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Abstract

In this thesis we consider two fundamental flow problems, the Stokes problem

and flow in a slowly-varying channel, for complex fluids. Specifically, we in-

vestigate these problems for thixotropic and antithixotropic fluids described by

Mewis and Wagner’s [Advances in Colloid and Interface Science, 147-148, 214–227

(2009)] general structure parameter model together with a version of the con-

stitutive law proposed by Moore [Transactions and Journal of the British Ceramic

Society, 58, 470–494 (1959)]. In certain limits, this model reduces to the gener-

alised Newtonian power-law model, which we also consider.

In chapters 2 and 3 we consider the Stokes problem for power-law, and thix-

otropic and antithixotropic fluids, respectively. Our main motivation for study-

ing the Stokes problem is to investigate the interplay between the timescales of

the fluid response and the forcing. Therefore, the emphasis of our investiga-

tions is on the periodic oscillatory behaviour of the systems, rather than on the

transient initial phase during which the system adjusts to the attracting periodic

solution.

In chapter 4 we consider the two-dimensional flow of a thixotropic or anti-

thixotropic fluid along a slowly-varying channel. Although previous studies

have considered similar geometries, ours appears to be the first systematic de-

velopment of a thin-film theory for a thixotropic or antithixotropic fluid. Like

the conventional lubrication approach for a Newtonian fluid, our approach is

iii



based on an asymptotic expansion in powers of the aspect ratio δ in the limit

δ → 0. Under appropriate assumptions concerning the Reynolds number and

the dimensionless structure response rates, we obtain the governing equations

for the velocity, pressure and structure parameter up to O(δ). In contrast to the

Newtonian case, the lubrication equations include terms at O(δ), and it is at this

order that thixotropic and antithixotropic effects occur.
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Chapter 1

Introduction

1.1 What are non-Newtonian fluids?

This thesis concerns non-Newtonian fluids. In this section we will give a qual-

itative introduction to non-Newtonian fluids; we will then make these qualita-

tive ideas more precise in section 1.2. Fluids can be defined as either Newtonian

or non-Newtonian depending on how they behave when deformed. Newton-

ian fluids have shear stress which is proportional to the shear rate. Although

no fluid can be described exactly by the Newtonian model, it is a very good

approximation for many fluids, including water and air (Barnes et al. 1989).

In contrast, other common fluids, such as tomato sauce and colloidal sus-

pensions for example muds, change their physical properties when subjected to

shear and are therefore non-Newtonian fluids. When tomato sauce (see figure

1.1 a) is shaken it gets “runnier”, i.e. its viscosity decreases, but it eventually

returns to its original state, i.e. its viscosity increases, when the bottle is put

back on the shelf. Cornflour solution behaves in the opposite manner and be-

comes very “sticky” when a high shear is applied; however, its viscosity starts

to decrease when the shear stops (see figure 1.1 b). So running over a cornflour

1



CHAPTER 1 2

(a) (b)

Figure 1.1: (a) Tomato sauce and mayonnaise with kind permission
from Joe Brooker (see http://www.flickr.com/photos/9107386@N06
/4470879909/). (b) Cornflour solution, with kind permission from Nicole
Walshe and Christine Conroy (see http://www.nuigalway.ie/chemist
ry/kitchenchemistry/experiments/nonnewtonian.html).

solution increases the viscosity of the solution enough to support a person’s

weight, whereas dipping a hand into the solution does not. Thus, cornflour so-

lution can be used in the popular trick of “walking on water” 1. Fluids such as

tomato sauce which show a decrease in their effective viscosity under shear are

known as shear-thinning fluids. Conversely, fluids such as cornflour solution

which show an increase in their effective viscosity under shear are known as

shear-thickening fluids.

These changes in non-Newtonian fluids depend on the behaviour of their

microstructure. Non-Newtonian fluids can have various kinds of microstruc-

ture, for example networks of flocculated colloidal particles, tangles of poly-

mers, or spatial arrangements of suspended particles or drops (Barnes 1997).

When subjected to high shear rates, the microstructure gradually breaks down

or builds up. For example, when shear is applied to a non-Newtonian fluid

made up of polymers, the polymers either “comb out” or tangle up, and the

1See www.youtube.com/watch?v=GkY2nT-3Glo
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fluid becomes less or more viscous.

We extend the definitions of shear-thinning and -thickening fluids to define

a thixotropic fluid to be a shear-thinning fluid whose structure takes a finite

time to relax to local conditions, and an antithixotropic (or rheopectic) fluid to

be a shear-thickening fluid which takes a finite time to relax to local conditions

(see, for example, Barnes 1997). Mewis andWagner (2009) state that it was only

relatively recently that agreement was reached on the definition of thixotropy:

thixotropic fluids should display a continuous decrease of viscosity with time

when flow is applied to a sample that has been previously at rest, and the subse-

quent recovery of viscosity in time when the flow is discontinued. The converse

holds for antithixotropy.

Shear-thinning and thickening behaviour are not the only non-Newtonian

effects. In particular, some fluids also exhibit viscoplasticity and/or viscoelas-

ticity.

Viscoplastic materials remain solid until the shear stress has reached a spe-

cific value, known as the yield stress, at which point the fluid begins to flow.

Common viscoplastic materials are toothpaste, mayonnaise and drilling mud

(Raju 2011).

A viscoelastic fluid displays both viscous and elastic behaviour. When stres-

ses are applied to a viscous material the material flows like a liquid. When

stresses are applied to a perfectly elastic material the material stretches but re-

turns to its original state when the stress is removed. Viscoelastic fluids display

a combination of these behaviours: the applied stresses are accommodated by

a combination of stretching and flowing. In this thesis, we will look at purely

thixotropic or antithixotropic fluids and neglect viscoplasticity and viscoelastic-

ity effects.
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1.2 Mathematical models of rheology

Rheology is the study of the deformation and flow of matter (Barnes, Hutton,

and Walters 1989): its name comes from the Greek word “rheos” meaning “to

flow”. We will set up the mathematical framework of rheology to make the

qualitative ideas introduced in section 1.1 more precise.

We start with the generalised Navier-Stokes momentum equation and we

use the summation convention throughout1,

ρ̂
Dûi

Dt̂
= − ∂

∂x̂i
p̂ +

∂

∂x̂j
τ̂ij , (1.1)

where τ̂ij is the deviatoric stress tensor, D/Dt̂ ≡ ∂/∂t̂ + û · ∇̂ is the convec-

tive derivative, û is the flow velocity with components ûi, ρ̂ is the density, p̂ is

the pressure and t̂ is time. (Here and throughout this thesis, unless otherwise

stated, carets denote dimensional quantities, while dimensionless quantities are

unadorned.) The task of a rheological model is to determine τ̂ij .

We now introduce the symmetrised shear rate tensor êij , the total shear rate

γ̇ and the shear stress τ̂ ,

êij =
∂ûi

∂x̂j
+

∂ûj

∂x̂i
, γ̇ =

√

1

2
êij êij and τ̂ =

√

1

2
τ̂ij τ̂ij . (1.2)

Using these quantities we can define shear–stress relations for specific models,

starting with the Newtonian model.

1When a suffix appears twice in any single term in an expression then it is implicitly

summed, e.g. ajbj =
∑

j

ajbj for any aj or bj .
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1.2.1 Newtonian fluids

For a Newtonian fluid, τ̂ij is defined by

τ̂ij = µ̂êij, (1.3)

where µ̂ is a scalar constant of proportionality, the Newtonian dynamic viscos-

ity. The kinematic viscosity ν̂ is related to µ̂ through the relation ν̂ = µ̂/ρ̂.

To illustrate the Newtonian model we consider how the shear–stress relation

simplifies in simple shearing flow between two parallel plates. The bottom plate

is stationary and the top plate moves unidirectionally. Let û1 = û(ŷ) and û2 =

0 = û3, where x̂1 = x̂, x̂2 = ŷ and x̂3 = ẑ. Therefore

êij =















0
dû

dŷ
0

dû

dŷ
0 0

0 0 0















(1.4)

and so

γ̇ =

√

√

√

√

1

2

(

(

dû

dŷ

)2

+

(

dû

dŷ

)2
)

=

∣

∣

∣

∣

dû

dŷ

∣

∣

∣

∣

. (1.5)

From equation (1.3)

τ̂ij =















0 µ̂
dû

dŷ
0

µ̂
dû

dŷ
0 0

0 0 0















(1.6)

and so

τ̂ = µ̂

∣

∣

∣

∣

dû

dŷ

∣

∣

∣

∣

. (1.7)
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We can see that the shear stress is proportional to the shear rate.

1.2.2 Generalised Newtonian fluids

The simplest type of non-Newtonian fluid model is the generalised Newtonian

model, in which the shear stress can be written as

τ̂ij = η̂(γ̇)êij , (1.8)

where η̂(γ̇) is the apparent viscosity.

The simplest non-Newtonian rheological model is the power-lawmodel (so-

metimes referred to as the Ostwald-deWaele model; see Chhabra 2010). Power-

law fluids are a particular type of shear-thinning or shear-thickening fluids for

which η̂ = µ̂nγ̇
n−1 and so equation (1.8) yields

τ̂ij = µ̂nγ̇
n−1êij, (1.9)

where µ̂n is the consistency parameter and n is the power-law exponent. The

value n = 1 recovers Newtonian rheology; values n < 1 correspond to shear-

thinning fluids; and values of n > 1 correspond to shear-thickening fluids.

To illustrate the power-law model we again consider simple shearing flow

as for a Newtonian fluid. The shear rate γ̇ is as in equation (1.5) and τ̂ij is given

by

τ̂ij =

















0 µ̂n

∣

∣

∣

∣

dû

dŷ

∣

∣

∣

∣

n−1
dû

dŷ
0

µ̂n

∣

∣

∣

∣

dû

dŷ

∣

∣

∣

∣

n−1
dû

dŷ
0 0

0 0 0

















. (1.10)
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Therefore τ̂ is given by

τ̂ = µ̂n

∣

∣

∣

∣

dû

dŷ

∣

∣

∣

∣

n

, (1.11)

and n = 1 reduces equation (1.11) to the Newtonian case, equation (1.7). As the

shear rate increases so too does the shear stress. However, the effective viscosity

(the ratio of shear stress to shear rate) may increase with increasing shear (for

n > 1) or decrease (for n < 1).

There are other generalised Newtonian models, for example, the Carreau

model and the Cross model (Barnes 1997), but we will only be concerned with

the power-law model.

1.2.3 Viscoplastic fluids

Viscoplastic fluids usually obey the generalised Newtonian model when τ̂ > τ̂y,

i.e. when the stress exceeds the yield stress τ̂y. A popular model for capturing

the yield stress and shear-thinning or -thickening behaviour is the Herschel-

Bulkley model (Balmforth and Craster 2001),

τ̂ij =

(

µ̂nγ̇n−1 +
τ̂y

γ̇

)

êij for τ̂ ≥ τ̂y. (1.12)

A simple version of this, n = 1, is the Bingham model,

τ̂ij =

(

µ̂n +
τ̂y

γ̇

)

êij for τ̂ ≥ τ̂y. (1.13)

In both cases êij = 0 for τ̂ < τ̂y.

1.2.4 Viscoelastic fluids

The generalised Newtonian model does not capture elastic behaviour, and so

cannot be used to model viscoelastic fluids. The simplest viscoelastic model is
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the Maxwell model. Fluids which behave according to the equation

τ̂ij + ζ̂
∂τ̂ij

∂t̂
= µ̂êij (1.14)

are known as Maxwell fluids, where ζ̂ is the relaxation time (Joseph 1990). Al-

though the Maxwell model can be used in many circumstances, the main draw-

back is that the model is not frame-indifferent. This means that if the coordi-

nates change to a moving frame then the equations change, which should not

happen with material behaviour. A number of generalised frame-indifferent

Maxwell models have been constructed, which involve replacing the time deriva-

tives in (1.14) with more complicated operators (Balmforth and Craster 2001).

The time derivatives can be replaced with the upper-convective derivatives

(upper-convected Maxwell model, UCM), lower-convective derivatives (lower-

convectedMaxwell model, LCM), corotational rate (corotational Maxwell model,

COM) or the interpolated convected time derivative (interpolatedMaxwell mod-

el) (Joseph 1990).

1.2.5 Thixotropic and antithixotropic fluids

Recall that thixotropic and antithixotropic fluids display finite-time responses

to changes in shear. The ratio of the response time to the time over which flow

evolves is called the Deborah number (Barnes, Hutton, and Walters 1989, §1. 4).

In principle, any fluid might be thixotropic or antithixotropic, but these effects

are only important if the Deborah number is not negligibly small.

Themost popular approach to describe the dynamics of thixotropic and anti-

thixotropic fluids, introduced by Moore (1959) , is to characterise the local state

of the structure by a single scalar parameter, λ, governed by an appropriate

evolution equation. In some models (for example, those used by Fredrickson



CHAPTER 1 9

(1970) and Pritchard and Pearson (2006)) the structure parameter is identified

directly with a rheological quantity such as the fluidity; in others it remains an

additional variable.

The simplest structure parameter model for thixotropic and antithixotropic

fluids is the modified generalised Newtonian model in which η̂ depends on λ,

τ̂ij = η̂(γ̇, λ)êij. (1.15)

The structure parameter λ is dimensionless and is usually defined so that it

takes values between zero (a fully unstructured fluid) and one (a fully struc-

tured fluid). Structural models remain essentially phenomenological, andmany

variations are in use.

A recent review by Mewis and Wagner (2009) described a general structural

model for thixotropic and antithixotropic fluids, of which some of the models

used in the papers discussed in section 1.3 are special cases. Their general model

comprises an evolution equation for the scalar structure parameter λ together

with a constitutive relation giving the shear stress tensor τ̂ij in terms of the shear

rate tensor êij and the local value of λ. The structure equation is

Dλ

Dt̂
= −k̂1γ̇

aλb + k̂2γ̇
c(1 − λ)d, (1.16)

where k̂1 and k̂2 are the rate constants for structural breakdown and build-up re-

spectively and γ̇ is the total shear rate which is related to the shear rate tensor êij

in the usual manner by (1.2), while a, b, c and d are non-negative dimensionless

exponents. The four exponents a, b, c and d can, in principle, be chosen inde-

pendently, so equation (1.16) can represent a very wide variety of behaviours.

It is assumed in most modelling work that the behaviour of a fluid should be

relatively insensitive to these choices, so onemay choose simple values and con-
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Study Yield stress τ̂y(λ) Viscosity η̂(λ, γ̇)
Moore (1959) - η̂0 + (η̂∞ − η̂0)λ
Worrall and Tuliani (1964) τ̂y,0 λη̂0

Nguyen and Boger (1985) λτ̂y,0 -
Toorman (1997) λτ̂y,0 λη̂0

Mujumdar et al. (2002) λa+1Ĝ0γ̂
a
c −λK̂0γ̇

n−1

Coussot et al. (2002) - η̂0(1 + λn)
Huynh et al. (2005) - η̂0(1 + λn)

Dullaert and Mewis (2006) λĜ0γ̂c(λγ̇)a λη̂0

Liu and Zhu (2011)
η̂0(1 + λn)

α̂θ̂λ
η̂0(1 + λn)γ̇

Livescu et al. (2011) - η̂0 + (η̂∞ − η̂0)λ

-
η̂0η̂∞

(η̂0 + η̂∞ − η̂∞λ)2

Table 1.1: Some relations between rheological parameters and the structure pa-
rameter, adapted from table 2 in Mewis and Wagner (2009). (In the viscosity
column, η̂0 is the viscosity of the fluid when the structure is completely broken
down and η̂∞ is the viscosity of the fluid when the structure is completely built
up. Definitions of various plastic and elastic terms from the yield stress column
can be found in Mewis and Wagner (2009).)

centrate on determining the form of the constitutive equation. For example, the

model of Coussot et al. (2002) corresponds to a = 1, b = 1, c = 0, d = 0; that of

Billingham and Ferguson (1993), neglecting the diffusive term, corresponds to

a = 1, b = 1, c = 0, d = 1. One of the contributions of the present work is to in-

vestigate different parameter choices and see the impact it has on the behaviour

of the flow.

Mewis and Wagner (2009) tabulate a variety of constitutive relations, and

there are many possible choices. Table 1.1 (adapted from table 2 in Mewis and

Wagner (2009)) shows yield stresses and viscosities of several thixotropic mod-

els. The most popular models are based around the model by Moore (1959) or

a power-law type model.

In this thesis, for convenience and to allow us to explore the possible regimes

of behaviour of equation (1.16) without introducing an unmanageable number
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of parameters, we use the simplest of these. This is the simplified relation due

to Moore (1959) in which the effective viscosity is proportional to λ,

τ̂ij = η̂0λêij, (1.17)

where η̂0 is a constant viscosity parameter.

An alternative approach is the model of Harris (1967). In its simplest form,

the Harris model gives the viscosity as

µ̂(t) = µ̂0 − K̂1γ̇ + K̂2
Dγ̇

Dt
, (1.18)

where K̂1 and K̂2 are material constants, µ̂0 is the zero-shear viscosity, and γ̇

is the second invariant of the deformation-rate tensor. However, this model

has been found inadequate for practical purposes in recent studies (Sadeqi et al.

2011), so we shall not pursue it.

1.2.6 Rheometry

Rheometers are an important component of rheological research (Barnes et al.

1989). They are instruments used tomeasure how aNewtonian or non-Newton-

ian fluid flows in response to applied forces and to record quantities such as

shear stress and shear rate. Many theoretical studies involve trying to fit solu-

tions of governing equations to experimental data obtained from rheometers.

We will describe some of the most popular rheometers.

Rotational rheometers have two parts with the fluid between them (figure

1.2). Concentric-cylinder, cone-and-plate and parallel-plate rheometers are sho-

wn in figures 1.2 a, b and c, respectively. In concentric-cylinder (also known as

Couette or coaxial) rheometers, the fluid is contained between two cylinders.
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(a) (b) (c)

Figure 1.2: Three common types of rotational rheometers; (a) concentric-
cylinder rheometer, (b) cone-and-plate rheometer and (c) parallel-plate rheome-
ter.

The outer, inner or both cylinders rotate and the shear rate and shear stress can

be measured. An advantage of using concentric-cylinder rheometers is that the

shear rate is constant in space. If the inner cylinder is replaced with vane spin-

dles it is called a vane rheometer. In cone-and-plate rheometers, the fluid is con-

tained between an inverted rotating cone and a fixed plate. As in a concentric-

cylinder rheometer, the shear rate for a fluid in a cone-and-plate rheometer is

constant in space. In parallel-plate rheometers, the fluid is contained between

a rotating plate and a fixed plate and the shear rate is not uniform. However

there are advantages to using a parallel-plate rheometer: for example, only a

small sample size is needed, and they are also easy to clean.

Capillary rheometers are different from rotational rheometers: the fluid sam-

ple is forced through the capillary die (tube) with either the shear rate or the

shear stress fixed and the other measured. Capillary rheometers are important

as they are the only type of rheometer which can investigate die swell and melt

fracture. Die swell occurs when a fluid is squeezed through the die and “swells”

on exit before returning to its former shape (Phan-Thien 2002). Melt fracture is
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when the surface of the fluid is distorted when leaving the die; the effect can

range from minor ripples to severe distortion (Whelan 1994).

A standard form in which to present rheometric data is a plot of the shear

stress against the shear rate in the rheometer, often called a rheogram. Rheo-

grams help to identify key features of the fluid. For a Newtonian fluid the re-

lationship between the shear rate and shear stress is linear, but this is generally

not the case for non-Newtonian fluids which we will consider in later chapters.

In particular, for thixotropic fluids a hysteresis loop develops as the stress lags

behind the shear rate (Mewis and Wagner 2009).

1.3 Previous modelling work on thixotropic fluids

Thixotropic effects were first described by Schalek and Szegvari (1923) in iron

oxide dispersions and the first paper using the term “thixotropy” was published

four years later by Péterfi (1927). The word “thixotropy” comes from a combi-

nation of the Greek words “thixis” (meaning stirring or shaking) and “trope”

(meaning turning or changing) (Mewis and Wagner 2009). In this section we

will not attempt a comprehensive review of ninety years of research, but will

concentrate on work from the last two decades.

As mentioned previously, some authors have chosen to include viscoplastic

and viscoelastic terms in their models for thixotropic fluids, usually in order to

model specific fluids, but many choose not to. Accordingly, in the next three

sections we consider viscoplastic thixotropic fluids, viscoelastic thixotropic flu-

ids and purely thixotropic fluids.



CHAPTER 1 14

1.3.1 Viscoplastic thixotropic fluids

Billingham and Ferguson (1993) studied pipe flow of a thixotropic fluid with

a yield stress, specifically bentonite mud. They used a rheological model with

a structure parameter like that described in section 1.2, but with the addition

of a diffusive term in the structure equation, to investigate both start-up and

steady-state problems. They also plotted and discussed rheograms as described

in section 1.2.6.

Coussot et al. (2002) looked at avalanche behaviour in yield-stress fluids and

performed physical experiments on inclined planes. An avalanche occurs when

spatially uniform flow down an inclined plane cannot remain steady and accel-

erates in time, due to runaway feedback between the breakdown of structure

and the speed of flow. The authors carried out physical experiments using

parallel-plate and vane rheometers for a gel, a colloidal glass and a bentonite

mud. All three fluids obey the general rheological model presented by the au-

thors. A follow-up study by Huynh et al. (2005) built on the work by Coussot

et al. (2002). The authors concentrated on the flow of a thin layer of thixotropic

fluid down an inclined plane. They investigated both the critical time at which

the avalanche begins and the conditions for a thin layer of fluid to start flowing

down the plane. They compared the results of their theory with experimental

data. We will consider thin-film flow of thixotropic and antithixotropic fluids in

more detail in section 1.5.

Liu and Zhu (2011) also investigated flow down an inclined plane, and ex-

amined avalanche flow theoretically, building on the work by Coussot et al.

(2002). They were mainly interested in the start-up problem and considered

three cases: when the flow before the avalanche was not noticeable; when the

flow before the avalanche was noticeable; and when there was no avalanche

flow. The flow before the avalanche was noticeable if the apparent viscosity
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of the fluid was initially small and not noticeable if it was initially large. In

certain limits, the results for no noticeable flow before the avalanche and for

no avalanche flow agreed with Huynh et al. (2005). When the flow before the

avalanche was noticeable, the velocity profiles changed from Newtonian before

to Bingham after the avalanche as shear-thinning effects became apparent.

Chanson et al. (2006) modelled bentonite mud as a thixotropic fluid with a

yield stress. They were the first to conduct a systematic study of the so called

dam-break problem for a thixotropic fluid, that is when fluid is suddenly re-

leased and flows along a surface, in this case an inclined plane. The authors

used the model described by Coussot et al. (2002), whose predictions they suc-

cessfully compared to experimental data from a parallel-plate rheometer. They

found different regimes of dam-break behaviour depending on the properties

of the fluid and the flow conditions. Potanin (2010) attempted to bridge the

gap between rheological and computational fluid dynamics (CFD) communi-

ties. He experimented with three pastes in two rheometers (Couette and vane-

cup geometries) and looked at both the break down and build up of the pastes.

The CFD predictions of themodel with appropriate rheology incorporated com-

pared favourably with the experimental data.

Awell-known everyday fluidwhich displays yield stress properties is tooth-

paste, and Ardakani et al. (2011) investigated the thixotropic flow of toothpaste.

They chose the parameters for their model, taken from Derksen and Prashant

(2009), based on experimental data from a capillary rheometer. They inves-

tigated how the structure parameter behaves at various apparent shear rates.

They compared the predictions of their structure parameter model with the

experimental data and the differences in the results were attributed to elastic

properties which may also be present in toothpaste.

Work is still ongoing regarding viscoplastic fluid flows, and very recently a
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special issue of the Journal of Non-Newtonian Fluid Mechanics was wholly con-

cerned with viscoplastic fluids (see Balmforth and de Bruyn 2013).

1.3.2 Viscoelastic thixotropic fluids

Some authors include viscoelastic effects in their models for thixotropic flu-

ids. Motivated by pulsatile blood flow, Shadrina (1978) developed solutions for

weak oscillations superimposed on a steady background flow of a viscoelastic

thixotropic fluid. The presence of a background flow makes this significantly

different from the classical Stokes problem, which we will discuss in section 1.4.

We will return to both channel flow and oscillating walls when we consider the

Stokes problem and slowly-varying channel flow in chapters 2, 3 and 4, respec-

tively.

Bautista et al. (1999) considered the steady and unsteady flow of viscoelas-

tic micellar solutions and liquid crystals, focusing on the thixotropic and anti-

thixotropic behaviour. They used the upper-convected Maxwell constitutive

equation (mentioned in section 1.2) and a kinetic equation first proposed by

Fredrickson (1970). They considered steady simple shear flow and also stress

relaxation after a step change in the stress or shear rate. Finally, they studied

stress cycles by gradually increasing and decreasing the shear stress and plot-

ting the shear viscosity against shear rate (compare the rheograms described in

section 1.2.6).

Corvisier et al. (2001) conducted a pipe flow experiment inwhich fluid flowed

from a large tank. They used two viscoelastic fluids, veegum and laponite col-

loidal suspensions, and concentrated on flow development. The authors com-

pared two measuring techniques, ultrasonic velocity profiling (UVP) and par-

ticle image velocimetry (PIV), both chosen because the velocity profile can be

measured nearly instantaneously. As the fluid flowed down the pipe the veloc-
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ity profiles flattened in the centre, where the lower shear caused the structure

of the fluid to build up leading to a plug region developing.

Mujumdar et al. (2002) developed a newmodel to describe viscoelastic thixo-

tropic fluids and used it to examine various flow problems. They compared the

predictions of their model to experimental data for ceramic suspensions. Their

model was designed to capture the smooth transition from elastic to viscous

behaviour, rather than considering purely elastic and purely viscous behaviour

separately. The authors considered the start-up of steady shear flow, stress re-

laxation after the forcing has stopped, and oscillatory shear flow.

More recently, de Souza Mendes (2009) built a new model to describe vis-

coelastic thixotropic behaviour. De Souza Mendes (2009) pointed out that many

authors make ad hoc assumptions purely to simplify their models, rather than

using physical arguments. The predictions of their new model, adapted from

the well-known Maxwell model, described in section 1.2.4, was successfully

compared to various rheometric flows. The key difference between theMaxwell

model and the new model is that the shear modulus and structural viscosity in

the new model depend on the structure parameter (see section 1.2.5). A simpli-

fied, inelastic version of this model was recently considered by de Souza Men-

des et al. (2012).

Some rheological models for thixotropic fluids include both viscoplastic and

viscoelastic properties, called elasto-viscoplastic fluids. A recent overview by

de Souza Mendes and Thomson (2012) considered two types of models; a vis-

coplastic model with elastic properties (Type I) and a viscoelastic model with

a yield stress (Type II). The Type II models can describe thixotropic and elas-

tic effects. The authors discussed two Type I models, modified from the mod-

els proposed by Mujumdar et al. (2002) and Dullaert and Mewis (2006). They

constructed a Type II model by adding yield stress to the viscoelastic model
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proposed by de Souza Mendes (2009). These types of model were compared

and the framework of Type II models was found to be more robust. One rea-

son is that, in general, the Type II models could easily be adapted to describe

many materials including inelastic thixotropic viscoplastic materials, viscoelas-

tic solids and fluids; another was that, unlike Type I models, Type II models

were consistent with the classical definition of yield stress.

1.3.3 Purely thixotropic fluids

The model we will use in the present work is for purely thixotropic fluids, and

therefore includes no yield stress or viscoelastic terms. Accordingly we will dis-

cuss some papers which also neglect elastic and plastic effects and concentrate

on purely thixotropic effects. It appears to be only in recent years that purely

thixotropic fluids have been considered. Our work therefore contributes to this

recent interest in isolating the effects of thixotropy from those of plasticity and

elasticity.

Pearson and Tardy (2002) examined the interactions between complex flu-

ids and porous media. According to the authors, there was little agreement on

how to model complex fluids (including thixotropic fluids) in porous medium.

Investigating channel flow is the first step to investigating flow in a porous

medium, and we will consider slowly-varying channel flow for thixotropic and

antithixotropic fluids in chapter 4. Pritchard and Pearson (2006) investigated

a purely thixotropic fluid in a porous medium or a narrow fracture, using a

modified version of the model used by Bautista et al. (1999) together with a

“gap-averaged” structure parameter; the latter will be discussed in section 1.5.

Derksen and Prashant (2009) looked at the flow of purely viscous thixotropic

fluids. They considered simple shear flow, plane Poiseuille flow, and lid-driven

cavity flow. All flows started with a Newtonian fluid, with the structure param-
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eter set to zero, then the thixotropic rheology was “switched on” and velocity

and structure parameter profiles evolved. Finally, the authors investigated thix-

otropic fluids in mixing tanks and calculated snapshots, i.e. profiles at various

times, of the velocity and structure parameter.

Najmi et al. (2010) presented a numerical study of pressure-driven thixo-

tropic fluid flow above a fixed plate, using the rheological model described by

Harris (1967) (see section 1.2.5). Sadeqi et al. (2011) investigated thixotropic flu-

ids above a fixed semi-infinite plate (Blasius flow) also using a simplified Harris

model.

Livescu et al. (2011) addressed the levelling under gravity of thixotropic flu-

ids on a horizontal substrate. They compared two rheological models, one of

which was chosen for simplicity and one to try to capture more complex be-

haviour, and these models will be discussed in more detail in section 1.5.

Although there has been much work done concerning thixotropic fluids, the

literature is still lacking in many areas. Huynh et al. (2005) point out that there

is a lack of studies of thixotropic fluids in many practical situations, including

free-surface flows. Mewis and Wagner (2009) and de Souza Mendes (2009) ar-

gue that an accurate general model for thixotropy is still lacking. Najmi et al.

(2010), Sadeqi et al. (2011) and Chekila et al. (2011) all agree that much work still

needs to be done on the flow of thixotropic fluids. This is perhaps why some

basic flow problems, including those considered in later chapters, have yet to

be considered for these complex fluids.

1.4 The Stokes problem

One of the most basic problems long solved for a Newtonian fluid, but yet to

be solved for more complex fluids, is the Stokes problem (Stokes 1851). In the
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û0 ŷ

x̂

Figure 1.3: A semi-infinite fluid with a sinusoidally oscillating wall at ŷ = 0.

Stokes problem the shear varies in both time and space; it is one of the simplest

non-trivial rectilinear flows in which both viscosity and inertia are important.

In the classical Stokes problem (also known as Stokes’ second problem), a

Newtonian fluid of constant kinematic viscosity ν̂ occupies a semi-infinite space

ŷ > 0 bounded by a rigid impermeable wall at ŷ = 0 as seen in figure 1.3.

This wall is oscillated sinusoidally so that the x̂-velocity on the wall is given by

û(0, t̂) = û0 cos(ω̂t̂), where ω̂ is the angular frequency of the oscillations, t̂ is time

and û0 is the magnitude of the oscillations. This unsteady flow is governed by

momentum equation
∂û

∂t̂
= ν̂

∂2û

∂ŷ2
, (1.19)

with boundary and far-field conditions

û(0, t) = û0 cos(ω̂t̂) and û(ŷ, t̂) → 0 as ŷ → ∞. (1.20)

The exact solution is given (see, e.g., Drazin and Riley 2006, §4. 1) by

û(ŷ, t̂) = û0e
−γ̂ŷ cos(ω̂t̂ − γ̂ŷ), where γ̂ =

√

ω̂

2ν̂
. (1.21)
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This structure is sometimes referred to as an oscillatory boundary layer or “Sto-

kes layer”. It may be visualised as a sinusoidal travellingwave propagating into

the fluid at speed ω̂/γ̂ and decaying according to an exponential “envelope”

with characteristic thickness 1/γ̂, although the dynamics are diffusive rather

than wavelike.

When examining the Stokes problem, both the start-up and the periodic

states can be investigated. We will be mainly interested in the periodic so-

lutions, but there has also been work focusing on the start-up problem. For

example, Ai and Vafai (2005) solved the Stokes problem numerically for gen-

eralised Newtonian rheologies, emphasising the transient adjustment from a

quiescent to a periodic state; Fetecau and Fetecau (2005), in a study later cor-

rected by Christov and Jordan (2012), examined the start-up problem for a class

of second-grade fluids.

The Stokes problem is non-rheometric, because the shear varies in both time

and space; it is one of the simplest non-trivial rectilinear flows in which both

viscosity and inertia are important. Because the oscillation imposes a timescale

on the system, the problem becomes particularly interesting when the fluid rhe-

ology is time-dependent, and its natural timescale may or may not coincide

with that of the forcing. This offers opportunities to use the Stokes problem

as an unconventional but revealing test for rheological models, as proposed by

Balmforth et al. (2009). (Such a test should not be confused with the standard

oscillatory shear tests used to characterise viscoelastic fluids with and without

thixotropy (Mewis and Wagner 2009, §5.4), as these remain non-inertial and

rheometric.)

A final motivation for studying the Stokes problems is that it provides a

useful prototype for more complex flows with oscillatory forcing, such as the

boundary layer beneath water waves (Lighthill 1978, §2.7). In muddy environ-
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ments, water wavesmay propagate over shallow layers of non-Newtonian fluid

mud (McAnally et al. 2007), and to predict the transport of mud it is important

to understand how such layers respond to oscillatory forcing.

A few recent studies have investigated the Stokes problem for generalised

Newtonian rheologies, including Balmforth et al. (2009) who conducted a de-

tailed numerical investigation of the finite-depth Stokes problem for a viscoplas-

tic Herschel–Bulkley fluid, and compared their results with experiments using

a kaolin slurry. They suggested that some discrepancies between the numerical

and experimental results might be due to thixotropic effects.

There has also been theoretical work on viscoelastic generalisations of the

Stokes problem, although there is as yet no corresponding body of experimental

work. In particular, analytical and approximate solutions have been presented

for the second- and third-grade fluidmodels (Rajagopal 1982; Rajagopal andNa

1983), the Johnson–Segalman model (Hayat et al. 2004) and the Burgers model

(Khan et al. 2010). Although the decay envelopes and wave propagation speeds

in these solutions are somewhat modified from the Newtonian case (1.21), they

do not possess qualitatively different features. There is no systematic tendency

for time-dependence to increase or decrease the rate of decay of the “envelope”:

indeed, both Rajagopal (1982) and Khan et al. (2010) found that either could

occur depending on the precise model used and the ratio of the elastic relaxation

and forcing timescales.

1.5 Thin-film flow

Thin films of fluid appear in many diverse settings such as geophysics, biology

and engineering. In geophysics, lava flowing over rocks and landslides are ex-

amples of thin-film flow. Thin films of fluid appear in biology in the tear film
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(a) (b)

Figure 1.4: (a) Honey on toast, with kind permission from Erica
Lea (see http://www.flickr.com/photos/elberge/5556037139/). (b)
Oil in a frying pan, with kind permission from Sarah Twichell (see
http://www.flickr.com/photos/38015815@N00/4343472355/).

coating the eye, known as the precorneal film, and as the thin films of synovial

fluid in human joints. In engineering, thin films are found in many mechanical

devices such as in the gears and pistons of car engines. Thin films of fluid can

also be found in everyday life such as oil in a pan, honey on toast (see figure

1.4), icing on cakes and paint on walls.

It is important to understand that we do not use “thin” in the everyday

sense, i.e. of shallow depth, but we use it to mean that the thickness of the fluid

is much less than the length scale of the flow. Essentially equivalent terms in-

clude “shallow”, “slender” and “slowly varying”. A related term, “lubrication

flow”, is generally taken to imply that the flow is both thin and non-inertial.

This separation of lengthscales allows the reduction of the governing equations

to a simpler form, typically by an asymptotic expansion in the aspect ratio (the

ratio of the cross-flow to the streamwise length-scale). We will demonstrate this

in section 4.2.
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1.5.1 Newtonian and generalised-Newtonian fluids

Thin-film flows have been extensively researched for Newtonian fluids butmuch

less so for non-Newtonian fluids, in particular thixotropic and antithixotropic

fluids. Therefore, as we shall see, even some of the most basic thin-film flow

problems remain unsolved for complex fluids.

Two major reviews on thin-film flows are those by Oron et al. (1997) and

Craster andMatar (2009). The review by Oron et al. (1997) considers many thin-

film problems, including bounded films, spreading and free films. The authors

determined a general evolution equation and showed that the general equa-

tion could be adapted for many different bounded film problems, including

flow on a rotating disk and flow on a horizontal cylinder. They also considered

falling films and sheets flowing down an inclined plane. These problems were

outlined to demonstrate the large numbers of flow geometries which could be

considered. The more recent review by Craster and Matar (2009) considered

the dynamics and stability of thin liquid films and mainly concentrated on the

progress made since the review by Oron et al. (1997). They described many

problems including flows driven by gravity and other forces and the effects of

bounding walls. One such problem was a bilayer of fluid flowing downslope

and another was the interplay between a thin-film of fluid and an electric field.

They showed that there has been much research in recent years on thin-film

problems, however there are still many open problems to consider. Although

both reviews are extensive, neither discusses non-Newtonian flows.

While relatively little has been done on complex fluids, there have been some

interesting studies regarding thin films of power-law fluids, including Wilson

and Burgess (1998), Wilson, Duffy, and Hunt (2002) and Yatim et al. (2010). All

these studies consider the flow of rivulets of power-law fluids down a substrate.

Wilson and Burgess (1998) found self-similar solutions to the steady flow of a
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rivulet of a power-law fluid as a special case of the Herschel-Bulkleymodel (sec-

tion 1.2.3). Wilson, Duffy, and Hunt (2002) extended and generalised this work

and considered gravity-driven and shear-stress-driven rivulets of power-law

fluid down an inclined plane. They found that the fluid behaved qualitatively

similarly for both gravity and shear-stress-driven flow. Yatim et al. (2010) found

solutions to the unsteady flow of rivulets of a power-law fluid. In particular,

the authors considered the behaviour of the fluid in the highly shear-thinning

limit, as n → 0+, and in the highly shear-thickening limit, as n → ∞, and found

the asymptotic solutions in both cases. In chapter 4 we will consider the highly

shear-thickening limit (n → ∞).

Thin-layer theory for viscoplastic fluids was first put on a rigorous basis

by Balmforth and Craster (1999), and there has been subsequent work on such

problems. For example, Ross et al. (2001) considered the two-dimensional flow

of a thin film of viscoplastic material around a stationary or rotating cylinder.

They started with a biviscosity fluid and considered both when the ratio of the

viscosities was of order one and when it is set to zero. The asymptotic solutions

in the thin-film limit revealed interesting behaviour of the fluid for both sta-

tionary and rotating cylinders. The same authors continued their investigation

of thin films of viscoplastic fluids by considering a rivulet of viscoplastic fluid

draining around a large cylinder (Wilson, Duffy, and Ross 2002). They again

used the biviscosity model. A very interesting result was obtained in the spe-

cial case when the viscosity limit approached zero, namely that the edges of the

rivulet became solid and the top of the rivulet became nearly solid, but the fluid

adjacent to the cylinder continued to flow.

Myers (2005) considered thin-film flow both for free surface flow and chan-

nel flow using the power-law, Carreau and Ellis models. He compared the ve-

locity and viscosity profiles of different fluids both down an inclined plane and
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in a channel (compare chapter 4, where we consider channel flow for a thixo-

tropic or antithixotropic fluid). The main objective of the paper was to consider

an alternative to the power-law model at low shear rates where the rheological

model breaks down (see section 4.4.3).

Another group of studies to consider is thermal problems, that is problems

in which temperature can affect the properties of a fluid. The reviews by Oron

et al. (1997) and Craster and Matar (2009) both consider problems involving

thermal effects. Recently, Leslie et al. (2011) considered a thin film of New-

tonian fluid with temperature-dependent viscosity on a cylinder, for which the

cylinder was either hotter or colder than the surrounding atmosphere. They

examined the limit of large and small thermoviscosity number (strong or weak

variation of viscosity with temperature) and they also examined the case when

the viscosity was constant. A loose analogy can be drawnwith thixotropic mod-

els in which the the structure parameter (see section 1.2.5) controls the viscosity.

However, the transport of heat is dominated by diffusion, unlike that of the

structure parameter which is generally taken to be advective. In chapter 4 we

will see that thin-film models of thixotropic effects are therefore more compli-

cated than those of thermal effects.

1.5.2 Thixotropic and antithixotropic fluids

There is far less published work on thin-film and shallow flows of thixotropic

and antithixotropic fluids than on generalised Newtonian fluids. In particular,

no systematic framework has been presented for these fluids which is equiva-

lent to the lubrication theories for generalisedNewtonian fluids reviewed above.

Nevertheless, several studies have considered thin-film flows for thixotropic

fluids under various simplifying assumptions, and it is useful to review these

here.



CHAPTER 1 27

The most strongly reduced models are of the kind presented by Coussot

et al. (2002). The problem considered here was the acceleration of a uniform

layer of fluid on an inclined plane. This is intrinsically a one-dimensional prob-

lem, since the velocity and structure parameter may be expected to vary across

the thickness of the layer. The original model by Coussot et al. (2002) reduces

this one-dimensional problem further to a “zero-dimensional” problem by de-

scribing the flow entirely in terms of a layer-averaged streamwise velocity and

a layer-averaged structure parameter. The advantage of the zero-dimensional

problem is that the dynamics can be described by ordinary differential equa-

tions. Subsequent work on this problem (Huynh et al. 2005; Liu and Zhu 2011)

does incorporate the variation of the flow variables across the layer; since the

flow is still assumed to be uniform in the streamwise direction, their model

represents a limiting case of the thin-film regime. (Earlier work, for example

that by Billingham and Ferguson (1993), had also explicitly considered the time-

evolution of flows which were uniform in the streamwise direction.)

In rather different geometries, Chanson et al. (2006) and Pritchard and Pear-

son (2006) both presented models of shallow thixotropic flow which relied on

the same ad hoc reduction of the equations. Chanson et al. (2006) considered

dam-break flow on an inclined plane, while Pritchard and Pearson (2006) con-

sidered flow in a narrow fracture, taken to be equivalent to Darcy flow in a

porous medium (for which the correct formulation of the governing equations

is not clear: see Pearson and Tardy (2002)). Both studies reduced the governing

equations on the basis that the rheological state of the fluid was uniform across

the layer, so Chanson et al. (2006) employed a “vertically averaged” value of the

structure parameter λ, while Pritchard and Pearson (2006) employed a “cross-

sectionally averaged“ value of the fluidity in a version of Bautista et al.’s (1999)

model. Under such assumptions there is no need to resolve the flow structure
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across the layer, and so the system becomes one- or two-dimensional, with only

variations in the streamwise direction(s) considered.

The most sophisticated treatment so far of shallow thixotropic flow is that

presented by Livescu et al. (2011) (which we mentioned briefly in section 1.3.3),

who considered the levelling of a thin film of thixotropic fluid on a level sub-

strate. They reduced the governing hydrodynamic equations using a lubri-

cation approximation, which we will employ in chapter 4, but without mak-

ing further assumptions about the variation of λ across the layer. The result-

ing system, including a vertically-resolved evolution equation for λ, was inte-

grated numerically for the levelling problem under consideration. On the basis

of these simulations, approximations for the vertical variation of λ were sug-

gested, which allowed the evolution of the structure to be described solely in

terms of the evolution of the values of λ at the surface and at the substrate.

In a further stage of simplification, the resulting one-dimensional system was

linearised assuming that the perturbations to the horizontal free surface were

small, and the linearised results for the reduced system were found to agree

well with the numerical calculations.

The approach by Livescu et al. (2011) is an advance on that of Chanson et al.

(2006) and Pritchard and Pearson (2006), because they do not postulate in ad-

vance that the cross-stream variation of the structure is known. However, the

weakness of this approach is that this variation must be obtained by numer-

ical simulations of a non-reduced system, and there is no guarantee that the

approximate profiles for λ obtained in this way will be equally applicable to

different problems. With this in mind, our goal in chapter 4 will be to develop

a systematic thin-film reduction of the governing equations for thixotropic and

antithixotropic fluids in a slender geometry.
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1.6 Outline of thesis

In this thesis we study two different fundamental problems involving the flow

of thixotropic, antithixotropic and power-law fluids. Even our relatively simple

model for thixotropy reveals unexpectedly complicated solutions to these prob-

lems. These solutions provide a good foundation for understanding the flow of

time-dependent fluids.

In chapter 2 we investigate the Stokes problem for a power-law fluid with

power-law exponent n. We obtain semi-analytical, self-similar solutions for var-

ious values of n. We demonstrate numerically that these solutions provide a

good approximation to the flow driven by a sinusoidally oscillating wall.

In chapter 3 we investigate the Stokes problem for a thixotropic or antithix-

otropic fluid. We obtain asymptotic and numerical solutions in the limit of

small-amplitude oscillations for both the velocity and the structure parameter.

The model displays qualitatively different behaviour depending on the choice

of parameters in our general model seen in section 1.2.5. Both thixotropic and

antithixotropic fluids display fast-adjusting, slow-adjusting and marginal be-

haviours depending on the response time for the structure compared with the

timescale over which the shear rate changes. The fast-adjusting behaviour in

the antithixotropic case corresponds to the behaviour of a power-law fluid as

analysed in chapter 2. We also present numerical solutions for large-amplitude

oscillations.

In chapter 4 we consider flow of a thixotropic or antithixotropic fluid in a

slowly-varying channel. We formulate a perturbation approach in which thixo-

tropic effects enter at first order in the thin-film limit. We then develop asymp-

totic solutions to leading and first order for the velocity and the structure pa-

rameter of the fluid for a special case (d = 0).

Finally, in chapter 5 we summarise and discuss the key results obtained in
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chapters 2 to 4. We also suggest directions for interesting further work.

1.7 Presentations and publications

Aspects of the work contained in chapter 2 have been presented at the British

Applied Mathematics Colloquium at the University of Birmingham in April

2011 and at the Scottish Fluid Mechanics Meeting at the University of Strath-

clyde in May 2011. My supervisor also presented the work at Princeton Uni-

versity in June 2011 and at the American Physical Society’s Division of Fluid

Dynamics meeting in Baltimore in November 2011. This work has been pub-

lished by the Journal of Non-Newtonian Fluid Mechanics (Pritchard et al. 2011).

Aspects of the work contained in chapter 3 have been presented at the British

AppliedMathematics Colloquium at University College London inMarch 2012;

at the Scottish Fluid Mechanics Meeting at Heriot-Watt University in May 2012;

and at the XVIth International Conference on Rheology in Lisbon in August

2012. This work has been published by the Journal of Non-Newtonian Fluid

Mechanics (McArdle et al. 2012).

Aspects of the work contained in chapter 4 have been presented at the Scot-

tish Fluid Mechanics Meeting at the University of Aberdeen in May 2013, and

are currently being prepared for publication.



Chapter 2

The Stokes problem for a power-law

fluid

2.1 Introduction

In this chapter, we will employ a combined analytical and numerical approach

to explore the structure of the Stokes boundary layer (introduced in section 1.4,

see figure 1.3) for a power-law fluid. In section 2.2 we will formulate the prob-

lem for a power-law fluid and present semi-analytical, self-similar solutions for

the velocity, in which the amplitude envelope and the variation of the phase

of the oscillation with ŷ are analytically determined while the waveform of the

oscillation is obtained as the solution of an ordinary differential equation. In

section 2.3 we will compare these solutions with numerical solutions of the gov-

erning partial differential equation. Finally, in section 2.5 we will discuss the

key features of these solutions and their more general significance. In chapter

3 we will see that these solutions provide a limiting case of the antithixotropic

version of the problem.

31
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2.2 Semi-analytical solutions

2.2.1 Problem formulation

In the power-law rheological model the shear stress component τ̂xy in a simple

shear flow of the kind described in section 1.4 is given by

τ̂xy = µ̂n

∣

∣

∣

∣

∂û

∂ŷ

∣

∣

∣

∣

n−1
∂û

∂ŷ
. (2.1)

Here û(ŷ, t̂) is the velocity in the x̂-direction, parallel to the wall; ŷ measures

distance from the wall; µ̂n is a dimensional consistency parameter; and n > 0

is the power-law exponent. The value n = 1 recovers Newtonian rheology;

values of n < 1 correspond to shear-thinning fluids, such as many colloidal dis-

persions, in which the effective viscosity decreases with increasing shear; and

values of n > 1 correspond to shear-thickening fluids, such as some polymer

solutions, in which the effective viscosity increases with increasing shear. The

momentum equation (1.1), reduced for unsteady rectilinear flow, thus becomes

a non-linear diffusion equation with the effective viscosity of the fluid acting as

a momentum diffusivity,

ρ̂
∂û

∂t̂
= µ̂n

∂

∂ŷ

(

∣

∣

∣

∣

∂û

∂ŷ

∣

∣

∣

∣

n−1
∂û

∂ŷ

)

, (2.2)

where ρ̂ is the fluid density.

It is assumed that the solutions are periodic with angular frequency ω̂, and

that some characteristic amplitude Û may be defined. In the numerical results

presented in section 2.3, the no-slip boundary condition û(0, t̂) = Û cos(ω̂t̂) will

be imposed at the oscillating wall, defining Û directly. In our self-similar solu-

tions we do not prescribe such a boundary condition, but we will assume that
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an appropriate value of Û can still be specified. This will be discussed further

below.

Finally, we will require that the velocity decays to zero at large distances

from the wall, û(ŷ, t̂) → 0 as ŷ → ∞.

The problem may now be non-dimensionalised by setting

t = ω̂t̂, y =

(

ω̂ρ̂

µ̂nÛn−1

)1/(n+1)

ŷ and u =
û

Û
. (2.3)

2.2.2 Constructing self-similar solutions

It is helpful in what follows to note that the governing equation (2.2) remains

unchanged under the transformation y 7→ y0 ± y for any constant offset y0. We

will therefore define a new variable Y = y0 ± y and write (2.2) as

∂u

∂t
=

∂

∂Y

(

∣

∣

∣

∣

∂u

∂Y

∣

∣

∣

∣

n−1
∂u

∂Y

)

. (2.4)

If we take Y = y0 + y then the far-field boundary condition becomes u → 0 as

Y → ∞. If we take Y = y0 − y then we must either consider solutions that are

valid for negative values of Y or restrict the domain of the solution to Y ≥ 0,

(i.e. 0 ≤ y ≤ y0) and impose the condition u = 0 for all y ≥ y0. Below we will

invariably follow the latter approach, so Y ≥ 0 implicitly throughout.

Motivated by the Newtonian solution (1.21), we will seek a solution of the

self-similar form

u(Y, t) = Y αf(η) (2.5)

where η = t − φ(Y ) for some function φ(Y ). Note that for both definitions of Y

we can interpret the offset y0 as a boundary-layer thickness. If Y = y0 − y then

y0 represents the thickness of the (finite) layer of non-zero velocity, whereas if

Y = y0 + y then y0 characterises the distance from the wall beyond which the
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algebraic decay in y asserts itself.

From (2.5) we immediately obtain

∂u

∂t
= Y α df

dη
and

∂u

∂Y
= αY α−1f − Y α dφ

dY

df

dη
. (2.6)

To eliminate Y from the problem, we require that the two terms in ∂u/∂Y scale

in the same way with Y . We therefore deduce that

dφ

dY
=

k

Y
and thus φ = k log(Y ), (2.7)

for some constant k which will in general depend on n. (Note that there is no

loss of generality in omitting the additive constant of integration, which merely

affects the relative phase of the oscillation.) The magnitude of k controls the

speed at which the waves propagate, while the sign of k determines the direc-

tion in which they propagate. When k is positive, waves travel in the direction

of increasing Y , and when k is negative, they travel in the direction of decreas-

ing Y . Consequently, to ensure that waves travel outwards from the oscillating

wall, we will need to take k > 0 if Y = y0 + y and to take k < 0 if Y = y0 − y.

Having determined φ(Y ), we find

∂u

∂Y
= Y α−1

(

αf − k
df

dη

)

, (2.8)

so the governing equation (2.4) becomes

Y α df

dη
= nY n(α−1)−1

∣

∣

∣

∣

αf − k
df

dη

∣

∣

∣

∣

n−1

×
[

(α − 1)

(

αf − k
df

dη

)

− k

(

α
df

dη
− k

d2f

dη2

)]

. (2.9)
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To eliminate Y we now require that

α = n(α − 1) − 1, i.e. α =
n + 1

n − 1
. (2.10)

Note that when n > 1 (a shear-thickening fluid), the exponent α > 0: hence to

satisfy the far-field condition we must take Y = y0 − y and restrict the solution

to a layer of finite thickness 0 ≤ y ≤ y0. However, when n < 1 (a shear-thinning

fluid), the exponent α < 0 and we can take Y = y0 + y with algebraic decay as

y → ∞.

With this choice of α, equation (2.9) becomes a non-linear ordinary differen-

tial equation for the waveform f(η),

df

dη
= n

∣

∣

∣

∣

αf − k
df

dη

∣

∣

∣

∣

n−1 [

(α − 1)

(

αf − k
df

dη

)

− k

(

α
df

dη
− k

d2f

dη2

)]

, (2.11)

which we must solve numerically, subject to the periodicity constraint f(η) =

f(η + 2π) for all η. We can further eliminate the parameter k at the expense of

changing the period of the system, by defining

η = |k|η∗ and f = |k|−1/(n−1)f ∗, (2.12)

to obtain

df ∗

dη∗
= n

∣

∣

∣

∣

αf ∗ ∓ df ∗

dη∗

∣

∣

∣

∣

n−1 [

(α − 1)

(

αf ∗ ∓ df ∗

dη∗

)

∓
(

α
df ∗

dη∗
∓ d2f ∗

dη∗2

)]

, (2.13)

where the upper signs correspond to k > 0 and the lower to k < 0. If we can find

a periodic solution for f ∗(η∗) over 0 ≤ η∗ ≤ T ∗, we can obtain the corresponding

periodic solution for f(η) over 0 ≤ η ≤ 2π by setting |k| = 2π/T ∗.
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In summary, our self-similar solutions take the form

u(y, t) =















(y0 − y)α f(t + |k| log(y0 − y); n) for n > 1,

(y0 + y)α f(t − |k| log(y0 + y); n) for n < 1,

(2.14)

where the periodic functions f(η; n) and the constants k(n) are obtained numer-

ically and where

α = (n + 1)/(n − 1). (2.15)

Some additional condition must be specified in order to select the boundary

layer thickness y0. For example, if the velocity imposed at the wall is precisely

of the form f(t) and has amplitude Û , so the oscillation has dimensionless am-

plitude 1 at y = 0, then y0 must be given by

(y0 ± 0)αfmax = 1, i.e. y0 = f−1/α
max , (2.16)

where fmax = maxη f(η). We will use this choice of y0 for convenience when pre-

senting our results in the following section. In general, however, when this self-

similar solution acts as an asymptotic approximation to a solution with some

different forcing imposed at the wall (as in the numerical integrations we will

discuss in section 2.3), a more complicated matching process may be required

to determine y0. In these circumstances we will take Û to be specified by the im-

posed forcing, noting that in this case the self-similar solution will not in general

have unit amplitude at the wall.

2.2.3 Periodic solutions for shear-thickening fluids (n > 1)

We will first consider periodic solutions for shear-thickening fluids (n > 1). In

this case, the exponent α > 0: we must therefore take Y = y0 − y to satisfy the
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far-field condition, and k < 0 so that waves propagate away from the wall.

Integrating (2.13) to obtain periodic solutions is slightly complicated by the

fact that the equation becomes singular when ∂u/∂Y = 0, i.e. along a ‘critical

line’ in phase space on which αf ∗ + f ∗
′

= 0. This occurs twice in each period,

corresponding to a corner in the solution for f ∗(η∗). The phase-space trajecto-

ries (f ∗(η∗), f ∗
′

(η∗)) cannot be integrated reliably across the critical line. It is,

however, straightforward to show (see 2.6) that near to a point (f ∗

0 , f ∗
′

0 ) on the

critical line, a trajectory behaves as

f ∗
′ ∼ f ∗

′

0 + (f ∗ − f ∗

0 )1/n. (2.17)

We can then carry out numerical integrations forward in η∗ from a point (−f ∗

0 +

ǫ,−f ∗
′

0 +ǫ1/n) and backward in η∗ from a point (f ∗

0 +ǫ, f ∗
′

0 +ǫ1/n), where 0 < ǫ ≪ 1,

and vary f ∗

0 until the trajectories meet at some point (e.g. f ∗ = 0); see section

2.7.1. Once these trajectories have been determined above the critical line, the

part below the critical line can be completed by symmetry to create a closed tra-

jectory. Figure 2.1 a gives examples of the resulting trajectories in phase space.

If the waveform were sinusoidal the trajectories would be elliptical; in fact they

become increasingly non-elliptical as n increases, so f(η) adopts an increasingly

‘saw-toothed’ form (figures 2.1 b and c).

Having obtained f ∗(η∗), we can determine the period T ∗ from the numerical

solutions and use it to deduce the parameter k using |k| = 2π/T ∗ and thus, once

y0 has been determined, the 2π-periodic solution f(η), as in figures 2.1 b and

c. Note that by construction, the phase of the oscillations is chosen so that the

corners in f(η) occur at η = mπ for m ∈ Z.

Equipped with f(η) and the value of the parameter k, we can immediately

construct solutions for u(y, t) from (2.14). These are illustrated, for several val-
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Figure 2.1: Solutions for f(η) for n = 2 (solid lines), n = 3 (heavy dashed lines)
and n = 4 (light dashed lines). Figure (a) shows phase-plane portraits (f ∗, f ∗

′

)
while figures (b) and (c) show f(η) over two periods for the cases (b) n = 2 and
(c) n = 4.

ues of n, in figures 2.2 b–d (which show the waveform at various distances from

the wall) and in figure 2.3 (which shows ‘snapshots’ of the velocity field at var-

ious times). In these figures, and elsewhere unless otherwise stated, the value

of y0 was determined using (2.16) so the oscillation has amplitude 1 at y = 0:

this permits direct comparisons to be made between the solutions for different

values of n.

In figures 2.2 b–d the deviation from a sinusoidal waveform with increasing

n is again evident, and comparing these plots with that in the Newtonian case

(figure 2.2 a), the faster decay with y is also evident. As n increases, the phase

of the oscillations changes more slowly with y (i.e. the waves propagate more

slowly), corresponding to the lower values of |k|.

The effect of changing n can also be seen in the snapshots in figure 2.3. These

plots illustrate clearly both the changing envelope, with amplitude decaying

more quickly away from y = 0 for higher n, and the increasingly non-sinusoidal
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Figure 2.2: Solutions for u(y, t) for (a) n = 1; (b) n = 2 (k ≈ −3.25; y0 ≈ 4.44);
(c) n = 3 (k ≈ −2.13; y0 ≈ 2.89); and (d) n = 4 (k ≈ −1.72; y0 ≈ 2.34). Plots
are for y = 0 to y0 in 10 equal steps (in (a), for y = 0 to 5 in 10 equal steps);
successive lines in each plot are shifted upwards by equal but arbitrary amounts
as y increases.
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Figure 2.3: Snapshots of u(y; t) at time intervals of π/8, for (a) n = 2 (y0 ≈ 4.44)
and (b) n = 4 (y0 ≈ 2.34).

waveform, with profiles becoming more angular as n is increased.

2.2.4 Periodic solutions for shear-thinning fluids (n < 1)

We now consider shear-thinning fluids (n < 1), for which the exponent α <

0. We must therefore take Y = y + y0, and k > 0 so that waves propagate
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away from the wall. As before, equation (2.13) is only formally valid away

from the critical line where ∂u/∂Y = 0. However, the system is not singular

on the critical line, in contrast to the shear-thickening problem. This simplifies

the numerical integration considerably. However, the closed trajectory which

represents periodic solutions appears numerically to be an unstable limit cycle

of the ODE, so to obtain it we must integrate backwards in η∗. Apart from this,

the construction of the solutions proceeds as before.
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Figure 2.4: (a) Phase-plane portraits (f ∗, f ∗
′

) for f(η) for n = 0.5 (solid lines)
and n = 0.25 (dashed lines). (b, c) Solutions for u(y, t) for (b) n = 0.5 (k ≈ 2.242,
y0 ≈ 3.56); (c) n = 0.25 (k ≈ 0.786, y0 ≈ 1.47). Plots are at even increments of y
starting at y = 0; successive lines in each plot are shifted upwards by equal but
arbitrary amounts as y increases.

Figures 2.4 and 2.5 illustrate the results for the two cases n = 0.5 and n =

0.25. A conspicuous feature is that the waveforms f(η) are no longer ‘saw-

toothed’ as they were for shear-thickening fluids (compare figures 2.4 b and

c with figures 2.1 b and c); rather, they have a nearly triangular ‘shark-tooth’

shape. Conversely, the nature of the snapshot profiles of u(y; t) (figure 2.5) has

altered: whereas the shear-thickening profiles were highly angular (figure 2.3),
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Figure 2.5: Snapshots of u(y; t) at time intervals of π/8, for (a) n = 0.75 (y0 ≈
9.36) and (b) n = 0.25 (y0 ≈ 1.47).

the shear-thinning profiles have more gentle variation and even show extensive

regions of near-constant velocity during certain phases (figure 2.5 b).

Figure 2.5 also illustrates themore gentle amplitude decay for shear-thinning

than for shear-thickening fluids. This decay becomes noticeable over distances

of order y0 from the wall: for y & y0 the decay becomes algebraic with exponent

α < 0. It turns out (see figure 2.6 b) that as n decreases, y0 becomes smaller

(favouring more rapid decay) but α also becomes smaller (favouring less rapid

decay); consequently there is not a spectacular visual difference between the

decay envelopes for n = 0.25 and n = 0.75 shown in figure 2.5.

2.2.5 Variation of the wavespeed and the boundary layer thick-

ness with n

Figures 2.6 a and b present more systematically the variation with n of the

wavespeed parameter k and of the boundary-layer thickness y0 corresponding

to unit amplitude at y = 0. (Figure 2.6 b also includes a comparison with the

numerical results described in section 2.3.) As the fluid becomes more strongly

non-Newtonian, i.e. the value of n differs more from unity, both the wavespeed

parameter |k| and the boundary layer thickness y0 decrease. The limit n → 1 is
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singular because in this limit the definition of α breaks down.
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Figure 2.6: Results for (a) the wavespeed parameter |k| and (b) the boundary
layer thickness y0 corresponding to unit amplitude at the wall. Pluses represent
values from the semi-analytical solutions; dashed lines are a smoothed fit to

these points, and circles in (b) represent the numerical fits y
(num)
0 reported in

table 2.1.

2.2.6 Shear stress at the wall

In experiments, it may be simpler to control, or indeed to measure, the shear

stress exerted by the wall on the fluid than to measure or control the velocity of

the wall directly. It is therefore of interest to consider the shear stress predicted

by our semi-analytical solutions.

The dimensionless shear stress at the wall is given by

τw(t) =

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y

∣

∣

∣

∣

∣

y=0

= ±y
2n/(n−1)
0 |αf(t) − kf ′(t)|n−1

(αf(t) − kf ′(t)) , (2.18)

where the upper sign corresponds to Y = y0 + y (i.e. to shear-thinning cases,

n < 1) and the lower sign to Y = y0 − y (i.e. to shear-thickening cases, n > 1).

The corresponding expression for a Newtonian fluid is

τw(t) =
∂u

∂y

∣

∣

∣

∣

y=0

= cos

(

t +
5π

4

)

, (2.19)
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Figure 2.7: The wall shear stress (solid lines) and wall velocity (dashed lines)
for (a) n = 0.25 and (b) n = 4.

so for a Newtonian fluid the shear stress also varies sinusoidally and its phase

leads that of the velocity by 5π/4 (see, e.g., Drazin and Riley 2006, §4. 1).

Figure 2.7 shows typical wall shear stress histories over two periods for a

shear-thinning fluid (n = 0.25) and a shear-thickening fluid (n = 4). Since

the shear stress does not vary with the same waveform as the velocity, a phase

difference cannot be defined. However, it is apparent from figure 2.7 that in both

shear-thinning and shear-thickening cases the stress and velocity are roughly in

antiphase, with minima of τw roughly coinciding with maxima of u(0, t) and

vice versa. For shear-thinning fluids (figure 2.7(a)), a gradual increase in the

magnitude of shear stress is followed by a rapid decrease; conversely, for shear-

thickening fluids (figure 2.7 b), the magnitude of shear stress builds up rapidly

and then more gradually diminishes. This qualitative difference may be useful

as a means of distinguishing experimentally between shear-thinning and shear-

thickening behaviour.
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2.3 Numerical integration of the full problem

2.3.1 Numerical implementation

The dimensionless form of the governing equation (2.4), with Y ≡ y, was in-

tegrated numerically using the finite-element package Comsol 3.5a (Comsol

2009). A finite numerical domain 0 ≤ y ≤ ymax was used, with the bound-

ary conditions u(0, t) = cos(t) and u(ymax, t) = 0; the value of ymax was 10

unless otherwise stated. Integrations were started from the initial condition

u(y, 0) = 0 and run for several hundred time units until an effectively periodic

state had been attained throughout the domain. The spatial resolution was 121

grid points, and the numerical relative tolerance was 10−4; the results were ro-

bust to further refinement of these parameters. Run-times ranged from tens of

minutes to several hours on a desktop PC.

The numerical and semi-analytical approaches cannot be expected to yield

identical results, both because the numerical method solves an initial value

problem rather than seeking perfectly time-periodic solutions, and because the

numerical approach imposes a sinusoidal variation at the wall rather than the

non-sinusoidal waveforms obtained in section 2.2. These differences provide

a tough test of the semi-analytical solutions, which will be recovered only if

they represent the attracting behaviour of the system when it is forced with a

‘non-ideal’ boundary velocity which is not proportional to the semi-analytical

waveform f(η). If the semi-analytical solutions are attractive then we should

expect them to approximate the numerical results best at long times and some

distance from the wall.

The two key features predicted by the semi-analytical solutions are the decay

envelope of the oscillations and the non-sinusoidal form of the travelling wave.

We now consider these features in turn, first for shear-thickening fluids with
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Figure 2.8: Fitting the envelope to numerical results for n = 4. Dotted lines
are snapshots of u(y; t) at frequent time intervals; the solid line is the envelope

umax(y) = a(1 − y/y
(num)
0 )α with fitted parameters a = 0.93 and y

(num)
0 = 2.3. The

two figures show the same data; note the logarithmic scale in (b).

n > 1, and then more briefly for shear-thinning fluids with n < 1.

2.3.2 Decay envelope for shear-thickening cases

Figure 2.8 a shows snapshots of the numerical velocity field at large times, for

the shear-thickening case n = 4. The velocity field has become periodic in time

almost everywhere, and decays rapidly with distance from the wall. (Note

the strong resemblance to figure 2.3 b, which shows the corresponding semi-

analytical results.) This behaviour can be seenmore clearly in figure 2.8 b, where

the same data are plotted on a logarithmic scale. In this figure, it is clear that the

region of periodic oscillation extends up to y ≈ 2.3, and beyond this there is a

region of small but non-zero velocity which is changing only extremely slowly

in time.

The region beyond y ≈ 2.3 is a relic of the adjustment from the initial condi-

tion. Once a finite-thickness boundary layer has formed, the edge of this bound-

ary layer (where the shear rate and thus the effective viscosity vanishes) acts as

a barrier to the propagation of further information outward from the wall, and

any non-zero flow beyond this point is effectively cut off from the periodic so-
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n α (exact) y0 (from (2.16)) y
(num)
0 (fitted) a (fitted)

0.25 −5/3 1.47 1.5 1.15
0.5 −3 3.56 3.6 1.10
0.75 −7 9.36 9.4 1.02
2 3 4.44 4.39 0.93
3 2 2.89 2.84 0.92
4 5/3 2.34 2.30 0.93

Table 2.1: Fitted envelope parameters for various shear-thickening and shear-
thinning cases. Note that the envelopes were fitted by eye so the fitted parame-
ters may not be optimal.

lution. In practice, the numerical method cannot perfectly represent this barrier

and a small amount of numerical noise is able to penetrate beyond the bound-

ary layer, but with extremely low amplitudes visible only in figure 2.8 b.

It is easy to fit an envelope of the form umax(y) = a(1 ∓ y/y
(num)
0 )α to the

numerical results. The fitting parameters are tabulated in table 2.1, while the

fitted values of y
(num)
0 are also marked in figure 2.6 b. The fitting was carried

out by eye: for shear-thickening cases, the region of steep decay in plots such as

figure 2.8 b unambiguously determines y
(num)
0 , and a was then adjusted so that

the envelope matched the snapshots as closely as possible. Note that the value

of α is determined by the semi-analytical solution and was not used as a fitting

parameter; it is included in table 2.1 for completeness.

The numerical boundary layer thickness y
(num)
0 is not necessarily identical

to that required for the semi-analytical solution to have unit amplitude at the

wall, because the numerically imposed boundary condition is sinusoidal rather

than having the form u(0, t) ∝ f(t). Despite this, the results in table 2.1 show

that in practice y
(num)
0 is rather close to the value of y0 given by (2.16). Similarly,

the amplitude a of the fitted envelope at the wall is not necessarily equal to 1,

because the adjustment from sinusoidal to non-sinusoidal waves does not nec-

essarily preserve amplitude. The value of a relative to unity can be used as a
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crude measure of howmuch this adjustment influences the solution. The values

of a in table 2.1 are reasonably close to unity and, taken in conjunction with fig-

ure 2.8, provide convincing evidence that the semi-analytical solution provides

a good description of the numerically calculated solution despite the issues in-

volved in the adjustment from a sinusoidal to a non-sinusoidal waveform.

2.3.3 Waveform for shear-thickening cases

Figure 2.9 illustrates the adjustment of the waveform f(η) as it propagates away

from the wall. At the wall, the imposed numerical waveform is sinusoidal. By

y = 0.5 (figure 2.9 a) this has already become distorted, and by y = 1 (fig-

ure 2.9 b) the ‘saw-tooth’ pattern is clear, with gradual increase to a maximum

followed by a more rapid decrease. Subsequently the waveform adjusts more

gradually towards the semi-analytical prediction (figures 2.9 c and d), with the

cusp becoming more pronounced; by y = 2 (figure 2.9 d) there is a fairly good

match between the numerically calculated and semi-analytical waveforms.

Unfortunately, because the waveform changes as it propagates away from

the wall, it is not possible to define unambiguously a local propagation rate and

thus to obtain numerical values of k to compare with the semi-analytical results.

2.3.4 Decay envelope and waveform for shear-thinning cases

Similar numerical integrations and fits to the semi-analytical solutions were car-

ried out for a number of shear-thinning cases (see table 2.1). The adjustment

to approximate periodicity was rather more rapid than in the shear-thickening

cases: figures 2.10 and 2.11 illustrate typical results once periodicity had been

attained.

In shear-thinning fluids, because the envelope decays rather slowly with y,
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Figure 2.11: Fitting the decay envelope to numerical results for n = 0.5, com-
puted on the domain 0 ≤ y ≤ 25. Dotted lines are snapshots of u(y; t) at frequent

time intervals; the solid line is the envelope umax(y) = a(1+y/y
(num)
0 )α with fitted

parameters a = 1.10 and y
(num)
0 = 3.6. The two figures show the same data set,

although more frequent snapshots are shown in (b); also note the logarithmic
scale in (b).

the boundary condition imposed at y = ymax can have an appreciable effect

on the solutions. Indeed, because for low shear stresses the effective viscosity

(i.e. the momentum diffusivity) is high, the influence of this boundary extends

for a considerable distance. The results plotted were obtained for ymax = 25,

compared with ymax = 10 in figure 2.9. When ymax = 10 was used, the effect of

the boundary was noticeable for y & 6.5.

The waveforms shown in figure 2.10 (compare figure 2.9) illustrate the com-

peting effects of the boundary condition at the wall, the boundary condition

at y = ymax and the attracting semi-analytical solution. Close to the wall (fig-

ure 2.10 a) the imposed sinusoidal waveform can still be felt, although it has

already become more angular. As y increases, the waveform adjusts to its semi-

analytical ‘shark-tooth’ form (figure 2.10 b), and remains fairly close to this for

some distance (figure 2.10 c). Eventually, the waveform starts to deviate as the

effect of the boundary at ymax is felt, until by y = 20 (figure 2.10 d) it is signifi-

cantly different from the semi-analytical prediction.

A similar improvement and then deterioration in agreement between the
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numerical and semi-analytical solutions can be seen in figure 2.11, where the

semi-analytical envelope is fitted to the snapshot data (compare figure 2.8). In

contrast to the shear-thickening case, the fitting here is relatively insensitive to

the boundary-layer thickness y
(num)
0 , and the region of steep decay is due to the

presence of the endwall at y = 25. There is also some evidence in figure 2.11 b of

numerical error affecting very low values of u. The fit to the analytical envelope

is best for the middle part of the domain where the waveforms also agree most

closely with the semi-analytical solution, and the amplitude parameter a is now

a little greater than unity. These issues notwithstanding, the semi-analytical

solution again captures the greater part of the decay reasonably well.

2.4 Dimensional formulation

It is useful to consider the solutions in dimensional form, this will allow us to

see how the width of the finite width boundary layer depends on the amplitude

of oscillation. Starting with equation (2.14) we see that

û(ŷ, t̂) =















































Û

(

y0 −
(

ω̂ρ̂

µ̂nÛn−1

)1/(n+1)

ŷ

)α

f

(

ω̂t̂ + |k| log

(

y0 −
(

ω̂ρ̂

µ̂nÛn−1

)1/(n+1)

ŷ

)

; n

)

for n > 1,

Û

(

y0 +
(

ω̂ρ̂

µ̂nÛn−1

)1/(n+1)

ŷ

)α

f

(

ω̂t̂ − |k| log

(

y0 +
(

ω̂ρ̂

µ̂nÛn−1

)1/(n+1)

ŷ

)

; n

)

for n < 1

(2.20)

in dimensional form. We can now obtain a formula for y0 equivalent to equation

(2.16)

y0 =

(

û

Û
fmax

)

−1/α

. (2.21)
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We can see that as the amplitude of oscillation, Û , increases, y0 will decrease for

shear-thickening (n > 1) fluids and increase for shear-thinning (n < 1) fluids.

2.5 Summary

We have presented semi-analytical, self-similar solutions for the temporally pe-

riodic rectilinear flow of a power-law fluid driven by an oscillating wall. In

non-dimensional form, these solutions may be written as

u(y, t) =















(y0 − y)α f(t + |k| log(y0 − y); n) for n > 1,

(y0 + y)α f(t − |k| log(y0 + y); n) for n < 1,

(2.22)

where the periodic functions f(η; n) and the constants k(n) are obtained numer-

ically; where α = (n + 1)/(n − 1); and where y0 is determined by matching to

the flow driven by the boundary condition at the wall.

The most interesting feature of these solutions is that for shear-thickening

fluids (n > 1), they predict a boundary layer of finite thickness, with the motion

dying out completely beyond a certain distance from the wall. This is reminis-

cent of the behaviour in the Rayleigh problem for power-law fluids studied by

Pascal (1992). It is also reminiscent of the finite thickness of the oscillatory shear

layer in the viscoplastic Stokes problem (Balmforth, Forterre, and Pouliquen

2009). However, it arises for almost exactly the opposite reason: because the

viscosity of a shear-thickening fluid decreases as the shear rate decreases, the

viscosity at the edge of the boundary layer is zero and the diffusing signal can-

not penetrate further into the fluid. A consequence of this is that in a shear-

thickening fluid the flow outwith the boundary layer can remain unaffected

by the motion of the wall: essentially the fluid has developed an internal slip
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surface separating non-communicating regions. In a less idealised rheological

model with a small but non-zero effective viscosity at zero shear rate, some

communication between these regions would be possible. However, the ability

of the numerical approach to replicate the slip surface, despite the inevitable

presence of numerical diffusion, suggests that ‘pseudo-slip’ behaviour might

still be possible.

Conversely, for shear-thinning fluid the influence of the wall extends much

further into the fluid than in the Newtonian case, decaying algebraically rather

than exponentially with distance from the wall. In the context of fluid mud

mobilisation and transport, this behaviour implies that shear-thinning muds

may be mobilised to substantially greater depths than a crude estimate based

on a Newtonian boundary layer thickness would suggest.

Another clear qualitative indicator of shear-thickening or shear-thinning be-

haviour is the non-sinusoidal waveform of the velocity oscillations. For shear-

thickening fluids the oscillations adopt a ‘saw-tooth’ form, with a rapid de-

crease in absolute velocity after each minimum or maximum; shear-thinning

fluids prefer a ‘shark-tooth’ waveform which is nearly triangular with rapid re-

versal at each maximum. The histories of shear stress on the oscillating wall

also differ: shear-thinning cases are characterised by gradual increases in stress

followed by rapid decreases, whereas shear-thickening cases are characterised

by rapid increases in stress followed by more gradual decreases.

These results are not of interest solely as the solutions to a very specific

boundary-value problem. Numerical integration of the governing equation

with sinusoidal forcing at the wall demonstrates that the self-similar solutions

represent attracting states for the system, and so provide a good approximation

of the solution even when the forcing is not specifically designed to produce

them. For shear-thinning fluids, the influence of the zero-velocity condition
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at the non-oscillating end wall means that the self-similar solutions are only a

good approximation in the middle part of the domain; nevertheless they cap-

ture the propagating waveform and the decay envelope reasonably well.

2.6 Appendix: trajectories near the critical linewhen

n > 1

For values of n > 1, the second derivative of f ∗ in equation (2.13) must become

unbounded on the critical line αf ∗+f ∗
′

= 0. (Recall that k < 0 whenever n > 1.)

We may use the chain rule to write d2f ∗/dη∗2 = df ∗
′

/dη∗ = (df ∗
′

/df ∗)f ∗
′

so that

equation (2.13) becomes

f ∗
′

= n
∣

∣

∣
αf ∗ + f ∗

′

∣

∣

∣

n−1
[

(α − 1)
(

αf ∗ + f ∗
′

)

+ αf ∗
′

+ f ∗
′ df ∗

′

df ∗

]

. (2.23)

Setting f ∗ = f ∗

0 + ǫ and taking the Ansatz f ∗
′

= f ∗
′

0 + δ0ǫ
β for some β > 0, where

αf ∗

0 + f ∗
′

0 = 0, we obtain

f ∗
′

0 + δ0ǫ
β ∼ n

∣

∣αǫ + δ0ǫ
β
∣

∣

n−1

×
[

(α − 1)
(

αǫ + δ0ǫ
β
)

+
(

f ∗
′

0 + δ0ǫ
β
)

(

α + δ0βǫβ−1
)

]

. (2.24)

Keeping only possible leading-order terms and assuming f ∗
′

0 6= 0, this reduces

to

1 ∼ n
∣

∣αǫ + δ0ǫ
β
∣

∣

n−1 [
α + δ0βǫβ−1

]

. (2.25)

We now need to consider the size of β. If β > 1 then the leading-order

balance reduces to

1 ∼ n |αǫ|n−1 α, (2.26)
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which is inadmissible because the powers of ǫ do not balance. On the other

hand, if β < 1 then the leading-order balance becomes

1 ∼ n
∣

∣δ0ǫ
β
∣

∣

n−1
δ0βǫβ−1, (2.27)

which is valid as long as β(n−1)+β−1 = 0, i.e. β = 1/n < 1. This is consistent;

the constant δ0 = 1 follows immediately, and we have leading-order behaviour

of the form

f ∗ = f ∗

0 + ǫ, f ∗’ ∼ f ∗’
0 + ǫ1/n (2.28)

given in (2.17).

2.7 Appendix: Maple code

2.7.1 Code for obtaining f(η)

>restart;with(plots):

Define α from equation (2.15).

>alpha:= (n+1)/(n-1):

Set up governing equation (2.11).

>feq:= diff(f(eta),eta)=abs(alpha*f(eta)+diff(f(eta),eta))

∧(n-1)*(n*(alpha-1)*(alpha*f(eta)+diff(f(eta),eta))+n*
(alpha *diff(f(eta),eta)+diff(f(eta),eta$2)));

Critical f at which solution blows up.

>dfcrit(f0):= -alpha*f0;

Shooting problem: shoot away from the critical line and match on f = 0.

>ic1:= f(0)=f0+epsilon, D(f)(0)=dfcrit(f0)+epsilon∧n;

>ic2:= f(0)=-f0+epsilon, D(f)(0)=subs(f0=-f0,dfcrit(f0))+
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epsilon∧n;

Set parameter values.

>parvals:= f0=-0.2638,epsilon=0.000001,n=4;

>sol1:= dsolve(subs(parvals,feq,ic1),f(eta),numeric):

>sol2:= dsolve(subs(parvals,feq,ic2),f(eta),numeric):

Plot f and change f0 value until the lines match up.

>display([odeplot(sol1,[f(eta),diff(f(eta),eta)],0..1,

numpoints=2000,color=blue), odeplot(sol2,[f(eta),diff

(f(eta),eta)],-1..0,numpoints=2000,color=black), plot(

-5/3*x,x=-0.3..0.3,color=gray)]);

We use this plot to determine T ∗ and hence allow us to determine k.

>display([ odeplot(sol1,[f(eta),diff(f(eta),eta)],0..

1.8266914, numpoints=2000,color=blue), plot(-5/3*x,x=-0.3

..0.3,color=gray)]);

>odeplot(sol1,[[eta,f(eta)],[eta+1.8266914,f(eta)]],0..

1.8266914,numpoints=1000);

This procedure builds up an array of data for f ∗(η) and f ∗’(η).

>fstararray:= proc(npts,T) global farr; local i, etai;

for i from 0 to npts do etai:= evalf(T*i/npts);

farr[i,0]:= etai;

farr[i,1]:= subs(sol1(etai),f(eta));

farr[i,2]:= subs(sol1(etai),diff(f(eta),eta));

farr[i+npts,0]:= etai+T;

farr[i+npts,1]:= subs(sol1(etai),-f(eta));

farr[i+npts,2]:= subs(sol1(etai),-diff(f(eta),eta)) od;

end;

This procedure takes an (arbitrary) value of η∗ and returns the correspond-
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ing values of f ∗ and f ∗’.

>fstarout:= proc(eta,npts,T) global farr; local i, eta0,

fstari, dfstari;

eta0:= eta-2*T*floor(eta/(2*T));

for i from 0 to 2*npts-1 do

if (farr[i,0]-eta0)*(farr[i+1,0]-eta0)<=0 then fstari:=

farr[i,1]+(farr[i+1,1]-farr[i,1])/(farr[i+1,0]-farr[i,0])*

(eta0-farr[i,0]);

dfstari:= farr[i,2]+(farr[i+1,2]-

farr[i,2])/(farr[i+1,0]-farr[i,0])*

(eta0-farr[i,0]) fi od;

return(fstari,dfstari);

end;

This procedure evaluates (approximately) the maximum value of f ∗ and the

corresponding value of η∗.

>fstarmaxout:= proc(npts,T) global farr; local i, fstari,

fstarip1, fstarim1, fmax, imax;

fmax:= farr[0,1];

for i from 1 to 2*npts do if(farr[i,1]>fmax) then fmax:=

farr[i,1];

imax:= i fi od; return(fmax,evalf(imax*T/npts));

end;

This procedure writes out four data sets to the file: the first is a couple of

periods of f ∗(η); the second is a couple of periods of f(η); the third is the phase

plane portrait (f ∗,f ∗’); the fourth is the rescaled phase plane portrait (f ,f ′).

>fplotsout:= proc(npts,T,filout) global parvals, farr;

local n0, k, i, etai, fd;
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fd:= open(filout,WRITE);

n0:= subs(parvals,n);

fprintf(fd,"# n = % f;

f0 = %f\n",n0,subs(parvals,f0));

fprintf(fd,"# Half-period = %f\n",T);

k:= evalf(Pi/T);

fprintf(fd,"# Scale factor |k| = %f\n",k);

fprintf(fd,"# Scale factor |k|∧(-1/(n-1))=%f\n",k∧(-1/

(n0-1)));

fprintf(fd,"\n\n# f∧*(eta∧*) over two periods\n");

for i from 0 to 2*npts do fprintf(fd,"%f %f\n",farr[i,0],

farr[i,1]) od;

for i from 0 to 2*npts do fprintf(fd,"%f %f\n", farr[i,0]

+2*T,farr[i,1]) od;

fprintf(fd,"\n\n# f(eta) over two periods\n");

for i from 0 to 2*npts do fprintf(fd,"%f %f\n",k*farr[i,0],

k∧(-1/(n0-1))*farr[i,1]) od;

for i from 0 to 2*npts do fprintf(fd,"%f %f\n", k*farr[i,0]

+2*Pi,k∧(-1/(n0-1))*farr[i,1]) od;

fprintf(fd,"\n\n# (f∧*,f∧*’) over a period\n");

for i from 0 to 2*npts do fprintf(fd,"%f %f\n",farr[i,1],

farr[i,2]) od;

fprintf(fd,"\n\n# (f,f’) over a period\n");

for i from 0 to 2*npts do fprintf(fd,"%f %f\n",k∧(-1/(n0

-1))*farr[i,1],k∧(-1/(n0-1)-1)*farr[i,2]) od;

close(fd);

end;
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This procedure calculates y0 such that the amplitude at the wall is 1; it then

outputs ny evenly spaced ”cross-section” plots between y = 0 and y = y0.

xsecout:= proc(npts,T,ny,nperiods,ushift,filout) global

parvals, farr;

local n0, k, fmax, y0, m, j, yj, phij, tij, i, etai, fd;

n0:= subs(parvals):

k:= evalf(Pi/T);

fmax:= k∧(-1/(n0-1))*op(1,[fstarmaxout(npts,T)]);

y0:= 1/fmax∧((n0-1)/(n0+1));

fd:= open(filout,WRITE);

for j from 0 to ny-1 do yj:= evalf(y0*j/ny);

phij:= -k*log(y0-yj);

for m from -2 to nperiods-2 do

for i from 0 to 2*npts do tij:= m*2*Pi+k*farr[i,0]+phij;

fprintf(fd,"%f %f\n",tij,(y0-yj)∧((n0+1)/(n0-1))*k∧(-1/

(n0-1)) *farr[i,1]+j*ushift) od;

fprintf(fd,"\n\n") od;

od;

close(fd);

end;

This procedure calculates y0 as above and then outputs n snapshots between

y = 0 and y = y0, phase shifted so the first snapshot occurs when the amplitude

is maximum at the wall.

snapout:= proc(npts,T,ny,nsnap,filout) global parvals,

farr;

local n0, k, fmax, etamax, tmax, y0, m, j, yj, phij, ti,

i, etaij, fstarij, fd;
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n0:= subs(parvals,n);

k:= evalf(Pi/T);

fmax:= k∧(-1/(n0-1))*op(1,[fstarmaxout(npts,T)]);

etamax:= k*op(2,[fstarmaxout(npts,T)]);

y0:= 1/fmax∧((n0-1)/(n0+1));

tmax:= etamax-k*log(y0);

fd:= open(filout,WRITE);

for i from 0 to nsnap do ti:= tmax+evalf(2*Pi*i/nsnap);

for j from 0 to ny-1 do yj:= evalf(y0*j/ny);

phij:= -k*log(y0-yj);

etaij:= ti-phij;

fstarij:= op(1,[fstarout(etaij/k,npts,T)]);

fprintf(fd,"%f %f\n",yj,0*ti+(y0-yj)∧((n0+1)/(n0-1))*k∧

(-1/(n0-1))*fstarij) od;

fprintf(fd,"\n\n") od;

close(fd);

end;
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The Stokes problem for thixotropic

and antithixotropic fluids

In this chapter, wewill employ a combined asymptotic and numerical approach

to explore the structure of the Stokes layer for both thixotropic and antithixo-

tropic fluids. We will develop asymptotic solutions in the limit of small-ampli-

tude oscillations, which reveal three essentially differentways inwhich the fluid

structure can evolve while satisfying periodicity. We will then verify and ex-

tend these asymptotic results through direct numerical integration of the gov-

erning equations. Our aim throughout is to explore the full range of possible

behaviours that the model can exhibit, rather than to produce a single set of

detailed results for validation against particular laboratory data.

In section 3.1 we describe the rheological model and the governing equations

for the problem. We then investigate the two main rheological regimes repre-

sented by our model: thixotropic behaviour (section 3.2) and antithixotropic be-

haviour (section 3.3); an intermediate pseudo-Newtonian regime is dealt with

in an appendix section 3.6. In section 3.4 we examine ‘rheogram’ plots of shear

stress against shear rate for these solutions, and discuss the information that

60
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these plots yield. Finally, in section 3.5 we summarise our results and comment

on the general conclusions that may be drawn from them.

3.1 Mathematical model

3.1.1 Rheological model and governing equations

Recall that the general model by Mewis and Wagner (2009) for thixotropic and

antithixotropic fluids comprises an evolution equation for the scalar structure

parameter λ together with a constitutive relation giving the shear stress tensor

τ̂ij in terms of the shear rate tensor êij and the local value of λ.

The structure equation (1.16) is

Dλ

Dt̂
= −k̂1γ̇

aλb + k̂2γ̇
c(1 − λ)d, (3.1)

where the shear rate γ̇ is defined by equation (1.2). Here k̂1 and k̂2 are the rate

constants for structural breakdown and build-up respectively, while a, b, c and

d are non-negative dimensionless exponents. We will show in section 3.1.4 that

values a > c correspond to thixotropic behaviour and values c > a to antithixo-

tropic behaviour. We will also show that in the present problem the exponents

in (3.1) determine the regime of behaviour in an unexpectedly subtle manner.

This suggests that it may be necessary to pay more attention to the formulation

of structure evolution equations than they have tended to receive. Note that

the structure parameter λ is dimensionless and takes values between 0 (a fully

unstructured fluid) and 1 (a fully structured fluid).

We complete the rheological model by specifying the constitutive law

τ̂ij = η̂0λêij, where êij =
∂ûi

∂x̂j
+

∂ûj

∂x̂i
, (3.2)
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which as noted in section 1.2.4 is a version of the model originally proposed by

Moore (1959).

3.1.2 Problem formulation and governing equations

The flow is governed by the mass conservation and Navier–Stokes equations

∇̂ · û = 0 and ρ̂
Dû

Dt̂
= −∇̂p̂ + ∇̂ · τ̂ , (3.3)

where the velocity û = û(ŷ, t̂)ex, pressure p̂ = p̂(ŷ, t̂) and structure parameter

λ = λ(ŷ, t̂) are all assumed to be independent of the wall-parallel co-ordinate x̂.

From equation (1.2), the shear rate is given by γ̇ = |∂û/∂ŷ|. The momentum

balance in the ŷ-direction yields p̂ = p̂(t̂) only so pressure need not be con-

sidered, while in the x̂-direction combining equation (3.3) with the constitutive

equation (3.2) yields

∂û

∂t̂
= ν̂0

∂

∂ŷ

(

λ
∂û

∂ŷ

)

, (3.4)

where ν̂0 = η̂0/ρ̂.

Since λ is independent of x̂, the convective derivative in the structure equa-

tion (3.1) reduces to ∂λ/∂t̂ and hence λ satisfies

∂λ

∂t̂
= −k̂1

∣

∣

∣

∣

∂û

∂ŷ

∣

∣

∣

∣

a

λb + k̂2

∣

∣

∣

∣

∂û

∂ŷ

∣

∣

∣

∣

c

(1 − λ)d. (3.5)

To solve this system of equations we must specify a boundary condition at

the oscillating wall ŷ = 0 and a far-field condition as ŷ → ∞. For simplicity and

consistency with the standard Newtonian problem, (1.21), we assume that the

wall oscillates sinusoidally with amplitude û0, so the no-slip condition yields

û(0, t̂) = û0 cos(ω̂t̂), and that the velocity decays to zero from the wall so û → 0
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as ŷ → ∞.

3.1.3 Non-dimensionalisation

Before proceeding further we non-dimensionalise the problem. We set û = Û0u,

ŷ = Ŷ0y and t̂ = T̂0t, where the characteristic velocity, length and time scales Û0,

Ŷ0 and T̂0 are given by

Û0 = ν̂
1/2
0

(

k̂c−2
1

k̂a−2
2

)1/(2(a−c))

, Ŷ0 = ν̂
1/2
0

(

k̂c
1

k̂a
2

)1/(2(a−c))

, T̂0 =

(

k̂c
1

k̂a
2

)1/(a−c)

.

(3.6)

Note that these scales apply only when a 6= c. The special case a = c, in which

the behaviour is ‘pseudo-Newtonian’, is treated in section 3.6.

The dimensionless problem is therefore given by

∂u

∂t
=

∂

∂y

(

λ
∂u

∂y

)

(3.7)

and

∂λ

∂t
= −

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

a

λb +

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

c

(1 − λ)d, (3.8)

subject to the boundary condition u(0, t) = ǫ cos(ωt), where ǫ = û0/Û0 is the

non-dimensional amplitude and ω = ω̂T̂0 the non-dimensionless frequency of

the wall oscillations, and subject also to the far-field condition u → 0 as y → ∞.

Note that since T̂0 is defined in terms of the structure response timescales, ω

may be interpreted as a Deborah number for the problem (section 1.2.5).

When carrying out numerical integrations, we will also specify the initial

conditions u(y, 0) = 0 and λ(y, 0) = constant. However, our main interest is in

the behaviour at large times. Wewill show that, asmight be expected, transients
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that depend on the precise initial condition die away and the system adjusts to

a periodic state in this limit. When seeking periodic solutions we will impose

the periodicity conditions

λ(x, t + 2π/ω) = λ(x, t) and u(x, t + 2π/ω) = u(x, t) (3.9)

for all x and t, instead of specifying initial conditions.

Solving equations (3.7) and (3.8) is a difficult problem which must, in gen-

eral, be tackled numerically. However, analytical progress can also be made

in the asymptotic limit ǫ → 0 corresponding to small amplitude oscillations of

the wall. This asymptotic limit is especially informative because it allows us to

distinguish different regimes of rheological behaviour, characterised by differ-

ent responses of the structure to the oscillating shear rate. We will now discuss

these possible responses.

3.1.4 Instantaneous and time-averaged rheological equilibrium

It will be useful to distinguish two qualitatively different ways in which the

fluid structure may reach an ‘equilibrium’ with the local shear rate. These rep-

resent different limiting behaviours of the structure, and will emerge in our

asymptotic analysis from different dominant balances in equation (3.8).

When the response time for the structure is very short compared with the

timescale over which the shear rate changes, i.e. in the limit of small Deborah

number, ω → 0, we may expect the value of λ to be instantaneously determined

by the shear rate. In this limit, the time derivative in (3.8) is negligible, and

λ = λeq, where
λb

eq

(1 − λeq)d
=

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

c−a

. (3.10)
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We shall refer to this as ‘fast-adjusting’ behaviour. The resulting equilibrium

stress-shear curve allows us to distinguish between the rheological regimes rep-

resented by our model. Since the left-hand side of (3.10) is a monotonically

increasing function of λeq, we see that λeq increases with increasing shear rate

for a < c, giving shear-thickening (antithixotropic) behaviour, while λeq de-

creases with increasing shear rate for a > c, giving shear-thinning (thixotropic)

behaviour.

In antithixotropic cases, a < c, it is simple to show that the equilibrium shear

stress, τeq = λ∂u/∂y, is an increasing function of ∂u/∂y. In thixotropic cases,

a > c, it is less simple: τeq is an increasing function of ∂u/∂y for small shear rates,

but at large shear rates we obtain the asymptotic result |τeq| ∼ |∂u/∂y|(b+c−a)/b.

Thus, if the shear-thinning effect is strong enough at large shear rates, i.e. if

b + c − a < 0, the model allows τeq to decrease with increasing shear. Since this

appears physically unrealistic, we will not consider this parameter range in our

study.

When the response time for the structure is very long compared with the

timescale over which the shear rate changes, i.e. in the limit of large Deborah

number, ω → ∞, the response is more subtle. Over a period of oscillation the

local value of λ must remain almost constant and there is no reason in general

for it to be in equilibrium with the local shear rate. However, if periodicity is

required then there must be rheological equilibrium in a period-averaged sense.

Integrating (3.8) and imposing periodicity gives

0 = −
∫ 2π/ω

0

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

a

λbdt +

∫ 2π/ω

0

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

c

(1 − λ)ddt, (3.11)

and since in this limit λ is independent of time, we may rearrange equation
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(3.11) to yield λ = λav, where

λb
av

(1 − λav)d
=

∫ 2π/ω

0

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

c

dt

∫ 2π/ω

0

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

a

dt

. (3.12)

We shall refer to this as ‘slowly-adjusting’ behaviour. Again, the criteria a ≷ c

correspond to thixotropic and antithixotropic behaviour, but now defined in

terms of averages of the shear rate of the fluid.

3.2 Thixotropic behaviour, a > c

We first consider the case in which the rheology is thixotropic, a > c. In order to

make analytical progress we will first develop asymptotic solutions in the limit

of small-amplitude wall oscillations, ǫ → 0; we will then extend these solutions

numerically to larger values of ǫ.

3.2.1 Asymptotic solutions for small-amplitudewall oscillations

For the rates of structural build-up and breakdown to be comparable in magni-

tude in the limit ǫ → 0, the fluid must be highly structured, with λ close to unity

everywhere. We therefore seek asymptotic solutions of the form

u(y, t) = ǫu1(y, t) + o(ǫ) and λ(y, t) = 1 − ǫhλ1(y, t) + o(ǫh), (3.13)

where the exponent h > 0 remains to be determined. The boundary conditions

are u1(0, t) = cos(ωt) and u1 → 0 as y → 0. Note that because of the thixotropic

rheology we may also expect λ1 to be largest close to the wall where shear rates
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are highest, and to tend to zero as y → ∞.

Substituting the expansion (3.13) into equation (3.7) and retaining only lead-

ing-order terms yields

∂u1

∂t
=

∂2u1

∂y2
. (3.14)

Solving (3.14) subject to the boundary and far-field conditions yields

u(y, t) ∼ ǫu1(y, t) = ǫe−γy cos(γy − ωt) with γ =

√

ω

2
, (3.15)

so at first order we recover the Newtonian solution (1.21).

Substituting (3.13) into equation (3.8) yields

−ǫh ∂λ1

∂t
= −ǫa

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

a

+ ǫc+hd

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

c

λd
1 + higher order terms. (3.16)

Integrating (3.16) over a period and applying the periodicity condition (3.9) then

yields

0 = −ǫa

∫ 2π/ω

0

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

a

dt + ǫc+hd

∫ 2π/ω

0

λd
1

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

c

dt + higher order terms. (3.17)

Since the two terms in (3.17) must be of the same order in ǫ, we deduce that

a = c + hd, i.e.

h =
a − c

d
> 0. (3.18)

The dominant balance in equation (3.16) nowdepends on the relative sizes of

the exponents a and h, and so three cases must be considered. When h > a, the

right-hand side of (3.16) is dominant and so the leading-order behaviour must

be an instantaneous balance between the build-up and breakdown terms. This

is the ‘fast-adjusting’ behaviour described in section 3.1.4, and to leading order
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the structure parameter must be given by λ ∼ λeq(y, t), where λeq is defined

by (3.10). Conversely, when h < a, the left-hand side of (3.16) is dominant

and so the leading-order behaviour must be ∂λ1/∂t = 0. This is the ‘slowly-

adjusting’ behaviour also described in section 3.1.4, and to leading order the

structure parameter must be given by λ ∼ λav(y), where λav is defined by (3.12).

Between these two regimes of behaviour is a marginal case, h = a, in which

all three terms in (3.16) are of comparable magnitude and we may expect the

behaviour to be intermediate between fast- and slowly- adjusting behaviour.

We shall consider each case in turn.

3.2.1.1 Fast-adjusting behaviour when h > a

The first case we consider is h > a, when, as we have seen, the structure pa-

rameter adjusts rapidly to the local conditions. In this case, λ1 may be obtained

from (3.16) as

λ1(y, t) =

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

h

(3.19)

and thus

λ(y, t) ∼ 1 − ǫhλ1 = 1 − ǫhωh/2
∣

∣

∣
cos
(

γy − ωt− π

4

)
∣

∣

∣

h

e−γhy. (3.20)

As expected, the structure parameter approaches unity far from the wall but

deviates from unity near the wall. Specifically, the first order deviation of λ

from unity in (3.20) is proportional to e−γhy, and so the characteristic width of

the boundary layer is 1/(γh). Within this exponential envelope, there is an os-

cillatory variation reflecting the wave-like behaviour of the underlying velocity

field.
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Also of interest is the shear stress at the wall, τw, given by

τw = λ
∂u

∂y

∣

∣

∣

∣

y=0

∼ −ǫ
√

ω cos
(

ωt +
π

4

)

. (3.21)

At first order this is identical to the result for a Newtonian fluid.

3.2.1.2 Slowly-adjusting behaviour when h < a

The second case we consider is h < a, when, as we have seen, the structure pa-

rameter adjusts slowly to the local conditions. In this case, λ1 may be obtained

from (3.17) to give

λ ∼ 1 − ǫhλ1(y) = 1 − ǫhωh/2

[

Γ
(

a
2

+ 1
2

)

Γ
(

c
2

+ 1
)

Γ
(

a
2

+ 1
)

Γ
(

c
2

+ 1
2

)

]1/d

e−γhy, (3.22)

where Γ is the usual gamma function (Rile et al. 1998). As in the fast-adjusting

case, equation (3.20), the deviation of λ from unity decays exponentially with

distance from the wall, and the boundary layer has characteristic width 1/(γh).

However, in this case there is no oscillation superimposed on the envelope. Also

as in the fast-adjusting case, the shear stress at the wall is given to first order by

(3.21).

It can be shown that if the asymptotic expansion is carried to the next order

then the structure parameter must be given by λ ∼ 1−ǫhλ1(y)+ǫaλ2(y, t), where

∂λ2

∂t
= −

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

a

+

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

c

λd
1. (3.23)

This result will be of use whenwe check the validity of these solutions in section

3.2.1.4.
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3.2.1.3 Marginal behaviour when h = a

The third and final case we consider is the marginal case h = a, i.e. (a−c)/d = a,

in which all terms in (3.8) are of comparable magnitude. Now, at leading order

(3.16) becomes

−∂λ1

∂t
= −

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

a

+

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

c

λd
1, (3.24)

where u1(y, t) is as before given by (3.15). Physically, we may expect this case to

display behaviour intermediate between fast and slow adjustment.

We seek a solution to (3.24) that reflects the wavelike structure of the velocity

field. Employing the Ansatz λ1 = f(y)l(γy − ωt), where the functions f and l

are to be determined, equation (3.24) becomes

f
∂l

∂t
= (e−γyγ

√
2)a |cos(γy − ωt − π/4)|a − fd(e−γyγ

√
2)cld |cos(γy − ωt − π/4)|c

(3.25)

and so

∂l

∂t
=

(e−γyγ
√

2)a

f
|cos(γy − ωt− π/4)|a−fd−1(e−γyγ

√
2)cld |cos(γy − ωt − π/4)|c .

(3.26)

We separate variables by requiring that the factors involving f(y) in (3.26) can-

cel; thus

1 =
e−γay(γ

√
2)a

f
= fd−1e−γcy(γ

√
2)c (3.27)

and so

f = ωa/2e−γay. (3.28)

This reduces equation (3.25) to a nonlinear ODE for l, which may be written in

terms of a new variable τ = ωt− γy + π/4 as

ω
dl

dτ
+ ld |cos(τ)|c = |cos(τ)|a . (3.29)
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Equation (3.29) can easily be integrated numerically (see section 3.7.1) to obtain

the waveform l(τ); periodicity typically becomes established after only a few

periods, although the time taken to reach periodicity increases with ω. The

asymptotic solution of λ then takes the form

λ(y, t) ∼ 1 − ǫhλ1(y, t) = 1 − ǫhωh/2e−γhyl(ωt − γy). (3.30)

Note that, once again, the deviation of λ from unity is contained within an

exponential envelope representing a boundary layer with characteristic width

1/(γh) = 1/(γa), and that once again the shear stress at the wall is given to first

order by (3.21).

The solutions to (3.29) are interesting because they illustrate how the be-

haviour in this marginal case mediates between slowly- and fast-adjusting as ω

is varied. In the limit ω → 0, equation (3.29) is satisfied by the instantaneous

equilibrium

l(τ) = |cos(τ)|a (3.31)

which corresponds to λ ∼ λeq. Meanwhile, in the limit ω → ∞, l must become

a constant and we recover λ ∼ λav. Figure 3.1 illustrates the solutions for l(τ)

for several values of ω. As ω is increased from zero, the variation of l(τ) is

increasingly attenuated relative to (3.31), while it also displays an increasing

phase lag and an increasingly non-sinusoidal waveform. Closely analogous

behaviour can be seen in figure 2 of Shadrina (1978).

3.2.1.4 A posteriori estimate of the validity of the asymptotic solutions

The asymptotic solutions described in the preceding subsections have been ob-

tained in the limit of small-amplitude oscillations, ǫ → 0. However, they also

depend on the additional independent parameter ω, which represents the di-
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Figure 3.1: Periodic solutions to (3.29) for the structure waveform l(τ) with a = 2,
b = 1, c = 1, d = 1/2 and ω = 0 (dashed; equation (3.31)); ω = 0.1 (solid); ω = 0.5
(dotted); ω = 1000 (dot-dashed).

mensionless frequency or Deborah number. It is therefore useful to obtain a

posteriori estimates of the validity of these solutions when ω is not necessarily of

order unity.

It can be shown from (3.15) that |∂u/∂y| = O(ω1/2ǫ). In the fast-adjusting

regime, (3.20) yields the scalings λ = O(1), 1 − λ = O(ωh/2ǫh) and ∂λ/∂t =

O(ω1+h/2ǫh). From these, the validity condition for fast adjustment,

∣

∣

∣

∣

∂λ

∂t

∣

∣

∣

∣

≪
∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

a

λb ∼
∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

c

(1 − λ)d, (3.32)

corresponds to

ǫhω1+h/2 ≪ ǫaωa/2, i.e. ǫh−aω1+(h−a)/2 ≪ 1. (3.33)

Fast-adjusting behaviour can therefore be expected in the asymptotic limits of

either small oscillations, ǫ → 0, or slow oscillations, ω → 0.

In the slowly-adjusting regime, equation (3.22) yields the scalings λ = O(1)

and 1− λ = O(ωh/2ǫh). To estimate the magnitude of ∂λ/∂t we need to consider
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the next order in ǫ. Integrating equation (3.23) with respect to ωt implies that

ωλ2 = O(ωa/2); thus the validity condition for the asymptotic solution in the

slowly-adjusting case, namely

ǫhλ1 ≫ ǫaλ2 (3.34)

corresponds to

ǫhωh/2 ≫ ǫaωa/2−1, i.e. ǫh−aω1+(h−a)/2 ≫ 1, (3.35)

which is exactly the complement of the condition (3.33) for fast adjustment.

Since h− a < 0 in this regime, this condition always corresponds to small oscil-

lations, ǫ → 0 , but depending on the relative sizes of a and h it may be obtained

when the oscillations are fast or when they are slow.

Figure 3.2 illustrates the parameter regimes in which the present asymptotic

analysis suggests fast-adjusting, slowly-adjusting and hysteretic behaviour. To

avoid ambiguity, we will henceforth refer to the parameter regime a > c, h >

a as regime T1 and to the parameter regime a > c, h < a as regime T2; we

will reserve the terms ‘fast-adjusting’ and ‘slowly-adjusting’ for the regimes,

depending also on ǫ and ω, in which the solutions display these behaviours.

(The fast-adjusting regime is a subset of T1 and the slowly-adjusting regime is

a subset of T2.) When the system is neither fast- nor slowly-adjusting, we may

expect its behaviour in general to be hysteretic, as shown in figure 3.2.

3.2.2 Numerical results for finite-amplitude wall oscillations

We now compare the asymptotic solutions for velocity, structure parameter

and shear stress at the wall with numerical solutions obtained using the finite-
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Figure 3.2: Outline of regimes of validity for the asymptotic solutions for a thixo-
tropic fluid. The dashed lines represent indicative regime boundaries for ω = 1:
ǫh−a = 10 for h − a < 0 and ǫh−a = 0.1 for h − a > 0, where h = (a − c)/d. The
dotted line represents the marginal regime h = a.

element package Comsol 3.5a. A finite numerical domain 0 ≤ y ≤ ymax was

used, with a domain length of ymax = 10 unless otherwise stated. The initial

conditions were u(y, 0) = 0 and λ(y, 0) = 1 unless otherwise stated. A zero-

velocity condition was applied at y = ymax; in general this had a negligible effect

on the solution. The mesh comprised 240 equally-spaced grid points (except in

the calculations with ǫ = 10, where 960 grid points were employed to resolve

the behaviour close to the wall), and the numerical relative tolerance was 10−6.

The results reported here were robust to further refinement of these parameters.

Run-times ranged from tens of minutes to several hours on a desktop PC.

3.2.2.1 Regime T1: h > a

To illustrate the behaviour in regime T1, in which the structure parameter is

fast-adjusting for small ǫ, we take a = 2, b = 1, c = 1 and d = 1/3, giving h = 3.

We also set ω = 1 so that the condition (3.33) is easily satisfied.

We first consider small-amplitude oscillations, ǫ = 0.01. Figures 3.3 a and

3.3 b show snapshots of the velocity u(y, t) and structure parameter λ(y, t) at

equally spaced times during a period. (Note that since the evolution of λ is
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driven by |∂u/∂y|, it has period π/ω in contrast to the period 2π/ω for u; we

have therefore plotted λ at more frequent intervals than u.) The first snapshot

is taken at t = 100, by which time the system has adjusted to an essentially

periodic state. The numerical solution (solid lines) and the asymptotic solution

(dashed lines) are almost indistinguishable for all values of y. As the struc-

ture parameter deviates only very weakly from unity (figure 3.3 b), the velocity

field is essentially identical to the Newtonian solution (1.21), and decays expo-

nentially away from the wall, over a characteristic distance γ−1 =
√

2. It is clear

that the perturbations to the structure parameter decay away from the wall over

a shorter distance than the velocity, in accordance with the prediction of equa-

tion (3.20) that they should decay over a characteristic distance (γh)−1 =
√

2/3.

There is also evidence in figure 3.3 b that the structure parameter λ lags slightly

behind λeq at some stages of the oscillation.

To investigate the behaviour for larger oscillations, the amplitude was in-

creased to ǫ = 1. Figures 3.3 c and 3.3 d show snapshots of the velocity u(y, t)

and structure parameter λ(y, t). Some deviation can now be seen from the fast-

adjusting asymptotic solution, as the response time of the structure is no longer

negligible. The variation of the structure parameter λ (figure 3.3 d) is signifi-

cantly attenuated relative to the instantaneous equilibrium λeq predicted by the

asymptotic solution, and may be described as oscillation around an average

equilibrium value. Since λ is significantly lower than unity, the velocity (fig-

ure 3.3 c) decays more rapidly with distance from the wall than is predicted

by the asymptotic solution (3.15), in which λ ∼ 1. However, the deviation of

the structure parameter from unity is significantly overestimated by the asymp-

totic solution (3.20), because shear rates, and thus structure breakdown rates,

are generally lower than predicted by the asymptotic solution (3.15).

When the amplitude is increased further to ǫ = 10 (figures 3.3 e and f), these
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Figure 3.3: Thixotropic regime T1 (h > a): snapshots of the numerical solutions
(solid lines) and fast-adjusting asymptotic solutions (dashed lines) with a = 2,
b = 1, c = 1, d = 1/3, ω = 1 and (a, b) ǫ = 0.01; (c, d) ǫ = 1; (e, f) ǫ = 10. Plots (a),
(c) and (e) show the velocity u(y, t) at t = 100 + nπ/2 for n = 0, 1, 2 and 3; the
asymptotic solution is given by (3.15). Plots (b), (d) and (f) show the structure
parameter λ(y, t) at t = 100 + nπ/4 for n = 0, 1, 2, 3; the asymptotic solution is
given by (3.20).
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trends are still more strongly pronounced, and the asymptotic description for

small ǫ is clearly no longer valid. The structure has almost completely broken

down near the wall (figure 3.3 f), and the result of this very low viscosity is that

the oscillations in u die out very rapidly (figure 3.3 e). The effect of this on the

shear stress at the wall will be discussed in section 3.2.2.3.

3.2.2.2 Regime T2: h < a

To illustrate the behaviour in regime T2, in which the structure parameter is

slowly-adjusting for small ǫ, we take a = 2, b = 1, c = 1 and d = 1, giving h = 1.

We again set ω = 1 so that the condition (3.35) is easily satisfied.

We first consider small-amplitude oscillations, ǫ = 0.01. Figure 3.4 a shows

snapshots of the velocity u(y, t) at equally spaced times during a period. The

first snapshot is taken at t = 100, by which time the velocity has adjusted to an

essentially periodic state. The numerical solution (solid lines) and the asymp-

totic solution (dashed lines) are indistinguishable for all values of y. As the

structure parameter again deviates only very weakly from unity (figure 3.4 b),

the velocity field is again essentially identical to the Newtonian solution (1.21).

Although the velocity adjusts rapidly to an effectively periodic state, the

structure parameter takes longer to adjust. Figure 3.4 b shows plots of λ(y, t) at

times ranging from t = 100 to t = 500. Because the structure parameter varies

slowly, it not only remains approximately constant throughout a period but also

takes many periods to adjust towards its eventual asymptotic state (the dashed

line in figure 3.4 b). The adjustment towards this asymptotic state is fastest close

to the wall where shear rates are highest, and is correspondingly slower as shear

rates decay exponentially away from the wall.

To investigate the behaviour for larger oscillations, the amplitude was again

increased to ǫ = 1. Figures 3.4 c and d show snapshots of the velocity u(y, t)
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Figure 3.4: Thixotropic regime T2 (h < a): snapshots of the numerical solutions
(solid lines) and slowly-adjusting asymptotic solutions (dashed lines) with a =
2, b = 1, c = 1, d = 1, ω = 1 and (a, b) ǫ = 0.01; (c, d) ǫ = 1; (e, f) ǫ = 10. Plots (a),
(c) and (e) show the velocity u(y, t) at t = 100 + nπ/2 for n = 0, 1, 2 and 3; the
asymptotic solution is given by (3.15). Plot (b) shows the structure parameter
λ(y, t) at t = 100, 200, 300, 400 and 500, while plots (d) and (f) show the structure
parameter λ(y, t) at t = 100 + nπ/4 for n = 0, 1, 2, 3; the asymptotic solution is
given by (3.22).
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and structure parameter λ(y, t), after the system has adjusted to an essentially

periodic state. Some deviation from the asymptotic solution can now be seen.

The structure parameter λ (figure 3.4 d) is nearly independent of t but strongly

dependent on y, and oscillates slightly around an average equilibrium value.

As in the regime T1 (figures 3.3 c and d), λ(y, t) is significantly lower than unity,

so the velocity (figure 3.4 c) decays more rapidly with distance from the wall

than is predicted by the asymptotic solution (3.15), in which λ ∼ 1. However,

the deviation of the structure parameter from unity is again significantly over-

estimated by the asymptotic solution (3.22).

When the amplitude is increased further to ǫ = 10 (figures 3.4 e and f), the

asymptotic description for small ǫ is clearly no longer valid. Except near the

wall, however, the structure parameter still varies only weakly throughout a

period (figure 3.4 f) so the system still shows essentially slowly-adjusting be-

haviour. What is now conspicuous is that the structure has almost completely

broken down near the wall, and the result of this very low viscosity is that the

oscillations in u die out very rapidly (figure 3.4 e). This is again rather similar to

the behaviour in regime T1: indeed, with increasing ǫ the distinction between

these regimes becomes increasingly blurred.

3.2.2.3 Shear stress at the wall

It is also of interest to examine the shear stress at the wall, as this is one of the

most readily measured quantities in most experimental configurations. Figures

3.5 a and 3.5 b show the shear stress τw(t), normalised by the asymptotic scaling

factor ǫ, for regimes T1 and T2 respectively.

In each case, the variation for small ǫ is sinusoidal as predicted by the asymp-

totic solution (3.21). As ǫ is increased, the variation becomes slightly less sinu-

soidal, and the scaling of τw with ǫ also departs from strict proportionality. There
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Figure 3.5: Normalised shear stress at the wall, τw(t)/ǫ, with a = 2, b = 1, c = 1
and ω = 1 and (a) d = 1/3, (b) d = 1. Figure (a) is the shear stress for regime
T1 (h > a) and figure (b) is the shear stress for regime T2 (h < a). The circles
represent the asymptotic solution; lines represent the numerical solutions for
ǫ = 0.01 (dashed); ǫ = 1 (thick solid); ǫ = 10 (thin solid).

is a competition between the decreasing values of λ at the wall and the increas-

ing shear rates, both of which contribute to τw. In regime T2 (figure 3.5 b) the

former dominates and the rescaled shear stress τw/ǫ decreases with increasing

ǫ. In regime T1 (figure 3.5 a) the competition is less straightforward: at first the

rescaled shear stress decreases with increasing ǫ, but as ǫ is increased further the

high shear rates near the wall come to dominate and τw/ǫ increases again. In all

these cases, however, the amplitude of τw remains of order ǫ, despite the very

strong deviation of both u and λ from the asymptotic solution.

When ǫ is increased to 10, rapid variations of τw occur at times when the

shear rate is close to zero (figures 3.5 a and b). In order to explore this be-

haviour, in figure 3.6 we plot τw/ǫ along with the structure parameter λ and

the shear rate, also evaluated at the wall. Note that a normalised shear rate

γ̇∗ = (∂u/∂y)/ max(∂u/∂y) has been plotted to allow all three quantities to ap-

pear on the same axes.

In general, the strong oscillation means that λ is very low near to the wall.
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rameter evaluated at the wall with a = 2, b = 1, c = 1 and ω = 1 and (a)
d = 1/3, (b) d = 1. Figure (a) shows regime T1 (h > a) and figure (b) shows
regime T2 (h < a). Lines represent the numerical solutions for τw/ǫ (thin solid);
γ̇∗ = (∂u/∂y)/ max(∂u/∂y) (thick solid); λ (dashed).

Since λ also sets the momentum diffusivity, this means that there is generally

a high-shear region near the wall. Throughout most of a period, then, λ is low

and thus ∂u/∂y is large; in fact throughout this phase of the oscillation λ is grad-

ually decaying. However, because the wall oscillates, there must come a point

in the cycle when ∂u/∂y becomes close to zero. At this point, a feedback pro-

cess occurs: λ increases, thus increasing the momentum diffusivity and further

reducing the shear rate. The result of this is that λ grows rapidly, while ∂u/∂y is

held close to zero for an extended period (the ‘plateau’ which can be seen every

time the dashed line in figures 3.5 a and b crosses the axis). Eventually, though,

the continued increase of u at the wall causes the shear rate to increase again;

increasing shear decreases λ, which in turn further increases shear. Thus λ de-

creases rapidly until the phase of low λ and high shear resumes. From figures

3.5 a and b it is apparent that the rapid variations in τw are the signature of this

rather complicated interaction between structure and shear rate. We will see

this signature in a different form in section 3.4.
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A tentative connection may be made here with the work of Balmforth et al.

(2009), who attributed to thixotropy some of the discrepancies between their ex-

perimental and theoretical results. Specifically, they found that the surface and

wall velocities were less closely coupled than predicted, and suggested that this

might be due to thixotropic effects occurring at critical points in the oscillation.

In figure 3.5 a it is apparent that during the periods of rapid variation the mag-

nitude of τw is reduced relative to the fast-adjusting solution, and this suggests

that thixotropic effects can indeed weaken the coupling between the fluid and

the wall as suggested by Balmforth et al. (2009).

3.2.2.4 Marginal regime h = a

Finally, to illustrate the behaviour in the marginal regime h = a we take a = 2,

b = 1, c = 1 and d = 1/2, giving h = a = 2. As in the two previously considered

regimes, we set ω = 1.

We first consider small-amplitude oscillations with ǫ = 0.01. The velocity

u(y, t) (figure 3.7 a) behaves qualitatively in the same way as in regimes T1 and

T2 (figures 3.3 a and 3.4 a). Although the structure parameter λ(y, t) (figure

3.7 b) varies throughout a period, its variation is relatively weak, and qualita-

tively resembles that in regime T2 for larger values of ǫ (e.g. figure 3.4 d).

Increasing ǫ further, first to ǫ = 1 (figures 3.7 c and d) and then to ǫ = 10 (fig-

ures 3.7 e and f) changes the behaviour quantitatively rather than qualitatively.

As in both the previously-considered regimes, the structure breaks down sub-

stantially at the wall, with a corresponding very rapid decrease in the amplitude

of the velocity variation with distance from the wall.

The shear stress at the wall τw (figure 3.8) is also similar to that in the other

two regimes: as in the ‘fast-adjusting’ regime (figure 3.5 a) the competition

between decreasing structure and increasing shear rates at the wall is rather
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Figure 3.7: Thixotropic marginal regime (h = a): snapshots of the numerical
solutions (solid lines) and marginal asymptotic solutions (dashed lines) with
with a = 2, b = 1, c = 1, d = 1/2, ω = 1 and (a, b) ǫ = 0.01; (c, d) ǫ = 1; (e, f)
ǫ = 10. Plots (a), (c) and (e) show the velocity u(y, t) at t = 100 + nπ/2 for n = 0,
1, 2 and 3; the asymptotic solution is given by (3.15). Plots (b), (d) and (f) show
the structure parameter λ(y, t) at t = 100+nπ/4 for n = 0, 1, 2, 3; the asymptotic
solution is given by (3.30).
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finely balanced, so that although the variation of τw(t) deviates from the sinu-

soidal asymptotic solution (3.21) its amplitude continues to scale roughly with

ǫ. Again, when ǫ = 10 we see rapid variations as the shear rate approaches zero.

The reasons for these are the same as in regimes T1 and T2 (figure 3.5).
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Figure 3.8: Thixotropic marginal regime: normalised shear stress at the wall,
τw(t)/ǫ, with a = 2, b = 1, c = 1, d = 1/2 and ω = 1. The circles represent the
asymptotic solution (3.21); lines represent the numerical solutions for ǫ = 0.01
(dashed); ǫ = 1 (thick solid); ǫ = 10 (thin solid).

3.3 Antithixotropic behaviour, a < c

We now consider the case in which the rheology is antithixotropic, a < c. As

in the thixotropic case, we will first develop asymptotic solutions in the limit of

small-amplitude wall oscillations, ǫ → 0, and then extend these numerically to

larger values of ǫ.

3.3.1 Asymptotic solutions for small-amplitudewall oscillations

For the rates of structural buildup and breakdown to be comparable in magni-

tude in the limit ǫ → 0, the fluid must be highly unstructured, with λ close to
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zero everywhere. We therefore seek asymptotic solutions of the form

u(y, t) = ǫu1(y, t) + o(ǫ) and λ(y, t) = ǫβΛ1(y, t) + o(ǫβ), (3.36)

where the exponent β > 0 remains to be determined. The boundary conditions

are the same as in the thixotropic case, u1(0, t) = cos(ωt) and u1 → 0 as y → 0.

Note that because of the antithixotropic rheology we may also expect Λ1 to be

largest close to the wall where shear rates are highest, and to tend to zero as

y → ∞.

Substituting the expansion (3.36) into equation (3.7) and retaining only lead-

ing-order terms yields

∂u1

∂t
= ǫβ ∂

∂y

(

Λ1
∂u1

∂y

)

. (3.37)

To eliminate ǫ from this equation we rescale using y = ǫβ/2ŷ, where ŷ is of order

unity 1, yielding
∂u1

∂t
=

∂

∂ŷ

(

Λ1
∂u1

∂ŷ

)

. (3.38)

Substituting the expansion (3.36) into equation (3.8) yields

ǫβ ∂Λ1

∂t
= −ǫa(1−β/2)+bβ

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

a

Λb
1 + ǫc(1−β/2)

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

+ higher order terms. (3.39)

Balancing powers of ǫ on the right hand side yields

β =
2(c − a)

2b + (c − a)
> 0. (3.40)

1Note that in this section only, the caret does not signify a dimensional quantity.
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This simplifies equation (3.39) to

ǫν ∂Λ1

∂t
= −

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

a

Λb
1 +

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

+ higher order terms, (3.41)

where

ν =
2(c − a − bc)

2b + c − a
. (3.42)

Integrating (3.39) over a period and applying the periodicity condition (3.9) then

yields

0 = −
∫ 2π/ω

0

Λb
1

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

a

dt +

∫ 2π/ω

0

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

dt + higher order terms. (3.43)

The dominant balance in equation (3.41) now depends on the sign of the ex-

ponent ν, and so three cases must be considered. When ν > 0, the right-hand

side of (3.41) is dominant and so the leading-order behaviour must be an in-

stantaneous balance between the build-up and breakdown terms. This is the

‘fast-adjusting’ regime described in section 3.1.4, and to leading order the struc-

ture parameter must be given by λ ∼ λeq(y, t), where λeq is defined by (3.10).

Conversely, when ν < 0, the left-hand side of (3.41) is dominant and so the

leading-order behaviour must be ∂Λ1/∂t = 0. This is the ‘slowly-adjusting’

regime also described in section 3.1.4, and to leading order the structure param-

eter must be given by λ ∼ λav(y), where λav is defined by (3.12). Between these

two regimes is a marginal case, ν = 0, in which all three terms in (3.41) are of

comparable magnitude and we may expect the behaviour to be intermediate

between fast- and slowly- adjusting behaviour. We shall consider each case in

turn.
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3.3.1.1 Fast-adjusting behaviour when ν > 0

The first case we consider is ν > 0, when, as we have seen, the structure pa-

rameter adjusts rapidly to the local conditions. In this case, Λ1 may be obtained

from (3.41) as

Λ1(y, t) =

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

(c−a)/b

(3.44)

and thus from (3.38)

∂u1

∂t
=

∂

∂ŷ

(

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

(c−a)/b
∂u1

∂ŷ

)

. (3.45)

Equation (3.45) is exactly the governing equation for a power-law fluid with

power-law index n = (b + c − a)/b > 1 and so the solution for u1 is identical to

that for a shear-thickening power-law fluid seen in section 2.2.2.

Recall from section 2.2.2 that the most distinctive feature of the Stokes prob-

lem in a shear-thickening power-law fluid is that the boundary layer is of fi-

nite width. Also, even in the limit ǫ → 0, the waveforms of the velocity are

non-sinusoidal, unlike those for Newtonian and thixotropic fluids, and so the

boundary condition at y = 0 is not satisfied precisely by the asymptotic solu-

tion. The velocity decays algebraically towards the edge of the boundary layer,

with exponent α = (2b + c − a)/(c − a).

Also of interest is the shear stress at the wall, τw, given, to first order, by

τw ∼ ǫ1+β/2

∣

∣

∣

∣

∂u1

∂y

∣

∣

∣

∣

(c−a)/b
∂u1

∂y
. (3.46)

We will plot this quantity in section 3.3.2.3.
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3.3.1.2 Slowly-adjusting behaviour when ν < 0

The second case we consider is ν < 0, when, as we have seen, the structure pa-

rameter adjusts slowly to the local conditions. In this case, Λ1 may be obtained

from (3.43) as

Λb
1 =

∫ 2π/ω

0

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

dt

∫ 2π/ω

0

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

a

dt

. (3.47)

In order to solve equations (3.38) and (3.47), we introduce an Ansatz motivated

by the algebraic decay of velocity seen in the power-law case, namely

u1 = c0Y
α cos(φ0 log(Y/ŷ0) − ωt), (3.48)

where Y = ŷ0 − ŷ for some ŷ0 and where c0 = ŷ−α
0 to satisfy the boundary

condition at ŷ = 0. This solution is valid for Y > 0, i.e. in the finite interval

0 < ŷ < ŷ0.

Substituting the Ansatz (3.48) into equation (3.47) yields an expression for

Λ1,

Λb
1 =

(

c0Y
α−1(α2 + φ2

0)
1/2
)c−a

D0, (3.49)

where

D0 =

∫ 2π/ω

0

|cos(ωt)|c dt

∫ 2π/ω

0

|cos(ωt)|a dt

=

∫ 2π

0

|cos(τ)|c dτ

∫ 2π

0

|cos(τ)|a dτ

, (3.50)

and so

Λ1 =
[

D0

(

c0(α
2 + φ2

0)
1/2
)c−a

]1/b

Y 2. (3.51)

To find the constants α, φ0 and c0, equation (3.48) is substituted into (3.38) and

α =
2b + c − a

c − a
(3.52)



CHAPTER 3 89

is found by balancing the powers of Y , while φ0 and c0 are found by balancing

the coefficients of the sin and cos terms, φ0 and c0 are omitted for brevity. The

decay rate α is the same as for the fast-adjusting antithixotropic fluid.

The shear stress at the wall is given, to leading order, by

τw ∼ −ǫ1+β/2D
1/b
0

(

c0ŷ
α−1
0

)(c−a+b)/b
(α2 + φ2

0)
(c−a)/2b [α cos(ωt) + φ0 sin(ωt)] .

(3.53)

It is straightforward to demonstrate that if the asymptotic expansion is car-

ried to the next order then the structure parametermust be given by λ ∼ ǫβΛ1(y)+

ǫ2bc/(2b+c−a)Λ2(y, t), where

∂Λ2

∂t
= −

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

a

Λb
1 +

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

. (3.54)

This result will be of use whenwe check the validity of these solutions in section

3.3.1.4.

3.3.1.3 Marginal behaviour when ν = 0

The third and final case we consider is the marginal case ν = 0, in which all

three terms in (3.8) are of comparable magnitude. Now, at leading order (3.39)

becomes
∂Λ1

∂t
= −

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

a

Λb
1 +

∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

. (3.55)

Physically, we may expect the behaviour to be intermediate between fast and

slow adjustment. In order to solve equations (3.38) and (3.55), two Ansätze are

introduced, motivated by the behaviour of the fast- and slowly-adjusting cases,

u1 = Y αf(τ) and Λ1 = Y 2g(τ), (3.56)
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where Y = ŷ0 − ŷ with 0 ≤ ŷ ≤ ŷ0, τ = φ0 log(Y ) + ωt + τ0, τ0 is a phase

difference, and the functions f(τ) and g(τ), as well as the constant φ0, are to

be determined. Substituting equations (3.56) into the governing equations and

balancing the powers of y yields α = 1 + 2/c, which in this case is identical to

(3.52), together with the coupled equations

ω
dg

dτ
= −

∣

∣

∣

∣

αf + φ0
df

dτ

∣

∣

∣

∣

a

gb +

∣

∣

∣

∣

αf + φ0
df

dτ

∣

∣

∣

∣

c

(3.57)

and

ω
df

dτ
=

(

2g + φ0
dg

dτ

)(

αf + φ0
df

dτ

)

+ g

[

α(α − 1)f + φ0(2α − 1)
df

dτ
+ φ2

0

d2f

dτ 2

]

.

(3.58)

These ordinary differential equations must be integrated numerically, subject to

the periodicity constraint f(τ) = f(τ + 2π) and g(τ) = g(τ + 2π) for all τ .

If the velocity imposed at the wall is precisely of the form f(τ) and has am-

plitude ǫ, so the oscillation has dimensionless amplitude 1 at y = 0, then ŷ0 must

be given by

(ŷ0 − 0)αfmax = 1, i.e. ŷ0 = f−1/α
max , (3.59)

where fmax = maxτ f(τ). We carry out numerical integrations to find f and g

(see section 3.7.2). These functions always converge to a periodic solution, and

the parameter φ0 is determined by a shooting method in order to set the period

to be 2π as required.

The shear stress at the wall is given, to leading order, by

τw ∼ −ǫ1+β/2ŷ2α−1
0 g(τ) (αf(τ) + φ0f

′(τ)) . (3.60)
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3.3.1.4 A posteriori estimate of the validity of the asymptotic solutions

As in the case of a thixotropic fluid, the asymptotic solutions described in the

preceding subsections have been obtained in the limit of small-amplitude os-

cillations, ǫ → 0 and depend on the additional independent parameter ω. It is

therefore useful to obtain a posteriori estimates of the validity of these solutions

when ω is not necessarily of order unity.

From (2.3) in section 2.2.1 we know that in the fast-adjusting regime ŷ =

O(ω−1/(n+1)), and so ∂u/∂ŷ = O(ω1/(n+1)). From equation (3.44), ∂Λ1/∂t =

O(ω2(b+c−a)/(2b+c−a)) and Λ1 = O(ω(c−a)/(2b+c−a)), and hence, the validity con-

dition for the asymptotic solution in the fast-adjusting case, namely

∣

∣

∣

∣

ǫν ∂Λ1

∂t

∣

∣

∣

∣

≪
∣

∣

∣

∣

∂u1

∂ŷ

∣

∣

∣

∣

c

, (3.61)

corresponds to

ǫνω2(b+c−a)/(2b+c−a) ≪ ωbc/(2b+c−a), i.e. ǫνω1+ν/2 ≪ 1. (3.62)

Fast-adjusting behaviour can therefore be expected in the asymptotic limits of

either small oscillations, ǫ → 0, or slow oscillations, ω → 0.

In the slowly-adjusting regime, equation (3.51) yields Λ1 = O(ω(c−a)/(2b+c−a)).

To estimate the magnitude of ∂λ/∂t we need to consider the next order in ǫ.

Integrating equation (3.54) with respect to ωt implies that ωΛ2 = O(ωbc/(2b+c−a));

thus the validity condition for the asymptotic solution in the slowly-adjusting

case, namely

ǫβΛ1 ≫ ǫ2bc/(2b+c−a)Λ2, (3.63)
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Figure 3.9: Outline of regimes of validity for the asymptotic solutions for an anti-
thixotropic fluid. The dashed lines represent indicative regime boundaries for
ω = 1: ǫν = 10 for ν < 0 and ǫν = 0.1 for ν > 0. The dotted line represents the
marginal regime ν = 0.

corresponds to

ǫνω(c−a)/(2b+c−a) ≫ ω(bc−2b−c+a)/(2b+c−a), i.e. ǫνω1+ν/2 ≫ 1, (3.64)

which is exactly the complement of the condition (3.62) for fast adjustment

Figure 3.9 illustrates the parameter regimes in which the present asymptotic

analysis suggests fast-adjusting, slowly-adjusting and hysteretic behaviour. To

avoid ambiguity, we will henceforth refer to the parameter regime a < c, ν > 0

as regime A1 and to the parameter regime a < c, ν < 0 as regime A2; we will re-

serve the terms ‘fast-adjusting’ and ‘slowly-adjusting’ for the regimes, depend-

ing also on ǫ and ω, in which the solutions display these behaviours. When

the system is neither fast- nor slowly-adjusting, we may expect its behaviour in

general to be hysteretic, as shown in figure 3.9.

3.3.2 Numerical results for finite amplitude wall oscillations

We now compare the asymptotic solutions for velocity, structure parameter and

shear stress at the wall with numerical solutions calculated using the finite-
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element package Comsol 3.5a. As before, a finite numerical domain 0 ≤ y ≤

ymax was used, with a domain length of ymax = 10 unless otherwise stated. The

initial conditions were u(y, 0) = 0 and λ(y, 0) = 0 unless otherwise stated and

all other technical details were as in section 3.2.2.

3.3.2.1 Regime A1: ν > 0

To illustrate the behaviour in regime A1, in which the structure parameter is

fast-adjusting for small ǫ, we take a = 1, b = 3/10, c = 2 and d = 1, giving

ν = 1/2. We also set ω = 1 so that the condition (3.62) is easily satisfied.

We first consider small-amplitude oscillations with ǫ = 0.01. Figures 3.10 a

and 3.10 b show snapshots of the velocity u(y, t) and structure parameter λ(y, t)

at equally spaced times during a period. The first snapshot in each figure is

taken at t = 100, by which time the system has adjusted to an essentially peri-

odic state. The full numerical solution (solid lines) and the asymptotic solution

(dashed lines) agree well for all values of y. In contrast to the corresponding

thixotropic case, the antithixotropic velocity snapshots are very angular with

‘corners’ corresponding to the minima of λ where the structure parameter, and

thus the viscosity, is nearly zero. Also, as predicted by the asymptotic solu-

tion, the antithixotropic fluid displays a finite-thickness boundary layer beyond

which the fluid remains at rest, unaffected by the oscillating wall. When the

viscosity has reached zero there is no diffusivity and there is effectively a slip

layer at the edge of this boundary, across which no signal propagates, see sec-

tion 2.3.2.

To investigate the behaviour for larger oscillations, the amplitude was in-

creased to ǫ = 1. Figures 3.10 c and 3.10 d show snapshots of the velocity u(y, t)

and structure parameter λ(y, t). There are no longer pronounced ‘corners’ in

the velocity snapshots (figure 3.10 c), as the structure parameter no longer re-
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Figure 3.10: Antithixotropic regime A1 (ν > 0): snapshots of the numerical so-
lutions (solid lines) and fast-adjusting asymptotic solutions (dashed lines) with
a = 1, b = 3/10, c = 2, d = 1, ω = 1 and (a, b) ǫ = 0.01; (c, d) ǫ = 1; (e, f) ǫ = 10.
Plots (a), (c) and (e) show the velocity u(y, t) at t = 100+nπ/2 for n = 0, 1, 2 and
3; and plots (b), (d) and (f) show the structure parameter λ(y, t) at t = 100+nπ/4
for n = 0, 1, 2, 3.

duces to near zero at its minima (figure 3.10 d). The velocity also decays more

rapidlywith distance from thewall than is predicted by the asymptotic solution.
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The magnitude of the structure parameter is significantly overestimated by the

asymptotic solution because shear rates, and thus structure build-up rates, are

generally lower than predicted by the asymptotic solution.

When the amplitude is increased further to ǫ = 10 (figures 3.10 e and f),

these trends are still more strongly pronounced, and the asymptotic solution

for small ǫ is clearly no longer valid. The structure now has almost completely

built up near the wall (figure 3.10 f); however, it does not build up to the levels

predicted by the asymptotic solution, and so the oscillations in the velocity die

out more quickly than the asymptotic solution predicts (figure 3.10 e). Rather

than having sharp spatial minima, the snapshots of λ are now characterised by

small oscillations around each minimum: these oscillations are the signature of

hysteresis as the structure is unable to break down to zero as required by the

instantaneous solution λav.

3.3.2.2 Regime A2: ν < 0

To illustrate the behaviour in regime A2, in which the structure parameter is

slowly-adjusting for small ǫ, we take a = 1, b = 3/4, c = 2 and d = 1, giving

ν = −2/5. We again set ω = 1 so that the condition (3.64) is easily satisfied.

We first consider small-amplitude oscillations with ǫ = 0.01. Figures 3.11 a

and 3.11 b show snapshots of the velocity u(y, t) and structure parameter λ(y, t)

at equally spaced times during a period. The first snapshot is taken at t =

100, by which time the velocity has adjusted to an essentially periodic state.

The numerical solution (solid lines) and the asymptotic solution (dashed lines)

agree well for all values of y. The velocity solution is not angular as in the

fast-adjusting case. However, there is still a finite-thickness boundary layer, at

0 ≤ y ≤ y0 = ǫ2/5ŷ0 ≈ 0.586. In figure 3.11 b the numerical solution (solid

lines) for the structure parameter oscillates weakly over a period, around the
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Figure 3.11: Antithixotropic regime A2 (ν < 0): snapshots of the numerical
solutions (solid lines) and slowly-adjusting asymptotic solutions (dashed lines)
with a = 1, b = 3/4, c = 2, d = 1, ω = 1 and (a, b) ǫ = 0.01; (c, d) ǫ = 1;
(e, f) ǫ = 10. Plots (a), (c) and (e) show the velocity u(y, t) at t = 100 + nπ/2 for
n = 0, 1, 2 and 3; and plots (b), (d) and (f) show the structure parameter λ(y, t)
at t = 100 + nπ/4 for n = 0, 1, 2, 3.

asymptotic value (3.51).

To investigate the behaviour for larger oscillations, the amplitude was again
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increased to ǫ = 1. Figures 3.11 c and d show snapshots of the velocity u(y, t)

and structure parameter λ(y, t). The deviation from the asymptotic solution is

now more apparent. The structure parameter now oscillates around an average

equilibrium value, and the asymptotic solution overestimates this. Figure 3.11 c

shows the velocity decaying faster than the asymptotic solution predicts, as the

viscosity is lower than predicted.

When the amplitude is increased further to ǫ = 10 (figure 3.11 e and f), the

asymptotic solution for small ǫ is clearly no longer valid. The behaviour for

ǫ = 10 is very different from that in the limit ǫ → 0. However, the structure

parameter still varies only weakly throughout a period (figure 3.11 f) so the

system still shows essentially slowly-adjusting behaviour. The velocity now

decaysmuch faster than the asymptotic solution predicts. As ǫ increases, figures

3.11 b, d and e tell a similar story to that seen in figure 3.10. As ǫ increases, first

oscillations and then small double oscillations appear: the numerical solution in

figure 3.11 f is very similar to that in figure 3.10 f. As in the thixotropic case, with

increasing ǫ the distinction between the regimes becomes increasingly blurred.

3.3.2.3 Shear stress at the wall

It is also of interest to examine the shear stress at the wall. Figures 3.12 a and b

show the shear stress τw(t), normalised by ǫ1+β/2, for regimes A1 and A2 respec-

tively. (In figure 3.12 a for ǫ = 10 only, the mesh comprised 1920 equally-spaced

grid points to resolve the small-scale oscillations seen in figure 3.11 f properly.)

In each case, the variation of τw(t) for small ǫ is nearly sinusoidal, and, in

contrast to the thixotropic case, as ǫ is increased, the variation remains nearly

sinusoidal. In both figures, the rescaled shear stress τw/ǫ1+β/2 decreases with

increasing ǫ, although it decreases more gradually in regime A2 as shown in

figure 3.12 b.
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Figure 3.12: Normalised shear stress at the wall, τw(t)/ǫ1+β/2, with a = 1, c = 2,
d = 1 and ω = 1 and (a) b = 3/10, (b) b = 3/4. Figure (a) is the shear stress for
regime A1 (ν > 0) and figure (b) is the shear stress for regime A2 (ν < 0). The
circles represent the asymptotic solution; lines represent the numerical solutions
for ǫ = 0.01 (dashed); ǫ = 1 (thick solid); ǫ = 10 (thin solid).

It is interesting to note that the rapid variations of τw seen for thixotropic

fluids (figure 3.6) are absent for antithixotropic cases, because there is no longer

a positive feedback between λ and ∂u/∂y at the wall.

3.3.2.4 Marginal regime ν = 0

Finally, to illustrate the behaviour in the marginal regime ν = 0 we take a = 1,

b = 1/2, c = 2 and d = 1, giving ν = 0, α = 2 and the numerically deter-

mined asymptotic parameters ŷ0 = 3.15 and φ0 = 2.591. As in all the previously

considered regimes, we set ω = 1.

We first consider small-amplitude oscillations with ǫ = 0.01. Figures 3.13 a

and 3.13 b show snapshots of the velocity u(y, t) and structure parameter λ(y, t)

at equally spaced times during a period. The first snapshot in each figure is

taken at t = 100, by which time the system has adjusted to an essentially pe-

riodic state. Although the asymptotic solutions capture the overall decay of

the velocity and structure parameter, they deviate from the numerical solu-
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tions close to the wall y = 0; this reflects the inconsistency between the non-

sinusoidal velocity variation in the asymptotic solution and the sinusoidal vari-

ation imposed on the numerical solution, compare with section 2.3.3.

To investigate the behaviour for larger oscillations, the amplitude was again

increased first to ǫ = 1 (figures 3.13 c and d) and then to ǫ = 10 (figure 3.13 e and

f). As ǫ is increased, the asymptotic solutions come to severely overestimate the

numerical solutions for both the velocity and structure parameter, and by ǫ =

10, double oscillations of the structure parameter have again appeared (figure

3.13 f). Figures 3.10 f, 3.11 f and 3.13 f all show the same hysteretic behaviour:

distinctive fast and slow behaviour is no longer apparent.

The shear stress in the marginal regime (figure 3.14) is also similar to that in

the other two regimes and the variation is nearly sinusoidal for all values of ǫ

examined. The rescaled shear stress τw/ǫ1+β/2 decreases weakly with increasing

ǫ. The agreement between numerical and asymptotic solutions for ǫ = 0.01 is

poorer than before, reflecting the poorer agreement for u and λ (figures 3.13 a

and b).

3.4 Rheograms for thixotropic and antithixotropic flu-

ids

A standard form in which to present rheometric data is a plot of the shear stress

at the wall against the shear rate in the rheometer, often called a rheogram (sec-

tion 1.2.6). Although the Stokes flows analysed in this paper are non-rheometric,

because the shear rate is not spatially constant, it is interesting to construct

equivalent rheograms in order to identify key features of the flow. In partic-

ular, hysteresis loops in a rheogram are the signature of lag effects (Mewis and

Wagner 2009).
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Figure 3.13: Antithixotropic marginal regime (ν = 0): snapshots of the numeri-
cal solutions (solid lines) andmarginal asymptotic solutions (dashed lines) with
a = 1, b = 1/2, c = 2, d = 1, ω = 1 and (a, b) ǫ = 0.01; (c, d) ǫ = 1; (e, f) ǫ = 10.
Plots (a), (c) and (e) show the velocity u(y, t) at t = 100+nπ/2 for n = 0, 1, 2 and
3; and plots (b), (d) and (f) show the structure parameter λ(y, t) at t = 100+nπ/4
for n = 0, 1, 2, 3.

In this section, we present the results of the numerical integrations presented

in sections 3.2 and 3.3 in this form. In each case, the shear stress τw is plotted
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Figure 3.14: Antithixotropic marginal regime: normalised shear stress at the wall,
τw(t)/ǫ1+β/2, with a = 1, b = 1/2, c = 2, d = 1 and ω = 1. The circles represent the
asymptotic solution; lines represent the numerical solutions for ǫ = 0.01 (dashed);
ǫ = 1 (thick solid); ǫ = 10 (thin solid).

against the instantaneous shear rate ∂u/∂y evaluated at the wall, y = 0. In each

plot, an initial transient can be seen followed by adjustment to an effectively

periodic state: we focus our discussion on these periodic states. The rheograms

also plot the instantaneous equilibrium shear stress τeq = λeq∂u/∂y, where λeq

is calculated from equation (3.10).

3.4.1 Rheograms for thixotropic fluids

Figure 3.15 shows rheograms for the three thixotropic regimes: regime T1 (fig-

ures 3.15 a and b, which correspond to the snapshots in figure 3.3); the marginal

regime (figures 3.15 c and d, which correspond to the snapshots in figure 3.7);

and regime T2 (figures 3.15 e and f, which correspond to the snapshots in figure

3.4). The corresponding plots of τw(t) are shown in figures 3.6 and 3.8. In each

case the equilibrium behaviour is shear-thinning, and c − a + b = 0 so τeq → 1

as |∂u/∂y| → ∞ (section 3.1.4).

For small values of ǫ (figures 3.15 a, c and e), the fluid is nearly fully struc-

tured, with λ ≈ 1. The rheograms are therefore indistinguishable from those for
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Figure 3.15: Rheograms for thixotropic fluids with a = 2, b = 1, c = 1, ω = 1
and (a, b) d = 1/3; (c, d) d = 1/2; (e, f) d = 1. Plots (a), (c) and (e) show the
numerical results for ǫ = 0.01 (solid lines) and plots (b), (d) and (f) show the
numerical results for ǫ = 10 (solid lines); dashed lines in each case represent the
instantaneous equilibrium shear stress τeq.

a Newtonian fluid, τw = ±|∂u/∂y|. Note also that since λeq ≈ λav ≈ 1, there is

no visible difference between the fast- and slowly-adjusting regimes.
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As ǫ increases, hysteresis loops appear, as shown for ǫ = 10 (figures 3.15 b, d

and f). The rapid variation of τw at small shear rates, commented on in section

3.2.2.2, manifests itself as a small secondary loop close to the origin in these

plots; note that the curve does not intersect itself so this secondary loop is not

completely closed. The overall behaviour is reminiscent of the stress overshoot

due to the breakdown of an initial structure (Mewis and Wagner 2009, figure

2(b)). Indeed, τw is everywhere higher than or equal to its ‘equilibrium’ value

τeq, so we may think of these hysteresis loops as representing the signature of a

persistent stress overshoot.

For the large value of ǫ employed in figures 3.15 b, d and f, some systematic

differences are apparent between the three regimes: as d increases from regime

T1 through to regime T2, the amplitude of variation of τw decreases, so the hys-

teresis loops become narrower. It is slightly surprising that the deviation of τw

from τeq is greatest in the ‘fast’ regime T1 and least in the ‘slow’ regime T2.

3.4.2 Rheograms for antithixotropic fluids

Figure 3.16 shows rheograms for the three antithixotropic regimes: regime A1

(figures 3.16 a and b, which correspond to the snapshots in figure 3.10); the

marginal regime (figures 3.16 c and d, which correspond to the snapshots in

figure 3.13); and regime A2 (figures 3.16 e and f, which correspond to the snap-

shots in figure 3.11). The corresponding plots of τw(t) are shown in figures 3.12

and 3.14.

In contrast to the thixotropic case, the three regimes behave differently even

for ǫ = 0.01. Hysteresis loops are present in all three regimes; in regime A2 (fig-

ure 3.16 e) we see an additional consequence of slow adjustment, which is that

the amount of hysteresis decays over many cycles, with the loops gradually

moving outwards and becoming narrower as the system approaches its peri-
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Figure 3.16: Rheograms for antithixotropic fluids with a = 1, c = 2, d = 1, ω = 1
and (a, b) b = 3/10; (c, d) b = 1/2; (e, f) b = 3/4. Plots (a), (c) and (e) show the
numerical results for ǫ = 0.01 (solid lines) and plots (b), (d) and (f) show the
numerical results for ǫ = 10 (solid lines); dashed lines in each case represent the
instantaneous equilibrium shear stress τeq.

odic state. In the fast-adjusting regime only (figure 3.16 a), the hysteresis loops

are centred on the equilibrium curve τeq; in the slowly-adjusting regime (fig-
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ure 3.16 e) the equilibrium solution is clearly irrelevant, whereas the marginal

regime (figure 3.16 c) may be affected by the competition between the sinusoidal

forcing at the wall and the ‘natural’ non-sinusoidal waveform of oscillation (cf.

figure 3.13 a). As b is increased from regime A1 through to regime A2, it is also

noticeable that the range of shear rates decreases somewhat while the range of

shear stresses increases.

Again in contrast to the thixotropic case, the rheograms for large ǫ (figure

3.16 b, d and f) are almost indistinguishable in the three antithixotropic regimes,

which is consistent with the general similarity of the solutions (section 3.3.2.4).

Although some hysteresis is apparent, these plots in fact closely resemble those

that would be expected for a Newtonian fluid with a constant value of λ = 1,

reflecting the fact that the structure is nearly completely built up at the wall. As

for a thixotropic fluid under small oscillations, λeq ≈ λav ≈ 1 and so the equilib-

rium shear stress τeq agrees rather closely with the numerically calculated stress;

there are, however, still some under- and overshoots at lower shear rates.

In summary, although the rheograms reveal interesting patterns in the be-

haviour of the solutions, it is not straightforward to extract distinctive signa-

tures of thixotropic or antithixotropic behaviour from them. This sounds a cau-

tionary note for future attempts to use Stokes flow as a non-rheometric rheolog-

ical device (Balmforth et al. 2009).

3.5 Summary

We have described a combined asymptotic and numerical investigation of the

Stokes problem for a general model of thixotropic and antithixotropic fluids.

The emphasis of our investigation has been on the periodic oscillatory behaviour

of the system, rather than on the transient initial phase in which the system ad-
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justs to the attracting periodic solution.

The asymptotic analysis in the limit of small-amplitude oscillations revealed

distinct regimes of fast and slow structural response for both thixotropic and

antithixotropic fluids. In the fast-adjusting regimes, the structure is an instanta-

neous function of the shear, and so the fluid acts like a generalised Newtonian

fluid. In the slowly-adjusting regimes, the local structure is determined by a

long-term average of build-up and breakdown rates. In the marginal regimes

between the limits of fast and slow adjustment, the variation of the structure

parameter is lagged and attenuated relative to its instantaneous equilibrium

value. This hysteretic response becomes increasingly dominant in all regimes

as the amplitude of oscillation increases. When this amplitude is large enough,

the distinction between the fast- and slowly-adjusting regimes disappears en-

tirely.

The boundaries of the fast- and slowly-adjusting regimes depend on the rel-

ative magnitudes of the dimensionless amplitude of oscillation ǫ and the dimen-

sionless frequency of oscillation ω. They also depend, in a rather subtle manner,

on the build-up and breakdown exponents a, b, c and d that appear in the evo-

lution equation (3.5) for the structure parameter. This subtlety suggests that it

may be necessary when employing structure evolution equations, or when fit-

ting the parameters of such equations using conventional rheometric data, to

pay careful attention to these exponents. Such attention would contrast with

the prevailing approach of choosing these exponents for simplicity and devot-

ing more attention to identifying and calibrating a constitutive equation. The

distinct regimes that emerge in the Stokes problem at low amplitudes of oscil-

lation could perhaps provide a useful tool for discrimination when assigning

values to the build-up and breakdown exponents.

The most interesting deviations from Newtonian behaviour come for anti-
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thixotropic fluids, which, like shear-thickening power-law fluids, as seen in sec-

tion 2.3.2, develop a boundary layer of finite thickness beyond which the fluid

is unaffected by the oscillating wall. The thickness of this layer scales with ǫβ/2,

where the parameter β is defined by (3.40) in terms of the exponents in the

structure evolution equation; the velocity amplitude decays algebraically and

the structure parameter decays quadratically towards the edge of the layer.

In contrast to the internal behaviour of the fluid, the shear stress at the wall,

τw(t), shows surprisingly weak deviations from Newtonian behaviour. In par-

ticular, changes in the structure and the shear rate close to the wall counteract

each other so that for thixotropic fluids the shear stress scales roughly with ǫ

even when ǫ is significantly larger than unity; similarly, for antithixotropic flu-

ids the shear stress scales roughly with ǫ1+β/2 well beyond the regime in which

this scaling is formally valid. Thixotropy affects the shear stress most conspic-

uously for large amplitudes of oscillation, when it leads to rapid variations of

τw(t) shortly before and after the wall shear rate changes sign. The feedback be-

tween increasing structure and decreasing shear that leads to these variations

shows up as a characteristic ‘secondary loop’ when the stress and shear at the

wall are plotted as rheograms. The rheograms also reveal hysteresis clearly in

many cases; however, it is not in general straightforward to identify the rheo-

logical characteristics of the fluid from them.

3.6 Appendix: pseudo-Newtonian behaviour when

a = c

In this Appendix we consider the special case a = c in which the equilibrium

value of the structure parameter λ is independent of the shear rate. In this

special case, the characteristic scales (3.6) are undefined and we instead non-
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dimensionalise using the frequency of oscillation ω̂, obtaining

Û0 = ν̂
1/2
0

(

ω̂2−a

k̂2
1

)1/(2a)

, Ŷ0 =

(

ν̂0

ω̂

)1/2

and T̂0 =
1

ω̂
. (3.65)

Equation (3.7) is unchanged, while equation (3.5) becomes

∂λ

∂t
= −

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

a
[

λb − κ2(1 − λ)d
]

, (3.66)

where κ2 = k̂2/k̂1 is the ratio of the structural build-up and breakdown rates.

Since the frequency of oscillation has been scaled out, the wall boundary condi-

tion becomes u(0, t) = ǫ cos(t).

Equations (3.7) and (3.66) admit a periodic exact solution for all values of ǫ,

u = ǫe−γy cos(γy − t) where γ =

√

1

2λ
, (3.67)

and where the constant value of λ satisfies

λb

(1 − λ)d
= κ2. (3.68)

The periodic behaviour of the system is therefore identical to that of a Newton-

ian fluid, but with a viscosity that is self-selected via the equilibrium value of

the structure parameter rather than being independently imposed.

Although the local shear rate does not control the eventual value of λ, the

shear rate determines how rapidly the pseudo-Newtonian solution is reached

from a given initial condition. Figure 3.17 illustrates the adjustment of λ(y, t)

from the initial condition λ(y, 0) = 1. Since ∂λ/∂t ∝ |∂u/∂y|a, adjustment is

most rapid close to the wall, where the pseudo-Newtonian solution becomes

established within a few periods; beyond a distance of order 1/γ, however, ad-
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justment is far slower, and at the right-hand end of the computational domain

the pseudo-Newtonian solution is attained only at extremely large times.
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Figure 3.17: ‘Pseudo-Newtonian’ regime: snapshots of the structure param-
eter λ(y, t) at (from left to right) t = 1, 10, 25, 100, 200, 300, 400, 500, with
a = 1, b = 1, c = 1, d = 1, ǫ = 1 and κ2 = 2.

3.7 Appendix: Maple code

3.7.1 Code for obtaining figure 3.1

>restart;with(plots):

Set up ordinary differential equation (3.29).

>ode:=omega*diff(l(tau),tau)+l(tau)∧d*abs

(cos(tau))∧c=abs(cos(tau))∧a;

Set parameter values.

>parvals01:=omega=0.1,a=2,c=1,d=0.5;

>parvals05:=omega=0.5,a=2,c=1,d=0.5;

>parvals1000:=omega=1000,a=2,c=1,d=0.5;

Put parameter values into the ODE and solve.
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>sol01:=dsolve(subs(parvals01,ode,l(0)=0.616),l(tau),

numeric);

>sol05:= dsolve(subs(parvals05,ode,l(0)=0.616),l(tau),

numeric);

>sol1000:= dsolve(subs(parvals1000,ode,l(0)=0.616),l(tau),

numeric);

3.7.2 Code for obtaining f and g in section 3.3.1.3

>restart;with(plots):

Set up governing equations (3.57) and (3.58).

>de1:=omega*diff(g(tau),tau)=-abs(alpha*f(tau)+phi0*diff(

f(tau),tau))∧a*(g(tau))∧b+abs(alpha*f(tau)+phi0*diff(

f(tau),tau))∧c;

>de2:=omega*diff(f(tau),tau)=(2*g(tau)+phi0*diff(g(tau),

tau))*(alpha*f(tau)+phi0*diff(f(tau),tau))+g(tau)*((alpha

-1)*(alpha*f(tau)+phi0*diff(f(tau),tau))+(phi0*alpha*diff(

f(tau),tau)+phi0∧2*diff(f(tau),tau$2)));

Set parameter values.

>parvals:=a=1,b=1/2,c=2,d=1,omega=1;

>de1a:=subs(parvals,subs(alpha=1+2/c,de1)):

>de2a:=subs(parvals,subs(alpha=1+2/c,de2)):

>phi00:=2.59151;

Put parameter values into the governing equations and solve.

>sol:=dsolve(subs(phi0=phi00,de1a,de2a,g(0)=0.1,f(0)=0.1,

D(f)(0)=0),{f(tau),g(tau)},numeric):

Plot f over a single period and change phi00 value until the start and end

of the period match up.
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>odeplot(sol,subs(parvals,[[tau,f(tau)],[tau+2*Pi,f(tau)

]]),200..200+2*Pi,numpoints=500);

This procedure builds an array of data for f .

>farray:=proc(npts,phi00) global parvals,farr;

local i,taui,solf,T;

T:= 2*Pi;

solf:= dsolve(subs(phi0=phi00,de1a,de2a,g(0)=0.1,f(0)=0.1,

D(f)(0)=0),f(tau),g(tau),numeric);

for i from 0 to npts-1 do taui:=evalf(T*(4+i/npts));

farr[i,0]:=T*(taui/T-floor(taui/T));

farr[i,1]:=subs(solf(taui),f(tau));

farr[i+npts,0]:=T*(taui/T-floor(taui/T))+T;

farr[i+npts,1]:=subs(solf(taui),f(tau))od;

end;

This procedure takes a value of τ and returns the corresponding value of f .

>fout:= proc(tau,npts) global farr, parvals;

local i, tau0, fval, T;

T:= 2*Pi;

tau0:= T*(tau/T-floor(tau/T));

for i from 0 to 2*npts-3 do

if evalf((farr[i,0]-tau0)*(farr[i+1,0]-tau0)) <=0 then

fval:= farr[i,1]+(farr[i+1,1]-farr[i,1])/(farr[i+1,0]-

farr[i,0])*(tau0-farr[i,0]) fi od;

return(evalf(fval));

end;

Same procedure for g: start by plotting g and checking the start and end of

the period match up.
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>odeplot(sol,subs(parvals,[[tau,g(tau)],[tau+2*Pi,g(tau)

]]),200..200+subs(parvals,2*Pi),numpoints=500);

This procedure builds an array of data for g.

>garray:= proc(npts,phi00) global parvals, garr;

local i, taui, solg, T;

T:= 2*Pi;

solg:= dsolve(subs(phi0=phi00,de1a,de2a,g(0)=0.1,f(0)=0.1,

D(f)(0)=0),f(tau),g(tau),numeric);

for i from 0 to npts-1 do taui:= evalf(T*(4+i/npts));

garr[i,0]:= T*(taui/T-floor(taui/T));

garr[i,1]:= subs(solg(taui),g(tau));

garr[i+npts,0]:= T*(taui/T-floor(taui/T))+T;

garr[i+npts,1]:= subs(solg(taui),g(tau)) od;

end;

This procedure takes a value of τ and returns the corresponding value of g.

>gout:= proc(tau,npts) global garr, parvals;

local i, tau0, gval, T;

T:= 2*Pi;

tau0:= T*(tau/T-floor(tau/T));

for i from 0 to 2*npts-3 do

if evalf((garr[i,0]-tau0)*(garr[i+1,0]-tau0)) <=0 then

gval:= garr[i,1]+(garr[i+1,1]-garr[i,1])/(garr[i+1,0]-

garr[i,0])*(tau0-garr[i,0]) fi od;

return(evalf(gval));

end;



Chapter 4

Flows of thixotropic and

antithixotropic fluids in a

slowly-varying channel

4.1 Introduction

In this chapter we will consider flow of thixotropic and antithixotropic fluids in

a slowly-varying channel.

We recall from section 1.5.2 that although there are several studies which

consider thin-film and related flows (for example dam-break flow, flow in a

narrow fracture and levelling), these studies either require full numerical sim-

ulations on which to base a reduced dynamical model (Livescu et al. 2011) or

make ad hoc assumptions such as postulating a layer-averaged value of the

structure parameter (Chanson et al. 2006; Pritchard and Pearson 2006). It is not

clear whether such assumptions are justifiable, and so a systematic approach is

needed. The work in this chapter is the first attempt, to our knowledge, to do so;

wewill develop such an approach in the paradigmatic setting of slowly-varying

113
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two-dimensional channel flow.

We will first (section 4.2) present the classical lubrication theory for New-

tonian fluids and use this as a foundation for the more complicated thixotropic

and antithixotropic problems. In section 4.3 we will present a general lubrica-

tion theory for thixotropic and antithixotropic fluids, based like the Newtonian

theory on an expansion in powers of the small aspect ratio δ. To illustrate this

approach, in section 4.4 we will investigate the special case d = 0 of our rheo-

logical model in which we recover a power-law rheology at equilibrium.

4.2 The Newtonian problem

We consider the two-dimensional steady pressure-driven flow of fluid in a slow-

ly-varying channel 0 ≤ ŷ ≤ ĥ(x̂) with characteristic length scales L̂ in the x̂-

direction and Ĥ in the ŷ-direction, as shown in figure 4.1. The channel is slowly-

varying provided that the aspect ratio δ = Ĥ/L̂ ≪ 1 is small.

We will first describe the well-known solution for a Newtonian fluid. The

steady flow is governed by the mass conservation and Navier-Stokes equations

∇̂ · û = 0 (4.1)

and

ρ̂
Dû

Dt̂
= −∇̂p̂ + ∇̂ · τ̂ , (4.2)

where the fluid velocity û(x̂, ŷ) = (û(x̂, ŷ), v̂(x̂, ŷ)), the pressure p̂ = p̂(x̂, ŷ) and

τ̂ is the shear stress tensor. From equation (4.1),

∂û

∂x̂
+

∂v̂

∂ŷ
= 0. (4.3)
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Figure 4.1: Sketch of steady pressure-driven flow in a slowly-varying channel.

In steady flow the convective derivative in equation (4.2) reduces to

Dû

Dt̂
= (û · ∇̂)û. (4.4)

For a Newtonian fluid, τ̂ij = η̂êij (see equation (1.3)), and so the x̂- and ŷ-

components from equation (4.2) are given by

ρ̂ûj
∂ûi

∂x̂j
= − ∂p̂

∂x̂i
+

∂

∂xj
(η̂êij) . (4.5)

Using the definition (1.2) of the shear rate tensor,

êij =
∂ûj

∂x̂j
+

∂ûj

∂x̂i
, (4.6)

equation (4.5) yields

ρ̂

(

û
∂û

∂x̂
+ v̂

∂û

∂ŷ

)

= −∂p̂

∂x̂
+

∂

∂x̂

(

2η̂
∂û

∂x̂

)

+
∂

∂ŷ

(

η̂

[

∂û

∂ŷ
+

∂v̂

∂x̂

])

(4.7)
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and

ρ̂

(

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

)

= −∂p̂

∂ŷ
+

∂

∂x̂

(

η̂

[

∂û

∂ŷ
+

∂v̂

∂x̂

])

+
∂

∂ŷ

(

2η̂
∂v̂

∂ŷ

)

. (4.8)

The fluid is subject to no-slip and no-penetration conditions at the channel

walls, û(x̂, 0) = 0, û(x̂, ĥ(x̂)) = 0, v̂(x̂, 0) = 0 and v̂(x̂, ĥ(x̂)) = 0. Since the flow

is steady and incompressible, mass conservation requires that the volume flux

per unit width Q̂ is constant, i.e.

Q̂ =

∫ ĥ

0

û dŷ = constant. (4.9)

Note that at this point we have the choice between choosing the flux and choos-

ing the pressure, and we have chosen to fix the flux.

4.2.1 Non-dimensionalisation

Before proceeding further we non-dimensionalise and rescale the problem. We

start by non-dimensionalising using Ĥ as the characteristic length scale. We

first set x̂ = Ĥx∗, ŷ = Ĥy, û = Ûu, v̂ = Ûv∗ and p̂ = P̂ p∗, where Ĥ, Û and P̂

are characteristic length, velocity and pressure scales. Equations (4.7) and (4.8)

become

ρ̂ĤÛ

η̂

(

u
∂u

∂x∗
+ v∗

∂u

∂y

)

= − P̂ Ĥ

Û η̂

∂p∗

∂x∗
+ 2

∂

∂x∗

(

∂u

∂x∗

)

+
∂

∂y

(

∂u

∂y
+

∂v∗

∂x∗

)

(4.10)

and

ρ̂ĤÛ

η̂

(

u
∂v∗

∂x∗
+ v∗

∂v∗

∂y

)

= − P̂ Ĥ

Û η̂

∂p∗

∂y
+

∂

∂x∗

(

∂u

∂y
+

∂v∗

∂x∗

)

+ 2
∂

∂y

(

∂v∗

∂y

)

. (4.11)
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To eliminate the dimensionless group of parameters from equations (4.10) and

(4.11) we choose the pressure scale P̂ to be

P̂ =
η̂Û

Ĥ
, (4.12)

which is just the usual viscous scaling for pressure in Stokes flow. Hence equa-

tions (4.10) and (4.11) become

ρ̂ĤÛ

η̂

(

u
∂u

∂x∗
+ v∗

∂u

∂y

)

= −∂p∗

∂x∗
+ 2

∂

∂x∗

(

∂u

∂x∗

)

+
∂

∂y

(

∂u

∂y
+

∂v∗

∂x∗

)

(4.13)

and

ρ̂ĤÛ

η̂

(

u
∂v∗

∂x∗
+ v∗

∂v∗

∂y

)

= −∂p∗

∂y
+

∂

∂x∗

(

∂u

∂y
+

∂v∗

∂x∗

)

+ 2
∂

∂y

(

∂v∗

∂y

)

. (4.14)

To fix the velocity scale Û we choose the dimensionless flux to be equal to one.

The flux is given by

Q̂ =

∫ ĥ

0

û dŷ = ÛĤ

∫ h

0

u dy = ÛĤQ (4.15)

and so if we set Q = Q̂/(ÛĤ) = 1 then

Û =
Q̂

Ĥ
. (4.16)

4.2.2 Thin-film approximation

We now rescale equations (4.3), (4.13) and (4.14) by introducing the small aspect

ratio δ = Ĥ/L̂ with 0 < δ ≪ 1. We define x∗ = x/δ and v∗ = δv, so that

x̂ = L̂x and v̂ = ĤÛv/L̂. We implicitly consider unadorned variables to beO(1).

From equation (4.13), p∗ = p/δ, i.e. p̂ = η̂Û L̂p/Ĥ2, which is the usual viscous
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scaling for pressure in thin-film flows (see, e.g., Acheson (1990) §7.6). The scaled

and non-dimensionalised problem described by equations (4.3), (4.13), (4.14) is

therefore given by

∂u

∂x
+

∂v

∂y
= 0, (4.17)

∂p

∂x
=

∂2u

∂y2
+ δ2

[

2
∂2u

∂x2
+

∂2v

∂y∂x

]

− δ2Re

(

u
∂u

∂x
+ v

∂u

∂y

)

(4.18)

and

∂p

∂y
= δ2

[

2
∂2v

∂y2
+

∂2u

∂x∂y

]

+ δ4 ∂2v

∂x2
− δ4Re

(

u
∂v

∂x
+ v

∂v

∂y

)

, (4.19)

where Re = ρÛL̂/η̂ is the Reynolds number. These equations are subject to

the no-slip and no-penetration conditions at the channel walls u(x, 0) = 0,

u(x, h(x)) = 0, v(x, 0) = 0 and v(x, h(x)) = 0 and the condition of prescribed

flux Q = 1. In classical leading-order thin-film theory, we neglect inertia effects

and therefore require that δ2Re = o(1). In this case, equations (4.18) and (4.19)

reduce to

∂p

∂x
=

∂2u

∂y2
+ o(1), (4.20)

∂p

∂y
= o(1). (4.21)

Note that only even powers of δ appear in equations (4.18) and (4.19): this point

will be important when we consider thixotropic fluids. At leading order in δ ≪

1, equations (4.20) and (4.21) are the well-known lubrication equations

∂p

∂x
=

∂2u

∂y2
, (4.22)
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∂p

∂y
= 0, (4.23)

and the leading-order velocity in the x-direction is therefore just the classical

Poiseuille parabolic profile

u =
G

2
(hy − y2), (4.24)

where G = G(x) = −dp/dx is the leading-order pressure gradient. This classi-

cal solution will be a useful reference point as we formulate the corresponding

problem for thixotropic and antithixotropic fluids.

4.3 Problem formulation and governing equations

We now consider flow of thixotropic and antithixotropic fluids in a slowly-

varying channel. As in chapter 3, we will use the general rheological model

presented by Mewis and Wagner (2009), which comprises an evolution equa-

tion for the structure parameter and a constitutive relation giving the shear

stress tensor τ̂ij in terms of the shear rate tensor êij and the local value of λ.

The structure equation is given by

Dλ

Dt̂
= −k̂1γ̇

aλb + k̂2γ̇
c(1 − λ)d, (4.25)

where a, b, c and d are non-negative dimensionless exponents. The constitutive

relation used throughout is

τ̂ij = η̂0λêij, (4.26)

where η̂0 is a constant viscosity parameter. Recall that the total shear rate γ̇ is

related to the shear rate tensor êij in the usual manner by

γ̇ =

√

1

2
êij êij . (4.27)
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For steady flow, using (4.26), the mass conservation and momentum equa-

tions (4.1) and (4.2) yield

∂û

∂x̂
+

∂v̂

∂ŷ
= 0, (4.28)

ρ̂

(

û
∂û

∂x̂
+ v̂

∂û

∂ŷ

)

= −∂p̂

∂x̂
+

∂

∂x̂

(

η̂0λ

[

2
∂û

∂x̂

])

+
∂

∂ŷ

(

η̂0λ

[

∂û

∂ŷ
+

∂v̂

∂x̂

])

, (4.29)

ρ̂

(

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

)

= −∂p̂

∂ŷ
+

∂

∂x̂

(

η̂0λ

[

∂û

∂ŷ
+

∂v̂

∂x̂

])

+
∂

∂ŷ

(

η̂0λ

[

2
∂v̂

∂ŷ

])

. (4.30)

In steady flow,

û
∂λ

∂x̂
+ v̂

∂λ

∂ŷ
= −k̂1γ̇

aλb + k̂2γ̇
c(1 − λ)d, (4.31)

where from equation (4.27)

γ̇2 = 2

(

∂û

∂x̂

)2

+ 2

(

∂v̂

∂ŷ

)2

+

(

∂û

∂ŷ
+

∂v̂

∂x̂

)2

. (4.32)

The fluid is subject to no-slip and no-penetration conditions at the channel

walls, û(x̂, 0) = 0, û(x̂, ĥ(x̂)) = 0, v̂(x̂, 0) = 0 and v̂(x̂, ĥ(x̂)) = 0. Since the

flow is steady and incompressible, as in the Newtonian problem, the volume

flux per unit width is constant, i.e.

Q̂ =

∫ ĥ

0

û dŷ = constant. (4.33)

As in the Newtonian case, we have the choice between choosing the flux and

choosing the pressure, and we have chosen to fix the flux. The impact of this

choice will be made apparent in later sections.
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4.3.1 Non-dimensionalisation and thin-film approximation

As in section 4.2.1, we non-dimensionalise and rescale the problem. First we

non-dimensionalise according to x̂ = Ĥx∗, ŷ = Ĥy, û = Ûu, v̂ = Ûv∗ and

p̂ = P̂ p∗ and so equations (4.29) and (4.30) become

ρ̂ĤÛ

η̂0

(

u
∂u

∂x∗
+ v∗

∂u

∂y

)

= − P̂ Ĥ

Û η̂0

∂p∗

∂x∗
+ 2

∂

∂x∗

(

λ

[

∂u

∂x∗

])

+
∂

∂y

(

λ

[

∂u

∂y
+

∂v∗

∂x∗

])

(4.34)

and

ρ̂ĤÛ

η̂0

(

u
∂v∗

∂x∗
+ v∗

∂v∗

∂y

)

= − P̂ Ĥ

Û η̂0

∂p∗

∂y
+

∂

∂x∗

(

λ

[

∂u

∂y
+

∂v∗

∂x∗

])

+ 2
∂

∂y

(

λ

[

∂v∗

∂y

])

,

(4.35)

To eliminate the dimensionless group of parameters from equations (4.34) and

(4.35) we set

P̂ =
η̂0Û

Ĥ
, (4.36)

corresponding to (4.12) in the Newtonian case. Hence equations (4.34) and

(4.35) become

ρ̂ĤÛ

η̂0

(

u
∂u

∂x∗
+ v∗

∂u

∂y

)

= −∂p∗

∂x∗
+2

∂

∂x∗

(

λ

[

∂u

∂x∗

])

+
∂

∂y

(

λ

[

∂u

∂y
+

∂v∗

∂x∗

])

(4.37)

and

ρ̂ĤÛ

η̂0

(

u
∂v∗

∂x∗
+ v∗

∂v∗

∂y

)

= −∂p∗

∂y
+

∂

∂x∗

(

λ

[

∂u

∂y
+

∂v∗

∂x∗

])

+ 2
∂

∂y

(

λ

[

∂v∗

∂y

])

.

(4.38)

To fix Û we again choose the dimensionless flux to be equal to one. The flux is

given by

Q̂ =

∫ ĥ

0

û dŷ = ÛĤ

∫ h

0

u dy = ÛĤQ (4.39)
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and so if we set Q = Q̂/(ÛĤ) = 1 then

Û =
Q̂

Ĥ
, (4.40)

the same as (4.16) in the Newtonian case. We have chosen Q = 1 which in turn

sets Ĥ. We will see the impact of this in a later section.

We rescale as before by introducing the aspect ratio δ = Ĥ/L̂with 0 < δ ≪ 1.

We define x∗ = x/δ and so v∗ = δv, so that x̂ = L̂x and v̂ = ĤÛv/L̂. We

again implicitly consider unadorned variables to be O(1). From equation (4.37),

p∗ = p/δ, i.e p̂ = η̂0Û L̂p/Ĥ2. The scaled and non-dimensionalised problem

described by (4.28), (4.29), (4.30) and (4.31) is therefore given by

∂u

∂x
+

∂v

∂y
= 0, (4.41)

∂p

∂x
=

∂

∂y

(

λ
∂u

∂y

)

+ δ2

[

2
∂

∂x

(

λ
∂u

∂x

)

+
∂

∂y

(

λ
∂v

∂x

)]

− δ2Re0

(

u
∂u

∂x
+ v

∂u

∂y

)

,

(4.42)

∂p

∂y
= δ2

[

2
∂

∂y

(

λ
∂v

∂y

)

+
∂

∂x

(

λ
∂u

∂y

)]

+ δ4 ∂

∂x

(

λ
∂v

∂x

)

− δ4Re0

(

u
∂v

∂x
+ v

∂v

∂y

)

,

(4.43)

δ

(

u
∂λ

∂x
+ v

∂λ

∂y

)

= −k1γ̇
aλb + k2γ̇

c(1 − λ)d, (4.44)

where Re0 = ρÛL̂/η̂0 is the Reynolds number, now defined in terms of the

consistency parameter η̂0 rather than the Newtonian viscosity. These equations

are subject to the no-slip and no-penetration conditions at the channel walls

u(x, 0) = 0, u(x, h(x)) = 0, v(x, 0) = 0 and v(x, h(x)) = 0 and the condition of

prescribed flux Q = 1. From equation (4.32)

γ̇2 =

(

∂u

∂y

)2

+ δ2

[

2

(

∂u

∂x

)2

+ 2

(

∂v

∂y

)2

+ 2
∂u

∂y

∂v

∂x

]

+ δ4

(

∂v

∂x

)2

, (4.45)
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and the non-dimensional rate constants k1 and k2 are given by

k1 = k̂1
Q̂a−1

Ĥ2(a−1)
and k2 = k̂2

Q̂c−1

Ĥ2(c−1)
. (4.46)

In the Newtonian case we were only interested in the leading-order problem;

in what follows, however, we are now also concerned with first order, i.e. O(δ)

terms. To ensure that inertial effects remain negligible at first order, we now

require that δ2Re0 = o(δ). Equations (4.42) and (4.43) now become

∂p

∂x
=

∂

∂y

(

λ
∂u

∂y

)

+ o(δ), (4.47)

and

∂p

∂y
= o(δ). (4.48)

We will make the assumption that k1 and k2 are O(1), so the response time-

scales of the microstructure are comparable with the timescale set by the shear

rate of the flow. Other regimes of behaviour could also be considered, but

would require a somewhat different asymptotic approach.

4.3.2 Solution in the thin-film limit δ → 0

In the thin-film limit, δ → 0, we seek asymptotic solutions of the form

u = u0 + δu1 + O(δ2), (4.49)

v = v0 + δv1 + O(δ2), (4.50)

p = p0 + δp1 + O(δ2) (4.51)
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and

λ(x, y) = λ0 + δλ1 + O(δ2). (4.52)

At leading order in δ ≪ 1, equations (4.41), (4.44), (4.47) and (4.48) yield

∂u0

∂x
+

∂v0

∂y
= 0, (4.53)

∂p0

∂x
=

∂

∂y

(

λ0
∂u0

∂y

)

, (4.54)

∂p0

∂y
= 0 (4.55)

and
λb

0

(1 − λ0)d
=

k2

k1

∣

∣

∣

∣

∂u0

∂y

∣

∣

∣

∣

c−a

. (4.56)

From equation (4.55) we can immediately deduce that p0 = p0(x), so that

G0 = − ∂

∂y

(

λ0
∂u0

∂y

)

, (4.57)

where G0 = G0(x) = −dp0/dx is the leading-order pressure gradient. The

leading-order boundary conditions are u0(x, 0) = 0, u0(x, h(x)) = 0, v0(x, 0) = 0

and v0(x, h(x)) = 0.

At first order in δ ≪ 1, equations (4.41), (4.44), (4.47) and (4.48) yield

∂u1

∂x
+

∂v1

∂y
= 0, (4.58)

∂p1

∂x
=

∂

∂y

(

λ0
∂u1

∂y
+ λ1

∂u0

∂y

)

, (4.59)

∂p1

∂y
= 0 (4.60)
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and

u0
∂λ0

∂x
+ v0

∂λ0

∂y
= k1λ

b
0

∣

∣

∣

∣

∂u0

∂y

∣

∣

∣

∣

a [

(c − a)
∂u1/∂y

∂u0/∂y
− b

λ1

λ0

+ d
λ1

1 − λ0

]

. (4.61)

From (4.60) we can immediately deduce that p1 = p1(x), so that to O(δ) the

pressure gradient remains independent of y and

G1 = − ∂

∂y

(

λ0
∂u1

∂y
+ λ1

∂u0

∂y

)

, (4.62)

where G1 = G1(x) = −dp1/dx is the first-order perturbation to the pressure

gradient. The first-order boundary conditions are u1(x, 0) = 0, u1(x, h(x)) = 0,

v1(x, 0) = 0 and v1(x, h(x)) = 0.

4.4 Solution in the special case d = 0

In order to make analytical progress and to illustrate the behaviour predicted

by our theory we take d = 0 in equation (4.25), recalling that in this case λ may

increase unboundedly (see section 1.2.5).

4.4.1 Leading order solution

We first consider the leading-order terms. From equation (4.56),

λ0 = k1/b

∣

∣

∣

∣

∂u0

∂y

∣

∣

∣

∣

n−1

, (4.63)

where n = (c − a + b)/b and k = k2/k1, and hence the fluid behaves, to leading

order in δ, as a power-law fluid with exponent n. Equation (4.57) becomes

G0 = −k1/b ∂

∂y

(

∣

∣

∣

∣

∂u0

∂y

∣

∣

∣

∣

n−1
∂u0

∂y

)

. (4.64)
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We expect qualitatively different behaviour for different values of n: n < 1

corresponds to shear-thinning fluids, those whose viscosity will decrease with

increased shear; n > 1 corresponds to shear-thickening fluids, those whose vis-

cosity will increase with increased shear; and n = 1 corresponds to Newtonian

behaviour with constant viscosity as λ0 is constant. When λ0 is given by (4.63),

analytical solutions for u0, λ0 and v0 can be obtained. These solutions corre-

spond to channel flow for a power-law fluid, first solved by Flumerfelt et al.

(1969).

The presence of the modulus sign in (4.64) means that it is important to con-

sider separately the regions in which ∂u0/∂y > 0 and ∂u0/∂y < 0. We will

assume symmetry of the flow about the centreline y = h/2, which simplifies the

task of determining these regions. In the region 0 ≤ y ≤ h/2, we expect the

shear rate to be positive, ∂u0/∂y > 0, and so equation (4.64) becomes

G0k
−1/b = − ∂

∂y

((

∂u0

∂y

)n)

. (4.65)

Integrating (4.65) with respect to y and imposing the symmetry condition

∂u0/∂y = 0 at y = h/2 yields

∂u0

∂y
=

(

G0k
−1/b

(

h

2
− y

))1/n

. (4.66)

Integrating (4.66) with respect to y and imposing the no-slip condition u0 = 0 at

y = 0 yields

u0 =

(

n

n + 1

)

(

G0k
−1/b

)1/n

[

(

h

2

)(n+1)/n

−
(

h

2
− y

)(n+1)/n
]

(4.67)

for 0 ≤ y ≤ h/2. We can obtain the corresponding expression for h/2 ≤ y ≤ h

where ∂u0/∂y < 0, and so the full solution for u0 valid for 0 ≤ y ≤ h can be
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written as

u0(x, y) = −
(

n

n + 1

)

(

G0k
−1/b

)1/n

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n+1)/n

−
(

h

2

)(n+1)/n
]

. (4.68)

Imposing the condition of prescribed flux, Q = 1, we can obtain an expression

for the leading-order pressure gradient G0,

G0 = k1/b

(

2n + 1

2n

)n(
h

2

)

−(1+2n)

. (4.69)

Note that whether G0 increases or decreases with n depends on the value of h.

Figure 4.2 a shows G0, given by equation (4.69), as a function of n with k = 1

and h = 1, 2 and 3. When h > 2, G0 decreases as n increases, as demonstrated

by the dotted line (h = 3). When h = 2, G0 → k1/b from below as n → ∞ as

demonstrated by the dashed line. When h < 2, G0 increases as n increases, as

demonstrated by the thin solid line (h = 1). From equation (4.69),

log(G0) = log(k1/b) + n log

(

2n + 1

2n

)

− log

(

h

2

)

− 2n log

(

h

2

)

= log

(

2k1/b

h

)

+ n

[

log

(

2 + 1/n

2

)

− 2 log

(

h

2

)]

, (4.70)

and so as n → ∞

log(G0) ∼ log

(

2k1/b

h

)

− 2n log

(

h

2

)

. (4.71)

Therefore as n → ∞

G0 ∼
(

h

2

)

−2n

. (4.72)

Equation (4.72) shows that the behaviour of G0 as n → ∞ depends on whether

h ≷ 2 and confirms that when h < 2, G0 increases as n → ∞ and when h > 2,
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G0 decreases as n → ∞, as seen in figure 4.2 a.

This unusual condition is a consequence of the constant flux condition, (4.33),

which we imposed. We will now dimensionalise (4.69) and see how Ĥ , the

height of the channel, effects the pressure gradient. We start with

G0 ≡ −dp0

dx
= k1/b

(

2n + 1

2n

)n(
h

2

)

−(1+2n)

=

(

k2

k1

)1/b(
2n + 1

2n

)n(
h

2

)

−(1+2n)

=

(

k̂2Q̂
c−1

Ĥ2(c−1)

Ĥ2(a−1)

k̂1Q̂a−1

)1/b
(

2n + 1

2n

)n
(

ĥ

2Ĥ

)

−(1+2n)

(4.73)

so that

−dp̂0

dx̂
=

Ĥ

η̂0Û L̂

(

k̂2

k̂1

Q̂c−a

)

(

2n + 1

2n

)n
(

ĥ

2

)

−(1+2n)

Ĥ2(a−c)/b+1+2n. (4.74)

The powers of the Ĥ terms in (4.74) simplify so that

Ĝ0 ≡ −dp̂0

dx̂
=

1

η̂0Û L̂

(

k̂2

k̂1

Q̂c−a

)

(

2n + 1

2n

)n
(

ĥ

2

)

−(1+2n)

Ĥ4. (4.75)

We can now see how the pressure gradient varies with the lengthscale Ĥ . Also,

as n → ∞

Ĝ0 ∼
(

ĥ

2

)

−2n

, (4.76)

which is comparable with (4.72).

Substituting G0 from (4.69) into equation (4.68) yields

u0(x, y) = −(2n + 1)

2(n + 1)

(

h

2

)

−(2n+1)/n
[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n+1)/n

−
(

h

2

)(n+1)/n
]

, (4.77)

and substituting G0 from (4.69) into equation (4.63) yields the corresponding
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solution for λ0,

λ0(x, y) = k1/b

(

2n + 1

2n

)n−1(
h

2

)

−(2n+1)(n−1)/n ∣
∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n−1)/n

. (4.78)

From equation (4.53) we can obtain the solution for v0,

v0 = −
∫ y

0

∂u0(y
′)

∂x
dy′

= −(2n + 1)

4(n + 1)
hxy

(

h

2

)

−(3n+1)/n
[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n+1)/n

−
(

h

2

)(n+1)/n
]

. (4.79)

Figure 4.2 b shows u0, given by equation (4.77), as a function of y with b = 1,

c = 1, h = 1 and a varying such that 0.6 ≤ n ≤ 1.4, corresponding to weakly

shear-thinning and weakly shear-thickening fluids. (We will use a to vary n as a

does not appear explicitly in equations (4.77), (4.78) and (4.79).) As n increases,

the maximum value of u0 also increases and the velocity profiles change from

plug-like for smaller n, to more angular for larger n. This behaviour was also

seen in the Stokes problem, where the velocity profiles becamemore angular for

shear-thickening fluids (see section 2.2.3). When n = 1 we recover the familiar

parabolic velocity profile (4.24) for a Newtonian fluid.

Figure 4.2 c shows λ0, given by equation (4.78), as a function of y with b = 1,

c = 1, k = 1, h = 1 and a varying such that 0.6 ≤ n ≤ 1.4. Near the channel

walls, y = 0 and y = h, the shear is highest, so the thixotropic fluids (n < 1) are

most broken down and the antithixotropic fluids (n > 1) are most built up. In

contrast, at the centreline y = h/2 the shear rate is zero, so for antithixotropic

fluids (n > 1) the structure parameter λ0 is zero at the centreline. Conversely,

the effective viscosity of a shear-thinning power-law fluid becomes infinite at

zero shear, so for thixotropic fluids (n < 1) the structure parameter becomes

unbounded at the centreline, i.e. λ0 → ∞ as y → h/2 (Myers 2005). We will
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Figure 4.2: Plot (a) shows G0, given by equation (4.69), when k = 1 and h = 1
(thin solid line), h = 2 (dashed line) and h = 3 (dotted line). Plots of (b) u0, (c)
λ0 and (d) v0 when b = 1, c = 1, d = 0, k = 1, h = 1 and a is varied such that
n = 0.6 (dotted lines), n = 0.8 (thin solid lines), n = 1 (dashed lines), n = 1.2
(dot-dashed lines) and 1.4 (thick solid lines). The arrows indicate the direction
of increasing n.

see in later sections that this singular behaviour is reflected in the breakdown of

the asymptotic expansion near the centreline for strongly shear-thinning fluids.

When n = 1 we recover the uniform structure of a Newtonian fluid, λ0 = 1.

Figure 4.2 d shows v0/hx, given by equation (4.79), as a function of y with

b = 1, c = 1, h = 1 and a varying such that 0.6 ≤ n ≤ 1.4. As n increases

the maximum value of v0/hx increases and its location moves towards y = 0,

but unlike u0, v0/hx is not symmetric about y = 1/2. The asymmetry of v0 is

because the streamlines must be parallel to the boundaries as y → 0 and y → h.
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The gradient of the streamlines is given by

v0

u0

=
hxy

h
, (4.80)

so as y → 0, v0/u0 → 0 but as y → h, v0/u0 → hx.

4.4.2 First-order solution

In the Newtonian case, there is no O(δ) term in the asymptotic expansions of u,

v and p, i.e. u1 = v1 = p1 ≡ 0. This is not the case for the more complex fluids we

are considering, since the O(δ) terms that appear in (4.44) will lead to non-zero

terms at O(δ).

Rewriting equation (4.61) in the case d = 0 yields

u0
∂λ0

∂x
+ v0

∂λ0

∂y
= k1λ

b
0

∣

∣

∣

∣

∂u0

∂y

∣

∣

∣

∣

a [

(c − a)
∂u1/∂y

∂u0/∂y
− b

λ1

λ0

]

. (4.81)

To obtain the solution for u1 we follow a similar method as for u0. We can rear-

range equation (4.81) to obtain an expression for λ1, and this can be substituted

into equation (4.62) to yield an ODE for u1,

∂

∂y

(

nλ0
∂u1

∂y
− λ1−b

0

bk1

∣

∣

∣

∣

∂u0

∂y

∣

∣

∣

∣

−a
∂u0

∂y

(

u0
∂λ0

∂x
+ v0

∂λ0

∂y

)

)

+ G1(x) = 0. (4.82)

Proceeding as before, integrating (4.82) with respect to y yields the first-order
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velocity perturbation

u1(x, y) =
k1/bhx

bk2

(

2n + 1

2n

)n−c+1(
h

2

)

−(2n+1)(n−c+1)/n−1(
n(n − 1)

n + 1

)

×
[

− 1

3n − c + 1

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(3n−c+1)/n

−
(

h

2

)(3n−c+1)/n
]

+
1

2n − c

(

h

2

)(n+1)/n
[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(2n−c)/n

−
(

h

2

)(2n−c)/n
]]

−G1k
−1/b

n + 1

(

2n + 1

2n

)1−n(
h

2

)(2n+1)(n−1)/n
[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n+1)/n

−
(

h

2

)(n+1)/n
]

(4.83)

for 0 ≤ y ≤ h. Imposing the condition of prescribed flux, Q1 = 0, we can obtain

an expression for G1,

G1 =
k2/bhx

bk2

(

2n + 1

2n

)2n−c
n(2n + 1)(n − 1)

(4n − c + 1)(3n − c)

(

h

2

)

−4n+2c−1

, (4.84)

using which we obtain

u1 =
k1/bhx

bk2

(

2n + 1

2n

)n−c+1(
h

2

)2c−2n−1/n

n

(

n − 1

n + 1

)

×
[

−
(

h

2

)

−2
(2n + 1)

(4n − c + 1)(3n − c)

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n+1)/n

−
(

h

2

)(n+1)/n
]

−
(

h

2

)

−4+c/n
1

3n − c + 1

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(3n−c+1)/n

−
(

h

2

)(3n−c+1)/n
]

+

(

h

2

)

−3+(c+1)/n
1

2n − c

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(2n−c)/n

−
(

h

2

)(2n−c)/n
]]

. (4.85)

The first order velocity perturbation u1 given by (4.85) has a non-integrable sin-

gularity at y = h/2 when (2n − c)/n < −1, i.e. when n < c/3. Furthermore,

u1 is singular but integrable, at y = h/2 when −1 < (2n − c)/n < 0, i.e. when

c/3 < n < c/2, and so the solution is only valid when n > c/2.

Using the solution (4.85) for u1, we can obtain the corresponding solution
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for λ1 from equation (4.61),

λ1 =
k2/bhx

bk2
(n − 1)

(

2n + 1

2n

)2n−c−1(
h

2

)

−(2n−c−1)(2n+1)/n−1 ∣
∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n−1)/n

×
[

(n − 1)(2n + 1)

(4n − c + 1)(3n − c)

(

h

2

)(2n−c)/n

− 1

n + 1

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n−c−1)/n
[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(n+1)/n

−
(

h

2

)(n+1)/n
]]

. (4.86)

Figures 4.3 a and b show u1/hx and λ1/hx, given by equations (4.85) and

(4.86) respectively, as functions of y with b = 1, c = 1, k = 1, k2 = 1, h = 1 and a

varying such 0.6 ≤ n ≤ 1.4. Figure 4.3 c shows G1/hx, given by equation (4.84),

as a function of n with b = 1, c = 1, k = 1, k2 = 1 and h = 1.

The perturbations to the streamwise velocity, the structure parameter and

the pressure gradient may be explained physically as follows. (Since all pertur-

bation quantities are proportional to hx, without loss of generality we consider

an expanding channel, hx > 0. We also discuss only a thixotropic fluid, n < 1,

since the explanation for an antithixotropic fluid is simply the converse of that

for a thixotropic fluid.)

In an expanding channel, the shear rate is higher upstream and lower down-

stream, so the microstructure of the fluid tends to be more strongly broken

down upstream. Since themicrostructure is advectedwith the fluid, this broken-

down structure is carried downstream by the flow. The result of this is that, at

any location, the thixotropic fluid is less structured (and its apparent viscosity

is lower) than the corresponding shear-thinning generalised Newtonian fluid

would be. (In terms of our asymptotic expansion, this corresponds to the con-

dition λ1 < 0, apparent in figure 4.3 b.) We also note from figure 4.3 b that the

reduction in viscosity is more pronounced near the centre of the channel where

the rate of downstream advection is highest, and is least pronounced near the
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Figure 4.3: Plots of (a) u1 and (b) λ1 when b = 1, c = 1, d = 0, k = 1, k2 = 1,
h = 1, δ = 0.1, hx = 1 and a varies such that n = 0.6 (dotted lines), n = 0.8 (thin
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lines). Plot (c) shows G1/hx, given by equation (4.84) when b = 1, c = 1, k = 1,
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direction of increasing n.

walls where there is no advection.

This reduction in viscosity due to thixotropic effects leads to a reduction

in the viscous shear stresses. In particular, the viscous stresses at the wall are

reduced. Since these viscous stresses must be balanced by the driving force

exerted by the streamwise pressure gradient, the effect of thixotropy is to reduce

the magnitude of this pressure gradient. (In terms of our asymptotic expansion,

this corresponds to the condition G1 < 0, apparent in figure 4.3 c.)

The velocity perturbation u1 must reflect both the changes in the viscosity

due to thixotropy and the requirement that the net volume flux is unchanged.
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In particular, unless u1 is identically zero, the flux condition requires that u1

should be positive in some regions and negative in others. Near the centre of

the channel, the stronger reduction in the viscosity due to thixotropy makes

the fluid easier to shear, so it is in this region that the fluid moves faster (u1 >

0). This faster flow near the centre of the channel must be compensated for by

slower flow near the channel walls (u1 < 0). This is indeed the pattern that can

be observed in figure 4.3 a.

4.4.3 Behaviour of the first-order solution near the centreline

y = h/2

As we have seen, u and λ show interesting behaviour near the centreline y =

h/2. As y → h/2, the shear rate tends towards zero, and the structure parameter

tends to infinity, reflecting the singularity in the power-law model at zero shear

rate (Myers 2005). This displays itself as singular behaviour of the O(δ) solu-

tions at the centreline. When theO(δ) solutions become singular, the asymptotic

expansion itself breaks down locally near the centreline since the (regular) O(1)

terms in the expansion are no longer dominant.
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In order to examine the behaviour near the centreline, we write y = h/2 − ǫ

and expand for small ǫ. Equation (4.85) becomes

u1 = ucl
1 +

k1/bhx

bk2

(

2n + 1

2n

)n−c+1(
h

2

)2c−2n−3
n(n − 1)

(n + 1)

×
[

− (2n + 1)

(4n − c + 1)(3n − c)
|ǫ|(n+1)/n −

(

h

2

)

−2+c/n
1

(3n − c + 1)
|ǫ|(3n−c+1)/n

+

(

h

2

)

−1+(c+1)/n
1

(2n − c)
|ǫ|(2n−c)/n

]

(4.87)

where

ucl
1 =

k1/bhx

bk2

(

2n + 1

2n

)n−c+1(
h

2

)2c−2n−1

n
(n − 1)

(n + 1)

×
[

2n + 1

(4n − c + 1)(3n − c)
− n + 1

(3n − c + 1)(2n − c)

]

. (4.88)

Figure 4.4 shows ucl
1 /hx, given by equation (4.88), as a function of n, with b = 1,

c = 1, k = 1, k2 = 1 and h = 1 and a varying such that 0 ≤ n ≤ 2. As mentioned

in the previous section, the solution for u1 is singular when n < c/2, i.e. when

n < 1/2, and this will be discussed again later in this section. As n → 1/2+,

ucl
1 /hx increases unboundedly, and as n increases, ucl

1 /hx decreases.

We are interested in the behaviour of u1 in the limit ǫ → 0, which involves

finding the dominant higher-order term in the limit ǫ → 0. Equation (4.87)

contains terms proportional to |ǫ|(n+1)/n, |ǫ|(3n−c+1)/n and |ǫ|(2n−c)/n. We have

2n − c

n
<

3n − c + 1

n
if and only if n > 0 or n < −1,

so |ǫ|(2n−c)/n ≫ |ǫ|(3n−c+1)/n for all positive n. We have

2n − c

n
<

n + 1

n
if and only if 0 < n < c + 1,
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so |ǫ|(2n−c)/n ≫ |ǫ|(n+1)/n for n < c + 1. When n < c + 1, the dominant term

in ǫ is proportional to ǫ(2n−c)/n and when n > c + 1 the dominant term in ǫ is

proportional to ǫ(n+1)/n.

When (2n − c)/n > 0, i.e. when n > c/2, and n < c + 1, we find that ucl
1 ≫

ǫ(2n−c)/n and the centreline velocity atO(δ) is finite. However, when (2n−c)/n <

0, i.e. when n < c/2, the centreline velocity is no longer finite (i.e. u1 is singular

at y = h/2). Thus in the regime n < c/2, our asymptotic solution breaks down

locally in the vicinity of the centreline.

In the cases where u1 is finite at the centreline, we can consider whether

cusps or corners develop in the velocity profile. When c/2 < n < c + 1, u1 is

given, to leading order in ǫ, by

u1 ∼
k1/bhx

bk2

(

2n + 1

2n

)n−c+1(
h

2

)2c−2n−1

n
(n − 1)

(n + 1)

[

2n + 1

(4n − c + 1)(3n − c)

− n + 1

(3n − c + 1)(2n − c)
+ |ǫ|(2n−c)/n 1

2n − c

(

h

2

)c/n−2
]

. (4.89)

The velocity profile will have a cusp if (2n − c)/n < 1, i.e. if n < c; it will have

a corner if (2n − c)/n = 1, i.e. if n = c; and it will have a finite gradient at the

centreline if (2n − c)/n > 1, i.e. if n > c.

When n > c + 1, u1 is given, to leading order in ǫ, by

u1 ∼
k1/bhx

bk2

(

2n + 1

2n

)n−c+1(
h

2

)2c−2n−1

n
(n − 1)

(n + 1)

[

2n + 1

(4n − c + 1)(3n − c)

− n + 1

(3n − c + 1)(2n − c)
− |ǫ|(n+1)/n 2n + 1

(4n − c + 1)(3n − c)

(

h

2

)

−1−1/n
]

. (4.90)

Since (n + 1)/n > 1, the velocity profiles in this regime always have a finite

gradient at the centreline.

Figure 4.5 illustrates this behaviour. The plots show the leading-order be-
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haviour of u1/hx, given by equation (4.89), as a function of ǫ with b = 1, c = 1,

k = 1, k2 = 1, h = 1 and a varying such that 0.6 ≤ n ≤ 1.4. As n increases

from 0.6 to 1.4, the profiles in figures 4.5 a to d change from cusps (n < c) to

lancet-shaped (n > c) near ǫ = 0.

The regime n > c + 1, in which u1 is given by equation (4.90), cannot be

accessed with the parameter values used for plotting figures 4.5. Specifically,

thus far, we have varied n by varying a where, from section 4.4.1, we know that

a = c − (n − 1)b, (4.91)

and so, for a > 0, n satisfies

n <
c

b
+ 1. (4.92)

In particular, we have taken b = 1 and c = 1, and so from equation (4.92), n

satisfies n < 2, and so we cannot access the regime n > c + 1. In section 4.4.4

we will instead vary n by varying c, and this will allow us to access the large-n

limit.

Near the centreline, λ1 dominates the behaviour of λ, and so the expansion

breaks down. In a similar way to in the previous section, we compare the ex-

ponents of the h/2 − y terms in equations (4.78) and (4.86) as y → h/2 from

below. Equation (4.86) contains terms proportional to |ǫ|(n−1)/n, |ǫ|(2n−c−2)/n and

|ǫ|(3n−c−1)/n. We have

2n − c − 2

n
<

3n − c − 1

n
if and only if n > 0 or n < −1,

so |ǫ|(2n−c−2)/n ≫ |ǫ|(3n−c−1)/n for all positive n. We have

2n − c − 2

n
<

n − 1

n
if and only if 0 < n < c + 1,
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Figure 4.5: Plots of ucl
1 /hx, given by equation (4.89), when b = 1, c = 1, k = 1,

k2 = 1, h = 1 and a varies such that (a) n = 0.6, (b) n = 0.8, (c) n = 1.2 and (d)
n = 1.4.

so |ǫ|(2n−c−2)/n ≫ |ǫ|(n−1)/n for n < c + 1. When n < c + 1, the dominant term

in ǫ is proportional to ǫ(2n−c−2)/n and when n > c + 1, the dominant term in ǫ is

proportional to ǫ(n−1)/n.

Therefore, when n < c + 1, λ1 is given, to leading order in ǫ, by

λ1 ∼
k2/bhx

bk2

(

n − 1

n + 1

)(

2n + 1

2n

)2n−c−1(
h

2

)(−4n2+2cn+c+2)/n

|ǫ|(2n−c−2)/n (4.93)
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and λ0 is given, from (4.78), by

λ0 = k1/b

(

2n + 1

2n

)n−1(
h

2

)(−2n2+n−1)/n

|ǫ|(n−1)/n. (4.94)

We have shown that in this regime |ǫ|(n−1)/n ≪ |ǫ|(2n−c−2)/n. Therefore δλ1 ≫ λ0,

i.e. the expansion breaks down near the centreline when n < c + 1.

When n > c + 1, λ1 is given, to leading order in ǫ, by

λ1 ∼
k2/bhx

bk2

(2n + 1)(n − 1)2

(4n − c + 1)(3n − c)

(

2n + 1

2n

)2n−c−1(
h

2

)(−4n2+2cn+n+1)/n

|ǫ|(n−1)/n ,

(4.95)

and λ0 is given by (4.94). Both λ0 and λ1 are of the same order in ǫ, but δλ1 ≪ λ0,

i.e. the expansion remains valid near the centreline.

4.4.4 The limit of strongly shear-thickening behaviour n → ∞

For some other problems in the flow of power-law fluids, the finite-n solutions

converge to a solution independent of n in the limit of strongly shear-thickening

behaviour n → ∞. For example, Yatim et al. (2010) considered thin rivulets of a

power-law fluid draining down an inclined plane, and demonstrated that in the

n → ∞ limit the shear-thickening solutions converged to solutions independent

of n. We will now investigate this limit for the present problem.

As discussed previously (section 4.4.3) the parameters used thus far (b = 1,

c = 1 and varying a) restrict n such that n < 2. To examine the limit n → ∞ we

must choose different parameters, and we can most easily explore this limit by

setting a and b constant and taking the limit c → ∞.

Wemust first check that changing the parameters does not change the shear-

thinning and shear-thickening behaviour seen previously. Figures 4.6 a and b

show u1/hx and λ1/hx, given by equations (4.85) and (4.86), as functions of y
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Figure 4.6: Plots of (a) u1/hx and (b) λ1/hx when a = 1, b = 1, k = 1, k2 = 1,
h = 1 and c varying such that n = 0.6 (dotted lines), n = 0.8 (thin solid lines),
n = 1 (dashed lines), n = 1.2 (dot-dashed solid lines) and n = 1.4 (thick solid
lines). The arrows indicate the direction of increasing n.

with a = 1, b = 1, k = 1, k2 = 1, h = 1 and c varying such that 0.6 ≤ n ≤ 1.4. It

is clear that the shear-thinning and thickening behaviour shown in figures 4.3 a

and b is also seen here.

In the limit n → ∞, u0 and v0 each converge to a solution independent of n.

Specifically, from equations (4.77) and (4.79)

u0 ∼ u∞

0 (x, y) = −
(

h

2

)

−2 [∣
∣

∣

∣

h

2
− y

∣

∣

∣

∣

−
(

h

2

)]

(4.96)

and

v0 ∼ v∞

0 (x, y) = −1

2
hxy

(

h

2

)

−3 [∣
∣

∣

∣

h

2
− y

∣

∣

∣

∣

−
(

h

2

)]

(4.97)

as n → ∞. The limiting behaviour of u1, given by equation (4.85), is more
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complicated,

u1 ∼ u∞

1 (x, y) =
k1/bhx

bk2

(

h

2

)2(a−c+bc−2b)/b [ −2

(4 − b)(3 − b)

[
∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

−
(

h

2

)]

−
(

h

2

)b−2
1

3 − b

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

3−b

−
(

h

2

)3−b
]

+

(

h

2

)b−1
1

2 − b

[

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

2−b

−
(

h

2

)2−b
]]

. (4.98)

Both u∞

0 and v∞

0 are independent of c and n, but u∞

1 still depends on c through

the exponent of

U∞

1 =

(

h

2

)2(a−c+bc−2b)/b

. (4.99)

The magnitude of u1 depends on the behaviour of b and h. For b > 1 and h > 2,

and for b < 1 and h < 2, the magnitude of u1 increases unboundedly as c → ∞.

For b < 1 and h > 2, and for b > 1 and h < 2, the magnitude of u1 tends to zero

as c → ∞.

We can also obtain expressions for λ0 and λ1, given by equations (4.78) and

(4.86), in the limit n → ∞,

λ0 ∼ λ∞

0 = k1/bΛ∞

0

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(4.100)

where

Λ∞

0 =

(

h

2

)

−2n

, (4.101)

and

λ1 ∼ λ∞

1 =
2k2/bhx

bk2(4 − b)(3 − b)
Λ∞

1

∣

∣

∣

∣

h

2
− y

∣

∣

∣

∣

(4.102)

where

Λ∞

1 = n

(

h

2

)2c−4c/b

. (4.103)
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Figure 4.7: Plots of (a) u0, (b) v0/hx and (c) u1/(hxU
∞

1 ) with thin lines denoting
equations (4.77), (4.79) and (4.85) respectively and thick lines denoting equa-
tions (4.96), (4.97) and (4.98) respectively. For all plots a = 1, b = 1, h = 1, k = 1
and k2 = 1 and c varies such that n = 1, 5, 10, 15 and 20. The arrows indicate
the direction of increasing n.

Note that both λ0 and λ1 depend on n and c.

Figure 4.7 a shows u0 with a = 1, b = 1, h = 1, k = 1 and k2 = 1 and c varying

such that n = 1, 5, 10, 15 and 20. The thick line represents the asymptotic

solution for large n, u∞

0 from (4.96), while the thin lines denote equation (4.77);

the arrows indicate the direction of increasing n. It is clear that as n increases,

the velocity profiles approach the piecewise linear limiting solution (4.96), and

the centreline velocity increases. The finite-n solution from equation (4.77) tends

towards the solution from equation (4.96).
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Figure 4.7 b shows v0/hx with a = 1, b = 1, h = 1, k = 1 and k2 = 1 and c

varying such that n = 1, 5, 10, 15 and 20. The thick line represents the asymp-

totic solution for large n, v∞

0 /hx from (4.97) and the thin lines denote equation

(4.79); the arrows indicate the direction of increasing n. As n increases, the ve-

locity profiles change from having a smooth maximum to having a corner. In

the limit n → ∞ the profiles become two parabolas joined at the centreline. The

finite-n solution from equation (4.79) tends towards the solution from equation

(4.97).

Figure 4.7 c shows the rescaled velocity perturbation u1/(hxU
∞

1 ) with a = 1,

b = 1, h = 1, k = 1 and k2 = 1 and c varying such that n = 1, 5, 10, 15 and

20. The thick line represents the asymptotic solution for large n, u∞

1 /(hxU
∞

1 )

from (4.98) and the thin lines denote equation (4.85); the arrows indicate the

direction of increasing n. As n increases, the first-order velocity increases near

the channel walls and decreases towards the centre of the channel. The finite-n

solution from equation (4.85) tends towards the solution from equation (4.98).

Figure 4.8 a shows the rescaled structure parameter λ0/Λ∞

0 with a = 1, b = 1,

h = 1, k = 1 and k2 = 1 and c varying such that n = 1, 5, 10, 15 and 20. The thick

line represents the asymptotic solution for large n, λ∞

0 /Λ∞

0 from (4.100) and the

thin lines denote equation (4.78); the arrows indicate the direction of increasing

n. As n increases, the structure parameter increases near the channel walls and

decreases towards zero in the centre of the channel. The finite-n solution from

equation (4.78) tends towards the solution from equation (4.100).

Figure 4.8 b shows the rescaled structure parameter perturbation λ1/(hxΛ
∞

1 )

with a = 1, b = 1, h = 1, k = 1 and k2 = 1 and c varying such that n = 1,

5, 10, 15 and 20. The thick line represents the asymptotic solution for large n,

v∞

0 /(hxΛ
∞

1 ) from (4.102) and the thin lines denote equation (4.86); the arrows

indicate the direction of increasing n. As n increases the structure parameter
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Figure 4.8: Plots of (a) λ0/Λ∞

0 and (b) λ1/(hxΛ
∞

1 ) with thin lines given by equa-
tions (4.78) and (4.86) respectively and thick lines given by equations (4.100)
and (4.102) respectively. For all plots a = 1, b = 1, h = 1, k = 1 and k2 = 1 and
c varies such that n = 1, 5, 10, 15 and 20. The arrows indicate the direction of
increasing n.

increases near the channel walls, and as we move towards the centre of the

channel the structure parameter decreases towards zero at the centreline.

4.5 Summary

In this chapter we have considered the two-dimensional flow of a thixotropic

or antithixotropic fluid along a two-dimensional slowly-varying channel. Al-

though several previous studies (e.g. Huynh et al. (2005) and Livescu et al.

(2011)) had considered similar geometries, ours appears to be the first system-

atic development of a thin-film theory for a thixotropic or antithixotropic fluid.

Like the conventional lubrication approach for a Newtonian fluid, our ap-

proach was based on an asymptotic expansion in powers of the aspect ratio δ, in

the limit δ → 0. Under appropriate conditions concerning the Reynolds num-

ber and the dimensionless structure response rates, we obtained the governing

equations for the velocity, pressure and structure parameter up to O(δ). In con-
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trast to the Newtonian case, the lubrication equations included terms at O(δ),

and it is at this order that thixotropic and antithixotropic effects occur.

To illustrate the effectiveness of this rather general approach, we obtained

explicit solutions for the velocity and structure parameter in the special case

d = 0, in which the fluid behaves, to leading order, like a power-law fluid.

As the power-law index n decreases (i.e. changing from an antithixotropic

to a thixotropic fluid) the leading-order velocity profiles become flatter near the

centre of the channel and start to form a plug-like flow. For thixotropic fluids

(n < 1), the structure is most built up near the centre of the channel, where the

shear is lowest, and most broken down near the channel walls where the shear

is highest . Conversely, for antithixotropic fluids (n > 1) the structure is most

broken down near the centre of the channel and most built up near the walls.

For thixotropic fluids (n < 1), in expanding channels, near the channel walls

the first-order velocity perturbation is negative and near the centre of the chan-

nel it is positive (see figures 4.3 a and b). The first-order structure parameter

perturbation is negative everywhere as less structured fluid is advected down-

stream and smallest near the channel walls. The structure parameter is thus

reduced most strongly near the centre of the channel, making the fluid easier

to shear and hence flow faster. The faster flow near the centre of the channel is

compensated for by slower flow near the walls where the structure parameter

is highest. However, for antithixotropic fluids (n > 1) the structure is most built

up near the centre of the channel, which results in the velocity being reduced

there. The converse holds near the walls of the channel. The net effect is that

for flow in an expanding channel, thixotropic effects reduce the pressure gradi-

ent required to drive a given volume flux of fluid through the channel, while

antithixotropic effects increase the pressure gradient required.

Although these results are interesting and physically plausible, their valid-
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ity is restricted by problems related to the behaviour of the power-law model at

zero shear rate (Myers 2005). At the centre of the channel the shear rate is zero

and the rheological model breaks down because the leading-order structure pa-

rameter becomes unbounded. This singularity is felt more strongly at O(δ), and

can cause the expansion to become locally inconsistent at the centreline as the

first-order solution dominates over the leading-order solution. For sufficiently

strongly shear-thinning fluids (i.e. for n sufficiently small), the velocity singu-

larity at O(δ) means there are no meaningful solutions. However, in the limit

of strongly shear-thickening behaviour, n → ∞, the finite-n velocity solutions

converge to solutions independent of n.



Chapter 5

Conclusions and future work

In this thesis we considered two fundamental flow problems, the Stokes prob-

lem and flow in a slowly-varying channel, for complex fluids. Specifically, we

investigated these problems for thixotropic and antithixotropic fluids described

by Mewis and Wagner’s (2009) general structure parameter model together

with a version of the constitutive law proposed by Moore (1959). In certain lim-

its, this model reduces to the generalised Newtonian power-law model, which

we also considered.

5.1 The Stokes problem

In chapters 2 and 3 of this thesis we considered the Stokes problem for power-

law, and thixotropic and antithixotropic fluids, respectively. Our main motiva-

tion for studying the Stokes problem was to investigate the interplay between

the timescales of the fluid response and the forcing. Therefore, the emphasis

of our investigations was on the periodic oscillatory behaviour of the systems,

rather than on the transient initial phase during which the system adjusts to the

attracting periodic solution.

148
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For the thixotropic and antithixotropic problems, we carried out an asymp-

totic analysis in the limit of small-amplitude oscillations, ǫ → 0, where ǫ is the

dimensionless amplitude of the oscillations of the wall. This asymptotic analy-

sis revealed distinct regimes of fast and slow structural response for both thix-

otropic and antithixotropic fluids. In the fast-adjusting regimes, the structure

is an instantaneous function of the shear, and so the fluid acts like a gener-

alised Newtonian fluid. In the slowly-adjusting regimes, the local structure is

determined by a long-term average of build-up and breakdown rates. In the

marginal regimes between the limits of fast and slow adjustment, the variation

of the structure parameter is lagged and attenuated relative to its instantaneous

equilibrium value. This hysteretic response becomes increasingly dominant in

all regimes as the amplitude of oscillation increases. When this amplitude is

large enough, the distinction between the fast- and slowly-adjusting regimes

disappears entirely.

The boundaries of the fast- and slowly-adjusting regimes depend on the rel-

ative magnitudes of the dimensionless amplitude of oscillation ǫ and the di-

mensionless frequency of oscillation ω. In each regime we developed asymp-

totic solutions for small ǫ and numerical solutions for larger values of ǫ. In one

particular regime (fast-adjusting, antithixotropic behaviour), the fluid behaves

at small amplitudes like a shear-thickening power-law fluid, and this problem

was investigated separately in chapter 2.

The most interesting feature of the solutions for the velocity is that for shear-

thickening fluids (n > 1), in chapter 2, and antithixotropic fluids, in chapter 3,

we find a boundary layer of finite thickness, with no motion beyond a certain

distance from the wall. This arises because the viscosity of a shear-thickening

fluid decreases as the shear rate decreases, so the viscosity at the edge of the

boundary layer is zero and the diffusing signal cannot penetrate further into
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the fluid. This is, of course, an idealised situation and experimentally we would

not see the viscosity going to zero. Wewould most likely see the viscosity going

towards some small number, and so the signal would propagate but the fluid

would be far less affected than inside the boundary layer. For antithixotropic

fluids, the thickness of this layer scales with ǫβ/2, where the parameter β is de-

fined in terms of the exponents in the structure evolution equation, the velocity

amplitude decays algebraically and the structure parameter decays quadrati-

cally towards the edge of the layer.

Conversely, for shear-thinning fluids (n < 1), in chapter 2, and thixotropic

fluids, in chapter 3, the influence of the wall extends much further into the fluid

than in the Newtonian case, decaying algebraically rather than exponentially

with distance from the wall.

For power-law fluids, a clear qualitative indicator of shear-thickening or

shear-thinning behaviour is the non-sinusoidal waveform of the velocity os-

cillations. For shear-thickening fluids the oscillations adopt a ‘saw-tooth’ form,

with a rapid decrease in absolute velocity after each minimum or maximum;

shear-thinning fluids adopt a ‘shark-tooth’ waveformwhich is nearly triangular

with rapid reversal at each maximum. In all other regimes, at low amplitudes

the velocity oscillations are sinusoidal.

For power-law fluids, the histories of shear stress at the oscillating wall differ

for shear-thinning and shear-thickening cases: shear-thinning cases are char-

acterised by gradual increases in stress followed by rapid decreases, whereas

shear-thickening cases are characterised by rapid increases in stress followed

by more gradual decreases. In most thixotropic and antithixotropic regimes,

however, the shear stress at the wall shows surprisingly weak deviations from

Newtonian behaviour. In particular, changes in the structure and the shear rate

close to the wall counteract each other so that for both thixotropic and antithix-
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otropic fluids the shear stress scales roughly as predicted by the small-ǫ asymp-

totics well beyond the regime in which this scaling is formally valid. Thixotropy

affects the shear stress most obviously for large amplitudes of oscillation, when

it leads to rapid variations of the shear stress shortly before and after the wall

shear rate changes sign. The feedback between increasing structure and de-

creasing shear that leads to these variations shows up as a characteristic ‘sec-

ondary loop’ when the stress and shear at the wall are plotted as rheograms.

The rheograms also reveal hysteresis clearly in many cases; however, it is not

in general straightforward to identify the rheological characteristics of the fluid

from them.

Perhaps the most unexpected finding of this work was that the regime boun-

daries, and thus the qualitative behaviour of the fluid, depends rather subtly

on the exponents that control the buildup and breakdown rates in the structure

evolution equation. This occurs because the buildup and breakdown timescales

are not constants, but in general depend on the shear rate. This finding suggests

that in future studies employing the structure model from Mewis and Wagner

(2009), as much attention should be paid to the choice of these exponents as to

the accompanying constitutive law.

5.1.1 Future work

In this thesis we have inevitably left some avenues unexplored.

The first obvious development of the Stokes problem would be to use our

asymptotic approaches to examine the transient adjustment to the periodic state,

which was considered numerically for power-law fluids by Ai and Vafai (2005).

Another possible extension would be to investigate the response of fluid layers

of finite thickness, recalling that the asymptotic solutions we have considered

are for an unbounded domain. This would allow a comparison between model
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predictions and experiments of the kind carried out by Balmforth et al. (2009),

who sinusoidally oscillated a rectangular box containing kaolin slurry. Such a

comparison could help fulfil Balmforth et al. ’s (2009) suggestion that such ex-

periments could be used as a kind of unconventional rheometer.

Another interesting extension of the Stokes problem for the power-law fluid

would be to examine the strongly shear-thinning (n → 0+) and strongly shear-

thickening (n → ∞) limits. In chapter 4 we obtained asymptotic results for

velocity and structure parameter in the limit n → ∞, and so it would be inter-

esting to consider this limit for the Stokes problem. Other authors, such as Yatim

et al. (2010) who considered slender rivulets of power-law fluids, have been able

to obtain asymptotic solutions in both the strongly shear-thinning (n → 0) and

strongly shear-thickening (n → ∞) limits.

Another possible extension would be to consider the Rayleigh problem, so-

metimes called Stokes’ first problem, for thixotropic and antithixotropic flu-

ids. The Rayleigh problem concerns the flow of semi-infinite fluid (occupying

y > 0) generated by the instantaneous tangential movement of the wall located

at y = 0 and has a well-known solution for a Newtonian fluid (see, e.g.,Drazin

and Riley 2006, §4.2). The Rayleigh problem has already been considered for a

power-law fluid by Pascal (1992).

The response of the fluid to stress-based, rather than velocity-based, forc-

ing at the wall would make an interesting study for both the power-law and

thixotropic and antithixotropic fluids. A further intriguing possibility, raised

by the complex time-dependence of the thixotropic and antithixotropic fluid re-

sponse, would be to investigate how effectively non-sinusoidal forcing might

drive net fluid transport, following the recent investigation of this question for

generalised Newtonian fluids (Hossain and Daidzic 2012).

The model we considered in chapters 3 and 4 was for purely thixotropic
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and antithixotropic fluids. As described in chapter 1, there are several other

more complicated types of thixotropic fluids. It would be of particular interest

to solve the Stokes problem for a viscoplastic thixotropic fluid, following the

experimental work of Balmforth et al. (2009). To do so we could employ a rel-

atively simple constitutive law such as that used by Coussot et al. (2002) and

Huynh et al. (2005), or the more complicated law proposed by Billingham and

Ferguson (1993), coupled to Mewis and Wagner’s (2009) general structure pa-

rameter model. This potentially very rich problem could give great insight into

the behaviour of viscoplastic thixotropic fluids.

5.2 Slowly-varying flow

In chapter 4 we considered the two-dimensional flow of a thixotropic or anti-

thixotropic fluid along a slowly-varying channel. Although previous studies

had considered similar geometries, ours appears to be the first systematic de-

velopment of a thin-film theory for a thixotropic or antithixotropic fluid.

Like the conventional lubrication approach for a Newtonian fluid, our ap-

proach was based on an asymptotic expansion in powers of the aspect ratio δ,

in the limit δ → 0. Under appropriate assumptions concerning the Reynolds

number and the dimensionless structure response rates, we obtained the gov-

erning equations for the velocity, pressure and structure parameter up to O(δ).

In contrast to the Newtonian case, the lubrication equations included terms at

O(δ), and it is at this order that thixotropic and antithixotropic effects occur.

To illustrate the effectiveness of this rather general approach, we obtained

explicit solutions for the velocity and structure parameter in the special case

d = 0, in which the fluid behaves, to leading order, like a power-law fluid.

Although these solutions are restricted in their validity by a singularity that
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develops at the centreline for thixotropic fluids, they present a physically rea-

sonable picture of the effects of thixotropy and antithixotropy. At the centreline,

the viscosity can either tend to zero (antithixotropic) or increase unboundedly

(thixotropic). As we have already discussed, it is physically unlikely for a fluid

to have zero viscosity, and so we would expect the viscosity to go to near zero.

More complicated models, e.g. the Carreau model 1.2.2, do exist and would

perhaps reveal more realistic behaviour. When less structured fluid is being ad-

vected from upstream, the velocity near the centre of the channel is increased

and the velocity near the walls is reduced; the net effect is to reduce the pressure

gradient required to drive the flow. The converse occurs when more structured

fluid is being advected from upstream.

5.2.1 Future work

The most obvious extension to the work in chapter 4 would be to consider non-

zero values of d. This would mean that the equilibrium behaviour of the fluid

was no longer a simple power-law rheology. It would be interesting to see if this

potentially richer problem had similarities to our work on the Stokes problem

for the same model described in chapter 3, i.e. distinct regimes of fast and slow

structural response.

The solutions obtained in chapter 4 have laid the foundations for investigat-

ing several further problems. We could return to some previously considered

problems, and obtain solutions using our systematic asymptotic approach. One

such problem worth attention is free-surface flow, as there are very few studies

of free-surface flows of thixotropic fluids (Huynh et al. 2005). In particular, we

could investigate the levelling of fluid under gravity, previously considered by

Livescu et al. (2011), and draining of fluid down an inclined plane, previously

considered by Coussot et al. (2002) and Liu and Zhu (2011), using our system-
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atic asymptotic approach. All these problems have well-known solutions for

Newtonian fluids, and tackling them for thixotropic and antithixotropic fluids

would be interesting extensions of these well-known solutions.

Another possible extension would be to consider other channel flow prob-

lems. These could include problems where one or more boundaries were mov-

ing, flow down an inclined channel or considering a three-dimensional channel

flow. Again all of these problems have well-known solutions for Newtonian

fluids and so it would be interesting to extend them to include thixotropic and

antithixotropic effects.

Despite the progress made in this thesis, evidentlymuch remains to be learn-

ed about the behaviour of thixotropic and antithixotropic fluids. We believe that

the work presented in this thesis is a useful contribution to this challenging and

practically important research area.
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