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ABSTRACT

This dissertation consists of four papers that examine various aspects of the temporal

patterns in the volatility of asset returns.

The first paper compares the predictive performance of various parametric ARCH

models. We find that ARCH models are generally good descriptions of the time-

varying volatility of UK stock returns. There appears to be asymmetry in the

conditional volatility, although no single model outperforms the rest in all instances.

In the second paper, we uncover evidence of asymmetric predictability in the

conditional variance of firms of different size. Large firms shocks affect the future

volatility of small firms, but not vice versa. We also find that trading period shocks

have a significant impact on future volatility, but not nontrading period shocks.

In the third paper, we document a contemporaneous volatility-volume relationship.

We find that volatility is related to change in trading volume, and we propose a

conditional volatility model that incorporate this contemporaneous volatility-volume

relationship.

In the final paper, we examine the various method of adjusting for nontrading effects

in ARCH models, and we propose a new diagnostic test to detect the validity of such

adjustments. We also uncover evidence that conditional volatility increases prior to

market closure, but declines after market opening.
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CHAPTER 1

INTRODUCTION

1.	 BACKGROUND

In the last 30 years or so, the financial markets of the world have undergone a period

of tremendous growth. Following this increase in financial activities, the behaviour

of asset prices has come under the scrutiny of academics and practitioners alike.

However, interest in speculative price behaviour can be traced back to the beginning

of this century, when the French mathematician, Louis Bachelier (1900) developed

a mathematical theory of asset prices. Unfortunately, much of his work has largely

been ignored until some decades later, only to be 'rediscovered' by others (see

Mandeibrot, 1989, for an account of Bachelier's work). On the other hand, empirical

research into asset prices did not begin until I 930s, and the resulting research papers

were far and few. Much of these early works (e.g. Cowles, 1933, and Working,

1934) focused on the predictability of price changes.

In the 1960s, several important empirical works appeared, the most influential being

Fama (1965) and Mandeibrot (1963). Since then, various researchers have

documented empirical regularities in asset returns. These include returns exhibiting

fat-tallness (i.e. leptokurtosis), large (small) changes followed by large (small)

changes, of either sign (i.e. volatility clustering), changes in stock prices being
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negatively related to changes in stock volatility (i.e. leverage effects'), and differences

in volatility between open and closed markets (i.e. nontrading effects). Mandelbrot

used the term "stylised facts" to describe some of these empirical features.

The use of time series models in empirical research gained considerable momentum

in the 1970s, following the work of Box and Jenkins (1976). Part of the success of

time series models can be attributed to their use in forecasting applications. By

focusing on the conditional mean rather than the unconditional mean, time series

models were able to give more accurate forecasts of future prices/returns. However,

most conventional models (such as the ARIMAIBox-Jenkins models) assumed that

the covariance matrix remains constant over time. Given the empirical results of

Mandelbrot (1963) that volatility of asset returns changes over time, this assumption

is clearly violated.

The problem of heteroskedasticity in time series data is well known among

statisticians and econometricians. Though there have been earlier attempts to model

time-varying variances (see for example Khan, 1977, and Klien, 1977), none of the

methods proved to be popular. One common approach is to express the time-varying

variances as a function of some exogenously determined time-varying variables.

Alternatively, researchers apply some sort of variance-stabilising transformation such

1 Black (1976) suggests that a decrease in stock prices increases the leverage of the firm, thereby
increasing its risk. Hence, the increase in stock volatility is brought about by an increase in the leverage
of the firm.
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as the Box-Cox (1964) transformation on the data to get rid of the heteroscedasticity.

Neither method proves to be satisfactory, especially in forecasting applications.

The breakthrough came when Engle (1982) introduced the class of AutoRegressive

Conditional Heteroskedastic (i.e. ARCH) models. Engle's insight was to express the

conditional variance at time t as a (linear) function of variables known only at time

t- 1. Hence, the conditioning information set at time t- 1 would include past errors and

past variables. This approach to modelling the conditional variance is analogous to

the Box-Jenkins methodology of modelling the conditional mean. Further

refinements came from Bollerslev (1986), who introduced a generalized version of

Engle's ARCH model (i.e. GARCH)2.

The introduction of ARCH models 3 has opened up a whole range of different

research. With modern economic theory showing increasing emphasis on risk and

uncertainty, it is now possible to model the time-variation in second moments using

a dynamic (ARCH) framework. It is therefore hardly surprising to find an explosion

in the ARCH literature. Several other reasons also contribute to ARCH models'

success. First, ARCH models are consistent with some of the previously mentioned

empirical regularities of fmancial data. Second, the conditional mean and conditional

variance parameters can be jointly estimated using conventional econometric methods.

2 Taylor (1986) independently proposed a class of ARMACH (AutoRegressive Moving-Average
Conditional Heteroskedastic) models, which is identical to the GARCH model of Bollerslev (1986).
However, the ARMACH acronym never caught on.

Henceforth, ARCH models, as used in the plural, shall denote the class of models that exhibit
conditional heteroskedastic behaviour, to distinguish from Engles original ARCH model.
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Finally, in the absence of theoretical economic models in explaining temporal

dependence in higher moments, ARCH models provide a useful and simple approach.

Research on ARCH models have proceeded in many different directions. On a

theoretical level, there has been some attempts to incorporate ARCH effects into

economic basis of asset pricing models. Gallant, Hsieh and Tauchen (1991) provide

a rationale to explain the presence of dependency in higher moments. Nelson (1990)

shows that ARCH models are not necessarily incompatible with diffusion models

commonly found in asset pricing literature. Campbell and Hentschel (1992) develop

a model to explain asymmetry in the volatility of stock returns. Unfortunately, such

works on the economic foundations of ARCH effects are far and few.

On the other hand, ARCH models have found an overwhelmingly large number of

empirical applications. Many economic and fmancial time series are found to exhibit

ARCH effects, including stock returns (Akigray, 1989, Baiffie and DeGennaro, 1990,

Corhay and Rad, 1991, Engle and Ng, 1993, Kearns and Pagan, 1993, Pagan and

Schwert, 1991, and Poon and Taylor, 1992), interest rates (Engle, Lilien and Robbins,

1987, Engle, Ng and Rothschild, 1990, Lee and Tse, 1991, and Weiss, 1984),

exchange rates (Baillie and Bollerslev, 1989, Bollerslev, 1990, Gallant, Hsieh and

Tauchen, 1991, and Hsieh, 1989), and futures prices (Antoniou and Foster, 1992,

Cheung and Ng, 1990, Gagnon, Morgan and Neave, 1993, and McCurdy and

Morgan, 1987). For a more complete citation on the huge amount of literature on
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ARCH models, see Bera and Higgins (1993), Bollerslev, Chou and Kroner (1992)

Bollerslev, Engle and Nelson (1993), Engle (1993) and Nijman and Palm (1991).

The analysis of financial market volatility is of significant importance, from both an

academic and practitioner viewpoint. Following the stock market crash of October

1987, there has been considerable interest in the subject. In the words of Becketti

and Sellon (1989):

"Some volatility in the prices of financial assets is a normal part of

the process of allocating investable funds among competing uses.

Excessive or extreme volatility of stock prices, interest rates and

exchange rates may be detrimental, however, because such volatility

may impair the smooth functioning of the financial system and

adversely affect economic peiformance."

Academic interest in volatility stems mainly from the efficient market hypothesis.

In an efficient market, all available information in the market is impounded in current

prices. Any unexpected news will cause the investor to revise his expectations of the

future. This revision in expectations will induce a price change, since the new price

will reflect the piece of unexpected information 4. Implicitly, the efficient market

hypothesis suggests that information is exogenously determined, and news arrival is

See Ross (1989) for a formal analysis of the relationship between variance of price changes and
rate of information flow.
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random. On the other hand, others suggest that information is generated

endogenously by the mechanism of trading. Uninformed investors infer information

from the actions of informed traders through the trading activities of the latter. The

inferred information causes the uninformed traders to revise their expectations, which

induces a change in price.

Regardless of whether information is generated endogenously or exogenously, it is

clear that volatility is determined by the rate of information flow. ARCH models

allow one to analyse volatility in a dynamic framework. For example, Masulis and

Ng (1991) directly examine the hypothesis that stock volatility is a function of

trading activities of investors, Susmel and Engle (1994) and Engle, Ito and Lin (1990)

look at the spillover of volatility across national stock markets and foreign exchange

markets respectively, Cheung and Ng (1990) explore the relationship between the

volatiities of cash and future markets, and Conrad, Gultekin and Kaul (1991)

investigate the relationship between the volatilities of firms of different sizes.

For practitioners such as fund managers, an understanding of volatility is important

for hedging and portfolio selection. The ability to model and forecast volatility has

consequential implications in asset pricing and tactical asset allocation decisions. For

example, in the pricing of an option, one key variable is the volatility of the

underlying asset, and accurate option prices can only be calculated if the volatility

is accurately estimated. Day and Lewis (1992), Engle and Mustafa (1992), and

Engle, Hong, Kane and Noh (1993) show that conditional volatility of stock returns
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as obtained from ARCH models have significant information content. In hedging

decisions involving futures contract, again the ability to estimate the hedge ratios is

of crucial importance. Baillie and Myers (1991) and Kroner and Sultan (1991) show

that time varying hedge ratios estimated using ARCH models are superior to those

estimated with linear regressions.

For public policy makers, the need for stability in financial markets requires an

understanding of volatility and its impact on the economy. With the phenomenal

growth in financial market activity, especially in the markets for derivative

instruments, there is an emphasis on curtailing any 'excess' volatility. ARCH models

allow for a dynamic analysis of volatility. For example, Antoniou and Foster (1992)

use a GARCH model to examine the impact of futures trading on the spot price

volatility of Brent Crude Oil, while Kupiec (1990) and Seguin (1990) analyse the

effects of margins on volatility.

It must be said however, that ARCH models are not the only models used in

empirical analysis. There are several competing models commonly in used in the

finance and economic literature. These models possess nonlinear characteristics,

unlike ARIMA models (see Granger and Teräsvirta, 1993, and Tong, 1990). These

include the bilinear model (Granger and Anderson, 1978), the threshold

autoregressive model (Tong and Lim, 1980), the exponential autoregressive model

(Haggan and Ozaki, 1981), and Hamilton two-state switching-regime model

(Hamilton, 1989). For details, see Granger and Teräsvirta (1993), Mills (1990 and
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1993), and Tong (1990). Strictly speaking, most of these nonlinear techniques do not

model volatility explicitly, although one common feature is that forecasts from such

models are usually nonlinear functions of past observations.

As mentioned earlier, the simplicity of ARCH models and their ability to account for

the observed "stylized facts" of financial data such as leptokurtosis and volatility

clustering explain why ARCH models are more popular than the competing nonlinear

models. As pointed out by Bera and Higgins (1993), ARCH models can also be

subjected to different interpretations. For instance, an ARCH model can be re-

interpreted as either a random coefficient model, or a bilinear model (see Bera and

Higgins, 1993, Section 3 for details). This flexibility in interpretation also contribute

to the popularity of ARCH models in research work.

2.	 MOTIVATION

This dissertation seeks to extend the literature on ARCH models. It consists of four

papers:

2.1 An Empirical Analysis of Alternative Parametric ARCH Models

Since the introduction of the GARCH model by Bollerslev (1986), many newer

parameterisations have been suggested. These include the Exponential GARCH of

Nelson (1991), the Quadratic GARCH of Sentana (1991), the Threshold GARCH of
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Glosten, Jagannathan and Runlde (1993) and Zakoian (1991), and the Nonlinear

GARCH of Higgins and Bera (1992). In proposing these newer formulations, the

practice is almost always to compare with the standard GARCH.

Any new formulation however, should meet the following two criteria. First, it

should describe empirical facts that are not explained by the standard GARCH model.

Second, the parameterisation must not only model volatility well on an in-sample

basis, but also perform well out-of-sample.

One documented empirical regularity not accounted for in the GARCH model is the

leverage effect. As noted by Black (1976) and Christie (1982), there appears to be

an inverse relationship between current stock returns and future volatility. This

phenomenon is attributed to the fact that a reduction in the value of equity increases

the debt ratio of the company, and this increases the risk of the firm in the future.

In both Engle's ARCH model and Bollerslev's GARCH model, the conditional

volatility response is symmetric to current stock returns i.e. future volatility is a

function of current stock returns, regardless of the signs of the returns (hence, they

are usually called linear ARCH models). Several newer 'nonlinear' models like those

mentioned above have been proposed to account for this leverage effect in the

variance equation. However, each model accounts for this asymmetry in different

ways. It would therefore be interesting to compare the empirical performance of each

of this model using a consistent dataset.
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that of the variance between the close of one trading day and the close of the

following trading day, without any intervening nontrading day.

Fama (1965) and French (1980) both find that the variance over the weekend period

is only about 20 percent higher. French and Roll (1986) suggest three possible

explanations:

(1) public information is released more frequently during trading hours

(2) private information is inferred from the trading activities of informed traders

(3) presence of irrational noise traders

An understanding of the mechanics of volatility is necessary because these hypotheses

have different implications for both corporate treasurers and public policy makers.

For example, if the public information hypothesis is true, it may be desirable to

'spread' the release of company announcements evenly over trading and nontrading

periods so as to stabilise stock volatility, if the private information hypothesis is

true, a more logical approach would be to extend the number of trading hours so that

there will not be alternating periods of high volatility (during trading periods) and

low volatility (during nontrading periods), If however, volatility is driven by

irrational traders' activities, steps should be taken to reduce the amount of noise.

Two previous studies have attempted to examine the above hypotheses. Barclay,

Litzenberger and Warner (1990) use a static framework to examine the differences
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in variances between trading and nontrading Saturdays in the Japanese stock market.

Masulis and Ng (1991) employ a dynamic ARCH model to examine the differences

in trading and nontrading shocks on future volatility using UK data. Both studies

appear to support the private information hypothesis.

Along a different line, there is also empirical evidence to indicate that predictive (i.e.

conditional) volatility is related to the size of the company. Conrad, Gultekin and

Kaul (1991) provide evidence that in the US, the volatility of large size firms can

predict the volatility of small size firms, but not vice versa. This finding mirrors that

of Lo and MacKinlay (1990a)'s, who uncover evidence of asymmetric predictability

in the (mean) returns of US finns of different sizes.

This paper looks at the volatility of UK stock returns in two contexts. First, it

analyse the predictive ability in the conditional volatility of different size firms, using

a GARCH model. A distinction is then made between trading and nontrading period

shocks of large and small firms, and an examination is made on the effects of such

shocks on future volatility of small and large firms respectively.

2.3	 An Empirical Examination of the Volatility-Volume Relationship

Though the ARCH class of models has a rather short history, it has enjoyed great

success as a modelling technique. Its widespread use lies in its ability to capture the

"stylized" facts associated with financial time series. However, with few exceptions,
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there has been little emphasis on the sources of ARCH effects, especially for stock

returns. Nevertheless, there have been some attempts to investigate the nature of

temporal behaviour of stock market volatility. Such research falls into two

categories: studies that link ARCH effects to macroeconomic variables, and studies

that relate ARCH behaviour to microeconomic events. Among the studies in the first

category include Attanasio (1991), Glosten, Jagannathan and Runkle (1993), Kupiec

(1990), Schwert (1989), and Seguin (1990).

Studies in the second category attempt to explain GARCH effects in the data

generation process. As noted by Diebold (1986), and Gallant, Hsieh and Tauchen

(1991), ARCH effects may be a result of the sequential correlation of information

arrival. This explanation stems from the works of Clark (1973) and Tauchen and

Pitts (1983), who suggest that returns can be characterised as a subordinated process.

In these models, information is explicitly assumed to be derived exogenously. On

the other hand, the "price formation" models of Admati and Pfleiderer (1988), Foster

and Viswanathan (1990), and Kyle (1985) assume that information is only partially

exogenous, and some information is endogenously generated by the trading process.

Nevertheless, regardless of whether information is exogenously or endogenously

produced, these models would suggest that volatility is a function of news. In

empirical tests, explicit modelling of the rate of information would be impossible,

since by definition, news is unpredictable. As such, suitable proxies are required.

Common proxies used in current literature include volatility shocks (Ahbyanker,

1993, Cheung and Ng, 1990, and Engle, Ito and Lin, 1990), number of price changes
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per period (Laux and Ng, 1993), and volume. The use of volume as a proxy for

news arrival is especially popular because of two reasons. First, trading volume is

frequently reported with price changes and is therefore easily available. But more

importantly, the use of volume is heuristically appealing, since there is a common

perception that "It takes volume to make prices move" (Karpoff, 1987, pg 112).

The last statement would suggest that price changes and volume are jointly

determined. Indeed, Karpoff (1987) cites various studies that find a contemporaneous

relationship between price volatility and trading volume across different markets.

Interestingly, a number of these studies also document an asymmetric relationship

between volatility and volume.

Karpoff (1987) suggests four reasons why an understanding of the relationship

between market volatility and trading activity is important. First, it gives an insight

into the structure of financial markets. Second, it has implications for event studies

that draw inferences from volume behaviour. Third, it sheds light on the stochastic

process of asset prices. Fourth, it is of significance to research into futures market.

The motivation of this paper is along these lines. Additionally, we seek to synthesise

recent works on conditional volatility models with existing literature on the volatility-

volume relationship. Our framework of analysis will be on the empirical relationship

between stock index volatility and trading volume in the UK. We believe that this

volatility-volume behaviour is of significance in modelling conditional volatility, and
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we suggest a means of incorporating this relationship to improve the performance of

a conventional GARCH model.

2.4 A Test for Omitted Deterministic Duimny Variables in ARCH Models

The use of ARCH models has become very popular in empirical research, especially

in modelling time varying conditional variances. Maximum likelihood estimation of

ARCH models is rather straightforward, and some econometric software even provide

"canned" instructions for estimating the parameters of a standard GARCH model.

However, as pointed out by Nelson (1992a), ARCH models are merely statistical

models that approximate reality. Hence in empirical work, there is a possibility of

choosing a misspecified model. Nelson proceeds to demonstrate that under fairly

general conditions, conditional variances as estimated using misspecified ARCH

models converge to the true conditional variances. He also suggests that the success

of ARCH models in short term forecasting using high frequency data may be a direct

result of this property, since misspecified ARCH models can still provide relatively

accurate estimates of volatility.

Several other papers have also examined the effects of misspecified ARCH models,

though in a slightly different context. Nelson and Cao (1992) look at the effect of

constraining the parameters of the GARCH model as first suggested by Bollerslev

(1986). They find that the Bollerslev's suggestions are too restrictive, and provide
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more general conditions5. Baillie and DeGennaro (1990) examine the issue from the

point of a misspecified conditional distribution. They find that the use of a

conditional student-t distribution instead of a conditional normal distribution changes

the significance of the parameter for the conditional variance entering into the mean

equation (i.e. the 'risk-premium' parameter) 6. Finally, Lamoureux and Lastrapes

(1 990a) consider the impact of failing to account for deterministic structural changes

on persistence in variance. They report that a misspecified GARCH model (i.e. one

that did not account for structural shifts) can lead to "a misinterpretation of estimates

of volatility persistence".

Without a theoretical model, it is therefore not surprising to find that ARCH models

tend to be formulated in rather ad hoc ways. This can lead to misspecified ARCH

models. While this may not be much of a problem in forecasting volatility (c.f.

Nelson, 1992a), a wrong inference may be made from misspecified ARCH models.

Many empirical studies have documented anomalies in financial time series data. For

example, returns are found to exhibit hour-of-the-day effect, day-of-the-week effect,

week-of-the-month effect, and month-the-year effect. Similar effects are also found

In the results of French, Schwert and Stambaugh (1987), the GARCH model has been
constrained as per Bollerslev's suggestion. Nelson and Cao (1992) re-estimated the GARCH model using
the less restrictive constraints and find some differences in the parameters of the model.

6 Similar results are reported in Bollerslev and Wooldridge (1992) and Susmel and Engle (1994).
This leads Bollerslev and Wooldridge to suggest the use of quasi-maximum likelihood estimation.
Alternatively, one could use nonparametric techniques, as in Pagan and Schwert (1990), or semi-
nonparametric methods, as in Gallant, Hsieh and Tauchen (1991).
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in the unconditional volatility of asset returns. However, there has been little

emphasis in trying to account for such effects in conditional volatility models.

Consider the problem associated with nontrading. It is well documented that the

volatility over a nontrading period differs from the volatility over a trading period.

It is therefore difficult to envisage that the data generating process over both periods

is identical. In a dynamic framework like that of ARCH models, current volatility

is a function of past volatility. Failure to distinguish between nontrading and trading

volatility results in an incomplete or incorrect model. This problem will be especially

severe if the researcher is working with high frequency data (for example, hourly

data), since the ratio of the length of nontrading to trading period increases.

Focusing on the issue of nontrading, the paper analyse the approaches conmionly

used in existing empirical work to account for such effects. A diagnostic test is

proposed to determine the specific form of accounting for nontrading effects. Using

the test, the conditional volatility surrounding a nontrading period is then examined.
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3.	 ORGANIZATION OF THE DISSERTATION

This dissertation is organised as follows:

(a) Chapter 2 provides an empirical comparison of various parametric ARCH

models using a variety of benchmarks and diagnostics. It is based on UK

stock data, spanning from January 1971 to December 199O.

(b) Chapter 3 examines the asymmetric predictability of conditional volatilities

between small and large companies. It looks at the differences in shocks of

small and large companies on future volatilities of large and small companies

respectively. The analysis also addresses the issue of whether volatility is

driven by the private information of informed investors. The study uses daily

UK stock data from January 1990 to June 1993.

(c) Chapter 4 looks at the empirical relationship between the conditional volatility

and volume. Daily UK stock index data between January 1990 and December

1993 is used in the analysis.

(d) Chapter 5 proposes a diagnostic test for omitted dummy variables in ARCH

models. This test aids in the identification of a more "complete" conditional

' First draft, 9 June 1992, revised 15 November 1993. This paper has been presented to BAA
Annual Conference 1993, French Finance Association Conference 1993, and INQUIRE-Europe Conference
1993. The paper will be presented at the forthcoming Western Finance Association Conference 1994.
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volatility model. The conditional volatility surrounding a nontrading period

is also examined. Empirical evidence is based on hourly US stock index

futures data from June 1983 to June 1987. The dataset is obtained from

Professor Pradeep K Yadav, courtesy of Craig MacKinlay (Wharton).

(e)	 Chapter 6 summarises the main conclusions and suggests some directions for

future research.



CHAPTER 2

AN EMPIRICAL ANALYSIS OF

ALTERNATIVE PARAMETRIC ARCH MODELS8

Abstract

This paper compares the performance of various parametric ARCH models. Using

data based on 20 years of UK daily stock returns on a value weighted stock index

and ten size sorted equally weighted stock portfolios for the period 1971-90, it is

found that ARCH models are good descriptions of the time-varying volatility. The

conditional variance is an unbiased predictor of the actual variance in all cases, but

the assumption of normal conditional densities is inadequate. None of the three

Engle and Ng (1993)'s diagnostic tests based on the news impact curve are able to

discriminate between the different models. The relative performance of the models

appears to differ across different periods and across different portfolios.

Nevertheless, we find that the parameters proxying for asymmetry in the post-

GARCH models are usually statistically significant, with the TGARCH and EGARCH

models significantly outperforming the GARCH model over each of the more recent

sub-periods 198 1-85 and 1986-90. The superior performance disappears when a

benchmark that gives relatively greater weight to errors in predicting small variances

is used. In addition, there do not appear to be any systematic firm size related

differences in the relative predictive ability of the different parametric ARCH models.

8 First draft, 9 June 1992, revised 15 November 1993. This paper has been presented to BAA
Annual Conference 1993, French Finance Association Conference 1993, and INQUIRE-Europe Conference
1993. The paper will be presented at the forthcoming Western Finance Association Conference 1994.



AN EMPIRICAL ANALYSIS OF

ALTERNATIVE PARAMETRIC ARCH MODELS9

1.	 INTRODUCTION

There is extensive empirical evidence that stock market volatility varies

systematically with time. The evidence dates back to the pioneering studies of

Mandeibrot (1963) and Fama (1965) who found that large price changes tend to be

followed by large price changes and small price changes by small price changes.

More recent evidence is provided by Poterba and Summers (1986), French, Schwert

and Stambaugh (1987), Chou (1988) and Schwert (1990).

There is also strong evidence that ARCH models are good descriptions of this time-

varying volatility in stock returns. Significant ARCH effects are documented inter-

alia by Engle and Mustafa (1992) for individual US stocks, Akgiray (1989) for US

stock indices, Poon and Taylor (1992) for a UK stock index, Corhay and Rad (1991)

for a selection of international stock indices and Frennberg and Kansson (1992) for

the Swedish stock market.

Systematic temporal variation in volatility of asset returns implies that the variance

at time t can be broken up into predictable and unpredictable components. The

First draft, 9 June 1992, revised 15 November 1993. This paper has been presented to BAA
Annual Conference 1993, French Finance Association Conference 1993, and INQUIRE-Europe Conference
1993. The paper will be presented at the forthcoming Western Finance Association Conference 1994.
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predictable component is called the conditional variance and is a function of

information available at time t-1. This information can include relevant firm specific

and economy wide variables, and also the past history of the returns' series. Clearly,

modelling conditional variance of stock returns is important because expected

volatility is a fundamental input in portfolio selection decisions and in models of

asset and option pricing.

In its most general form (see Engle, 1982, eqs 1-5) a univariate ARCH model makes

conditional variance a at time t a function of exogenous and lagged endogenous

variables, time, the vector of parameters, and past residuals. A variety of different

parameterisations for the functional dependence of u on the above variables have

been proposed by econometricians. These started with the original linear ARCH(q)

specification of Engle (1982) and the linear GARCH(p,q) model of Bollerslev (1986),

but now include for example the exponential GARCH of Nelson (1991), the threshold

GARCH of Glosten et. al. (1991) and Zakoian (1991), the quadratic GARCH of

Sentana (1991), the generalised augmented ARCH of Bera et. al. (1990), the

asymmetric GARCH of Engle (1990), the non-linear GARCH of Higgins and Bera

(1992), and the log-GARCH models of Geweke (1986) and Pantula (1986).

All of the above parameterisations of conditional heteroskedasticity have been

motivated either by the need to more effectively model some specific empirical

features of the underlying data (e.g. the negative correlation between current returns
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and future volatility documented by Black, 1976, and Christie, 1982) or by

considerations of computational simplicity (e.g. EGARCH avoids the need for non-

negativity constraints in estimation). There has been relatively little work on the

economic foundations of ARCH models'°, or the formulation, from first principles,

of equilibrium asset pricing models with ARCH features. Since the different

parameterisations of ARCH models have been motivated essentially on the basis of

data specific empirical features, their relative usefulness can only be judged by the

extent to which they are able to explain time variation in conditional volatility in

actual data. The more recent ARCH models include more parameters than in the

linear ARCH(q) of Engle (1982) and the linear GARCH(p,q) of Bollerslev (1986).

Hence, clearly these recent models could be potentially better ex post descriptions of

the return generating process. But the ex ante usefulness of these models for

portfolio selection and asset pricing decisions depends on the out of sample predictive

ability of these models. It also depends on whether the outperformance is consistent

across different sub-periods and across different categories of stocks. Furthermore,

it is important to note that the results of Bollerslev and Domowitz (1991) show that

the trade execution process can significantly alter the intertemporal dependence in

conditional volatility of high frequency returns because of the differences in serial

correlation in market spreads across different trading systems.

Several studies have examined the effectiveness of different individual ARCH models

in modelling conditional stock market volatility relative to the linear ARCH and the

10 This has been pointed out eg by Bollerslev et. al. (1992, section 2.9).
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linear GARCH model. Comparisions of EGARCH with GARCH are reported inter-

alia by Nelson (1990) using daily CRSP index returns from July 1962 to December

1987; Kearns and Pagan (1991) using 88 years monthly Australian stock index data;

Poon and Taylor (1992) using daily, weekly, fortnightly and monthly UK stock index

data over a period exceeding 20 years; and Zakoian (1991) using 2 years of daily

French CAC4O index data. Sentana (1991) compares ARCH models with the linear

GARCH using a century of US stock index data. Rabemanjara and Zakoian (1993)

compare a threshold GARCH model with the linear GARCH using about two year

of daily data on the French CAC4O index and some individual stocks comprising the

index. Pagan and Schwert (1990) analyse several alternative conditional volatility

models using monthly data from 1835 to 1925, but most of these are non-parametric

models, the only parametric ARCH models being the EGARCH and the linear

GARCH. To the best of our knowledge, Engle and Ng (1993) is the only major

study to date which evaluates a wide spectrum of parametric ARCH models. They

examine six parametric ARCH models using eight years daily returns on the Japanese

Topix Index. However, the main focus of their study is the development of new

diagnostic tests and the asymmetry of the volatility response to news, and though

they do a sub-sample robustness check, their empirical analysis does not include an

evaluation of the out-of-sample predictive ability of the models.

This paper provides comprehensive empirical evidence on different parametric ARCH

models using daily data on a value weighted stock index and ten size based portfolios

of stocks, covering the 20 year period 1971-1990. It seeks to make a contribution
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in several directions. First, it documents for the same data, the relative effectiveness

of most of the major parametric ARCH models that have been proposed in the

literature. Second, the ex ante usefulness of these models for portfolio selection and

asset pricing decisions is evaluated by quantifying their out-of-sample predictive

ability. Third, it examines the relative performance not only across different time

periods but also across portfolios corresponding to different market value deciles.

Finally, it employs data from the UK market where reported prices represent firm

dealer quotes rather than last transaction prices as in the US or Japan on which most

of the earlier work has been based.

This paper is organised as follows: Section 2 provides a specification of the

parametric ARCH models examined; Section 3 describes the data; Section 4 outlines

the methodology used; Section 5 documents the results; and Section 6 summarises

the conclusions.

2. PARAMETRIC ARCH MODELS

Consider a time series of stock returns y which can be modelled as

y =f(x) + u

where x denotes a vector of variables (either lagged dependent or exogenous) that

affect the conditional mean of the series y, and u is an independent and identically

distributed error term with zero mean, a variance u conditional on fl, the
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information set available at time t-1, and a density function D(u). A general

conditional volatility model can be written as

E [ t4 j(1 _ l] =f(c11)

Clearly, there are two major issues that need to be addressed: first, what variables

should be in fl...i; and second what is the nature of the function f()? Ideally,

should contain all (relevant) variables that are observable at time t-1. Given

the complexity of financial markets, these are virtually impossible to specify

completely or precisely. If markets are efficient, volatility (like price) at time t

should reflect all information at time t. Hence natural proxies for ( ...j are lagged

values of cr and u . The nature of the parametric ARCH model is determined by

the specific functional form of f() . In the linear ARCH(q) model of Engle (1982),

q

= a0 +	 a1u1
j=1

with	 >0, a ^ 0, j = 1......, q to ensure a positive conditional (and unconditional)

variance.

Bollerslev (1986) generalised the ARCH model to the linear GARCH(,p,q) model

where:

= a0 +	
+	

a1U1
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with a 0 >0,/3. ^0, i= l.,p, a1 ^0,j 1., q. The simple GARCH(1,1)

model has often been the most popular for modelling financial time series. Engle and

Bollerlev (1986) extended GARCH to the integrated GARCH in which the

coefficients sum to unity implying infinite unconditional variance as in the stable

paretian distributions suggested by Fama (1965) and Mandelbrot (1963).

However, there are several difficulties with the linear GARCH model. First, there

are features of the data which the model is not capable of describing. In particular,

Black (1976) and Christie (1982) document a negative correlation between current

returns and future volatility. There is an asymmetry in the impact of news on

volatility. Negative news surprises increase predictable volatility more than positive

news comprises. The GARCH model fails to capture this "leverage" effect because

it is a symmetric (i.e. quadratic) function of u. Second, GARCH estimation must

neccessarily restrict a. and /3 . to positive values to ensure non-negativity of the

conditional variances. This makes computations more difficult. Furthermore, as

highlighted by Rabemanjara and Zakoian (1993), the impact of past volatility shocks,

irrespective of sign, always increases with the magnitude of the shock in the GARCH

model making it incapable of describing cyclical or non-linear behaviour in the

volatility. These limitations have motivated most of the post-GARCH models.

Nelson (1990) proposes the Exponential GARCH (EGARCH) model:
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p

logo = a 0 ^	 f31oga +

i=1
iai{0ti	 +

The EGARCH accounts for the asymmetric relationship between returns and

volatility, and avoids the need to restrict a1 and /3 to positive values to ensure non-

negativity of the conditional variances.

Glosten et. al. (1993) and Zakoian (1991) model the "leverage" effect by addition of

terms based on threshold values of u to the GARCH model. The Threshold

GARCH (TGARCH) can be expressed as:

p
	 q

= a0 + E (f3 1 o, + ySi,a) +
	

(a1 u ^81Siu1)
i=1
	

j=1

where S = 1 if u <0, S = 0 otherwise.

A general parameterisation of the conditional variance equation is the Quadratic

ARCH model, put forward by Sentana (1991). This model can be viewed as a

second-order Taylor expansion of the (unknown) conditional variance function. In

its most general form, the Quadratic GARCH (QGARCH) model is given by:

p	 q	 q q

cr = a0 + E $cr ^ E Y u 1 +	 aJkU(JUk
i=1	 j=1	 1=1 k=1
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The QGARCH model encompasses several models, including the standard linear

GARCH, the Generalised Augmented ARCH (GAARCH) of Bera, Lee and Higgins

(1990), the Asymmetric GARCH (AGARCH) of Engle (1990) and Robinson's (1991)

linear standard deviation model. For example, Engle's AGARCH is given by

= a0 +	

+	

( a1 I u l° + y1u)

Suitably formulated, the QGARCH model, and its variants, can capture the

asymmetric relationship between returns and volatility.

Another approach to reparameterising the conditional variance equation has been

recently suggested by Higgins and Bera (1992). By applying a Box-Cox (1964)

transformation to the variance equation, a nonlinear GARCH (NGARCH) model can

be obtained.

p	 q
21 2

= [ 

(a) + E f3(_)5 + E a(u_1)
i=1	 j=1	 j

Like the QGARCH model, the NGARCH model encompasses several other models,

such as the standard linear GARCH, and the log-GARCII form of Geweke (1986)

and Pantula (1986).

In this study, the information set f1 governing conditional volatility is assumed

to contain only one time period lagged variables. In particular, it is assumed that11:

See Pagan and Schwert (1990) on using e as conditioning variables instead of Ut.
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E{a I	 = f(a1,e1)

Longer lags of either u or are not reported for three reasons. First, earlier studies

have found that lags of one are not only sufficient but often provide the best fit (see

eg Corhay and Rad, 1991, Chou, 1988, Baihie and DeGennaro, 1990, and Poon and

Taylor, 1992). Second, as Engle and Ng (1993) point out, by holding the information

before t-1 constant, the impact of new information on volatility can be examined.

Third, for several of our models, we did examine a longer lag structure of up to 3

lags. Our results were not affected either quantitatively or qualitatively by including

the additional lags.

More importantly, it is neccessaiy to include the effect of holidays and weekends on

the volatility equation. There is clear evidence that the volatility over holidays and

weekends differs from the volatility over trading days (see for example French and

Roll, 1986, and Lockwood and Linn, 1991). To account for this, we modify the

conditional volatility equation to

E[a I(iJ =f([a 1 -X 1 -qiY11 ], e 1 _ 1 ) + (s)X +

where X takes the value of one if period t follows a holiday and zero otherwise, and

Y takes the value of one if period t follows a weekend and zero otherwise. The aim

is to subtract volatility due to the holiday and weekend effect from the 'normai'
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trading day volatility' 2. In this context, the models described in this section so far

are estimated in the following form:

GARCH(1 ,1)

= A 0 ^ A 1 (a - oX1 -	 + A 2 e 1 + wX + iJyY

EGARCH(1 ,1)

= e[A o ^A 1 ci ^A 3 A2	 + ___ -	 +	 + YtI	 Ic-iI
2	 2where

TGARCH(1 ,1)

2	 2	 2
a 1 =A 0 ^A 1 (cr11 -X_1 — i}' ) ^A 2 e_ 1 +A 3 Se_1 +	 +

where	 S - = 1 if	 < 0, and S - = 0 otherwise.

QGARCH(1 ,1)

= A 0 + A 1 (u 1 -	 - JrY) + A 2 e 1 +A 3 e 1 +	 + 4iY1

NGARCH(1 ,1)

= [A 0 + A 1 (a i -	 -	 + A2(e_i)A3]3 +	 +

AGARCH(1 ,1)

= A, ^ A 1 (a. 1 -	 - ijiY) ^ A21e1_i 
1A3 

+ A 4 e 1 _ 1 +	 +

12 Such a formulation is employed for example, by Cheung and Ng (1990).
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Engle and Ng (1993) introduce the News impact Curve to examine how new

information affects the next period variance. The curve represents the relationship

between innovations in returns e 1 and the volatility cr implied by a conditional

variance model estimated at the sample mean and holding constant information dated

t-2 and earlier. For the GARCH and NGARCH models, a quadratic curve is

obtained, symmetric at e 1 = 0. The curves for EGARCH, TGARCH, QGARCH

and the AGARCH models have their minimum also at eti = 0, but they are

asynmetric. Engle and Ng (1993) also propose a Nonlinear Asymmetric GARCH

(NAGARCH), which not only captures the asymmetric relationship between e 1 and

o, but also allows for the asymmetric impact response curve to be centred at a non-

zero e1:

NAGARCH(1 ,1)

a =A 0 ^A 1 ç 1 ^A 2 [ e 1 ^A 3 c_ 1 ] 2 +	 +

where
	 2	 2

Additionally, other models based on some other nonlinear functions of the conditional

variance equation that can also be proposed. First, one can allow for interactions

between e 1 and u (the NAGARCH model can be viewed as a standard GARCH

with an additional eti	 term, or a modified form of the QGARCH). This leads

to a GARCH model with an interaction term (INGARCH):



33

INGARCH(1 ,1)

2
= A 0 + A 1 c- 1 + A 2 e 1 + A 3 e 1 ç 1 ^	 +

2	 2where

One can combine several of the above models to obtain new parametric formulations.

For example, by combining the TGARCH with the QGARCH, one gets a TQGARCH

model:

TQGARCH(1 ,1)

2
a =A 0 +A1 (u_ 1 -.oX1 -irY) ^ A 2 ( e _ 1 -A3)2

+ A 4 S ( e 1 -A 3 ) 2 + oX +

Likewise, the Box-Cox transformation technique of NGARCH can be applied on

QGARCH to yield the Nonlinear Quadratic GARCH (NQGARCH):

NQGARCH1 (1,1)

= [A 0 + A 1 (o-_ 1 - wX_1 -
	

+ [A2(e_1 
_A3)2JA4]l4

+	 + llJYt

NQGARCH1 nests the following models

a) GARCH (A3 =0 and A4 = 1)

b) QGARCH (A4 = 1)

c) NGARCH (A3 =0)
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A variant to the above model is to apply the Box-Cox transformation only to a and a

terms i.e.

NQGARCH2(1 , 1)

2	 1
a t = [A 0 + A 1 (a_ 1 - (J.)X_1 -

	
+ A2(e_1 _A3)2]l/'14

^ (OX ^

Note that the NQGARCH2 is almost identical to the EGARCH when A4—*O.

Finally, one could combine the NGARCH with the TGARCH to get

NTGARCH1(1 ,1)

[A 0 ^Ai(al_Xl_lJrYi)A4 ^A2(ei)A4

+	 + lIJYt

NTGARCH2(1 ,1)

= [A 0 + A 1 (a 1 -	
- y)A4 

+

+A3Sei]M4 
+	 ^

Like the NAGARCH, the JNGARCH, TQGARCH and both variants of NQGARCH

and NTGARCH are formulated such that the models' News Impact Curve depends on

various (nonlinear) terms. As such, these models also attempt to capture observed

asymmetric leverage effects.
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a DATA

The empirical analysis is based on 20 years daily data of the London Stock Exchange

from January 1971 to December 1990. 11 returns' series are analysed corresponding

to the F1' All Share Index and ten size sorted portfolios. Daily values of the FT All

Share Index for the sample period were collected from Datastream and used to

calculate daily log returns. To construct the ten size sorted portfolios, all stocks

which satisfied the following criteria were selected:

(a) Daily "adjusted"3 and unadjusted prices for the stock were available on

Datastream for the entire sample period,

(b) Dividends and ex dividend dates for the stock were available from the London

Business School Share Price Database for the entire sample period, and

(c) The stock had traded at least once during every calendar month in the sample

period.

Criteria (a) and (b) above clearly introduce a selection bias but this does not appear

important in the context of the study. Criteria (c) above was included to mitigate

potential distortions due to infrequent trading'4

"Adjusted" prices control for changes in capitalisation of the stock.

Infrequent trading related effects are also filtered out before estimating conditional volatility.
See Section 4 later.
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176 stocks satisfied the above criteria. Daily adjusted and unadjusted prices for these

stocks were collected from Datastream and dividend data was collected from the LBS

Share Price Database and these were used to calculate daily returns for each day in

the sample period. Using the market value at the start of the sample period as the

basis of sorting, ten equally weighted size based portfolio returns' series were

constructed.

4. METHODOLOGY

4.1	 Empirical Research Design

The empirical research design adopted in this study is essentially similar to that of

Pagan and Scbwert (1990), though a wider spectrum of diagnostic tests are employed

including in particular the tests based on the News Impact Curve recently proposed

by Engle and Ng (1993). The 20 year sample period January 1971 to December

1990 is divided into two equal 10 year periods - January 1971 to December 1980

and January 1981 to December 1990. The second half of the sample is itself split

into two sub-periods - January 1981 to December 1985 and January 1986 to

December 1990 - because it includes the major market crash on Black Monday

October 19, 1987 and the mini crash on Black Friday October 16, 1989, both of

which involved high volatility, localised in time, following high negative returns.
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An important issue is the choice of the conditional density function D(u) for the

error term. The obvious first possible choice is a normal distribution. However,

unconditional stock return distributions tend to have fatter tails than a normal

distribution'5, and the standardised residuals from estimated parametric ARCH models

are often leptokurtic for financial time series (Bollerslev et al, 1992, Section 2.3).

Several other forms of the conditional density function D(u) have been suggested

in the literature, e.g. the Student-t distribution in Bollerslev (1987), the normal-

Poisson mixture distribution in Jorion (1988), the power exponential distribution in

Baillie and Bollerslev (1989), the normal-lognormal mixture distribution in Hsieh

(1989), and the generalised exponential distribution in Nelson (1990). To test

whether our rankings of the different parametric ARCH models are robust to the

choice of the conditional density function, we run all computations for the FT All

Share Index in two ways. First, we base our estimations on log-likelihood functions

that correspond to a normal distribution. Second, we assume that the error term is

Student-t distributed, as in Bollerslev (1987). We find that our relative rankings of

the different parametric ARCH models remain exactly the same for the FT All Share

Index. Hence, all further estimations are based on assuming conditional normality,

and all the results reported in the tables in this paper are for a conditional normal

density function16.

See eg Mandeibrot (1965) and Fama (1965) for early evidence.

16 Results based on the use of Student-t as the conditional distribution are available from the
author on request.
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The parameters of each of the variance equations (corresponding to the different

parametric ARCH models) are estimated separately for each of the 4 periods

(1971-80, 1981-90, 198 1-85 and 1986-90), and for each of 11 returns' series (the FT

All Share Index and the 10 size based portfolios). These parameters are used to

estimate the daily conditional volatility series for each of the 44 cases (11 returns'

series and 4 periods), and together with the diagnostics constitute the in-sample set

of results. To estimate the ex-ante out-of-sample predictive power of the different

models, the parameters of the relevant variance equation estimated from an earlier

sub-period, are used to compute the conditional volatility in the following period.

Therefore, parameters estimated from the 1971-80 data are used to predict conditional

volatility for the 1981-90 and the 1981-85 periods and the parameters estimated from

the 1981-85 data are used to predict conditional volatility for the 1986-90 period.

Since the focus of this study is on conditional volatility it is necessary to remove

possible predictability in the conditional mean. Such predictability can potentially

arise from two sources - calender based seasonalities and infrequent trading of

portfolio stocks. The method followed to filter out such predictability is similar to

that used by Pagan and Schwert (1990), Engle and Ng (1991) and Keam and Pagan

(1990). For each return series, we first regress the returns y on five day-of-the-

week dummies - MON, TUB, WED, THU, FRI - and a dummy variable X for the

day following a holiday:
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y 1 = A 1 MON + A 2 TUE + A 3 WED ^ A 4 THU ^ A 5 FRI + A 6X +

u is then regressed against a constant and ten autoregressive lags to give the

residuals, Et.

10

Ut = Do 
+	 UtiUti +

1=1

From the series ç, we then estimate by means of maximum likelihood the following

equation using the algorithm of Bemdt, Hall, Hall and Hausman (1974)

= B 0 +

where et is distributed as conditionally normal, with zero mean and a time-varying

variance u based on various parametric formulations described in Section 2.

4.2 Benchmarks and Diagnostics

Several benchmarks and diagnostics are examined. Since all the models are

estimated using maximum likelihood, the first benchmark is the log-likelihood. In

this context, it is relevant to note that except for the EGARCH model, the GARCH

model is nested within all the other parametric ARCH models examined. Therefore,

a likelihood ratio test can be performed. For models with one additional parameter

i.e. the TGARCH, QGARCH, NGARCH, NAGARCH and INGARCH models, the
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log-likelihood must improve by at least 1.92 before we can reject the null hypothesis

that the additional parameters are not significantly different from zero at the 5%

level. Similarly, for models with two additional parameters, i.e. the AGARCH,

TQGARCH1, TQGARCH2, NQGARCH1, NQGARCH2, NTGARCH1 and

NTGARCH2, the log-likelihood must improve by at least 3.00 for the additional

parameters to be significantly different from zero at the 5% level.

Second, the sample skewness and excess kurtosis of the standardised residuals from

each of the models is calculated and the hypothesis that they are equal to zero is

tested. In this paper, all directly reported results assume conditionally normally

distributed errors. However, results (on other financial assets) of McCurdy and

Morgan (1987), MilhØj (1987), Hsieh (1989) and Bailhie and BoJJerslev (1989)

suggest that such an assumption does not capture all the observed skewness arid

excess kurtosis. This test will provide empirical evidence in this regard on UK stock

returns.

Third, we also test for serial correlation in the standardised residuals and the square

of the standardised residuals. These are standard tests employed in the ARCH

literature to check if the models fully capture heteroskedastic behaviour.

Fourth, we run the following regression:

= a +	 + v
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and look at the R2 (the coefficient of determination) 17. The higher the R2, the better

will be the prediction of the actual variance e with the estimated variance or. We

also run the logarithmic version of the above regression ie

loge	 a ^ f3loga + v

and look at the R2 (which we shall term as R 2-for-logs). This assumes a proportional

loss function (as opposed to a quadratic one implied in the linear regression model)

between e and cr (see Pagan and Schwert, 1990). The regression for logs implies

that mistakes in predicting small variances are given more weight than in the linear

regression.

In the context of the use of R2 or R2-for-logs as benchmarks of performance, it is

important to emphasise that the values of R2 or R2-for-logs do not have "standard

error" estimates around them, and so it very difficult to come to any reasonably firm

conclusion about whether the differences in R2, or R2-for logs, between different

models are statistically significant or not, except through consistency across time or

consistency across portfolios.

measures the explanation of the squared innovations e by the conditional variance 4,
while the log-likelihood pertains to the innovations e1. As noted by Pagan and Schwert (1990), while
the two measures point in the same direction, they are not comparable.
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The regression of the actual variance e on the estimated variance or also tests for

model adequacy (Pagan and Sabau, 1987). If the model is well specified, the

intercept a should be zero and the slope f3 should be unity. Furthermore, if

persistence in volatility is fully captured by the models, the residuals v should be

serially uncorrelated.

Our final set of diagnostics come from Engle and Ng (1993). The tests are based on

the News impact Curve which represents the relationship between innovations in

returns e 1 on the volatility a implied by a conditional variance model estimated

at the sample mean and holding constant information dated t-2 and earlier. The tests

are designed to examine if the volatility models represent the data adequately. There

are three tests. The sign-bias test indicates whether positive and negative return

innovations have different impact on the volatility not predicted by the null volatility

model. The positive-size-bias test indicates the difference in impact between large

and small positive innovations on volatility not explained by the null volatility model.

Finally, the negative size bias test indicates the difference in impact between large

and small negative innovations on volatility not predicted by the null volatility model.

To conduct the tests, the following regression are estimated:

= a + b 1 S + b 2 Se 1 _ 1 + b 3 S e 1 +

where z = --; S = 1 if e1 1 < and S = 0 otherwise; and S = 1 - S .
Ut
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The t-ratios for b 1 , b2 and b3 are the test statistics for the sign-bias test, the

negative-size-bias test, and the positive size-bias test respectively. We also do a joint

F-test for any of the three statistics to be different from zero.

5.	 RESULTS

5.1	 Unconditional Estimates

Table 1 shows the summary statistics for the residuals ç of each of the 11 portfolios

over the 4 periods. The unconditional volatility is highest for the 197 1-80 period for

all portfolios. The recursive variance plots 18 show that this is driven largely by the

high volatility in the 1973-75 period. The unconditional volatility during the 1986-90

sub-period is also higher than the 198 1-85 sub-period, once again driven by the

localised high volatility around Black Monday October 19, 1987. The unconditional

volatility also appears to be related to firm size: portfolios of large-sized companies

generally have a higher unconditional variance than that of small-sized companies.

In all cases, the residuals display skewness and excess kurtosis that are significantly

different from that of a normal distribution. Portfolios of small-sized companies tend

to be more negatively skewed than portfolios of large-sized companies. Significant

excess kurtosis indicates fat-tailed distributions for all portfolios. Kurtosis appears

18 These are available from the author on request.
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to be size related, with portfolios of small-sized companies displaying greater

kurtosis. Kurtosis is greatest during the 1986-90 period, presumably arising from the

relatively higher localised variations in distributional parameters over this period due

to the stock market crash on Black Monday.

Table 1 also shows the results of the Ljung-Box test for serial correlation of up to

10 lags for both the residuals	 and squared residuals €. While the residuals are

not serially correlated (since all predictability has been removed from the mean),

serial correlation is present in the squared residuals for all portfolios across all

periods, suggesting time-valying volatility.

5.2 The FT All Share Index

5.2.1 in-sample estimation

Tables 2A, 2B, 2C and 2D summarise the benchmarks and diagnostics related to the

in-sample performance of the different parametric ARCH models for the FT All

Share Index for the four periods 1971-80, 1981-90, 1981-85 and 1986-90

respectively. The tables have several interesting features. First, except for the 1981-

85 period, the standardised residuals from the parametric volatility models continue

to display significant skewness and excess kurtosis, even though the extent of

skewness and excess kurtosis is markedly lower than the unconditional estimates

reported in Table 1. However, for all models and all periods, the 10-lags Ljung Box

statistic for the squared standardised residuals ie Q2(1O) is not significant even at the
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10% level when it was highly significant for the unconditional estimates in Table 1.

This shows that all the ARCH models estimated are generally good descriptions of

the time-varying volatility in the index.

Second, examination of the log-likelihood reveals that, in the majority of cases, the

log-likelihood of the additional parameter models (which nest the GARCH model as

a special case) is significantly greater (at the 5% level) than that of the GARCH

model. However, it is only the NAGARCH and the TQGARCH which outperform

the GARCH on this criteria in all periods. Nevertheless, this does show that the

parameters proxying for asymmetry in the post-GARCH models are usually

statistically significant.

With R2 as the benchmark of performance, the results vary significantly from the first

to the second half of the sample period. For 1971-80, the R2 of the GARCH model

is higher than the R2 of each of the post-GARCH models, while for 198 1-90, and the

two sub periods 198 1-85 and 1986-90, the R2 of the GARCH model is lower than the

R2 of each of the post-GARCH models. It is also relevant to note that in the 198 1-90

period and the 1986-90 sub-period, the performance of EGARCH on the basis of R2

is markedly better than the performance of each of the other models, while it is

largely similar to the other models in remaining 197 1-80 period and 1981-85 sub-

period.
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On the basis of R2-for-logs, the EGARCH in-sample prediction is largely similar to

the other models in all periods. On the other hand, the R2-for-logs is, in almost all

cases, both across periods and across models, lower for the GARCH model than for

the post-GARCH models. This could suggest that all the alternative paramethc

ARCH models consistently perform better than the GARCH in predicting e for

small values. However, anticipating later results, such a conclusion is not valid since

it is not robust across different size based portfolios, and does not carry over to out-

of-sample estimation.

The intercept and slope coefficients in the Pagan and Sabau (1987) regression of e

on	 are not significantly different from zero (at even the 10% significance level)

in any period for any model. This shows that none of the volatility models are

misspecified. The residuals from the regression do not also show any evidence of

serial correlation and the heteroskedasticity-corrected Box-Pierce (1970) statistic

cannot reject the null of serially uncorrelated residuals at 10 lags. This suggests that

there is no persistence in volatility in addition to that captured by these models.

Finally, none of three Engle and Ng (1993) diagnostic tests are able to distinguish

significantly between the different models in any period. The test statistics for the

sign-bias test as well as for the positive-size-bias test are not significantly different

from zero for any period for any model. The test statistics for the negative-size-bias
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test are also not significantly different from zero for any model for the periods 197 1-

80 and 198 1-90 and the sub-period 1986-90. The test statistics for the negative-size-

bias test are significantly different from zero for some models only for the sub-period

1981-85. However, the t-statistics vary from -2.18 for GARCH to -1.25 for

INGARCH, and the differences across models do not appear statistically significant.

The F-statistic for the joint test is also not significant in any case except for the

GARCH model during the 198 1-85 sub-period.

5.2.2 Out-of-Sample Estimation

Tables 3A, 3B and 3C summarise the benchmarks and diagnostics related to the out-

of-sample performance of the different parametric ARCH models for the period 1981-

90, and the sub-periods 198 1-85 and 1986-90. The basic results are largely similar

to the in-sample case. First, as expected, the standardised residuals from the different

volatility models display skewness and excess kurtosis which is not as significant as

the unconditional estimates in Table 1, but are nevertheless more significant than the

in-sample estimates of Tables 2B, 2C and 2D. The 10-lags Ljung-Box statistic for

the squared standardised residuals continues to be statistically insignificant for the

198 1-85 and the 1986-90 sub-periods, but is significant for the overall 198 1-90

period. This means that all the ARCH models are good ex-ante descriptions of time

varying volatility provided the parameter estimates do not span too long an interval.

This suggests some non-stationarity in the estimated parameters of the ARCH models.

However, there are no systematic and significant differences between models in this

regard.
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With R2 as the benchmark of performance, the EGARCH, TGARCH, AGARCH,

TQGARCH, NQGARCH1, NTGARCH1 and NTGARCH2 outperform the GARCH

in both the sub-periods 198 1-85 and 1986-90. Similar to the in-sample results, the

EGARCH out-of-sample prediction is markedly better than all other models for 1986-

90 and largely similar to the other models for 198 1-85. The EGARCH, TGARCH

and NTGARCH1 rank in the top quartile of all models in both sub-periods 198 1-85

and 1986-90.

However, with R2-for-logs as the measure of performance, the GARCH outperforms

all these models in the sub-period 198 1-85 and underperforms all other models in the

sub-period 1986-90. The results for 198 1-85 are clearly not consistent with the

earlier results for in-sample estimation. The EGARCH outperforms most of the other

models for the 1981-85 period and is largely similar to the other models for the

1986-90 period.

The Pagan and Sabau (1987) test shows that none of the volatility models are mis-

specified even for ex-ante out-of-sample conditional volatility prediction. The

intercept and slope are not significantly different from zero and one respectively for

any period and any model. The residuals from the Pagan-Sabau regression do not

show any evidence of serial correlation and the heteroskedasticity-corrected Box-

Pierce (1970) statistic cannot again reject in any case the null hypothesis of serially

uncorrelated residuals at ten lags.
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Finally, the Engle and Ng (1993) sign-bias test, positive-size-bias test and negative-

size-bias test again fail to distinguish between the different models. None of the test

statistics for the sign-bias test and the positive-size-bias test are significantly different

from zero for any period or any model. The test statistics for the negative-size-bias

test are also not significantly different from zero for any model for the sub-period

1986-90. The test statistics for the negative-size-bias test are significantly different

from zero for all models for the sub-period 1981-85 and the overall period 1981-90.

The t-statistics vary from -3.47 for EGARCH to -1.93 for NGARCH during the

overall 198 1-90 period, and from -2.96 for NGARCH to -2.29 for EGARCH during

the 198 1-85 sub-period. The F-statistics for the joint test are also not significant for

any model for the 1986-90 sub-period, and significant for all models for the overall

period 1981-90 (p-values <0.09) and for the sub-period 1981-85 (p-values <0.06).

Clearly, inferences regarding the differences across models are not consistent, and

also do not appear to be statistically significant.

5.3	 Size based Portfolios

Analysis similar to that discussed for the FT All Share Index is conducted for each

of the 10 size based portfolios and tables corresponding to Tables 2A, 2B, 2C, 2D,

3A, 3B and 3C are prepared in each case. These 70 tables are not being appended

to the paper because of their sheer volume, but are available from the author on

request. Qualitatively, the results relating to the relative performance of the different

parametric ARCH models are largely similar to those obtained for the FT All Share
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Index with no apparent sized based differences across portfolios. It is found that in

all cases:

(a) the standardised residuals from the different volatility models continue to

display significant skewness and excess kurtosis even though the magnitudes

are much lower than the corresponding unconditional estimates;

(b) the squared standardised residuals are not serially correlated suggesting that

ARCH models are generally good descriptions of the time variation in

volatility;

(c) the intercept and slope coefficients in the Pagan and Sabau (1987) regression

of e on cr are not significantly different from zero and one respectively (at

even the 10% significance level) in any period for any model, and the

regression residuals are serially uncorrelated, indicating that none of the

volatility models are misspecified;

(d) for all portfolios, in the majority of cases, the log-likelihood of the additional

parameter models is significantly greater than that of the GARCH model, at

least in some periods, suggesting that the parameters proxying for asymmetry

in the post-GARCH models are usually statistically significant; and
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(e)	 none of the three Engle and Ng (1993) sign bias tests are able to distinguish

between the different parametric ARCH models.

However, the inferences based on R2 and R2-for-logs as the benchmark of

performance are not completely consistent across portfolios. To analyse the

differences, the performance of the different models based on R2, and R2-for-logs (for

different portfolios and different periods) was ranked across models from 1 to 13, and

summed across different portfolios to infer the mean rank of different models for

each period separately. The statistical significance of this mean rank was calculated

as in Walmsley et. al. (1992). Tables 4A, 4B, 4C and 4D (based on in-sample R2,

out-of-sample R2, in-sample R2-for-logs and out-of-sample R2-for-logs respectively)

report the mean rank of different models for each of time periods 1971-80, 198 1-90,

198 1-85 and 1986-90, as well as the z-statistics for the null hypotheses that the mean

rank is not significantly different from the expected value of 7 if the performance of

all the models is the same.

Based on R2 and in-sample estimation, consistent with earlier results, the GARCH

model significantly outperforms the other models in the 1971-80 period and

significantly underperforms in each of the periods 1981-90, 1981-85 and 1986-90.

The EGARCH model significantly outperforms all other models for the sub-period

1986-90 and for the overall period 198 1-90, and is not very different from the

average model in the period 197 1-80 and the sub-period 198 1-85. While no model

signcant1y outperforms the median model in each of the 4 periods analysed, the
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EGARCH, TGARCH and NTGARCH1 rank above the median in both sub-periods

1981-85 and 1986-90. Based on R2 and out-of-sample estimation, no model

signcantly outperforms others in both sub-periods 1981-85 and 1986-90, but once

again the EGARCH, TGARCH and NTGARCH1 rank above the median in both sub-

periods.

Based on R2-for-logs, no model exhibits a performance that is significantly different

from the average performance, both for in-sample and out-of-sample estimation.

While individual portfolio results may have signalled superior performance for

individual models in some periods, there is no clear bottomline for a particular

portfolio in all periods, or for all portfolios in a particular period. This suggest that

the superior performance of some of the parametric models highlighted earlier could

be driven by the ability to predict large variances accurately, since the superior

performance disappears when a benchmark which gives relatively greater weight to

errors in predicting small variances is used. Alternatively, as highlighted earlier, the

distribution of R2 values are unknown, and so the only way to come to any

reasonably firm conclusion about whether the differences in R2, or R2-for-logs,

between different models are statistically significant or not is to analyse consistency

across time or consistency across portfolios. The results could also suggest that a

benchmark based on R2-for-logs is not statistically powerful enough to distinguish

between the different models examined.
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Finally, in results not reported in this paper but available from the author on request,

we repeat the analysis by splitting our 10 size-sorted portfolios into two sub-groups.

The first sub-group consists of the first 5 portfolios and hence represents large-sized

companies and the second sub-group consists of the remaining 5 portfolios and hence

represents the small-sized companies. A similar pattern of predictive performance

is observed for both sub-groups. This suggests that the performance of a particular

model in predicting volatility is largely unrelated to firm size.

6. SUMMARY AND CONCLUSIONS

This paper presents empirical evidence on the effectiveness of different parametric

ARCH models in describing daily stock returns. 20 years UK daily data on a value

weighted stock index and ten size sorted portfolios are investigated for the period

197 1-90. Several interesting results are documented. First, the squared standardised

residuals from all models are serially uncorrelated suggesting that ARCH models are

generally good descriptions of the time variation in volatility. Second, none of the

volatility models are mlsspecified since the conditional variance Is an unbiased

predictor of the actual variance in all cases. Third, the assumption of normal

conditional densities is inadequate for all models since the resulting standardised

residuals continue to display significant skewness and excess kurtosis. Fourth, in

most of the cases, the log-likelihood of the additional parameter models is

significantly greater than that of the GARCF{ model, suggesting that the parameter(s)

proxying for asymmetry in the post-GARCH models are usually statistically
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significant. Fifth, none of the three Engle and Ng (1993) sign bias tests, based on

the News Impact Curve, are able to distinguish between the different parametric

ARCH models. Sixth, the relative performance of different parametric ARCH models

has not been totally consistent across different periods and across different portfolios,

but, among the models currently proposed in the literature, the TGARCH and

EGARCH models significantly outperform the GARCH model' 9 both on an in-sample

and out-of-sample basis over each of the more recent sub-periods 198 1-85 and

1986-90. However, all superior performance disappears when a benchmark which

gives relatively greater weight to errors in predicting small variances is used. Finally,

there do not appear to be any systematic firm size related differences in the relative

predictive ability of the different parametric ARCH models.

19 Engle and Ng (1993) arrive at a similar conclusion using the diagnostics based on the New
Impact Curve.
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LEGEND TABLE FOR TABLES 2A-2D AND 3A-3D

Description of column headings appearing on Tables 2A-2D and Tables 3A-3D.

Log-L	 : Denotes log-likelihood value. Asterisk denotes significance of
likelihood ratio test over the GARCH model.

Skewness : Skewness computed for the standardised residuals. p-values
(shown in parenthesis) denote test for normal skewness.

Kurt. : Excess kurtosis computed for the standardised residuals. p-values
(shown in parenthesis) denote test for zero excess (i.e. normal)
kurtosis.

CONST.
and

SLOPE

R2

R2-Iogs

Qv( 10)

Qx(10)

Qx2(10)

Denote the Pagan and Sabau (1987) test for misspecification of
the conditional variance equation i.e.

e = CONST + SLOPE a + v

If conditional variance is correctly specified, CONST. should equal
zero and SLOPE equal one.

Denotes the R-square of the above regression.

Denotes rhe R-square for the log version of the above regression.

Heteroskedasticity-adjusted Box-Pierce statistic for the residuals
from the above regression i.e. vi,.

Ljung-Box statistic for the standardised residuals.

Ljung-Box statistic for the square of standardised residuals.

5-, S-e,	 : Denote Engle and Ng (1993) diagnostic tests.
S+e, F-test
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CHAPTER 3

ASYMMETRY IN VOLATILITIES AND

THE PRIVATE INFORMATION HYPOTHESIS

Abstract

In a recent paper, Conrad, Gultekin and Kaul (1991) report an asymmetric effect in

the conditional volatilities of large and small market value firms using weekly stock

returns data from the US. This paper documents a similar effect for UK daily stock

returns. Shocks from a portfolio of large firms affect the future volatility of a

portfolio of small firms, but shocks from the portfolio of small firms have no effect

on the future volatility of the portfolio of large firms. We also examine the

differences in nontrading and trading shocks on future volatility. We fmd that trading

period shocks from one portfolio tend to affect subsequent volatility of the other

portfolio, but not nontrading period shocks. Volatility of small firms appears to be

affected more by the trading shocks of large firms than volatility of large firms by

trading shocks of small firms. The evidence in this paper therefore support the

hypothesis that higher trading period volatility is due to the release of private

information through the trading activities of informed investors.



ASYMMETRY IN VOLATILITIES AND

THE PRIVATE INFORMATION HYPOTHESIS

1.	 INTRODUCTION

There is considerable evidence on the time-series predictability of stock returns.

Fama (1965), Fisher (1966), French and Roll (1986), Lo and MacKinlay (1990a), and

Scholes and Williams (1977) have documented serial dependence in stock returns,

and Lo and MacKinlay (1990a) fmd that lagged returns of large size firms can predict

returns of small size firms, but not vice versa. Cohen et. al. (1980) and Scholes and

Williams (1977) have ascribed the observed serial dependence in returns to problems

of nonsynchronous trading. Given that stocks of different market capitalization

exhibit different degrees of nonsynchronous trading, this may also explain the

asymmetric predictability in the returns of different size stocks, as documented by Lo

and MacKinlay (1990a). However, Lo and MacKinlay (1990b) have argued that

attributing all observed serial dependence and cross predictability to nonsynchronous

trading would suggest an absurdly thin market.

The introduction of Autoregressive Conditional Heteroskedasticity (ARCH) models

by Engle (1982) and others (e.g. Bollerslev, 1986, Nelson, 1991) have allowed

analysis to be extended to higher moments of stock returns, namely volatility. Many

researchers have found that there is considerable dependence in the variance of stock

returns, suggesting predictability in stock volatility (see Chou, 1988, French et. a!.,
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1987, and Watt and Yadav, 1993'). Conrad et. al. (1991) find that the asymmetric

predictability extends to the conditional variance as well, i.e. the conditional variance

of large firms can predict the conditional variance of small firms, but not the other

way round. Using the Lo and MacKinlay (1990b) nontrading model, they proceed

to show that the observed asymmetric predictability of conditional variance cannot

be caused by nonsynchronous trading2.

Such findings in the (asymmetric) predictability in the mean and variance of stock

returns add to the conundrum of empirical evidence on asset prices. For example,

autocorrelations of individual stock returns are only weakly positive or negative

(Faina, 1965, French and Roll, 1986, and Lo and MacKinlay, 1990a), but portfolio

returns appear to be positively autocorrelated (Cohen et. al., 1980, and Scholes and

Williams, 1977). Fama (1965), and French and Roll (1986) also fmd that daily stock

return variances in the US are higher when the markets are open than when they are

closed, while Barclay et. al. (1990) provide similar evidence for the Japanese stock

market.

It is generally agreed the such empirical behaviour of stock returns reflects the

trading behaviour of investors and the microstructure of the trading system. For

example, French and Roll (1986) suggest three explanations on why trading period

volatility is higher than nontrading period volatility: 1) more public information is

This paper is based on Chapter 2 of this dissertation.

2	 simulations were done under assumptions of both homoskedasticity and heteroskedasticity
in the distribution of the returns. In both cases, the cross-effects are not statistically different from zero.
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released during trading hours; 2) private information is released through the trading

activities of informed investors; 3) the effects of noise traders. There have also been

attempts to model and predict the empirical patterns, first by Kyle (1985), and more

recently by Admati and Pfleiderer (1988), and Foster and Viswanathan (1990, 1993).

In these models, the market maker does not know if the trade is executed by an

informed trader or a liquidity trader. As such the market maker has to infer the

informed trader's beliefs from the order flow and set prices accordingly. This would

support the private information hypothesis.

Chan (1993) extends the models of Kyle (1985) and Admati and Pfleiderer (1988)

to a setting in which, in each period, the market maker derives a signal about the

value of his stock. If the signal contains both market-wide information and

uncorrelated noise, obtaining more signals wifi allow the market maker to better

extract market-wide information. While the market maker can readily get the signal

from his own stock, signals about the value of other stocks are however not

instantaneously obtainable. Nevertheless, lag values of other stocks are available, and

this induces cross-autocorrelation patterns in the stock prices. If the signal quality

of large firms is better than small firms, this will also explain the observed

asymmetry of returns of companies of different market values 3. Following Ross

US market makers (i.e. specialists) typically deal in only a handful of stocks, but have a
preferential position with respect to the order flow information on these stocks. UK market makers on the
other hand, typically make a market in 100^ stocks, but only see a fraction of the order flow in each (there
are more than one market maker for each stock). Despite this difference, Chan (1993)'s results may still
be applicable under the UK setting. Each stock in the inventory of the UK market maker contains less
market-wide information relative to the stock under US specialist's inventory. However, the UK market
maker has more stocks to derive market-wide information than the US specialist. Unless the UK market
maker can obtain a better overall signal from all the stocks under his inventory than the corresponding US
specialist from his inventory, a cross correlation pattern can still exist.
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(1989), who shows that the variance of price changes is directly related to the rate

of information flow, Chan (1993)'s model appears to be consistent with the findings

of asymmetric predictability in volatiities. The model also lends support to the

private information hypothesis.

Various empirical research papers tend to support the private information hypothesis.

French and Roll (1986) compare multi-day return variances over weekends and

exchange holidays to single trading day variances and conclude that the evidence is

consistent with the private information hypothesis. A similar conclusion is reached

by Barclays et. at. (1990) when they compare variances of trading and nontrading

Saturdays in the Japanese stock market. Houston and Ryngaert (1992) examine the

effect of reductions in trading hours on intra-week pattern of trading volume and

volatility in the US stock market.. They find evidence that lower volume and

volatility caused by a decrease in trading hours is more often made up after a closing,

rather than before. They suggest that this is consistent with the private information

hypothesis. Masulis and Ng (1991) analyse the UK stock index returns with a

dynamic ARCH model that allows for temporal variation in volatility. They find

evidence of differences in the impact and persistence of shocks arising from trading

and nontrading periods on future volatility. Shocks originating from nontrading

periods are less persistent than those originating from trading periods. This suggests

that stock volatility is related to the trading activities of informed investors, and that

private information held by them are released through trading activities.
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This paper seeks to address the following issues. First, the results of Conrad et. al.

(1991) on the asymmetric predictability in conditional volatilities may be a direct

result of the use of transaction prices. Nonsynchronous trading of stocks of different

market values may result in stale transaction prices, which may induce the observed

asymmetry in the predictability of the conditional variances. Second, in a reasonably

efficient market, the asymmetric predictability is likely to occur over a shorter return

interval4. Third, the differences in market making arrangement between the US and

UK may lead to different degrees of asymmetric predictability. Finally, we seek to

address the issue of information and predictability of conditional volatilities.

Assuming that there is more information in trading periods than nontrading periods

(i.e. private information is released through trading), the degree of predictability

should therefore differ as well.

Our approach is essentially similar to that of Conrad et. al. (1991). Using daily

returns data from the London stock exchange, we begin our analysis by first applying

a univariate GARCH specification to model the conditional volatilities of two size-

sorted portfolios, and to determine the degree of (asymmetric) predictability between

the two portfolios5. Since such a technique may be inefficient, we then proceed to

re-estimate the above using a multivariate GARCH specification of Baba et. al.

(1991). In both cases, our results show that the daily shocks of the portfolio of large-

It should be noted that the choice of using weekly returns in Conrad et. al. (1991) is largely an
arbitrary one. It represents a "compromise between the relatively few monthly observations and the
potential biases associated with nontrading, the bid-ask effect, etc." (pg 603).

Since the UK data is based on the mid-market quote of dealer prices (i.e. average of the dealer's
bid and ask prices), it does not suffer from problems associated with nontrading and bid-ask spreads.
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size companies can predict the conditional volatility of the portfolio of smaller

companies, but daily shocks of the portfolio of small-size companies have no impact

on the conditional volatility of the portfolio of large-size companies.

We also extend our analysis further by looking at the differences in asymmetric

response of conditional volatilities of the two size-sorted portfolio between trading

and nontrading periods. Given the similarity in the results of both univariate and

multivariate specifications, we limit our analysis to the univariate specification only6.

This specification is based on that of Masulis and Ng (1991), adapted in our case to

examine the interaction in the conditional volatifities between the two size-sorted

portfolios. Our findings show that trading period shocks of one portfolio affect the

future conditional volatility of the other portfolio, though trading period shocks from

the large firms portfolio have a more significant impact on the small firms portfolio

than the other way round. On the other hand, nontrading period shocks of large

(small) companies have relatively little impact on small (large) companies.

The plan of this paper is as follows. Section 2 describes the data used in this study.

Section 3 outlines the methodology we used. Section 4 presents the results of our

univariate and multivariate models using daily stock returns data, as well as the

trading/nontrading periods results. Our summary and conclusion is presented in

Section 5.

6 One problem of multivariate ARCH models is the number of parameters that are to be estimated
(see Baba et. a!., 1991, Bollerslev, Engle and Wooldridge, 1988, and Bollerslev, 1990).
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2. DATA

Daily closing returns of 200 of the largest companies listed on the London Stock

Exchange are obtained from Datastream for the period from January 1990 to

June 1993. The companies are then sorted into two equally weighted portfolios based

on their market capitalization as at the beginning of the sample period. The daily

returns are also divided into trading period returns i.e. returns computed from the

opening price and closing price of the same day, and nontrading period returns i.e.

returns computed from the closing price and the opening price of the following day.

3. METHODOLOGY

3.1	 Univariate Specification - Daily Returns

We first model the returns of the two size-sorted portfolios as an autoregressive

process with GARCH distributed errors. The GARCH model was introduced by

Bollerslev (1986) and is based on the generalization of the ARCH model of Engle

(1982). Essentially, the GARCH model expressed volatility as a function of previous

volatility and past shocks.

Three problems exist with the use of UK daily data. First, initial data analysis

reveals that returns on the two portfolios exhibit a rather high degree of serial

correlation. Second, weekends and holidays tend to induce dependence in the returns.
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Third, in the UK, stock transactions are settled according to an account period of

approximately two weeks. As pointed out by Crouhy and Galai (1992) and Yadav

and Pope (1992), this microstructure settlement procedure has implications on stock

returns and volatility. After experimenting with various formulations, we use the

following specification7

R 1 = '3 i0 +	 + 
I3 I2 R I, _2 + $.3R,_3 + f3 14 R , , _4 +

(1.1)
+ 8. 1 D11 + 4iO5t + cb 1 S_ 1 ^ ejt

with e 1 	- .tr( O,h1),

2
h 1 = c, +	 + b1 h 1	 (1.2)

where R . is the return of security tin period t

= 1 if period t follows either a holiday or a weekend, and zero otherwise;

S = 1 if period t marks the start of an account period, and zero otherwise;

is the set of all information available at time r - 1.

To determine the degree of spillover from one portfolio to another, we then perform

a "second-pass" estimation using the residuals obtained from the above. This is given

by

	

R, = I1O + $, 1 R 1, _ 1 + i3 2 R , _ 2 + f3 3 R , _ 3 +	 +

8.0D +	 + c 0 S ^	 ^	 ^	
(2.1)

7None of the dummy variables used in the mean equation appears to be significant in the
conditional variance equation and are thus omitted in the latter.
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with	 i,t-1 —N(O,h),

2	
k2h 1 = C 1 + a1 e1,1 ^ b h	 ^ i,j = 1,2 ; i ^j	 (2.2)

where 0 1 and k1 measure the degree of spillover from portfolio jto portfolio i in the

mean and variance respectively.

As pointed out by Conrad et. al. (1991), this univariate approach assumes that lagged

values from portfolio j are treated as exogenous variables, and care should be taken

when interpreting the results of the spillover effects. As such, we employ a

multivariate approach that estimates the parameters for both portfolios simultaneously.

3.1	 Multivariate Specification - Daily Returns

For the multivariate approach, we use the positive defmite formulation of Baba et.

al. (1991), which is also known as the BEKK model after the authors. The BEKK

model essentially reparameterises the conditional variance equations (two in our case)

into a matrix of the following form

H = CC + A'e_1 e i A + B' H _ 1 B	 (3.1)

where

I h 1 h12 1	 [c11 c12 1	 Ia11 a 12 1	 lb11 b 12 1	 1
H rI	 I;c'C=i	 I;A=I	 I;B=I	

b 
I;e_1 =I	 Iih	 h

I 21,t	 22,1]	 Lc21 C22]	 L"21 a22]	 L 1'21	 22j
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Note that a 21 and 12 measures the shocks of Portfolio 2 (small size firms) on the

conditional volatility of Portfolio 1 (large size firms), and vice versa respectively.

The BEKK representation is shown to be superior to several other formulations (e.g.

the diagonal model of Bollerslev et. al., 1988, or the constant correlation model of

Bollerslev, 1990) in that it achieves parsimony without having to impose specific

restrictions on the parameters of the model (see Bera and Higgins, 1993, Section 6).

This multivariate approach is also more efficient than the univariate specification

because the parameters for both portfolios are estimated simultaneously.

3.3 Univariate Specification - Open-to-Close and Close-to-Open Returns

To model the different impact of shocks arising from trading and nontrading periods

on future volatility, we follow the method of Masulis and Ng (1991). We first

divide the daily returns for each of the two portfolios into close-to-open and open-to-

close returns. The close-to-open and open-to-close returns for portfolio i are

specified respectively as

C	 C 0 o° C
R.1 = 13i0 +	 E	 I3im1i,t_m +	 : I3jflltj,t_fl

m = 1,3,5,7	 n=2,4,6,8	 (4.la)
C

	

+	 +	 +

00

	

R°	
0 C R t 	 +

	

it	 I3 i0 +	 E I3 im t,t-m
m = 1,3,5,7	 n=2,4,6,8	 (4.lb)

0+	 + 8. 2 D +1 + / S	 + f, 2 Stfl +ii I
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with	 N( 0,h 1') and	 1i,t1 - N( 0,h1'),

= w' + (b C +g C )h 2 - bCgCh4

C C 2C 2	 C

	

+ a c (e it _ 2 ) - a g (e, , _ 4 )	 (4.2a)
2 d C b C	 2(e, ,1 _ 1 ) -	 (e1,_3)

0	 0
= w, + (b°+g°)hf 2 - b°g°h°4

^a 0 (e° 2 ) 2 _a0g0(e_4)2	
(4.2b)

+ d 0 (e 1 ) 2 - d0b0(ef3)2

where R and R[ denote the close-to-open and open-to-close return for portfolio

i in period t respectively; D equals one if t spans a weekend/holiday, and zero

otherwise; and St equals one if the immediate (trading) period following t marks the

start of a new account period, and zero otherwise. Since we have split the daily

returns into close-to-open and open-to-close returns, period t refers either to a

nontrading period (from which we get the close-to-open returns, R) or a trading

period (from which we get the open-to-close returns, R,5. Note also that if t is a

trading period, t-1 and t+1 are nontrading periods, and vice versa. As per Masulis

and Ng (1991), for each portfolio, we combine the Equations (4.la) and (4.2a) with

(4. ib) and (4.2b) respectively by introducing two dummy variables that orthogonalize

the pair of intraday returns.
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immediately preceding open-to-close and close-to-open spillover effects of portfolio

j on the close-to-open returns of portfolio i respectively, while O and 9 measures

the close-to-open and open-to-close spillover effects of portfolio j on the open-to-

close returns of portfolio i. A similar interpretation is given to k , k , k and k

for spillover effects in the variance.

4.	 RESULTS

4.1 Univariate Specification - Daily Returns

Table 1 shows the results of estimating Equations (1.1) and (1.2) for the two

portfolios. Several points are worth noting. First, the returns of the two portfolios

exhibit a "settlement" effect and (to a certain extent) a holiday/weekend effect.

Second, the returns display a time-vaiying volatility, as evidenced by the statistical

significance of the parameters in the conditional variance equation (1.2). Third, the

AR(4)-GARCH(1,1) with the settlement period and holiday/weekend dummy

variables appear to be well specified, since neither the standardised residuals nor the

standardised squared residuals exhibit serial correlation up to nine lags.

To determine the spillover effects from one portfolio to another, we perform a

"second-pass" estimation as per Equations (2.1) and (2.2). The results are presented

in Table 2. For brevity, we only show the parameters that are of interest, namely
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those that indicate the spillover effects in the mean and volatility. It can be seen that

neither the returns nor the volatility of Portfolio 1 (i.e. the portfolio consisting of

larger companies) appears to be influenced by the returns and volatility of Portfolio

2 (i.e. the portfolio consisting of smaller companies) respectively. However, the

converse is not true. The returns of Portfolio 2 appears to be influenced by Portfolio

l's previous returns, although it is not very significant. On the other hand, Portfolio

2's variance is strongly influenced by Portfolio l's volatility shock, indicating that

Portfolio 2's future (i.e. conditional) volatility is predictable from the surprises of

Portfolio 1. A likelihood ratio test also shows that the two additional parameters

associated with the previous return and volatility of Portfolio 2 are not jointly

significant on the returns and volatility of Portfolio 1, but the previous return and

volatility of Portfolio 1 are jointly significant on the returns and volatility of Portfolio

2. This evidence is consistent with the fmdings of Conrad et. al. (1991).

One potential problem concerning the significance of the parameters to Equations

(2.1) and (2.2) relate to the issue of a rnisspecified conditional distribution.

Bollerslev and Wooldridge (1992) and Susmel and Engle (1994) show that if the

assumption of conditional normality of the error term is violated, the resulting

parameters in both the mean and variance equation are inconsistent. As such, we

compute the robust t-statistics using quasi-maximum likelihood estimation, as

suggested by Bollerslev and Wooldridge (1992), and these are shown in brackets in

Table 2. Again this points to an asymmetric effect in both the mean and variance of

the two portfolios.
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4.2	 Multivariate Specification - Daily Returns

The results of using the multivariate specification are presented in Table 3. Since the

main difference between the univariate and multivariate specification is in the

parameterisation of the conditional variance equation, we show only the spillover

effects in volatility. As in the univariate case, there is a distinct asymmetry in the

predictability of the conditional variance. Shocks arising from Portfolio 1 affects the

future volatility of Portfolio 2, but shocks from Portfolio 2 do not have a significant

influence on the future volatility of Portfolio 1. Again the findings are similar to that

of Conrad et. al. (1991).

4.3 Univariate Specification - Close-to-Open and Open-to-Close Returns

Given the results of Masulis and Ng (1991), it would be interesting to analyse the

asymmetric predictability of the two portfolios in the context of close-to-open and

open-to-close returns. Since both our earlier univariate and multivariate analysis

yield essentially the same results, we decide to stick to the simpler univariate

approach. As before, this involve performing a "two-pass" estimation, the first using

Equations (4.la), (4.lb), (4.2a) and (4.2b), and the second using Equations (5.la),

(5.lb), (5.2a) and (5.2b). The results are summarised in Table 4. Again for brevity,

we only show the spillover effects in the mean and variance equation between the

two portfolios. Unlike the earlier univariate results using daily returns, we only show

the robust t-statistics computed using quasi-maximum likelihood techniques, since
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such an estimation is shown to be more robust to misspecification in the conditional

distribution.

Once again, we find a distinct asymmetry in the predictability of the returns and

volatility of the portfolio of small companies with the returns and volatility of the

portfolio of large companies. The previous open-to-close returns and volatility of

Portfolio 2 has a weakly significant impact on the close-to-open returns and volatility

of Portfolio 1, but the previous close-to-open returns and volatility of Portfolio 2 has

no significant impact on the close-to-open returns and volatility of Portfolio 1.

However, neither the previous close-to-open nor the previous open-to-close returns

and volatilities of Portfolio 2 have any impact on the open-to-close returns and

volatilities of Portfolio 1. On the other hand, both the previous close-to-open and

open-to-close returns of Portfolio 1 affect the open-to-close and close-to-open returns

of Portfolio 2. The effect is more significant in the immediately preceding period.

For example, nontrading period returns have a more significant impact than previous

trading period returns on subsequent trading period returns, and trading period returns

have a more significant impact than previous nontrading returns on subsequent

nontrading period returns. As for volatility, shocks of Portfolio I arising from the

immediately preceding trading period exhibit a very significant impact on the

nontrading period volatility of Portfolio 2. All other shocks of Portfolio 1 have no

significant effects on Portfolio 2 ts volatility (for both trading and nontrading periods).
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The above indicates that the degree of asymmetric predictability in the mean and

variance of large and small firms is different between trading and nontrading periods.

The evidence suggests that trading periods contain a richer information set which is

impounded in the returns and volatility of the subsequent nontrading period. This is

consistent with earlier studies on differences between trading and nontrading period

volatilities, most notably that of French and Roll (1986). Like the results of Masulis

and Ng (1991), the evidence here appears to support the hypothesis that stock price

volatility is affected by the trading activities of informed investors.

The evidence also shows that the information set implied in the returns and volatility

of the portfolio of larger companies contains valuable information which can predict

the returns and volatilities of the portfolio of smaller companies. This is consistent

with the empirical findings of cross serial dependence in returns, and is also

compatible with the imperfect information model of Chan (1993).

5.	 CONCLUSION

In this paper, we document the asymmetric predictability in the conditional volatility

of firms of different market values. Using daily data from the UK market, we find

that the shocks to larger firms affect the future returns and volatility of smaller size

firms, but not vice versa. As stated by Conrad et. a!. (1991), while one possible

explanation is that there are timing differences in the way information is incorporated

into the prices of large and small companies, other explanations not related to timing
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effects are also plausible, such as the conditional volatility being driven by some

factors that are more closely associated with the shocks to large firms.

Our intraday analysis shows that the degree of asymmetric shocks differ between

trading and nontrading periods. Open-to-close returns and volatility of large firms

tend to have a much more significant impact on subsequent close-to-open returns and

volatility of small firms. This suggests that information impounded in trading period

returns and volatility is richer. This supports the hypothesis that stock volatility is

related to the trading activities of informed investors. It also suggests that the

asymmetric predictability may be a result of timing rather than non-timing effects.
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TABLE 1

Univariate AR(4)-GARCH(1,1) model of daily returns of two equally weighted portfolios for the
period from 2 January 1990 to 30 June 1993. Portfolio 1 consists of the 100 largest stocks listed on
the London Stock Exchange, with Portfolio 2 consisting of the next 100 largest stocks (based on their
capitalization as at the start of the sample period). The model is given by

=	 + $1R,_1 + I3 2 R 1,1 _2 + I3.3 R 1, _4 + I3 4 R , , _4 +
+	 + d'i05t +	 +

with e11 fl1, , 1 - N( 0,h1),

= c + a j e t _ i + b.h1,1_1

Parameters	 Portfolio 1	 Portfolio 2

p	 -0.0043	 -0.009910	
(-0.1032)	 (-0.2809)

p	 0.0805	 0.2240U	
(2.1829)	 (6.5362)

p	 -0.0032	 0.063512	
(-0.0877)	 (1.5715)

p	 0.0669	 0.1263
_____________________	 (1.9101)	 (3.3896)

p.	 0.0952	 0. 1485
_________________	 (2.7177)	 (4.9220)

0.2124	 0.0411
__________________	 (2.4549)	 (0.6771)

-0.1295	 -0.106511	
(-1.3384)	 (-1.6248)

-0.5712	 -0.3033
(-4.9324)	 (-3.4477)

0.2922	 0.1794tl	
(2.3025)	 (1.7850)

c	 0.0438	 0.0286
_________________	 (3.5116)	 (3.9040)

a. 0.1165	 0.2218
__________________	 (5.7773)	 (9.4003)

b. 0.8365	 0.7606
(29.78 17)	 (32.5040)

Log-likelihood	 -328.5537	 -134.7977

Q(9)	 3.2518	 7.0267
[0.66121	 [0.2187]

Q2(9)	 3.9846	 2.2524
___________________	 [0.7917]	 [0.8132]

Asymptotic t-statistics denoted in parentheses, p-values in brackets. Q(9) and Q2(9) refer to Ljung-Box
statistics of 9 lags for the standardised residuals and squared standardised residuals respectively.
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TABLE 2

Univariate AR(4)-GARCH(1 , 1) model with spillover effects of daily returns of two equally weighted
portfolios for the period 2 January 1990 to 30 June 1993. Portfolio I consists of the 100 largest stocks
listed on the London Stock Exchange, with Portfolio 2 consisting of the next 100 largest stocks (based
on their capitalization as at the start of the sample period). The model is given by

R , =	
+ P 1 R_ 1 + I3 2 R, , ,_ 2 + I3 13 R 1, _4 + f3 . 4 R 1, _4 +

	

+	 +	 +	 +	 +

(2.1)

with e 1	- N( o,h1),

= c +	 + bh , 1 + k1 e , _ 1	I,] = 1,2 ; i ^j
(2.2)

Parameters	 Portfolio 1	 Portfolio 2

0.	 -0.0836	 0.0899
(-0.8434)	 (1.306 1)
[-0.8767]	 [1.9886]

k	 0.01 19	 0.0914
(0.2796)	 (3.6848)
[0.1722]	 [2.0554]

Log-likelihood	 -328.1837	 -128.5872

Asymptotic t-statistics denoted in parentheses. Robust t-statistics (see Bollerslev and Wooldridge, 1992)
denoted in brackets.
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TABLE 3

Multivariate AR(4)-GARCH(1,1) model with spillover effects of daily returns of two equally weighted
portfolios for the period 2 January 1990 to 30 June 1993. Portfolio I consists of the 100 largest stocks
listed on the London Stock Exchange, with Portfolio 2 consisting of the next 100 largest stocks (based
on their capitalization as at the start of the sample period). The model is given by

R,, = I,O 
+ J3, 1 R, , ,_ 1 + I3,2 R , , _2 +	 + 13 4 R, , ,_ 4 +

+ 8, 1 D,_ 1 +	 + çb, 1 S,_ 1 +	 + Ojej,_1

(2.1)

with e, 0,-i - M•VN- ( O,H,),

H, = C'C + A'e1 _ 1 e, 1 A + B'H,_1B
(3.1)

Parameters	 I	 Portfolio 1	 Portfolio 2

a2 I a12	 0.1530	 I	 0.2276	 V
(1.5893)	 (4.1954)

Asymptotic t-statistics shown in parentheses.
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TABLE 4

Univariate AR(4)-GARCH(l,1) model with spillover effects of daily returns of two equally weighted
portfolios for the period 2 January 1990 to 30 June 1993. Portfolio 1 consists of the 100 largest stocks
listed on the London Stock Exchange, with Portfolio 2 consisting of the next 100 largest stocks (based
on their capitalization as at the start of the sample period). The model is given by

CCD C 	C	 0O
1,O +	 L	 f3imAti,t_m +

m = 1,3,5,7	 n =2,4,6,8
Co	 CC+	 + 4iO5t +	 + O 1 e1, _ 1 + O2e1,,_2	 (5.la)

0	 0
= I3 i0 +	 +	 +	 +

m = 1,3,5,7	 n =2,4,6,8
0	 OC	 00

+ 4i1 ti + i2 5:.1 + e 1 +	 e_1 + °i2 ej,t_2	 (5.lb)

with e I fl1,-i - N( 0 h' 1 and e[ I fl,-i - N( 0 h°),'	 it,	 it!

C	 C + (b C +g C ) h C - b Cg C h 4 + a C (e 2 ) 2 - aCgC(e4)2= Wi	 i,t-2
C	 2	 C C 2+ d C (e ,_1 ) 2 - dCbC(e_3)2 + k i (e1, _ 1 ) + k2(e1,_2)	 (5.2a)

0	 0 0 20 0 2	 00= w + (b 0 +gO)hO - b O g O h 0 + a (e,,2 ) - a g (e,4)
0 C 2	 0 0	 2+ d0(e_1)2 - d°b 0(e_3)2 + k11 (e1,1 _ 1 ) + k12(e,_2)	

(5.2b)

Parameters	 Portfolio 1	 Portfolio 2

-0.0769	 0.1174
[-2.0235]	 [6.41581

0.0798	 -0.2054

	

i2	 [0.81681	 [-3.8868]

	

0°	 -0.1416	 0.5956

	

1	 [-0.4690]	 [6.7247]

	

0 0	 0.0601	 -0.0861

	

i2	 [0.3727]	 [-2.4896]

	

k C	 0.1316	 0.0964

	

ii	 [2.1738]	 [4.3117]

	

k 
c	 0.4794	 0.0028

	

i2	 [0.6619]	 [0.6398]

0.0000	 0.0000

	

1	 [0.0000]	 [0.0044]

0.0247	 0.0000

	

12	 [1.3861]	 [0.0013]

Robust t-statistics (see Bollerslev and Wooldridge, 1992) denoted in brackets.



CHAPTER 4

AN EMPIRICAL EXAMINATION OF THE

VOLATILITY-VOLUME RELATIONSHIP

Abstract

This paper examines the empirical relationship between stock index volatility and

trading volume in the UK. There is some evidence of contemporaneous relationship

between volatility and volume levels, although the volatility appears to be affected

more strongly by changes in volume levels instead. However, when a GARCH

framework is used, we fmd that neither contemporaneous nor lag daily trading

volume has any explanatory power on conditional volatility. The evidence appears

to be inconsistent with the results of Lamoureux and Lastrapes (1990), and Najand

and Yung (1991) in so far as volume levels are concerned. On the hand,

contemporaneous changes in volume levels has significant explanatory power on the

conditional variance, but not lag changes in volume, and this appears to be robust to

the choice of the conditional distribution. Nevertheless, ARCH effects remain

strongly significant. Inclusion of contemporaneous changes in volume also reduces

the kurtosis of the conditional distribution i.e. the standardised residuals. These

results therefore suggest that volume and price changes are jointly determined.



AN EMPIRICAL EXAMINATION OF THE

VOLATILITY-VOLUME RELATIONSHIP

1.	 INTRODUCTION

There has been considerable interest in the relationship between volatility of asset

returns and trading volume. Much of the interest stems from the belief that volume

is needed to move prices. This belief is further strengthened by substantial anecdotal

evidence, such as the 'Black Monday' of October 1987, in which stock markets of the

world experienced a sharp fall in prices, accompanied by unprecedented trading

volume. Hence, it is not surprising to fmd early academic research focusing on the

price-volatility-volume relationship per se. For example, Osborne (1959) models

stock price changes as a diffusion process with variance being a function of the

number of transactions, while empirical research such as Crouch (1970), Godfrey,

Granger and Morgenstem (1964), and Ying (1966) tends to examine the price-

volatility-volume behaviour without considering the fundamental nature of trading

volume'.

A related development on the price-volatility-volume relationship comes partly from

the work on unconditional distributions of asset returns. Fama (1965) and Mandebrot

In this paper, we make a distinction between price-volume behaviour and volatility-volume
behaviour. This is of course a matter of convenience only. The former shall refer to what Karpoff (1987)
termed "price change per se", while the latter is the "absolute value of price change". This distinction is
also helpful in distinguishing the literature on returns and volume relationship (such as Antoniewicz, 1992,
Campbell, Grossman and Wang, 1994, and Duffee, 1992, etc.) from studies on volatility-volume
relationship.
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(1963) first suggest that asset prices/returns are characterised by stable Paretian

distributions because of their kurtotic nature. On the other hand, Clark (1973) and

Tauchen and Pitts (1983) propose that returns behave as subordinated stochastic

processes. Given that price movements are a result of news, observed returns are

therefore drawn from a mixture of distributions, with the directing/mixing variable

being the number of news arrivals to the market.

Empirical tests of which hypothesis best characterised asset returns distributions tend

to support the mixture of distribution hypothesis (MDH) over the stable Paretian.

Such tests can be divided into two groups: those that test the stable Paretian against

alternative distributions, and those that test the MDH directly. Among the studies in

the first group are Akgiray and Booth (1988), Blattberg and Gonedes (1974), Lau,

Lau and Wingender (1990), Officer (1972), and Tucker (1992). Despite using

different methods, these studies tend to reject the stable Paretian distribution over

some alternative distributions in describing asset returns.

Direct test of the MDH requires a mixing variable, which is the rate of news arrival

to the market, and this is either unobservable or unmeasurable. Studies in the second

group therefore require a proxy for the mixing variable, and trading volume is

frequently used. Examples include Clark (1973), Harris (1987), and Tauchen and

Pitts (1983), who all document evidence supporting the MDH. However, volume is

not the only available proxy for information arrival, though it is by far the most

common. Volatility shocks (Engle, Ito and Lin, 1990), the number of price changes
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within a period (Laux and Ng, 1993), the number of quote arrivals per period, the

bid-ask spread, and the average duration between trades (Bollerslev and Domowitz,

1993) have been used as proxies in other studies.

The essence of the models of Clark (1973), and Tauchen and Pitts (1983) is that the

rate of news arrival varies across calendar time. Information arrival may be constant

across economic time, but economic time differs from calendar time. Since we are

measuring returns across calendar time, the returns therefore appear to be drawn from

a mixture of distributions (see Stock 1987, 1988, for more information on this

concept of time deformation). Explicitly, these models suggest that information is

derived exogenously (hence the term arrival), and is in a sense, compatible to the

"sequential information arrival" model of Copeland (1976). A feature of exogenous

information models is that there is a joint impact of both price changes and volume

to information shocks. For example, in the Tauchen and Pius model, an exogenous

revision of traders' expectations results in a change in prices and volume. Depending

on whether the new information is trader specific or common knowledge to all

investors, a large (small) change in volume is accompanied by a small (large) change

in price. Another model by Epps and Epps (1976), suggests that price volatility and

volume is directly related to the extent in which investors disagree about the value

of new information.

On the other hand, endogenous information models do not assume information to be

fully exogenous. In the "price formation" models of Admati and Pfleiderer (1988),
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Foster and Viswanathan (1990), and Kyle (1985), information is only partially

exogenous. Some information is generated endogenously by the trading mechanism.

The framework of these models typically requires a market maker, informed traders

and liquidity traders (both discretionary and non-discretionary), with the market

maker setting prices at which trade occurs. To distinguish between informed and

unformed trades, the market maker has to infer the informed trader's beliefs from the

market order flow. These models predict several patterns related to trading activity,

one of which is a positive correlation between price changes and trading volume.

From an empirical viewpoint, both exogenous and endogenous information models

show a positive relationship between volatility and volume. Indeed, many previous

studies provide evidence to support this behaviour. Karpoff (1987) cites some 17

previous studies that document a positive contemporaneous volatility-volume

relationship. However, most of these studies are examined in the context of

exogenously generated information.

The development of ARCH models by Engle (1982) and Bolleslev (1986) has

allowed the issue to be re-examined. A feature of ARCH models is that it captures

some of the empirical regularities of financial data, such as temporal patterns in

volatility and excessive kurtosis in the unconditional distribution. Unfortunately,

economic theory does not fully explain why variances are autocorrelated. As noted

by Diebold (1986), and Gallant, Hsieh and Tauchen (1991), the time varying

dependencies in the conditional variances as fitted by ARCH models may be a
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manifestation of the (serially correlated) information arrival process. In that respect,

ARCH processes can therefore be interpreted as evidence supporting MDH.

Lamoureux and Lastrapes (1990b) provide a framework linking MDH to ARCH

effects. Suppose 8 is the ith intraday increment of the equilibrium price in day t.

Suppose further that S is independent and identically distributed, with a zero mean

and variance corresponding to a 2 . The equilibrium price change across fixed

intervals, E, is given by

=	 6j
	 (1)

where n is a random variable representing the stochastic rate of information arrival.

Two important properties become apparent. First, ç is subordinate to 8,, with n

being the directing process. Second, if n becomes very large, then Central Limit

Theorem would suggest that

ç	 - N(O,a 2n)	 (2)

If the rate of information arrival is sequentially related i.e.

= k + b(L ) n .. 1 +	 (3)

where k is a constant b(L) is a lag operator of order q, and is1 is white noise, shocks

to the mixing n will persist according to the pattern of b(L). From this, it can be

shown that

E [ € I n1] =o2nt

= a2 k ^ b(L)E[€ 1 in 1 i ^ o2u	
(4)
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which is similar in structure to the conditional variance paranieterisation of an

ARCH(q) model.

Lamoureux and Lastrapes (1990b) proceed to estimate a GARCH model with an

additional volume parameter in the conditional variance equation i.e.

h1 = a 0 + a1 e + a 2 h i + a 3 V 	 (5)

where V is the contemporaneous trading volume. They argue that if the MDH is

correct, and volume is an accurate proxy for the mixing variable, then a3 would be

significantly greater than zero and that the persistance in variance as measured by

(a 1 + a2 ) will become negligble, with both a1 and a2 becoming insignificant i.e.

ARCH effects will disappear. This conclusion appears to be supported by their

empirical results, which incidentally also show that lagged volume has little

explanatory power in the variance equation.

There are several problems associated with Lamoureux and Lastrape ts specification

of the conditional variance i.e. Equation (5). First, volume (or log-volume) may be

a nonstationary variable, and introducing it into the conditional variance equation

may not be appropriate. Second, the equation suggests that the volatility-volume

relationship is linear. Karpoff (1987) gives an example of a nonlinear relationship

that is still consistent with empirical observations. Finally, and perhaps most
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importantly, if price and volume are jointly determined, or if information is not

strictly exogenous, then Equation (5) may have some simultaneity bias2.

Several authors have addressed these problems in different ways. Connolly (1990)

uses a nonlinear specification of volume in the variance equation i.e.

h = a 0 + a1 € ^ a 2 h1 _ 1 ^ a 3 V ^ a 4 V1 2	 (6)

and finds that contemporaneous volume has explanatory power regarding the variance

in foreign exchange spot markets. It reduces the ARCH effects present in the data,

but does not completely eliminates them. On the other hand, contemporaneous

volume completely eliminates the ARCH effects in foreign exchange futures market.

Najand and Yung (1991) present some results that differ from the Lamoureux and

Lastrapes (1990b) study. Using Equation (5), they find that there is no relationship

between volatility and contemporaneous volume in the Treasury-bond futures market

i.e. a3 is not significantly different from zero, and that ARCH effects are still present.

However, they fmd that lagged volume is significant in explaining some of the

volatility of the market, although it neither reduces the ARCH effects nor reduces the

level of persistance of past shocks. They argue that their results support the

hypothesis that information arrival is probably not exogenous, with price and volume

likely to be jointly determined. Equation (5) is therefore misspecified because of the

2 If volume is not exogenous but forms part of a system of simultaneous equations, using
maximum likelihood techniques on Equation (5) would not be appropriate. See Harvey (1990, Section 9.4)
for a brief discussion on simultaneous equation bias.
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simultaneity bias. Nevertheless, the signficance of lagged volume is evidence in

support of MDH.

Laux and Ng (1993) provide further evidence supporting the MDH. They suggest

that the use of intraday data mitigates the simultaneity bias as investors are likely to

react on any new information with a small time lag. They also argue that a more

inclusive proxy for information arrival is the number of price changes per period,

since it may contain information not reflected in volume data. Using a multivariate

GARCH specification, they decompose the volatility of foreign exchange futures

contracts into systematic and unique components. Their results show that the MDH

explains some of the GARCH behaviour of unique risks, but the GARCH effects in

systematic risks are still present3.

Using a different proxy for information arrival, Bollerslev and Domowitz (1993) find

that the (lagged) number of quote arrivals per period is neither economically or

statistically significant with regards to the conditional volatility of the deutschemark-

dollar intraday exchange rates. Another proxy, the average duration per trade over

a lagged interval, is also statistically insignificant. A third proxy, the bid-ask spread

in the previous period, however shows a statistically significant relationship with

conditional volatility. The last finding is not surprising, since Bollerslev and

The study used contemporaneous number of price changes. Bollerslev and Domowitz (1993)
argue that any contemporaneous activity variable is not only subjected to simultaneity bias, but also
inappropriate because it is not in the traders information set at the time the decisions are made. Laux and
Ng (1993) also used the predicted number of price changes, but this does not change their results.
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Domowitz (1991) show that the market microstructure mechanism has a potential

impact on conditional volatility.

Several other studies also examine the volatility-volume relationship, though from

slightly different perspectives. Abhyankar (1993) examines the Eurodollar futures

market traded on both the Chicago Mercantile Exchange and Singapore International

Monetary Exchange and finds evidence that lagged volume affects conditional

volatility, but has no impact on the GARCH parameters. In addition, the volume in

the previous market (in terms of trading time) is found to have a significant impact

on the conditional volatility of the subsequent market. Bessembinder and Seguin

(1992, 1993) find that for a number of assets, volatility is affected by both expected

and unexpected components of trading activy. Moser (1992) documents evidence that

volatility is related to program and nonprogram trading activity.

Given the above empirical evidence, clearly the question of the volatility-volume

behaviour is a complex issue. Without an economic model to guide us, some of the

issues can only be addressed empirically. For a market trader however, the more

important question is whether this relationship can be used for forecasting purposes.

In this paper, we first examine the empirical relationship between volatility and

trading volume. Our findings show that there is a relationship between trading

activity, as measured by market volume, and returns volatility. We fmd that

volatility is a function of the change in trading volume. We also uncover evidence
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that there is a strong contemporaneous volume-volatility relationship. We then

suggest a simple modification to the GARCH model to incorporate this effect.

The organisation of this paper is as follows. In Section 2, we describe the data used

in our study, and we present some preliminary statistics. In Section 3, we model the

volatility of the data using different GARCH specifications. We examine the

volume-volatility relationship under a GARCH framework in Section 4. In Section 5

we then propose a modification to the GARCH model that incorporates the volume-

volatility relationship. Section 6 concludes.

2. DATA SOURCES AND SUMMARY STATISTICS

The data analysed consist of daily closing mid-market quotes of the Financial Times-

Stock Exchange 100 (FT-SE 100) from January 1989 to December 1993, obtained

from Datastream. This is a value-weighted index and includes the 100 largest UK

companies in terms of market capitalisation. The index was first started in 1984, and

its constituents are amended quarterly. For the same period, we obtain from

Datastrearn the total trading volume of the constituent stocks. Returns are calculated

as the natural logarithm of the price relatives. For trading volume, because of the

magnitude, we decide to transform it by taking its natural logs. This transformation,

which is commonly used in empirical research, also removes heteroskedasticity and

low frequency variation in the volume.
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Table 1 shows the summary statistics. The returns series exhibit the typical

leptokurtosis, with some degree of skewness. There is mild serial correlation in the

levels, as evidenced by Q(10), the 10-lag Ljung-Box statistic, with the largest

autocorrelation coefficient coming from lag one. On the other hand, the squares are

strongly autocorrelated, with the 10-lag Ljung-Box statistic at about 50.3. The

volume series is symmetric, slightly kurtotic, and strongly autocorrelated. A Dickey-

Fuller (1979) test indicates that the volume series is stationary.

As a framework for subsequent analysis, we want to determine the contemporaneous

volume-volatility relationship. Following Jam and Joh (1988), we run the following

regression:

v. = b0 + b 1 JrJ + b2D IrI	 (7)

where V is the day t trading volume, r, is the returns on day t, and D is a dummy

variable that equals one if r < 0, and one otherwise. We also want to find the

relationship betwen contemporaneous change in trading volume and volatility. For

this we run the following regression:

(v - -1) = b0 + b1 r + b2 D I r	 (8)

Table 2 summarises the results of the above regressions. It appears that volatility is

related to both contemporaneous trading volume levels and changes in volume, since

b1 is statistically significant for both equations. There is also a statistically significant

relationship between price change per se and trading volume. A negative price

change is assoicated with lower volume and smaller (i.e. less positive) changes in
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volume. R2 for changes in volume is higher than that for volume levels, indicating

that volatility is more closely related to changes in trading activities.

The observation that volatility is more strongly affected by changes in volume levels

rather than levels themselves is not inconsistent with some of the "price formation"

models discussed earlier. In the absence of new information to the market, there will

be an equilibrium volume level that clears the market. Suppose new information

arrives, and this increases the volatility of the stock. If volume is an accurate proxy

for information, then changes in volume will reflect the amount of change in

information i.e. the amount of new (incremental) information. Under this scenario,

volatility shocks will be better explained by changes in volume.

3.	 GARCH SPECIFICATIONS

A number of studies have successfully used low order GARCH models to describe

asset returns. Chou (1987), Corhay and Rad (1991), Poon and Taylor (1992), and

Watt and Yadav (1993) all fmd that the GARCH(l,1) model is sufficient. As such,

we model the returns process as:

= a 0 + a 1 t -1 +	 (9a)

= a 0 + a 1 € 1 + a 2 h 1	 (9b)

E[ç I fl _1] - N ( 0 , h )	 (9c)

Bollerslev (1987), Hsieh (1989) and Nelson (1991) have shown that a conditional

normal distribution is insufficient to account for the excess unconditional kurtosis.
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Following Bollerslev (1987) suggestion, we also estimate another model by replacing

the conditional normal distribution of Equation (9c) with a student-t distribution with

v degrees of freedom i.e.

E[EJfl1 _ 1 ] - t (0 , h , v )	 (9d)

A problem with financial data is that there are often deterministic effects in the

returns. For our returns series, this include weekends, exchange holidays and account

periods4. To control for this, we introduce a number of indicator variables into the

mean and variance equations. We also estimate the parameters using both the

conditional normal and student-t distribution i.e.

+=	 c DAY +	 HOLJ+J1	
(lOa)

e SETk,t+k ...i + a1 c-i ^

+=	
$IDAYI1 + EJ...OYIHOLJI+J1	

(lOb)

E k=0 T1k SETk,t +k_l + a 1 €_ 1 + a2h_1

E [ct fl _i] —N ( 0 ,h)	 (lOc)

E [c1 111_1] — t(0,h1 ,v)	 (lOd)

where DAY, is the day-of-the-week dummy variables; HOL J equals one if t spans

a holiday, and zero otherwise; and SETS equals one if t is the last day of the account

hi the UK, trades are settled according to a system of account periods of appoximately 14
calendar days. Trade done within an account period is usually settled at the end of an account period. As
documented by Yadav and Pope (1992), who examined the UK settlement system, this has an impact on
the observed prices. Crouhy and Galai (1992) provide similar evidence on the French settlement system,
which has a 30-day account period.
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period, and zero otherwise. The inclusion of more than one dummy variables for

both holiday and settlement effects is to account for changes around these days.

Instead of reporting the results of all the parameters, in Table 3 we only report those

parameters that are of interest. We also report the log-likelihood values for each of

the specifications, and some summary statistics for the standardised residuals from

these specifications. To check for in-sample prediction performance, we run the

following two regressions

=A0 +A1h
	

(11)

log€ = B0 + B 1 log h 1 	 (12)

and report their R-squares (the latter shall be termed R2-for-logs).

Several conclusions can be drawn. First, the returns exhibit significant ARCH

effects, and there is a fair degree of persistence in the variance ( a 1 + a2 being greater

than 0.94 in all cases). Second, a conditional normal distribution is inadequate, with

the standardised residuals still exhibiting greater than normal kurtosis (Columns 2 and

4). Third, the student-t distribution is more suitable, since it gives a significantly

higher log-likelihood (Columns 2 and 3, and Columns 4 and 5), and the parameter

1/v is significantly greater than zero5 (Columns 3 and 5). Fourth, the addition of

See Bollerslev (1987) on why 1/v is used instead of v. If the distribution is normal, then 1/v
would not be significantly different from zero, since the student-t approaches the normal when v tends to
infinity.
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indicator variables in the mean and variance equations increases the in-sample

predictive power and reduces the excess kurtosis of the standardised residuals6.

4.	 CONDITIONAL VOLATILITY WITH TRADING VOLUME

In this section, we examine the significance of trading volume on conditional

volatility estimates. Given the initial results in Section 2, our analysis will focus on

both trading volume levels as well as changes in volume.

4.1 GARCH and Trading Volume Levels

Following Lamoureux and Lastrapes (1990b) and Najand and Yung (1991), we

incorporate the contemporaneous trading volume level into the conditional variance

equation. Specifically, the conditional variance of Equations (9b) and (lOb) becomes

h = a 0 + a 1 € 1 + a 2 h1 _ 1 + a 3 V 	 (13a)

+h =	 1I3DAYI +	
(13b)

k=O?1kSETk,t+k_1 +	 + a 2 h _ i + a3V

respectively, where V is the contemporaneous trading volume level at day t.

6 The reduction in the excess kurtosis would suggest that the fat-tails of the distribution are
generated in part by omitted variables. In a sense, if the objective of using conditional volatility models
is to undo the leptokurtosis as much as possible (see Nelson, 1992b), a more appropriate specification
would be one that includes the omitted variables.
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Table 4A reports the parameters of interest. It appears that ARCH effects and

persistence in volatility remains despite the addition of the volume variable in the

volatility equation. The volume parameter is also not statistically significant. This

result is inconsistent with Lamoureux and Lastrapes (1990b), but is consistent with

the findings of Najand and Yung (1991).

We repeat the analysis next with lagged volume. The conditional variance equation

is given by

= (X 0 + a1 e 1 + a2 h 1 + a 3 V 1	 (14a)

+=	 113DAY1, +	 12.0yHOL,+11	
(14b)

k=O '71k SETk ,t +kl + a1 E 1 + a 2 h 1 + a3V;1

The results are reported in Table 4B. Consistent with Najand and Yung (1991),

lagged volume has significant explanatory power on conditional volatility. However

looking at a3, it would appear that lagged volume is negatively related to volatility

i.e. an increase in current trading volume levels will reduce future volatility! This

appears to be inconsistent with the positive lagged volume coefficient in Najand and

Yung (1991). It is also inconsistent with current literature documenting a positive

volume-volatility relationship (e.g. Gallant, Rossi and Tauchen, 1992, Karpoff, 1987,

and Najand and Yung, 1991).

One explanation for our results lies in the trading volume variable that we used. As

mentioned earlier, we perform a log transformation to reduce heteroskedasticity and
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remove low frequency variation. We can think of two other problems plaguing this

series. First, there may be a trend, even in the log-volume series. Second, we have

not accounted for intraweekly patterns in the volume, and this may give rise to the

problem of spurious correlation (see for example, Harvey, 1990).

We solve this problem by forming a detrended volume series, 12; . This is done by

first forming a 100-day backward moving average of the actual volume series before

performing a log transformation7 i.e.

VOL

100	 I
(15)

LV' VOL I I
i=1	 )

where VOL E is the actual volume series on day t. Using 12; instead of V, we

reestimate the GARCH model with the following conditional variance specification

using both a normal and student-t distribution:

h1 = a 0 + a 1 € 1 + a 2 h 1 + a 3 V	 (16a)

+h1 =	 +	 YJHOLJ,+J1	
(16b)

2E k=OflkSETk,t+kl +	 +	 + a3V;

h =	
+	 + ah + a 3 J2;_ 1 	 (17a)

+h =	 1• DAY ^	 y1 HOLJ+I1	
(17b)

E k=O nk SETk, t +kl +	 + a 2 h11 +

7 mis and similar techniques are commonly used in previous studies, such as Antoniewicz (1992),
Campbell, Grossman and Wang (1994), and Schwert (1989).
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The results for contemporaneous detrended volume and lagged detrended volume are

reported in Tables 5A and 5B respectively. Together with Tables 4A and 4B, the

following observations and conclusions can be drawn:

1)	 The coefficient for contemporaneous detrended volume is strongly significant

for a conditional normal distribution, but contemporaneous log-volume is

negative and insignificant. This is consistent with the findings of Lamoureux

and Lastrapes (1990b), except that in our case, ARCH effects and volatility

persistence are not reduced. On the other hand, the coefficient for lagged

detrended volume is negative and insignificant, but negative and significant

for lagged log-volume. Taken together, this suggests that the significance of

both contemporaneous and lagged volume on conditional volatility may be

driven by some other factors, such as calendar effects. This explanation can

also reconcile the different fmdings of Lamoureux and Lastrapes (1990b) and

Najand and Yung (1991). Our findings of a negative but insignificant lagged

detrended volume coefficient is consistent with Bollerslev and Domowitz

(1993), who also fmd a negative but economically and statistically

insignificant relationship between market activity (proxied by the number of

quote arrivals per period) and conditional volatility in the deutschemark-dollar

currency market8.

8 A negative relationship between volume and volatility is not implausible. If volume is an
indication of liquidity, and if higher liquidity implies lower volatility, then higher trading volume will be
associated with lower volatility.
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2) The significance of the volume parameter appears to be affected by the choice

of the conditional distribution. Baillie and DeGennaro (1990) and Pagan and

Ullah (1988) have documented that the choice of the conditional distribution

affects the significance of the parameters in the mean equation. It would

therefore appears that the choice of the conditional distribution also affects the

variables in the variance equation.

3) The omission of the indicator variables also appears to be affecting the

significance of the volume parameter. Given that patterns associated with

calendar effects can be seen for both volatility and volume, the significance

of a3 in specifications without incorporating the calendar effects is likely a

result of spurious correlations. This can also explain why log-volume is

showing a higher significance than detrended volume.

4) Another indication why detrended volume is better than log-volume is that the

excess kurtosis of the standardised residuals from models incorporating log-

volume (both contemporaneous and lagged) is higher than those incorporating

detrended volume. This follows from the theoretical results of Nelson

(1992b), who shows that adding noise to the information set of a conditional

volatility model thickens the tails of the standardised residuals.

In summary, the results in this subsection suggest that volume is (at best) weakly

related to conditional volatility. If information is exogenous, and volume is a proxy
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to rate of information arrival, this would suggest that the evidence here does not

support the MDII.

4.2 GARCH and Changes in Trading Volume

Our initial results in Section 2 suggest that volatility is more strongly related to

changes in trading volume, and we have suggested a scenario in which such a

relationship is likely. To explore this hypothesis, we use both contemporaneous and

lagged changes in detrended volume i.e.

h = a 0 + a1 E_ 1 + a 2 h_ 1 + a 3 (J?._J7 1 )	 (18a)

h =	 13• DAY 
+ E 2 y1 HOLJ+J1 +	 =o 71k SETkt+kl (18b)

^ a1 €_ 1 + a2 h_1 +

h =	 + a1 €	 + a 2 h i + a 3 (J_ 1 -J7 2 )	 (19a)

h =	 1/3DAY +	 y1HOL1+11 + E k=O11kSETk,t+kl 
(19b)

2

	

+ a1	 1 + a 2 h 1 + a3(J'1-J'2)

The GARCH estimates are reproduced in Tables 6A and 6B. Contemporaneous

changes in detrended volume is strongly significant in explaining conditional

volatility9, but lagged changes in detrended volume has no explanatory power. The

9 We also used a variety of other change in volume measures, such as change in log-volume and
residuals from a linearly filtered log-volume series, as well as changing the moving average window. The
results do not appear to differ either qualitatively or quantitatively. Note that the linearly filtered log-
volume series is analogous to Bessembinder and Seguin (1992, 1993)'s technique of partitioning the volume
into expected and unexpected components. In a sense, our definition of change in volume is similar to
their definition of surprise volume.
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kurtosis of the standardised residuals from the GARCH model with contemporaneous

volume is not significantly different from normal, and the 1/v parameter is not

statistically different from zero (Table 6A, Columns 4 and 5), suggesting that changes

in trading volume is useful information. Incorporating contemporaneous changes in

volume in the volatility equation also increases the in-sample predictive performance

of the model, in some cases by almost three times (Table 6A, columns 4 and 5).

If information arrival is an exogenous process, the results above show that changes

in volume contains valuable information about the pricing dynamics of assets. This

information is not fully captured in GARCH models, which also appear to capture

some other information not reflected in the volume. On the other hand, if

information is endogenously generated, the above analysis may be subject to some

specification bias. We recognise that the results of using contemporaenous volume

(levels and changes) may be subjected to simultaneity bias. Indeed if anything, they

indicate that the volatility-volume relationship is much more complex than is often

thought, and that price volatility and trading volume is jointly determined.

Nevertheless, we believe that the above econometric specifications help to uncover

the partial relations between trading volume and volatility.

5. EXTENSION OF GARCH - THE VOLUME-GARCH MODEL

A major success of ARCH models is its ability to forecast future volatility. To

forecast the volatility of period t, information is only required of those variables that
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are available or measurable at time t- 1. This differs from some models which need

to use variables measured at period t, which in themselves may not be available.

This would therefore suggest that despite good (in-sample) prediction, the conditional

variance specifications of Equations (18a) and (18b) are infeasible, since the variable

is not in the infonnation set of the investor at time t-1.

To make the model useful, Equations (18a) and (18b) must be modified in such a

way that contains only variables measurable at time t-1. Simply substituting J for

J is not useful, since we have already shown the lack of predictive power of lagged

volume (Table 6B). Instead, our modified conditional variance should be

2
h =	 +	 + a 2 h1 _ + a 3 (J7 1 -J_2 )€_i	 (20a)

and

h =	 51I31DAY, +	 + E k=OflkTk,t+kl 
(20b)

+ a1 _ ^ a2 h_ +

The last term in Equations (20a) and (20b) attempt to capture the joint volatility

volume relationship at time t-1. We have suggested earlier that the simple GARCH

model fails to capture the complex volatility-volume relationship, and this is one way

of incorporating the contemporaneous (at time t-1) behaviour. This specification is

in a sense, supported by the results of Gallant, Rossi and Tauchen (1993), who

document joint price and volume shocks.
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In Table 7A, we report the results of our estimations using the conditional variance

specifications of Equations (20a) and (20b). The results are encouraging. The

interaction between changes in volume and volatility shocks is statistically significant.

In-sample predictive performance (both R2 and R2-for-logs) show some improvements

with the additional parameter. The kurtosis of the standardised residuals is also

reduced, indicating that the additional term contains useful information.

There is also empirical evidence showing some relationship between price change per

se and volume. We capture this with the following specifications:

= a 0 + a1 i1 + a 2 h1 _ 1 + a3 (J'_ 1 -J" 2 )ç_1	(21a)

HOL. . +	 k=O7)kSETk,t+klh1 =	 (3. DAY11 + : 2
	

j,t+j-1
(21b)

2
+ a1€1 + a 2 h1 _ 1 +

Table 7B reports the results of the specifications of Equations (21a) and (21b).

Again the interaction between volume and error term is statistically significant, and

R2 and R2-for-Iogs is also higher than without the interaction term (i.e. Table 3).

Finally, we combine both types of interaction terms to the GARCH model to give the

following conditional variance specifications:

2
= a 0 + a1 €11 + a 2 h1 ^ a3 (J_ 1 -r7 2 )€ 1 +	

(22a)

-	 €t1
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+= E f3 DAY +	
2 y1 HOLJ+I1 +	 1j SETkt+kl (22b)

+ a 2 h_ 1 + a 3 (J 1 -J_2 )e_ 1 +

Comparing Table 7C with Table 3, we find that the additional terms are significant

(both in terms of log-likelihood values and in terms of t-statistics). R2 and W-for-

logs is much higher, and the standardised residuals is less fat-tailed. This suggests

that the interaction terms have valuable information on the conditional volatility of

future returns, and is further evidence of a joint volatility-volume effect.

6. SUMMARY AND CONCLUSION

In this paper, we investigate the empirical relationship between daily trading volume

and stock returns volatility of the FTSE100 index. Using a dynamic volatility model,

we fmd that change in volume is more strongly related to conditional volatility than

volume itself. The use of contemporaneous change in trading volume in the GARCH

model effectively reduces the excess kurtosis of the standardised residuals, but it does

not affect either the ARCH effects or volatility persistence. This suggests that

changes in trading volume possess valuable information about the distribution of the

asset returns, and this information is not fully reflected in ARCH models. A further

implication is that volume and volatility is jointly determined. We suggest the

incorporation of the lagged joint volatility-volume effects into the standard GARCH

model using simple interaction terms. We find that the interaction terms possess
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explanatory power regarding the conditional variance, further confirming that there

is a contemporaneous relationship between volatility and volume.
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TABLE 1

Sample statistics of FTSEIOO returns and log-volume
for period January 1989 to December 1993.

t-statistics given in brackets [J,p-values given in parenthesis ().

	

Returns	 Volume

Mean	 0.0522	 12.0966

	

[2.1792]	 [11187.1350]

Variance	 0.7229	 0.1309

Skewness	 0.2423	 0.0038

	

(0.0004)	 (0.9557)

Excess	 2.7004	 0.7870
Kurtosis	 (0.0000)	 (0.0000)

p 1	 0.0748	 0.6353

P2	 -0.0010	 0.5265

p 3	 0.0177	 0.4851

p 4	 0.0660	 0.493 1

p 5	 0.0124	 0.5290

Q(10)	 22.0313	 3119.0484

	

(0.0149)	 (0.0000)

Q2(10)	 50.2977	 3142.7971

	

(0.0000)	 (0.0000)

Note: Pk denote the k-lag autocorrelation. Q(10) and Q 2(10) denote the 10-lag Ljung-Box
statistics for the returns and squared returns respectively.
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TABLE 2

Results of regressing log-volume against absolute returns
and changes in log-volume against absolute returns of FFSE100

for the period January 1989 to December 1990.

= b0 + b 1 IT1 I + b2 D1 1r1 I	 (1)

= b0 + b 1 	+ b2 D, IrI	 (2)

Asymptotic t-statistics given in brackets [1

White (1980) t-statistics given in parenthesis (),

Newey-West (1987) t-statistics given in braces { }.

Dependent
Variable	 b0	 b1	 R2

	12.0341	 0.1379	 -0.0914	 0.0348

	

(769.5893)	 (6.6808)	 (-3.8420)

	

[688.7170]	 [5.0974]	 [-3.4607]

	

{461.1501}	 {4.2964}	 {-3.0257}

(J'-J')	 -0.0814	 0.1612	 -0.7817	 0.0642

	

(-6.1921)	 (9.2849)	 (-3.9089)

	

[-6.0271]	 [8.8555]	 [-3.5858]
{-7.0114}	 {9.1288}	 {-3.7104}

Note:	 denotes the log trading volume of the FFSE100 on day t.
denote the (log) returns of FFSE 100 on day t.

D, = 1 if r, <0, and zero otherwise.
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TABLE 3

GARCH(l,1) estimates of FSElOO returns for period January 1989 to December 1993.
Asymptotic t-statistics given in brackets [],p-values given in parenthesis ().

See Section 3 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 9b, 9c	 9a, 9b, 9d	 lOa, lob, lOc	 lOa, lOb, lOd

a1	0.0707	 0.0581	 0.0638	 0.0526
	[2.2618]	 [1.9420]	 [1.9286]	 [1.7446]

a 1	 0.0776	 0.0588	 0.0722	 0.0554
	[5.1630]	 [3.0871]	 [4.4447]	 [3.1911]

a2	 0.8657	 0.8933	 0.8806	 0.9020

	

[32.2094]	 [23.9218]	 [30.7846]	 [27.8027]

1/v	 0.0950	 0.0894

	

[4.8406]	 [4.1397]

Log-likelihood	 -1546.25	 -1530.29	 -1523.93	 -1511.88

	

0.0279	 0.0275	 0.0369	 0.0356

W-for-logs	 0.0144	 0.0148	 0.0242	 0.0234

Skewness	 0.0927	 0.1216	 0.1600	 0.1964

	

(0.1797)	 (0.0783)	 (0.0205)	 (0.0045)

Excess	 1.5488	 1.6846	 1.0956	 1.4308
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(lO)	 13.4689	 13.5911	 10.4234	 11.1265

	

(0.1425)	 (0.1376)	 (0.3173)	 (0.2671)

Q2(10)	 4.2223	 3.8708	 4.9796	 4.2535

	

(0.93 68)	 (0.9530)	 (0.8925)	 (0.93 52)

Notes: R2 denotes the R-square for the regression of Equation (11).
W-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 4A

GARCH(1,1) with contemporaneous log-volume estimates of F1'SElOO returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [],p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 13a, 9c	 9a, 13a, 9d	 lOa, 13b, lOc	 lOa, 13b, lOd

a 1	0.0732	 0.0595	 0.0665	 0.0534
	[2.2949]	 [2.0240]	 [2.0284]	 [1.8123]

a 1	 0.0702	 0.0456	 0.0617	 0.0426

	

[4.9 166]	 [2.8044]	 [4.2359]	 [2.95 17]

a2	 0.8776	 0.9119	 0.8951	 0.9186

	

[32.6581]	 [26.0672]	 [33.1404]	 [31.0427]

a3	-0.0129	 -0.0230	 -0.0179	 -0.0214

	

[-1.1557]	 [-1.5783]	 [-1 .5 8461	 [-1.6374]

1/v	 0.0950	 0.0939
[4.8406]	 [4.4093]

Log-likelihood	 -1545.73	 -1527.70	 -1522.63	 -1509.26

	

0.0277	 0.0258	 0.0355	 0.0323

R2-for-logs	 0.0184	 0.0210	 0.0256	 0.0265

Skewness	 0.1 179	 0.1841	 0.1937	 0.2441

	

(0.0877)	 (0.0077)	 (0.0050)	 (0.0004)

Excess	 1.6696	 1.9878	 1.1689	 1.6282
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 13.0033	 12.7920	 9.9397	 10.8103

	

(0.1625)	 (0.1722)	 (0.3554)	 (0.2889)

Q2(10)	 4.1052	 4.2041	 5.0504	 5.2355
	(0.9425)	 (0.9377)	 (0.8878)	 (0.8749)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 4B

GARCH(1,1) with lagged log-volume estimates of FTSE100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [],p-values given in parenthesis C).
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 14a, 9c	 9a, 14a, 9d	 lOa, 14b, lOc	 lOa, 14b, lOd

a 1	0.0752	 0.0592	 0.0668	 0.0530

	

[2.3819]	 [1.9948]	 [2.0401]	 [1.7726]

a1	 0.0689	 0.0516	 0.0646	 0.0505

	

[4.9210]	 [2.7801]	 [4.1538]	 [2.8603]

a2	 0.8704	 0.8910	 0.8951	 0.8945

	

[33.2454]	 [22.0882]	 [30.2601]	 [24.4455]

a3	 -0.0340	 -0.0377	 -0.0364	 -0.0370

	

[-2.7736]	 [-2.0 145]	 [-2.6817]	 [-2.0900]

1/v	 0.0979	 0.0939

	

[5.0327]	 [4.4093]

Log-likelihood	 -1542.61	 -1525.29	 -1519.13	 -1506.69

R2	 0.0293	 0.0284	 0.0373	 0.0354

R2-for-Iogs	 0.0227	 0.0234	 0.0276	 0.0295

Skewness	 0.1326	 0.1721	 0.2060	 0.2384

	

(0.0549)	 (0.0 127)	 (0.0028)	 (0.0006)

Excess	 1.6639	 1.8387	 1.1157	 1.4806
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 12.4709	 12.6533	 9.7350	 10.7080

	

(0.1880)	 (0.1779)	 (0.3724)	 (0.2963)

Q2(10)	 4.3591	 4.4033	 5.6010	 5.6471

	

(0.9297)	 (0.9273)	 (0.8476)	 (0.8440)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 5A

GARCH(1 , 1) with contemporaneous detrended volume estimates of FTSE 100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [],p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 16a, 9c	 9a, 16a, 9d	 lOa, 16b, lOc	 lOa, 16b, lOd

a1	0.0654	 0.0570	 0.0332	 0.0500

	

[2.05111	 [1.88571	 [1.52051	 [1.63371

a 1	 0.0939	 0.0636	 0.0936	 0.0634

	

[4.8425]	 [3.0956]	 [4.1584]	 [3.1460]

a2	 0.7850	 0.8766	 0.7777	 0.8774

	

[23.5139]	 [21.4511]	 [17.5141]	 [22.8590]

a3	 0.1018	 0.0206	 0.1445	 0.0332

	

[3.7740]	 [0.7072]	 [3.7220]	 [1.03121

i/v	 0.09 14	 0.0837
[4.4062]	 [3.6839]

Log-likelihood	 -1542.38	 -1530.06	 -1518.96	 -1511.53

R2	 0.0334	 0.0291	 0.0446	 0.0383

R2-for-logs	 0.0072	 0.0122	 0.0221	 0.0216

Skewness	 0.0404	 0.1056	 0.0842	 0.1653

	

(0.5589)	 (0.1264)	 (0.2225)	 (0.0167)

Excess	 1.1013	 1.5189	 0.7503	 1.2143
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 14.1928	 13.8478	 11.2414	 11.3180

	

(0.1156)	 (0.1278)	 (0.2595)	 (0.2545)

Q2(1O)	 6.3646	 4.1445	 7.1646	 4.5899
______________	 (0.7838)	 (0.9406)	 (0.7098)	 (0.9168)

Notes: R2 denotes the R-square for the regression of Equation (11).
W-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 5B

GARCH( 1,1) with lagged detrended volume estimates of PTSE 100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [1 p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 17a, 9c	 9a, 17a, 9d	 lOa, 17b, lOc	 lOa, 17b, lOd

a1	0.07 17	 0.0587	 0.0653	 0.0534
[2.2668]	 [1.9702]	 [1.9729]	 [1.7925]

a 1	 0.0771	 0.0586	 0.0716	 0.0528
[5.1879]	 [3.1336]	 [4.4576]	 [3.2868]

a2	 0.8689	 0.8979	 0.8857	 0.9 128
[33.2526]	 [25.3915]	 [32.1355]	 [31.55121

a3	 -0.0200	 -0.0316	 -0.0336	 -0.0441
[-0.8032]	 [-1.15631	 [-1.2777]	 [-1.6352]

1/v	 0.0962	 0.09 17
[4.9363]	 [4.3 174]

Log-likelihood	 -1545.94	 -1529.38	 -1523.14	 -1510.25

R2	 0.0282	 0.0278	 0.0378	 0.0359

W-for-logs	 0.0 157	 0.0 166	 0.0265	 0.0268

Skewness	 0.0962	 0.1281	 0.1751	 0.2227
(0.1636)	 (0.0636)	 (0.0112)	 (0.0013)

Excess	 1.5886	 1.7654	 1.1403	 1.5507
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 13.2892	 13.3010	 10.2702	 10.9850
(0.1500)	 (0.1495)	 (0.3291)	 (0.2767)

Q2(10)	 4.1239	 3.8398	 4.9659	 4.4477
(0.9416)	 (0.9543)	 (0.8934)	 (0.9249)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 6A

GARCH(1,1) with contemporaneous change in detrended volume estimates of FSE1O0 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [1 ' p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 18a, 9c	 9a, 18a, 9d	 lOa, 18b, lOc	 lOa, 18b, lOd

a1	0.0645	 0.0559	 0.0323	 0.0279
[2.1882]	 [1.9136]	 [1.0464]	 [0.8835]

a 1	 0.0325	 0.0306	 0.05 13	 0.0607
[4.5036]	 [3.5793]	 [3.3548]	 [3.2363]

a2	 0.9511	 0.9520	 0.9014	 0.8649
[86.1252]	 [69 .76731	 [34.4485]	 [25 .5976]

a3	 0.3 153	 0.3098	 0.8356	 0.8703
[11.0705]	 [8.0850]	 [11.0253]	 [9.7665]

1/v	 0.0632	 0.0069
[3.2825]	 [0.3636]

Log-likelihood	 -1518.59	 -1512.26	 -1465.02	 -1464.25

	

0.0573	 0.0581	 0.1076	 0.1134

W-for-logs	 0.0276	 0.0284	 0.0486	 0.0479

Skewness	 0.0504	 0.0567	 -0.0574	 -0.057 1
(0.4654)	 (0.4112)	 (0.4062)	 (0.4085)

Excess	 0.8 102	 0.8387	 0.0802	 0.0782
Kurtosis	 (0.0000)	 (0.0000)	 (0.5623)	 (0.5721)

Q(10)	 12.3278	 12.4911	 10.1154	 10.2527
(0.1955)	 (0.1870)	 (0.3412)	 (0.3304)

Q2(10)	 6.7549	 7.1958	 3.9363	 4.1634
(0.7484)	 (0.7068)	 (0.9502)	 (0.93 97)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.



126

TABLE 6B

GARCH(1,1) with lagged change in detrended volume estimates of FTSE100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [1. p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 19a, 9c	 9a, 19a, 9d	 lOa, 19b, lOc	 lOa, 19b, lOd

a 1	0.0702	 0.0579	 0.0630	 0.0524

	[2.23751	 [1.9335]	 [1.89131	 [1.72921

a 1	0.0759	 0.0585	 0.0694	 0.0546

	

[4.9374]	 [3.0409]	 [4.0015]	 [3.0151]

a2	 0.8693	 0.8939	 0.8847	 0.9032

	

[32.11901	 [23.7971]	 [29.55101	 [31.5512]

a3	 0.0840	 0.0278	 0.0873	 0.0505

	

[0.9016]	 [0.23071	 [0.6930]	 [0.3544]

1/v	 0.0944	 0.0889

	

[4.8159]	 [4.1336]

Log-likelihood	 -1545.88	 -1530.26	 -1523.75	 -1511.81

R2	 0.0285	 0.0278	 0.0376	 0.0361

W-for-logs	 0.0141	 0.0144	 0.0227	 0.0228

Skewness	 0.0966	 0.1220	 0.1601	 0.1943

	

(0.16 17)	 (0.0773)	 (0.0204)	 (0.0049)

Excess	 1.5244	 1.6733	 1.0947	 1.4290
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 13.2350	 13.5040	 10.3046	 11.0442

	

(0.1523)	 (0.1411)	 (0.3264)	 (0.2727)

Q2(10)	 4.1676	 3.8251	 4.9138	 4.0984

	

(0.9395)	 (0.9 549)	 (0.8969)	 (0.9428)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 7A

Specification 1 of Volume-GARCH(1,1) estimates of FFSE100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [1 p-values given in parenthesis 0.
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 20a, 9c	 9a, 20a, 9d	 lOa, 20b, lOc	 lOa, 20b, lOd

a1	0.0671	 0.0567	 0.0598	 0.0518
	[2.1994]	 [1.9419]	 [1.9074]	 [1.7664]

a1	 0.0894	 0.0685	 0.0843	 0.0661

	

[5.3454]	 [3.1720]	 [4.7363]	 [3.3141]

a2	 0.8836	 0.9115	 0.8946	 0.9140

	

[34.0278]	 [28.6676]	 [34.5002]	 [32.1459]

a3	 -0.0883	 -0.0665	 -0.0810	 -0.0608

	

[-4.1251]	 [-2.5108]	 [-3.6248]	 [-2.3879]

1/v	 0.0915	 0.0841
[4.5953]	 [3.7803]

Log-likelihood	 -1540.84	 -1526.56	 -1518.65	 -1508.56

R2	0.0345	 0.0330	 0.0412	 0.0392

R2-for-logs	 0.0187	 0.0215	 0.0273	 0.0242

Skewness	 0.0828	 0.1103	 0.1383	 0.1679

	

(0.2306)	 (0.1102)	 (0.0452)	 (0.0150)

Excess	 1.4181	 1.5585	 0.9578	 1.2679
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 12.6204	 12.8832	 8.9936	 10.0731

	

(0.1805)	 (0.1680)	 (0.4379)	 (0.3446)

Q2(10)	 3.5832	 3.6723	 4.5323	 3.9993

	

(0.9642)	 (0.9609)	 (0.9202)	 (0.9474)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 7B

Specification 2 of Volume-GARCH(1,1) estimates of FFSE100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [I, p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 21a, 9c	 9a, 21a, 9d	 lOa, 21b, lOc	 lOa, 21b, lOd

a 1	0.0682	 0.0568	 0.0540	 0.0484

	

[2.2032]	 [1.9020]	 [1.68171	 [1.6124]

a 1	 0.0797	 0.065 1	 0.0699	 0.0607

	

[4.8434]	 [3.20221	 [4.263 81	 [3.2234]

a2	 0.8604	 0.8776	 0.8823	 0.8907

	

[30.91251	 [22.6372]	 [29.7846]	 [25.3616]

a3	-0.1663	 -0.1387	 -0.1545	 -0.1292

	

[-3.7289]	 [-2.2947]	 [-3.4960]	 [-2.3929]

1/v	 0.09 17	 0.0842
[4.6467]	 [3.8644]

Log-likelihood	 -1542.05	 -1527.38	 -1518.57	 -1508.86

	

0.0322	 0.032 1	 0.0406	 0.0397

R2-for-logs	 0.0188	 0.0182	 0.0298	 0.0236

Skewness	 0.0734	 0.0951	 0.1659	 0.1830

	

(0.288 1)	 (0.1683)	 (0.0 163)	 (0.008 1)

Excess	 1.4297	 1.5086	 0.9771	 1.2247
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 13.4438	 13.6677	 10.1328	 11.0216

	

(0. 1435)	 (0.1346)	 (0.3398)	 (0.2742)

Q2(10)	 4.3547	 4.01 17	 5.5931	 4.7772

	

(0.9299)	 (0.9468)	 (0. 8482)	 (0.9056)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.
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TABLE 7C

Specification 3 of Volume-GARCH(1,1) estimates of FTSE100 returns
for period January 1989 to December 1993.

Asymptotic t-statistics given in brackets [],p-values given in parenthesis ().
See Section 4 for the different specifications estimated.

	

Equations	 Equations	 Equations	 Equations
Parameters	 9a, 22a, 9c	 9a, 22a, 9d	 lOa, 22b, lOc	 lOa, 22b, lOd

a1	0.0660	 0.0561	 0.0562	 0.0488

	

[2.1246]	 [1.8955]	 [1.7713]	 [1.6518]

a 1	 0.0925	 0.0730	 0.0822	 0.0692

	

[4.7723]	 [3.1032]	 [4.1973]	 [3.2028]

a2	 0.87 10	 0.8979	 0.8906	 0.9049

	

[30.4007]	 [25.2740]	 [30.7029]	 [28.6012]

a3	 -0.0781	 -0.0612	 -0.0676	 -0.0560

	

[-3.0982]	 [-2.1957]	 [-2.6161]	 [-2.0464]

a4	 -0.1039	 -0.0846	 -0.1038	 -0.0920

	

[-2.3854]	 [-1.7041]	 [-2.4195]	 [-1.9597]

1/v	 0.0895	 0.0804
[4.5140]	 [3.6687]

Log-likelihood	 -1538.31	 -1524.68	 -1515.36	 -1506.04

R2	 0.0368	 0.0361	 0.0437	 0.0423

R2-for-logs	 0.0215	 0.0232	 0.0276	 0.0254

Skewness	 0.0801	 0.1034	 0.1549	 0.1719

	

(0.2435)	 (0.1342)	 (0.0249)	 (0.0 128)

Excess	 1.3560	 1.4553	 0.9256	 1.1480
Kurtosis	 (0.0000)	 (0.0000)	 (0.0000)	 (0.0000)

Q(10)	 12.9869	 13.1851	 8.9039	 9.9173

	

(0.1632)	 (0.1544)	 (0.4462)	 (0.3 572)

Q2(10)	 3.8363	 3.6744	 4.9266	 4.2786

	

(0.9544)	 (0.9608)	 (0.8960)	 (0.9339)

Notes: R2 denotes the R-square for the regression of Equation (11).
R2-for-logs dentes the R-square for the regression of Equation (12).
Q(10) and Q2(10) denote the 10-lag Ljung-Box statistics for the standardised
residuals and squared standardised residuals respectively.



CHAPTER 5

A TEST FOR OMITTED DETERMINISTIC

DUMMY VARIABLES IN ARCH MODELS

Abstract

This paper proposes a simple diagnostic test for deterministic dummy variables in

ARCH models. Deterministic dummy variables are indicator variables that are

included in either the conditional mean or conditional variance equation to capture

some of the a priori observed anomalies/effects of fmancial data. Notable examples

are day-of-the-week effects in returns, and observed increased in volatility at certain

calendar periods. In the current literature, such effects are either ignored, or captured

with ad-hoc adjustments. Several commonly used methods in current empirical work

are applied to model intraday returns and volatility of the S&P500 index futures. We

find that the traditional diagnostic tests fail to detect omitted determinstic effects

associated with nontrading, even when such effects are ignored. We also fmd that

none of the currently employed methods of adjustments are sufficient to account for

the pattern surrounding a nontrading period. Using dummy variables in the GARCH,

we find that conditional volatility tends to increase prior to market closure, and across

the nontrading period. However when the market reopens, the conditional volatility

declines. This suggest that the volatility structure surrounding a nontrading period

is far more complicated than what current empirical adjustments allow for.



A TEST FOR OMITTED DETERMINISTIC

DUMMY VARIABLES IN ARCH MODELS

1.	 INTRODUCTION

As early as the sixties, researchers have documented that the variances and

covariances of returns on speculative assets change over time (see Fama, 1965 and

Mandelbrot, 1963). The observed phenomena of fat-tailed (unconditional) distribution

(leptokurtosis), non-stationary variances (time-varying volatility) and large (small)

changes following large (small) changes (volatility clustering) represent "stylised

facts" (coined by Mandeibrot) for many financial and economic time series. Initial

attempts to model such time series focus on the unconditional distribution. It wasn't

until the seminal paper by Engle (1982) that the focus shifts to modelling the

conditional distribution. Since then, there has been an explosion of literature on

Autoregressive Conditional Heteroskedasticity (ARCH) models (see survey paper by

Bollerslev et. al., 1992).

Despite their widespread growth, ARCH models are essentially developed more as

econometric and modelling tools, than being motivated by any economic and/or asset

pricing theories. Only recently have there been some serious theoretical attempts to

explain the observed ARCH effects in financial data.

One major problem of applying ARCH models in empirical modelling of financial

data is that the data is often 'contaminated'. Two well-known anomalies are calender



132

effects and nontrading periods. The latter becomes especially important when the

frequency of the data set increases, since the ratio of the length of nontrading period

to trading period will increase. In a dynamic model such as that of the ARCH, these

effects may require some form of adjustment to the basic model. Unfortunately,

many researchers either do not take into account such factors, or if they do, the

adjustments are either ad-hoc or based on intuition. Making the wrong adjustments

or no adjustments at all may result in an incorrect or incomplete model. This in turn

may lead to wrong inferences. While we have no solution as to what sort of

adjustments we should make to account for the deterministic effects, we propose that

any adjustments should be subjected to the simple diagnostic test proposed here.

The plan of the paper is as follows. The basic ARCH models are laid out in the

following section. In Section 3, we propose a very simple diagnostic test to

determine the adequacy of the adjustment (if any) in the mean and conditional

variance equation. In Section 4, we apply a GARCH(l,1) model (with and without

nontrading period adjustments) to the high frequency data set of MacKinlay and

Ramaswamy (1989) and show that deterministic patterns still exist in the residuals

if we fail to properly account for the nontrading effect. Section 5 concludes.

2. ARCH MODELS IN EMPIRICAL RESEARCH

Consider a time series of observations y. According to Engle (1982), the ARCI-1(q)

model is given by:
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y =	 +	 (1)

—N(O,h)	 (2)

h=ao+V''	 2
LI •lJj	 (3)

Equation (1) is commonly known as the mean equation. The observations y depend

on variables x (which are either exogenous, lagged endogenous or deterministic).

Equation (2) states that conditioned on the information set at time t-1 (denoted by

the errors of the mean equation ç are normally distributed with a zero mean1

and a time-varying variance h. The conditional variance is given by Equation (3),

which is simply the (weighted) sum of q previous lags of the square of the error

term. The coefficients in the conditional variance equation must be positive to ensure

that the series have a positive unconditional and conditional variance.

Bollerslev (1986) extends the ARCH(q) model to a generalised form. Specifically,

the GARCH(p,q) model has a conditional variance given by

2 + 'ç-'p	 (4)= a0 +	 L..11

The errors have a zero mean because we have accounted for all deterministic components in the
mean equation.



134

Again typically, the coefficients in the conditional variance equation are constrained

to take on positive values only to ensure a non-negative (and hence defined) second

moment2.

Several other models have also been proposed to parameterise the conditional

variance equation. This include the Exponential GARCH of Nelson (1991), the

Quadratic GARCH of Sentana (1992), and the Nonlinear GARCH of Higgins and

Bera (1993). This list is by no means exhaustive (see Chapter 2 for a discussion and

empirical analysis of these and other parametric ARCH models).

Applying these models to empirical data, especially financial data, poses several

problems. Asset returns are typically 'contaminated', being plagued by well

documented anomalies such as calendar effects and nontrading periods. Accounting

for such behaviour in the mean equation is relatively easy, and this is usually

accomplished by the use of dummy variables. On the other hand, the dynamic

structure of the conditional variance equation makes any similar adjustments difficult,

since the recursive nature of ARCH models means that incorrect adjustments will

tend to persist. Analysis using these models to infer relationships such as lead-lag

behaviour of two equivalent markets (Cheung and Ng, 1990) and asymmethc

volatility effects (Conrad et. al., 1991) may therefore become invalid.

2 S Nelson and Cao (1992) for the conditions in which some of the coefficients can take on negative
values.
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Most of the current empirical work in this area either ignores any deterministic

effects, or makes an ad hoc adjustment to the conditional variance equation which

may potentially be incorrect. For the former, we cite works by Akgiray (1989),

Bollerslev (1987) and Taylor (1986), which ignore deterministic anomalies like

calendar effects. For the latter, several methods are used. The most obvious is to

simply include one or more indicator variables in the variance equation to indicate

the deterministic event such as January effects, post-holiday effects etc. Gagnon,

Morgan and Neave (1993), Conrad et. al. (1991), and Cheung and Ng (1990) use this

adjustment method.

In the absence of any formal theoretical model of volatility, it is difficult to determine

the correct form of adjustments required to account for calendar and non-trading

effects. Nevertheless, we suggest in the following section a very simple diagnostic

test which should be applied to determine the validity (if any) of the adjustments.

3.	 A SIMPLE DIAGNOSTIC TEST FOR DETERMINISTIC EVENTS

3.1 A Heuristic Approach

We can rewrite the error term of Equation (1) as follows

Et =ztv/;;
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where h follows a specific conditional variance parameterisation e.g. GARCH(1,1)

and z is a standard normal. Rewriting the above, we get

zt 
=

In other words, the standardised residuals must be a white noise process. Relying on

this property, one of the standard diagnostic tests for correct specification of the

conditional variance (and mean) equation is that the standardised residuals are not

autocorrelated. The portmanteau test of Ljung and Box (1978) for serial correlation

is almost universally employed as a diagnostic test in the (3ARCH literature. Along

the same lines, Bollerslev (1986) suggests using the Ljung-Box test on the squares

of the standardised residuals. This follows from the work of McLeod and Li (1983).

Our proposed diagnostic test extends the above. Suppose we have a deterministic

event for which we use a dummy variable (either in the mean or variance equation

or both). The resulting standardised residuals must therefore not contain any

deterministic components i.e. it must be a white noise process. In that sense, if we

regress the standardised residuals against this dummy variable, the coefficient should

not be significant. Likewise, by regressing the squares of the standardised residuals

against the dummy variable, we would be able to test if we have sufficiently

accounted for the deterministic event in the conditional variance equation. We could

extend this further by including additional dummy variables surrounding the
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deterministic event to test if the adjustments we make to the conditional mean and

variance equation are adequate.

3.2 A Formal Approach

The diagnostic test for omitted (dummy) variables in a regression model (i.e. the

mean equation) is straightforward, and can be found in many econometric textbooks

(e.g. Davidson and MacKinnon, 1993, Greene, 1993, and Harvey, 1990). Detailed

proofs can be found in Pagan and Hall (1983) and will not be given here.

Essentially, the test is based on the Lagrange Multiplier (LM) test. The procedure

involves regressing the standardised residuals, z, on the set of dummy variables. If

the dummy variables are significant in the regression, this implies that the mean

equation has omitted variables3.

The diagnostic test for omitted (dummy) variables in the variance equation is slightly

more complicated, although a similar principle applies. Let z = eh I2, Z 1 be

a vector of measurable variables used as a proxy for the information set t1' and Z1

be the vector of (possibly) missing variables. Engle and Ng (1993) show that if the

conditional volatility model is well specified, running the following regression

As pointed out in Maddala (1992), if we simply regress ç against the dummy variables (as
suggested in the earlier section), the test has low power.
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2	 *
z = a + bZ 1 + cI1 Z i + V

should result in b = 0 and v being a white noise. By selecting different variables

for Z -1' different tests can be constructed against a specific alternative. Engle and

Ng (1993) suggest three different diagnostic tests based on e, which they termed the

sign bias test, the negative size bias test, and the positive size bias test. In our

diagnostic test, we propose the use of indicator variables to denote a nontrading

period. Likewise, by introducing additional indicator variables around a nontrading

period, we can determine if we need to account for temporal patterns in the

conditional volatility surrounding the nontrading period.

4. VOLATILITY AROUND NONTRADING PERIODS : THE CASE OF

S&P500 INDEX FUTURES

As a practical example, we compare the various methods of accounting for the non-

trading effect in asset returns by estimating various GARCH(1,1) models (with and

without non-trading period adjustments) on the futures data of MacKinlay and

Ramaswamy (1988)'s dataset. The original dataset consist of 15 minute interval

prices of the S&P 500 index futures supplied by Chicago Mercantile Exchange. The

data relates only to the near contract from the expiration of the previous contract until

its own expiration, beginning with the September 1983 contract and ending with the

June 1987 contract (16 contracts in all). However, we use prices sampled at a 30
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minute interval. Observations per contract range from 780 for the June 1984 contract

to 896 for the December 1986 contract4.

A GARCH(1,1) model is estimated, using the following methods of adjustments for

non-trading (i.e. turn-of-the-day/turn-of-the-week) period:

Method 1:	 No dummy variables in either both the mean and conditional variance

equations i.e.

Tt = 11. +

- N(0,h)	 (5)

h = a 0 + a 1 €11 + 1Jz1_1

Method 2: One dummy variable in the mean equation and one dummy variable

in the conditional variance equation i.e.

= j. +	 + ç

- N(0,h)	 (6)

= a 0 + a 1 € 1 + f3 1 h1 +

where D1 equals one if t spans a nontrading period, and zero

otherwise. Note that the recursive nature of the GARCH model means

that the increase in conditional variance over the nontrading period

will persist for some time.

4 Futures trading hours were 9am Central Time to 3pm Central Time up to September 27, 1985; and
8.3Oam Central Time to 3am Central Time thereafter.
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Method 3:	 Cheung and Ng (1990) adjustment. This consists of one dummy

variable in the mean equation and one dummy variable in the

conditional variance equation. However, the same dummy variable is

subtracted from the previous conditional volatility only if the previous

return spans a non-trading period i.e.

r =	 +	 + ft

- N(0,h)	 (7)

h = a 0 + a 1 €_1 +	 - 0 D _ 1 ) +

where D equals one if t spans a nontrading period, and zero

otherwise. The idea is to remove any increase in volatility due to the

nontrading period from subsequent period volatility. In other words,

the increased in volatility due to the nontrading period is not allowed

to persist into future periods.

Method 4: One dummy variable in the mean equation, and two dummy variables

in the conditional variance equation i.e.

r = IL + 'r7 0 D +

ft - N(0,h)	 (8)

h = a 0 + a 1 € 1 + f3 1 ( h 1 - 1 D _ 1 ) + ( 0D

where D equals one if t spans a nontrading period, and zero

otherwise. This adjustment nests the Cheung and Ng (1991)

adjustment if	 = (, and is based on the argument that the

increased in volatility associated with the nontrading period has
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temporary and permanent components. The temporary component

has no impact on future volatility, while the permanent component can

persist into the future.

For each of the methods, we then perform the usual Ljung-Box (1978) portmanteau

test on the standardised residuals and squares of standardised residuals respectively.

The results are summarised in Table 1, together with their log-likelihood values.

With one or two exceptions, it appears that all 4 methods of adjustments are well-

specified for all 16 contracts, as indicated by the lack of significance in the Ljung-

Box statistics for both the levels and their squares. Now, clearly the GARCH(1,1)

model without any nontrading period adjustments is not correctly specffied. Yet, the

Ljung-Box test does not show any evidence to indicate model inadequacy. Note that

the addition of dummy variables (regardless of form) significantly increases the log-

likelihood values, indicating that non-trading period adjustments are necessary5.

To examine the behaviour of returns and conditional volatility spanning the non-

trading period, we examine a window of three 30-minute intervals prior to market

close and three 30-minute intervals after market open 6. We regress (using OLS) the

levels and squares of the standardised residuals against 7 dummy variables i.e.

5 A likelihood ratio test can be performed to check for the significance of the additional parameter(s).
For two (three) additional parameters (one in the mean equation and one (two) in the conditional variance
equation), the likelihood value must increase by 2.996 (3.907) at the 5 percent significance level.

6 lnitially,our window consist of five 30-minute interval periods before market closure and five 30-
minute interval periods after market has opened. However, since the two 30-minute interval furthest away
from market closure and market opening does not appear to have a deterministic time component, we
reduce the window to only three 30-minute interval periods on either side of the non-trading period.
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-3
= K + E 9k't+k +	 (9)

k=+3

and
2	

_

- A +	 ^	 (10)
1=+3

where as before D1 equals one if t spans a nontrading period, and zero otherwise.

By examining the significance of the coefficients in both regressions (i.e. 6k and

we can determine if the particular method of adjustment has fully accounted for

deterministic effects of the nontrading period. The results are reported in Tables 2A

to 2D (for the levels) and 3A to 3D (for the squares) for each of the 4 methods of

adjustments respectively.

From Tables 2A to 2D, it appears that nontrading periods have little or no impact in

the levels (i.e. mean equation). This suggests that nontrading periods do not affect

returns, since the exclusion of the dummy variable (Method 1 adjustment) does not

exhibit a deterministic component (with respect to the nontrading period) in the

standardised residuals7. It is also worthwhile to note that there is no pattern in the

levels within our window of three 30-minute interval periods before and three 30-

minute interval periods after a nontrading period.

7 Detailed results of the GARCH(1,l) parameters using maximum likelihood estimation are available
separately. Regardless of which adjustment method is used, the coefficient of the dummy variable in the
mean equation (i.e. ) is not significant for more than half of the 16 contracts. The results remain
unchanged when quasi-maximum likelihood estimation (see Bollerslev and Wooldridge, 1992) is used.
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On the other hand, not adjusting for the nontrading effect in the conditional volatility

equation has some serious consequences. Table 3A shows the results of regressing

the squares of the standardised residuals without adjusting for the non-trading effect

(Method 1) against dummy variables in our window. Clearly, the squared residuals

are no longer white noise, since the coefficients are highly significant, especially

when the period spans a non-trading period. Indeed, this suggests that the

GARCH(1,1) model without the nontrading period adjustment is incorrectly specified

because such a model has not been fully conditioned on the information set fl

Tables 3B to 3D show that while the other 3 methods of adjustment reduce the

deterministic component of the conditional volatility across the nontrading period,

there are still uncaptured deterministic effects. In fact, this suggests that the

(conditional) volatility structure surrounding the nontrading period cannot be fully

captured by adding one (or two) dummy variables.

Given the above results, we re-estimate a GARCH(1,1) model for all 16 futures

contracts. However, we use 7 dummy variables in both the mean and conditional

variance equation i.e.

r=p+.3q.D +E

- N(O,h1 )	 (11)

h = a 0 + a 1 €_ 1 + f31h1 +

8 For example, we know beforehand, when the market will be closed (for the night or for the
weekend). This knowledge will form part of our information set, which should condition our (conditional)
volatility estimate for the next (trading) period.
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Table 4 shows log-likelihood values and Ljung-Box statistics for the levels and

squares. Comparing with Table 1, the log-likelihood values for all 16 contracts are

larger than their corresponding values, while the Ljung-Box statistics are essentially

similar. This further suggests that the portmanteau tests have little power against

omitted deterministic variables in either the mean or variance equation.

The suggested diagnostic tests of regressing the standardised residuals and squares

of standardised residuals against deterministic dummies are performed, and the results

are summarised in Tables 5A and 5B respectively. Since we have accounted for the

deterministic dummies in our mean and conditional variance equation, the coefficients

of the diagnostic regression for almost all contracts are not significantly different

from zero.

As a matter of comparison, the quasi-maximum likelihood 9 estimates of the dummy

variables for the mean and conditional variance equation are reported in Table 6A

and 6B. It can be seen that the t-statistics of the coefficients of our diagnostic

regressions tend to be larger for those dummy variables that are significant. This

indicates that our proposed diagnostic regressions can identify omitted deterministic

(dummy) variables in either the mean or variance equation.

Bollerslev and Wooldridge (1992) and Susmel and Engle (1994) show that quasi-maximum
likelihood estimation is robust to violation of the assumption of conditional normality of the error term.
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An interesting pattern that emerges from Table 6B is that conditional variance tends

to increase prior to market closure. Of the 16 futures contract we examine, more

than half of them experience a significant increase in conditional volatility within the

last one and a half hours prior to market closure, while only two show a significant

decrease. For the remaining contracts, the sign of the dummy variables tends to be

positive, indicating a tendency for conditional volatility to rise. On the other hand,

conditional volatility over the nontrading period (turn-of-the-day/turn-of-the-week) is

higher for 15 of the 16 contracts, 8 of which are significant. However, once the

market opens, the conditional volatility tends to decline. The decline usually occurs

within the first 30 minutes of trading, but can last as long as one and a half hours10.

5.	 CONCLUSION

ARCH models have been successfully applied to a wide range of financial time

series. Unfortunately, financial time series exhibit deterministic patterns and

anomalies which have little theoretical explanations. Examples include day-of-the-

week effects, turn-of-the-year effects, and differences between nontrading and trading

period's volatility. Current empirical work either ignores such effects, or makes ad

hoc adjustments based on intuition or observed phenomenon. Unfortunately, the

dynamic nature of ARCH models make such adjustments difficult. In this paper we

propose a simple diagnostic to determine the adequacy of any adjustment that

10 Note that this pattern in conditional volatility mirrors the U-shaped pattern in unconditional
volatility of the cash market e.g. Lockwood and Linn (1990).
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incorporates deterministic variables in the mean and variance equation. As a practical

example, we apply a GARCH(1,1) model to 30-minute returns of the S&P500 index

futures, using several methods to account for the changes in volatility surrounding a

nontrading period. We find that the traditional Ljung-Box (1978) diagnostics could

neither detect omitted deterministic variables nor discriminate among the various ad-

hoc adjustment methods. On the other hand, our proposed diagnostic regressions

indicate that all 4 methods are inadequate, suggesting that the conditional volatility

structure surrounding the nontrading period is more complicated. The conditional

volatility of the index futures appears to rise prior to market closure, but declines

once the market opens, with the duration being as long as one and a half hours. Any

adjustment methods that do not allow for this pattern (e.g. Cheung and Ng, 1990)

may lead to incorrect estimates of the conditional variance.



ci	 -ci
InI

'ci Cl)

-	 en
.	 .	 00
C) ci '
'4 

Cl) -ci
-ci .- ci

C.) ci
0'.
C

ci ci N
-ci	 Cf

a)-
a)

ci

ifi

00
-ci
'44-4 0.4
O0In

U)
'= . -ci
C ci
-	 ci

ci _ci

-dl)
U) C)
a)C) ci
- -
r.
00
S C)
o'.'ci
'-I ci •c.)
'-, I-'.
1< -
o .0

.ci 0
ci C.) cia) C)

04 C)
a)	 I'C

C) 11)0
-

0ciC1)

C) ci
'ci •&

C) C)
C '4ci

-ci
-' s C)
C.
._4 U)

4-4 c
.M 0 u

0
z

In
a)

C.)
U,
0
ci

-ci
-ci

uJ
-J U,

a)
ci

0
-ci

C)

- en en a - N O\ O\ O In 00 O N - O S N© o C 'O en	 '.0 N N - en en '.0	 00 00 '-400 '-4 en 00 00 '.0 O\ 00	 '.0	 '.0 00 N
-4	 -4

- N -f 0' 00 N - '.0 5 00 '.0 N N '0 C 00oo en N C	 C 00 C in en	 In 0\ en 00 N
'
-	 '-' .- N 0 00 N N S - N C\ 00 en en 00 - In

4 '	 -	 ' - 4	 N -'
a)
-

C '.0 N	 CC'. CIn 00 en 0'. S 0000
ci	 '.0 en C N N f	 C '0	 N '.0 00

I	 00 C '0 '.0 C	 N '.0 - .- 'et C'. In en In In

- N C 00	 en 00 '-4 00 'ci- C N '-4 '.0 - C'. InN C 00 00 00 00 00 -I - -1 00 00 S 00 N In
-	 _f _f _f

.-..N 00-f N C en In In S SN 0'. N en en 0'.©'.0 en en en 500 'n en en	 In	 '.00000C C N In N S en CS In OOS '.000-4 en
,_	 -4	 -4

0'. S .-f 0'. en In '.0 In 0'. - '.0 en	 In C00 C'.	 In en '.00'. 0'. 004 C en Cc'.	 C'.ci	 enCN'.0CrnOOC'.0'.0
0'. 0'. S '.0 5 0'. C C 00 N en 00	 In'...)	 4	 '	 4 '	 N	 4

a)
------

cic.i 00 0\0'. C en N C'. C N 'ct C\0 -C '.0
ci 0'. 0'. - 00 N "et C en 'ci- N en '.0 In -4 N 'ci-'ci- o'. C In 00 N '0	 N 'ci- - N N C 'ci- en

- In 0'. 00	 N 00 0 S	 0 N 0 In ' 0'. In-	 S 0'. 00 00 00 00 00 '-4 - '-4 00 00 5 00 5 In
- -4 -4

,-en - N C'.'ci- N - 0CC en Cci- 00 en en oo©r4 00 In COO	 en In '0 en '.0	 0050'. 0'.CNOO	 en	 en-S	 InoC	 C- In
'.0 N C en - en NO'. 000'. en In COO

N -	 1

'I	 N 00 -4 0'. 0'. In C ci- S In '.0 en '.0 N - -C '.05 In 0'. 0'. en - In 00 In '.000 '.05 '.0
- 0'. 0'. 00 en 0'. 'ci- "0 N In In 0'. S 'ci- 'ci- 'ci- C

'	 '	 '	 4	 I	 N
a)

----

'	 InI	 N C C In	 N	 -SN
'ci- N C en C 0'. N 'ci- ci- C ci- o r- 00 5 '.0

•	 S In 00 In N '..0 In '0 N 00 'ci - In N 0'. '.0
dendoodr--0'. 5 'ci-	 00 OS	 0'. N C'0 ' 0'.Ina) N 0'. 00 00 00 00 00 '-4 - C 00 00 N 00 5 In
- _f -

..sO0S 0'.-	 00 N In 0'. 'ci- C en 0000 en©In NO0	 00 In en In 000'. COO N en In 'ci-
In - CNN-f In '.0 en "cl-en N '.0 -4

- -

In 00 -I S N en 0 "ci- 'ci 'f In 00 00 C '-0 N
In C'. C N en In en 005 N C'.	 5	 COOci	 In•C.qosooc'.'.o.-c

C 0'. 0'. S In N 00 0 0'. 00 N en S In en.4	 4	 '	 N
a)
--

'.0 en In N C'. 000 N - - '.0 ' 40'.
O 00 'ci- C'. -I N C a'. en a'. 'ci- en oo en N C C'.•OOONN5ffl'0.-IflNNOOcnSt--.

In en N N	 In en '.0 S 00 0 '.0 - In "0 0'.-I - -4 0'. 5 N C S C In en Q'.	 C'. In 00 00 C-	 N C'. 00 00 00 00 00 4 -I	 00 N S N N In
_4 - -4

en en	 In In In tfl '.0	 5
00 00	 00 00 00 00 00 00 00 00 00 00 00 00 00
C'. C'.	 '. C'. C'. 0'.	 ' C'. C'. C'. C'. 0-. 0'. 0'.	 ' C'.
- - - - - 14 - - 4 !	 -	 - _(

U



148

TABLE 2A

Coefficients and t-statistics of regression of standardised residuals
(Method 1 adjustment) against various dummy variables, as per Equation (9).

Contract	 t-1	 9t-2	 0t-3

Sep 1983	 0.1331	 0.1321	 -0.1768	 0.2793	 -0.0944	 -0.0840	 -0.0571
	0.8548	 0.8482	 -1.1352	 1.7934	 -0.6062	 -0.5396	 -0.3665

Dec 1983	 0.1107	 0.1646	 0.0300	 0.0651	 0.0081	 -0.0147	 0.0882

	

0.7091	 1.0543	 0.1925	 0.4169	 0.0519	 -0.0941	 0.5653

Mar 1984	 -0.2547	 0.0729	 -0.2200	 0.2906	 0.2191	 -0.1104 -0.0421

	

-1.6323	 0.4670	 -1.4100	 1.8619	 1.4039	 -0.7076	 -0.2698

Jun 1984	 0.1973	 -0.0177	 -0.0328	 0.0173	 0.0057	 -0.3644 -0.0189

	

1.2343	 -0.1110	 -0.2052	 0.1082	 0.0355	 2.2801* -0.1186

Sep 1984	 0.0521	 0.0018	 -0.3983	 0.0247	 0.0717	 -0.0625 -0.2972

	

0.3516	 0.0122	 2.6871*	 0.1668	 0.4835	 -0.4219	 2.0054*

Dec 1984	 -0.2112	 -0.2931	 0.1593	 0.2446	 -0.0050	 -0.0613 -0.0337

	

-1.3716	 -1.9033	 1.0346	 1.5879	 -0.0325	 -0.3980	 -0.2185

Mar 1985	 0.0960	 0.1027	 -0.1464	 -0.0054	 0.1478	 -0.0731	 0.2732

	

0.5853	 0.6260	 -0.8921	 -0.0327	 0.9006	 -0.4455	 1.6648

Jun 1985	 -0.0704	 0.1360	 -0.0179	 0.3539	 -0.0461	 -0.0207 -0.0634

	

-0.4745	 0.9172	 -0.1205	 2.3863* -0.3107	 -0.1393	 -0.4278

Sep 1985	 0.1016	 -0.3330	 0.0685	 0.1888	 -0.0061	 -0.1017 -0.0355
	0.6531	 2.1395*	 0.4402	 1.2128	 -0.0392	 -0.6534 -0.2278

Dec 985	 -0.1348	 0.0776	 -0.0381	 0.1169	 0.0068	 -0.1107 -0.0615

	

-0.9214	 0.5307	 -0.2603	 0.7991	 0.0462	 -0.7569	 -0.4204

Mar 1986	 0.0386	 0.1879	 0.1225	 0.1798	 0.0810	 -0.0110	 0.1734

	

0.2628	 1.2791	 0.8341	 1.2242	 0.5517	 -0.0748	 1.1808

Jun 1986	 0.2245	 0.1377	 0.0326	 0.2669	 0.0416	 0.0318 -0.1652

	

1.5364	 0.9421	 0.2229	 1.8269	 0.2848	 0.2174	 -1.1309

Sep 1986	 -0.1132	 0.3487	 -0.2181	 0.0757	 0.0206	 -0.0213	 0.3437

	

-0.7824	 2.4093* -1.5065	 0.5230	 0.1426	 -0.1474	 2.3747*

Dec 1986	 -0.0525	 -0.0256	 0.0643	 -0.2805	 0.2724	 -0.1089 -0.2120

	

-0.3622	 -0.1762	 0.4431	 -1.9331	 1.8777	 -0.7507	 -1.4610

Mar 1987	 -0.0927	 0.0433	 -0.1653	 0.1833	 0.0349	 -0.1146 -0.0746

	

-0.6264	 0.2927	 -1.1175	 1.2389	 0.2357	 -0.7748	 -0.5044

Jun 1987	 0.0577	 -0.1977	 -0.0533	 0.0173	 0.0507	 -0.0895	 0.1950

	

0.3895	 -1.3359	 -0.3599	 0.1168	 0.3427	 -0.6050	 1.3176

* Significant at the five percent level.
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TABLE 2B

Coefficients and t-statistics of regression of standardised residuals
(Method 2 adjustment) against various dummy variables, as per Equation (9).

Contract	 °t+3	 0e+2	 t+1	 t	 9t-1	 0t-2	 0t-3

Sep 1983	 0.1513	 0.1317	 -0.1773	 -0.1012	 -0.1015	 -0.0930	 -0.0660
0.9693	 0.8441	 -1.1357	 -0.6485	 -0.6503	 -0.5956 -0.4227

Dec 1983	 0.1125	 0.1633	 0.0317	 0.0440	 0.0075	 -0.0133	 0.0921
0.7210	 1.0461	 0.2031	 0.2816	 0.0479	 -0.0853	 0.5903

Mar 1984	 -0.2547	 0.0733	 -0.2213	 -0.1025	 0.2134	 -0.1130 -0.0421
-1.6267	 0.4684	 -1.4134	 -0.6543	 1.3628	 -0.7214	 -0.2689

Jun 1984	 0.1949	 -0.0219	 -0.0574	 -0.0798	 -0.0021	 -0.4096 -0.0152
1.2208	 -0.1371	 -0.3598	 -0.5003	 -0.0129	 _2.5661* -0.0951

Sep 1984	 0.0677	 0.0144	 -0.4244	 -0.1524	 0.0408	 -0.0657 -0.3298
0.4597	 0.0981	 2.8832* -1.0354	 0.2769	 -0.4464	 2.2403*

Dec 1984	 -0.2189	 -0.2986	 0.1613	 -0.0863	 -0.0230	 -0.0689	 -0.0328
-1.4168	 -1.9328	 1.0443	 -0.5590	 -0.1489	 -0.4458	 -0.2121

Mar 1985	 0.0976	 0.1052	 -0.1509	 0.0217	 0.1477	 -0.0755	 0.2774
0.5968	 0.6432	 -0.9229	 0.1326	 0.9032	 -0.4618	 1.6967

Jun 1985	 -0.0742	 0.1415	 -0.0201	 -0.0129	 -0.0497	 -0.0282 -0.0667
-0.4985	 0.9509	 -0.1353	 -0.0868	 -0.3340	 -0.1898	 -0.4485

Sep 1985	 0.1063	 -0.3431	 0.0699	 -0.0467	 -0.0060	 -0.1045 -0.0366
0.6825	 2.2023*	 0.4487	 -0.2998	 -0.0387	 -0.6709 -0.2347

Dec 1985	 -0.1402	 0.0773	 -0.0412	 -0.0483	 0.0018	 -0.1161	 -0.0637
-0.9575	 0.5279	 -0.2812	 -0.3298	 0.0123	 -0.7928	 -0.4354

Mar 1986	 0.0396	 0.1929	 0.1247	 0.0422	 0.0817	 -0.01 14	 0.1768
0.2700	 1.3140	 0.8491	 0.2876	 0.5562	 -0.0778	 1.2043

Jun 1986	 0.2153	 0.1308	 0.0256	 0.0047	 0.0403	 0.0309 -0.1700
1.4713	 0.8940	 0.1752	 0.0323	 0.2754	 0.2115	 -1.1616

Sep 1986	 -0.1236	 0.3700	 -0.2404	 0.0649	 0.0364	 -0.01 19	 0.3527
-0.8566	 2.5650* -1.6670	 0.4500	 0.2522	 -0.0825	 2.4450*

Dec 1986	 -0.0695	 -0.0251	 0.0738	 -0.0514	 0.2594	 -0.1328 -0.2305
-0.4792	 -0.1733	 0.5084	 -0.3540	 1.7877	 -0.9154	 -1.5886

Mar 1987	 -0.0926	 0.0506	 -0.1763	 0.0486	 0.0326	 -0.1065 -0.0771
-0.6261	 0.3419	 -1.1914	 0.3286	 0.2206	 -0.7196	 -0.5213

Jun 1987	 0.0638	 -0.2101	 -0.0683	 -0.0105	 0.0549	 -0.0969	 0.2233
0.4324	 -1.4234	 -0.4630	 -0.0709	 0.3716	 -0.6562	 1.5127

* Significant at the five percent level.
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TABLE 2C

Coefficients and t-statistics of regression of standardised residuals
(Method 3 adjustment) against various dummy variables, as per Equation (9).

Contract	 03	 0t+2	 t-1	 0t-2	 6t-3

Sep 1983	 0.1494	 0.1279	 -0.1894	 -0.1141	 -0.1109	 -0.1046	 -0.0672
0.9571	 0.8196	 -1.2131	 -0.7308	 -0.7105	 -0.6700	 -0.4303

Dec 1983	 0.1123	 0.1674	 0.0302	 0.0508	 0.0078	 -0.0148	 0.0899
0.7195	 1.0729	 0.1938	 0.3256	 0.0502	 -0.0946	 0.5762

Mar 1984	 -0.2610	 0.0755	 -0.2263	 -0.0984	 0.2249	 -0.1155 -0.0439
-1.6690	 0.4830	 -1.4472	 -0.6295	 1.4385	 -0.7385	 -0.2807

Jun 1984	 0.2017	 -0.0223	 -0.0493	 -0.0646	 -0.0009	 -0.3965 -0.0178
1.2635	 -0.1399	 -0.3087	 -0.4045	 -0.0058	 2.4836* -0.1112

Sep 1984	 0.0587	 -0.0065	 -0.4317	 -0.0265	 0.0673	 -0.0724 -0.3212
0.3970	 -0.0442	 2.9215*	 -0.1796	 0.4555	 -0.4900	 2.1734*

Dec 1984	 -0.2179	 -0.3003	 0.1609	 -0.0859	 -0.0208	 -0.0643	 -0.0337
-1.4108	 -1.9447	 1.0419	 -0.5559	 -0.1346	 -0.4166	 -0.2183

Mar 1985	 0.0977	 0.1050	 -0.1495	 0.0319	 0.1502	 -0.0755	 0.2788
0.5959	 0.6400	 -0.9116	 0.1943	 0.9156	 -0.4602	 1.6999

Jun 1985	 -0.0740	 0.1414	 -0.0198	 -0.0149	 -0.0500	 -0.0303 -0.0656
-0.4977	 0.95 10	 -0.1333	 -0.1003	 -0.3359	 -0.2034 -0.4408

Sep 1985	 0.1050	 -0.3399	 0.0692	 -0.0516	 -0.0069	 -0.1052 -0.0365
0.6738	 -2.1813 k	0.4441	 -0.3314	 -0.0444	 -0.6752 -0.2344

Dec 1985	 -0.1361	 0.0779	 -0.0372	 -0.0385	 0.0064	 -0.1154 -0.0655
-0.9303	 0.5324	 -0.2542	 -0.2630	 0.0437	 -0.7884 -0.4475

Mar 1986	 0.0399	 0.1909	 0.1232	 0.0441	 0.0798	 -0.0128	 0.1763
0.2719	 1.3001	 0.8390	 0.3005	 0.5436	 -0.0874	 1.2006

Jun 1986	 0.2333	 0.1441	 0.0388	 0.0190	 0.0423	 0.0349 -0.1685
1.5931	 0.9842	 0.2650	 0.1297	 0.2890	 0.2382	 -1.1507

Sep 1986	 -0.1161	 0.3598	 -0.2232	 0.0621	 0.0233	 -0.0205	 0.3542
-0.8034	 2.4887* -1.5440	 0.4295	 0.1614	 -0.1417	 2.4501*

Dec 1986	 -0.0664	 -0.0261	 0.0737	 -0.0253	 0.2990	 -0.1364 -0.2300
-0.4580	 -0.1799	 0.5082	 -0.1747	 2.0622* -0.9409	 -1 .5865

Mar 1987	 -0.0934	 0.0473	 -0.1707	 0.0767	 0.0357	 -0.1164 -0.0761
-0.6310	 0.3193	 -1.1535	 0.5179	 0.2413	 -0.7863	 -0.5141

Jun 1987	 0.0616	 -0.2151	 -0.0444	 -0.0331	 0.0550	 -0.1140	 0.2004
0.4165	 -1.4545	 -0.3002	 -0.2240	 0.3717	 -0.7710	 1.3555

* Significant at the five percent level.
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TABLE 2D

Coefficients and t-statistics of regression of standardised residuals
(Method 4 adjustment) against various dummy variables, as per Equation (9).

Contract	 9t+3	 °t+2	 °t+1	 t	 °t-1	 °t-2	 0t-3

Sep 1983	 0.1247	 0.1391	 -0.1899	 -0.0953	 -0.1406	 -0.0744 -0.0473
0.7987	 0.8911	 -1.2164	 -0.6108	 -0.9011	 -0.4769	 -0.3030

Dec 1983	 0.0909	 0.1416	 0.0125	 0.0305	 -0.0127	 -0.0399	 0.0906
0.5827	 0.9085	 0.0799	 0.1959	 -0.0812	 -0.2561	 0.5810

Mar 1984	 -0.2509	 0.0731	 -0.2169	 -0.0791	 0.2483	 -0.1263	 -0.0501
-1.6042	 0.4673	 -1.3872	 -0.5055	 1.5876	 -0.8077	 -0.3204

Jun 1984	 0.2012	 -0.0222	 -0.0495	 -0.0667	 -0.0004	 -0.3972 -0.0176
1.2604	 -0.1390	 -0.3104	 -0.4180	 -0.0026	 2.4885* -0.1104

Sep 1984	 0.0471	 -0.0123	 -0.3993	 -0.0019	 0.0830	 -0.0793	 -0.3468
0.3187	 -0.0830	 2.7022* -0.0130	 0.5616	 -0.5365	 2.3466*

Dec 1984	 -0.2083	 -0.3172	 0.1509	 -0.1463	 -0.0095	 -0.0909 -0.0474
-1.3497	 2.0551*	 0.9777	 -0.9478	 -0.0616	 -0.5891	 -0.3070

Mar 1985	 0.0919	 0.0976	 -0.1374	 0.0260	 0.1703	 -0.0923	 0.3092
0.5641	 0.5992	 -0.8431	 0.1597	 1.0450	 -0.5666	 1.8973

Jun 1985	 -0.0359	 0.1331	 -0.0561	 -0.0223	 -0.0737	 -0.0415	 -0.0803
-0.2388	 0.8846	 -0.3730	 -0.1482	 -0.4898	 -0.2758	 -0.5340

Sep 1985	 0.1044	 -0.3480	 0.0727	 -0.0413	 -0.0080	 -0.1061	 -0.0374
0.6847	 2.2816*	 0.4766	 -0.2709	 -0.0525	 -0.6959	 -0.2451

Dec 1985	 -0.1279	 0.0755	 -0.0367	 -0.0329	 0.0140	 -0.1173 -0.0661
-0.8742	 0.5157	 -0.25 10	 -0.2249	 0.0960	 -0.8017	 -0.45 16

Mar 1986	 0.0398	 0.1927	 0.1245	 0.0425	 0.0815	 -0.0115	 0.1768
0.2712	 1.3126	 0.8482	 0.2892	 0.5549	 -0.0786	 1.2041

Jun 1986	 0.2133	 0.1295	 0.0269	 0.0089	 0.0469	 0.0389 -0.1894
1.4563	 0.8846	 0.1840	 0.0610	 0.3201	 0.2655	 -1.2936

Sep 1986	 -0.1242	 0.3750	 -0.2381	 0.0825	 0.0516	 -0.0017	 0.3557
-0.8615	 2.6003*	 -1.6514	 0.5720	 0.3580	 -0.0115	 2.4669*

Dec 1986	 -0.0689	 -0.0262	 0.0737	 -0.0549	 0.2483	 -0.1350 -0.2325
-0.4749	 -0.1809	 0.5080	 -0.3784	 1.7108	 -0.9298	 -1.6020

Mar 1987	 -0.0956	 0.0506	 -0.1767	 0.0410	 0.0288	 -0.1061	 -0.0776
-0.6464	 0.3421	 -1.1941	 0.2771	 0.1949	 -0.7172	 -0.5247

Jun 1987	 0.0612	 -0.2148	 -0.0444	 -0.0268	 0.0603	 -0.1158	 0.2006
0.4140	 -1.4526	 -0.3005	 -0.1810	 0.4075	 -0.7833	 1.3569

* Significant at the five percent level.
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TABLE 3A

Coefficients and t-statistics of regression of squares of standardised residuals
(Method 1 adjustment) against various dummy variables, as per Equation (10).

Contract	 ® 1+3	 01+2	 01+1	 0	 0f	 °t-2	 01_3

Sep 1983	 0.4717	 1.1619	 0.5201	 2.2206	 0.0235	 -0.0660	 0.0066

	

1.2939	 3.1869*	 1.4265	 6.0908*	 0.0644	 -0.1809	 0.0181

Dec 1983	 0.5474	 0.5268	 0.7096	 0.6624	 0.0153	 -0.2508	 -0.1107

	

2.2142*	 2.1308*	 2 . 8703*	 2.6795*	 0.0617	 -1.0146	 -0.4478

Mar 1984	 1.0751	 0.7927	 0.9321	 1.2872	 0.2916	 0.0793	 0.2918

	

3.5968*	 2.6521*	 3.1185*	 4.3065*	 0.9757	 0.2652	 0.9761

Jun 1984	 0.6948	 0.4467	 0.4708	 1.7912	 0.1397	 0.3658	 0.0270

	

1.8847	 1.2118	 1.2771	 4.8589*	 0.3790	 0.9922	 0.0732

Sep 1984	 0.6597	 0.8393	 0.4830	 1.8071	 0.4264	 -0.1167	 0.0099

	

2.2074*	 2.8084*	 1.6160	 6.0466*	 1.4266	 -0.3906	 0.0332

Dec 1984	 0.8857	 0.6342	 0.5020	 0.5622	 -0.2685	 -0.3971	 -0.1114

	

2.9857*	 2.1377*	 1.6921	 1.8952	 -0.9051	 -1.3385	 -0.3755

Mar 1985	 0.3885	 1.3068	 1.2027	 0.7495	 0.1869	 -0.0961	 -0.0775
	0.9581	 3.2232*	 2.9666*	 1.8487	 0.4611	 -0.2370	 -0.1913

Jun 1985	 1.0669	 1.7037	 0.3050	 1.5473	 0.6114	 0.1790	 0.2791

	

2.6043*	 4.1588*	 0.7446	 3.7771*	 1.4925	 0.4369	 0.6814

Sep 1985	 0.2798	 0.6792	 0.5233	 0.8807	 0.6780	 0.0885	 0.2392

	

0.9619	 2.3349*	 1.7989	 3.0277*	 2.3309*	 0.3043	 0.8224

Dec 1985	 0.4718	 0.7500	 0.8078	 0.5887	 0.2165	 -0.1276 -0.1421

	

1.8099	 2.8771*	 3.0986*	 2.2583*	 0.8305	 -0.4893	 -0.5449

Mar 1986	 0.6680	 0.7943	 0.9250	 0.8315	 0.3961	 0.2425	 0.2672

	

2.5726*	 3.0590*	 3 .5621*	 3.2023*	 1.5254	 0.9338	 1.0288

Jun 1986	 0.4788	 1.0622	 0.3724	 0.8236	 -0.1433	 0.0338 -0.0092

	

1.6300	 3.6164*	 1.2679	 2.8041*	 -0.4878	 0.1150	 -0.0314

Sep 1986	 1.0316	 0.5871	 0.2957	 1.0830	 1.2200	 0.4263	 0.2098

	

2.8548*	 1.6245	 0.8183	 2.9969*	 3.3760*	 1.1797	 0.5805

Dec 1986	 0.5720	 0.2525	 0.2839	 1.9642	 0.3590	 0.3546	 0.0148

	

1.6386	 0.7234	 0.8133	 5.6269*	 1.0284	 1.0159	 0.0425

Mar 1987	 0.0783	 0.0710	 0.3443	 0.8916	 0.3517	 0.4972 -0.1232

	

0.2578	 0.2335	 1.1330	 2.9340*	 1.1574	 1.6361	 -0.4053

Jun 1987	 0.5048	 0.8076	 1.3224	 2.7748	 0.0763	 0.2602	 0.2640

	

1.4373	 2.2994*	 3.7651*	 79ØØ3*	 0.2173	 0.7409	 0.75 15

* Significant at the five percent level.
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TABLE 3B

Coefficients and t-statistics of regression of squares of standardised residuals
(Method 2 adjustment) against various dummy variables, as per Equation (10).

Contract	 Ot+2	 °t+1	 °t-1	 °t-2	 °t-3

Sep 1983	 0.5156	 1.3869	 0.4683	 0.2340	 -0.0241	 -0.0905 -0.0052
	1.7598	 4•734Ø*	 1.5983	 0.7988	 -0.0824	 -0.3089	 -0.0179

Dec 1983	 0.5689	 0.5635	 0.7705	 0.3254	 -0.0259	 -0.2537 -0.1040

	

2.2928*	 2.2709*	 3.1054*	 1.3113	 -0.1044	 -1.0226	 -0.4189

Mar 1984	 1.0868	 0.8215	 0.9130	 1.1527	 0.3013	 0.0637	 0.2912

	

3.6341*	 2.7471*	 3.0528*	 3.8546*	 1.0075	 0.2131	 0.9736

Jun 1984	 0.7370	 0.4545	 0.5877	 0.2626	 0.1435	 0.5011	 0.0328

	

2.4870*	 1.5337	 1.9832*	 0.8860	 0.4842	 1.6910	 0.1108

Sep 1984	 0.6616	 0.6755	 0.2983	 0.1406	 0.0806	 -0.2717	 0.0237

	

2.2370*	 2.2840*	 1.0087	 0.4754	 0.2725	 -0.9 188	 0.0802

Dec 1984	 0.8916	 0.6415	 0.5634	 0.1099	 -0.3230	 -0.3818	 -0.1021

	

2.9896*	 2 . 1510*	 1.8894	 0.3684	 -1.0831	 -1.2802	 -0.3425

Mar 1985	 0.4013	 1.3560	 1.2575	 0.2183	 0.2027	 -0.0826 -0.0765

	

0.9817	 3.3169*	 3.0759*	 0.5339	 0.4958	 -0.2021	 -0.1872

Jun 1985	 1.1572	 1.8668	 0.3375	 0.5014	 0.6035	 0.2096	 0.3063

	

2.7803*	 4.4850*	 0.8109	 1.2046	 1.4500	 0.5035	 0.7358

Sep 1985	 0.2940	 0.7029	 0.5546	 0.2726	 0.5 129	 0.0499	 0.2423

	

0.9964	 2.3822*	 1.8796	 0.9237	 1.7381	 0.1692	 0.8211

Dec 1985	 0.4574	 0.7671	 0.8216	 0.3238	 0.0922	 -0.1763 -0.1779

	

1.7370	 2.9133*	 3 . 1202*	 1.2295	 0.3500	 -0.6695	 -0.6757

Mar 1986	 0.7075	 0.8458	 0.9852	 0.2881	 0.2561	 0.2074	 0.2725

	

2.6992*	 3.2265*	 3.7583*	 1.0992	 0.9771	 0.7913	 1.0395

Jun 1986	 0.4210	 0.9226	 0.2981	 0.9605	 -0.0709	 0.1079	 0.0344

	

1.4278	 3.1290*	 1.0109	 3.2577* -0.2404	 0.3661	 0.1167

Sep 1986	 1.2451	 0.7278	 0.3582	 0.0828	 0.6221	 0.2492	 0.1446

	

3.3486*	 1.9575	 0.9633	 0.2226	 1.6731	 0.6704	 0.3889

Dec 1986	 0.6764	 0.2254	 0.3018	 0.0580	 0.0910	 0.3449 -0.0126

	

2.0490*	 0.6826	 0.9143	 0.1758	 0.2755	 1.0449	 -0.0381

Mar 1987	 0.0716	 0.0927	 0.3890	 -0.1378	 -0.0348	 0.3582 -0.1938

	

0.2278	 0.2949	 1.2371	 -0.4382	 -0.1107	 1.1391	 -0.6163

Jun 1987	 0.6296	 (19041	 1.5589	 0.3296	 0.0623	 0.3503	 0.3488

	

1.9524	 2.8037*	 4.8343*	 1.0221	 0.1933	 1.0862	 1.0815

* Significant at the five percent level.



154

TABLE 3C

Coefficients and t-statistics of regression of squares of standardised residuals
(Method 3 adjustment) against various dummy variables, as per Equation (10).

Contract	 e t+3	 (+2	 t+1	 t	 t-1	 t-2	 t-3

Sep 1983	 0.5346	 1.3292	 0.4371	 0.2103	 -0.0464	 -0.1416 -0.0210
1.8388	 4.5715*	 1.5033	 0.7233	 -0.1594	 -0.4870	 -0.0722

Dec 1983	 0.5693	 0.5498	 0.7391	 0.1861	 0.0180	 -0.2608	 -0.1169
2.3074*	 2.2285*	 2.9955*	 0.7541	 0.0729	 -1.0568 -0.4737

Mar 1984	 1.1363	 0.8530	 0.9359	 0.3848	 0.3407	 0.0744	 0.3239
3.7260*	 2.7972*	 3.0688*	 1.2619	 1.1171	 0.2440	 1.0620

Jun 1984	 0.7503	 0.4475	 0.5630	 0.2550	 0.1407	 0.4477	 0.0269
2.5424*	 1.5162	 1.9077	 0.8641	 0.4766	 1.5171	 0.0910

Sep 1984	 0.7659	 1.0021	 0.5462	 0.2227	 0.4252	 -0.1332 -0.0020
2.6669*	 3 .4894*	 1.9020	 0.7754	 1.4807	 -0.4639 -0.0070

Dec 1984	 0.9031	 0.6493	 0.5445	 0.0721	 -0.3036	 -0.3947 -0.1112
3.0463*	 2.1901*	 1.8365	 0.2434	 -1.0240	 -1.3313	 -0.3751

Mar 1985	 0.4043	 1.3603	 1.2548	 0.2302	 0.1963	 -0.0940 -0.0804
0.9812	 3.3011*	 30449*	 0.5587	 0.4763	 -0.2282 -0.1951

Jun 1985	 1.1415	 1.8449	 0.3345	 0.5210	 0.6852	 0.2205	 0.3031
2.7616*	 4.4636*	 0.8092	 1.2606	 1.6576	 0.5334	 0.7333

Sep 1985	 0.2890	 0.6899	 0.5428	 0.3355	 0.6982	 0.0820	 0.2476
0.9843	 2.3501*	 1.8491	 1.1429	 2.3782*	 0.2792	 0.8435

Dec 1985	 0.4927	 0.7815	 0.8292	 0.1447	 0.2164	 -0.1280 -0.1479
1.8745	 2.9729*	 3.1546*	 0.5506	 0.8233	 -0.4868	 -0.5625

Mar 1986	 0.6911	 0.8315	 0.9687	 0.2915	 0.4149	 0.2506	 0.2844
2.6415*	 3.1780*	 3.7024*	 1.1141	 1.5859	 0.9579	 1.0871

Jun 1986	 0.5088	 1.1367	 0.3654	 0.1649	 -0.1500	 0.0302 -0.0161
1.7659	 3•945Ø*	 1.2682	 0.5722	 -0.5205	 0.1050 -0.0558

Sep 1986	 1.0839	 0.6148	 0.3078	 0.3461	 1.2772	 0.4456	 0.2299
2.9528*	 1.6748	 0.8386	 0.9429	 3•4795*	 1.2138	 0.6264

Dec 1986	 0.6594	 0.2319	 0.3071	 0.1038	 0.3368	 0.3971	 0.0019
2.0225*	 0.7114	 0.9421	 0.3184	 1.0332	 1.2179	 0.0057

Mar 1987	 0.0707	 0.0780	 0.3634	 0.0046	 0.3721	 0.5290 -0.1418
0.2287	 0.2524	 1.1759	 0.0150	 1.2041	 1.7118	 -0.4589

Jun 1987	 0.625 1	 1.0059	 1.5265	 0.2878	 0.0441	 0.2342	 0.2004
2.0059*	 3.2277*	 4.8978*	 0.9235	 0.1414	 0.7514	 0.6429

* Significant at the five percent level.
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TABLE 3D

Coefficients and t-statistics of regression of squares of standardised residuals
(Method 4 adjustment) against various dummy variables, as per Equation (10).

Contract	 Ot+2	 ®t+1	 °t-1	 0t_2	 8t-3
Sep 1983	 0.3727	 0.9437	 0.3354	 0.2287	 0.6148	 0.0920	 0.2231

	

1.4163	 3.5860*	 1.2746	 0.8692	 2.3364*	 0.3495	 0.8480

Dec 1983	 0.3501	 0.3451	 0.4570	 0.2101	 0.7370	 -0.0628	 0.1015

	

1.3798	 1.3598	 1.8010	 0.8281	 2.9043*	 -0.2475	 0.4000

Mar 1984	 0.9926	 0.7275	 0.8358	 0.3990	 0.5682	 0.2022	 0.4485

	

3.2969*	 2.4162*	 2.7762*	 1.3254	 1.8873	 0.6717	 1.4896

Jun 1984	 0.7477	 0.4474	 0.5625	 0.258 1	 0.1728	 0.4556	 0.0282

	

2.5340*	 1.5163	 1.9063	 0.8748	 0.5857	 1.5440	 0.0955

Sep 1984	 0.5799	 0.7341	 0.3189	 0.2318	 0.8177	 0.0817	 0.1462

	

2.0801*	 2.6333*	 1.1439	 0.8313	 2.9331*	 0.2929	 0.5246

Dec 1984	 0.7480	 0.6548	 0.7192	 0.2116	 0.3920	 -0.0842	 0.1020

	

2.4748*	 2.1664*	 2.3795*	 0.7001	 1.2969	 -0.2787	 0.3375

Mar 1985	 0.2140	 0.9537	 0.8404	 0.2527	 0.7331	 0.1837	 0.1016

	

0.5836	 2.6004*	 2.2915*	 0.6890	 1.9988*	 0.5010	 0.2771

Jun 1985	 0.9539	 1.4121	 0.2962	 0.5112	 1.1320	 0.4475	 0.4958

	

2.6441*	 3.9144*	 0.8210	 1.4171	 3.1378*	 1.2406	 1.3745

Sep 1985	 0.3180	 0.7386	 0.5713	 0.3214	 -0.2229	 0.0996	 0.2560

	

1.1133	 2.5860*	 2.0001*	 1.1254	 -0.7802	 0.3487	 0.8962

Dec 1985	 0.4801	 0.7477	 0.7976	 0.1865	 0.4451	 -0.0215 -0.0758

	

1.8445	 2.8725*	 3.0640*	 0.7165	 1.7100	 -0.0824	 -0.2913

Mar 1986	 0.7054	 0.8446	 0.9835	 0.2817	 0.2729	 0.2112	 0.2735

	

2.6914*	 3.2226*	 3.7526*	 1.0747	 1.0411	 0.8059	 1.0435

Jun 1986	 0.3450	 0.8092	 0.1903	 0.1867	 0.1842	 0.3244	 0.1794

	

1.2045	 2.8253*	 0.6644	 0.6517	 0.6432	 1.1325	 0.6265

Sep 1986	 1.2442	 0.7058	 0.3489	 0.2684	 0.3475	 0.1565	 0.1243

	

3.3484*	 1.8996	 0.9391	 0.7223	 0.9351	 0.4211	 0.3345

Dec 1986	 0.6772	 0.2287	 0.3082	 0.0749	 0.0305	 0.3454 -0.0099

	

2.0502*	 0.6923	 0.933 1	 0.2267	 0.0923	 1.0455	 -0.0300

Mar 1987	 0.0713	 0.0856	 0.3910	 -0.0645	 -0.1706	 0.2835 -0.2083

	

0.2269	 0.2726	 1.2446	 -0.2054	 -0.5430	 0.9023	 -0.6631

Jun 1987	 0.6179	 0.9996	 1.5181	 0.2970	 0.1272	 0.2687	 0.2109

	

1.9909*	 3.2206*	 4.8912*	 0.9569	 0.4099	 0.8657	 0.6795

* Significant at the five percent level.
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TABLE 4

Log-likelihood values and diagnostic tests of Equation (11).

C ntract	
likelihood	 Q(1O)	 Q2(1O)

Sep 1983	 782.211	 12.990	 5.193

Dec 1983	 1013.414	 11.589	 6.277

Mar 1984	 897.383	 7.090	 2.589

Jun 1984	 846.115	 9.689	 19.393

Sep 1984	 856.441	 13.797	 8.737

Dec 1984	 906.474	 8.270	 4.378

Mar 1985	 836.918	 17.749	 7.136

Jun 1985	 1203.209	 14.126	 11.237

Sep 1985	 1147.181	 14.131	 2.831

Dec 1985	 1114.249	 12.308	 10.152

Mar 1986	 842.942	 10.215	 11.372

Jun 1986	 8 14.994	 22.500	 12.768

Sep 1986	 799.272	 12.690	 8.663

Dec 1986	 826.310	 6.549	 3.041

Mar 1987	 801.422	 4.781	 12.845

Jun 1987	 591.432	 5.588	 7.911

Note: Q(10) and Q2(10) denote the Ljung-Box (1978) test for up to 10th-order serial
correlation in the standardised residuals and squares of standardised residuals
respectively. Under the null hypothesis of no serial correlation, the test statistic is
distributed as a chi-square with 10 degrees of freedom. Critical values at the 1 and
5 percent significance level are 23.209 and 18.307 respectively.
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TABLE 5A

Coefficients and t-statistics of regression of standardised residuals from
Equation (11) against various dummy variables, as per Equation (10).

Contract	 0t3	 9t+2	 °t+1	 0t	 °t-i	 8t-2	 °t-3

Sep 1983	 -0.01 14	 -0.0933	 -0.0140	 -0.0853	 0.0009	 -0.2603	 -0.0656
	-0.0729	 -0.5943	 -0.0894	 -0.5435	 0.0056	 -1.6581	 -0.4178

Dec 1983	 -0.0128	 -0.0023	 0.0364	 0.0146	 0.0101	 0.0478	 0.0256
	-0.08 18	 -0.0148	 0.2321	 0.0929	 0.0644	 0.3048	 0.1629

Mar 1984	 -0.0713	 -0.0305	 -0.0343	 -0.0456	 -0.0038	 -0.0363	 0.0650

	

-0.4515	 -0.1930	 -0.2172	 -0.2886	 -0.0243	 -0.2297	 0.4118

Jun 1984	 -0.0076	 -0.0103	 -0.0059	 -0.0582	 -0.0040	 -0.0267 -0.0286

	

-0.0470	 -0.0638	 -0.0367	 -0.3613	 -0.0250	 -0.1658	 -0.1775

Sep 1984	 -0.0688	 -0.0078	 -0.0825	 0.0733	 -0.0128	 -0.0189	 -0.0320

	

-0.4586	 -0.0520	 -0.5498	 0.4885	 -0.0853	 -0.1258	 -0.2133

Dec 1984	 -0.0803	 -0.0531	 -0.0337	 -0.1155	 -0.0552	 -0.0643 -0.0539
	-0.5158	 -0.3413	 -0.2163	 -0.7419	 -0.3545	 -0.4132	 -0.3460

Mar 1985	 -0.0311	 -0.0311	 -0.0311	 -0.0311	 -0.0311	 -0.0311	 -0.0310

	

-0.1876	 -0.1877	 -0.1873	 -0.1878	 -0.1874	 -0.1877	 -0.1872

Jun 1985	 0.0048	 -0.0360	 -0.0627	 -0.0240	 -0.0347	 -0.0680 -0.0198

	

0.0319	 -0.2404	 -0.4186	 -0.1599	 -0.2317	 -0.4540 -0.1318

Sep 1985	 -0.0366	 -0.0367	 -0.0397	 -0.0536	 -0.0411	 -0.0140 -0.0298

	

-0.2323	 -0.2329	 -0.2518	 -0.3398	 -0.2604	 -0.0891	 -0.1892

Dec 1985	 -0.0795	 -0.0052	 -0.1149	 0.0046	 -0.0425	 -0.0852 -0.0630

	

-0.5405	 -0.0356	 -0.78 15	 0.03 10	 -0.2893	 -0.5794	 -0.4285

Mar 1986	 0.0016	 -0.0132	 -0.0249	 -0.0042	 0.0153	 -0.0127	 0.0041

	

0.0106	 -0.0889	 -0.1680	 -0.0284	 0.1032	 -0.0855	 0.0275

Jun 1986	 -0.0191	 -0.0607	 -0.0331	 -0.0242	 -0.0340	 -0.0684 -0.0761

	

-0.1299	 -0.4121	 -0.2245	 -0.1644	 -0.2305	 -0.4641	 -0.5167

Sep 1986	 0.0491	 0.1630	 0.0837	 0.0728	 0.1392	 0.0548	 0.0696

	

0.3343	 1.1092	 0.5693	 0.4957	 0.9468	 0.3730	 0.4733

Dec 1986	 0.0405	 -0.0424	 -0.0812	 -0.0408	 -0.0448	 -0.1043 -0.4200

	

0.2778	 -0.2910	 -0.5570	 -0.2798	 -0.3073	 -0 .7155	 2.8814*

Mar 1987	 0.0198	 -0.0743	 0.0938	 0.0578	 -0.0022	 -0.1443 -0.0141

	

0.1335	 -0.5014	 0.6331	 0.3902	 -0.0151	 -0.9733	 -0.0948

Jun 1987	 -0.0987	 -0. 1238	 -0. 1462	 -0.2903	 -0 .0655	 -0. 1091	 -0.0903

	

-0.6644	 -0.8333	 -0.9839	 -1.9535	 -0.4407	 -0.7341	 -0.6073

* Significant at the five percent level.
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TABLE 5B

Coefficients and t-statistics of regression of squares of standardised residuals
from Equation (11) against various dummy variables, as per Equation (10).

Contract	 8	 8
1+3	 t+2	 r+1	 e	 t-1	 1-2	 t-3

Sep 1983	 0.2050	 0.1969	 0.2223	 0.1185	 0.1071	 0.3841	 0.3286

	

0.7877	 0.7568	 0.8542	 0.4553	 0.41 16	 1.4761	 1.2628

Dec 1983	 0.0781	 0.0954	 0.0928	 0.1042	 0.0268	 0.2192	 0.2570

	

0.3177	 0.3882	 0.3775	 0.4240	 0.1091	 0.8917	 1.0454

Mar 1984	 0.1865	 0.2255	 0.3779	 0.1985	 0.1045	 0.1195	 0.3413

	

0.6599	 0.7979	 1.3371	 0.7026	 0.3698	 0.4230	 1.2078

Jun 1984	 0.2512	 0.2979	 0.2674	 0.2551	 0.2232	 0.2421	 0.3936

	

0.8037	 0.9534	 0.8558	 0.8164	 0.7144	 0.7746	 1.2594

Sep 1984	 0.0701	 -0.0132	 0.0484	 0.0200	 0.1844	 -0.1021	 0.0033

	

0.2654	 -0.0499	 0.1833	 0.0757	 0.6982	 -0.3866	 0.0124

Dec 1984	 -0.1763	 -0.1790	 -0.1217	 -0.1377	 -0.2415	 -0.2168 -0.2066

	

-0.6359	 -0.6455	 -0.4391	 -0.4967	 -0.8712	 -0.7821	 -0.7453

Mar 1985	 -0.0415	 -0.0415	 -0.0416	 -0.0416	 -0.0417	 -0.0418	 -0.0040

	

-0.1283	 -0.1284	 -0.1286	 -0.1287	 -0.1291	 -0.1294	 -0.0122

Jun 1985	 0.3582	 0.3 108	 0.3025	 0.3332	 0.2730	 0.2668	 0.3445

	

1.1222	 0.9737	 0.9479	 1.0437	 0.8551	 0.8359	 1.0791

Sep 1985	 0.3693	 0.3396	 0.3571	 0.3232	 0.3106	 0.3026	 0.5991

	

1.2625	 1.1609	 1.2208	 1.1047	 1.0617	 1.0345	 2.0479*

Dec 1985	 -0.1027	 -0.0756	 0.0097	 -0.0548	 -0.0692	 -0.1501 -0.2397

	

-0.3832	 -0.2822	 0.0363	 -0.2043	 -0.2581	 -0.5601	 -0.8940

Mar 1986	 0.0129	 0.0482	 0.1125	 0.0551	 0.0183	 0.0124	 0.0303

	

0.0470	 0.1752	 0.4089	 0.2002	 0.0664	 0.0451	 0.1103

Jun 1986	 0.1776	 0.1190	 0.2137	 0.0850	 0.0671	 0.1458	 0.0408

	

0.5987	 0.4010	 0.7203	 0.2864	 0.2262	 0.4916	 0.1375

Sep 1986	 0.0 133	 0.0034	 -0.0005	 0.0649	 0.0496	 -0.0535	 0.0630

	

0.0454	 0.01 17	 -0.0016	 0.2223	 0.1697	 -0.1833	 0.2155

Dec 1986	 -0.0707	 -0.0549	 -0.0950	 -0.1308	 -0.1272	 -0.1058 -0.1852

	

-0.2098	 -0.1630	 -0.2821	 -0.3883	 -0.3776	 -0.3140	 -0.5498

Mar 1987	 0.0887	 0.0159	 -0.0991	 -0.1374	 -0.0782	 -0.1631	 -0.0642

	

0.2853	 0.0510	 -0.3188	 -0.4419	 -0.2515	 -0.5247	 -0.2065

Jun 1987	 0.1380	 0.18 11	 0.1793	 0.1211	 0.1348	 0.0014	 0.2785

	

0.5144	 0.6752	 0.6684	 0.4515	 0.5024	 0.0051	 1.0382

* Significant at the five percent level.
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TABLE 6A

Coefficients and robust t-statistics of dummy variables in the mean equation of Equation (11),
estimated by means of quasi-maximum likelihood (Bollerslev and Wooldridge, 1992).

Contract	 11t-1	 1i-2

Sep 1983	 0.0341	 0.0637	 -0.0454	 0.1046	 -0.0254	 0.0242	 0.0042

	

1.0980	 1.3494	 -1.0960	 2.3978*	 -0.8321	 1.3976	 0.1395

Dec 1983	 0.0187	 0.0275	 -0.0075	 -0.0018	 -0.0041	 -0.0160	 0.0095
	0.5291	 0.8161	 -0.1177	 -0.0316	 -0.1056	 -0.6168	 0.2982

Mar 1984	 -0.0287	 0.0251	 -0.0354	 0.0669	 0.0446	 -0.0149 -0.0199

	

-1.1825	 0.8850	 -1.2687	 2.1790*	 1.8425	 -0.7028	 -0.9613-

Jun 1984	 0.0447	 0.0001	 -0.0023	 0.0255	 0.0039	 -0.0712	 0.0024

	

1.6624	 0.0064	 -0.0859	 0.8410	 0.1646	 3.0804*	 0.1381

Sep 1984	 0.0235	 -0.0049	 -0.0802	 -0.0343	 0.0 155	 -0.0164 -0.0700

	

0.8448	 -0.1753	 1.9633*	 -0.9911	 0.6309	 -0.7293	 3.1458*

Dec 1984	 -0.0370	 -0.0686	 0.0350	 0.0784	 0.0038	 -0.0113 -0.0051

	

-1.1060	 2.0511*	 0.9842	 2.1136*	 0.1557	 -0.5655	 -0.2206

Mar 1985	 0.0249	 0.0260	 -0.0267	 0.0057	 0.0346	 -0.0101	 0.0607

	

0.8818	 0.6746	 -0.7155	 0.1689	 1.3672	 -0.4710	 2.9028*

Jun 1985	 -0.0 129	 0.0286	 0.0070	 0.06 12	 -0.0023	 0.0052 -0.0062

	

-0.5228	 1.0451	 0.3871	 2.2125* -0.1033	 0.3098	 -0.3822

Sep 1985	 0.0174	 -0.0462	 0.0145	 0.0348	 0.0049	 -0.0161	 -0.0031

	

1.1476	 2.3585*	 0.9001	 1.5414	 0.2389	 -0.7881	 -0.1652

Dec 1985	 -0.0071	 0.0126	 0.0127	 0.0173	 0.0070	 -0.0055	 0.0001

	

-0.3005	 0.4857	 0.4568	 0.6570	 0.3 126	 -0.2972	 0.0025

Mar 1986	 0.0072	 0.0481	 0.0324	 0.0431	 0.0178	 -0.0006	 0.0387

	

0.1763	 1.4757	 0.6061	 1.2125	 0.5611	 -0.0206	 1.3698

Jun 1986	 0.0571	 0.0487	 0.0151	 0.0685	 0.0157	 0.0217 -0.0258

	

1.8173	 1.2186	 0.4556	 1.8356	 0.5826	 0.7549	 -0.8840

Sep 1986	 -0.0294	 0.0471	 -0.0738	 0.0042	 -0.0318	 -0.0175	 0.0752

	

-0.9978	 1.5683	 2.8009*	 0.1310	 -0.8412	 -0.5759	 3.1463*

Dec 1986	 -0.0297	 0.0008	 0.0339	 -0.0608	 0.0833	 -0.0054	 0.0456

	

-0.8289	 0.0259	 0.9061	 -1.6449	 2.6998* -0.1753	 1.0451

Mar 1987	 -0.0254	 0.0267	 -0.0748	 0.0146	 0.0085	 0.0157 -0.0167

	

-0.8115	 0.7700	 2.0050*	 0.3655	 0.2354	 0.3958	 -0.5697

Jun 1987	 0.0377	 -0.0382	 0.0329	 0.185 1	 0.0253	 -0.0056	 0.0826

	

0.7976	 -0.7136	 0.4534	 2.2677*	 0.4977	 -0.1472	 2.6018*

* Significant at the five percent level.
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TABLE 6B

Coefficients and robust t-statistics of dummy variables in the variance equation of Equation (11),
estimated by means of quasi-maximum likelihood (Bollerslev and Wooldridge, 1992).

Contract	 3	 t+1	 I	 I-1	 t-2	 t-3

Sep 1983	 0.0059	 0.0359	 -0.0367	 0.1184	 -0.1460	 -0.0231	 0.0041

	

1.0232	 2.6545*	 5 .2309*	 2 . 8992*	 4.1843* .5Ø355*	 1.3578

Dec 1983	 0.0082	 -0.0015	 0.0054	 -0.0015	 -0.0208	 -0.0212	 0.0041

	

0.0678	 -0.0086	 0.7161	 -0.0167	 -0.5273	 -0.3222	 0.4586

Mar 1984	 0.0327	 -0.0055	 -0.0003	 0.0199	 -0.0297	 -0.0071	 0.0024

	

79354* -1.7436	 -0.0987	 4.0512*	 4.7861* -1.5548	 0.5494

Jun 1984	 0.0171	 -0.0058	 -0.0012	 0.0561	 -0.0567	 0.0009 -0.0133

	

1.5548	 -0.4624	 -0.0920	 1.7023	 _1.9803*	 0.1138	 1.9913*

Sep 1984	 0.0285	 0.0188	 -0.0270	 0.0857	 -0.0844	 -0.0128 -0.0030

	

2.2608*	 0.7297	 -0.9749	 2.8300* _3.5635* -1.1174 -0.4763

Dec 1984	 0.0465	 0.0039	 0.01 17	 0.0103	 -0.0403	 -0.0085	 0.0086

	

3.6448*	 0.2677	 0.4465	 0.3825	 2.4124* -1.3940	 1.5723

Mar 1985	 0.0162	 0.0494	 0.0320	 0.0150	 -0.0032	 -0.0062 -0.0052

	

1.8046	 2.4983*	 0.8604	 0.5857	 -0.2270	 -0.7824	 -0.8772

Jun 1985	 0.0206	 0.0389	 0.0022	 0.0326	 0.0120	 0.0007	 0.0009

	

3 .0133*	 1.8027	 0.4632	 4.7456*	 2.0656*	 0.1617	 0.2591

Sep 1985	 -0.0048	 0.0061	 -0.0019	 0.0081	 -0.0036	 -0.0146 -0.0031

	

-0.9083	 1.1265	 -0.3051	 0.8594	 -0.4961	 2.5156* -0.8520

Dec 1985	 0.0171	 0.0113	 0.0065	 0.0009	 -0.0065	 -0.0073	 0.0022

	

2.9263*	 1.8951	 2.3235*	 0.1736	 2.5983* -0.7967	 0.4458

Mar 1986	 0.0368	 0.0416	 0.0537	 0.0453	 0.0239	 0.0136	 0.0118

	

2.1065*	 3.1618*	 2.3263*	 2.8906*	 2.0633*	 1.4561	 0.7114

Jun 1986	 0.0142	 0.0406	 -0.0423	 0.0342	 -0.0507	 0.0043 -0.0012

	

0.7575	 1.9066	 2.1748*	 1.4055	 2.3175*	 0.3433	 -0.1334

Sep 1986	 0.0596	 0.0023	 -0.0078	 0.0578	 0.0470	 -0.0175 -0.0157

	

1.5294	 0.0757	 -0.5819	 2.5977*	 1.3000	 -0.6467	 -1.1204

Dec 1986	 0.0336	 0.0070	 0.0158	 0.1155	 0.0049	 0.0245	 0.0104

	

2 . 1767*	 0.4306	 1.0576	 3.6965*	 0.3857	 2.3460*	 0.7215

Mar 1987	 0.0010	 0.0076	 0.0254	 0.0459	 -0.0289	 0.0287 -0.0444

	

0.0846	 0.7708	 1.6223	 1.8768	 -1.2426	 1.4546	 -1.8608

Jun 1987	 0.0474	 0.0522	 0.1079	 0.2206	 -0.2730	 0.0 142 -0.0248

	

2.2304*	 1.3753	 1.3054	 2.1373*	 2 .4567*	 0.7298	 -1.6240

* Significant at the five percent level



CHAPTER 6

CONCLUDING REMARKS

1.	 SALIENT CONCLUSIONS

In a relatively short span of time, ARCH models have grown from being an obscure

econometric alternative to an almost universally accepted technique for modeffing

fmancial time series. Unlike some other modelling techniques, which seldom fmd

their way out of the academic world into the practitioner's world, ARCH models are

gaining acceptance as useful methods for predicting changes in volatility. In fact, an

article in Euromoney term them as "a revolution in techniques ... to address the

problems created by changing volatility in the prices of financial assets"

This dissertation serves to extend the current literature on ARCH models in various

directions. First, it explore empirically the volatility structure as proposed by

different versions of these models. Second, it employs these models to investigate

various related dynamics, namely trading and nontrading volatility, and volatility and

volume relationship. Finally, in the absence of theoretical models of volatility, it

suggests a framework in which such models can be applied to empirical research.

The findings of this dissertation can be summarised as follows:

1 "The Search for a Better Model of Volatility" by Martin Brookes, Euromoney, March 1993.
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(1) ARCH models are generally good descriptions of the temporal variation in

volatility. Over the 20 year period that we have examined, we do not find

evidence of misspecification in the models, despite using it for out-of-sample

predictions. This indicates that ARCH models are unbiased estimators of the

actual variance.

(2) The choice of a conditional normal distribution appears to be inadequate for

the models that we have examined. This is because the standardised residuals

still exhibit skewness and kurtosis that are significantly different from normal.

(3) The stock returns appear to display some asymmetry in volatility. As a result,

models that account for this asymmetric effect have significantly higher log-

likelihood values.

(4) The recent diagnostic test introduced by Engle and Ng (1993) appears to have

low power to distinguish between the various parametric ARCH models that

we have investigated.

(5) The performance of the ARCH models are not consistent across time, since

certain models perform better than others in one period, but not in another

period. Their performance also do not appear to be size related.
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(6)	 Superior performance appears to be related to the ability to predict large

volatility shocks. The choice of a benchmark that gives greater weight to

predicting smaller shocks results in similar prediction performances.

(7) The volatility shocks of large companies appear to affect the future volatility

of small companies, but the opposite effect is not present.

(8) There are also differences between trading and nontrading shocks. Trading

shocks appear to have a more pronounced effect on future volatility than

nontrading shocks. This suggest that volatility is related to the trading

activities of informed investors.

(8)	 Volatility shocks appear to be related to contemporaneous changes in trading

volume rather than volume levels. This fmding is not inconsistent with the

information models that relate stock prices to volume, since changes in levels

can be interpreted as a proxy for new information.

(9) A simple modification to the standard GARCH model that incorporate this

joint volatility-volume relationship is proposed. This model appears to

perform better than the standard GARCH model.
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(10) Financial data is often contaminated by imperfections, such as holidays,

weekends, calendar effects etc. Given the dynamic nature of ARCH models,

failure to account for these effects may lead to incorrect inferences.

(11) Our examination of some of the current methods of adjusting for nontrading

effects reveals that they are inadequate.

(12) A simple diagnostic test to detect omitted dummy variables in the conditional

mean and variance equation is proposed. It is suggested that this more

objective test be used instead of ad hoc adjustments.

(13) Using intraday futures data, our analysis of the behaviour of conditional

volatility around a nontrading period reveals a pattern similar to that of

unconditional volatility. Conditional volatility appears to increase prior to

market closure, with the greatest increase occurring when the market is

closed. Once the market reopens, a downward shift in conditional volatility

is observed.

2. GENERAL DIRECTIONS FOR FUTURE RESEARCH

As far as modelling techniques go, ARCH models are still relatively young in terms

of chronological age. Despite their youthfulness, ARCH models have gained almost
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universal acceptance in the academic community. Nevertheless, significant progress

can still be made in various areas. We identify them along the following lines:

(a) Theoretical specifications of ARCH models

(b) Empirical specifications of ARCH models

(c) Applications of ARCH models

2.1 Theoretical Specifications of ARCH Models

In Chapter 2, we have illustrated how easy it is to combine salient features from

different specifications into a more general model. Indeed, one can look upon this

as a search for a "better model of volatility" 2. Unfortunately, traditional economic

theories fail to provide any guiding principles. In spite of this, there are several

potential aspects which merit some investigation.

The first comes from the literature on stochastic volatility. Several papers have

recently attempted to reinterpret ARCH models as approximations of continuous time

processes (see Nelson, 1990, and Bollerslev, Engle, and Nelson, 1993). Generally,

stochastic volatility models are algebraically more tractable but computationally less

feasible. Establishing a link between the two not only increases our understanding

of the dynamics of asset prices, but has practical implications as well (for example

in computing forecasts of volatility).

2 See Footnote (1) of this Chapter.



166

The second area worth exploring is in the incorporation of specific regularities of

financial data. A notable example is the leverage effect, which has motivated various

asymmetric models such as EGARCH, TGARCH and QGARCH. We could think

of one other regularity: conditional skewness. It is generally accepted that investors

prefer a skewed distribution. Future research could focus on how to meaningfully

model conditional third (or even higher) moments.

Another potential research topic concerning the theoretical specification of ARCH

models lies in the cross-sectional properties of ARCH models. A well known fact

from portfolio theory is that the unconditional variance of a portfolio is usually less

than the sum of the unconditional variance of the constituent securities. It remains

to be seen if this property carries over to the conditional distribution. We believe

that this can be important, especially in hedging decisions.

2.2 Empirical Specification of ARCH Models

A researcher using ARCH models in empirical work is often required to make

judgment calls regarding the empirical specification of the model. Depending on the

purpose of the research, a wrong specification may or may not be important. For

example, if one is using the model to forecast volatility, in most cases, the forecast

will still be accurate, despite the model being misspecified (Nelson, 1992a). On the

other hand, if the model is used to infer the significance of a variable, a misspecified

model (either in the mean/volatility equation or in the choice of the distribution) may
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lead to an incorrect inference. Given the contaminations of financial data, this further

complicates matter. In light of this, investigating the properties of ARCH models and

introducing new diagnostic tests represent an avenue for future research.

2.3 Applications of ARCH Models

Perhaps the biggest potential of ARCH models lies in its empirical applications.

Chapter 3 of this dissertation uses a conditional volatility model to explore the

dynamics of volatility between large and small firms, and between nontrading and

trading periods. Similar techniques can be used to explore other relationships. We

cite two potential area of applications.

First, ARCH models can be used to investigate situations in which information flow

is expected to affect future pricing dynamics. For example, earnings announcements

may affect the volatility of the stock and induce persistence in the variance. The use

of ARCH models will allow one to dynamically infer whether or not the

announcement is anticipated.

Second, we can use ARCH models to examine volatility dynamics. Antoniou and

Foster (1992) use the GARCH model to examine the impact of futures trading on the

volatility of the underlying asset; Cheung and Ng (1990) examine the lead-lag

relationship in volatility between futures contract and the underlying asset with a

GARCH model. Other relationships that can be explored include the lead-lag
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relationship between the volatility in options market and the volatility of the

underlying asset, the intraday pricing dynamics of different assets and their

interrelationships, the relationship between conditional volatility of an index and the

conditional volatility of the constituent of the index, etc. Given the ease in which

ARCH models can be implemented, the list here is limited only by one's imagination.

3.	 EXTENSIONS OF DISSERTATION

In the previous section, we suggest some general directions for future research in

conditional volatility. In this section, we identify specific areas for future research

arising from this dissertation.

a) In Chapter 2, we compare the performance of various parametric ARCH

specifications in modelling and forecasting volatility. However, there are

other measures of volatility (e.g. historical volatility, implied volatility etc)

which could potentially offer similar performance. It would be interesting

therefore to compare the performance of ARCH models in relation to these

alternative measures of volatility.

b) Our comparison of the performance of ARCH models uses daily UK stock

returns data. It is not inconceivable that some models will perform better

using higher (or lower) frequency data than other models. One may therefore
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wish to compare the performance of the different ARCH specifications in

relation to the frequency of the dataset.

c) Another area which merits investigation is the performance of the different

ARCH specifications in forecasting volatility. Certain models may be better

at forecasting short-term volatility, while other models may be better at

forecasting medium or long-term volatility.

d) Chapter 3 documents an asymmetric predictability in the daily conditional

volatilities of firms of different sizes. One may also wish to look at the

extent of this predictability in intradaily (e.g. hourly, half-hourly etc)

conditional volatilities.

e) The results of Bollerslev and Domowitz (1991) show that the trade execution

process can significantly alter the intertemporal patterns in volatility. An

extension of Chapter 3 can be made by looking at the relationship between

the trade execution process and the degree of asymmetric predictability in the

conditional variances.

f) The trade execution process can also affect the relationship between volatility

and volume. In that respect, the results of Chapter 4 may be applicable only

to a quote-driven trading system, as opposed to an order-driven trading

system. It would therefore be interesting to compare the empirical
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relationship between volatility and volume across different markets with

alternative trading mechanisms.

g) Given that volatility and volume are jointly determined, Chapter 4 can be

extended by using techniques that simultaneously estimate both the volatility

and volume parameters (e.g. VAR, multivariate GARCH etc).

h) The test developed in Chapter 5 can be applied to examine the conditional

volatility of asset returns surrounding specific macroeconomic and

microeconomic events, such as announcements of interest rates changes,

earnings announcements, introduction and expiration of options and futures

contracts etc.
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