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Abstract

The work presented in this thesis focuses on improving the anomaly detection process

for remotely sensed hyperspectral imagery. This process is split up into three main

sections; data reduction, atmospheric correction and anomaly detection.

The final stage of this anomaly detection process is the actual anomaly detection

algorithm. The initial contribution looks at developing a new type of anomaly detection

algorithm based on the Percentage Occupancy Hit-or-Miss Transform. Also, a process

for trying to improve the existing Mahalanobis Distance technique for hyperspectral

data is explained. Both techniques are then tested on two aerial hyperspectral images,

and the results are compared with an established technique the Sequential Maximum

Angle Convex Cone algorithm.

One of the preprocessing steps of the anomaly detection process is the atmospheric

correction phase. In this thesis an interface is developed in MATLAB for the atmospheric

modelling software MODTRAN, this interface is then used to find the key parameters

that have the most effect on the atmospheric models produced. Having determined the

key parameters of a MODTRAN atmospheric model, the models are then used to at-

mospherically correct eight hyperspectral images; four visible to near-infrared and four

short wave infrared hyperspectral images. Two scene based approaches for atmospheric

correction are also proposed that use known spectra extracted from the scene to pro-

duce an atmospheric transform. All three techniques are then evaluated against existing

scene-based approaches, namely Internal Average Relative Reflectance and Dark Object

Subtraction.

The final contribution focuses on the data reduction phase, images of a wind turbine

blade with simulated erosion were taken using a near-infrared hyperspectral camera. By
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analysing the images produced it was possible to determine the optimal bands necessary

to detect each type of erosion. The greyscale images produced for the optimal bands

were then compared with standard RGB camera imaging to determine if any more

detail was shown in the hyperspectral images. Also by imaging the blade at varying

light levels, it was possible to determine when this technique breaks down, however by

performing some post-processing of the new data using a polynomial surface subtraction

to flatten the images it was again possible to extract additional information from the

hyperspectral images.
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Chapter 1

Introduction

A standard RGB camera uses three bands each relating to a separate wavelength, red,

green and blue (approx. 650, 510 and 475nm respectively). At each of these wave-

lengths, the camera measures the light intensity at that specific wavelength to produce

a greyscale image. These three greyscale images are combined to produce the colour

image taken by the camera (see Fig. 1.1). In a hyperspectral image, however, there are

tens or even hundreds of bands all across the spectrum. These need not be limited to the

visible spectrum; there are hyperspectral cameras currently available that can measure

light in both the ultra-violet and infra-red regions of the spectrum.

Fig. 1.1: Comparison between RGB and HS images [1]

Therefore this type of imaging provides both spatial and spectral information and

can be exploited in many different areas, e.g. defence and security [2,3], precision agri-

culture for vegetation and crop monitoring [4, 5], environmental monitoring [6, 7] and

food and drink quality control [8–10]. Aerial hyperspectral imagery for the purpose of

remote sensing is a rapidly growing research area [11, 12]. There are three main areas

1
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that aerial hyperspectral imaging is used for, these include Anomaly Detection, Target

Recognition and Background Characterization [11]. One of the main applications for

this technology is for the purpose of anomaly detection [2]. A generally used technique

for detecting anomalies in a scene, when no prior information about the anomaly is

known, is by looking at the distinct spectral features of the objects under surveillance

and trying to differentiate them from surrounding materials. For the case of a camou-

flaged vehicle, the vehicle is deliberately designed to blend into the background grass

and trees in the visible spectrum. However, by looking at spectral features in the near-

infrared spectrum, such as the chlorophyll edge [13], the vehicle can be revealed. Due

to the volume of data, capturing and subsequent processing of the data can be time-

consuming. For many practical applications where cost is a constraint, it is necessary

to determine the optimal number of bands that can be used to produce a satisfactory

result.

Fig. 1.2: Spectral processing flow chart [11]

Fig. 1.2 shows the spectral processing flow chart proposed by Shaw and Burke [11].

This process consists of three main steps Atmospheric Compensation, Data Reduction

and Unmixing or Detection. The main aim of this thesis is the improvement of the

anomaly detection process, therefore based on this spectral processing flow chart an

anomaly detection process was proposed, see Fig. 1.3. Throughout this thesis each

of these stages, is explored individually. The data reduction stage is explored when

looking at erosion detection in wind turbine blades, various techniques are looked into



Chapter 1. Introduction 3

to determine the optimal set of bands to use that best show each type of erosion.

The process of atmospheric correction is also explored first by using the atmospheric

modelling software MODTRAN to determine the key parameters necessary to create an

accurate atmospheric model for a hyperspectral image, this information is then used to

atmospherically correct several visible to near-infrared (VNIR) and short wave infrared

(SWIR) hyperspectral images. Finally the anomaly detection step is addressed through

a new type of anomaly detection technique based on the percentage occupancy hit-or-

miss transform (POHMT) [14] to find outliers in scatter plots created from hyperspectral

images.

Radiance
Data Cube

Data Reduction

Atmospheric
Correction

Reflectance
Data Cube

Anomaly
Detection

Reduced
Data Cube

Locations of
Anomalies

Yes

No
Yes

No

Fig. 1.3: Anomaly detection process

1.1 Organisation of Thesis

The remainder of the thesis is organised as follows:

• Chapter 2: This chapter is split into four main sections, the first section discusses

hyperspectral imaging, what it actually is, how it varies from traditional types of
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imaging, the various methods of acquiring it and what the format of the data looks

like. The next section looks at some of the current anomaly detection techniques,

which are split up into two main types: supervised and unsupervised. Following

from this, the various atmospheric effects present in all aerial hyperspectral data

are discussed, and what some of the current processes are for removal of these

effects. Finally, this chapter ends with a summary of the practical applications

that hyperspectral imagery has and the various fields it is used in.

• Chapter 3: In this chapter, various techniques are explored to find anomalies in

visible to near-infrared hyperspectral images using scatter plots. All the techniques

explored are unsupervised anomaly detection techniques which include the use of

the Mahalanobis Distance, a modified Hough Transform, the standard Hit or Miss

Transform and finally the Percentage Occupancy Hit or Miss Transform. The

best of these techniques are then compared with traditional anomaly detection

techniques using two hyperspectral data cubes with several targets located in

each.

• Chapter 4: Atmospheric correction is an important step in the anomaly detection

process, to accomplish this atmospheric correction it is necessary to create an

accurate atmospheric model relating to the time, location and weather conditions

of each image. This chapter first develops an interface for MODTRAN 5.2.1 in

MATLAB, that can create a look-up table of atmospheric models which can be

used for quick atmospheric correction of hyperspectral data rather than having

to generate a new atmospheric model for each dataset. The interface is then used

to explore the various parameters built into MODTRAN to determine which of

these have the main effects on the atmospheric model.

• Chapter 5: In the previous chapter an interface for creating MODTRAN look-

up tables was developed for MATLAB. Using these look-up tables a simplistic

approach to atmospheric correction is developed by estimating the solar scattering

contribution for each image, removing this from the image and then scaling the

image based on an estimation of what a perfectly reflective surface would reflect to
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produce a reflectance hyperspectral image. Another technique is also proposed by

using known spectra from the scene. This works on the assumption that there will

always be grass or tarmac in the images and uses spectra from the United States

Geological Survey to estimate the atmospheric transform required to convert the

radiance domain spectra to reflectance domain spectra. Both these techniques

allow for the quick atmospheric correction of eight hyperspectral images (four

visible to near-infrared and four short wave infrared) each of which contains targets

placed throughout the image that have also been measured in a lab to determine

their pure spectra. The results are then compared to more established scene-based

techniques for atmospheric correction, i.e. Internal Average Relative Reflectance

and Dark Object Subtraction. To compare the methods, a ground truth for the

image was created to provide a quantitative value for recall and percentage of

targets found.

• Chapter 6: There are various applications for hyperspectral imaging, which in-

clude remote sensing for security and defence, precision agriculture for vegetation

and crop monitoring, and food, drink, and pharmaceuticals quality control. How-

ever, for the purpose of condition monitoring and erosion detection in wind turbine

blades, the use of hyperspectral imaging is a relatively untouched area. Currently,

this task is performed by rope-access technicians who visually inspect the wind

turbine blades, remotely operated aerial vehicles with mounted RGB cameras, or

long range cameras. In this chapter, with the use of a near-infrared hyperspectral

camera, a new method for leading edge erosion detection is proposed. Realistic de-

fects were added to a section of wind turbine blade and four hyperspectral images

were captured in the laboratory, each at varying light levels.

• Chapter 7: The final chapter presents some concluding remarks on each chapter,

along with possible ideas and suggestions for future work.
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1.2 Original Contributions

It is believed that the following novel contributions have been made:

• Chapter 3 presents an improved technique for unsupervised anomaly detection for

aerial hyperspectral imagery using the Percentage Occupancy Hit or Miss Trans-

form (POHMT), through extensive testing of other techniques to find outliers in

scatter plots it was shown that this technique was the best out of all explored.

This technique is then compared with two established techniques, i.e. the Sequen-

tial Maximum Angle Convex Cone and the Mahalanobis Distance. It was found

that using certain parameters with a pair of randomly selected bands the POHMT

provided an improvement over the anomaly detection techniques tested.

• Chapter 4, presents a complete interface for the modelling of atmospheric effects

present in aerial hyperspectral imagery based on the MODTRAN 5.2.1 atmo-

spheric modelling software in MATLAB. Investigations are then undertaken to

find the key parameters necessary to create an accurate atmospheric model. The

results from this chapter show the parameters that have the most effect on the

atmospheric model are the time of day, the day of the year, the latitude, the height

of the observer and the aerosol model. Parameters such as the atmospheric profile,

carbon dioxide (CO2) mixing ratio, longitude and viewing zenith angle all have

very negligible effects and can essentially be ignored in the atmospheric modelling

calculations.

• Chapter 5, uses the interface developed in the previous chapter to propose a ra-

diative transfer based atmospheric correction technique also two novel techniques

that use known spectra from the scene to predict the atmospheric transform nec-

essary to remove the atmospheric effects are proposed. The results show that for

the visible to near-infrared imagery (400 - 100nm) the new technique based on

the MODTRAN atmospheric modelling code outperforms all the current scene

based approaches tested and for the short wave infrared images (950 - 2500nm)

the techniques using known spectra produce the best results.
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• Chapter 6 presents a methodology for precise erosion detection in wind turbine

blades using a short wave infrared hyperspectral camera. By the selection of opti-

mal bands, it is possible to extract information relating to the depth of each level

of erosion far beyond what is currently possible with standard imaging under ideal

conditions. When the illumination conditions are varied from 1000 Lux to 25 Lux,

a lot of the information is lost. However, by using a polynomial surface subtraction

it is possible to again extract information relating to the depth of the erosion in

all but the darkest of the images.



Chapter 2

Background and Related Work

2.1 Introduction

In the previous chapter, it was briefly discussed what hyperspectral imaging (HSI) is

and what some of its many applications are. A process that can be followed when trying

to detect anomalies in a hyperspectral image involves three main steps (see Fig. 2.1).

These three steps are, the atmospheric correction step followed by a data reduction

step where any preprocessing is performed on the data, e.g. bad bands are removed,

geo-correction or noise removal. The final step is the anomaly detection step, this is

where the data is processed using a specific algorithm and the output is a list of pixels

in the image where an anomaly occurs.

The first section of this chapter explains in more detail what exactly HSI is. Firstly

a comparison is made between traditional RGB cameras, spectroscopy and HSI, then

the various regions of the electromagnetic spectrum that HSI cameras operate in, the

subtleties between multispectral, hyperspectral and ultraspectral are discussed. In the

next section, the issues relating to the inadequate spatial resolution on the ground caus-

ing mixed pixels is introduced, and the various models used to explain this behaviour.

Following this the process of data reduction for the large volume of hyperspectral data

by using either one of two methods; a band or pixel reduction approach is discussed.

The next section discusses the effects the atmosphere has on the data and how there

are many methods currently used to remove these effects using either a scene-based

8
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Radiance
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No

Fig. 2.1: Anomaly detection flow chart

or radiative transfer based approach. Spectral unmixing and anomaly detection is dis-

cussed in the next section, the difference between these two approaches is explained and

the various currently used techniques are discussed. The final section gives an overview

of some of the practical applications of aerial hyperspectral imagery for defence and

security, precision agriculture, hydrology and environmental monitoring.

2.2 What is Hyperspectral Imaging?

Standard RGB cameras have a good spatial resolution but have a very limited spectral

resolution by being limited to only three wavelengths, red, green, and blue (approxi-

mately 650, 510 and 475nm respectively). Hyperspectral imaging can provide both a

good spatial and spectral resolution. The most commonly used technique for image ac-

quisition is called the push broom method, this works by capturing a line of pixels at

every wavelength, as the plane or unmanned aerial vehicle (UAV) moves along its flight

path this builds up the image to produce a 3D hypercube, see Fig. 2.2 and for each
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pixel in the scene a spectrum can be retrieved relating to the material covered by that

pixel.

Fig. 2.2: Composition of a hyperspectral image [11]

Due to the altitude operated at for most aerial hyperspectral applications the spatial

resolution on the ground can be anything from a few square centimetres to a few square

meters, therefore there is usually more than one type of material in the pixel. This

causes the produced spectra to be a linear combination of the fractional abundance of

the related materials, these are called "mixed pixels" and can be modelled using either

a linear or non-linear mixing model.

2.2.1 Types of Hyperspectral Imaging

There are various different types of HSI currently available, these include ultraviolet

(UV), visible (VIS), near-infrared (NIR), short wave infrared (SWIR), mid wave infrared
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(MWIR) and long wave infrared (LWIR) regions of the electromagnetic spectrum, see

Fig. 2.3.

Fig. 2.3: Electromagnetic spectrum

Ultraviolet

The ultraviolet (UV) region of the spectrum occurs directly before (shorter wavelength

than) the visible range that we see with our eyes. This region is usually divided into three

regions UVA (315 to 400nm), UVB (280 to 315 nm), and UVC (100 to 280 nm) [15].

Some examples of the ultraviolet systems currently on the market are shown in Table

2.1.

Visible

The visible (VIS) region of the spectrum is the region of the electromagnetic spectrum

that is ’visible’ to the human eye (around 390 nm to 700 nm [16]). However, the shortest

wavelength that most VIS systems currently available measure is only 400nm, see Table

2.1.

Near Infrared

The near infra-red (NIR) region of the spectrum begins as soon as the light is longer

than detectable by the human eye, this is usually quoted as between 750 and 1400nm

(see Table 2.1) and includes the main vegetation features so is a very important region

for precision agriculture.
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Short Wave Infrared

The short wave infrared (SWIR) region is directly after the NIR region and encompasses

the wavelengths of about 1400 to 2500nm, see Table 2.1.

Mid Wave and Long Infrared

There are very few current systems readily available for measuring in both the mid wave

infrared (MWIR) and long wave infrared (LWIR), the few systems that are available

operate in the 3 to 5 micron and 8 to 12 micron ranges respectively. This is mainly due

to the cost and complexity of these systems, a few examples systems are shown in Table

2.1.

Name Wavelength Range Manufacturer
Blue Eye 190-380nm Innospec [17]
Hyperspec UV-VIS 250-500nm Headwall [18]
Hyperspec VNIR 380-1000nm Headwall [19]
HySpex VNIR-1800 400-1000nm HySpex [20]
Green Eye 400-1000nm Innospec [21]
Hyperspec NIR 900-1700nm Headwall [22]
Red Eye 1.7 950-1700nm Innospec [23]
Hyperspec SWIR 900-2500nm Headwall [24]
HySpex SWIR-384 1000-2500nm HySpex [25]
Red Eye 2.2 1200-2200nm Innospec [26]
Black Eye 2900-4200nm Innospec [27]
Hyperspec MWIR 3000-5000nm Headwall [28]
Hyper-Cam MW 3000-5000nm Telops [29]
Hyperspec LWIR 8000-12000nm Headwall [28]
Hyper-Cam LW 7700-11800nm Telops [29]

Table 2.1: Examples hyperspectral cameras

2.2.2 Multispectral vs Hyperspectral vs Ultraspectral

There are three types of spectral images; multispectral, hyperspectral and ultraspectral.

A multispectral image will usually consist of no more than 20 bands, a hyperspectral

image will consist of anything more than this to a few hundred and an ultraspectral

image will consist of a few thousand, see Fig. 2.4. These labels are often irrelevant as

they often have no relation to the image quality or spectral resolution. A hyperspectral
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camera with 100 bands between the region of 400 and 1000nm could have a spectral

resolution of 6nm, where a multispectral camera with 20 bands between the region of

950 and 1050nm could have a resolution of 5nm

Fig. 2.4: Number of bands for multispectral, hyperspectral, and ultraspectral

2.3 Mixing Model

Spectral mixing occurs in most remotely sensed hyperspectral images, this is due to

the finite spatial resolution of the sensors. In most aerial hyperspectral applications the

sensor is at least several kilometres above the target area, thus producing a pixel size on

the ground of several square metres. This will mean that there will be several distinct

materials covered by each pixel, therefore all pixels in the image will have a varying

amount of spectral mixing. Currently, the main mixing model that tries to explain this

behaviour is the linear mixing model (LMM) [30].
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(a)
(b)

Fig. 2.5: The measured radiance of a mixed pixel is the weighted sum of fractional
abundances of each material present in the pixel in the LMM

2.3.1 Linear Mixing Model

The LMM assumes that in any given scene there is a small number of spectrally distinct

materials present. These materials, e.g. grass, mud and water, are called endmembers

and the amount they appear in each mixed pixel are called their fractional abundances.

Fig. 2.5a shows a pixel in a scene that is depicted in the resulting image by a mixture of

three distinct materials, it is also assumed that each incident light photon only comes

in contact with one material, i.e. there is no multiple scattering between materials. If

the surface area proportion of each material is known, then it can be assumed that

the resulting spectra will be a linear combination of the fractional abundances of each

endmember, see Fig. 2.5b. Using this model each pixel in the scene can be expressed by

x =
∑k

i=1 αiEi +w where k is the number of endmembers in the scene, E1,...,Ek are the

endmembers, α1,...,αk are the fractional abundance of each corresponding endmember,

and w is a vector representing the system noise.

2.3.2 Non-Linear Mixing Model

One of the assumptions made in the LMM [30] is that each incident light photon only

comes in contact with one material, and therefore there is no multiple scattering between

materials. Several studies have shown [31–37] that this is not always the case, when
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the pixel surface area contains intimate mixtures (i.e. when the materials are mixed

on a spatial scale smaller than the path length of a photon [38]), see Fig. 2.6. This

occurs for materials like sand and gravel, the light will generally interact with multiple

particles before returning to the sensor as multiple scatter light. This causes the received

radiance by the sensor to not be a linear combination of the fractional abundances

of each material but a non-linear mixture based on the multiple scattering effects of

each material. Despite the advantages of using a non-linear mixing model for intimate

mixtures, for the purpose of remote sensing this model has not been widely applied.

Because of this for the rest of this thesis we will only be considering the LMM for

analysis as this is the most widely used approach.

Fig. 2.6: The measured radiance of a mixed pixel is a non-linear mixture based
in the multiple scattering effects of each material present in the pixel

2.4 Data Reduction

One of the preprocessing steps in the anomaly detection process is the data reduction

stage (see Fig. 2.1). Due to the volume of hyperspectral data for many practical ap-

plications in anomaly detection, it is not always possible to store or transmit the full

data cube. Therefore various techniques have been developed to reduce the size of the

data, some of these techniques involve lossless compression [39–41], these techniques

allow for a compression of about 3:1. However for some applications, this is still insuffi-
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cient, other techniques look at performing onboard preprocessing of the data before it is

stored or transmitted. These algorithms generally quickly determine pixels or bands in

the data that contain no useful information, the criteria for determining the usefulness

of data obviously change dependant on application. The rest of this section describes

data reduction techniques for defence applications where the aim is to locate man-made

anomalies.

2.4.1 Band Reduction

Mutual Information (MI) is a measure of the independence between two random vari-

ables and was first used by Pluim [42] on greyscale medical images, this was later

adapted to work for hyperspectral images [43,44]. The mutual information between two

greyscale images is defined by Equation 2.1. This technique works by calculating the

Shannon Entropy [45] between bands, to determine a relevant subset of bands for the

application.

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (2.1)

where,

X and Y are the two images

H(X) is the Shannon Entropy of the image X

H(Y ) is the Shannon Entropy of the image Y

H(X,Y ) is the Joint Entropy between images X and Y

Other techniques for band reduction focus on finding bad bands in the data, these

bad bands can occur in a number of ways, due to atmospheric attenuation in the at-

mosphere or simply the spectral sensitivity of the hyperspectral sensor. The bands

with a low signal to noise ratio (SNR) result in poor performance from unmixing algo-

rithms due to the inconsistent data. A method developed by Keshava [46] focuses on

maximising the angle between spectra of distinct objects by using the spectral angle

mapper (SAM) [47]. Another technique by Vibhute [48] looks at analysing bands with

low signal-to-noise ratio (SNR) and a canonical based analysis by Tu [49].
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2.4.2 Pixel Reduction

Similar to the band reduction techniques, the aim of pixel reduction techniques is to

classify pixels in the image that relate to the background, e.g. trees, grass and water.

The most widely used index for remote sensing proposed by Rouse [50] is the nor-

malized difference vegetation index (NDVI) [51–53], this can differentiate between vege-

tative and non-vegetative surfaces and is particularly useful when looking for man-made

anomalies. The NDVI value for each pixel can be calculated by using Equation 2.2.

NDVI =
NIR−VIS
NIR + VIS

(2.2)

where,

NIR is the value of the spectrum at the near infrared wavelength (approx. 750nm)

VIS is the value of the spectrum at the green visible wavelength (approx. 650nm)

Fig. 2.7: Vegetation vs. non-vegetation NDVI

Because a large portion of visible light incident on vegetation, e.g. plants, trees, etc.,

is absorbed and a large amount of the near-infrared (NIR) light is reflected; this gives
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a large NDVI value. In the case of non-vegetative materials less NIR light is reflected

and more visible light is reflected than for vegetation, this, therefore, yields a small

NDVI value, see Fig. 2.7. Because of this all pixels with an NDVI value above a certain

threshold can be classified as vegetative and removed from the stored or transmitted

data.

Another technique for the removal of background pixels was proposed by Bochow [54]

that looks at low albedo classification. This works by creating an image containing only

the near-infrared (NIR) bands, all bands within the range of 860nm - 900nm, a mean

spectral image can be taken of all these bands to produce a greyscale map of the image.

Due to the absorption of NIR light by water, low radiance values measured in these

bands relate to water pixels.

(a) Lake St. Clair, MI,
US [55]

(b) Bogachiel State
Park, WA, US [55]

(c) Sleeping Bear
Dunes National
Lakeshore, MI,

USA [55]

(d) Swan Flats, UT,
US [55]

(e) San Joaquin River,
CA, US [55]

(f) Beltsville, MD,
USA [56]

(g) Gulf of Mexico
Wetlands [56]

(h) Cuprite, NV,
USA [56]

Fig. 2.8: NDVI (green) and low albedo (blue) classification for various hyperspectral
images

In a few of these example images shown in in Fig. 2.8:, there is no water present, using

the low albedo classification algorithm [54], the shadowed vegetation in these images is

classified as water because they share many of the same spectral features. To be able
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to differentiate between shadowed vegetation and standing water. This technique was

further developed by Bochow [57] to detect the location of shadows in the image and

then remove any of these pixels that had been previously been classified as water. The

shadows in the image are detected by looking at the NIR region of the image, due to

water absorption in this region the radiance from water bodies decreases between 710nm

- 740nm and 815nm - 880nm. Therefore once the original mask is created classifying

all the pixels with a low albedo, any pixels that match the following two checks are

eliminated, see Equations 2.3 and 2.4.

Lobs(740)− Lobs(710) ≥ 0 (2.3)

Lobs(880)− Lobs(815) ≥ 0 (2.4)

where Lobs(λ) is the radiance measured by the camera at the selected wavelength (λ)

2.5 Atmospheric Correction

The second preprocessing step in the anomaly detection process is atmospheric cor-

rection (see Fig. 2.1). This can be an improtant step in aerial hyperspectral imagery

because as well as the reflectance characteristics of the ground, the radiance received by

an aerial hyperspectral camera depends on the atmospheric attenuation at the specific

location, the time of the measurement and the spectrum of the incident solar illumina-

tion. Atmospheric attenuation of the received light is caused due to the many aerosols

in the atmosphere. Out of the thirty gases that make up the atmosphere, only eight of

these have visible absorption effects on hyperspectral images in the Visible to SWIR re-

gion of the spectrum. These eight gases are water vapour (H2O), carbon dioxide (CO2),

ozone (O3), nitrous oxide (N2O), carbon monoxide (CO), methane (CH4), oxygen (O2)

and nitrogen dioxide (NO2) [58]. Another reason for atmospheric attenuation is caused

by aerosols in the atmosphere. These can be naturally occurring aerosols, e.g. dust and

volcanic aerosols, as these are made up of several types minerals each of which can

either scatter or absorb light [59, 60]. Other aerosols include man-made aerosols, e.g.
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smoke and sulphate aerosols which also have effects on the measured radiance by a

hyperspectral camera [61,62].

Because of all these effects, since the mid-1980s, there have been various techniques

developed to attempt to remove or reduce the atmospheric effects in hyperspectral data.

These techniques can be split up into two main categories, the scene based and radiative

transfer based approaches, see Table 2.2.

2.5.1 Scene Based Approaches

The Internal Average Relative Reflectance (IARR) technique developed by Kruse [64] in

1988 was one of the first scene-based approaches developed. This works by calculating

an average pixel spectrum for the image, then any pixel vector can be divided by this

average pixel spectrum to produce a relative reflectance for that pixel. Another technique

developed around this time by Chavez [63] was the Dark Object Subtraction (DOS)

method. This method works by assuming the light measured by the sensor to be a

combination of the directly reflected and scattered light. As materials like water and

tarmac reflect no or very little light, the light measured by the sensor for these pixels

must be from the scattered light contribution. By subtracting the spectrum for these

pixels from the rest of the image, the atmospheric scattering can be removed. Flat field

Description Type Author
Dark Object Subtraction Scene-Based Chavez [63]
Internal Average Relative Reflectance Scene-Based Kruse [64]
Flat Field Scene-Based Roberts [65]
Empirical Line Scene-Based Conel [66]
Log Residuals Scene-Based Green [67]
Atmospheric Removal Algorithm Radiative Transfer Gao [68]
High-accuracy ATmospheric Correction
for Hyperspectral Data

Radiative Transfer Qu [69]

Atmosphere CORrection Now Radiative Transfer Kruse [70]
Atmospheric and Topographic Correction Radiative Transfer Richter [71]
Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes

Radiative Transfer Adler [72]

Moderate Resolution Atmospheric Trans-
mission

Radiative Transfer Berk [73]

Table 2.2: Types of atmospheric correction algorithms
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calibration developed by Roberts [65] works on the assumption that there is at least

one spectrally neutral area in the image, i.e. there is very little variation in this area for

each band. The mean of this area can then be used to calculate a relative reflectance

spectrum for each pixel. The empirical line calibration approach proposed by Conel [66]

uses measurements of both a light and dark pixel to derive a gain and offset curve that

can be used to estimate the surface reflectance.

2.5.2 Radiative Transfer Approaches

Due to the limitations of the scene-based approaches, towards the end of the 1980s

Alexander Goetz first proposed the need for a radiative transfer based approach to at-

mospheric correction [74]. Soon after this, the first radiative transfer based approach

was developed by Gao [68] called the Atmospheric Removal Algorithm (ATREM) by

assuming the horizontal surfaces in the image are Lambertian this technique retrieves

scaled surface reflectance by simulating the atmospheric transmittance and aerosol scat-

tering of the atmosphere at the time of measurement. Since then there have been a

number of radiative transfer based approaches developed, e.g. High-accuracy ATmo-

spheric Correction for Hyperspectral Data (HATCH) [69], Atmosphere CORrection Now

(ACORN) [70], Atmospheric and Topographic Correction (ATCOR) [71] and the Fast

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) [72].

2.5.3 Statistical Scene Based Approach

In 2004 Bernstein proposed the Quick Atmospheric Correction (QUAC) algorithm due

to the fact that none of the methods described above provide high accuracy, are quick

to run and do not require any prior known information. This technique requires only

an approximate identification of sensor band locations and radiometric calibration. It

works by producing a spectral library for both natural and man-made materials in the

scene using SMACC, then uses these to calculate a gain and offset based on a reference

library to atmospherically correct the data. Because of this QUAC is significantly faster

and simpler than radiative transfer based approaches and provides better results than

most scene based techniques. However, it has been shown by Smith [75] that radiative
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transfer methods still produce far better results.

This research has shown that there is indeed a need for a fast and easy to use ra-

diative transfer based atmospheric correction technique, that still produces comparable

results with the current radiative transfer approaches.

2.6 Spectral Unmixing Algorithms

An example of a complete spectral unmixing technique is the Sequential Maximum

Angle Convex Cone (SMACC) technique which was first proposed by Gruninger [76].

This method works by first calculating the length of each pixel vector in the image.

The pixel vector with the maximum length is then selected as the first endmember and

using this a subspace projection is performed with every other pixel vector in the image,

to calculate the abundance of that endmember (pixel vector) in each pixel. The final

step is to remove all reference to this endmember from the image; this is done by using

Equation 2.5. Using this equation a new updated image is produced which the process

can be repeated on until all endmembers are found, another method that uses the same

approach is Convex Cone Analysis (CCA) [77].

h1 = h0 − EM ×AI (2.5)

where,

h0 is the original data set

h1 is the updated data set

EM is the spectral profile of the endmember selected, and

AI is the corresponding abundance image for the endmember selected

Other types of unmixing algorithms use a projection onto a simplex rather than

onto a convex cone, the Pixel Purity Index (PPI) proposed by Chaudry [78] uses this

approach. This works by first assuming that there is one pure pixel in the dataset for

every material, an assumption that for all datasets may not hold true. A large set of

random unit vectors "skewers" are generated and every pixel is then projected onto the



Chapter 2. Background and Related Work 23

first skewer and the two pixels that relate to the maximal and minimal projection are

both given one point. This process then continues for the remaining skewers and at the

end the pixels with the highest number of points are considered to be the endmembers.

An example of how this process works for a 2D dataset with three skewers is shown

below, see Fig. 2.9. Other examples of these types of algorithms include Vertex Com-

ponent Analysis (VCA) [79], Simplex Growing Algorithm (SGA) [80] and Maximum

Distance (MaxD) [81].

Fig. 2.9: Pixel purity index 2D example

2.7 Anomaly Detection Algorithms

Unlike complete spectral unmixing techniques described previously, anomaly detection

techniques work by determining pixels in the image that are spectrally distinct from the

background pixels. In these types of algorithms, there is no estimation of the underlying

materials making up the mixed pixel. This approach works under the assumption that

all targets are at least one pixel in size and therefore have at least one pure pixel in

the image, this constraint can be slightly relaxed to encompass targets that will be the

dominant material in a mixed pixel.

The Reed-Xiaoli Detector (RXD) detector proposed by Reed and Yu [82] is an

example of one of these techniques, this can be considered as the inverse operation to
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Principal Component Analysis (PCA) [83]. PCA works by compressing all the major

features of an image into a few principal components based on the eigenvectors of the

covariance matrix, therefore targets that are small will have low eigenvectors and will

be ignored by PCA. The RX detector works by producing high values for spectra with

low eigenvectors, the main problem with this technique is attempting to separate small

eigenvalues from noise in the data. Another example of these type of techniques involves

using the Mahalanobis Distance (MD) first proposed by Mahalanobis [84] and adapted

for HSI by Mark [85]. To calculate the MD Distance (MD(x)) in Equation 2.6 for an

image pixel vector (x) requires first calculating a mean pixel vector (µ) containing the

average pixel intensity values for all the bands or wavelengths measured, as well as an

estimated covariance matrix (Γ) of the pixel intensity values for all of the bands using

Equation 2.7, where N is the number of pixels in the image. Doing this for every pixel

vector gives a measure of how far that pixel is from the mean pixel vector where larger

values indicate more extreme pixel vectors.

MD(x, µ) =
√

(x− µ̂)TΓ−1(x− µ̂) (2.6)

Γ̂ =
1

N

N∑
n=1

(x− µ̂)(x− µ̂)T (2.7)

where

x is the pixel vector,

µ is the mean pixel vector,

(·)T is the vector transposed,

Γ is the estimated covariance of the background, and

N is the number of pixels
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2.8 Practical Applications

2.8.1 Defence and Security

Many of the initial advances in hyperspectral imaging are owed to military funded

projects, because of this there are a number of practical applications for the technology.

In [86] a target detection method is proposed for the classification of airborne aircraft

using AVIRIS hyperspectral data in the wavelength range of 370 to 2510nm. A band

reduction method is first applied to remove water absorption, low SNR and bad bands,

then a low-rank regularised least squares method based matched subspace detector is

proposed. The results are shown in Fig. 2.10.

The automatic target detection and classification algorithm and desired target de-

tection and classification algorithm proposed in [87] and later improved for real-time

processing in [88]. For the case of known targets, an orthogonal subspace projection is

performed to find any reference to the target spectrum in the pixels of the image. For

the case of unknown targets it attempts to solve the linear mixing model to produce

pure pixels then uses the undesired target signature annihilator developed in [89] to

remove any undesired pixel signatures.

In [90] a technique to remove the effects of the atmosphere, ground conditions,

scene temperature, solar illumination, and sensor response on hyperspectral imaging for

military vehicle detection is proposed. This works by trying to transform the distorted

spectra based on the covariance of neighbouring pixels.

(a) RGB image (b) Detection results

Fig. 2.10: Detection of aircraft over San Diego, CA, USA [86]
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2.8.2 Precision Agriculture

The technique proposed in [91] looks at improving the existing crop classification tech-

niques. Using hyperspectral images in the range of 400 to 850nm various types of rice

in the Jintan farm, China are classified using a combination of PCA and vegetation

feature band sets, the results from this are shown in Fig. 2.11.

In [92] the monitoring of leaf nitrogen concentrations in rice from a UAV-based

hyperspectral camera is proposed. Using various vegetation indices it is shown that by

using a hyperspectral camera it is possible to derive leaf nitrogen concentration.

Neural networks, support vector machine and k-nearest neighbour (kNN) classifiers

were compared in [93] for hyperspectral imagery captured from a UAV. It was found

that using a kNN it is possible to classify red clover ground coverage with an accuracy

of 91%.

(a) False-colour image (b) Ground truth (c) Classification results

Fig. 2.11: Classification of various Japanese crop types [91]

2.8.3 Environmental Monitoring

In [6] using the fusion of NDVI and the Haralick texture features [94] obtained from the

greyscale image for NIR aerial hyperspectral imagery it is possible to accurately classify

the vegetation on the ground, the results from this are shown in Fig. 2.12.

Boreal and Arctic region lakes have a very high concentration of coloured dissolved

organic matter (CDOM) making signals received from hyperspectral sensors over these

lakes almost negligible in the VIS region of the spectrum (400 - 700 nm) due to the

absorption by CDOM, except for peaks at 710 and 810nm. In [95] it is shown there is a

good correlation between the 810nm peak and phytoplankton organic biomass but no
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correlation between it and phytoplankton inorganic biomass.

In [96] the spectra of zoisite, mica, quartz, alunite, cummingtontie, sodalite, dolomite,

anorthite, and actinolite are extracted from VNIR hyperspectral data using the PPI [78]

and the abundance of each is then found in the image pixels using a combination

of Binary Encoding [97], the Spectral Angle Mapper [98], and Spectral Feature Fit-

ting [99–102]

2.9 Summary

In the first section of this chapter, it was explained what hyperspectral imaging was,

how it compared to conventional imaging systems, the various regions of the EM spec-

trum that current systems can also measure and the subtleties between multispectral,

hyperspectral and ultraspectral were also all explained. The next section explained the

issues caused by insufficient spatial resolution on the ground causing ’mixed pixels’ and

how this effect can be modelled. Following, the next three sections each covered an in-

dividual stage in the target detection process these were Data Reduction, Atmospheric

Correction and Target/Anomaly Detection. A summary of some practical applications

for aerial hyperspectral imagery was presented in the final section.

(a) Vegetation density (b) Water deficit (c) Crop stress

Fig. 2.12: Vegetation classification using NDVI [6]
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Anomaly Detection in Aerial

Hyperspectral Imagery

3.1 Introduction

Anomaly detection for the purpose of hyperspectral imaging is the process of applying a

binary classification to the image, pixels are either labelled as an anomaly (a pixel that

is spectrally different from the background) or as a background pixel. Unlike traditional

target detection algorithms, e.g. Spectral Angle Mapper (SAM) [47], Modified Spectral

Angle Mapper (MSAM) [103], Spectral Correlation Angle (SCA) [104], Spectral Gradi-

ent Angle (SGA) [104], Extended Spectral Angle Mapper (ESAM) [105] and Adaptive

Coherence Estimator (ACE) [106], where prior knowledge of the target spectral char-

acteristics is known. Anomaly detection is performed by determining the pixels in the

image that are spectrally different from the surrounding background pixels [107, 108].

Each of these anomalies can then be defined into separate classes for further study.

In the linear mixing model [30,89] the radiance measured at each pixel is assumed to

be the linear combination of the radiance of each material present in the pixel. The non-

linear mixing model [109–111] the radiance measured is assumed to be a weighted sum

of the radiance of each material within the pixel plus the contribution due to scattering

from both the sun to ground path and ground to sensor path. Pure pixels are considered

to be pixels where there is only one material present in the entire pixel.

28
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In this chapter, the aim is to develop a new anomaly detection technique that is

an improvement over what is currently available. Several anomaly detection techniques

are investigated and used on the raw image data to find anomalous pixels in the image.

The results are then compared with a validated technique for endmember selection,

Sequential Maximum Angle Convex Cone (SMACC) [76].

The rest of this chapter is structured as follows. Section 3.2 introduces the hyper-

spectral data used in this chapter, how, when and where it was taken and how it was

supplied. An introduction to Anomaly Detection is given in Section 3.3. Section 3.4

discusses the uses of the Mahalanobis Distance for the purpose of anomaly detection

in hyperspectral imagery and attempts to improve upon the initial results by altering

some of the key parameters. The Hough Transform is discussed in Section 3.5 and how

by drawing a straight line between the origin and every point in a scatter plot the out-

liers might be found. Section 3.6 proposes using the Hit or Miss transform to detect the

outliers in the scatter plot, while Section 3.7 develops on the results from the previous

section to produce a viable technique. Section 3.8 is devoted to the implementation of

all the proposed techniques and the results produced for each image. A comparison is

also made between an established technique in terms of accuracy and processing speed.

A summary of the contributions is then presented in Section 3.9.

3.2 Image Acquisition

All the data used in this chapter was supplied by BAE Systems Military Air & Infor-

mation, the Defence Science and Technology Laboratory (DSTL) and the University

Defence Research Collaboration (UDRC). The imagery is all remotely sensed aerial hy-

perspectral images acquired from an aeroplane flying at an altitude of approximately

1 km with a mounted hyperspectral sensor. Both images were captured in Salisbury,

Wiltshire in 2014 and are taken in the visible to near-infrared (400 nm to 1000 nm)

region of the spectrum. Fig. 3.1 shows two false colour representations of these images,

also shown in Table 3.1 are additional details about each image.
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(a) Moll Harris, Salisbury, Wiltshire (b) Porton Down, Salisbury, Wiltshire

Fig. 3.1: False-colour representations of hyperspectral images (636nm, 555nm 460nm
respectively for RGB)

Parameter Moll Harris Porton Down
Date 18th May 2014 15th August 2014
Time 11:29 15:17
Latitude 51 °N 51 °N
Longitude −2 °E −2 °E
Altitude 0.781 km 1.197 km

Table 3.1: Dataset details

3.3 Anomaly Detection

Anomaly detection is used in hyperspectral imagery to find materials and objects that

are spectrally different from the image background; Fig. 3.2 shows two example scatter

plots created using two bands of each of the datasets. As both images are mostly trees

and grass which are spectrally similar, there is a large cluster of pixels with similar

radiance values in each band. The targets or anomalies in the scene are the pixels

furthest from these clusters. Pixels closer to the centre are more mixed and ones further

away are purer. By determining these outliers it is possible to detect anomalous objects

or materials in the image that require further attention. Numerous techniques are used

to find anomalies in hyperspectral data [2, 112–114].

Here we try to improve upon the standard MD technique [84] for hyperspectral data

and propose a new method based on the Percentage Occupancy Hit or Miss Transform

(POHMT) [14], to try to improve upon a selected method i.e SMACC.
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(a) Moll Harris data using bands 10 and 57 (b) Porton Down data using bands 40 and 100

Fig. 3.2: Scatter plot for both hyperspectral images

3.4 Mahalanobis Distance

To calculate the MD Distance (MD(x, µ)) in Equation 3.1 for an image pixel vector (x)

requires first calculating a mean pixel vector (µ) containing the average pixel intensity

values for all the bands or wavelengths measured, as well as an estimated covariance

matrix (Γ) of the pixel intensity values for all of the bands using Equation 3.2, where N

is the number of pixels in the image. Doing this for every pixel vector gives a measure

of how far that pixel is from the mean pixel vector where larger values indicate more

extreme pixel vectors.

MD(x, µ) =
√

(x− µ̂)TΓ−1(x− µ̂) (3.1)

Γ̂ =
1

N

N∑
n=1

(x− µ̂)(x− µ̂)T (3.2)

where,

x is the pixel vector

µ is the mean pixel vector

(·)T is the vector transposed

Γ is the estimated covariance of the background

N is the number of pixels
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3.4.1 2D vs 3D vs nD Cases

2D Dataset

Before trying to detect outliers in multivariate data it was first necessary to detect

them in two dimensional data. Using Equation 3.1 the squared MD was calculated for

each point for two randomly selected bands. To determine the outliers the standard

deviation (SD) of the MD was calculated. All points that had a MD larger than one

SD were considered to be anomalies. The results for six random scatter plots are shown

below, see Fig. 3.3.

(a) (b) (c)

Fig. 3.3: Random scatter plots with outliers highlighted

3D Dataset

The selected data was then expanded to include a third randomly selected band, to

simulate a 3D dataset. Using the same method as used in the previous section, the

outliers were found and the results are shown below, see Fig. 3.4.

(a) (b) (c)

Fig. 3.4: Random 3D scatter plots with outliers highlighted
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nD Dataset

(a) Moll Harris (b) Porton Down

Fig. 3.5: Plot of Mahalanobis distance for all pixels, includes line indicating standard
deviation (Green) and variance (Red)

Finally, the selected data was expanded to include all bands between 450nm and 940nm,

as before the same method was used to calculate the squared Mahalanobis distance for

each pixel. The results are shown in Fig. 3.5, also shown are two lines that indicated

the standard deviation and variance of the distances. Unlike before as these lines fall

within the mean of the data, it is not possible to use these as a threshold to find the

outliers of the data. Using the built-in MATLAB function, findpeaks [115], that finds

local maxima of the data by finding points that are larger than both of its neighbours,

the peaks of the distances were found. The amount of peaks was then reduced by finding

the points that were spatially far apart, a limit was set to a minimum distance between

(a) Moll Harris (b) Porton Down

Fig. 3.6: Outliers produced using peaks from Mahalanobis distance plot
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peaks of 5000 pixels. This produced twenty-four peaks for the Moll Harris image and

ten for the Porton Down image, the locations of all of these points were plotted and are

shown below, see Fig. 3.6.

3.4.2 Find Centre of Data

A main component of the MD technique requires the calculation of a covariance matrix

[116], a key factor in this calculation is the estimation of the centre of the data, or the

mean pixel spectrum (µ). Below the standard method along with three new methods

for calculating the centre of the data are described.

Mean Pixel Spectrum

The standard technique is to simply calculate the mean value in each column (band)

this produces a mean pixel spectrum.

Median Pixel Spectrum

Similar to the standard method the median approach calculates the median of each

column (band) to produce a median pixel spectrum.

Interquartile Mean Pixel Spectrum

Using Equation 3.3, the interquartile mean of each column (band) is calculated to

produced an interquartile mean pixel spectrum.

xIQM =
2

N

3N
4∑

i=N
4
+1

xi (3.3)

One-Step Tukey’s Biweight

Another method proposed was to calculate a value for Tukey’s biweight [117] for each

band in the hyperspectral image. This produced a spectral profile that should represent

the centre of each band.
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1. m = median(x)

2. s = median(abs(x(i)−m))

3. u = x−m
(c×s)

4. i = abs(u) <= 1

5. w = ((1− u2)2)× i

6. Tukey′s Biweight =
∑

(w×x)∑
w

where,

x is the pixel vector

c is the tuning constant (typically c = 5)

3.4.3 Centre of Data Results

Having previously used the mean pixel spectrum to calculate the MD for each pixel

in both hyperspectral images (see Equation 3.1). By using the median, interquartile

mean and one-step Tukey’s biweight approaches, the MD was again calculated for both

images (see Fig. 3.7).

(a) (b)

Fig. 3.7: Random scatter plots with mean (blue), median (green), interquartile mean
(purple) and one-step Tukey’s bi-weight (red)
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The results show that there is very little difference between the four methods, there-

fore it can be concluded that due to the massive number of points in the data, regardless

of the method for calculating the centre, all methods proposed produce approximately

the same point.

3.5 Modified Hough Transform Approach

(a) (b)

(c) (d) (e)
Angle (θ) Distance (r)

-45 -7
0 21
45 37
90 31

(f)

Angle (θ) Distance (r)
-45 7
0 31
45 37
90 21

(g)

Angle (θ) Distance (r)
-45 41
0 0
45 37
90 11

(h)

Fig. 3.8: Cartesian to polar coordinates

The points (20,30), (30,20) and (40,10) can all be connected by the line y = −x + 4,

see Fig. 3.8. To find this line using the Hough Transform [118] every point needs to be

converted into the polar coordinate system. This is done by first defining a finite set
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of angles between −1
2π and 1

2π, an accumulator matrix is created, where each column

corresponds to the angles of θ and the rows correspond to the distances calculated for

r. For every point in the image, each distance for r for every angle θ is calculated,

see Equation 3.4, as each distance is produced the corresponding element in the blank

matrix is increased by one. Once this is complete the highest values in the accumulator

matrix correspond to the lines in the image. In the example, see Fig. 3.8, all three points

lie on the same line therefore when converted into the polar domain these three points

have the same distance from the origin (r) when θ is equal to 45◦.

r = x cos(θ) + y sin(θ) (3.4)

where,

x and y are the Cartesian coordinates of the point

θ is a set of angles

Based on this idea, another method that was looked at for detecting outliers in a

scatter plot was to draw a line between each point and the origin of the plot, then

measure the angle between this line and the x-axis, see Fig. 3.9. This would create a set

of angles for every point in the image, a histogram could then be created for all these

points. Again using the built-in MATLAB function, findpeaks [115] the local maxima

for this histogram can be found. Any peaks that have zero or a very small number of

angles neighbouring can be considered to be anomalies.

Fig. 3.9: Scatter plot angles diagram
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The process detailed above was then performed on three random sets of bands from

the Moll Harris image. The resulting span of angles produced is shown below, see Fig.

3.10.

(a) Band 8 vs 23 (492.95nm vs
577.79nm)

(b) Band 12 vs 35 (512.26nm
vs 647.28nm)

(c) Band 41 vs 67 (682.01nm
vs 834.72nm)

Fig. 3.10: Span of angles for Moll Harris 18-5 1129 dataset

Having produced angles for every point in the scatter plot, a histogram was created

to combine all these angles, so that any outliers could be found using the method

discussed previously, see Fig. 3.11.

(a) Band 8 vs 23 (492.95nm vs
577.79nm)

(b) Band 12 vs 35 (512.26nm
vs 647.28nm)

(c) Band 41 vs 67 (682.01nm
vs 834.72nm)

Fig. 3.11: Histogram for each set of angles

Because there is such a large number of points at the centre of the scatter plot any

small peak relating to outliers cannot be seen due to the size of these central angles.

To make these outliers more prominent a log scale was used for the number of points

relating to each angle, see Fig. 3.12. From this, it is now possible to see several peaks

that were not visible before.
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(a) Band 8 vs 23 (492.95nm vs
577.79nm)

(b) Band 12 vs 35 (512.26nm
vs 647.28nm)

(c) Band 41 vs 67 (682.01nm
vs 834.72nm)

Fig. 3.12: Histogram for each set of angles using log scale

Using the built-in MATLAB function, findpeaks [115] it was attempted to extract

these local maxima from the histogram. These local maxima were then related to the

angles that produced them and then plotted on the original scatter plot, see Fig. 3.13.

The resulting plots show that the majority of peaks found in the histogram did not

relate to outliers, therefore another approach would be necessary to find the outliers in

these scatter plots.

(a) Band 8 vs 23 (492.95nm vs
577.79nm)

(b) Band 12 vs 35 (512.26nm
vs 647.28nm)

(c) Band 41 vs 67 (682.01nm
vs 834.72nm)

Fig. 3.13: Local maxima for each histogram

3.6 Hit or Miss Transform Approach

Mathematical morphology was first introduced by Matheron in 1974 [119] and Serra

in 1982 [120], this was later expanded by Heijmans in 1994 [121]. One of these image

processing tools is the hit-or-miss transform [119,120]. The Hit or Miss transform works

by taking an erosion and dilation of an image by two structuring elements (SEs). A SE
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in mathematical morphology is defined as a subset of the image that is used to analyse

the image under study. These SEs can have any shape and size, but are usually defined

by the features in the image that are meant to be highlighted or removed [122]. An

erosion works by taking the minimum of all the values in the SE and a dilation works

by taking the maximum, see Fig. 3.14a. This means that points, where the dilation is

less than the erosion, will only occur when the background SE fits around the object

and the foreground SE fits inside it, see Fig. 3.14b.

(a) Erosion and Dilation (b) Erosion and Dilation for HMT

Fig. 3.14: Erosion, Dilation and HMT Diagrams

Based on this, the next method looked at for the process of anomaly detection, was

to use the hit or miss transform (HMT) to detect any point in the scatter plot that was

a target or anomaly. This was done by first dividing the scatter plot into several small

cells, the cell size could vary between 5x5 to 150x150 pixels wide. Fig. 3.15 shows an

example for both images.

(a) Moll Harris data (b) Porton Down data

Fig. 3.15: Scatter plot divided into cells
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This process was performed on the Moll Harris scatter plot created by using bands

8 vs 23 (493nm vs 578nm), a cell size of 50x50 was used for this initial test. The new

image that was created was therefore 1/50 th of the size of the original scatter plot, the

values for this were found by looking at the individual cells in the scatter plot. Every

cell that had at least one white pixel contained within it, the corresponding pixel in the

new image was set to a value of 1, see Fig. 3.16.

(a) (b)

Fig. 3.16: Moll Harris scatter plot for bands 8 vs 23 (493nm vs 578nm)

As the outliers in each scatter plot are not all found in the same direction, four sets

of structuring elements were required to detect each different case, see Fig. 3.17.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.17: (a-d) Foreground, (e-h) Background structuring elements

Using each of these sets of structuring elements the hit or miss transform was run on

the newly created images. This produced four output images, see Fig. 3.18, each of these

images shows points in the scatter plot that have been defined as outliers using each
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of these SEs. The four images were then combined into one image so that all outliers

could be shown in one image, see Fig. 3.19.

(a) Top Left (b) Top Right (c) Bottom Left (d) Bottom Right

Fig. 3.18: Hit or Miss Transform output for each set of structuring elements

The results from this show that while the HMT is an improvement over the modified

Hough transform technique, however there are still too many false positives found in

the centre of the data. This is thought to be due to the binary nature of the HMT,

therefore a more robust method of finding these outliers is necessary.

Fig. 3.19: Combined Hit or Miss Transform output

3.7 Percentage Occupancy Hit or Miss Transform

There have been many implementations of the standard Hit or Miss Transform [123–

131], however very few work in the presence of noise. One implementation that does

work in the presence of noise first introduced by Murray in 2009 [14, 132] is the Per-

centage Occupancy Hit or Miss Transform (POHMT). Therefore this is a more robust

implementation of the HMT. Using the process outlined previously for the standard

HMT, this can be easily modified to take advantage of the POHMT robustness to noise

to detect outliers in the scatter plot.



Chapter 3. Anomaly Detection in Aerial Hyperspectral Imagery 43

(a) Moll Harris data (b) Porton Down data

Fig. 3.20: Scatter plot divided into cells

The first step was to divide the scatter plot into several small cells, depending on

the data and scatter plot chosen (Fig. 3.20). As before the cell sizes vary from 5x5 to

150x150 pixels wide, also as before the scatter plot is split into cells however unlike for

the previous method the number of pixels in each cell was counted and this value was

taken as the corresponding pixel value in the new image.

(a) (b) (c) (d)

Fig. 3.21: Four states used to detect outliers; blue is foreground, red is background

Using the same four SEs as selected before (see Fig. 3.21). To find the outliers in the

scatter plot, the ratio between the number of pixels in the foreground (CFG ; blue zone)

and background (CBG; red zone) was examined (Fig. 3.21). This ratio is calculated for

every pixel using Equation 3.5, where n is now the number of pixels in the cell.

R =

∑
CFG∑
CBG

(3.5)

Using the Moll Harris scatter plot for Bands 8 vs 23 (493nm vs 578nm), the ratio

for every point in the scatter plot was calculated for each of the four states and is

plotted below (see Fig. 3.22). Using the built-in MATLAB function, findpeaks [115],
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the local maxima for each of these plots were found and those peaks were considered to

be outliers (see Fig. 3.23).

Fig. 3.22: Ratios for each condition

Fig. 3.23: Left 5x5 blocks, Middle 10x10 blocks, Right 20x20 blocks

The results show that using the POHMT we are able to detect all outlying pixels

in the scatter plot. By increasing the cell size we are also able to define how many

points are detected, with a smaller cell size producing more points and a larger cells

size producing fewer.

3.7.1 Band Selection

As there are over 100 bands in each of the images various methods were explored to

create the scatter plot that the POHMT technique can be used on. The four best that
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have been explored so far are detailed below.

Random

The first and most basic technique was to use two randomly selected bands to create

the scatter plot. These bands must be kept at least 20% of the total number of bands

apart. The idea behind this is that it gives a very quick way of detecting outliers in the

dataset.

5 Random

A variation of the random technique is to do the random process 5 times. Cumulate

the outliers found for all five, then discard all the outliers that only appear once. This

method is slightly slower than the first but allows for more accurate outlier detection

as more of the data is included in the calculations.

Principal Component Analysis (PCA)

The next alternative approach for band selection that was looked at was based on prin-

cipal component analysis first proposed by Pearson in 1901 [133]. The idea was to use

the first two principal components to create the scatter plot. The POHMT technique is

then performed on this scatter plot and the outliers are produced as normal. The idea

behind this is that in the original method two randomly selected bands are used, there-

fore the majority of the data is discarded. By using the first two principal components,

this scatter plot more accurately represents the entire dataset [134].

Normalized Difference Vegetation Index (NDVI)

The final method that was explored was to use a variation of the NDVI [50,135]. This is

normally used to classify pixels that are vegetative and non-vegetative. This is done by

looking at a band in the near-infrared (NIR) region, approximately 750nm, and a band

in the visible region, approximately 650nm. These points in the spectrum are either

side of the chlorophyll edge, or red edge, where there is a rapid change in reflectance

of vegetation. Equation 3.6 is used to calculate the difference between the bands. An
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example of how this can be applied is shown in Fig. 3.24. The idea behind this is it

would allow us to select bands that would highlight man-made targets.

NDV I =
NIR− V IS
NIR+ V IS

(3.6)

(a) Moll Harris data (b) Porton Down data

Fig. 3.24: NDVI plot. Low value indicates non-vegetative pixel, high value indicates
vegetative surface

3.8 Results and Analysis

Before it would be possible to compare any produced techniques against any existing

techniques it was necessary to locate every target in both images, see Fig. 3.25.

(a) Moll Harris (b) Porton Down

Fig. 3.25: Target locations

Both the SMACC and MD algorithms were then run on both dataset the results are

shown in Figs 3.26 and 3.27.Also shown below are statistics for targets detected, targets
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missed and false positives for each algorithm, see Table 3.2. The results show that for

the Moll Harris dataset the SMACC algorithm produces the best results as it detects 4

out of the 5 targets. For the Porton Down dataset the results are fairly similar and the

SMACC algorithm is only slightly better as it produces fewer false positives. From this

it is confirmed that there is indeed room for improvement on both these algorithms.

(a) Moll Harris data (b) Porton Down data

Fig. 3.26: SMACC results

(a) Moll Harris data (b) Porton Down data

Fig. 3.27: Mahalanobis distance results

Dataset Algorithm Targets Detected Targets Missed
Moll Harris SMACC 4 1
Moll Harris MD 2 3
Porton Down SMACC 5 3
Porton Down MD 5 3

Table 3.2: SMACC and MD results for both datasets

As the proposed algorithm has several variables that will each produce different
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results, in order to compare the methods, a ground truth for the image was created;

see Fig. 3.28. Each separate algorithm was then run on the image to produce a set of

targets. This was then compared with the ground truth and the score was calculated

by using Equation 3.7.

Score =
Targets Found

No. of Targets
(3.7)

(a) Moll Harris data (b) Porton Down data

(c) Moll Harris data (d) Porton Down data

Fig. 3.28: Ground truth

For every method a cell size from 5x5 to 150x150 was used going up in increments

of 5. As both the PCA and NDVI produce the same results every time, these were both

run once and the results recorded. Due to the random nature of the "Random" and "5

Random" techniques, these were both run 1000 times and the average score for each cell

size was recorded. The results are shown in Fig. 3.29. Also shown are the two standard

anomaly detection approaches discussed earlier, the Sequential Maximum Angle Convex

Cone [76] and Mahalanobis Distance [84].
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(a) Moll Harris data (b) Porton Down data

Fig. 3.29: Results for each algorithm for every cell size

3.8.1 Speed Test

Although in some cases the POHMT will calculate the anomalies faster than both the

other techniques, due to the random nature of the method the time is not consistent

compared with the other two, see Fig. 3.30. For cell sizes between 20 and 50, the time

for all techniques except the POHMT using the PCA bands is similar. When the cell

size is increased beyond 70 pixels the time taken also increases quite drastically.

(a) Moll Harris data (b) Porton Down data

Fig. 3.30: Speed test for each algorithm on both datasets

3.9 Summary

For the purpose of aerial hyperspectral imagery anomaly detection is a very important

area. In this chapter, we proposed a new type of anomaly detection technique based on

the Percentage Occupancy Hit or Miss Transform [14], as well as trying to adapt and

improve upon the Mahalanobis Distance [84] for several remotely sensed hyperspectral
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images. Both techniques were then used on two hyperspectral images, each with various

different targets present, the results were then compared with an established technique

for endmember extraction the Sequential Maximum Angle Convex Cone [76].

One of the key parameters for this technique is the initially selected bands to create

the scatter plot. It was discussed in detail the various methods that could be used

to select these bands, however without any prior knowledge of the target, which for

the majority of practical applications is unlikely, it proved very difficult to select any

optimal bands that would display all targets. The best that can be achieved by using

this technique is to display potential target locations and for applications where there

is a limit on data transmission or storage, this could be used to send or store only the

points of interest where the rest of the data could be discarded. Another key parameter

is the cell size, even from the limited data available by exhaustively trying every cell

size between 5x5 and 150x150 it is clear that there is no one cell size that will suit every

dataset or even one cell size to suite each image. Due to the nature of how the scatter

plot is created there are numerous factors that can change the cell size required, e.g. bit

depth of the data, spectral reflectivity and atmospheric absorption in bands selected.

For the majority of cell sizes, this method does not yield a better result. However,

the main object of this chapter was to produce an improved anomaly detection method.

Under certain circumstances, this has been achieved using the POHMT with a pair of

random bands selected, see Fig. 3.29, as it outperforms all the current anomaly detection

techniques tested.



Chapter 4

Atmospheric Modelling Using

MODTRAN for VNIR Imagery

4.1 Introduction

For aerial hyperspectral imagery, target detection is a very important research area,

one of the key components of this target detection process is the atmospheric correction

stage. When a hyperspectral camera takes an image of a scene, the radiance received by

the camera can be expressed as a combination of the ground reflectance characteristics,

the atmospheric attenuation (see Fig. 4.1a), the atmospheric scattering and the solar

illumination spectrum, excluding the reflectance characteristics of the ground the rest

(a) Simulated transmittance spectra of atmo-
spheric aerosols using Atmospheric Removal
Program (ATREM) [136]

(b) Atmospheric scattering

Fig. 4.1: Atmospheric effects on aerial hyperspectral imagery

51
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are all dependent on the location and time of the measurement. Shown in Fig. 4.1 are

the three paths that the light measured by the observer will take. The main path (red)

is the light that is directly reflected off the object, the scattered light (blue) is the light

that is reflected off some aerosol in the atmosphere and the adjacent light (green) is the

light that is reflected off a material near to the object being measured and this light is

diverted back to the observer by aerosols in the atmosphere [137].

The atmosphere is made up of approximately thirty gasses, some of these such as

water vapour (H2O), carbon dioxide (CO2), ozone (O3), nitrous oxide (N2O), carbon

monoxide (CO), methane (CH4), oxygen (O2) and nitrogen dioxide (NO2) cause light on

both the sun to ground and ground to observer path to be absorbed [58]. Fig. 4.1a shows

the affects these eight gases have in the 400 nm to 2500 nm region of the spectrum [136].

Another aerosol that significantly affects the measurement of hyperspectral data is dust,

as it is composed of several different types of minerals, the particles that make up the

dust both absorb and scatter light. The third and final type of aerosols are those that

are man-made, these include both smoke from burning trees and sulphate aerosols from

burning either coal or oil.

The next issue that needs to be considered is the viewing zenith angle (see Fig.

4.2), for this application, it can be assumed that this is 180 degrees, directly above and

looking down on the object. The solar zenith angle, however, is dependent on the time,

day and location which will be different for each data cube.

Fig. 4.2: Viewing and solar zenith angle

Because of all these effects since the mid-1980s, there have been various techniques

developed to attempt to remove or reduce the atmospheric effects in hyperspectral
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data. [63,64,66–70,72].

MODTRAN may be used to estimate certain key absorption and scattering param-

eters pertaining at the time of measurement, e.g. atmospheric profile, water vapour

content, carbon dioxide mixing ratio, observer altitude, viewing zenith angle, date, time

and location. In this chapter, the aim is by using MODTRAN, create a look-up table

in which these parameters change, this could then be used to convert recorded radi-

ance domain hyperspectral images into reflectance domain images that can be used for

improved spectral matching purposes.

The rest of this chapter is structured as follows. Section 4.2 introduces the hy-

perspectral data and the key parameters about each image necessary to complete a

MODTRAN simulation. An initial simulation is then performed using the PcModWin

5 [138] software. The process of creating an interface in MATLAB [139] to read and

write MODTRAN LTN files is detailed in Section 4.3. Following this, the process of

creating a batch simulation that can be used to create a MODTRAN look-up table is

detailed in Section 4.4. Section 4.5 discusses the various user input methods, and how

they can be used to set-up a batch simulation. Using this developed interface, in Section

4.7 detailed analysis is performed on various parameters of a MODTRAN simulation to

determine which of these parameters are important and which are not. A summary of

the contributions is then presented in Section 4.9.

4.2 Hyperspectral Data

4.2.1 Details

The only two data cubes initially available where all the necessary details that have to

be known to complete a MODTRAN simulation were the Moll Harris and Operation

7 data cubes (see Fig. 4.3). These were both supplied by BAE Systems Military Air

& Information and are remotely sensed visible to near-infrared hyperspectral (VNIR)

imagery. Shown below in Table 4.1 are the required parameters for each data cube to

complete a MODTRAN simulation.
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(a) Moll Harris (b) Operation 7

Fig. 4.3: False-colour representations of hyperspectral images (636nm, 555nm 460nm
respectively for RGB)

Moll Harris 18-5 1129 OP7 18-5 1119
Height of Sensor 0.781km 0.781km
Time 11:29am 11:19am
Day 18th May 18th May
Latitude 51◦N 51◦N
Longitude 2◦W 2◦W
Atmospheric Profile1 Sub-Arctic Summer Sub-Arctic Summer
1 Atmospheric profile selected by using Table 4.2

Table 4.1: Dataset details

Latitude (°N) Jan March May July Sept Nov
80 (Greenland) SAW SAW SAW MLW MLW SAW
70 (Alaska) SAW SAW MLW MLW MLW SAW
60 (Oslo) MLW MLW MLW SAS SAS MLW
50 (Prague) MLW MLW SAS SAS SAS SAS
40 (Madrid) SAS SAS SAS MLS MLS SAS
30 (Cairo) MLS MLS MLS T T MLS
20 (Mexico City) T T T T T T
10 (Ho Chi Minh City) T T T T T T
0 (Singapore) T T T T T T

-10 (Lima) T T T T T T
-20 (São Paulo) T T T MLS MLS T
-30 (Bloemfontein) MLS MLS MLS MLS MLS MLS
-40 (Wellington) SAS SAS SAS SAS SAS SAS
-50 (Falkland Islands) SAS SAS SAS MLW MLW SAS
-60 (Antarctica) MLW MLW MLW MLW MLW MLW
-70 (Antarctica) MLW MLW MLW MLW MLW MLW
-80 (Antarctica) MLW MLW MLW MLW MLW MLW

Table 4.2: Seasonal latitude surface temperature profile [140]
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4.2.2 MODTRAN Atmospheric Profile Description

Having used Table 4.2 to select the appropriate built-in atmospheric profile for each

data cube, further research had to be performed to determine if the values in each of

these models were appropriate for the current images. Table 4.3 shows how the model

dependent variables change with atmospheric profile, also shown below in Table 4.4 are

the model independent gases that do not change with the atmospheric profile.

Profile Dependent Variables

T MLS MLW SAS SAW US Units
Pressure 904 902 897 896 888 899 mbar
Temperature 294 290 269 282 259 282 K
Water Vapour
(H2O)

19 500 13 800 3450 8700 1620 6070 ppmv

Ozone (O3) 0.0315 0.0334 0.0280 0.0294 0.0201 0.0296 ppmv
Nitrous Oxide
(N2O)

0.320 0.320 0.320 0.310 0.320 0.320 ppmv

Carbon Monox-
ide (CO)

0.145 0.145 0.150 0.145 0.145 0.145 ppmv

Methane (CH4) 1.70 1.70 1.70 1.70 1.70 1.70 ppmv

Table 4.3: Atmospheric profile description at 1 km [141]

Profile Independent Variables

Aerosol 0 km 1 km Units
Carbon Dioxide (CO2) 330 330 ppmv
Oxygen (O2) 209× 103 209× 103 ppmv
Nitric Oxide (NO) 300× 10−6 300× 10−6 ppmv
Sulfur Dioxide (SO2) 300× 10−6 274× 10−6 ppmv
Nitrogen Dioxide (NO2) 23× 10−6 23× 10−6 ppmv
Ammonia (NH3) 500× 10−6 500× 10−6 ppmv
Nitric Acid (HNO3) 50× 10−6 59.6× 10−6 ppmv

Table 4.4: Profile independent variables [141]

Having found the values for the atmospheric profile built into MODTRAN, it was now

possible to compare these values with real world values at the time the datasets were

taken. Several of these parameters, i.e. atmospheric pressure, water vapour, carbon diox-
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ide, ozone, nitrous oxide, carbon monoxide and methane, historical values are readily

available and could be checked against the MODTRAN profiles. However for the re-

maining parameters to find an accurate historical value for them is next to impossible,

e.g. nitric oxide, sulphur dioxide and ammonia, because of this to define a specific model

for each dataset will be impossible. Therefore it was decided based on the fact that all

the available known parameters were more or less correct, the built in models would be

sufficient.

4.2.3 MODTRAN Setup

From the required parameters shown in Table 4.1 it was possible to complete a MOD-

TRAN simulation using the PcModWin 5 [138] software. This software acts as a graph-

ical user interface (GUI) for the main MODTRAN atmospheric modelling code. Using

this GUI a simulation was set-up for the Moll Harris data cube, see Fig. 4.4. The file

created by this software is called an LTN file which contains all the necessary details

to complete the simulation in MODTRAN (see Fig. 4.5). As there is no functionality

built into the PcModWin 5 [138] software to easily create a batch of simulations, the

process of manually reading and writing these LTN files in MATLAB [139] is detailed

in the next section.

Fig. 4.4: Initial set-up for Moll Harris data cube
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Fig. 4.5: LTN file for initial set-up

4.3 MODTRAN 5.2.1 MATLAB User Interface

4.3.1 LTN File Explained

To produce a database using the MODTRAN atmospheric modelling code, it would

be necessary to develop an interface between MODTRAN and MATLAB [139]. Before

this task was performed, research was done into what code may already be available

to do this. Currently there is a "Matlab Class Wrapper for MODTRAN 4" written

by Griffith [142]. However, due to the significant changes between MODTRAN 4 and

MODTRAN 5, this code has been rendered obsolete. Also written by Griffith is a MOD-

TRAN 5.0 implementation [143], however when attempting to run simulations set up

Fig. 4.6: LTN file with important variables highlighted



Chapter 4. Atmospheric Modelling Using MODTRAN for VNIR Imagery 58

for MODTRAN 5.2.1 numerous errors were encountered. From reading the reviews of

the MATLAB [139] toolbox it was clear that these errors had also been encountered by

other people attempting to use the software. This is believed to be due to the subtle

differences in several Cards between MODTRAN 5.0 and 5.2.1. Even if these issues

could all be resolved, and it is unclear if they could, it was decided to create a bespoke

interface that would be designed specifically to create a look-up table for MODTRAN.

Having produced an initial LTN file in the previous section using the PcModWin 5

[138] software, before it would be possible to generate multiple LTN files using MATLAB

[139]. Each of the important variables had to be found in the LTN file, this was done

by using the MODTRAN documentation [73] to determine where each of the important

variables were stored. Fig. 4.6 highlights where each of the important variables are

defined in the LTN file. Also shown in Appendix A is a detailed explanation of each of

the important MODTRAN input parameters we are looking to vary.

4.3.2 Format

Once the LTN file had been deciphered, the next stage was to look at the format of each

card (each line in the LTN file). Again by looking at the MODTRAN documentation [73]

it was found that the format for each card is defined by a series of three character

variables, the format for Card 1 is shown in Fig. 4.7. The first of these three character

variables indicates the number of parameters, the second the type of parameter and the

third the number of characters in the string. For example, 4A1 indicates four parameters

each defined by a single character string, 11I5 would be eleven parameters each defined

by a five character length integer (see Table 4.5). Shown in Appendix B is the format

for all five cards and each of their sub-cards in the MODTRAN software.

Fig. 4.7: Card 1 format from MODTRAN documentation [73]
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Variables Format
MODTRAN A1
SPEED A1
BINARY A1
LYMOLC A1
MODEL I1
ITYPE I5
IEMSCT I5
IMULT I5
M1 I5
M2 I5
M3 I5
M4 I5
M5 I5
M6 I5
MDEF I5
I_RD2C I5
NOPRNT I4
TPTEMP F8.0
SURREF A7
1 A is a Character
2 I is an Integer
3 F is a Float

Table 4.5: Card 1 variables and format

4.3.3 Reading a Card

As the structure of the LTN files and the format of each card are now known. Shown

in Fig. 4.8 is an example of what the string for Card 1 can look like, using MATLAB

R2015b [139] the data from this string can be extracted. Fig. 4.9 shows pseudocode

for how this was done, Appendix C.1 and C.2 also show the MATLAB [139] code used

for Card 1. Having extracted the data from the first card the same process was then

repeated for each of the remaining cards.

T F 6 2 0 0 0 0 0 0 0 0 0 0 0 0.000 0.00

Fig. 4.8: Example of Card 1 string
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Input: String representing every parameter in card
Output: Individually stored parameters for card in structured array

1 FieldWidth = [1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 1 4 8 7];
2 FieldFormat = ’c’, ’c’, ’c’, ’c’, ’d’, ’d’, ’d’,’d’,’d’,’d’,’d’,’d’,’d’,’d’,’d’,’d’,’*’, ’d’, ’f’,

’7c’;
3 Read input string, based on FieldWidth and FieldFormat;
4 Store all output parameters in structured array;

Fig. 4.9: Pseudocode for reading Card 1

4.3.4 Reading an LTN File

Once the individual functions were set-up to read each card, it was then necessary to

create a new function that would analyse the LTN file, and based on the inputs decide

which cards to read for each line. Shown in Fig. 4.10 is pseudocode for that function.

As before Appendix C.3 has the MATLAB [139] code used to read the complete LTN

file.

Input: LTN filename and path
Output: Individually stored parameters for complete LTN file in structured

array
1 Open LTN file, and store all lines as strings;
2 Read all parameters from Card 1;
3 Read all parameters from Card 1A;
4 Based on already imported values determine which remaining Card 1 inputs are

necessary (1A1 to 1A7, 1B and 1B Alt);
5 Read all parameters from Card 2;
6 Based on already imported values determine which remaining Card 2 inputs are

necessary (2A, 2A Alt, 2B to 2E);
7 Read all parameters from Card 3, 4 and 5;
8 Store all imported parameters in structured array;

Fig. 4.10: Function for reading complete LTN file

4.3.5 Writing an LTN File

Having created all the functions for reading cards and LTN files, it was then possible to

reverse this process so that all the information extracted from the files could be written

to another LTN file. This is necessary as it will allow us to vary key parameters and then

generate a batch of LTN files that can be run in MODTRAN. As before the pseudocode
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for writing an LTN file is shown below (see Fig. 4.11), also shown in Appendix C.4 and

C.5 is the MATLAB [139] code used to write Card 1 and an LTN file respectively.

Input: LTN filename and storage path
Output: LTN file containing all necessary card details

1 Open blank LTN file, for storing all data;
2 Write all parameters for Card 1;
3 Write all parameters for Card 1A;
4 Based on stored values determine which remaining Card 1 parameters are

necessary (1A1 to 1A7, 1B and 1BAlt);
5 Write all parameters for Card 2;
6 Based on stored values determine which remaining Card 2 parameters are

necessary (2A, 2A Alt, 2B to 2E);
7 Write all parameters for Card 3, 4 and 5;

Fig. 4.11: Function for writing LTN file

4.4 Batch Mode

4.4.1 Generate Batch of LTNs

Now that the basic functions were in place for both reading and writing LTN files, the

next step was to look into how to run a number of these in a batch mode, rather than

having to load them each individually into PcModWin 5 [138]. Built into the PcModWin

5 [138] software is a function that allows for the creation of multiple runs, using this

feature it is possible to create any number of runs, however, they each need to be set-

up individually and there is no option to vary one parameter across multiple runs. To

better understand how this capability works an example simulation with multiple runs

was set-up. The resultant LTN file is shown below, see Fig. 4.12, from this it was very

easy to determine how the multiple run function worked. Each run was stored in a single

LTN file with a "1" at the end indicating there was another run or "0" to indicate it

was the last run. Therefore rather than creating a number of LTN files, it would be

possible to create a single LTN file that would contain all the information for each run

of the database. This could easily be implemented using the current code by placing the

write function in a series of "for" loops, the MATLAB [139] code to do this is shown in

Appendix C.6.
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Fig. 4.12: LTN file containing multiple runs

Once the batch LTN file was created using this method, the simulation was then

performed using MODTRAN. Having done this it was noted that all the results were

stored in one output file, therefore it would be extremely difficult to determine which

order MODTRAN had done the calculations. To try and improve this a shell program

was created that would run in a folder and in sequence run a number of LTN files in

MODTRAN, pseudocode for this is shown in Fig. 4.13, and the MATLAB [139] code

to do this is shown in Appendix C.7. Using this method a separate output file will be

created for each run, so it will be not only easier to read the results it will also be

Input: Multiple LTN files
Output: Multiple FL7 files, each for separate LTN file

1 Retrieve all filenames in root directory;
2 for Every LTN file in directory do
3 Copy file to MODTRAN directory;
4 Run MODTRAN from command line;
5 Copy output file (FL7) to results directory;
6 end

Fig. 4.13: Function for writing multiple LTN files
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possible to process the results before all the simulations have been complete.

4.5 User Input

As it was now possible to create a batch of LTN files and then run these using MOD-

TRAN, the next step was to develop a method that the user could input the parameters

for the simulation and decided on which of these to vary. Fig. 4.14 shows the concept

for three types of user input required and the various steps that would be required for

each to integrate with the current code.

Select Input Method?

Configuration File InputManual Input GUI Input

Create Configuration File

Add Multiple Runs?

Add Varying Parameter Create Setup Files

Run MODTRAN

Output Results

Yes

No

Fig. 4.14: Complete process for each type of user input
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4.5.1 Manual Input

The first and most basic input method is the manual input method. If the manual

input method is selected a prompt for each parameter appears in the MATLAB [139]

command window, see Fig. 4.15. After the user has entered the value for each parameter,

the user is again prompted with an option to vary any of the variables into an array of

variables, which will each be run separately. Once all this has been input the function

then generates a configuration file like the one shown in Fig. 4.16. The MATLAB [139]

code used to do this is shown in Appendix C.8.

Fig. 4.15: Manual input function running in MATLAB command window

4.5.2 Configuration File Input

If the configuration file input method is selected the user is asked for a path of a

configuration file, the structure of these files is shown in Fig. 4.16, this can also be

Fig. 4.16: Configuration file for Moll Harris dataset
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generated using the manual input method. This is all done by using the code shown in

Appendix C.9.

4.5.3 GUI Input

The final input method is to use a graphical user interface (GUI). The MATLAB App

Building toolbox [144] provides an extensive set of tools for creating GUIs, one of these

the graphical user interface development environment (GUIDE) was used to create a

GUI for this application, see Fig. 4.17. This allows for the input of every parameter and

also adds the ability to vary each parameter individually.

Fig. 4.17: MATLAB GUI

4.6 Saving the Output Data

4.6.1 Read MODTRAN Output Files

After any simulation is run, MODTRAN outputs all the data into a single MODOUT2

or FL7 file, the file structure of these files is shown below (see Fig. 4.18). The initial

few lines relate to the LTN file used to generate the results, and the rest relates to

the output radiance profiles. The data is output in a number of columns each for a
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specific property, the three columns that are of interest are the FREQ, SOL_SCAT ,

and TOTAL_RAD columns, these relate to the frequency or wavenumber, the solar

scattering, and the total radiance respectively.

Fig. 4.18: MODOUT2 or FL7 file structure

Using the FL7 file shown in Fig. 4.18 a function was created in MATLAB [139]

that would extract all the data for each column in the output file and save it into a

MATLAB [139] MAT file, see Fig. 4.20. Pseudocode for how this was performed is shown

in Fig. 4.19 and the MATLAB [139] code used to do this is shown in Appendix C.10.

Also shown in Appendix D is a table with a description of all these output variables

including their units.

Input: User input via command window
Output: Structured array of all variables required to create LTN file

1 Open LTN file, and store all lines as strings;
2 Find first line relating to output variables;
3 for Remaining lines in LTN file do
4 Split line into 16 floats;
5 Store each value in separate vector;
6 end
7 Convert data from wavenumber to wavelength;
8 Save all data to MATLAB MAT file for data processing

Fig. 4.19: Function for writing LTN file
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Fig. 4.20: MAT file contents

4.7 Analysis

4.7.1 Initial Tests

An initial simulation was set up using the newly created interface, to test that the

interface was working correctly. The atmospheric model was set to Sub-Arctic Summer,

using Table 4.2, the latitude and longitude were set to match Wiltshire and the visibility

set to Rural. The other variables that were set were the column water vapour which

was set to 0 g/cm2, the temperature to 15◦C and altitude of the observer to 1km. Also,

the carbon dioxide (CO2) mixing ratio was set to 365 ppmv, which was the amount

found in the atmosphere in 1999 [145]. The parameter that was varied was the surface

reflectance which was set to match Forest, Desert, Ocean, Sea Ice and Granite. The

complete details of all five runs are shown in Table 4.6 and the results in Fig. 4.21.

From the results, it can be noticed that the atmospheric models are producing

distinct spectra, with significant atmospheric effects present for the visible and near-

infrared (VNIR) region of the spectrum. The general shape of all these spectra is correct

when matched with the USGS Spectral Database [146], therefore it can be assumed that

the software has been implemented correctly and the results produced are correct.
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Parameter Run 1 Run 2 Run 3 Run 4 Run 5
MODEL SAS SAS SAS SAS SAS
TPTEMP 288K 288K 288K 288K 288K
SURREF Forest Desert Ocean Sea Ice Granite
CO2MX 365ppmv 365ppmv 365ppmv 365ppmv 365ppmv
H2OSTR 0 g/cm2 0 g/cm2 0 g/cm2 0 g/cm2 0 g/cm2

IHAZE Rural Rural Rural Rural Rural
H1 1km 1km 1km 1km 1km

ANGLE 180◦ 180◦ 180◦ 180◦ 180◦

IDAY 30th June 30th June 30th June 30th June 30th June
PARM1 51◦N 51◦N 51◦N 51◦N 51◦N
PARM2 2◦W 2◦W 2◦W 2◦W 2◦W
TIME 12pm 12pm 12pm 12pm 12pm

Table 4.6: MODTRAN settings

Fig. 4.21: Wavelength vs total radiance for various materials

4.7.2 MODTRAN Key Parameters

Having produced an interface for MODTRAN in MATLAB [139] it was then possible

to generate a batch of atmospheric models. These models can then be used to look at

which out of the ten parameters highlighted earlier produced the biggest effects on the

atmospheric model. This was done by setting up a test simulation (see Table 4.7) and in

turn varying each of the ten parameters while keeping the others constant. The results

of the initial setup are shown in Fig. 4.22, this gives us a basis to compare any of the

following results.
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Parameter Initial Setup
MODEL SAS
TPTEMP 288K
SURREF 1.0
CO2MX 400ppmv
H2OSTR 0 g/cm2

IHAZE Rural - 23km
H1 1km

ANGLE 180◦

IDAY 30th June
PARM1 51◦N
PARM2 2◦W
TIME 12pm

Table 4.7: MODTRAN initial simulation settings

(a) Total Radiance (b) Solar Scattering

Fig. 4.22: MODTRAN initial output with no variation

Day of the Year (IDAY)

The first parameter that was varied was the day of the year (IDAY), as would be ex-

pected the summer months, April to July, have the highest received total radiance, while

the winter months, November to February, have the smallest received total radiance (see

Fig. 4.23). This is due to the tilt of the Earth’s axis, in the summer the light from the

sun hits the Earth at a steep angle, therefore the light does not spread out as much, so

the radiance measured at any given spot is higher and the opposite in the winter when

then light hits the Earth at a shallower angle. This same effect can also be observed
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in the solar scattering contribution, the steeper the angle and the more atmosphere

the light has to pass through the higher the solar scattering contribution. From these

results, it is clear that to create an accurate atmospheric model in MODTRAN the day

of the year must be known.

(a) Total Radiance (b) Solar Scattering

Fig. 4.23: MODTRAN output by varying Day of Year. 1st Jan (Black), 1st Mar (Navy),
31st Mar (Light Green), 30th Apr (Blue), 30th May (Red), 29th Jun (Green), 29th Jul
(Pink), 28th Aug (Yellow), 27th Sep (Dark Green), 27th Oct (Lilac), 26th Nov (Cyan),
26th Dec (Dark Cyan)

Time of Day (TIME)

The next parameter that was varied was the time of day. Unsurprisingly at midday

(12pm) the total radiance received is at its highest and at midnight (12am) the radiance

received is zero (see Fig. 4.24). This relates back to the day of the year, the steeper the

angle of incident light, when the sun is above the object, the higher the total radiance

and solar scattering contribution. The shallower the angle, when the sun is rising or

setting, the lowest measured radiance and solar scattering contribution, anything beyond

these two extremes is zero for both radiance profiles. As before with the day of the year,

it is clear from the results that the time of day is critical to creating an accurate

atmospheric model.
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(a) Total Radiance (b) Solar Scattering

Fig. 4.24: MODTRAN output by varying Time. 12am (Blue), 2am (Dark Green), 4am
(Cyan), 6am (Dark Cyan), 8am (Navy), 10am (Red), 12pm (Green), 2pm (Black), 4pm
(Pink), 6pm (Yellow), 8pm (Lilac), 10pm (Brown)

Latitude of Observer (PARM1)

The observer latitude is the next variable to be considered, as the simulation was set

for the 30th June, which is very near the summer solstice [147] this is when the Earth’s

rotational axis is most inclined towards the Sun (23.5◦). This causes objects at the

latitude of 23.5◦ to have the greatest total radiance received, and as the object moves

(a) Total Radiance (b) Solar Scattering

Fig. 4.25: MODTRAN output by varying Latitude. -90◦ (Black), -67.5◦ (Green), -45◦

(Red), -22.5◦ (Blue), 0◦ (Pink), 22.5◦ (Yellow), 45◦ (Dark Green), 67.5◦ (Lilac), and 90◦

(Brown)
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away from this latitude it can be observed that the total radiance and solar scattering

contribution decreases (see Fig. 4.25). Anything below -62.5◦ latitude is in darkness due

to the Earth’s axis tilt therefore the received radiance is zero.

Longitude of Observer (PARM2)

As MODTRAN works on Greenwich Mean Time (GMT), when varying the longitude

the time must also be varied accordingly. For every degree moved West of the Greenwich

Meridian 4 minutes (1440360 ) is added to the local time (12pm) to calculate the exact GMT

equivalent, using the location the time was also calculated based on time zone (see Table

4.8). The results show that there is absolutely no difference varying the longitude if the

local time is always kept at 12pm (see Fig. 4.26). When using the time zone equivalent

rather than the exact time, there is a minute difference in the results but nowhere near

large enough to be considered noteworthy. Therefore as long as the GMT time is known

the longitude has no effect on the accuracy of the atmospheric model.

Longitude Location Exact Time Time Zone
0◦W United Kingdom 12:00 12:00
40◦W Greenland 09:20 09:00
80◦W Canada (East) 06:40 07:00
120◦W Canada (West) 04:00 04:00
160◦W US (West) 01:20 01:00
200◦W Japan 22:40 23:00
240◦W Russia (East) 20:00 20:00
280◦W Kazakhstan 17:20 17:00
320◦W Ukraine 14:40 15:00

Table 4.8: MODTRAN simulation settings
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(a) Total Radiance with exact time (b) Solar Scattering with exact time

(c) Total Radiance with time zone (d) Solar Scattering with time zone

Fig. 4.26: MODTRAN output by varying Longitude. 0◦W (Blue), 40◦W (Lilac), 80◦W
(Brown), 120◦W (Red), 160◦W (Green), 200◦W (Black), 240◦W (Pink), 280◦W (Yel-
low), 320◦W (Dark Green)

Height of Observer (H1)

Another parameter that was varied was the height of the observer, this will obviously

have a greater impact depending on the aerosol model, therefore, two simulations were

performed. The first used the Rural - 23km aerosol model and the second the Rural -

5km model. From the results, it is clear that as the visibility decreases, the total radiance

received by the observer also decreases (see Fig. 4.27). It can also be observed that due

to the increase in aerosols the solar scattering contribution increases as more light is

reflected off these aerosols and back to the observer. Based on these results like the day

of the year, time and latitude the height can also be considered a crucial variable in
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producing an accurate atmospheric model, especially depending on the aerosol model

used.

(a) Total Radiance with Rural - 23 km aerosol
model

(b) Solar Scattering with Rural - 23 km
aerosol model

(c) Total Radiance with Rural - 5 km aerosol
model

(d) Solar Scattering with Rural - 5 km aerosol
model

Fig. 4.27: MODTRAN output by varying altitude of observer. 0.2km (Blue), 0.5km
(Red), 2km (Black), 10km (Green), 23km (Pink), 50km (Yellow)

Aerosol Model (IHAZE)

To confirm the previous statements about the aerosol model and height, the next pa-

rameter that was varied was the aerosol model while keeping the observer at 1km al-

titude. The results confirm what was stated previously, as the aerosol model visibility

increases the total radiance received and the solar scattering contribution decreases

and the opposite occurs as the aerosol model visibility decreases (see Fig. 4.28). One

of the main technical limitations of VNIR imagery is its ability to penetrate fog is
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very limited [148, 149], unlike laser and thermal imaging. Therefore for both Fog1 and

Fog2 atmospheric profiles it is unreasonable to assume any useful results from a VNIR

hyperspectral camera at these visibilities, however, this parameter will definitely be

considered as an important factor in atmospheric modelling.

(a) Total Radiance (b) Solar Scattering

Fig. 4.28: MODTRAN output by varying IHAZE. No Aerosol (Blue), Rural - 23km
(Red), Rural - 5km (Green), Maritime - 23km (Black), Urban - 5km (Pink), Tropo-
spheric - 50km (Yellow), Fog1 - 0.2km (Dark Green), Fog2 - 0.5km (Lilac)

Viewing Zenith Angle (ANGLE)

The next parameter that was looked into was the viewing zenith angle, this is the angle

the observer makes with a vertical line coming from the object (see Fig. 4.2). Varying

this from 135◦ to 225◦ has very little effect on the total radiance received, this is mainly

due to the difference in magnitude of the sun to ground path compared with the ground

to observer path (see Fig. 4.29). Even at both extremes, the overall path length is still

approximately the same. For the solar scattering contribution, however, the effects are

more noticeable at both extremes the measured radiance is higher, this is simply due to

the increase in path length on the ground to observer path. Even though there are more

effects in the solar scattering at the extreme angles, the viewing angle has a very small

effect overall on the atmospheric model, assuming this is kept at a reasonable angle.



Chapter 4. Atmospheric Modelling Using MODTRAN for VNIR Imagery 76

(a) Total Radiance (b) Solar Scattering

Fig. 4.29: MODTRAN output by varying zenith angle. 135◦ (Blue), 150◦ (Red), 165◦

(Green), 180◦ (Black), 195◦ (Pink), 210◦ (Yellow), 225◦ (Dark Green)

Atmospheric Profile (MODEL)

The six built-in atmospheric profiles were the next parameter to be varied these were

Tropical, Mid-Latitude Summer, Mid-Latitude Winter, Sub-Arctic Summer, Sub-Arctic

Winter and 1976 US Standard. The results show that from an altitude of 1km there

is very little difference in all six atmospheric profiles (see Fig. 4.30a and 4.30b), when

this altitude was increased to 23km the signs of the differences begin to show especially

(a) Total Radiance with observer height of
1km

(b) Solar Scattering with observer height of
1km

Fig. 4.30: MODTRAN output by varying MODEL. Tropical (Blue), MLS (Red), MLW
(Green), SAS (Black), SAW (Pink), 1976 US (Yellow)
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for the Sub-Arctic Winter profile (see Fig. 4.31a and 4.31b). However, these effects are

small compared with other parameters, so as before this is another parameter that can

be excluded from the list of key parameters for atmospheric modelling, unless used for

an application where the altitude is far higher than the simulated altitudes for example

for NASA’s Earth Observation One which operates at an altitude of 705km [150].

(a) Total Radiance with observer height of
23km

(b) Solar Scattering with observer height of
23km

Fig. 4.31: MODTRAN output by varying MODEL. Tropical (Blue), MLS (Red), MLW
(Green), SAS (Black), SAW (Pink), 1976 US (Yellow)

Column Water Vapour (H2OSTR)

The penultimate parameter to be varied was the column water vapour, this was varied

from 0 g/cm2 to 5 g/cm2. Due to the numerous water absorption bands in the VNIR

region of the spectrum (see Fig. 4.1a) the effects of this parameter are noticeable only in

certain regions of the spectrum. A water vapour amount of 0 g/cm2 represents the same

as the initial results (see Fig. 4.22), however by altering this to 1 g/cm2 the effects on the

region between 900nm and 1000nm are already significant by the time the final value of

5 g/cm2 is reached there is virtually no received spectral radiance. That being said other

than the water absorption band at 760nm [151] there is very little additional effects on

the radiance profile produced. For many applications in VNIR hyperspectral images,

this parameter could be ignored, unless precise atmospheric correction was required for

the above-mentioned water absorption bands.
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(a) Total Radiance (b) Solar Scattering

Fig. 4.32: MODTRAN output by varying H2OSTR. 0 g/cm2 (Blue), 1 g/cm2 (Red),
2 g/cm2 (Green), 3 g/cm2 (Black), 4 g/cm2 (Pink), 5 g/cm2 Yellow

CO2 Mixing Ratio (CO2MX)

The final parameter that was varied was the carbon dioxide (CO2) mixing ratio, this

was varied from values pre-dating 1999 of 300ppmv [145] to values not expected for the

next 40-60 years [152, 153] of 500ppmv. Straight away it is clear that even high levels

of CO2 have no effect on the produced radiance profiles from MODTRAN in the VNIR

region of the spectrum (see Fig. 4.33). Again this is another parameter that can be

excluded from any future atmospheric modelling for this application.

(a) Total Radiance (b) Solar Scattering

Fig. 4.33: MODTRAN output by varying CO2MX. 300ppmv (Blue), 350ppmv (Red),
400ppmv (Green), 450ppmv (Black), 500ppmv (Pink)
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4.8 Results

For the case of an aerial hyperspectral camera at an altitude of approximately 1 -

2km. From the list of ten parameters studied it was determined that six of these are

essential for accurate atmospheric modelling (see Table 4.9). These parameters all have

a significant effect on the MODTRAN produced radiance profiles for total radiance and

solar scattering contribution. The four non-essential parameters found each has varying

effects on the produced results the carbon dioxide mixing ratio and longitude both have

zero effect while the atmospheric profile and viewing zenith angle have negligible effects

on the results for this scenario.

Essential Parameter Non-essential Parameter
Time of day Atmospheric profile

Day of the year Carbon dioxide mixing ratio
Latitude Longitude

Height of the observer Viewing zenith angle
Aerosol model

Column water vapour

Table 4.9: List of MODTRAN essential and non-essential parameters for low altitude
VNIR imagery

4.9 Summary

For precise target detection in hyperspectral images, atmospheric correction is a nec-

essary step. One way of performing this correction is by modelling the effects of the

atmosphere in an atmospheric modelling software, e.g. MODTRAN, and then removing

them from the data using various atmospheric correction techniques [63, 64, 66–70, 72].

In order to do this, however, an accurate model of the effects must be produced.

In this chapter a user interface was designed for MATLAB [139] to create various at-

mospheric models using MODTRAN 5.2.1, this would then produce radiance profiles for

key information, i.e. total radiance received by the observer and solar scattering contri-

bution. Using this created software various simulations were run where key parameters

relating to the atmosphere and scene were varied.
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The results of each of these simulations were then compared and it was found that

parameters such as the time of day, the day of the year, latitude, the height of the

observer and aerosol model all have significant effects on the produced radiance profiles

for the VNIR region of the spectrum. Where other parameters such as the atmospheric

profile, carbon dioxide (CO2) mixing ratio, longitude and viewing zenith angle have

small effects but are much less severe and can essentially be ignored in the calculations

for this application. The one parameter that has severe effects in certain regions of the

visible near-infrared spectrum is the column water vapour, due to water absorption

bands at approximately 760 nm and from about 900 nm to 1000 nm there are major

effects in these regions, however, the rest of the data is unaffected.



Chapter 5

Atmospheric Correction Using

MODTRAN Radiative Transfer

Models

5.1 Introduction

Atmospheric correction is a necessary step in the target detection process for all aerial

hyperspectral imagery. As well as reflectance characteristics of the ground, the radiance

received by an aerial imager depends on the spectrum of the incident solar illumination

and wavelength dependence of the atmospheric attenuation at the specific location and

time of the measurement. Due to various aerosols in the atmosphere, some of the light

emitted from the ground is absorbed, see Fig. 5.1. There are approximately thirty gases

that make up the atmosphere. However, only eight of these have visible absorption

effects on hyperspectral images between the range of 0.45 and 2.50 µm). These gases are

water vapour (H2O), carbon dioxide (CO2), ozone (O3), nitrous oxide (N2O), carbon

monoxide (CO), methane (CH4), oxygen (O2) and nitrogen dioxide (NO2) [58]. Another

aerosol that significantly affects the measurement of hyperspectral data is dust. As it

is composed of several different types of minerals, the particles that make up the dust

both absorb and scatter sunlight [59,60]. The third and final type of aerosols are those

that are man-made. These include both smoke from burning trees and sulphate aerosols

81
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from burning either coal or oil [61, 62].

Fig. 5.1: Simulated transmittance spectra of atmospheric aerosols using Atmospheric
Removal Program (ATREM) [136]

Also, a significant amount of scattering occurs where the radiance from nearby

objects is also measured by the sensor this is called adjacent light, see Fig. 5.2. Because

of this since the mid-1980s there have been various methods developed to attempt to

remove or reduce these effects.

Fig. 5.2: Atmospheric scattering

In the previous chapter a system was proposed for atmospheric modelling based

around the MODTRAN atmospheric modelling software using MATLAB. From this
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its was found what parameters must be known to produce an accurate atmospheric

model. In this chapter, we propose two new techniques, one based on the atmospheric

modelling software MODTRAN and the other using prior known spectra to estimate

which atmospheric effects are present in the hyperspectral image. These two techniques

are then compared with two currently used scene-based approaches, namely Internal

Average Relative Reflectance [64] and Dark Object Subtraction [63].

The rest of this chapter is structured as follows. Section 5.2 introduces the hy-

perspectral data, the targets contained within them and the process for producing the

ground truth. The various atmospheric correction techniques both current and proposed

methods are discussed in Section 5.3. Section 5.4 shows the research into the identifi-

cation of the atmospheric effects present in the data, along with comparisons between

the original spectra. Section 5.5 is devoted to the implementation of all the proposed

techniques. Results and a summary of the contributions are then presented in Sections

5.6 and 5.7 respectively.

5.2 Hyperspectral Images

The dataset supplied contained hundreds of images so it was necessary to select a few of

these that had similar contents so that an accurate comparison could be made between

images. As we were looking at both the visible and near-infrared (VNIR) spectrum (450

- 1.00× 103 nm) and short wave infrared (SWIR) spectrum (0.95 - 2.50 µm), four dates

were selected (4th, 7th, 12th and 15th August) as they had images for both wavelength

regions at similar locations. A single region of interest (ROI) was then selected, that

was present in all eight of these images. This same region in each image was cropped,

so that a quick classification could be done and so that all the images had fairly similar

objects contained within them. All the cropped images are shown in Fig. 5.3 and 5.4.
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Name of object 4th Aug 7th Aug 12th Aug 15th Aug
Green Perspex No No Yes Yes
Orange Perspex No Yes Yes Yes
White Perspex Yes Yes Yes Yes
Grey Ceramic Yes Yes Yes Yes
Green Ceramic Yes Yes Yes Yes
Beige Carpet Tile Yes Yes Yes Yes
Green Carpet Tile Yes Yes Yes Yes

Table 5.1: Presence of objects in images at the 4 dates

(a) 4th Aug RGB
image

(b) 7th Aug RGB im-
age

(c) 12th Aug RGB
image

(d) 15th Aug RGB im-
age

Fig. 5.3: RGB image and ground truth for each selected ROI for VNIR imagery (450
- 1.00× 103 nm)

(a) 4th Aug RGB
image

(b) 7th Aug RGB im-
age

(c) 12th Aug RGB
image

(d) 15th Aug RGB im-
age

Fig. 5.4: False colour image and ground truth for each selected ROI for SWIR
imagery (0.95 - 2.50 µm)

Having completed this, the next stage was to select several objects that were common

to most of the images. Table 5.1 shows the 7 objects selected and whether each was

located in the images for all of the 4 dates selected previously. Also provided with the

data was a database of lab-measured spectra for all of these objects, so a comparison

could be made before and after any atmospheric effects. The GPS coordinates for all 7

objects on each day was also provided, so from this by manually selecting each target

an accurate ground truth could be made for each of the images.
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5.3 Atmospheric Correction

In this section two existing scene-based approaches to atmospheric correction are dis-

cussed, and a radiative transfer method using the atmospheric modelling software MOD-

TRAN and a method proposed by extracting known spectra from the scene to atmo-

spherically correct the images are also discussed.

5.3.1 Scene-Based Approach

Internal Average Relative Reflectance

Unlike several other approaches, such as Flat Field and Empirical Line correction, the

Internal Average Relative Reflectance (IARR) approach [154] allows for the atmospheric

calibration of radiance data into reflectance data. This method is useful for converting

radiance hyperspectral data into relative reflectance when little is known about the scene

or no ground measurements exist. This is done by using the average pixel spectrum

(APS) of the hyperspectral data cube. The spectrum for each pixel is then divided by

this APS to produce a relative reflectance spectrum.

Dark Object Subtraction

Assuming that there is at least one dark object in the scene, such as water or tarmac,

it can be assumed that no light would be reflected from them. Any light measured by

the sensor must be caused by atmospheric scattering. In this case, it would then be

possible to remove these values from the overall image to produce an atmospherically

corrected image [63]. This was done by first calculating the length of each pixel vector

(see Equation 5.1):

pixel vector length =
√
~xT × ~x (5.1)

where x is the pixel vector

The vector with the minimum length was then selected and subtracted from all the

pixel vectors in the original image, and any negative values were set to zero.
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Known Spectra Grass and Tarmac (KS Grass and KS Tarmac)

Rather than trying to predict the atmospheric transform from a radiative transfer based

approach, we use the fact that both grass and tarmac are present in all the images used

for this work. This method was to use known spectra for both grass and tarmac to

calculate the atmospheric transform. The pixels containing either of these materials were

then classified, and an average pixel spectrum was taken. Fig. 5.5 shows the standard

atmospheric correction process: if we know both the raw and lab spectra, then the

atmospheric transform can be calculated. This atmospheric transform can then be used

to atmospherically correct the hyperspectral data.

Raw Spectra
Divide by

Atmospheric
Transform

Lab Spectra

Fig. 5.5: Atmospheric correction process

5.3.2 Radiative Transfer Approach

The radiances measured by a hyperspectral camera are a combination of the atmospheric

path and the surface-reflected solar radiances (see Fig. 5.2). These radiance images can

be converted to apparent reflectance using Equation 5.2 [136]:

ρobs(λ, θ, θ0, φ0) =
πLobs(λ, θ, θ0, φ0)

µ0F0(λ)
(5.2)

where,

θ0 is the solar zenith angle,

φ0 is the solar azimuth angle,

θ is the sensor zenith angle,

ρ is the sensor azimuth angle,

λ is the wavelength,

Lobs is the radiance measured at the satellite,

F0 is the solar flux at the top of the atmosphere and,

µ0 is the cosine of solar zenith angle.
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According to Tanre et al. [155], when the surface is assumed to be Lambertian and

the adjacency effect is neglected, ρobs(λ, θ, θ0, φ0) can be expressed approximately as:

ρobs(λ, θ, θ0, φ0) = [ρatm(λ, θ, θ0, φ0) +
td(λθ0)tu(λ, θ)ρ(λ)

(1− s(λ)ρ(λ))
]Tg(λ, θ, θ0) (5.3)

where,

ρatm is the path reflectance,

td is the downward scattering transmittance,

tu is the upward scattering transmittance,

s is the spherical albedo of the atmosphere,

ρ is the surface reflectance and,

Tg is the total gaseous transmittance in the Sun-surface-sensor path.

Using the atmospheric modelling software MODTRAN, estimations can be made

for all 15 outputs shown in Table 5.2. By using these MODTRAN outputs Equation

5.2 can then be altered to be expressed entirely using these outputs (see Equation 5.4).

The complete derivation of this equation is shown in Appendix F.

ρ =
Lobs − SOL_SCAT
TOTAL_RAD

(5.4)

where

ρ is the surface reflectance,

Lobs is the radiance measured at the camera,

SOL_SCAT is the solar multiple-scattered radiance term of the path radiance, and

TOTAL_RAD is the total radiance reaching the sensor.
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.fl7 Name Name Units
FREQ Wavenumber 1/cm
TOT_TRANS Transmission Total N/A
PTH_THRML Path Thermal Radiance W/(m2 str nm)
THRML_SCT Thermal Scatter W/(m2 str nm)
SURF_EMIS Surface Emission Radiance W/(m2 str nm)
SOL_SCAT Solar Scatter Radiance W/(m2 str nm)
SING_SCAT Single Scatter Radiance W/(m2 str nm)
GRND_RFLT Total Ground Reflected Radiance W/(m2 str nm)
DRCT_RFLT Direct Ground Reflected Radiance W/(m2 str nm)
TOTAL_RAD Total Radiance W/(m2 str nm)
REF_SOL Reflected Solar W/(m2 str nm)
SOL@OBS Solar at Observer W/(m2 str nm)
DEPTH Optical Depth W/(m2 str nm)
DIR_EM Emissivity W/(m2 str nm)
TOA_SUN Top of Atmosphere (TOA) Sun W/(m2 str nm)
BBODY_T[K] Blackbody Temperature K

Table 5.2: Description of output file values

5.4 Atmospheric Effects

To better understand the effects of the atmosphere on hyperspectral images, the spectra

for each of the objects discussed earlier was collated and plotted against the original

lab-measured spectra (see Fig. 5.6). It can be seen that the general shape and majority

of the spectral features in the VNIR data remain when compared with the lab spectra,

except for the absorption bands at 760, 820 and 930 nm, and all the objects appear still

to be spectrally different from each other. However, for the SWIR data, while the initial

lab spectra are all spectrally different there are far more significant atmospheric effects

in the SWIR data. This means that the resulting field spectra have very little of the

distinct spectral features remaining and all appear to be very similar.

(a) Green perspex lab
spectrum (VNIR)

(b) Green perspex
field spectrum (VNIR)

(c) Green perspex lab
spectrum (SWIR)

(d) Green perspex
field spectrum (SWIR)



Chapter 5. Atmospheric Correction Using MODTRAN Radiative Transfer Models 89

(e) Orange perspex lab
spectrum (VNIR)

(f) Orange perspex
field spectrum (VNIR)

(g) Orange perspex
lab spectrum (SWIR)

(h) Orange perspex
field spectrum (SWIR)

(i) Beige carpet tile
lab spectrum (VNIR)

(j) Beige carpet tile
field spectrum (VNIR)

(k) Beige carpet tile
lab spectrum (SWIR)

(l) Beige carpet tile
field spectrum (SWIR)

Fig. 5.6: Comparison between lab-based spectra and spectra measured in field for both
VNIR and SWIR hyperspectral imaging

The next stage was to examine if our initial observations were correct concerning

how spectrally different each object was in the VNIR and SWIR datasets. This was

done by using the ground truth created previously to collect all the spectra available

for each object in each of the images. The average spectrum was then taken for each

object, and all of these spectra were plotted on the same graph. See Fig. 5.7 and 5.8.

5.4.1 Visible and Near-infrared (VNIR)

For all four VNIR datasets acquired there are some atmospheric effects present. The

majority of these effects are due to the water absorptions bands (see Fig. 5.7). However,

from looking at the individual spectra, each object is sufficiently different that it can

reasonably be assumed that the original spectra can be recovered, e.g. the green ceramic

and perspex having a peak 530 nm, the white perspex having the highest radiance and

the orange perspex having a peak 650 nm. The only slight matter for concern is in the

7th August dataset, as the image was captured from an altitude of 2 km, and was also

taken on a cloudy day, whereas the images on the other 3 dates were taken from 1 km.

Therefore the maximum radiance measured by the camera on the 7th August is much
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lower, meaning that the spectra are not as spectrally different, so this will provide a

much harder atmospheric correction problem.

(a) 4th August (b) 7th August (c) 12th August (d) 15th August

Fig. 5.7: Spectral profile of each material on the same days for VNIR images. Green
Perspex (Blue), Orange Perspex (Red), White Perspex (Green), Grey Ceramic

(Purple), Green Ceramic (Cyan), Beige Carpet Tile (Black), Green Carpet Tile (Pink)

5.4.2 Short Wave Infrared (SWIR)

Due to the significant amount and width of the water absorption bands in the SWIR

region of the electromagnetic spectrum for all of the SWIR data acquired, there is a

considerable amount of atmospheric attenuation. This means that there are very little

distinct features in any of the spectra for the objects under observation (see Fig. 5.8).

Due to this, it will make it almost impossible to recover the original spectra in the

SWIR imagery.

(a) 4th August (b) 7th August (c) 12th August (d) 15th August

Fig. 5.8: Spectral profile of each material on the same days for SWIR images. Green
Perspex (Blue), Orange Perspex (Red), White Perspex (Green), Grey Ceramic

(Purple), Green Ceramic (Cyan), Beige Carpet Tile (Black), Green Carpet Tile (Pink)
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Date Time Lat. Long. Altitude Temp.
4th August 13:23 51N -1.6E 988-1005m 17.67
7th August 12:29 51N -1.6E 2116-2118m 19.57
12th August 10:55 51N -1.6E 1203-1215m 16.14
15th August 13:17 51N -1.6E 1191-1197m 15.27

Table 5.3: Important parameters for each VNIR image

(a) Total Radiance (b) Solar Scattering

Fig. 5.9: MODTRAN predictions

5.5 Analysis

5.5.1 MODTRAN Atmospheric Modelling

Having analysed the atmospheric effects in the available data, it was decided that the

main focus should be on the VNIR imagery, as that is the dataset which is more realistic

to atmospherically correct due to the remaining spectrally distinct features. To do this,

several key parameters pertaining to each image were acquired (Table 5.3). Then, by

using the atmospheric modelling software MODTRAN [73], the total radiance and solar

scattering contribution can be modelled for each image (Fig. 5.9). From these two plots,

it can be seen that as all the dates are relatively close to each other, and are taken

from similar heights (1-2km) the total radiance is almost identical for all the images.

However, even an increase of 1km altitude for the 7th August dataset has a significant

effect on the solar scattering present in the image. Having produced these two curves

using the process detailed earlier, the data can be atmospherically corrected.
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(a) RGB image for 15th Aug (b) Grass pixels (green), Tarmac pixels (grey)

Fig. 5.10: Material classification for 15th August VNIR image

(a) Grass spectrum from the
USGS Digital Spectral

Library [146]

(b) Average grass spectrum
from each dataset. 4th August
(Blue), 7th August (Red),

12th August (Green) and 15th
August (Purple)

(c) Calculated atmospheric
transform from grass spectra.
4th August (Blue), 7th August
(Red), 12th August (Green)
and 15th August (Purple)

5.5.2 Predict Atmospheric Transform from Known Spectra

The final technique proposed is a very quick method for atmospheric correction. As

discussed earlier the initial step was to classify the majority of either the tarmac or grass

pixels in the image. This was done by first manually selecting a few reference pixels in all

of the VNIR images for both materials. By using the Spectral Angle Mapper (SAM) [47]

it was then possible to classify all the spectrally similar pixels for each image (see Fig.

5.10).

From this, an average spectrum for each of these materials could be produced for all

4 of the images (see Fig. 5.11b and 5.11e). Then by retrieving a lab-measured spectrum

from the USGS Spectral Database [146] (see Fig. 5.11a and 5.11d) the atmospheric

transform can be calculated, as we have both the raw and lab spectra for both materials

(see Fig. 5.11c and 5.11f).
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(d) Tarmac spectrum from the
USGS Digital Spectral

Library [146]

(e) Average tarmac spectrum
from each dataset. 4th August
(Blue), 7th August (Red),

12th August (Green) and 15th
August (Purple)

(f) Calculated atmospheric
transform from tarmac

spectra. 4th August (Blue),
7th August (Red), 12th
August (Green) and 15th

August (Purple)

Fig. 5.11: Atmospheric transform calculation steps for VNIR imagery

5.6 Results

In order to determine the effectiveness of the various atmospheric correction techniques

described previously, a well established spectral matching algorithm was selected to

try to classify the atmospherically corrected image using the lab-measured spectra.

The more accurate the atmospheric correction, the better the spectral matching and

classification of the image are expected to be.

5.6.1 Spectral Angle Mapper (SAM)

The Spectral Angle Mapper (SAM) [98] is a very commonly used analysis tool for

spectral matching in remote sensing hyperspectral data. It works by measuring the

spectral similarity between a reference and a target spectrum. This similarity or angle

is calculated in Equation 5.5:

SAM = cos−1(
−→a ·
−→
b

||−→a || · ||
−→
b ||

) (5.5)

where
−→a is the reference spectrum,
−→
b is the target spectrum, and

|| · || is the Euclidean norm.
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(a) (b)

Fig. 5.12: Diagram for precision and recall for true and false negatives and positives

Small angles produced by the SAM represent more similar spectra, whereas higher

angles represent lower similarity. The main benefit of using this algorithm is that it is

insensitive to changes in illumination, due to it calculating similarity based on vector

direction rather than vector length.

5.6.2 Comparison of Techniques

As several algorithms have been created it was necessary to develop a way in which to

score the performance of each of these techniques compared to the ground truth. This

was done by considering various metrics for evaluating classification scores [156]. Two

metrics were chosen, the first being the recall (see Fig. 5.12 and Equation 5.6), and the

second the percentage of targets found:

Recall =
TP

TP + FN
(5.6)

where,

TP is the number of true positives found, and

FN is the number of false negatives.

Having atmospherically corrected all of the images using the techniques described,

we then attempted to classify each image using the SAM. The metrics described above
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to score each of the classifications were used and the results are shown in Tables 5.4

to 5.7. In all the tables the technique that produces the best result for each metric on

each image is highlighted in green, as well as the overall best technique for that metric.

Conversely, the technique with the worst results for each metric is highlighted in red.

The results show that overall for both the Recall and Percentage of Targets Found for

the VNIR imagery the MODTRAN technique produces the best results. Overall KS

Tarmac produces the worst results for both the Recall and the Percentage of Targets

Found, this is thought to be due to relatively low spectral reflectance from the tarmac in

the VNIR region of the spectrum that is distorting the results. For the SWIR imagery,

it is clear that both the KS Tarmac and KS Grass techniques produce the best results

for both Recall and Percentage of Targets Found, with the KS Tarmac only producing

slightly better results than the KS Grass technique.

Recall
Technique 4th 7th 12th 15th Mean
Lab Spectra 0.124 0.196 0.245 0.272 0.209
IARR 0.069 0.180 0.181 0.222 0.163
DOS 0.271 0.211 0.259 0.262 0.251
MODTRAN 0.382 0.391 0.357 0.527 0.414
KS Grass 0.131 0.192 0.333 0.430 0.272
KS Tarmac 0.067 0.178 0.192 0.117 0.139

Table 5.4: Recall results for VNIR imagery

Percentage of Targets Found
Technique 4th 7th 12th 15th Mean
Lab Spectra 40% 33% 57% 71% 50%
IARR 20% 33% 43% 43% 35%
DOS 60% 50% 57% 71% 60%
MODTRAN 60% 67% 57% 71% 64%
KS Grass 40% 33% 71% 86% 58%
KS Tarmac 20% 33% 43% 43% 35%

Table 5.5: Percentage of targets found for VNIR imagery
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Recall
Technique 4th 7th 12th 15th Mean
Lab Spectra 0.000 0.123 0.086 0.078 0.072
IARR 0.199 0.083 0.069 0.128 0.120
DOS 0.000 0.114 0.057 0.078 0.062
MODTRAN 0.000 0.021 0.086 0.091 0.050
KS Grass 0.321 0.132 0.143 0.195 0.198
KS Tarmac 0.324 0.222 0.237 0.156 0.235

Table 5.6: Recall results for SWIR imagery

Percentage of Targets Found
Technique 4th 7th 12th 15th Mean
Lab Spectra 0% 17% 14% 14% 11%
IARR 60% 17% 29% 29% 33%
DOS 0% 17% 14% 14% 11%
MODTRAN 0% 17% 14% 14% 11%
KS Grass 60% 33% 29% 43% 41%
KS Tarmac 80% 33% 29% 29% 43%

Table 5.7: Percentage of targets found for SWIR imagery

5.7 Summary

This chapter has introduced three new techniques for atmospheric correction of aerial hy-

perspectral imagery. Two scene-based approaches using prior known spectra, KS Grass

and KS Tarmac, and one radiative transfer based approach using MODTRAN radiative

transfer models were compared with two well established scene-based approaches (In-

ternal Average Relative Reflectance and Darks Object Subtraction). All three proposed

techniques showed very good performance. Having compared the results of these tech-

niques with the currently used scene-based approaches, it is clear that for the VNIR

imagery the proposed radiative transfer technique has higher recall than all the other

techniques for each of the four VNIR images, and in terms of percentage of targets found

it performs as well as or better than the current techniques, however the KS Grass tech-

nique does provide better results for the 12th and 15th August images. This is believed

to be due to the variation in both of these images caused by the cloud coverage that

cannot be accurately modelled in MODTRAN.
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However, as predicted, the SWIR imagery did provide a much greater challenge than

the VNIR imagery, due to the much greater atmospheric effects present in the SWIR

images. For both techniques, the MODTRAN approach provides no improvement in

terms of recall and percentage of targets found, and in fact, produces worse results for

the recall for certain images. Nonetheless, using both the KS Tarmac and KS Grass

techniques the results for both performance metrics for all four SWIR images are an

improvement over all the current techniques tested.



Chapter 6

Erosion Detection in Wind Turbines

Using Hyperspectral Imaging

6.1 Introduction

Inspection of wind turbine blades is required to identify any defects or failures and de-

cide on any remedial actions e.g. blade repair or replacement. Traditionally, inspections

have been performed by rope-access technicians who visually inspect the blades and

record damage using standard photographic equipment [157] and [158]. Recent devel-

opments have seen an increase in popularity in the use of remotely based inspection

techniques using ground-mounted cameras [159] and cameras installed on Remotely

Operated Aerial Vehicles (ROAVs), more commonly referred to as drones [160].

Whilst these techniques remove the need for human access to the blades, imag-

ing is performed remotely and does not always provide adequate image quality using

standard high definition cameras. As a result, there is a growing interest in imaging tech-

niques based on other regions of the electromagnetic spectrum [161–166]. Laboratory

and field-based trials are required to properly examine this potential and understand

which frequencies can be applied to imaging blades.

This chapter demonstrates a hyperspectral imaging technique in its application to

imaging surface defects on a section of wind turbine blade at varying light levels in a

laboratory. Processing of the data is then performed to determine the optimal bands
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required to reveal each type of erosion. By using a polynomial surface subtraction, the

results are improved upon and then compared with conventional images taken with a

high-definition RGB camera.

The rest of this chapter is structured as follows. Section 6.2 introduces the wind

turbine blades, their composition and the types of damages that can occur during op-

eration. Section 6.3 presents the methodology for capturing the initial images, adding

realistic defects to the blade, further imaging, and then finally the alteration of illumi-

nation levels. Results and a summary of the contributions are then presented in Sections

6.4 and 6.5 respectively.

6.2 Wind Turbine Blades

This section describes various possible types of damage to offshore wind turbine blades.

Fig. 6.1 illustrates the main elements of a typical wind turbine blade design. The struc-

tural design is optimised by adopting a shell structure with a long central main spar.

The spar caps provide stiffness and strength in bending and extension, while the spar

webs provide shear stiffness. The upwind side and downwind side of the blade are man-

ufactured, then joined together at both the leading edge and the trailing edge using

adhesive glue.

Fig. 6.1: Main elements of a wind turbine blade [167]

The materials of blades must be strong and stiff, yet as light as possible to satisfy

the blade design criteria and to minimise both the weight-induced fatigue loads and

the loads on the tower and foundations [168]. The materials of contemporary blades
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are usually fibre-reinforced composites which provide low weight, high strength and

stiffness and optimal performance in fatigue. The majority of blades are made of glass

fibre/epoxy, glass fibre/polyester or carbon fibre/epoxy composites [169].

Blades are generally designed to last for a minimum of 20 years, during which time

they will be subjected to varying weather patterns and wind loads that become more

extreme in the hostile marine environment. Thus, they should be designed to withstand

different types of damage, e.g. fatigue damage, erosion and damage due to extreme

conditions [170].

Damage can occur in a number of ways. It is important to properly identify different

damage types so that appropriate remedial actions can be performed. Fig. 6.2 displays

sketches and images of the typical damage types found on the removed sections of the

blade. Table 6.1 provides descriptions of these damages types.

(a) Sketch of damage types on downwind skin (b) Type 2: Adhesive joint failure at leading
edge

Fig. 6.2: Examples of damage types identified on a blade structure tested to failure
by a large compressive load [171]

Leading edge erosion is one of the biggest issues during the operations and main-

tenance phase of wind farms, particularly offshore. It occurs as a result of different

interactions between the blades rotating at high speeds and the environment, e.g. icing,

strong winds and impact with rain, hailstones, salt spray, dust and other atmospheric

contaminants [172]. It consists of peeling and cracking of the final blade surface along

its leading edge, and can lead to pitting, gouging and de-lamination. Damage to the

leading edge during manufacturing, transportation and handling can accelerate the de-
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Type Description

Type 1 Damage formation and growth in the adhesive layer joining skin and main spar
flanges

Type 2 Damage formation and growth in the adhesive layer joining the up and downward
skins along leading and/ or trailing edges (adhesive joint failure between skins)

Type 3 Damage formation and growth at the interface between face and core in sandwich
panels in skins and main spar web (sandwich panel face/core debonding)

Type 4
Internal damage formation and growth in laminates in skin and/or main spar flanges,
under a tensile or compression load (delamination driven by a tensional or buckling
load)

Type 5 Splitting and fracture of separate fibres in laminates of the skin and main spar (fibre
failure in tension; laminate failure in compression.

Type 6 Buckling of the skin due to damage formation and growth in the bond between skin
and main spar under compressive load (a specific case of type 1)

Type 7 Formation and growth of cracks in the gel-coat; debonding of gel coat from the skin

Type 8 Blade material surface degradation in the first laminate layer of the leading edge
(driven by erosion)

Table 6.1: Typical damage to load-carrying structural members of a wind turbine
blade [171]

velopment of erosion during operation. Fig. 6.3 shows three blade inspection images of

leading edge erosion on an offshore wind turbine blade.

(a) Rope access (b) ROAVs (c) Zoomed

Fig. 6.3: Images taken with HD digital camera using different methods (Source: Off-
shore Renewable Energy Catapult, 2015)
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6.3 Methodology

6.3.1 Image Acquisition

The hyperspectral camera selected to be used for this project was the Innospec Red

Eye 1.7 (see Fig. 6.4a), this is a near-infrared system operating in the spectral range of

950 - 1.70× 103 nm and outputs 256 bands over this range. This was chosen over the

VIS system as it provided the best initial results.

Having selected the camera the next stage of the process was to set up the hyper-

spectral camera as follows; see Fig. 6.4. In the lab, it is possible to image the blade at

a distance that would not be safe to operate at in practice without risking damage to

the system or turbine blade. Therefore a distance of 1.5 metres was selected both to

provide adequate resolution of the blade from the camera but also as a feasible distance

at which to operate at in the field.

(a) (b)

Fig. 6.4: Hyperspectral camera set-up

6.3.2 Initial Imaging

The blade and camera were positioned and the speed was determined by using a cali-

bration checker-board. As the camera is a line scan device, it is necessary to move the

camera at a constant speed over the full length of the blade to provide square pixels

in the image. Prior to hyperspectral imaging, some images were taken with a standard

high-definition RGB camera to provide details of any defects already present within the

blade; see Fig. 6.5.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.5: RGB images of initial defects

Following this, the first image was taken using the hyperspectral camera; see Fig.

6.6. For each of the defects already present and highlighted in Fig. 6.5, the location in

this new hyperspectral image has been highlighted. For this example, an average of all

the bands in the hyperspectral image was used to display this greyscale image.

Fig. 6.6: Initial hyperspectral image with existing defects highlighted
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6.3.3 Introduction of Damage Types

Having done the above analysis of the existing defects present on the blade, some realistic

defects were added to the blade. Those selected were of the type that would be present

in a wind turbine operating in the real world over several years [172]; see Fig. 6.7. Each

of these damage types provide a different challenge for detection. Fig. 6.7a shows very

light erosion of the outer laminate of the blade. Fig. 6.7b and 6.7c show erosion down to

the second and third layer of laminate, the pink and grey laminate respectively. Finally,

Fig. 6.7d shows a realistic type of damage where the turbine has been hit by an object

and the damage has penetrated down through all layers of laminate to the fibreglass.

(a) Light Erosion (b) Erosion to pink laminate

(c) Erosion to grey laminate (d) Realistic damage type

Fig. 6.7: Damage types
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Fig. 6.8: Hyperspectral image of turbine blade after defects have been added

6.3.4 Further Imaging

Having introduced these new damage types to the blade, it was then necessary to image

the blade again; see Fig. 6.8. While the majority of the new damage is visible to the

naked eye in this image, it was necessary to see at what point the damage was no longer

visible.

As the images were all taken at a fixed distance on a stationary blade, this provided

the ideal conditions for defect detection. To ensure that this technique could be used in

all conditions, it was then explored how to create more realistic images. As the distance

was fixed, the only other variable was the illumination. As we were using artificial light,

via two halogen lamps, the illumination was reduced by dimming each of the lamps; see

Fig. 6.9. Then, by using a Lux meter, the illumination was measured at each step and

a new hyperspectral image was taken at each level of illumination; see Fig. 6.10.
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Fig. 6.9: Hyperspectral images at different illumination levels

(a) 1000 Lux (b) 500 Lux

(c) 100 Lux (d) 25 Lux

Fig. 6.10: Hyperspectral images at different illumination levels
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6.4 Results and Analysis

6.4.1 Band Selection

As the hyperspectral camera outputs 256 bands between 950 nm and 1.70× 103 nm

before any further processing is performed, it was necessary to determine which were the

optimal bands to use for the analysis. This was done by manually selecting each region of

eroded surface along, with a non-eroded surface. The difference between each eroded and

non-eroded spectrum was calculated, an average was taken and the results are shown in

Fig. 6.11. It was found that the bands between 1.15× 103 nm and 1.23× 103 nm were

the best bands to use for the analysis in terms of maximising contrast. Having defined a

range of optimal bands, for the rest of the analysis it was decided that the 1.20× 103 nm

band would be used.

Fig. 6.11: Average contrast between eroded and not eroded surface

6.4.2 Classification

Having determined an appropriate band it was then possible to create a single image

from each hyperspectral image; see Fig. 6.12 to 6.15. This was created by first selecting

the leading edge of the blade and then 10 pixels to either side of this edge were selected,

and the rest of the data discarded. As the turbine blade is too large to show in one
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image, it has been split up into two sections. Section A has damage types simulating

erosion down to three different layers of laminate (Type 8), see Table 6.1. Section B has

one damage type simulating an object striking the blade and penetrating down to the

fibreglass.

(a) Section A

(b) Section B

Fig. 6.12: 1000 Lux

(a) Section A

(b) Section B

Fig. 6.13: 500 Lux

(a) Section A

(b) Section B

Fig. 6.14: 100 Lux



Chapter 6. Erosion Detection in Wind Turbines Using Hyperspectral Imaging 109

(a) Section A

(b) Section B

Fig. 6.15: 25 Lux

From the 1000 and 500 Lux images (Fig. 6.12 and 6.13) all types of erosion are

clearly visible, as the various depths of erosion can be seen from the intensity of the

images. However, for the 100 and 25 Lux images (Fig. 6.14 and 6.15) in section A only

the erosion down to the pink and grey layer of the laminate are visible and the depth

can still be retrieved for these. In section B the damage is almost visible but no other

depth information can be extracted.

6.4.3 Image Flattening

To try to improve the contrast of the images, the surface of the wind turbine blade

was assumed to have an elliptical geometry. Therefore by using the MATLAB Curve

Fitting Toolbox [173] it could be estimated by using a polynomial surface fitting which

is defined in Equation 6.1 [174]; see Fig. 6.16. This profile was then subtracted from

each hyperspectral image to flatten the image. This increased the contrast between the

eroded and non-eroded surface, and the results are shown in Fig. 6.17 to 6.20.

poly55(x, y) = p00 + p10x+ p01y + p20x
2 + p11xy

+ p02y
2 + p30x

3 + p21x
2y + p12xy

2

+ p03y
3 + p40x

4 + p31x
3y + p22x

2y2

+ p13xy
3 + p04y

4 + p50x
5 + p41x

4y

+ p32x
3y2 + p23x

2y3 + p14xy
4 + p05y

5

(6.1)
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where

x is x-axis image data

y is the y-axis image data and,

pij are the coefficients of the basis functions for the ith and jth term

(a) Hyperspectral image of leading edge (1200nm)

(b) Polynomial surface estimation

Fig. 6.16: Leading edge surface estimation

(a) Section A

(b) Section B

Fig. 6.17: 1000 Lux after surface subtraction

(a) Section A
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(b) Section B

Fig. 6.18: 500 Lux after surface subtraction

(a) Section A

(b) Section B

Fig. 6.19: 100 Lux after surface subtraction

(a) Section A

(b) Section B

Fig. 6.20: 25 Lux after surface subtraction

Having performed the surface subtraction it is now possible to see all damage types

on the blade, and depth information can be retrieved for all except the light erosion in

section A.

6.5 Summary

Having compared the results from the hyperspectral camera (see Fig 6.17 to 6.20) to

those from the high resolution camera (see Fig. 6.21), it is clear that there is more detail
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shown in the hyperspectral images, specifically, the depth of the erosion indicated by

the intensity of the image. Inspections of surface damage to the blades of operational

wind turbines are mainly focussed on capturing evidence of damage that may require

maintenance. This is usually when a defect, such as leading edge erosion, has progressed

to a stage where it is clearly visible. Currently, the damage is classified into four main

categories (see Table 6.2). Using the standard imaging techniques it is possible to classify

erosion into the four categories, therefore for this application hyperspectral imagery may

not be necessary. However, there are many other applications for the technology in this

field. It should also be noted that the effects of cloud coverage on the NIR illumination

could not be simulated in the lab and would need to be a consideration for any field

based trials.

(a) 18mm Zoom from 1.5m (b) 24mm Zoom from 1.5m

(c) 55mm Zoom from 1.5m (Section A) (d) 55mm Zoom from 1.5m (Section B)

Fig. 6.21: High-resolution images taken with Nikon D5500 camera with various zoom
levels

Hyperspectral imaging may have a place in the testing of blades, for example where
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it is more imperative to capture early signs of damage to components. This is most

applicable to blade erosion testing, which involves rotating a small sample of a blade

(around 300mm in length) through a simulated rain field at very high speeds. The test

procedure is repeatedly stopped, and the sample is removed and weighed to assess if

there has been any material loss and hence erosion. This technique is not effective since

the test has to be stopped for long periods of time and the method of assessing the onset

of erosion through weight loss is not accurate. It would be useful to have a method for

accurately imaging the sample during testing, without having to remove it from the test

chamber, to inspect it for early signs of erosion. These early signs may not be clearly

visible, however, they are important to capture as they may indicate the end of useful

life for a protective material or coating. The approach described provides a means to

do this testing.

Class of
Erosion

Description

Class 0 No or very little signs of erosion
Class 1 First signs of erosion but no abrasion, top

coat and gel coat damages
Class 2 Advanced erosion but no abrasion, cavi-

ties, gel-coat damages exposing laminate
Class 3 Severe erosion and gel coat damages ex-

posing laminate and laminate damages

Table 6.2: Erosion classification scheme (Source: Offshore Renewable Energy Catapult,
2015)
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Conclusion and Further Work

7.1 Conclusion

The general objective of this thesis was to improve the existing target detection process.

The three steps of this process are data reduction, atmospheric correction and target

or anomaly detection. Each of these steps were explored in a different chapter of the

thesis, in Chapter 3 the target or anomaly detection stage was looked at, Chapter 4

and 5 looked into the atmospheric correction stage and finally Chapter 6 explored data

reduction.

1. In Chapter 3, a new type of anomaly detection technique based on the Percentage

Occupancy Hit or Miss Transform [14] was proposed, ways were also explored

to improve upon the Mahalanobis Distance [84] for several aerial hyperspectral

images. Both of these techniques were then used on two VNIR hyperspectral

images, each with different targets present in the images. The results of both of

these algorithms were then compared with an established technique for target

detection the Sequential Maximum Angle Convex Cone [76].

The POHMT based technique has two key parameters these are the initially se-

lected bands to create the scatter plot and the cell size used to segment the scatter

plot. For the first of these key parameters, the band selection, it was discussed in

detail various methods that could be used to select these bands. However, for most

practical applications where information of the target is unknown, it proved very
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difficult to determine a set off optimal bands that would work for every target.

What can be achieved with the proposed technique is for applications where there

is a limit on data transmission or storage, this could be used to determine a list of

potential target locations and discard any information relating to the background

and thereby reduce the size of the dataset. The other key parameter mentioned

was the cell size, an exhaustive approach was taken for this parameter, the cell

size was varied from 5x5 to 150x150 in steps of 5 pixels, and it was found that

even for the limited data available, there was no clear cell size that worked for

each image, or even worked for each target. This was believed to be due to the

nature of how the scatter plot was created and the numerous factors that cause

the shape and sparsity of the scatter plot to change e.g. bit depth of the data,

spectral reflectivity and atmospheric absorption in bands selected.

Despite these limitations, the main object of Chapter 3, was to produce an im-

proved anomaly detection method. This was achieved for both hyperspectral im-

ages tested using certain bands and cell sizes when compared with the established

endmember selection algorithm SMACC.

2. Chapter 4 developed a MATLAB [139] based user interface for the atmospheric

modelling software MODTRAN, this is important because to achieve accurate

target detection in hyperspectral images, atmospheric correction is a necessary

step. Using this interface various atmospheric models were created using MOD-

TRAN 5.2.1, these each produced radiance profiles for key information, i.e. total

radiance received by the observer and solar scattering contribution. Each of these

models varied a key parameter in the atmospheric model, the results of all models

were then compared and it was found that parameters such as the time of day,

the day of the year, latitude, the height of the observer and aerosol model all had

significant effects on the produced radiance profiles for the VNIR region of the

spectrum. Where other parameters such as the atmospheric profile, carbon diox-

ide (CO2) mixing ratio, longitude and viewing zenith angle had small effects but

were much less severe and could essentially be ignored in any future calculations

for this application. It was also found that the one parameter that had severe
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effects on certain regions of the VNIR imagery was the column water vapour, this

was due to the water absorption bands at approximately 760 nm and from about

900 nm to 1000 nm causing major absorption effects to occur in these regions,

however, the rest of the data was unaffected.

3. The process for using MODTRAN atmospheric models to atmospherically correct

hyperspectral data was proposed in Chapter 5, also proposed were two scene-based

approaches that used prior known spectra, KS Grass and KS Tarmac, all three

of these techniques were then compared with two well established scene-based

approaches (Internal Average Relative Reflectance and Darks Object Subtraction).

The results from this comparison showed that all three proposed techniques have

very good performance, and are an improvement over the currently used scene-

based approaches for the purpose of spectral matching using the SAM. It was

also clear that for the VNIR imagery, the proposed radiative transfer technique

had higher recall than all the other techniques tested for each of the four VNIR

images, and in terms of percentage of targets found it performed as well as or

better than the current techniques.

However, as predicted, the SWIR imagery did provide a much greater challenge

than the VNIR imagery, due to the much greater atmospheric effects present

in the SWIR images. For both techniques, the MODTRAN approach provided

no improvement in terms of recall and percentage of targets found, and in fact,

produces worse results for the recall in certain images. Nonetheless, using both the

KS Tarmac and KS Grass techniques the results for both performance metrics for

all four SWIR images are an improvement over all the current techniques tested.

4. In Chapter 6 a practical application for HSI was proposed for the purpose of ero-

sion detection in wind turbine blades. Having selected various key types of erosion

that can occur in wind turbine blades operating in the field, these damage types

were simulated on a section of wind turbine blade in the lab. Using a NIR hyper-

spectral camera images were taken off the blade and the results were compared

with images taken from a high-definition RGB camera. The results showed that
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there was far more detail present in the hyperspectral images, mainly key infor-

mation about the depth of erosion could be extracted. Further studies were then

performed on finding the limits that this technique could still accurately detect

the erosion by lowering the level of illumination. It was found that by reducing the

light level it was no longer possible to detect any signs of erosion from the hyper-

spectral images. However by modelling the surface of the blade with a polynomial

surface estimation and subtracting this from the image. For the new images pro-

duced it was again possible to detect the erosion and retrieve detail about the

depth of the erosion present on the wind turbine blade.

7.2 Future Work

From the research and results presented in this thesis, there are a number of areas that

could be researched further in any future work. These are summarised below:

1. Based on the results from the proposed POHMT technique for anomaly detection

in hyperspectral images, it is clear that this technique shows initial progress. De-

spite the good results, future work could be carried out to create an unsupervised

method by automatically determining the optimal bands for creating the scatter

plot, also a supervised technique could also be developed where input information

of the target could be used to direct the selection of bands. Another part that

could be developed further is the cell size used, by classifying the shape or spar-

sity of the scatter plot it could be determined based on the scatter plot what a

necessary cell size could be.

2. Building on the interface developed in Chapter 4, it would be possible to perform

a more extensive examination of the additional parameters used when creating a

MODTRAN model. Although extensive research has already been performed on

most of these other parameters. It was found through the literature that they are

unlikely to have any major effects, it could still be useful to have a complete study

of every parameter built into the models.

3. In Chapter 5 the process of atmospheric correction of hyperspectral data using
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the models generated in Chapter 4 was proposed, however for this chapter the

adjacency effect was ignored, further research could be performed that would take

this effect into consideration. Also, a software such as HydroLight [175] could also

be explored for the correction of underwater targets.

4. Chapter 6 demonstrated a practical application of hyperspectral imaging for the

purpose of erosion detection in wind turbine blades. As all the testing was per-

formed on a section of blade in the lab, and all the erosion present on the blade

was simulated erosion. Future work could be undertaken to test the application of

the techniques presented in this work on wind turbines operating in the field with

genuine erosion present on the blade. These results could then be compared with

the traditional rope-access and RGB methods discussed in the chapter. Another

area for further research of these techniques would be for the testing of wind tur-

bine blades, due to the additional information extracted from the hyperspectral

images, mainly the depth of erosion, this data could be used more extensively in

the manufacturing and testing of wind turbine blades.



Appendix A

MODTRAN Variables

MODEL selects one of six geographical-seasonal model atmospheres or specifies that

user-defined meteorological or radiosonde data are to be used.

MODEL = 1 Tropical Atmosphere (15◦ North Latitude)
2 Mid-Latitude Summer (45◦ North Latitude)
3 Mid-Latitude Winter (45◦ North Latitude)
4 Sub-Arctic Summer (60◦ North Latitude)
5 Sub-Arctic Winter (60◦ North Latitude)
6 1976 US Standard Atmosphere

TPTEMP > 0 Boundary temperature [K] of ’image pixel’ (i.e., at H2),
used in the radiation mode (if IEMSCT = 1, 2 or 4) for
slant paths that intersect the earth OR terminate at a
gray boundary (for example, cloud, target). If the ’area-
average’ temperature (AATEMP, CARD 4A) is not en-
tered and the line-of-sight intersects the earth, TPTEMP
is also used as the lower boundary temperature in the
multiple scattering models.

≤ 0 No surface emission if H2 is above ground. If the path
intersects the Earth and TPTEMP is either not positive
or left blank, MODTRANÂő uses the temperature of the
first atmospheric level as the boundary temperature. If
the ’area-average’ temperature (AATEMP, CARD 4A) is
not entered and the line-of-sight intersects the earth, the
temperature of the first atmospheric level is also used as
the lower boundary temperature in the multiple scatter-
ing models.
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SURREF = BRDF Surface spectral BRDFs (Bidirectional Reflectance Dis-
tribution Functions) are specified by CARD 4A, 4B1, 4B2
and 4B3 inputs

= LAMBER Spectral Lambertian surface(s) is (are) specified by
CARD 4A, 4L1 and 4L2 inputs

≥ 0 Albedo of the earth, equal to one minus the surface emis-
sivity and spectrally independent (constant).

< 0 Negative integer values allow the user to access pre-
stored spectrally variable surface albedos from the
’DATA/spec_alb.dat’ file.

CO2MX CO2 mixing ratio in ppmv. The default value (used when
CO2MX = blank or 0.) is 330 ppmv; the current (1999)
recommended value is closer to 365 ppmv (Dutton, 1999).

H2OSTR Vertical water vapor column character string. If blank or
0., the default water vapor column is used. If the first
non-blank character is ’g’, the water vapor column in g
/ cm2 follows ’g’ (e.g., g 2.0). If the first non-blank char-
acter is an ’a’, the water column in ATM-cm follows ’a’
(e.g., a 3000.). Otherwise, a positive value is interpreted
as a scaling factor for the water column (e.g., 2.0 dou-
bles the default water vapor column). If H2OSTR is used
with a constant pressure path, i.e., MODEL = 0 (CARD
1), the scaling will be applied to the water density; if an
absolute water column amount is input, then the scaling
factor is defined relative to the model atmosphere spec-
ified by M2 (assuming it is not 0). The water density
within water clouds (ICLD = 1-10) is not scaled. Also,
the water number density at each profile altitude will
not be increased above 100% RH (relative humidity) or
by more than 5 times the original value. When the 100%
RH limit is reached, the water is distributed to other
levels to the extent possible to achieve the input water
column. There is a new H2OSTR option to ignore the
100% relative humidity limit. This option is invoked by
setting the first non-blank character in H2OSTR to "+",
a plus sign. Thus, if one wants to set the water column
to 3.0 g / cm2 without the 100% RH limit, set H2OSTR
to ’+g3.0’.
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IHAZE selects the type of extinction and a default meteorological range for the

boundary-layer aerosol models only. If VIS is also specified, it will override the default

IHAZE value. Interpolation of the extinction coefficients based on relative humidity is

performed only for the RURAL, MARITIME, URBAN, and TROPOSPHERIC coeffi-

cients used in the boundary layer (0 to 2 km altitude).

IHAZE = -1 No aerosol attenuation, but the model clouds may be
included (i.e., ICLD = 1, 2... 10, 18 and 19).

= 0 No aerosol or cloud attenuation included in the calcula-
tion.

= 1 RURAL extinction, default VIS = 23 km.
= 2 RURAL extinction, default VIS = 5 km.
= 3 NAVY MARITIME extinction. Sets VIS based on wind

speed and relative humidity.
= 4 MARITIME extinction, default VIS = 23 km (LOW-

TRAN model).
= 5 URBAN extinction, default VIS = 5 km.
= 6 TROPOSPHERIC extinction, default VIS = 50 km.
= 7 User-defined aerosol extinction coefficients. Triggers

reading CARDs 2D, 2Dl and 2D2 for up to 4 altitude
regions of user-defined extinction, absorption and asym-
metry parameters. (This option is kept for backward com-
patibility; the ARUSS = ’USS’ option affords greater flex-
ibility in specifying user-defined aerosols).

= 8 FOG1 (Advective Fog) extinction, 0.2 km VIS.
= 9 FOG2 (Radiative Fog) extinction, 0.5 km VIS.
= 10 DESERT extinction, sets visibility from wind speed

(WSS).

H1 = Initial altitude (km). H1, the initial altitude, always de-
fines the position of the observer (or sensor).

ANGLE = Initial zenith angle (degrees) as measured from H1.

IDAY = Day of the year, used to correct for variation in the earth-
to-sun distance.
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PARM1 = Observer latitude (-90◦ to +90◦)

PARM2 = Observer longitude (0◦ to 360◦ïĂăwest of Greenwich)

TIME = Greenwich mean time in decimal hours, that is, 8:45 a.m.
is 8.75, 5:20 p.m. is 17.33 etc.

V1 = Initial frequency in wavenumber [cm-1]

V2 = Final frequency in wavenumber [cm-1]

DV = Frequency increment used for spectral outputs.

Table A.1: MODTRAN variable descriptions and options [176]
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MODTRAN Card Formats

In the following, optional cards are indented. The mandatory input CARDS are CARD

1, CARD 1A, CARD 2, CARD 3, CARD 4 and CARD 5. Newer inputs are in

Italics. Note that all floating point inputs are entered using a ’Fn.0’ format; this format

will properly read any floating point entry, e.g. ’1.233’, AND will also properly read

integers as floating point real variables, (either 1234. or 1234 with no decimal).

CARD 1: MODTRN, SPEED, BINARY, LYMOLC, MODEL, T_BEST,
ITYPE, IEMSCT, IMULT, M1, M2, M3, M4, M5, M6, MDEF,
I_RD2C, NOPRNT, TPTEMP, SURREF)
FORMAT (4A1, I1, A1, I4, 10I5, 1X, I4, F8.0, A7)

CARD 1A: DIS, DISAZM, DISALB, NSTR, SFWHM, CO2MX, H2OSTR,
O3STR, C_PROF, LSUNFL, LBMNAM, LFLTNM, H2OAER,
CDTDIR, SOLCON, CDASTM, ASTMC, ASTMX, ASTMO,
AERRH, NSSALB
FORMAT(3A1, I3, F4.0, F10.0, 2A10, 2A1, 4(1X, A1), F10.0, A1,
F9.0, 3F10.0, I10)

CARD 1A1: USRSUN
FORMAT (A256) (If LSUNFL = ’T’)

123
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CARD 1A2: BMNAME
FORMAT (A256) (If LBMNAM =

’T’,’t’,’4’or’2’)

CARD 1A3: FILTNM
FORMAT (A256) (If LFLTNM = ’ T ’)

CARD 1A4: DATDIR
FORMAT (A256) (If CDTDIR = ’ T ’)

CARD 1A5: (S_UMIX(IMOL), IMOL = 4, 12)
FORMAT (9F5.0) (If C_PROF = 1, 3,

5 or 7)

CARD 1A6: (S_XSEC(IMOL), IMOL = 1, 13)
FORMAT (13F5.0) (If C_PROF = 2, 3,

6 or 7)

CARD 1A7: (S_TRAC(IMOL), IMOL = 1, 16)
FORMAT (16F5.0) (If C_PROF = 4, 5,

6 or 7)

CARD 1B: (AWAVLN(ISSALB), AS-
SALB(ISSALB), ISSALB=1,
NSSALB)
FORMAT ((8F10.0)) (If NSSALB >0)



Appendix B. MODTRAN Card Formats 125

Alternative
CARD 1B:

ACOALB, RHASYM

FORMAT(2F10.0) (If NSSALB <0 and
ASTMX >0.)

Table B.1: Format for MODTRAN Card 1 [176]

CARD 2: APLUS, IHAZE, CNOVAM, ISEASN, ARUSS, IVULCN, ICSTL,
ICLD, IVSA, VIS, WSS, WHH, RAINRT, GNDALT
FORMAT (A2, I3, A1, I4, A3, I2, 3I5, 5F10.0)

CARD 2A+: ZAER11, ZAER12, SCALE1,
ZAER21, ZAER22, SCALE2,
ZAER31, ZAER32, SCALE3,
ZAER41, ZAER42, SCALE4
FORMAT ((3(1X, F9.0), 20X,
3(1X, F9.0)))

(If APLUS = ’A+’)

CARD 2A: CTHIK, CALT, CEXT
FORMAT (3F8.0) (If ICLD = 18 or 19)

Alternate
CARD 2A:

CTHIK, CALT, CEXT, NCRALT,
NCRSPC, CWAVLN, CCOLWD,
CCOLIP, CHUMID, ASYMWD,
ASYMIP
FORMAT (3F8.0, 2I4, 6F8.0) (If 0 <ICLD âĽď 10)

CARD 2B: ZCVSA, ZTVSA, ZINVSA
FORMAT (3F10.0) (If IVSA = 1)

CARD 2C: ML, IRD1, IRD2, HMODEL, REE,
NMOLYC, E_MASS, AIRMWT
FORMAT(3I5, A20, F10.0, I5,
2F10.0)

(If MODEL = 0, 7 or
8; & I_RD2C = 1)
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CARD 2CY: (YNAME(I), I=1, NMOLYC)
FORMAT ((8A10)) (If NMOLYC >0)

CARDs 2C1, 2C2, 2C2X, 2C2Y and 2C3 (as required) are each repeated ML times.

CARD 2C1: ZM, P, T, WMOL(1), WMOL(2),
WMOL(3), (JCHAR(J), J = 1,
14), JCHARX, JCHARY
FORMAT 6F10.0, 14A1, 1X, 2A1)

CARD 2C2: (WMOL(J), J = 4, 12)
FORMAT (8F10.0, /F10.0) (If IRD1 = 1)

CARD 2C2X: (WMOLX(J), J = 1, 13)
FORMAT (8F10.0, /5F10.0) (If MDEF = 2 &

IRD1 = 1)

CARD 2C2Y: (WMOLY(J), J = 1, NMOLYC)
FORMAT ((8F10.0)) (If NMOLYC >0 &

IRD1 = 1)

CARD 2C3: AHAZE, EQLWCZ, RRATZ,
IHA1, ICLD1, IVUL1, ISEA1,
ICHR
FORMAT (10X, 3F10.0, 5I5) (If IRD2 = 1)

CARD 2C3: AHAZE(1), RRATZ, AHAZE(2),
AHAZE(3), AHAZE(4)
FORMAT(10X, F10.0, 10X,
4F10.0)

(If IRD2 = 2)
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CARD 2D: (IREG(N), N = 1, 2, 3, 4)
FORMAT (4I5) (If IHAZE = 7,

ICLD = 11 or
ARUSS=’USS’)

CARDs 2D1 and 2D2 pairs are repeated for each N (1 to 4) for which

IREG(N) >0 (ARUSS=’USS’) or

IREG(N) 6= 0 (IHAZE=7 or ICLD=11)

CARD 2D1: AWCCON, AERNAM
FORMAT (F10.0, A70)

CARD 2D2: (VARSPC(N, I), EXTC(N, I),
ABSC(N, I), ASYM(N, I), I = l,
2, ..., Imax)
FORMAT ((3(F6.2, 2F7.5, F6.4))) If ARUSS = ’USS’

& IREG(N) >1, then
Imax = IREG(N);
Else Imax = 47

CARD 2E1: (ZCLD(I, 0), CLD(I, 0),
CLDICE(I, 0), RR(I, 0), I =
1, NCRALT)
FORMAT ((4F10.5)) (If ICLD = 1 -

10, NCRALT ≥ 2,
MODEL <8)

Alternate
CARD 2E1:

(PCLD(I, 0), CLD(I, 0),
CLDICE(I, 0), RR(I, 0), I =
1, NCRALT))
FORMAT ((4F10.5)) (If ICLD = 1 -

10, NCRALT ≥ 2,
MODEL = 8)
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CARD 2E2: (WAVLEN(I), EXTC(6, I),
ABSC(6, I), ASYM(6, I), EXTC(7,
I), ABSC(7, I), ASYM(7, I), I =
1, NCRSPC)
FORMAT ((7F10.5)) (If ICLD = 1 - 10,

NCRSPC ≥ 2)

Alternate
CARD 2E2:

CFILE, CLDTYP, CIRTYP

FORMAT ((A256)) (If ICLD = 1 - 10,
NCRSPC = 1)

Table B.2: Format for MODTRAN Card 2 [176]

CARD 3: H1, H2, ANGLE, RANGE, BETA, RO, LENN, PHI
FORMAT (6F10.0, I5, 5X, 2F10.0)

Alternate
CARD 3:

H1, H2, ANGLE, IDAY, RO, ISOURC, AN-
GLEM
FORMAT (3F10.0, I5, 5X, F10.0, I5, F10.0) (If IEMSCT = 3)

CARD 3A1: IPARM, IPH, IDAY, ISOURC
FORMAT (4I5) (If IEMSCT = 2 or 4)

CARD 3A2: PARM1, PARM2, PARM3,
PARM4, TIME, PSIPO, AN-
GLEM, G
FORMAT (8F10.0) (If IEMSCT = 2 or 4)

CARD 3B1: NANGLS, NWLF
FORMAT (2I5) (If IEMSCT = 2
or 4; IPH = 1)
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CARD 3B2: (ANGF(I), F(1, I, 1), F(2, I, 1),
F(3, I, 1), F(4, I, 1), I = l, NAN-
GLS)
FORMAT (5F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF = 0)

CARD 3C1: (ANGF(I), I = 1, NANGLS)
FORMAT (8F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF >0)

CARD 3C2: (WLF(J), J = 1, NWLF)
FORMAT (8F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF >0)

In CARDs 3C3-3C6, ’IANG’ is angle index as in CARD3C1 and ’JWAV’ is the

wavelength index as in CARD3C2.

CARD 3C3: (F(1, IANG, JWAV), JWAV = 1,
NWLF)
FORMAT (8F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF >0)

CARD 3C4: (F(2, IANG, JWAV), JWAV = 1,
NWLF)
FORMAT (8F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF >0)

CARD 3C5: (F(3, IANG, JWAV), JWAV = 1,
NWLF)
FORMAT (8F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF >0)
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CARD 3C6: (F(4, IANG, JWAV), JWAV = 1,
NWLF)
FORMAT (8F10.0) (If IEMSCT = 2 or 4;

IPH = 1; NWLF >0)

Table B.3: Format for MODTRAN Card 3 [176]

CARD 4: V1, V2, DV, FWHM, YFLAG, XFLAG, DLIMIT, FLAGS,
MLFLX, VRFRAC
FORMAT (4F10.0, 2A1, A8, A7, I3,F10.0)

CARD 4A: NSURF, AATEMP, DH2O, ML-
TRFL
FORMAT (I1, 2F9.0, A1) (If SURREF =

’BRDF’ or ’LAM-
BER’)

The set of CARD4B1, 4B2, and 4B3 inputs is repeated NSURF times.

CARD 4B1: CBRDF
FORMAT (A80) (If SURREF =

’BRDF’)

CARD 4B2: NWVSRF, SURFZN, SURFAZ
FORMAT (*) (If SURREF =

’BRDF’)

CARD4B3 is repeated NWVSRF times.

CARD 4B3: WVSURF, (PARAMS(I), I = 1,
NPARAM)
FORMAT (*) (If SURREF =

’BRDF’)
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CARD 4L1: SALBFL
FORMAT (A256) (If SURREF =

’LAMBER’)

CARD4L2 is repeated NSURF times.

CARD 4L2: CSALB
FORMAT (A80) (If SURREF =

’LAMBER’)

Table B.4: Format for MODTRAN Card 4 [176]

CARD 5: IRPT
FORMAT (I5)

Table B.5: Format for MODTRAN Card 5 [176]
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MODTRAN GUI

C.1 Read Card 1

1 function [line_count,MOD] = readCard1(lines,line_count,MOD)
2 line = lines{line_count};
3 FieldWidth = [1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 1 4 8 7];
4 FieldFormat = {'c', 'c', 'c', 'c', 'd', 'd', ...

'd','d','d','d','d','d','d','d','d','d','*', 'd', ...
'f', '7c'};

5 [data] = readCard(line,FieldWidth,FieldFormat);
6 [MOD.MODTRN, MOD.SPEED, MOD.BINARY, MOD.LYMOLC, ...

MOD.MODEL, MOD.ITYPE, MOD.IEMSCT, MOD.IMULT, MOD.M1, ...
MOD.M2, MOD.M3, MOD.M4, MOD.M5, MOD.M6, MOD.MDEF, ...
MOD.I_RD2C, MOD.NOPRNT, MOD.TPTEMP, MOD.SURREF] = ...
data{:};

7 line_count = line_count + 1;
8 end

Fig. C.1: Function for reading card 1

132
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C.2 Read Card General

1 function [data] = readCard(line,FieldWidth,FieldFormat)
2 Stop = cumsum(FieldWidth);
3 Start = Stop − FieldWidth + 1;
4 if length(line) < max(Stop)
5 line = [line blanks(max(Stop) − length(line))];
6 elseif length(line) > max(Stop)
7 line = line(1:max(Stop));
8 end
9 data = cell(1,length(FieldWidth));

10 for i = 1:length(FieldWidth)
11 if FieldFormat{i} 6= '*'
12 data{i} = sscanf(line(Start(i):Stop(i)), ['%' ...

FieldFormat{i}]);
13 if isempty(data{i})
14 data{i} = 0;
15 end
16 end
17 end
18 emptyCells = cellfun(@isempty,data);
19 data(emptyCells) = [];
20 end

Fig. C.2: Function for reading general card
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C.3 Read LTN File

1 function MOD = readLTN(filename)
2 MOD = MODTRAN;
3 splitStr = regexp(filename,'\','split');
4 splitStr = regexp(splitStr{length(splitStr)},'/','split');
5 MOD.caseName = splitStr{length(splitStr)};
6 MOD.caseIndex = 1;
7 fileID = fopen(filename);
8 i=0;
9 while ¬feof(fileID)

10 fgetl(fileID);
11 i = i+1;
12 end
13 frewind(fileID)
14 lines = cell(i,1);
15 for i=1:i
16 lines{i} = fgetl(fileID);
17 end
18 fclose(fileID);
19 [line_count,MOD] = readSingleRun(lines,1,MOD);
20 fileFinished = (isempty(MOD.IRPT) || MOD.IRPT == 0 || ...

MOD.IRPT == 2);
21 end

Fig. C.3: Function for reading complete LTN file

C.4 Write Card 1

1 function writeCard1(fileID,MOD)
2 stringFormat = ...

'%c%c%c%c%1d%5d%5d%5d%5d%5d%5d%5d%5d%5d%5d%5d ...
%4d%8.3f%7s\n';

3 fprintf(fileID,stringFormat,MOD.MODTRN, MOD.SPEED, ...
MOD.BINARY, MOD.LYMOLC, MOD.MODEL, MOD.ITYPE, ...
MOD.IEMSCT, MOD.IMULT, MOD.M1, MOD.M2, MOD.M3, ...
MOD.M4, MOD.M5, MOD.M6, MOD.MDEF, MOD.I_RD2C, ...
MOD.NOPRNT, MOD.TPTEMP, MOD.SURREF);

4 end

Fig. C.4: Function for writing card 1
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C.5 Write LTN File

1 function writeLTN(MOD)
2 save_path = 'Output Data\LTN Files\';
3 if ¬exist(save_path, 'dir'),
4 mkdir(save_path)
5 end
6 fileID = fopen([save_path MOD(1).caseName],'wt');
7 %% Card 1
8 writeCard1(fileID,MOD);
9 %% Card 1A

10 writeCard1A(fileID,MOD);
11 %% Card 1A1
12 if strcmpi(MOD.LSUNFL, 'T')
13 writeCard1A1(fileID,MOD);
14 end
15 %% Card 1A2
16 if any(MOD.LBMNAM == 'Tt42')
17 writeCard1A2(fileID,MOD);
18 end
19 %% Card 1A3
20 if strcmpi(MOD.LFLTNM, 'T')
21 writeCard1A3(fileID,MOD);
22 end
23 %% Card 1A4
24 if strcmpi(MOD.CDTDIR, 'T')
25 writeCard1A4(fileID,MOD);
26 end
27 %% Card 1A5
28 if any(MOD.C_PROF == '1357')
29 writeCard1A5(fileID,MOD);
30 end
31 %% Card 1A6
32 if any(MOD.C_PROF == '2367')
33 writeCard1A6(fileID,MOD);
34 end
35 %% Card 1A7
36 if any(MOD.C_PROF == '4567')
37 writeCard1A7(fileID,MOD);
38 end
39 %% Card 1B and Alt 1B
40 if ¬isempty(MOD.NSSALB) && MOD.NSSALB > 0
41 writeCard1B(fileID,MOD);
42 elseif ¬isempty(MOD.NSSALB) && MOD.NSSALB < 0 && ...

MOD.ASTMX > 0
43 writeCard1BAlt(fileID,MOD);
44 end
45 %% Card 2
46 writeCard2(fileID,MOD);
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47 %% Card 2A+
48 if strcmp(MOD.APLUS, 'A+')
49 writeCard2APlus(fileID,MOD);
50 end
51 %% Card 2A
52 if MOD.ICLD == 18 || MOD.ICLD == 19
53 writeCard2A(fileID,MOD);
54 end
55 %% Card 2A Alt
56 if any(MOD.ICLD == 1:10)
57 writeCard2AAlt(fileID,MOD);
58 end
59 %% Card 2B
60 if MOD.IVSA == 1
61 writeCard2B(fileID,MOD);
62 end
63 %% Card 2C
64 if any(MOD.MODEL == [0 7 8]) && MOD.I_RD2C == 1
65 writeCard2C(fileID,MOD);
66 %% Card 2CY
67 if any(MOD.NMOLYC > 0) %&& MOD.MDEF == 2
68 writeCard2CY(fileID,MOD);
69 end
70 %% Card 2C1, 2C2 & 2C3
71 for i = 1:MOD.ML
72 writeCard2C1(fileID,MOD,i);
73 if MOD.IRD1 == 1
74 writeCard2C2(fileID,MOD,i);
75 end
76 if MOD.MDEF == 2 && MOD.IRD1 == 1
77 writeCard2C2X(fileID,MOD,i);
78 end
79 if MOD.NMOLYC > 0 && MOD.IRD1 == 1
80 writeCard2C2Y(fileID,MOD,i);
81 end
82 if MOD.IRD2 == 1
83 writeCard2C3(fileID,MOD,i);
84 elseif MOD.IRD2 == 2
85 writeCard2C3Alt(fileID,MOD,i);
86 end
87 end
88 end
89 %% Card 2D
90 if MOD.IHAZE == 7 || MOD.ICLD == 11 || strncmpi(MOD.ARUSS, 'USS', 3)
91 writeCard2D(fileID,MOD);
92 for iNREG = 1:4
93 if MOD.IREG(iNREG) 6= 0
94 writeCard2D1(fileID,MOD,iNREG);
95 if strncmpi(MOD.ARUSS, 'USS', 3) && (MOD.IREG(iNREG) > 1)
96 writeCard2D2(fileID,MOD,iNREG,MOD.IREG(iNREG));
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97 else
98 writeCard2D2(fileID,MOD,iNREG,47);
99 end

100 end
101 end
102 end
103 %% Card 2E1
104 if any(MOD.ICLD == 1:10) && MOD.NCRALT ≥ 3
105 if MOD.MODEL < 8
106 for iNCRALT = 1:MOD.NCRALT
107 writeCard2E1(fileID,MOD,iNCRALT);
108 end
109 elseif MOD.MODEL == 8
110 for iNCRALT = 1:MOD.NCRALT
111 writeCard2E1Alt(fileID,MOD,iNCRALT);
112 end
113 end
114 end
115 %% Card 2E2
116 if any(MOD.ICLD == 1:10)
117 if MOD.NCRSPC ≥ 2
118 for iNCRSPC = MOD.NCRSPC
119 writeCard2E2(fileID,MOD,iNCRSPC);
120 end
121 elseif MOD.NCRSPC == 1
122 writeCard2E2Alt(fileID,MOD);
123 end
124 end
125 %% Card 3
126 writeCard3All(fileID,MOD);
127 %% Card 4
128 writeCard4(fileID,MOD);
129 %% Card 4A, 4B1−2 & 4L1−2
130 writeCard4Ato4L2(fileID,MOD);
131 %% Card 5
132 writeCard5(fileID,MOD);
133 fclose(fileID);
134 end

Fig. C.5: Function for writing LTN file
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C.6 Generate Multiple LTN Files

1 for a = 1:length(model)
2 MODEL = num2str(model(a));
3 for b = 1:length(tptemp)
4 TPTEMP = num2str(tptemp(b),'%.3f');
5 for c = 1:length(surref)
6 SURREF = num2str(surref(c),'%.5f');
7 for d = 1:length(co2mx)
8 CO2MX = num2str(co2mx(d),'%.3f');
9 for e = 1:length(h2ostr)

10 H2OSTR = num2str(h2ostr(e),'%.6f');
11 for f = 1:length(ihaze)
12 IHAZE = num2str(ihaze(f));
13 for g = 1:length(h1)
14 H1 = num2str(h1(g),'%.6f');
15 for h = 1:length(angle)
16 ANGLE = num2str(angle(h),'%.6f');
17 for i = 1:length(iday)
18 IDAY = num2str(iday(i));
19 for j = 1:length(parm1)
20 PARM1 = num2str(parm1(j),'%.3f');
21 for k = 1:length(parm2)
22 PARM2 = num2str(parm2(k),'%.3f');
23 for l = 1:length(time)
24 TIME = num2str(time(l),'%.3f');
25 writeLTN(MODEL, TPTEMP, SURREF, CO2MX, H2OSTR, IHAZE, H1, ...

ANGLE, IDAY, PARM1, PARM2, TIME, V1, V2, DV, save_path);
26 end end end end end end end end ...

end end end end

Fig. C.6: Code used to create multiple LTN files
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C.7 Running MODTRAN

1 function runMODTRAN(filename,plot_flag)
2 if nargin == 1
3 plot_flag = 0;
4 end
5 if exist('C:\PcModWin5\bin', 'dir')
6 pcmodwin_dir = 'C:\PcModWin5\bin';
7 else
8 pcmodwin_dir = uigetdir;
9 end

10 tmp = pwd;
11 name = regexp(filename,'\','split');
12 name = regexp(name{length(name)},'/','split');
13 name = name{length(name)};
14 if any(name==43)
15 name = regexprep(name,'\+','Plus');
16 filename = regexprep(filename,'\+','Plus');
17 end
18 path = regexp(filename,name,'split');
19 path = path{1};
20 name = regexp(name,'.ltn','split');
21 name = name{1};
22 save_path_MODTRAN = 'Output Data\MODTRAN Output\';
23 if ¬exist(save_path_MODTRAN, 'dir'),
24 mkdir(save_path_MODTRAN)
25 end
26 save_path_MATLAB = 'Output Data\MATLAB Output\';
27 if ¬exist(save_path_MATLAB, 'dir'),
28 mkdir(save_path_MATLAB)
29 end
30 cd(pcmodwin_dir)
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31 %% Run MODTRAN
32 count = 0;
33 while 1
34 copyfile(filename,'modin')
35 copyfile('modin','tape5')
36 [¬, ¬] = system('Mod5_2_2_0.exe');
37 copyfile('tape7',[tmp '\' save_path_MODTRAN name '.fl7'])
38 d = dir([tmp '\' save_path_MODTRAN name '.fl7']);
39 f_size = [d(:).bytes];
40 if f_size6=0 %#ok<BDSCI>
41 cd(tmp)
42 read_fl7(name,tmp,save_path_MODTRAN,save_path_MATLAB);
43 break
44 end
45 count = count + 1;
46 if count == 5
47 errordlg({'Error in MODTRAN Code','Check .ltn Files'});
48 cd(tmp)
49 return;
50 end
51 end
52 end

Fig. C.7: Code used to run multiple LTN files
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C.8 Manual Input

1 function manualInput(save_path)
2 MODEL = input('MODEL = ');
3 TPTEMP = input('TPTEMP = ');
4 SURREF = input('SURREF = ');
5 CO2MX = input('CO2MX = ');
6 H2OSTR = input('H2OSTR = ');
7 IHAZE = input('IHAZE = ');
8 H1 = input('H1 = ');
9 ANGLE = input('ANGLE = ');

10 IDAY = datenum([input('IDAY (dd mmm) = ','s') ' 0001'])−366;
11 PARM1 = input('PARM1 = ');
12 PARM2 = input('PARM2 = ');
13 TIME = time2dec(input('TIME (hhmm) = '));
14 V1 = num2str(10^7/input('V1 = '),'%.4f');
15 V2 = num2str(10^7/input('V2 = '),'%.4f');
16 DV = num2str(10^7/input('DV = '),'%.4f');
17 %% Create Settings File
18 fid = fopen([save_path 'settings.cfg'],'wt');
19 fprintf(fid,['MODEL = ' num2str(MODEL) '\n']);
20 fprintf(fid,['TPTEMP = ' num2str(TPTEMP) '\n']);
21 fprintf(fid,['SURREF = ' num2str(SURREF) '\n']);
22 fprintf(fid,['CO2MX = ' num2str(CO2MX) '\n']);
23 fprintf(fid,['H2OSTR = ' num2str(H2OSTR) '\n']);
24 fprintf(fid,['IHAZE = ' num2str(IHAZE) '\n']);
25 fprintf(fid,['H1 = ' num2str(H1) '\n']);
26 fprintf(fid,['ANGLE = ' num2str(ANGLE) '\n']);
27 fprintf(fid,['IDAY = ' num2str(IDAY) '\n']);
28 fprintf(fid,['PARM1 = ' num2str(PARM1) '\n']);
29 fprintf(fid,['PARM2 = ' num2str(PARM2) '\n']);
30 fprintf(fid,['TIME = ' num2str(TIME) '\n']);
31 fprintf(fid,['V1 = ' V1 '\n']);
32 fprintf(fid,['V2 = ' V2 '\n']);
33 fprintf(fid,['DV = ' DV '\n']);
34 fclose(fid);
35 end

Fig. C.8: Manual input function
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C.9 Configuration File Input

1 function fileInput(save_path)
2 [FileName,PathName,¬] = uigetfile('*.cfg','Select ...

Configuration File'); % Prompt user for config file
3 [MODEL, TPTEMP, SURREF, CO2MX, H2OSTR, IHAZE, H1, ANGLE, ...

IDAY, PARM1, PARM2, TIME, V1, V2, DV] = ...
importSettings(PathName, FileName);

4 %% Create Settings File
5 fid = fopen([save_path 'settings.cfg'],'wt');
6 fprintf(fid,['MODEL = ' num2str(MODEL) '\n']);
7 fprintf(fid,['TPTEMP = ' num2str(TPTEMP) '\n']);
8 fprintf(fid,['SURREF = ' num2str(SURREF) '\n']);
9 fprintf(fid,['CO2MX = ' num2str(CO2MX) '\n']);

10 fprintf(fid,['H2OSTR = ' num2str(H2OSTR) '\n']);
11 fprintf(fid,['IHAZE = ' num2str(IHAZE) '\n']);
12 fprintf(fid,['H1 = ' num2str(H1) '\n']);
13 fprintf(fid,['ANGLE = ' num2str(ANGLE) '\n']);
14 fprintf(fid,['IDAY = ' num2str(IDAY) '\n']);
15 fprintf(fid,['PARM1 = ' num2str(PARM1) '\n']);
16 fprintf(fid,['PARM2 = ' num2str(PARM2) '\n']);
17 fprintf(fid,['TIME = ' num2str(TIME) '\n']);
18 fprintf(fid,['V1 = ' V1 '\n']);
19 fprintf(fid,['V2 = ' V2 '\n']);
20 fprintf(fid,['DV = ' DV '\n']);
21 fclose(fid);
22 end

Fig. C.9: Configuration file input function
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C.10 Read Output Files

1 search_str = ' FREQ TOT_TRANS PTH_THRML THRML_SCT ...
SURF_EMIS SOL_SCAT SING_SCAT GRND_RFLT DRCT_RFLT ...
TOTAL_RAD REF_SOL SOL@OBS DEPTH DIR_EM TOA_SUN ...
BBODY_T[K]';

2 for k = 1:length(nameFiles)
3 fid = fopen([save_path 'MODTRAN Output\' nameFiles{k} ...

'.fl7'],'r');
4 count = 0;
5 while ¬feof(fid)
6 while ¬feof(fid)
7 line = fgetl(fid);
8 if strncmp(line, search_str, length(search_str)) == 1
9 break

10 end
11 end
12 while ¬feof(fid)
13 line = fgetl(fid);
14 count = count + 1;
15 if strncmp(line, ' −9999.',7) == 1
16 break
17 end
18 end
19 end
20 nwaves = count − 1;
21 frewind(fid)
22 %% Extract Details
23 while ¬feof(fid)
24 while ¬feof(fid)
25 line = fgetl(fid);
26 if strncmp(line, search_str, length(search_str)) == 1
27 break
28 end
29 end
30 count = 1;
31 line = fgetl(fid);
32 while strncmp(line,' −9999.', 7) == 0
33 z = textscan(line, '%f %f %f %f %f %f %f %f %f %f %f %f ...

%f %f %f %f');
34 factor = z{1}.^2./10^4;
35 WAVELENGTH(1,count) = z{1}./factor;
36 TOT_TRANS(1,count) = z{2};
37 PTH_THRML(1,count) = factor*z{3};
38 THRML_SCT(1,count) = factor*z{4};
39 SURF_EMIS(1,count) = factor*z{5};
40 SOL_SCAT(1,count) = factor*z{6};
41 SING_SCAT(1,count) = factor*z{7};
42 GRND_RFLT(1,count) = factor*z{8};
43 DRCT_RFLT(1,count) = factor*z{9};
44 TOTAL_RAD(1,count) = factor*z{10};
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45 REF_SOL(1,count) = factor*z{11};
46 SOL_OBS(1,count) = factor*z{12};
47 DEPTH(1,count) = factor*z{13};
48 DIR_EM(1,count) = factor*z{14};
49 TOA_SUN(1,count) = factor*z{15};
50 BBODY_T(1,count) = factor*z{16};
51 count = count + 1;
52 line = fgetl(fid);
53 end
54 save([save_path 'MATLAB Output\' nameFiles{k} '.mat'], ...

'WAVELENGTH', 'TOT_TRANS', 'PTH_THRML', 'THRML_SCT', ...
'SURF_EMIS', 'SOL_SCAT', 'SING_SCAT', 'GRND_RFLT', ...
'DRCT_RFLT', 'TOTAL_RAD', 'REF_SOL', 'SOL_OBS', 'DEPTH', ...
'DIR_EM', 'TOA_SUN', 'BBODY_T');

55 end
56 fclose(fid);

Fig. C.10: Function to run LTN files in MODRTAN
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MODTRAN Output Variables

FL7 Name Name Units
FREQ Wavenumber 1/cm
TOT_TRANS Transmission Total N/A
PTH_THRML Path Thermal Radiance W/cm2/str/cm-1

THRML_SCT Thermal Scatter W/cm2/str/cm-1

SURF_EMIS Surface Emission Radiance W/cm2/str/cm-1

SOL_SCAT Solar Scatter Radiance W/cm2/str/cm-1

SING_SCAT Single Scatter Radiance W/cm2/str/cm-1

GRND_RFLT Total Ground Reflected Radiance W/cm2/str/cm-1

DRCT_RFLT Direct Ground Reflected Radiance W/cm2/str/cm-1

TOTAL_RAD Total Radiance W/cm2/str/cm-1

REF_SOL Reflected Solar W/cm2/str/cm-1

SOL@OBS Solar at Observer W/cm2/str/cm-1

DEPTH Optical Depth W/cm2/str/cm-1

DIR_EM Emissivity W/cm2/str/cm-1

TOA_SUN TOA Sun W/cm2/str/cm-1

BBODY_T[K] Blackbody Temperature K

Table D.1: Description of output file values
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MODTRAN Output Results

(a) Transmission total (b) Path Thermal Radiance (c) Thermal Scatter

(d) Surface Emission Radiance (e) Solar Scatter Radiance (f) Single Scatter Radiance

(g) Total Ground Reflected
Radiance

(h) Direct Ground Reflected
Radiance

(i) Total Radiance

146
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(j) Reflected Solar (k) Solar at Observer (l) Optical Depth

(m) Emissivity (n) TOA Sun (o) Blackbody Temperature

Fig. E.1: Output results for initial set-up
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Atmospheric Correction Equation

Derivation

ρobs(λ, θ, θ0, φ0) =
πLobs(λ, θ, θ0, φ0)

µ0F0(λ)
(F.1)

where,

θ0 is the solar zenith angle,

φ0 is the solar azimuth angle,

θ is the sensor zenith angle,

ρ is the sensor azimuth angle,

λ is the wavelength,

Lobs is the radiance measured at the satellite,

F0 is the solar flux at the top of the atmosphere when the solar zenith angle is equal to

zero and,

µ0 is the cosine of solar zenith angle.

According to Tanre et al. [155], when the surface is assumed to be Lambertian and

the adjacency effect is neglected, ρobs(λ, θ, θ0, φ0) can be expressed approximately as:

148
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ρobs(λ, θ, θ0, φ0) = [ρatm(λ, θ, θ0, φ0) +
td(λθ0)tu(λ, θ)ρ(λ)

(1− s(λ)ρ(λ))
]Tg(λ, θ, θ0) (F.2)

where,

ρatm is the path reflectance,

td is the downward scattering transmittance,

tu is the upward scattering transmittance,

s is the spherical albedo of the atmosphere,

ρ is the surface reflectance and,

Tg is the total gaseous transmittance in the Sun-surface-sensor path.

ρobs = Tg(ρatm +
tdtuρ

(1− sρ)
) (F.3)

ρobs = Tgρatm +
Tgtdtuρ

(1− sρ)
(F.4)

ρobs = SOL_SCAT +
Tgtdtuρ

(1− sρ)
(F.5)

ρobs − SOL_SCAT =
Tgtdtuρ

(1− sρ)
(F.6)

ρobs − SOL_SCAT = TOTAL_RAD × ρ (F.7)

ρ =
Lobs − SOL_SCAT
TOTAL_RAD

(F.8)
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