, will not be beneficial in
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preventing or controlling an epidemic as there are other premises, using more

than one slaughterhouse, that are able to keep the connectedness of the contact

structure. It has been shown that removal of the largest slaughterhouse greatly

reduces the number of premises that are connected. While one cannot remove

a slaughterhouse from the industry in real terms, one can target surveillance,

through forward and backward tracings, at the premises that have had recent

contact with the slaughterhouse. By ensuring that there is no infection passing

through the largest slaughterhouse, we can be sure that at least 22% of premises

that send birds to slaughter are not transmitting disease via this mechanism.

The potential for slaughterhouses to transmit disease may also be affected by

the existence of farms that operate an all-in-all-out policy. On these farms, risk

of transmission is likely to be lower than on farms that do not fully depopulate

birds when visited by a slaughterhouse vehicle. The proportion of farms that do

operate and all-in-all-out procedure has not been estimated here and sensitivity

to this assumption is highlighted as an area for further study

Multi-species sites are also potentially important, should transmission between

species on a site be likely, as they can act as a bridge between different sectors

of the poultry industry. Operating on a species-specific basis at the slaughter-

house and by the catching company can reduce the risk of a large epidemic, by

reducing the number of potential contacts made between separate epidemiological

units. This in turn reduces the R0 of a disease, making control more manageable.

Housing multiple species on the same site so that species have the potential for

interaction, either by being housed in the same building or through having access

to the same feeding or watering ground for example, may also pose problems

at the farm level as a result of the differences in species susceptibility to AIV.

Ducks for example are able to carry both LPAI and HPAI virus without showing

any clinical signs [Alexander, 1995,Anon, 2002]. Although outbreaks of HPAI in

commercial ducks are rare, the ability of ducks to survive infection can increase

the time to detection of an outbreak and hence the number of premises poten-

tially infected with an AIV. This is potentially dangerous for premises housing

ducks and chickens or turkeys, as ducks can shed high doses of the virus without

any early warning signs. Therefore, these flocks have a prolonged exposure time

and unless the numbers of chickens are high enough, disease may go unnoticed

in mixed flocks. However, it could be argued that chickens and turkeys can act

as sentinels in a mixed population, increasing potential for detection of disease

in mixed flocks, compared to duck-only flocks for example. While further inves-

tigation into the range of values of within flock transmission is important, these
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analyses underline the value of good biosecurity at the premises level to limit

transmission across species within premises.

It can be argued that by adopting good biosecurity measures (which are difficult

to measure), connections between species and connections between premises, over

which disease can transmit, can be broken. However, biosecurity measures can be

represented by reducing the probability of an infectious link occurring between

connected premises.. The results show that this would result in a reduction in

the number premises in the GC. The real risk of disease transmission through

movements of people, vehicles and equipment should be investigated further, so

that the impact of biosecurity at both the farm and slaughterhouse level can be

more accurately simulated.

As a static approach cannot give a truly accurate representation of real life, one

of the most important areas for further work is to be able to consider the network

from a dynamic point of view. The PND tells us only where links might occur

between premises, via different routes. It cannot be used to determine the fre-

quency of movements between linked premises, nor can it be used to determine

which premises are potentially linked in a given time period. Analysis of temporal

networks is challenging and therefore, in order to build and analyse the network

from a temporal point of view, further data collection is required. In particular

concerning the frequency of links made between farms and slaughterhouses and

between farms and catching companies. Furthermore, by adding a time compo-

nent to the data, a more realistic GC size can be obtained. The results from

this chapter provide enough evidence to suggest that investigating the industry

further, and from a dynamic point of view, is certainly worthwhile.
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Chapter 8

Dynamic networks associated

with catching companies and

slaughterhouses; data collection

and analysis

8.1 Introduction

It has already been shown that AIVs have the potential to spread to a large

number of poultry premises via movement of humans and fomites [Alexander,

1995, Bahl et al., 1979]. The results from Chapter 7 are dependent on the as-

sumption that all premises using the same slaughterhouse, catching company or

belonging to the same multi-site company are potentially connected, with all

links being undirected. While most models assume that all potentially infectious

connections are always ‘active’ (though see also [Green et al., 2006]), in practice

there are other factors that will limit the dissemination of disease across the com-

mercial poultry industry. First, over the time that a premises might be expected

to be able to transfer infection to other premises, the number of actual connec-

tions (of particular importance are those to slaughterhouses) will depend on the

frequency at which the contacts are made. Second, there are likely to be im-

portant distance constraints on how far people, vehicles and livestock will travel

between premises. Therefore the range over which infection is likely to travel via

these means will be limited (although there is currently no maximum journey

1Work from this chapter has been published. See [Dent et al., 2011]
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time for poultry [Defra, 2009]). Finally, for catching companies and company

personnel, it is possible that there are regional divisions within the company, e.g.

geographical sub-divisions within multi-site companies and area-based teams for

catching companies.

The effects of some of the above assumptions on model outputs were investigated

as part of Chapter 7. However, unique to the next two chapters, real-time move-

ment data, which describe connections that exist between premises in poultry

industry, have been collected in order to improve the robustness of results and

conclusions that can be drawn on the potential for AIV to spread in the poultry

industry in GB. The principal aim of this chapter is to give the first presenta-

tion and analysis of these newly collected data. These detailed data will be used

in Chapter 9 to simulate disease transmission through poultry premises using

the contact structures identified in Chapter 7 as potential transmission routes

between premises.

8.2 Data sources

Movement data from a major catching company (referred to here on in as Com-

pany A), whose headquarters are located in the poultry-dense region of Norfolk,

UK, were obtained (by the author as part of this thesis) for all movements made

over the 32 month period between 02/01/2005 and 11/08/2007. These data con-

tain the times, dates and premises details for the movements of 68 catching teams

(within Company A) over 415 poultry premises in GB. It is estimated that this

number covers between 30% and 50% of all premises that are likely to be ser-

viced by a major catching company [Gittins and Canning, 2006], implying that

these catching company data represent a reasonable proportion of all premises

that may be connected by catching companies. Data describing the movement

of birds from premises to slaughter was also obtained from Company A, for the

same set of premises and over the same time period.

The catching company data contained information about movements of catching

teams and slaughterhouse vehicles as well as premises location, but it did not

contain other premises information, such as premises size or premises owner. In

order to allow for additional premises information to be included in the analy-

sis, the catching company data were uploaded into the PND using an automated

script. Manual checking was carried out to check for any errors in the upload.
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The data were then matched by location (easting and northing) so that addi-

tional information on which premises belong to integrated companies could be

obtained from the PND. Premises in Company A’s database were also matched

to premises in the GBPR so data on location, premises population, size, species

and neighbours would also be available for analysis.

Road data

Although Euclidean distance can be used to calculate the distances between

premises, it is possible that road distance is a better measure of distance be-

tween premises, particularly for those premises that are located a long way apart,

or in parts of GB where the road networks are less dense. To explore this, a

highly detailed, regularly updated dataset developed and maintained by Ord-

nance Survey Great Britain (OS) was used to identify the road distances between

poultry premises that are visited by Company A. In particular, the Integrated

Transport Network (ITN) dataset and the associated Road Routing Information

(RRI) dataset, both of which are part of the OS MasterMap series of products,

were used. Further details about these datasets are available from the OS web-

site [Ordnance Survey, 2008]. In this study, it was assumed that vehicles only

use motorways, A roads, B roads and minor roads to travel between premises,

(thus eliminating: local streets, alleys, private roads and pedestrianised streets

from the database). In this study, using easting and northing data and data

from OS, road and Euclidean distances were calculated for all premises associ-

ated with Company A. These distances were then used to determine how close

linked premises were to each other.

8.3 Descriptive analysis of movement data

The more frequent movements between premises are, the more likely infection

is to spread across multiple premises. Descriptive statistics were used to iden-

tify any trends in the data that could have important implications for disease

transmission. In particular, the distance that catching teams and slaughterhouse

vehicles travel between premises was considered, as it was shown in Chapter 7

that this can have a large impact on the potential size of an HPAI outbreak. The

frequency of catching team movements to premises, dependent on farm size, was

also considered in order to determine if premises size should be considered as a
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factor in the analysis of outputs from the simulation model in Chapter 9.

8.3.1 Individual network characteristics

For these data, a connection was assumed between premises if the two premises

were visited on the same day. Under this assumption, over the time period of 936

days, catching teams connected 317 of the 415 (76%) poultry premises visited.

The remaining premises were visited either as a one off, or were never visited

on the same day as other premises, by the same catching team. The clustering

coefficient (see Chapter 4) for the network of premises connected by catching team

movements was 0.117, implying that only a small proportion of nodes were locally

well-connected i.e. local density is low. Using Tarjan’s algorithm (described in

Chapter 4) to identify connected components in the data, a total of 12 disjoint

connected components were found, 11 of these 12 components contain fewer than

5 poultry premises. This implies that, over the time period studied, almost 300

premises are connected in at least one direction. In fact, each poultry premises

was connected, by catching team, to an average of 4 other premises over the

time period studied (this figure excludes self-loops and counts repeated links

only once).

Over the same time period (936 days), slaughterhouses connected 391 of the 415

(94 %) poultry premises, immediately suggesting that this network is better-

connected than that of premises linked by catching team. This is supported by a

higher clustering coefficient of 0.31, which indicates that over 30% of premises are

well connected locally (i.e. belong to closed triplets), via slaughterhouse-related

movements, over the time period studied. These data contained 4 components

(excluding isolated nodes), one containing 383 premises and the remaining three

with four or fewer premises. Each premises was connected, via slaughterhouses,

to an average of 15 other premises during the time period studied.

The in- and out-degree distributions for premises linked by catching company are

given in Figure 8.1. Using the same least-squares method described in Chapter 5,

a power-law distribution was fitted to both in- and out-degree to give the number

of nodes, xin and xout, with degree, d, as shown in Equation (8.1), with exponent

standard errors of 0.040 and 0.398, respectively. The corresponding R2 values for

in- and out-degree distributions were R2
in = 0.92 and R2

out = 0.86. The high R2

values, combined with results from χ2 tests, which gave p-values of 0.33 and 0.31

for in- and out-degree, suggest that the degree distribution for premises linked by
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Figure 8.1. Degree distribution for premises linked by catching company. In-degree
= red, out-degree = blue. Points represent true data, lines represent fitted power-law.
(Note zero values excluded in power-law fit.)

catching team are consistent with the estimated power-law and thus the network

may display scale-free properties.

xin = 95.73x−1.27, xout = 115.20x−1.4 (8.1)

For slaughterhouse linked movements, the in- and out-degree distributions, shown

in Figure 8.2, could not be characterised by a power-law distribution (the R2 val-

ues for a fitted power-law distribution were 0.49 and 0.43 for in- and out-degree,

respectively). The slaughterhouse degree distribution showed a distribution that

is closer to a Poisson distribution. However, as the mean and variance are not

equal, a Poisson distribution could also not be fitted to the data. Given that the

aim of describing the degree distribution as a power-law or Poisson distribution is
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Figure 8.2. Degree distribution for premises linked by slaughterhouse. (a) In-degree
(red) and (b) out (blue).

to determine the network structure (scale-free, random or hierarchical - see Chap-

ter 4), no other models were fitted to these (degree-distribution) data. However,

despite displaying Poisson characteristics, implying the network is random, the

data showed some exponential decay, which implies that the network may be held

together by only few ‘hub’ nodes, with high degree.

8.3.2 Frequency of movements per day

If all links between premises associated with Company A are considered at once

(as previously assumed for the PND data in Chapter 7) and a per link probabil-

ity of transmission assumed between farms that are linked, then links between

the same premises on different days become important as they can increase the

probability of disease transmission between premises. However, in reality AIV is
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not likely to transmit over such an extended time period and so the frequency

of movements on a daily basis may be more important to consider than that of

connectivity over a longer time period.

Figure 8.3. Number of poultry premises visited per catching team per day.

The average number of connections per node for premises connected on the same

day is 0.19 for connections made by catching team movements and 2.53 for slaugh-

terhouse linked movements (this figure assumes that self-loops -where the same

premises is visited multiple times on one day by the same catching team or slaugh-

terhouse vehicle- are not accounted for). There were a large number of visits to

premises that did not result in onward movements. When an onward movement

did occur, a mean of 1.22 (variance = 0.39) and 3.33 (variance = 9.5) premises

were connected by catching team and slaughterhouse, respectively. Figures 8.3

and 8.4 show the empirical distributions of data describing how many premises

are visited per day by catching teams and slaughterhouse vehicles, over the full

936-day period.

Figure 8.3 shows that in approximately 84% of cases, only one premises is visited

by a catching team on a given day, implying that the event that catching teams

visit more than one premises in a day is rare. This would suggest that a Poisson

distribution might be a suitable distribution to describe these data. However, the
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Poisson distribution assumes an equal mean and variance, so it is not appropriate

to use here. It was therefore assumed that the data (u) followed a negative bi-

nomial distribution, u ∼ nb(n, p), where n describes the number of farms visited

in one day and p the probability that no onward movement was made. Using the

fitdistr function available in R software (which uses maximum-likelihood estima-

tion to fit a distribution to a set of data [Venables and Ripley, 2002]), a negative

binomial distribution was used to describe these data, with estimated (with 95%

confidence intervals) p = 0.759 (0.57, 0.85). The predicted values from the neg-

ative binomial were compared to the data (Table 8.1). A Pearson’s χ2 test was

used to measure the goodness of fit, giving a p-value of 0.71, suggesting that there

is no significant difference between the observed data and the predicted values

from the fitted negative binomial distribution.

Table 8.1. Onward visits made per catching team per day compared to negative
binomial (p=0.759 ).

Number onward moves Neg Bin prediction Proportion recorded
1 0.844 0.843
2 0.127 0.133
3 0.023 0.017
4 0.005 0.005
5 0.0009 0.001
6 0.0002 0.0007
7 0.00004 0.0001

Despite the low probability that more than one premises was visited in a day

by catching teams, the data show that up to seven premises were visited in one

24-hour period (see also Figure 8.3), so it is not wise, at this stage, to eliminate

this as an important transmission route between premises.

Conversely, for slaughterhouses, only 24% of visits were to single premises, imply-

ing that the event that a slaughterhouse vehicle visited more than one premises on

a single day was much less rare. This occurs due to the lower number of slaughter-

houses (compared to catching teams) associated with Company A. Furthermore,

when more than one poultry premises was visited by a slaughterhouse vehicle,

Figure 8.4 shows that up to 26 movements (to different premises) were made in

one day. This implies that, even when frequency of movements are taken into

account, slaughterhouse-related movements might be frequent enough to cause

an outbreak to reach multiple premises. Interestingly, Figure 8.4 also shows that

there is a bi-modal pattern in these data. There is a large peak at 2 movements

per day and another smaller peak at 10 movements per day. This could be related
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Figure 8.4. Number of poultry premises visited by slaughterhouse vehicles, per day.

to the capacity of the slaughterhouses to handle birds. An explanation for this

could be that it is possible that larger slaughterhouses have the capacity to visit

an average of 9 - 12 farms per day, whereas the smaller ones (of which there may

be more) can visit only two or three premises per day. Visiting over 13 or 14

farms a day appears to be only occur in exceptional cases. Due to the bi-modal

nature of the data of movements made by slaughterhouse vehicles and personnel,

fitting a distribution to the slaughterhouse data proved to be non-trivial and it

was not possible to find an appropriate distribution that was a good fit to these

data, suggesting that these data cannot be characterised in the same way as the

empirical distributions of data describing how many premises are visited per day

by catching teams. However, investigating this further, potentially by splitting

the data into two unimodal distributions, based on sound management reasons,

and then investigating each separately, could provide an area of further research.

Consistent with the data in the PND, although just over half of premises send

birds to just one slaughterhouse, some premises send birds to multiple slaughter-

houses (up to six according to data from Company A and up to eight according to

the PND). This may be a result of slaughterhouses operating on a species-specific

basis, so farms housing multiple species send birds to multiple slaughterhouses.
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According to the movement data from Company A, premises using Company

A send birds to one or more of eight slaughterhouses. Data collected from 96

slaughterhouses however, suggests that up to 35 slaughterhouses are associated

with the premises that use Company A. This suggests that either premises use

multiple catching companies, or premises catch birds themselves and send to mul-

tiple slaughterhouses. Due to the ability of slaughterhouses to connect a larger

number of premises than catching companies, it is important to determine which

case is most likely. Results from the static network analyses presented in Chapter

7 suggest that it is more likely that premises use multiple slaughterhouses than

they do multiple catching companies.

8.3.3 Movement dependent on farm size

There is evidence to suggest that the probability that more than one farm is

visited by a catching team, in a day, is related to the size of the first farm visited.
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Figure 8.5. Distribution of whether or not onward movements (dark grey, no
onward movement and light grey, onward movement) were made by a catching team,
given the number of houses on the first farm visited.

Figures 8.5 and 8.6 show the empirical distributions of data describing whether
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Figure 8.6. Distribution of whether or not onward movements (dark grey, no
onward movement and light grey, onward movement) were made by a catching team,
given the number of birds (in 1000s) on the first farm visited.

or not an onward movement was made (by catching teams) for different farms

sizes (measured by the number of houses (8.5) and the number of birds (8.6) on

a farm).

The light grey peak in Figure 8.5 shows that onward movements were most likely

to have occurred after a medium sized farm had been visited (farms with 10-11

houses). We would expect these farms to be operating in cycles, so that there

are always birds on the farms and only a small number of houses are visited per

catching team visit. The dark grey peak at farms of size 12-14 houses suggests

that no onward movement was most likely to have occurred after large farms

had been visited (however, there is only a slight difference in the location of

the light and dark grey peaks). These farms may be operating an all-in-all-out

procedure, where all birds are caught at once and sent to slaughter. There was

another small peak of onward movement from small farms (with 4-5 houses),

implying that catching team visits to small farms are likely to have resulted in

the team visiting other premises on the same day. When number of birds was

used to determine farm size (Figure 8.6), then onward movement was still most
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likely to occur from medium to large farms (housing between 240,000 and 280,000

birds) and no onward movement most likely from larger farms (housing 320,000

to 360,000 birds). The small-farm peak seen in Figure 8.5 can also be seen for

onward movements from farms housing 40,000 to 80,000 birds. These results

imply that when catching teams visit more than one farm, they are most likely

to have come from a small to medium sized farms. However, if they visit only

one farm in a day, it is most likely that this farm is a large farm.

Similar conclusions cannot be drawn from the empirical distributions of data

describing whether or not an onward movement was made by slaughterhouse

vehicles and personnel.
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Figure 8.7. Distribution of whether or not onward movements (dark grey, no
onward movement and light grey, onward movement) were made by a slaughterhouse
vehicles, given the number of houses on the first farm visited.

Figures 8.7 and 8.8 show the distribution of how often onward movements oc-

curred according to farm size (houses and number of birds), for movements made

by slaughterhouse vehicles and personnel. Figure 8.7 shows that onward move-

ments were least likely to have occurred after visiting large farms (more than 7

houses) and most likely to have occurred when the first farm visited has four or

fewer houses. There is another peak at farms with 7 houses, which occurs because
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Figure 8.8. Distribution of whether or not onward movements (dark grey, no
onward movement and light grey, onward movement) were made by slaughterhouse
vehicles, given the number of birds (in 1000s) on the first farm visited.

there are two farms with 7 houses that are frequently visited by vehicles from the

same slaughterhouse. Although no onward movements were most likely to have

occurred when a farm with four houses was visited by a slaughterhouse vehicle

(dark grey peak in Figure 8.7), patterns in the data are not evident. When the

distribution was replotted against the number of birds on a farm (Figure 8.8),

the data tell a different story. First of all, the data show that the first farm to be

visited by a slaughterhouse vehicle was almost always a small to medium farm

(fewer than 200,000 birds). For this reason, if only one farm is visited it is likely

to be small, if more than one farm is visited, it is likely that a small farm was

visited first. The data for farm size by number of birds supports that of farm

size by number of houses in that onward movements did not occur in large farms.

This suggest that slaughterhouse vehicles require a long time to load and trans-

port birds from large farms, leaving no time (and perhaps no free equipment) in

the day for movement to other farms. Interestingly, no onward movement was

most likely to occur from farms housing 40,000 or fewer birds. This implies that

all birds on these farms are taken to slaughter in one go (i.e. they operate on an

all-in-all-out basis and not in cycles). For slightly larger farms (40,000 to 80,000
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birds), onward movements were more likely to have occurred, perhaps because

these farms operate in cycles, so fewer birds are taken to slaughter in one go,

allowing vehicles to collect birds from other farms in order to fill the truck. In

conclusion, the patterns of onward movements of slaughterhouse vehicles cannot

easily be predicted from farm size, though the data do suggest that there is some

prioritisation of the order of visits, in that small farms are more likely than large

farms to be visited at the beginning of a day.

It is noted that, in Figures 8.5 to 8.8, the total number of movements included

in ‘onward’ and ‘no-onward’ movements varies greatly. For catching teams (8.5

and 8.6), the number of onward movements was 4166 (of 18146 total recorded

movements). For slaughterhouses (8.7 and 8.8), the number of onward movements

was 16954 (of 18355 recorded movements). This means that when the proportions

are small (this is most important w.r.t onward movement of catching teams) the

actual numbers of movements included is as low as approximately 40 records.

Such small numbers should be interpreted with some caution and thus inferring

conclusions about onward movements related to farm size for other companies

should not be done without further investigation.

8.3.4 Repeated movements

Under the assumption that risk of infection is related to the frequency of visits,

large premises are at a higher risk of becoming infected via the movement of

catching teams (and slaughterhouse vehicles).

According to the data, 51% of links between premises that are created by the

movement of catching teams were repeated at least once over the time period

studied. Seventeen percent of premises were only visited once in the data set.

Approximately 1% of premises were visited over 200 times, with one premises

being visited 370 times (one visit every 2 to 3 days). According to the GBPR,

this premises consists of seven houses of 36,000 broiler chicks per house, so if the

cycle in each house is one week apart and each house is visited separately, thinned

(once birds reach a certain size, a small proportion are removed, freeing up space

for remaining birds to grow bigger) and has part depopulation (not all houses are

emptied of birds at the same time, so that there are always birds present on the

farm, and depopulation takes place over a prolonged period of time), at different

times, it is possible that the site is visited every few days. Generally speaking,

larger premises are visited more frequently than smaller premises.
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Figure 8.9. Distribution of number of catching team visits per premises for (a)
premises size defined by number of houses (red = 10 or more houses, green = 5 to 10
houses, blue = 0 - 5 houses) and (b) premises size defined by number of birds (red =
more than 200,000 birds, green = 100,000 - 200,000 birds, blue = 0 - 100,000 birds).

Figure 8.9 shows the distribution of the number of visits made by catching teams,

according to premises size. The Figure shows that large premises (>200,000

birds or more than 10 houses) were visited more frequently, perhaps as a result

of ‘thinning’ (over 100 visits in the time period (936 days), corresponding to

visits made every 10 days or more frequently). Interestingly, small and medium

premises are less frequently visited (the majority receiving fewer than 100 visits

over the 936 day period). There could be several explanations for this: such

premises may be using multiple catching companies (or catching birds themselves)

or they may operate an all-in-all-out procedure as there are not enough birds on

the farm to justify a stratified production procedure. It is noted that other

factors, such as biosecurity measures employed by farm staff for example, may

vary according to farm size. This is less relevant here as the biosecurity measures
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employed by personnel associated with catching company are set by the catching

company rather than by the farm being visited.

8.3.5 Distance between associated premises

In an outbreak situation, surveillance and protection zones are set up at 10km

and 3km, respectively, around infected premises. If these zones are to be effective

in controlling disease, then movements between premises should be restricted

to occurring within these zones. For these data, the majority of premises are

situated more than 3km (the current PZ put around infected premises) from each

other.
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Figure 8.10. Distribution of the number of premises located within 3km (dark grey)
and 10km (light grey) of each premises associated with the catching company.

Figure 8.10 shows the distribution of the number of premises located within 3km

(dark grey) and 10km (light grey) of each premises associated with Company

A. The figure shows that almost 50% of premises have only one other premises

located within 3km, with no more than 5 premises located within 3km of each

other. The figure also shows that there are up to 20 premises (corresponding to

approximately 5% of premises) located within 10km of each other. As only a
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maximum of 5% of premises are located within 10km of each other, this implies

that there may be many premises that are associated with Company A that would

not be located within the surveillance zone of a (potentially) infected poultry

farm. In fact, for these data, approximately 16% of premises are located more

than 10km away from all other premises.

When we consider the distance between premises that are linked by catching

teams and the distances travelled between premises and slaughterhouses, we see

that the majority of linked premises are further than 10km apart.

0        
20

0        
40

0     

a)

Distance(km)

P
ro

po
rt

io
n

0.00

0.05

0.10

0.15

0.20

0         
20

0         
40

0   

b)

Distance(km)

P
ro

po
rt

io
n

0.00

0.05

0.10

0.15

0.20

Figure 8.11. Distribution of distances travelled for (a) catching teams between
premises and (b) from premises to slaughterhouse.

The movements of catching teams between premises and the movements made

from premises to slaughterhouse could cover long distances (Figure 8.11), result-

ing in the potential for geographically widespread dissemination of virus. Only

28% of catching team movements were made between premises less than 10km

apart (within the current SZ), with some catching teams travelling very long

distances between premises on the same day. The increase in the proportion

of movements that are greater than 300km apart is caused by catching teams

visiting a single premises located in a more remote area of GB. The Euclidean

distance travelled by slaughterhouse vehicles, from premises to slaughterhouse
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was also relatively long, with a mean distance of 106.2km (with a large standard

deviation of 73.15, implying a wide range of distances travelled by slaughterhouse

vehicles).

When road distance is considered as a measure for distance, there is little differ-

ence in the results obtained.
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Figure 8.12. Comparison of road and Euclidean distances. Distribution of the
number of premises located between premises that are linked, according to Euclidean
distance (dark grey) and road distance (light grey).

Figure 8.12 shows the distribution of the number of premises located between two

linked premises, counted using Euclidean distance and road distance to measure

the distance between linked premises. The figure shows that there is little dif-

ference between using road and Euclidean distance to measure distance between

linked premises, for these data. Road density is high in the South and East of

GB, compared to the North and West and, given that most premises associated

with Company A are located in the East of GB, this might explain why there

is little difference between road and Euclidean distance for these data. Further-

more, the figure shows that most movements are made between premises that are

close to one another, with over 20% of links occurring from one premises to one

of the five closest neighbouring premises. These results thus suggest that the use

of Euclidean distance as a distance measure for these data is acceptable.
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8.4 Discussion

In this chapter, real-time movement data from a large catching company have

been collected and analysed for the first time. Although extrapolation from these

data should not be done without data collection from other companies to asses

how representative the data truly are of the industry, the collection of these data

is an important advancement in the area of AIV modelling, where most cur-

rent models for GB rely on simulated movement data to describe links between

premises. These data help to solve the problem of understanding the detailed con-

tact structures that exist within the poultry industry in GB, which, as presented

in Chapter 7, are potentially important for disease transmission. Thanks to the

collection of the data presented here, models such as those in [Garske et al., 2007]

and [Sharkey et al., 2008] can be expanded upon, providing the opportunity to

increase the modelling capacity for the spread of disease in the poultry industry

in GB.

Results from Chapter 7 suggested that catching companies can connect up to 42%

of premises and slaughterhouses up to 97% of premises. The results in this chap-

ter show that, indeed, when the frequency of movements is not accounted for, the

slaughterhouse related movements connected 94% of premises (serviced by Com-

pany A) and the catching team movements connected 76% of premises serviced

by Company A. Whilst these results do not correspond to the whole poultry in-

dustry, as those in Chapter 7 did, they do confirm the high levels of connectivity

seen in the industry. It has also been shown here that the network of premises

connected by slaughterhouses displays high levels of clustering (compared to the

catching team network) and had a degree distribution that was characterised by a

small number of premises with a large number of connections. In such networks,

targeting control measures based on degree is likely to be ineffective [Newman

et al., 2006], implying that targeting slaughterhouses is potentially economically

and resourcefully expensive, unless there is evidence of involvement of particular

premises.

In Chapter 7 the question of whether premises truly send birds to multiple slaugh-

terhouses arose. Contrary to the expectations of both the author and experts in

the industry [J.Gittins, pers. comm.], the data presented in this chapter have con-

firmed that premises do indeed use multiple slaughterhouses. This increases the

amount of connectivity in the industry, resulting in a higher chance of widespread

dissemination of disease. This result also implies that the possibility that the
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number of slaughterhouses used per premises is overestimated in the PND, as

discussed in Chapter 7, is less likely.

When a time component was added and only links that were made between farms

on the same day were considered, then the catching teams connected fewer than

an average of 2 premises per day (the mean degree was 0.19). This implies that

infection into the network of premises connected by catching teams is, on average,

not likely to persist. This occurred because in the majority of cases, there was

no onward movement from one farm to another. When an onward movement

did occur, the the mean degree was still small (1.22) for catching teams, imply-

ing that approximately 2 premises were connected when connections occurred at

all. For slaughterhouses, however, the mean degree was higher. Slaughterhouses

connected an average of 3 premises per day (mean degree = 2.53 over all move-

ments and 3.33 when multiple premises were visited). Whether or not this is

high enough for an outbreak of AIV to result in an epidemic will be explored

in Chapter 9. For the modelling of other, more persistent, pathogens, such as

Campylobacter species, it may be necessary to obtain further data on other po-

tential transmission routes in addition to the data presented here. However, the

analysis of these data, particularly when considered alongside those presented in

previous chapters, suggests that infection can reach high numbers of premises

connected by slaughterhouses.

Given these results, it was investigated whether or not the probability of onward

movements from the first farm visited was connected to farm size. However,

neither the number of houses nor the number of birds on a premises seem to

determine whether the premises will be the only one visited in a period of 24

hours, by a single catching team, or not. This implies that assuming that farm

size determines the probability of a link occurring between two premises, on the

same day, is not appropriate for modelling AIV via the spread of catching teams.

In fact, the results suggest that links may be dependent on the stage that a farm

is in its production cycle and that catching teams prioritise by demand rather

than farm size. It is reiterated that due to the rarity of onward movements, in

some cases the number of farms -of different sizes- that had onward movement

was small, thus reducing the power of results. Other informative results for

modelling are those concerning the frequency of movements to farms and the

distance between connected farms.

It has been shown here that there was an increase in the frequency of visits to large

premises. This increases the probability of a large premises becoming infected,
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which may have resource implications in an outbreak situation. Knowing that

large premises are at a higher risk of infection is therefore important as it means

that one can better prioritise the potentially large number of premises that could

undergo surveillance in an outbreak situation.

There was no evidence from these analyses to suggest that road distance was a

better measure of distance between premises than Euclidean distance. Whilst

road distances might perform better than linear distances in areas where road

density is low, these results suggest that road distance is not required for the

modelling of AIV in the poultry industry in GB. The main reason for this be-

ing that the poultry dense areas of GB are well represented by these data. The

distance between premises is, however, important for modelling AIV as long dis-

tances were covered by both catching team and slaughterhouse vehicles. This

suggests that the regional divisions and distance restrictions that were expected

to be seen were not applicable for these data. The long mean distance travelled

between premises and slaughterhouse suggests that the closest slaughterhouse is

not necessarily the slaughterhouse that is used. This may be because the closest

slaughterhouse does not slaughter the same species that the premises farms, or

because vehicles are collecting birds from other premises en-route. By travelling

potentially long distances between premises and slaughterhouses, or between dif-

ferent poultry premises, the risk of widespread dissemination of disease may be

increased if the transmission routes prove to be significant. Adding to the risk

of widespread dissemination is the risk of disease spreading from one sector of

the industry to another. This might occur when slaughterhouses slaughter birds

from farms serviced by multiple catching or poultry companies. Certainly, in

this chapter, it has been shown that the system is not closed; with up to 131

additional farms sending birds to the same slaughterhouse (unpublished data).

Whilst it is therefore very important to ensure the data held on slaughterhouses

and their customers is both complete and up to date, expert opinion is that the

industry does not change frequently and catching company and slaughterhouse

contracts are typically set up for several years, meaning that the characteristics

identified in the data analysed here are not likely to change much in the years to

follow.

Due to practices such as thinning and part depopulation, catching teams may

return to premises several times during the cycle length of poultry production.

This increases the risk of infecting a flock as not all birds are culled and the

frequency of movements onto farms is increased. Almost half of all premises
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visited by a catching team were revisited within 24 hours, but the probability of

being revisited more than one day after the initial visit drops rapidly with time.

This suggests that full depopulation takes 2 to 3 days to complete. Although this

may have logistical implications in an outbreak situation, it will also reduce the

risk of spreading disease to other premises by increasing the amount of time that

elapses before movements are made to other premises. Surprisingly, the analysis

of these data shows that 16.6% of premises were only visited once in the data

set. This seems like a high proportion of premises to be visited as a ‘one-off’ and

more research is required to find out why this is the case.

It is possible that the data collected from Company A can be extrapolated to

other catching companies and slaughterhouses for which we do not have data.

Catching teams working as separate units within a company can visit premises

that are located several hundred kilometers apart (noting that the distance trav-

elled between two premises can be close to the furthest possible distance travelled

between two premises serviced by the same catching company). It is currently

not known whether this is typical of catching companies i.e. they can connect

any two premises serviced by the same company, or if smaller catching compa-

nies work more locally. Consequently, it would be beneficial to collect data from

catching companies of different sizes in order to determine if the results are repre-

sentative of the industry as a whole. As there are relatively few slaughterhouses

in the network (hence they slaughter birds from many farms), targeting slaugh-

terhouses would be an efficient means of collecting large amounts of data about

the network.

In summary, the results obtained by analysing these data suggest that the fre-

quency with which links occur between premises that are associated with the

same catching company or slaughterhouse is small, but that connections were

made between premises that were a long distance apart. This suggests that the

total number of premises that might become infected in an outbreak situation is

much less than was previously predicted in Chapter 7, in the absence of these

movement data. In fact, the mean number of links per catching company was

16 in Chapter 7, but is only 1.22 here and, likewise, the mean number of links

per slaughterhouse was 58 in Chapter 7, but falls to 4.18 here, where a temporal

aspect is included. However, if infection does manage to persist in an outbreak

situation, it is expected that widespread dissemination of disease is possible.
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Chapter 9

Network simulations of avian

influenza virus in the poultry

industry in GB: simulation

modelling

9.1 Introduction

In this chapter, based on the data presented in Chapter 8, which are combined

with the GBPR and PND (Chapter 7), an individual farm-based transmission

model is developed where nodes are poultry premises with links representing

potential transmission routes between premises.

The static approach (assuming all links between farms are potentially active)

that was adopted in Chapter 7, which was appropriate in the absence of detailed

link data, enabled us to identify the most highly connected areas in the GB

poultry industry, important for disease transmission. These areas were explored

further in Chapter 8, in which we were able to deepen our understanding of

the contact structures in GB, by considering time-course data. The nature of

these data enables the use of a dynamic network model to model the spread

of AIV in the poultry industry in GB. Adopting a simulation model approach

(presented here) allows for us to draw real conclusions on the potential for AIV to

spread between premises, by allowing us to include random occurrence of disease

1Work from this chapter has been published. See [Dent et al., 2011]
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as well as control measures imposed on the contact networks at specific time

points during a simulated outbreak, as is standard practice in disease modelling

[Kao et al., 2007,Keeling and Eames, 2005]. Another major advantage of these

data is that they enable one to remove the assumption made in Chapter 7 that

all premises using the same catching team, slaughterhouse or company are all

connected.

In this updated model, the presence of links between premises is drawn from

the collected movement data. This model also incorporates link directionality,

allowing for a more realistic and accurate model. Other studies have taken a

similar approach to modelling HPAI in the poultry industry in GB (see [Sharkey

et al., 2008,Jonkers et al., 2010] for examples), in the sense that they have assumed

a network of interactions over which disease may transmit. The major difference

between previously published models and the one presented here is that here, real-

time movement data are used to determine real links between poultry premises,

hence removing a level of uncertainty from the models. Furthermore, no previous

studies have been found in which the authors have collected or analysed such

detailed data from a large catching company. In this model, the links between

poultry premises connected by catching companies and slaughterhouses are taken

directly from the data and simulations are run for different transmission rates

of HPAI, for initial infection first occurring at different times and in different

premises.

Results from Chapter 8 show that the introduction of a time component re-

duces the connectivity in the network, thus also allowing for the combination of

the transmission routes presented in Chapter 7 to be considered. Further, the

reduction in the number of links in the network (due to removal of the assump-

tion that all links between farms are potentially active) reduces computational

time of running outbreak simulations, thus allowing for networks that were pre-

viously analysed separately to be combined into one large network over which

one can investigate the effect of simultaneously changing the potential probabil-

ity of transmission along different types of links. In addition, control measures

are included in the model, according to current legislation, in order to make the

model as realistic as possible. The potential for an HPAI epidemic is determined

by considering the results of this individual farm-based transmission model.
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9.2 Simulation model for the spread of AIV in

the poultry industry

9.2.1 Model design

Using movement data from Company A, a stochastic simulation model at the

farm level, for poultry premises serviced by Company A was developed, where

farms were classed as susceptible, infected, detected or culled. The simulation

model, written in C language, was designed to simulate the spread of AIV between

a sample of poultry premises in GB. The simulation can be broken down into a

number of steps as shown in Figure 9.1, summarised by Algorithms 9.2.1 to 9.2.5.

Figure 9.1. Programme design for AIV simulation.

9.2.2 Model input data

A total of 18 input files were created, using the R language and MS Access [R

Development Core Team, 2011,Nguyen, 2008], from combinations of the catching

company data, the GBPR and the PND. The catching company movement data

(from Company A) were used to create a file of known links between poultry

premises. For all 415 poultry premises in the dataset (referred to later as ‘network

farms’), the total number of other farms that each individual farm was connected

to by catching team- or slaughterhouse-related movements (over the 936 days)

was calculated. The PND was then used to determine, for the same 415 farms, the

total number of farms that were owned by the same company and this information

was added to the same file, producing an index file of the number of links of each

type, for each farm.

The catching company movement data were used to create 8 separate text files

(4 each for catching team and slaughterhouse data) that describe (i) the list of

farms visited by each of the 68 (35) catching teams (slaughterhouse vehicles)

for days 1-936, (ii) the total number of farms visited each day by each of the

catching teams/slaughterhouse vehicles (i.e. the width of (i)), (iii) the date that

each event in (i) occurred and, (iv) for each day in the sample, the total number
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of movements that occurred between poultry premises. These files were used

to create a matrix describing the movements of all slaughterhouse vehicles and

catching teams between farms, on a daily basis.

The PND was used to create a list of premises that are connected, to each of the

415 previously mentioned farms, by belonging to the same integrated company.

Each row represents one link, between Farm A and Farm B. This file was created

so that movements of farm personnel between premises could be simulated.

For each of the 415 farms, the easting and northing locations were obtained

from the GBPR and a list of all farms, along with their easting and northing

location, that are (a) serviced by the catching company and (b) not serviced by

the catching company, which lie within 10km of each of farm, was obtained. The

total number of farms within this distance was also noted. This 10km region

was used to determine those farms that lie in the surveillance zone. Further to

this, an additional file was created from the GBPR that lists all farms with 15km

of each of the 415 farms in the database. Addition of these data allows for the

model to simulate the spread of virus outside the network of farms for which

movement data were available. By separating these two files, which essentially

contain similar information, the speed of the programme is increased when the

surveillance zones are set up.

Finally, the GBPR was used to create several data files that describe the number

and types of birds on each farm for all farms within 15km of (and including) each

farm serviced by Company A. Here, it was assumed that all birds of the following

‘type’ made a single species flock: chicken (broiler), chicken (layer), duck, goose,

turkey, unknown and other (e.g, quail, partridge, etc.).

Within the programme, the movement data were transformed into a 4-dimensional

links-matrix (with variable dimension, according to the number of links per farm)

that describes the exact order of catching team and slaughterhouse events per

species per day, as well as the potential links that may occur due to premises be-

longing to the same integrated company and the distance between the premises.

This matrix of movements is accessed by the programme during the simulation

of the spread of AIV between poultry farms.
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9.2.3 Model parameters

The next step in the programme was the parameter setting. The parameters used

in the model are discussed in detail in the sections that follow.

The simulation was run 100 times for each set of parameter values. One hundred

runs was chosen to give enough simulations to allow for enough output data for

analysis. Whilst a higher number of simulations may be desirable in order to

increase the power of the results, the output files for large numbers of simulations

were too large to save and process on a stand-alone PC. Furthermore, increas-

ing the number of iterations greatly increases the run time of the programme.

However, for a small sample of parameter values, 500 and 1000 simulations were

also run and the mean and variance of outbreak size compared to ensure that

convergence was achieved with 100 simulations.

9.2.4 Seeding infection

Random numbers were chosen in this programme using a pseudo-random number

generator (rand), implemented in C. This generator uses a user-defined seed as

the beginning of sequence of numbers that approximates the properties of random

numbers. A typical way to generate pseudo-random numbers in a determined

range using rand is to use the modulo of the returned value by the range span

and add the initial value of the range, so that (value % 100) is in the range 0 to

99 and (value % 100 + 1) is in the range 1 to 100, for example. In this way, the

programme mimics numbers chosen from a uniform distribution. Here, real-time

was used as the seed for the random number generator, which was then used to

choose both a random premises from the list of 415 poultry premises serviced

by the catching company and a random day, t, from days zero to day 886. A

maximum of 886 days was chosen so that potential epidemics were contained

within the time period for which data were available (this time was chosen as in

test runs of the programme, no epidemic exceeded 50 days under the assumptions

made). The chosen premises was the first premises to become infected with AIV

and is referred to as the seed premises. The random day gives the time that

the seed premises becomes infected. The programme then accesses the matrix of

movements and checks whether or not the seed farm was visited by a catching

team up to 15 days after the seed infection at time, t. Although it is beyond

the scope of this model to predict how the seed premises becomes infected, this
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may happen as a result of infected birds or bird products (imported or otherwise)

being brought onto the premises, from a feed delivery, or from wild birds, to give

just a few examples. In order to allow for all possibilities, based on expert opinion

and [Lu et al., 2003], it was assumed that AIV could survive in the environment

on the seed premises for up to 15 days prior to the first bird becoming infected.

If the premises is not visited by the catching company within 15 days, then no

onward movement will occur via catching team or slaughterhouse movements and

spread is restricted to owner movements and environmental spread.

If the seed premises was visited within 15 days of time t, and the number of

species on the premises is greater than one, then a single species is chosen to be

the first species to be visited by catching teams and slaughterhouse vehicles. In

order to choose a species type, data about single species farms (obtained from

the GBPR) was used to determine what proportion of each species type is likely

to be visited by the catching company. For the single species farms visited by the

catching company, 70% house chickens, 16% house duck, 13% house turkeys and

1% house other species. This knowledge was used to determine which species on

multi-species farms were to be visited. Under the assumption that one species will

always be visited, the above probability (of a species being visited) was adjusted

according to the number of species on the farm. So, for example, if a farm houses

only chickens and ducks, then the adjusted probability of the chickens being

visited by the catching team was 0.7/(0.7 + 0.16) ≈ 0.81, and similarly 0.19 for

ducks. For each multi-species farm, a random number between zero and one was

selected. The species with the highest probability of being visited was chosen to

be infected unless the random number was less than the adjusted probability of

a visit to another species type, in which case, it was assumed that the species

with the lower probability (and >the random number) of being visited becomes

infected. For the above example, it is assumed that chickens become infected,

unless the random number is <0.19, in which case the ducks become infected.

Once infection has spread via the movements of catching teams and slaughter-

house vehicles, when appropriate, transmission via local spread and spread via

movements of company personnel are simulated (see Algorithm 9.2.1), often re-

sulting in little or no onward transmission from the seed premises. The pro-

gramme sets the infectious state of the seed farm to 1 and the model enters

the ‘transmit disease’ stage, where it first transmits infection for up to 50 days

beyond the time that infection was seeded, via movements and then via local

spread.
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Algorithm 9.2.1 gives an outline of the model, after the parameters have been

set.

�

�

�

�

Algorithm 9.2.1: AIV MAIN FUNCTION(pseudocode)

for transmission probabilities (CC, SH, own)← 0 to 0.2

do


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
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



















for iterations← 1 to 100

do














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
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
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









































































































choose a random seed farm

choose a random time to start infection

if farm visited within 15 days of start time

then











choose a species to infect

set detection dates for 1st infected farm

set culling dates for 1st infected farm

for time← t to t+ 50(days)

do































































































































Transmit AIV as in Alg. 9.2.2

Transmit AIV via local spread as in Alg. 9.2.5

comment:Update SZ and PZ

for # farms← 1 to # newly infected farms

do

{

find all farms within 10km; label in SZ

find all farms within 3km; label in PZ

comment:Detect & cull infected farms

for infected farms← 1 to all infected farms

do























if Detection time of infected farm = t

then update status to detected

if Culling dates of infected farm = t

then update status to culled

output data

9.2.5 Transmission of AIV via movements

The probability of transmission of AIV via the movements of people, vehicles

and fomites is currently unknown, so transmission via slaughterhouse, catching

company or personnel movements was varied in the model in a step-wise fashion,

from zero to 0.2, in steps of 0.01. An additional parameter value was added at
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0.001 to determine what happens when transmission rates are very close to, but

not exactly, zero. Expert opinion was sought to verify that these parameters

seemed sensible [R. Irvine, pers. comm.]. Simulations for all combinations of

parameter values were obtained (i.e. parameter values were increased one at

a time), giving rise to 100 simulation results for 22 different parameter values,

for three transmission routes. Thus resulting in 100 sets of results for each of

223 = 10648 different parameter combinations. A time step of one day was

assumed in the model, so that for each day of the simulation, once a premises

had become infected, silent spread could occur up to the time of detection.

Movements of catching teams and slaughterhouse vehicles were determined en-

tirely by the real-time movement data, this means that the probability of a link

occurring between two connected poultry premises that are known to have been

visited by the same catching company team or slaughterhouse vehicle, on the

same day, was one. In the model, catching team movements always preceded

slaughterhouse vehicle movements (this is a sensible assumption as birds can-

not go to slaughter until they have been caught). Spread of infection, between

premises belonging to the same integrated company, or via spatial transmission

(local spread) were determined (details given in Sections 9.2.7 and 9.2.8), based

on species type and farm size and were simulated after infectious movements

via catching team and slaughterhouse had occurred. Algorithm 9.2.2 gives pseu-

docode for the spread of AIV via movements.

�

�

�

�

Algorithm 9.2.2: AIV VIA MOVEMENTS(pseudocode)

for time(days)← 1 to 50

do











































for Farms← 1 to Number of infected farms

do































for farm visited by CC← 1 to No. visits in 1 day

do if farm is already detected/frozen/culled

then break

else if infected farm is not yet detected

then Infect via movements (See Alg. 9.2.3 to 9.2.4)

9.2.6 Catching company and slaughterhouse movements

Once the seed poultry premises was infected, the programme ran for 50 time steps

(days), infecting, detecting and culling premises as follows, and as summarised in

Algorithm 9.2.3.
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Algorithm 9.2.3: TRANSMIT AIV VIA CC/SH(pseudocode)

for susceptible farm← 1st farm visited to last farm visited

do



























































































count number of species and number of duck flocks

if susceptible farm has not been frozen

then







































































choose a species to be visited by CC

for susceptible species← 1 to # species on farm

do



















































infect using random number generator

if random num < transmission probability

then































infect species

note change in species status

update farm status to infected

if species is ducks

then make special note

note number of new infections, and date of new infection

comment: set detection time of newly infected farms

comment: if not in PZ or SZ, time to detect is slower

if farm is neither in SZ or PZ

then























use time to detection function: expected = 4days

if only ducks are infected

then add 5 days to detection time

Set culling date to detection date + 3days

else if farm is in SZ/PZ

then























expected time to detection reduced to 4 days

if only ducks are infected

then add 5 days to detection time

Set culling date to detection date + 2/1 days (SZ/PZ)

Assuming the seed premises (premises i) was visited by a catching team (and

hence a slaughterhouse vehicle) within 15 days of seed infection (day j), the

programme accessed the appropriate place in the array of movement data, which,

for the ith premises, on the jth day, gave a list of all premises that are visited after

the ith premises. Given that AIV has an incubation period of only several hours

[I. Brown, pers.comm], it was assumed that birds were able to spread disease

from the point that they became infected, so that all premises that were visited

after the seed premises became infected and on the same day, were susceptible

to transmission of disease. Before transmitting disease to susceptible premises,
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the programme checked that the susceptible premises is in fact susceptible (by

checking infectious state of the premises = 0). The programme then checked that

the premises did not have any restrictions placed on it (i.e. was not in a PZ or

SZ) and, assuming there are no movement restrictions, proceeded by infecting a

species on the susceptible premises with a probability equal to the probability

of transmission via catching company movements (varied between 0 and 0.2).

Where the number of species on the premises was greater than one, a species

was chosen to be infected according to the aforementioned method. A premises

was classed as infected when one or more species on the premises was infected.

If a premises was visited multiple times in one day, then it was assumed to be

potentially connected to more than one infected premises and the probability of

infection was given by Equation (9.1).

P (i gets infected) = 1−
(

∏3
j=1 (1− pj)

)

for pj probability of infection for via link type j.
(9.1)

As soon as a premises was infected, the infectious status of the premises was

updated and the premises ID added to a list of infected premises. Detection and

culling dates were set (detection and culling occured at the end of each time step

and are discussed later) for each newly infected farm.

This process was then repeated for slaughterhouse-linked movements.

9.2.7 Company personnel movements

The programme then moves onto transmission of disease via company-related

movements (referred to as owner movements), as shown in the pseudocode in

Algorithm 9.2.4.
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Algorithm 9.2.4: TRANSMIT AIV VIA OWNER(pseudocode)

for infected species← 1 to total number infected species

do





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



















assign staffshare probability, based on farm size

determine if layer hens or not

assign probability of manager visit

for susceptible farms← 1 to Number farms in company

do




























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
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


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






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

































if manager visit occurs on infected and susceptible farms

then



















































assume link between infected and susceptible farms

if random num < transmission probability by owner

then































infect a species

note change in species status

update farm status to infected

if species is ducks

then make special note

repeat for vet visits

if staff sharing on both farms and distance close enough

then



















































assume link between infected and susceptible farms

if random num < transmission probability by owner

then































infect a species

note change in species status

update farm status to infected

if species is ducks

then make special note

note number of new infections, and date of new infection

set detection time of newly infected farms as in Alg. 8.0.3

set culling dates as in Alg. 8.0.3

In the absence of quantitative movement data of company personnel for the farms

studied, expert opinion [P. Mcmullin, Poultry Health Services, pers. comm.] was

sought to inform the model of the likely movements of personnel between farms.

It was estimated that poultry premises belonging to the same company are likely

to share staff depending on farm size and distance between farms belonging to

the same company. According to expert opinion, approximately 45% of farms

housing fewer than 50,000 birds and 10% of farms housing between 50,000 and

200,000 birds are likely to share staff between farms. It was assumed that farms

housing more than 200,000 do not share staff. Furthermore, staff shares are only
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likely to occur within an estimated radius of 35km. Therefore, for each day of

the simulation, the programme determines if an infected premises is likely to be

sharing staff with other farms, based on the number of birds on the infectious

farm. If staff shares were found to occur on an infected premises, the programme

used the links array to search for other premises in the same company, within a

35km radius, which could also have a staff share and determines if these premises

were also sharing staff on each day of the simulation. If there existed another

poultry premises within the same company, within 35km of an infected farm

and ‘sharing staff’, then it was assumed that there was a link between the two

premises and the second premises was classed as susceptible.

Further to links being created between farms that share staff, it was also assumed

that there would be movement of other personnel between farms. In particular,

the model accounts for the movement of vets and area managers between farms.

Expert opinion was that the movement of vets was independent of farm size,

species type and distance between farms and would occur, on average, once every

50 days. The probability of a vet visit to an infected farm was set to 1/50 per

day. It was assumed that farms housing birds reared for meat were visited, on

average, every 10 days by an area manager and farms rearing birds for laying

eggs, every 50 days. For infected farms and on a daily basis, the programme

randomly determines if a vet or area manger visit will take place . If this is the

case, then susceptible farms within the same company are searched for and also

visited by the vet or area manager with the same small probability, creating a

link between infected and susceptible farms.

Given the simulated links between infected and susceptible farms within the same

company, the programme then infects susceptible farms in a similar way as with

catching team and slaughterhouse-related movements; first confirming the infec-

tious status of susceptible premises and then infecting a flock according to species

type and setting detection and culling dates for all newly infected premises.

On detection of notifiable HPAI in poultry, 10km surveillance zones (SZ) and

a 3km protection zones (PZ) are typically set up around an infected premises.

Once infection has occurred via movements, the programme uses input data from

the GBPR to create a 10km SZ and a 3km PZ around infected premises (refer to

Algorithm 9.2.1) and these premises are recorded in an output file. It was assumed

that there was no transmission within the PZ/SZ via the normal movement of

catching companies or slaughterhouse equipment, since all movements in those

zones would be monitored. Therefore, spread could only continue within the
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PZ/SZ via local spread. The date at which susceptible premises enter and leave

these zones was set so that movement could be frozen within these zones if desired.

The programme then performs transmission via local spread.

9.2.8 Local spread

Irrespective of infectious status, local (airborne) spread could occur between all

premises within a predefined distance, as shown in Algorithm 9.2.5.

�

�

�

�

Algorithm 9.2.5: AIV LOCAL TRANSMISSION(pseudocode)

for species← 1 to number infected species

do



































































find all susceptible species within 0.5km

if random num < transmission probability ∗
(

(

1− dist
0.5

)2
)2

then











































infect susceptible species

note change in species status

update farm status to infected

note date and number of new infections

set detection time of newly infected farms as above

set culling dates as above

As a result of particulate (though not necessarily still infectious) material being

detected 0.5km from poultry houses in the H7N7 outbreak in the Netherlands [D.

Alexander, pers. comm.], expert opinion was that spatial (primarily airborne)

spread in GB is likely to occur with small probability and only for distances up

to a maximum 0.5km [D. Alexander and R. Irvine, pers. comm.]. By assuming

that the distance between species on the same farm was zero, this allowed for

between-species spread on multi-species farms and some spatial spread between

separate farms. Between-species transmission is important on multi-species sites

as it may allow for disease to spread into different industry sectors, which may

otherwise not be connected.

In order to include local spread in the model and to allow for the probability of

transmission of AIV to change according to the distance between farms, it was

assumed that local transmission could occur (at any given time point) between

species on the same farm with a maximum probability of 0.01 [R. Irvine, pers.

comm.]. This probability, pt|d for transmission (t) dependent on distance in km

(d), was reduced to zero for farms further than 0.5km away, according to Equation
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(9.2) (also shown in Figure 9.2) and based on published work for the spread of

HPAI in poultry [Boender et al., 2007]. The transmission via local spread then

follows a Bernoulli process with probability pt|d such that for every iteration, local

spread occurs if a u ∼ U [0, 1] random variable generated for each link meets the

criteria u ≤ pt|d.

pt|d =







0.01
(

(

1− d
0.5

)2
)2

d <0.5km

0 otherwise
(9.2)

Figure 9.2. Transmission kernel corresponding to Equation (9.2). Distances range
from 0 to 0.5km. The kernel equates to zero for distances larger than 0.5km.

The use of this kernel means that the probability of infection via local spread be-

tween species on the same premises is greater than transmission between species

on neighbouring premises, as would be likely if, for example, the same premises

implies greater proximity, or if local spread is actually mediated by human activ-

ity, such as movement of workers on the same premises or poor biosecurity.

For the list of infected premises, susceptible (i.e. in this case not culled) premises

were found using input data from the GBPR. It was assumed that local spread

could occur between species on the same premises as well as between premises.

There is no within flock spread in the model. Detection and culling dates were
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set for newly infected premises.

9.2.9 Detection and culling

In this model, detection (and culling) dates were set at the same time that a

premises became infected, dependent on the species infected. In reality, the proba-

bility of daily detection, following infection, will vary according to species, housing

type, virus dose, virus strain [Yoon et al., 2005] and farmer awareness. In order to

account for variation in farmer awareness, time to detection was randomly sam-

pled from a triangular distribution, based on a latent period of 2 days, a mean

time to detection of 4 days and a maximum time to detection of 6 days [Savill

et al., 2008, Sharkey et al., 2008, Stegeman et al., 2004] for premises outside the

PZ/SZ. For all infected premises, if the infected species was known to be ducks

or geese, then, based on exert opinion, the time to detection was increased by

15 days [H. Hellig, pers.m]. Although it is possible that ducks may never show

clinical signs, this increase in time allows for infection to spread to other species.

If multiple species were infected, then the time to detection of a premises was

equal to the shortest time to detection of all infected species on the premises.

Premises that were within the PZ or SZ were detected more quickly than those

outside these zones, due to an increase in awareness of disease. However, as this

model is designed to consider one strain of AIV and current control measures are

applied on a farm basis (and not a house basis), excluding housing type in time

to detection is not considered a shortcoming of this model. When data become

available, the model could be expanded in the future to include these parameters,

resulting in a wider range of applications for policy makers.

Using the time taken to cull birds in the most recent outbreak of HPAI H5N1 in

GB [Anon, 2007], it was assumed that culling occurred 3 days after detection of

infected premises, reduced to 2 days for premises in a SZ and 1 day in a PZ. Once

infection had been spread via different routes, detection and culling began such

that for all infected premises, if the detection or culling dates were the same as the

current date, the status of the farm was updated (to 2 (detected) or −1 (culled)).

The number of new infections was noted at the end of each day (Algorithm 9.2.1).

It was assumed throughout that culled premises were no longer involved in an

outbreak. There was no re-housing of culled premises in this model.

The time step was increased by one day and the above processes were repeated

on the list of infected premises, up to day 50, for all transmission parameter
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combinations.

9.2.10 Model outputs

Once infection had ceased, for each simulation, the model produced a list of all

premises that have been infected as well as the dates that they became infected

and were detected and culled. A list of all premises in the PZ and SZ, the dates

that they entered the zones for the first time and the date they expect to be

removed was also produced. In addition to this, data describing the seed farm, the

transmission probabilities used, the total epidemic size and the maximum distance

between infected premises, as well as summary data of the mean epidemic size, the

proportion of seed infections resulting in secondary spread and information about

the distances between infected premises were recorded for each set of parameters.

9.3 Analysis of model outputs

9.3.1 Outbreaks resulting in secondary spread

The aim of the simulation model is to determine if a large outbreak of AIV is likely

in the poultry industry in GB and, if so, what might cause a large outbreak to

occur. One way of answering the first question is to consider how often infection

spreads beyond the seed premises. That is to ask what proportion of outbreaks

actually result in secondary spread?

When all simulation results are considered together, infection spread beyond the

seed premises approximately 15% of the time (mean value over all simulations

and all parameter values). Figure 9.3 shows how the distribution of infections

that result in secondary spread varies as the probability of AIV transmission is

increased. For this, the probability of transmission was calculated by combining

the probability of transmission via catching team, slaughterhouse and company

personnel, as shown previously in Equation (9.1). Infection resulted in secondary

spread (beyond the seed premises) in a maximum of 35% of cases, for an overall

probability of transmission of between 0.3 and 0.4. The simulation that gave this

value had the following parameter values: catching team (cc) = 0.04, company

personnel (owner) = 0.19 and slaughterhouse (sh) = 0.13, suggesting that high

probabilities of transmission are not necessary in all three potential transmission
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routes for infection to (relatively) frequently spread beyond the index case.

Figure 9.3. Boxplots to show the median, quartiles and outer points of the
proportion of outbreaks (over 100 simulations) that spread beyond the seed premises,
for increasing rates of transmission. Here, transmission is recorded as the combined
risk of AIV transmission over all routes, according to Equation (9.1).

Whilst the variability in the probability that infection spreads beyond the index

case increases slightly as the probability of transmission increases, it is evident

from Figure 9.3 that there is a general positive linear relationship between the

two variables. This is an interesting result as, although intuitive, the linear

relationship is not as steep as we might expect from an increase of transmission

probability from zero to 0.5, implying that the network structures of the different

transmission routes are having an effect on the potential for disease to transmit. It

is therefore of interest to determine if one or more potential transmission routes

are having a significant effect on these results, or if it is occurring by chance.
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Understanding this will aid in deciding where to target control measures in the

future.

As the results follow a linear trend and, as the outcome is a binary variable

(essentially secondary spread, or no secondary spread) dependent on explanatory

variables that can be categorised into multiple levels, the analysis lends itself to a

logistic regression. Using Minitab v16 a multivariate logistic regression model was

fitted to the results in which the response was secondary spread or not and the

predictor variables corresponded to different categories of transmission rate. The

odds ratios were calculated for each category (compared to zero transmission)

of each potential transmission route. Note that in this model, due to the high

number of categories, interaction terms are not considered. The results of which

are shown in Tables 9.1 to 9.3.

Table 9.1. Binary logistic regression: secondary spread versus catching company
transmission rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.97 0.93 1.00 0.064
0.01 1.00 0.97 1.04 0.813
0.02 0.95 0.92 0.98 0.005
0.03 0.97 0.94 1.01 0.14
0.04 1.02 0.98 1.06 0.303
0.05 0.96 0.93 0.99 0.024
0.06 0.96 0.93 1.00 0.043
0.07 0.99 0.95 1.02 0.451
0.08 0.96 0.93 1.00 0.038
0.09 0.95 0.92 0.99 0.011
0.10 0.97 0.94 1.01 0.124
0.11 0.98 0.94 1.01 0.23
0.12 0.99 0.96 1.03 0.677
0.13 1.00 0.97 1.04 0.906
0.14 0.98 0.94 1.01 0.187
0.15 0.98 0.95 1.02 0.267
0.16 0.96 0.92 0.99 0.018
0.17 1.00 0.96 1.03 0.871
0.18 0.98 0.95 1.02 0.313
0.19 0.96 0.93 1.00 0.047
0.20 0.98 0.95 1.02 0.359

Consider the odds ratios in Tables 9.1 to 9.3. Here, the odds ratio gives a measure

of effect size and describes the strength of the association between the probability

that there will be secondary spread, given transmission via the route described
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Table 9.2. Binary logistic regression: secondary spread versus owner transmission
rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.98 0.94 1.03 0.488
0.01 1.09 1.04 1.14 0.00
0.02 1.19 1.14 1.24 0.00
0.03 1.27 1.22 1.33 0.00
0.04 1.38 1.33 1.44 0.00
0.05 1.42 1.37 1.48 0.00
0.06 1.47 1.41 1.53 0.00
0.07 1.53 1.47 1.59 0.00
0.08 1.66 1.59 1.72 0.00
0.09 1.74 1.67 1.81 0.00
0.10 1.75 1.69 1.83 0.00
0.11 1.86 1.79 1.94 0.00
0.12 1.97 1.89 2.04 0.00
0.13 1.94 1.87 2.02 0.00
0.14 2.11 2.03 2.19 0.00
0.15 2.09 2.01 2.17 0.00
0.16 2.19 2.11 2.27 0.00
0.17 2.24 2.16 2.33 0.00
0.18 2.33 2.24 2.42 0.00
0.19 2.38 2.29 2.47 0.00
0.20 2.38 2.29 2.47 0.00

in the table captions, compared to zero transmission via that route. So, for

example, in the first row of Table 9.1, an odds ratio of 0.97 for a transmission

route of 0.001 tells us that when cc transmission increases from 0 to 0.001, we can

expect a mean increase of 0.97 × outbreaks to result in secondary spread. The

results are considered to be significant only when the odds ratio and its confidence

intervals do not include one. By reporting the confidence intervals of the odds

ratio, along with the p-value, we are able to put a measure on the significance of

results.

The results in Table 9.1 show that transmission via the movement of catching

teams does not have a significant effect on the probability that an outbreak will

result in secondary spread. However, movements related to company personal

(Table 9.2) appear to be significant at all levels, with the exception of transmission

set to p = 0.001 and the movements related to slaughterhouse vehicles (Table 9.3)

are significant in the probability that an outbreak will result in onward spread

only when the probability of transmission is high enough (here, the model predicts
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Table 9.3. Binary logistic regression: secondary spread versus slaughterhouse
transmission rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.97 0.93 1.01 0.093
0.01 0.99 0.95 1.02 0.435
0.02 0.99 0.95 1.03 0.597
0.03 1.00 0.96 1.03 0.861
0.04 1.00 0.96 1.03 0.824
0.05 1.00 0.96 1.04 0.927
0.06 1.04 1.00 1.08 0.036
0.07 1.03 1.00 1.07 0.068
0.08 1.04 1.01 1.08 0.019
0.09 1.04 1.01 1.08 0.019
0.10 1.05 1.01 1.09 0.012
0.11 1.07 1.03 1.11 0.00
0.12 1.05 1.01 1.09 0.008
0.13 1.09 1.05 1.13 0.00
0.14 1.08 1.04 1.12 0.00
0.15 1.09 1.06 1.13 0.00
0.16 1.08 1.04 1.12 0.00
0.17 1.08 1.04 1.12 0.00
0.18 1.09 1.06 1.13 0.00
0.19 1.10 1.06 1.14 0.00
0.20 1.10 1.06 1.14 0.00

a rate of > 0.06 for a significant effect to be seen). The odds ratios also tell us

that as the rate of transmission increases for owner movements in particular,

the effect on the probability of secondary spread is increasingly large, with the

odds ratio rising to 2.11 (2.03, 2.19 (95% CIs)) for a transmission rate of 0.14

compared to zero. This suggests that the patterns in the way that transmission

rates affect the probability of secondary spread beyond the seed premises are not

uniform across the different link types. This is driven by the characteristics of

the networks over which disease can spread.
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In order to visualise the effect that the interaction of different transmission routes

can have on the results, each potential transmission route was considered on its

own -with all other transmission rates set to zero (gp1 to gp3 below)- as well as

in combination with one or more other potential routes of transmission with one

or more transmission rate greater than zero (gp4 to gp7 below).

Figure 9.4. Boxplots of the proportion of outbreaks that result in spread beyond the
seed premises, for different parameter combinations. gp1 = sh only (cc, own = 0), gp2
= owner only (cc, sh = 0), gp3 = cc only (sh, own = 0), gp4 = owner and sh (cc =
0), gp5 = cc and sh (own = 0), gp6 = cc and owner (sh = 0), gp7 = cc, owner and sh.
Within each group, parameters are varied from 0 to 0.2. Here, transmission is
recorded as the combined risk of AIV transmission over all routes, according to
Equation (9.1).

Figure 9.4 shows boxplots that describe the proportion of outbreaks that result

in onward spread for different combinations of parameters. Here, transmission

is recorded as the combined risk of AIV transmission over all routes, according
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to Equation (9.1). The figure shows that a higher proportion of outbreaks occur

for transmission via owner-related (gp2) movements than for catching company

(gp1) or slaughterhouse-related (gp3) movements. It appears that adding catch-

ing company transmission to either transmission via slaughterhouse- or owner-

related movements (gp5 and gp6, respectively) has little impact on the proportion

of outbreaks that would result in secondary spread if the main effects were con-

sidered alone. However, the combination of slaughterhouse- and owner-related

movements (gp4) suggests that this combination can result in a large proportion

of outbreaks resulting in secondary spread. Finally, it is interesting to note that

Figure 9.4 also shows that when all three transmission routes (cc, sh and owner)

are greater than zero, a large proportion of outbreaks can result in onward spread

(gp7).

The statistical significance of interaction terms can be determined by refitting

the logistic regression model, with interaction terms included. As the model did

not converge when all tested transmission rates were considered as a single level,

in order to consider the potential interaction between different networks the data

were categorised into ‘high’, ‘medium’ and ‘low’ probabilities of transmission

and the model refitted.

The results from Table 9.4 show that there is no significant interaction effect

from the catching company - owner interaction or from the catching company -

slaughterhouse interaction (the confidence intervals on all odds ratio include one).

This means that, in theory, catching company transmission can be dropped from

the model. With catching company removed from the results and the regression

rerun, the final logistic regression results are published in [Dent et al., 2011].

The published results do not differ in terms of significance to those presented

here, thus the full model is presented for completeness. The lack of significant

results for the categories including catching company, at all levels, implies that

interaction between all three transmission routes will not have a significant effect

on the results and therefore this has not been explored. Although the table

shows that only medium and high levels of owner transmission have a significant

effect on the results, for all levels of owner*slaughterhouse interaction, there was

a significant difference between the results from this interaction, compared to

zero. This implies that whilst slaughterhouse transmission alone is not enough

for an outbreak to result in secondary spread, the combination of owner and

slaughterhouse related movements has a significant effect on the probability that

an outbreak results in secondary spread, even for low levels of transmission of
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Table 9.4. Binary logistic regression: secondary spread versus transmission rates for
interaction between transmission routes at different levels of transmission. The
reference value here is zero transmission.

Category Level odds ratio Lower 95% Upper 95% p-value
cc 1 1.06 0.86 1.31 0.556

2 1.04 0.85 1.29 0.699
3 1.11 0.90 1.37 0.325

own 1 1.06 0.85 1.32 0.625
2 1.65 1.32 2.05 0.00
3 2.06 1.66 2.56 0.00

sh 1 0.82 0.67 1.00 0.05
2 0.89 0.73 1.08 0.243
3 0.96 0.79 1.17 0.694

cc*own 1*1 0.95 0.80 1.12 0.526
1*2 0.93 0.79 1.10 0.423
1*3 0.93 0.79 1.10 0.393
2*1 0.98 0.83 1.16 0.808
2*2 0.95 0.80 1.13 0.573
2*3 0.94 0.80 1.11 0.490
3*1 0.93 0.78 1.10 0.396
3*2 0.88 0.74 1.04 0.126
3*3 0.87 0.74 1.03 0.100

cc*sh 1*1 0.97 0.85 1.12 0.688
1*2 0.99 0.86 1.14 0.916
1*3 0.97 0.84 1.11 0.651
2*1 0.99 0.86 1.14 0.870
2*2 1.00 0.87 1.15 0.967
2*3 0.96 0.83 1.10 0.534
3*1 0.98 0.86 1.13 0.831
3*2 1.01 0.88 1.16 0.871
3*3 0.97 0.84 1.11 0.635

own*sh 1*1 1.28 1.09 1.50 0.003
1*2 1.25 1.07 1.47 0.006
1*3 1.25 1.07 1.47 0.006
2*1 1.23 1.05 1.44 0.012
2*2 1.16 0.99 1.36 0.061
2*3 1.15 0.98 1.34 0.089
3*1 1.25 1.07 1.47 0.005
3*2 1.19 1.01 1.39 0.033
3*3 1.16 0.99 1.36 0.058

Level 1 = low transmission rate 0.001 - 0.06, level 2 = medium transmission
rate 0.07 - 0.13, level 3 = high transmission rate 0.14 - 0.2. cc= catching
company, sh = slaughterhouse, own = company personnel.
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disease. Interestingly, when owner- and slaughterhouse-related transmission are

considered together, an increase in the level of slaughterhouse transmission leads

to a reduction in the mean odds ratio of the owner*slaughterhouse interaction.

We speculate that it is possible that this phenomenon is related to the fact that

those farms that are at high risk of disease transmission via owner movements

(usually small farms) are at low risk of disease transmission via slaughterhouse

movements (which usually occurs in large farms), and vice-versa. In this way,

the interaction is important, as it allows for secondary spread to occur from

all sized farms. However, due to the low frequency of slaughterhouse-related

movements to farms that are ‘important’ from the owner network point of view,

increasing slaughterhouse transmission increases the range of farms sizes from

which secondary spread can occur. This, in turn, reduces the power of owner

transmission, resulting in a reduction in the apparently significant interaction

effect.

Finally, by considering the effect size of each group with all other groups, it is

possible to comment further on the magnitude of the effect of combining transmis-

sion routes. Cohen’s d statistic was used to measure the standardised difference

between each pair of groups in Figure 9.4. Cohen’s d statistic is calculated using

the sample (group) mean (M), sample (group) size (n) and standard deviation

(σ) from both groups, as given by Equation (9.3).

d =
M1 −M2

σpooled

(9.3)

where σpooled =

√

(n1 − 1) (σ1
2) + (n2 − 1) (σ2

2)

n1 + n2

In order to account for sample errors, R software [R Development Core Team,

2011] was used to estimate the Cohen’s d statistic and approximate 5% and

95% confidence intervals, by calculating the statistic for 1000 random samples

drawn from normal distributions with hypothesised group means and standard

deviations taken from the data. The resulting sampling distribution was then

used to estimate the mean Cohen’s d value with confidence intervals (Table 9.5).

Cohen [Cohen, 1988] defined the effect size to be ‘small’ if d = 0.2, ‘medium’ if

d = 0.5 and ‘large’ if d = 0.8.

Table 9.5 shows that there is a large effect size when owner transmission is com-
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pared to sh transmission (gp2 v gp1 = 1.52) and when cc transmission is compared

to owner transmission (gp3 v gp2 = -1.18) (n.b. a negative value here does not

imply that the effect itself is negative, but that the magnitude of the effect de-

creases between two states). This implies that the potential transmission of AIV

via the movements of owner has a large effect on the proportion of outbreaks

that result in onward spread, when compared to either sh or cc transmission.

The effect size of cc transmission compared to sh transmission is larger than one

might expect from visual inspection of Figure 9.4. In fact, the effect size between

these two transmission routes is ‘medium’ (gp3 v gp1 = 0.75), but the confi-

dence interval is wide, implying that the effect size could in fact be ‘large’. In

line with what we might expect from the results from the logistic regression, in

the absence of transmission of AIV via owner, the joint effect of cc and sh on

the proportion of outbreaks that result in onward spread has no significant effect

when compared to sh alone (gp5 v gp1 = 0.15), and a small effect when com-

pared with cc alone (gp5 v gp3 = -0.41). These results suggest that the effect of

slaughterhouse transmission on the proportion of outbreaks that result in onward

spread is stronger than that of catching company transmission. When more than

one route of transmission is considered (i.e. p 6= 0 for two or more of cc, sh and

owner transmission), then the effect of owner transmission is still evident, thus

confirming previous results. The effect size of adding sh or cc transmission when

owner transmission is greater than zero does not have, on average, a significant

effect (gp4 v gp2 = 0.19 and gp6 v gp2 = -0.02) on the proportion of outbreaks

that result in onward spread. When considered in line with the results for the

interaction terms in the above regression model, it is surprising that the addition

of sh has little or no effect. However, the upper confidence limit is 0.56 for owner

and sh versus owner (gp4 v gp2), implying the effect could in fact be medium in

size. This corresponds to the increase in the odds ratios for the owner/sh inter-

action to be higher than 1, but not as high as the odds ratios for owner alone

(see Table 9.4). Similarly, allowing for potential cc and sh transmission as well

as owner transmission (i.e. all three routes) makes no significant difference to the

proportion of outbreaks that spread beyond the seed premises, when compared

with transmission via owner alone (gp7 v gp2 = 0.12).

The results for effect size, combined with the results from the logistic regression

analysis, can allow ranking of the importance of the three transmission routes

such that owner transmission has the largest effect, followed by slaughterhouse

and catching company transmission.
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Whilst the largest proportion of outbreaks that result in onward spread is only

achieved when all three transmission routes are greater than zero, the results

show that there is a large overlap between this scenario and when owner and

sh transmission rates are positive (and cc = 0). The difference between the

two scenarios is not significant, with almost complete overlap (CIs for Cohen’s d

include zero, and remain < 0.2). This suggests that, even for higher transmission

rates, the frequency of movements made by catching teams between farms, is

either not frequent enough or does not connect enough farms for this potential

transmission route to cause a high proportion of outbreaks to reach epidemic

level.
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Table 9.5. Estimates of Cohen’s d statistic (5%, 95% CIs) for each combination of transmission parameters*.

gp 2 3 4 5 6 7
1 1.52

(0.91,2.29)
0.75
(0.22,1.36)

1.39
(0.93,1.98)

0.15
(-0.24,0.54)

1.24
(0.79,1.8)

1.37
(0.90,1.94)

2 - -1.18
(-1.83,-0.63)

0.19
(-0.17,0.56)

-1.79
(-2.25,-1.25)

-0.02
(-0.41,0.38)

0.12
(-0.26,0.50)

3 - - 1.05
(0.61,1.55)

-0.41
(-0.87,-0.05)

0.87
(0.45,1.40)

1.03
(0.60,1.55)

4 - - - -1.51
(-1.65,-1.38)

-0.20
(-0.31,-0.09)

-0.07
(-0.16,0.01)

5 - - - - 1.31
(1.18,1.44)

1.25
(1.15,1.37)

6 - - - - - 0.13
(0.05,0.21)

*gp1 = sh, gp2 = owner, gp3 = cc, gp4 = owner and sh, gp5 = cc and sh, gp6 = cc and owner, gp7=cc, owner and sh. n.b. the
table should be read as ‘column’ compared to ‘row’.
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9.3.2 Epidemic size

Although owner transmission appears to play the most important role in deter-

mining if an outbreak will result in onward spread, this does not imply that it

plays the most important role in the final size of an epidemic. In order to draw

conclusions on final epidemic size, outbreaks that result in onward spread were

investigated. This accounts for approximately 15% of all simulation results.

Figure 9.5. Histogram of epidemic size for infections resulting in onward spread
beyond the seed premises. a) epidemics including fewer than 25 infected premises and
b) epidemics including more than 65 infected premises. Note there were no epidemics
of size between 23 and 66.

For all results, there were no epidemics of size between 23 and 66 premises. The
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number of large epidemics, which were considered to involve more than 65 infected

premises (see Figure 9.5b), is small, representing 0.2% of all results. However,

these are the epidemics that are likely to cause the most strain on resources in

an outbreak situation, so it is important to determine if the rate of transmission

via different routes, or the index premises in these epidemics, have any notable

characteristics.

There were a total of 330 individual premises that were seed premises in outbreaks

that resulted in onward spread (∽ 80% of the population for which movement

data were available). Of these, 95 individual premises were seed premises in the

(249) ‘large’ epidemics recorded. All 95 of these premises were also seed premises

in the list of (130939) ‘small’ epidemics.

Premises size (number of birds) was available for 78% of seed premises for large

epidemics and for 94% of seed premises for small epidemics. When epidemic size

was categorised according to seed premises size (small, ≤ 100, 000 birds; medium,

100, 000 to 200, 000 birds; large, >200, 000 birds), 50% of ‘large’ epidemics oc-

curred as a result of infection being seeded in ‘large’ premises (23% from premises

that are ‘medium’ sized and 27% from ‘small’ premises). The converse, however,

does not hold. Seed infection in large premises does not imply that a large epi-

demic will occur, as only 25% of infection seeded in ‘large’ premises resulted

in ‘large’ epidemics (29% for ‘medium’ premises and 57% for ‘small’ premises).

These results also suggest that seed infection in small premises is more likely to

result in a large epidemic than a small one.

Interestingly, the mean epidemic size for small premises (3.8) is larger than that

of both medium (2.8) and large premises (3.1). This may be connected to the

probability of an outbreak resulting in spread beyond the seed premises, as owner

links have been shown to be important (see previous section) and owner move-

ments are more likely to occur in small premises (an immediate effect of the model

assumptions).

Further, it is interesting to note that in all cases where a large epidemic occurred,

transmission occurred via at least two different transmission routes (identified in

analysis of simulation output files), implying that transmission via a single route

is not sufficient to force an epidemic into many premises.

Figure 9.6 shows the overall transmission rate, p, over all three routes combined

(given by Equation (9.1)) for large and small epidemics. Whilst it appears that

there is an obvious difference between p for small and large epidemics (driven by
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Figure 9.6. Histogram for effect of overall transmission rate on epidemic size. Small
epidemics (dark grey) compared to large epidemics (light grey). Frequency is adjusted
for ease of comparison, so that the histogram representing each epidemic size has a
total area of one.

the large sh-linked effect size), the value of Cohen’s d for these data is approxi-

mately 0.78 (0.67, 0.91), suggesting that the effect size is medium (though close

to large, with a ‘large’ upper limit).

In order to determine how the different types of transmission affect the epidemic

size, two logistic regression models were fitted. In the first, the binary response

variable describes whether a small (<25 premises) epidemic occurs or not. In the

second, the binary response variable describes whether a large (>65 premises)

epidemic occurs or not. In both cases, the explanatory variables are the sim-

ulated transmission probabilities for AIV transmission via catching company,

slaughterhouse- and owner-related movements. The results are shown in Tables

9.6 to 9.11. In this analysis, the odds ratio gives a measure of effect size and
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describes the strength of the association between the probability that there will

be a small (or large) epidemic, given transmission via the route described in the

table captions, compared to zero transmission (i.e. compared to transmission

rate, p=0 ) via that route.

Table 9.6. Binary logistic regression: small outbreaks versus catching company
transmission rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.97 0.93 1.00 0.064
0.01 1.00 0.97 1.04 0.820
0.02 0.95 0.92 0.98 0.005
0.03 0.97 0.94 1.01 0.153
0.04 1.02 0.98 1.06 0.303
0.05 0.96 0.93 0.99 0.024
0.06 0.96 0.93 1.00 0.044
0.07 0.99 0.95 1.02 0.451
0.08 0.96 0.93 1.00 0.037
0.09 0.95 0.92 0.99 0.011
0.10 0.97 0.94 1.01 0.109
0.11 0.98 0.94 1.01 0.230
0.12 0.99 0.96 1.03 0.697
0.13 1.00 0.97 1.04 0.971
0.14 0.98 0.94 1.01 0.172
0.15 0.98 0.94 1.01 0.241
0.16 0.96 0.92 0.99 0.016
0.17 1.00 0.96 1.03 0.807
0.18 0.98 0.95 1.02 0.313
0.19 0.96 0.93 1.00 0.045
0.20 0.98 0.95 1.02 0.373

For small epidemics, Tables 9.6 to 9.8 show that catching company movements

have a significant influence on the results for a range of probability values between

0.02 and 0.16. Interestingly, when these results are significant (the odds ratio

confidence intervals do not contain one), the odds ratios show that the probability

of a small epidemic decreases (the odds ratios are less than 1) with an increase

in catching company transmission rates, when compared to zero. This suggests

that an increase in catching company transmission might result in more, larger

epidemics occurring (than small epidemics). Table 9.7 shows that transmission

via owner movements is significant at all levels above p = 0.001. Above this

value, the odds ratios are all larger than one, implying that increasing the rate of

transmission results in the likelihood of a small epidemic occurring to increase.

For slaughterhouses (Table 9.8), significant results are obtained for transmission
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Table 9.7. Binary logistic regression: small outbreaks versus owner transmission
rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.98 0.94 1.03 0.488
0.01 1.09 1.04 1.14 0.000
0.02 1.19 1.14 1.25 0.000
0.03 1.27 1.22 1.33 0.000
0.04 1.38 1.33 1.44 0.000
0.05 1.42 1.37 1.48 0.000
0.06 1.47 1.41 1.54 0.000
0.07 1.53 1.47 1.59 0.000
0.08 1.66 1.59 1.73 0.000
0.09 1.74 1.67 1.81 0.000
0.10 1.76 1.69 1.83 0.000
0.11 1.86 1.79 1.94 0.000
0.12 1.97 1.89 2.05 0.000
0.13 1.94 1.87 2.02 0.000
0.14 2.11 2.03 2.19 0.000
0.15 2.09 2.01 2.17 0.000
0.16 2.19 2.11 2.28 0.000
0.17 2.24 2.16 2.33 0.000
0.18 2.34 2.25 2.43 0.000
0.19 2.38 2.29 2.48 0.000
0.20 2.38 2.29 2.48 0.000

rates >0.05. The strength of the significance does not increase in proportion

with the increase in transmission, with all transmission rates >0.12 having an

odds ratio value of between 1.07 and 1.10. These results therefore suggest that

the most influential parameter for the probability of a small epidemic to occur is

transmission via owner movements.

Tables 9.9 and 9.10 show that, contrary to expectations, neither catching company

nor owner movements play a significant role in the probability that an outbreak

will result in a large epidemic. For large epidemics, the most influential predic-

tor is the transmission rate via slaughterhouse linked movements (Table 9.11).

Analysis of the odds ratios for slaughterhouse transmission versus large epidemics

shows that this transmission route is only influential if it is high enough (above

0.12). However, when it is high enough, the upper 95% limits (for the odds ratios)

show that an increase from zero transmission to a higher transmission rate will

result in a large epidemic being up to 28 times more likely. This is a very strong

result with heavy implications on resources etc. in the event of an outbreak. It
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Table 9.8. Binary logistic regression: small outbreaks versus slaughterhouse
transmission rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.97 0.94 1.01 0.101
0.01 0.99 0.95 1.02 0.446
0.02 0.99 0.96 1.03 0.623
0.03 1.00 0.96 1.03 0.883
0.04 1.00 0.96 1.03 0.846
0.05 1.00 0.96 1.03 0.897
0.06 1.04 1.00 1.08 0.037
0.07 1.03 1.00 1.07 0.068
0.08 1.04 1.01 1.08 0.022
0.09 1.04 1.01 1.08 0.021
0.10 1.05 1.01 1.08 0.014
0.11 1.07 1.03 1.11 0.000
0.12 1.05 1.01 1.09 0.010
0.13 1.09 1.05 1.13 0.000
0.14 1.08 1.04 1.12 0.000
0.15 1.09 1.05 1.13 0.000
0.16 1.07 1.04 1.11 0.000
0.17 1.08 1.04 1.12 0.000
0.18 1.09 1.05 1.13 0.000
0.19 1.09 1.05 1.13 0.000
0.20 1.10 1.06 1.14 0.000

is therefore essential to determine the true probability of transmission via this

route.
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Table 9.9. Binary logistic regression: large outbreaks versus catching company
transmission rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 1.00 0.43 2.31 0.999
0.01 1.09 0.48 2.47 0.836
0.02 1.09 0.48 2.47 0.836
0.03 0.54 0.20 1.47 0.232
0.04 1.00 0.43 2.31 0.999
0.05 0.91 0.39 2.14 0.826
0.06 0.91 0.39 2.14 0.826
0.07 1.00 0.43 2.31 0.999
0.08 1.09 0.48 2.47 0.836
0.09 1.00 0.43 2.31 0.999
0.10 1.64 0.77 3.46 0.199
0.11 1.00 0.43 2.31 0.999
0.12 0.73 0.29 1.81 0.492
0.13 1.82 0.87 3.79 0.112
0.14 1.45 0.67 3.13 0.339
0.15 1.64 0.77 3.46 0.199
0.16 1.36 0.63 2.97 0.435
0.17 1.82 0.87 3.79 0.112
0.18 1.00 0.43 2.31 0.999
0.19 1.18 0.53 2.64 0.685
0.20 0.73 0.29 1.81 0.492
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Table 9.10. Binary logistic regression: large outbreaks versus owner transmission
rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 1.00 0.45 2.23 0.999
0.01 0.58 0.23 1.48 0.256
0.02 0.58 0.23 1.48 0.256
0.03 0.67 0.27 1.63 0.374
0.04 1.08 0.49 2.37 0.843
0.05 0.92 0.40 2.08 0.834
0.06 0.92 0.40 2.08 0.834
0.07 0.83 0.36 1.93 0.669
0.08 1.00 0.45 2.23 0.999
0.09 1.33 0.63 2.82 0.452
0.10 1.25 0.58 2.67 0.565
0.11 1.00 0.45 2.23 0.999
0.12 1.58 0.77 3.26 0.213
0.13 1.17 0.54 2.52 0.696
0.14 0.83 0.36 1.93 0.669
0.15 1.83 0.91 3.70 0.091
0.16 0.92 0.40 2.08 0.834
0.17 0.92 0.40 2.08 0.834
0.18 1.08 0.49 2.37 0.843
0.19 1.08 0.49 2.37 0.843
0.20 1.33 0.63 2.82 0.452
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Table 9.11. Binary logistic regression: large outbreaks versus slaughterhouse
transmission rates.

Transmission rate Odds ratio Lower 95% Upper 95% p-value
0.001 0.00 0.00 na 0.996
0.01 0.50 0.09 2.73 0.422
0.02 0.00 0.00 na 0.996
0.03 0.25 0.03 2.23 0.214
0.04 0.25 0.03 2.23 0.214
0.05 2.00 0.60 6.63 0.259
0.06 1.25 0.34 4.65 0.741
0.07 1.00 0.25 3.99 0.998
0.08 2.50 0.78 7.96 0.122
0.09 2.25 0.69 7.29 0.178
0.10 2.25 0.69 7.29 0.178
0.11 3.00 0.97 9.29 0.057
0.12 3.49 1.15 10.62 0.027
0.13 3.00 0.97 9.29 0.057
0.14 3.25 1.06 9.95 0.04
0.15 5.49 1.89 15.94 0.002
0.16 6.49 2.27 18.60 0.000
0.17 6.99 2.45 19.94 0.000
0.18 6.24 2.17 17.94 0.001
0.19 10.24 3.67 28.59 0.000
0.20 7.24 2.55 20.60 0.000
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9.3.3 Spatial spread

While the majority of outbreaks did not result in further onward transmission

from the index premises, simulated outbreaks could potentially reach up to 20%

of the premises serviced by the catching company. By comparing the easting

and northing coordinates for all premises in a simulated epidemic, the maximum

distance between infected premises was calculated. For the largest simulated

epidemic, infected premises were located approximately 730km apart. Figure

9.7 shows the maximum distance between infected premises, for all simulated

outbreaks.

Figure 9.7. Histogram of maximum distance between infected premises for all
outbreaks that spread beyond the seed premises.

For the largest distances to be covered (>600km), at least two of the individual

transmission rates were greater than zero (found using a simple count of non-zero

transmission rates for distances greater than 600km). This implies that for these

distances to be reached, transmission occurred via more than one transmission

route. However, even at these distances, the smallest (positive) transmission pa-
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rameter rate is a low as 0.001, and for distances less than 600km, it is possible

that two of the three transmission rates are zero (i.e. transmission only occurs

via one route). This has important implications for the availability of control re-

sources as the number of premises in the surveillance zones is likely to be greater if

dissemination of virus is geographically widespread, thus potentially involving an

increased number of local disease control centres (as there is less chance that SZ’s

around infected premises will overlap). Whilst small epidemics were occasion-

ally widespread (Figure 9.8a), large epidemics invariably resulted in widespread

geographical dissemination of virus (Figure 9.8a).

Figure 9.8. Histogram of maximum distance between infected premises for
outbreaks that spread beyond the seed premises for (a) (small) outbreaks of less than
25 premises and )(b) (large) outbreaks of more than 65 premises.

In this model, it was assumed that infection could spread to premises outside of

the system serviced by Company A via local spread and within 0.5km of infected

premises. This assumption resulted in infection leaving the network of farms,

for which data were available, in less than 1% of cases. This percentage may be

low due to the small distances over which local spread could occur. As there is
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no evidence of airborne spread in any outbreak in GB to inform the model, the

sensitivity of the simulation model to the assumption that local spread can occur

up to 0.5km was investigated by producing output for no local spread as well as

for local spread up to a maximum of 3km (as seen during the HPAI outbreak in

the Netherlands in 2002 [Boender et al., 2007]). In these simulations it is noted

that all other transmission parameters were set to 0.01. Table 9.12 shows how

varying this distance affects the mean and maximum epidemic sizes, as well as the

proportion of outbreaks that result in onward spread and the number of premises

in the PZs and SZs.

Table 9.12. The impact of assumptions regarding the maximum distance for local
spread on the simulated outbreak size for an AIV outbreak in GB.

Local
spread
limit

Epidemic size Percentage
of outbreaks
resulting in

Mean number of
premises (s.e.)

Mean
(s.e)

Max Onward
spread

Spread
outside
system

In PZ In SZ

0km 2.12
(0.27)

12 21% 0% 124 (15) 18 (3)

0.5km 1.54
(0.16)

10 20% 2% 78 (7) 10 (1)

3km 2.53
(0.43)

22 25% 7% 107 (13) 15 (2)

s.e. = standard error

The results in Table 9.12 show that there is little difference in results between

no local spread between neighbouring premises (local spread limit = 0km) and

local spread restricted to 3km, for mean epidemic size. However, the reduction

in mean epidemic size from 0km to 0.5km is surprising (with no overlap when

standard errors are considered), perhaps suggesting that local spread is not the

driving force of mean epidemic size (we are reminded that other parameters were

set to 0.01 in this analysis). This difference, however, is still small (less than one

poultry farm, from several hundred that are included in the network) and it is

most likely to have been caused by differences in the seed farms infected in the

simulation (chance infection in a seed farm in a densely populated area will infect

more farms than a seed premises with no neighbours). The maximum epidemic

size when local spread is set to 3km is approximately double that of 0km and

0.5km. However, a distance of 3km is not sufficient to push the epidemic size

to reach the size of the previously defined ‘large’ epidemic. The proportion of
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infections that result in spread beyond the seed premises is only slightly higher

(an increase of approximately 25%) for local spread set to 3km, but the number

of times infection left the network for which movement data were available was

more than three times larger for 3km (7.4%) than for 0.5km (2.4%). Finally, the

number of premises in the PZ and SZ is highest for no local spread and lowest for

local spread set to 0.5km. This is an unexpected result and suggests, once again,

that local spread is not necessarily the driving factor in an epidemic. However,

the standard errors around the sample means do overlap, suggesting that there is

potential for over-interpretation of this small difference. Despite that, local spread

should not be completely dismissed as a risk factor as this type of transmission

can connect different sectors of the industry. It is therefore important to be able

to accurately predict the probability of local spread between premises.

9.4 Discussion

Chapter 7 showed that large proportions of the poultry industry are potentially

connected by catching companies and by slaughterhouses. However, the results

presented in Chapter 7 did not take into account the restriction in the number of

interaction events that could occur over the course of a typical infectious period.

In this chapter, a network simulation model for an AIV in poultry has been built,

using the real time movement data from a large catching company, presented in

Chapter 8 and adopting a similar approach to that used in [Green et al., 2006]. In

the absence of a large outbreak in GB, it is currently not possible to validate the

parameter values for transmission of HPAI through the movements of humans

and fomites. Although such parameters are being investigated experimentally

and completion of this work will lead to further model validation of previously

published models, the one presented here and future models, exploring the results

over a range of parameter values is therefore an attractive alternative. Whilst

the work here compliments that of other authors who have published in this field

(see [Sharkey et al., 2008] for example), the use of real-time movement data from

a large catching company makes this model unique. Including these data allows

for more realistic spatio-temporal simulations to be explored. Furthermore, to

investigate the likely scenario where ducks show no clinical signs of AIV, the

model could be re-run under the assumption that the probability of detection of

disease in ducks is zero.

The results presented in this chapter show that restrictions on the frequency
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of movements can have an important role in determining disease spread risk.

In particular, connections via slaughterhouses have the potential to spread dis-

ease to a large number of premises over a large geographical area. Spread via

slaughterhouse-linked movements is most important when partial flock depopula-

tion is being undertaken at a farm as more premises can be visited in one day by

vehicles carrying infection and, furthermore, potentially infected birds remain on

the farm. If full depopulation takes place, then the risk - though still currently not

quantifiable is reduced by the lack of infected birds remaining on a farm. How-

ever, the probability of a vehicle being used during the same day on additional

farms remains positive. The importance of slaughterhouse-related movements

in this model is also an important output for the control of diseases other than

HPAI, such as Salmonella or Campylobacter spp. [Evans and Sayers, 2000]. For

other diseases, the slaughterhouse is a more likely reservoir for pathogens, due to

the increased survival time of these pathogens in the environment and thus on

slaughterhouse vehicles, personnel and equipment, potentially over night. Thus

where slaughterhouses can act as a reservoir for pathogens, the spread via this

route should be minimized, possibly through additional bio-security measures on

the crates and vehicles that carry the birds.

Results from the simulation model also show that, when temporal aspects are

accounted for, catching team movements have little effect on the probability of an

outbreak resulting in onward spread beyond the seed premises and no significant

effect on the probability of a large epidemic occurring. This is an important

result, as it suggests that it is unlikely that catching team movements pose a

serious risk factor for a large epidemic of HPAI in GB. However, while extensive

and therefore of value, the data used here correspond to only one (large) catching

company that is made up of a 68 distinct catching teams. As each farm may

be visited by one or more of the catching teams, there are no distinct regional

divisions apparent within this company as was initially expected. Further, these

data do not consider further spread once other networks (e.g. connected by

slaughterhouses and catching companies) contain infected premises.

The results from Section 9.3.1 show that although all three transmission routes

were positive when a large proportion of outbreaks resulted in spread beyond the

seed premises, the fitting of a regression models suggests that only company per-

sonnel movements significantly influence the probability that infection will spread

beyond the seed premises. This is due to the increased frequency of owner move-

ments compared to catching company and slaughterhouse movements and thus
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highlights the importance of obtaining more accurate estimates on the frequency

of movements of company personnel, as well as the probability of transmission

via this route. As the results show that even low transmission rates can have

a significant effect on the potential for secondary spread, it is also important to

decrease the probability of spread of AIV via good biosecurity measures.

There was a significant interaction effect for the owner*slaughterhouse interaction

but the combined effect of potential transmission of disease via catching company

and company personnel movements, or slaughterhouse-linked and catching com-

pany movements has little effect on the proportion of outbreaks that result in

onward spread, particularly compared to the individual owner effect. This can

be explained by the frequency of movements relative to premises size, such that

the increased frequency of catching company movements in particular (and also,

but less so for slaughterhouse-linked movements), to larger premises is not high

enough to force these potential transmission routes to have a large effect on the

proportion of outbreaks that result in spread beyond the seed premises, compared

to transmission via owner movements. Having highlighted owner movements as

important in the literature search and having seen that they can have a large

effect on the number of outbreaks resulting in an epidemic, it is recommended

that data collection is expanded to include movement data from an integrated

company. One company, which was approached during this project, has expressed

an interest in participating in data collection. Although they were not able to

contribute within the time-frame of this study, contracts for data sharing could

be set up in the future, furthering our ability to provide more robust estimates

of epidemic size and likelihood.

The results show that there is a ‘jump’ from epidemics of size lower than 23

infected farms (<5% of premises), to epidemics containing more that 65 infected

farms (≈ 20% of premises). This result is in line with results published by

[Truscott et al., 2007], who report that a predictor of the need to intensify control

efforts in GB is whether an outbreak exceeds 20 infected premises. It is most likely

that this result represents a threshold for the basic reproduction number, R0, and

can be explained by considering the structure of the network analysed. Due to the

large mean number of connections per node (∽ 20, see Chapter 8), the growth of

the number of premises that can become infected via slaughterhouse links alone

is very fast compared to catching team transmission and is therefore sensitive

to changes in transmission rates. This implies that even a small probability of

transmission per link could lead to a large potential epidemic if a virus spreads
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via this route.

When comparing the results for small epidemics against those for large epidemics,

two factors that differ between the two categories are worth noting: the effect of

the probability of transmission via slaughterhouse movements and seed premises

size. Large epidemics are up to 28 times more likely for higher levels of slaughter-

house transmission (compared to zero), implying that the characteristics of the

network of slaughterhouse links are maintained even when a time component and

control measures are added, resulting in connectivity between a higher proportion

of premises via this route than via any other route. This result confirms previous

results that slaughterhouses are an important factor in this model. The size of

seed premises plays a role here as there is an increase in frequency of catching

team and hence slaughterhouse visits to larger premises (Figures 8.9). This re-

sults in large outbreaks being more likely to occur, as a result of infection in a

large seed premises. It is reiterated however that this does not imply that infec-

tion seeded in large premises will always result in a large outbreak. Nevertheless,

this result does suggest that if premises are to be prioritised during contact trac-

ing in the event of a large epidemic, there will be some benefit to targeting large

premises ahead of smaller ones. Further investigation into all premises included

in these epidemics to identify whether the same premises are included in the large

epidemics is highlighted here as an area for further research, to identify premises

that might be considered particularly high risk.

According to the results from the simulation model, the distribution of poultry

premises in GB is not dense enough for airborne transmission of AIV to occur

between neighbouring premises. This has not been the case in past outbreaks in

other countries, such as the Netherlands and Italy, where local spread is likely to

have played a role in the transmission of disease from one farm to another. How-

ever, in the Netherlands, whilst catching companies can act as long range links

in a metapopulation because persistence of virus can be maintained by some-

thing like ‘local spread’, for GB, with larger, less dense farms, local spread is

expected to be much less of an issue and therefore it is the network of catching

companies, slaughterhouses and other links that would be expected to maintain

any epidemic. Should a virus strain that can easily transmit via airborne trans-

mission be modelled, then local spread may result in spread between premises

that have no other direct connections. For other virus strains, this could have a

large impact on the proportion of outbreaks resulting in spread beyond the seed

premises and the maximum epidemic size. This implies that there is possible
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scope to reduce the size of the 10km SZs, freeing resources for use elsewhere.

This is highlighted as an area for future work. The size and shape of the SZ

could be explored further by using network data currently available, to explore

how large a SZ should be, taking into account resource constraints and simulating

over a range of assumptions regarding transmission rates. The mean number of

premises affected by an epidemic may be dependent not only on the underlying

epidemiological parameters, but also on the total resources available. Resource

constraints were not included in this model but the model could be adapted to

aid future work in this area, important for exploring optimal resource allocation

in order to provide the most efficient detection of AIV and the curtailing of the

outbreak.

The principles used in this study are not disease-specific and remain valid for

the potential transmission of other diseases spread by the faeco-oral route, such

as Campylobacter spp. [Evans and Sayers, 2000] and Salmonella [Evers, 2004],

or different strains of HPAI. Knowledge of the differences between AIV strains

allows us to make assumptions on how strains other than H5N1 may spread. H7

strains for example are less lethal than H5 strains of the virus, particularly in

chickens, and so more virus is needed to cause symptoms, increasing the time to

detection compared to H5 strains [I. Brown, pers. comm.]. Whilst this may result

in fewer epidemics from a single infection, is may also result in potentially larger

epidemics, when spread does occur, as disease spreads undetected for longer.

The possibility of using the simulation model developed here in a current VLA

research project, OZ0328 (Salmonella in turkeys) and in a potential EU project

(relating to Campylobacter transmission) have already been identified.
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Chapter 10

Discussion

10.1 Thesis overview

Disease modelling is of importance not only from an animal (and arguably plant)

health point of view, but also from an economics point of view. From the health

point of view, it is important to be able to control, monitor, diagnose and treat

diseases. This in turn can have immediate economic effects. Effective eradication

of an outbreak of an infectious disease is expensive, as is the long-term treatment

of non-infectious diseases. Both types of disease thus add to the burden that

diseases can have on the economy. In order to reduce this burden, it is essential

to have a deep understanding of how a disease ‘works’. Without understanding

how something works, it is not possible to systematically determine how to change

it in such a way that the effects are of a positive nature. The ways in which a

disease can be controlled varies greatly according to the dynamics of a disease as

well as the host.

Aside from the disease itself, also of interest is the level at which control is to

be targeted. Are we interested in controlling a disease at the population level?

In which case we need to know how a disease can spread in a population. Or

do we prefer to concentrate efforts at controlling disease in an individual, by

understanding where to target treatment at the cell level? And what if we want

to answer both questions? Can the same methods of analysis be used to at least

identify where to target control at different levels?

No matter whether we are interested in diseases at the cell or at the population

level, we want to target control in such a way that there is some kind of knock-on

247



effect that stops the disease from developing further. This idea that there should

be some sort of secondary effect implies that there must be some pathway, be it

between genes in a cell, or between individuals in a population, that is important

in the progression of disease. Such pathways often quickly become non-linear,

branching at certain points, thus becoming a network of pathways. It therefore

seems intuitive to consider disease pathways from a network point of view. The

question therefore has been redefined in this thesis to ask if the same network

analysis methods can be used to identify where to target control at different levels.

There were two main aims of using network analysis methods in this thesis. The

first was to show that the same network analysis methods can be useful at both

the cell level and the population level. The second aim was to use network analysis

methods on real data in order to make a valuable contribution to disease control.

In molecular networks, this can mean to identify new potential drug targets.

In population networks, this can mean to answer specific questions about how

disease might spread over a network of, in the case of this study, poultry farms.

In this thesis, network analysis methods have been successfully used at the cell

and population levels, in order to extract novel information about RA in humans

(at the cell level) and AIV in poultry (at the population level). There is some

consistency in the methods used, but the applications at different levels have

to be adjusted according to the type of network that is being analysed and of

course, the aim of the analysis. Whilst some results have proven fruitful and offer

a positive contribution to science, there remain multiple avenues of further study

that could be explored. Here, the work is summarised and ideas for further work

are presented.

10.2 Key findings

10.2.1 Analysis of a molecular network for RA

In Chapter 2, it was highlighted that, at the molecular level, many studies con-

centrate efforts on building single pathways of genes, based on results from ex-

perimental data. Missing from the literature, however, are large-scale interaction

networks that combine information about all known pathways, which are related

to a particular disease for example, in order to provide a systemic view of specific

diseases. In this direction, a ‘core’ map for RA was built and this map was anal-
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ysed in Chapters 5 and 6. The construction of this network is one of the largest

maps of it kind and is the only available such map for RA. The map can therefore

be used to aid the building of similar maps in other diseases. The advantage of

making the map publicly available also means that it can be updated as soon as

new data become available. Such data might include more detailed data about

the pathways that are already in the map, or it might include data that can be

used to increase the size of the map.

Applied to RA, network analysis methods were then effectively used to describe

the structures that occur within the molecular-interaction network studied. For

the molecular interaction map for RA, topologically relevant cycles were identified

using Cytoscape software and the map was decomposed into 12 modules that were

therefore considered to be topologically important. This means that the large

map can be considered as a set of smaller networks, whose core component is a

cycle. The in- and out-degrees were calculated and used to identify hubs in the

map, as well as in separate modules. The degree distribution was also used to

identify the overall structure of the map, as this can have important implications

if one chooses to target specific points of the network in a control situation (at

this level, in the case of the effectiveness of potential drug targets). Furthermore,

the density of the map was calculated using the software, enabling comments to

be made on network resilience.

The network had a scale free structure as expected, but with low density and

the hubs in the network did not have a very high number of links. This means

that the network is unlikely to change significantly in response to perturbations

made. This conclusion was supported by the simulation of perturbing a new

potential drug target (identified in this thesis), CRKL. This suggests that, due to

the complex interactions of pathways associated with RA, treatments that target

only one protein may not be very effective. Despite this observation, some of the

hubs identified in the network are already known drug targets, suggesting that the

sparsity might be caused by missing links, rather than being a true characteristic

of the network.

Analysis of the tissue sub-maps showed that there was little topological evidence

to support collecting samples from one tissue type over another. However, the

biological differences between tissue types might suggest otherwise. The network

analysis was more effective at identifying where the tissue types overlap and

hence identifying if the overlap of genes by tissue type is important. Several of

the overlapping genes seem to be topologically and biologically significant, which

249



in fact suggests that targeting genes by tissue type is relevant. These results are

conflicting, implying that further work is needed in this area.

The most important result from analysis of the molecular interaction map is the

identification of a potential new drug target, CRKL. Whilst the network analysis

methods alone cannot be used to determine if this potential target is likely to

result in fruitful results, another independent study, which use was undertaken at

the same time as this one, but using different methods, also identified this gene as

a potential target (in this case in tumour cells) [Birge et al., 2009]. This promising

result not only proves the usefulness of using network analysis to analyse the map

presented here, but it also opens up one area for future research. It is important

in the study of RA to continue to look for new drug targets (and other ways to

treat the disease) as current therapies do not cure the disease, but rather control

the active stage of it.

10.2.2 Analysis of population networks for AIV

Due to the fact that the size, structure and distribution of farms remains relatively

fixed, they are ideal candidates for the investigation of the spread of disease in

a population. Intuitively, population level disease networks are easier for the

human mind to comprehend than cell level networks as they are easier to relate

to. However, the complexity involved in population level disease modelling should

not be over-looked. The increased availability of data for population level disease

modelling results in ever more complicated models being built. This in turn, has

implications for model parameterisation and analysis. In Chapters 1 and 2, it was

shown that population levels models have been successfully developed in order

to aid the prevention and control of livestock diseases. The literature is much

thinner, however, in the field of modelling in the poultry industry and this has

been identified in the last few years as a gap that should be filled.

Driven by the fact that differential equation models are frequently used as an

effective method for disease modelling, in Chapter 2, a dynamical systems model

was set up to describe the potential spread of AIV between poultry premises. In

this chapter, however, only the simplest of models could be built and successfully

analysed. The results showed that, under the assumptions made, disease cannot

be removed from the population unless there are no susceptible farms, or there is

outside intervention. This is a typical result for simple differential equation mod-

els and the panzootic situation in Asia and Africa [Guan et al., 2009] suggests
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that it is a feasible result for AIV. The difficulties that arose in parameterising

the model and making the model more realistic led to the conclusion that the

methods adopted were not optimal for modelling AIV transmission throughout

the poultry industry in GB. The results suggested that using a network model,

which considers contact structures, may bring more fruitful results. In fact, for

modelling AIV in poultry, the network approach is more effective than the tra-

ditional differential equation approach because it allows for the (more straight

forward) investigation of a range of parameter values, for the analysis of a large

number of individual farms, the more successful incorporation of distance and

the investigation of the effectiveness of control measures, such as movement bans

within a given region of an infected farm, for example. The introduction of move-

ment bans, for example, would require considering each individual premises and

inferring a transmission rate dependent on distance between each pair of infected

and susceptible premises. By considering the population as a network, we only

need to consider those premises that are linked and we can add or remove links

according to the state of a premises. When extra dimensions are added to dif-

ferential equation models, the systems become harder and harder to solve. This

implies that network modelling and analysis techniques can be used to investi-

gate characteristics of a system that cannot be easily incorporated into differential

equation models.

The contact structures that exist in the GB poultry industry, over which AIVs are

expected to transmit were outlined in Chapter 7 and analysed in Chapters 7 to

9. Initially, data were used to build a static network of the industry, where nodes

were poultry premises and links represented potential transmission routes for

AIV. The transmission routes in these networks could occur via a third premises,

which was not included in the contact structures, but the information for which

was retained. Such premises could represent slaughterhouses or catching teams,

for example. The networks were then analysed in two parts. The aim of first

part, presented in Chapter 7, was to determine the structure of the networks, by

considering similar properties as those considered in the cell level analysis. Whilst

some network parameters were considered for both levels (degree distribution for

example), there are distinct differences in the way the two static networks were

analysed. First of all, the population network was not broken down into modules

as the cell level network was. This is because of the way the networks have been

built. Whereas feedback, represented by cycles, in the cell network is potentially

important and therefore a good base for breaking the network down into modules,

the high level of connectivity in the population level network, partly due to the
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fact that links in the initial networks are not directed, means that breaking the

network into modules based on cycles would result in either many very small

cycles, or one very large cluster, representing almost the entire network. Instead,

it was considered of more interest to concentrate efforts in the static network

analysis, at the population level, on the points in the network that act as hubs

and on the ability to break the network down by targeting the hubs. It was also

useful to use the static network analysis to identify where further data collection

was necessary. Another difference between the analysis of the cell and population

networks is that at the population level, distance between nodes was considered.

At the cell level, this was not necessary, as distance is not a key factor in the

molecular interactions, whereas it could be in the interactions between poultry

premises.

The most important result derived from the static network analysis of the poultry

industry was the realisation that the industry seems to be very well connected,

particularly by the use of common slaughterhouses and, although less so but

still relatively highly, by catching teams. However, the static network did not

consider link frequency as a factor, implying that the connectivity seen in this

network is an absolute maximum. In reality and particularly important for disease

transmission, the connectivity of the network at any one moment in time, or over

a given period, may be much less. This result was important enough to consider

the contact structures from a dynamic point of view.

Following this conclusion, further data were collected about the frequency of

movements between poultry premises, as recommended in Chapter 7. The data

collected represent a small portion of the poultry industry, but are also estimated

to cover a large proportion of premises that use an external catching company to

catch birds. A descriptive analysis of the data was presented (Chapter 8) and then

a simulation model was used to analyse the data further and to determine how

likely disease is to spread when the frequency of movements between premises are

known. In fact, whilst the frequency of links between premises is rare enough to

greatly reduce the number of premises that are potentially connected -and hence

the potential severity of an AIV outbreak in GB- the results also showed that for

high levels of transmission via slaughterhouses, a large epidemic is still possible.

The results from the dynamic network analysis are extremely important because

they show a very different picture to that seen when the static network was

analysed. It must be noted however that the simulation modelling represents

only a proportion of premises in the industry and furthermore, it over represents
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premises that rear meat chickens, as these premises are most likely to use a

catching company. However, because catching companies operate primarily in

the chicken industry, the results can be used to conclude that catching teams

themselves are not likely to pose a big threat to the industry if a large scale

outbreak of HPAI AIV is of concern. Even with high rates of transmission via this

route, the results suggest that links are too infrequent to connect large numbers of

premises in the time-frame that it usually takes for highly pathogenic AIV to be

detected in chickens. For diseases that have longer incubation periods, the story

may be different, but the model can be used to investigate this in the future.

10.3 Further work

10.3.1 Further work for RA

There are three areas in which the work on RA could be taken forward. Firstly,

the map itself can be expanded and re-analysed. Secondly, a dynamic aspect can

be added to the network. Finally, the map could be used to simulate the effects

of targeting specific genes in the network (or to further explore currently known

topologically and biologically significant areas of the map).

The map itself can be expanded by adding new pathways to the map, or by

expanding those pathways that have already been identified as being involved in

RA. Currently, the map only shows molecules that are involved in the disease.

When the pathways were built between molecules in the map, using the KEGG

database, only the parts of the pathways that are involved in the disease were

added. This means that if one node from a pathway is not involved in RA, then

it was removed. Removing a node from a pathway may result in the pathway

being broken down, increasing the number of incorrectly disjoint pathways in the

map. The nodes that were removed could thus be added to the map. Analysis of

the map would then have to consider nodes involved in the disease and nodes not

directly involved. This would have the benefit of giving a more realistic picture

of the network. It is also likely to change the degree distribution of the network,

bringing it closer to the expected distribution for a biological network. The

map can also be expanded by adding the isolated nodes that were not originally

included. Whilst this has no immediate benefit, it will be of use when the map

is expanded with new information from experiments and or the literature, as

it becomes available. In order to encourage the constant improvement of the
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network, it has been made publicly available in the CellDesigner format that it

was built in and in the format that it was analysed in in this thesis, using Cytoscpe.

The network modules that were created from the map are also available.

An arguably major fall-back of the network is that it is static. In reality, the

interactions that occur in cell are dynamic and hence a dynamic network is more

desirable over a static network. Efforts should be made to add a dynamic element

to the links that occur between nodes in the network. The current network is

a directed network, making it a more realistic representation of real life than

the simpler undirected alternative, but having even a small amount of knowledge

about the frequency of links, or the order that they occur in, would improve the

usefulness of the map. However, to date, the methods required to be able to

add this level of detail to the map, albeit apparently simple, are currently not

advanced enough to cope with such a large map. It was discussed in Chapter

2 that gene-network reconstruction algorithms, whilst potentially powerful, only

deal with relatively small networks that are, in fact, not comparable with the size

of the network analysed here. However, it may be possible to start by obtaining

more detailed data for a particular module of the network, or to use the topological

analyses to determine where best to collect dynamic data.

One area where further data should be collected, is around the gene that was

identified as a potential drug target. Research groups involved in Rheumatology

have expressed an interest in experimentally determining if the CRKL gene could

really be a potential drug target and close work with these groups could result in

further advances in understanding and treating RA.

Finally, simulation models can be built, in a similar way to those built to analyse

the population data, in order to answer a series of ‘what if’ scenarios concerning

the perturbation of specific genes in the network. This would help in experimental

design, as well as providing a platform for performing a sensitivity analysis on

the network. An investigation of the sensitivity of the network to individual

genes can further identify which genes are the most important in the molecular

process of interest. Furthermore, a sensitivity analysis could reduce the size of

the network so that some genes, which are found to be neither topologically

nor biologically important, can be removed. This is important because excess

information is computationally expensive to process and adds noise to the results.

Firstly using simulation modelling and then with validation in the wet lab, it is

possible to identify which genes to target in order to weaken the network to

such an extent that it can no longer function properly, or maintain itself and
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is therefore biologically destroyed. From here, other pathways (or networks)

that the destroyed genes are involved in could be predicted. This will enable

the tracing back to different networks that we may otherwise not have known

were involved in the original pathway of interest. By reiterating this process,

using network analysis methods to identify important genes in different networks

(supported by literature, microarrays or otherwise) until the point at which the

gene of interest is not involved in any other processes, the effect that removing

this gene has on the networks studied and on other pathways can be investigated.

This approach can integrate and enhance current gene-network reconstruction

algorithms as well as algorithms that are under development.

10.3.2 Further work for AIV

As with the cell level analyses, there are several avenues for exploring this work.

Firstly, the networks and thus network models could be expanded to cover more

farms, as well as other potential transmission routes such as transmission via feed

lorries, for example. To do this, improving additional data, so that other poultry

species are well represented, would be be required. Secondly, the models could

be used to more thoroughly explore potential control measures in an outbreak

situation. And finally, the models could be used to predict how likely other

diseases are to spread between premises in the poultry industry.

Contact mechanisms such as feed lorries and egg collectors were identified as

potential transmission routes for AIV, but they have not been included in the

models presented in this thesis. This is because the data for which feed delivery

and egg collectors were available did not correspond to the premises for which

catching team and slaughterhouse movements were available. Although the data

sets were small and incomplete, meaning that they were not representative of the

industry, the addition of these data to the models would allow one to comment

more on the potential threat that these mechanisms might have, without the need

for large investments to be made. It would also mean that analyses that describe

how well different parts of the industry are connected can be performed. This is

important, because the better-connected the industry is, the more likely a large

outbreak becomes and the harder control may be. However, if the industry can be

separated by different commercial sections, then control and eradication of disease

may be easier. Another possible way to expand the network would be to use it to

collect farm data from other countries and to compare how the industries differ
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from country to country. This may be particularly interesting for the comparison

of countries such as the Netherlands and Italy, where there have already been

large outbreaks of AIV. The models designed here have been adapted as part of

FLUTEST, an EU FP7 project that concentrates on the improved diagnosis and

early warning systems for AIV outbreak management.

The model and data presented in this thesis are well suited to being used in explor-

ing policy options during peacetime (i.e. before another HPAI outbreak occurs).

However, outbreak management is also an important area for future research, as

effective management in an outbreak situation can result in significant animal

health and economic savings. The most effective use of the network simulation

models in an outbreak situation would be to provide prior information for early

response toolkits such as that that has been developed by University of Swansea,

as part of the Defra funded research project SE4206. The toolkit is described

in the appendix of the final report of SE4206 (available at [Defra, 2008]) and is

designed to provide real-time inference on a disease outbreak. The toolkit would

be useful for identifying estimates of transmission rates by the different routes,

along with their uncertainty, giving a more extensive knowledge of the transmis-

sion rates. The knowledge of such information would also improve the model

presented here, meaning that it could then be used to help to identify, during

an outbreak, where to target control measures and surveillance. It could also be

used to answer questions regarding the optimal size and shape of the protection

and surveillance zones that are put in place during an outbreak. Surveillance

is a time consuming and hence expensive practice during an outbreak and re-

sources should not be wasted if the possibility of premises, particularly on the

edge of these zones, are not likely to become infected with disease. The results in

Chapter 8 showed that road distance is not a better measure of distance between

premises (than Euclidean distance) in the data analysed, but this might not be

the case in areas where the road network is less well connected. Thus we could

ask, should rural areas have a larger PZ and SZ around an infected premises? Or

are the zones only set up to eliminate airborne transmission? If this is the case,

then it can be argued that the zones are too big. The models here, particularly

after expansion, could be used to give advice on the answers to some of these

questions.

Other scenarios that might be modelled are the effectiveness of vaccination, or

the increase/decrease in incubation time, for example. These parameters are of

interest because the model could not be well parameterised and, due to the lack
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out outbreak data available, could not be validated for AIV. It may be possible

to use outbreak data from other diseases to partially validate the model, but this

would depend on the premises that have been included in the simulation (that

is those serviced by the catching company) having been involved in a disease

outbreak, the chances of which are unlikely. Despite this, attention should be

paid to model parameterisation. Work is ongoing to determine the ability of AIV

to survive in the environment and results from this work can be used to improve

the model assumptions.

Applying this work to other diseases is another possible area for future research.

The work lends itself to be adapted for the modelling of other diseases spread by

the oral-faecal route, such as Salmonella and Campylobacter spp.. Given that

these diseases have also been considered to help identify potentially important

routes of transmission for AIV, the model is already well on the way to being

relevant for the modelling of these diseases.

10.4 Final comments

In this thesis, network analysis methods have been successfully used at the cell

and the population levels in order to obtain useful information about two dis-

eases. One aim of the thesis was to determine if the same methods can be used at

both levels. To an extent, the answer to this question is yes. However, if network

analysis methods are to be used to improve our understanding of diseases, then

the exact methods and properties that should be considered during analysis will

vary, sometimes greatly, according to the type of network that is being analysed

and more importantly, the questions that need to be answered. Properties such

as degree distribution and identification of hubs are relevant at both levels of

analysis, but once we want to extract more novel information, a deeper under-

standing of the network is required and in many cases, manual curation is also

necessary. In terms of disease control, knowing where to target control and the

type of analysis to perform once again depends on the questions being asked.

However, the ability to be able to identify potential targets for disease control,

be it at the cell or the population level, is very important and one that has had

growing interest in recent years. The seond aim, which was to make a posi-

tive contribution to science, has been achieved, with contributions made to the

fields of both Rheumatology and Veterinary Epidemiology. Important for effec-

tive building and analysis of ‘disease’ networks and hence for these contributions
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to be made, is the ability to work as part of a multi-disciplinary team and to then

adopt a certain level of interdiscplinarity. This thesis is a good example of the

power that mathematics, when complemented by the cooperation of researchers

in a range of other fields, can be combined with and applied to other subjects, in

order to advance in science.
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[Julià et al., 2009] Julià, A., Barceló, M., Erra, A., Palacio, C., and Marsal, S.

(2009). Identification of candidate genes for rituximab response in rheumatoid

arthritis patients by microarray expression profiling in blood cells. Pharma-

cogenomics, 10(10):1697–1708.

[Junta et al., 2009] Junta, C. M., Sandrin-Garcia, P., Fachin-Saltoratto, A. L.,

Mello, S. S., Oliveira, R. D., Rassi, D. M., Giuliatti, S., Sakamoto-Hojo, E. T.,

Louzada-Junior, P., Donadi, E. A., and Passos, G. A. (2009). Differential gene

expression of peripheral blood mononuclear cells from rheumatoid arthritis

patients may discriminate immunogenetic, pathogenic and treatment features.

Immunology, 127(3):365–372.

[Kao et al., 2006] Kao, R., Danon, L., Green, D., and Kiss, I. (2006). Demo-

graphic structure and pathogen dynamics on the network of livestock move-

ments in Great Britain. Proceedings of the Royal Society B, 273(1597):1999.

272



[Kao et al., 2007] Kao, R., Green, D., Johnson, J., and Kiss, I. (2007). Disease

dynamics over very different time-scales: foot-and-mouth disease and scrapie

on the network of livestock movements in the UK. Journal of The Royal Society

Interface, 4(16):907.

[Kao, 2002] Kao, R. R. (2002). The role of mathematical modelling in the control

of the 2001 fmd epidemic in the uk. Trends in Microbiology, 10(6):279 – 286.

[Kawasaki et al., 2003] Kawasaki, H., Komai, K., Nakamura, M., Yamamoto,

E., Ouyang, Z., Nakashima, T., Morisawa, T., Hashiramoto, A., Shiozawa,

K., Ishikawa, H., Kurosaka, M., and Shiozawa, S. (2003). Human wee1 ki-

nase is directly transactivated by and increased in association with c-fos/ap-1:

rheumatoid synovial cells overexpressing these genes go into aberrant mitosis.

Oncogene, 22(44):6839–6844.

[Keeling, 2005] Keeling, M. (2005). The implications of network structure for

epidemic dynamics. Theoretical Population Biology, 67(1):1–8.

[Keeling and Eames, 2005] Keeling, M. and Eames, K. (2005). Networks and

epidemic models. Journal of the Royal Society Interface, 2(4):295.

[Keeling et al., 2001] Keeling, M., Woolhouse, M., Shaw, D., Matthews, L.,

Chase-Topping, M., Haydon, D., Cornell, S., Kappey, J., Wilesmith, J., and

Grenfell, B. (2001). Dynamics of the 2001 UK foot and mouth epidemic:

stochastic dispersal in a heterogeneous landscape. Science, 294(5543):813.

[KEGG, 2010] KEGG (2010). Kyoto encyclopedia of genes and genomes.

http://www.genome.jp/kegg/.

[Kermack, 1927] Kermack, WO & McKendrick, A. (1927). A contribution to the

mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115:700–721.

[Kikuchi et al., 2003] Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., and

Tomita, M. (2003). Dynamic modeling of genetic networks using genetic algo-

rithm and S-system. Bioinformatics, 19(5):643–650.

[Kiss et al., 2005] Kiss, I., Green, D., and Kao, R. (2005). Disease contact trac-

ing in random and clustered networks. Proceedings of the Royal Society B:

Biological Sciences, 272(1570):1407.

[Kiss et al., 2006] Kiss, I., Green, D., and Kao, R. (2006). The network of sheep

movements within Great Britain: network properties and their implications for

infectious disease spread. Journal of the Royal Society Interface, 3(10):669.

273



[Kitano et al., 2005] Kitano, H., Funahashi, A., Matsuoka, Y., and Oda, K.

(2005). Using process diagrams for the graphical representation of biological

networks. Nat Biotechnol, 23(8):961–966.

[Klein et al., 2001a] Klein, T., Chang, J., Cho, M., Easton, K., Fergerson, R.,

Hewett, M., Lin, Z., Liu, Y., Liu, S., Oliver, D., et al. (2001a). Integrating

genotype and phenotype information: an overview of the PharmGKB project.

The Pharmacogenomics Journal, 1:167–170.

[Klein et al., 2001b] Klein, T. E., Chang, J. T., Cho, M. K., Easton, K. L., Fer-

gerson, R., Hewett, M., Lin, Z., Liu, Y., Liu, S., Oliver, D. E., Rubin, D. L.,

Shafa, F., Stuart, J. M., and Altman, R. B. (2001b). Integrating genotype and

phenotype information: an overview of the pharmgkb project. pharmacogenet-

ics research network and knowledge base. Pharmacogenomics J, 1(3):167–170.

[Klipp et al., 2007] Klipp, E., Liebermeister, W., Helbig, A., Kowald, A., and

Schaber, J. (2007). Systems biology standardsthe community speaks. Nature

Biotechnology, 25:390 – 391.

[Koczan et al., 2008] Koczan, D., Drynda, S., Hecker, M., Drynda, A., Guthke,

R., Kekow, J., and Thiesen, H. J. (2008). Molecular discrimination of respon-

ders and nonresponders to anti-tnf alpha therapy in rheumatoid arthritis by

etanercept. Arthritis Res Ther, 10(3).

[Kohoutek, 2009] Kohoutek, J. (2009). Cell Division. Cell Division, 4:19.

[Kooloos et al., 2007] Kooloos, W. M., de Jong, D. J., Huizinga, T. W., and

Guchelaar, H. J. (2007). Potential role of pharmacogenetics in anti-tnf treat-

ment of rheumatoid arthritis and crohn’s disease. Drug Discov Today, 12(3-

4):125–131.

[Kramer and Xu, 2008] Kramer, R. and Xu, D. (2008). Projecting Gene Ex-

pression Trajectories through Inducing Differential Equations from Microarray

Time Series Experiments. Journal of Signal Processing Systems, 50(3):321–329.

[Krebs, 2002] Krebs, V. (2002). Mapping networks of terrorist cells. Connections,

24(3):43–52.

[Kremer et al., 2003] Kremer, J., Westhovens, R., Leon, M., Di Giorgio, E., Al-

ten, R., Steinfeld, S., Russell, A., Dougados, M., Emery, P., Nuamah, I., et al.

274



(2003). Treatment of rheumatoid arthritis by selective inhibition of T-cell ac-

tivation with fusion protein CTLA4Ig. The New England journal of medicine,

349(20):1907.

[Kuo and Lin, 2007] Kuo, C. C. and Lin, S. C. (2007). Altered foxo1 transcript

levels in peripheral blood mononuclear cells of systemic lupus erythematosus

and rheumatoid arthritis patients. Mol Med, 13(11-12):561–566.

[Lacroix et al., 2009] Lacroix, B. D., Lovern, M. R., Stockis, A., Sargentini-

Maier, M. L., Karlsson, M. O., and Friberg, L. E. (2009). A pharmacody-

namic markov mixed-effects model for determining the effect of exposure to

certolizumab pegol on the acr20 score in patients with rheumatoid arthritis.

Clin Pharmacol Ther, 86(4):387–395.
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Tron, F., Le Loët, X., and Salier, J. P. (2006). Gene profiling in white blood

cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res

Ther, 8(4).

[Levin and Werth, 2006] Levin, J. and Werth, V. P. (2006). Skin disorders with

arthritis. Best Pract Res Clin Rheumatol, 20(4):809–826.

[Lewin, 2003] Lewin, B. (2003). Genes VIII. Benjamin Cummings, ”united states

ed” edition.

[Li et al., 2004] Li, F., Long, T., Lu, Y., Ouyang, Q., and Tang, C. (2004).

The yeast cell-cycle network is robustly designed. Proceedings of the National

Academy of Sciences of the United States of America, 101(14):4781.

[Li and Kaminskas, 1984] Li, J. C. and Kaminskas, E. (1984). Accumulation of

dna strand breaks and methotrexate cytotoxicity. Proc Natl Acad Sci U S A,

81(18):5694–5698.

[Liacini et al., 2003] Liacini, A., Sylvester, J., Li, W. Q., Huang, W.,

Dehnade, F., Ahmad, M., and Zafarullah, M. (2003). Induction of matrix

275



metalloproteinase-13 gene expression by tnf-alpha is mediated by map kinases,

ap-1, and nf-kappab transcription factors in articular chondrocytes. Exp Cell

Res, 288(1):208–217.

[Liang et al., 1998] Liang, S., Fuhrman, S., Somogyi, R., et al. (1998). Reveal,

a general reverse engineering algorithm for inference of genetic network archi-

tectures. In Pacific symposium on biocomputing, volume 3, page 22.

[Liljeros et al., 2003] Liljeros, F., Edling, C., and Amaral, L. (2003). Sexual

networks: implications for the transmission of sexually transmitted infections.

Microbes and Infection, 5(2):189–196.

[Lindberg et al., 2006] Lindberg, J., af Klint, E., Catrina, A. I., Nilsson, P.,

Klareskog, L., Ulfgren, A. K., and Lundeberg, J. (2006). Effect of infliximab

on mrna expression profiles in synovial tissue of rheumatoid arthritis patients.

Arthritis Res Ther, 8(6).

[Loeuille and Loreau, 2005] Loeuille, N. and Loreau, M. (2005). Evolutionary

emergence of size-structured food webs. Proceedings of the National Academy

of Sciences of the United States of America, 102(16):5761.

[Lorico et al., 1988] Lorico, A., Toffoli, G., Boiocchi, M., Erba, E., Broggini, M.,

Rappa, G., and D’Incalci, M. (1988). Accumulation of dna strand breaks in

cells exposed to methotrexate or n10-propargyl-5,8-dideazafolic acid. Cancer

Res, 48(8):2036–2041.

[Lu et al., 2003] Lu, H., Castro, A., Pennick, K., Liu, J., Yang, Q., Dunn, P.,

Weinstock, D., and Henzler, D. (2003). Survival of avian influenza virus H7N2

in SPF chickens and their environments. Journal Information, 47(s3).

[Lu et al., 2009] Lu, R., Markowetz, F., Unwin, R. D., Leek, J. T., Airoldi, E. M.,

MacArthur, B. D., Lachmann, A., Rozov, R., Ma’ayan, A., Boyer, L. A.,

Troyanskaya, O. G., Whetton, A. D., and Lemischka, I. R. (2009). Systems-

level dynamic analyses of fate change in murine embryonic stem cells. Nature,

462(7271):358–362.

[Ludikhuize et al., 2007] Ludikhuize, J., de Launay, D., Groot, D., Smeets, T. J.,

Vinkenoog, M., Sanders, M. E., Tas, S. W., Tak, P. P., and Reedquist, K. A.

(2007). Inhibition of forkhead box class o family member transcription factors

in rheumatoid synovial tissue. Arthritis Rheum, 56(7):2180–2191.

276



[Luke and Harris, 2007] Luke, D. and Harris, J. (2007). Network analysis in pub-

lic health: history, methods, and applications. Annual Reviews, 28:69–93.

[Lundkvist et al., 2008] Lundkvist, J., Kastäng, F., and Kobelt, G. (2008). The

burden of rheumatoid arthritis and access to treatment: health burden and

costs. The European Journal of Health Economics, 8:49–60.

[MacMahon et al., 1960] MacMahon, B., Pugh, T., and Ipsen, J. (1960). Epi-

demiologic methods. Little, Brown.

[Mannelli et al., 2006] Mannelli, A., Ferrč, N., and Marangon, S. (2006). Anal-
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