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Abstract

In this thesis, we study equilibrium configurations in spherical droplets of nematic

and ferronematic liquid crystals with strong radial anchoring. In the nematic case, we

work with the commonly used fourth-order bulk potential and the more complicated

sixth-order bulk potential, which predicts a bulk biaxial phase at sufficiently low tem-

peratures, while the fourth-order bulk potential does not. In the ferronematic case, we

work with a ferronematic free energy which contains a Landau–de Gennes contribution

for the liquid crystal configuration; terms to account for the spontaneous magnetisa-

tion; and a nemato-magnetic coupling term. We prove a collection of analytical results

regarding properties of the radial hedgehog solution in both the nematic and ferrone-

matic cases. We use a range of numerical methods to compute critical points of the

Landau–de Gennes and ferronematic free energies. We study the stability of the ra-

dial hedgehog solution as a function of temperature and droplet radius and compute

bifurcation diagrams at fixed temperatures and droplet radii. We place particular em-

phasis on the effects of the sixth-order bulk potential on the stability of equilibrium

configurations in the nematic case; and on the effects of the nemato-magnetic coupling

strength in the ferronematic case. We show that the sixth-order bulk potential has

a destabilising effect on the nematic radial hedgehog solution; while stronger nemato-

magnetic coupling has a stabilising effect on the ferronematic radial hedgehog solution.

Moreover, we demonstrate that the solution landscape is richer in ferronematic systems
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in comparison to the pure nematic systems. In the final chapter, we introduce random

noise into each system, which can account for factors such as material imperfections

or uncertainties in experimental set-up, and we investigate the impact of noise on the

properties of the nematic and ferronematic radial hedgehog solutions.
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Chapter 1

Introduction and Literature

Review

1.1 What are Liquid Crystals?

Liquid crystals are classical examples of mesogenic materials which exhibit physical

properties that are intermediate between isotropic liquid and solid crystalline states

[2]. A solid crystalline state is characterised by a highly ordered, repeating molecular

structure in all three spatial dimensions, such that molecules are fixed positionally

and orientationally. Solid crystals are typically difficult to deform; cannot flow and

can be anisotropic. In contrast, the molecules in an isotropic liquid lack any kind

of ordering such that the molecules are free to move and the material will spread out

across a surface or conform to the shape of its container. Liquid crystals fall somewhere

between these states: the molecules can flow, but the material retains some degree of

positional or orientational ordering in at least one dimension [2]. In the context of

liquid crystals, positional ordering means the molecules are organised in some kind of

regular, repeating pattern, similar to a solid crystal; and orientational ordering means
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Chapter 1. Introduction and Literature Review

the molecules are arranged in some average direction throughout the material, but do

not necessarily follow any repeating pattern as they would in a solid crystal.

A key driver of the partial ordering in liquid crystalline materials is the shape of the

constituent molecules. The molecules are typically strongly anisotropic, with the usual

examples being rod-, disc-, or board-shaped molecules [3]–[5]. The anisotropic shape of

the molecules forces directionally-dependent molecular interactions and directionally-

dependent material responses to external stimuli such as electric and magnetic fields.

In particular, the birefringence of liquid crystals leads to striking optical signatures

through polarised optical microscopes, and we discuss this property in more detail in

Section 1.1.4. We present examples in Figure 1.1, in which the different colours arise

due to the varying orientation of liquid crystal molecules throughout the sample. The

directionally-dependent behaviour of liquid crystals together with their fluidity makes

these materials ideal for a wide range of applications in science and technology [6].

Figure 1.1: Thin films of nematic liquid crystals through a polarising microscope.
Credit: Oleg Lavrentovich, Liquid Crystal Institute, Kent State University, via
www.nsf.gov/news/mmg/index.jsp?series name=image000151.

The first reported observation of a liquid crystal phase is credited to Austrian

botanist and chemist Friederich Reinitzer from experiments carried out in 1888 [3],

[7]. Reinitzer was heating a substance called cholesteryl benzoate, which is a solid at

room temperature, and was anticipating a phase transition to a clear liquid at some

2
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sufficiently high temperature. However, the solid first melted into a cloudy liquid phase

at 145.5℃, and subsequently changed into the anticipated clear fluid at 178.5℃, and

these two transitions were observed to be fully reversible. The cloudy liquid, which we

now know to be a cholesteric liquid crystal, exhibited unexpected properties, including

birefringence, for which material anisotropy is required. Anisotropy was, until then,

thought to be a feature of certain solids, only. The second phase transition, where

the cloudy liquid crystal became the isotropic liquid, is now referred to as the clearing

point for a liquid crystal. Reinitzer shared his findings with the German physicist Otto

Lehmann, who coined the term ‘liquid crystal’ in 1900, following a further study of

cholesteryl benzoate and similar materials also possessing two transition temperatures

[8]. Lehmann is also credited with the first polarised optical microscopy experiments

[9], [10]. The German chemist Daniel Vorländer drove progress futher, proving that

the rigid linear structure of liquid crystal molecules is responsible for their unique

characteristics in 1907 [8].

The liquid crystals first observed by Reinitzer are examples of thermotropic liq-

uid crystals, which undergo phase transitions due to changes in temperature. Other

examples include N -(4-Methoxybenzylidene)-4-butylaniline (MBBA) [2] and 4-Cyano-

4’-pentylbiphenyl (5CB) [11]. The constituent molecules of thermotropic liquid crys-

tals are generally small, with molecules of MBBA and 5CB being no more than a

few nanometres in length. Liquid crystal phases can also be obtained through phase

transitions driven by molecular concentration in solvents rather than temperature, and

such materials are known as lyotropic liquid crystals. Lyotropic liquid crystals com-

prise much larger molecules compared to thermotropic liquid crytsals, in general. For

example, the molecules making the material commercially known as Kevlar can be on

the order of several nanometres up to micrometres. These molecules form a lyotropic

3
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liquid crystalline phase in sulphuric acid, allowing the material to be spun in to fibres

[12]. We will consider only thermotropic liquid crystals in this thesis.

The majority of liquid crystals are in fact more sophisticated than described above,

displaying more nuanced behaviour than the two transitions from solid to liquid crystal

and liquid crystal to isotropic fluid (and vice-versa). Many liquid crystals can be

described as mesogenic, displaying a wider range of intermediate phases, or a higher

degree of phase-polymorphism, in the transition from solid to isotropic liquid. The

French mineralogist and crystallographer Georges Friedel classified such intermediate

phases into three categories in 1922 [13]: the nematic, cholesteric and smectic phases.

1.1.1 Nematic Liquid Crystals

The nematic phase is the simplest liquid crystalline phase. The constituent molecules

have long-range orientational order, aligning themselves according to locally preferred

directions, but lack any kind of positional order, meaning they can translate freely

in space [14]. Typical nematic liquid crystal molecules are elongated, rod-shaped

molecules, classed as calamitic molecules. Both MBBA and 5CB are examples of

calamitic molecules. Nematic liquid crystal molecules can also be disc-shaped, or dis-

cotic, although these are less-commonly observed [15].

Nematic liquid crystals can be uniaxial, meaning there is a single preferred direction

throughout the material, which is known as the anisotropic axis, and can be described

by a unit vector, n, known as the director. The schematic in Figure 1.2 illustrates the

partial order of a nematic above some melting point, below which the material would

become a solid; and below a clearing point, above which the material loses any kind

of ordering and becomes an isotropic liquid. Nematic liquid crystals can also have two

locally preferred directions. Such phases are known as biaxial nematic liquid crystals

4
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[16].

Figure 1.2: A schematic representation of the solid crytstalline (left), nematic liquid
crystal (centre), and isotropic liquid (right) phases with increasing temperature for
calamitic molecules. The average preferred direction of the molecules in the nematic
phase is described by the unit vector, n.

An essential characteristic of nematic liquid crystal molecules is their lack of polar-

ity, or their head-to-tail symmetry. This means that the director, n, as in Figure 1.2, is

equivalent to −n in this context, so the concept of the director can perhaps be better

thought of as a line field [17].

We will focus on nematic liquid crystals throughout this thesis, but give brief de-

scriptions of cholesteric and smectic liquid crystals in the following sections for contrast.

More detail on these phases is given in [2] and [14].

1.1.2 Cholesteric Liquid Crystals

Cholesteric liquid crystals are similar to nematic liquid crystals in that they also exhibit

orientational ordering that can be described by a director, but the distingushing feature

is that the director twists to form a helical structure, with the helical axis perpendicular

to the local director. The distance over which the director rotates 360° is referred to

as the pitch of the helix, and we give a schematic representation of a cholesteric liquid

crystal in Figure 1.3.

Cholesteric liquid crystals can be formed from chiral, or enantiomorphic, molecules,

5
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Figure 1.3: A schematic representation of a cholesteric liquid crystal phase. The arrows
represent the director, n, which rotates over 180°, representing half of the pitch of the
helical structure.

which cannot be superimposed on their mirror image [14]; or from dissolving chiral

molecules in samples of nematic liquid crystals [2]. Despite the name ‘cholesteric’, the

substance known as cholesterol cannot form a cholesteric liquid crystal phase. However,

many of its derivatives can, including cholesteryl benzoate, the compound studied by

Reinitzer. The cholesteric phase is also known as the chiral nematic phase, which is

perhaps more appropriate, as there are many materials that induce this phase that are

not related to cholesterol [18].

1.1.3 Smectic Liquid Crystals

Smectic liquid crystalline phases have both positional and orientational order in that the

constituent molecules arrange themselves in layers, and are aligned in some preferred

direction within each layer. These layers are independent of one another and the

molecules are free to move within each layer. Moreover, each layer has approximately

6
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the same thickness, which can be referred to as the smectic interlayer distance. Since

smectic liquid crystal phases have an extra degree of ordering in comparison to nematics,

such phases typically occur at lower temperatures than their nematic counterparts in

phase-polymorphic materials that can exhibit both phases [14].

Two possible smectic phases are the smectic A and smectic C phases, although other

smectic phases have been classified [2]. In the smectic A phase, the director within each

layer is parallel to the layer normal, on average. In the smectic C phase, the director is

tilted, orienting at an angle to the layer normal [2]. This is illustrated in the schematic

of both the smectic A and C phases in Figure 1.4.

Figure 1.4: A schematic representation of smectic A (left) and smectic C (right) liquid
crystal phases. The arrows represent the director, n, and θ is the angle between the
director and layer normal.

1.1.4 Applications of Liquid Crystals

The unique physical, optical, and rheological properties of liquid crystals make them

highly versatile for a wide array of applications [6], [9]. Despite this, their full potential

has yet to be realised, and there are future applications yet to be imagined that will

undoubtedly emerge. As such, the potential applications of liquid crystals drive the

need for in-depth mathematical studies to fully understand and harness their capabil-

ities. Here, we briefly discuss a handful of applications of nematic liquid crystals, but

7



Chapter 1. Introduction and Literature Review

these represent only a small fraction of the potential uses for liquid crystals.

The optical birefringence arising from the anisotropy of liquid crystals is widely

exploited in applications. In simple terms, nematic liquid crystals have two refractive

indices, in the directions parallel and perpendicular to the nematic director n. For

a typical rod-shaped molecule, the long axis, aligned with the director, is the optical

axis. Light travelling along the optical axis will experience some refractive index, n∥,

and light travelling in any direction perpendicular will experience a different refractive

index, n⊥, and in either case will experience a particular phase shift. Light propagat-

ing in any other direction is split into two rays: one propagating parallel to the optical

axis, and the other perpendicular, both with different phase velocities according to

their respective refractive indices [19]. Rays exiting the material that are travelling in

different directions can interfere with one another, resulting in various optical effects,

and this interference is responsible for the striking colourful pattern captured in Figure

1.1. The difference in refractive indices, n∥ − n⊥, measures the degree of birefringence,

and the greater this difference, the stronger the birefringence. The effects of birefrin-

gence can be observed when a sample of nematic liquid crystal is sandwiched between

two cross-polarisers, as is done to obtain the images in Figure 1.1. In these examples,

light is polarised in one direction as it enters the nematic liquid crystal. If the nematic

director is parallel or perpendicular to the bottom polariser throughout the thickness

of the sample at a given point, the polarisation is unaffected, and thus the light is

propagating in a direction perpendicular to the top polariser, which is placed at a right

angle to the bottom polariser. In this case, the light is blocked, resulting in a dark

patch in the sample. If the nematic director in any other direction, incident polarised

light is split into two rays as it passes through the sample, which interfere with one

another as light exits the liquid crystal sample and passes through the top polariser,

8
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resulting in different colours depending on the liquid crystal orientation. It is worth

noting that the phase lag of the split rays increases with the sample thickness, and as

it is impossible to achieve perfect uniform thickness in experiments, some of the colour

variation must be attributed to different material thickness at different points.

The birefringence of nematic liquid crystals makes them incredibly useful in appli-

cations that exploit this property, including in the multi-billion dollar liquid crystal

display industry; and in numerous other applications, including biosensing and lasing

[6].

Liquid Crystal Displays

Perhaps one of the most well-known applications of nematic liquid crystals is in liquid

crystal displays (LCDs) [6], [20]. LCDs first saw commercial use in the 1970s with the

introduction of the twisted nematic display, used in small devices such as calculators

and digital watches. A twisted nematic display consists of a sample of liquid crystal in

a cell sandwiched between two glass plates, which is then placed between two polarisers

which are set at right-angles to one another, as shown in Figure 1.5. The surface of each

glass plate is treated to induce a specific director orientation on each plate, usually also

orthogonal to one another. This results in an energetically minimising state in which

the nematic director twists throughout the sample, so that the optical axis also twists

throughout the sample. This causes incident polarised light from the bottom polariser

to rotate throughout the sample, so that the light leaving the liquid crystal sample is

propagating in the plane perpendicular to that of the incident light, meaning the light

will pass through the top polariser, and such a system will appear transparent. As

noted in the previous section, the orientation of liquid crystal molecules can lead to

colourful patterns observed through cross-polarisers. However, in this specific example,

9
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liquid crystal molecules twist in the plane perpendicular to the incident light rays, and

birefringence is responsible for twisting the polarisation of light, but has no noticeable

effect on the perceived colour of light passing through the second polariser. This effect

is known as the Mauguin regime. As liquid crystals are sensitive to the application of

electric fields, and will typically align with the direction of the field [14], an electric

field can be applied to reorient the liquid crystal molecules out of the twisted state.

As a result, the incident light is no longer rotated throughout the sample, and will be

blocked by the top polariser, leading to a dark appearance. Twisted nematic devices

form the backbone of more advanced technology, such as LCD TVs, which are made

possible by combining twisted nematics with thin-film transistors [20], [21].

One drawback of conventional LCD display devices is that a constant voltage is

required to maintain states that deviate from the energetically minimising state. More

recent developments, such as zenithal bistable nematic devices [22], [23], allow more

than one stable equilibrium state. In these devices, an electric field is required only to

switch between stable states, making the system more energetically efficient.

Zenithal bistable nematic devices are an example of a multistable system, which is

a system that supports multiple stable equilibria. Systems with multiple stable states

have not been extensively utilised in applications, which is a motivating factor behind

the research into the solution landscapes of such systems presented in this thesis.

Biology and Biosensing

While it is clear that liquid crystals are highly valuable in technological applications,

liquid crystals also occur in nature, playing a significant role in various biological sys-

tems. In fact, the liquid crystal oberved by Reinitzer in 1888 [7] was not synthetic, but

extracted from carrots. Moreover, the combination of fluidity and partial order makes

10
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Figure 1.5: A schematic representation of a twisted nematic device. The off state, with
no applied electic field, is shown on the left, and the on state, with an applied electric
field parallel to the direction of incident light, is shown on the right. Thick shaded
arrows indicate the direction and plane of polarisation of light.

liquid crystals the ideal material to form the lipid bilayer that forms the basis of cell

membranes [6]; materials such as collagen [24] and DNA [25] can exhibit liquid crystal

phases; and suspensions of viruses can form liquid crystal phases under the right con-

ditions [26]. The propensity of organic systems to adopt liquid crystal phases makes

liquid crystals well-suited for applications that leverage this behavior, particularly in

integrating with and manipulating biological systems.

One such example is in biosensing. Liquid crystal biosensors can be designed so that

the orientation of the liquid crystal molecules changes when a compound of interest is

present, and are highly effective since liquid crystals are sensitive to the chemical and

11
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physical environment and the optical effects of changing orientation are dramatic [6].

Due to the birefringence of the liquid crystal, these changes are generally detectable

through polarised optical microscopy. There are several advantages of using liquid

crystals in sensors over other methods: the technology is typically energetically efficient;

complex equipment is not required for detection; materials do not need to be labelled for

detection; and detection is rapid. One of the first liquid crystal biosensors is described

in [27], [28], and was capable of detecting certain proteins and antibodies, via a method

that can be applied to the detection of narcotics in biological samples and biomarkers

in food, for example. Furthermore, in [29], the authors were able to detect KB cancer

cells using emulsions of droplets of 5CB; while a method to detect various bacteria and

viruses, also using emulsions of droplets of 5CB, is discussed in [30].

Lasing and Optics

Liquid crystals have recently proven useful in the emerging field of liquid crystal lasers

[31], [32]. Experiments have shown that chiral nematic liquid crystals are useful in res-

onators in mirrorless lasers, and it has been shown that incorporating a chiral dopant

into nematic liquid crystals can produce a chiral nematic that can be used in this context

[33]. The sensitivity of liquid crystals to stimuli such as external fields and temperature

makes them candidates for tunable lasers, which would be useful in settings such as

medical imaging. For example, liquid crystal lasers could provide an alternative to ex-

isting light sources in fluorescence microscopy, which is currently limited by inconsistent

brightness and poor wavelength availability of the light source [34].

Droplets of nematic liquid crystals also show promise as optical microresonators due

to their unique optical properties and controllable morphology, as discussed in [35], [36].

The authors demonstrate that droplets of nematic liquid crystals can act as efficient,
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tunable optical microresonators, which also have applications in sensing, as well as in

other areas such as telecommunications and optical computing [36].

1.2 Modelling Nematic Liquid Crystals

Having discussed liquid crystals and their applications in the preceding sections, it is

clear that the study of liquid crystals is multidisciplinary, with key contributions from

the likes of chemists, physicists, and engineers. Mathematics also has an important

role to play in the field, providing analytical tools and constructing frameworks neces-

sary to understand the complex behavior and phenomena exhibited by liquid crystals,

thereby facilitating advances in both fundamental understanding and practical appli-

cations. For example, mathematical models can be used to study systems that have

not yet been considered experimentally, and provide insight and clues to experimen-

talists, guiding their exploration of these systems and informing experimental design.

Further, a well-designed mathematical model, when integrated with experimental data,

can help understand the intricacies of a complex system, offering insights without the

need for exhaustive experimentation, thus saving time and resources. The array of

mathematical techniques that can be used to model liquid crystals is rich, including

but not limited to the calculus of variations; ordinary and partial differential equa-

tions; dynamical system theory; stochastic differential equations; numerical methods;

and, recently, machine learning.

Nematic liquid crystals can be modelled across various scales, ranging from molecular-

level models to continuum approaches, each offering distinct advantages and disadvan-

tages. Molecular-level models consider details such as the shape of the molecules and

the nature of the molecular interactions, but become computationally expensive when

modelling systems comprising large numbers of molecules, meaning they are poorly

13
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equipped to provide insight into the macroscopic behaviour. Conversely, continuum

theories treat liquid crystals as continuous media, where the material properties are

described via variables such as the nematic director combined with certain material-

specific constants, resulting in a computationally inexpensive model that is well-suited

to describing systems involving large numbers of molecules. There also exist so-called

mesoscopic models, which fall somewhere in-between, describing liquid crystals at an

intermediate length scale, retaining some information regarding molecular interactions,

while still being capable of capturing some degree of long-range behaviour. Any math-

ematical model must compromise in some way to be tractable enough to provide mean-

ingful results. In an ideal scenario, mathematicians should leverage insights from

molecular-level models to refine approximations and assumptions within continuum

models, providing a more accurate description of the real-world behaviour. However,

we model nematic liquid crystals solely within a continuum theory in this thesis, which

is sufficient to provide valuable insight on the macroscopic scale.

A range of continuum theories have been used to study systems of nematic liq-

uid crystals. We discuss three continuum theories in the following sections: the Os-

een–Frank model; the Ericksen model; and the Landau–de Gennes model. Each of

these theories rely on a nematic director and a scalar order parameter.

1.2.1 The Director and the Scalar Order Parameter

In the modelling of nematic liquid crystals, we are interested in capturing the preferred

orientation of the molecules at any point in the system. In a uniaxial nematic liquid

crystal, with a single preferred direction, we represent the preferred direction by a

unit vector, n ∈ S2, known as the nematic director, where S2 is the unit sphere. The

director essentially describes the mean orientation of the molecules and can depend on

14
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both space and time, so that n = n(x, t), for a point x in space, and some time, t. In

static systems, which are the focus of this thesis, the molecular orientation does not

evolve in time, so we may write n = n(x). For calamitic systems (see Section 1.1.1),

the director is the average orientation of the long axes of the molecules [2]; while in

discotic systems, the director is the average direction of each disc normal [37]. We note

that a disadvantage of the vector representation of the average orientation is that n

and −n are equivalent in this context.

In addition to measuring the average orientation of nematic liquid crystal molecules,

it is useful to measure the degree of ordering about the preferred direction, essentially

quantifying how ordered the system is. We do so using the scalar order parameter,

typically denoted s, where s ∈ R and s = s(x, t), in general. The scalar order parameter

depends on the angle of each molecule relative to the director and is defined to be

s =
1

2
⟨3 cos2 θm − 1⟩ ≡ 1

2

∫
B

(
3 cos2 θm − 1

)
ρ(θm) dV. (1.1)

The function ρ(θm) is the probability density function describing the probability of

the long axis of a given molecule being at an angle θm to the director (in calamitic

systems), at a point x, in some appropriately-sized ball, B [16], such that several

molecules are contained in the ball, but not so many that the orientation can vary

significantly throughout the ball. The size of such a ball should depend on the molecules

in question, but we note that thermotropic liquid crystal molecules are typically on the

order of nanometres, so an appropriately-sized ball may be on the order of tens of

nanometres.

In a perfectly ordered system, the molecules are fixed and align perfectly with the

director so that θm = 0, resulting in a scalar order parameter s = 1. In an isotropic

liquid, molecules orient in random directions so all angles, θm, to the director are
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equally probable. Therefore, ρ(θm) is a uniform distribution, which causes the scalar

order parameter to take the value s = 0. If the molecules lie in the plane perpendicular

to the director, we must have θm = π
2 so that s = −1

2 [16].

In biaxial nematic liquid crystals, there are two preferred directions, each with as-

sociated degrees of ordering [16]. In such a system, we must introduce a second director

and its associated scalar order parameter, which we denote as m and p, respectively

in this thesis, when required. We discuss uniaxiality and biaxiality in more detial in

Section 1.3.3.

1.2.2 Continuum Theories

The three widely-used continuum theories for nematic liquid crystals in equilibrium

are the Oseen–Frank theory; the Ericksen theory; and the Landau–de Gennes theory.

Each framework is a variational theory, meaning that physically observable equilibrium

configurations minimise an associated free energy subject to appropriate boundary

conditions.

The Oseen–Frank Model

The Oseen–Frank model is the simplest of the three continuum models of interest,

originally introduced by Carl Wilhelm Oseen [38], and developed further by Frederick

Charles Frank [39]. The model assumes a fixed scalar order parameter throughout the

system, and the preferred direction of the liquid crystal molecules is modelled using the

director, n, at every point in space. The associated free energy therefore depends only

on a single director, meaning this theory can only account for uniaxial phases. The

Oseen–Frank model is also poorly equipped to capture defects in the system, which are

regions of discontinuity in orientation, or equivalently, discontinuities in the director
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field [2], and because the Oseen–Frank theory gives us no information about defects.

For a nematic liquid crystal in a given domain, Ω, in the absence of surface energies

and external fields, the Oseen–Frank free energy is given by

FOF [n] =

∫
Ω
K1 (∇ · n)2 +K2 (n · ∇ × n)2 +K3 (n×∇× n)2

+ (K2 +K4)∇ · [(n · ∇)n− (∇ · n)n] dΩ, (1.2)

where K1,K2,K3, and K4 are known as the Frank elastic constants [14]. The terms

associated with K1,K2, and K3 correspond to distortions known as splay, twist and

bend, respectively, and we give schematic representations of such distortions in Figure

1.6. The term with coefficient K2+K4 is known as the saddle-splay term. The saddle-

splay term can be converted into a surface integral using the divergence theorem if the

domain is three-dimensional.

Figure 1.6: A schematic representation of splay (left), twist (centre), and bend (right)
distortions in nematic liquid crystals.

The constants K1,K2, and K3 have been measured in experiments for certain ma-

terials. For example, at 22℃, MBBA has elastic constants [40]

K1 = 6× 10−12N, K2 = 2.9× 10−12N, K3 = 7.5× 10−12N. (1.3)
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The elastic constants are temperature-dependent and typically decrease as temperature

increases [14]. As demonstrated, the elastic constants can be of the same order of

magnitude, so it is reasonable to use the so-called one-constant approximation, where

we take K1 = K2 = K2 =: K, and K4 = 0 [14], which simplifies the free energy.

While the Oseen–Frank theory has produced some meaningful mathematical in-

sights and is still in use today, it is significantly limited in that it is only applicable to

uniaxial systems and cannot be used to effectively characterise defects. Furthermore,

since the scalar order parameter is assumed to be constant, the Oseen–Frank model

cannot be used to study phase transitions between the isotropic and nematic phases.

The Ericksen Model

In response to the limitations of the Oseen-Frank model in capturing defects, Jerald Er-

icksen introduced an alternative framework, referred to as the Ericksen model [41]. The

associated free energy also depends on a director, n, but generalises the Oseen–Frank

theory by incorporating a varying scalar order parameter, s. Including a varying scalar

order parameter regularises the notion of a defect, as the scalar order parameter van-

ishes in defect regions, where the nematic director is undefined. This removes potential

discontinuities in the mathematical description of an equilibrium configuration and

describes defects as isotropic regions, where there is no nematic ordering [3].

A one-constant approximation of the Ericksen free energy is also commonly used,

and, in the absence of external fields and surface energies, is given by

F [s,n] =

∫
Ω
KE |∇s|2 + s2|∇n|2 +W (s) dΩ, (1.4)

where KE is an elastic constant and W (s) is a temperature-dependent bulk potential.

We discuss the idea of bulk potentials in Sections 1.3.2 and 1.5.1.
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The Ericksen model is more capable of handling defects than the Oseen–Frank

model, and the varying scalar order parameter also allows for the modelling of isotropic-

uniaxial phase transitions. However, since the Ericksen framework also relies on a single

director, it is not able to capture biaxial nematic phases.

The Landau–de Gennes Model

The Landau–de Gennes model is the most sophisticated continuum model for nematic

liquid crystals in equilibrium. This framework is capable of fully describing defects

in systems of nematic liquid crystals, and can effectively capture biaxiality and the

associated phase transitions. We work exclusively within the Landau–de Gennes theory

in this thesis, and give a more detailed description in Section 1.3.

1.2.3 Defects

We encountered the notion of a defect in a system of nematic liquid crystals in the

previous section. To recap: defects, or disclinations, are localised regions where the

nematic director, n, cannot be defined, and which can be thought of as being locally

isotropic, or as regions where the molecular orientation is completely disordered. Such

discontinuties in the director may manifest as isolated points, lines, or sheets. Only

point and line defects are observed in real systems, since sheet defects are always

unstable [2].

Defects can arise simply as a result of confinement, with the preferred liquid crystal

orientation competing with the geometry and surface anchoring [42]. However, defects

can also arise as a result of phase transitions. For example, when cooling a material from

the isotropic phase, or equivalently, when quenching during isotropic-nematic phase

transitions, distinct nematic regions may form, with independent director orientations
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which do not match when the regions eventually meet as the nematic regions expand

[43]. Furthermore, defects can be induced via the application of external stimuli such

as electric fields [44], which have the potential to facilitate switching in multistable

systems, as has been shown in the case of LCDs [45].

Defects play a crucial role in the mathematical modelling of confined systems, not

only because they are often present in such systems, but because their presence causes

significant director distortions which substantially affect the character of the system and

have distinctive optical signatures through cross-polarisers. For example, the image on

the right in Figure 1.1 depicts the director distortions around two point defects which

are at the centre of the cross structures.

An example of a confined system which contains defect structures is a spherical

droplet of nematic liquid crystals with strong homeotropic anchoring, which we study

in Chapters 3, 5 and 6. The liquid crystal molecules are fixed in the radial direction at

the droplet surface, which forces the formation of defects. One possible defect in this

system is a point defect at the centre of the droplet, known as the radial hedgehog defect,

which has a spherically symmetric director profile, as illustrated in Figure 1.7. The

radial hedgehog defect is a central focus of this thesis. Alternatively, the droplet might

contain a line defect, with the two common classes of line defect being the biaxial torus

and the split core configurations, also illustrated in Figure 1.7. The radial hedgehog and

biaxial torus configurations are generally the preferred states in this system and these

configurations have been observed experimentally [46]. We will discuss the possible

equilibrium configurations in spherical droplets with strong homeotropic anchoring in

more detail in Section 1.5.3.

The dispersions of nematic droplets used as sensors in [29] and [30], outlined in

Section 1.1.4, are prominent examples that leverage the unique properties of defects,
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Figure 1.7: A schematic representation of the radial hedgehog (left), biaxial torus
(centre), and split core (right) defect configurations in spherical droplets of nematic
liquid crystals.

relying on the distinct optical signatures of each defect for detection. The mathemati-

cal modelling of these defects can aid similar applications by predicting the conditions

under which specific defects might form in practice, leading to better control and opti-

misation in experiments.

The example of a spherical droplet with strong homeotropic anchoring features de-

fects confined to the interior, but in general confined systems, defects can appear any-

where, including on the boundary, depending on the geometry and surface anchoring.

From a mathematical perspective, studying canonical defects in confinement, such as

the radial hedgehog defect, is worthwhile, as their properties are often universal. Con-

sequently, insights gained from modelling canonical defects enhance our understanding

of defects in broader systems of nematic liquid crystals.

1.3 The Landau–de Gennes Theory

In this thesis, we model nematic liquid crystals within the Landau–de Gennes frame-

work, the most general continuum theory for nematic liquid crystals in equilibrium.
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Within this framework, the state of the nematic liquid crystals is described by a Q-

tensor order parameter. The notion of a Q-tensor was first introduced by Lev Landau

[47], as a means to describe phase transitions between solid crystals and isotropic liq-

uids. Pierre-Gilles de Gennes later generalised the theory to encompass liquid crystal

phase transitions [48], for which he was awarded the Nobel Prize in physics in 1991.

The Q-tensor can describe isotropic, uniaxial and biaxial phases and the associated

phase transitions [16], [49]. Additionally, it is well-suited for characterising defects,

which are a central focus of Chapters 3, 5 and 6.

1.3.1 The Q-tensor Order Parameter

The Q-tensor is a symmetric, traceless, 3× 3 matrix, which can be written

Q =


Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 −Q11 −Q22

 , (1.5)

and belongs to the space

S0 =
{
Q ∈ M3×3 : Q = QT , trQ = 0

}
, (1.6)

where M3×3 is the space of 3× 3 matrices.

We may write the Q-tensor in terms of its eigenvalues and eigenvectors, so that

Q = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (1.7)

We note that
∑3

i=1 ei ⊗ ei = I, where I is the 3× 3 identity matrix. Furthermore, the
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tracelessness of Q implies that λ3 = −λ1 − λ2, so we may rewrite the Q-tensor as

Q = (2λ1 + λ2) e1 ⊗ e1 + (λ1 + 2λ2) e2 ⊗ e2 − (λ1 + λ2) I. (1.8)

Let us set s = 2λ1 + λ2, p = λ1 + 2λ2, n = e1, and m = e2, so we may rewrite Q as

Q = s

(
n⊗ n− 1

3
I

)
+ p

(
m⊗m− 1

3
I

)
. (1.9)

This form of Q describes the liquid crystal orientation via two directors, n and m, with

corresponding scalar order parameters, s and p. If s and p are distinct and nonzero, all

three eigenvalues of Q are distinct, and the configuration is biaxial. If one of s and p is

zero, or if s = p ̸= 0, the Q-tensor has two equal eigenvalues and describes a uniaxial

phase. If all three eigenvalues of Q are equal, we must in fact have λ1 = λ2 = λ3 = 0

by the tracelessness of Q. Therefore, we have that s = p = 0, so that Q = 0, and the

corresponding material state is isotropic.

There are other, equivalent formulations one might use to represent the Q-tensor.

One such representation relies on a basis for the space S0, namely [50]–[52]:

E1 =

√
6

2

(
ez ⊗ ez −

1

3
I

)
, E2 =

√
2

2
(ex ⊗ ex − ey ⊗ ey) ,

E3 =

√
2

2
(ex ⊗ ez + ez ⊗ ex) , E4 =

√
2

2
(ex ⊗ ey + ey ⊗ ex) , (1.10)

E5 =

√
2

2
(ey ⊗ ez + ez ⊗ ey) ,

where ex = [1, 0, 0]T , ey = [0, 1, 0]T , and ez = [0, 0, 1]T . We then write the Q-tensor as

Q =

5∑
i=1

qi(x)Ei. (1.11)
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1.3.2 The Landau–de Gennes Free Energy

The Landau–de Gennes theory hinges on minimising a free energy which depends on

the Q-tensor. In this thesis, we consider a Landau–de Gennes free energy with two con-

tributions: an elastic energy, fE ; and a thermotropic bulk potential, fB. Therefore, in

the absence of external fields and surface energies, for a nematic liquid crystal confined

to some bounded domain, Ω, we write the Landau–de Gennes free energy as

F [Q] =

∫
Ω
fE(Q) + fB(Q) dV. (1.12)

The bulk energy, fB, describes the preferred phase in a spatially homogeneous

system. The simplest form of bulk potential that captures a nematic-isotropic phase

transition is known as the fourth-order bulk potential, which is a truncated Taylor

series in Q, and can be written as [2], [3]

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
, (1.13)

where trQ2 = QijQij = |Q|2 and trQ3 = QijQjkQki. We use the Einstein summation

convention here and in the rest of this thesis, where applicable. The constant A is a

temperature-dependent constant given by

A = α(T − T ∗), (1.14)

where α > 0 is a material-dependent constant, T is the absolute temperature, and T ∗

describes the temperature at which the isotropic state becomes unstable [2], [16]. The

constants B,C > 0 are material-dependent constants. It is commonly accepted that if

B > 0, the model corresponds to calamitic molecules, while B < 0 describes discotic
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molecules [53]; and C > 0 is required for the stability of the expansion. We note that

the fourth-order bulk potential depends only on the invariants of Q, as these terms do

not vary with rotations of the coordinate system.

The fourth-order bulk potential only admits isotropic and uniaxial critical points,

and we reproduce a result to this effect in Section 1.5.1. As such, biaxiality arises in

the system solely due to geometrical frustration in confinement. In order to consider

biaxiality as a bulk effect in the system, we study a confined system with a sixth-order

potential in Chapter 3, which we introduce in Section 1.5.1.

The elastic energy, fE , penalises spatial inhomogeneities, or elastic deformations in

the material. In general, it is energetically preferable for a sample of nematic liquid

crystal to be uniform in space. However, confinement typically results in direction-

dependent material distortions, which are accounted for by the elastic energy density.

The most general form of the elastic energy density is given by

fE(Q) =
L1

2
Qij,kQij,k +

L2

2
Qij,jQik,k

+
L3

2
Qik,jQij,k +

L4

2
ϵijkQiℓQjℓ,k +

L5

2
QℓkQij,ℓQij,k, (1.15)

whereQij,k =
∂Qij

xk
; ϵijk is the Levi-Civita symbol; and L1, ..., L5 are material-dependent

elastic constants which are related to the Frank elastic constants [16].

Just as in the Oseen–Frank and Ericksen theories, it is common to take a one-

constant approximation of the elastic energy. In this case, we set L := L1 and Li = 0

for i = 2, ..., 5, and rewrite the elastic energy as

fE(Q) =
L

2
|∇Q|2, (1.16)

where |∇Q|2 = Qij,kQij,k. We work with the one-constant approximation of the elastic

25



Chapter 1. Introduction and Literature Review

energy density throughout this thesis.

Since the Landau–de Gennes theory is used to model confined systems of nematic

liquid crystals, the problems are typically boundary value problems, meaning we need

to consider the behaviour at the domain boundary. In this thesis, we work with strong

anchoring, which means the liquid crystal configuration at the boundary is prescribed

using a Dirichlet boundary condition of the form

Q = Qb on ∂Ω. (1.17)

Strong anchoring is often used in scenarios where the surface in contact with the liq-

uid crystal has been treated to induce a specific director orientation; or when the

liquid crystal is suspended or coated in some material that enforces a specific direc-

tor orientation. The anchoring can enforce any director orientation, in theory. If the

boundary condition requires the director to be normal to the boundary, the anchoring

is homeotropic [3]; and if the director is required to be parallel to the boundary, the

anchoring is planar [16].

An alternative to strong anchoring is weak anchoring, which is where there is still

a preferred director orientation at the boundary, but it is not as strictly enforced as in

the case of strong anchoring. Weak anchoring is arguably more reflective of reality, as

it is very difficult to control the director orientation exactly. When weak anchoring is

used in the model, it appears as a surface energy in the Landau–de Gennes free energy,

but this is beyond the scope of this thesis, so we refer the reader to the likes of [16] for

more detail.
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1.3.3 Uniaxiality versus Biaxiality

We have come across the notion of biaxiality in earlier sections, but it would be useful

to briefly discuss how we characterise and quantify biaxiality.

The idea of biaxiality manifests in two ways in nematic liquid crystalline systems: it

is possible to have uniaxial or biaxial molecules; and the arrangement of the molecules

can be uniaxial or biaxial [16]. Uniaxial molecules have an axis of rotational symmetry,

and include the typical rod- or dic-shaped molecules whose axes of rotational symmetry

coincide with the nematic director. Biaxial molecules do not have an axis of rotational

symmetry, but rather have three axes of mirror symmetry. An example of a biaxial

molecule is a board-shaped molecule. These molecules can still be elongated as we

recall they must be strongly anisotropic, and in the case of a board-shaped molecule,

the long axis coincides with the nematic director. The Landau–de Gennes framework

discussed above is only valid for uniaxial molecules, and the study of biaxial molecules

requires a second tensor to describe the orientation of the other molecular axes [54].

As such, we only consider uniaxial molecules, which can exhibit biaxial phases, in this

thesis.

We are interested in both uniaxial and biaxial arrangements in this work and we

recall that a uniaxial arrangement means the long axes of the molecules approximately

align in one direction (for calamitic molecules), while there are two preferred directions

for biaxial arrangements. Just as the scalar order parameter quantifies the degree

of molecular ordering about the preferred directions, the extent of biaxiality can be

similarly measured. We quantify biaxiality via the biaxiality parameter [55]

β = 1− 6

(
trQ3

)2(
trQ2

)3 , (1.18)
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where 0 ≤ β ≤ 1. If β = 0, the system is uniaxial, and if β = 1, the system is

‘maximally’ biaxial, with one of the eigenvalues of the Q-tensor equal to zero. We

reproduce a short proof accordingly [56].

Proposition 1.1. The quantity β(Q), defined in (1.18), satisfies 0 ≤ β(Q) ≤ 1.

Proof. The term 6
(trQ3)

2

(trQ2)
3 is nonnegative, so β(Q) ≤ 1 is immediate.

We consider a Q-tensor of the form (1.9) to express
(
trQ3

)2
and

(
trQ2

)3
as

(
trQ3

)2
=

1

81

(
4s6 + 4p6 − 12s5p− 12sp5 + 26s3p3 − 3s4p2 − 3s2p4

)
, (1.19)

and (
trQ2

)3
=

8

27

(
s6 + p6 − 3s5p− 3sp5 − 7s3p3 + 6s2p4 + 6s4p2

)
. (1.20)

Straightforward calculations then show that

(
trQ2

)3 − 6
(
trQ3

)2
= 2s2p2 (s− p)2 ≥ 0, (1.21)

which implies that β(Q) ≥ 0, as required.

The implications of the definition of the biaxiality parameter and the above result

are that the system is uniaxial when trQ2 is proportional to trQ3. Equivalently, in

terms of the scalar order parameters, the system is uniaxial when s = p or when one of

s and p is zero, which we recall implies that the system has only one preferred direction.

1.4 Thesis Overview

In Chapter 2, we provide preliminary details and present some key results which con-

textualise the problems we consider in Chapters 3-6. We then give the nondimensional-
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isations for the free energies studied in Chapters 3-5. Finally, we outline key numerical

methods employed in Chapters 3 and 5.

We consider uniaxial and biaxial critical points of a sixth-order bulk potential,

which we introduce in Section 1.5.1, and their stability in Chapter 3. We then prove

a range of analytical results regarding the radial hedgehog solution with a sixth-order

bulk potential, building upon the results outlined in Section 1.5.2. The final part of

Chapter 3 comprises a numerical exploration of Landau–de Gennes critical points on

the sphere with rotational and mirror symmetry. We discuss existing results under a

fourth-order bulk potential in Section 1.5.3, and we note that we consider equilibrium

configurations with both the fourth- and sixth-order bulk potentials in our study in

Chapter 3. Specifically, we investigate the stability of the radial hedgehog solution

as a function of temperature and droplet radius; demonstrate that an unstable radial

hedgehog solution may act as a transition state in switching processess between two

stable states; and construct bifurcation diagrams as a function of temperature for fixed

droplet radii, giving a clear picture of the solution landscapes in the parameter regimes

studied.

The focus of Chapter 4 is to study critical points of a ferronematic bulk free energy,

which we introduce in Section 1.5.4. We consider both uniaxial and biaxial critical

points and compute their stability as a function of temperature and nemato-magnetic

coupling strength, on which we provide more detail in Section 1.5.4.

We turn our attention to equilibrium configurations on the sphere with rotational

and mirror symmetry in a ferronematic system, which we introduce in Section 1.5.4, as

noted, in Chapter 5. There are several parallels between the work in Chapters 5 and 3.

We first prove a range of analytical results regarding the ferronematic radial hedgehog

solution in Chapter 5. We then perform a numerical study analogous to that in Chap-
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ter 3, exploring the solution landscape for ferronematic equilibrium configurations with

rotational and mirror symmetry. The ferronematic system is richer than the nematic

system due to the added complexity of the nemato-magnetic coupling, which we intro-

duce in Section 1.5.4. In the ferronematic framework, we investigate the influence of

the nemato-magnetic coupling strength in addition to temperature and droplet radius.

In Chapter 6, we introduce a stochastic term into both the nematic and ferronematic

models and study the effects of random noise on the nematic and ferronematic radial

hedgehog solutions. We consider the nematic radial hedgehog solution with both the

fourth- and sixth-order bulk potentials, and work with three different nemato-magnetic

coupling strengths in the ferronematic case. We discuss the details of the stochastic

term in Section 1.5.5.

In Chapter 7, we summarise our results, and discuss some potential next steps

following the work in this thesis.

In the remainder of this chapter, we review the literature relevant to key concepts

considered in this thesis, and motivate the themes studied in subsequent chapters.

1.5 Literature Review

1.5.1 The Sixth-Order Bulk Potential

As discussed in Section 1.3.2, the fourth-order bulk potential,

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
, (1.22)

is the simplest form of bulk potential that models a first-order isotropic-nematic phase

transition. While the fourth-order bulk potential is the most commonly used bulk

potential in the literature, it only admits isotropic and uniaxial critical points. We
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reproduce a well-known result to this effect, and its proof from [56].

Proposition 1.2. The critical points of the bulk energy density, fB, in (1.22), are

given by either uniaxial or isotropic Q-tensors of the form

Q = s

(
n⊗ n− 1

3
I

)
, (1.23)

where s is a scalar order parameter and n is one of the eigenvectors of Q.

Proof. We recall that we may express the Q-tensor as

Q = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (1.24)

where {e1, e2, e3} are orthonormal eigenvectors and {λ1, λ2, λ3} are their corresponding

eigenvalues. Straightforward computations show that trQn =
∑3

i=1 λ
n
i . Therefore, the

bulk energy density can be expressed in terms of the eigenvalues, λ1, λ2, and λ3, of Q,

only. We recast the bulk energy density, fB, in terms of the eigenvalues, so that the bulk

critical points are in fact equivalent to the critical points of the function f : R3 → R

given by

f(λ1, λ2, λ3) =
A

2

3∑
i=1

λ2
i −

B

3

3∑
i=1

λ3
i +

C

4

3∑
i=1

λ4
i − 2δ

3∑
i=1

λi, (1.25)

where we include a Lagrange multiplier to account for the tracelessness of Q.

The critical points are solutions of the system of equations obtained by differenti-

ating (1.25) with respect to each eigenvalue and setting the result equal to zero. We

can write the system as

∂f

∂λi
= 0 ⇔ Aλi −Bλ2

i + C

(
3∑

k=1

λ2
k

)
λi = 2δ, for i = 1, ..., 3. (1.26)
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This is equivalent to

(
λi − λj

) [
A−B

(
λi + λj

)
+ C

3∑
k=1

λ2
k

]
= 0, 1 ≤ i < j ≤ 3. (1.27)

We show that there is no critical point with three distinct eigenvalues via a contradiction

argument. Suppose the distinct eigenvalues λ1 ̸= λ2 ̸= λ3 satisfy the system (1.26). We

consider equation (1.27) for the pairs (λ1, λ2) and (λ1, λ3), without loss of generality,

which yields the equations

A−B
(
λ1 + λ2

)
+ C

3∑
k=1

λ2
k = 0, (1.28)

A−B
(
λ1 + λ3

)
+ C

3∑
k=1

λ2
k = 0. (1.29)

Subtracting (1.29) from (1.28), we find that

−B
(
λ2 − λ3

)
= 0, (1.30)

contradicting the initial hypothesis that λ2 ̸= λ3. Thus, we conclude that any critical

point of fB in (1.22) must have at least two equal eigenvalues. Hence, critical points of

fB are either isotropic or uniaxial, and there can be no biaxial critical points for this

particular choice of fB.

Considering the more general biaxial form of the Q-tensor in (1.9), we see that

either s = p or one of s and p is nonzero. Since we are free to choose which of a set of

eigenvalues is assigned to λ1, λ2 and λ3, it suffices to capture uniaxial Q-tensors with

p = 0 in (1.9). This corresponds to λ2 = λ3 in (1.7) and s = 3
2λ1 = −3λ2.

We rewrite the bulk potential fB in terms of the scalar order parameter, s, by
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considering Q-tensors of the form (1.23). We may write

fB(s) =
A

3
s2 − 2B

27
s3 +

C

9
s4, (1.31)

where we have used

trQ2 =
2

3
s2 and trQ3 =

2

9
s3, (1.32)

and we note that critical points are the solutions of the equation

dfB
ds

=
2A

3
s− 2B

9
s2 +

4C

9
s3 = 0. (1.33)

There are three solutions:

s = 0, and s± =
B ±

√
B2 − 24AC

4C
, (1.34)

such that

fB(0) = 0, and fB(s±) =
s2±
54

(
9A−Bs±

)
, (1.35)

with fB(s−) > fB(s+). Therefore, the global minimiser of the bulk energy density is

either the isotopic state, Q = 0, or the uniaxial nematic state

Q = s+

(
n⊗ n− 1

3
I

)
, (1.36)

where n is the eigenvector corresponding to the largest eigenvalue of Q.

It is possible to check whether a critical point is globally minimising, locally min-

imising, or locally maximising for any combination of parameters by considering the

second derivative, d2fB
ds2

, and comparing the value of fB for each critical point. It can

be shown that the isotropic critical point, s = 0, is the global minimiser for A > B2

27C ;
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a local minimiser for 0 < A < B2

27C ; and a local maximiser A < 0. We note that the

uniaxial state, s = s+ is undefined for high temperatures corresponding to A > B2

24C ;

a local minimiser for B2

27C < A < B2

24C ; and the global minimiser for low temperatures

corresponding to A < B2

27C . The state s = s− is also undefined for A > B2

24C ; a local

maximiser for 0 < A < B2

24C ; and a local minimiser for A < 0.

We note that increasing A corresponds to increasing absolute temperature. There

are three important values of A:

• A = B2

24C , the temperature above which the nematic states, s±, are undefined,

often referred to as the nematic superheating temperature;

• A = B2

27C , the temperature at which the isotropic and nematic states have equal

energies, so fB(0) = fB(s+), the nematic-isotropic transition temperature;

• and A = 0, the temperature below which the isotropic state loses stability, com-

monly known as the nematic supercooling temperature.

A key implication of Proposition 1.2 is that any equilibrium configurations exhibit-

ing biaxiality predicted by the Landau–de Gennes free energy with fourth-order bulk

potential arise due to the competition between the bulk and elastic energies. In other

words, under the fourth-order bulk potential, biaxiality is not a bulk effect, but is

introduced as a result of spatial inhomogeneities.

In this thesis we also work with the smallest-order trucated Taylor expansion which

admits biaxial critical points: the more general sixth-order bulk potential, which is of

the form

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
+

D

5
trQ2 trQ3 +

E

6

(
trQ2

)3
+

(F − E)

6

(
trQ3

)2
, (1.37)
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where we require E ≥ 0, F − E > 0 to ensure the stability of the expansion. The

advantage of using this more complicated bulk potential is that biaxiality can arise as

a bulk effect, in contrast to the fourth-order bulk potential.

The addition of a sixth-order term in the Landau–de Gennes theory first appears

in the early literature in the likes of [57], [58], with works such as [2], [59], [60] laying

the foundation for subsequent studies.

In [61], the authors present a detailed study of the stability of the biaxial phase

and the possible phase transitions. The authors demonstrate that, contingent on the

model parameter regimes, we may expect both first- and second-order isotropic-biaxial

and uniaxial-biaxial phase transitions with the sixth-order bulk potential of the form

(1.37).

The authors discuss a simpler form of the potential,

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
+

D

5
trQ2 trQ3 +

F

6

(
trQ3

)2
, (1.38)

in [2], noting that a biaxial phase is admissible in this simplified parameter space if

CE > 6D2/25 and (2BD − 5AE)3 > 6 (3AD − 5CB)2.

The simplest possible form of the sixth-order bulk potential that allows for a biaxial

phase is studied in [53], [62] and given by

fB(Q) =
A

2
trQ2 +

B

3
trQ3 +

C

4

(
trQ2

)2
+

F

6

(
trQ3

)2
. (1.39)

Assuming C > 0, the authors describe various scenarios, dependent on different temper-

atures and material parameters, which admit first-order isotropic-uniaxial and uniaxial-

biaxial phase transitions, and scenarios which admit a second-order uniaxial-biaxial

phase transition under this model.
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Chapter 3 of this thesis contains our results regarding the sixth-order bulk potential.

In Section 3.2, we demonstrate that there are three critical points of the sixth-order

bulk potential in (1.37) below some transition temperature in the restricted class of

uniaxial Q-tensors of the form (1.23), analogous to the uniaxial critical points of the

fourth-order bulk potential. The key difference, we will show, is that the critical point

with negative scalar order parameter is the global minimiser of the sixth-order bulk

potential at sufficiently low temperatures in this restricted class. We also complement

the existing work on the bulk biaxial phase by considering the critical points of the

sixth-order bulk potential with the more general biaxial Q-tensor

Q = s

(
n⊗ n− 1

3
I

)
+ p

(
m⊗m− 1

3
I

)
, (1.40)

as discussed in Section 1.3.1, and give an example of a parameter regime in which the

global minimiser is biaxial at low temperatures.

1.5.2 The Radial Hedgehog Solution

Defects play an important role in the modelling of confined systems of nematic liquid

crystals for applications, as discussed in Section 1.2.3. The radial hedgehog solution is a

spherically symmetric configuration, characterised by an isolated, isotropic point defect

at the centre of a purely uniaxial droplet of nematic liquid crystal. The universality

of the character of defects in confined systems, coupled with the analytical tractability

of the radial hedgehog solution, has motivated the study of this defect as a means to

understand the structure and stability of point defects in more general liquid crystalline

systems [63], [64].

Early Landau–de Gennes treatments of the radial hedgehog solution are given in the

likes of [65], [66], and it is well known that the radial hedgehog solution is an explicit
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solution of the Landau–de Gennes free energy [63], subject to strong homeotropic, or

radial, anchoring. In the context of the one-constant Landau–de Gennes free energy

with the fourth-order bulk potential in (1.22), the radial hedgehog solution is described

by a uniaxial Q-tensor of the form (1.23). Specifically, we write

Q = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
, (1.41)

where r̂ is the unit vector in the radial direction and the scalar order parameter, s∗, is

a solution of the ODE

L

(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= As− B

3
s2 +

2C

3
s3. (1.42)

The value of s∗ on the boundary of a droplet of radius R is taken to be s∗(R) =

B+
√
B2−24AC
4C , noting that this is the larger of the two nonzero critical points of the

fourth-order bulk potential, (1.22), given in (1.34). The radial hedgehog solution is

characterised by the isotropic point defect at the droplet centre, so it must also hold

that s∗(0) = 0.

Several properties of the radial hedgehog solution with the fourth-order bulk po-

tential have been proven in the literature. The existence of a radial hedgehog solution

as critical point of the Landau–de Gennes free energy is shown in [63] and [64], and the

authors also show that the scalar order parameter is bounded below by zero and attains

its maximum on the droplet boundary. In addition, in [64], the author proves that the

radial hedgehog scalar order parameter is monotonic increasing, provided A < B2

27C , and

unique if A < 0.

A breadth of work on the stability of the radial hedgehog solution has been carried

out in the literature [51], [63], [67]–[69], culminating in the consensus that the radial
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hedgehog solution is stable in small droplets or at high temperatures, not far from

the nematic-isotropic transition temperature. In [63], [70], it is shown that the radial

hedgehog solution is unstable to biaxial perturbations in sufficiently large droplets,

while in [71], the authors prove that the Landau–de Gennes global minimiser cannot be

purely uniaxial at low temperatures. Furthemore, the authors construct a solution with

a ring disclination about the origin in [65], and demonstrate that the radial hedgehog

solution has higher energy in an infinite domain, and this competing state, often referred

to as the biaxial torus solution, is described in [51], [69], [72], among other sources.

The authors indicate that the biaxial torus solution is energetically preferable over

the radial hedgehog solution at sufficiently low temperatures and in sufficiently large

droplets, and we discuss this state in more detail in the next section. These results

collectively suggest that the radial hedgehog configuration yields to the emergence of

biaxiality, losing stability as temperature decreases or droplet size increases.

We build upon the existing work by studying the radial hedgehog solution with a

sixth-order bulk potential of the form (1.37). This allows us to explore the effects of

the bulk potential on the properties of the radial hedgehog solution. In Chapter 3,

we prove a range of analytical results for the radial hedgehog solution which highlight

the parallels and differences in the character of the radial hedgehog solution with the

fourth- and sixth-order potentials.

In addition, we consider the radial hedgehog solution in spherical droplets of ferrone-

matic droplets in Chapter 5, and we introduce ferronematic liquid crystals in Section

1.5.4. We study the key properties of the ferronematic radial hedgehog for comparison

with the nematic case.

Finally, we introduce uncertainty into our models and study the solutions of stochas-

tic differential equations in Chapter 6, building upon work in [73]. We obtain radial
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hedgehog solutions with random noise in the nematic case with both fourth- and sixth-

order bulk potentials, and in the ferronematic case. We discuss stochastics in more

detail in Section 1.5.5.

1.5.3 Equilibrium Configurations on the Sphere

The study of droplets of nematic liquid crystals is significant in applications such as

electro-optical devices [74], [75] due to their anisotropic physical, rheological and optical

properties. Furthermore, defects are inherent in spherical droplets with strong radial

anchoring, due to geometrical frustration. Given that defects exhibit distinct optical

signatures, it is important to be able to control or predict the presence of specific de-

fects in the design of devices which exploit the optical anisotropy of spherical droplets

of nematic liquid crystals, for example. This example is one of several which motivate

the need to understand competing equilibrium configurations in spherical droplets of

nematic liquid crystals and their defect structures, which we can achieve through study-

ing the stability of critical points of the Landau–de Gennes free energy with respect to

temperature, droplet size, and material parameters.

The preceding section discusses the radial hedgehog solution and its properties un-

der the fourth-order bulk potential, which is one of the possible equilibrium configura-

tions in a spherical droplet of nematic liquid crystal. The isotropic point defect present

in the radial hedgehog configuration is energetically unfavourable at low temperatures,

since the isotropic phase is a local maximum of the fourth-order bulk potential below

the nematic supercooling temperature. This suggests that other configurations will

have lower energy at lower temperatures in spherical droplets with strong homeotropic

anchoring. Such alternative Landau–de Gennes critical points have been studied in a

batch of papers [51], [66], [69], [72], and our references are not exhaustive. It is well

39



Chapter 1. Introduction and Literature Review

known that there exist at least two critical points in addition to the radial hedgehog

solution, as mentioned in the previous section: the widely reported biaxial torus so-

lution, which is generally energetically preferable in sufficeintly large droplets and at

sufficiently low temperatures; and the metastable split core solution, first reported in

[72]. Both of these configurations have regions of biaxiality and break the spherical

symmetry of the radial hedgehog configuration, instead possessing rotational symme-

try about some axis of symmetry through the origin and mirror symmetry across the

plane perpendicular to the axis of symmetry.

The biaxial torus configuration is characterised by a disclination loop about the

origin, rather than a point defect, and has positive uniaxial order at the droplet centre.

This loop is surrounded by a torus-shaped region of biaxiality, which acts as a transition

region for the nematic director, which is radially aligned towards the edge of the droplet

and parallel to the axis of rotational symmetry at the origin [67]. The biaxial torus

was first described as an alternative equilibrium configuration in a spherical droplet in

[65], [66] and their claims were supported numerically in [51]. Further studies include

[67], [69], [70], [72], all of which support the claim that the biaxial torus configuration

is the preferred state in a spherical droplet of nematic liquid crystals, modelled via the

Landau–de Gennes free energy with the fourth-order bulk potential, except in small

droplets and at high temperatures.

The split core configuration was first reported in [72] and has subsequently been

discussed in works such as [76]–[78]. The split core configuration features two isotropic

point defects on the axis of rotational symmetry, connected by a disclination line. The

split core solution exhibits a region of biaxiality about the origin, terminating at these

point defects, and the configuration has a negative order parameter at the origin. As

the biaxial torus solution is the likely candidate for global minimality when the radial
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hedgehog solution is not the global minimiser in the Landau–de Gennes model for ne-

matic liquid crystals with fourth-order bulk potential, the split core solution is only

ever expected to be a locally stable configuration whenever it is defined. The authors

in [67] are sceptical about the stability and even existence of the split core as an equi-

librium configuration in models lacking the imposed rotational and mirror symmetry,

suggesting its status as a metastable state could be an artefact of the symmetry class.

However, it has since been shown numerically that the split core configuration can be

stable in the absence of symmetry assumptions by [76].

In [67], the authors perform a comprehensive numerical study of the possible equi-

librium configurations in spherical droplets which possess rotational and mirror symme-

try by solving on a quarter circle domain. The authors construct bifurcation diagrams,

plotting the value of the scalar order parameter of each configuration at the origin with

respect to temperature and droplet radius, which confirm the findings of earlier works

such as [51], [65]. The bifurcation diagrams show that the radial hedgehog solution

is the global minimiser in small droplets and at temperatures above some transition

temperature, while the biaxial torus solution is the global minimiser below this transi-

tion temperature and in sufficiently large droplets. These diagrams also show that the

split core configuration exists and is locally minimising at sufficiently low temperatures,

thus demonstrating the multistability of the system. An ambiguity of this work is in

the character of the unstable branch with positive scalar order parameter at the origin,

connecting the globally minimising biaxial torus branch and the metastable split core

branch. In Chapter 3, we show that this branch corresponds to a second, unstable

biaxial torus configuration, thus completing the picture of the admissible equilibrium

configurations and their stability in a spherical droplet of nematic liquid crystals with

rotational and mirror symmetry.
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To understand the impact of biaxiality as a bulk effect under the sixth-order bulk

potential on the multistability of the system, we perform a numerical study on the

existence and stability of the solutions of the Landau–de Gennes free energy with

fourth- and sixth-order bulk potentials in Chapter 3. We impose rotational and mirror

symmetry and demonstrate that the radial hedgehog solution can act as a transition

state between the biaxial torus and split core solutions at low temperatures under both

the fourth- and sixth-order models. This is of physical relevence as it suggests that

some switching mechanism between the biaxial torus and split core configurations is

mediated by a radial hedgehog solution. Informally, this transition would look like

the disclination ring of the biaxial torus shrinking to the isotropic point defect at

droplet centre, and subsequenty splitting into the two point defects connected by the

disclination line of the split core configuration. We also construct a bifurcation diagram

to visualise the solution landscape as a function of temperature in an example parameter

regime, analogous to that in [72], to understand how the solution landscape is impacted

by the enhanced favourability of biaxiality under the sixth-order bulk potential.

In Chapter 5, we complement our work on the ferronematic radial hedgehog solution

by performing a numerical study of the solution landscape on a ferronematic spherical

droplet. The authors in [67] suggest that magnetisation may have a stabilising effect

on the split core configuration, and we give examples to confirm that this can be the

case.

1.5.4 Ferronematics

The dielectric response of nematic liquid crystals (NLCs) to electric fields is widely ex-

ploited in applications [6], but the same cannot be said for their response to magnetic

fields, which is several orders of magnitude weaker [14]. In practice, this means that the
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magnetic response of nematic liquid crystals is negligible in comparison, and unrealis-

tically large magnetic fields are required for a meaningful magnetic response, making

NLCs poor candidates for use in devices employing magnetic fields. The concept of

using dilute suspensions of magnetic colloids in NLCs to enhance magnetic responses

instead was initially proposed theoretically in [79]. The authors suggested that these

composite nematics may fall into two categories: so-called compensated materials, ex-

hibiting improved responses to external magnetic fields; or ferronematics, which not

only exhibit enhanced responses but also possess spontaneous magnetisation in the

absence of external fields. Subsequent theoretical contributions include [80]–[84].

It has been shown experimentally that doping nematic liquid crystals with magnetic

nanoparticles (MNPs) can considerably improve the orientational response to magnetic

fields [85], [86], with the first experiments reported in [87]. However, the first stable

ferronematic suspension with spontaneous magnetisation was not achieved until the

work in [88], several decades after the early publications [79], [87], with a more in-

depth review given in [89]. Prior studies struggled with MNP aggregation or lacked

the hallmark spontaneous magnetisation of ferronematics [90]. The authors in [88], [89]

identified that the shape of the MNPs is vital in the preparation of stable suspensions

which possess spontaneous magnetisation in the absence of external fields. They report

success using nanometre-sized, platelet-shaped magnetic particles, rather than rod- or

sphere-shaped particles, for example. More recent experimental studies have since built

upon this foundation, bringing us closer to realising the potential for ferronematics in

real-world applications. Such work is reported in the likes of [91]–[95].

Multistable nematic systems have found widespread use in various applications,

with a prominent example being bistable liquid crystal displays [22], [23], [96]. Anal-

ogously, confined systems of ferronematics which support multiple stable states may
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hold potential in applications, and the solution landscapes are possibly richer than their

nematic counterparts due to the added magnetic order. If stable states can be identified

in a ferronematic solution landscape, it is possible that magnetic fields could be ap-

plied to guide switching between stable states by following specific transition pathways,

thus enhancing the ability to select particular stable states in multistable ferronematic

devices.

In Chapters 4 and 5, we consider dilute suspensions of MNPs. We make certain

assumptions: the MNPs are significantly smaller than the average distance between

them; they are uniformly distributed; and their total volume fraction is small [97].

Despite the absence of external magnetic fields, the system exhibits spontaneous mag-

netisation due to interactions between the MNPs and NLCs. We model the system

via two order parameters: the Landau–de Gennes Q-tensor to describe the nematic

order; and a magnetisation vector, M, to describe the magnetic field generated by the

inclusion of the MNPs.

Dilute suspensions of MNPs in confined nematic systems have been studied using the

order parametersQ andM in [97]–[99], using a variational model comprising three com-

ponents: a Landau–de Gennes energy for the nematic liquid crystal, a magnetisation

energy, and a nemato-magnetic coupling energy. The authors in [98], [99] numerically

investigate the effects of model parameters on solutions in one- and two-dimensions.

The authors in [97] further this work in a one-dimensional channel, providing analytical

results on existence, uniqueness and stability of solutions, and exploring the multistable

ferronematic solution landscape numerically.
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In Chapter 5, we work with a free energy similar to that in [98], [99]:

F [Q,M] =

∫
Ω

(
L

2
|∇Q|2 + A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
+

κ

2
|∇M|2 + α

2
|M|2 + β

4
|M|4 + α2

4β
− γQM ·M

)
dV, (1.43)

where the first four terms are the fourth-order Landau–de Gennes free energy in (1.22).

The following four terms comprise the energy associated with the spatially varying

magnetisation vector, M, with associated elastic constant κ, while the constants α and

β describe the ferromagnetic transition [88] and the additive constant α2/4β is included

for mathematical convenience. The final term captures the nemato-magnetic coupling,

with coupling constant γ, which we interpret as a measure of the strength of the cou-

pling (we will replace γ with the rescaled coupling parameter, c, in the dimensionless

model given in subsequent chapters). A positive coupling parameter coerces the ne-

matic director to be parallel to the magnetisation vector, M; while a negative coupling

parameter indicates the coupling energy favours that they be perpendicular.

Until the work in [98], ferronematics in confinement had been modelled using a

unit vector to describe the nematic order together with a magnetisation vector [81],

[83], [88], [100]. The authors in [98] replace the nematic director with the Landau–de

GennesQ-tensor and include an elastic energy density inM to penalise inhomogeneities

or jumps in M to arrive at free energy of the form (1.43). The authors work with a

coupling energy density analogous to that proposed in [81], which is reasonable to use

as the NLC-MNP interactions and the miscroscopic properties of the MNPs can be

homogenised in the dilute limit [83].
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In Chapter 4, we look for critical points of the ferronematic bulk energy:

fFB(Q,M) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
+

α

2
|M|2 + β

4
|M|4 + α2

4β
− γQM ·M, (1.44)

with Q-tensor and magnetisation vector of the form

Q =


q1 − q3 q2 0

q2 −q1 − q3 0

0 0 2q3

 , and M =


m1

m2

m3

 , (1.45)

respectively. We are interested in whether the inclusion of MNPs can induce biaxiality

as a bulk effect, and we find that this is in fact the case for both positive and negative

coupling parameters.

In Chapter 5, we complement existing work on the nematic radial hedgehog with

fourth-order bulk potential outlined in Section 1.3.2 and our work with the sixth-order

bulk potential in Chapter 3 by studying the ferronematic radial hedgehog solution. The

radial hedgehog solution is described by the usualQ-tensor of the form (1.41), with asso-

ciated magnetisation vector M = m(r)r̂, recalling that r̂ is the unit vector in the radial

direction. As we do in the nematic case with the sixth-order bulk potential in Chap-

ter 3, we prove a collection of analytical results for the ferronematic radial hedgehog

solution to understand how the nemato-magnetic coupling influences the properties of

the radial hedgehog solution. Later in Chapter 5, we explore the ferronematic solution

landscape on a spherical droplet with rotational and mirror symmetry to understand

how the system is affected by the NLC-MNP coupling. In particular, we show that

the radial hedgehog solution remains a transition state between split core and biaxial
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torus solutions and we construct bifurcation diagrams as a function of temperature for

a range of droplet radii and positive coupling strengths. As suggested in [67], it is

possible that the coalignment of the preferred orientation of the nematic liquid crystals

and the magnetic field could enhance the stability of the split core solution, and we

find that this is the case in instances with strong enough nemato-magnetic coupling.

We also find example scenarios where a new, unstable split core solution becomes ad-

missible in the system, which could be an alternative candidate to the radial hedgehog

solution as a transition state in switching mechanisms in such scenarios.

1.5.5 Stochastic Effects on Deterministic Landau–de Gennes Solu-

tions

In Chapters 3-5, we study droplets of nematic and ferronematic liquid crystals with de-

terministic Landau–de Gennes models. This work is rooted in a solid foundation in the

literature which employs these methods, and such studies provide valuable and valid

insights into the behaviour of these systems, informing experiments and applications.

Nonetheless, determinstic models rely on assumptions and simplifications by design,

meaning they are likely to overlook any potential imperfections, uncertainties and nu-

ances intrinsic in physical systems. Stochastic models can expose the shortcomings of a

deterministic model by revealing more complex or nuanced behaviour. Conversely, they

can also be used to endorse the reliability of deterministic models if their conclusions

are in approximate agreement.

We work with stochastic Landau–de Gennes models for the nematic and ferrone-

matic radial hedgehog solution in Chapter 6, which may be able to capture this inherent

variability via the inclusion of additive random noise modelled by a Q-Wiener process,

which we discuss in more detail below, and thus offer insights that are closer to the
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true behaviour of these systems. Specifically, additive noise is implemented via an

additional term in the relevant gradient flow equations and does not depend on the

unknown variable.

The vast majority of existing research concerning nematic and ferronematic liquid

crystals in confined systems relies on deterministic models, including the continuum

theories such as the Oseen–Frank, Ericksen, and Landau–de Gennes models discussed

in Section 1.2.2, alongside other approaches. There are a limited number of studies

employing stochastic continuum models for nematic liquid crystals. A stochastic Erick-

sen–Leslie equation with multiplicative noise, i.e. noise which depends on the unknown

variable, has been studied analytically in [101]–[105]. The authors prove a host of an-

alytical results, including existence and uniqueness of solutions, but do not focus on

specific model examples. The only paper to date which considers a Landau–de Gennes

model with stochastic terms is [73]. The authors numerically explore the solution land-

scape on two-dimensional square domains with both multiplicative and additive noise.

They also perform a preliminary numerical study of the radial hedgehog solution with

the fourth-order bulk potential with additive noise.

In [73], noise is incorporated via an additional term in the gradient flow equations,

and this noise is generated via a Q-Wiener stochastic process [106]. A Q-Wiener process

exhibits randomness in space and time and is characterised by random increments at

points in space that are correlated. This means that fluctuations in the liquid crystal

alignment at one point influences the alignment of nearby molecules, making a Q-

Wiener process an appropriate choice to capture the effects of the likes of material

imperfections, thermal fluctuations, or variations in experimental measurements.

The work in Chapter 6 is a direct extension of the findings outlined in [73] con-

cerning the radial hedgehog solution. In the existing work, the authors worked with

48



Chapter 1. Introduction and Literature Review

a Landau–de Gennes model with the fourth-order bulk potential and incorporated ad-

ditive noise. They demonstrated that the perfect rotational symmetry of the radial

hedgehog solution is broken when random noise is introduced. Notably, the influence

of noise was found to be more pronounced on smaller domains compared to larger do-

mains. We expand upon this work by studying the radial hedgehog solution with the

sixth-order bulk potential in the nematic case and in the ferronematic case under the

influence of random noise. We consider domains of different sizes at a range of tem-

peratures, and a range of coupling strengths in the ferronematic case, and incorporate

noise of different strengths. We confirm that symmetry is broken and properties such

as the monotonicity of the radial hedgehog scalar order parameter can be violated in

certain scenarios, but otherwise find that the stochastic models agree well with the

deterministic models discussed in Chapters 3-5.

Despite the inherent randomness in the stochastic simulations, the qualitative be-

havior of stochastic solutions presented in Chapter 6 remains largely consistent with the

deterministic predictions, and stochastic solutions generally agree with the shape of ra-

dial hedgehog scalar order parameter profiles. We observe certain scenarios in which the

value of the scalar order parameter is reduced in the droplet bulk in the stochastic case,

and speculate that this reduction in ordering reflects real-world scenarios in which the

perfect conditions assumed under a deterministic model are rarely met. These obser-

vations lead us to conclude that stochastic results corroborate the deterministic model

and enrich our understanding by incorporating some of the variability and randomness

inherent in real-world systems. The primary qualitative features remain unchanged,

validating deterministic predictions, while providing an arguably more nuanced and

realistic depiction of the radial hedgehog solution.
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Preliminary Material

In this chapter, we outline some details that contextualise the problems we study in

later chapters; and provide an overview of the methods employed. We begin by giving a

review of some of the properties of critical points of the Landau–de Gennes free energy

in Section 2.1. We then discuss the nondimensionalisation of the Landau–de Gennes free

energy with the sixth-order bulk potential and the ferronematic free energy in Section

2.2. Finally, in Section 2.3, we outline the numerical methods we use in Chapters 3

and 5.

2.1 Solutions of the Landau–de Gennes Free Energy

In this section, we review key results concerning the Landau–de Gennes free energy with

the fourth-order bulk potential. In subsequent chapters, these results are generalised to

a Landau–de Gennes free energy with a sixth-order bulk potential and a ferronematic

free energy.

We work in a ball of radius R centred at the origin,

B(0, R) =
{
x ∈ R2 : |x| ≤ R

}
. (2.1)
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We consider critical points of the Landau–de Gennes free energy with the fourth-order

bulk potential in the absence of surface energies and external fields:

F [Q] =

∫
B(0,R)

L

2
|∇Q|2 + fB(Q) dV, (2.2)

where fB denotes the bulk energy density

fB(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
. (2.3)

We enforce strong homeotropic anchoring, following [63], [64], [67], that ensures the bulk

energy density, fB, is minimised on the boundary, denoted by the Dirichlet boundary

condition

Q = Qs+ := s+

(
r̂ ⊗ r̂ − 1

3
I

)
on ∂B(0, R), (2.4)

where

s+ =
B +

√
B2 − 24AC

4C
, (2.5)

and r̂ is the unit vector in the radial direction in three dimensions. The admissible

space for critical points of (2.2) is defined to be

AQ =
{
Q ∈ W 1,2(B(0, R),S0) : Q = Qs+ on ∂B(0, R)

}
, (2.6)

and we recall that S0 is the space of symmetric, traceless 3×3 matrices and the Sobolev

space W 1,2(B(0, R),S0) is given by

W 1,2(B(0, R),S0) =

{
Q ∈ S0 :

∫
B(0,R)

|Q|2 + |∇Q|2 dV < ∞

}
. (2.7)

In simple terms, this is the space of square-integrableQ-tensors in S0 which have square-
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integrable first derivatives. This space is a common choice in the study of variational

problems.

A key question in the study of functionals of the form (2.2) is the existence of a

global minimiser that belongs to the admissible space, AQ. Without existence, any

other results regarding properties of minimisers of (2.2) in AQ are irrelevant. The

existence of a global minimiser can be proven via the direct methods in the calculus of

variations [107], [108]. There are three key steps: demonstrating that the admissible

space, AQ, is nonempty; proving weak lower semi-continuity of the Landau–de Gennes

free energy (2.2); and proving coercivity of (2.2). We reproduce an existence result in

the fourth-order case here [56], [108], which can be generalised to a Landau–de Gennes

free energy with a sixth-order bulk potential and a ferronematic free energy.

Proposition 2.1. There exists a global minimiser, Q∗, of F in (2.2) in the admissible

space, AQ in (2.6).

Proof. Firstly, the admissible space, AQ, is nonempty since Qs+ ∈ AQ. Next, the free

energy in (2.2) is weakly lower-semicontinuous, meaning

lim inf
n→∞

F [Qn] ≥ F [Q] (2.8)

when Qn ⇀ Q in W 1,2(B(0, R);S0), since the elastic energy density is convex in ∇Q

(see Chapter 8, Theorem 1 in [107]). Finally, since the bulk energy density, fB, is a

polynomial in |Q|, it is bounded from below, and we may write

L

2
|∇Q|2 + A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2 ≥ a1|∇Q|2 + a2, (2.9)
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for some positive constants a1, a2(A,B,C). Therefore, we may conclude that

F [Q] ≥ a3||∇Q||2L2(B(0,R)) + a4, (2.10)

for positive constants a3, a4, which guarantees coercivity, which means that

F [Q]

|Q|
→ ∞ as |Q| → ∞, (2.11)

which implies that F grows faster than |Q|. Therefore, there must exist a global

minimiser of (2.2) in the admissible space AQ.

Any critical point of (2.2) satisfies the associated Euler–Lagrange equations [49],

which are obtained via the equations

∂

∂xk

∂E
∂Qij,k

=
∂E
∂Qij

, i, j = 1, 2, 3, (2.12)

where E is the integrand of the energy functional (2.2), and can be expressed as

L∆Qij = AQij −B

(
QikQkj −

1

3
δij trQ

2

)
+ CQij trQ

2, i, j = 1, 2, 3, (2.13)

where

B

3
δij trQ

2 (2.14)

is a Lagrange multiplier for the tracelessness constraint. Furthermore, solutions of

the Euler–Lagrange equations are real analytic in B(0, R) (see Proposition 13 in [49]).

We present Euler–Lagrange equations in the nematic case with the sixth-order bulk

potential and in the ferronematic case in Chapters 3 and 5, respectively.

The extension of the existence result in Proposition 2.1 to a Landau–de Gennes free
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energy with a sixth-order potential as in (1.37) is immediate, since the elastic energy

is unchanged, and the sixth-order potential is also a polynomial in |Q|, meaning it is

bounded below and coercivity holds. Extending the existence result to the ferronematic

free energy in (1.43) is more delicate. Weak lower-semicontinuity holds since the energy

density is convex in in the gradient of theQ-tensor and in the gradient of the magnetisa-

tion vector. The added complication is the lower-boundedness of the nemato-magnetic

coupling term, which requires a more careful argument, and we provide further details

in Chapter 5.

Equipped with existence and analyticity, we now consider the notion of a maximum

principle for solutions of the above Euler–Lagrange equations and reproduce an impor-

tant result below, which is proven in [56] and [49]. This result yields natural upper

bounds for the scalar order parameters of a global minimiser of the Landau–de Gennes

free energy in terms of temperature and the bulk constants, and implies that the degree

of ordering in the interior of the droplet is at most equal to that on the edge of the

droplet. Furthermore, this upper bound helps to identify regimes of agreement between

the Landau–de Gennes definition of the Q-tensor and the statistical interpretation of

the Q-tensor as the second moment of a probability distribution function, as discussed

in [56]. It is pointed out in [56] that bounds on the scalar order parameters of equi-

librium configurations can be derived from the probabilistic definition of the Q-tensor

order parameter, and these constraints indicate what is physical. Comparison with the

upper bound described below can indicate when equilibrium scalar order parameters

and, by extension, certain parameter regimes are not physical.

Proposition 2.2. Suppose Q is a global minimiser of the Landau–de Gennes energy
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functional F in (2.2) in the admissible space AQ in (2.6). Then

|Q|2 ≤ 2

3
s2+, (2.15)

where s+ is defined in (2.5).

Proof. Suppose for a contradiction that |Q|2 attains its maximum at some point r∗ ∈

B(0, R), and |Q(r∗)|2 > 2
3s

2
+. Hence we have that

∆

(
1

2
|Q|2

)
(r∗) ≤ 0. (2.16)

Multiplying both sides of the Euler–Lagrange equations (2.13) by Qij , we write

LQij∆Qij = A trQ2 −B trQ3 + C
(
trQ2

)2
, (2.17)

where we have used the tracelessness of Q. Next, we use the fact that ∆
(
1
2 |Q|2

)
=

Qij∆Qij + |∇Q|2 to write

L∆

(
1

2
|Q|2

)
= L|∇Q|2 +A trQ2 −B trQ3 + C

(
trQ2

)2
. (2.18)

We recall the definition of the biaxiality parameter, β:

β = 1− 6

(
trQ3

)2(
trQ2

)3 , (2.19)

with β ∈ [0, 1]. The nonnegativity of β implies that trQ3 ≤ 1√
6
|Q|3, using the fact

that trQ2 = |Q|2. Then, from (2.18), we may write

L∆

(
1

2
|Q|2

)
≥ L|∇Q|2 +A|Q|2 − B√

6
|Q|3 + C|Q|4, (2.20)
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and it is straightforward to show that

h (|Q|) := A|Q|2 − B√
6
|Q|3 + C|Q|4 > 0 (2.21)

when |Q| >
√

2
3s+, by considering the zeros of h, the largest of which is

√
2
3s+, and

noting that h (|Q|) → +∞ as |Q| → ∞. Therefore, we must have that

∆

(
1

2
|Q|2

)
(r∗) > 0, (2.22)

which is a contradiction. Hence, |Q|2 ≤ 2
3s

2
+.

Proposition 2.2 essentially tells us that the maximum ordering occurs on the bound-

ary of the droplet. Or in other words, the strong anchoring on the boundary of the

droplet enforces the highest degree of ordering, and the degree of ordering is weaker

throughout the rest of the droplet.

We derive maximum principles for the minimisers of the Landau–de Gennes free

energy and the ferronematic free energy in Chapters 3 and 5, respectively. We prove a

maximum principle for uniaxial global minimisers in the sixth-order case, which follows

a similar contradiction argument and considers the roots of an analogous polynomial

in |Q|. In the ferronematic case in Chapter 5, we prove a maximum principle for the

ferronematic radial hedgehog solution below the nematic supercooling temperature, also

via a contradiction argument, which relies on the specific form of the radial hedgehog

solution to make the problem tractable.
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2.2 Nondimensionalisation

It is common practice to nondimensionalise and rescale models before performing any

analysis. As such, we nondimensionalise the Landau–de Gennes free energy with the

sixth-order bulk potential and the ferronematic free energy; and we rescale the domain

in each case to the unit ball,

B(0, 1) = {x ∈ R : |x| ≤ 1} , (2.23)

before proceeding.

2.2.1 The Landau–de Gennes Free Energy with Sixth-Order Bulk Po-

tential

In Sections 1.3 and 1.5.1, we introduce a Landau–de Gennes free energy, which takes

the form

F [Q] =

∫
B(0,R)

L

2
|∇Q|2 + fB(Q) dV, (2.24)

where fB can be either the fourth- or sixth-order bulk potential.

In Chapters 3 and 6, we work with a nondimensionalised version of the above free

energy, inspired by [76]. Let

x̃ =
1

R
x, Q̃ =

√
27C2

2B2
Q. (2.25)

The dimensionless free energy with the fourth-order bulk potential is then given by

F4 = F̃
[
Q̃
]
=

∫
B(0,1)

ε2

2
|∇Q̃|2 + t

2
tr Q̃

2
−
√
6 tr Q̃

3
+

1

2

(
tr Q̃

2)2
dṼ , (2.26)
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and with the sixth-order bulk potential is given by

F6 = F̃
[
Q̃
]
=

∫
B(0,1)

ε2

2
|∇Q̃|2 + t

2
tr Q̃

2
−
√
6 tr Q̃

3
+

1

2

(
tr Q̃

2)2
+

d

5
Q̃

2
tr Q̃

3
+

e

6

(
tr Q̃

2)3
+

(f − e)

6

(
tr Q̃

3)2
dṼ , (2.27)

where the characteristic length scale is given by ξ =
√

27CL
B2 with ε = ξ

R , and

t =
27AC

B2
, d =

2
√
6BD

9C2
, e =

4B2E

27C3
, f =

4B2F

27C3
. (2.28)

We note that this rescaling reduces the domain to the unit ball in three dimensions,

B(0, 1), and the geometrical properties are captured by the parameter ε. We refer to

t as the temperature for convenience, although it is, more precisely, a function of the

absolute temperature. We drop the tildes for brevity in the rest of this thesis and all

results are interpreted in terms of the dimensionless variables.

We adopt this particular rescaling of the Landau–de Gennes free energy and cap-

ture the effects of temperature through the parameter t, referred to as the reduced

temperature. Furthermore, since we have rescaled the domain to the unit ball, the

computational domain remains constant in our numerical simulations and we instead

capture a changing radius through the parameter ε.

While there are no current values obtained for the constants D,E and F in the

literature, there are known values for the constants B and C for a range of commonly

used liquid crystals. In particular, for MBBA, the values are [109]

B = 0.64× 106Nm−2, C = 0.35× 106Nm−2. (2.29)

In practice, one would know the values for B,C,D,E and F for a given material, then
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these could be translated into our dimensionless coefficients. In this thesis, we choose

values for the dimensionless coefficients to describe mathematical scenarios, which may

be applicable to liquid crystals which one day may be synthesised.

2.2.2 The Ferronematic Free Energy

The dimensional ferronematic free energy introduced in Section 1.5.4 is of the form

F [Q,M] =

∫
B(0,R)

L

2
|∇Q|2 + A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
+

κ

2
|∇M|2 + α

2
|M|2 + β

4
|M|4 + α2

4β
− γQM ·M dV. (2.30)

Inspired by [98], we introduce the scaling

x̃ =
x

R
, Q̃ =

√
27C2

2B2
Q, M̃ =

√
β

|α|
M, (2.31)

and arrive at the dimensionless free energy

FF = F̃
[
Q̃, M̃

]
=

∫
B(0,1)

ξ1

(
ℓ1
2
|∇Q̃|2 + t

2
tr Q̃

2
−
√
6 tr Q̃

3
+

1

2

(
tr Q̃

2)2)
+ ξ2

(
ℓ2
2
|∇M̃|2 + 1

4

(
|M̃|2 − 1

)2 − cQ̃M̃ · M̃
)
dṼ , (2.32)

where

t =
27AC

B2
, ξ1 =

2B3

272C3
, ξ2 =

α2

βB
,

ℓ1 =
27LC

B2R2
, ℓ2 =

κ

|α|R2
, c = γ

√
2

27C2

|α|
β

.

(2.33)

We note that we have again rescaled the domain to the unit ball, B(0, 1), and capture

temperature via the reduced temperature t and different radii via the parameters ℓ1

and ℓ2. Again, we drop the tildes for brevity in the rest of this thesis and interpret all
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results in terms of the dimensionless variables. We also set ξ1 = ξ2 = 1 and ℓ1 = ℓ2 =: ℓ

in this thesis, for simplicity. The scaling parameters ξ1 and ξ2 measure the strength

of the nematic and magnetic energies. In setting ξ1 = ξ2 = 1, we assume the energies

are equal in strength; while in setting ℓ1 = ℓ2 =: ℓ, we assume that the nematic

and magnetic elastic constants have comparable magnitude, or are both very small.

The physical meaning of these assumptions are that equilibrium configurations are not

dominated by the preferred liquid crystal behaviour, nor the preferred magnetisation

behaviour (as may be the case if ξ1 and ξ2 differed in magnitude); and that the effects

of spatial homogneities on the liquid crystal configuration and the magnetisation are

comparable.

We note that we assume that the magnetisation is independent of temperature

in this model. While magnetisation is generally temperature-dependent, we assume

here that the effects of temperature on the magnetisation are negligible in this case in

comparison to the effects of temperature on the liquid crystals.

2.3 Numerical Methods

In Chapters 3 and 5, we numerically compute equilibrium configurations on spherical

droplets of nematic and ferronematic liquid crystals, and study their stability. We

employ finite element [110], gradient flow, continuation [111], and HiOSD [112] methods

to solve for numerical solutions and construct a picture of the solution landscapes in the

nematic cases with fourth- and sixth-order bulk potentials; as well as in the ferronematic

case. We outline the numerical framework and methods in the sections below.

We present the problem formulation and numerical methods in the nematic case

with the fourth-order bulk potential here. The numerical framework is analogous in

the nematic case with the sixth-order bulk potential and in the ferronematic case. We
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present the specific details of the numerical methods in these cases in Sections 3.4

and 5.2, respectively, noting that they are direct extensions of the nematic case with

fourth-order bulk potential.

The content in this section is adapted from [1].

2.3.1 Symmetry and Boundary Conditions

Following previous work in [67], we numerically compute critical points of the Lan-

dau–de Gennes free energy in (2.26) with rotational symmetry about the z-axis, and

mirror symmetry across the xy-plane. In this case, our domain is reduced to a quarter

circle. We work in cylindrical polar coordinates (r, θ, z), where r ∈ [0, 1] and z ∈ [0, 1],

while θ is the angle in the xy-plane.

We recall that the Q-tensor order parameter has five degrees of freedom in the

most general setting, and it is possible to represent the Q-tensor in terms of five ba-

sis tensors, as in (1.10) in Section 1.3.1 [51]. However, in our numerical framework,

following the work in [67] and related papers, the Q-tensor always has an eigenvector

in the direction eθ, normal to the rz-plane, which is a consequence of the symmetry

assumptions described above. With a fixed eigenvector, the degrees of freedom reduce

from five to three, with one degree of freedom associated with the free eigenvectors in

the rz-plane and two degrees of freedom associated with the eigenvalues of a traceless

Q-tensor. Hence, we express the Q-tensor in terms of just three basis tensors as

Q(r, z) = q1(r, z)E1 + q2(r, z)E2 + q3(r, z)E3, (2.34)
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where

E1 =

√
6

6


−1 0 0

0 −1 0

0 0 2

 , E2 =

√
2

2


1 0 0

0 −1 0

0 0 0

 , E3 =

√
2

2


0 0 1

0 0 0

1 0 0

 . (2.35)

We assume that the three degrees of freedom, q1, q2, and q3, are independent of θ,

consistent with our assumptions of rotational symmetry about the z-axis and mirror

symmetry about z = 0.

We then rewrite the Landau–de Gennes free energy (2.26) in terms of q1, q2, and

q3. First, the Q-tensor in (2.34) can be written in terms of r, θ, and z by

Q(r, θ, z) = R(θ)Q(r, z)R(θ)T , (2.36)

where R is the rotation matrix

R(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.37)

Then the Q-tensor is given by

Q(r, θ, z) =


−

√
6q1
6 +

√
2q2
2

(
cos2 θ − sin2 θ

) √
2q2 cos θ sin θ

√
2
2 q3 cos θ

√
2q2 cos θ sin θ −

√
6q1
6 +

√
2q2
2

(
sin2 θ − cos2 θ

) √
2q3
2 sin θ

√
2q3
2 cos θ

√
2q3
2 sin θ

√
6q1
3

 .

(2.38)
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The Landau–de Gennes free energy in (2.26) is then rewritten as

F [Q] =

∫
B(0,1)

(
t

2

(
q21 + q22 + q23

)
− q31 + 3q1q

2
2 −

3

2
q1q

2
3 −

3
√
3

2
q2q

2
3

+
1

2

(
q41 + q42 + q43 + 2q21q

2
2 + 2q21q

2
3 + 2q22q

2
3

)
+

ε2

2

(
q21,r + q22,r + q23,r + q21,z + q22,z + q23,z +

1

r2
(
4q22 + q23

)))
dV. (2.39)

We also specify boundary conditions for q1, q2, and q3 with our symmetry assump-

tions. We work with the Dirichlet boundary condition (2.4) on r2 + z2 = 1, which can

be translated into conditions for q1, q2, and q3. The unit vector r̂ can be written as

r̂ = rer + zez, where er = [cos θ, sin θ, 0]T , ez = [0, 0, 1]T , so that

s+

(
r̂ ⊗ r̂ − 1

3
I

)
= s+


r2 cos2 θ − 1

3 r2 cos θ sin θ rz cos θ

r2 cos θ sin θ r2 sin2 θ − 1
3 rz sin θ

rz cos θ rz sin θ z2 − 1
3

 , (2.40)

where s+ is defined in (2.5). Comparing with (2.38), we obtain

q1 =

√
6

6

(
2− 3r2

)
s+, q2 =

√
2

2
r2s+, q3 =

√
2rzs+ on r2 + z2 = 1. (2.41)

There are additional boundary conditions to account for the assumed rotational and

mirror symmetry [67]:

q1,z = q2,z = q3 = 0 on z = 0 (2.42)

for mirror symmetry across the xy-plane, and

q1,r = q2 = q2,r = q3 = 0 on r = 0 (2.43)
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for rotational symmetry about the z-axis.

It is worth briefly explaining how the boundary conditions on r = 0 and z = 0

arise. Firstly, we include q2 = q3 = 0 on r = 0 to regularise the problem as there is a

singularity in (2.39) at r = 0. The other conditions all arise as a result of the Dirichlet

boundary conditions in (2.41). We note that the boundary values q1 and q2 in (2.41) are

even functions in r and z, so we require q1,r = q2,r = 0 on r = 0 and q1,z = q2,z = 0 on

z = 0 to match the boundary conditions. Furthermore, q3 in (2.41) is an odd function

of r and z, and in theory we require q3(r, z) = −q3(r,−z) on r2 + z2 = 1, leading to

the additional condition q3 = 0 on z = 0.

2.3.2 Critical Points of the Landau–de Gennes Free Energy

We use a finite element method [110] to solve for Landau–de Gennes critical points.

The finite element method discretises the domain into smaller elements and solves for

the unknowns within each element, yielding approximate (but often very accurate)

solutions to complex systems. In our context, we apply the finite element method to

the weak formulations associated with the Landau–de Gennes free energy (2.39) with

the fourth-order bulk potential (and the equivalent energies in the sixth-order bulk and
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ferronematic cases), which are given by

F1 =

∫
B(0,1)

ε2∇q1 · ∇v1

+ v1

(
tq1 − 3q21 + 3q22 −

3

2
q23 + 2q31 + 2q1q

2
2 + 2q1q

2
3

)
dV

F2 =

∫
B(0,1)

ε2∇q2 · ∇v2

+ v2

(
tq2 + 6q1q2 −

3
√
3

2
q23 + 2q21q2 + 2q32 + 2q2q

2
3 +

4

r2
ε2q2

)
dV,

F3 =

∫
B(0,1)

ε2∇q3 · ∇v3

+ v3

(
tq3 − 3q1q3 − 3

√
3q2q3 + 2q21q3 + 2q22q3 + 2q33 +

1

r2
ε2q3

)
dV,

(2.44)

where v1, v2, and v3 are test functions.

We present the weak formulations with the sixth-order bulk potential and in the

ferronematic case in Chapters 3 and 5, respectively.

The finite element method is implemented in the open-source computing package

FEniCS [110], which uses Newton’s method to find solutions; and the visualisation is

carried out in an open-source post-processing visualisation application, ParaView [113].

We plot the biaxiality parameter, β in (1.18), of the numerically computed crit-

ical points, since biaxiality often labels defects and biaxiality also distinguishes the

sixth-order bulk potential from the fourth-order bulk potential. The radial hedgehog

solution is purely uniaxial with β = 0 everywhere, while the split core and biaxial torus

solutions have signature regions of biaxiality near the origin (see Section 1.5.3 for more

in-depth discussion of equilibrium configurations on the sphere with the fourth-order

bulk potential). We also plot the leading eigenvector of the Q-tensor, which is the

eigenvector with the largest positive eigenvalue and models the preferred direction of

orientation of the nematic liquid crystal molecules.
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A further useful property to consider is the sign of the scalar order parameter at

the origin. However, since we set q2 = q3 = 0 at the origin in (2.43), the sign of the

scalar order parameter is given by the sign of q1 at the origin. The radial hedgehog

solution is isotropic at the origin so that q1(0, 0) = 0; while the split core solution is

negatively ordered at the origin, requiring q1(0, 0) < 0; and the biaxial torus solution

is positively ordered at the origin, requiring q1(0, 0) > 0.

2.3.3 The Morse Index of the Radial Hedgehog Solution

We characterise the stability of Landau–de Gennes critical points using the Morse

index, which is the number of negative real eigenvalues of the associated Hessian of

the Landau–de Gennes free energy evaluated at the critical point [114]. The Morse

index is calculated using the SLEPc eigenvalue solver [115]. An index-0 critical point,

with no negative eigenvalues, is at least locally stable. All index-k critical points, with

k > 0, are unstable. We numerically compute the Morse index of the radial hedgehog

solution with the fourth- and sixth-order bulk potentials in the nematic case in Chapter

3, and in the ferronematic case in Chapter 5, and tabulate the results across a range of

temperatures and droplet radii.

As it is difficult to converge to the radial hedgehog solution at low temperatures

and in droplets with large radii, we solve for Q-tensors in the further restricted class

described by q∗ = [q1, q2, q3]
T such that

q1 =

√
6

6

(
2− 3r2

r2 + z2

)
s∗, q2 =

√
2r2

2(r2 + z2)
s∗, q3 =

√
2rz

r2 + z2
s∗, (2.45)

where s∗ is a solution of the ODE

ε2∆s = ts−
√
6s2 +

4

3
s3 +

6ε2s

r2 + z2
, (2.46)
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which is equivalent to the dimensionless version of the ODE in (1.42):

ε2
(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= ts−

√
6s2 +

4

3
s3, (2.47)

recalling that (1.42), and therefore (2.47), are given in spherical polar coordinates.

This reduces the problem to solving the weak formulation

Fs =

∫
B(0,1)

ε2∇s · ∇v + v

(
ts−

√
6s2 +

4

3
s3 +

6ε2s

r2 + z2

)
dV, (2.48)

where v is a test function, for the function s = s∗(r, z) in the fourth-order case, and

we present the analogous weak formulations in the sixth-order bulk and ferronematic

cases in Chapters 3 and 5, respectively. Having solved for s∗, we then construct the

Q-tensor from the relations (2.45), and compute the Morse index of the solution in the

more general class of Q-tensors described by (2.38).

2.3.4 The Radial Hedgehog Solution as an Index-1 Transition State

We attempt to identify situations in which the radial hedgehog solution acts as an

index-1 saddle point, because these points are often referred to as transition states,

potentially mediating switching processes between stable equilibrium states [116]. Our

aim is to compute the transition pathway between two index-0 Landau–de Gennes

critical points, which are potentially physcially observable, through an index-1 radial

hedgehog solution, q∗, in (2.45), thus identifying example regimes in which the radial

hedgehog solution mediates switching processes as an index-1 saddle point.

We use a gradient flow method, a well-established numerical method which itera-

tively takes steps in the direction of steepest descent from the initial point to find local

minima [117]. We work with values of t and ε for which the radial hedgehog solution
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is an index-1 saddle point and take small perturbations of the radial hedgehog solution

in the unstable direction, or along the direction of the eigenvector associated with the

negative eigenvalue of the Hessian, as an initial condition. We solve the initial value

problem
∂q

∂τ
= −∇F(q,∇q) in B(0, 1) for τ > 0,

q = q0 = q∗ ± λu, in B(0, 1) at τ = 0,

(2.49)

with boundary conditions (2.41)-(2.43), where F is the Landau–de Gennes free energy

(2.39); the quantity λ is a small positive constant; and u is the unstable eigendirection

of the radial hedgehog solution. The initial value problem, (2.49), will converge to two

different index-0 solutions for the two different inital conditions.

Remark: In the spatially discretised domain, we have n grid points on which we

solve the problem numerically. In this framework, rather than working with a tensor

at each grid point, we solve for a vector, q̃, with 3n elements such that q̃3(i−1) =

qi1, q̃3(i−1)+1 = qi2, q̃3(i−1)+2 = qi3 for i = 1, ..., n, where qi1 is the value of q1 on the

ith grid point. Hence, the notion of adding a vector to perturb the radial hedgehog

solution is sensible, since computed eigenvectors are of length 3n.

Solving the above initial value problem is equivalent to solving the coupled, nonlin-

ear, τ -dependent PDEs

∂q1
∂τ

= ε2∆q1 − tq1 + 3q21 − 3q22 +
3

2
q23 − 2q31 − 2q1q

2
2 − 2q1q

2
3,

∂q2
∂τ

= ε2∆q2 − tq2 − 6q1q2 +
3
√
3

2
q23 − 2q21q2 − 2q33 − 2q2q

2
3 −

4

r2
ε2q2,

∂q3
∂τ

= ε2∆q3 − tq3 + 3q1q3 + 3
√
2q2q3 − 2q21q3 − 2q22q3 − 2q33 −

1

r2
ε2q3.

(2.50)

To solve the above PDEs with the finite element method, we time-discretise the problem
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using an implicit Euler method [118], approximating time derivatives by

∂qi
∂τ

(τn) ≈
qi,n − qi,n−1

∆τ
, qi(τn) ≈ qi,n, (2.51)

for i = 1, 2, 3, where τn = n∆τ . We use Euler’s method as it is a computation-

ally efficient method to obtain approximate solutions for systems of partial differential

equations, and it is straightforward to implement. We use the implicit Euler method

as it is numerically stable in comparison with the explicit Euler method, and therefore

more robust, despite being more computationally expensive than the explicit Euler

method [118].

The weak formulations of the discretised versions of (2.50) are given by

F1 =

∫
B(0,1)

(q1,n − q1,n−1) v1 +∆τε2∇q1,n · ∇v1

+∆τ

(
tq1,n − 3q21,n + 3q22,n − 3

2
q23,n + 2q31,n + 2q1,nq

2
2,n + 2q1,nq

2
3,n

)
v1 dV,

F2 =

∫
B(0,1)

(q2,n − q2,n−1) v2 +∆τε2∇q2,n · ∇v2

+∆τ

(
tq2,n + 6q1,nq2,n − 3

√
3

2
q23,n + 2q21,nq2,n

+ 2q32,n + 2q2,nq
2
3,n +

4

r2
ε2q2,n

)
v2 dV,

F3 =

∫
B(0,1)

(q3,n − q3,n−1) v3 +∆τε2∇q3,n · ∇v3

+∆τ

(
tq3,n − 3q1,nq3,n − 3

√
3q2,nq3,n

+ 2q21,nq3,n + 2q22,nq3,n + 2q33,n +
1

r2
ε2q3,n

)
v3 dV.

(2.52)
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2.3.5 Bifurcation Diagrams and the HiOSD Method

We construct bifurcation diagrams as a function of temperature to understand the

nature of the solution landscapes in the nematic case with fourth- and sixth-order bulk

potentials; as well as in the ferronematic case. The branches of the bifurcation diagrams

are computed via continuation methods [111]. Loosely speaking, a critical point is

found at a given temperature, and used as an initial condition at a slightly lower or

slightly higher temperature. The resulting solution is then used as an initial condition

for the next temperature, and this process is repeated across the full temperature

range of interest. Stable solutions can generally be computed via the finite element or

gradient flow methods outlined in Sections 2.3.2 and 2.3.4, respectively. We use a high-

index optimisation-based shrinking dimer (HiOSD) method [112] to compute unstable

solutions, which are generally difficult to obtain via other methods.

The HiOSD method is a local search algorithm designed to compute saddle points

with any Morse index. This method can be used to construct solution landscapes of

confined systems and reveal how critical points are connected. In this sense, it can be

viewed as a generalisation of the idea of the gradient flow method in Section 2.3.4. The

gradient flow method we use takes a small perturbation of an index-1 saddle point and

searches in a given eigendirection to find an index-0 minimiser. The HiOSD method is

more powerful in the sense that we start from an index-m critical point, where m ≥ 0,

and search in a given eigendirection for an index-k critical point, where k ≥ 0, k ̸= m.

This allows us to find critical points of a specific index, including obtaining higher-index

critical points than that which we start with, which is not possible with the gradient

flow method. Note that the HiOSD can be used for an upward search, perturbing an

index-m critical point and searching in a given eigendirection for an index-k critical

point, where m < k; or for a downward search, where m > k [119]. We illustrate the
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ideas behind the HiOSD method in Figure 2.1, in which we present an example of a

solution landscape and its associated energy landscape.

Figure 2.1: An example of an energy landscape and the associated solution landscape.
The point A is an index-2 maximum; B is an index-1 saddle point; and C1 and C2 are
index-0 minima.

The Hessian, H(Q) := ∇2F [Q] for F in (2.39), associated with an index-m critical

point has exactly m negative eigenvalues, with associated unit eigenvectors v1, ...,vm

such that vi · vj = δij for 1 ≤ i, j ≤ m. To obtain an index-k critical point via an

upward search method, we perturb an index-m critical point such that k > m in the

direction of a linear combination of k − m eigenvectors corresponding to the k − m

smallest positive eigenvalues of the Hessian associated with the index-m critical point.

To obtain an index-k saddle via a downward search when k < m, we perturb the index-

m critical point along a linear combination of the eigenvectors corresponding to the

m− k eigenvectors corresponding to the negative eigenvalues with smallest magnitude.

Noting again that we work with a vector q̃ rather than a tensor in the spatially

discretised numerical framework, the numerical search for an index-k critical point
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then follows the dynamical system [112]


β−1 ˙̃q =

(
I−

∑k
i=1 2viv

T
i

)
F [q̃],

γ−1v̇i = −
(
I− viv

T
i −

∑i−1
j=1 2vjv

T
j

)
H[q̃], i = 1, ..., k.

(2.53)

Here, β, γ > 0 are relaxation parameters and v1, ...,vk are the same eigenvectors along

which the index-m critical point is perturbed. In this thesis, we set β = γ = ∆τ , where

∆τ is the step size used in the gradient flow method in Section 2.3.4. We note that

we use F [q̃] and H[q̃] for consistency in (2.53), but these are notionally equivalent to

F [Q] in (2.39) and the associated Hessian, H[Q], respectively.
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The Sixth-Order Bulk Potential

This chapter is based on McLauchlan, Han, Langer and Majumdar (2024) [1].

We investigate biaxiality as a bulk effect on Landau–de Gennes critical points by

considering a sixth-order bulk potential in this chapter. In Section 3.2, we consider

critical points of the sixth-order bulk potential in the uniaxial and biaxial cases, and

compare with the critical points of the fourth-order bulk potential. We prove a range of

analytical results for the radial hedgehog solution with the sixth-order bulk potential

in Section 3.3, by analogy with results outlined in Section 2.1. Finally, we perform

a parallel analysis of equilibrium configurations on the sphere with the fourth- and

sixth-order bulk potentials numerically in Section 3.4.

3.1 Problem Formulation

We discuss the nondimensionalisation and rescaling of the Landau–de Gennes free en-

ergy in Section 2.2, and we recall that the dimensionless Landau–de Gennes free energy

with the sixth-order bulk potential, in the absence of surface energies and external
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fields, is given by

F [Q] =

∫
B(0,1)

ε2

2
|∇Q|2 + t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

d

5
trQ2 trQ3 +

e

6

(
trQ2

)3
+

(f − e)

6

(
trQ3

)2
dV, (3.1)

and we recall that the effects of temperature are captured by the reduced temperature,

t, which is proportional to the absolute temperature; while different droplet radii are

captured by the parameter ε2, which is inversely proportional to the droplet radius.

We again impose strong homeotropic anchoring in both the fourth- and sixth-order

bulk potential cases via the Dirichlet boundary condition [67]

Q = Qs+ := s+

(
r̂ ⊗ r̂ − 1

3
I

)
, on ∂B(0, 1), (3.2)

where r̂ is the unit vector in the radial direction. The quantity s+ is the largest

minimiser of

{
fB(Q) : Q = s

(
n⊗ n− 1

3
I

)
; n ∈ R3; |n| = 1, s ≥ 0

}
, (3.3)

where fB is the fourth- or sixth-order bulk potential. In the fourth-order case, the

dimensionless bulk potential is given by

fB(Q) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
, (3.4)

and s+ has the explicit expression

s+ =

√
3

2

3 +
√
9− 8t

4
(3.5)
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when t ≤ 9
8 . The dimensionless sixth-order bulk potential is given by

fB(Q) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

d

5
trQ2 trQ3 +

e

6

(
trQ2

)3
+

f − e

6

(
trQ3

)2
, (3.6)

and in this case, s+ is the largest positive minimiser of the function

g(s) :=
t

3
s2 − 2

√
6

9
s3 +

2

9
s4 +

4d

135
s5 +

4e

81
s6 +

2(f − e)

243
s6. (3.7)

We note that the function g is the potential (3.6), restricted to uniaxial Q-tensors.

Critical points of the Landau–de Gennes free energy then belong to the admissible

space [63]

AQ =
{
Q ∈ W 1,2(B(0, 1),S0) : Q = Qs+ on ∂B(0, 1)

}
. (3.8)

We note that this admissible space is simply a generalisation of the admissible space

(2.6), discussed in Section 2.1, and we refer the reader to this section for the definition

of the Sobolev space W 1,2(B(0, 1),S0). Furthermore, critical points of the free energy

with the sixth-order bulk potential satisfy the Euler–Lagrange equations

ε2∆Qij = tQij − 3
√
6

(
QikQkj −

1

3
δij trQ

2

)
+ 2Qij trQ

2

+
2d

5
Qij trQ

3 +
3d

5
trQ2

(
QikQkj −

1

3
δij trQ

2

)
+ eQij

(
trQ2

)2
+ (f − e) trQ3

(
QikQkj −

1

3
δij trQ

3

)
, (3.9)

where

√
6δij trQ

2, and
1

3
δij trQ

2

(
3
√
6− 3d

5
trQ2 − (f − e) trQ3

)
(3.10)
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are Langrange multipliers for the tracelessness constraint. Solutions with the fourth-

order bulk potential satisfy the above equations with d = e = f = 0, which are

the dimensionless equivalent to the Euler–Lagrange equations (2.13) in Section 2.1.

Furthermore, solutions of the Euler–Lagrange equations are analytic by analogy with

Proposition 13 in [49].

We focus on an exact solution of the Euler–Lagrange equations (3.9) in the admis-

sible space, AQ: the radial hedgehog solution, which can be written explicitly as

Q∗(r) = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
. (3.11)

As discussed in earlier chapters, the radial hedgehog solution is a purely uniaxial so-

lution with a scalar order parameter that depends only on the radial distance, r, from

the centre of the droplet. The admissible space for the scalar order parameter, s∗, is

[63]

As =
{
s ∈ W 1,2 ([0, 1],R) : s(1) = s+

}
, (3.12)

where s+ is again the largest minimiser of (3.3).

3.2 The Sixth-Order Bulk Potential

In this section, we study the critical points of the sixth-order bulk potential, (3.6). We

first consider critical points in the restricted space of uniaxial Q-tensors; and then in

the whole space S0, which includes biaxial Q-tensors.

We note two key differences in the sixth-order case in comparison to the fourth-

order case. Firstly, in the restricted class of uniaxial Q-tensors, the sixth-order bulk

potential, (3.6), has two nonzero critical points below t = 0: one with positive scalar

order parameter, s+, and the other with negative scalar order parameter, s−. The same
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is true in the fourth-order case, but the difference is that s− is the globally minimising

scalar order parameter for low temperatures in the sixth-order case, while s+ is the

global minimiser at all temperatures in the fourth-order case. Secondly, in the space

S0, the sixth-order bulk potential admits biaxial critical points, while the fourth-order

bulk potential does not, and the global minimiser of the sixth-order bulk potential is

biaxial at sufficiently low temperatures.

3.2.1 Uniaxial Critical Points of the Sixth-Order Bulk Potential

In what follows, we work in a parameter regime so that fB(Q) in (3.6), restricted to

uniaxial Q-tensors, has an isotropic critical point and two well-defined nonzero critical

points for low temperatures. We consider the quartic polynomial

g′(s)

s
=

2t

3
− 2

√
6

3
s+

8

9
s2 +

4d

27
s3 +

8e

27
s4 +

4(f − e)

81
s4, (3.13)

where the function g is defined in (3.7). We determine the roots of this quartic poly-

nomial by considering its discriminant [120].

∆ =
512

59049
(5e+ f)3 t3

+
1024

177147

(
− 512

27
(5e+ f)2 − d4 +

32

3
(5e+ f) +

32
√
6

9
d (5e+ f)2

)
t2

+
1024

6561

(
− 64

243
(5e+ f) +

32

9
(5e+ f)2

− 2

27
d2 (5e+ f)−

√
6d2 +

320
√
6

243
d (5e+ f)

)
t

+
1024

2187

(
− 64

81
(5e+ f) +

4
√
6

81
d3 +

2

3
d (5e+ f) +

8

81
d2 − (5e+ f)2

)
,

(3.14)

and the quantity

P = 16 (5e+ f)− 3d2. (3.15)
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The signs of the discriminant, ∆, and the quantity P characterise the roots of g′(s)/s.

For P > 0, a quartic polynomial has two real roots and two complex conjugate roots if

∆ < 0; two pairs of complex conjugate roots if ∆ > 0; and a real double root and two

complex conjugate roots if ∆ = 0.

We restrict the parameters d, e, and f to satisfy one of the three sets of conditions

for all values of t and ε. Figure 3.1 demonstrates that for the specific choice d = 1, e =

0, f = 1, and P > 0, there is some transition temperature t0 such that ∆ < 0 when

t < t0; ∆ = 0 when t = t0; and ∆ > 0 when t > t0. These results can be translated into

properties of the function g in (3.7). Specifically, under these conditions, the function

g will have one real critical point, s = 0, above some transition temperature t0; two

real critical points at t = t0; and three real critical points at temperatures below t0. In

particular, we note that g, plotted in Figure 3.2, is a double-welled potential at lower

temperatures t < t0 for which there is at least a positive local minimiser s = s+ of the

sixth-order polynomial g(s). In the remainder of this chapter, and in Chapter 6, we

use e = 0 and d = f = 1 as an illustrative example.

In Figure 3.2, we plot the function g for five different temperatures. One can

clearly see that the isotropic state is the global minimiser for the high temperature

t = 5; s+ > 0 is the global minimiser for the low temperature t = −25; and as the

temperature further decreases to t = −100, s = s− < 0 is the global minimiser of g.

Nonzero critical points first appear at the transition temperature t0 ≈ 0.97, where ∆

changes sign, and the minimisers s+ and s− have the same energy at the transition

temperature t∗ ≈ −48.6. This is further illustrated in Figure 3.3, where we plot the

critical points of g as a function of t, and indicate their stability. We observe that

for t < 0, there are two local minimisers of g(s): s = s+ > 0 and s = s− < 0;

and s = s− is the global minimiser of g for t < −48.6. As such, we conclude that
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Figure 3.1: The function ∆ for d = 1, e = 0, f = 1 and temperature from t = −20 to
t = 5.

the sixth-order bulk potential restricted to uniaxial Q-tensors indeed has an isotropic

critical point and two real nonzero critical points at low temperatures in the parameter

regime d = 1, e = 0, f = 1, per the requirements at the beginning of this section.

In the absence of experimentally calibrated values of the sixth-order bulk potential

parameters, we choose d = f = 1 for convenience and e = 0 to reduce computational

time for the numerical results presented later in this chapter.

3.2.2 Biaxial Critical Points of the Sixth-Order Bulk Potential

Next we consider critical points of fB in (3.6) in the full class of Landau–de Gennes

Q-tensors of the form

Q = s

(
n⊗ n− 1

3
I

)
+ p

(
m⊗m− 1

3
I

)
. (3.16)
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Figure 3.2: The function g in (3.7) with d = 1, e = 0, and f = 1 at (a) t = 5; (b)
t = t0 ≈ 0.97; (c) t = −25; (d) t = t∗ ≈ −48.6; and (e) t = −100.
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Figure 3.3: The critical points of the function g in (3.7) for decreasing temperature,
with d = 1, e = 0, and f = 1. Bold lines indicate a global minimium, thin solid
lines indicate a local minimum and dashed lines indicate instability (negative second
derivative of g).
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We substitute (3.16) into (3.6) and compute the critical points in terms of the pairs

(s, p).

There are no biaxial critical points of the fourth-order bulk potential (see Proposi-

tion 1.2). In Figure 3.4, we plot the critical points of the fourth-order bulk potential,

(3.4). The isotropic phase is the global minimiser above t = 1.125, and below this

temperature there are four critical points, two of which are global minimisers: one

minimiser has positive s and zero p (yellow solid line in Figure 3.4); and the other

minimiser has s = p < 0 (red solid line in Figure 3.4). Both minimisers correspond to

uniaxial Q-tensors and are rotations of each other. The same relationship holds for the

two unstable critical points: both correspond to a uniaxial configuration with a nega-

tive order parameter. Thus, Figure 3.4 shows that below t = 1.125, there is one stable

uniaxial critical point with positive order parameter, and one unstable critical point

with negative order parameter; there are no biaxial critical points; and the isotropic

phase loses stability for t < 0. These facts are well-known in the literature regarding

the fourth-order bulk potential.
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Figure 3.4: Critical points of the fourth-order bulk potential for the temperature range
t = 5 to t = −50. (a) Both scalar order parameters, s and p, plotted against t. (b)
Scalar order parameter s plotted against t. (c) Scalar order parameter p plotted against
t.
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We fix d = 1, e = 0, and f = 1 and plot the critical points of the sixth-order

bulk potential (3.6) in Figure 3.5. There are certain similarities to Figure 3.4: the

isotropic phase is the global minimiser at high temperatures; there are four nonzero

critical points for moderate temperatures below some transition temperature; and the

isotropic phase loses stability below t = 0. These critical points correspond to one

uniaxial global minimiser and one unstable uniaxial critical point for the same reasons

as the fourth-order case, as detailed above. The two uniaxial critical points emerge at

the approximate transition temperature t = t0 ≈ 0.97, with (s, p) = (s+, 0) being the

global minimiser (red and yellow solid lines in Figure 3.5), and (s, p) = (s−, 0) being

the unstable critical point (purple and red dashed lines), where s+ and s− are defined

above. The critical point (s+, 0) remains stable until biaxial critical points appear at

approximately t = −11.6, at which point (unlike with the fourth-order potential (3.4))

there are no stable uniaxial critical points and there is a unique global biaxial minimiser

of (3.6), corresponding to the three blue solid lines in Figure 3.5, which are rotations

of one another.
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Figure 3.5: Critical points of the sixth-order bulk potential with d = 1, e = 0, and
f = 1, for t = 5 to t = −50. (a) Scalar order parameters, s and p, plotted against t.
(b) The scalar order parameter s plotted against t. (c) The scalar order parameter p
plotted against t. Yellow, orange, red and maroon lines label uniaxial critical points;
and blue lines label biaxial critical points.

82



Chapter 3. The Sixth-Order Bulk Potential

3.3 Analysis of the Radial Hedgehog Solution

The radial hedgehog solution has been studied extensively with the fourth-order bulk

potential in the literature, and we discuss some key properties and results in Sections

1.5.2 and 2.1. In particular, for the Landau–de Gennes free energy with the fourth-order

bulk potential in (2.26), there are strong analytical results regarding the existence of

the radial hedgehog solution. It has been shown that the radial hedgehog scalar order

parameter is positive away from the origin; is monotonic and bounded above and below;

and there is a unique radial hedgehog solution for t < 0 [63], [64]. Furthermore, it is

known that the radial hedgehog solution is stable for sufficiently small droplets, and

is unstable for large droplets and for low temperatures [63], [68], [70], [71]. In this

section, we study the radial hedgehog solution with the sixth-order bulk potential (3.6)

to understand how the choice of bulk potential affects the radial hedgehog solution,

and the impact of the more general nature of the sixth-order bulk potential. We note

that we make the reasonable assumption that the function g, which is equivalent to the

sixth-order bulk potential, (3.6), restricted to uniaxial Q-tensors, is a double-welled

potential below some transition temperature t0 at points in this section.

First, we prove a general existence result for the Landau–de Gennes free energy with

the sixth-order bulk potential, which is a direct extension of Proposition 2.1 in Chapter

2. We provide an outline of the proof, which is analogous to that of Proposition 2.1.

Proposition 3.1. There exists a global minimiser, Q∗, of F in (3.1) in the admissible

space, AQ, in (3.8).

Proof. The admissible space, AQ, is nonempty, since Qs+ ∈ AQ, where Qs+ is defined

in (3.2).

Furthermore, the free energy (3.1) is weakly lower-semicontinuous since the elastic
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energy density is convex in ∇Q.

Finally, since the bulk energy density, fB in (3.6), is a polynomial in |Q| and

bounded from below, the free energy (3.1) is coercive.

Therefore, there must exist a global minimiser of (3.1) in the admissible space,

AQ.

Our next result concerns the existence of the radial hedgehog solution and is anal-

ogous to Proposition 2.1 in [63]. We omit the proof as it is similar to that in [63].

Proposition 3.2. (a) Consider the energy functional

I[s] =

∫ 1

0

(
ε

(
1

2

(
ds

dr

)2

+
2

r2
s2

)
+

t

3
s2 − 2

√
6

9
s3 +

2

9
s4

+
4d

135
s5 +

4e

81
s6 +

2(f − e)

243
s6

)
r2 dr, (3.17)

defined for functions s ∈ As for I. There exists a global minimiser s∗ ∈ As for I.

The function s∗ is a solution of the ordinary differential equation

ε2
(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= ts−

√
6s2 +

4

3
s3 +

2d

9
s4 +

4e

9
s5 +

2(f − e)

27
s5, (3.18)

subject to the boundary conditions

s(0) = 0, s(1) = s+. (3.19)

The global minimiser s∗ is analytic for all r ≥ 0.

(b) The radial hedgehog solution is defined in (3.11), where s∗ is a global minimiser

of I in the admissible space As in (3.12), and is a critical point of the Landau–de

Gennes energy functional (3.1) for all ε, t, d, e, and f .

84



Chapter 3. The Sixth-Order Bulk Potential

(c) The function s∗ satisfies s∗′(0) = 0.

Next, we derive a maximum principle which yields upper bounds for s∗ in (3.11).

Proposition 3.3. A global minimiser, Q∗, of the Landau–de Gennes free energy (3.1),

in the class of uniaxial Q-tensors, in the admissible space, AQ in (3.8), satisfies the

upper bound |Q∗|2 ≤ 2
3 max

{
s2+, s

2
−
}
on B(0, 1), where s+ and s− are the two nonzero

critical points of (3.7).

Proof. We consider two subsets:

Ω+ = {r ∈ B(0, 1) : s(r) ≥ 0} , and Ω− = {r ∈ B(0, 1) : s(r) < 0} . (3.20)

Suppose that the subset

Ω̃ =

{
r ∈ B(0, 1) : |Q∗(r)|2 > 2

3
max

{
s2+, s

2
−
}}

, (3.21)

where Ω̃ ⊂ B(0, 1) \∂B(0, 1) ⊂ Ω+∪Ω−, is nonempty. The subset Ω̃ does not intersect

∂B(0, 1) since max
{
s2+, s

2
−
}

≥ s2+. Moreover, we assume that the function |Q∗| :

B(0, 1) → R attains a strict maximum at an interior point r∗ ∈ Ω̃.

We multiply the Euler–Lagrange equations in (3.9) by Q∗
ij to find that

ε2
(
1

2
∆|Q∗|2 − |∇Q∗|2

)
= t|Q∗|2 − 3

√
6 trQ∗3 + 2|Q∗|4

+ d|Q∗|2 trQ∗3 + e|Q∗|6 + (f − e)

6

(
trQ∗3)2, (3.22)

since |∇Q∗|2 + Q∗
ij∆Q∗

ij = 1
2∆|Q∗|2. We note that 1

2∆|Q∗(r∗)|2 − |∇Q∗(r∗)|2 ≤ 0 at

the interior maximum.
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Let us label

h(Q) := t|Q|2 − 3
√
6 trQ3 + 2|Q|4 + d|Q|2 trQ3 + e|Q|6 + (f − e)

6

(
trQ3

)2
. (3.23)

The aim is to show that h is positive at Q∗(r∗) for a contradiction. First, consider the

case where r∗ ∈ Ω+. Then we may write

h (Q∗(r∗)) = t|Q∗(r∗)|2 − 3|Q∗(r∗)|3 + 2|Q∗(r∗)|4

+
d√
6
|Q∗(r∗)|5 + e|Q∗(r∗)|6 + (f − e)

6
|Q∗(r∗)|6 (3.24)

since trQ∗3 = 1√
6
|Q∗|3, because Q∗ is uniaxial and r∗ ∈ Ω+. Note that

h(Q) =

√
3

2
|Q|g′

(√
3

2
|Q|

)
, and

√
3

2
|Q| = |s|, (3.25)

for an arbitrary uniaxial Q-tensor of the form

Qs = s

(
n⊗ n− 1

3
I

)
. (3.26)

Therefore, the sign of h(Q) is dictated by the sign of g′
(
|s|
)
, where g is defined in (3.7).

Let us write |Q∗(r)| =
√

2
3 |s

∗(r)|. We have noted in Section 3.2.1 that we are

working in a parameter regime such that the function g is a double-welled potential with

g′(s−) = g′(s+) = 0 below some transition temperature t0. Moreover, we choose e and

f so that g(s) → +∞ as |s| → +∞, and since |s∗(r∗)| > max {s+, |s−|}, then we may

conclude that g′(|s∗(r∗)|) > 0 at the interior maximum r∗ ∈ Ω̃. Hence h(Q∗(r∗)) > 0,

and there cannot be a strict interior maximum at r∗ ∈ Ω+.
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Now consider the case where r∗ ∈ Ω−. We may write

h(Q∗(r∗)) = t|Q∗(r∗)|2 + 3|Q∗(r∗)|3 + 2|Q∗(r∗)|4

− d√
6
|Q∗(r∗)|5 + e|Q∗(r∗)|6 + (f − e)

6
|Q∗(r∗)|6, (3.27)

since trQ∗3 = − 1√
6
|Q∗|3, because Q∗ is uniaxial and r∗ ∈ Ω−, and we note that

h(Q) = −
√

3
2 |Q|g′

(
−
√

3
2 |Q|

)
. Therefore, the sign of h(Q) is dictated by the sign of

−g′(−|s|). Then, since g is a double-welled potential with g′(s−) = g′(s+) = 0 such

that g(s) → +∞ as |s| → +∞, and |s∗(r∗)| > max {s+, |s−|}, then we may conclude

that −g′(−|s∗(r∗)|) > 0 at the interior maximum r∗ ∈ Ω̃. Hence h(Q∗(r∗)) > 0, and

there cannot be a strict interior maximum at r∗ ∈ Ω−.

Thus, we combine the above two cases to find that the set Ω̃ must be empty and the

global minimiser Q∗ in the class of uniaxial Q-tensors must satisfy the upper bound

|Q∗|2 ≤ 2

3
max

{
s2+, s

2
−
}
. (3.28)

In the next proposition, we assume that 16(5e + f) > 3d2 and work within a

temperature regime for which the potential (3.6) has a uniaxial global minimiser with

positive order parameter s+, consistent with the imposed Dirichlet condition in (3.2). In

this case, we can prove that s∗ is bounded, positive, monotonic and unique, analogous

to the results for (2.26). The differences emerge at low temperatures, for which (3.6)

has a biaxial global minimiser and no stable uniaxial critical points. At the end of this

section, we show numerically that s∗ can be negative and non-monotonic deep in the

nematic phase. Recall that s+ is the largest positive minimiser of the function g in
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(3.7). Since g(s) → +∞ as s → +∞, then g′(s) > 0 for s > s+. Furthermore, the value

s+ is in fact the largest positive root of g′(s)/s in (3.13), and increases in magnitude as

the magnitude of t increases when t is negative. Therefore, s+ increases as |t| increases

for t < 0 and bounds on s+ can be translated into bounds for t.

Proposition 3.4. Let s∗ be the global minimiser of I in (3.17) in the moderately low

temperature regime for which (3.6) has a global uniaxial minimiser, characterised by

t < 0,

s2+ − 15
√
6

2d
< 0, (3.29)

with d > 0, and s+ ≥ s−. It holds that s∗ is nonnegative for r ≥ 0 and positive for

r > 0; unique; and monotonic increasing for r ≥ 0.

The proof of Proposition 3.4 follows from analogous arguments used for the fourth-

order bulk potential in [64], precisely because the sixth-order bulk potential in (3.6) has

a uniaxial global minimiser in the temperature range specified by (3.29). However, these

arguments do not apply when the minimiser of (3.6) is biaxial at lower temperatures.

Proof. We prove nonnegativity via a contradiction argument with the assumption that

there exists an interior measurable subset

Γ = {r ∈ (0, 1) : s∗(r) < 0} ⊂ [0, 1], (3.30)

with s∗(r) = 0 on ∂Γ. We define the perturbation

s̄∗ =


s∗(r), r ∈ [0, 1] \ Γ,

−s∗(r), r ∈ Γ.

(3.31)
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Then

I [s̄∗]− I [s∗] =

∫
Γ

(
4
√
6

9
s∗3 − 8d

135
s∗5

)
r2 dr < 0, (3.32)

where I is defined in (3.17), if s∗2 < 15
√
6

2d for d > 0 since s∗(r) < 0 on Γ by assumption.

Also, since s∗2 ≤ s2+ by Proposition 3.3, we can guarantee that I [s̄∗] − I [s∗] < 0 if

s2+ < 15
√
6

2d . However, this contradicts the energy minimality of s∗. It follows that

s∗(r) ≥ 0 for r ∈ [0, 1] if s2+ < 15
√
6

2d .

To show that s∗(r) > 0 for r > 0, assume for a contradiction that there exists some

r0 ∈ (0, 1] such that s∗(r0) = 0. Since we have already shown that s∗(r) ≥ 0 on [0, 1],

the function s∗ must therefore have a minimum at r0. Then

ds∗

dr

∣∣∣∣
r=r0

= 0 and
d2s∗

dr2

∣∣∣∣
r=r0

≥ 0. (3.33)

However, if we substitute s∗(r0) into (3.18), we find that d2s∗

dr2

∣∣∣
r=r0

= 0. We can

differentiate (3.18) and repeat this process to find that, in fact, dns∗

drn

∣∣∣
r=r0

= 0 for all

n ∈ N. However, this cannot be true because we know from Proposition 3.2 that s∗ is

analytic and we have the boundary condition s∗(1) = s+. Therefore, we have reached

a contradiction, so s∗(r) > 0 in (0, 1].

We prove uniqueness via a contradiction argument, relying on a Pohozaev identity

ε2

(
1

2

∫
B(0,1)

Qij,ℓQij,ℓ dV

+

∫
∂B(0,1)

Qij,kxkQij,ℓxℓ dS − 1

2

∫
∂B(0,1)

Qij,ℓQij,ℓ dS

)

=

∫
∂B(0,1)

fB(Q) dS − 3

∫
B(0,1)

fB(Q) dV, (3.34)

which is obtained from the Euler–Lagrange equations (3.9) as is done in [49].
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We rewrite (3.34) as

F [Q] + 2

∫
B(0,1)

fB(Q) dV

=

∫
∂B(0,1)

fB(Q) dS +
1

2

∫
∂B(0,1)

Qij,ℓQij,ℓ dS −
∫
∂B(0,1)

(Qij,kxk)
2 dS. (3.35)

Suppose for a contradiction that there exist s1, s2 ∈ As, s1 ̸= s2, satisfying

I[s1] = I[s2] = min
As

I. (3.36)

We apply (3.35) to Qs1 and Qs2 , simplify the resulting equations to obtain two equa-

tions involving s1 and s2, and subtract the second from the first to obtain the relation

6

∫ 1

0
r2 (g(s1)− g(s2)) dr =

(
s′2(1)

)2 − (s′1(1))2 , (3.37)

recalling that s1(1) = s2(1) = s+.

The two functions, s1 and s2, are distinct solutions of the Euler–Lagrange equation

(3.18) corresponding to the minimisation of I. Hence Lemma 2 in [64] ensures they

cannot coincide on a neighbourhood of zero.

Suppose, without loss of generality, that s1 < s2 on (0, ε). To show that we must in

fact have s1 < s2 on (0, 1), suppose for a contradiction that there exists an r0 ∈ (0, 1)

such that s1(r0) = s2(r0). We define the function s̃ by

s̃(r) =


s2(r), r ∈ (0, r0],

s1(r), r ∈ (r0, 1),

(3.38)

and we show that s̃ is a minimiser of I. Denoting by h[s] the energy density (I[s] =
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∫ 1
0 h[s] dr), and setting

s̄(r) =


s1(r), r ∈ (0, r0],

s2(r), r ∈ (r0, 1),

(3.39)

we find that

I[s2] ≤ I[s̄] =

∫ r0

0
h[s1] dr +

∫ 1

r0

h[s2] dr, (3.40)

since s2 is a minimiser and s̄ lies in the admissible space. Therefore, it holds that

∫ r0

0
h[s2] dr ≤

∫ r0

0
h[s1] dr, (3.41)

since

I[s2] =

∫ r0

0
h[s2] dr +

∫ 1

r0

h[s2] dr ≤
∫ r0

0
h[s1] dr +

∫ 1

r0

h[s2] dr. (3.42)

Adding
∫ 1
r0
h[s1] dr to both sides of the inequality (3.41) yields I[s̃] ≤ I[s1], so we

may conclude that s̃ is a minimiser. Since s̃ is a minimiser, it must be analytic by

Proposition 3.2. Therefore, at r0, all of its right derivatives are equal to those of s1.

This tells us that s̃ = s1 on a neighbourhood of r0, which implies that s1 = s2. This

contradicts the assumption that s1 < s2 on (0, ε). Therefore, we find that s1 < s2 on

(0, 1). This implies, together with s1(1) = s2(1), that

s′1(1) ≥ s′2(1), (3.43)

so the right-hand side of (3.37) is nonpositive.

On the other hand, we prove that g is decreasing on [0, s+]. Let us consider the

derivative of g, given by

g′(s) =
2t

3
s− 2

√
6

3
s2 +

8

9
s3 +

4d

27
s4 +

8e

27
s5 +

4(f − e)

81
s5. (3.44)
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By Descartes’ rule of signs, which states that the number of positive roots of a

polynomial is at most equal to the number of sign changes in the sequence of the

coefficients, excluding zero coefficients, and that the difference between the number of

roots and the number of sign changes is always even, we conclude that g′ has at most

one positive root, s+, since t < 0. Furthermore, s = 0 is a local maximum when t < 0,

hence the function g must be decreasing on [0, s+]. Then since s1 < s2, we find that

∫ 1

0
r2 (g(s1)− g(s2)) dr > 0. (3.45)

Therefore, the left-hand side of (3.37) is positive, and we have reached our contradiction.

Hence, the global minimiser of I in (3.17) must be unique in this temperature regime.

We prove monotonicity using an argument analogous to Proposition 3 in [64].

The next result shows that the radial hedgehog solution is the sole Landau–de

Gennes critical point for droplets of sufficiently small radius with the sixth-order bulk

potential, and is therefore globally stable in this regime. This follows from the local

convexity of the Landau–de Gennes free energy with polynomial bulk potentials for

small domains.

Proposition 3.5. For ε sufficiently large, the radial hedgehog solution, Q∗ in (3.11),

is the unique critical point, and hence, is the global minimiser of the Landau–de Gennes

free energy (3.1).

Proof. First, we show that a critical point, Q∗, of F in the admissible space (3.8)

satisfies the upper bound

|Q∗| ≤ max
{
M(d, e, f), |Qs+ |

}
=: M ′ (3.46)
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on B(0, 1), where M is a constant depending only on t, d, e, and f .

We assume that the function |Q∗| : B(0, 1) → R attains its maximum at the interior

point r∗ ∈ B(0, 1). Recall that Q∗ is a solution of the Euler–Lagrange equations (3.9).

We multiply both sides of (3.9) by Qij to find

ε2

2
∆|Q∗|2 = t|Q∗|2 − 3

√
6 trQ∗3 + 2|Q∗|4

+ d|Q∗|2 trQ∗3 + e|Q∗|6 + (f − e)

6

(
trQ∗3)2 (3.47)

at r∗, since |∇Q∗|+Q∗
ij∆Q∗

ij =
1
2∆|Q∗|2, and |∇Q∗| = 0 at r∗. Note that ∆|Q∗|2 ≤ 0

at r∗ ∈ B(0, 1) by assumption. Define

h(Q) = t|Q|2 − 3
√
6 trQ3 + 2|Q|4 + d|Q|2 trQ3 + e|Q|6 + (f − e)

6

(
trQ3

)2
. (3.48)

Recalling that − 1√
6
|Q|3 ≤ trQ3 ≤ 1√

6
|Q|3, by Lemma 1 in [56]. Consider the polyno-

mial

H|Q| := min{f − e, 0}
36

|Q|6 + e|Q|6 − d√
6
|Q|5 + 2|Q|4 − 3|Q|3 + t|Q|2. (3.49)

The function H(|Q|) has n ≤ 6 real roots, {|Qi|}ni=1, with |Q1| ≤ ... ≤ |Qn|, and

H is positive for |Q| > |Qn| since e > 0. If |Q∗(r∗)| > |Qn|, then ∆|Q∗|2 > 0 at

r∗, which is a contradiction. We set M(t, d, e, f) := |Qn|, so we may conclude that

|Q∗| ≤ max
{
M(t, d, e, f), |Qs+ |

}
on B(0, 1).

Next, we demonstrate the local convexity of the Landau–de Gennes free energy,

(3.1), for sufficiently large ε, closely following arguments in [64]. Let

X = {Q ∈ W 1,2(B(0, 1), S̄) : Q = Qs+ on ∂B(0, 1); |Q| ≤ M ′}. (3.50)
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Then for Qu,Qv ∈ X,

F
[
1

2
(Qu +Qv)

]
=

∫
B(0,1)

(
ε2

8
|∇Qu +∇Qv|2 + fB

(
1

2
(Qu +Qv)

))
dV

=
1

2
F [Qu] +

1

2
F [Qv]−

ε2

8
||∇(Qu −Qv)||2L2

+

∫
B(0,1)

(
fB

(
1

2
(Qu +Qv)

)
− 1

2
fB(Qu)−

1

2
fB(Qv)

)
dV,

(3.51)

where we have used the fact that |∇Qu+∇Qv|2 = 2|∇Qu|2+2|∇Qv|2−|∇Qu−∇Qv|2.

By the Poincaré inequality, we have that

− 1

8
||∇(Qu −Qv)||2L2 ≤ −c1||Qu −Qv||2L2 , (3.52)

for some positive constant, c1. Therefore,

F
[
1

2
(Qu +Qv)

]
≤ 1

2
F [Qu] +

1

2
F [Qv]− c1ε

2||Qu −Qv||2L2

+

∫
B(0,1)

(
fB

(
1

2
(Qu +Qv)

)
− 1

2
fB(Qu)−

1

2
fB(Qv)

)
dV. (3.53)

Furthermore, we note that

fB

(
x+ y

2

)
− 1

2
fB(x)−

1

2
fB(y) ≤ ||fB||W 2,∞({z∈S̄:|z|≤M ′})|x− y|2, (3.54)

for x, y satisfying |x|, |y| ≤ M ′ [64]. Hence, for some c2 := c2(M
′, fB(t, d, e, f)) > 0, we

may write

F
[
1

2
(Qu +Qv)

]
≤ 1

2
F [Qu] +

1

2
F [Qv] +

(
−c1ε

2 + c2
)
||Qu −Qv||2L2 . (3.55)
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Then, if ε2 > c2
c1
, we find that

F
[
1

2
(Qu +Qv)

]
<

1

2
F [Qu] +

1

2
F [Qv], (3.56)

∀Qu,Qv ∈ X,Qu ̸= Qv. Thus, F is strictly convex on X.

Let us assume for the remainder of the proof that we are working with ε large

enough to guarantee strict convexity of F in (3.1). To show that a critical point of F

is unique, let us assume that there exist two distinct solutions, Q1 and Q2, of (3.9) in

X, as is done in the proof of Lemma 8.3 in [121]. Then, for v ∈ [0, 1], the derivative

of F [vQ1 + (1 − v)Q2] vanishes at v = 0 and v = 1. However, the strict convexity of

F implies that F can have only one critical point. Therefore, Q1 and Q2 cannot both

be solutions of the Euler–Lagrange equations (3.9), so a critical point of F must be

unique.

Finally, Proposition 3.2 guarantees the existence of a radial hedgehog solution for

any ε, and we are also guaranteed the existence of a global Landau–de Gennes energy

minimiser of (3.1) for all ε by Proposition 3.1, so the radial hedgehog configuration, Q∗

in (3.11), is the unique critical point, and consequently, the unique global minimiser of

the Landau–de Gennes free energy (3.1) when ε is sufficiently large.

Next, we demonstrate that the radial hedgehog solution is not globally minimising

for the Landau–de Gennes free energy (3.1) in the low temperature regime by con-

structing a biaxial perturbation with lower energy, following arguments in Proposition

3.3 in [63].

Proposition 3.6. The radial hedgehog solution, Q∗ in (3.11), is not the global min-

imiser of the Landau–de Gennes free energy (3.1) in the admissible space, AQ, when
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t < 0 and |t| is sufficiently large. In particular, the biaxial state,

Q̂(r) =


Q∗(r) +

1− 10r

(r2 + 12)2

(
z ⊗ z − 1

3
I

)
, 0 ≤ r ≤ 0.1,

Q∗(r), 0.1 ≤ r ≤ 1,

(3.57)

where z is the unit vector in the z-direction, has lower Landau–de Gennes free energy

than Q∗.

Proof. We consider a general biaxial perturbation

Q̂(r) =


Q∗(r) + p̃(r)

(
z ⊗ z − 1

3
I

)
, 0 ≤ r < 0.1,

Q∗(r), 0.1 ≤ r ≤ 1,

(3.58)

where p̃ : [0, 1] → R is nonzero for 0 ≤ r < 0.1, and p̃(r) = 0 for 0.1 ≤ r ≤ 1, and Q∗ is

the radial hedgehog solution. We find that

1

4π

(
F [Q̂]−F [Q∗]

)
≤
∫ 0.1

0

ε2

3

(
dp̃

dr

)2

+
t

3
p̃2 − 2

√
6

9
p̃3 +

28

45
s∗2p̃2 +

2

9
p̃4

+
d

5

(
4

27
s∗3p̃2 +

52

135
s∗2p̃3 +

4

27
p̃5
)

+
e

6

(
8

5
s4+p̃

2 +
128

945
s∗3p̃3 +

8

5
s∗2p̃4 +

16

9
s∗p̃5 +

8

27
p̃6
)

+
(f − e)

6

(
4

45
s4+p̃

2 +
112

405
s∗3p̃3 +

4

45
s∗2p̃4 +

4

81
p̃6
)
r2 dr.

(3.59)

For large negative t, we can approximate s+ by

s+ ≈
(

−27t

2(f + 5e)

)1/4

, (3.60)

96



Chapter 3. The Sixth-Order Bulk Potential

by rearranging

3

2

g′(s)

s
= t−

√
6s+

4

3
s2 +

2d

9
s3 +

4e

9
s4 +

2(f − e)

27
s4 = 0, (3.61)

where g is defined in (3.7), to

s4 =
27

2(f + 5e)

(
−t+

√
6s− 4

3
s2 − 2d

9
s3
)

(3.62)

and neglecting terms independent of t for large negative t. Suppose we are working

with large negative t. Then substituting

p̃(r) =
1− 10r

(r2 + 12)2
(3.63)

into the above, we find that 1
4π

(
F [Q̂]−F [Q∗]

)
< 0 if

t ≲
500ε2(77184e+ 16437f)

428440e− 32975f
. (3.64)

Therefore we may conclude that the biaxial perturbation, (3.57), with p̃(r) as in (3.63)

has lower free energy than the radial hedgehog solution in the low temperature regime.

The above results make evident many parallels between the radial hedgehog solution

with the fourth-order bulk potential in the literature and the radial hedgehog solution

with the sixth-order bulk potential for moderately low temperatures. Key differences

are that we do not have an explicit expression for s+ with the sixth-order bulk potential,

(3.6); and that there exist parameter regimes where the radial hedgehog scalar order

parameter, s∗, might not be unique and monotonic, and may take negative values for
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r ∈ (0, 1).

We demonstrate numerically that the radial hedgehog scalar order parameter can

take negative values deep in the nematic phase, and that a profile with negative values

has lower energy than a nonnegative profile in this scenario. We work in a parameter

regime for which g(s) in (3.7) has two minimisers: a positive local minimiser, s+, and a

negative global minimiser, s−. We set d = 1, e = 0, and f = 1 and compute solutions

of the ODE (3.18) for t = −100 in a large droplet specified by ε = 0.1. From the

initial guess s(r) = 0, r ∈ [0, 1], we obtain the positive profile in Figure 3.6a. The

negative profile in Figure 3.6b is obtained from the initial guess s(r) = 0.5s−, where

s− is the negative minimiser of (3.7) at t = −100. We verify numerically that the

profile in Figure 3.6b has lower energy than the nonnegative profile in Figure 3.6a by

computing the value of the free energy for each profile. This is a significant departure

from the nature of the radial hedgehog scalar order parameter with the fourth-order

bulk potential, which is required to be nonnegative and monotonic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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(b)

Figure 3.6: Radial hedgehog scalar order parameter profiles which solve the ODE (3.18)
from the initial guess (a) s(r) = 0, r ∈ [0, 1], and (b) s(r) = 0.5s−, r ∈ [0, 1].
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3.4 Numerical Results

The critical points of the Landau–de Gennes free energy with the fourth-order bulk

potential have been well-studied to date in the likes of [51], [67], among other works.

As discussed in Section 1.5.3, it is well-known that there exist at least two critical points

in addition to the radial hedgehog solution for large droplets and at low temperatures:

the biaxial torus and split core solutions. Both of these configurations have small biaxial

regions near the droplet centre and possess rotational symmetry and mirror symmetry

across the plane perpendicular to the axis of rotational symmetry.

In this section, we address whether the split core and biaxial torus solutions sur-

vive as critical points of the Landau–de Gennes free energy with the sixth-order bulk

potential. If they are present as critical points, this implies that their existence is a con-

sequence of the symmetries of the problem, and is less influenced by the specific form

of the bulk potential. In Section 3.4.1, we compute critical points of the Landau–de

Gennes free energy with the sixth-order bulk potential. We consider the stability of the

radial hedgehog solution in this framework in Section 3.4.2 by computing the Morse

index of the radial hedgehog solution across a range of temperatures and droplet radii

with both the fourth- and sixth-order bulk potentials. In Section 3.4.3, we demonstrate

that an unstable radial hedgehog solution may act as a transition state between two

equilibrium configurations via a gradient flow method. Finally, in Section 3.4.4, we vi-

sualise the solution landscape in both the fourth- and sixth-order bulk potential cases

by computing bifurcation diagrams as a function of temperature.

3.4.1 Critical Points of the Landau–de Gennes Free Energy

Following work in [67], we numerically compute critical points of the Landau–de Gennes

free energy in (3.1) with rotational symmetry about the z-axis and mirror symmetry
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across the xy-plane. We have outlined the symmetry assumptions, boundary condi-

tions, and numerical methods in the fourth-order case in Sections 2.3.1 and 2.3.2. The

symmetry assumptions and boundary conditions in the sixth-order bulk potential case

are the same, with the key difference being that the Landau–de Gennes free energy is

rewritten as

F [Q] =

∫
B(0,1)

(
ε2

2

(
q21,r + q22,r + q23,r + q21,z + q22,z + q23,z +

1

r2
(
4q22 + q23

))
+

t

2

(
q21 + q22 + q23

)
− q31 + 3q1q

2
2 −

3

2
q1q

2
3 −

3
√
3

2
q2q

2
3

+
1

2

(
q41 + q42 + q43 + 2q21q

2
2 + 2q21q

2
3 + 2q22q

2
3

)
+

d

5

(√
6

6
q51 −

√
6

3
q31q

2
2 +

5
√
6

12
q31q

2
3 −

√
6

2
q1q

4
2 −

√
6

4
q1q

2
2q

2
3

+

√
6

4
q1q

4
3 +

3
√
2

4
q21q2q

2
3 +

3
√
2

4
q32q

2
3 +

3
√
2

4
q2q

4
3

)
+

e

6

(
q61 + q62 + q63 + 3q41q

2
2 + 3q41q

2
3 + 3q21q

4
2

+ 3q21q
4
3 + 3q42q

2
3 + 3q22q

4
3 + 6q21q

2
2q

2
3

)
+

(f − e)

6

(
1

6
q61 − q41q

2
2 +

1

2
q41q

2
3 +

√
3

2
q31q2q

2
3

+
3

2
q21q

4
2 −

3

2
q21q

2
2q

2
3 −

3
√
3

2
q1q

3
2q

2
3

+
3

8
q21q

4
3 +

3
√
3

4
q1q2q

4
3 +

9

8
q22q

4
3

))
dV.

(3.65)

with the associated weak formulations in this case given by
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F1 =

∫
B(0,1)

ε2∇q1 · ∇v1

+ v1

(
tq1 − 3q21 + 3q22 −

3

2
q23 + 2q31 + 2q1q

2
2 + 2q1q

2
3

+
d

5

(
5
√
6

6
q41 −

√
6q21q

2
2 +

5
√
6

5
q21q

2
3

−
√
6

2
q42 −

√
6

4
q22q

2
3 +

√
6

4
q43 +

3
√
2

2
q1q2q

2
3

)
+ e

(
q51 + 2q31q

2
2 + 2q31q

2
3 + q1q

4
2 + q1q

4
3 + 2q1q

2
2q

2
3

)
+

(f − e)

6

(
q51 − 4q31q

2
2 + 2q31q

2
3 +

3
√
3

2
q21q2q

2
3 + 3q1q

4
2

− 3q1q
2
2q

2
3 −

3
√
3

2
q32q

2
3 +

3

4
q1q

4
3 +

3
√
3

4
q2q

4
3

))
dV,

F2 =

∫
B(0,1)

ε2∇q2 · ∇v2

+ v2

(
4

r2
ε2q2 + tq2 + 6q1q2 −

3
√
3

2
q23 + 2q21q2 + 2q32 + 2q2q

2
3

+
d

5

(
− 2

√
6

3
q31q2 − 2

√
6q1q

3
2 −

√
6

2
q1q2q

2
3

+
3
√
2

4
q21q

2
3 +

9
√
2

4
q22q

2
3 +

3
√
2

4
q43

)
+ e

(
q52 + q41q2 + 2q21q

3
2 + 2q32q

2
3 + q2q

4
3 + 2q21q2q

2
3

)
+

(f − e)

6

(
− 2q41q2 +

√
3

2
q31q

2
3 + 6q21q

3
2 − 3q21q2q

2
3

− 9
√
3

2
q1q

2
2q

2
3 +

3
√
3

4
q1q

4
3 +

9

4
q2q

4
3

))
dV,
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F3 =

∫
B(0,1)

ε2∇q3 · ∇v3

+ v3

(
1

r2
ε2q3 + tq3 − 3q1q3 − 3

√
3q2q3 + 2q21q3 + 2q22q3 + 2q33

+
d

5

(
5
√
6

6
q31q3 −

√
6

2
q1q

2
2q3 +

√
6q1q

3
3

+
3
√
2

2
q21q2q3 +

3
√
2

2
q32q3 + 3

√
2q2q

3
3

)
+ e

(
q53 + q41q3 + 2q21q

3
3 + q42q3 + 2q22q

3
3 + 2q21q

2
2q3
)

+
(f − e)

6

(
q41q3 +

√
3q31q2q3 − 3q21q

2
2q3

− 3
√
3q1q

3
2q3 +

3

2
q21q

3
3 + 3

√
3q1q2q

3
3 +

9

2
q22q

3
3

))
dV,

(3.66)

where v1, v2, v3 are test functions.

The boundary conditions on the edge of the droplet in the sixth-order case are also

given by

q1 =

√
6

6

(
2− 3r2

)
s+, q2 =

√
2

2
r2s+, q3 =

√
2rzs+ on r2 + z2 = 1, (3.67)

with s+ being the largest positive minimiser of the function g in (3.7).

We numerically compute critical points of the Landau–de Gennes free energy with

the fourth- and sixth-order bulk potentials by solving the weak formulations (2.44) and

(3.66), respectively. We plot the biaxiality parameter,

β = 1− 6

(
trQ3

)2(
trQ2

)3 , (3.68)

of the numerically computed critical points, and we recall that we first discuss the

notion of the biaxiality parameter in 1.3.3. We also plot the leading eigenvector of the

Q-tensor in the examples below, which is the eigenvector associated with the largest
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positive eigenvalue of Q, giving an indication of the preferred direction of the nematic

liquid crystal molecules. In addition, we consider the sign of the scalar order parameter

at the origin, which is another good indicator of which configuration we have obtained.

As discussed in Section 2.3.2, this is equivalent to considering the sign of q1 at the

origin. The radial hedgehog solution has q1(0, 0) = 0, while the split core and biaxial

torus solutions have q1(0, 0) < 0 and q1(0, 0) > 0, respectively.

In Figures 3.7a-3.7c, we plot the biaxiality parameter, β, and the leading eigenvector

of the radial hedgehog, split core, and biaxial torus configurations obtained with the

fourth-order bulk potential. We plot the radial hedgehog configuration in Figure 3.7a

with t = 0 and ε = 1. The radial hedgehog solution has β = 0 everywhere, with

an isotropic point at r = 0, meaning q1 = 0 at (r, z) = (0, 0), while the leading

eigenvector is the radial unit vector. We plot the split core and biaxial torus solutions

for t = −10, ε = 0.5 in Figures 3.7b and 3.7c, respectively. We observe the signature

regions of biaxiality associated with the split core and biaxial torus solutions, indicated

by the red regions. Moreover, we find that q1(0, 0) < 0 for the split core and q1(0, 0) > 0

for the biaxial torus. We compute the Morse index, which is defined in Section 2.3.3,

of each configuration in Figures 3.7a-3.7c, and find that each is at least a locally stable

critical point of the Landau–de Gennes free energy with the fourth-order bulk potential,

(2.26), for the specified values of t and ε. Local stability of a Landau–de Gennes critical

point implies that it is potentially observable in experiments and applications.

We repeat the same numerical investigation with the Landau–de Gennes free energy

with the sixth-order bulk potential. The behaviour and trends are expected to be

similar to those observed with the fourth-order bulk potential, at least for moderately

low temperatures, as suggested by the analysis in Section 3.3. In Figures 3.7d-3.7f,

we plot the biaxiality parameter and leading eigenvector of critical points of (3.65)
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Biaxiality parameter, β, and leading eigenvector of (a)-(c) Landau–de
Gennes critical points of (2.39); and (d)-(f) Landau–de Gennes critical points of (3.65)
with d = 1, e = 0, and f = 1. (a), (d) Radial hedgehog solution with t = 0, ε = 1.
(b), (e) Split core solution with t = −10, ε = 0.5. (c), (f) Biaxial torus solution with
t = −10, ε = 0.5. We plot r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on the vertical
axis.

with d = 1, e = 0, and f = 1. We plot the radial hedgehog solution at t = 0 and

ε = 1 in Figure 3.7d, and the split core and biaxial torus solutions at t = −10 and

ε = 0.5 in Figures 3.7e and 3.7f, respectively. We verify numerically that q1(0, 0) = 0

for the radial hedgehog solution, while q1 is negative at the origin for the split core

solution and positive at the origin for the biaxial torus solution, although we do not

quote the figures here. Comparing Figures 3.7e and 3.7f obtained with a sixth-order

bulk potential with Figures 3.7b and 3.7c, respectively, which are obtained with the

fourth-order bulk potential at the same values of t and ε, we observe that the regions

of biaxiality of the split core and biaxial torus solutions are larger with the sixth-

order bulk potential, which suggests that bulk biaxiality is more favourable under the
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sixth-order bulk potential in comparison to the fourth-order bulk potential. We again

compute the Morse index of each critical point in Figures 3.7d-3.7f, and find that each

is also at least a locally stable critical point of the Landau–de Gennes free energy with

the sixth-order bulk potential.

3.4.2 The Morse Index of the Radial Hedgehog Solution

We characterise the stability of the Landau–de Gennes critical points using the Morse

index, which we introduced in Section 2.3.3. We recall that an index-0 critical point is

at least locally stable, while all index-k critical points, with k > 0, are unstable. We

numerically compute the Morse index of the radial hedgehog solution across a range

of temperatures and droplet radii (recalling that ε is inversely proportional to droplet

radius), to study the effects of temperature and droplet size on the stability of the

radial hedgehog solution. We note that our study is limited to the class of Q-tensors

with three degrees of freedom, as discussed in Section 2.3.1.

As outlined in Section 2.3.3, we solve for the particular form of the Q-tensor with

q1 =

√
6

6

(
2− 3r2

r2 + z2

)
s∗, q2 =

√
2r2

2(r2 + z2)
s∗, q3 =

√
2rz

r2 + z2
s∗, (3.69)

where s∗ is a solution of the ODE (2.46) with the fourth-order bulk potential; and

solves the ODE (3.18) in the sixth-order case.

In Figures 3.8a and 3.8b, we tabulate the Morse index of the radial hedgehog solution

with the fourth- and sixth-order bulk potentials, respectively, with d = 1, e = 0, and

f = 1, for a range of values of t and ε.

We make some general observations: the Morse index of the radial hedgehog so-

lution is lower for higher values of t and ε in both cases. This is consistent with the
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(a)

(b)

Figure 3.8: Morse index of the radial hedgehog solution for the given value of t and
ε, as a critical point of the Landau–de Gennes free energy with the (a) fourth-order
bulk potential, (2.39); and (b) the sixth-order bulk potential, (3.65), with d = 1, e = 0,
f = 1. Each index is assigned a different colour for readability. Blank spaces in the
tables correspond to cases for which all ten computed eigenvalues are negative, or when
the solver fails to compute the ten smallest eigenvalues.

fact that the radial hedgehog solution is stable closer to the isotropic-nematic transi-

tion temperature (where the nematic phase gains stability) and for smaller droplets.

Comparing the indices with the fourth- and sixth-order bulk potentials, we note that

the radial hedgehog solution has higher index in the sixth-order case compared to the

fourth-order case. This suggests that the sixth-order bulk potential has a destabilising

effect on the radial hedgehog solution, likely because it admits biaxial critical points.

Consequently, the radial hedgehog solution has more unstable biaxial eigendirections,

resulting in a higher Morse index compared to the fourth-order bulk potential, which
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does not admit biaxial critical points.

3.4.3 The Radial Hedgehog Solution as an Index-1 Transition State

In this section, we attempt to identify scenarios in which the radial hedgehog solution

acts as an index-1 saddle point, because index-1 saddle points can be referred to as

transition states, which are relevant for switching between two locally stable states

[116]. In practice, this means that the index-1 state mediates the transition between

stable states and may be observable in the non-equilibrium dynamics.

We work with values of t and ε for which the radial hedgehog solution is an index-1

critical point of the Landau–de Gennes free energies (2.39) and (3.65), and we can

easily identify such scenarios from the tables in Figures 3.8a and 3.8b. We compute

the transition pathway between two index-0 Landau–de Gennes critical points, through

an index-1 radial hedgehog solution, q∗, described in Section 3.4.2. We use a gradient

flow method and take small perturbations of the radial hedgehog solution along the

direction of the eigenvector associated with the negative eigenvalue of the Hessian as

an initial condition, we solve the initial value problem

∂q

∂τ
= −∇F(q,∇q) in B(0, 1) for τ > 0,

q = q0 = q∗ ± λu, in B(0, 1) at τ = 0,

(3.70)

with boundary conditions (2.41)-(2.43), where F is the Landau–de Gennes free energy

with the fourth- or sixth-order bulk potential, given by (2.39) or (3.65), respectively;

the quantity λ is a small positive constant; and u is the unstable eigendirection of the

radial hedgehog solution. We refer the reader to Section 2.3.4 for more details on the

above initial value problem in the fourth-order bulk potential case, which we use as an

illustrative example as the methods are easily extended to the sixth-order case.

107



Chapter 3. The Sixth-Order Bulk Potential

As an example, the unstable eigendirection of the radial hedgehog solution as a

critical point of (3.65) with t = −12, ε = 0.5, d = 1, e = 0, and f = 1 is u = [6.11 ×

10−2, 3.34× 10−18, 1.15× 10−18]T , at the origin. A perturbation of the radial hedgehog

solution, q0 = q∗ + λu, yields the biaxial torus configuration, while a perturbation

q0 = q∗ − λu, yields the split core configuration. This is in agreement with the fact

that q1 > 0 at the origin for a biaxial torus solution and q1 < 0 at the origin for a split

core solution.

Figure 3.9a shows an example of two index-0 critical points of the Landau–de Gennes

free energy with the fourth-order bulk potential, (2.39), while Figure 3.9b shows an ex-

ample of two index-0 critical points of the Landau–de Gennes free energy with the sixth-

order bulk potential, (3.65), in both cases obtained via a gradient flow method with

the perturbed index-1 radial hedgehog solution as an initial condition. This strongly

suggests that there are transition pathways via the index-1 radial hedgehog solutions

between the index-0 biaxial torus and split core solutions at t = −12 and ε = 0.5.

(a) (b)

Figure 3.9: The transition pathways between two stable states. Index-0 split core
and biaxial torus solutions via index-1 transition state radial hedgehog with (a) the
fourth-order bulk potential (2.39) at t = −12 and ε = 0.5, and (b) the sixth-order bulk
potential (3.65) with t = −12, ε = 0.5, d = 1, e = 0, and f = 1. We plot r ∈ [0, 1] on
the horizontal axis and z ∈ [0, 1] on the vertical axis.
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Note that the split core solution may not be index-0 in the full class of admissi-

ble Q-tensors without the symmetry constraints, as suggested in [67]. Nevertheless,

we speculate that these reduced examples can be generalised to show that the radial

hedgehog solution can act as a transition state between two index-0 Landau–de Gennes

critical points in the admissible space (3.8), without the symmetry constraints and

exploiting the full five degrees of freedom.

3.4.4 Bifurcation Diagrams

We numerically compute bifurcation diagrams as a function of temperature with the

Landau–de Gennes free energies (2.39) and (3.65) in Figures (3.10a) and (3.10b), re-

spectively, using the numerical methods outlined in Section 2.3.5. We plot the value of

the scalar order parameter, s, of each configuration at the origin against temperature,

noting that s(0, 0) =
√

3
2q1(0, 0) and that all configurations are uniaxial at the origin

due to the boundary conditions (2.42) and (2.43). In what follows, we consider only

radial hedgehog solutions with positive scalar order parameter profiles, recalling that

the global minimiser of (3.17) can be negative for low temperatures, as demonstrated

in Section 3.3.

The two bifurcation diagrams are qualitatively similar and the bifurcation points

are simply shifted. The radial hedgehog solution, with s(0, 0) = 0, is the unique critical

point for high temperatures; the radial hedgehog and biaxial torus configurations are

stable at intermediate temperatures, where we also observe an unstable biaxial torus

configuration; and the radial hedgehog conifguration loses stability at low tempera-

tures, while the globally minimising biaxial torus remains stable, accompanied by the

emergence of a locally stable split core configuration. As expected, the radial hedgehog

solution loses stability at a higher temperature in the sixth-order case, compared to the
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Figure 3.10: Bifurcation diagrams for the Landau–de Gennes free energies for ε = 0.5
with (a) fourth-order bulk potential (2.39), and (b) sixth-order bulk potential (3.65)
with d = 1, e = 0, and f = 1. We plot the scalar order parameter of each config-
uration. Bold solid lines indicate the global minimiser; thin solid lines indicate local
stability/minimality; and dashed lines indicate instability.

fourth-order case, so that the radial hedgehog configuration is unstable over a wider

temperature range with the sixth-order bulk potential. We outline the methods used

to compute the bifurcation diagrams in Section 2.3.5.

We plot the stable and unstable biaxial torus configurations with the fourth-order

bulk potential at t = −6.5 with ε = 0.5 in Figures 3.11a and 3.11b respectively; and

with the sixth-order bulk potential at t = −4 with ε = 0.5, d = 1, e = 0, and f = 1 in

the sixth-order case in Figures 3.11c and 3.11d. The key difference is that the biaxial

region is closer to the origin in the unstable biaxial torus configuration. Furthermore,

the unstable biaxial torus is an index-1 critical point of the Landau–de Gennes free

energy, and is accompanied by stable biaxial torus and radial hedgehog solutions at

temperatures at which it is observed. Therefore, it is reasonable to speculate that

the unstable, index-1 biaxial torus could act as a transition state between the stable,

index-0 biaxial torus and radial hedgehog solutions.

From this numerical investigation, we deduce that there are only qualitative dif-
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(a) (b) (c) (d)

Figure 3.11: (a) Stable biaxial torus configuration; and (b) unstable biaxial torus con-
figuration for (2.39) with the fourth-order bulk potential, with t = −6.5 with ε = 0.5.
(c) Stable biaxial torus, and (d) unstable biaxial torus configuration for (3.65) with the
sixth-order bulk potential, for t = −4 and ε = 0.5, d = 1, e = 0, and f = 1. We plot
r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on the vertical axis.

ferences between the critical points of the Landau–de Gennes free energies (2.39) and

(3.65). Key differences are that uniaxial critical points are more unstable, or have

higher Morse indices, in the sixth-order case; and that the biaxial critical points have

larger ranges of stability with respect to temperature and droplet size, and larger biaxial

regions in the sixth-order case compared to the fourth-order case. We note that the bi-

axial torus solution is predominantly uniaxial away from the characteristic disclination

line, and hence, it would be interesting to investigate its stability when (3.6) strongly

favours a bulk biaxial phase, with and without the symmetry constraints (2.42) and

(2.43). Indeed, we give an example of a biaxial torus configuration which is a stable

critical point of the Landau–de Gennes free energy with the sixth-order bulk potential

at the low temperature t = −50, with ε = 0.5, d = 1, e = 0, and f = 1 which possesses

a large biaxial region at the low temperature t = −50 in Figure 3.12. Referring to

Figure 3.5, we note that the global minimiser of the sixth-order bulk potential, (3.6),

is biaxial at this low temperature. This suggests that the biaxial region corresponding

to the biaxial torus grows as temperature decreases and the bulk behaviour dominates.

Furthermore, this suggests that the liquid crystal configuration approaches a purely

biaxial state, approximating the global minimiser of the sixth-order bulk potential. In
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fact, by direct analogy with [49], it is possible to prove that global minimisers of (3.1)

will converge to minimisers of (3.6) almost everywhere, with the exception of defects

and boundary layers, for sufficiently large domains and hence are expected to demon-

strate bulk biaxiality. This is of particular interest because bulk biaxiality is typically

elusive and difficult to detect experimentally.

Figure 3.12: Biaxial torus configuration at t = −50, ε = 0.5, with d = 1, e = 0, and
f = 1. We plot r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on the vertical axis.

3.5 Summary

In this chapter, we perform some analytical and numerical studies of critical points of

a Landau–de Gennes free energy with a sixth-order bulk potential, (3.1), in contrast

to the majority of studies in the literature, which depend on the fourth-order bulk

potential. We demonstrate that the sixth-order bulk potential, (3.6), admits a biaxial

minimiser for sufficiently low temperatures, and does not admit stable uniaxial critical

points deep in the nematic phase in Section 3.2, reinforcing the conclusions that were

previously reached in [61]. This in contrast to the critical points of the fourth-order bulk

potential, which are exclusively uniaxial. Furthermore, we have demonstrated that the
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sixth-order bulk potential can have a uniaxial global minimiser with a negative scalar

order parameter at low temperatures when restricted to the class of uniaxial Q-tensors,

which is also in contrast to the behaviour of critical points of the fourth-order bulk

potential, which has a uniaxial global minimiser with positive scalar order parameter

at all temperatures at which it has nonzero critical points.

Our analytical results in Section 3.3 show that there are many analogies between

the properties of the radial hedgehog solution with the fourth- versus the sixth-order

bulk potential at moderately low temperatures, where the global minimiser of (3.6) is

uniaxial with positive scalar order parameter. We prove uniqueness, monotonicity and

nonnegativity of the radial hedgehog scalar order parameter in a moderate temperature

regime. Key differences arise at low temperatures, where these arguments fail. We no

longer have uniqueness of the radial hedgehog solution, and demonstrate the multiplic-

ity of radial hedgehog solutions at low temperatures by finding a globally minimising

radial hedgehog solution with a negative scalar order parameter. The radial hedge-

hog solution with a negative scalar order parameter in the interior describes a uniaxial

state in which the nematic liquid crystal molecules align orthogonally to the radial

direction, and one can draw comparisons between this behaviour and the transitions

from homeotropic to planar orientations on nematic shells upon cooling in experiments

discussed in [122].

The physical implications of the results in Section 3.3 are unclear as yet, and one

could argue that the Landau–de Gennes model with the sixth-order bulk potential is

not necessarily valid for low temperatures.

Our numerical results in Section 3.4.2 indicate that the radial hedgehog solution

with the sixth-order bulk potential has a smaller domain of stability than its counterpart

with the fourth-order bulk potential. This is to be expected, since (3.6) favours bulk
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biaxiality at sufficiently low temperatures, while the radial hedgehog solution is purely

uniaxial with the exception of the isotropic point defect at the droplet centre. We also

numerically compute the biaxial torus and split core solutions as critical points of (2.39)

and (3.65) for comparison, with the key differences being that biaxial regions are larger

under the sixth-order bulk potential; and that both the biaxial torus and split core

solutions have larger domains of stability with the sixth-order bulk potential, which

is evident from the bifurcation diagrams in Section 3.4.4. We also provide numerical

evidence in Section 3.4.3 to support the notion that an unstable radial hedgehog solution

mediates transitions between stable split core and biaxial torus solutions, suggesting

that the radial hedgehog configuration might be physically observable in switching

processes between these two stable states.

The critical points studied in this chapter exploit only three of the five degrees of

freedom, and the biaxial torus and split core solutions are only ‘locally’ biaxial solutions.

In [1], we find a new biaxial critical point of (3.6), which exploits the full five degrees of

freedom and lacks rotational and mirror symmetry. The solution is almost maximally

biaxial in the droplet interior, with the exception of the imposed uniaxial boundary

condition and the defect structures. An interesting next step would be to conduct a

more in-depth numerical investigation of the critical points of the Landau–de Gennes

free energies (2.26) and (3.6) without the imposed rotational and mirror symmetry.

However, we note that this is significantly more computationally expensive, making

the problem prohibitive with the methods we have used.

The results in this chapter provide a reference for future experiments, and may help

indicate whether the fourth-order bulk potential is sufficient to capture the behaviour

of nematic liquid crystals; or whether the extra terms in the sixth-order bulk potential

should be incorporated into the theory. We indicate the stability of equilibrium con-
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figurations according to temperature and droplet size, and note that there are some

quantitative differences between the predictions of the fourth- and sixth-order bulk

potentials. Future experiments could investigate which equilibrium configurations are

stable under different conditions to discern which set of predictions physical systems

agree better with.

A physically relevant question is whether the sixth-order bulk potential better cap-

tures the liquid crystal behaviour than the fourth-order bulk potential. A key next

step in answering this question is to identify realistic values of the parameters d, e

and f . With realistic values for these parameters, one could conduct expriments on

the experimentally observable phases in temperatures regimes for which the sixth-order

bulk potential favours uniaxiality and biaxiality, respectively, testing for bulk biaxiality.

Such a comparison to experiments would allow us to assess the suitability and validity

of both the fourth- and sixth-order bulk potentials.
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Critical Points of the

Ferronematic Bulk Potential

In Chapter 3, we study purely nematic liquid crystals. We noted in Section 1.5.4 that

nematic liquid crystals respond poorly to external magnetic fields, and introduced the

idea of ferronematic liquid crystals. We recall that ferronematic liquid crystals are

nematic liquid crystals which are doped with magnetic nanoparticles, which exhibit

spontaneous magnetisation in the absence of external fields, and have a heightened

response to the application of external magnetic fields in comparison to pure nematic

liquid crystals. The mathematical modelling of ferronematic liquid crystals with a

Landau–de Gennes-type free energy, first introduced in Section 1.5.4, is the focus of

this chapter and the next.

In Section 3.2, we compute critical points of a sixth-order bulk potential in the class

of uniaxial Q-tensors, and in a more general class of Q-tensors. We recall that with the

fourth-order bulk potential, the global minimiser has a positive scalar order parameter

in the class of uniaxial Q-tensors, and that the global minimiser cannot ever be biaxial

under the fourth-order bulk potential. In Section 3.2, we demonstrate that the global
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minimiser of the sixth-order bulk potential has a negative scalar order parameter at

low temperatures in the class of uniaxial Q-tensors; and that the global minimiser is

biaxial in the more general class of Q-tensors at low temperatures.

In this chapter, we study critical points of the dimensionless ferronematic bulk

potential [98], [99]

fF (Q,M) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

1

4

(
|M|2 − 1

)2 − cQM ·M, (4.1)

where the first three terms comprise the nematic fourth-order bulk potential, and t

is the reduced temperature; the fourth term is a potential assoiated with the sponta-

neous magnetisation; and the final term is the nemato-magnetic coupling energy, with

coupling strength, c.

In Section 4.1, we focus on uniaxial critical points of the ferronematic bulk poten-

tial with nonnegative nemato-magnetic coupling. We investigate how the stability of

uniaxial critical points of the ferronematic bulk potential are influenced by temperature

and the nemato-magnetic coupling strength, c.

In Section 4.2, we extend our analysis to a more general Q-tensor and explore

whether nemato-magnetic coupling induces biaxiality in spatially homogeneous sys-

tems. Recall that in Chapter 3, we discuss how the preference for biaxiality under

the sixth-order bulk potential destabilises the nematic radial hedgehog solution and

results in split core and biaxial torus configurations with larger regions of biaxiality.

Analogously, our aim in Section 4.2 is to understand if and when the ferronematic bulk

potential prefers biaxiality in spatially homogeneous systems, which could impact the

stability of the ferronematic radial hedgehog solution and the extent of biaxial regions

in other critical points discussed in Chapter 5.

On the whole, the goal of this chapter is to investigate how nemato-magnetic cou-

117



Chapter 4. Critical Points of the Ferronematic Bulk Potential

pling alters the bulk behaviour, shedding light on the characteristics of ferronematic

liquid crystals. We first investigate if nemato-magnetic coupling alters the qualitative

behaviour of uniaxial critical points with a fourth-order bulk potential. And secondly,

we investigate if the magnetic order parameter facilitates biaxiality with a fourth-order

bulk potential in a spatially homogeneous system, recalling that the fourth-order bulk

potenential cannot accommodate biaxiality in purely nematic systems.

4.1 Uniaxial Critical Points of the Ferronematic Bulk Po-

tential

4.1.1 Problem Formulation

We first consider critical points, (Q,M), of (4.1) of the form

Q = s

(
n⊗ n− 1

3
I

)
, M = mn, n ∈ R3, (4.2)

where we describe both Q and M with a unit vector, n, to reduce the problem to

solving for pairs (s,m). Note that working with Q and M of this form means that the

nematic director and magnetisation vector are co-aligned, and the nemato-magnetic

coupling parameter, c, simply influences the values s and m in this context. In this

case, the preferred orientation of the liquid crystal molecules and the magnetic field are

oriented in the radial direction. We substitute (4.2) into (4.1) which reduces fF to the

function

gF (s,m) :=
t

3
s2 − 2

√
6

9
s3 +

2

9
s4 +

1

4

(
m4 − 2m2 + 1

)
− 2

3
csm2, (4.3)
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which has first partial derivatives

∂gF
∂s

=
2t

3
s− 2

√
6

3
s2 +

8

9
s3 − 2

3
cm2, (4.4)

∂gF
∂m

= m3 −m− 4

3
csm. (4.5)

Critical points of gF are solutions of

∂gF
∂s

=
∂gF
∂m

= 0, (4.6)

and are given by (s,m) = (0, 0) and

m = 0, s =

√
3

2

3±
√
9− 8t

4
=: s±, (4.7)

noting that the values s± correspond to the nonzero critical points of the pure nematic

system with the fourth-order bulk potential, which are given in Section 1.5.1; and

m = ±
√

1 +
4

3
cs, where s is a solution of

h(s) := s3 − 3
√
6

4
s2 +

(
3t

4
− c2

)
s− 3c

4
= 0. (4.8)

In this section, we work only with nonnegative values of the nemato-magnetic coupling

parameter, c. We note that we take the largest positive root of the above polynomial,

h, as the boundary value on the droplet surface when we study spherical droplets of

ferronematic liquid crystals in Chapter 5.
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4.1.2 Results

We first determine the nature of the roots of the polynomial h in (4.8) by considering

its discriminant [123],

∆ = −27

16
t3 +

(
27

4
c2 +

243

128

)
t2 +

(
243

√
6

32
c− 9c4 − 81

16
c2

)
t

+ 4c6 +
27

8
c4 − 81

√
6

8
c3 − 243

16
c2 − 243

√
6

32
c. (4.9)

The sign of the discriminant, ∆, characterises the roots of the cubic polynomial h,

which correspond to ferronematic bulk critical points. The cubic polynomial, h, has

three distinct real roots if ∆ > 0; two real roots if ∆ = 0; and one real root and two

complex conjugate roots if ∆ < 0. We plot ∆ as a function of t in Figure 4.1, with the

fixed values c = 0, c = 0.01, c = 0.1, c = 1, and c = 10.

In all five cases plotted, we observe that ∆ > 0 for low temperatures t → −∞,

meaning that h in (4.8) has three real, distinct roots at low temperatures, corresponding

to six real, distinct critical points of the ferronematic bulk free energy with nonzero

m (since we work with positive and negative values of m), deep in the nematic phase.

Thus, if we restrict our temperature range to, say, t < −5, we will be working with six

real, distinct ferronematic critical points with nonzero m, regardless of the value of c.

Moreover, in the very strong coupling case, c = 10, we observe that ∆ < 0 only at

very high, and potentially unrealistic temperatures, suggesting that h in (4.8) will have

three real, distinct roots at physically relevant temperatures in models with large, pos-

itive c. However, it is worth noting that large values of the coupling parameter, c, may

themselves be unrealistic, meaning that working with large c is simply a mathematical

exercise.

Finally, we observe that there are small temperature ranges with t > 0 for which
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∆ > 0 in the cases c = 0, c = 0.01, and c = 0.1, so that there are three real, distinct

ferronematic bulk critical points in these high temperature ranges. In the nonzero c

cases, c = 0.01 and c = 0.1, as temperature decreases, the number of critical points

reduces to one in some intermediate temperature range in each case; but as temperature

decreases further, three real, distinct critical points re-emerge. In the uncoupled, c = 0

case, the discriminant is zero at t = 0, so the number of real, distinct critical points is

reduced to two at t = 0; and there are three real, distinct critical points for t < 0.
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Figure 4.1: The discriminant, ∆, with (a) c = 0; (b) c = 0.01; (c) c = 0.1; (d) c = 1;
and (e) c = 10. The horizontal axis is decreasing in temperature, t, from left to right.

We further explore the nature of the roots of the cubic h in (4.8) by plotting h in

the case c = 0.1 at the temperatures t = 1.2, t = −0.5, and t = −2 in Figure 4.2. We

plot h at t = 1.2 in Figure 4.2a, which belongs to the temperature range above t = 0

in Figure 4.1c where ∆ > 0, and demonstrates that h has three positive roots in this

temperature range. Figure 4.2b is h at t = −0.5, and corresponds to the intermediate
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temperature range which includes t = 0 in Figure 4.1c, where ∆ < 0, and we observe

that h has just one root, which is positive. Finally, Figure 4.2c is plotted at t = −2,

a temperature at which ∆ > 0 in Figure 4.1c, and we observe that h has one positive

and two negative roots.
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Figure 4.2: The cubic function h with c = 0.1 at the temperatures (a) t = 1; (b)
t = −0.5; and (c) t = −2.

We plot the critical points of (4.3) with c = 0, c = 0.01, c = 0.1, and c = 1 in

Figures 4.3, 4.4, 4.5 and 4.6, respectively.

We first consider the uncoupled case, c = 0, in Figure 4.3. There are three critical

points at temperatures above t = 9
8 : the unstable isotropic point, (s,m) = (0, 0), and

the globally stable points, (s,m) = (0,±1). At t = 9
8 , the critical points which are

nonzero in s emerge. The points (s,m) = (s±, 0) are always unstable, where s± are

given in (4.7). The points (s,m) = (s+,±1) are local minimisers for 1 < t < 9
8 and

global minimisers for t < 1. The points (s,m) = (s−,±1) are unstable for 0 < t < 9
8

and local minimisers for t < 1. Finally, the points (s,m) = (0,±1) are local minimisers

for 0 < t < 9
8 and unstable for t < 0.

The behaviour in s in the uncoupled case is identical to that in the pure uniaxial

nematic case, in that there is a stable isotropic point at high temperatures, and s+ has

lower energy than s− for all temperatures at which they are defined. An interesting dif-

ference, however, is that nonzero magnetisation is required for stability in the spatially
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Figure 4.3: Critical points of the ferronematic bulk potential with c = 0 for the tem-
perature range t = 5 to t = −10. (a) Both parameters, s and m, plotted against t.
(b) Order parameter, s, plotted against t. (c) Magnetisation parameter, m, plotted
against t. The line m = 0 in (c) represents three unstable critical points, with s = 0
and s = s±.

homogeneous ferronematic system in the uncoupled case.
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Figure 4.4: Critical points of the ferronematic bulk potential with c = 0.01 for the
temperature range t = 2 to t = −5. (a) Both parameters, s and m, plotted against
t. (b) Order parameter, s, plotted against t. (c) Magnetisation parameter, m, plotted
against t. The line m = 0 in (c) represents three unstable critical points, with s = 0
and s = s±.

Next, we plot the uniaxial ferronematic critical points in the very weak coupling

case, c = 0.01, in Figure 4.4. For clarity, let us label the roots of h in (4.8), which

have been plotted with the corresponding values of m in (4.8), before proceeding. We

observe that h has one positive root at high temperatures (solid red line in Figure 4.4).
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Let us label this root s0. As temperature decreases, two further roots emerge, both

positive and larger than s0 (solid maroon line and dashed orange line in Figure 4.4).

Let us label the largest root s1 and the intermediate root s2. Furthermore, there is an

intermediate temperature range containing t = 0 in which the only real root of h is s1

(solid maroon line in Figure 4.4). At low temperatures, h again has three real roots:

the positive root, s1, and two negative roots (dashed yellow and solid orange lines in

Figure 4.4). Let us label the negative root which is smaller in magnitude s3, and the

other s4. Each root of h in (4.8) of course has a corresponding value of m in the context

of the critical points of gF in (4.3), which we label m0, ...,m4, accordingly.

We note that the weakly coupled case, c = 0.01, largely approximates the uncoupled

case, and the similarities are as follows. There are three critical points at temperatures

above t ≈ 9
8 : the unstable isotropic point, (s,m) = (0, 0), and the globally minimising

points (s,m) = (s0,±m0) ≈ (0,±1). At t ≈ 9
8 , six further critical points which are

nonzero in m emerge. Namely, these are (s,m) = (s1,±m1), (s,m) = (s2,±m2), and

(s,m) = (s±, 0). The critical points (s1,±m1) are local minimisers for 0.3 ≲ t ≲ 9
8 and

global minimisers for t ≲ 0.3, while the points (s±, 0) are unstable for the temperature

range plotted. We note that the points (s1,±m1) replace the points (s+,±1) as the

global minimisers in comparison to the uncoupled case, but we observe that (s1,±m1)

closely approximate (s+,±1). We next consider the critical points which most closely

approximate the points (s−,±1), namely (s2,±m2) above t ≈ 0.3 and (s4,±m4) below

t ≈ −0.3. These points approximate the points (s−,±1) and are unstable for 0.3 ≲ t ≲

9
8 , and locally minimising for t ≲ −0.3 (we discuss the the situation for −0.3 ≲ t ≲ 0.3

in the next paragraph). Finally, the points (s,m) = (s3,m3) ≈ (0,±1) are unstable for

t ≲ −0.3.

The key difference between the c = 0 and c = 0.01 cases is in the temperature range
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−0.3 ≲ t ≲ 0.3. Here, there is only one root of h in (4.8) with c = 0.01, s1, so the

total number of critical points is reduced to five in this temperature range: the points

(s,m) = (0, 0), (s,m) = (s±, 0), and (s,m) = (s1,m1) ≈ (s+,±1); and four at t = 0,

since s− = 0, so (s−, 0) = (0, 0) at t = 0. In contrast, there are six critical points at

t = 0 in the uncoupled case, and nine otherwise within the same temperature range.

This can be explained by the fact that the discriminant of h in the case c = 0.01 in

Figure 4.1b is negative for −0.3 ≲ t ≲ 0.3, meaning that h has only one real root within

this temperature range. In contrast, the discriminant with c = 0 in Figure 4.1a is zero

at t = 0 and positive elsewhere within the same temperature range, meaning there are

two real roots of h at t = 0 (s = 0 and s = s+), and three, otherwise (s = 0, s = s+,

and s = s−).
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Figure 4.5: Critical points of the ferronematic bulk potential with c = 0.1 for the
temperature range t = 2.5 to t = −7. (a) Both parameters, s and m, plotted against
t. (b) Order parameter s plotted against t. (c) Magnetisation parameter m plotted
against t. The line m = 0 in (c) represents three unstable critical points, with s = 0
and s = s±.

Next, we plot the case c = 0.1 in Figure 4.5. The qualitative behaviour of the

critical points is the same as in the weakly coupled, c = 0.01 case, so we use the same

labels for the critical points corresponding to the roots of h in (4.8) and summarise our

observations in the next paragraph.
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There are three critical points at high temperatures: the unstable critical point

(s,m) = (0, 0); and the two global minimisers, (s0,±m0), which are positive in s and

nonzero in m, and are such that (s,m) → (0,±1) as t → ∞. There are seven critical

points in the temperature range 9
8 < t ≲ 1.3: the unstable point (0, 0); and six critical

points which are positive in s and nonzero in m: (s0,±m0), (s1,±m1), and (s2,±m2).

The points (s1,±m1) are the global minimisers; while the points (s0,±m0) are local

minimisers; and the points (s2,±m2) are unstable. At t = 9
8 , the number of critical

points increases to nine with the emergence of the critical points (s,m) = (s±, 0),

which are both unstable across the temperature range plotted. Analogously to the

c = 0.01 case, the number of critical points reduces to five in the temperature range

−1 ≲ t ≲ 0.95, where the discriminant of h in Figure 4.1c is negative, except at t = 0,

where there are four critical points, since again s− = 0. Finally, the discriminant

in Figure 4.1c is positive for t ≲ −1, where there are again nine critical points: the

unstable zero solution; the two global minimisers (s,m) = (s1,±m1); the unstable

critical points (s,m) = (s±, 0) and (s,m) = (s3,±m3); and the two local minimisers,

(s,m) = (s4,±m4). We note that the globally minimising value of s, s1, converges to

s+ as t → −∞.

Finally, we plot the critical points in the case c = 1 in Figure 4.6. The qualitative

behaviour of the critical points is slightly different to that in the cases with c = 0.01

and c = 0.1. In particular, h in (4.8) has only one positive root at all temperatures in

the range plotted in Figure 4.6. We label the corresponding critical points (s1,±m1),

and use the same labels, (s3,±m3) and (s4,±m4), for the critical points corresponding

to the negative roots of h. We note that we do not use the labels (s0,±m0) or (s2,±m2)

for any critical points in the c = 1 case.

Elements of Figure 4.6 are qualitatively similar to the c = 0.1 case in Figure 4.5.
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Figure 4.6: Critical points of the ferronematic bulk potential with c = 1 for the tem-
perature range t = 10 to t = −20. (a) Both parameters, s and m, plotted against t. (b)
Order parameter s plotted against t. (c) Magnetisation parameter m plotted against t.
The line m = 0 in (c) represents three critical points: the two unstable critical points
with s = 0 and s = s+; and the critical point with s = s−, which is unstable at higher
temperatures and locally stable at sufficiently low temperatures.

Specifically, the solution (s,m) = (0, 0) is an unstable critical point for all temperatures;

unstable critical points, (s,m) = (s3,±m3) emerge at sufficiently low temperatures such

that s3 → 0 andm3 → 1 as t → −∞; the critical point (s,m) = (s+, 0) emerges at t = 9
8

and is always unstable; and the globally minimising value of s, namely s1, converges to

s+ as t → −∞.

As noted above, there are several key differences between the c = 1 case and the

other cases plotted in Figures 4.3, 4.4 and 4.5, and this is related to the fact that

the discriminant for c = 1 in Figure 4.1d only crosses the x-axis once, rather than

three times. This means that h in (4.8) with c = 1 has one root above some critical

temperature, t ≈ −2.1, and three below this temperature. Furthermore, the critical

point (s,m) = (s−, 0) becomes a local minimiser at sufficiently low temperatures, and

there is only a small temperature regime in which there are three critical points with

nonzero m. This is because m =
√
1 + 4

3cs becomes complex for s < − 3
4c , so the larger

negative root of h, s4, has a complex associated magnetisation vector, and we lose the
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critical points (s4,±m4) at sufficiently low temperatures. We note that this relation

can be satisfied for any nonzero c, but the required magnitude of the largest negative

root of h for m to be complex increases for smaller c, so the associated value of m is

real over a larger temperature range for smaller c.

We note certain overall trends as the nemato-magnetic coupling strength, c, in-

creases. For any positive c, the global minimiser at high temperatures is nonzero in s

and m and the isotropic state (0, 0) is unstable, but the globally minimising value of s

tends to zero as t → +∞.

Furthermore, the globally minimising branches (s+,±1) for t < 9
8 in the c = 0 case

are replaced by the globally minimising branches (s1,±m1) when c is positive. The

value of s1 is larger for larger c, but in each case, s1 → s+ as t → −∞. However, the

corresponding values for m do not converge to ±1. Additionally, the branches (s±, 0)

are unstable for all values of c considered.

Another trend we note is that for all positive c, there is a temperature below t = 0 at

which two negative roots of h in (4.8) emerge, s3 and s4, and this temperature decreases

for increasing c. The critical points of (s3,±m3) correspond to unstable branches such

that s3 < 0, (s3,±m3) → (0,±1) as t → −∞. The other critical points, (s4,±m4),

correspond to locally minimising branches such that s4 → s− < 0 as t → −∞; and the

magnitude ofm4 decreases with temperature and eventually becomes complex, as noted

in the c = 1 case above. The temperature at which the values of m become complex

is higher for larger c, so this happens beyond the ranges we have plotted in Figures

4.4 and 4.5, corresponding to c = 0.01 and c = 0.1. When m4 becomes complex, the

branch (s−, 0) gains local stability.

The instability of the isotropic critical point, (s,m) = (0, 0), in the ferronematic

case is in contrast to its behaviour in the nematic case studied in Section 3.2, in which
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the isotropic point, (s,m) = (0, 0), is globally stable at high temperatures. We confirm

the instability of the isotropic critical point for all temperatures via the second partial

derivatives of the function gF in (4.3), which are given by

∂2gF
∂s2

=
2t

3
− 4

√
6

3
s+

8

3
s2,

∂2gF
∂m2

= 3m2 − 1− 4

3
cs,

∂2gF
∂s∂m

= −4

3
cm2. (4.10)

We consider the determinant of the Hessian,

H =

 ∂2gF
∂s2

∂2gF
∂s∂m

∂2gF
∂s∂m

∂2gF
∂m2

 , (4.11)

which is given by

D(s,m) :=
∂2gF
∂s2

∂2gF
∂m2

−
(

∂2gF
∂s∂m

)2

, (4.12)

the sign of which, together with the sign of ∂2gF
∂s2

, indicates the nature of the critical

points.

We note that D(0, 0) = −2t
3 . If t > 0, D(0, 0) < 0, which indicates that the critical

point (s,m) = (0, 0) is a saddle point and hence unstable. If t < 0, then D(0, 0) > 0 and

∂2gF
∂s2

= 2t
3 < 0, which indicates that the critical point (0, 0) is a local maximum of the

function gF in (4.3). Furthermore, it is straightforward to show that the eigenvalues of

H with (s,m) = (0, 0) are
{
2t
3 ,−1

}
, with corresponding eigenvectors

{
[1, 0]T , [0, 1]T

}
.

Hence, when t > 0, the unstable direction is [0, 1]T , which indicates that the system

tolerates s = 0 at high temperatures, but prefers a nonzero value of m for stability.

This is reflected in Figure 4.3, where we see that (s,m) = (0,±1) is at least locally

stable for t > 0.
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It is interesting to note that the critical point (s+, 0) is never stable since

D(s+, 0) =
4t

3
− 3

2
−

√
9− 8t

2
+

(2t− 27)
√
6 + (4t− 9)

√
6(9− 8t)

3
c < 0, (4.13)

if t < 9
8 recalling that s+ is undefined for t > 9

8 . This is despite s+ being the global

minimiser in the nematic case with the fourth-order bulk potential, yet the critical

point (s−, 0) gains local stability at low temperatures for sufficiently large and positive

c when the value of m corresponding to the critical point with nonzero m and largest

negative s becomes complex in m, as can be seen in Figure 4.6. This is in contrast to

the fourth-order nematic case in Section 3.2, where we observe that the critical point

(s,m) = (s−, 0) is never stable. As an example, taking t = −5, c = 1, we find that

D(s−, 0) =
28

√
6− 42

9
> 0, and

∂2gF
∂s2

=
14

3
> 0, (4.14)

where D is defined in (4.12), confirming the local stability of (s−, 0) with t = −5, c = 1.

However, we illustrate in Figure 4.7, in the case c = 1, that the energy of (s−, 0)

is higher than that of (s+, 0), which is in turn higher than the energy of the global

minimiser,
(
s1,±

√
1 + 4

3cs1

)
.

Another key contrast to the nematic case is the presence of a global minimiser which

is nonzero in s and m at high temperatures with t > 9
8 . In the fourth-order nematic

case, discussed in Section 3.2, the only critical point above t = 9
8 is the isotropic critical

point. Recalling that the critical points which are nonzero in s are solutions of h in

(4.8), let us consider the limit t → ∞. Noting that, by neglecting terms independent

of t when the magnitude of t is sufficiently large such that the magnitude of terms
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Figure 4.7: Value of the function gF for the critical points, (s1,±m1) , (s+, 0) , and
(s−, 0) of the ferronematic bulk potential with c = 1 for the temperature range t = 5
to t = −15.

independent of t are negligible in comparison, we find that

h(s) → 3t

4
s and m → ±1 as t → ∞, (4.15)

which indicates that s → 0 andm → 1 as t → ∞. In other words, the global minimiser is

approximately isotropic at sufficiently high temperatures in the ferronematic case. This

is in agreement with the pure nematic case, which is isotropic at high temperatures, and

the magnetisation being constant at high temperatures indicates that the magnetisation

is not influenced by the liquid crystal molecules in the absence of nematic ordering.

4.1.3 Approximations to the Uniaxial Ferronematic Critical Points

We note that, for small c, we can approximate the roots of h in (4.8), which we label

s0, ..., s4 in the previous section, and the corresponding values of m via polynomial
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expansions of the form

s̃0 = a0c+ b0c
2, s̃1 = s+ + a1c+ b1c

2, s̃2 = s− + a2c+ b2c
2. (4.16)

Substituting s̃0, s̃1, and s̃2 into (4.8) in turn and neglecting o(c2) terms, we find that

we may write

s̃0 =
1

t
c+

√
6

t3
c2, m̃0 = ±

√
1 +

4

3
cs̃0, (4.17)

s̃1 = s++
1

t− 2
√
6s+

c+
(1− 16ts+)

√
6 + 4t2s+ + 96s3+ − 4s+(

t− 2
√
6s+

)2 (
4s2+ − 2

√
6s+ + t

) c2, m̃1 = ±
√
1 +

4

3
cs̃1,

(4.18)

s̃2 = s−+
1

t− 2
√
6s−

c+
(1− 16ts−)

√
6 + 4t2s− + 96s3− − 4s−(

t− 2
√
6s−

)2 (
4s2− − 2

√
6s− + t

) c2, m̃2 = ±
√
1 +

4

3
cs̃2.

(4.19)

We illustrate how (s̃0, m̃0), (s̃1, m̃1), and (s̃2, m̃2) approximate the roots of the cubic

in (4.8) and the corresponding values of m in the case c = 0.01. It suffices to only

consider the positive values of the critical values of m. We revisit the critical points

plotted in Figure 4.4 and plot the functions s̃0 and m̃0, s̃1 and m̃1, and s̃2 and m̃2

against the roots of h and the corresponding values of m in Figures 4.8, 4.9, and 4.10,

respectively. The solid and dashed curves are the same as the curves in Figure 4.4

with the same colour. We note that each of the bulk critical points plotted in Figures

4.8-4.10 are originally plotted in Figure 4.4. We do not reproduce the critical points

(s,m) = (s±, 0).

We observe that the pairs (s̃0, m̃0), (s̃1, m̃1), and (s̃2, m̃2) approximate the ferrone-
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Figure 4.8: The approximation (s̃0, m̃0) plotted against the closest ferronematic bulk
critical points. The point (s̃0, m̃0) approximates the stable critical point (s0,m0) above
t ≈ 0.3 and the unstable critical point (s3,m3) below t ≈ −0.3.
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Figure 4.9: The approximation (s̃1, m̃1) plotted against the closest ferronematic bulk
critical point. The point (s̃1, m̃1) approximates the stable critical point (s1,m1).

matic critical points well, with the exception of the region close to t = 0.

Let us first consider the pair (s̃0, m̃0). From Figure 4.8a, it is clear that s̃0 approx-

imates the globally minimising value for s, s0, above t ≈ 9
8 , where h has only one root,

and m̃0 approximates the corresponding value for m, m0, in Figure 4.8b. At t ≈ 9
8 ,

the discriminant of h in Figure 4.1b becomes positive, and h has three real roots. The
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Figure 4.10: The approximation (s̃2, m̃2) plotted against the closest ferronematic bulk
critical points. The point (s̃2, m̃2) approximates the unstable critical point (s2,m2)
above t ≈ 0.3 and the local minimiser (s4,m4) below t ≈ −0.3. We include the unstable
critical point (0, 0) for reference.

smallest, s0, is still approximated by s̃0. The discriminant in Figure 4.1b becomes

negative again around t ≈ 0.3, and only the largest, globally minimising value of s, s1,

remains. Below t ≈ −0.3, the discriminant in Figure 4.1b is again positive, and there

are three roots of h: the globally minimising, positive value, s1; and two negative roots,

s3 and s4. We observe in Figure 4.8a that the pair (s̃0, m̃0) approximates the negative,

unstable value of s, s3, and the corresponding value for m, m3, below t ≈ −0.3. The

approximation fails for −0.3 ≲ t ≲ 0.3: there is only one root of h in this temperature

range, and we have that

s̃0 = a0c+ b0c
2 =

1

t
c+

√
6

t3
→ ∞ as t → 0 from above, (4.20)

and s̃0 = a0c+ b0c
2 =

1

t
c+

√
6

t3
→ −∞ as t → 0 from below. (4.21)

Now let us consider the pair (s̃2, m̃2), which is plotted in Figure 4.10. We observe

that (s̃2, m̃2) approximates the unstable critical point, (s2,m2) in the temperature
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range 0.3 ≲ t ≲ 9
8 , which corresponds to the intermediate root of h in this temperature

range. Moreover, (s̃2, m̃2) appears to approximate the locally minimising critical point

for t ≲ −0.3, (s4,m4). Similarly to the case of (s̃0, m̃0), the approximation fails in the

temperature range −0.3 ≲ t ≲ 0.3, where h has only one real root, and we note that

a2c+ b2c
2 → 1

t
c−

√
6

t3
c2 → −∞ as t → 0 from above, (4.22)

and a2c+ b2c
2 → 1

t
c−

√
6

t3
c2 → ∞ as t → 0 from below, (4.23)

so that s̃2 → −∞ as t → 0 from above, and s̃2 → ∞ as t → 0 from below

Finally, consider the simpler case, (s̃1, m̃1), plotted in Figure 4.9. We observe that

(s̃1, m̃1) approximates the largest positive root of h, s1, and the associated value of m,

m1, for all temperatures below t ≈ 9
8 . The largest positive root is the locally minimising

critical point for t ≈ 9
8 to t ≈ 1, and the global minimiser for all t ≲ 1.

4.2 Biaxial Critical Points

In this section, we investigate whether the ferronematic bulk potential can admit bulk

biaxial critical points for given temperatures and nemato-magnetic coupling. We work

with a more general form of the Q-tensor and magnetisation vector. We consider a

Q-tensor of the form

Q = q1
(
x⊗ x− y ⊗ y

)
+ q2

(
x⊗ y + y ⊗ x

)
+ q3

(
2z ⊗ z − x⊗ x− y ⊗ y

)
, (4.24)

135



Chapter 4. Critical Points of the Ferronematic Bulk Potential

where x = [1, 0, 0]T , y = [0, 1, 0]T , and z = [0, 0, 1]T , so

Q =


q1 − q3 q2 0

q2 −q1 − q3 0

0 0 2q3

 . (4.25)

We note that this Q-tensor can be biaxial, with eigenvalues

λ1 = −q3 +
√

q21 + q22, λ2 = −q3 −
√

q21 + q22, λ3 = 2q3. (4.26)

We choose this form of Q-tensor as it is a combination of three orthonormal vectors.

We also work with a magnetisation vector of the form M = [m1,m2,m3]
T .

The authors in [124] demonstrate bulk biaxiality in systems with a negative cou-

pling parameter, c. We find examples of globally minimising biaxial bulk critical points

with negative nemato-magnetic coupling, supporting the findings in [124], and, in addi-

tion, we find examples of locally stable biaxial critical points within positively coupled

systems. We note that the authors in [124] claim that positively coupled, spatially

homogeneous systems can only be uniaxial. Our results prove otherwise as we will

show, with the existence of both locally stable and unstable biaxial critical points in

our spatially homogeneous, positively coupled systems. However, it is worth pointing

out that we only find biaxial global minimisers in negatively coupled systems; and the

locally stable biaxial critical points in the positively coupled systemts are very small in

magnitude. Moreover, our methods differ from those used in [124].
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4.2.1 Problem Formulation

To reduce the complexity of the problem and make it computationally feasible with our

methods, we set q2 = m2 = 0 before substituting theQ-tensor and magnetisation vector

into the ferronematic bulk potential fF in (4.1), so that the Q-tensor has eigenvalues

λ1 = q1 − q3, λ2 = −q1 − q3, λ3 = 2q3. (4.27)

Therefore, the Q-tensor is biaxial provided q1 ̸= 0 and q1 ̸= ±3q3. Moreover, setting

q2 = 0 results in the preferred directions being aligned with x,y and z, rather than

being tilted.

We rewrite the bulk potential as

fF (q1, q3,m1,m3) = t
(
q21 + 3q23

)
+ 6

√
6
(
q21q3 − q33

)
+ 2
(
q41 + 6q21q

2
3 + 9q43

)
+

1

4

((
m2

1 +m2
3

)2 − 1
)2

− c
(
q1m

2
1 − q3m

2
1 + 2q3m

2
3

)
. (4.28)

To obtain critical points of the ferronematic bulk potential above, we solve the coupled

equations

∂fF
∂q1

= 0,
∂fF
∂q3

= 0,
∂fF
∂m1

= 0,
∂fF
∂m3

= 0, (4.29)

numerically for the critical points of the ferronematic bulk potential in this restricted
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regime, where the partial derivatives are given by

∂fF
∂q1

= 2tq1 + 12
√
6q1q3 + 8

(
q31 + 3q1q

2
3

)
− cm2

1, (4.30)

∂fF
∂q3

= 6tq3 + 6
√
6
(
q21 − 3q23

)
+ 24

(
q21q3 + 3q33

)
+ c
(
m2

1 − 2m2
3

)
, (4.31)

∂fF
∂m1

= 2m1

(
m2

1 +m2
3

)((
m2

1 +m2
3

)2 − 1
)
− 2cm1

(
q1 − q3

)
, (4.32)

∂fF
∂m3

= 2m3

(
m2

1 +m2
3

)((
m2

1 +m2
3

)2 − 1
)
− 4cq3m3. (4.33)

We use the function vpasolve() in MATLAB [125] to find solutions of the coupled

system (4.29).

We compute the stability of each critical point by considering the eigenvalues of

their associated Hessian matrix, which is given by

H =



∂2fF
∂q21

∂2fF
∂q1∂q3

∂2fF
∂q1∂m1

∂2fF
∂q1∂m3

∂2fF
∂q1∂q3

∂2fF
∂q23

∂2fF
∂q3∂m1

∂2fF
∂q3∂m3

∂2fF
∂q1∂m1

∂2fF
∂m1∂q3

∂2fF
∂m2

1

∂2fF
∂m1∂m3

∂2fF
∂q1∂m3

∂2fF
∂m3∂q3

∂2fF
∂m3∂m1

∂2fF
∂m2

3
.


(4.34)

There are three possible classifications of a critical point based on the eigenvalues. If

all eigenvalues are positive, the critical point is at least a local minimum. If all eigen-

values are negative, the critical point is a local maximum. Finally, if some eigenvalues

are positive and others negative, the critical point is a saddle point. The results are

inconclusive if none of the three stated cases are fulfilled.

4.2.2 Critical Points as a Function of Temperature

In this section, we numerically compute critical points of the ferronematic bulk poten-

tial in (4.28) as a function of temperature, forming part of the picture of how bulk
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ferronematic critical points are influenced by temperature and coupling strength. We

consider the cases c = 1, 0.1, 0,−0.1, and −1, and find at least three biaxial critical

points in every case except for c = 0. In Figure 4.11, we plot the biaxiality parameter,

β = 1− 6

(
trQ3

)2(
trQ2

)3 , (4.35)

which is first introduced in 1.3.3, for each of the critical points for each value of c.

We also plot the eigenvalues of the Q-tensor, which are given by (4.27). We plot the

eigenvalues of the biaxial critical points, given in (4.27), in each case in Figure 4.12.

We plot the norm of the magnetisation vector, |M| =
√
m2

1 +m2
3, for each value of c

in Figure 4.13.

The visualisation of the biaxiality of the critical points in Figure 4.11 offers several

key insights into the role of biaxiality as a ferronematic bulk effect. We note that there

exist biaxial critical points in all cases, with the exception of the uncoupled case. This

is to be expected, as the critical points in the absence of nemato-magentic coupling are

essentially the critical points of the fourth-order nematic bulk potential, which we study

in Section 3.2, and which cannot be biaxial by Proposition 1.2. What is of significance

is that we observe at least locally stable biaxial critical points in all cases with nonzero

coupling, suggesting that biaxiality can be a preferred bulk effect with both the positive

and negative coupling, at least in theory.

Let us consider the positive coupling cases in Figures 4.11a and 4.11b. There exist

locally stable biaxial critical points in these scenarios, with the global minimiser being

uniaxial, with β = 0, at all temperatures in the range plotted. However, in the c = 1

case, the stable biaxial critical point (solid green line in Figure 4.11a) only exists over

a very narrow temperature range just above t = 0.7 with biaxiality of around β = 0.03.

Furthermore, in the c = 0.1 case, the locally stable biaxial critical point (solid green
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Figure 4.11: The biaxiality parameter, β, associated with biaxial critical points of
(4.28) for fixed c and t ∈ [−8, 2]. Thick solid lines indicate global minimality; thin
solid lines indicate local minimality, and dashed lines indicate instability. The vertical
dotted black line in (a), (b) and (d) indicates t = 0.
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line in Figure 4.11b) exists over a broader temperature range, but has a maximum

biaxiality of less than β = 0.002, and β tends to zero as t decreases. We note that

we have three unstable biaxial critical points in the case c = 1, and two unstable

biaxial critical points in the case c = 0.1. In both cases, two of these unstable critical

points take significantly larger values of the biaxiality parameter, β, in comparison to

the respective stable critical points, and in fact approach maximal biaxiality, which is

described by β = 1, at particular temperatures. However, since these critical points

are unstable, they do not correspond to potentially physically observable bulk effects.

The above observations suggest that, in the positive coupling case, it is very unlikely

that one will observe biaxiality as a bulk effect, and if biaxiality is observed, it will be

so weak that it approximates uniaxiality.

The negative coupling cases, c = −0.1 and c = −1, are given in Figures 4.11d

and 4.11e, respectively. We observe that both cases have globally minimising biaxial

critical points. In the c = −0.1 case, the behaviour of the stable biaxial critical point

(solid green line in Figure 4.11d) is similar to that of the stable biaxial critical point in

the c = 0.1 case: it first appears and is locally stable just above t = 1; has biaxiality

of at most β = 0.002; and β tends to zero as t decreases, meaning there is in fact

no significant biaxiality. The key difference in comparison to the positive coupling

case, c = 0.1, is that the stable biaxial critical point in this case is locally minimising

over a small temperature range and is then globally minimising for sufficiently low

temperatures.

The most interesting result is arguably in the c = −1 case, shown in Figure 4.11e.

In this case, a stable biaxial critical point emerges just below t = 1.74 (solid green

line in Figure 4.11e), and has biaxiality of up to β ≈ 0.55, which is significantly larger

than that of any of the stable biaxial critical points in the other cases. This stable
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critical point is locally minimising over a small range of high temperatures, and is then

globally stable, tending to zero as t decreases. This result suggests that there is a strong

possibility of observing bulk biaxiality at high temperatures (approximately between

t = 0 and t = 2) in the negative coupling case, c = −1.
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Figure 4.12: The eigenvalues, λi, associated with biaxial critical points of (4.28) for
fixed c and t ∈ [−8, 2]. Thick solid lines indicate global minimality; thin solid lines
indicate local minimality, and dashed lines indicate instability.

We plot the eigenvalues corresponding to each of the biaxial critical points in Figure

4.12, omitting the case c = 0, which has no biaxial critical points. We observe that the

stable critical points are the points with the eigenvalues which are largest in magni-
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tude. Furthermore, we plot the norm, |M| =
√
m2

1 +m2
3, of the magnetisation vector

associated with the biaxial critical points in Figure 4.13, again omitting the c = 0 case.

We observe that all of the biaxial critical points have nonzero associated magnetisation

vectors. We observe that the magnetisation vectors associated with stable biaxial crit-

ical points have the largest magnitude in the negative coupling cases, and the second

largest magnitude in the positive coupling cases, suggesting that a magnetisation vector

that is larger in magnitude plays a significant role in stabilising biaxial critical points.

We have omitted plots of the eigenvalues of the uniaxial critical points and their

associated magnetisation vectors due to the fact that there are several such points,

making the plots difficult to read, and therefore not particularly informative.

4.2.3 Critical Points as a Function of Nemato-Magnetic Coupling

In this section, we numerically compute critical points of the ferronematic bulk potential

in (4.28) as a function of nemato-magnetic coupling strength. We consider the cases

t = 1, 0,−1,−5, and −8, and plot the biaxiality parameter, β, for critical points in

the range c ∈ [−1, 1], to further investigate how bulk ferronematic critical points are

influenced by temperature and coupling strength. In particular, we look to track the

stability and the value of the biaxiality parameter, β, of stable biaxial critical points

as coupling strength varies from c = −1 to c = 1, at the given fixed temperatures.

As in the previous section, in Figure 4.14, we plot the biaxiality parameter in

(4.35) of each of the critical points for each value of t, with the norm of the associated

magnetisation vector, |M| =
√
m2

1 +m2
3, plotted in Figure 4.15. We find at least three

biaxial critical points at each temperature.

We observe that all plots in Figure 4.14 have globally minimising biaxial critical

points for negative c, as is to be expected from the plots in the previous section. The
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Figure 4.13: The norms of the magnetisation vectors, |M|, associated with biaxial
critical points of (4.28) for fixed c and t ∈ [−8, 2]. Thick solid lines indicate global min-
imality; thin solid lines indicate local minimality, and dashed lines indicate instability.

largest value of β for the globally minimising critical point (solid green line in Figure

4.14) in all cases occurs at c = −1 with β increasing as c decreases from c = 0, and

this maximal value decreases with temperature, suggesting biaxiality is less favourable

as temperature decreases.

As the biaxiality, β, of the global minimiser appears to increase as temperature

increases and nemato-magnetic coupling decreases in Figure 4.14, we speculate that

there may be a small range of high temperatures and negative coupling strengths that

144



Chapter 4. Critical Points of the Ferronematic Bulk Potential

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.002

0.004

0.006

0.008

0.01

(a) t = 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7

0

1

2

3

4

5
10

-3

(b) t = 0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6

0

0.5

1

1.5

2
10

-3

(c) t = −1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4

0

0.5

1

1.5

2
10

-4

(d) t = −5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3

0

0.2

0.4

0.6

0.8

1
10

-4

(e) t = −8

Figure 4.14: The biaxiality parameter, β, associated with biaxial critical points of
(4.28) for fixed t and c ∈ [−1, 1]. Thick solid lines indicate global minimality; thin solid
lines indicate local minimality, and dashed lines indicate instability.
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favour significant bulk biaxiality. Let us consider again Figure 4.12. In each case, there

exists some transition temperature at which biaxial critical points are first admissible,

and this transition temperature appears to increase as the value of c decreases.

At all temperatures, there exists a locally minimising biaxial critical point for pos-

itive c, for c as large as c ≈ 0.7 (see Figure 4.14b), but the corresponding biaxiality

parameter in each case is very small, making it only slightly biaxial. This further re-

inforces the suggestion that we are unlikely to observe anything beyond approximate

bulk uniaxiality in the positive coupling case.

The plots in Figure 4.14 further support our observations in Section 4.2.2: that

bulk biaxiality is most likely to be physically observable within some range of higher

temperatures, with negative coupling around c = −1.

Furthermore, we again observe that the magnetisation vector associated with the

locally minimising critical point with positive coupling has the second largest magnitude

at each temperature in Figure 4.15, while the magnetisation vector associated with the

globally minimising critical point with negative coupling has the largest magnitude

in each plot in Figure 4.15. The implication is that a magnetisation vector with a

larger magnitude, of the order |M| = 1, is required for the stability of biaxial critical

points. We plot the magnetisation vector associated with certain uniaxial critical points

in maroon in Figures 4.15a and 4.15c to illustrate connections between uniaxial and

biaxial critical points.

4.2.4 Summary

In this chapter, we investigate the nature of critical points of the ferronematic bulk

potential, first restricted to uniaxial Q-tensors and a co-aligned magnetisation vector,

as described in (4.2); and then in a more general setting with a Q-tensor that can be
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Figure 4.15: The norm of the magnetisation vector, |M|, associated with biaxial critical
points of (4.28) for fixed t and c ∈ [−1, 1]. Thick solid lines indicate global minimality;
thin solid lines indicate local minimality, and dashed lines indicate instability.
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biaxial, as described in (4.25).

In the uniaxial case, studied in Section 4.1, there are two key takeaways. Firstly, for

any positive coupling strength c, the global minimiser is nonzero in both s and m, even

at high temperatures, where (s,m) = (0, 0) is the global minimiser in the uncoupled

case. Secondly, we recall that s+ is the globally minimising value of s in the uncoupled

case in Figure 4.3, in agreement with the fourth-order uniaxial nematic case discussed

in Section 3.2.1. We observe that the nemato-magnetic coupling has a destabilising

effect on the branch (s,m) = (s+, 0), yet the branch (s,m) = (s−, 0) is locally stable

at low temperatures in cases with positive c.

We also demonstrate that the bulk critical points can be approximated by polyno-

mials in c in the weak coupling case, c = 0.01 in Section 4.1.3. This is useful as the

analytical expressions for the roots of the polynomial in h are unwieldy. While we have

not fully explored the specific contexts in which these approximations might useful,

they offer a promising alternative as long as they are used with care. Despite the need

for caution, the approximate expressions have the potential to simplify calculations

significantly.

In the more general case in Section 4.2, we demonstrate the existence of stable

biaxial bulk critical points in both the positive and negative nemato-magnetic coupling

cases. In the positive coupling case, the biaxial critical points are only locally stable,

and have small maximal biaxiality, which decreases with decreasing temperature. The

stable biaxial critical points are global minimisers and have larger maximal biaxaility

in comparison in the negative coupling cases, which increases as the magnitude of

c increases, and increases with increasing temperature. Our results suggest that bulk

biaxiality is most likely to be observed experimentally in regimes with stronger negative

nemato-magnetic coupling and at higher temperatures. In particular, we speculate that,
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for sufficiently large and negative nemato-magnetic coupling, c, there could exist a small

range of higher temperatures in which the global minimiser of the system approaches

maximal biaxiality.

An important next step is to investigate the ferronematic bulk critical points in the

class of Q-tensors with five degrees of freedom, but we anticipate that this delicate

problem will require significant computational power.
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Chapter 5

The Ferronematic Radial

Hedgehog Solution

The radial hedgehog solution has been studied extensively in the pure nematic case,

both in the literature in the likes of [63] and [64] and in our contributions in Chapter 3.

In this chapter, we consider spherical droplets of ferronematic liquid crystals and the

possible equilibrium configurations. We study the qualitative properties of the radial

hedgehog solution and other competing equilibria in the ferronematic case, investigating

the effects of nemato-magnetic coupling strength, droplet size, and temperature on the

system.

In Section 5.2, we present a range of analytical results for the ferronematic radial

hedgehog solution to complement existing results on the nematic radial hedgehog solu-

tion, providing insight into the effects of magnetisation on the character of the radial

hedgehog solution. We numerically explore the solution landscape of configurations

on spherical droplets with rotational and mirror symmetry in Section 5.3, and we use

broadly the same techniques as in the nematic case, allowing for qualitative comparison

between the nematic and ferronematic cases. We note that we work with a positive cou-
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pling parameter, c, throughout this chapter, so that the preferred coalignment between

the nematic director and magnetisation vector is parallel.

5.1 Problem Formulation

We work with a dimensionless ferronematic free energy, in the absence of surface ener-

gies and external fields, given by

FF [Q,M] =

∫
B(0,1)

ℓ

2
|∇Q|2 + t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

ℓ

2
|∇M|2 + 1

4

(
|M|2 − 1

)2 − cQM ·M dV, (5.1)

which we first introduce in Section 1.5.4, and we recall that we have rescaled the

domain to the unit ball, B(0, 1). We capture the nematic liquid crystal configuration

with the Q-tensor, as in the pure nematic case, and we model the magnetisation via

the magnetisation vector, M. The parameter ℓ is an elastic constant which is inversely

proportional to the droplet radius; the parameter t is the reduced temperature; and

the parameter c is the nemato-magnetic coupling strength.

In this setting, we impose strong radial anchoring via the Dirichlet boundary con-

dition

Q = Qsf
:= sf

(
r̂ ⊗ r̂ − 1

3
I

)
, M = Msf :=

√
1 +

4

3
csf r̂ =: mf r̂, on ∂B(0, 1),

(5.2)

where r̂ is the unit vector in the radial direction and sf is the largest positive scalar

order parameter corresponding to minimisers of

{
fF (Q,M) : Q = s

(
r̂ ⊗ r̂ − 1

3
I

)
, M = mr̂, s, m ≥ 0

}
, (5.3)
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and fF is the ferronematic bulk potential

fF (Q,M) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

1

4

(
|M|2 − 1

)2 − cQM ·M. (5.4)

We do not give an explicit expression for sf , but instead note that the pair (sf ,mf )

minimise the function

gF (s,m) :=
t

3
s2 − 2

√
6

9
s3 +

2

9
s4 +

1

4

(
m4 − 2m2 + 1

)
− 2

3
csm2, (5.5)

so that sf is the largest positive root of

h(s) := s3 − 3
√
6

4
s2 +

(
3t

4
− c2

)
s− 3c

4
= 0. (5.6)

We note that we discuss the roots of the function h, and, more generally, the critical

points of the function gF in (5.5) in greater detail in Section 4.1.

Critical points of the ferronematic free energy then belong to the admissible space

[97]

AQM =
{
Q ∈ W 1,2(B(0, 1);S0), M ∈ W 1,2(B(0, 1);R3) :

Q = Qsf
and M = Msf on ∂B(0, 1)

}
, (5.7)

where the spaceW 1,2(B(0, 1);S0) is defined in Section 2.1, and the spaceW 1,2(B(0, 1);R3)

is the space of all square-integrable vectors, M, with square-integrable first derivatives.
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Critical points of the ferronematic free energy satisfy the Euler–Lagrange equations

ℓ∆Qij = tQij + 3
√
6

(
1

3
trQ2δij −QikQkj

)
+ 2Qij trQ

2 + c

(
1

3
|M|2δij −MiMj

)
, (5.8)

and

ℓ∆Mi = Mi

(
|M|2 − 1

)
− 2cQijMj , (5.9)

where

1

3

(
3
√
6 trQ2 + c|M|2

)
δij (5.10)

is a Lagrange multiplier associated with the tracelessness constraint.

We are again interested in the radial hedgehog solution, which is an exact criti-

cal point of the ferronematic free energy in the admissible space, AQM, and in the

ferronematic case is of the form

Q∗(r) = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
, M∗(r) = m∗(r)r̂. (5.11)

The functions s∗ and m∗ depend only on the radial distance, r, and we take the admis-

sible space for pairs (s∗,m∗) to be

Asm =

{
s,m ∈ W 1,2([0, 1];R) : s(1) = sf , m(1) =

√
1 +

4

3
csf

}
. (5.12)

As in the purely nematic case, the radial hedgehog solution is spherically symmetric

and uniaxial everywhere, with the exception of the isotropic point defect at the droplet

centre. The associated magnetisation vector is also oriented in the radial direction

everywhere throughout the droplet.
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5.2 Analysis of the Radial Hedgehog Solution

In this section, we study properties of the ferronematic radial hedgehog solution. In

Chapter 3, we note that the nematic radial hedgehog solution exists with both the

fourth- and sixth-order bulk potentials; and the associated scalar order parameter is

positive away from the origin, unique, monotonic, and bounded in general with the

fourth-order bulk potential [63], [64]. We demonstrate that these properties hold at

moderately low temperatures with the sixth-order bulk potential in Chapter 3. More-

over, there exist analytical results demonstrating the stablity of the radial hedgehog

solution at high temperatures and in small droplets with the fourth-order bulk poten-

tial [63]; and we prove analogous results for small droplets with the sixth-order bulk

potential in Chapter 3.

5.2.1 Analytical Results

Our aim in this section is to first prove the existence of the ferronematic radial hedge-

hog solution and then to investigate whether uniqueness, boundedness, positivity, and

stability of the radial hedgehog solution are preserved in the ferronematic framework.

We begin with a general existence result for global minimisers of the ferronematic

free energy defined in (5.1).

Proposition 5.1. Consider the energy functional FF in (5.1), defined for functions

(Q,M) ∈ AQM, where AQM is defined in (5.7). There exists a global minimiser,

(Q∗,M∗) ∈ AQM for FF .

Proof. Firstly, the admissible space, AQM in (5.7), is nonempty since (Qsf
,Msf ) ∈

AQM.

Furthermore, the integrand of (5.1) is quadratic in the gradient of both Q and M,
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so the functional (5.1) is convex and thus weakly lower-semicontinuous.

Let us now consider the coupling term in (5.1):

− cQM ·M = −c
(
Q11M

2
1 +Q22M

2
2 +Q33M

2
3

+ 2Q12M1M2 + 2Q13M1M3 + 2Q23M2M3

)
. (5.13)

We note that, for example,

Q11M
2
1 ≤ |Q11|M2

1 , and 2Q12M1M2 ≤ |Q12|
(
M2

1 +M2
2

)
, (5.14)

and for some arbitrary λ > 0, it holds that

|Q11|M2
1 ≤ 1

2

(
λQ2

11 +
1

λ
M4

1

)
, (5.15)

and

|Q12|
(
M2

1 +M2
2

)
≤ 1

2

(
λQ2

12 +
1

λ

(
M2

1 +M2
2

)2)
. (5.16)

We use the same logic for the remaining terms, so that

−cQM ·M ≥ − c

2

(
λ
(
Q2

11 +Q2
22 +Q2

33 +Q2
12 +Q2

13 +Q2
23

)
+

1

λ

(
M4

1 +M4
2 +M4

3

+
(
M2

1 +M2
2

)2
+
(
M2

1 +M2
3

)2
+
(
M2

2 +M2
3

)2 ))

= − c

2

(
λ
(
trQ2 −Q2

12 −Q2
13 −Q2

23

)
+

1

λ

(
|M|4 + 2

(
M4

1 +M4
2 +M4

3

) ))
.

(5.17)
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Therefore, we find that

fF (Q,M) ≥ t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

1

4

(
|M|2 − 1

)2
− c

2

(
λ
(
trQ2 −Q2

12 −Q2
13 −Q2

23

)
+

1

λ

(
|M|4 + 2

(
M4

1 +M4
2 +M4

3

) ))
(5.18)

for an arbitrary λ > 0. We note that the ferronematic bulk potential, fF , and the

above expression, are polynomials in Qij , i, j = 1, 2, 3, and Mi, i = 1, 2, 3. The leading

order terms in Q are contained in the term 1
2

(
trQ2

)2
, which has a positive coefficient,

as required for the above expression to be bounded from below.

Now we consider the terms

1

4

(
|M|2 − 1

)2 − c

2λ

(
|M|4 + 2

(
M4

1 +M4
2 +M4

3

) )
=

(
1

4
− 3c

2λ

)(
M4

1 +M4
2 +M4

3

)
+

(
1

2
− c

λ

)(
M2

1M
2
2 +M2

1M
2
3 +M2

2M
2
3

)
− 1

2
|M|2 + 1

4
. (5.19)

Then for the leading order terms in M to have positive coefficients, we requre λ > 6c.

Therefore, the expression (5.18) must be bounded below if λ > 6c. Thus, the bulk

energy density, fF , and hence the integrand of (5.11) is bounded from below. Therefore,

the free energy (5.1) is coercive, and the existence of a global minimiser, (Q∗,M∗),

follows from the direct methods in the calculus of variations [107].

Our next result is an existence result for the ferronematic radial hedgehog solution,

inspired by Proposition 2.1 in [63].
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Proposition 5.2. (a) Consider the energy functional

IF [s,m] =

∫ 1

0

(
ℓ

(
1

3

(
ds

dr

)2

+
2

r2
s2

)
+

t

3
s2 − 2

√
6

9
s3 +

2

9
s4

+
ℓ

2

((
dm

dr

)2

+
2

r2
m2

)

+
1

4

(
m4 − 2m2 + 1

)
− 2csm2

)
r2 dr, (5.20)

defined for functions (s,m) ∈ Asm, where Asm is defined in (5.12). There exists

a global minimiser (s∗,m∗) ∈ Asm for IF . The function s∗ is a solution of the

ordinary differential equation

ℓ

(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= ts−

√
6s2 +

4

3
s3 − cm2, (5.21)

subject to the boundary conditions

s(0) = 0, s(1) = sf , (5.22)

where sf is the largest positive solution of (5.6). The function m∗ is a solution of

the ordinary differential equation

ℓ

(
d2m

dr2
+

2

r

dm

dr
− 2

r2
m

)
= m3 −m− 4

3
csm, (5.23)

subject to the boundary conditions

m(0) = 0, m(1) =

√
1 +

4

3
csf . (5.24)

We note that the equations (5.21) and (5.23) are the Euler–Lagrange equations
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associated with (5.20).

(b) The solution (Q∗,M∗), where

Q∗ = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
, M∗ = m∗(r)r̂, (5.25)

where s∗ and m∗ are the global minimisers in part (a), is a critical point of the

ferronematic free energy in (5.1).

(c) The global minimiser, (s∗,m∗), is analytic for all r ≥ 0.

Proof. (a) We prove existence via the direct methods in the calculus of variations,

which we outline in Section 2.1. The admissible space, Asm, is nonempty since

(s,m) =
(
sf ,
√
1 + 4

3csf

)
∈ Asm. The integrand of (5.20) is quadratic in ds

dr

and dm
dr , so the functional (5.20) is convex in ds

dr and dm
dr , and thus weakly lower

semicontinuous.

It holds that

− cλ

(
m2 − 1

λ
s

)2

= −c

(
λm4 +

1

λ
s2
)
+ 2csm2 ≤ 0, (5.26)

for an arbitrary λ > 0, so we may write

t

3
s2 − 2

√
6

9
s3 +

2

9
s4 +

1

4

(
m2 − 1

)2 − 2csm2

≥
(
t

3
− c

λ

)
s2 − 2

√
6

9
s3 +

2

9
s4 +

1

4

(
(1− 4cλ)m4 − 2m2 + 1

)
, (5.27)

which is bounded below if λ < 1
4c . Therefore, the energy density in (5.20) is

bounded from below, and the existence of a global minimiser (s∗,m∗) follows from

the direct methods in the calculus of variations [107].
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The boundary conditions s∗(1) = sf , and m∗(1) =
√
1 + 4

3csf follow from the

definition of the admissible space, Asm in (5.12). The boundary conditions s∗(0) =

m∗(0) = 0 follow from the continuity of s∗ and m∗ for r ∈ [0, 1]. All functions s ∈

Asm are necessarily continuous since s ∈ W 1,2 ([0, 1];R) implies s ∈ C0,α ([0, 1];R)

for some 0 < α < 1
2 from the Sobolev embedding theorem [107], and the same

is true for all functions m ∈ Asm. To show that s∗(0) = m∗(0) = 0, assume for

a contradiction that |s∗(r0)| ≥ s0 and |m∗(r0)| ≥ m0 for some fixed s0, m0 and

0 < r0 ≪ 1. Since s∗ and m∗ are continuous, s∗ and m∗ must both have a fixed

sign near the origin. We further assume that s∗(r) ≥ s0 > 0 and m∗(r) ≥ m0 > 0

for r ∈ [0, r0]. We note that the sign of m∗(r) near the origin is trivial in this case,

as only even powers of m∗ appear in the following equations.

The equation (5.21) can be rewritten as

d

dr

(
r2

ds

dr

)
= 6s+

r2

ℓ

(
ts−

√
6s2 +

4

3
s3 − cm2

)
. (5.28)

Integrating from σ to r, where 0 < σ < r
10 , we obtain

∫ r

σ

d

dr′

(
r′

2ds
∗

dr′

)
dr′

=

∫ r

σ
6s∗ dr′ +

∫ r

σ

r′2

ℓ

(
ts∗ −

√
6s∗2 +

4

3
s∗3 − cm∗2

)
dr′, (5.29)

so that

r2
ds∗

dr
− σ2ds

∗

dr

∣∣∣
r=σ

=

∫ r

σ
6s∗ dr′ +

∫ r

σ

r′2

ℓ

(
ts∗ −

√
6s∗2 +

4

3
s∗3 − cm∗2

)
dr′. (5.30)
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Then we may write

r2
ds∗

dr
≥ C1s0r + C2

(
r3 − σ3

)
+ σ2s∗′(σ). (5.31)

Dividing by r2, squaring both sides, and integrating, it is possible to show that

∫ r

σ

(
ds∗

dr′

)2

dr′ → ∞ (5.32)

in the limit σ → 0, which contradicts the fact that s∗ ∈ W 1,2 ([0, 1];R). An analo-

gous argument for m∗ shows that our assumption also violates m∗ ∈ W 1,2 ([0, 1];R).

Therefore, we must have that s∗(0) = 0 and m∗(0) = 0 for any solution (s∗,m∗) ∈

Asm of (5.21) and (5.23). Hence, (s∗,m∗) is a solution of the coupled ODEs, (5.21)

and (5.23), subject to the boundary conditions

s∗(0) = 0 and s∗(1) = sf , (5.33)

m∗(0) = 0 and m∗(1) =

√
1 +

4

3
csf . (5.34)

(b) Firstly, we note that (Q∗,M∗) ∈ AQM in (5.7) since (s∗,m∗) ∈ W 1,2 ([0, 1];R).

Furthermore, we note that FF [Q
∗,M∗] = 4πIF [s

∗,m∗], and it can be shown that

(Q∗,M∗) satisfies the Euler–Lagrange equations (5.8) and (5.9) since (s∗,m∗) is a

solution of the ODEs (5.21) and (5.23), subject to the boundary conditions (5.22)

and (5.24).

(c) The analyticity of solutions of systems of nonlinear elliptic partial differential equa-

tions is proven in Chapter 6 of [126], and this can be applied to solutions of the

ferronematic Euler–Lagrange equations (5.8) and (5.9), (Q,M), subject to the

boundary conditions (5.2). We note also that the analyticity of solutions of the
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Landau–de Gennes free energy is proven in [49]. Therefore, the radial hedgehog

solution given by (5.11), which is a solution of the ferronematic Euler–Lagrange

equations, must be analytic. We have that Q and M are in W 1,2(B(0, 1);S0) by

definition of the admissible space in (5.7). Then the right-hand sides of the Eu-

ler–Lagrange equations in (5.8) and (5.9) must belong to L2 (B(0, 1);S0) by the

Sobolev embedding theorem. Hence, elliptic regularity and thus analyticity of so-

lutions (Q,M) follows, and we refer the reader to [49] for more details.

To prove analyticity of the radial hedgehog scalar order parameter, we note that

Corollary 2 in [49] implies that the eigenvectors of the radial hedgehog solution are

also analytic away from the isotropic point defect at r = 0, so the radial hedgehog

scalar order parameter s∗ must also be analytic away from the origin. Furthermore,

Proposition 1 in [64] can be applied to the ferronematic radial hedgehog scalar order

parameter, and we may conclude that s∗ is also analytic at r = 0.

Now, considering the associated magnetisation vector, we first note that the unit

vector in the radial direction, r̂, is an eigenvector of the radial hedgehog Q-tensor,

and is thus analytic away from the origin, as above. Hence, m∗ must also be

analytic away from the origin.

Remark: We note that an argument first given in Proposition 1 in [64] can be

used to prove that s∗′(0) = 0, but the analogous argument does not hold for m∗, so we

cannot claim that m∗′(0) = 0.

In this next result, we prove the nonnegativity of the function s∗, but we note that

the analogous argument does not hold for the function m∗ since only even powers of m

appear in the energy functional IF in (5.20).
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Proposition 5.3. Let (s∗,m∗) be the global minimiser of IF in (5.20), subject to the

boundary conditions (5.22) and (5.24). The function s∗ satisfies

s∗(r) > 0 for r ∈ (0, 1]. (5.35)

Proof. We use the energy minimality condition to prove the lower bound s∗(r) ≥ 0.

Suppose there exists an interior measurable subset

Γ = {r ∈ (0, 1) : s∗(r) < 0} ⊂ [0, 1], (5.36)

with s∗(r) = 0 on ∂Γ. We note that Γ must be an interior subset because of the

boundary conditions s∗(0) = 0, s∗(1) = sf .

Define the perturbation

s̄∗(r) =


s∗(r), r ∈ [0, 1] \ Γ,

−s∗(r), r ∈ Γ.

(5.37)

Then

IF [s̄∗,m∗]− IF [s∗,m∗] =

∫
Γ

(
4
√
6

9
s∗3 +

4

3
cs∗m∗2

)
r2 dr < 0. (5.38)

However, this contradicts the energy minimality of (s∗,m∗). It follows that s∗(r) ≥ 0

for r ∈ [0, 1].

Next, we show that s∗(r) > 0 for r > 0. Assume for a contradiction that there exists

some r0 ∈ (0, 1] such that s∗(r0) = 0. Since we have already shown that s∗(r) ≥ 0 on

[0, 1], the function s∗ must therefore have a minimum at r0. Then

ds∗

dr

∣∣∣
r=r0

= 0, and
d2s∗

dr2

∣∣∣
r=r0

≥ 0. (5.39)
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If we substitute s∗(r0) into

ℓ

(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= ts−

√
6s2 +

4

3
s3 − 2

3
cm2, (5.40)

we find that

d2s∗

dr2

∣∣∣
r=r0

= −2c

3ℓ
m∗2(r0). (5.41)

If m∗(r0) = 0, we find that

d2s∗

dr2

∣∣∣
r=r0

= 0 (5.42)

for all n ∈ N. However, this cannot be true because s∗ is analytic by Proposition 5.2,

part (c), and we have the boundary condition s∗(1) = sf .

If m∗(r0) ̸= 0, we find that

d2s∗

dr2

∣∣∣
r=r0

< 0, (5.43)

which contradicts the assumption that s∗ has a minimum at r0.

Therefore, we may conclude that s∗(r) > 0 for r ∈ (0, 1].

Next, we prove a maximum principle, which yields upper bounds for s∗ and m∗ in

(5.11).

Proposition 5.4. We work in the temperature regime t < 0, with nonnegative nemato-

magnetic coupling, c. Uniaxial minimisers, (Q∗,M∗), of the ferronematic free energy

(5.1) of the form (5.11) in the admissible space, AQM in (5.7), satisfy the upper bounds

|Q∗|2 ≤ 2
3s

2
f and |M∗|2 ≤ 1 + 4

3csf on B(0, 1), where sf is the largest positive root of

(5.6).

Proof. Suppose |Q∗| and |M∗| attain maxima at two distinct points, r1, r2 ∈ (0, 1),

163



Chapter 5. The Ferronematic Radial Hedgehog Solution

respectively. We multiply the Euler–Lagrange equations in (5.8) by Q∗
ij to find that

1

2
∆|Q∗|2 − |∇Q∗|2 = 1

ℓ

(
t|Q∗|2 − 3|Q∗|3 + 2|Q∗|2 − cQ∗M∗ ·M∗) , (5.44)

where we have used the fact that |∇Q∗|2+Q∗
ij∆Q∗

ij =
1
2∆|Q∗|2 and trQ∗3 = 1√

6
|Q∗|3,

which comes from the definition of the biaxiality parameter, β = 1 − 6
(trQ3)

2

(trQ2)
3 , noting

that β = 0 when the Q-tensor is uniaxial, and trQ2 = |Q|2. Then, since Q∗ attains its

maximum at r1, we must have that

1

ℓ

(
t|Q∗|2 − 3|Q∗|3 + 2|Q∗|4 − cQ∗M∗ ·M∗) ∣∣∣

r=r1
≤ 0. (5.45)

Similarly, we multiply the Euler–Lagrange equations (5.9) by M∗
ij to obtain

1

2
∆|M∗|2 − |∇M∗|2 = 1

ℓ

(
|M∗|2

(
|M∗|2 − 1

)
− 2cQ∗M∗ ·M∗) , (5.46)

so that

1

ℓ

(
|M∗|2

(
|M∗|2 − 1

)
− 2cQ∗M∗ ·M∗) ∣∣∣

r=r2
≤ 0. (5.47)

Next, we substitute

Q∗ = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
and M∗ = m∗(r)r̂ (5.48)

into (5.45) and (5.47), which yields

(
2t

3
s∗2 − 2

√
6

9
s∗3 +

8

9
s∗4 − 2

3
cs∗m∗2

)∣∣∣
r=r1

≤ 0 (5.49)
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and (
m∗2 (m∗2 − 1

)
− 4

3
cs∗m∗2

) ∣∣∣
r=r2

≤ 0. (5.50)

The above inequality reduces to

(
m∗2 − 1− 4

3
cs∗
) ∣∣∣

r=r2
≤ 0, (5.51)

and we may conclude that in fact

m∗2(r) ≤ 1 +
4

3
cs∗(r2) (5.52)

for all r ∈ [0, 1], as m∗ attains a maximum at r2. Since s∗(r1) ≥ s∗(r2), we may write

m∗2(r1) ≤ 1 +
4

3
cs∗(r1). (5.53)

We substitute this into (5.49) to find that

(
8

9
s∗4 − 2

√
6

3
s∗3 +

(
2t

3
− 8

9
c2
)
s∗2 − 4

3
cs∗

)∣∣∣
r=r1

≤ 0. (5.54)

The left-hand side of the above equation tends to positive infinity as s → ∞. In addi-

tion, the polynomial has one positive root, sf , by Descartes’ rule of signs, which states

that the number of positive roots of a polynomial is at most equal to the number of sign

changes in the sequence of coefficients, excluding zero coefficients. Furthermore, the

difference between the number of roots and the number of sign changes is always even.

In this case, with t < 0, there is only one sign change in the sequence of coefficients in

(5.54), so there must be exactly one positive root. Furthermore, we have demonstrated

that s∗(r) ≥ 0 for r ∈ [0, 1] in Proposition 5.3. Hence, we find that the condition in

165



Chapter 5. The Ferronematic Radial Hedgehog Solution

(5.54) is satisfied if s∗(r1) ≤ sf , where sf is the largest positive root of the equation

(5.6). In other words, |Q∗| attains a maximum at r1 ∈ [0, 1] if 0 ≤ s∗(r1) ≤ sf .

Therefore, we must have s∗(r) ≤ sf for r ∈ [0, 1]. We may then also conclude that

m∗2 ≤ 1 + 4
3csf .

Hence,

|Q∗|2 ≤ 2

3
cs2f , and |M∗|2 ≤ 1 +

4

3
csf . (5.55)

The next result shows that the radial hedgehog solution is the unique critical point

of the ferronematic free energy, (5.1), for droplets of sufficiently small radius. The

implication is that the radial hedgehog solution is hence the globally stable critical

point in sufficiently small droplets, due to the convexity of the ferronematic free energy

for sufficiently large ℓ. The proof is inspired by Theorem 2.5 in [97].

Proposition 5.5. For ℓ sufficiently large, the radial hedgehog solution, (Q∗,M∗), de-

fined in (5.11) is the unique critical point of the ferronematic free energy (5.1), subject

to the boundary conditions (5.2).

Proof. We want to show that there is a unique critical point of

FF [Q,M] =

∫
B(0,1)

ℓ

2
|∇Q|2 + ℓ

2
|∇M|2 + fF (Q,M) dV, (5.56)

where

fF (Q,M) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

1

4

(
|M|2 − 1

)2 − cQM ·M. (5.57)

First, we show that the free energy is strictly convex for ℓ sufficiently large. Let
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(Q,M) ,
(
Q̄, M̄

)
∈ AQM, so that

(
Q− Q̄

)
,
(
M− M̄

)
∈ W 1,2

0 (B(0, 1);S0), (5.58)

where W 1,2
0 (B(0, 1);S0) is the space of Q-tensors that belong to W 1,2(B(0, 1);S0) that

are zero on ∂B(0, 1), due to the boundary conditions (5.2).

We note that

FF

[
Q+ Q̄

2
,
M+ M̄

2

]
=

1

2

(
FF [Q,M] + FF

[
Q̄, M̄

])
+

∫
B(0,1)

(
fF

(
Q+ Q̄

2
,
M+ M̄

2

)
− 1

2

(
fF (Q,M) + fF

(
Q̄, M̄

))
− ℓ

8

∣∣∇Q−∇Q̄
∣∣2 − ℓ

8

∣∣∇M−∇M̄
∣∣2) dV

≤ 1

2

(
FF [Q,M] + FF

[
Q̄, M̄

])
+

∫
B(0,1)

(
fF

(
Q+ Q̄

2
,
M+ M̄

2

)
− 1

2

(
fF (Q,M) + fF

(
Q̄, M̄

)))
dV

− C1ℓ
∣∣∣∣Q− Q̄

∣∣∣∣2
L2 − C2ℓ

∣∣∣∣M− M̄
∣∣∣∣2
L2 ,

(5.59)

where we have used the Poincaré inequalities

1

8

∣∣∣∣∇(Q− Q̄
)∣∣∣∣2

L2 ≥ C1

∣∣∣∣Q− Q̄
∣∣∣∣2
L2 , (5.60)

1

8

∣∣∣∣∇(M− M̄
)∣∣∣∣2

L2 ≥ C2

∣∣∣∣M− M̄
∣∣∣∣2
L2 . (5.61)
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Note that

∂2fF
∂Qpq∂Qij

= tδipδjq − 3
√
6 (δipQjq + δjqQip) + 2δipδjq trQ

2 + 4QijQpq,

≤ max

{
6
√
6sf + |t|, 16

3
s2f

}
=: a1,

(5.62)

∂2fF
∂Mk∂Mi

= −c (δikMj + δjkMi) ≤ 2c

√
1 +

4

3
csf =: a2, (5.63)

∂2fF
∂Mk∂Qij

= δikMiMj + 2MiM
2
k − δik − cQik

≤ 1 +

√
2

3
csf +

4

3
csf + 2

(
1 +

4

3
csf

)3/2

=: a3.

(5.64)

Next, we use the fact that

fF

(
Q+ Q̄

2
,
M+ M̄

2

)
− 1

2

(
fF (Q,M) + fF (Q̄, M̄)

)
≤
∣∣∣∣ ∂2fF
∂Qpq∂Qij

∣∣∣∣ ∣∣∣∣Q− Q̄
∣∣∣∣2
L2 +

∣∣∣∣ ∂2fF
∂Mk∂Mi

∣∣∣∣ ∣∣∣∣M− M̄
∣∣∣∣2
L2

+

∣∣∣∣ ∂2fF
∂Mk∂Qij

∣∣∣∣ ∣∣∣∣Q− Q̄
∣∣∣∣
L2

∣∣∣∣M− M̄
∣∣∣∣
L2 , (5.65)

to find that

∫
B(0,1)

fF

(
Q+ Q̄

2
,
M+ M̄

2

)
− 1

2

(
fF (Q,M) + fF

(
Q̄, M̄

))
dV

≤ a1
∣∣∣∣Q− Q̄

∣∣∣∣2
L2 + a2

∣∣∣∣M− M̄
∣∣∣∣2
L2 + a3

∣∣∣∣Q− Q̄
∣∣∣∣
L2

∣∣∣∣M− M̄
∣∣∣∣
L2 . (5.66)

Now, we note that

∣∣∣∣Q− Q̄
∣∣∣∣
L2

∣∣∣∣M− M̄
∣∣∣∣
L2 ≤ 1

2

(
λ
∣∣∣∣Q− Q̄

∣∣∣∣2
L2 +

1

λ

∣∣∣∣M− M̄
∣∣∣∣2
L2

)
(5.67)
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for any λ > 0. Let us set λ = 2, so that we have

FF

[
Q+ Q̄

2
,
M+ M̄

2

]
≤ 1

2

(
FF [Q,M] + FF

[
Q̄, M̄

])
+ (a1 + a3 − C1ℓ)

∣∣∣∣Q− Q̄
∣∣∣∣2
L2

+ (a2 + a3 − C2ℓ)
∣∣∣∣M− M̄

∣∣∣∣2
L2 . (5.68)

Hence, if ℓ > ℓ(c, t) = max

{
1

C1
(a1 + a3),

1

C2
(a2 + a3)

}
, we have

FF

[
Q+ Q̄

2
,
M+ M̄

2

]
<

1

2
FF [Q,M] +

1

2
FF

[
Q̄, M̄

]
, (5.69)

for all Q, Q̄ ∈ W 1,2(B(0, 1);S0), and M, M̄ ∈ W 1,2(B(0, 1);S0) such that Q ̸= Q̄,

M ̸= M̄. Hence, FF is strictly convex if ℓ is large enough.

Next, assume that ℓ > ℓ∗, and that there exist two distinct solutions, (Q,M) ,
(
Q̄, M̄

)
of (5.1) in the admissible space AQM. Then for v ∈ [0, 1], the derivative of

FF

[
vQ+ (1− v)Q̄, vM+ (1− v)M̄

]
(5.70)

vanishes at v = 0 and v = 1. However, this contradicts the strict convexity of FF , so

we may conclude that a critical point of FF must be unique.

Remark: The values a1, a2, a3, which are functions of |t|, c, and sf , increase with

|t|, noting that sf also increases with |t|. We recall that sf is the largest positive root

of

s3 − 3
√
6

4
s2 +

(
3t

4
− c2

)
s− 3c

4
= 0. (5.71)
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Then, for large negative t, we have that

sf ≈
(
3

4
|t|
)1/2

. (5.72)

Therefore, a1 increases like |t|; a2 increases like |t|1/4; and a3 increases like |t|3/4.

Therefore, the value of ℓ required for uniqueness increases as |t| increases, meaning

smaller droplets are required for the uniqueness of the radial hedgehog solution at low

temperatures.

In the next result, we consider the analytic form of the minimiser, (s∗,m∗), of the

functional IF in (5.20) in Proposition 5.2 in the small droplet limit.

Proposition 5.6. In the limit ℓ → ∞, the global minimiser, (s∗,m∗), of IF in (5.20),

subject to the boundary conditions (5.22) and (5.24), is of the form

(s∗,m∗) =

(
sfr

2,

√
1 +

4

3
csf r

)
, (5.73)

where sf is the largest positive root of (5.6).

Proof. We have the Euler–Lagrange equations

ℓ

(
s′′ +

2

r
s′ − 6

r2
s

)
= ts−

√
6s2 +

4

3
s3 − 2

3
cm2, (5.74)

ℓ

(
m′′ +

2

r
m′ − 2

r2
m

)
= m3 −m− 4

3
csm. (5.75)

In the limit ℓ → ∞, these reduce to

s′′ +
2

r
s′ − 6

r2
s = 0, (5.76)

m′′ +
2

r
m′ − 2

r2
m = 0. (5.77)
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It is straightforward to show that

s∗(r) = Ar2, and m∗(r) = Br (5.78)

solve the first and second equation, respectively. We use the boundary conditions,

s∗(1) = sf and m∗(1) =
√
1 + 4

3csf , to find that

s∗(r) = sfr
2, and m∗(r) =

√
1 +

4

3
csf r. (5.79)

5.2.2 Series Expansion for the Radial Hedgehog Solution

In this section, we derive series expansions for the minimisers, (s∗,m∗), of the en-

ergy functional IF in (5.20), inspired by Proposition 3.1 in [63]. We then numerically

compute optimal coefficients for truncated versions of these series expansions.

Proposition 5.7. Let (s∗,m∗) be a global minimiser of the energy functional (5.20),

subject to the boundary conditions (5.22), (5.24). We construct power series expansions

of s∗ and m∗ about the origin of the form

s∗(r) =
∞∑
n=1

anr
n, (5.80)

m∗(r) =

∞∑
n=1

bnr
n, r ≤ Rc, (5.81)

where Rc is the smaller of the two radii of convergence of the two series. Moreover, we

have a1 = a3 = ... = a2k+1 = b2 = b4 = ... = b2k = 0, k ∈ N+.

Proof. We have that s∗ and m∗ are analytic from Proposition 5.2 for r ≥ 0. We
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substitute the two series, (5.80) and (5.81), into the Euler–Lagrange equations

ℓ

(
s′′ +

2

r
s′ − 6

r2
s

)
= ts−

√
6s2 +

4

3
s3 − 2

3
cm2, (5.82)

ℓ

(
m′′ +

2

r
m′ − 2

r2
m

)
= m3 −m− 4

3
csm, (5.83)

to obtain

ℓ
∞∑
n=1

(
n2 + n− 6

)
anr

n−2 =
∞∑
n=1

(
tan −

√
6d2,n +

4

3
d3,n − 2

3
ce2,n

)
rn, (5.84)

ℓ

∞∑
n=1

(
n2 + n− 2

)
bnr

n−2 =

∞∑
n=1

(
e3,n − bn − 4

3
cjn

)
rn, (5.85)

where we set

d2,n :=

n−1∑
k=1

akan−k, d3,n :=

n−1∑
k=2

d2,k, (5.86)

e2,n :=
n−1∑
k=1

bkbn−k, e3,n :=
n−1∑
k=2

e2,kbn−k, jn :=
n−1∑
k=1

akbn−k. (5.87)

Direct computations show that

a1 = a3 = 0, b2 = b4 = 0, (5.88)

a2 > 0 arbitrary, a4 =
1

14ℓ

(
ta2 −

2

3
cb21

)
, (5.89)

b1 arbitrary, b3 =
1

10ℓ
, b5 =

1

28ℓ

(
b31 −

1

10ℓ
b1 −

4

3
ca2b1

)
, (5.90)

where we have used the nonnegativity of s∗, as proven in Proposition 5.3.

We show by induction that (5.80) involves no odd powers of r, while (5.81) involves

no even powers of r. Suppose that a2n+1 = b2n = 0 for n = 1, ..., p. We show that

a2p+3 = b2p+2 = 0 also.
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Comparing the coefficients of r2p+1 in (5.84), we find that

2ℓ(2p2 + 7p+ 3)a2p+3 = ta2p+1 −
√
6d2,2p+1 +

4

3
d3,2p+1 −

2

3
ce2,2p+1. (5.91)

We show that each term on the right-hand side of (5.91) is zero. For the first term, we

have from our assumption that a2p+1 = 0. For the second term, from our definition in

(5.86), we write

d2,2p+1 =

2p∑
k=1

aka2p+1−k. (5.92)

Since exactly one of k and 2p+1−k is odd for each k ∈ {1, ..., 2p}, we have d2,2p+1 = 0.

For the third term, from the definition in (5.86), we write

d3,2p+1 =

2p∑
k=2

d2,ka2p+1−k = d2,3a2p−2 + d2,5a2p−4 + · · ·+ d2,2p−3a4 + d2,2p−1a2, (5.93)

where we use the assumption that a2n+1 = 0 for n = 1, ..., p. It is possible to show,

using an argument analogous to that for the second term, that d2,q = 0 for any odd q

such that q ≤ 2p+ 1. Thus, d3,2p+1 = 0, also. Finally, for the fourth term, we write,

e2,2p+1 =

2p∑
k=1

bkb2p+1−k, (5.94)

from the definition in (5.87). Since exactly one of k and 2p + 1 − k is odd for each

k ∈ {1, ..., 2p}, we may conclude that e2,2p+1 = 0 by our assumption. Therefore, the

right-hand side of (5.91) is zero, which implies that a2p+3, as required.

Similarly, comparing coefficients of r2p in (5.85), we find that

2ℓ(2p2 + 5p+ 2)b2p+2 = e3,2p − b2p −
4

3
cj2p. (5.95)
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We show that each term on the right-hand side of (5.95) is zero. For the second term,

we have that b2p = 0 by assumption. For the first term, from our definition in (5.87),

we write

e3,2p =

2p−1∑
k=2

e2,kb2p−k = e2,3b2p−1 + · · ·+ e2,2p−3b3 + e2,2p−1b1, (5.96)

where we use the assumption that b2n = 0 for n = 1, ..., p. For some odd q such that

q ≤ 2p− 1, we have

e2,q =

q−1∑
k=1

bkbq−k, (5.97)

and we note that exactly one of k and q − k is even for each k ∈ {1, ..., q}. Then we

may conclude that e2,q = 0 for q ≤ 2p+ 1. Hence we may also conclude that e3,2p = 0.

For the third term, we write

j2p =

2p−1∑
k=1

akb2p−k, (5.98)

from our definition in (5.87), and we note that both k and 2p − k are even or both

are odd, we use the assumption that a2n+1 = b2n = 0 for n = 1, ..., p to conclude that

j2p = 0. Therefore, the right-hand side of (5.95) is zero, which implies that b2p+2, as

required.

Therefore, by the principle of mathematical induction, we may conclude that

a2n+1 = 0, b2n = 0, ∀n ∈ N+. (5.99)

Hence, the expansion (5.80) contains no odd powers of r, while the expansion (5.81)

contains no even powers of r.

Next, we show by induction that a2n+1 and b2n+1 are functions of a2, b1, t, c, and ℓ,
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so that

a2n+2 := fn (a2, b1, t, c, ℓ) , b2n+1 := gn (a2, b1, t, c, ℓ) ∀n ∈ N+. (5.100)

Direct computations have shown that a2, a4, b3, and b5 are functions of a2, b1, t, c, and

ℓ in (5.88)-(5.90).

Suppose that

a2n+2 = fn (a2, b1, t, c, ℓ) , b2n+1 = gn (a2, b1, t, c, ℓ) (5.101)

for n = 1, ..., p. We show that

a2p+4 = fp+1 (a2, b1, t, c, ℓ) , b2p+3 = gp+1 (a2, b1, t, c, ℓ) , (5.102)

also.

Comparing coefficients of r2p+2 in (5.84), we find that

2ℓ(2p2 + 9p+ 7)a2p+4 = ta2p+2 −
√
6d2,2p+2 +

4

3
d3,2p+2 −

2

3
ce2,2p+2. (5.103)

We show that the right-hand side of (5.103) is a function of a2, b1, t, c, and ℓ. For the

first term, we have that a2p+2 = fp(a2, b1, t, c, ℓ) by our induction assumption. For the

second term, we write, from (5.86),

d2,2p+2 =

2p+1∑
k=1

aka2p+2−k = a2fp−2 + f1fp−2 + · · ·+ fp−2f1 + fp−1a2, (5.104)

where we have used the fact that a2n+1 = 0 ∀n ∈ N+, demonstrating that d2,2p+1 is a
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function of a2, b1, t, c, and ℓ. For the third term, we write

d3,2p+2 =

2p+1∑
k=2

d2,ka2p+2−k = d2,2a2p + d2,4a2p−1 + · · ·+ d2,2pa2, (5.105)

where we have used the fact that a2n−1 = 0 ∀n ∈ N+. The terms d2,2, ..., d2,2p can be

expressed in terms of a2, ..., a2p−2, so d3,2p+2 is also a function of a2, b1, t, c, and ℓ. For

the last term, from the definition in (5.87), we write

e2,2p+2 =

2p+1∑
k=1

bkb2p+2−k. (5.106)

Both k and 2p+ 2− k are even or both are odd, so we may write

e2,2p+2 = b1gp + g1gp−1 + · · ·+ gp−1g3 + gpb1, (5.107)

where we have used the fact that b2n = 0 ∀n ∈ N+, showing that e2,2p+2 is also a

function of a2, b1, t, c, and ℓ.

Hence, the right-hand side of (5.103) is a function of a2, b1, t, c, and ℓ, so a2p+2 is

also a function of a2, b1, t, c, and ℓ, and we write

a2p+4 = fp+1 (a2, b1, t, c, ℓ) . (5.108)

Finally, we consider the coefficients of r2p+1 in (5.85), and find that

2ℓ(2p2 + 7p+ 5)b2p+3 = e3,2p+1 − b2p+1 −
4

3
cj2p+1. (5.109)

We show that the right-hand side of (5.109) is a function of a2, b1, t, c, and ℓ. We have

b2p+1 = gp(a2, b1, t, c, ℓ) by our induction assumption, for the first term. For the second
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term, from our definition in (5.87), we write

e3,2p+1 =

2p∑
k=2

e2,kb2p+1−k = e2,2b2p−1 + e2,4b2p−3 + · · ·+ e2,2p−2b3 + e2,2pb1, (5.110)

where we have used the fact that b2n = 0 ∀n ∈ N+. The terms e2,2, ..., e2,2p can be

expressed in terms of b1, b2p−1 by their definition in (5.87), so e3,2p+1 is also a function

of a2, b1, t, c, and ℓ. Furthermore, for the third term, we write

j2p+1 =

2p∑
k=1

akb2p+1−k, (5.111)

and we note that exactly one of k and 2p+ 1− k is odd for each k ∈ {1, ..., 2p}, so

j2p+1 = a2gp−2 + · · ·+ fp−2g1 + fp−1b1, (5.112)

where we have used the fact that a2n−1 = 0 ∀n ∈ N+, demonstrating that j2p+1 is a

function of a2, b1, t, c, and ℓ.

Therefore, the right-hand side of (5.109) is a function of a2, b1, t, c, and ℓ, which

implies that b2p+3 is also a function of a2, b1, t, c, and ℓ, and we write

b2p+3 = gp+1(a2, b1, t, c, ℓ). (5.113)

Therefore, by the principle of mathematical induction, we may conclude that

a2n+2 = fn(a2, b1, t, c, ℓ), b2n+1 = gn(a2, b1, t, c, ℓ), ∀n ∈ N+. (5.114)
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From the above, we may write

s∗(r) = a2r
2 + f1(a2, b1, t, c, ℓ)r

4 + f2(a2, b1, t, c, ℓ)r
6 + o(r6), (5.115)

m∗(r) = b1r + g1(a2, b1, t, c, ℓ)r
3 + g2(a2, b1, t, c, ℓ)r

5 + o(r5). (5.116)

Remark: Using the form of s∗ and m∗ near the origin in Proposition 5.7, we note

that we must have s∗′(0) = 0 and m∗′(0) = b1.

Proposition 5.7 proves that we may write

s(r) = a2r
2 + a4r

4 + a6r
6 + a8r

8 + o(r8), (5.117)

m(r) = b1r + b3r
3 + b5r

5 + b7r
7 + o(r7), (5.118)

inside some radius of convergence, where a2 and b1 are arbitrary, and a4, a6, a8, ..., and

b3, b5, b7, ..., are functions of a2, b1, t, c, and ℓ. In the remainder of this section, we

investigate how well polynomials of the form

s(r) = a2r
2 + a4r

4 + a6r
6 + a8r

8, (5.119)

m(r) = b1r + b3r
3 + b5r

5 + b7r
7, (5.120)

fit minimisers, (s,m), of (5.20), subject to the boundary conditions (5.22) and (5.24).

We numerically compute critical points, (s,m), of (5.20) via a finite element method

for specific values of t, ℓ, and c. We solve over the unit interval, [0, 1], and look for
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minimisers of the free energy IF in (5.20) by considering the weak formulations

Fs =

∫ 1

0
ℓ

(
ds

dr

dv1
dr

− 2

r

ds

dr
v1 +

6

r2
sv1

)
+ v1

(
ts−

√
6s2 +

4

3
s3 − 2

3
sm2

)
dr,

Fm =

∫ 1

0
ℓ

(
dm

dr

dv2
dr

− 2

r

dm

dr
v2 +

2

r2
mv1

)
+ v2

(
m3 −m− 4

3
csm

)
dr,

(5.121)

which are obtained from the Euler–Lagrange equations (5.21) and (5.23), where v1 and

v2 are test functions. We solve for (s,m) such that Fs = Fm = 0.

This returns a set of values for critical points (s,m) at points ri ∈ [0, 1], with

0 = r1 < r2 < · · · < rn−1 < rn = 1. We use these data points to find optimal values

for a2 and b1, which minimise the residuals

R2
T,s =

n∑
i=1

[
si −

(
a2r

2
i + a4r

4
i + a6r

6
i + a8r

8
i

)]2
, (5.122)

R2
T,m =

n∑
i=1

[
mi −

(
b1ri + b3r

3
i + b5r

5
i + b7r

7
i

)]2
, (5.123)

where si and mi are data points from the numerically computed solutions, and the ri

are their corresponding distances from the origin. We set

∂R2
T,s

∂a2
= 0,

∂R2
T,s

∂b1
= 0,

∂R2
T,m

∂a2
= 0,

∂R2
T,m

∂b1
= 0, (5.124)

and solve for a2 and b1 using the MATLAB function vpasolve() [125].

For comparison, we approximate s and m by the independent polynomials

s(r) = c2r
2 + c4r

4 + c6r
6 + c8r

8, (5.125)

m(r) = c1r + c3r
3 + c5r

5 + c7r
7, (5.126)
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removing the dependence on a2, b1, t, ℓ and c. We minimise the residuals

R2
I,s =

n∑
i=1

[
si −

(
c2r

2
i + c4r

4
i + c6r

6
i + c8r

8
i

)]2
, (5.127)

R2
I,m =

n∑
i=1

[
mi −

(
c1ri + c3r

3
i + c5r

5
i + c7r

7
i

)]2
, (5.128)

where si and mi are the same data points from the numerically computed solutions as

in (5.122) and (5.123), and the ri are their corresponding distances from the origin.

Minimising the residuals in this case is equivalent to solving the linear systems



s1

s2

...

sn


=



r21 r41 r61 r81

r22 r42 r62 r82
...

...
...

...

r2n r4n r6n r8n





c2

c4

c6

c8


, and



m1

m2

...

m4


=



r1 r31 r51 r71

r2 r32 r52 r72
...

...
...

...

rn r3n r5n r7n





c1

c3

c5

c7


, (5.129)

which is easily done numerically, using the function linsolve() in MATLAB [125].

We fit Taylor and independent polynomials across a range of temperatures and

values of ℓ for r in the intervals [0, 0.05], [0, 0.1], and [0, 0.5] and calculate the value

of the residuals. We plot the fourth root of the sum of the residuals,
(
R2

T

)1/4
:=(

R2
T,s +R2

T,m

)1/4
and

(
R2

I

)1/4
:=
(
R2

I,s +R2
I,m

)1/4
in Figures 5.1, 5.2 and 5.3, as a

measure of the error associated with each fit against temperature. We plot the fourth

root for readability, as the values of R2
T and R2

I for different values of t and ℓ are spread

over several orders of magnitude, so plotting instead, for example, the square root of

the residuals is not particularly informative. We record results for ℓ = 0.1, ℓ = 1, and

ℓ = 10 in each plot in Figures 5.1-5.3. Dashed lines indicate the error associated with

the independent polynomial fit in (5.125) and (5.126), while solid lines correspond to

the Taylor polynomial fit in (5.119) and (5.120), and different colours correspond to
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different values of ℓ. In each case in Figures 5.1-5.3, we compute the coefficients of the

Taylor and independent polynomials using 51 data points from our numerical solutions

for (s,m) to limit computational time.
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(b) c = 0.1.

-60-50-40-30-20-100

0

0.005

0.01

0.015

0.02

0.025

(c) c = 1.

Figure 5.1: Error of each fit computed for r in the interval [0, 0.05]. Circles denote which
fits were computed. Solid lines correspond to the Taylor polynomial fit; dashed lines
correspond to the independent polynomial. Orange, purple and blue lines correspond
to ℓ = 0.1, ℓ = 1 and ℓ = 10, respectively.
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(b) c = 0.1.
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Figure 5.2: Error of each fit computed for r in the interval [0, 0.1]. Circles denote which
fits were computed. Solid lines correspond to the Taylor polynomial fit; dashed lines
correspond to the independent polynomial fit. Orange, purple and blue lines correspond
to ℓ = 0.1, ℓ = 1 and ℓ = 10, respectively.

There are some general trends. Firstly, the independent polynomial fit is better

than the Taylor series fit in every case. This is to be expected since the coefficients

of the Taylor series have the added restriction of being dependent on one another.

From inspecting the plots in Figures 5.1-5.3, we observe that the error associated with

both polynomial fits increases as temperature decreases; as droplet size increases (ℓ
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Figure 5.3: Error of each fit computed for r in the interval [0, 0.5]. Circles denote which
fits were computed. Solid lines correspond to the Taylor polynomial fit; dashed lines
correspond to the independent polynomial fit. Orange, purple and blue lines correspond
to ℓ = 0.1, ℓ = 1 and ℓ = 10, respectively.

decreases). We also observe that the error increases as the interval size increases. This

could be related to the fact that the series expansion is valid inside some radius of

convergence, which might be smaller than the intervals we use in this section.

These trends suggest that there is some loss of regularity at lower temperatures, in

larger droplets, and in cases where the nemato-magnetic coupling is stronger, making

the s and m profiles less suited to approximation by the polynomials.

In Figure 5.4, we plot examples of the numerically computed s and m profiles across

a range of parameter values, normalised by the boundary value for ease of comparison.

In general, we observe that the normalised s profiles are close to s(r) = r2 and the m

profiles are close to m(r) = r in small droplets with ℓ = 10, which is in agreement with

Proposition 5.6. It is these profiles that are best approximated by the polynomials. In

large droplets, with ℓ = 0.1, the s profiles appear to approach a profile with a boundary

layer near the origin, where s(0) = 0, and s close to 1 in the rest of the droplet. The

polynomial fits of these profiles have the largest error.

Finally, we plot examples of the Taylor and independent polynomial fits to highlight

their limitations in Figure 5.5. In Figures 5.5a and 5.5d, which correspond to the

interval [0, 0.05], both fits appear perfect, which is to be expected, as the error plotted
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(b) s profiles with c = 0.1.
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(c) s profiles with c = 1.
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(d) m profiles with c = 0.
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(e) m profiles with c = 0.1.
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Figure 5.4: Examples of the numerically computed s and m profiles for r in the interval
[0, 1] with different values of the coupling parameter c. Each profile is normalised to
reach a maximum value of 1 at r = 1, for ease of comparison. Plots (a)-(c) are s
profiles, and plots (d)-(f) are the corresponding m profiles. Orange, purple and blue
lines denote the parameter regimes t = 0, ℓ = 10; t = −30, ℓ = 1; and t = −60, ℓ = 0.1,
respectively.

in Figure 5.1b is very small. Both fits appear to approximate the numerical solutions

well close to the origin in Figures 5.5b and 5.5e, corresponding to the interval [0, 0.1],

with the Taylor polynomial fit showing a slight deviation from the s profile closer to

r = 0.1. It is clear that both the Taylor and independent polynomial fits fail to capture

the behaviour of the numerical solution s in the interval [0, 0.5] in Figures 5.5c and 5.5f.

This investigation highlights the practicality of the series expansions in (5.80) and

(5.81). Series expansions can be an effective tool for approximating complicated func-

tions, providing insight into their local behaviour. We note that the series expansions

are valid in some interval [0, Rc], where Rc is the smaller of the two radii of convergence

of the Taylor series, though we lack an analytical expression for Rc. Our investigations
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(c) s profile in [0, 0.5].
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(d) m profile in [0, 0.05].
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(e) m profile in [0, 0.1].
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(f) m profile in [0, 0.5].

Figure 5.5: Examples of the Taylor and independent polynomial fits against the nu-
merically computed profiles in the intervals in which they were computed, each with
c = 0.1, t = −60, and ℓ = 0.1. Solid lines correspond to the numerical solution; circles
denote the Taylor polynomial; and crosses denote the independent polynomial. Plots
(a)-(c) are s profiles and their fits, and plots (d)-(f) are the corresponding m profiles
and fits.

suggest that the series can be useful up to distances of the order of 0.1 from the origin;

and in scenarios which model small droplets at high temperatures with weak nemato-

magnetic coupling. The comparison with the independent polynomial fits highlight

that the Taylor polynomial fits in (5.119) and (5.120) are not the optimal polynomial

fits, but they can be used in analytical scenarios, while the independent polynomial fits

in (5.125) and (5.126) are perhaps more useful in a numerical framework. However, the

numerical investigation underscores the effectiveness of the truncated series in approx-

imating numerical solutions in certain scenarios, supporting the validity of the series

expansions in (5.80) and (5.81) in capturing the local behavior of s and m near the

origin.
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5.3 Numerical Results

In Chapter 3, we numerically compute critical points of the Landau–de Gennes free

energy in (3.1) with rotational symmetry about the z-axis and mirror symmetry across

the xy-plane. The work in Chapter 3 focusses on the pure nematic case, with the

fourth- and sixth-order bulk potentials, building upon the work in [67], to investigate

the impact of a bulk potential that admits biaxiality as a bulk effect.

In this section, we numerically compute critical points of the ferronematic free en-

ergy, again with rotational and mirror symmetry, using analogous methods to those

in Chapter 3, to investigate the effects of magnetic coupling on the equilibrium con-

figurations in droplets of ferronematic liquid crystals. In Section 5.3.1, we compute

critical points of the ferronematic free energy. We compute the Morse Index of the

ferronematic radial hedgehog solution in Section 5.3.2, to understand its stability as

a function of temperature, droplet radius and nemato-magnetic coupling strength. In

Section 5.3.3, we demonstrate that an unstable radial hedgehog solution may act as a

transition state between two stable states via a gradient flow method. We complete

our numerical investigation in this chapter by constructing bifurcation diagrams as

a function of temperature in Section 5.3.4, for a range of droplet radii and coupling

strengths.

5.3.1 Critical Points of the Ferronematic Free Energy

Section 2.3.2 outlines the numerical methods for computing critical points via a finite

element method in the nematic case with the fourth-order bulk potential. In the fer-

ronematic case, we again numerically compute critical points with rotational symmetry

about the z-axis and mirror symmetry across the xy-plane, and work in cylindrical po-

lar coordinates (r, θ, z), where r ∈ [0, 1] and z ∈ [0, 1], while θ is the angle in the
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xy-plane, thus reducing the computational domain to a quarter circle. As such, we

work with a Q-tensor of the form (2.38), and we include a magnetisation vector of the

form M = [m1,m2,m3]
T . The ferronematic free energy in (5.1) is then rewritten as

FF [Q,M]

=

∫
B(0,1)

ℓ

2

(
q21,r + q22,r + q23,r + q21,z + q22,z + q23,z +

1

r2
(4q22 + q23)

)
+

t

2

(
q21 + q22 + q23

)
− q31 + 3q1q

2
2 −

3

2
q1q

2
3 −

3
√
3

2
q2q

2
3

+
1

2

(
q41 + q42 + q43 + 2q21q

2
2 + 2q21q

2
3 + 2q22q

2
3

)
+

ℓ

2

(
m2

1,r +m2
2,r +m2

3,r +m2
1,z +m2

2,z +m2
3,z

)
+

1

4

(
m2

1 +m2
2 +m2

3 − 1
)2

− c

((
−
√
6

6
q1 +

√
2

2
q2
(
cos2 θ − sin2 θ

))
m2

1

+

(
−
√
6

6
q1 +

√
2

2
q2
(
sin2 θ − cos2 θ

))
m2

2 +

√
6

3
q1m

2
3

+ 2

(
√
2q2m1m2 cos θ sin θ

+

√
2

2
q3m1m3 cos θ +

√
2

2
q3m2m3 sin θ

))
dV,

(5.130)
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with associated weak formulations

F6,1 = 4π

∫ 1

0

∫ √
1−z2

0
ℓ∇q1 · ∇v1

+

(
tq1 − 3q21 + 3q22 −

3

2
q23 + 2q31 + 2q1q

2
2

+ 2q1q
2
3 +

√
6

6
c
(
m2

1 +m2
2 − 2m2

3

))
v1r drdz,

F6,2 = 4π

∫ 1

0

∫ √
1−z2

0
ℓ∇q2 · ∇v2

+

(
4ℓ

r2
q2 + tq2 + 6q1q2

− 3
√
3

2
q23 + 2q32 + 2q21q2 + 2q2q

2
3

)
v2r drdz,

F6,3 = 4π

∫ 1

0

∫ √
1−z2

0
ℓ∇q3 · ∇v3

+

(
ℓ

r2
q3 + tq3 − 3q1q3

− 3
√
2q2q3 + 2q33 + 2q21q3 + 2q22q3

)
v3r drdz,

F6,4 = 4π

∫ 1

0

∫ √
1−z2

0
ℓ∇m1 · ∇v4

+

(
m3

1 +m1m
2
2 +m1m

2
3 −m1 +

√
6

3
cq1m2

)
v4r drdz,

F6,5 = 4π

∫ 1

0

∫ √
1−z2

0
ℓ∇m2 · ∇v5

+

(
m3

2 +m2
1m3 +m2m

2
3 −m2 +

√
6

3
cq1m2

)
v5r drdz,

F6,6 = 4π

∫ 1

0

∫ √
1−z2

0
ℓ∇m3 · ∇v6

+

(
m3

3 +m2
1m3 +m2

2m3 −m3 −
2
√
6

3
cq1m3

)
v6r drdz,

(5.131)

where the functions vi, for i = 1, ..., 6, are test functions.
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The boundary conditions for q1, q2, and q3 on the edge of the droplet are analogous

to those in (2.41) for the nematic case with the fourth-order bulk potential, and are

given by

q1 =

√
6

6
(2− 3r2)sf , q2 =

√
2

2
r2sf , q3 =

√
2rzsf on r2 + z2 = 1, (5.132)

where sf is the largest positive solution of (5.6). To compute the boundary conditions

for m1, m2, and m3, we note that we require M = mf r̂ on the droplet boundary, where

mf is defined in (5.2). Then we write

M = mf r̂ = mf (rer + zez) = mf [r, 0, z]
T on r2 + z2 = 1, (5.133)

Comparing this with M = [m1,m2,m3]
T results in the boundary conditions

m1 = rmf , m2 = 0, m3 = zmf on r2 + z2 = 1. (5.134)

The conditions on q1, q2, and q3 on r = 0 and z = 0 are identical to those in the nematic

case, and we include additional boundary conditions for m1,m2, and m3. We have

q1,z = q2,z = q3 = m2 = m3 = 0 on z = 0, (5.135)

for mirror symmetry across the xy-plane, and

q1,r = q2 = q2,r = q3 = m1 = m2 = 0 on r = 0, (5.136)

for rotational symmetry about the z-axis.

We numerically compute general critical points of the ferronematic free energy by
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solving the weak formulations (5.131) with the boundary conditions (5.132)-(5.136).

The radial hedghog solution and its associated magnetisation vector can be calcu-

lated via weak formulations in terms of the scalar order parameter, s, and the scalar

associated with the magnetisation vector, m. Just as in the nematic case discussed in

Section 2.3.3, we set

Q = s(r)

(
r̂ ⊗ r̂ − 1

3
I

)
, M = m(r)r̂, (5.137)

where r̂ is the spherical radial unit vector. We convert the above to cylindrical polar

coordinates for our numerical framework by setting r̂ = rer+zez√
r2+z2

, where r and z are as

described at the beginning of this section. Then using the form of Q involving q1, q2,

and q3 in (2.38), and taking M = [m1,m2,m3]
T , we find that the radial hedgehog

Q-tensor and associated magnetisation vector in (5.137) can be described by

q1 =

√
6

2

(
z2

r2 + z2
− 1

3

)
s, q2 =

√
2r2

2(r2 + z2)
s, q3 =

√
2rz

r2 + z2
s, (5.138)

and

m1 =
r√

r2 + z2
m, m2 = 0, m3 =

z√
r2 + z2

, (5.139)

in our numerical framework, noting that (s,m) is a solution of the coupled ODEs (5.21)

and (5.23). To solve for critical points of the form (5.137), we substitute (5.138) and

(5.139) into the free energy (5.130), and compute weak formulations in terms of s and
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m, which are given by

F2,1= 4π

∫ 1

0

∫ √
1−z2

0

(
ℓ∇s · ∇w1

+

(
ts−

√
6s2 +

4

3
s3 +

6ℓs

r2 + z2

− 3cm2

2(r2 + z2)

((
z2 − 1

2
r2
)(

z2

r2 + z2
− 1

3

)
+

r4

2(r2 + z2)
+

2r2z2

r2 + z2

))
w1

)
r drdz,

F2,2= 4π

∫ 1

0

∫ √
1−z2

0

(
ℓ∇m · ∇w2

+

(
ℓm(r2 + 1)

r2 + z2
+m3 −m

− 2csm

r2 + z2

((
z2 − 1

2
r2
)(

z2

r2 + z2
− 1

3

)
+

r4

2(r2 + z2)
+

2r2z2

r2 + z2

))
w2

)
r drdz,

(5.140)

where w1 and w2 are test functions.

We also consider radial hedgehog configurations without restricting the magnetisa-

tion vector to the form M = m(r)r̂. In this case, we work with q1, q2, and q3 as in

(5.138), and take a more general M = [m1,m2,m3]
T . To solve for critical points of this

form, we substitute q1, q2, and q3 in (5.138) into the free energy (5.130), and compute
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weak formulations in terms of s,m1,m2, and m3, which take the form

F4,1 = 4π

∫ 1

0

∫ √
1−z2

0

(
ℓ∇s · ∇u1

+

(
ts−

√
6s2 +

4

3
s3 +

6ℓs

r2 + z2

− 3

2
c

(
z2

r2 + z2
− 1

3

)(
m2

3 −
1

2
m2

1 −
1

2
m2

2

))
u1

)
r drdz,

F4,2 = 4π

∫ 1

0

∫ √
1−z2

0

(
ℓ∇m1 · ∇u2

+

(
m3

1 +m1m
2
2 +m1m

2
3 −m1

+ csm1

(
z2

r2 + z2
− 1

3

))
u2

)
r drdz,

F4,3 = 4π

∫ 1

0

∫ √
1−z2

0

(
ℓ∇m2 · ∇u3

+

(
m3

2 +m2
1m2 +m2m

2
3 −m2

+ csm2

(
z2

r2 + z2
− 1

3

))
u3

)
r drdz,

F4,4 = 4π

∫ 1

0

∫ √
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(
ℓ∇m3 · ∇u4

+

(
m3

3 +m2
1m3 +m2

2m3 −m3

− 2csm3

(
z2

r2 + z2
− 1

3

))
u4

)
r drdz,

(5.141)

where u1, u2, u3, and u4 are test functions.

As in the nematic case, we plot the biaxiality parameter,

β = 1− 6

(
trQ3

)2(
trQ2

)3 , (5.142)
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of the numerically computed critical points; and the leading eigenvector of theQ-tensor,

which models the preferred direction of the liquid crystal molecules. In addition, we plot

the norm, |M| =
√
m2

1 +m2
2 +m2

3, and the direction of the associated magnetisation

vector. Just as in the nematic case, the sign of the scalar order paramater is an

indication of which configuration we have obtained, noting again that this is equivalent

to the sign of q1 at the origin, as discussed in Section 2.3.2. We recall that the radial

hedgehog configuration has q1(0, 0) = 0; the split core configuration has q1(0, 0) < 0;

and the biaxial torus configuration has q1(0, 0) > 0.

We plot some ferronematic critical points in Figures 5.6, 5.7, and 5.8, noting that

the farthest left and farthest right columns correspond to unstable radial hedgehog

configurations, while the central left and right columns correspond to stable split core

and biaxial torus configurations, respectively.

Let us first consider Figures 5.6a, 5.7a, and 5.8a, which correspond to the radial

hedgehog solution, while Figures 5.6e, 5.7e, and 5.8e are the norms of the associated

magnetisation vectors. We note that rather than solving the weak formulations (5.131),

we solve the weak formulations (5.140) for the radial hedgehog solution and magneti-

sation vector of the form (5.137). As the radial hedgehog solution is purely uniaxial,

Figures 5.6a, 5.7a, and 5.8a are identical. The magnetisation vector profiles in Figures

5.6e, 5.7e, and 5.8e each show the norm of the magnetisation vector increasing in the

radial direction, with m(0) = 0 and m(1) =
√

1 + 4
3csf , noting that the value on the

edge of the droplet increases with the nemato-magnetic coupling strength, c.

Figures 5.6d, 5.7d, and 5.8d also correspond to the radial hedgehog solution, but

with the restriction on the form of M in (5.137) removed to yield Figures 5.6h, 5.7h and

5.8h, and we obtain these configurations via the weak formulations given in (5.141). The

biaxiality parameters and leading eigenvectors are identical to those in Figures 5.6a,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: Critical points of the ferronematic free energy with c = 0, t = −30, and
ℓ = 0.5. (a)-(d) Biaxiality parameter, β, and leading eigenvector of the Q-tensor of the
critical point. (a), (d) Radial hedgehog solution with and without radial M enforced,
respectively; and (b) split core and (c) biaxial torus solution without radial M enforced.
(e)-(h) Norm, |M|, and direction of the magnetisation vector associated with critical
points of the ferronematic free energy. (e) Radial hedgehog solution with radial M
enforced; and (f) split core, (g) biaxial torus, and (h) radial hedgehog solutions without
radial M enforced. We plot r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on the vertical
axis.

5.7a, and 5.8a. However, the magnetisation vectors in Figures 5.6e, 5.7e, and 5.8e are no

longer aligned purely in the radial direction, and lack spherical symmetry. Figure 5.6h

is identical to Figures 5.6f and 5.6g, due to the absence of nemato-magnetic coupling,

while the behaviour in Figures 5.7h and 5.8h is closer to the magnetisation vectors

corresponding to the split core and biaxial torus configurations at the same values of c

than those of the more restricted hedgehog configurations in Figures 5.7e and 5.8e. This

suggests that the more general form of the magnetisation vector, M = [m1,m2,m3]
T ,

is the more natural choice, as opposed to imposing the spherically symmetric, radial

structure M = m(r)r̂.

We plot split core configurations in Figures 5.6b, 5.7b, and 5.8b, and their associated

magnetisation vectors in Figures 5.6f, 5.7f, and 5.8f, which are obtained via the weak
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Critical points of the ferronematic free energy with c = 0.1, t = −30,
and ℓ = 0.5. (a)-(d) Biaxiality parameter, β, and leading eigenvector of the Q-tensor
of the critical point. (a), (d) Radial hedgehog solution with and without radial M
enforced, respectively; and (b) split core and (c) biaxial torus solution without radial
M enforced. (e)-(h) Norm, |M|, and direction of the magnetisation vector associated
with critical points of the ferronematic free energy. (e) Radial hedgehog solution with
radialM enforced; and (f) split core, (g) biaxial torus, and (h) radial hedgehog solutions
without radial M enforced. We plot r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on
the vertical axis.

formulations given in (5.131). We observe that the regions of biaxiality in each case are

almost identical, and that the more pronounced difference across coupling strengths is

in the magnetisation vector. The norms of the magnetisation vectors in the c = 0 and

c = 0.1 cases are similar, but we observe a different pattern in the magnetisation vector

for c = 1, with a region with smaller |M| near the droplet centre, highlighting a more

pronounced effect of the nemato-magnetic coupling on the magnetisation vector than

on the liquid crystal defect structure in this example.

The trend across coupling strengths for the biaxial torus configuration is similar to

that of the split core configuration. We plot the biaxiality parameter corresponding to

the biaxial torus solution in Figures 5.6c, 5.7c, and 5.8c, with the associated magneti-

sation vectors in Figures 5.6g, 5.7g, and 5.8g, respectively. The regions of biaxiality
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Critical points of the ferronematic free energy with c = 1, t = −30, and
ℓ = 0.5. (a)-(d) Biaxiality parameter, β, and leading eigenvector of the Q-tensor of the
critical point. (a), (d) Radial hedgehog solution with and without radial M enforced,
respectively; and (b) split core and (c) biaxial torus solution without radial M enforced.
(e)-(h) Norm, |M|, and direction of the magnetisation vector associated with critical
points of the ferronematic free energy. (e) Radial hedgehog solution with radial M
enforced; and (f) split core, (g) biaxial torus, and (h) radial hedgehog solutions without
radial M enforced. We plot r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on the vertical
axis.

are almost unchanged across values of c; and the norms of the magnetisation vectors in

the c = 0 and c = 0.1 cases in Figures 5.6g and 5.7g are similar, with a more noticeable

difference in the c = 1 case in Figure 5.8g.

The observed trends in the split core and biaxial torus configurations across different

coupling strengths raise the question of whether magnetisation meaningfully impacts

the structure of defects. It is possible that the magnetisation vector simply conforms to

accommodate defect structures that are almost identical to those in the pure nematic

case, with minimal impact on the liquid crystal configurations. However, we note that

here we only consider the a single temperature and droplet size, t = −30, ℓ = 0.5,

and that other temperatures and droplet sizes might see more noticeable differences in

the structure of defects in comparison to the pure nematic case. Furthermore, if it is
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true that magnetisation has minimal influence on the structure of defects, it could still

have a stabilising or destabilising effect on certain configurations relative to the pure

nematic case.

5.3.2 The Morse Index of the Radial Hedgehog Solution

We use the Morse index to characterise the stability of ferronematic critical points, just

as we do in the nematic case in Section 3.4.2. We recall that the concept of the Morse

index is introduced in Section 2.3.3, and that index-0 critical points are stable, while

higher index critical points are unstable. In this section, we numerically compute the

Morse index of the ferronematic radial hedgehog solution across a range of temperatures

and droplet radii in three cases: the uncoupled case with c = 0; and the coupled cases

c = 0.1 and c = 1. We note that our study is again limited to the class of Q-tensors

with three degrees of freedom. We obtain solutions of the form (5.138) and (5.139) via

the weak formulations in (5.141), and compute their Morse indices as critical points of

the free energy (5.130).

We tabulate the Morse index of the ferronematic radial hedgehog solution for a range

of temperatures and droplet radii in Figures 5.9, 5.10, and 5.11, which correspond to

c = 0, c = 0.1, and c = 1, respectively. We do not record the index of the radial

hedgehog solution in the case c = 0, t = 2, since the ferronematic bulk potential does

not have any uniaxial critical points with real, positive scalar order parameter, s, above

t = 9
8 in the uncoupled case (see Section 4.1), so the boundary value sf is undefined in

this context.

In all three cases, we observe that the radial hedgehog solution is stable at higher

temperatures and in smaller droplets (with larger ℓ). The c = 0 and c = 0.1 cases are

identical, with one exception at t = −4, ℓ = 0.001, where the radial hedgehog solution
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Figure 5.9: The Morse index of the radial hedgehog solution for the given value of t
and ℓ as a critical point of the ferronematic free energy in (5.130) with c = 0. Each
index is assigned a different colour for readability.

Figure 5.10: The Morse index of the radial hedgehog solution for the given value of t
and ℓ as a critical point of the ferronematic free energy in (5.130) with c = 0.1. Each
index is assigned a different colour for readability.

is an index-1 critical point with c = 0, and an index-0 critical point with c = 0.1. We

observe that the radial hedgehog solution is stable for a larger temperature range and

in larger droplets in the c = 1 case, suggesting that the nemato-magnetic coupling has

a stabilising effect on the radial hedgehog solution. For example, at t = −8, the radial

hedgehog solution is an index-0 critical point in the c = 1 case in Figure 5.11 for all

droplet sizes from ℓ = 0.001 to ℓ = 2. In contrast, the radial hedgehog solution is an
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Figure 5.11: The Morse index of the radial hedgehog solution for the given value of t
and ℓ as a critical point of the ferronematic free energy in (5.130) with c = 1. Each
index is assigned a different colour for readability.

index-1 critical point at t = −8 in large droplets described by ℓ = 0.001 to ℓ = 0.2

in the c = 0 and c = 0.1 cases in Figures 5.9 and 5.10. Similarly, for ℓ = 0.1, the

radial hedgehog solution in droplets is an index-0 critical point at temperatures as low

as t = −8 in the c = 1 case; yet it is an index-1 critical point for temperatures from

t = −6 and below in the c = 0 and c = 0.1 cases.

5.3.3 The Radial Hedgehog Solution as an Index-1 Transition State

In this section, we attempt to identify scenarios in which the ferronematic radial hedge-

hog solution is an index-1 saddle point because, just as in the nematic case in Section

3.4.3, such saddle points can be referred to as transition states, playing a role in switch-

ing mechanisms between two stable states [116]. Specifically, we investigate whether

an index-1 radial hedgehog solution can mediate transitions between stable split core

and biaxial torus configurations in the ferronematic case.

We consider example values for t and ℓ in the c = 0 and c = 1 cases for which the

ferronematic radial hedgehog solution is an index-1 critical point of the ferronematic

free energy in (5.130). Using a method analogous to that outlined in Section 2.3.4 for
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the fourth-order nematic case, we compute a transition pathway between two index-0

ferronematic critical points, through an index-1 radial hedgehog solution, q∗, where

q∗ = [q1, q2, q3,m1,m2,m3]
T , (5.143)

where q1, q2, and q3 are of the form (5.138) and m1,m2, and m3 are of the form (5.139).

We use a gradient flow method, taking small perturbations of the radial hedgehog

solution along the direction of the eigenvector associated with the negative eigenvalue

of the Hessian as an initial condition, thus solving the initial value problem

∂q

∂τ
= −∇FF (q,∇q) in B(0, 1) for τ > 0,

q = q0 = q∗ ± λu in B(0, 1) at τ = 0,

(5.144)

with boundary conditions (5.132)-(5.136), where FF is the ferronematic free energy

(5.130); the quantity λ is a small positive constant; and u is the unstable eigendirection

of the radial hedgehog solution. We refer the reader to Section 2.3.4 for more details

on the initial value problem in the fourth-order nematic case, which is analogous to the

ferronematic case.

We take t = −30, ℓ = 0.5 with c = 0 and c = 1 for consistency with Section 5.3.1.

We note that an unstable eigendirection of the radial hedgehog solution at the origin

in the case t = −30, ℓ = 0.5, and c = 1 is given by u =
[
3.08× 10−2, 0, 0, 0, 0, 0

]T
, and

that a perturbation of the radial hedgehog solution, q0 = q∗ + λu, yields the biaxial

torus solution, while a perturbation q0 = q∗ − λu yields the split core configuration.

This is in agreement with the fact that q1 > 0 at the origin for a biaxial torus solution,

and q1 < 0 at the origin for a split core solution. We note that the first term in u is

several orders of magnitude larger than the other terms (which are of the order 10−18 or
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smaller, so are the numerical equivalent of zero and we write them as such), indicating

that the searching direction of our gradient flow method is driven by a perturbation of

q1.

We show an index-1 radial hedgehog solution connected to index-0 split core and

biaxial torus configurations in Figures 5.12a and 5.12b, corresponding to the c = 0 and

c = 1 cases, respectively, with the associated magnetisation vectors given in Figures

5.12c and 5.12d. These examples demonstrate that the radial hedgehog solution can

act as a transition state between the split core and biaxial torus configurations in both

uncoupled and coupled systems for our choice of t and ℓ.

5.3.4 Bifurcation Diagrams

We numerically compute bifurcation diagrams as a function of temperature with the

ferronematic free energy, plotted in Figure 5.13, using methods outlined in Section 2.3.5.

We plot the value of the scalar order parameter, s, of each configuration at the origin

against temperature, recalling that s(0, 0) =
√

3
2q1(0, 0), and that all configurations

are necessarily uniaxial at the origin in our numerical framework, due to the boundary

conditions (5.135) and (5.136). We restrict the associated magnetisation vector to be

proportional to the radial unit vector, as described in (5.137), so that we can compare

our numerical results in this section with the analytical results in Section 5.2.

Let us first consider the uncoupled cases in Figures 5.13a, 5.13d, 5.13g and 5.13j.

We observe the same qualitative behaviour as in the nematic cases in Section 3.4.4,

and we again recover the predictions of [67]. To recap: the radial hedgehog solution

is the unique global minimiser at high temperatures; the stable biaxial torus solution

is the global minimiser at all temperatures at which it is defined; the radial hedgehog

solution is locally stable at intermediate temperatures and coexists with the globally
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(a) (b)

(c) (d)

Figure 5.12: The transition pathways between two stable states. Transition between
split core and biaxial torus configurations via index-1 radial hedgehog configuration for
(a) the ferronematic free energy (5.130) with c = 0, t = −30, and ℓ = 0.5, and (b)
the ferronematic free energy (5.130) with c = 1, t = −30, and ℓ = 0.5. We plot the
associated magnetisation vectors in (c) and (d), respectively. We plot r ∈ [0, 1] on the
horizontal axis and z ∈ [0, 1] on the vertical axis.

minimising and unstable biaxial torus configurations; and the radial hedgehog solution

loses stability at sufficiently low temperatures, where the unstable biaxial torus solution

vanishes and a locally minimising split core solution emerges. The bifurcation points

shift to lower temperatures as droplet size decreases (or ℓ increases). We only plot the

radial hedgehog solution up to t = 9
8 in the c = 0 cases because the boundary value,

sf , is complex for t > 9
8 .

The diagrams in the coupled case with c = 0.1 are qualitatively similar and are
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(a) c = 0, ℓ = 0.1.
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(b) c = 0.1, ℓ = 0.1.
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(c) c = 1, ℓ = 0.1.
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(d) c = 0, ℓ = 0.25.
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(e) c = 0.1, ℓ = 0.25.
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(f) c = 1, ℓ = 0.25.
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(g) c = 0, ℓ = 0.5.
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(h) c = 0.1, ℓ = 0.5.
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(i) c = 1, ℓ = 0.5.
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(j) c = 0, ℓ = 1.
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(k) c = 0.1, ℓ = 1.
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(l) c = 1, ℓ = 1.

Figure 5.13: Bifurcation diagrams for critical points of the ferronematic free energy
(5.130) for a range of values of c and ℓ. We plot the scalar order parameter of each
configuration at the origin. Bold solid lines indicate global minimimality; thin solid
lines indicate local minimality; and dashed lines indicate instability.
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given in Figures 5.13b, 5.13e, 5.13h, and 5.13k. We note the following trends. As

in the uncoupled case, the radial hedgehog solution is the unique global minimiser at

high temperatures and the stable biaxial torus solution is the global minimiser at all

temperatures at which it is defined. There is an intermediate temperature range in

which locally stable split core and unstable biaxial torus solutions coexist, in contrast

to the uncoupled case, with the split core solution converging to the radial hedgehog

solution as temperature increases and the unstable biaxial torus solution converging to

the radial hedgehog solution as temperature decreases. Finally, at low temperatures,

there exists the unstable radial hedgehog solution; a locally stable split core solution;

and a globally minimising biaxial torus solution, just as in the uncoupled case. The

bifurcation points again shift to lower temperatures as droplet radius decreases, or ℓ

increases.

We observe certain behaviours that are common to each diagram with strong cou-

pling, described by c = 1, and given in Figures 5.13c, 5.13f, 5.13i, and 5.13l. Firstly, the

stable biaxial torus configuration is again globally minimising at all temperatures at

which it is defined. Secondly, the radial hedgehog solution is never the global minimiser

for the temperature range plotted, and there instead exists a globally minimising split

core solution.

The qualitative behaviour in the strongly coupled case varies with droplet size. Let

us first consider smaller droplets, described by ℓ = 0.5 and ℓ = 1 in Figures 5.13i and

5.13l, respectively. We oberve that there is an intermediate temperature range in which

locally stable split core and unstable biaxial torus solutions coexist, analogously to the

c = 0.1 case. Furthermore, as in the c = 0 and c = 0.1 cases, the radial hedgehog

solution is unstable at low temperatures; there exists a locally minimising split core

solution; and the stable biaxial torus solution is the global minimiser.
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Now, let us consider larger droplets in the c = 1 case, described by ℓ = 0.1 and ℓ =

0.25 in Figures 5.13c and 5.13f, respectively. In both diagrams, there is an intermediate

temperature range in which there is no split core solution, and the only configurations

present are the globally minimising biaxial torus solution and the locally minimising

or unstable radial hedgehog solution. Furthermore, at low temperatures, we observe

both locally stable and unstable split core solutions, which coexist with the unstable

radial hedgehog and globally minimising biaxial torus solutions. We speculate that the

unstable split core solution will converge to the unstable radial hedgehog solution at

sufficiently low temperatures. In the ℓ = 0.25 case in Figure 5.13f, the unstable biaxial

torus branch connects to a globally minimsing split core branch; while in the ℓ = 0.1

case in Figure 5.13c, there is no unstable biaxial torus branch.

We present examples of stable and unstable split core configurations at t = −60,

ℓ = 0.1, and c = 1 in Figure 5.14. We note that the stable solution has a larger region

of biaxiality than its unstable counterpart, and that the norms and directions of the

associated magetisation vectors are almost identical.

(a) (b) (c) (d)

Figure 5.14: Biaxiality parameter, β, and leading eigenvector of Q-tensor of (a) stable,
and (c) unstable split core configurations at t = −60 with c = 1 and ℓ = 0.1. Associated
norm, |M|, and direction of the magnetisation vector in (b) and (d), respectively. We
plot r ∈ [0, 1] on the horizontal axis and z ∈ [0, 1] on the vertical axis.

The bifurcation diagrams corresponding to c = 0.1 and c = 1 with ℓ = 0.1 in Figures

5.13b and 5.13c are quite qualitatively different, with the unstable biaxial torus and

split core configurations each only present in one of the diagrams. We reproduce these
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diagrams in Figures 5.15a and 5.15c, respectively, together with a bifurcation diagram

with the intermediate coupling strength c = 0.5 in Figure 5.15b. The intermediate

bifurcation diagram provides some insight into how the stability and existence of solu-

tions evolves as the nemato-magnetic coupling strength, c, changes. Specifically, there

is an intermediate temperature range in which a stable split core solution does not exist

which grows as c increases; an unstable split core solution emerges at sufficiently low

temperatures with higher values of c; and the unstable biaxial torus solution exists over

a smaller temperature range with c = 0.5 than with c = 0.1, and is inadmissible with

c = 1. Overall, as c increases, the system evolves from one with an unstable biaxial

torus solution at intermediate temperatures and a stable split core at all temperatures

plotted to one which lacks a split core solution at intermediate temperatures, but ad-

mits an unstable split core solution at sufficiently low temperatures and never admits

an unstable biaxial torus solution.
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(a) c = 0.1.
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(b) c = 0.5.
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(c) c = 1.

Figure 5.15: Bifurcation diagrams for the ferronematic free energy (5.130) for c =
0.1, c = 0.5, and c = 1, with ℓ = 0.1. We plot the scalar order parameter of each
configuration at the origin. Bold solid lines indicate the global minimiser; thin solid
lines indicate local minimality; and dashed lines indicate instability.

The above discussion highlights key differences between the coupled and uncoupled

cases. Most significantly, a stable split core solution is typically admissible at higher

temperatures in cases with nonzero c, in comparison to the uncoupled case; and in fact

the split core solution is the global minimiser at higher temperatures for c = 1 with
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ℓ = 0.1 and ℓ = 0.25. We speculate that this preference for the split core solution at

higher temperatures in coupled cases in comparison to the uncoupled case is due to the

natural coalignment of the magnetisation vector and the nematic director. We note

that the direction of the magnetisation vector is almost parallel to the plane of symme-

try near the droplet centre in Figures 5.6f, 5.7f, and 5.8f, and that the same is true of

the leading eigenvector associated with the split core solution in Figures 5.6b, 5.7b and

5.8b. The contrary is true of the biaxial torus solution, with the leading eigenvector

almost orthogonal to the plane of symmetry in Figures 5.6c, 5.7c, and 5.8c, opposing

the preferred direction of the magnetisation vector. It is possible that the agreement

in alignment between the leading eigenvector of the split core solution and the mag-

netisation vector is what leads to the emergence of stable split core configurations at

higher temperatures in contrast to the uncoupled cases.

Furthermore, we speculate that the split core solution is perhaps only the global

minimiser at high temperatures for c = 1 with ℓ = 0.1 and ℓ = 0.25 due to the restriction

of the form of the magnetisation vector associated with the radial hedgehog solution in

(5.11). We note that the direction of the unrestricted magnetisation vector associated

with the radial hedgehog solution in Figures 5.6h, 5.7h, and 5.8h is not approximately

radially aligned at the droplet centre, suggesting a radially oriented magnetisation

vector is not energetically preferable. It is possible that were we to construct bifurcation

diagrams without restricting the form of the magnetisation vector associated with the

radial hedgehog solution, we might not observe a globally minimising split core solution

at high temperatures.

It is notable that the global minimality of the biaxial torus solution at lower tem-

peratures is not lost in the coupled cases we have studied, despite the opposition in

alignment between the nematic director and magnetisation vector. Let us consider the
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form of the ferronematic free energy in (5.1) for a possible explanation. The only tem-

perature dependence is in the Landau–de Gennes energy density, which captures the

preferred nematic liquid crystal behaviour. As temperature decreases, the magnitude

of this contribution increases and the nematic behaviour dominates. Therefore, since

the biaxial torus solution is the global minimiser in the pure nematic case, it remains

so at sufficiently low temperatures in the presence of nemato-magnetic coupling.

In general, the behaviour in all diagrams in Figure 5.13 suggests we may reason-

ably conclude the the radial hedgehog solution will be the unique global minimiser at

sufficiently high temperatures for any positive values of c and ℓ, in agreement with

Proposition 5.5. Furthermore, we suspect that for any positive values of c and ℓ, there

is some sufficiently low temperature below which there are only three configurations:

the globally minimising biaxial torus solution; the locally minimising split core solution;

and the unstable radial hedgehog solution. Therefore, ferronematic solution landscapes

with positive coupling resemble the nematic solution landscapes in Section 3.4.4 at suf-

ficiently high and sufficiently low temperatures, with the key differences in behaviour

occuring at intermediate temperatures.

5.4 Summary

In this chapter, we perform some analytical and numerical studies of critical points of

a ferronematic free energy (5.1) to investigate the effects of nemato-magnetic coupling

on equilibrium configurations in spherical droplets of ferronematic liquid crystals.

In Section 5.2.1, we prove a selection of analytical results for the ferronematic radial

hedgehog solution in (5.11), by analogy with certain results for the nematic radial hedge-

hog solution with the sixth-order bulk potential in Section 3.3, which in turn extend

existing results in the literature regarding the nematic radial hedgehog solution with
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the fourth-order bulk potential. We prove existence of the ferronematic radial hedge-

hog solution in (5.11), and a maximum principle for the ferronematic radial hedgehog

Q-tensor and the associated magnetisation vector. Moreover, we prove nonnegativity

of the ferronematic radial hedgehog scalar order parameter and uniqueness of the fer-

ronematic radial hedgehog solution in small droplets and at high temperatures. We

conclude Section 5.2.1 by proving that, in the small droplet limit, the radial hedgehog

scalar order parameter is quadratic, while the associated magnetisation parameter is

linear.

We focus our efforts on power series expansions of the ferronematic radial hedgehog

scalar order parameter and the associated magnetisation about the droplet centre in

(5.11), inspired by Proposition 3.1 in [63] in Section 5.2.2. We prove that the scalar

order parameter expansion contains only even powers of r, while the magnetisation

parameter expansion contains only odd powers of r. We then explore how well trun-

cations of these series fit numerically computed s and m profiles. We find evidence

that suggests that such truncations are best used to approximate local behaviour of

the radial hedgehog scalar order parameter and the associated magnetisation param-

eter about the origin at high temperatures, in small droplets, and in weakly coupled

systems.

Section 5.3 contains our numerical results in droplets with rotational and mirror

symmetry, and we perform a similar numerical investigation here as is done in Section

3.4. We give examples of ferronematic critical points in Section 5.3.1, again finding

radial hedgehog, split core and biaxial torus configurations. We confirm that the fer-

ronematic radial hedgehog solution is stable in small droplets and at high temperatures

in Section 5.3.2, and we observe that nemato-magnetic coupling has a stabilising effect

on the ferronematic radial hedgehog solution. Furthermore, we confirm that the fer-
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ronematic radial hedgehog solution can act as a transition state between stable split

core and biaxial torus configurations in Section 5.3.3. Finally, we construct a range of

bifurcation diagrams in Section 5.3.4. Our results suggest that the limiting high and

low temperature behaviour of the solution landscapes is similar to that in the nematic

case, with a unique, globally minimising radial hedgehog solution at sufficiently high

temperatures; and a globally minimising biaxial torus solution, a locally minimising

split core solution, and an unstable radial hedgehog solution at sufficiently low tem-

peratures. The uniqueness of the radial hedgehog solution at high temperatures is

in agreement with Proposition 5.5 in Section 5.2, and we speculate that the ferrone-

matic solution landscape agrees with its nematic counterpart at low temperatures as

the Landau–de Gennes contribution to the ferronematic free energy in (5.1) increases in

magnitude as temperature decreases, meaning the nematic behaviour dominates at low

temperatures. We do observe some interesting contrasting behaviour to the nematic

case at intermediate temperatures, however. We see the emergence of an unstable split

core solution in certain parameter regimes, which is absent in the nematic case; and

the split core solution is globally stable at higher temperatures, which we suspect can

be attributed to the natural coalignment of the magnetisation vector and the nematic

director associated with the split core configuration.

We note that the critical points in this chapter again only exploit three of the five

degrees of freedom. An interesting question is whether there exist any new biaxial

critical points induced by nemato-magnetic coupling without the imposed mirror and

rotational symmetry. The existence of such critical points could have important im-

plications in applications, as it is possible that the ferronematic solution landscape

with five degrees of freedom is richer than the corresponding pure nematic solution

landscape. If transition pathways between stable states can be identified, it might be
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possible to apply magnetic fields to guide switching between stable states with more

precision than in the nematic case.
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Chapter 6

Stochastic Effects on

Deterministic Solutions

The purpose of this chapter is to consider the effects of random noise on radial hedgehog

scalar order parameter profiles in the nematic and ferronematic cases, which we have

studied in a deterministic context in Chapters 3 and 5. We incorporate random noise via

the inclusion of an additional stochastic term in the relevant gradient flow equations.

This term simulates random fluctuations throughout the material, which can arise

due to material imperfections or thermal fluctuations, or as a result of the inherent

uncertainties and variabilities present in experimental conditions. In this work, we

model the effects of random perturbations on the stability of fixed point in nematic

and ferronematic systems.

We generate noise via a Q-Wiener stochastic process [106]. It is reasonable to ex-

pect that the alignment of liquid crystal molecules at one point typically influences

the alignment of nearby molecules, and a Q-Wiener process is well suited to modelling

uncertainties in a liquid crystalline system as uncertainties are correlated, by design.

A Q-Wiener process is comparable to coloured noise, which has spatial correlation,
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unlike white noise, which is uniform throughout space and can be modelled via a sim-

pler Wiener process. A Wiener process uses standard Brownian motion [106], which

is a stochastic process characterised by independent increments that are normally dis-

tributed; and exhibits randomness in space and time with uncorrelated increments.

A Q-Wiener process extends the concept of a Wiener process in that it also employs

Brownian motion, and introduces spatial correlation through some covariance operator,

Q, so that the increments of the process at different spatial points are correlated. We

refer the reader to [106] for a formal defintion of a Q-Wiener process.

In this chapter, we work with additive noise in nematic and ferronematic systems,

which does not depend on the unknown variables we are solving for (s in the nematic

cases, and (s,m) in the ferronematic case). We observe that random noise in this

framework has the greatest impact on the radial hedgehog solution in large droplets

and at higher temperatures, and we find that the effects on small droplets and at low

temperatures are unremarkable. We do, however, observe that random noise breaks the

perfect rotational symmetry of the radial hedgehog solution in every case. We clarify

that as we solve for the radial hedgehog scalar order and magnetisation parameters in

this chapter, the preferred direction of the liquid crystal molecules and the direction of

the magnetisation vector are fixed. As such, we do not perturb the preferred orientation

of the liquid crystal molecules nor the direction of the magnetisation, and therefore,

symmetry is lost in the degree of ordering and the magnitude of the magnetisation

vector throughout the droplet, but the inclusion of additive noise does not influence

the preferred direction of liquid crystal molecule orientation or the direction of the

associated magnetisation vector.

Although we observe some more notable differences between deterministic and

stochastic solutions in large droplets and at higher temperatures, and perfect rota-
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tional symmetry is lost in all cases, we find that, in general, stochastic solutions remain

similar to their deterministic counterparts across all scenarios we consider. This con-

firms the robustness of the deterministic models employed in Chapters 3 and 5.

This chapter is organised as follows. In Section 6.1, we recall the form of the

nematic and ferronematic radial hedgehog solutions, and the associated Euler–Lagrange

equations and boundary conditions. In Section 6.2, we outline the numerical methods

employed in both the deterministic and stochastic cases. In Section 6.3, we present

our results, first in the nematic case, considering both the fourth- and sixth-order bulk

potentials; and then in the ferronematic case, where we consider three different values

of c: c = 0, c = 0.1, and c = 1, which correspond to the uncoupled case, a weakly

coupled case, and a strongly coupled case, respectively. Finally, we summarise our

findings in Section 6.4.

6.1 Problem Formulation

In this chapter, we consider droplets of nematic and ferronematic liquid crystals. We

revisit the Landau–de Gennes free energy

F [Q] =

∫
B(0,1)

ε2

2
|∇Q|2 + t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

d

5
trQ2 trQ3 +

e

6

(
trQ2

)3
+

f − e

6

(
trQ3

)2
dV, (6.1)

which we work with in Chapter 3, to which we refer the reader for more details. We

work with the fourth-order bulk potential,

fB(Q) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
, (6.2)
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setting d = e = f = 0 in (6.1); and with the sixth-order bulk potential,

fB(Q) =
t

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

d

5
trQ2 trQ3 +

e

6

(
trQ2

)3
+

f − e

6

(
trQ3

)2
, (6.3)

in the case d = 1, e = 0, and f = 1. We recall that we impose strong homeotropic

anchoring on the droplet boundary via the Dirichlet condition

Qs+ = s+

(
r̂ ⊗ r̂ − 1

3
I

)
, on ∂B(0, 1), (6.4)

where r̂ is the unit vector in the radial direction, and s+ is the largest positive minimiser

of the function

g(s) =
t

3
s2 − 2

√
6

9
s3 +

2

9
s4 +

4d

135
s5 +

4e

81
s6 +

(f − e)

6
s6, (6.5)

in both the fourth- and sixth-order bulk potential cases. We recall that the nematic

radial hedgehog solution is of the form

Q∗(r) = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
, (6.6)

where s∗ is a solution of the ordinary differential equation

ε2
(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= ts−

√
6s2 +

4

3
s3 +

2d

9
s4 +

4e

9
s5 +

2(f − e)

27
s5, (6.7)

subject to the boundary conditions

s(0) = 0, s(1) = s+. (6.8)
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We also work again with the ferronematic free energy in this chapter, which is given

by

FF [Q,M] =

∫
B(0,1)

ℓ

2
|∇Q|2 + t̂

2
trQ2 −

√
6 trQ3 +

1

2

(
trQ2

)2
+

ℓ

2
|∇M|2 + 1

4

(
|M|2 − 1

)2 − cQM ·M dV, (6.9)

and we denote the reduced temperature by t̂ in this chapter to highlight the fact that

the reduced temperature has a slightly different defintion in the nematic case compared

the ferronematic case, as a result of the choice of nondimensionalisation. We refer the

reader to the definitions of the dimensionless parameters in each free energy in Section

2.2. Strong homeotropic anchoring in the ferronematic case is imposed via the Dirichlet

boundary conditions

Qsf
= sf

(
r̂ ⊗ r̂ − 1

3
I

)
, Msf = mf r̂ =

√
1 +

4

3
csf r̂ on ∂B(0, 1), (6.10)

where sf is the largest positive root of the function

h(s) = s3 − 3
√
6

4
s2 +

(
3t̂

4
− c2

)
s− 3c

4
= 0. (6.11)

The ferronematic radial hedgehog solution is of the form

Q∗ = s∗(r)

(
r̂ ⊗ r̂ − 1

3
I

)
, M∗ = m∗(r)r̂, (6.12)
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where s∗ and m∗ are solutions of the ordinary differential equations

ℓ

(
d2s

dr2
+

2

r

ds

dr
− 6

r2
s

)
= t̂s−

√
6s2 +

4

3
s3 − cm2, (6.13)

ℓ

(
d2m

dr2
+

2

r

dm

dr
− 2

r2
m

)
= m3 −m− 4

3
csm, (6.14)

subject to the boundary conditions

s(0) = m(0) = 0, s(1) = sf , m(1) = mf . (6.15)

6.2 Numerical Methods

We follow the strategy set out in [73] and compute deterministic and stochastic radial

hedgehog scalar order parameter profiles in the nematic case with the fourth- and

sixth-order bulk potentials, and scalar order parameter and magnetisation parameter

profiles in the ferronematic case. We use a finite difference method to discretise the

relevant differential equations, and implement a fourth-order Runge-Kutta method [127]

in MATLAB [125] to obtain solutions. In this Chapter the domain is the unit disc,

which we describe using polar coordinates, (r, θ), where r ∈ [0, 1] and θ ∈ [0, 2π]. In

our numerical framework, we work on a 100×100 grid over the rectangle [0, 1]× [0, 2π].

We follow the work in [73], in which the authors solve on a 100×100 grid. It is possible

that simulations could be performed on a coarser grid to reduce computational time,

showing the same behaviour, but we do not test different meshes in this thesis.

6.2.1 Deterministic Solutions

In this section, we outline the numerical methods implemented to obtain deterministic

solutions in the nematic sixth-order bulk potential case, noting that the methods in the
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fourth-order bulk potential case simply correspond to the special case d = e = f = 0.

We then outline the numerical methods in the ferronematic case.

The Nematic Radial Hedgehog Solution

In the nematic case, we use a fourth-order Runge-Kutta method to numerically solve

the gradient flow equation

∂s

∂τ
= ε2

(
∂2s

∂r2
+

2

r

∂s

∂r
− 6

r2
s

)
−
(
ts−

√
6s2 +

4

3
s3 +

2d

9
s4 +

4e

9
s5 +

2(f − e)

27
s5
)
, (6.16)

subject to the boundary conditions (6.8).

We discretise the gradient flow equation above over a uniform, 100 × 100 grid of

points on [0, 1]×[0, 2π], following [73], so that the spatial step size is k = 1/99, and solve

over some time interval, [0, T ]. We note that this choice of grid has a finer resolution

near the origin, and a coarser resolution near the outer boundary. We argue that this

choice of grid is sufficient as more interesting behaviour tends to occur closer to the

origin, but it would be interesting to repeat this study on a grid which has a more

regular resolution throughout the disc.

We choose a time step size, ∆τ , that is small enough such that the determinis-

tic numerical simulations converge, but large enough to minimise the computational

time. Typically, once a small enough step size is found for convergence, a smaller step

size would also lead to convergence to the same solution, but the time taken to reach

convergence would be increased. The value of T in the deterministic case is not prede-

termined and is simply equal to Nt∆τ , where Nt is the number of iterations required

for convergence, the criteria for which we define later in this section. We find that the
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time step size, ∆τ = 2× 10−5, as used in [73], is sufficient, except in the small droplet

cases. It is possible that a larger step size may also lead to convergence but we do not

investigate whether that is the case in this thesis. We find that a significantly smaller

step size is required for convergence in small droplets, and we find a suitable step size,

∆τ = 1.25 × 10−6, through a process of trial and error. We do not claim to find the

optimal step size, as we tested step sizes in decreasing increments of 0.5 × 10−7 and

select the first step size in this sequence that leads to convergence. We fix the value of

T at the beginning of the stochastic simulations based on the number of iterations re-

quired for convergence in each deterministic simulations using the same time step size.

We set T = Nt∆τ to one significant figure such that Nt is greater than the number

of iterations required for convergence in the deterministic simulations. In each case,

we work with a random initial guess for s, where the value of s at each grid point is

generated via a random selection from the standard normal distribution.

The fourth-order Runge-Kutta method computes the value of s at time τn+1 =

(n+ 1)∆τ , using the formula [127]

sn+1 = sn +
∆τ

6
(k1 + 2k2 + 2k3 + k4) , (6.17)

where sn is the matrix containing the values of the function s at each grid point at

time τn;

k1 = f (τn, sn) ,

k2 = f

(
τn +

∆τ

2
, sn +

∆τ

2
k1

)
,

k3 = f

(
τn +

∆τ

2
, sn +

∆τ

2
k2

)
,

k4 = f (τn+1, sn +∆τk3) ;

(6.18)

and f is the spatially-discretised version of the right-hand side of the gradient flow
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equation (6.16).

We recall that we impose boundary conditions at r = 0 and r = 1, so that we require

sn(0, θj) = 0 and sn(1, θj) = s+ for n = 1, ..., Nt and j = 1, ..., 100. Hence, we apply

the Runge-Kutta method to the 98× 100 grid over the domain [0 + k, 1− k]× [0, 2π],

and at each time step we work with the matrix

sn =



sn(r2, θ1) sn(r2, θ2) · · · sn(r2, θ99) sn(r2, θ100)

sn(r3, θ1) sn(r3, θ2) · · · sn(r3, θ99) sn(r3, θ100)

...
...

. . .
...

...

sn(r98, θ1) sn(r98, θ2) · · · sn(r98, θ99) sn(r98, θ100)

sn(r99, θ1) sn(r99, θ2) · · · sn(r99, θ99) sn(r99, θ100)


, (6.19)

where n = 1, ..., Nτ , ru = u/99, θv = (v − 1)2π/99, for u = 1, ..., 98 and v = 1, ..., 100,

so that (sn)i,j = sn(ri+1, θj) for i = 1, ..., 98, j = 1, ..., 100.

Let us work with a spatially-discretised version of

ts−
√
6s2 +

4

3
s3 +

2d

9
s4 +

4e

9
s5 +

2(f − e)

27
s5, (6.20)

given by

(Gn)i,j = t(sn)i,j −
√
6 (sn)

2
i,j +

4

3
(sn)

3
i,j

+
2d

9
(sn)

4
i,j +

4e

9
(sn)

5
i,j +

2(f − e)

27
(sn)

5
i,j , (6.21)

for i = 1, ..., 98, j = 1, ..., 100.

Then, implementing the central difference formulae [127], we write, for j = 1, ..., 100
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and n = 1, ..., Nτ ,

f(τn, sn)1,j = ε2

(
(sn)2,j − 2 (sn)1,j

k2
+

2

r2

(sn)2,j
2k

− 6

r22
(sn)1,j

)
− (Gn)1,j ,

f(τn, sn)i,j = ε2

(
(sn)i+1,j − 2 (sn)i,j + (sn)i−1,j

k2

+
2

ri+1

(sn)i+1,j − (sn)i−1,j

2k
− 6

r2i+1

(sn)i,j

)
− (Gn)i,j , i = 2, ..., 97,

f(τn, sn)98,j = ε2

(
s+ − 2 (sn)98,j + (sn)97,j

k2

+
2

r99

s+ − (sn)97,j
2k

− 6

r299
(sn)98,j

)
− (Gn)98,j .

(6.22)

We assume convergence of the deterministic simulations when the norm of the spatially

discretised version of ∂s
∂τ in (6.16), f(τn, sn), is less than 10−6, as this is several orders

of magnitude smaller than the norm of ∂s
∂r at an energy maximum, and is sufficient to

indicate that we are converging to an energy minimum and terminate the simulations

when this threshold is reached.

The Ferronematic Radial Hedgehog Solution

The ferronematic case is analogous to the nematic case. In this case, we again use

the fourth-order Runge-Kutta method to numerically solve the coupled gradient flow

equations

∂s

∂τ
= ℓ

(
∂2s

∂r2
+

2

r

∂s

∂r
− 6

r2
s

)
−
(
t̂s−

√
6s2 +

4

3
s3 − cm2

)
,

∂m

∂τ
= ℓ

(
∂2m

∂r2
+

2

r

∂m

∂r
− 2

r2
m

)
−
(
m3 −m− 4

3
csm

)
,

(6.23)

subject to the boundary conditions (6.15). The domain and spatial and time step sizes

are the same as in the previous section, and we again solve over some time interval
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[0, T ]. Furthermore, in each case, we work with a random initial guess for (s,m), where

the values of s and m at each grid point are generated via random selections from the

standard normal distribution.

The fourth-order Runge-Kutta method computes the values of s and m at τn+1

using the formulae

sn+1 = sn +
∆τ

6
(ks,1 + 2ks,2 + 2ks,3 + k4,s) ,

mn+1 = mn +
∆τ

6
(km,1 + 2km,2 + 2km,3 + km,s) ,

(6.24)

where sn and mn are matrices containing the values of the functions s and m at each

grid point at time τn, and

ks,1 = fs (τn, sn,mn) ,

ks,2 = fs

(
τn +

∆τ

2
, sn +

∆τ

2
ks,1,mn +

∆τ

2
km,1

)
,

ks,3 = fs
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∆τ

2
, sn +

∆τ

2
ks,2,mn +

∆τ

2
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)
,

ks,4 = fs (τn+1, sn +∆τks,3,mn +∆τkm,3) ,

km,1 = fm (τn, sn,mn) ,

km,2 = fm

(
τn +

∆τ

2
, sn +

∆τ

2
ks,1,mn +

∆τ

2
km,1

)
,

km,3 = fm

(
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2
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2
ks,2,mn +

∆τ

2
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)
,

km,4 = fm (τn+1, sn +∆τks,3,mn +∆τkm,3) .

(6.25)

Here, fs and fm are the spatially discretised versions of the right-hand side of the first

and second equation in (6.23), respectively.

Due to the boundary conditions at r = 0 and r = 1, we again apply the Runge-

Kutta method to the 98×100 grid over the domain [0+k, 1−k]× [0, 2π], recalling that
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k = 1/99, and we again note that it is possible that a coarser grid would be sufficient,

but we do not investigate this question in this thesis. Thus, we work with the same

matrix sn as in (6.19) at each time step, and the equivalent matrix for m, given by

mn =



mn(r2, θ1) mn(r2, θ2) · · · mn(r2, θ99) mn(r2, θ100)

mn(r3, θ1) mn(r3, θ2) · · · mn(r3, θ99) mn(r3, θ100)

...
...

. . .
...

...

mn(r98, θ1) mn(r98, θ2) · · · mn(r98, θ99) mn(r98, θ100)

mn(r99, θ1) mn(r99, θ2) · · · mn(r99, θ99) mn(r99, θ100)


, (6.26)

where n = 1, ..., Nτ , ru = u/99, θv = (v − 1)2π/99, for u = 1, ..., 98 and v = 1, ..., 100,

so that (mn)i,j = mn(ri+1, θj) for i = 1, ..., 98, j = 1, ..., 100.

We work with spatially discretised versions of the expressions

t̂s−
√
6s2 +

4

3
s3 − cm2, and m3 −m− 4

3
csm, (6.27)

given by

(Gs,n)i,j = t̂(sn)i,j −
√
6 (sn)

2
i,j +

4

3
(sn)

3
i,j − c (mn)

2
i,j ,

(Gm,n)i,j = (mn)
3
i,j − (mn)i,j −

4

3
(sn)i,j (mn)i,j ,

(6.28)

for i = 1, ..., 98, j = 1, ..., 100. Again implementing the central difference formulae [127],

the expressions for fs are analogous to those for f in (6.22), with s+ replaced by sf
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and Gn replaced by Gs,n. The expressions for fm are given by

fm(τn, sn,mn)1,j = ε2

(
(mn)2,j − 2 (mn)1,j

k2
+

2

r2

(mn)2,j
2k

− 2

r22
(mn)1,j

)
− (Gm,n)1,j ,

fm(τn, sn,mn)i,j = ε2

(
(mn)i+1,j − 2 (mn)i,j + (mn)i−1,j

k2

+
2

ri+1

(mn)i+1,j − (mn)i−1,j

2k
− 2

r2i+1

(mn)i,j

)
− (Gm,n)i,j ,

i = 2, ..., 97,

fm(τn, sn,mn)98,j = ε2

(
1− 2 (mn)98,j + (mn)97,j

k2

+
2

r99

1− (mn)97,j
2k

− 2

r299
(mn)98,j

)
− (Gm,n)98,j .

(6.29)

for j = 1, ..., 100 and n = 1, ..., Nτ .

We assume convergence of the deterministic simulations when the norm of the

spatially discretised version of
(

∂s
∂τ

2
+ ∂m

∂τ

2
)1/2

, where the partial derivatives are defined

in (6.23), or
(
fs(τn, sn,mn)

2 + fm(τn, sn,mn)
2
)1/2

, is less than 10−6, and terminate the

simulations when this threshold is reached.

6.2.2 Stochastic Solutions

We include additive noise in our models by working with a stochastic version of the

gradient flow equations in the nematic case in (6.16) and in the ferronematic case in

(6.23). The stochastic gradient flow equation in the nematic case is given by [73], [106]

∂s

∂τ
= ε2

(
∂2s

∂r2
+

2

r

∂s

∂r
− 6

r2
s

)
−
(
ts−

√
6s2 +

4

3
s3 +

2d

9
s4 +

4e

9
s5 +

2(f − e)

27
s5
)
+ σdW (τ,x),

x ∈ [0, 1]× [0, 2π], (6.30)
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subject to the boundary conditions (6.8); and the stochastic gradient flow equations in

the ferronematic case are given by

∂s

∂τ
= ℓ

(
∂2s

∂r2
+

2

r

∂s

∂r
− 6

r2
s

)
−
(
t̂s−

√
6s2 +

4

3
s3 − cm2

)
+ σdW (τ,x),

∂m

∂τ
= ℓ

(
∂2m

∂r2
+

2

r

∂m

∂r
− 2

r2
m

)
−
(
m3 −m− 4

3
csm

)
+σdW (τ,x),

x ∈ [0, 1]× [0, 2π],

(6.31)

where, in each case, noise is generated via the Q-Wiener process W (τ,x) and σ is a

parameter included to scale the strength of additive noise.

We give a brief outline of the discrete approximation of dW (τ,x), following Theorem

10.7 in [106]. We may write a Q-Wiener process, W (τ,x), as

W (τ,x) :=

∞∑
j=1

√
pjχj(x)Bj(τ), (6.32)

where spatial correlations are incorporated through the eigenvalues, pj , of the Q-Wiener

process and the associated eigenfunctions, χj , and we refer the reader to [106] for further

details. The Bj terms are independent identically distribited (iid) Brownian motions.

A Q-Wiener process can be approximated by a finite sum analogous to that in Example

10.12 in [106] for use in numerical simulations.

In our case, we include additive noise on the 98 × 100 grid over the domain Ω =

[0 + k, 1 − k] × [0, 2π] to account for the boundary conditions at r = 0 and r = 1.

Then we work with points xi1,i2 = [ri1 , θi2 ] = [i1/99, 2π(i2 − 1)/99], for i1 = 1, ..., 98,

and i2 = 1, ..., 100. We suppose that Q : L2(Ω) → L2(Ω) is a bounded linear operator

with eigenvalues pj1,j2 = e−αγj1,j2 , where α > 0 controls the decay rate of the noise and

γj1,j2 = j21 + j22 . The associated eigenfunctions are χj1,j2(x) =
1√
2π
e2πij1x1e2πij2x2 . The
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Q-Wiener process is then approximated by the finite sum

W J(t,x) :=

J1/2∑
j1=−J1/2+1

J2/2∑
j2=−J2/2+1

√
pj1,j2χj1,j2(x)Bj1,j2(τ), (6.33)

where J1 = 98 and J2 = 100 and the Bj1,j2 are iid Brownian motions. We then

approximate dW (τ, (ri1 , θi2)) in (6.30) and (6.31) with the difference

∆W J
n = W J (τ +∆τ, (ri1 , θi2))−W J (τ, (ri1 , θi2)) . (6.34)

We compute the above difference using Algorithms 10.5 and 10.6 in [106]. We note that

the additive noise will not be a rotationally symmetric Gaussian in coordinate space

as a consequence of the choice of grid. However, we argue that it will still provide

useful insight into imperfect systems, although it would be interesting to investigate

the effects of a spherically symmetric Gaussian.

We again apply the Runge-Kutta method discussed in the previous section to obtain

solutions to the stochastic gradient flow equations (6.30) and (6.31). We again take

random initial guesses for s in the nematic case, and we compute the value of s at each

grid point at the nth time step, τn, using the formula

sn+1 = sn +
∆τ

6
(k1 + 2k2 + 2k3 + k4) , (6.35)
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where in the stochastic case we have

k1 = f (τn, sn) + σ
∆W J

n

∆τ
,

k2 = f

(
τn +

∆τ

2
, sn +

∆τ

2
k1

)
+ σ

∆W J
n

∆τ
,

k3 = f

(
τn +

∆τ

2
, sn +

∆τ

2
k2

)
+ σ

∆W J
n

∆τ
,

k4 = f (τn+1, sn +∆τk3) + σ
∆W J

n

∆τ
,

(6.36)

as is done in [73], where f is as described in (6.22).

Analogously, in the ferronematic case, the values of s and m at each grid point are

computed using the formulae

sn+1 = sn +
∆τ

6
(ks,1 + 2ks,2 + 2ks,3 + ks,4) ,

mn+1 = mn +
∆τ

6
(km,1 + 2km,2 + 2km,3 + km,s) ,

(6.37)

where each ks,i and km,i, i = 1, ..., 4 are as in the deterministic case (6.25), with the

addition of σ∆WJ
n

∆τ , as in the stochastic nematic case in (6.36). Just as in the nematic

stochastic case, we take random initial guesses for s and m.

The value α > 0 in the exponent of the eigenvalues of the Q-Wiener process in-

fluences the strength of the spatial variation of the noise. We previously noted that

we also include the term σ to scale the strength of the noise in (6.30) and (6.31). To

avoid complication, we only vary the strength of the noise through the term α, and set

σ = 1, as is done in [73]. Small values of α (α < 0.1) result in larger values for the

pj1,j2 terms away from j1 = j2 = 0 and signify large spatial variation in strong noise.

Conversely, large values of α (α > 1) result in smaller values for the pj1,j2 terms and

denote less spatial variation in weak noise. The stochastic solutions we present in the

following sections are each the average of 100 independent stochastic simulations.
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In [73], the authors discuss the concept of the invariant measure, which essentially

indicates that the output of stochastic simulations will approach the same equilibrium

state over a sufficiently large time interval [128]. The authors in [73] note that Proposi-

tion 4.1 in [129] can be applied to equations of the form (6.30) and (6.31) to guarantee

the existence of an invariant measure, which means that there is some equilibrium state

to which each stochastic numerical simulation will approach. In practice, we would ex-

pect the output of each individual stochastic simulation, if run over a sufficiently large

time interval, to exhibit small fluctuations around some such equilibrium state. Fur-

thermore, we would expect the averages of two sets of, say, 100 stochastic simulations,

each run over the same sufficiently large time interval, to be almost identical, and at the

very least display the same qualitative behaviour. We give an example of this behaviour

in the next section, indicating that once the system has reached the equilibrium state,

the solution simply exhibits small random fluctuations about this state for long time.

6.3 Numerical Results

6.3.1 The Nematic Radial Hedgehog Solution

Fourth-Order Bulk Potential

In this section, we present a range of results in the nematic case with the fourth-order

bulk potential, summarising our investigation into the effects of additive noise on the

nematic radial hedgehog solution with the fourth-order bulk potential. The solution

profiles presented here and in the following sections are taken from solutions computed

on the 100 × 100 grid corresponding to the disc over [0, 1] × [0, 2π], which are then

averaged in the θ-direction. In other words, one simulation is an average over the

100 grid points in the θ-direction. This allows us to better visually examine solutions
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for properties such as monotonicity and nonnegativity, but tells us nothing about the

symmetry of solutions about the origin.

We plot examples of the scalar order parameter of deterministic radial hedgehog

profiles in Figure 6.1, which solve the ODE (6.16) with d = e = f = 0, subject to the

boundary conditions (6.8), and are obtained via the Runge-Kutta method described

in (6.17) and (6.18). Figure 6.1a corresponds to large droplets, with ε = 0.1; Figure

6.1b corresponds to the intermediate droplet size described by ε = 1; while Figure 6.1c

corresponds to small droplets given by ε = 5. We obtain solutions for t = −1, t = −10,

and t = −100 for each value of ε. As discussed in the preceding section, we assume that

we have achieved an equilbrium state through a numerical simulation when the norm

of ∂s
∂τ is less than 10−6, and terminate the simulation when this condition is satisfied.

We use a step size of ∆τ = 2×10−5 in the simulations with ε = 0.1 and 1, as discussed

in the preceding section. The small droplet case described by ε = 5 is more sensitive to

step size and requires a smaller step size for convergence, so we set ∆τ = 1.25× 10−6,

as discussed in Section 6.2, in simluations with ε = 5. We find that convergence is

achieved in each case in fewer than 100,000 iterations. The key observations are that

the degree of nematic ordering throughout the droplet increases as droplet size increases

and temperature decreases, and that each profile is nonnegative, monotonic increasing,

and bounded above by s+, where

s+ =

√
3

2

3 +
√
9− 8t

4
, (6.38)

in the fourth-order case, as required from the analytical results reviewed in Sections

1.5.2 and 3.3.

In Figure 6.2, we present the stochastic counterparts to the deterministic solutions

in Figure 6.1, with strong noise described by α = 0.1 in (6.30). We use the same step
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Figure 6.1: Deterministic radial hedgehog scalar order parameter profiles obtained from
(6.16) in the fourth-order case with d = e = f = 0 in (a) large droplets (ε = 0.1); (b)
intermediate droplets (ε = 1); and (c) small droplets (ε = 5). Dashed and dotted blue
lines correspond to t = −1; dashed orange lines correspond to t = −10; and solid yellow
lines correspond to t = −100.

sizes in the numerical simulations as in the deterministic case: ∆τ = 2 × 10−5 when

ε = 0.1 and ε = 1; and ∆τ = 1.25×10−6 when ε = 5. As convergence is reached in fewer

than 100,000 iterations in the deterministic cases, we run the stochastic simulations over

the time interval [0, T ], setting T = 2 when ε = 0.1 and ε = 1; and setting T = 0.2

when ε = 5. In Figure 6.2, we plot the average of 100 numerical solutions of the

stochastic differential equation in (6.30), which is also averaged in the θ-direction, with

d = e = f = 0, subject to the boundary conditions (6.8). We observe that Figures 6.2b

and 6.2c, corresponding to ε = 1 and ε = 5 are indistinguishable from the determinstic

equivalents in Figures 6.1b and 6.1c. We observe slight differences between Figures 6.2a

and 6.1a in the large droplet case. Interestingly, the value of the scalar order parameter

is slightly reduced away from r = 0 and r = 1 in each case, suggesting that the degree

of ordering away from the droplet centre and boundary in large droplets in a more

realistic system is more relaxed than that predicted via the deterministic model. The

value of the scalar order parameter is also slightly larger than the boundary value s+

close to r = 1 at t = −1 in the stochastic case, violating the monotonicity and upper

bound predicted by the analytical results discussed in Sections 1.5.2 and 3.3. This
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suggests that stochastic effects are most pronounced at higher temperatures, closer

to the isotropic-nematic transiton temperature, and in larger droplets, where there is

more space for liquid crystal molecules to deviate from the predicted configuration. We

note, however, that these differences between the deterministic and stochastic cases are

small, and that the qualitative behaviour of the stochastic solutions approximates that

of the deterministic solutions in each case presented.
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Figure 6.2: Stochastic radial hedgehog scalar order parameter profiles obtained from
(6.30) in the fourth-order case with d = e = f = 0, strong noise (α = 0.1), and in
(a) large droplets (ε = 0.1); (b) intermediate droplets (ε = 1); and (c) small droplets
(ε = 5). Dashed and dotted blue lines correspond to t = −1; dashed orange lines
correspond to t = −10; and solid yellow lines correspond to t = −100.

In Figure 6.3, we plot the average of 100 independent numerical solutions of the

stochastic differential equation in (6.30) with ε = 0.1, t = −1, and d = e = f = 0

at T = 2 and T = 10. We observe that the solutions are almost identical, suggesting

that the system has reached an equilibrium state, in agreement with the existence of

an invariant measure [73], as discussed in the preceding section. In other words, in

this example, we expect all results of stochastic simulations, run over a sufficiently long

time, to exhibit small fluctutations about the same equilibrium state shown in Figure

6.3, and expect the same to be true for different values of t and ε.

We consider the cases t = −1, ε = 0.1 and t = −100, ε = 5 in Figure 6.4. We plot

the deterministic solution of (6.16), together with the average of 100 numerical solutions
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Figure 6.3: The average of 100 numerical solutions of (6.31) with d = e = f = 0 and
α = 0.1 for t = −1, ε = 0.1 at (a) T = 2, and (b) T = 10.
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(a) t = −1, ε = 0.1
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(b) t = −100, ε = 5

Figure 6.4: Comparison of deterministic and stochastic radial hedgehog scalar order
parameter profiles obtained from (6.16) and (6.30) in the fourth-order case with d = e =
f = 0 with different strengths of noise. Black solid lines correspond to the determinstic
profile, while dashed and dotted blue, dashed orange, and dotted yellow lines correspond
to stochastic profiles with very strong noise (α = 0.01), strong noise (α = 0.1), and
weak noise (α = 1), respectively. We plot profiles for (a) a large droplet at a higher
temperature (t = −1, ε = 0.1) and (b) a small droplet at a low temperature (t =
−100, ε = 5).

of (6.30) in the stochastic case, with three different strengths of noise, described by

α = 0.01, α = 0.1, and α = 1, recalling that α = 0.01 corresponds to strong noise,

while α = 1 corresponds to weak noise. In the higher temperature, large droplet case

in Figure 6.4a, we observe that stronger noise results in a larger deviation from the

231



Chapter 6. Stochastic Effects on Deterministic Solutions

deterministic solution, and we reproduce the solution which exceeds s+ in (6.38). We

also see that in each case, the stochastic solution has a lower value for s away from

r = 0 and r = 1, supporting the hypothesis that more realistic systems could be slightly

less ordered than the deterministic predictions. Conversely, we observe no noticeable

differences between the deterministic and stochastic scalar order parameter profiles in

the low temperature and small droplet case in Figure 6.4b, even with strong noise.

The scalar order parameter profiles plotted in Figures 6.1-6.4 are in fact an average

of the scalar order parameter throughout the droplet. In Figures 6.5a and 6.5b, we

present deterministic and stochastic solutions, respectively, on the disc on which they

were computed in the case t = −1, ε = 0.1, with d = e = f = 0, with strong noise,

α = 0.1, in the stochastic case. We observe that the solutions are very similar, although

the value of s is slightly lower in the bulk of the droplet (denoted by a slightly darker

yellow). To better illuminate the differences between the two solutions, we subract the

stochastic solution from the deterministic solution and plot this in Figure 6.5c. The key

feature of Figure 6.5c is the lack of symmetry, meaning that the rotational symmetry

of the radial hedgehog scalar order parameter is lost in the stochastic case. We omit

the plots, but we note that there is a loss of spherical symmetry to some degree for

every value of t and ε we have considered. Furthermore, we observe that the difference

between the deterministic and stochastic solutions is mostly positive away from the

origin and the droplet surface, suggesting the inclusion of additive noise results in a

reduction of nematic ordering in the interior of the droplet, although small in this case.

We draw two fundamental conclusions from this numerical investigation in the

fourth-order nematic case. Firstly, the inclusion of additive noise can result in the

violation of key properties inherent in deterministic solutions at high temperatures and

in large droplets, namely: monotonicity, the upper bound, and rotational symmetry;
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(a) (b) (c)

Figure 6.5: Value of s/s+ throughout the domain (a) in the deterministic case from
(6.16); and (b) in the stochastic case with strong noise, α = 0.1, from (6.30), each with
t = −1, ε = 0.1, and d = e = f = 0. (c) The difference between the deterministic and
stochastic solutions in (a) and (b), respectively.

and additive noise reduces the degree of ordering away from the droplet centre and

boundary in such systems. Secondly, and perhaps more importantly, the effects of ad-

ditive noise are more pronounced in larger droplets and at higher temperatures, but

even in the more extreme cases, the qualitative behaviour still approximates that of the

corresponding deterministic solutions. Thus, while one might expect some differences

in the radial hedgehog scalar order parameter in the deterministic and stochastic cases

at high temperatures and in large droplets, our findings support the use of the deter-

minstic model in (6.16) in the fourth-order case as a reliable tool to predict the form

of the radial hedgehog solution in general.

Sixth-Order Bulk Potential

In this section, we present results in the nematic case with the sixth-order bulk poten-

tial. Analogously to the preceding section, we summarise the effects of the inclusion

of additive noise on the nematic radial hedgehog solution with the sixth-order bulk

potential.

We first plot examples of deterministic radial hedgehog scalar order parameter pro-

files in Figure 6.6, which are solutions of the ODE (6.30) with d = 1, e = 0, and
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f = 1, subject to the boundary conditions (6.8), and are obtained via the Runge-

Kutta method described in (6.17) and (6.18). We plot profiles in droplets with large

(ε = 0.1), intermediate (ε = 1), and small (ε = 5) radii in Figures 6.6a, 6.6b, and 6.6c,

respectively; and in each plot we include profiles corresponding to the temperatures

t = −1, t = −10, and t = −100. We use the same step sizes and convergence crite-

ria as in the fourth-order bulk potential case. The key observations are the same as

in the fourth-order case: the degree of ordering throughout the droplet increases with

droplet size and decreases with increasing temperature; and each profile is nonnegative,

monotonic increasing and bounded above by s+. We recall that scalar order parameter

profiles which take negative values are admissible in certain parameter regimes with

the sixth-order bulk potential (see Proposition 3.4 and Figure 3.6 in Chapter 3), but

we consider only nonnegative determinstic solutions here.
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Figure 6.6: Deterministic radial hedgehog scalar order parameter profiles obtained
from (6.16) in the sixth-order case with d = 1, e = 0, and f = 1 in (a) large droplets
(ε = 0.1); (b) intermediate droplets (ε = 1); and (c) small droplets (ε = 5). Dashed
and dotted blue lines correspond to t = −1; dashed orange lines correspond to t = −10;
and solid yellow lines correspond to t = −100.

Next, we plot a range of stochastic radial hedgehog scalar order parameter profiles

in Figure 6.7 with the same values of ε and t as the deterministic profiles plotted in

Figure 6.6. We set d = 1, e = 0, f = 1 and α = 0.1 in (6.30) and obtain solutions

via the Runge-Kutta method described in (6.35) and (6.36), plotting the average of

234



Chapter 6. Stochastic Effects on Deterministic Solutions

100 simulations in each case. We use the same values of ∆τ as in the deterministic

simulations and solve over the time interval [0, T ], setting T = 4 when ε = 0.1 and

ε = 1; and T = 0.4 when ε = 5 since the deterministic simulations converge in fewer

than 200,000 iterations. We draw similar conclusions to those in the fourth-order case:

the stochastic solutions with ε = 1 and ε = 5 in Figures 6.7b and 6.7c, respectively, are

indistinguishable from their deterministic counterparts in Figures 6.2b and 6.2c, so the

inclusion of additive noise has little impact.

We observe slight differences in the large droplet case with ε = 0.1 in Figure 6.7a.

In the higher temperature case, t = −1, the value of the scalar order parameter profile

is reduced in the interior of the droplet. At t = −10, the value of the scalar order

parameter appears to decrease slightly between approximately r = 0.5 and r = 0.8, so

that the profile is not monotonic; and appears to attain values slightly larger than s+

near the droplet boundary, so that s(r) > s+. Proposition 3.3 in Chapter 3 requires that

s(r) ≤ max{s+, |s−|}, r ∈ [0, 1], where s− is the negative minimiser of the function g

in (6.5) with t = −10, d = 1, e = 0 and f = 1. In this case, we note that s+ ≈

2.96, while s− ≈ −2.55, meaning that we require s(r) ≤ s+, hence the stochastic

solution at t = −10 in Figure 6.6a violates Proposition 3.3 in Chapter 3. Furthermore,

Proposition 3.4 in Chapter 3 defines conditions under which the radial hedgehog scalar

order parameter must be monotonic. We find that these conditions are satisfied in the

case t = −10, d = 1, e = 0 and f = 1, so the stochastic solution at t = −10 in Figure

6.7a also violates Proposition 3.4 in Chapter 3.

We find that the qualitative behaviour is close to that of the deterministic scalar

order parameter profiles in Figure 6.6a. However, we note that the discrepancies be-

tween the deterministic and stochastic solutions appear larger in the sixth-order case

compared to the fourth-order case.
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Figure 6.7: Stochastic radial hedgehog scalar order parameter profiles obtained from
(6.30) in the sixth-order case with d = 1, e = 0 and f = 1, with strong noise (α = 0.1),
and in (a) large droplets (ε = 0.1); (b) intermediate droplets (ε = 1); and (c) small
droplets (ε = 5). Dashed and dotted blue lines correspond to t = −1; dashed orange
lines correspond to t = −10; and solid yellow lines correspond to t = −100.

In Figure 6.8, we consider the specific cases t = −1, ε = 0.1 and t = −100, ε = 5,

again taking d = 1, e = 0 and f = 1, plotting three stochastic solutions with different

strengths of noise against the deterministic solution in each plot. Each stochastic

solution is the average of 100 simulations, and we consider very strong (α = 0.01),

strong (α = 0.1), and weak (α = 1) noise. Figure 6.4b again indicates that the inclusion

of additive noise has no discernible impact in small droplets and at low temperatures. In

Figure 6.8a, we observe that the additive noise does affect the radial hedgehog scalar

order parameter in large droplets and at higher temperatures, with each stochastic

profile having lower interior order than the deterministic solution, with stronger noise

resulting in a greater deviation from the deterministic radial hedgehog scalar order

parameter profile.

Just as in the preceding section, we plot deterministic and stochastic solutions on

the disc, and their difference, obtained by subtracting the stochastic solution from the

deterministic solution, in Figure 6.9, in the case t = −1, ε = 0.1, d = 1, e = 0, and

f = 1. The stochastic solution is again the average of 100 simulations with strong noise

described by α = 0.1. The qualitative deductions are the same as in the fourth-order
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Figure 6.8: Comparison of deterministic and stochastic radial hedgehog scalar order
parameter profiles obtained from (6.16) and (6.30) in the sixth-order case with d =
1, e = 0 and f = 1 with different strengths of noise. Black solid lines correspond to the
determinstic profile, while dashed and dotted blue, dashed orange, and dotted yellow
lines correspond to stochastic profiles with very strong noise (α = 0.01), strong noise
(α = 0.1), and weak noise (α = 1), respectively. We plot profiles for (a) t = −1, ε = 0.1
and (b) t = −100, ε = 5.

case. We note that the lack of symmetry is less clear in Figure 6.9c in comparison to

Figure 6.5c, however the difference between the stochastic and deterministic solutions

is larger throughout the domain in the sixth-order case, and this might disguise the

lack of symmetry.

(a) (b) (c)

Figure 6.9: Value of s/s+ throughout the domain (a) in the deterministic case from
(6.16); and (b) in the stochastic case with strong noise, α = 0.1, from (6.30), each with
t = −1, ε = 0.1, d = 1, e = 0 and f = 1. (c) The difference between deterministic and
stochastic solutions in (a) and (b), respectively.

The key observations in this section are as follows: the inclusion of additive noise
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breaks the rotational symmetry; can result in non-monotonic scalar order parameter

profiles or profiles which violate the upper bound in large droplets and at higher tem-

peratures; and reduces the interior ordering. A difference between the fourth- and

sixth-order cases is that where we do observe discrepancies between the stochastic and

deterministic solutions, they are typically more pronounced in the sixth-order case.

6.3.2 The Ferronematic Radial Hedgehog Solution

In the following sections, we plot the same sequence of four sets of plots in the uncoupled

case, c = 0, a weakly coupled case, c = 0.1, and a strongly coupled case, c = 1.

We first plot examples of the scalar order parameter of the deterministic radial

hedgehog solution and the associated magnetisation profiles, which solve the coupled

PDEs (6.23), subject to the boundary conditions (6.15), and are obtained via the

Runge-Kutta method described in (6.24) and (6.25). We present solutions in large

droplets with ℓ = 0.1; in intermediate droplets with ℓ = 1; and in small droplets with

ℓ = 5, at the temperatures t̂ = −1, t̂ = −10, and t̂ = −100 in each case. We assume that

the numerical simulation has converged when
(

∂s
∂τ

2
+ ∂m

∂τ

2
)1/2

< 10−6. We use a step

size of ∆τ = 2× 10−5 in the simulations with ℓ = 0.1 and ℓ = 1, and ∆τ = 1.25× 10−6

in the simulations with ℓ = 5, and taking random initial guesses for both s and m, we

find that convergence is reached in fewer than 200,000 iterations in each case.

We then plot the stochastic counterparts to the deterministic solutions obtained

from (6.31) with strong noise, α = 0.1, subject to the boundary conditions (6.15). We

run the stochastic Runge-Kutta method outlined in (6.24) and (6.25) over the time

interval [0, T ], setting T = 4 when ℓ = 0.1 and ℓ = 1; and setting T = 0.4 when ℓ = 5,

using step sizes of ∆τ = 2 × 10−5 with ℓ = 0.1 and ℓ = 1 and ∆τ = 1.25 × 10−6 with

ℓ = 5. We plot the average of 100 stochastic numerical simulations in each case.
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Next, we plot the average of 100 stochastic simulations against the deterministic

solutions in the specific cases t̂ = −1, ℓ = 0.1 and t̂ = −100, ℓ = 5 with weak noise,

α = 1, strong noise, α = 0.1, and very strong noise, α = 0.01.

Finally, we plot deterministic and stochastic solutions on the disc with t̂ = −1 and

ℓ = 0.1, with strong noise, α = 0.1, in the stochastic case, and their difference obtained

from subtracting the stochastic solution from the deterministic solution at each point.

We note that the stochastic solution is again the average of 100 stochastic simulations.

The Uncoupled Case

In this section, we consider the ferronematic case in the absence of nemato-magnetic

coupling, with c = 0. Setting c = 0 renders the problem analogous to the nematic

case with the fourth-order bulk potential, and as such the qualitative behaviour of the

radial hedgehog scalar order parameter is the same as in the pure nematic case.

The key observations regarding the deterministic radial hedgehog scalar order pa-

rameter profiles in Figure 6.10 are the same as in the nematic case. The associated

magnetisation vector profiles in Figures 6.10d-6.10f do not vary with temperature. This

is because, in the uncoupled case, the magnetisation vector depends only on droplet

size, described by ℓ, and has no dependence on temperature.

Regarding the stochastic magnetisation profiles in Figures 6.11d-6.11f, we observe

that the profiles are no longer identical at each value of ℓ. However, we see no clear

trends in the variation of the magnetisation profile with respect to droplet size or

temperature, and as such we speculate that the differences in the magnetisation profiles

are purely random variations as a result of the inclusion of additive noise in the model.

In the large droplet, higher temperature case with very strong noise in Figure 6.12c,

we observe that the magnetisation profile is reduced in magnitude in the droplet interior,
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Figure 6.10: Deterministic radial hedgehog scalar order parameter profiles (a)-(c) and
magnetisation profiles (d)-(f) obtained from (6.23) in the ferronematic case with zero
nemato-magnetic coupling, c = 0, in (a), (d) large droplets (ℓ = 0.1); (b), (e) interme-
diate droplets (ℓ = 1); (c), (f) and small droplets (ℓ = 5). Dashed and dotted blue lines
correspond to t̂ = −1; dashed orange lines correspond to t̂ = −10; and solid yellow
lines correspond to t̂ = −100.

approaching a linear profile. We see slight fluctuations in the magnetisation parameter

with very strong noise in the small droplet, low temperature case in Figure 6.12d,

but we speculate that these are merely random fluctuations about the deterministic

solution. Figure 6.12 indicates that large droplets of ferronematic liquid crystals have

slightly weaker spontaneous magnetisation than predicted by the deterministic model

in (6.23).

Figures 6.13a and 6.13d are the solutions for s and m in the deterministic case,

respectively; Figures 6.13b and 6.13e are the stochastic solutions for s and m, respec-

tively; and Figures 6.13c and 6.13f are the differences between the deterministic and

stochastic solutions for s and m, respectively. The value for both s and m throughout
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Figure 6.11: Stochastic radial hedgehog scalar order parameter profiles (a)-(c) and
magnetisation profiles (d)-(f) obtained from (6.31) in the ferronematic case with strong
noise, α = 0.1; and zero nemato-magnetic coupling, c = 0, in (a), (d) large droplets
(ℓ = 0.1); (b), (e) intermediate droplets (ℓ = 1); (c), (f) and small droplets (ℓ = 5).
Dashed and dotted blue lines correspond to t̂ = −1; dashed orange lines correspond to
t̂ = −10; and solid yellow lines correspond to t̂ = −100.

the domain in the stochastic case is lower than in the deterministic case, although this

is difficult to see in Figures 6.13b and 6.13e. This is more obvious in Figures 6.13c and

6.13f, which shows there is a clear difference between both the s and the m solutions,

and demonstrates that rotational symmetry is lost in the stochastic case. We make

two further observations: firstly, the difference between the deterministic and stochas-

tic solutions is nonnegative everywhere in the domain, highlighting that the inclusion

of additive noise results in a reduction in ordering throughout the droplet, at least in

this case. Secondly, the greatest differences between the deterministic and stochastic

solutions are not at the same points in the domain for the solutions for s and m, which

is to be expected since there is no nemato-magnetic coupling, meaning the fluctuations
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Figure 6.12: Comparison of deterministic and stochastic radial hedgehog scalar order
parameter profiles (a), (b), and the associated magnetisation profiles (c), (d), obtained
from (6.23) and (6.31), respectively, with zero nemato-magnetic coupling, c = 0 with
different strengths of noise. Black solid lines correspond to the determinstic profile,
while dashed and dotted blue, dashed orange, and dotted yellow lines correspond to
stochastic profiles with very strong noise (α = 0.01), strong noise (α = 0.1), and weak
noise (α = 1), respectively. We plot profiles for (a), (c) t̂ = −1, ℓ = 0.1; and (b), (d)
t̂ = −100, ℓ = 5.

in the value of m are not dependent on fluctuations in the value of s. Finally, it is

important to point out that while there are differences between the stochastic and de-

terministic solutions, these differences are very small in magnitude, as can be seen from

the scales in Figures 6.13c and 6.13f.

As there are no observed violations of properties such as nonnegativity or mono-

tonicity, the effects of additive noise in the uncoupled ferronematic case is arguably
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Value of s/sf throughout the domain (a) in the deterministic case from
(6.16); and (b) in the stochastic case with strong noise, α = 0.1, from (6.30), each with
t̂ = −1, ℓ = 0.1, and c = 0. (c) The difference between the deterministic and stochastic
scalar order parameter in (a) and (b), respectively. Value of m/mf , throughout the
domain (d) deterministic case from (6.16); and (e) in the stochastic case from (6.31).
(f) The difference between the deterministic and stochastic magnetisation parameter
in (d) and (e), respectively.

weaker than in the nematic cases studied. However, we must note that the parameter

regimes for the nematic and ferronematic cases are slightly different due to the choice

of nondimensionalisation in Section 2.2, so care must be taken when comparing the two

systems.

A Weakly Coupled Case

We next consider a weakly coupled case, c = 0.1, in this section.

In Figure 6.14, we see that the radial hedgehog scalar order parameter profiles

are almost identical to those in the uncoupled case plotted in Figure 6.10, with each

solution being monotonic, nonnegative, and attaining its maximum on the droplet
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Figure 6.14: Deterministic radial hedgehog scalar order parameter profiles (a)-(c) and
magnetisation profiles (d)-(f) obtained from (6.23) in the ferronematic case with weak
nemato-magnic coupling, c = 0.1, in (a), (d) large droplets (ℓ = 0.1); (b), (e) interme-
diate droplets (ℓ = 1); (c), (f) and small droplets (ℓ = 5). Dashed and dotted blue lines
correspond to t̂ = −1; dashed orange lines correspond to t̂ = −10; and solid yellow
lines correspond to t̂ = −100.

boundary. The difference between the deterministic solutions in the c = 0 and c = 0.1

cases is in the magnetisation profiles in Figures 6.14d-6.14f. We observe that there are

slight differences in the magnetisation profiles at different temperatures in this weakly

coupled case in Figures 6.14d-6.14f, which can be attributed to the nemato-magnetic

coupling introducing some level of temperature-dependence in the magnetisation. The

differences are most pronounced in large droplets described by ℓ = 0.1 in Figure 6.14d,

with the magnitude of the magnetisation parameter, m, decreasing in the droplet bulk

for higher temperatures.

Comparing Figures 6.15a-6.15c to Figures 6.14a-6.14c, we are unable to detect any

clear differences between the deterministic and stochastic radial hedgehog scalar or-
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Figure 6.15: Stochastic radial hedgehog scalar order parameter profiles (a)-(c) and
magnetisation profiles (d)-(f) obtained from (6.31) in the ferronematic case with strong
noise, α = 0.1 and weak nemato-magnetic coupling, c = 0.1, in (a), (d) large droplets
(ℓ = 0.1); (b), (e) intermediate droplets (ℓ = 1); (c), (f) and small droplets (ℓ = 5).
Dashed and dotted blue lines correspond to t̂ = −1; dashed orange lines correspond to
t̂ = −10; and solid yellow lines correspond to t̂ = −100.

der parameter profiles with the inclusion of strong additive noise, and we note that

monotonicity, nonnegativity and the upper bound are preserved. Comparing Figures

6.15d-6.15f to Figures 6.14d-6.14f, we observe that the magnitude of the radial hedge-

hog magnetisation profile is slightly reduced with the inclusion of strong noise in the

cases t̂ = −1 and t̂ = −10 with ℓ = 0.1 and ℓ = 1.

Additive noise appears to reduce the degree of nematic ordering and strength of

spontaneous magnetisation in the large droplet, higher temperature case, as shown in

Figures 6.16a and 6.16c, with stronger noise resulting in a greater reduction. We do not

observe any differences in the radial hedgehog scalar order parameter with the inclusion

of additive noise in the small droplet, low temperature case in Figure 6.16b, and we
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Figure 6.16: Comparison of deterministic and stochastic radial hedgehog scalar order
parameter profiles (a), (b), and the associated magnetisation profiles (c), (d), obtained
from (6.23) and (6.31), respectively, with weak nemato-magnetic coupling, c = 0.1, with
different strengths of noise. Black solid lines correspond to the determinstic profile,
while dashed and dotted blue, dashed orange, and dotted yellow lines correspond to
stochastic profiles with very strong noise (α = 0.01), strong noise (α = 0.1), and weak
noise (α = 1), respectively. We plot profiles for (a), (c) t̂ = −1, ℓ = 0.1; and (b), (d)
t̂ = −100, ℓ = 5.

observe slight random fluctuations in the magnetisation parameter in Figure 6.16d.

Furthermore, the differences in Figures 6.17c and 6.17f are mostly positive, so we

conclude that additive noise results in a reduction in the nematic ordering and the

strength of the spontaneous magnetisation throughout the droplet. In this weakly

coupled case, comparing the patterns in Figures 6.17c and 6.17f, while the patterns

in the differences between the values of s and m in the deterministic and stochastic
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(a) (b) (c)

(d) (e) (f)

Figure 6.17: Value of s/sf throughout the domain (a) in the deterministic case from
(6.16); and (b) in the stochastic case with strong noise α = 0.1, from (6.30), each
with t̂ = −1, ℓ = 0.1, and c = 0.1. (c) The difference between the deterministic
and stochastic scalar order parameter in (a) and (b), respectively. Value of m/mf ,
throughout the domain (d) deterministic case from (6.16); and (e) in the stochastic case
from (6.31). (f) The difference between the deterministic and stochastic magnetisation
parameter in (d) and (e), respectively.

cases are not identical, or in other words the largest differences between solutions are

not in the exact same locations, one could argue that they are similar, and indeed

appear more correlated than in the uncoupled case, in this example at least. This

is in keeping with the fact that nonzero nemato-magnetic coupling introduces some

interdependence between the values of s and m, so it is natural that fluctuations in m

have some dependence on fluctuations in s, and vice-versa.

A Strongly Coupled Case

In this final section, we consider strong nemato-magnetic coupling described by c = 1.

In Figure 6.19, we see the stochastic radial hedgehog scalar order parameter take
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Figure 6.18: Deterministic radial hedgehog scalar order parameter profiles (a)-(c) and
magnetisation profiles (d)-(f) obtained from (6.23) in the ferronematic case with strong
nemato-magnetic coupling, c = 1, in (a), (d) large droplets (ℓ = 0.1); (b), (e) interme-
diate droplets (ℓ = 1); (c), (f) and small droplets (ℓ = 5). Dashed and dotted blue lines
correspond to t̂ = −1; dashed orange lines correspond to t̂ = −10; and solid yellow
lines correspond to t̂ = −100.

negative values near the origin in the case ℓ = 1, t = −1, which violates Proposition 5.3

in Chapter 5. In the deterministic case, there is almost no ordering near the droplet cen-

tre at this temperature and droplet size, while in the stochastic case we observe slight

negative ordering near the centre of the droplet before the nematic ordering increases

towards the edge of the droplet. Furthermore, this is the first example in a ferronematic

system in which the scalar order parameter is nonmonotonic. Regarding the magneti-

sation parameter profiles in Figures 6.19d-6.19f, there are no observable differences to

the deterministic case in small droplets; we observe slight differences at lower temper-

atures in intermediate droplets; and clearer differences in the larger droplet case, with

each magnetisation profile being pulled closer to the shape of the corresponding scalar
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Figure 6.19: Stochastic radial hedgehog scalar order parameter profiles (a)-(c) and
magnetisation profiles (d)-(f) obtained from (6.31) in the ferronematic case with strong
noise, α = 0.1 and strong nemato-magnetic coupling, c = 1, in (a), (d) large droplets
(ℓ = 0.1); (b), (e) intermediate droplets (ℓ = 1); (c), (f) and small droplets (ℓ = 5).
Dashed and dotted blue lines correspond to t̂ = −1; dashed orange lines correspond to
t̂ = −10; and solid yellow lines correspond to t̂ = −100.

order parameter in comparison to the deterministic case. The qualitative behaviour of

the stochastic magnetisation profiles is similar to the deterministic counterparts. The

higher temperature, large droplet example here represents the largest departure from

the deterministic solution, suggesting the inclusion of additive noise has the greatest

impact in strongly coupled ferronematic systems at higher temperatures and in larger

droplets. However, one could still argue that the effects are small.

In Figure 6.20, there are no clear differences between the deterministic and stochas-

tic radial hedgehog scalar order parameter profiles in the small droplet, low tempera-

ture case, and there are only slight fluctuations in the associated magnetisation profiles.

In the large droplet, higher temperature case, additive noise again appears to reduce
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the degree of ordering throughout the droplet, and reduces the value of the associ-

ated magnetisation. This again reinforces that the inclusion of additive noise has a

more pronounced effect on large droplets and at higher temperatures, and that noise

typically reduces the degree of nematic ordering and the strength of the spontaneous

magnetisation.
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Figure 6.20: Comparison of deterministic and stochastic radial hedgehog scalar order
parameter profiles (a), (b), and the associated magnetisation profiles (c), (d), obtained
from (6.23) and (6.31), respectively, with strong nemato-magnetic coupling, c = 1, with
different strengths of noise. Black solid lines correspond to the determinstic profile,
while dashed and dotted blue, dashed orange, and dotted yellow lines correspond to
stochastic profiles with very strong noise (α = 0.01), strong noise (α = 0.1), and weak
noise (α = 1), respectively. We plot profiles for (a), (c) t̂ = −1, ℓ = 0.1; and (b), (d)
t̂ = −100, ℓ = 5.

In Figure 6.21b, we observe a darker ring around the origin corresponding to roughly
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(a) (b) (c)

(d) (e) (f)

Figure 6.21: Value of s/sf throughout the domain (a) in the deterministic case from
(6.16); and (b) in the stochastic case with strong noise α = 0.1, from (6.30), each with
t̂ = −1, ℓ = 0.1, and c = 1. (c) The difference between the deterministic and stochastic
scalar order parameter in (a) and (b), respectively. Value of m/mf , throughout the
domain (d) deterministic case from (6.16); and (e) in the stochastic case from (6.31).
(f) The difference between the deterministic and stochastic magnetisation parameter
in (d) and (e), respectively.

where the scalar order parameter is negative in the stochastic case, which is absent in

the deterministic case in Figure 6.21a. Furthermore, we also see that the patterns in

the two difference plots in Figures 6.21c and 6.21f are very similar. In particular, while

different in magnitude, looking at the two yellow bands each figure, we observe that

the greatest differences in the scalar order parameter solutions appear to be in the

same locations as the greatest differences in the magnetisation solutions, which is to be

expected with strong nemato-magnetic coupling.

This section concludes our numerical investigations and our observations in this

strongly coupled case are in approximate agreement with our observations in the earlier

sections. The differences observed with the inclusion of additive noise are arguably the
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most pronounced in this strongly coupled case, in comparison to the weakly coupled

and uncoupled ferronematic systems. The key finding in this section is the example in

which monotonicity and nonnegativity are violated with the inclusion of strong additive

noise.

6.4 Summary

In this chapter, we perform a numerical investigation of the effects of the inclusion of

additive noise in rotational droplets of nematic and ferronematic liquid crystals. This

noise models factors such as material imperfections, thermal fluctuations, and flaws in

experimental setup. Including noise is also an effective way to test how well the existing

deterministic models capture the qualitative behaviour of more realistic systems.

Our investigation suggests that the radial hedgehog configuration in more realistic

systems may not be perfectly rotationally symmetric and may be slightly less ordered

than expected from deterministic predictions. Moreover, in ferronematic systems we

might also expect slightly weaker spontaneous magnetisation. However, we make these

observations in larger droplets and at higher temperatures, and find that the degree

of nematic ordering and strength of spontaneous magnetisation in other scenarios is

largely unaffected by the inclusion of noise. Therefore, in smaller droplets and at lower

temperatures, we would expect the deterministic predictions to be very accurate. We

observe that rotational symmetry is lost in every case with the inclusion of additive

noise.

Furthermore, we find examples of radial hedgehog scalar order parameter profiles

which violate the monotonicity and nonnegativity and the upper bounds predicted in

Chapters 3 and 5. This suggests that these properties may not hold in every case in

reality, but we note that the devations from the deterministic solutions in the examples
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presented are small.

In the nematic case, we find that additive noise has a greater impact on solutions

with a sixth-order bulk potential. In the ferronematic case, we observe that the greatest

differences between deterministic and stochastic solutions occurs in the strongly coupled

case.

Despite the observed differences between deterministic and stochastic solutions

throughout this chapter, the qualitative behaviour between deterministic and stochastic

solutions is generally preserved, supporting the use of the existing deterministic mod-

els as valuable tools to capture the behaviour of the nematic and ferronematic radial

hedgehog solutions.

The investigation in this chapter is limited to the radial hedgehog solution on a

disc, only. A key next step would be to study more general equilibrium configurations

on the sphere with additive noise, which would allow for randomness in the preferred

direction of the nematic liquid crystal molecules as well as in the degree of ordering.

It would be useful to include additive noise into the models used in Sections 3.4 and

5.3 to understand the impact of noise on the structure and stability of equilibrium

configurations in spherical droplets of nematic and ferronematic liquid crystals. How-

ever, such a numerical investigation would require significant computational power, so

careful consideration regarding factors such as the numerical methods, mesh size, and

time step size would be required. Another potential next step would be to repeat our

investigation with multiplicative noise instead, to understand whether the dependence

of noise on the unknown variable would have any material impact on solutions.
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Conclusions and Future Work

The aim of this thesis has been twofold: to investigate biaxiality as a bulk effect in liquid

crystalline systems; and to study the character of defect structures in equilibrium in

spherical droplets of nematic liquid crystals and ferronematic liquid crystals.

Throughout this thesis, we model nematic liquid crystals using the Landau–de

Gennes theory, with the addition of magnetisation and nemato-magnetic coupling en-

ergies in the ferronematic case. We recall that the commonly used fourth-order bulk

potential does not admit biaxiality as a bulk effect in the absence of magnetisation.

We demonstrate that biaxiality can be a bulk effect under the more complicated sixth-

order bulk potential in the pure nematic case, and that it is also admissible in the

ferronematic case, where magnetisation is induced by a dilute suspension of magnetic

nanoparticles in systems of nematic liquid crystals.

We investigate the character and stability of the canonical radial hedgehog config-

uration and other equilibrium configurations in spherical droplets of nematic and fer-

ronematic liquid crystals. We first focus on the pure nematic case with the sixth-order

bulk potential, and then study equilibrium conifgurations in ferronematic systems. We

determine how factors such as droplet size, temperature, and nemato-magnetic coupling
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influence the stability and extent of biaxiality in such equilibrium configurations.

Finally, we consider the nematic and ferronematic radial hedgehog solution in a

stochastic context, to investigate if and how the inclusion of random noise in the system

influences the properties of the radial hedgehog solution, providing insight into the

robustness of the deterministic models used throughout this thesis. To conclude this

thesis, we present a brief summary of each chapter, and indicate some directions for

future study, building upon this work.

Chapter 3 contains some analytical and numerical studies of a Landau–de Gennes

free energy with a sixth-order bulk potential, and is divided into three main sections.

We first consider critical points of the sixth-order bulk potential, and find that the

global minimiser has negative scalar order parameter at low temperatures in the class

of uniaxial Q-tensors and is indeed biaxial in the more general class of Q-tensors which

can be biaxial. This is in contrast to the fourth-order bulk potential, which has a

uniaxial global minimiser with nonnegative scalar order parameter at low temperatures

in the class of uniaxial Q-tensors, and does not admit biaxial critical points in the more

general case. This is of interest since bulk biaxiality is typically challenging to induce

experimentally.

The second key component of Chapter 3 is an analytical exploration of the canonical

radial hedgehog solution with the sixth-order bulk potential. We find some analogies

with the radial hedgehog solution with the fourth-order bulk potential for moderately

low temperatures. Specifically, we prove uniqueness, monotonicity and nonnegativity of

the radial hedgehog scalar order parameter at moderately low temperatures. However,

these properties need not hold at low temperatures, and we provide an example of a

second radial hedgehog solution at a low temperature which has negative scalar order

parameter away from r = 0 and r = 1. This is in contrast to the radial hedgehog solu-
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tion with the fourth-order bulk potential, which is unique, nonnegative and monotonic

at low temperatures.

Finally, we numerically compute critical points with rotational and mirror sym-

metry, namely the radial hedgehog, split core, and biaxial torus solutions, with the

sixth-order bulk potential to complete Chapter 3. The essential findings are that the

biaxial regions in the split core and biaxial torus configurations are larger under the

sixth-order potential than with the fourth-order potential, and the split core and biaxial

torus configurations have larger domains of stability with the sixth-order bulk potential

as opposed to with the fourth-order bulk potential. Otherwise, we find that the critical

points of the Landau–de Gennes free energy with the sixth-order bulk potential are

qualitatively similar to those with the fourth-order bulk potential.

The numerical study in Chapter 3 exploits only three of the five possible degrees of

freedom. A natural extension to this work would be to study the solution landscape

in the absence of rotational and mirror symmetry, with both the fourth- and sixth-

order bulk potentials. In [1], the authors demonstrate the existence of a new biaxial

solution with five degrees of freedom under the sixth-order bulk potential. It would

be interesting to explore the stability of such a solution as a function of temperature

and droplet radius; and investigate the role of solutions with rotational and mirror

symmetry in this more general system. Another avenue to explore would be to weaken

the anchoring conditions. We only consider strong anchoring in this work, but this is

perhaps quite a strict condition that is difficult to replicate in experiments. It would

be interesting to work instead with some form of weak anchoring, with an associated

free energy, which might better capture the behaviour at the boundary in real-world

systems.

In Chapter 4, we consider the critical points of the ferronematic bulk potential for
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different coupling strengths across a range of temperatures. We first consider criti-

cal points in the class of uniaxial Q-tensors with the associated magnetisation vector

oriented in the same direction as the nematic director. We find that the system gener-

ally favours critical points with nonzero magnetisation, with the exception of the point

(s−, 0), where s− is defined in (4.7), which gains local stability at low temperatures. We

then study critical points with a Q-tensor and magnetisation vector which each have

two degrees of freedom. We find that for each value we consider of the nemato-magnetic

coupling, c, there is some temperature at which the system admits at least a locally

stable biaxial critical point. Globally stable critical points with the largest biaxiality

parameter typically occur at higher temperatures just above the nematic supercooling

temperature, where the isotropic phase loses stability, and with larger negative values of

the nemato-magnetic coupling parameter. This suggests that bulk biaxiality is perhaps

most likely to be observed experimentally at such high temperatures and in systems

which are strongly coupled, with the nematic director and magnetisation vector aligned

perpendicular to one another. A worthwhile further investigation would be to consider

critical points of the ferronematic bulk potential in the class of Q-tensors with five

degrees of freedom with an associated magnetisation vector with three degrees of free-

dom to discern whether biaxiality is truly favourable as a bulk effect in ferronematic

systems.

Much of the work in Chapter 5 is analogous to that in Chapter 3: we perform

an analytical and numerical study on a ferronematic free energy. We prove a range

of analytical results for the ferronematic radial hedgehog solution, including existence

and uniqueness results, and a maximum principle, which allow us to draw comparisons

between the nematic and ferronematic radial hedgehog solutions. We also perform an

analogous numerical study to that in Chapter 3 of equilibrium configurations on the
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sphere with rotational and mirror symmetry. We find that the ferronematic solution

landscape is richer than the nematic solution landscape in systems with strong positive

nemato-magnetic coupling; and that the presence of magnetisation has a stabilising

effect on the split core configuration at high temperatures. We do not consider a

negative nemato-magnetic coupling parameter at any point in Chapter 5. As such,

an immediate next step would be to invetigate whether the analytical results hold

with a negative coupling parameter, and to perform the same numerical study with a

negative coupling parameter to understand the effects of a magnetisation vector which

is perpendicular to the nematic director on the solution landscape. As in the nematic

case, it would also be interesting to study the problem with five degrees of freedom,

and to replace the strong anchoring with weak anchoring.

In Chapter 6, we introduce a stochastic term into the nematic and ferronematic

models for the radial hedgehog solution. We perform a comprehensive numerical in-

vestigation into the effects of additive noise on the nematic and ferronematic radial

hedgehog solution in domains of different sizes and at different temperatures, with the

fourth- and sixth-order bulk potentials in the nematic case; and in uncoupled, weakly

coupled, and strongly coupled ferronematic systems. We find that rotational symme-

try is lost, and there are slight differences between the stochastic and deterministic

radial hedgehog solutions in larger domains and at higher temperatures. A clear trend

is that, in such domains, additive noise can reduce the degree of nematic ordering in

the interior, and can slightly reduce the strength of the spontaneous magnetisation.

We also find examples in which the monotonicity and nonnegativity predicted by the

analytical results in Chapters 3 and 5 are violated. On the whole, however, any dif-

ferences between deterministic and stochastic solutions observed are minimal and do

not significantly alter the qualitative behaviour of the nematic and ferronematic radial
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hedgehog solutions. This indicates that the deterministic models in both the nematic

and ferronematic cases are robust and can be relied upon to capture the character of

the nematic and ferronematic radial hedgehog solutions. A natural extension to this

work would be to consider more general equilibrium configurations on the sphere in

both the nematic and ferronematic cases. It would be interesting to study the effects

of additive noise on the stability and structure of equilibrium configurations, and in-

vestigate whether the inclusion of noise results in any new equilibrium configurations

not observed under the deterministic models.
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