A MULTI-AGENT SYSTEM FOR AUTOMATED
POST-FAULT DISTURBANCE ANALYSIS

John A. Hossack

MEng

Submitted for the Degree
of

Doctor of Philosophy

Institute for Energy and Environment
Department of Electronic and Electrical Engineering
University of Strathclyde
Glasgow G1 1XW

UK

June 2005

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.51.
Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.

ii

Abstract

Within today’s privatised electricity industry, post-fault disturbance analysis is
becoming an increasingly challenging prospect for protection engineers. Not only
must they be proficient at operating a diverse range of data gathering tools but they
must also be able to spend the time necessary to interpret the large volumes of data
generated by modern network monitoring devices. Although a degree of automated
assistance is provided by existing intelligent decision support tools, it remains for the
protection engineer to manually collate and interpret the output of each system in

order to compile a comprehensive understanding of each disturbance.

As detailed in this thesis, the requirement for manual intervention has been
eliminated through the development of the Protection Engineering Diagnostic Agents
(PEDA) decision support architecture capable of automating all aspects of post-fault
disturbance analysis. An essential component within this architecture is an alarm
processor developed specifically to assist protection engineers with the early stages
of post-fault disturbance analysis. The novel reasoning methodology employed
emulates a protection engineer’s approach to alarm analysis, providing automatic

identification of transmission system disturbances and events.

PEDA achieves fully automated post-fault disturbance analysis through the novel use
of Multi-Agent Systems (MAS) to integrate the alarm processor with other
automated systems for fault record retrieval, fault record interpretation and protection
validation. As will be described in the thesis, achieving systems integration using
MAS provides for levels of architecture flexibility and extensibility not previously

realised within existing integrated decision support architectures.

The PEDA architecture was developed following a comprehensive eleven stage
methodology created as part of the reported research to assist with the specification
of MAS for decision support within the power industry. Each stage of the PEDA
specification process is detailed together with its implementation. Finally, the
implemented architecture has been shown to offer automated retrieval, interpretation,
collation and archiving of disturbance information within five minutes of a
disturbance occurring. The beneficiaries of this near real-time provision of

disturbance information need not be limited to protection engineers.

iii

Contents

CHAPTER 1:

L1
12
1.3
1.4

CHAPTER 2:

2.1
22
23
24
2.4.1
242
2421
2422
243
244
245
2.5
2.5.1
252
253
2.6
26.1
26.2
2621
2622
2,623
2624
263
2.7
2.8
29

CHAPTER 3:

3.1

INTRODUCTION 1
JUSTIFICATION FOR AND INTRODUCTION TO RESEARCHcceceeieerimenrrreniinrenearessennenns 2
THESIS OVERVIEW......cuieeceeteeiesrseeesasssseeresstessesssasesostasesssssssasassstssossaenssesaseeessssarsossanssss 9
ASSOCIATED PUBLICATIONS....cooveeiiirietrioreriierseeissstiesiesmisisiiieisinnssemsssseisesssesssssrseninanns 10
REFERENCES........ccittieeieitetteeteertesiasasserssssessssssnsensesssisessssmessssssssssnussncecsessronsasunssessssisns 12

FUNDAMENTALS OF PROTECTION AND POST-FAULT DISTURBANCE

ANALYSIS 13
CHAPTER OVERVIEWcccotueerementrnienseieseeseseesesintsansennssssssnsssssessssoseesesassesssssssssonsions 14
THE POWER SYSTEMcviriieetieiicictectreeeesssesressassesssessesnessnssessessessaseseestonsssnresessess 14
POWER SYSTEM FAULTS.......c.cciiitimrenencnirrsecrecreesesssssesinaesssnsssssesesesnssstessssesssassone 15
TRANSMISSION SYSTEM PROTECTIONc.coeuremeiucncrsesennenssennessnne s ssssesssssssesens 17
Protection Scheme COMPORENLSc..c.cocoeeeeeeneeeeeieseseeeees oo eeeeeeerevesrens 17
Categories of Protection Schemesooccvivimininnnnciiiiie e, 19
URIt PrOECHIONceviiiiciitiitite et s bttt et en e e e e
Non-unit protection
Delayed Auto Reclose (DAR)...........ccccccoviimininincieicniiiiice i, 22
A Typical Feeder Protection SCheme...................ccovvovorvimiiiiiniiniiiniicn, 23
Common Protection Problems...................ccoouvninecnniciiiiiiiniiinin, 24
TRANSMISSION SYSTEM MONITORINGcocorueierremrinmmernesestesnsnisiiceineeensinessieessnsesnnnens 27
Remote Terminal Units (RTUs) and SCADAcooocioninniiiniiinii, 27
Digital Fault Recorders (DFRS)cooeeienneccisimiiiic 27
Travelling Wave Fault Locators (TWFLS)..............ccveoiciniiinii e, 28
POST-FAULT DISTURBANCE ANALYSISooiveerierercssersmmsnessintmsnisesnissesnosessssessins 29
TePMRIOIOZYooovooeeeeeeeeeeeeeeeeeeeeeirsensss et bbb 30
Manual Post-Fault Disturbance Analysis...................coeoevveeeeieinnisvcnesiesseiessien, 30
Retrieve SCADAooveeeeeeeeee e eeeeessves s esseaeese s bbb s er s s b nsnsasane
Incident SCADA Interpretation Cycle
Identify and Retrieve Other Datacocoemeeermremnienimienssnsee e
Interpret Additional Data...................oooeeviiveeeie e e 34
The Data Overload Problem.......................coooccceciuiaimnninnninniniiic e, 35
CHAPTER SUMMARY.......cccuoiitirieetiireinnessessaessesersssossasstosssassessnssssessssnssassssencecnesnns 36
BIBLIOGRAPHYcoeereitiiireeeieniiireessseressserossrsssessssssosnamssatissmesssssisisesiassseeresnnmnesseassssses 36
REFERENCES......ccvttiiutiiceninneereiaresesssssrsrsssssssossassossssrsssstassssisststsssineessonianasssasesnsssssrnss 36

FUNDAMENTALS OF INTELLIGENT SYSTEMS AND THEIR
APPLICATION TO POST-FAULT DISTURBANCE ANALYSIS................. 38

CHAPTER OVERVIEWcociiuertenrerneireesreseeseesssiassssssassmsssorsstsosisntessestosssestaeesssssasnsnane 39

v

32
3.2.1
3211
3212
3.2.13
3214
322
33
3.3.1
332
3321
3322
333
334
34
3.5
3.6

CHAPTER 4:

4.1
42
4.3
4.3.1
432
4.4
4.4.1
44.1.1
4.4.12
44.13
44.1.4
442
4.5
4.5.1
452
4521
4522
4523
4524
4525
4526

INTELLIGENT SYSTEMS......coteitiirreniersrenssrersssesiosassmssssnstassssonsostsstansstsessnsssssssnsssessens 39
EXDEFE SYSIEMS ... oot sasr b as bbb es bbbt 40
Knowledge ENgINeering..........ccoveevueurmemiiincrinmammissae sttt sosnses

Knowledge Based Systemsccccccererinimnnsnnerenissescenenes

Case Based Systems

Model Based SYSIEMSccccevviveereiteriniiniirereeieresn et s 45
Hybrid Intelligent SYSIEmS.............c.coccociviiiiiniieieniesesernere s 46
DECISION SUPPORT SYSTEMS ...coccrerieiininniirinsemssssansessessesetsstessisne e sasesissssssessessesassses 48
AlGEM PPOCESSOES ...ttt 49
Fault Record Analysis ERGINes...............c..cooviviiininicieiiciininiiineces 52

Fault Record Retrievalcccoevvmeverenceininiinie ettt seenene 52

Fault Record ANALYSIS.........cooeevviriereeiiiieiciieerie e seereee et srt et eses e e e beemeenesaorens 53
Protection Validation TOOIKIEcccoeoveriviniciiiiiniiiiiiiiiceisieetessee e 55
Integrated Systems for DeciSion SUDPOFL..................ccooeenicercrinmneiirisesisesesees 57
REQUIRED ENHANCEMENTS TO DECISION SUPPORTccceeeveeveenteeieeesersessssesseesesosses 59
CHAPTER SUMMARY.......cccoiiiniitnrerenerseresesesitemssstssstetonssessessessesassenseesesesssasnsasesss 60
REFERENCES.....c.uttimeireeuresiersersresressnrsessssossnessesasssstossssssmsssssormesanansesssnesssesoseorsessesns 61

INTELLIGENT ALARM PROCESSING FOR POST-FAULT

DISTURBANCE ANALYSIS 63
CHAPTER OVERVIEWcuuvveteiieereineeeenesssisisstsessrmessessissssiatsstinimntie e saneasssntesssssnnnes 64
AUTOMATED SCADA INTERPRETATIONccoivrtrmrersssonnetniinsssintiiieiiietinsssisnsnenienins 64
POST-FAULT SCADA INTERPRETATIONc.viiiireriemisnstttennineiiiinitee s siacses 69
Manual SCADA Interpretation......................ccovvecinnmsiniinie 69
Protection Engineering Alarm Processing Requirements ... 72
KNOWLEDGE CAPTURE...........covevereceeetrncsansessesessisssssstsssstsossesseenssnsssssnassasssssssessasases 73
Domain Knowledge........................ccocoeooueveviviesreereiinieinisieeees s 73
Incident Start IdentifiCation............c..cvurviererrererremirmmiesssisss st 74
Incident Conclusion Identification...................cocceeniiienmrmeisrsisesieencnnne e 75
Low-Level Event Identification..............c..o.coevvvevisiimesensmmesseerestinii e senssssnissssas 77
High-Level Event Identification.c.cc.coeveueerrmimmrsinmienneiimiis et 77
TOPOIOEY ...ttt oe st r e bbbt nen e 79
TELEMETRY PROCESSORuvivtrtrareiriirieresesseeesesimsssessessessesasissstssses et st snasssasasses 81
Desigr CROICEScoceociriieiiiecirieriee ettt e 81
Reasoning Architecture.......................occeceeeecrvciiennsscemsssis e 85
Pre-processing
Stage 1 — Incident Start IdentifiCation............c.oorevnineiinnrsnn 87
Stage 2 — Incident Alarm GIOUPINGcouereurernnirersimiisinssss i 88
Stage 3 — Incident Conclusion Identificationccvevveimmicmnninmnicee 89
Stage 4 - Low-level Event Identification...............oovoeceminmeennininniies 89
Stage 5 - High-level Event Identification...........coeeeninennmiimmeneiscsniininca, 90

4.5.3
4.6
4.6.1
4.6.1.1
46.12
4.6.1.3
4.6.14
4.6.1.5
4.6.2
4.7
4.8

CHAPTER §:

5.1
52
53
5.3.1
5.32
5.33
3.3.4
5341
5.34.2
5.343
54

5.4.1
J5.4.2
543
5.44
54.5

5.5

5.6

5.7

5.8

CHAPTER 6:

6.1

6.2

6.3
6.3.1

Online IMPlementaionc..coooueeemeeneeierciiiiiineceecter e ere st ereeenas 90

TELEMETRY PROCESSOR CASE STUDY ...cccovvemirereisiensiessnsristestsecsssssssnssssssssssssesesiens 92

CASE STUAY ...t 93
POWer SYStem NEtWOIKcccocivviiiiirerictini e e 93
SCADA AJAINSovvverireriirenriercecsis sttt ss st vas s bbbt s b s ensa s en s s e n s 95
Domain Knowledgeccoevemeuminmernicsiiiieieseee ettt sressnens e snesas

Telemetry Processor Qutput

Telemetry ProcesSOr ICaSONINGoerreremnriesriiinssessess st sere st sasssssesssenes 99
Performance EVAIUGHION.cococuiemeeeereeeireeeeest ettt 103
CHAPTER SUMMARY..........ccoeriiteeeireieeesesrestessnssesssesessesesssesesstassonsassesnssssssnssssssensas 104
REFERENCES.......c.ueeittitiitetetestenesnsersssessesastesessastasassesesscassssosassessasassassessasessessonsssensas 105
MULTI-AGENT SYSTEMS 107
CHAPTER OVERVIEWciumiieimiineenniiesnseissnsssesssssssesecsmssessinsasssnssessesssenessssesanes 108
INTELLIGENT AGENTSvvveviteteneeieicciee et esesessasseessseseeeseeesesaseresssessseseseseseeeseees 108
MULTI-AGENT SYSTEMScvueuneuiirrerinsmnisersesnmanasrssesesscssssesiesesssssssesssssasssssssesessaees 110
Applications Suited to Multi-Agent Technologyc.coueevneeenneoonor. 111
MAS COnfiguration..................coueeeeornioinieccnn et e e 113
COOFAINALION. ...ttt e sttt 114
COMMURICALION.oeeveeerereeeiareeseerie et sttt en st 115

Agent Communication Language (ACL)..........cccoovieienneinni e, 115

OMEOIOZY ...ttt est et st e ese s basg et e s et s e b e e e s a s s bbb s e sasaatasanenenteontan 117

Message Content LANGUAGEcocveireiimiensee sttt 117
MAS POWER ENGINEERING APPLICATIONScoeoeveermerseinemortiruesierassnnaesassssssenens 118
ARCHON ...ttt ettt et 119
COMMAS.............cccoomreerieetiee et e 120
Power SyStem ReSIOPALIONcccooeerverenecessiinesiisisisioeeesnssiss s senns 121
SPID. ...t 121
Multi-Agent Negotiation Models..............................cccoueeeemmecmmoniscnsnsienissssiennnns 123
MAS AND HYBRID INTELLIGENT SYSTEMS...........coceeeeeeessecsersinessmsessenssnssssasessesenss 123
CHAPTER SUMMARYooimemriniiierisisisssessassassssssessesesmsearacesssnsmsesseessntasnssassassess 124
BIBLIOGRAPHY .ccovititanciininiitientseenstisenecessesesessassasssassesisssmisnssasssneesssssmacssrsassssseens 124
REFERENCES.....c.cotiitrmtenitiniisisisesesnanasasecessestasessstnssnssssssessmsacatissasssstnnnennrsasesssssssas 125

A METHODOLOGY FOR THE SPECIFICATION OF MAS FOR POWER

ENGINEERING DECISION SUPPORT 128
CHAPTER OVERVIEWooeeoiiieitieeecsssieeseresssmassssestssssnssnssssnsssssnsesisssmessasssnesesnsnes 129
POWER ENGINEERING DECISION SUPPORTc.vivuverreecesssnseissisnississesssicnnnensessssessessons 129
METHODOLOGIES FOR MAS SPECIFICATIONevvvreeresismesimnniiinniisinsiesneersnnesesssesens 130
MAS-CommonKADSooooioiieieieerieeereeeeses sttt 131

6.3.2
6.3.3
6.3.4
6.3.5
6.3.5.1
6.3.5.2
6.3.5.3
6.3.5.4
6.3.5.5
6.3.5.6
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.5
6.6

CHAPTER 7:

7.1

72

7.3
7.3.1
7.3.2

74

715

7.6
7.6.1
7.6.2
7.6.3
7.6.4

7.7

DESIRE.coooovouieeeeeeeeieeteeseests st asese e er s st s bt nas s 137
MASE ...t ee et ek s
DISCUSSTON.oooeeveeeieeieeeteeeeeaee st s et ettt st
ONEOIOZYcevevreveerieeiieeeaseees b ceesene st as s et eSSttt
Closed Architectures
Compliance with International Standards ..., 143
Legacy SYStEM REUSEcouiverereeeircimsisintetesas sttt et sttt in 143
Specification of Data and Information Exchange Mechanisms..............c..ocoooieniinins 144
Application within Online, Near Real time Environments...........ccccoiiiiiinniinienn 144
NEW METHODOLOGYoooreierrieirereeessuesreesiessesessssmsssnesssssssesssstessssessasssessessssassnssses 144
Methodology Overview...................cocverinveniciniie it 145
Stage I - Requirements and Knowledge Capturecc.ccocociiiiirnvinnnnnnn 146
Stage 2 - Task DeCOMPOSILION....................oooorrecioniniiniiiniiticcnesisen s eeieiseenieins 148
Stage 3 — Ontology Designcccooeiniencviniiiiiiiicisnise e 150
Stage 4 - Legacy System Reuse Potential................cccccccoccuvevumnenirrscererarineens 152
Stage 5 — Update Task Hierarchy....................ococvovecmecinienninsneeesseeeeerensereas 156
Stage 6 — Identify Required Agents.................cccccccovvemiiininiiiniininiiie s 156
Stage 7 — Data and Information Exchange Mechanisms 158
Stage 8 — Realising Agent Functionality................ccccooocoovivnniniiiiiincciencncnn, 159
Stage 9 - Agent Modellingccoovveiinniniiiniiiic s 161
Stage 10 - Agent Interactions Modellingc.ccoceeenniiiiniiiniinn 163
Stage 11 - Agent Behaviour FUNctionsccccoveiicinnninininnninencnns 165
CHAPTER SUMMARYcocttieuiierieetireenseriesssesessseisesessssssssartsassssansnansassnesnsstossassissasss 168
REFERENCES.........cconiuretrteuraceeeiatsessnenestaentieenssssens e sensas st st sesassstasss s ssnssisssassasssn 169
DESIGN OF A MAS FOR POST-FAULT DISTURBANCE ANALYSIS.....171
CHAPTER OVERVIEWcomiuriurenntsesnrasenssesssssessoncssammsssnsssassstasssintassssssesesssasseuses 172
INTRODUCTIONcuctiitiirtieininiseneereneeeere s sasesesrsessssasssssessessntntssesnsassesssssaenessasssases 172
REQUIREMENTS AND KNOWLEDGE CAPTUREoreecertersessersesssssonssesseasessiessnnionaons 174
Requirements CaPIUPec.c.ooouoeeererirrorensesissssesr st 174
Knowledge Capture................coocouomoonemeiiisesiesinssiss et 176
DISTURBANCE ANALYSIS TASK DECOMPOSITIONocenetestitsnsmenmanneennniiiiiseinnnnns 178
AN ONTOLOGY FOR POST-FAULT DISTURBANCE ANALYSIS wvceviiniiiniiiiinen, 181
POSSIBILITIES OF LEGACY SYSTEM REUSEcovuvinermmnmsestnstssnistsn 183
Telemetry Processor Decision Support SyStem..............coooeeeeeeiennnine. 184
Fault Record Retrieval Softwareooerinimeensiii, 184
Fault Record Interpretation Decision Support SyStemccoooiiinieicnnnn 184
Protection Validation Toolkit (PV TOOIKIl)...........ccccoovisnmnnininniiniiiiiine 185
TASK HIERARCHY UPDATE.......c.ccconiriiuiniiirinianissesessssmmsissssssssssstssssstsisntsnensssesssnans 185

vii

78
7.9
7.9.1
7.9.2
7.93
7.9.4
7.10
7.11
7.12
7.13
7.13.1
7.13.2
7.14
7.15

CHAPTER 8:

8.1
8.2
83
83.1
83.2
833
834
835
8.4
8.5
8.6
86.1
8.6.1.1
8.6.1.2
8.6.1.3
8.6.2
8.6.3
8.6.4
8.7
8.8
8.9

CHAPTER 9:

9.1

REQUIRED DISTURBANCE DIAGNOSIS AGENTS.......ocotmiriinnrinrnreniieeeeeenrecnvesnesenes 187

PEDA DATA AND INFORMATION EXCHANGE......cccevieiviiireniencieiinceceeene 191
IEI Data and Information EXChange.................cccovvicnincnnnniiniicicene 191
FRR Data and Information Exchangeccoovenneneiiinininniiiiinnees 192
FRI Data and Information EXcRangecc.ccocoennvencininicnniiniiieininneenns 193
PVD Data and Information Exchange.................c.coccoveiiiioininniniiniinns 195
DISTURBANCE ANALYSIS FUNCTIONALITY ...covuiiitiiinnirtrerienssssinntneeennninnenennennesesses 196
MODELLING OF PEDA AGENTSccooiiiiiiivimnrenesst it s 199
SPECIFICATION OF PEDA AGENT INTERACTIONScocovntinimiinniinnntenteniansiisnes 199
REQUIRED PEDA AGENT BEHAVIOURcccooniiuiimmernniotseesrscinet e cssssnssnaseeess 204
Message Handlersccoooooeevceieeiecieeirineeiiiiiie st 204
AGENE CONIFOL..................coooeeooeeeeiieeeeee et et tae st s seesnnen 209
CHAPTER SUMMARY........ooviuiiieeieitenieesteiesseseseesesesbessssssesssssssssssasessnsssensesnsessasssses 212
REFERENCES.......coutuitteiitititeaieteeeteteesessneseesessastesnesesessenssstsessaressssessssssessrersansassass 213
PEDA IMPLEMENTATION AND PERFORMANCE EVALUATION......... 215
CHAPTER OVERVIEWuioiiiitietceeceeiesietissesersensssessesensasesnsesessesseneesenaseeseaesesesseens 216
SELECTION OF AGENT BUILDING TOOLKIT ...c..covueereereeriacrenesseersserennesnnseasssessssesenees 216
SPECIFICATION IMPLEMENTATIONccciiiiiinitienierioneersrnsonssssrnnsesssnmsssssessssnesssesssasesns 217
Utility Agents Implement@tion.....................cccucunnveeincnisnnisicisisnie e sssssene 218
IEI Agent Implementation....................ccocovcnmiiiiiniiiniiiiniiiieene e 219
FRR Agent Implementation................c.ccccooccovmmicnncnciiiniiiiicciient e 220
FRI Agent IMplementation..................cc.cocccoremeieciecniiiineiemienie et 222
PVD Agent Implementation......................cocovmuveenimiiiiiiicieniiesiinci e 225
PEDA DEPLOYMENTcciottiiertietscvvessentereesseseesnrsssssessessossaesssnssessesssessanssossossonsases 227
PEDA USER INTERFACE........c.uoiovrerereencerecnerneseesessssessassenesssssssssnssbsmsnssessssssssssssssans 229
EVALUATION OF DISTURBANCE ANALYSIS CAPABILITY ..cccovevivimninieneniicnisnincsenes 233
CASESIUAY ...t es et 234

POWET SYSEIM NEIWOTKcovuriiiiiiicecicit et e 235

SCADA @IAIMNS ...ttt eess e ceemees ettt sansans 235

FAUIE TECOTAS ..ottt s 235
Agent Interactions and Reasoning......................c.ccowovimesmssssinniiie, 238
Disturbance Data and Information Generated...............cccovoovvevicisinninnniin. 245
Performance ASSESSMENLcoovenueeueoinimsmssesmsssasses i 250
DISCUSSIONcoiiiutiretirrireietterineresreesaressasessesssssnssssasssssesess st e tit ot ettt ceae e as 252
CHAPTER SUMMARY.uttiiiiierieieceeiirnressseesassssemstsessimssstsoss ottt ettt snie s 255
REFERENCES.....ccuttiiteesineeicreeesesseisseresssssaniossesssssnsnt sssetssasnsssst tiettmnnttiinetistesessneenons 255
CONCLUSIONS AND FUTURE WORK 256
CONCLUSIONScoovutvuveerrrrsnseensesssssssesssrsrsssssmssssesssnssesmssstassetsnsseanstssesssssuiiessonnnns 257

viii

9.2 FUTURE WORKcoeieieeiieeeeeeeitieeesssaesesenterserreststtessetseraersaeaeiserseseestnrsssssssssssnsssssnsasare 262

APPENDIX A: TELEMETRY PROCESSOR RULEBASE 264
APPENDIX B: PEDA USE CASES 278
APPENDIX C: PEDA ONTOLOGY 283
APPENDIX D: LEGACY SYSTEM ASSESSMENT TEMPLATES 288
APPENDIX E: AGENT MODELLING TEMPLATES 293
APPENDIX F: PEDA SEQUENCE DIAGRAMS 297
APPENDIX G: PEDA MESSAGE HANDLERS 316

APPENDIX H: PEDA AGENT CONTROL DIAGRAMS 336

ix

List of Figures

FIGURE 2-1 COMPONENTS OF A PROTECTION SCHEMEcccourriminstesieneenmtoriiseesnnesesesnesenessessersaserssses 17
FIGURE 2-2 CIRCULATING CURRENT UNIT PROTECTION.....c.covrmimruiriirnierisiisiisisissssessoseetesseseseseeaesensssens 19
FIGURE 2-3 OPERATING CHARACTERISTIC OF A DISTANCE PROTECTION RELAYcoecerueireirenreiraerenne 20
FIGURE 2-4 A DISTANCE PROTECTION RELAY’S ZONE SETTINGS........ccocenuiniiemiimiinee et eeeeevesaeseaneans 21
FIGURE 2-5 OVERLAP OF PROTECTION RELAY ZONESceutucereurucrmnmemimimennemssissssseecanentauesnsesssessesessssens 21
FIGURE 2-6 SINGLE LINE DIAGRAM REPRESENTATION OF A 400KV FEEDER CIRCUIT..........cccoeerermeereennns 23
FIGURE 2-7 EXAMPLE OF A 400KV FEEDER PROTECTION SCHEME — NO DAR.cccooormrnirnrrrrrreeenne 23
FIGURE 2-8 A FAULT RECORD GENERATED BY ADFRcooouiireriiirinninieeiseecnct et eenees 28
FIGURE 2-9 MANUAL POST-FAULT DISTURBANCE ANALYSIS ...ccccveiirmiinmiiminimisiniisessssssssnssssssensesses 31
FIGURE 3-1 ARCHITECTURE OF KNOWLEDGE BASED SYSTEMS.......cueriummuirnsininsininnniescesseeesessesssssssses 43
FIGURE 3-2 EXAMPLE OF MULTIPLIER-ADDER TEST SYSTEM ...cuconevereuseensiimnrssssscesenesssnssansssessassssssssns 45
FIGURE 3-3 APEX ARCHITECTURE.........co.uvvoeseeiseesnceeessasessssssesssessessesessssssssssssssseesssmsssnsessssssssessssnss 50
FIGURE 3-4 TYPICAL APEX RULE FOR PROTECTION ENGINEERSvceveerrssesssessrssssnnmmnemnsmsesesssessennsss 50
FIGURE 3-5 THE DIAGNOSTIC ENGINE DRAWS ON A LIBRARY OF PROTECTION MODELS.............ccooo.vve.. 55
FIGURE 3-6 PROTECTION VALIDATION REPORT FOR A DISTURBANCE.........ccceemvrsecersesssmsnrrranrsesassessonssees 56
FIGURE 3-7 DATA RETRIEVAL PROCESS WITHIN HYBRID SYSTEM DEVELOPED BY S. BELL..................... 58
FIGURE 4-1 MANUAL ALARM INTERPRETATION PROCESScoovesssssnesecsessesssesssesmamssessassnsisesnnees 70
FIGURE 4-2 ALARM FORMAT OF SCOTTISHPOWER POWERSYSTEMS SCADA SYSTEM..........c.ccrvurrrreunnne. 79
FIGURE 4-3 EXAMPLE ALARMS FOR 2-ENDED CIRCUITS, 3-ENDED CIRCUITS AND PLANTccccoererreren 79
FIGURE 4-4 TELEMETRY PROCESSOR REASONING ARCHITECTUREc..evevuesssssosiuncssessaessersssasessiensses 86
FIGURE 4-5 PERMUTATIONS FOR MATCHING ALARMS AGAINST AN INCIDENT STARTcveremrrerenens 88
FIGURE 4-6 TELEMETRY PROCESSOR INSTALLATION CONFIGURATION.......covromeeeeresemmmmmsmnesanssessesessnes 91
FIGURE 4-7 SCREENSHOT OF TELEMETRY PROCESSOR USER INTERFACEcovvevvessessesnansssssnnenssssssnnnnes 92
FIGURE 4-8 CASE STUDY: NETWORK DIAGRAMcu.ooooo. oo oo seess s seessessessssssssssssseseesssessereneasnee 94
FIGURE 4-9 CASE STUDY: SUBA4 / SUBB4 FEEDER PROTECTION SCHEME.envvenssoneannnssssessesesenns 95
FIGURE 4-10 CASE STUDY: SUBA4 / SUBC4 FEEDER PROTECTION SCHEME........r.cevtrnvanrranerennesnsrens 95
FIGURE 5-1 TAXONOMY OF AGENTS [1] cu.cuvvviveeeeeeerooeooeoes e vessssessesessasssssaesssesassssesssssossessssenensen 108
FIGURE 5-2 MODULARITY + DECENTRALISATION — CHANGEABILITY [3].cccucureriiirimnceesecrinnennnnnes 112
FIGURE 5-3 ILLUSTRATION OF FIPA ACL AND FIPA-SL FOR MESSAGE CONTENTccoerummrrernn..n 118
FIGURE 5-4 STRUCTURE OF ARCHON COMMUNITY AND ARCHON LAYER [29].......ccccovverimrnnnnnnnn.n. 120
FIGURE 5-5 THE CONCEPTUAL ARCHITECTURE OF SPID [34]......ccomvtreemrirseresmnnsiseienerenieeseessnnnsenans 122
FIGURE 6-1 MAS-COMMONKADS METHODOLOGYccvsveruecersereierenssensssssssessststssssssesestnsnsmssssssensas 132
FIGURE 6-2 USE CASE DIAGRAM FOR A TRAVELLER WISHING TO BOOK A FLIGHTcocooviniivirircnrans 133
FIGURE 6-3 MSC FOR TRAVELLER REQUESTING A FLIGHT.coccuvireremernmsstssssersenmismetsensnnnsnsssssesseaces 133
FIGURE 6-4 RELATIONSHIPS BETWEEN GAIA MODELSccueccerinesemssanssmessssseesssesnmssesunssaseasessanees 134
FIGURE 6-5 GAIA TEMPLATE FOR A ROLE SCHEMAoucuvemimiiisisnssinsissssssssesssesssinessens s isessssseenees 135
FIGURE 6-6 ARCHON TASK HIERARCHYcoovermenenemririoessisisssomsmssnmissssssossessssssssississassesessenssnens 137

FIGURE 6-7 DESIRE GENERIC COMPOSITIONAL MODEL FOR THE WEAK AGENT NOTIONc.ccceeenene 138

FIGURE 6-8 GENERIC TASK MODEL OF THE DIAGNOSIS TASKcovviieiiiitimimninnien e 139
FIGURE 6-9 MASE PHASES, STEPS AND MODELScorivietiiuinmmnessnsassssssismiessin st ssasssensnssesesins 141
FIGURE 6-10 METHODOLOGY FOR SPECIFYING DECISION SUPPORT MAS.ooviiiiiiiiniiiiiins 145
FIGURE 6-11 EXAMPLE USE CASE DIAGRAM FOR EMS SYSTEM....c.cociiiiinmninnieniiiinciccians 148
FIGURE 6-12 EXAMPLE TASK HIERARCHY — FIRST SUB-TASK LAYERcooeiiiniinmeniiniiinescnnees 149
FIGURE 6-13 PLANT CLASS HIERARCHYoociiuerieuercnmisiirissesessesassesess st ersanstat sttt et 151
FIGURE 6-14 TEMPLATE FOR RECORDING LEGACY SYSTEM FUNCTIONALITY c.covtimimmimiiiniiicicrinnens 153
FIGURE 6-15 LEGACY SYSTEM INTEGRATION ALTERNATIVES...c...iicoiiimimimnssssintinetnniniasssne e 154
FIGURE 6-16 AGENT MODELLING TEMPLATEc.ccrvocitntctiiiminntersinasssis st tet s e nessaase s 161
FIGURE 6-17 EXAMPLE SEQUENCE DIAGRAMceovcreemreiieniininireriss et sssistsstss sttt ssesnsasassssasasens 164
FIGURE 6-18 AGENT CONTROL DIAGRAMcvemurirenencrmeirersesesistessnisesesmtsisssisst s s s sessstonssen 167
FIGURE 7-1 MANUAL POST-FAULT DISTURBANCE ANALYSISc.ccostruniesenrnrssionsssssninnnnsinnrsasssssssissesns 172
FIGURE 7-2 FAULT RECORD RETRIEVAL SYSTEM USE CASE DIAGRAMc.covriminniriniiieiinnnseinnssasnnsene 177
FIGURE 7-3 PEDA TASK HIERARCHYcccieitiiiiitinrieneenieateaeeinssessesesssssessassss s s esssonsesssssesnsenssnsessanes 180

FIGURE 7-6 TASK HIERARCHY UPDATED WITH TASKS PERFORMED BY LEGACY SYSTEMS AND

EXCHANGED ONTOLOGICAL CLASSESceoceerreviiirisnsisiersssnssssssisssstissnsssnssssnassassssessssens 186
FIGURE 7-7 PEDA TASK HIERARCHY UPDATED WITH AGENT TASK ASSIGNMENTSoociviiinninnnnnes 190
FIGURE 7-8 PEDA SEQUENCE DIAGRAM: NAMESERVER REGISTRATION ...ooriiiiieriiniin it 200
FIGURE 7-9 PEDA SEQUENCE DIAGRAM: PROVIDING ABILITIES TO FACILITATOR.......ccccocveneiruisernnnn 201
FIGURE 7-10 PEDA SEQUENCE DIAGRAM: REQUEST RETRIEVAL OF FAULT RECORD(S)......ccrvucrusnecs 202
FIGURE 7-11 SEQUENCE DIAGRAM FOR INCIDENT SUBSCRIPTIONccocsvmineerseenrtseamnenmsnssniisnsnsssesens 205

FIGURE 7-12 PROACTIVE MESSAGE HANDLERS REQUIRED BY PVD ‘OBTAIN IDENTIFIED INCIDENTS’

TASK ottt serrere s e eesaeeessase s s e e s aesassssesaeesaaseara e Te e 4 TO RS S E TR LTSSttt s e e s 207
FIGURE 7-13 REACTIVE MESSAGE HANDLER REQUIRED BY IEI ‘PROVIDE INCIDENTS’ TASK............... 208
FIGURE 7-14 PVD AGENT CONTROL DIAGRAMccccoiuuinneeiiaaeessesssassersessssssssmassnssssssnssestretiasssnnennes 210
FIGURE 8-1 IEI AGENT ARCHITECTURE.......ccueoiistirireeetesereseseaesseresiasssssessssosss st sesstomnnssessontannanseusincs 220
FIGURE 8-2 FRR AGENT ARCHITECTUREccotvtiieteieririaseransiessesssssarsssnsasstssssstot it s ssssttas st stnasannas 222
FIGURE 8-3 FRI AGENT ARCHITECTUREcovruiuiiemrenietirtneasiseseessionsntestossmsssstas stsisssiestssstes st 224
FIGURE 8-4 ILLUSTRATION OF THE ARRAY USED TO HOLD THE VALIDATION SCHEDULE...................... 226
FIGURE 8-5 PVD AGENT ARCHITECTUREc.uciiiieueeceniremeesinesssisssesssssss st s o sttt s 227
FIGURE 8-6 DEPLOYMENT OF PEDA AGENTS.......ccccctiitiitiiieininsseonenssranssssanssssssstesstinitte it cititn 228
FIGURE 8-7 USER INTERFACE DEVELOPED TO EVALUATE PEDAccocniennsinininen 231
FIGURE 8-8 PEDA CASE STUDY: NETWORK DIAGRAMcoiiiiimmismarssssmsmisitssniiisitis s 234
FIGURE 8-9 FAULT RECORD — SUBSTATION_A RECORDER 1oooviiiieiicrimiiccinsiniiciinnna, 236
FIGURE 8-10 FAULT RECORD — SUBSTATION B RECORDER 1ccocoviimminrcninnciniiinicisiinnann, 236

FIGURE 8-11 FAULT RECORD — SUBSTATION_A RECORDER 2......coooiiiniiiiiiiriiterceee 237

FIGURE 8-12 FAULT RECORD — SUBSTATION C RECORDER 1cccoovoiiiiiiiieene 237
FIGURE 8-13 TASKS PERFORMED BY EACH PEDA AGENT DURING THE CASE STUDYcccvvviieiinnnnne 238
FIGURE 8-14 INCIDENT FACT FOR DISTURBANCE ON SUBA4 / SUBB CIRCUITcooeurriirerienrernans 241

FIGURE 8-15 FIPA INFORM MESSAGE SENT BY IEI INFORMING FRR OF THE INCIDENT ON SUBA4 /

SUBB CIRCUITo.ouviteeeerenctiereceisssssessressesessesescssssmsissesssesssssssssassssasasssssssssssesessssasssensns 241
FIGURE 8-16 POST-FAULT DISTURBANCE REPORT FOR FIRST DISTURBANCE AT 14:20:38:97 246
FIGURE 8-17 POST-FAULT DISTURBANCE REPORT FOR SECOND DISTURBANCE AT 14:20:39:07 247
FIGURE 8-18 FIPA PERSONAL ASSISTANT MODEL 8]ccooviiimiirinnceiiiiccceccnencis 254

xii

List of Tables

TABLE 2-1 COMMON PROBLEMS WITH A PROTECTION SCHEMEcccoviiesesminiiiiisinicsnninesncnssaesesissesens 25
TABLE 4-1 PRACTICAL PROBLEMS AND THEIR IMPACT ON ALARM PROCESSING.ccocuiiimiiiiniciiiininins 66
TABLE 4-2 TELEMETRY PROCESSOR CASE STUDY: SCADA ALARMS....cciiiiiimiiiinniiiiineiienns 96
TABLE 4-3 TELEMETRY PROCESSOR CASE STUDY: INCIDENT A ...cioiiiiiiiiinne 97
TABLE 4-4 TELEMETRY PROCESSOR CASE STUDY: INCIDENT B.....ocoiiiiiiiiiiiieienes 98
TABLE 5-1 EXAMPLE FIPA PERFORMATIVES [20]eoomoiieiiieirenciiiiiinneen et 116
TABLE 5-2 FIPA-SL PARAMETERS AS DEFINED IN {21]ocoiviiiirenniieiinninnensinnee st eese 116
TABLE 7-1 PEDA AGENT ROLEScovtriiintieerenieciic it srissssmns e sstsas st et et s s st sa s 189
TABLE 7-2 PRIMARY DECISION SUPPORT TASKS WITHIN PEDA AGENTS ...cccvviniieccninnrenienninensisnnn: 197
TABLE 7-3 CHOSEN SECONDARY DECISION SUPPORT TASKS REALISATION METHODSc...ccocceisinnenne 198

xiii

Acknowledgements

[would like to take this opportunity to express my heart felt thanks to the people
who have helped and supported me during my research and, believe me, there have

been too many to mention!

I would like to start by thanking Professor Jim McDonald, for offering me the
opportunity to work in a dynamic, challenging and industrially relevant research
environment. It was only through his support and business acumen that I could

combine my career ambitions with my goal to see the world!

Special thanks must go to Dr Stephen McArthur for his never ending support,
encouragement and, often unnerving, but understandable, excitement for the research
field of intelligent agents. Thanks also to Graeme Burt, Ian Elders, Euan Davidson,
Eleni Mangina and Gordon Jahn for not only providing expertise in intelligent
systems and intelligent agents but also assistance with the sofiware development

essential to this research.

Formal thanks must go to SP PowerSystems for providing financial support during
my research years. Special thanks to Tom Cumming, Jim Farrel and John Stokoe for
providing data, protection expertise and a challenging environment in which to apply

the research. Their enthusiasm and interest in the research was appreciated.

Special thanks to my friends who helped and supported me, especially when I
thought things were not going as well as they should. Thanks for putting up with my
absence from many social gatherings during my write up’ period. I will now have no

excuse to avoid the fun, but often wild, social occasions!

Last, but by no means least, thanks to my parents, brothers and all of my family for
their support and encouragement over the past years. Together with my friends, they
have ensured that I can at least finish this chapter of my life with a degree of sanity

left.

Xiv

Glossary of Terms

ACL

Al

ANN

APEX
ARCHON
CBR
COMMAS
COMTRADE
DAR

DAI

DESIRE

DFR
DPM
DSS
EMS
FIPA
IS

JESS

KIF
KQML
MAS

MaSE

Agent Communication Language
Artificial Intelligence
Artificial Neural Network

Alarm Processing EXpert System

ARchitecture for Cooperative Heterogeneous ON-line systems

Case Based Reasoning

COndition Monitoring Multi Agent System
COMmon format for TR Ansient Data Exchange
Delayed Auto-Reclose

Distributed Artificial Intelligence

DEsign and Specification of Interacting

components

Digital Fault Recorder

Dynamic Protection Models

Decision Support System

Energy Management System

Foundation for Intelligent Physical Agents
Intelligent System

Java Expert System Shell

Knowledge Based System

Knowledge Interchange Format
Knowledge Query and Manipulation Language
Multi-Agent System

Multiagent Systems Engineering methodology

XV

REasoning

MBD
PEDA
RTU
SCADA
SL
SPID
TWFL
UML

VHF

Model Based Diagnosis

Protection Engineering Diagnostic Agents
Remote Terminal Unit

Supervisory Control and Data Acquisition
Syntactic Language

Strategic Power Infrastructure Defence
Travelling Wave Fault Locator

Unified Modelling Language

Very High Frequency

Xvi

Chapter 1: Introduction

1.1 Justification for and Introduction to Research

Since the privatisation of the UK electricity industry, the utility companies
responsible for operating the electricity infrastructure have focussed on maximising
the return on assets inherited from their publicly owned predecessors. This has led to
components of the distribution and transmission networks, such as transformers and

transmission lines, being operated at or close to their stability and/or thermal limits.

Given this operating regime, the correct detection and removal of faulty power
system plant by protection is paramount if the extent to which a fault affects the
network is to be minimised. The impact of incorrect protection operation, whether
attributed to incorrect specification, commissioning or maintenance of protection
schemes, can be severe. The south London blackout in 2003 is just one of many
where human error resulted in the incorrect commissioning of a protection relay and

the unnecessary disconnection of a large network area [1].

Unfortunately, as reported in [2], there is an increased likelihood of such severe
network disturbances due to the industry wide shortage of qualified and experienced

protection engineers available to specify and commission protection schemes.

To ensure the correct operation of protection schemes, a utility’s protection engineers
must conduct a post-fault disturbance analysis to validate that the protection operated
correctly and identify any anomalous behaviour. To facilitate this protection
engineers have at their disposal a range of network monitoring devices. Using the
data provided by these devices, the protection engineer can determine the state of the

network prior, during, and post fault and the timing of protection operations.

The primary data types available to protection engineers are alarms generated by the
Supervisory Control And Data Acquisition (SCADA) system and fault records. The
SCADA alarms are time-stamped messages providing data relating to changes in
plant status, protection operations and other pertinent network events. Fault records
are generated by Digital Fault Recorders (DFRs), which are placed within
substations at each circuit end and monitor and record circuit voltages, currents and

protection scheme timing sequences during a disturbance.

Post-fault disturbance analysis is a manual process, which not only relies on the
availability of disturbance data but also on the knowledge and experience of the
protection engineer conducting the analysis. Protection engineers at ScottishPower

PowerSystems traditionally follow a multi-stage approach to manual analysis:

Stage 1. The engineer retrieves from a SCADA database the alarms generated

around the time of the disturbance.

Stage 2. The retrieved alarms are interpreted to identify when protection

detected a fault and to group disturbance related alarms.

Stage 3. The grouped disturbance alarms are further interpreted to identify the

key events in the protection operating sequence.

Stage 4. Other data sources such as DFRs, which may have recorded additional

disturbance data, are identified and data retrieval initiated.
Stage 5. The additional data is interpreted to gain more information.

Having retrieved, interpreted and collated all disturbance data the protection engineer
has gathered sufficient information to decide whether the protection operated
correctly. Information on the faulted plant, protection that operated, the protection

operating times and the fault types are the most common pieces of information.

Unfortunately, this manual approach to disturbance analysis suffers from a number

of problems putting additional strain on the small pool of protection engineers:

* Data overload is a major difficulty, particularly following significant network
disturbances such as those caused by storms [3]. This was illustrated in 1998,
when an experienced ScottishPower protection engineer took over 3 weeks to

manually interpret 15000 alarms and 150 fault records following a storm.

* To retrieve data, the protection engineer must be able to operate a diverse
range of proprietary data gathering software tools. This problem is being

exacerbated by the introduction of new technologies and software tools.

» The retrieved data is presented in different formats, requiring application of

different interpretation techniques and reasoning knowledge.

= Only through time-consuming data interpretation can the engineer decide

what data is of interest and should be collated.

It was clear that the protection engineers would benefit from the introduction of
decision support and automation into the post-fault disturbance analysis process. This
was addressed through an integrated decision support architecture developed by

researchers at the Institute for Energy and Environment [4].

Up until the development of the integrated system, decision support had traditionally
been provided by a suite of standalone intelligent systems adapted from existing
control room applications, also known as Decision Support Systems (DSS). Two
rule-based DSS were available to the protection engineers, both performing online
SCADA alarm interpretation: an alarm processor [5] providing concise summaries of
protection events and a fault diagnosis system providing diagnoses on the possible
root causes of fault. An additional model-based DSS was also available, which had
been developed with protection engineers in mind and was capable of validating the

operation of protection schemes and diagnosing protection failures [6].

The new integrated decision support architecture enhanced the provision of decision
support through the integration of these existing DSS with improved data retrieval
functions. Integration ensured the individual decision support capabilities of each
system could be maintained and that the disturbance information they generated

could be used to prioritise fault record retrieval and automate protection validation.

However, experience with the architecture during its operational period had raised
questions as to the viability of not only the DSS used within the architecture but also
the approach taken to systems integration. A number of issues had been identified

which together led to the eventual removal of the architecture from service:

¢ Both the alarm processing and fault diagnosis expert systems had originally been
developed for control room applications with their knowledge bases having been
adapted to generate events and diagnoses of interest to the protection engineer.
However, neither system was capable of generating information in a format

which was immediately amenable to the protection engineer.

The hardware platforms for both the alarm processor and fault diagnosis expert
system were obsolete and proved difficult to maintain. Furthermore, each system
used an operating system with which the protection engineers were not adept,

hindering their ability to query the systems for decision support information.

Due to the non-standard protocols and communications languages employed by
the alarm processor and fault diagnosis expert systems, interfacing with the
corporate IT network to retrieve and exchange data proved difficult, on many

occasions resulting in the loss of data and system crashes.

The next generation of DFRs had been installed on the network and new software
systems introduced to manage the retrieval of fault records from the new devices.
This new fault record retrieval software introduced communications protocols
and data formats which the existing architecture had not been designed to
accommodate. In order to prioritise retrieval of fault records from these devices,

the existing architecture would require some invasive software modifications.

Upon the removal of the decision support architecture, protection engineers had to

yet again resort to manual post-fault disturbance analysis. Nevertheless, operational

experience with the architecture had demonstrated the potential of integrated systems

for improving the provision of decision support and the protection engineers were

keen to see the introduction of an improved decision support architecture.

The operational experience with the previous integrated architecture highlighted

three challenges which had to be met if the decision support achievements realised

by the previous system were to be exceeded and the ultimate goal of fully automated

post-fault disturbance analysis realised:

Tailoring of alarm processing to better meet the needs of protection engineers

Protection engineers will only truly embrace new decision support systems if they
provide disturbance information which is both pertinent and in a format requiring
minimal additional analysis effort to be of use during disturbance analysis.
Existing approaches to alarm processing within control room environments must
therefore be tailored, and a new alarm processor developed, to emulate the post-

fault SCADA interpretation reasoning followed by protection engineers.

Increasing the degree of autonomy exhibited by decision support tools

Significant time-savings would be obtained if decision support tools could be
completely autonomous, being capable not only of managing their own tasks but
also actively participating in the prioritised retrieval and collation of disturbance
related data. The requirement for manual intervention in the data retrieval process
would be minimised and all pertinent disturbance data and information would be

available prior to the protection engineer commencing analysis.

Encapsulation of data collation knowledge and introduction of a reasoning
capability would be essential if systems are to be autonomous and participate in

the proactive dissemination of disturbance data and information to other systems.

Achieving flexibility and scalability in an integrated architecture

Integrated decision support architectures must be scalable and flexible to adapt to
the introduction of new technologies and decision support tools. Architectures
which prohibit the easy integration of new systems will be unable to maintain
comprehensive levels of decision support leading to their eventual obsolescence.
Furthermore, the architecture must be dynamic and sufficiently flexible to cope
with temporary loss of communications between system components and

adjustments to the configuration and network locations of each system.

The research reported in this thesis, by way of introduction, embraces these

challenges through the development of a novel integrated architecture automating

post-fault disturbance analysis through the integration and automation of individual

software components. An essential component within this architecture is an alarm

processor developed specifically to assist protection engineers with the early stages

of post-fault disturbance analysis.

At the outset of the reported research, protection engineers had to conduct manual

post-fault SCADA interpretation due to the existing alarm processor having been
removed from service. The provision of an alarm processor capable of grouping

disturbance alarms and events and emulating their approach to disturbance analysis

would clearly be beneficial.

One possible approach was to port the existing alarm processor onto another
platform and adapt it to provide the required functionality. However, assessment of
the alarm processor’s internal reasoning architecture indicated that it was not suitable
for disturbance alarm and event grouping with a software rewrite being required to
adapt the architecture. It was concluded that this provided a sufficient incentive to
develop a new alarm processor specifically for post-fault SCADA interpretation. The

development of this alarm processor will be reported upon in chapter four.

The next stage in the reported research focussed on identifying a suitable technology
for automating decision support tools and implementing a flexible and scalable
decision support architecture. Multi-Agent Systems (MAS) [7] were identified as the
ideal technology as it offered features which facilitated the easy integration of

existing systems, such as the new alarm processor, with other decision support tools.

It will be demonstrated throughout this thesis that systems integration can be
achieved within MAS through the wrapping of each system as an ‘intelligent agent’.
The agent wrapper provides a reasoning capability enabling the system to react to its
environment and automate its internal functions and reasoning. Furthermore, the
MAS provides a standardised communications mechanism and common
communications vocabulary (an ‘ontology’ in agent terms) facilitating the social
interaction of the integrated systems using the agent wrappers. Finally, the provision
of utility agents [8] such as nameservers and facilitators provide the information
discovery functions necessary for flexibility and scalability. Chapter five provides a

comprehensive review of MAS and their application within the power industry.

Prior to the research reported in this thesis, MAS had not been identified as a
possible mechanism for realising integrated decision support systems within the
power industry and, consequently, no methodology or formal process for achieving
systems integration existed. A number of methodologies were available to assist with
the specification, design and development of MAS in general. However, evaluation
of these methodologies indicated that none were suitable for encapsulating the
characteristics of decision support. A key outcome of the reported research work was
the creation of a new methodology developed specifically for the specification of

MAS for decision support within the power industry.

With the creation of the methodology, the specification and implementation of a
MAS for automating post-fault disturbance analysis could commence. As will be
detailed in this thesis, an eleven stage specification process resulted in the
specification and eventual implementation of the Protection Engineering Diagnostic
Agents (PEDA) MAS.

PEDA achieves automated disturbance analysis through the use of four core
functional agents: an Incident and Event Identification (IEI) agent, a Fault Record
Retrieval (FRR) agent, a Fault Record Interpretation (FRI) agent and a Protection
Validation and Diagnosis (PVD) agent. The disturbance analysis functionality within
each agent is realised through reuse of existing systems, such as the new alarm
processor, and development of new software. Flexibility and scalability in the
architecture is achieved through the design of a disturbance analysis ontology and
use of an industry standard communications protocol. Chapter eight of this thesis will
assess the disturbance analysis capabilities of this architecture using case studies

derived from actual power system disturbances.

In summary, the research reported in this thesis proposes a novel application of
agent-based systems and discusses the issues associated with their development
within the post-fault disturbance analysis arena. In particular, it is argued that multi-
agent technologies provide a means of not only optimising the provision of decision
support to protection engineers in the short-term but also in the longer term due to

the open architecture offered by modern MAS.
In terms of novelty of the research undertaken, five contributions can be identified:

e The design, development and implementation of an intelligent system focussed

on assisting protection engineers with post-fault SCADA interpretation.

e The creation of a methodology for the specification of MAS for decision support

within the power industry using multi-agent technology.

o The design of a multi-agent architecture for providing post-fault disturbance
analysis decision support assistance to protection engineers through integration

and automation of existing software systems.

e The implementation of a multi-agent architecture for automating post-fault
disturbance analysis using hybrid-data interpretation techniques across a number

of intelligent agents.

e Demonstration of the benefits adopting a multi-agent approach can bring to the
integration of decision support systems through the evaluation of a multi-agent

architecture using power system data generated from actual disturbances.

1.2 Thesis Overview

The remainder of this thesis has been divided into eight principal chapters:

Chapter two introduces the application domain in which the research described in
this thesis has been applied. The basic concepts of the electrical power transmission
system, its protection and monitoring are described. In the latter sections of the
chapter, the post-fault disturbance analysis process commonly followed by protection

engineers will be described.

Chapter three introduces intelligent systems discussing the fundamental technologies
relevant to the research described later in this thesis. The knowledge engineering
process required to capture the knowledge implemented within an intelligent system
is also presented. The chapter concludes with an overview of the intelligent systems
and decision support tools available to protection engineers during post-fault

disturbance analysis.

Chapter four presents an intelligent system developed to automate the SCADA alarm
interpretation task conducted during the early stages of disturbance diagnosis. A brief
overview of alarm processing research to date is presented followed by the protection
engineers’ alarm processing requirements. How these requirements are met, and the
alarm interpretation process emulated by a novel reasoning architecture is then
described. The application of this architecture within the intelligent system and its
online performance in an industrial setting is then assessed using a case study based

on actual power system data.

Chapter five describes the research area of MAS, introducing intelligent agents and
outlining the issues related to agents’ communications, ontologies and knowledge

representation. The application of MAS within the power industry is also described.

Chapter six introduces a methodology developed to assist with the specification of
MAS for decision support within the power industry. The characteristics of power
engineering systems, which distinguish them from the more common applications of
MAS, are described and used to critically assess the suitability of existing MAS
design methodologies for implementing hybrid systems as MAS within the power

industry. Each stage of the methodology is described in detail.

Chapter seven details the application of the methodology for the specification of the
Protection Engineering Diagnostic Agents (PEDA) MAS for automating post-fault
disturbance analysis. Each stage of the specification process and the design choices
made are described in detail. The inter-agent communications essential to achieving

automated analysis are modelled in addition to agent behaviour.

Chapter eight describes the implementation of the PEDA specification and the
deployment of the PEDA agents. The performance of PEDA is then assessed using a
case study based on actual power system data identifying the benefits offered by the

multi-agent approach to post-fault disturbance analysis.

Finally, chapter nine summarises the principal conclusions of the work carried out,
highlighting the main achievements, and proposes further research and development

work to build on the results to date.

1.3 Associated Publications

The following publications have arisen from the research detailed in this thesis:

e S.D.J. McArthur, E. Davidson, J.A. Hossack, J.R. McDonald, “Automating
Power System Fault Diagnosis Through Multi-Agent System Technology”,
(Invited Paper) Hawaii International Conference on System Sciences (HICSS),

Hawaii, USA, January 5-8, 2004.

10

S.D.J. McArthur, J.R. McDonald, J.A. Hossack, “A Multi-Agent Approach to
Power System Disturbance Diagnosis”, (Invited Book Chapter) Autonomous
Systems and Intelligent Agents in Power System Control and Operation,
Christian Rehantz (Editor), Springer-Verlag, 2003.

J.A. Hossack, S.D.J. McArthur, J.R. McDonald, “Integrating Intelligent
Protection Analysis Tools Using Multi-Agent Technologies”, ISAP 2003,

Lemnos, Greece, September 2003.

J.A. Hossack, J. Menal, S.D.J. McArthur, J.R. McDonald, “A Multi-Agent
Architecture for Protection Engineering Diagnostic Assistance”, IEEE

Transactions on Power Systems, v18, n2, May 2003.

S.D.J. McArthur, J.A. Hossack, G. Jahn, “Multi-Agent Systems for Diagnostic
and Condition Monitoring Applications”, (Invited Panel Session Paper) IEEE
Power Engineering Society General Meeting, 2003, Toronto, Canada, July 2003.

J.A. Hossack, J. Menal, S.D.J. McArthur, J.R. McDonald, “A Multi-Agent
Architecture for Protection Engineering Diagnostic Assistance”, (Poster Session)
IEEE Power Engineering Society General Meeting, 2003, Toronto, Canada, July
2003.

J.A. Hossack, E. Davidson, S.D.J. McArthur, J.R. McDonald, “A Multi-Agent
Intelligent Interpretation System for Power System Disturbance Diagnosis”,
Expert Systems 2002 Conference (ES2002), Cambridge, UK, December 2002.

J.A. Hossack, S.D.J. McArthur, J.R. McDonald, J. Stokoe, T. Cumming, “A
Multi-Agent Approach to Power System Disturbance Diagnosis”, IEE Power
System Management and Control (PSMC) Conference, London, UK, April 2002.

J.A. Hossack, G.M. Burt, J.R. McDonald, T. Cumming, J. Stokoe, “Progressive
power system data interpretation and information dissemination”, Proceedings of
the IEEE Power Engineering Society Transmission and Distribution Conference,
Atlanta, GA, US, v 2, pp 907-912, October 2001.

J.A. Hossack, S.D.J. McArthur, G.M. Burt, J.R. McDonald, T. Cumming, J.
Stokoe, “An Integrated Approach to Telemetry Processing for Alarm

11

Management and Diagnosis”, 35" Universities Power Engineering Conference

(UPEC), Belfast, UK, September 2000.
Other publications on related topics are:

o I Elders, J.A. Hossack, A. Moyes, G.M. Burt, J.R. McDonald, “The Use of
Internet Technologies to Enable Flexible Alarm Processing”, IEE Power System
Management and Control (PSMC) Conference, London, UK, April 2002.

1.4 References

[1]. “Tracing the London Blackout”, The IEE Power Engineer, October/November
2003, pp 8-9.
[2]. W. Laycock, “Protection Engineer Shortage”, IEE Power Engineer,

February/March, 2004, p47.

[31. L.E. Smith (Chairman), “Analysis of Substation Data”, Report from IEEE/PSRC
Working Group 19, 2002.

[4]. S.D.J. McArthur, S.C. Bell, J.R. McDonald, et al, “The Development of an
Advanced Suite of Data Interpretation Facilities for the Analysis of Power System
Disturbances”, CIGRE 1998, Paris, France, August 1998.

[5]. S.D.J. McArthur, J.R. McDonald, S.C. Bell, G.M. Burt, “An Expert System for
On-line Analysis of Power System Protection Performance”, in Proc. 1994 Expert
Systems conference: Applications and Innovations in Expert Systems, Dec 1994,

pp 125-142.

[6]. S.C. Bell, S.D.J. McArthur, J.R. McDonald, G.M. Burt, et. al., “Model Based
Analysis of Protection System Performance”, IEE Proc. Gen. Trans. & Dist., vol.

145, n 3, pp 547-552, 1998.

[7]. M. Wooldridge, et al, “Intelligent Agents: Theory and Practice”, The Knowledge
Engineering Review, vol. 10, n 2, pp. 115-152, 1995.

[8]. H.S. Nwana, D.T. Ndumu, L.C. Lee, J.C. Collis, “ZEUS: A Toolkit for Building
Distributed Multi-Agent Systems”, Applied Al Journal, v13 nl, 1999,

12

Chapter 2: Fundamentals of Protection and

Post-Fault Disturbance Analysis

13

2.1 Chapter Overview

The following chapter begins with an overview of the power system, relevant to the
research described later in this thesis. A detailed, but not exhaustive, review of
transmission protection schemes is then presented describing the components, some
of the most popular configurations and common problems experienced with the
schemes. A description of the monitoring technologies commonly found on a

transmission system follows.

In the latter sections of the chapter, the post-fault disturbance analysis process
commonly followed by protection engineers will be described. The terminology used
during disturbance analysis, and throughout the remainder of this thesis, will be
defined. This will be followed by a description of the manual data retrieval and

interpretation tasks required for post-fault disturbance analysis.

2.2 The Power System

The primary purpose of a power network is to transmit electrical energy from where

it is generated to where it is consumed. This is achieved in three stages:

* Generation: Generation is the process of creating electrical energy from its raw
form, which in the UK is typically coal, gas, hydro, nuclear and wind. For
reasons of practicality and cost, generation facilities are usually located close to
their source of energy, which is often remote from load centres. The voltage level

used to generate electricity varies, but is typically between 11 and 23.5kV.

* Transmission: The transmission network provides for the bulk transport of
electricity from the generation sites to the distribution network. To minimise
electrical losses, as high a voltage as possible is used for transmission, the voltage
being stepped up at generating stations and reduced again as the electricity passes
into the distribution network. In the UK, the principal transmission voltages are
400kV and 275kV with the 132kV network only being regarded as part of the

transmission system in Scotland. For economic reasons the majority of the

14

transmission network consists of overhead lines, making the network particularly

susceptible to natural elements such as wind and lightning,.

= Distribution: From the transmission system connection points, electrical energy
is conveyed to the customers via the cables and overhead lines which form the
distribution network. The voltage levels are dependent on the size of the load.
Large industrial customers are supplied at either 33kV or 11kV, office buildings
at 415V and domestic customers at 230V.

2.3 Power System Faults

A fault on the power system can be defined as “any abnormal condition which causes
a significant reduction in the basic insulation strength between conductors, or
between phase conductors and earth or any ecarthed screens surrounding the
conductors” [1]. In practice, a reduction is not regarded as a fault until it is detectable
— that is, until it results either in an excess current or in a reduction of the impedance
between conductors, or between conductors and earth, to a value below that of the

lowest load impedance normal to the circuit.

The three phase overhead line and underground cable circuits, which form the
majority of a transmission and distribution network, can be subject to many types of

faults. The principal types of fault are:
e three-phase (with and without earth connections), e.g. Red-Yellow-Blue.
® phase-to-phase (two-phase), e.g. Red-Yellow.
e phase-to-earth (single-phase), e.g. Blue-Earth
¢ double phase-to-earth (phase-phase-earth), e.g. Red-Blue-Earth
Protection engineers further classify faults based on their permanence as follows:

e Permanent: A fault where permanent damage has been done to the insulation or

conductors and quick restoration of the circuit is not possible.

15

Transient: A fault where insulation has broken down temporarily without any
permanent damage to the insulating medium and the circuit can be quickly

restored by automatic switching and reclosing facilities.

Persistent: A recurring transient fault, with sufficient delay between recurrences
for automatic switching and reclosing schemes to reenergise the circuit before

recurrence of the fault.

Due to the differences in construction, materials and exposure to environmental

factors, overhead line and underground cables are prone to different kinds of faults:

Overhead Lines:

Approximately 80% of all system faults occur on overhead line circuits and
virtually all are due to environmental causes such as lightning, snow, ice, fog,
pollution and high winds. Contact by trees, cranes, aircraft and various other

objects is another major cause of faults.

An important feature of overhead line faults is that since air is the main insulating
medium a significant majority of flashovers are transient and cause no permanent
damage to the circuits. In such cases, 80% of fault clearances can be quickly
followed by the circuit’s return to service by operation of automatic switching
and reclosing facilities. Only about 1% of overhead line faults are due to

equipment failure.

Lightning is a major cause of overhead line faults. A severe direct lightning strike
to a transmission tower may raise the tower potential sufficiently to cause
insulator flashover of phases of both circuits of a double circuit line resulting in a

simultaneous double circuit fault and the tripping of both circuits.

Underground Cables:

Faults on underground cables are caused by: third party damage, deterioration of
the solid cable insulation, joint failures and sealing end flashover and failures.
The faults may be caused or precipitated by external factors, for example, damage
caused by mechanical excavators, moisture intrusion or the effects of transient

overvoltages caused by lightning or system conditions.

16

2.4 Transmission System Protection

The transmission network is the backbone of the power system and faults occurring
on the feeders or plant, which constitutes the network, can have a significant impact
on the continued operation of the entire power system. Not only can expensive power
system plant be damaged, but network stability and power system security can also
be adversely affected. To minimise these risks, protection schemes are employed on

each feeder to rapidly disconnect the faulty component(s) from the power system.

The following sections describe the main features of these protection schemes, their

operation and problems they commonly suffer from.

2.4.1 Protection Scheme Components

The principal components of a transmission feeder protection scheme are presented

in Figure 2-1.

Communication
Channel
signalling to and
Jrom remote end
Current
Transformer . .
Protection . Circuit
P —p] ——
Relay Trip Relay Breakers
Voltage
Transformer .. . L ,
decision making initiates a tripping Jault clearance
measuring element signal
devices

Figure 2-1 Components of a protection scheme

e Measuring Devices:

Protection relays are connected to the transmission network via current and
voltage transformers. The magnitudes of the transmission network’s current and
voltage are too large to connect the protection relays directly to the feeder and

require to be scaled down. Voltage transformers scale down the system voltage to

17

the nominal rating of 110V for the protection relays. Current transformers scale
down the system current to the nominal rating of either 1A or 5A for the

protection relays.

Protection Relays:

The voltage and current indications provided by measuring devices provide the
data necessary for protection relays to detect anomalies and determine whether a
protective response is required. If the protection relay detects an anomaly within
the area the protection relay has been set to protect, and considers it to require a

protective response, a trip signal is initiated.
Trip Relays:

Trip relays are simple auxiliary relays which are used to amplify the tripping
signal sent from the protection relay to operate the circuit breakers. Some modern
protection relays are now designed with trip signal ratings capable of operating

circuit breakers directly.
Circuit Breakers:

Circuit breakers are used to disconnect the faulted plant from the rest of the
power system. Circuit breakers must be capable of interrupting the maximum

fault level rating of the plant on which they are fitted.

Communication Channels:

Communications channels are required for signalling between feeder ends. They
must be very reliable as a signalling failure can reduce the effectiveness of the
protection scheme or even cause it to mal-operate. Three means of

communication commonly used are:

— Pilot Wires: These are low voltage cables which are either privately

owned or rented from a communications company.

— Power Line Carrier: This makes use of the power system conductors to
transmit modulated high frequency signals. Line traps, which are high
frequency filters, must be fitted at each end of the feeder to ensure the

signal is not sent in the wrong direction.

18

— Radio: Transmitters and receivers are used to send and receive very high

frequency (VHF) signals between sites.

2.4.2 Categories of Protection Schemes

The protection used within a feeder protection scheme may be categorised into either
unit or non-unit configurations. Unit protection schemes only protect one part or
component of the power system. Non-unit protection schemes provide fault detection
over a large part of the power system, with operating times related to how distant the

power system fault is. Both are briefly described.

2.4.2.1 Unit protection

Unit protection schemes compare either the current or voltages at two or more

measuring points in order to determine whether a fault exists in the protected area.

To illustrate the unit protection principle, a single phase representation of circulating
current protection schemes on two connected circuits is shown in Figure 2-2. A fault

has occurred on feeder 2 and fault current is flowing through feeder 1 to the fault.

Substation A Substation B Substation C
Feeder 1 Feeder 2
I ® . I . . I
HA-{ F D 1 12 L'__} / lT’ o
| I
i trip rp
| I IS - : ““““
—— <a e} =
]1> Relay (L Il> Relay (L,
S—— > ot >
fault outwith protected zone: fault within protected zone:
I, =1,= No trip L#L,=>Trip

Figure 2-2 Circulating current unit protection

As can be seen in Figure 2-2, no fault exists on feeder 1 so the measured currents are

equal and the protection does not trip. Conversely, the fault on feeder 2 is between

19

the measuring points and causes unequal currents to flow in the pilots to the

protection relay initiating tripping of the circuit breakers.

2.4.2.2 Non-unit protection

Non-unit protection relies on values measured at a single location and protects an
area known as its operating reach or characteristic. The most common type of non-

unit protection used in the transmission network is distance protection.

Distance protection uses an impedance measurement derived from voltage and
current measurements to determine whether a fault condition exists. This in
conjunction with the feeder’s impedance is used to calculate the distance to fault.
Distance protection relays normally have a stepped operating characteristic as shown

in Figure 2-3.

time (ms) A

Zone 1 Zone2 | Zone3

zone
Figure 2-3 Operating characteristic of a distance protection relay

Zone one operating time is instantaneous once the protection relay has detected a
power system fault. Zone two operating time is at least the time to clear a zone one
power system fault, thus ensuring the protection relay does not operate unnecessarily.
Similarly, zone three operating time is at least the time to clear a zone two power

system fault. The protection relay zones are usually set as shown in Figure 2-4.

The protection relay will react in zone one time if a fault is detected within the first
80% of feeder one. Zone one is restricted to the first 80% of feeder one, to ensure the
protection relay does not race the feeder two protection to remove a fault on feeder
two. The protection relay operates in zone two time if a fault is detected in the last

20% of feeder one or the first 30% of feeder two. Similarly, the protection relay

20

operates in zone three time if a fault is detected in the last 70% of feeder two, the

first 25% of feeder three or 10% in the reverse direction.

Feeder 1 Feeder 2 Feeder 3

Zone 1 80%

|

Zone 2 130%

Zone 3 225%

N ety
v

-10%
<+—

—

Figure 2-4 A distance protection relay’s zone settings

With a single distance protection relay, with reach characteristic shown as in Figure
2-4, faults in the last 20% of feeder one would not be cleared in zone one time. To
overcome this, a second distance protection relay is placed at the other end of feeder

one ‘looking’ in the opposite direction as shown in Figure 2-5.

»

I Feeder 1 I
e Zone 1 I E
1 -
§ < Zone | i
1 |
5‘ Zone 2 ; >
i Zone2 |
<4 H —P

Figure 2-5 Overlap of protection relay zones

Signalling between the two protection relays allows power system faults anywhere
on feeder one to be removed in zone one time. Different signalling methodologies

can be adopted such as:
e Intertripping:

A signal is sent from the local protection relay when a fault is detected in zone

one. At the remote end, the inter-trip signal trips directly into a trip relay which

21

operates the circuit breaker. No checking is done at the remote end to ensure the

fault has been detected.

e Permissive under-reach:

A signal is sent from the local protection relay when a power system fault is
detected in zone one. At the remote end, the received signal goes directly into the
protection relay. The remote protection relay will only initiate an instantaneous

trip on receiving such a signal if it can detect a fault in zone two.
e Acceleration:

In an acceleration scheme, the protection relay’s zone one and zone two fault
detection is performed by the same unit. When an acceleration signal is received
by the remote protection relay, it changes the zone one reach to that of zone two

enabling it to operate simultaneously if a zone two fault is detected.
¢ Blocking:

A blocking scheme utilises inverse logic to that of the previous three. A blocking
signal is sent to the remote end when a fault external to the protected zone is
detected by the reverse looking zone three unit. If a blocking signal is not
received and the remote end relay detects a zone two fault it will trip
instantaneously. This relies on the reverse looking zone three unit operating and
sending a blocking signal before the remote end protection relay operates. In
practice this would rarely happen, so a delay is introduced into the zone two units
allowing time for the blocking signal to arrive. The blocking scheme arrangement
overcomes the problem of having a slow clearance at the remote end if the

communication channel fails.

2.4.3 Delayed Auto Reclose (DAR)

To address the problem of transient faults caused by wind and other natural
phenomena, transmission feeder protection schemes are often augmented with
Delayed Auto-Reclose (DAR) equipment, which attempts a reconnection of the
tripped line after a specified delay. The protection relay and DAR sequencer / timer

elements may appear as separate units or be combined together.

22

The DAR attempts a reconnection of the tripped line after a specified dead time (the
period of time taken to initiate a reclosure of the circuit breaker) - circa 15 seconds at
transmission voltages. If the fault is transient, the feeder will remain in service once
re-energised. If the fault is seen to be permanent, or is persistent, the protection will
operate instantaneously disconnecting the feeder again. In the UK delayed auto-

reclosing is usually only performed once on each transmission feeder.

2.4.4 A Typical Feeder Protection Scheme

On the transmission system, power system faults should be cleared in approximately
100ms. To illustrate the sequence of protection operations required to clear a fault
within these timescales, a protection scheme for a typical 400kV transmission feeder
circuit will be described. Note that for reasons of clarity, backup protection and DAR

will not be described.

SUBA4 SUBB4
F =t B <|
CB1 CB1

Figure 2-6 Single line diagram representation of a 400kV feeder circuit

SUBA4 SUBB4

MP1 MP2 MP1 MP2

Fibre-optic &
}—b Microwave
| — p{ INTI |« »| INT1

(L .

1M

L INT2 [« | INT2 4—|—- L—_ i
v v
TR1 TR2 TR1 TR2
CBI1 CB1

Figure 2-7 Example of a 400kV feeder protection scheme — no DAR.

23

The protection scheme used to protect the feeder in Figure 2-6 is illustrated in Figure

2-7. A description of the components represented within Figure 2-7 follows:

MP1 (Main Protection 1): Typically unit protection, MP1 will monitor the feeder

for a fault in the protected area.

MP2 (Main Protection 2): Typically distance protection, MP2 will monitor the

feeder for faults within zones 1, 2 and 3 of its characteristic.

INT1 (Intertrip 1): An intertripping relay, which can relay intertrip signals from
both MP1 and MP2 to the remote end via a fibre-optic and microwave
communications medium. When INT1 receives an intertrip signal from the

remote end, it will generate and send a trip signal to trip relay 1 (TR1).

INT2 (Intertrip 2): An intertripping relay, which can relay intertrip signals from
both MP1 and MP?2 to the remote end via pilots. When INT2 receives an intertrip
signal from the remote end, it will generate and send a trip signal to trip relay 2
(TR2). Note that a different communication medium from INT1 is used for INT2
to reduce the chances of a common communications fault inhibiting both

intertrips,

TR1 and TR2 (Trip Relays 1 and 2): Simple auxiliary relays which take the trip
signals from the main protection and intertrip relays and magnify them to a
sufficient level to operate the circuit breaker. Two trip relays are used to ensure

MP1 and MP2 have independent tripping mechanisms in case one should fail.

CBI1 (Circuit Breaker 1): Trip coils within the circuit breaker will be energised
via the trip relays, operating the circuit breaker mechanism and opening the

circuit breaker contacts interrupting the fault current.

2.4.5 Common Protection Problems

A transmission protection scheme consists of a complicated array of integrated

components ranging from microprocessor-based relays to electromechanical trip

relays and fibre-optic communications mediums. The complexity, together with the

fact that protection schemes may lie dormant for many years without being called

24

upon to operate, can mean that potential problems with the protection scheme are not

apparent until the protection is required to operate.

Common problems with transmission protection schemes fall into three broad
categories:
e Dependability: the protection does not operate correctly when required.

e Security: the protection operates when not required, unnecessarily reducing the

overall system security.
e System Restoration: the protection fails to restore the circuit.

A study of utilities by Working Group 13 of the IEEE Power System Relaying
Committee has identified the most common mechanisms for protection maloperation
within these three categories - illustrated in Table 2-1 [2] and described in the

accompanying legend.

Dependability Security Reifz::'t'ilon
Failure | Failureto | Slow l%npecDess.a Ty 1(,} r.mefz‘g::s;zri Failure to
to Tri Interrupt Tri £ ey b P Reclose
p P P Fault Fault Event
Relay
System ! A N/A B C D E
Circuit
Brealker i F G H N/A I J

Table 2-1 Common problems with a protection scheme

i — Relay System defined as the protective relays, communication system, voltage/current

measuring devices, and dc system for tripping up to the circuit breaker.

ii — Circuit Breaker is a generic term for any fault interrupting device

LEGEND for Table 2-1:

A) Failure to Trip (Relay System): Any failure of a relay system to initiate a trip to

the appropriate terminal when the fault is within the intended zone of protection.

25

B) Slow Trip (Relay System): A correct operation of a relay scheme for a fault in
the intended zone of protection where the relay scheme initiates the trip slower

that the system design intends.

C) Unnecessary Trip During a Fault (Relay System): Any undesired relay-
initiated operation of a circuit breaker during a fault when the fault is outside the

intended zone of protection.

D) Unnecessary Trip for Non-Fault Event (Relay System): The unintentional
operation of a protection relay which causes a circuit breaker to trip when no
system fault is present: may be due to environmental conditions, vibration,
improper settings, heavy load, stable load swings, defective relays or SCADA

system malfunction.

E) Failure to Reclose (Relay System): Any failure of a relay system to
automatically reclose following a fault if that is the design intent, e.g. DAR.

F) Failure to Trip (Circuit Breaker): The failure of a circuit breaker to trip during

a fault even though the relay system initiated the trip command.

G) Failure to Interrupt (Circuit Breaker): The failure of a circuit breaker to
successfully interrupt a fault even though the circuit breaker mechanically

attempts to open.

H) Slow Trip (Circuit Breaker): A circuit breaker which operates slower than the

design time during a fault following the trip initiation from the relay system.

) Unnecessary Trip for Non-Fault Event (Circuit Breaker): The tripping of a

circuit breaker due to breaker problems such as low gas, low air pressure, etc.

J) Failure to Reclose (Circuit Breaker): Any failure of a circuit breaker to

successfully reclose following the reclose initiate signal from the relay system.

26

2.5 Transmission System Monitoring

A wide array of monitoring technologies have been developed to record protection
operations, provide data on network performance and on the evolution of
transmission network disturbances. The following sections present a brief resume of

the monitoring technologies pertinent to this thesis:

2.5.1 Remote Terminal Units (RTUs) and SCADA

A Supervisory Control And Data Acquisition System (SCADA) provides engineers
with indications of which equipment operated, what equipment is in or out of service
and alarms when measured parameters move outside normal thresholds. This data is

collected via Remote Terminal Units (RTUs) installed in each substation.

RTUs record the status of all substation devices by repeatedly scanning the signalling
channels of each device, e.g. protection relay, trip relay, circuit breaker. If a
signalling channel is found to have changed state, the RTU generates a time-stamped
SCADA alarm indicating the new status. The scanning rate and resolution of the time
stamps varies depending on the generation of the RTUs and the SCADA system
itself. Older SCADA systems can generate time stamps that may not be very accurate
or precise. This problem has been overcome in newer SCADA systems, which can

provide sequence of events type data accurate to a millisecond.

To transfer the generated SCADA alarms to a central location, traditionally the
control room, each RTU is scanned in a predefined order and the alarms uploaded to
a central database. Advances in software and the increasing use of corporate Intranets
and the Internet, have driven many utilities to provide users outside the control room,

e.g. protection engineers, with access to this SCADA archive [3].

2.5.2 Digital Fault Recorders (DFRs)

The Digital Fault Recorder (DFR) is the preferred monitoring technology for
disturbance analysis, since it is optimised for capturing and handling fault-relevant

data and is fully independent from power system control and protection [4].

27

'AJ‘:’LL’ITllllIITj—T

l!

ns 892 KV
0 SUB ACBC

0 SUB_ACBCB3
0 SUB_C mP

0 SUB_C IMPTR
0 SUB_C 1INTTR
0 SUBZC 2MmP

0 SUB_C 2MPTR
0 _SUB_C 2INTTR

Time (sec.) 000150 000350 000550 00.0750 000950 00.1150 00.1350 00.1550 00.1750 00.1950 00.2150 002350 00.2550 00.2750

Figure 2-8 A fault record generated by a DFR

The data produced by DFRs comes in the form of fault records (see Figure 2-8)
containing instantaneous measurements of the three phase analogue voltage and
currents and recordings of digital protection scheme operations. Unlike RTUs, the
DFR does not continuously scan the signalling channels it monitors; only beginning
recording once a triggering signal is received. DFRs can be set to trigger on lower
and upper voltage and current thresholds, rates of change or on operation of
protection scheme components. DFRs use a higher sampling rate than most RTUs
(typically above SkHz) giving resolutions in excess of lms. Such high-resolution
data is particularly useful to protection engineers since it provides a true picture of

the operation and response of the power system during disturbances.

Each DFR will store fault records in a local storage medium until retrieved via

modem dialup using proprietary software provided by the DFR manufacturer.

2.5.3 Travelling Wave Fault Locators (TWFLSs)

A transmission circuit can stretch for upwards of 100 km, with the majority of the
circuit traversing remote countryside as overhead lines. A permanent fault on such a

circuit can require a significant amount of time and manpower to locate the fault

28

before restoration can commence. Accurate fault location, i.e. better than +/- 300 m,
is therefore a crucial factor in reducing the restoration times and improving system
availability. The accuracy limit of +/- 300m is significant since it is approximately
equal to three times the average distance between transmission towers, i.e. 100m.
Given this level of accuracy, line patrols can be limited to three tower lengths either

side of an identified fault location.

To achieve this level of accuracy, utilities such as ScottishPower are installing and
operating Travelling Wave Fault Locators (TWFLs) on their transmission lines [5].
By knowing the length of the circuit, a TWFL can measure the time is takes for
current transients initiated by faults to reach each end of the circuit and determine the

distance to fault from each circuit end.

The accurate fault locations provided by TWFLSs are particularly useful to protection
engineers as they provide the information necessary to validate whether distance

protection detected the fault in the correct zone of operation.

2.6 Post-Fault Disturbance Analysis

As outlined earlier in section 2.4.5, transmission protection schemes are complex and
can suffer from a variety of problems, which may not be apparent until the protection
is required to operate. The impact of protection failures or mal-operations on system
security can be significant. To reduce this risk a protection engineer must conduct a
post-fault disturbance analysis following each protection scheme operation to
validate the operation of protection and diagnose protection failures. Based on the
results of this analysis, protection maintenance or reassessment of protection settings

can be scheduled to alleviate any identified problems.

Fundamental to the post-fault disturbance analysis task are the SCADA and fault
record data generated by the monitoring technologies described earlier. Using the
SCADA data protection engineers can obtain a high-level overview of the protection
devices that have operated across the transmission network to a resolution of 10ms.

Fault records can then be used to provide a more detailed picture of the instantaneous

29

analogue currents and voltages and protection scheme digitals around the time of the

protection operation to a resolution in excess of 1ms.

2.6.1 Terminology

Before describing the post-fault disturbance analysis process it is necessary to define
the terminology used by ScottishPower Protection engineers, and adopted throughout

this thesis, to describe the sub-sets of data used during the analysis process:

* The Incident data set contains all the data pertaining to a particular
protection operating sequence. Note that although a protection operating
sequence will most often be initiated by a fault, it may be initiated as the

result of a mal-operation.

* The Event data set contains the data related to operation of particular
protection scheme components and is a more focussed look at what actually
happened during an incident. The primary indicators are SCADA alarms and

there will be many events associated with an individual incident.

Other literature uses more generic descriptions such as the definition of an event used
in [6]: “a relay or switching operation or an inadvertent operation caused by
changes in power system parameters measured at the substation”. Although the
definitions adopted in this thesis may seem restrictive, they provide a clear
distinction between the data sets used to assess each operation of a protection device.
Furthermore, due to the similar nature and evolution of faults on transmission
systems worldwide, the definitions are generically applicable regardless of the

particular power system fault being analysed.

2.6.2 Manual Post-Fault Disturbance Analysis

To transform the raw data generated by monitoring devices into information that can
be used during analysis, the protection engineers adopts the approach illustrated in

Figure 2-9 and described in sections 2.6.2.1 to 2.6.2.4.

30

Incident SCADA Interpretation Cycle

Identify Incident Events !
! Identified

Interpret
Data
Incidents & E
i Events
) Identify &
: [:> Retrieve Other E> Interpret
i Data Data

Identify
Incident
Events

Identify
Incident

Retrieve !
SCADA [:>

Interpret
Data

i Useful
1 Information

Increasingly Detailed Interpretation

Figure 2-9 Manual post-fault disturbance analysis

Protection engineers will only conduct post-fault disturbance analysis once they are
made aware that a protection operation has occurred. Notification that a protection
operation has occurred often comes from the control engineer, or through regular
checks of the SCADA and DFR data generated by the monitoring technologies. It
must be emphasised that the protection engineer is unable to determine whether a
fault caused the protection operation, until conclusion of post-fault disturbance

analysis.

2.6.2.1 Retrieve SCADA

The protection engineer commences post-fault disturbance analysis by retrieving
from the SCADA archive the alarms and indications recorded by RTU’s throughout
the transmission network during the period under analysis. In the case of post-storm
analysis, this window may span several hours and many distinct incidents. At this
stage in the process the retrieved data will contain many alarms and indications
which have no bearing on the analysis. Only once this SCADA data is retrieved can

analysis progress into the Incident SCADA interpretation cycle.

31

2.6.2.2 Incident SCADA Interpretation Cycle

During this stage in the process, the protection engineer is focussed on identifying
incidents and events, beginning with the scanning and interpretation of the gathered

SCADA alarms for alarm patterns indicating an incident inception.

2.6.2.2.1 Identify Incidents

The interpretation process begins with the protection engineer scanning the alarms
for patterns indicating that a feeder protection scheme has operated — the beginning
of an incident. When an alarm pattern is found indicating incident inception, the

start time and affected feeder are noted from the protection alarm fields.

The protection engineer then continues scanning the SCADA, identifying any alarms
occurring after the incident inception and on the affected feeder. As each incident
related alarm is identified, it is noted and added to a grouped data set of incident

related alarms.

Whilst scanning the alarms the protection engineer is also interpreting the alarms for
patterns indicating DAR activity. If DAR has been initiated and the circuit re-
energised onto a fault, the protection will again see fault current and operate — a
protection operating sequence distinct from the first, which must also be analysed. In
this instance, the protection engineer will conclude the first incident data set and
begin grouping the alarms occurring following the second protection operation under
a second incident data set. If no DAR activity has been initiated, the protection
engineer will conclude the incident once they are satisfied that the protection

operating sequence is over.

At this stage, an incident will have been identified and all incident related alarms
grouped into an incident data set for the next stage in analysis. If DAR has been
initiated, two incidents will have been identified related by a common permanent or

persistent fault.

32

2.6.2.2.2 Identify Pertinent Events

The grouped set of incident alarms (two sets in the case of a DAR operation) is then
interpreted to identify the events of interest to the protection engineer, e.g. circuit

breaker operations, protection operations and intertrips.

Initially the protection engineer performs a first pass of the alarms, interpreting the
incident alarms for individual alarms or patterns of alarms indicating events of
interest such as protection relay operations or changes in circuit breaker status. This
results in the recording of ‘Low-Level’ events indicating the nature and time of

pertinent events in the protection operating sequence.

The engineer then conducts a second pass of the grouped incident alarms taking into
account the identified low-level events. At this stage in analysis the protection
engineer is looking to identify ‘High-Level’ events indicating whether the protection

scheme operated correctly and if there could be any anomalies.

On completion of event identification, the protection engineer resumes incident
identification, beginning with alarms occurring after the last incident start. The

Incident SCADA interpretation cycle continues until no more alarms remain.

2.6.2.3 Identify and Retrieve Other Data

Until now the protection engineer has only used SCADA data, which has enabled the
circuits affected by each incident to be identified along with the time when the
Protection operation was initiated. This geographical and temporal locality
information allows the monitoring devices on the affected circuits to be identified

and their storage mediums queried for incident related data.

The primary source of additional disturbance data is DFRs since they capture the
analogue voltages and currents on the circuit being monitored and the changes in

status of the components in the protection scheme monitoring the circuit.

Knowing where the feeders on which the incidents have occurred, the protection
engineer can access the DFRs at each circuit end and retrieve the fault records
archiving them at a central location ready for analysis. A similar procedure is

followed for retrieval of data from other monitoring technologies such as TWFLs.

33

The protection engineers will again use the incident information to identify the

devices of interest and retrieve the incident related data ready for analysis.

At this stage, the protection engineer has gathered a comprehensive data set mainly
consisting of SCADA alarms and fault records and often with additional data such as
from TWFLs. The engineer will have interpreted the SCADA data to identify
incidents and events and have collated additional data such that data pertaining to an

individual incident is grouped as such.

2.6.2.4 Interpret Additional Data

Thus far interpretation has been limited to SCADA data and has identified the
disturbance locales, when the protection detected the fault and the key protection
operating events. Although useful, this information does not provide the detail
necessary for a protection engineer to determine the cause of protection operations
and to validate whether the protection operated correctly. This is achieved through

interpretation of the additional non-SCADA data retrieved during the previous stage.

Fault records are the first to be analysed since they are the most likely to shed light
on what caused the protection operation. Only when fault record analysis has been

completed will data gathered from additional sources be analysed.

Analysis of the fault records relies on the use of software tools provided by the DFR
manufacturers. Combined with an extensive knowledge of the protection schemes
and experience the protection engineer will use the software to interpret the captured
data. The software can provide accurate measurements of time and magnitude which
are useful for identifying parameters such as fault clearance times, peak fault current,

minimum voltage etc.

Data from sources such as the TWFL will require relatively little interpretation as the
data is formatted as a text file with the key attributes, such as distance to fault,
already highlighted. In cases where it isn’t the software provided with the monitoring

device is used.

The interpretation of fault records and other data concludes the manual post-fault

analysis process. The protection engineer now has a comprehensive set of data and

34

information on each incident. Using this, they will use experience and knowledge of

the protection schemes to validate the protection operations.

2.6.3 The Data Overload Problem

A modern SCADA system can generate tens of thousands of unique alarms and
indications due to the significant number of signalling points monitored by RTUs
across a transmission network. DFRs can be set to trigger and generate a fault record
whenever the monitored parameters move outside the triggering thresholds
regardless of whether the change in conditions is due to a fault or the routine
operation of the transmission system. Both these characteristics of the monitoring
technologies commonly used by protection engineers combine to present a

significant data overload problem during post-fault disturbance analysis.

Although the monitoring devices will capture data of direct relevance to the post-
fault disturbance analysis being conducted, e.g. fault records and SCADA alarms
pertaining to the circuit affected by the fault, additional data will be generated by
devices outside the affected zone. This occurs due to the effect a fault has on the

surrounding network.

A fault on an item of plant or circuit will often lead to voltage dips and increases in
current magnitude in its immediate vicinity until the fault is cleared by the
protection. The devices monitoring the faulty equipment will see the change in
conditions during the evolution of the fault and generate data directly related to the
disturbance. However the monitoring devices on the circuits surrounding the fault
will also measure a change in network conditions albeit not as severe as in the
immediate vicinity of the fault and, providing the change is beyond trigger settings,
generate data. This data is of no immediate use to protection engineers and only

clutters the data set available post-fault.

The problems of data overload are significant after major disturbances, such as
storms, where large numbers of faults have occurred resulting in tens of thousands of
SCADA alarms and many hundreds of fault records of which only a comparatively
small sub-set are of immediate interest. Furthermore, with the reduced staffing levels

in modern privatised utilities the few remaining protection engineers [7] are faced

35

with more data than can be processed and assimilated within the timescales

permitted.

2.7 Chapter Summary

This chapter has provided an overview of power systems relevant to this thesis.
Specific attention has been paid to transmission protection schemes and the
monitoring technologies that provide engineers with data on the performance of

transmission protection.

The chapter has also described one of the key responsibilities bestowed on a
protection engineer: post-fault disturbance analysis. The protection engineer fulfils
their responsibility by following a structured process of data retrieval, interpretation
and collation. The terminology used during this process, and to be used throughout
the remainder of the thesis, has been introduced. This was followed by a description
of each stage of the post-fault disturbance analysis process, focussing on the data

retrieval and interpretation requirements.

2.8 Bibliography
* B.M. Weedy, “Electric Power Systems”, Third Edition Revised, John Wiley & Sons,

1986.

* “Protective Relays Application Guide”, Third Edition, GEC Measurements, Stafford,
UK.

2.9 References

[1]. “An Introduction to the Protection of Transmission and Distribution Systems”,

Electricity Training Association, 1997.

[2]. W.M. Carpenter (Chairman), “Transmission Protection Relay System Performance

Measuring Methodology”, IEEE/PSRC Working Group 13, September 1999,

[3]. M. Srinivas, N. Sreekumar, K.V. Prasad, “SCADA-EMS on the Internet”, IEEE

Conference on Energy Management and Power Delivery, March 1997.

36

(4].

[5]-

(6].

[7].

“Fault and disturbance diagnosis data analysis including intelligent systems — Part
1: Existing Practice”, WG 34.03 Cigre Study Committee 34 — Protections and
Local Control, 2000.

P.F. Gale, J. Stokoe, P.A. Crossley, “Practical experience with traveling wave fault
locators on Scottish Power’s 275 & 400KV transmission system”, IEE

Developments in Power System Protection Conference, 25-27 March 1997.

L.E. Smith, “Analysis of Substation Data”, Report from Working Group I-19 to the
Relaying Practices Subcommittee of the IEEE Power System Relating Committee,

Fault and Disturbance Analysis Conference, 2002.

W. Laycock, “Protection Engineer Shortage”, IEE Power Engineer,
February/March, 2004, p47.

37

Chapter 3: Fundamentals of Intelligent

Systems and their Application to

Post-Fault Disturbance Analysis

38

3.1 Chapter Overview

This chapter introduces intelligent systems discussing the fundamental technologies
relevant to the research described later in this thesis. The knowledge engineering
process required to capture the knowledge implemented within an intelligent system
is also presented. The chapter concludes with an overview of the intelligent systems
and decision support tools available to protection engineers during post-fault

disturbance analysis. The required enhancements to these tools are also discussed.

3.2 Intelligent Systems

As technological advances in computer hardware, and software techniques, have
come to fruition, researchers have attempted to exploit these advances to create
intelligent systems capable of emulating a humans’ reasoning processes, as applied
to the solution of a certain problem. The term ‘Artificial Intelligence’, or ‘AI’, has

become the term synonymous with this endeavour.

The debate over what exactly constitutes artificial intelligence is still ongoing and is
likely to remain so as long as a widely accepted definition for intelligence eludes us.
However, in relation to the research described in this thesis, the term ‘A’ is defined

as:

‘the ability of a software system to solve a particular engineering problem,

which would otherwise require specialists’ knowledge .

For example, in order to build an intelligent system for automating alarm
interpretation, the expert’s knowledge has to be captured for the particular
application (e.g. gathering different types of alarm data and emulating the engineer’s

reasoning for processing this data to provide meaningful conclusions).

Early attempts at using Al for problem solving focussed on the development of
intelligent systems aimed at solving broad classes of problems using generalised
reasoning steps. However, it was soon found that such general systems performed
poorly on problems of real-world complexity and applicability. A solution to this

problem was found to be to focus in on a specific problem area and to provide the

39

intelligent system with specific, high-quality knowledge, about the problem area.
This approach led directly to the development of expert systems.

3.2.1 Expert Systems

Defining an ‘expert system’ is not the most straightforward of tasks, with various
positions being advanced by different researchers. However, for the purposes of this

thesis it is appropriate to define an ‘expert system’ as:

‘any software system that employs knowledge about its application domain
and uses an inferencing (reasoning) procedure to solve problems that would

otherwise require human competence or expertise’.

By exploiting the same knowledge and problem-solving techniques that make
domain experts effective in solving problems in their field of expertise, expert

systems have a number of associated advantages:

* They can act as a repository for knowledge captured from a number of
domain experts, thereby ensuring the domain experts knowledge and

expertise is not lost when they leave a company.

* Combined with an inference engine, the captured knowledge can be used to
reason about a given data set and provide solutions or decision support to an

engineer much faster than would be achieved through manual data analysis.

* Given the same data set, the solutions provided are consistent — a quality

which cannot be attributed to human experts.

During problem solving and data analysis, domain experts will use a number of
different types of knowledge, including: heuristics (or ‘rules of thumb’), knowledge
derived from similar problems (or cases) and models representing the behaviour of
components or a process. To reflect this diversity a range of expert systems have
been developed, each utilising a particular type of knowledge. However, before

knowledge can be used within in an expert system it must first be acquired.

40

3.2.1.1 Knowledge Engineering

The process of capturing knowledge from a domain expert and modelling that
knowledge so it can be structured for use within expert systems is termed knowledge
engineering. This is a very important aspect in an intelligent system’s development,

as it is only as good as the knowledge it contains.

Domain knowledge can be acquired from a number of different sources including
documentation, design and functional specifications and books. Knowledge can also
be gleaned from interviews with domain experts, a process known as knowledge

elicitation.

During the preliminary stages of knowledge elicitation, unstructured interviews are
often used as they provide an effective means of scoping the problem domain.
However, abiding solely by an unstructured knowledge elicitation strategy can result
in a patchy coverage of the problem domain and inconsistent knowledge. An
accepted solution is, having scoped the problem domain using unstructured
interviews, structured interviews should be conducted where the elicitation process is
planned and directed by the person eliciting the knowledge. These structured

interviews are often recorded electronically, e.g. taped, and a transcript created.

On some occasions, the knowledge transcripts alone will provide sufficient
information to commence structuring the domain knowledge ready for
implementation within the expert system. However, in cases where a significant
volume of knowledge has been captured and the problem domain is vast, it is often

advisable to model the elicited knowledge.

A popular methodology for knowledge modelling is CommonKADS, which supports
the analysis, specification and development of intelligent systems [7]. One aspect of

CommonKADS is using six models:

e Organisation Model: Describes the functions, tasks and bottlenecks in the

organisation environment the intelligent system will have to function;

o Task Model: Specifies, at a general level, how the function of the system is

achieved through a number of tasks that the system will perform;

41

e Agent Model: Describes the capabilities and characteristics of the agents within
the organisation. An agent is an executor of a task. It can be a human, computer

software or any other entity capable of executing a task.

o Communication Model: Describes the exchange of information between the

different agents involved in executing the tasks described in the Task Model.

e Expertise Model: Models the problem solving knowledge used by an agent to
perform a task. This model is split into sub-levels: domain level, inference level

and task level.
¢ Design Model: Describes the architecture and design of the KBS.

Together, the organisation, task and agent models analyse the organisational
environment and the corresponding requirements for an expert system. The expertise
and communication models yield the conceptual description of problem solving
functions and data that are to be handled and delivered by the expert system. The
design model converts into a technical specification that can be used as the basis for
expert system implementation. It should, however, be noted that not always do all

models needs to be constructed. This depends on the scope and goals of the project.

3.2.1.2 Knowledge Based Systems

Knowledge Based Systems (KBS) [2] are particularly suited to the emulation of an
expert’s reasoning where the expert uses a combination of theoretical understanding
of the problem domain and a collection of problem solving heuristics to reason about

a problem and reach a solution.

The domain knowledge and heuristics can be acquired from the experts, modelled
and then structured as rules within the KBS knowledge base. Although other forms
of knowledge representation exist, such as objects and semantic networks, rules are
by far the most common knowledge representation technique used within KBS due
to their relatively straightforward application. They can be described as simple ‘if® —

‘then’ statements, of the form:

IF (premise) THEN (conclusion)

42

The typical components of a KBS, as shown in Figure 3-1, comprise of a knowledge
base, which contains the problem solving domain knowledge; the working memory,
which contains the observed facts about the problem domain under consideration
upon which the inference engine will reason; the inference engine, which drives the
KBS, deciding which rules to fire, how they will be applied during reasoning and
finally provides possible solutions; the user interface through which the user

interacts with the KBS.

Knowledge Based System

Data
r-’ Working Memory @«] Input

User 4—&/ Inference EngineJ

Interface
oSy sy Seleis
Knowledge Base

Figure 3-1 Architecture of Knowledge Based Systems

The inference engine is at the hub of a KBS, providing the mechanism for extracting
the appropriate knowledge from the knowledge base and combining it with the
observed domain facts to generate a diagnosis. Two commonly used inference

mechanisms are:

* Forward chaining (or data driven) where the inference engine begins with the

observed facts of the problem domain and infers the diagnosis.

* Backward chaining (or goal driven) which starts from the goals to be solved,

and given a set of rules, determines what evidence is required to prove them.

The search space of observed domain facts that the inference engine must investigate
to reach a diagnosis can be vast. Two of the most common search techniques

employed to decide which to investigate are depth first and breadth first:

43

* In adepth first search, when a possibility is examined, all of its successors are
investigated as far as possible. Only if this is unsuccessful will the other

possibilities be considered.

* In a breadth first search, all the possibilities are explored in a level-by-level
fashion. Only when no more possibilities are to be explored does the

algorithm move onto the next level.

The breadth first approach ensures the best solution is always found, however, a

depth first search, if directed in some manner, will be faster.

3.2.1.3 Case Based Systems

In addition to heuristics, experts will often reason from examples of past problems
and their solutions, i.e. cases. To effectively address this type of reasoning, case
based systems have been developed which employ a technique called Case Based
Reasoning (CBR) [3]. A case based system uses an explicit database of past

problems and their solutions to address new problem-solving solutions.

At the core of a case based system is an explicit knowledge base containing an
expert’s solutions to a number of past problems - the cases. When presented with a
new problem the case based reasoner must search this case base and retrieve the most
appropriate cases for use in solving the new problem. The most appropriate cases are
determined by looking for similarities between the cases and the current problem.
Each case is assigned a set of indices based on their significant features thus enabling
a more rapid search through the knowledge base to identify the cases that have most

features in common with the current problem.

More often than not, none of the cases within the case base exactly match the
problem that the case based system is called on to solve. To address this, the system
will select the most suitable from those retrieved and modify it in order to reflect the
differences between the cases. This may not guarantee the generation of an
acceptable solution and further modifications may be required. Each proposed

solution is saved in the case base as a new case with its indices.

44

3.2.1.4 Model Based Systems

On many occasions experts, particularly in engineering fields, are called upon to
diagnose failures within physical systems containing many individual, yet,
interconnected components. Both knowledge of how each individual component is
expected to work and how the entire system is expected to operate is utilised in such

cases. The most popular structure for this knowledge is models.

Depending on the nature of the system, the models utilised will not only vary in
complexity but also in model type, i.e. algorithmic, functional, qualitative and
physical models. A number of data structures can be used for representing the causal
and structural information in models, however the design and implementation of

each model is beyond the scope of this thesis.

Intelligent systems that reason with models for the purposes of diagnosis utilise an
Al technique called Model Based Diagnosis (MBD) [4]. MBD was first used in the
field of electronics to diagnose component failures in electronic circuits through
device and circuit analysis. Models of both the individual components and how they
are interconnected to form the circuit are required to perform diagnosis. To explain
the principles behind MBD the multiplier-adder system used in [5], and illustrated in
Figure 3-2, will be utilised.

=3 —— p X
A=3 MULT-1
~ . 1 (F=12)
—
=2 | MULT-2 Y
—p,
D=2 ADD-2 — (G=12)
[G=12]
—»|
E=3 »| MULT-3 z

Figure 3-2 Example of multiplier-adder test system

45

In Figure 3-2 the behaviour of each component can be represented by a set of
expressions that capture relationships between values at the terminals of the device,
e.g. ADD-1 can be represented by: X+Y=F, X=F-Y and Y=F-X. The inputs to the
circuit are marked A-E and the circuit outputs F and G, with () indicating the

expected result and [] the actual result.

It is clear that the output from component ADD-1 is not as expected indicating a
faulty component, or set of components, within the circuit. To identify the faulty
component(s) the model based system must trace back through the circuit and, using
the component models (in this case simple relationships) of expected behaviour
identify where discrepancies between the component inputs and outputs lie given the

circuit inputs and outputs.

In addition to diagnosis, the consistency-based reasoning followed by a model-based
system will validate if the output from a physical system is as expected given the
inputs. Furthermore, with adaptations to the MBD reasoning process abductive
models (that is models of faulty behaviour) can also be included to provide
knowledge of potential fault mechanisms. These can be used to enhance the

diagnosis provided by the systems.

Despite the advantages of model based systems, a significant disadvantage is that a
theoretical understanding of the devices and their explicit modelling are both
essential. Consequently, the knowledge acquisition process can be quite demanding
and the resulting software code large, impacting on the speed with which diagnoses

can be generated.

3.2.2 Hybrid Intelligent Systems

Although the Al techniques employed within the intelligent systems discussed thus
far have their own advantages and specific application areas, very often they are
insufficient to resolve the real data analysis and decision support problems facing the
engineering industry [6]. The use of Artificial Neural Networks (ANNs) within real
time decision support, such as alarm processing within a control room, is a typical
example where the ANN’s lack of a structured knowledge representation and its

inability to explain the reasons for the conclusions reached have been highlighted as

46

contributing to an operators lack of confidence in the system [7]. The time and

resources associated with knowledge elicitation for expert systems are another

practical problem often cited as limiting the real world application of the technology.

To deal with the increasing complexity of engineering problems an integrated

approach is needed where the merits of individual techniques can be exploited to

overcome the shortcomings in other techniques. Hybrid intelligent systems provide

the hybridization or fusion of the individual techniques necessary to achieve this.

Hybrid intelligent systems began to emerge in the 1990°s and have become an active

research field within the wider Al community. Within this research field, hybrid

intelligent systems are commonly grouped into three broad classes [7]:

Transformational hybrid architectures are where one technique is used to
transform one form of representation into another. From a practical perspective,
they are used in situations where knowledge required to accomplish the task is
not available and one Al techniques relies on another for its reasoning or
processing. A good example is where ANN’s are used to transform continuous
numerical data into discrete data sets which can then be used as input to a KBS
and processed further via rules and inference. In this architecture it is important to
note that each technique will remain as individual computational units but will be

connected in series.

Fusion hybrid architectures combine different techniques into one computational
unit with the data structures and knowledge representations of each technique
shared and hard wired to the other. This enables one Al technique to augment its
reasoning process in a manner which allows it to overcome its weaknesses. That
is, unlike in transformational architectures, the transition from one representation

to another does not occur naturally.

Combination hybrid architectures put a number of Al techniques on a side-by-
side basis. There is no fusion of one technique to another, nor is data transformed
by one technique into a form suitable for another. Instead the reasoning capability
of the hybrid architecture comes from the combined roles of each technique in the
overall problem-solving process. Each technique retains its separate identity and

is used at a level within the architecture where its strengths can best be exploited.

47

This not only facilitates complex problem solving but also provides a closer

synergy with human reasoning.

Although the aforementioned classes of hybrid intelligent systems are commonly
referenced in literature on the subject, for the purposes of the research described in
this thesis the combinational hybrid architecture is the most relevant. The
combinational hybrid architecture is the most pertinent to this thesis, since a wide
array of standalone intelligent systems, employing a number of different techniques,
have already been developed for utilities and are currently in use. It will be shown
later in this thesis, that through the use of multi-agent systems as a platform for
combinational hybrid architectures, the individual functionality provided by each
system can be leveraged to provide an enhanced overall level of functionality. To
this end, and to provide clarification, for the remainder of this thesis a hybrid

intelligent system will be defined as:

‘any integrated suite of software components providing an overall problem
solving capability through sub-division of the problem to two or more

intelligent reasoning techniques.’

3.3 Decision Support Systems

As reported earlier in chapter two, the power industry is suffering from a lack of
protection engineers and this combined with the problems of data overload during
post-fault disturbance analysis, puts a significant strain on the engineers. As a result
many of the protection problems the engineers are trying to identify can be

overlooked negating the benefit of the post-fault disturbance analysis process.

Some relief can be achieved through the provision of intelligent systems that
automate the data interpretation tasks and assist the protection engineer by extracting
the pertinent information from the raw data and presenting it in an amenable format.
Such systems are commonly referred to as Decision Support Systems (DSS) since
the information they generate assists an engineer in deciding the next course of
action, i.e. in the case of post-fault disturbance analysis, identification of unusual

events that require further investigation.

48

The following sections will introduce the DSS and associated tools utilised by

ScottishPower protection engineers during post-fault disturbance analysis.

3.3.1 Alarm processors

During the preliminary stages of post-fault disturbance analysis the protection
engineer manually interprets SCADA alarms to determine the incidents and events.
This information helps the engineer decide where to focus further data retrieval and
interpretation. However, the sheer volumes of alarms make this manual alarm

processing task time-consuming and prone to human error.

This alarm overload problem has long been associated with control rooms where
control engineers can be overwhelmed by the rate at which alarms are received [8].
As early as the 1980s, expert systems were developed to interpret alarms
automatically in real-time and provide control engineers with summarised messages,
thereby reducing the data volume. It is only within the last decade that the alarm

processing needs of protection engineers have been addressed.

To assist the ScottishPower protection engineers an alarm processor entitled APEX
(Alarm Processing EXpert system) was developed and implemented in the early
1990’s [5]. The system operates online and was an adaptation of a previous alarm

processor developed for control room environments [10].

APEX is a KBS with the architecture shown in Figure 3-3. This architecture is
fundamentally the same as the generic KBS architecture illustrated in Figure 3-1
except for the addition of a topology and a possible alarm database listing all alarms

which can be generated by the SCADA system and may be received by APEX.

The topology database provides a representation of the network connectivity which is
read into memory when APEX is initialised. While APEX is running, changes in the
network indicated by received plant status alarms are reflected in this topology
representation. APEX can therefore provide protection engineers with information on

the circuits that have been isolated by protection operations.

49

Alarm Processing EXpert system (APEX)

Real time
[P Working Memory <:] SCADA
l i alarm feed
/ User .
U :‘> Interface 4_>/ Inference Engine /

Protection
Knowledge Topology Possible
Base Alarms

Engineer
Figure 3-3 APEX architecture

The APEX knowledge base consists of rules of the form illustrated in Figure 3-4.
These rules start with the event summary to be displayed when the rule fires and
conclude with a list of the expected alarms. The rules use wildcards, e.g.
<StationName>, specifying the alarm field which is required: this allows the rules to

be generic.

Event “Protection operation at <StationName>

Class isolation

Summary protection

Priority 25

Timeout 150000

Expect

{
Alarm “FIRST MAIN PROT OPTD” ON <StationName>
Alarm “FIRST MAIN PROT OPTD” OFF <StationName>
Alarm “SECOND MAIN PROT OPTD” ON <StationName>
Alarm “SECOND MAIN PROT OPTD” OFF <StationName>

Figure 3-4 Typical APEX rule for protection engineers

50

APEX employs a hypothesise-and-test reasoning strategy within its inference engine
which generates sets of possible hypotheses from the rules which would explain a
received alarm. If, for an active hypothesis, all expected alarms are received within
the timeout period specified in the rule linked to the hypothesis APEX will fire the
rule generating the event summary. If however, all expected alarms are not received
within the timeout period, the summary will still be generated but will be flagged as

having possible missing alarms.

The protection engineer can view the event summaries as they are generated or can
obtain a report on the events generated over a specific time period. However, APEX
is unable to collate events under a related incident so, following a significant network
event, manual collation of the event summaries and further interpretation is required
in order to identify the incident. This is due to the original APEX inference engine
being optimised for real-time alarm processing in the control room where reduction
in alarm volumes is the priority and the control engineer can use the mimic diagram
to ascertain the incidents. Despite APEX not being optimised for post-fault alarm

processing, the ScottishPower protection engineers have found APEX a useful tool.

At the time of implementing the version of APEX for the protection engineers an
existing fault diagnosis DSS, entitled RESPONDD [11], was also adapted from a

control room application to provide fault diagnostic support to protection engineers.

RESPONDD used detailed knowledge of the network and protection schemes to
interpret SCADA data and provide post-fault diagnosis. The results of this
interpretation were textual summaries which identified the faulted phases, whether
the fault was permanent or temporary and protection equipment which failed to
operate. A detailed discussion on the reasoning approached used by RESPONDD can
be found in [11].

Although RESPONDD generated information of interest to protection engineers, the
system proved difficult to maintain since the knowledge of protection schemes and
network topology had to be kept current if the correct diagnosis was to be reached.
As a result, the system quickly became obsolete and was not used by protection
engineers. This obsolescence was hastened by the introduction of DFRs and the

protection validation toolkit which will be discussed in section 3.3.3.

51

The alarm processing and fault diagnosis DSS introduced above are those employed
by ScottishPower and, although these systems have been adapted for other utilities,
they only represent a small subset of the intelligent systems developed for these
purposes. For the purposes of this thesis it is sufficient to merely note that other
systems exist which could, with minor modifications, have been employed within

ScottishPower.

3.3.2 Fault Record Analysis Engines

Although the ScottishPower protection engineers begin post-fault disturbance
analysis with SCADA alarms, protection engineers from other corners of the globe
typically begin analysis with the fault records generated by DFRs [12]. It is unclear
why this difference arises but it is most probably due to a reduced number of DFRs
in use by other utilities, limiting the number of records which must be interpreted
thereby making DFR analysis a more desirable option. For example, as of the year
2000, Reliant Energy HL&P in the USA only had 33 DFRs [13] compared with 100
deployed within ScottishPower.

Regardless of whether DFR analysis is conducted at the outset or later in the post-
fault analysis process, the protection engineers would benefit from automated fault
record analysis. However, before fault record analysis is discussed the mechanisms

by which fault records are retrieved from DFRs must be introduced.

3.3.2.1 Fault Record Retrieval

The majority of DFR manufacturers software is intended for use at a central location,
such as the utility’s head office, where communications from the master station
running the software to the DFRs will be via the public telephone network. Each
DFR has a unique telephone number which the software can dialup to establish a
connection. The number of available phone lines and the capabilities of the software

limit the number of DFRs that can be connected to at any one time.

DFR manufacturers offer a range of fault record retrieval options:

52

* Manual Retrieval: The protection engineer can select a DFR from a list and
initiate dialup. If the connection is successful, any records not previously

retrieved will be uploaded to the master station and archived at head office.

» Autopolling: This is a feature popular with utilities with large numbers of
DFRs as the software autopolls all the DFRs over a time period set by the

protection engineer and automatically retrieves any new fault records.

= Automatic Upload: This is where the uploading of new fault records to the
master station is initiated by the DFR. This is desirable when there are only a
few DFRs, since with large numbers the limited number of communications
channels can quickly become clogged during periods of high activity, such as

storms, just when they are needed most.

The choice of retrieval mechanism is down to the protection engineer and is dictated
by the number of DFRs and the available communications channels. At
ScottishPower, the software is set to autopoll the DFRs over a 24-hour period with

the protection engineer still having the option of initiating a manual retrieval.

It is important to note that autopolling only ensures retrieval of all the data and does
not prioritise the retrieval based on the evolving system conditions. Furthermore, the
limited storage capacity of many older generation DFRs mean that if fault records are
not retrieved quickly newer records may overwrite them, a problem particularly
apparent during storms. Although this problem has been largely overcome with the
greater storage capacity of newer generation DFRs, populations of older generation
DFRs may still exist in many utilities. The research described later in this thesis will
propose an effective means for ensuring prioritised retrieval of fault records, thereby
significantly reducing the possibility of disturbance related fault records being

overwritten in older generation DFRs.

3.3.2.2 Fault Record Analysis

The protection engineer is now confronted with a large number of fault records,
which have either been retrieved manually or by autopolling, and must be interpreted

to ascertain what has happened.

53

Manual interpretation would require the use of the DFR manufacturers software to
visualise each record. These visualisation tools vary depending on manufacturer but

have a number of generic features:
* Scaling to enable zooming in or out on areas of interest

* Configurable colour schemes allowing different colours to be assigned to the
different DFR channels, e.g. Red, Yellow and Blue for the channels recording

red, yellow and blue phase voltages.
* Cursors which provide the value of each channel at a given instance in time.

Using their knowledge of how faults manifest themselves and the protection
schemes, the protection engineer can use these visualisation tools to gain the
information they require. However, in similar to other aspects of manual post-fault

analysis, this process is laborious.

To help the protection engineers decide which fault records contain disturbance
related data, some manufacturers are incorporating expert systems, similar to that
developed by Kezunovic [14], into their software which classifies the records as they

are retrieved.

Using signal processing algorithms to identify the faulted phase(s) and simple
parameter calculations, the pre-fault, fault and post-fault currents and voltages and
the protection digitals are input into an expert system, which uses simple rules to
classify the fault. The output of the expert system are plain English descriptions of
the recorded event, such as “The disturbance is a phase yellow to ground fault”,
which can be displayed against each fault record. This, combined with different
display colours for each fault type, provides the protection engineer with the visual

cues necessary to decide which records to focus analysis on.

At the time of writing this thesis, this automated classification facility was not
available within the DFR software used by ScottishPower protection engineers.
Instead they had to rely on a simplified fault record interpretation tool, which
extracted the parameters of interest and output them to a text file. This software used
simple algorithms to identify the faulted phases, fault clearance times and protection

operating times.

54

3.3.3 Protection Validation Toolkit

Perhaps the most onerous task is validating whether the protection scheme operated
correctly and, if incorrect operation is discovered, deciding which component

malfunctioned and why.

To assist with this task, many protection engineers have at their disposal libraries of
protection models and simulation packages, including: MATLAB, SIMULINK, C++,
Java and software models of a protection relays’ dynamic behaviour (Dynamic
Protection Models or DPM) [15] Using the analogue voltages and currents captured
in the fault records as input to the models, the protection engineer can determine the
expected behaviour of the protection. This behaviour can then be compared against
the actual behaviour indicated in the fault record and the protection operation
validated. This is a laborious process requiring the protection engineer to be

competent at using each simulation package and to be familiar with the models.

Processed
DFR data MATLAB 1
¢ DPM |
.) Protection
Diagnostic Component
Engine Model
l 4 Library
Diagnosis

Figure 3-5 The diagnostic engine draws on a library of protection models

To assist protection engineers with the validation of protection performance a unique
toolkit has been developed that utilises the existing model library and processed DFR

data as input to a diagnostic engine using MBD [16], as illustrated in Figure 3-5.

The toolkit is based on an earlier diagnostic engine developed by Bell et al [17],
which was deployed at ScottishPower and used consistency based diagnosis;
diagnosis only using models of correct behaviour. This diagnostic function is

achieved by detecting deviation from nominal behaviour and identifying the

55

components of the system whose failure could be logically responsible for the

deviation.

The consistency-based approach has a number of advantages. As diagnosis is based
on knowledge of function rather than malfunction, novel faults, i.e. faults never
experienced before, can be diagnosed. The failure of more than one component of the

protection scheme is also considered.

Where consistency based diagnosis fails is that it cannot provide the cause of the
failure. For example, if a protection relay operates slowly, a consistency-based

system would only be able to detect that it had malfunctioned but not how.

To overcome this failing, the new toolkit extends the consistency based diagnosis
algorithm employed in the earlier system to include abductive diagnosis; diagnosis
using models of faulty behaviour. This new diagnostic process involves the use of
consistency-based methods to identify components that may have malfunctioned.

Models of faulty behaviour are then used to identify particular fault modes.

The toolkit is a standalone system that requires the user to input processed fault
records and select the protection scheme to be modelled — the system then runs the
appropriate models and generates a diagnosis. The same fault record interpretation
tool utilised by ScottishPower protection engineers and mentioned in section 3.3.2.2

provides the processed fault records.

HERL ST Fay
‘;_‘a" 1113%)

Date Generated: Mon Jul 28 14:48:37 GMT 2003
Digital Fault Records Analysed
SUBSTATION_A 400KV RECORDER 1 Mon Jul 22 13:20:39 GMT 2002
SUBSTATION_B 400KV RECORDER 1 Mon Jul 22 13:20:39 GMT 2002

Summary:
One or more protection scheme components may have malfunctioned

Diagnoses:
SUB_A TR1 may have malfunctioned

Figure 3-6 Protection validation report for a disturbance

56

The diagnosis produced by the toolkit is formatted suitable for viewing via an

Internet browser and provides a summary and diagnosis, as illustrated in Figure 3-6.

The protection validation report illustrated in Figure 3-6 is the result of analysis of
two fault records from the substations at each end of a circuit: SUBSTATION_A and
SUBSTATION_B. Using a representation of the protections scheme and models of
its components, the diagnostic engine has identified that Trip Relay 1 (TR1) at
substation A may have malfunctioned. Note that there is no failure mechanism

identified since there were no failure models available for the trip relay.

The information provided in these reports is extremely useful since it both validates
the protection operation and identifies any components that may have malfunctioned.
Furthermore, this is achieved without the protection engineer having to run any
models or simulations. The protection engineer can use this information as the
justification for further investigations into why the failure occurred, hopefully

leading to a remedy.

At the time of writing this thesis, this toolkit is only available to ScottishPower
protection engineers. Other similar systems have been developed, such as Timely

[18], however the extent to which they have been deployed is not clear.

3.3.4 Integrated Systems for Decision Support

The DSS available to protection engineers provide decision support through the
automation of data interpretation. This lifts the data interpretation burden off the
protection engineer by providing diagnostic information enabling the protection

engineer to reach a quicker understanding of what has happened.

However, it is still left for the protection engineer to consider the diagnoses
generated by each system and collate the information related to a specific
disturbance. Therefore, to enhance decision support automated data and information

collation is required.

Such levels of decision support can be achieved through the integration of individual
systems into an architecture that facilitates the communication of information

between each system. Each system can be then utilise the received information to

57

decide on an appropriate action, e.g. change fault record retrieval priorities to retrieve

fault records from DFRs on a circuit where protection operation has been detected.

One such integrated system is that developed for ScottishPower by Bell [19] which
integrates APEX, RESPONDD, the consistency based diagnostic engine for
protection validation (the forerunner of the protection validation toolkit) and
proprietary fault record retrieval and TWFL software. The main goal of this
architecture is to automate the retrieval of data to facilitate automated protection

validation.

To realise this goal, control modules were integrated along with APEX and
RESPONDD to provide the DFR retrieval and TWFL retrieval software with the
information necessary to prioritise retrieval of disturbance related data. The required
date, time and location of the fault are determined by these modules by using simple
algorithms to interpret the diagnoses generated by APEX and RESPONDD. This

prioritised data retrieval process is described in [20] and illustrated in Figure 3-7.

SCADA Data
Feed

DFR Retrieval APEX & TWFL Retrieval
Software RESPONDD Software
. Fault recorder Fault locator Pollin
Polling Control module Control module &
> Corporate Wide File <
Server

Figure 3-7 Data retrieval process within hybrid system developed by S. Bell

The information generated by the control modules is stored on a corporate wide file
server, which both the DFR retrieval and TWFL retrieval software poll to identify if

any new power system fault has occurred. On receipt of information from their

58

respective control modules, the DFR retrieval and TWFL retrieval software dial-up
and retrieve fault records and locations produced at the related substations around the

time specified.

Although this integrated data retrieval architecture solves the problem of prioritised
data retrieval by sub-division of the fault identification, retrieval prioritisation and
data retrieval initiation to different software components, it cannot be described as a
hybrid intelligent system since both the intelligent systems utilised (APEX and
RESPONDD) are KBS. However, the later inclusion of the protection validation
system introduced another Al technique, MBD, to complement the knowledge-based
systems employed by APEX and RESPONDD, thus enabling the integrated

architecture to be classed as hybrid intelligent system.

Although the hybrid intelligent system, developed by Bell is the only one to focus on
protection engineering, other hybrid intelligent systems have been developed for
fault diagnosis of power systems. Both P.R.S. Jota [21] and R. Rayudu [22] have
developed hybrid systems for assisting control engineers with fault diagnosis of
power systems, with P.R.S. Jota having also developed a system for diagnosing

power transformer faults.

3.4 Required Enhancements to Decision Support

Prior to the introduction of DSS, the protection engineers had to conduct the entire
post-fault disturbance analysis process manually, relying on their experience and
knowledge of the protection schemes. The introduction of intelligent systems, such
as APEX and the protection validation toolkit, have automated many of the manual
data retrieval and interpretation tasks releasing some of the protection engineers
time. Furthermore, the diagnoses generated can assist the engineer in deciding what
disturbances require further investigation, and where to focus protection

maintenance.

Although advances in decision support have been made, a number of enhancements
are required to optimise the assistance provided and ensure the future provision of

decision support. These are as follows:

59

» Either a new alarm processor focussed on post-fault disturbance analysis
must be developed or extensive modifications to APEX are required to bring
it in line with the disturbance analysis process followed by protection
engineers. At the moment, the reasoning mechanism employed within APEX

prohibits it from identifying incidents and grouping incident related SCADA.

* Although prioritised fault record retrieval has been achieved using the hybrid
intelligent system developed by Bell, the introduction of new DFRs and fault
record formats has led to the system becoming obsolete. A new architecture is
needed which can accommodate new devices and provide the automated and

prioritised data retrieval which is required.

* The new architecture must allow the easy integration of new DSS and devices
without the need for extensive modifications. This would ensure the
continued enhancement of decision support through the integration of new

data sources and DSS.

* Currently, the protection engineer must have knowledge of how to operate
each DSS and proprietary tool. To optimise decision support, automation of
these DSS and tools is required together with a common interface where user

intervention is minimised.

3.5 Chapter Summary

The research field of intelligent systems has been introduced with the fundamentals
being described to a level appropriate to this thesis. Particular attention has been paid
to describing the components within knowledge based and model based systems as
they will be referred to later in the thesis. The combined use of diverse Al techniques
within hybrid systems has also been introduced, providing a good foundation for

later discussions on the use of multi-agent systems as a platform for such systems.

The intelligent systems that provide decision support to ScottishPower protection
engineers during post-fault disturbance analysis were also introduced. A number of
required enhancements to these existing systems have been identified together with

the need for a flexible hybrid architecture to ensure the long-term provision of

60

decision support. The remainder of this thesis will demonstrate an effective means of

implementing the required enhancements, beginning with the introduction, in chapter

four, of an alarm processor specifically designed for post-fault disturbance analysis.

3.6 References

[1].

(2]-

3]
[4].

[5].

[6).

171

(81

[9].

[10].

[11].

G. Shreiber, et al, '"Knowledge Engineering and Management: The CommonKADS
Methodology', MIT Press, 1999.

D.A. Waterman (Editor), “A guide to expert systems”, Addison-Wesley Publishing
company, 1986.

J. Kolodner, “Case Based Reasoning”, Morgan Kaufman Publishing, 1993.

J. de Kleer, B.C. Williams, “Diagnosing Multiple Faults”, Artificial Intelligence,
v32,n 1, pp. 97-130, April 1987.

R. Davis, W. Hamsher, “Model-Based reasoning: Troubleshooting”, Readings in

Model Based Diagnosis, Morgan Kaufman Publishers, pp 3-24, 1992.

AK. Kordon, “Hybrid Intelligent Systems for Industrial Data Analysis”, First
International IEEE Symposium on Intelligent Systems, September 2002.

Khosla. R, Dillon. T, “Engineering Intelligent Hybrid Multi-Agent Systems”,
Kluwer Academic Publishers, 1997.

D.S. Kirschen, B.F. Wollenberg, “Intelligent Alarm Processing in Power Systems”,
Proceedings of the IEEE, v80, n5, May 1992, pp 663-672.

S.D.J. McArthur, J.R. McDonald, S.C. Bell, G.M. Burt, “An Expert System for
On-line Analysis of Power System Protection Performance”, in Proc. 1994 Expert
Systems conference: Applications and Innovations in Expert Systems, Dec 1994,

pp 125-142.

J.R. McDonald, et al, “Alarm Processing and Fault Diagnosis Using Knowledge
Based Systems for Transmission and Distribution Network Control”, IEEE
Transactions on Power Systems, v7, n3, August 1992, pp 1292-1298.

G.M. Burt, “An Expert System Approach to on-line fault diagnosis in power
system networks”, PhD thesis, University of Strathclyde, Department of Electronic
and Electrical Engineering, 1992.

61

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

M. Kezunovic, T. Popovic, D.R. Sevcik, A. Chitambar, “Requirements for
Automated Fault and Disturbance Data Analysis”, CIGRE Colloquium, SC BS-
Protection, Australia, September 2003.

D. R. Sevcik, et.al, “Automated Analysis of Fault Records and Dissemination of

Event Reports”, Fault and Disturbance Analysis Conference, Atlanta, May 2000.

M. Kezunovic, P. Spasojevic, C.W. Fromen, D.R. Sevcik, “An Expert System for
Transmission Substation Event Analysis”, IEEE Transactions on Power Delivery,

v8, n4, October 1993, pp 1942-1949.

A. Dysko, J.R. McDonald, G.M. Burt, J. Goody, B. Gwyn, “Integrated Modeling
Environment — A Platform for Dynamic Protection Modeling and Advanced
Functionality”, IEEE Power Engineering Society Transmission and Distribution

Conference, April 1999.

E. Davidson, S.D.J. McArthur, J.R. McDonald, “A Tool-Set for Applying Model
Based Reasoning Techniques to Diagnostics of Power Systems Protection”, IEEE

Transactions on Power Systems, v18, n2, May 2003.

S.C. Bell, et al., “Model-based analysis of protection system performance”, IEE
Proceedings: Generation, Transmission and Distribution, v145, n5, pp 547-552,

September 1998.

M. Chantler, et al, “Use of fault-recorder data for diagnosing timing and other
related faults in electricity transmission networks”, IEEE Transactions on Power

Systems, v15, n4, pp 1388-1393, November 2000.

S.D.J. McArthur, S. Bell, J.R. McDonald, et al, “The Development of an Advanced
Suite of Data Interpretation Facilities for the Analysis of Power System
Disturbances, CIGRE 1998, Paris, France.

S.C. Bell, “Model & Knowledge Based Techniques for the Interpretation of Power
System Protection & Operational Data”, PhD thesis, University of Strathclyde,
Department of Electronic and Electrical Engineering, 1998.

P.R.S. Jota, et al, “A class of hybrid intelligent system for fault diagnosis in electric
power systems”, Neurocomputing, v23, 1998, pp 207-224.

R.K. Rayudu, S. Samarasinghe, A. Maharaj, “A Co-operative Hybrid Algorithm
for Fault Diagnosis in Power Transmission”, IEEE Power Engineering Society

Winter Meeting”, 2000.

62

Chapter 4. Intelligent Alarm Processing for

Post-Fault Disturbance Analysis

63

4.1 Chapter Overview

This chapter describes an intelligent alarm processor for assisting protection

engineers with the post-fault disturbance analysis alarm interpretation task.

The chapter commences with a review of automated alarm interpretation and the
practical problems existing alarm processors have had to overcome to assist control
engineers. The existing deficiencies in protection engineering alarm processing are
discussed through presentation of the manual approach to alarm interpretation
adopted by protection engineers and their requirements for an online intelligent alarm
processor. The nature of the domain and topology knowledge used by protection

engineers during manual alarm interpretation is also described.

An online intelligent system entitled the Telemetry Processor specifically developed
to improve the alarm interpretation and diagnostic functionality available to
protection engineers is then presented. The design choices made, a novel reasoning
methodology for protection engineering alarm interpretation and the online

implementation of the Telemetry Processor are all discussed.

The chapter concludes with a case study and an evaluation of the Telemetry

Processor’s performance.

4.2 Automated SCADA Interpretation

Energy Management Systems (EMS), and their associated SCADA systems, have
long been used by utilities to alert network control engineers to power system
parameters that are out of normal range or to changes that may affect the operation of
the power system. A survey of control engineers in the early-1980’s [1] highlighted
that as the number of alarmed parameters increased into the tens of thousands, they
were being faced with excessive volumes of alarms which inhibited their effective
management of the network. Part of the problem was that many of the alarms are
actually presenting data that is intended more for engineers interested in protection
and telecommunications and has less immediate operational value to control

engineers.

In an effort to alleviate this problem a feasibility study was conducted in the mid-
1980’s into the possibility of integrating an intelligent alarm processor into the EMS
[2]. The results of this study provided the groundwork for a significant body of
research during the 1980°s and 90’s into the application of Al for alarm processing

which eventually resulted in a number of intelligent alarm processors.

The primary intent of alarm processors is to present a clear picture of the power
system status during and after disturbances by significantly reducing the amount of
data presented and providing information in the form of concise event summaries [3].
To realise this a number of practical problems must be overcome as illustrated in

Table 4-1 on the next page.

Existing alarm processors employ a range of Al techniques to try and address these
practical problems. In [4] and [5] Artificial Neural Networks (ANN’s) are applied
and in [6] Logic Based Systems are used, however, by far the most applied technique
is Knowledge Based Systems (KBS). There are several reasons for the dominance of

KBS over other techniques:

e Using a structured knowledge elicitation process such as CommonKADS [7]
the heuristic knowledge experts use to perform alarm processing can be
captured and modelled. This knowledge can be encapsulated as rules
eliminating the need to develop detailed models or logic formulae of how the

system operates.

o The KBS architecture (see Figure 3-1) provides for separation between
reasoning and knowledge enabling knowledge base maintenance without

interfering with the inference mechanism.

e Unlike ANN’s, no training of the inference mechanism is required and the
quality of conclusions reached is dependent on the extent of the knowledge
base, which can be maintained and updated, as opposed to the size and

quality of data set used to train an ANN.

65

Practical
Problems

Impact on Alarm Processing

Alarm rate

The volume of alarms received by the alarm processor is dependent
on the levels of power system maintenance activity and number of
faults occurring. A typical 24-hour period can see 2511 alarms
being generated. This can increase substantially during storms with
alarm numbers as high as 51410 being recorded in 24 hours, of
which 16683 of these alarms were generated over a 5-hour period.

Alarms, therefore, are not guaranteed to arrive at a steady rate and
any alarm processor must be able to cope with changing alarm

volumes while still providing real-time alarm interpretation.

Missing

Alarms

An alarm processor can only reason based on the received alarms.
Often this data is incomplete, since alarms can be lost before they
reach the control centre due to communications problem. Alarms
may also be missing if a device failed to operate and they were
never generated. In this scenario, the knowledge that an alarm was
never generated may be pertinent. It is, however, impossible to
determine, purely from the received alarms, whether an alarm was
generated and lost during communications or an alarm was never

generated due to a device failure.

Delayed

alarms

Alarms may be delayed due to communications problems or the
SCADA polling schedule. A temporal reasoning capability is
therefore required to determine whether all expected alarms have

been received.

Multiple
simultaneous

events

Alarm processors must be able to perform analysis of several events
simultaneously to avoid substantial delays in providing information

to the control engineer.

Maintenance

The alarm processor must maintain its network connectivity
representation in line with that used within the EMS and by the
control engineers. The alarm processor must also maintain its list

of possible alarms in line with those recognised by the EMS.

Table 4-1 Practical problems and their impact on alarm processing.

66

Alarm processors developed using the KBS approach follow a reasoning
methodology to control the overall alarm interpretation process. If the reasoning
methodology is viewed as a series of core alarm interpretation stages surrounded by
additional functions for alarm pre-processing and event output, existing alarm
processors can be considered as following a single stage reasoning methodology
where a single inference engine performs alarm interpretation. This single inference
engine, specifically its reasoning strategy, has been the primary focus of alarm

processing research to date.

Expert system shells, such as CLIPS [8] and G2 [9], developed to assist with the
development of KBS, provide a generic inference engine and knowledge base but are
devoid of any domain knowledge. If used to develop an alarm processing KBS, such
expert shells can pose a number of problems. Firstly, whilst extensive configurability
may be built in to the shell, an alarm processor may only require a subset of these
capabilities. The functionality not utilised will represent an overhead in terms of
computing resources (memory, storage capacity, etc.), which may impinge on the
real-time performance of an alarm processor. Secondly, there may be a significant
performance penalty attributable to the use of generalised reasoning, by comparison
with reasoning adapted specifically to alarm processing. Finally, and on a related
note, alarm processor developers have reported an inability of the reasoning strategy
adopted within a shells inference engine to adequately represent and reason about
temporal issues [10]. Due to these perceived disadvantages, alarm processor

developers have instead opted for application specific inference engines.

The reasoning strategies employed within the application specific inference engines

fall into one of two categories: Pattern Matching and Hypothesise-and-test.

Pattern matching has been adopted as the reasoning strategy within the inference
engines of the SPARSE [11], KBAP [12], and NSP [13] alarm processors. In each
the pattern matching strategy compares the received alarms with the alarm sequence
expected by each rule. When a match is found the rule fires and the appropriate

conclusion for the alarm sequence is generated.

The main problem with pattern matching is that an exact match is required between

the received alarms and expected alarm patterns before rules can fire. This means

67

that the process can fail if all the expected alarms are not received. An alternative

strategy is the hypothesise-and-test strategy utilised in APEX [14].

Upon receipt of a new alarm, an inference engine following a hypothesise-and-test
strategy consults the knowledge base to identify possible causes for the new alarm. A
set of hypotheses is then created, one for each possible cause, specifying the alarms
expected by the hypothesis. These hypotheses are added to a list of hypotheses under
consideration. Each hypothesis in the list is then evaluated using a scoring system to
determine whether it may be considered justified and thus identified as a conclusion.
Most commonly, justification will require that a number of supporting alarms have
been received. Timing constraints may also be included in the process. For example,
it may be specified that all evidence must be accounted for within a fixed time of its
observation. Following expiry of this time, then the highest scoring hypothesis is
selected as offering the best conclusion. This enables conclusions to be reached even
in the event of alarms being lost due to communications failures or in situations
where alarms have not been generated due to device failures. However, it must be
reiterated that there is no means of distinguishing between alarms missing due to

communications failures and those missing because they were never generated.

Many of the event summaries control engineers require relate to changes in network
topology caused by the protection initiated opening of circuit breakers following a

fault. To process topology, knowledge of the network connectivity is required.

The ideal source of network connectivity is the topology database used within the
EMS however many researchers have reported that access to this database has been
inhibited by difficulties with integrating the alarm processor into the EMS [10]. An
alternative approach adopted within many alarm processors, including KBAP [12]
and APEX [14], is to have a separate topology database. However, the maintenance
of a topology database separate from the EMS can prove extremely time consuming
and relies on personnel with knowledge of the intricacies of both the EMS and the

alarms processor and who are capable of amending the topology on a regular basis.

68

4.3 Post-fault SCADA Interpretation

Control engineers are not the only users of SCADA data. Protection engineers use
the same SCADA alarms during the Incident SCADA Interpretation Cycle of post-
fault disturbance analysis (as illustrated in Figure 2-9) to identify disturbances and

investigate protection operations.

The SCADA interpretation needs of protection engineers have been largely ignored
by the research community with alarm processing research focussing predominately
on the development of efficient temporal reasoning strategies to enhance real-time

alarm processing for control engineers.

A number of researchers have tried to address the protection engineers’ needs by
providing off-line automated alarm processing facilities based on existing alarm
processors [6] or modifying the knowledge base of online systems to identify events
of interest [15]. However, the single stage reasoning methodology employed within
these alarm processors is still based around solving the practical problems facing
control room alarm processing. As a result much of the interpretation functionality

required by protection engineers is missing.

The following sections help illustrate the deficiencies in these systems by describing
the manual approach to SCADA interpretation adopted by protection engineers and
the actual alarm processing requirements of protection engineers. This information

was elicited from ScottishPower protection engineers.

4.3.1 Manual SCADA Interpretation

It is not until a protection engineer checks the database of generated SCADA or is
contacted by a control engineer that the occurrence of protection operations, and
possibly faults, on the network is recognised and this can be several hours to a few
days after the protection operations have occurred. Having been informed the
protection engineer commences interpretation of the alarms generated over the
period that the protection operation(s) occurred. The interpretation procedure has
already been introduced in chapter two but is elaborated upon below and illustrated

in Figure 4-1.

69

The procedure begins with retrieval from the SCADA archive of alarms generated
around the period of interest. Having retrieved the alarms the process of identifying
incidents and events can commence. To reiterate the definition of incidents and

events presented in chapter two:

* The Incident data set contains all the data pertaining to a particular
protection operating sequence. Note that although a protection operating
sequence will most often be initiated by a fault, it may be initiated as the

result of a mal-operation.

* The Event data set contains the data related to operation of particular
protection scheme components and is a more focussed look at what actually
happened during an incident. The primary indicators are SCADA alarms and

there will be many events associated with an individual incident.

Stage 1 — Identify Stage 2 - Incident Stage 3 — Identify
Incident Inception Alarm Grouping Incident Conclusion
| Feeder & 4 ‘ i

=———| Inception |=———= ‘

I

scaoa || Trne |

Retrieve Alarms e

& Begin Analysis =E=| __%___ > ==
v

== \ =
/‘ ; No_+

I Conclusion
Look for next ' Concluded Incident
Incident \ & Grouped Alarms
\ Stage S - High-level ~ Stage 4- Low-level
\ Event Identification Event Identification
I !
High-Level Low-Level | ——
Events | Events E
Incident Report * +

Figure 4-1 Manual alarm interpretation process

The manual incident and event identification process illustrated in Figure 4-1

consists of five stages as described on the next page:

70

Stage 1.

Stage 2.

Stage 3.

Stage 4.

Stage S.

Incident Start Identification:

Engineers scan the retrieved alarms for patterns indicating that a feeder
protection scheme has detected a fault and operated. When an alarm
pattern is found indicating incident start, the incident start time and

incident feeder, from the protection alarm fields, are noted.
Incident Alarm Grouping:

Engineers then begin grouping the incident alarms by selecting the next
alarm after incident start that has not already been checked. A topology
check of the alarm against the incident circuit is then performed,

recording an alarm from the incident circuit as part of the incident.
Incident Conclusion Identification:

The engineers then scan the incident alarms grouped thus far for alarm
patterns indicating incident conclusion. If no conclusion is identified the
engineer returns to stage 2. The engineer continues this iterative process
until the incident has been concluded at which point all alarms not

directly related to the incident have been filtered out.
Low-level Event Identification:

Engineers then scan the grouped incident alarms for individual alarms or
pattern of alarms indicating events of interest such as protection relay
operations or changes in circuit breaker status. This ‘1 pass’ of the
grouped incident alarms results in the recording of ‘Low-Level’ events
indicating the nature and time of pertinent events in the protection

operating sequence.
High-level Event Identification:

The engineers then conduct a «pnd pass’ of the grouped incident alarms
taking into account the identified low-level events. At this stage in alarm
analysis the protection engineer is looking to identify ‘High-Level’
events indicating whether the protection scheme operated correctly and

any if there could be any anomalies.

71

On completion of stage 5 an incident report is generated and alarm analysis returns to
stage 1, beginning with alarms occurring after the last incident start. The alarm

analysis process continues until no more alarms remain to be interpreted.

4.3.2 Protection Engineering Alarm Processing Requirements

The manual approach to alarm interpretation is extremely time-consuming and can,
following severe storms, take an experienced protection engineer many days to
perform, e.g. for a UK based utility it took one engineer 10 days to process over
15000 alarms. An intelligent alarm processor focussed on the post-fault disturbance
analysis alarm interpretation task is therefore necessary in order to reduce the amount

of time and effort expended by a protection engineer.

Discussions with protection engineers about their requirements for just such an alarm

processor revealed the following:

1. Online interpretation of alarms is essential to avoid delays in engineers

retrieving alarms and initiating interpretation using an off-line system.

2. Alarms should be retrieved from the same SCADA archive used during

manual disturbance diagnosis, thereby avoiding EMS integration issues.

3. Real-time alarm interpretation is not essential with information provision
several minutes after incident conclusion being perfectly acceptable; this is

still a significant improvement over the current approach.

4. Provision of identical information to that produced during manual alarm
interpretation is required, namely: incident summaries, grouped incident

alarms, low-level event summaries and high-level event summaries.

5. Information should be presented in an easily digestible format with access at

the user’s convenience from locations throughout the company.

6. Low-maintenance of the alarm processing facility is essential to minimise

support costs and ensure long-term benefit.

It was evident from the captured requirements that protection engineers are willing to

wait for the provision of information with the caveat that the underlying alarm

72

interpretation process emulates the manual approach, generating identical incident
and event information. This is significant, since it suggests that a shift in the focus of
alarm processing research is required, from developing efficient temporal reasoning
strategies for real-time performance, to developing reasoning architectures more
suited to the needs of protection engineers. Therefore, the challenge was to develop a
reasoning architecture capable of emulating the multi-stage reasoning adopted by
protection engineers during post-fault disturbance analysis. Although real-time
performance was not essential, the practical problems of missing alarms, multiple

simultaneous events and maintenance still remain.

4.4 Knowledge Capture

Protection engineers use knowledge of the protection engineering domain and
network topology to perform alarm interpretation. This knowledge had to be

captured before development of the alarm processor could commence.

4.4.1 Domain Knowledge

The domain knowledge used by protection engineers has been learned through years
of experience and extensive knowledge of transmission feeder protection schemes.
To capture this knowledge the utility’s protection engineers were interviewed using

the structured knowledge elicitation technique described in chapter three and [7].

Using actual disturbance case studies, the engineers were asked to give a description
of the interpretation process for each case study and list the incidents and events
generated. For each listed incident and event, the engineers were asked to elaborate
on how they came to a particular conclusion based on the available alarms, their
general protection knowledge and any peculiarities of the actual protection scheme
which operated in response to the disturbance. These structured interviews enabled

knowledge transcripts to be produced documenting the domain knowledge used.

Having compiled the knowledge transcripts, further meetings with the protection
engineers were conducted to validate the transcribed knowledge and identify any

omissions in the elicited knowledge. Further structured interviews were conducted to

73

elicit knowledge addressing the identified omissions. Following successful
validation, rules were created from the transcribed alarm interpretation knowledge,
which were again validated by the protection engineers. Validation of the rules was

conducted using case studies not previously used during knowledge elicitation.

It should be noted, that the elicited knowledge was generically applicable across all
transmission feeders within ScottishPower’s network. This is due to every
transmission feeder employing a protection scheme based around a common theme:
two main protections, a backup protection, intertripping and DAR. Any variation in
the protection schemes was captured by selecting case studies where the scheme in

question had operated.

The captured domain knowledge can be split into four sub-sets used during different
stages of the alarm interpretation process illustrated in Figure 4-2. Each sub-set is
summarised below with examples of the elicited knowledge, where appropriate. Note
that the alarm grouping stage does not require any detailed domain knowledge,
instead only requiring a simple topology check. Although, due to their size, the
knowledge transcripts have been omitted from this thesis the elicited knowledge will
become clear as the developed rules are demonstrated during performance evaluation

in section 4.6 of this chapter.

4.4.1.1 Incident Start Identification

The elicited knowledge revealed that, regardless of the disturbance cause, the first
indication from the alarms that a disturbance has occurred and been detected by the
protection scheme is the presence of a protection, trip or intertrip relay operated
alarm. If within 1 second (in terms of the SCADA clock and not real-time in terms of
the alarm processor), this alarm is followed by an alarm indicating the opening of a
circuit breaker at the same circuit end as the first alarm then it is almost certain that a
protection incident has started. This incident start identification rule can be

represented as illustrated on the next page:

74

RULE: incident_start
IF Alarm with legend indicating protection, trip or intertrip relay operation
AND Alarm indicating an open circuit breaker
AND Both alarms are at the same circuit end.
AND First alarm comes before second alarm
AND Time difference between alarms does not exceed 1000ms
AND First alarm is the earliest protection, trip or intertrip at circuit end
THEN

Note the incident start time and circuit from the first alarm.

It was also noted from the knowledge transcripts that transmission feeder protection
schemes have at least two sets of protection both of which are expected to operate in
response to a disturbance. The time stamp of the earliest protection, trip or intertrip

relay to operate should be taken as the incident start time.

4.4.1.2 Incident Conclusion Identification

As discussed earlier, in section 2.4.3 of chapter two, transmission feeder protection
schemes are augmented with DAR equipment, in an attempt to avoid circuits being
switched out unnecessarily due to transient faults. The DAR switching sequence is

also commonly referred to as autoswitching.

Following a protection operation, a DAR relay will attempt a circuit breaker
reclosure. If the disturbance, which caused the initial protection operation, is due to a
persistent or permanent fault, then the protection scheme will start another operating
sequence to re-open the circuit breaker. The control engineer would traditionally
view this as a single incident, however, from the perspective of the protection
engineer, it was evident that this should be viewed as two separate incidents. As a
result there were only four possible conclusions to an incident which were apparent

from the knowledge transcripts:
e Successful autoswitching sequence:

Following the initial protection operation, alarms have been received indicating

that the DAR relay has gone through its entire sequence, successfully re-

75

energising the circuit and resetting its timer ready for the next disturbance. This
not only indicates a successful DAR operation but also suggests a transient fault

as the root cause of the operation.

Successful autoswitching sequence but with circuit breaker trip-on-close:

Following the initial protection operation, the DAR relay has gone through its
entire sequence, however, on attempting a reclosure, the protection has operated
again tripping the circuit breaker and locking out the DAR relay (since it has
completed its one allowable reclosure attempt). This suggests a permanent fault
as the root cause of the operation. In this case two protection scheme operations
have occurred, i.e. two incidents, so the protection engineer would conclude the
first incident when the circuit breaker that tripped on closing was closed and the
second incident one minute after the last circuit breaker that opened because of

the protection scheme operation.
Incomplete autoswitching sequence:

Following the initial protection operation, no alarms have been received
indicating completion of the DAR sequence. Either this suggests a problem with
the DAR or that an event has occurred which has inhibited the DAR, e.g. low gas
pressure on a circuit breaker. In this case, the protection engineer would conclude
the incident after they are satisfied that the protection sequence is over, i.e. one

minute after opening of the last circuit breaker.
Autoswitching not initiated so default closure after a pre-defined period.:

Following the initial protection operation, no alarms have been received
indicating DAR sequence initiation. Possible reasons for this are that the DAR
relay is non-operational, has failed to operate or has been left locked out by the
control engineer when the circuit was last re-energised. In such cases, the
protection engineer would deem that the incident has concluded one minute after

the last circuit breaker that opened because of the protection scheme operation.

76

4.4.1.3 Low-Level Event Identification

As described in section 4.3.1, once an incident has been identified, incident alarms
grouped and the incident concluded, the protection engineer begins stage four of

post-fault SCADA interpretation, namely: low-level event identification.

The elicited knowledge indicated that protection engineers interpret the grouped
incident alarms to identify alarms relating directly to operation of protection scheme
components, thereby filtering out those that are of no interest, e.g. intruder alarms
etc. Alarms of interest are main protection operations, intertrips, DAR sequence

alarms, circuit breaker open alarms etc.

Furthermore, the elicited knowledge also revealed that the protection engineer often
rewords and expand the legends of alarms of interest to generate the protection event
summaries. This is because the SCADA system limits the size of any alarm legend
string to 25 characters, often resulting in a greatly summarised description of the
protection operation to which the alarm refers. For example, the protection engineer
would reword the alarm legend “3RD MAIN COMMS CHNL FLTY” into “THIRD
MAIN PROTECTION COMMUNICATIONS CHANNEL FAULTY”, providing a

more amenable summary of the protection operation.

In addition to these low-level protection events, the protection engineer is also

looking for event summaries which provide some general information about the
incident. The events of interest are normally generated from an alarm pattern and are

as follows:
o The number of milliseconds to complete autoswitching.
o Whether all tripped circuit breakers were closed by autoswitching.

o The elapsed time between incident start and conclusion.

4.4.1.4 High-Level Event Identification

It was clear from the knowledge transcript that the high-level events generated
during a second pass of the incident alarms and low-level events were of most
interest to the protection engineer. It is at this stage that the protection engineer used

generic knowledge of the expected protection scheme operation to identify whether

77

all components operated and if there are any potential anomalies requiring further

investigation.

The generic nature of the elicited knowledge was particularly apparent in the
captured high-level event knowledge. For example, as already stated, the protection
engineer expects at least two main protection operations in response to a disturbance.
If only one protection low-level event is identified then a high-level event is
generated indicating failure of the other expected protection as illustrated in the rule

below:

RULE: 2™ main_ failed to_operate
IF Low-level event with event summary “1* Main Protection Operated ON”
AND
NOT Low-level event with event summary “2™ Main Protection Operated ON”
THEN

Create a high-level event for “Failed 2" Main Protection Operation”

Similar rules were also captured for the failure of 1* main protection, no protection

operation at a circuit end and no initiation of DAR.

In addition to rules capturing protection failure, additional rules were captured to
generate high-level events indicating successful protection operation. Rules were
also captured to group high-level events related to successful protection and intertrip

operations into a single concise event summary as illustrated on the next page.

RULE: 1% 2™ intertrips_at_both_ends

IF High-level event with event summary “1* and 2" Intertrip received at
substation x on circuit y”

AND High-level event with event summary «1% and 2™ Intertrip received at
substation y on circuit x”.

THEN

Create a high-level event for “1* and 2™ intertrips received at both ends”

78

4.4.2 Topology

As is often the case with experienced protection engineers, the knowledge of network
topology can often be recalled from previous experience without referring to the
actual network topology. This is fine as long as the network topology has not
changed. However, the elicited domain knowledge revealed that the network
topology did not change on a regular basis and that the topology information explicit
or inferred from, within the SCADA alarms could actually be used thereby limiting

the use of the actual topology.

To demonstrate how the protection engineer derives the required topology
information from the utility’s SCADA alarms, the alarm format is illustrated in

Figure 4-2 along with example alarms in Figure 4-3 for two and three ended feeders.

Date, Time, Substation, Plant, Statusl, Circuit, Legend, Status2
~ v - Y v A J \ J \ — L_q,-—J 5—7—‘

~

1
‘» The alarm status

‘% The alarm legend / descriptor

-p» The substations at remote circuit ends

- The plant status

- The plant identifier
-9 The local substation

--p The alarm date and time stamp — resolution 100ms

Figure 4-2 Alarm format of ScottishPower PowerSystems SCADA system

Protection alarms for two ended feeder: SUBA / SUBB

06/08/03, 08:22:07.70, SUBA, , , SUBB, SECOND MAIN PROT OPTD, ON
06/08/03, 08:22:07.72, SUBB, , , SUBA, FIRST MAIN PROT OPTD ,ON

Protection alarm for three ended feeder: SUBA / SUBC / SUBD

06/08/03, 08:22:07.69, SUBA, , , SUBC/SUBD, SECOND MAIN PROT OPTD, ON

Plant alarms:

06/08/03, 08:22:07.88, SUBA, CB1, OPEN, , ,
06/08/03, 08:22:08.12, SUBB, CB1, OPEN, , ,

Figure 4-3 Example alarms for 2-ended circuits, 3-ended circuits and plant

79

The substation and circuit alarm fields are the principal source of topology
information. As is evident from Figure 4-3, all alarms at least contain an entry in the
substation field specifying the substation from which the alarm emanated. In the case
of protection alarms, additional topology information can be gained from the circuit

field containing the substations at the remote feeder end monitored by the protection.

Given the topology information explicit in protection alarms, it is possible for the
protection engineer to identify with certainty the feeder on which a disturbance
occurred. However once an incident start has been identified, the protection engineer
can find incident alarm grouping (stage two of disturbance alarm interpretation)
problematic without accurate topology information, particularly when the alarms

relate to large numbers of simultaneous or overlapping incidents.

Alarms containing circuit field entries are not a problem and can easily be compared
against the incident circuit information and grouped under the incident. Plant alarms,
which do not contain circuit field entries, are more of a problem and the protection
engineer must infer topology by considering the plant substation field and the

timings of the protection and plant alarms.

When the alarms relate to a unique incident, or there is no overlap with other
incidents, then it is assumed, with reasonable certainty that no plant operations will
occur during the incident other than those due to protection operations. It is,
therefore, possible to group all plant alarms occurring within a pre-defined time
frame following a protection alarm under the incident start. However, when the
alarms relate to simultaneous or overlapping incidents on feeders from a common
substation, it is impossible to identify which feeder the plant alarms from the
common substation relate to based purely on the alarm time stamps. It is at this point
that the protection engineer turns to a hard-copy of network topology. However,
protection engineers have indicated that such scenarios are infrequent and that they
only very rarely need to turn to hard copies of network topology. Nevertheless, this

problem will be illustrated in the case study in section 4.6 of this chapter.

It should be noted that effective design of a utility’s SCADA alarms is critical if
alarm time stamps and fields are going to provide enough information to infer

topology. When inferring topology, the circuit field plays a key role as it provides a

80

means of accurately identifying where in the network an alarm emanated from.
However SCADA alarm formats vary across the utilities, with the format largely
being dictated by the circuit configurations utilised within the power system being
monitored. This is apparent when comparing SCADA systems used on transmission

networks with those used on distribution networks.

Transmission networks are interconnected and benefit from clearly defined circuits
where the substations at both circuit ends are known, making it easy to specify the
circuit fields in a SCADA alarm. Distribution networks, on the other hand, are most
often radial networks, with a large number of substations on each circuit making it
difficult to accurately specify the alarm circuit fields. In such cases, inferring

topology from distribution alarms would, therefore, be more difficult.

4.5 Telemetry Processor

Having captured the domain and topology knowledge used by protection engineers
during the disturbance alarm interpretation task, development of an intelligent alarm
processor to automate the task could proceed. The subsequent research and
development program resulted in an alarm processor entitled the Telemetry
Processor, which has been implemented within the sponsoring utility as an online aid
to protection engineers. The Telemetry Processor interprets alarms using the elicited
domain knowledge and provides incident and event information over the corporate

Intranet a matter of minutes after a disturbance has concluded.

The following sections outline the design choices made during development, provide
a description of the novel alarm processing reasoning architecture developed and a

discussion concerning the implementation of the system within the sponsoring utility.

4.5.1 Design Choices

The initial requirements and knowledge capture stages of development for the
Telemetry Processor have already been discussed. The next stage was to decide on

the most appropriate means for realising the protection engineer’s requirements

81

based on the practical alarm processing problems and elicited knowledge. The design

choices made and the rationale behind them is presented below.

Implementation as a Knowledge Based System

It was evident from the elicited domain knowledge that protection engineers do not
use models or logic formulae to interpret SCADA alarms, instead they employ rules.
This combined with the already extensive use of KBS in alarm processing and the
recognised benefits of the technique made implementation of the Telemetry

Processor as a KBS the obvious choice.

Multiple inference engines

Early in the design process it was decided that the protection engineer’s manual
approach to alarm interpretation would be mirrored as far as possible in the reasoning
methodology developed for the Telemetry Processor. This would not only ensure that
the same incident and event information is generated as in the manual approach but
also has the added benefit of transparency, meaning that the protection engineer can
fully understand the reasoning process: this provide for greater confidence in the

results.

By considering the alarm data-sets used by the protection engineer at each stage of
alarm interpretation, it was clear that a distinction could be drawn between the
alarms interpreted for incident starts and the grouped incident alarms interpreted for
incident conclusion and event identification. A single inference engine could be
devoted to interpreting the incoming alarm stream for incident starts with an
additional inference engine created for each identified incident start to handle
incident conclusion and event identification. To clarify the concept, consider a storm
scenario where three incidents have occurred on different feeders within less than a

minute of each other.

One core inference engine would be operating for the entire execution lifetime of the
Telemetry Processor, and would interpret the incoming storm alarms for patterns

indicating the beginning of an incident. When an incident start is identified, the core

82

inference engine would spawn another inference engine dedicated to handling
interpretation of alarms grouped as being part of that incident. These additional
incident inference engines would be temporary, only remaining in memory and using
computer processing power until the incident inference engine has concluded the
incident, interpreted its associated grouped alarms for low and high level events and
output the conclusions. Therefore, for that one-minute period during the storm, three
separate, and temporary, inference engines would exist in addition to the permanent

inference engine interpreting the incoming alarm stream.

Consideration of the software problems such an approach may present, suggested
that during major network-wide disturbances, with multiple faults occurring close
enough in time to have overlapping protection operating sequences, enough separate
inference engines would be generated to have an adverse effect on Telemetry
Processor performance. However, through evaluation of this risk and discussions
with protection engineers, the likelihood of more than five overlapping feeder faults
was considered negligible and this, together with the significant memory and
processor capabilities of desktop PCs and servers, suggested that the reasoning
approach would not pose any performance issues. Nevertheless, the performance of
the implemented system was assessed using the worst storm on record to hit

ScottishPower and the results will be discussed later in section 6.4.2

Use of expert system shells

The use of expert system shells within alarm processors has been on the whole
avoided within control room alarm processors due to their perceived inability to deal
with the practical problems of real-time alarm processing. However these problems
are not an issue with the Telemetry Processor and the use of expert system shells was

seen as an efficient means of accelerating development.

After reviewing a number of expert system shells, the Java Expert System Shell
(JESS) [16] was chosen as the most suitable. This was due to its capability for
controlling the JESS inference engine through the use of the object-oriented software
language JAVA [17]. This was considered a significant advantage, as it would allow

the effective control of the multiple inference engines.

83

Generic rules

Given the requirement for low-maintenance, the method of structuring and
representing the elicited domain knowledge within the Telemetry Processor’s
rulebases required careful consideration. If the number of rules required to represent
the domain knowledge could be kept as low as possible, whilst not overcomplicating

each individual rule, then the maintenance requirements could be reduced.

Analysis of the knowledge transcripts revealed that the vast majority of domain
knowledge was generic and could be applied to any feeder protection scheme within
the utility’s transmission system. This was an important finding, as it enabled generic
rules to be created which used variables in place of specific substation, circuit and
plant field entries. This meant that one generic rule could be used to identify a
particular incident start, incident conclusion or event on any feeder, rather than
having a specific rule for each transmission feeder protection scheme. For example,
the generic rule for identifying operation of first main protection on any circuit, can

be found in Appendix A.3 —Rule LE 1.

No explicit topology database

The Telemetry Processor will require knowledge of network topology so associations
between alarms and circuits can be made. The normal source of network topology
would either be through use of the EMS topology database or by creation of topology
database separate from the EMS. Neither of these sources is suitable for the
Telemetry Processor due to the protection engineers’ wish to avoid integration with
the EMS and the maintenance overheads associated with a separate topology

database. An alternative had to be found.

Given the quality of topology information present in the ScottishPower SCADA
alarms, and the fact that no operational decisions will be based on the Telemetry
Processor output, it was decided that where topology was not explicit in the alarms, it
should be inferred in a similar manner to that followed by protection engineers and

described in section 4.4.2. This would eliminate the need for a topology database.

84

There is, however, a downside to this approach when it comes to plant alarms
generated by simultaneous incidents occurring on circuits from a common substation.
The problem is that of identifying, without any reference to a topology, which feeder
the plant alarms from the common substation relate to based purely on the alarm time
stamps. This problem has been mentioned earlier in section 4.4.2 and will be
illustrated and explored further during the later case study and performance

evaluation.

4.5.2 Reasoning Architecture

A reasoning architecture unique to the Telemetry Processor has been developed to
mirror the protection engineers’ multi-staged approach to alarm interpretation. The
architecture is implemented within the Telemetry Processor as two separate layers as

illustrated in Figure 4-4 and summarised below:

0 An algorithmic control layer written in the JAVA language [17] which
controls the overall reasoning process, manages the transition between

each stage in the reasoning process and performs incident alarm grouping.

0 An inference layer containing a number of inference engines
implemented using the Java Expert System Shell (JESS) [16], each

responsible for different aspects of the alarm interpretation process.

The following sections discuss each stage of the reasoning architecture in detail and
how the interaction of both layers mirrors, in an online environment, the multi-staged
approach to disturbance alarm identification adopted by protection engineers. Note
that the alarm interpretation performance of the architecture within the Telemetry

Processor will be evaluated in section 4.6.

85

< Control ; Inference >
Layer Layer
r Alarm stream 4 Y
SJ Monitor for new
- alarm
Pre-proces ¥ Incident Identification Engine

Parse alarm and _ glarm Alarm
L add to buffer Buffer
B gy gy g U L -1 ----------------------------- 4

r W ==
Incident incident Incident Start
Start Buffer starts Rulebase
Stage | J New Yes
Incident Starts? Create new incidents

|

< A
Non-Concluded —
J Incidents Buffer Incident Engines
Stage 2 Al
& part of::;‘open Add alarm to matching B Alarms
cidents? lopen incidents
\
e e e -
e ———
Stage 3 Any incidents Concluded | g- incident | Incident Conclusion
Concluded? Incidents Buffer conclusion Rulebase
bl SRR -+ 2 R, ol SR R S,
S ——
Trigger Low-level » (low Low-level Event
Stage 4 Event Identification [; " (_[) l o“l,{ulzgas cv
_events]
- -A’— - o o et = e e — - F—-—-=F-
. e ———
Trigger High-level P (high) [el Event
Stage 5 Event Identification |J high-level g];(ulebase
events
o0 U (IO [[USSR, .
A [)
Archive Concluded
Incidents

Figure 4-4 Telemetry Processor reasoning architecture

4.5.2.1 Pre-processing

Although not a core interpretation stage, the pre-processing stage is nonetheless
essential to the overall reasoning process. It is this stage which is responsible for the
monitoring of the SCADA database for retrieved alarms and the parsing of these

alarms prior to alarm interpretation — this is handled by the control layer.

Upon finishing alarm parsing, the parsed alarms are passed over to the inference

layer where they are added to an alarm buffer within a JESS inference engine

86

devoted to incident identification. The pre-processing stage maintains the alarm
buffer to ensure that the time period spanned by the parsed alarms does not exceed
one minute. This is necessary so as to limit the Telemetry Processors’ physical
memory consumption thereby ensuring continuous online operation. The one minute

limit spans a large enough time period to identify incident starts during stage one.

When alarm buffer maintenance has been completed execution control switches to

the inference layer and Stage 1 of the reasoning process is initiated.

4.5.2.2 Stage 1 — Incident Start Identification

When parsed alarms are asserted to the incident identification inference engine, the
JESS inference algorithm begins trying to pattern match the parsed alarms in the
buffer against the Incident Start Rulebase.

The Incident Start Rulebase contains one generic rule derived from the elicited
domain knowledge described in section 4.4.1 and illustrated in simplified natural
language in Figure 4-3. The JESS representation of this rule can be found in
Appendix A.1. When alarm patterns are found in the buffer matching the incident
start rule, the inference engine will fire the rule for each matching pattern creating
Incident Identifiers which are in turn added to an Incident Start buffer in the control
layer. Each Incident Identifier records the incident start time, incident feeder and the
earliest protection, trip or intertrip alarm. Only when rule firing has ceased will

execution control be handed back to the control layer.

When control layer execution resumes the Incident Start buffer is checked for any
new Incident Identifiers. If no new incident starts are indicated, stage two of the
reasoning process begins immediately. However, if incident starts have been
identified, commencement of stage two is delayed until non-concluded incidents are

created to represent the incidents indicated by each incident start.

An individual JESS inference engine is created in the inference layer for each non-
concluded incident. It is to these incident inference engines that grouped incident
alarms will be added during stage two and interpretation of the incident alarms for

incident conclusion will be conducted during stages four to five. Each incident

87

inference engine is transient and only exists until incident alarm interpretation has

concluded.

4.5.2.3 Stage 2 — Incident Alarm Grouping

Every new alarm, which has been received, parsed and added to the Incident
Identification Engine is now checked to see if the alarm is part of a non-concluded
incident, regardless of whether the alarm has indicated an incident start. There are
two criteria which must be met in order for an alarm to be matched to a non-

concluded incident:
= The alarm must occur on or after the incident start time.
= The alarm must relate to the incident feeder.

A simple comparison of each parsed alarm’s date and time field against the incident
start date and time is sufficient to determine if the first criterion has been met. To

check the second criterion a topology check must be performed.

Incident Start: 08:22:07.70, SUBA, . , SU|BB / SU'BC. SECOND MAIN PROT OPTD, ON

1
[time stamp > 08:22:07.70, SUBA, , , SUBB/ SUBC,

< ANY LEGEND>

time stamp > 08:22:07.70, SUBA, , , SUBC/ SUBB, < ANY LEGEND>

time stamp > 08:22:07.70, SUBA, , , SUBB < ANY LEGEND>

time stamp > 08:22:07.70, SUBA, , , SUBC ! < ANY LEGEND>

time stamp > 08:22:07.70, SUBA, , |, J < ANY LEGEND>

time stamp > 08:22:07.70, SUBB, , , SUBA/ SUBC, < ANY LEGEND>

Matching time stamp > 08:22:07.70, SUBB, , , SUBC/ SUBA, < ANY LEGEND>
incident alarm time stamp > 08:22:07.70, SUBB, , , SUBA I < ANY LEGEND>
permutations time stamp > 08:22:07.70, SUBB, , , SUBC E < ANY LEGEND>
time stamp > 08:22:07.70, SUBB, , , £ < ANY LEGEND>

time stamp > 08:22:07.70, SUBC, , , SUBA/ SUBB, < ANY LEGEND>

time stamp > 08:22:07.70, SUBC, , , SUBB/ SUBA, < ANY LEGEND>

time stamp > 08:22:07.70, SUBC, , , SUBA < ANY LEGEND>

K time stamp > 08:22:07.70, SUBC, , , SUBB R < ANY LEGEND>

time stamp > 08:22:07.70, SUBC, , , 4 < ANY LEGEND>

Figure 4-5 Permutations for matching alarms against an incident start

Traditionally it is at this point that the EMS topology or an application specific
topology database would be checked to see which feeder the alarm related to.
However, the design choice to reduce maintenance overhead by eliminating the

topology database means that a topology inference algorithm had to be developed to

88

determine the likelihood that an alarm relates to a non-concluded incident. This
algorithm checks whether an alarm relates to an incident by checking each
permutation of the alarm substation and circuit against the incident start feeder. The

possible permutations are indicated in Figure 4-5.

When each alarm has been compared against the non-concluded incidents and any
matching incident alarms grouped, execution control is handed from the control layer

to the inference layer. It is at this point that stage 3 of the process commences.

4.5.2.4 Stage 3 — Incident Conclusion Identification

The assertion of matching alarms triggers each inference engine to begin trying to
pattern match its grouped incident alarms against the rules in its Incident Conclusion
Rulebase - the JESS representation of the incident conclusion rules can be found in
Appendix A.2. When an alarm pattern is found indicating that an incident should be
concluded, the appropriate rule will fire and create an incident summary indicating
how the incident concluded. The incident summary and grouped incident alarms will

then be added to the Concluded Incidents buffer in the control layer.

When control layer execution resumes the Concluded Incidents buffer is checked. If
empty, the reasoning methodology returns to the pre-processing stage. If, on the
other hand, concluded incidents are found in the buffer, stage 4 of the reasoning
methodology is triggered for each concluded incident by the assertion of a ‘low’ fact

to each concluded Incident Engine.

4.5.2.5 Stage 4 - Low-level Event Identification

Upon assertion of the ‘low’ fact, execution control is passed back to the inference
layer and all rules in the Low-Level Event Rulebase are activated — the JESS
representation of the low-level event rules can be found in Appendix A.3. Each
incident engine begins pattern matching the low-level event rules against the incident

alarms.

Any rules which find a matching alarm pattern fire and generate low-level events

which are added to the incident in the Concluded Incidents buffer. Each low-level

89

event contains the event date and time, an event summary and a record of the alarms

which indicated the event.

When all incident engines have finished low-level event identification, execution
control is passed back to the control layer and stage five of the reasoning
methodology is triggered by assertion of a ‘high’ fact to each concluded Incident

Engine.

4.5.2.6 Stage S - High-level Event Identification

Upon assertion of the ‘high’ fact, execution control is passed back to the inference
layer and all rules in the High-Level Event Rulebase are activated — the JESS
representation of the high-level event facts can be found in Appendix A.4. Each
incident engine begins pattern matching the high-level event rules against the

incident alarms and low-level events

Any rules which find a matching alarm or low-level event pattern fire and generate
high-level events which are added to the incident in the Concluded Incidents buffer.
Each high-level event contains the event date and time, an event summary and a

record of the alarms and low-level events which indicated the event.

When all incident engines have finished high-level event identification, execution
control is passed back to the control layer. The incident, low-level and high-level
event summaries and grouped incident alarms for each concluded incident are then

archived and the reasoning methodology returns to pre-processing.

4.5.3 Online Implementation

The reasoning architecture described in the preceding sections provides the
functionality necessary to interpret the SCADA alarms for incidents and events. To
realise this functionality and provide protection engineers with easy and timely
access to generated incident and event information an online facility had to be
established within ScottishPower PowerSystems. The installation configuration is

illustrated in Figure 4-6.

90

Desktop PC Desktop PC

L
¥

Handheld —
Computer

Corporate
Intranet

Modem

Archive =

WAP enabled Telemetry
Mobile Phone Processor
Server

)| E
SCADA| |- |

Figure 4-6 Telemetry Processor installation configuration

The Telemetry Processor software resides on a server at the company’s data centre
and is connected to the SCADA archive via the corporate Intranet. To start the
software one of the system administrators responsible for the company’s data centre,
will enter a number of parameters specifying the network location of the SCADA
archive and the interval the Telemetry Processor should wait between each
subsequent check of the SCADA archive for new alarms. The interval is normally
between one second and one minute and is at the discretion of the system
administrator. The decision on what interval is appropriate is often based on how
heavily loaded the IT network is and how many other software systems are accessing

the SCADA archive.

Once started, the Telemetry Processor will run continuously, without user
intervention. At regular intervals, the software queries the archive and retrieves new
alarms which are then processed using the reasoning architecture. The generated

incident and event information is archived in a database on the server.

To enable protection engineers to access and view the generated information at their
convenience a web-based user interface was created. This interface enables engineers

from across the company to view incident and event information via web-browsers

91

over the corporate Intranet. A screen shot of the front page displayed to protection

engineers’ following log on is presented in Figure 4-7.

Mmu
o R Yew Favortes Iook o -
‘g...‘... QD Quewr roctes Prode I S I - AR |

Finat Summary
26/12/98 suRA4lSURB SECOND MAIN PROT OPTD - SUBA4 / SUBB Incident
195257 195405 [Timed Out | minute after SUBA2 CB2 Open

6298 [26/12/98 [FIRST MAIN PROT OPTD - SUBA4 / SUBB Tripped On
195159 195257 FOPMPUBEl oo

-

=
AR N

Figure 4-7 Screenshot of Telemetry Processor user interface

Using this interface, the protection engineer can perform a number of functions:
* View the last fifty incidents identified and archived by the system.
* Select a particular incident and view the related events.

» Perform a search for incidents occurring on a specific circuit or on circuits

from a particular substation over a given time period.

* Save regular search criteria so the searches can be re-run when desired.

* Create and manage their user profile.

4.6 Telemetry Processor Case Study

Prior to industrial rollout of the Telemetry Processor facility to the sponsoring utility,
an extensive off-line testing program was conducted using a variety of case studies
based on actual power system disturbances. Of the case studies used during this
testing program, one case study in particular provided an excellent illustration of the
Telemetry Processor’s alarm interpretation capabilities. The remaining sections will
present this case study, the Telemetry Processor’s output and discuss the reasoning

approach. A discussion on the performance of the Telemetry Processor will conclude

the section.

92

4.6.1 Case Study

The case study presented here is closely based on actual disturbances which occurred
on the ScottishPower’s network during the work described in this thesis, although
some aspects have been simplified for clarity. The actual disturbances were
discussed with protection engineers. Additionally, the incident and event summaries
produced by the Telemetry Processor in response to the disturbances were assessed
for accuracy and for the extent to which they reflected the summaries which would

have been generated following the traditional manual approach.

4.6.1.1 Power system network

The portion of the transmission network in which the disturbances took place is
shown in Figure 4-8. The actual disturbances relate to a double circuit fault caused

by double, almost simultaneous, faults close to the busbars at SUBA2.

The protection schemes on each feeder are both augmented with DAR and are

illustrated in Figure 4-9 and 4-10 where the following legend is used:

MP1: First Main Protection (Unit — type LFCB)

MP2: Second Main Protection (3 zone Micromho — type SHNB)
INT1: First Intertrip (2 way scheme — Fibre Optics and Microwave)
INT2: Second Intertrip (2 way scheme — British Telecom Pilots)
TR1 & TR2: Trip Relay 1 and Trip Relay 2

93

SUBB4
I -0—/— SUBE I
/

SUBF

/=% SUBE 2

/—{}—/—» SUBD

w2
(o
X
@)
N

/17
CBI1
Fault Fault
7 S
SUBA4 l UJ I
£ " CHR
SGT1 SGT2 —» SUBH
CBI CB3 0
SUBA2 "/ /
T Kl AR
. >4 LI i
| b) s | |

Figure 4-8 Case Study: network diagram

94

SUBA4

MP1

MP2

| >

| »IINTI

SUBB4

L

INT2

Vi

TRI

TR2

=,

CBI

CcB2

MP1 MP2
Fibre-optic &
Microwave
¢ —p] INTI j@¢— |-
< Pilts ! INT2 4——: i———
PR I
TR1 TR2

=

CB1

Figure 4-9 Case Study: SUBA4 / SUBB4 feeder protection scheme

SUBA4 SUBC4
MPI1 MP2 MP1 MP2
Fibre-optic &

l I——’ Microwave
____I_-> INTI [4— —»| INT! |g— |-| ———
> INT2 [¢ Pilots INT2 4—:— —
4 ¢ v 4
TR1 TR2 TR1 TR2
CB2 CB3 CB1

Figure 4-10 Case Study: SUBA4 / SUBC4 feeder protection scheme

4.6.1.2 SCADA Alarms

The case study alarms are presented in Table 4-2. It should be noted that over 110

alarms were received by the Telemetry Processor during the disturbances and only

those directly related to the disturbances are presented. In any case, the omitted

95

alarms would have been ignored after stage two of the reasoning methodology due to

them not being part of any disturbance incident.

No. Time SubStation Plant Status1 Circuit Legend Status2
1 14:20:38:97 SUBC4 SUBA SECOND MAIN PROT OPTD ON
2 14:20:38.98 SUBC4 SUBA FIRST MAIN PROT OPTD ON
3 14:20:3898 SUBC4 SUBA TRIP RELAYS TO BE RESET-E ON
4 14:20:39.02 SUBC4 SUBA SECOND MAIN PROT OPTD OFF
5 14:20:39:02 SUBC4 CB1 OPEN

6 14:20:39:03 SUBC4 SUBA FIRST INTERTRIP REC OPTD ON
7 14:20:39:.05 SUBC4 SUBA SECOND INTERTRIP REC OPTD ON
8 14:20:39:05 SUBC4 SUBA AUTO SWITCHING IN PROG ON
9 14:20:39:07 SUBA4 SUBC SECOND MAIN PROT OPTD ON
10 14:20:39:07 SUBA4 SUBC FIRST MAIN PROT OPTD ON
11 14:20:39:.07 SUBA4 suBB SECOND MAIN PROT OPTD ON
12 14:20:39.07 SUBA4 suBss FIRST MAIN PROT OPTD ON
13 14:20:39:08 SUBA4 SuBB TRIP RELAYS TO BE RESET-E ON
14 14:20:39:08 SUBA4 SuBsC TRIP RELAYS TO BE RESET-E ON
15 14:20:39:09 SUBC4 SUBA FIRST MAIN PROT OPTD OFF
16 14:20:39.09 SUBB4 SUBA FIRST MAIN PROT OPTD ON
17 14:20:39.10 SUBA4 suBsB SECOND INTERTRIP REC OPTD ON
18 14:20:39:10 SUBA4 cB2 AUTO SWITCHING IN PROG ON
19 14:20:39:11 SUBA4 susC FIRST INTERTRIP REC OPTD ON
20 14:20:39:12 SuUBA4 SUBB FIRSTINTERTRIPREC OPTD ON
21 14:20:39:13 SUBA4 CB2 OPEN

22 14:20:39:13 SUBA4 SUBC SECOND INTERTRIP REC OPTD ON
23 14:20:39:15 SuBA4 SUBC SECOND MAIN PROT OPTD OFF
24 14:20:39:16 SUBA4 SuBsB SECOND MAIN PROT OPTD OFF
25 14:20:39:16 SUBA4 cB2 AUTO SWITCHING COMPLETE ON
26 14:20:39:116 SUBA2 CB1 OPEN

27 14:20:39:16 SUBA2 CB3 OPEN

28 14:20:39:17 SUBA4 SuBB FIRST MAIN PROT OPTD OFF
29 14:20:39:17 SuUBA4 cB2 AUTO SWITCHING IN PROCG OFF
30 14:20:39:18 SuBA4 SUBC FIRST MAIN PROT OPTD OFF
31 14:20:39:21 SUBB4 SUBA TRIP RELAYS TO BE RESET-E ON
32 14:20:39:21 SuBB4 SUBA SECOND INTERTRIP REC OPTD ON
33 14:20:39:21 SuUBB4 SUBA FIRST INTERTRIP REC OPTD ON
34 14:20:39:23 SUBB4 CB1 AUTO SWITCHING IN PROG ON
35 14:20:39:24 SUBB4 CBt OPEN

36 14:20:39:24 SUBA4 SuBC AUTOSWITCHING IN PROG ON
37 14:20:39:25 SuBB4 SUBA FIRST MAIN PROT OPTD OFF
38 14:20:39:28 SUBA4 CB2 AUTO SWITCHING COMPLETE OFF

Table 4-2 Telemetry Processor Case Study: SCADA alarms

4.6.1.3 Domain Knowledge

The JESS rules derived from the elicited domain knowledge and used by the
Telemetry Processor to interpret the alarms in Table 4-2 have been included in
Appendix A. The rules for incident start, incident conclusion, low-level event and

high-level event identification are clearly distinguished.

96

4.6.1.4 Telemetry Processor Output

The incident and event summaries produced by the Telemetry Processor are

presented in Tables 4-3 and 4-4.

Incident
o START 14:20:38:97 qpcOND MAIN PROT OPTD — SUBC4 / SUBA
FINISH 14:20:39:28 Autoswitching Sequence Complete

Low-Level Events

1 14:20:38:97 2nd Main Protection Operated ON at SUBC4
2 14:20:38:98 st Main Protection Operated ON at SUBC4
3 14:20:39:02 2nd Main Protection Operated OFF at SUBC4
4 14:20:39:02 SUBC4 Circuit Breaker CB1 OPEN
5 14:20:39:03 st Intertrip Received ON at SUBC4 from SUBA
6 14:20:39:05 2nd Intertrip Received ON at SUBC4 from SUBA
7 14:20:39:05 Autoswitching in Progress at SUBC4 SUBA
8 14:20:39:07 2nd Main Protection Operated ON at SUBA4
9 14:20:39:07 1st Main Protection Operated ON at SUBA4
10 14:20:39:09 st Main Protection Operated OFF at SUBC4
11 14:20:39:10 Autoswitching in Progress at SUBA4 CB2
12 14:20:39:11 Ist Intertrip Received ON at SUBA4 from SUBC
13 14:20:39:13 SUBA4 Circuit Breaker CB2 OPEN
14 14:20:39:13 2nd Intertrip Received ON at SUBA4 from SUBC
15 14:20:39:15 2nd Main Protection Operated OFF at SUBA4
16 14:20:39:16 SUBA2 Circuit Breaker CB1 OPEN
17 14:20:39:16 SUBAZ2 Circuit Breaker CB3 OPEN
18 14:20:39:18 1st Main Protection Operated OFF at SUBA4
19 14:20:39:24 Autoswitching in Progress at SUBA4 SUBC
20 14:20:39:28 Autoswitching Complete at SUBA4 CB2
21 14:20:39:28 All tripped circuit breakers did NOT close
22 14:20:39:28 Sll:ll:sf: =/ 3;‘)%,:26?:;:“ was not restored by end of incident. Time
23 14:20:39:28 Autoswitching Sequence at SUBA4 CB2 took Om 0s 180ms
High-Level Events
24 14:20:38:98 1% and 2nd Main Protection operated successfully at SUBC4 > SUBA
25 14:20:39:03 1st and 2nd Intertrips received at both ends
26 14:20:39:07 1* and 2nd Main Protection operated successfully at SUBA4 > SUBC

Table 4-3 Telemetry Processor Case Study: Incident A

97

Incident

B

Low-Level Events

START

14:20:39:07

FINISH

14:20:39:38 Autoswitching Sequence Complete

SECOND MAIN PROT OPTD - SUBA4 / SUBB

1 14:20:39:07 2nd Main Protection Operated ON at SUBA4

2 14:20:39:07 1* Main Protection Operated ON at SUBA4

3 14:20:39:09 1 Main Protection Operated ON at SUBB4

4 14:20:39:10 2" Intertrip Received ON at SUBA4 from SUBB

5 14:20:39:10 Autoswitching in Progress at SUBA4 CB2

6 14:20:39.12 1" Intertrip Received ON at SUBA4 from SUBB

7 14:20:39:13 SUBA4 Circuit Breaker CB2 OPEN

8 14:20:39:16 2nd Main Protection Operated OFF at SUBA4

9 14:20:39:16 SUBA2 Circuit Breaker CB1 OPEN

10 14:20:39:16 SUBA2 Circuit Breaker CB3 OPEN

11 14:20:39:17 1™ Main Protection Operated OFF at SUBA4

12 14:20:39:21 2nd Intertrip Received ON at SUBB4 from SUBA

13 14:20:39:21 Ist Intertrip Received ON at SUBB4 from SUBA

14 14:20:39:23 Autoswitching in Progress at SUBB4 CB1

15 14:20:39:24 SUBB4 Circuit Breaker CB1 OPEN

16 14:20:39:25 1* Main Protection Operated OFF at SUBB

17 14:20:39:28 Autoswitching Complete at SUBA4 CB2

18 14:20:39:28 All tripped circuit breakers did NOT close

19 14:20:39:28 S]Si/:: =/ ()S‘:lJfgsBlsci)lrr;::lt was not restored by end of incident. Time
20 14:20:39:28 Autoswitching Sequence at SUBA4 CB2 took Om 0s 180ms

High-Level Events
21 14:20:39:07
22 14:20:39:09
23 14:20:39:12
24 14:20:39:28

Table 4-4 Telemetry Processor Case Study: Incident B

1* and 2nd Main Protection operated successfully at SUBA4 > SUBB
1™ Main Protection operated successfully at SUBB4 > SUBA

Ist and 2nd Intertrips received at both ends

2nd Main Protection at SUBB4 > SUBA failed to operate

98

4.6.1.5 Telemetry Processor reasoning

It is clear that the Telemetry Processor generated two incidents as expected: one for
the operation of each protection scheme. The alarm interpretation reasoning
conducted to identify these incidents, group each incidents alarms and interpret each

set of incident alarms for events is described in detail below.

The second main protection (MP2) at SUBC4 is the first protection to detect a fault
on the SUBC4 / SUBA feeder and generate an alarm at 14:20:38.97. Although this is
the first indication that an incident has occurred on the feeder, the Incident
Identification inference engine has not received all the parsed alarms required to
pattern match against the incident start rule IS 1 in Appendix A.l. It is not until
alarm 5 is asserted that the inference engine will find a pattern match (alarms 1 and
5) and fire the rule. On rule firing an incident identifier will be created using the
protection alarm time stamp as the incident start time and its substation and circuit

identifiers as the incident feeder.

Stage one of the reasoning methodology continues with execution control being
passed back to the control layer where a new non-concluded incident and an incident

inference engine is created for the 14:20:38.97 SUBA4 / SUBC incident start.

During the creation of Incident A, all alarms received by the Telemetry Processor
between receipt of alarms 1 and 5 will be matched against the newly created non-
concluded incident by the topology inference algorithm. This process will ensure any
alarms occurring between the two incident triggering alarms that are related to the
incident are identified and grouped as such. At this stage in the reasoning one non-

concluded incident exists with the following alarm grouping: Incident A (1-5).

With no additional incident starts or concluded incidents, the control layer continues
with pre-processing of received alarms and stages one to three until alarm 21 is
asserted to the Incident Identification inference engine. On assertion of this alarm,
the inference engine finds an alarm pattern in alarms 11 and 21 indicating an incident
start and the incident start rule IS 1 fires generating Incident B. At this stage in the
reasoning two non-concluded incidents exist with the following alarm groupings:

Incident A (1-10,14,15,18,19) and Incident B (11,21).

99

During creation of Incident B, and in exactly the same manner as during creation of
Incident A, all alarms between receipt of alarms 11 and 21 will then be matched
against the newly created non-concluded Incident B by the topology inference
algorithm. This process results in the following alarm grouping: Incident B (11-
13,16-18,20,21).

The current alarm being processed, alarm 21, then enters stage 2 of reasoning where
it is matched against the other non-concluded incidents, in this case Incident A, using
the topology inference algorithm. This results in the following alarm groupings:
Incident A (1-10,14,15,18,19, 21) and Incident B (11-13,16-18,20,21).

Comparison of the alarm groupings for Incidents A and B indicate that alarm 18 and
21 have been grouped by the topology inference algorithm as being common to both
incidents. This is correct given that the topology inference algorithm has no means of
identifying from the alarm fields which circuit the CB2 alarm relates to. Given any
uncertainty as to the correct incident alarm assignment, the topology inference

algorithm places each alarm in both incidents since SUBA is a feeder end common to

both incidents.

The reasoning methodology continues with each new alarm being parsed, asserted to

the Incident Identification inference engine and then matched against the two non-

concluded incidents using the topology inference algorithm.

When the topology inference algorithm has identified an alarm as matching a non-
concluded incident, the alarm is added to the inference engine associated with the
incident. Upon assertion of this alarm, the incident inference engine will begin
searching the grouped incident alarms trying to pattern match sub-sets of the incident
alarms against the incident conclusion rules in the Incident Conclusion rulebase.

Until an alarm pattern is found indicating incident conclusion and the incident is
concluded, stages 1 to 3 continue.

In this case study, DAR relays have initiated autoswitching at each feeder end for
both incidents; this is indicated by the ‘AUTO SWITCHING IN PROGRESS ON’
alarms 8 and 18 for Incident A and alarms 18 and 34 for Incident B. An extract from

the elicited domain knowledge documented in the knowledge transcript reveals that

for a successful autoswitching sequence:

100

e “..The incident is concluded when an alarm is received indicating

completion of the autoswitching sequence.”

This knowledge is represented in incident conclusion rule IC_1 in Appendix A.2

which is present in the Incident Conclusion rulebases of both incidents A and B.

Using rule IC_1, both incident inference engines find a pattern match when alarm 38,
“14:20:39.28 SUBA4 CB2 AUTO SWITCHING COMPLETE OFF’, is asserted to
each incident inference engine. In each case, the rule fires and generates an incident

summary indicating the first alarm and the manner of incident conclusion:

= 14:20:38.91 SECOND MAIN PROT OPTD - SUBC4 / SUBA

Autoswitching Sequence Complete

* 14:20:39.07 SECOND MAIN PROT OPTD - SUBA4 /SUBB

Autoswitching Sequence Complete

Each incident is then concluded, stored in a concluded incidents buffer and removed
from the non-concluded incident buffer. The control layer now recognises the
conclusion of both incidents and moves to stage 4 of alarm analysis: Low-Level

Event Identification.

Low-level event identification is triggered for both incidents by the assertion of a
‘low’ fact to each inference engine. This activates the low-level event rules which
begin pattern matching each set of grouped incident alarms against rules LE 1 to
LE_15 in Appendix A.3. As rules fire, the appropriate low-level event summaries are

generated and added to the concluded incident.

The simplest forms of low-level events are those generated from one alarm and are
basically rewordings of the alarm legends. Event 2 of Incident A and events 2 and 3
of Incident B are good examples where, using rule LE 1 in Appendix A.3, each
incident inference engines has identified the ‘FIRST MAIN PROT OPTD ON’
alarms and has generated an event summary for each of the form “First Main
Protection Operated ON at SUBC4”. Note that the same rule has been used to
generate all three events despite the alarms emanating from different circuit ends.

This is possible due to the rule using generic wildcards for the substation and circuit

alarm fields.

101

Low-level events are also generated from patterns of alarms and provide summarised
information on what happened during the incident. For example, both incident
inference engines used rule LE-13 in Appendix A.3 to determine how long the

autoswitching sequence took and generate event summaries. In both cases the
elapsed time between the ‘AUTO SWITCHING IN PROG ON’ and ‘AUTO
SWITCHING COMPLETE OFF’ alarms was calculated and event 23 of Incident A
and 20 of Incident B generated indicating completion of the autoswitching sequence

in 180ms.

Although simple in nature, these low-level events have already provided useful
information since the absence of a “First Main Protection Operated ON at SUBA4”
event in Incident A may indicate to the protection engineer problems with the

protection scheme on the SUBA4 / SUBC circuit.

When each incident inference engine has finished firing low-level events, execution
is passed back to the control layer and stage five of the reasoning process begins:

High-Level Event Identification.

High-level event identification is triggered for both incidents by the assertion of a
‘high’ fact to each inference engine. This activates the high-level event rules which
begin pattern matching each set of grouped incident alarms and low-level events
against rules HE 1 to HE_7 in Appendix A.4. As rules fire, the appropriate high-
level event summaries are generated and added to the concluded incident. One such
high-level event is event 24 of Incident B: “2nd Main Protection at SUBB4 > SUBA
failed to operate”. This event was generated when rule HE_4 triggered on assertion
of the ‘high’ fact due to there being a “1st Main Protection Operated ON at SUBB4”

low-level event and there not being a corresponding “2nd Main Protection Operated
ON at SUBB4” low-level event.

Having completed stage five for both concluded incidents, the reasoning
methodology archives the concluded incidents and events, which are then available
for viewing by the protection engineer using the web-based interface. For a summary

of the complete output, refer back to previous tables 4-3 and 4-4.

102

4.6.2 Performance Evaluation

At the time of writing this thesis, the Telemetry Processor facility at the sponsoring
utility has been operating in an online mode for a number of months. A number of
incidents have occurred over this period and the alarms obtained from the SCADA

archive have been interpreted and incidents identified successfully.

Before the Telemetry Processor could be installed at the sponsoring utility a rigorous
testing program was conducted where the systems performance was tested using

alarm data from the most adverse storms and disturbances to affect the sponsoring

utility’s network in recent years.

To ascertain the reasoning efficiency, speed and diagnostic capabilities of the new
technique 15,500 alarms generated during an actual storm were input offline. On a
2.2. GHz Pentium processor with 256MB RAM the Telemetry Processor took 9
minutes and 50 seconds to parse and interpret all alarms successfully identifying 110
incidents. This is a significant time saving when compared with the ten man-days

spent performing manual analysis of the same data.

The online performance was evaluated by simulating the real-time feed of alarms. It
was found that the incident reports were available on the corporate Intranet and
accessible via the web user interface within a minute of the incidents concluding.
This rapid alarm interpretation and provision of incident and event information,
enables protection engineers to monitor, in near-real time, the performance of
protection schemes during storms from anywhere in the company. Any protection
problems which have been indicated by high-level events and which may inhibit

continued network operations can be identified and a control engineer informed.

At the requirements capture stage of development, the protection engineers had
requested that the Telemetry Processor be designed in such a way as to limit its
maintenance requirements. Consequently, given the quality of topology information
available in the utility’s SCADA alarms, the design choice was taken to avoid an
explicit representation of network topology. As an alternative, a topology inference

algorithm was developed to infer topology from SCADA alarms in a similar manner

to that adopted by protection engineers.

103

The topology inference algorithm has proved extremely efficient and the need for
maintenance of a topology database has been eliminated entirely. Only simultaneous
incidents occurring on circuits from the same substation, as in the case study, pose a
problem due to the algorithm not being able to distinguish between plant at the same
circuit end but on different feeders. Historical analysis of disturbance data revealed
that this only occurred in 4% of incidents and resulted in incorrect assignment of
additional plant alarms to simultaneous incidents. This level of accuracy was more
than acceptable to the protection engineers and the elimination of any topology

maintenance overhead was welcomed.

The protection engineers, in conjunction with the author, have been exploring the
possibility of achieving 100% accuracy by enhancing the quality of topology
information in the SCADA alarms. The sponsoring utility is initiating an EMS
replacement program and it was quickly recognised that this would be the ideal
opportunity to improve the SCADA system by adding feeder information to alarms
containing only a substation identifier. If such additional topology information could
be included, the Telemetry Processor would achieve 100% accuracy with no

topology maintenance overhead.

The extensive testing and knowledge validation program confirmed that all the
protection engineers’ requirements had been met. The new reasoning technique can
identify incidents, group incident alarms and identify the low- and high-level events
of interest to protection engineers. Furthermore, the use of multiple inference engines
combined with a separate controlling mechanism enables the protection engineers’

offline approach to be mirrored in an online environment.

4.7 Chapter Summary

This chapter has described an intelligent alarm processor, the Telemetry Processor
for the online protection engineering interpretation of SCADA alarms. The
protection engineers requirements for an alarm processor have been presented and

the suitability of existing alarm processors for meeting these requirements discussed.

104

The new reasoning methodology developed to mirror the protection engineers
approach to alarm interpretation in an online alarm processor is presented and
demonstrated using a case study. A particular feature of the Telemetry Processor is
the topology inference algorithm used to infer topology from the utility’s SCADA
alarms thereby eliminating the need for a topology database and the associated

maintenance overheads.

The next chapter introduces Multi-Agent Systems (MAS), a technology which will
later be demonstrated as an effective means of integrating the online Telemetry
Processor with other power system data interpretation systems to assist protection

engineers with the entire post-fault disturbance analysis process.

4.8 References

[1}. W.R. Prince, B.F. Wollenberg, D.B. Bertagnolli, “Survey on Excessive Alarms”,
IEEE Transactions on Power Systems, v4, n3, August 1989, pp 950-956.

[2]. B.F. Wollenberg, “Feasibility Study for an Energy Management System Intelligent

Alarm Processor”, IEEE Transactions on Power Systems, v.PWRS-1, n2, May

1986, pp 241-247.

[3]. D.S. Kirshen, B.F. Wollenberg, “Intelligent Alarm Processing in Power Systems”,
Proceedings of the IEEE, v80, n5, May 1992, pp 663-672.

[4]. R. Khosla, T. Dillon, “Learning Knowledge and Strategy of a Neuro-Expert
System Architecture in Alarm Processing”, IEEE Transactions on Power Systems,
vi2, n4, November 1997, pp 1610-1618.

[5]. M.A.P. Rodrigues, J.C.S. Souza, M.Th. Shilling, “Building Local Neural

Classifiers for Alarm Handling and Fault Location in Electrical Power Systems”, in

Proc. 1999 Intelligent Systems Applications in Power (ISAP), 1999.

[6]. J. Jung, C-C. Liu, M. Hong, M. Gallanti, G. Tornielli, “Multiple Hypotheses and
Their Credibility in On-Line Fault Diagnosis”, IEEE Transactions on Power
Delivery, v16, n2, April 2001,

{71. G. Shreiber, et al, '"Knowledge Engineering and Management: The CommonKADS
Methodology', MIT Press, 1999.

105

[8].
[9].

[10].

[11].

[12].

[13].

[14].

[15).

[16].

7).

CLIPS Expert System Shell, http://www.ghg.net/clips/CLIPS.html
G2 from Gensym, http://www.gensym.com/manufacturing/g2 overview.html

Z.A. Vale, C. Ramos, L. Faria, J. Santos, M. Fernandes, C. Rosado, A. Marques,
“Knowledge-Based Systems for Power System Control Centers: Is Knowledge The
Problem”, in Proc. 1997 Intelligent Systems Applications in Power (ISAP), July 6-
10 1997.

Z.A. Vale, A. Machado e Moura, “An Expert System with Temporal Reasoning for
Alarm Processing in Power System Control Centers”, IEEE Transactions on Power

Systems, v8, n3, August 1993, pp 1307-1314.

D.B. Tesch, D.C. Yu, L-M. Fu, K. Vairavan, “A Knowledge-Based Alarm
Processor for and Energy Management System”, IEEE Transactions on Power
Systems, v5, nl, February 1990, pp 268-275.

R.W. Bijoch, S.H. Harris, T.L. Volkmann, J.J. Bann, B.F. Wollenberg,
“Development and implementation of the NSP intelligent alarm processor”, IEEE

Transactions on Power Systems, v6, n2, May 1991, pp 806-812.

J.R. McDonald, G.M. Burt, D.J. Young, “Alarm Processing and fault diagnosis
using knowledge based systems for transmission and distribution network control”,

IEEE Transactions on Power Systems, v, n3, pp 1292-1298, August 1992,

S.D.J. McArthur, J.R. McDonald, S.C. Bell, G.M. Burt, “An Expert System for
On-line Analysis of Power System Protection Performance”, in Proc. 1994 Expert
Systems conference: Applications and Innovations in Expert Systems, 1994, pp
125-142.

E.J. Friedman-Hill, “Jess, The Java Expert System Shell”,
http://herzberg.ca.sandia.gov/jess/, version 6.1a5, 15" January 2003.

“Java Sun”, http://java.sun.com

106

http://www.ghg.netlclipslCLIPS.html
http://www.gensym.com/manufacturinglg2_overview.html
http://herzberg.ca.sandia.gov/jessl,version6.1a5,
http://java.sun.com

Chapter 5: Multi-Agent Systems

107

5.1 Chapter Overview

Intelligent agents are a popular research area in both Artificial Intelligence and
Computer Science research fields. Although the term ‘agents’ has been very popular
and used within a number of different definitions, the aim of this chapter is to present
the most important issues of agent-based technology associated with the research
described in this thesis. The main features of these agents and the multi-agent
communities in which they commonly reside are introduced based on the application

of multi agent systems in power engineering.

5.2 Intelligent Agents

The term ‘agents’ can be used to describe very different kinds of systems (biological
systems, technological artefacts etc) as shown in Figure 5-1. Within the research
described in this thesis, the term ‘agent’ will correspond to the category of task
specific software components. Again within this thesis, although all agents will be
categorised as task specific software components, only those which are capable of
processing different types of inputs utilising different Al techniques and
communicating their results in an attempt to intelligently interpret the data of a

particular problem domain will be considered as ‘intelligent agents’.

Autonomous Agents

I
| v

Biological Agents Robotic Agents Computational Agents

Software Agents Artificial Life Agents

I
v | |

Task-specific Agents Entertainment Agents Viruses

Figure 5-1 Taxonomy of Agents [1]

108

To be considered a software agent, Wooldridge and Jennings [2] deem that a

software component should exhibit the following properties:

Autonomy: an agent operates without the direct intervention of other agents or

humans and has control over its actions and its internal state.

Responsiveness: an agent perceives its environment and responds in a timely

fashion to changes that occur in it.

Pro-activeness: an agent doesn’t simply react to changes in the environment, but

exhibits goal-directed behaviour and takes the initiative when it considers it

appropriate.

Social ability: an agent interacts with other agents (if it is needed) to complete its

tasks and help others to achieve their goals.

The above characteristics form the weak notion of agency while the strong notion of

agency is described by properties that are more usually applied to humans (like the

strong notion of Al that assigns to an intelligent action the same scope of action seen

in humans):

Mobility: the agents can move around an electronic network. This means that not
only are robots characterised as mobile, but also an agent that is ‘moving’

through the Internet can be classed as mobile.
Veracity: an agent will not knowingly communicate false information.

Benevolence: the agents do not have conflicting goals, and therefore they will try
to do what they are asked to.

Rationality: The agents will not act in such a way as to prevent their goals being
achieved.

Co-operation: The users specify what they want to be performed on their behalf

by the agent, and the agent specifies what it can do and provides results.

The software development of agent-based systems views these autonomous software

agents as components of a much larger business function. The main benefit of

viewing them from this perspective is that the partial software components can be

integrated into a coherent and consistent software system in which they work

109

together to better meet the needs of the entire application (utilising autonomy,
responsiveness, pro-activeness and social ability). Based on this integrated
environment, this thesis describes how the functional complexity of post-fault

disturbance analysis can be overcome within such architectures.

5.3 Multi-Agent Systems

Artificial intelligence research originally focussed on complicated, centralised
intelligent systems with expertise in certain domains. This changed during the mid-
1970s, when researchers investigating Distributed Artificial Intelligence (DAI) began
to formulate some of the basic theories, architectures, and experiments that showed
how interaction and sub-division of tasks could be effectively applied to problem
solving [3]. Experiments showed that intelligent, rational behaviour is not an
attribute of isolated components, but rather an outcome that emerges from the
interaction of entities with simpler behaviours [4]. Out of this research, architectures
consisting of distributed autonomous reasoning components, Multi-Agent Systems

(MAS), began to emerge.

Various definitions from different disciplines have been proposed for the term
‘multi-agent system’. As seen from a DAI perspective, a multi-agent system is a
loosely coupled network of problem-solver entities that work together to find
answers to problems that are beyond the individual capabilities or knowledge of each
entity [5]. More recently, the term multi-agent system has been given a more general
meaning, and it is now used for all types of systems composed of multiple

autonomous components showing the following characteristics [6]:

o Each agent has incomplete capabilities to solve a problem
o There is no global system control
e Data is decentralized

« Computation is asynchronous

One of the current factors fostering MAS development is the increasing popularity of
the Internet, which provides the basis for an open environment where agents interact

with each other to reach their individual or shared goals. To interact in such an

110

environment, agents need to overcome two problems: they must be able to find each
other (since agents might appear, disappear, or move at any time); and they must be
able to interact [6]. As will be demonstrated later in the thesis, such an open

environment is also required for decision support within the power industry.

The following sections describe the types of industrial applications suited to MAS,
the methods for facilitating information discovery between agents and the

components of a MAS architecture essential for interaction.

5.3.1 Applications Suited to Multi-Agent Technology

Agents are not the panacea for all industrial problems, and, like any other
technology, have certain capabilities that are best used for problems whose
characteristics require those capabilities. Research conducted by H. Van Dyke [7]
extends the categories specified in [8] to five characteristics that indicate agents are

best suited for applications that are:

= Modular: Agents are pro-active software components and as such are suited

to applications that fall into natural modules.

s Decentralised: An agent autonomously monitors its own environment and
takes action, as it deems appropriate. This characteristic of agents makes
them particularly suited for applications that can be decomposed into stand-
alone processes, each capable of performing useful tasks without continuous

direction from other processes.

= Changeable: Agents are well suited to modular problems because they are
independent software components. They are well suited to decentralised
problems because they are autonomous and pro-active. These two
characteristics combine to make them especially valuable when a problem is
likely to change frequently, as illustrated in Figure 5-2. Modularity permits
the system to be modified one piece at a time. Decentralisation minimises the

impact that changing one module has on the behaviour of other modules.

111

Touching any one
module endangers
the entire system

Conventional Agents

Independently add,
remove and change
system modules

>

Execution
Sequence

Figure 5-2 Modularity + Decentralisation — Changeability [3]

Ill-structured: Agents are designed to interact with their environment rather
than with other specific agents, allowing interactions with any other agent
that modifies the environment. With agent-based design there is, therefore, no
need to specify the individual components to be interconnected and their
interfaces with one another, instead it is sufficient to merely identify the
classes of the components in the system and their impact on the environment.
Agents are, therefore, particularly suited to ill-structured applications where it

is extremely difficult or near on impossible to determine the structure of the

application in advance of design.

Complex: One measure of system complexity is the number of different
behaviours that must be exhibited. As is often the case, increasing the number
of interacting components in a system results in a combinatorial increase in
the number of different interactions between components. In traditional
systems, these behaviours must be implemented at design time.
Appropriately designed agent architectures can move the generation of
combinatorial behaviours from design-time to run-time, drastically reducing

the amount of software that must be generated and thus the cost of the system

to be constructed.

112

5.3.2 MAS Configuration

A MAS has an underlying structure, or configuration, which describes the immediate
acquaintances of each agent and the resulting topology over which information
moves among them. This topology can be established in two ways. It may be set in
advance by the system implementer, and thus remain unchanged as the system
operates, commonly referred to as a closed architecture. Or the agents may be able to
discover new relationships and configure themselves during runtime, commonly

referred to as an open architecture.

Closed architectures, although robust, do not welcome changeability, since any
change in the available agents, their location or abilities needs to be reflected in the
acquaintance information hard coded within the agents. This problem is overcome in

open architectures by providing information discovery services.

In open architectures, utility agents, also referred to as middle agents 9], provide
information discovery services. These agents provide a mechanism for advertising,
discovering, using, managing and updating agent services and information. Utility
agents are entities to which other agents advertise their capabilities, and which are
neither requesters nor providers from the standpoint of the transaction under
consideration. The advantage of utility agents is that they allow a MAS to operate

robustly when confronted with agent appearance and disappearance.

There are several types of agents that fall under the definition of utility agents:

« Nameservers: Also referred to as ‘white pages’, these agents provide a look-
up service for agents’ network addresses [10].

o Facilitators: Also referred to as ‘yellow pages’, these agents provide a look-
up service for agents’ abilities [10].

e Mediators: agents that exploit encoded knowledge to create services for a
higher level of applications [11].

¢ Brokers: agents that receive requests and perform actions using services
from other agents in conjunction with their own resources [12].

¢ Blackboards: repository agents that receive and hold requests for other

agents to process [13].

113

5.3.3 Coordination

Agents are characterised by their autonomy and their ability to execute without being
invoked. Given this autonomy, agents need to coordinate to ensure robust global
behaviour. This coordination is sometimes refined into more specific categories of

cooperation and negotiation.

Cooperation is, in general, coordination amongst non-antagonistic agents and relies
on the decomposition and distribution of tasks amongst agents. There are two

popular mechanisms for achieving cooperation:

e Co-operative interaction: This occurs when agents interact to assist each other in
achieving their goals more efficiently. The co-ordination has to be built from the
developer of the software, in terms of goals, roles and relationships between

them.

e Contract-based co-operation: This approach uses one of the common auction

strategies, when there is some conflict between the agents [14]:

- Sealed-bid auction: each agent submits a bid without knowing the bids of

the other agents. The contract is awarded to the cheapest bidder.

- English auction: bids are accepted sequentially. Each new bid must be
cheaper than the currently cheapest bid. The contract is awarded to the
final bidder (who offered the cheapest bid).

- Dutch auction: The initiator invites potential contractors to bid at a gjven
price, which is systematically increased until a bid is received. The

contract is awarded to the first bidder.

The approach most commonly used within MAS is the contract-net protocol [15],
which is based on a sealed-bid auction. The agent co-operates by committing to a

goal, which makes it able to predict the actions of other agents contracted to it.

In contrast to cooperation, negotiation is coordination amongst competitive or self-
interested agents. Conflicts can often arise if agents are competing for a share of a
common finite resource, which they require to carry out their goals. These conflicts

can be resolved with negotiation between the agents or the development of a

114

software management mechanism. Using the latter means behaviour rules have to be
defined, while negotiation can contribute to the system’s equilibrium in a dynamic

fashion [16].

5.3.4 Communication

In order for agents to achieve their goals, and to facilitate coordination amongst
agents, communication between the agents is a necessity. Although agent
communications are achieved using the communications common to IT networks,

namely TCP/IP, SMTP and HTTP, there are a number of additional considerations:

* A common Agent Communication Language (ACL) is required so any agent

that receives a message can understand its intent and process it accordingly.

= A common vocabulary, or ontology, is needed so each agent can understand

the information contained in each message.

= A common message content language, or syntax, is essential if messages are

to be parsed correctly and understood.

5.3.4.1 Agent Communication Language (ACL)

One of the earliest and best known ACL is the Knowledge Query and Manipulation
Language (KQML) [17], which was developed in the early 1990s as part of the US
government’s DARPA knowledge sharing effort [18]. In recent years the most
active participants in agent research have been supporting the ACL developed by the
Foundation for Intelligent Physical Agents (FIPA), an international non-profit
organisation which aims to set general standards for agent interoperability. The

research presented in this thesis also supports the FIPA ACL.

The FIPA ACL incorporates many aspects of KQML and is based on the idea that
communication can best be modelled as the exchange of declarative statements.
Under this paradigm, agents send, receive and reply to requests for services and
information, with the intent of the message specified by a performative, such as

‘inform’ or ‘request’, describing the way in which the message content expression

115

should be expressed [19]. Examples of FIPA-SL performatives are presented in

Table 5-1.
FIPA Summary
Performative
query-ref The action of asking another agent for the object referred to by a
referential expression.
request The sender requests the receiver to perform some action.
inform The sender informs the receiver that a given proposition is true.
subscribe The act of requesting a persistent intention to notify the sender of the
value of a reference, and to notify again whenever the object identified by
the reference changes.
Sailure The action of telling another agent that an action was attempted but the
attempt failed.
Table 5-1 Example FIPA performatives [20]
FIPA SL. | Meaning
Paramater
:sender Defines the agent name of the sender of the performative.
:receiver Defines the agent name of the received of the performative.
:in-reply-to Describes the query, which the performative is in reply to.
:reply-with Defines whether the sender expects a reply and if so a label for the reply.
content Defines the content of the message; equivalently denotes the object of the
action. The meaning of the content of any ACL message is intended to be
interpreted by the receiver of the message.
:protocol Defines the interaction protocol that the sending agent is employing with
this ACL message.
:language Defines the language in which the content parameter is expressed.
:ontology Defines the ontology(s) used to give a meaning to the symbols in the

content expression

Table 5-2 FIPA-SL parameters as defined in [21]

A FIPA ACL message contains a set of one or more message parameters, indicated

by a ‘:” — these are illustrated in Table 5-2. Precisely which parameters are needed

for effective agent communication will vary according to the situation; the only

parameter that is mandatory in all ACL messages is the performative, although most

ACL messages will also contain sender, receiver and content parameters.

116

5.3.4.2 Ontology

Ontologies [22][23] have been developed in order to provide a domain specific

vocabulary for inter-agent communication.

In the context of knowledge sharing the term “ontology” is used as a description of
the concepts and relationships that can exist for an agent, or a group of agents, in a
specified formal vocabulary. This means that in order for the agents to communicate
in an efficient way, they have to use a formal context of knowledge representation so
that they infer the same meaning for the same concepts referenced. The set of objects
and the relationships between them are represented in a logical formalism of a
vocabulary. There are certain definitions associated with the names of the different
entities within the problem domain (types of entities, their attributes and their
properties, the entities’ relations and functions and any of their possible constraints)
in a human readable text describing what these names mean and certain axioms that

constrain interpretation.

In a MAS the agents share the same vocabulary, but this doesn’t mean that they share
a knowledge base. Each agent might have different knowledge to that of the others,
but a shared vocabulary is essential in order to achieve their communication in a

coherent and consistent manner.

5.3.4.3 Message Content Language

Most ACLs do not specify a syntax for message contents, with the rationale being
that different application domains may require different content languages.
Nonetheless, a number of general-purpose content languages have been developed,
e.g. the Knowledge Interchange Format (KIF) [24], typically used with KQML, and
the FIPA Semantic Language (FIPA-SL) [25] for use with the FIPA ACL. The

research presented in this thesis employs the more common FIPA-SL.

FIPA-SL provides a syntax for message content, which is based on the formalism of
predicate logic. It defines some ‘built-in’ constants, functions and predicates, and any
others used in any given content expression are assumed to be defined in the

ontology referenced by the ‘:ontology’ message parameter.

117

To illustrate the use of FIPA ACL and FIPA-SL during agent interactions, a simple

example is presented in Figure 5-3.

query-ref!

inform 2
query-ref message 1 inform message 2
(query-ref (inform

:sender AgentA :sender AgentB

receiver AgentB receiver AgentA

:language fipa-sl :language fipa-sl

:ontology transport :ontology transport

:content “((any ?x (is-car ?x)))”) :content (= (any 7x (is-car ?x))

(car

:colour blue
‘registration “S460 DGD”
:make renault
‘type clio))”)

Figure 5-3 Illustration of FIPA ACL and FIPA-SL for message content

Figure 5-3 illustrates a simple FIPA message exchange between two agents, where
AgentA is querying AgentB, enquiring whether AgentB has any knowledge relating
to a car. The query is successful and AgentB replies using an ‘inform’ performative

with message content, structured using FIPA-SL, providing knowledge on a car.

5.4 MAS Power Engineering Applications

Although the MAS approach has been applied within the power industry, the post-
fault disturbance analysis arena has been overlooked, an oversight this research
aimed to address. Furthermore, many of the reported industrial applications of MAS
have been developed in an ad hoc fashion, following little or no rigorous design

methodology and with limited specification of the requirements or design of the

118

agents or MAS as a whole [26]. This issue will also be addressed in chapter six of

this thesis.

To provide a setting for the agent research presented in the remaining chapters of this

thesis, a number of the MAS applications within power engineering are presented.

5.4.1 ARCHON

Architecture for Cooperative Heterogeneous ON-line systems (ARCHON) [27][28]
was one of the first applications of agent-based technology within the power
industry. ARCHON was developed during an ESPRIT project, the motivation of
which was the integration of pre-existing computer tools that were not originally

intended to interoperate.

ARCHON was used to integrate four pre-existing expert systems into an architecture
designed to provide decision support to control engineers managing the distribution
network in northern Spain. Each expert system is assigned one agent as a wrapper,
which maintains a model of the capability of other agents in the system. The
resulting architecture consists of four agents, each offering a different decision
support function: control systems interface, blackout area identifier, an alarm

analyser and a service restoration planner.

Figure 5-4 presents the common modular architecture of the ARCHON layer that
wraps the different expert systems with: high-level communications manager
(HLCM) for network interfacing; planning and coordination module (PCM), to
establish and maintain cooperative activity; acquaintance model AM) to maintain
information on the abilities of other agents; self model (SM) to represent the current
state of the wrapped intelligent system and the monitor module for interfacing with

the existing intelligent system code.

ARCHON is a closed MAS, where the configuration of agents has been defined
when the system was developed, and each agent provided with knowledge of its
acquaintances abilities, thereby providing a non-extensible and inflexible

architecture. Furthermore, although ARCHON does follow a primitive speech act

119

protocol similar to FIPA ACL and KQML, it was developed before any of these

accepted standards were mature; consequently it uses a proprietary ACL.

Intelligent System (IS) Intelligent System (IS)
>
AL-IS Interface AL-IS Interface g
ARCHON Layer (AL) ARCHON Layer (AL)
Communication Link
Messages
g ! t
Intelligent System (IS) Intelligent System (IS) .
Monitor
AL-IS Interface AL-IS Interface | ! 1
ARCHON Layer (AL) ARCHON Layer (AL)| PCM «—»| SM
\ A
y
| HLCM —» AM
ARCHON Layer

Figure 5-4 Structure of ARCHON community and ARCHON layer [29]

5.4.2 COMMAS

Another more recent application of MAS is to the condition monitoring of industrial
plant, such as power transformers, gas turbines and Gas Insulated Switchgear (GIS).
The COMMAS (COndition Monitoring Multi Agent System) developed by Mangina
[30] provides a layered condition monitoring system, where functional modules are
grouped by their overall goal. Architecturally, the condition monitoring system uses
distributed agents that have no constraints on their physical location. This allows data

handling agents to be on the plant or in close proximity.

Each layer within COMMAS contains a number of agents performing different

functions:

= Data Layer: Agents which interpret data, extracting statistical features from

the data and performing basic calculations.

120

= Interpretation Layer: Agents employing various Al and data interpretation

techniques to interpret the data provided by agents in the data layer.

= Corroboration Layer: Agents use the different information provided by the

interpretation agents to find corroborative evidence of a particular defect.

= Information Layer: An information agent formats the diagnoses and

conclusions in the most appropriate way for the engineer using the system.

5.4.3 Power System Restoration

Researchers at the Hiroshima Institute of Technology have been applying multi-
agent technology to the field of post-fault power systems restoration [31]. In the
proposed system, agents possessing simple restoration strategies are distributed
across the power network at key nodes. The purpose of each agent is to restore
supplies to customers directly connected to its associated busbar. Through a
negotiation process between each busbar agent, facilitated by a special purpose agent
with a global view of the network, automated power system restoration is achieved.

Inter-agent communications are facilitated by a KQML message scheme.

The research is still in its early stages, having not moved much beyond simulations
using representative models of local distribution systems. Nevertheless, the
researchers have reported promising results, demonstrating the validity and
effectiveness of the proposed MAS. Research is to continue, with the performance of

the MAS being improved in order for it to cope with multiple faults [32].

5.4.4 SPID

The Strategic Power Infrastructure Defence (SPID) research program [33], started in
2000 and funded by EPRI and the U.S. Department of Defence, has been developing
a new concept for the defence of power systems. Using MAS technologies, the SPID
architecture should be capable of assessing power system vulnerability, monitoring
for hidden failures in protection schemes, and providing adaptive control to prevent
catastrophic failures and cascading sequences of events. As yet, SPID has not

advanced far beyond the conceptual stage and has not been implemented on an

121

operational network, nonetheless it is one of the most active research projects in

MAS applied to power systems.

Knowledge /
Reconfiguration Decision
\gents Exchange

Vulnerability Hidden Failure

\ssessment Monitoring

\gents \gents

DELIBERATIVE (G aas Restoration

LAYER \gent \gents

: \\7 " Planning

Ide ntification
\gents
\gents

Triggering Planning /
Events Decisions

Model

COORDINATION Update 3
LAYER Update Q. Agents . Check
Model . Consistency
thl Controls
Alarms
Paul quenc
Stability
REACTIVE ents gen
LAYER Loy
Inhibition__

Signal

Figure 5-5 The conceptual architecture of SPID [34]

SPID will achieve power systems vulnerability assessment and self-healing network
reconfiguration control using three agent layers, as illustrated in Figure 5-5:
» Reactive Layer: Agents perform local subsystems or components control with
a fast response time.
« Deliberative Layer: Agents analyse, monitor and control power systems from
a global point of view.

» Coordination Layer: Agents examine the consistency of decisions received

from the deliberative layer with the current model of the power system. These

122

agents are also required to map the decisions from the deliberative layer into

control signals that can be accepted by the agents in the reactive layer.

SPID’s global goal is achieved by agents working together in the context of
cooperative interactions. The control actions of the lowest layer can be modified or
inhibited by a higher layer in order to obtain the coordinated control of the system.

The communications necessary for cooperative interactions are realised using FIPA.

5.4.5 Multi-Agent Negotiation Models

In today’s power systems, competition among stakeholders is common in a number
of areas, including: power dispatching, maintenance scheduling and restoration. The
ability of MAS to facilitate negotiation is being leveraged by McCalley [35] to
support negotiated decision-making among these competing stakeholders. The
research is focussing on using power system multi-agent negotiation systems for

providing real-time decision support to stakeholders.

A MAS has been developed and agents instantiated demonstrating negotiation
capabilities. A new negotiation protocol has also been developed which is bilateral,
multi-issued, and integrative, and may be applied to decisions with or without
incorporation of uncertainty. Agent communication is performed using inter-agent

messaging compliant with the FIPA standards.

5.5 MAS and Hybrid Intelligent Systems

The foregoing discussion has introduced MAS as systems composed of multiple
autonomous components coordinating their behaviour and working together to reach
the overall global goal of the architecture. This description if very similar to that of
hybrid intelligent system presented in chapter three. However, only if the MAS
architecture consists of intelligent agents employing two or more distinct intelligent

reasoning techniques can the architecture be considered as truly hybrid.

With regards hybrid intelligent systems, MAS are particularly useful since they

provide a flexible and extensible platform for implementing such systems. The use

123

of utility agents together with a common communications vocabulary and protocols
facilitates the introduction of new intelligent systems. By facilitating such
introductions, new reasoning techniques can easily be introduced to provide
additional problem solving and data analysis capabilities, complementing the other
techniques already used within the MAS and providing an overall enhanced level of
functionality.

5.6 Chapter Summary

This chapter introduced intelligent agents and described the main characteristics of
MAS. Finally some of the major applications of MAS in power engineering have
been described. The motivation of this overview of multi-agent technologies was
twofold. Firstly to represent the general aspects of MAS and secondly to establish the
agent terminology for use throughout the remaining chapters of this thesis. Most of
the agents’ issues are not covered in detail and the reader should refer to the

bibliography for further reading.

5.7 Bibliography

C. Rehantz (Editor), “Autonomous Systems and Intelligent Agents in Power

System Control and Operation”, Springer-Verlag, 2003.
= G. Weiss, “Multiagent Systems: A Modern Approach, MIT Press, 1999.
= M.A. Hugns, “Readings in Agents”, Morgan Kaufmann Publishers, 1998.
» J. Bradshaw, “Software Agents”, MIT Press, 1997.

» R. Khosla, T. Dillon, “Engineering Intelligent Hybrid Multi-Agent Systems”,
Kluwer Academic Publishers, 1997.

* A. Bond, L. Gasser (Editors), “Readings in Distributed Artificial Intelligence”,
Morgan Kaufmann Publishers, 1988.

124

5.8 References

(1.

[2].

[3].

[4].

[5].

[6].

[7].

(8].

[9].

[10).

[11].

S. Franklin, A. Graesser, “Is it an Agent, or just a Program: A Taxonomy for
Autonomous Agents”, Proc. of the Third International Workshop on Agent
Theories, Architectures and Languages”, Hiedelberg, Germany, 1996.

M. Wooldridge, N.R. Jennings, “Intelligent Agents: Theory and Practice”,
Knowledge Engineering Review, v10, n2, 1995.

L. Gasser, “Foreword In: Readings in Agents”, M.N. Huhns, and M.P. Singh
(Editors), Morgan Kaufmann Publishers, pages v-vi, 1998.

E.H. Durfee, “What Your Computer Really Needs to Know, You Leamed in

Kindergarten”, Proceedings of the Tenth National Conference on Artificial

Intelligence, pages 858-864, July 1992

E.H. Durfee, V.R. Lesser, D.D. Corkill, “Trends in Cooperative Distributed
Problem Solving”, IEEE Transactions on Knowledge and Data Engineering, v1,

nl, pages 63-83, March 1989.

N.R. Jennings, K. Sycara, M. Wooldridge, “A Roadmap of Agent Research and
Development”, Autonomous Agents and Multi-Agent Systems Journal, N.R.
Jennings, K. Sycara, M. Wooldridge (Editors), Kluwer Academic Publishers, v1,
nl, pages 7-38, 1998.

H. Van Dyke Parunak, “Practical and Industrial Applications of Agent-Based
Systems”, Environmental Research Institute of Michigan (ERIM), 1998.

N. Jennings, “Applying Agent Technology”, Plenary presentation at PAAM’96,
1996.

K. Decker, K. Sycara, M. Williamson, “Middle-Agents for the Internet”,
Proceedings of the International Joint Conferences on Artificial Intelligence

(1JCAI1-97), January, 1997.

J.C. Collis, D.T. Ndumu, H.S. Nwana, L.C. Lee, “ZEUS agent building tool-kit”,
BT Technology Journal, 16(3), p 60-68, 1998.

G. Wiederhold, “Mediators in the Architecture of Future Information Systems”,
IEEE Computer, March 1992, pages 38-49.

125

[12].

[13].

[14].

[15].

[16]).

[17].

[18].

[19].

[20]).

[21].

[22].

[23].

[24].

K. Decker, M. Williamson, K. Sycara, “Matchmaking and Brokering”,
Proceedings of the Second International Conference on Multi-Agent Systems

(ICMAS-96), December, 1996.

P.R. Cohen, A. Cheyer, M. Wang, S.C. Baeg, “An open agent architecture”,
Proceedings of the AAAI Spring Symposium. 1994,

L. Thomas, “Games, Theory and Applications”, Ellis Horwood Series in

Mathematics and Its Applications, G.M. Bell (Editor), Prentice Hall Europe, 1984.

R. Smith, “The Contract Net Protocol: High Level Communication and Distributed
Problem Solver”, Readings in Distributed Artificial Intelligence, A.Bond and L.
Gasser (Editors), Morgan Kaufmann Publishing, pp 357-366, 1988.

G. Zlotkin, S. Rosenschein, “A Domain Theory for Task Oriented Negotiation,
Proceedings of HCAI’93, pp 416-422, 1993.

T. Finin, Y. Labrou, J. Mayfield, “KQML as an agent communication language”,

Software Agents, J. Bradshaw (Editor), MIT Press, Cambridge, 1997.

R.S. Patil, et al, “The DARPA knowledge sharing effort: Progress report”,
Proceedings of Knowledge Representation and Reasoning, pp 777-788, 1992.

S. Cranefield, M. Purvis, “Referencing Objects in FIPA SL: An Analysis and
Proposal”, Proceedings of the 2nd International Workshop on Challenges in Open

Agent Environments, AAMAS 2003.

“FIPA Communicative Act Library Specification”, XC00037H, [Online],
Available: http://www.fipa.org/repository/index.html

“FIPA ACL Message Structure Specification”, SC00061G, [Online], Available:
http://www.fipa.org/repository/index.html

T.R. Gruber, “A Translation Approach to Portable Ontologies”, Knowledge
Acquisition, v5, n2, pp 199-220, 1993.
T.R. Griber, “Towards principles for the design of ontologies used for knowledge

sharing”, presented at The Padua Workshop on Formal Ontology, 1993.

M.R. Genesereth, “Knowledge Interchange Format”, Proceedings of the 2nd

International Conference on Principles of Knowledge Representation and

Reasoning, pp 589-600, 1991.

126

http://www.fipa.org/repository/index.html
http://www.fipa.orglrepository/index.html

[25].

[26].

[27].

[28].

[29].

[30].

[31].

[32).

[33].

[34].

[35).

“FIPA SL Content Language Specification”, XC00008G, [Online], Available:
http://www fipa.org/repository/index.html

M. Luck, P. McBurney, C. Preist, C. Guilfoyle, “Agent Technology Roadmap”,
(Online], Available, http://www.AgentLink.org, October 2002.

N.R. Jennings, T. Wittig, “ARCHON: Theory and Practice”, Distributed Artificial
Intelligence: Theory and Practice, N.M. Avouris (Editor), Kluwer Academic Press,
1992, pp 179-195.

L.Z. Varga, N.R. Jennings, D. Cockburn, “Integrating Intelligent Systems into a
Cooperating Community for Electricity Distribution Management”, Expert

Systems with Applications, v7, n4, 1994, pp 563-579.

D. Cockburn, N.R. Jennings, “ARCHON: A Distributed Artificial Intelligence
System for Industrial Applications”, Foundations of Distributed Artificial
Intelligence, G.M.P. O’Hare and N.R. Jennings (Editors), Wiley, pp 319-344,
1996.

E. Mangina, S.D.J. McArthur, J.R. McDonald, “COMMAS (COndition Monitoring
Multi Agent System)”, Journal of Autonomous Agents and Multi-Agent Systems,
v4, n3, pp 279-281, September 2001.

T. Nagata, H. Sasaki, “A Multi-Agent Approach to Power System Restoration”,
IEEE Transactions on Power Systems, v17, n2, pp 457-462, May 2002.

T. Nagata, H. Sasaki, “A Multi-Agent Approach to Power System Restoration”,
Autonomous Systems and Intelligent Agents in Power System Control and

Operation, Christian Rehantz (Editor), Springer-Verlag, 2003, pp 101-114.

C-C. Liu, H. Li, Y. Zoka, “New Applications of Multi-Agent System Technologies
to Power Systems”, Autonomous Systems and Intelligent Agents in Power System
Control and Operation, Christian Rehantz (Editor), Springer-Verlag, 2003, pp 247-
271.

C-C. Liu, J. Jung, “Multi-Agent Systems and Their Applications in a Competitive
Industry Environment”, ISAP Plenary Session Presentation, 2001.

V. Vishwanathan, J. McCalley, V. Honovar, “A Multiagent System Infrastructure
and Negotiation Framework for Electric Power Systems”, IEEE Porto Power Tech

Conference, Porto, Portugal, 10th-13th September 2001.

127

http://www.AgentLink.org,

Chapter6: A Methodology for the
Specification of MAS for Power
Engineering Decision Support

128

6.1 Chapter Overview

Research conducted by Sycara in 1998 [1] indicated that there were few industrial
strength applications of MAS technology. Sycara attributed this to the lack of proven
methodologies enabling designers to clearly structure applications as MAS and the
absence of tool-kits to facilitate their implementation. In the six years since, a range
of MAS design methodologies and industrial strength toolkits have been developed,

providing the necessary tools to increase the profile of MAS within industry.

Although numerous methodologies have been proposed, few have been evaluated in
online, near real-time operational environments and none have been developed in the
field of decision support for power engineering. This chapter addresses this issue, by
presenting a new methodology for the specification of MAS for power engineering
decision support. Before, presenting the new methodology, the characteristics of
decision support within the power industry are described and the suitability of

existing MAS design methodologies for specifying such systems assessed.

6.2 Power Engineering Decision Support

As monitoring technologies have evolved from simple data capture devices to more
advanced devices recording the condition of the circuits and plant, which constitute
the network, the volumes and complexity of data available to engineers has
increased. Combined with experience and knowledge, engineers use this data as a

basis for decision-making.

As described in the earlier chapters of this thesis, a range of software tools are
commonly available to assist in this decision making process. These decision support

tools can be characterised by a number of common features:

= Distributed Systems: Data gathering devices are often located on, or in close
proximity to plant, leading to a large number of hardware and software
systems distributed over a significant geographical area. Additionally,
software systems for retrieving, visualizing and interpreting the data are often

located in offices remote from the data capture devices.

129

* Heterogeneous Data: Communicated decision support data is
heterogeneous. The data types can range from the simple textual
representation of plant status found in SCADA alarms to the large data files
generated by DFRs. The differing data sizes also mean that data is not always

immediately available with data retrieval sometimes taking several minutes.

» Online, Near Real-time Operational Environment: The majority of
existing DSS offer support in ‘live’, or online, operational environments by
interpreting monitoring data in near real-time. In such an environment, the
problems of unpredictable data volumes and intermittent communications to

remote devices need to be managed if timely support is to be provided.

s Legacy Systems: Legacy systems are a common feature and are often
integral parts of complex data management and decision support schemes. It
can be prohibitively expensive to redesign these existing software systems in
line with new technologies. As a result there may be several generations of

software managing the retrieval and analysis of data from different devices.

* System Turnover: New monitoring technologies, and their associated
proprietary data gathering and visualization systems, are introduced relatively

frequently leading to a high turnover of software and hardware systems.

As described in section 5.3.1 of chapter five, MAS are particularly suited for
applications which are modular, decentralised, changeable, ill-structured and
complex. The common features of power engineering decision support exhibit all
these characteristics, indicating the suitability of MAS for enhancing decision
support within the power industry. A key element in achieving this is the creation of
a methodology for specifying MAS, which considers all the characteristics of the

decision support systems.

6.3 Methodologies for MAS Specification

A number of methodologies have been proposed by the agent research community
[2] for specifying MAS. Many, such as the Styx methodology, are only in the
prototype stage [3]. Of the more developed methodologies, some are closely linked

130

to a particular MAS development tool-kit such as the Zeus tool-kit [4], others are
focussed on the development of MAS employing particular types of agents [5]. All
of the developed methodologies either extend traditional software design
methodologies such as the Unified Modelling Language (UML) [6] or knowledge

engineering methodologies such as CommonKADS [7].

The following sections review four of the most developed methodologies,
highlighting the key features of each. A discussion on their suitability for developing

MAS for power engineering decision support is then presented.

6.3.1 MAS-CommonKADS

The CommonKADS knowledge engineering methodology is traditionally used to
capture and structure the knowledge required within a centralised monolithic
Knowledge Based System (KBS) [8]. A description of the CommonKADS
methodology was presented earlier in chapter three. For the purposes of this
discussion merely remember that CommonKADS requires construction of six models
capturing the salient features of the KBS and the organisation in which it will reside,

namely: organisation, task, agent, communication, expertise and design models.

In MAS where the software agents are considered ‘intelligent’, the CommonKADS
methodology is suitable for acquiring the agent knowledge. However, the main
restrictions for the direct application of CommonKADS to MAS come from the
CommonKADS Communication Model. The Communication Model is unable to

represent agent cooperation and interactions for a number of reasons [7]:

* The Communication Model deals mostly with human-computer interaction

and is very restrictive for computer-computer interaction.
= The primitives of a protocol for complex interactions are not considered.
* The Communication Model does not address multi-agent transactions.

To overcome these limitations the MAS-CommonKADS [7] methodology has been
developed which extends CommonKADS with an additional Coordination Model.

131

The methodology consists of seven stages that are applied iteratively until a design
model is obtained for the MAS. The MAS-CommonKADS methodology is

illustrated in Figure 6-1.

Methodology Stages Generated Models Modelling Results

{k
v
A
v
A
v

Conceptualisation

v

Agent Modelling (— Agent Model * Templates for identifying and
! describing agents

) * Documentation of
Task Modelling —=p __“ﬂ'&_ organisation activities

o) Condination Kisdd » { * Describe agent interactions
Coordination Modelling || C—mp>| (-oordin * Describe coordination protocols

*) * Domain Knowledge
) * Inference Knowledge
Knowledge Modelling || C——=» Mﬂ « Task Knowledge
* * Problem Solving Method

Organisation Modelling || C—=mm»>| Organisation Model { » Static relationship between agents

! { * Network design
i ——=mp| Design Model * Agent design
—e lgn_JJ « Platform design

Figure 6-1 MAS-CommonKADS methodology

Application of the methodology begins with a conceptualisation phase where a
knowledge elicitation process is conducted to obtain a preliminary description of the
problem the MAS is being designed to solve. During this process UML [9] Use
Cases are identified which capture the informal requirements and enable later testing

of the system.

The methodology then moves onto the analysis phase beginning with agent
modelling where the problem description and Use Cases are analysed to identify the
agents required within the MAS. The activities of the organisation are then

documented during task modelling where tasks are decomposed following a top-

132

down approach into a task hierarchy. This documentation serves for supporting the

maintenance and management of changes in the organisation.

The next stage is coordination modelling where the social and distributed nature of
agents within a MAS are modelled. During coordination modelling the required
agent interactions with other agents and the organisation are specified. This is
achieved by constructing Message Sequence Charts (MSC) based on the Use Cases
and Agent Model. A basic MSC shows the evolution and sequencing of messages
between participants in an interaction. The data interchanged in each interaction is

also modelled during this phase.

Having constructed the coordination model the methodology continues with the

CommonKADS knowledge modelling, organisation modelling and design stages.

>
MSC Traveller-

Request

Traveller

Figure 6-2 Use Case diagram for a traveller wishing to book a flight

MSC TRAVELLER-REQUEST

Traveller System

Request_Flight(dd, ad, destination) >

ALT answer(num_flight)

sorry(causc)

4
—

Figure 6-3 MSC for traveller requesting a flight.

To illustrate the Use Cases and Message Sequence Charts used during
conceptualisation and coordination modelling the case study used in [7] will be

briefly described. The problem consists of building a system that is consuited by a

133

user (Traveller) for booking a flight, and answers with the flight number (num-flight)
of the cheapest available flight with the lowest probability of delay.

Using UML, the interaction between the Traveller and the system can be represented
by the Use Case diagram in Figure 6-2. This diagram shows that the Traveller uses
the ‘Ask Flight’ system function. The interactions in this Use Case diagram are

formalised using the MSC indicated in Figure 6-3.

In Figure 6-3, the Traveller requests flight details from the System, by providing the
departure date (dd), arrival date (ad) and destination. The System can then reply with
two alternatives (ALT): a flight number, or sorry and the cause if no flights are

available.

6.3.2 Gaia

The Gaia methodology [10] only addresses the analysis and design phases of MAS
development assuming that the conceptualisation phase has already been conducted.

The main models used in Gaia are presented in Figure 6-4.

Requirements

Conceptualisation Statement

Analysis Roles Interactions
Model Model
Design Agent Services Acquaintance |
Model Model Model

Figure 6-4 Relationships between Gaia models

The objective of the analysis phase is to develop an understanding of the MAS and
its organisational structure through creation of a Roles Model and an Interactions
Model. The aim of the design phase is to transform the analysis models into a
sufficiently low level of abstraction that traditional software design techniques may

134

be applied in order to implement the agents. How an agent actually realises its

functionality is considered beyond the scope of Gaia.

The organisation is viewed as a collection of related roles that take part in systematic
patterns of interactions with other roles. A role can be viewed as an abstract

description of an agent’s expected function and is defined by four attributes:

o Responsibilities: These determine the functionality of the role and are
split into liveness properties and safety properties.
Liveness properties describe the desired states a role
must achieve. Safety properties describe the states an

agent must ensure are always maintained.

o Permissions: These identify the resources that are available to a role

in order to realise its responsibilities.

0 Activities: The computations associated with the role that may be

carried out without interacting with other roles.
o Protocols: These define role interactions.

Having generated a preliminary Roles Model, an Interactions Model is created which
identifies and documents the associated agent interactions in the form of protocol
definitions, one for each type of inter-role interaction. At this stage attention is
focussed on the essential nature and purpose of the interaction, rather than on the

precise ordering of particular message exchanges.

Role Schema: name of role
Description: short description of the role
Protocols and Activities: protocols and activities in which the role takes part
Permissions: ‘rights’ associated with the role
Responsibilities:
Liveness: liveness responsibilities
Safety: safety responsibilities

Figure 6-5 Gaia template for a Role Schema

135

The analysis process continues with iteration of the Roles Modelling and interactions

modelling until an elaborated roles model is realised which documents the key roles

occurring in the system, their permissions and responsibilities, together with the

protocols and activities in which they participate. Each role is documented using a

Role Schema as illustrated in Figure 6-5.

The methodology continues with the design phase in which three separate models are

developed to assist with implementation of the MAS using traditional software

design techniques. The models are:

o Agent Model:

o Services Model:

o Acquaintance Model:

Identifies the agent types that will make up the system.
An agent type is best thought of as a set of agent roles.
There may be a one-to-one correspondence between
roles and agent types. However, this need not be the
case. A designer can choose to package a number of
closely related roles in the same agent type for the

purpose of convenience or efficiency.

Identifies the main services, or functions, required to
realise a role. The services that an agent will perform
are derived from the list of protocols, activities,

responsibilities and the properties of a role.

Defines the communication links that exist between
agent types. It does not define what messages are sent
or when, it simply indicates that a communications
path exists. The model is derived from the roles,

protocols and agent models.

The Gaia methodology assumes that the MAS is closed and the systems’

organisational structure is static, i.e. inter-agent relationships and agent abilities do

not change at run-time.

136

6.3.3 DESIRE

DESIRE (DEsign and Specification of Interacting REasoning components) is a
compositional modelling framework originally conceived as a means of specifying
complex software systems [11]. The authors of DESIRE consider that it is suited to
the specification of MAS due to its philosophy of viewing the complex system as a
series of interacting, task based, hierarchically structured components. This view has
been affirmed by using DESIRE to create a formal specification of the existing
ARCHON multi-agent system (outlined in section 5.4.1) [12].

DESIRE does not provide a detailed methodology for the entire MAS development
cycle but instead provides a framework for supporting its specification. It is assumed
that knowledge acquisition and requirements capture have already been conducted
and that the required agents have already been identified based on high-level

functional requirements.

To identify the necessary tasks, the compositional modelling process begins with
task decomposition. This involves decomposition of the overall system task into a set
of composed and primitive tasks documented in a task hierarchy. In contrast to
primitive tasks, composed tasks are tasks for which subtasks are identified. An
example of the task hierarchy for ARCHON is presented in Figure 6-6. The tasks are
delegated to agents by deciding which agents would best perform which tasks.

Electricity Transportation Management

] I l

Analyse Diagnose Generate Execute Monitor
Incoming Plans Plans Restoration
Data l
L f —
f M 1
Alarm Chronological Determine Validate Monitor Monitor
Message message Hypotheses hypotheses restoration plan
Acquisition acquisition I | process execution
Disturbance Provision of Determine Refine Derive causal Evaluate
Detection snapshots focus hypotheses consequences hypotheses

Figure 6-6 ARCHON Task Hierarchy

137

C Agent task control j
)
Own Maintenance Agent
Process of Agent Interaction]
Control Information Management
()
World Maintenance Agent
Interaction of World Specific]
Management Information Task

\.

Figure 6-7 DESIRE generic compositional model for the weak agent notion

Central to the DESIRE framework is a library of generic models which can be
modified or refined to produce compositional models of the agents and their assigned
tasks. These generic models represent different classes of agents, e.g. Belief Desire
Intention (BDI) and the weak notion of agency. A generic model for agents adopting

the weak notion of agency is presented in Figure 6-7.

The model inputs and outputs are represented diagrammatically as rectangular blocks
on the left and right of the model respectively. The tasks performed by the agents are
themselves represented as compositional models which can, in turn, be repeatedly
decomposed until the associated primitive tasks are reached. The agent tasks within
the weak agent model not only relate to the ‘Agent Specific Task’ assigned to the
agent but also the tasks required to support the weak notion of agency:

o ‘Own Process Control’ supports autonomy and pro-activeness.

o ‘Agent Interaction Management’ and ‘Maintenance of Agent Information’
supports social abilities, reactiveness and pro-activeness with respect to other

agents.

o ‘World Interaction Management’ and ‘Maintenance of World Information’

supports reactiveness and pro-activeness with respect to the external world.

DESIRE also recognises that within agents components can either be autonomous or

controlled. Where control is required the agent’s task control knowledge specifies

138

when and how components are to be activated (and whether activation is continuous

or only for a given period).

The domain task assigned to the agent is illustrated by the ‘Agent Specific Task’
component of the agent model and can be further decomposed into component
models. Figure 6-8 illustrates the decomposition of the ‘Diagnose’ agent specific task

within the Alarm Analysis Agent (AAA) of ARCHON into a component model.

The information exchanges between components are modelled as Information Links,

as illustrated in Figure 6-8, which relate output of one component to input of another.

(C Diagrostic_reasoning system task control)
focus_info
required
Hyp_target_info observations
hypothesis hypotheses hypothesis diagnosis
determination validation P
observation_info |
assessments
symptoms_presence

— J

Figure 6-8 Generic task model of the diagnosis task

The required information links are determined by using the task hierarchy and
considering the exchange of information between tasks. Information links are
formally specified within DESIRE and an example specification for the
Hyp_target_info link is as follows:

link hyp_target_info: object-object

domain hypothesis_determination
output hyp_target info
codomain hypothesis_validation
input target_info
links (hyp_target_info, target_info) :<<true, true>>

endlink

139

This link transfers hypothesis information determined in the hypothesis_determination
component (the domain of the link) to input of the component hypothesis_validation
(the codomain of the link). The links specify the relationships between the names
used by the components sending and receiving the information. Different names are
used for the same information to allow each component to specify information in its

own language, independent of other components.

At the end of the specification process a developer using the DESIRE framework
should have generated a formal specification of the MAS. This specification will
consist of a large number of models representing the components within the MAS at
various levels of abstraction. It will also specify the task control knowledge and

required information links and is intended to be used to implement the MAS.

6.3.4 MaSE

The Multiagent Systems Engineering (MaSE) methodology [13]{14] was developed
to guide a multi-agent system developer from an initial systems specification to a set
of formal design models. The methodology is illustrated in Figure 6-9 and has an
analysis phase and a design phase each consisting of four steps. These steps are

applied iteratively until a complete set of design models is realised.

The analysis phase aims to describe the system requirements through a set of roles
with assigned tasks. The roles are similar in concept to those defined in Gaia. The
first step in analysis is Capturing Goals where the system-level objectives, or goals,
are identified by distilling the essence of the initial system requirements. Goals are
used at this stage since they are less likely to change than the detailed tasks and
interactions involved in achieving them. The goals are then analysed and structured

into a goal hierarchy diagram which can be used during the design phase.

The next analysis step is Applying Use Cases where UML Use Cases, similar to
those adopted in MAS-CommonKADS, are compiled based on the system
requirements. A similar concept to the Message Sequence Chart (MSC) used in
MAS-CommonKADS, namely the sequence diagram, is used to determine the

minimum set of messages that must be passed between roles.

140

Capturing
Goals

Goal

Hierarchy

Case
Studies

Sequence
Diagrams

Applying
Case Studies

Building
Ontology

Analysis

System
Ontology

Refining
Roles

Creating
Agent Classes

Constructing
Conversations

Assembling
Agent Classe

Conversations

Agent
Architecture

System
Design

Deployment
Diagram

Figure 6-9 MaSE phases, steps and models

Terms from the goal hierarchy, use cases and sequence diagrams are then used
during the Building Ontology step as possible concepts in the MAS ontology. The
final step of analysis, Refining Roles, uses the outputs from the previous steps to
create roles and assign the tasks to be performed by those roles. Tasks are associated
with each role to describe the behaviour that the role must have to accomplish its
assigned goals. Tasks often indicate parameter passing, so this step is placed after
construction of the ontology to allow the designer to specify the type of parameters

based on the classes in the ontology.

Once the system requirements have been modelled, MAS design can commence. The
first step in the design phase is Creating Agent Classes, where the roles are assigned
to specific agent classes. This step creates an Agent Class Diagram illustrating the

classes, the roles played by the agent classes and the conversations between classes.

141

Details of the required conversations are defined in the Constructing Conversations
step, where finite state automata are used to show the states in a conversation. Each
conversation has two diagrams: one for the initiator and one for the responder of the
conversation. The set of conversations that an agent class participates in is derived

from the communications required by the roles that the agent plays.

The third step in design, Assembling Agent Classes, defines the components of the
agent architecture, allowing for the logical decomposition of agents. The final step of
system design creates a Deployment Diagram to show the amount and location of
each type of agent in the system. The outputs from the design steps describe the

actions and conversations used in the MAS.

6.3.5 Discussion

Each of the methodologies in the preceding sections provides a framework for the
development of MAS. Although, all these methodologies assist with the specification
of distributed systems, a common feature of decision support, none have been used to

develop a MAS for decision support within the power industry.

Considering the main aspects of each methodology, and the features common to
power engineering decision support systems, the existing methodologies fall short of

being truly applicable to decision support in a number of areas:

6.3.5.1 Ontology

An ontology is an essential component of an integrated decision support architecture
as it provides the vocabulary necessary for agents to request and provide
heterogeneous data. New agents compliant with the ontology can also be easily
introduced into the MAS. Together with the use of utility agents, an ontology can

provide for an open architecture able to cope with frequent system turnover.

Only the MaSE methodology explicitly recognises the importance of an ontology and
has a stage in the methodology devoted to ontology development. The other

methodologies either ignore the issue or skirt around it.

142

6.3.5.2 Closed Architectures

The presented methodologies are only applicable to closed systems, where each
agent within the MAS has been provided with knowledge of its acquaintances at
design time. This does not provide for an open system, where agents can discover the

location and abilities of other agents at runtime.

When implementing decision support architectures as MAS, an open architecture is
essential for two reasons. Firstly, it allows for agents going incommunicado, due to
temporary communications faults, and being rediscovered during run time when
communications have been restored. Secondly, it enables new systems to be
integrated into the architecture and obsolete systems removed whilst the system is
running. Such a flexible and extensible architecture can only be achieved through

the use of utility agents, a concept not entertained by the described methodologies.

6.3.5.3 Compliance with International Standards

None of the methodologies support an internationally accepted standard for agent
communications, such as FIPA ACL. Compliance with an international
communications standard would significantly enhance the future extensibility of a
MAS. This is of importance to integrated decision support architectures, since new
monitoring technologies are always coming onto the market, some requiring the

development of new intelligent systems to interpret the generated data.

6.3.5.4 Legacy System Reuse

All of the methodologies focus on developing a MAS from scratch, with none
considering the benefits of reusing legacy systems to provided some of the agent
functionality. Consequently, none of the methodologies provide any assistance with
extending legacy decision support software with the behaviour necessary for it to

perform as an agent.

143

6.3.5.5 Specification of Data and Information Exchange Mechanisms

None of the methodologies discuss the selection of the data / information exchange
mechanisms, or performatives, appropriate to interactions in an online environment.
The selection of the correct mechanism at the specification stage is essential, as
selection of the wrong technique may lead to unnecessary inter-agent
communications, possibly resulting in reduced performance of the overall system.
For example, if an agent requiring SCADA alarms was to ‘subscribe’ to an agent
providing SCADA alarms, then a separate message for each alarm would be sent to
the subscribing agent — in storm scenarios the volume of alarms and, therefore,

messages could be in the tens of thousands.

6.3.5.6 Application within Online, Near Real time Environments

Finally, none of the existing methodologies have been used at the outset to specify a
MAS for deployment in an online environment, where near real-time data
interpretation is required. As a result, at no point in any of the methodologies can the
MAS developer consider and specify the reasoning techniques to be used to perform

the core functional agent tasks — predominately data interpretation in decision

support.

6.4 New Methodology

The remainder of this chapter describes a new methodology taking many of the
concepts present in existing methodologies and combining them with new ideas
addressing the decision support issues identified in section 6.2. This methodology is

for the specification of MAS for power engineering decision support.

Although the forthcoming discussion makes no specific reference to the
methodology’s applicability to online systems, it will be shown later in this thesis
that it has been used successfully to develop the PEDA MAS for automation of post-

fault disturbance analysis in an online environment.

144

6.4.1 Methodology Overview

Using the new methodology a developer can compile a specification of a MAS for
decision support within the power industry documenting the required agents, legacy
systems to be integrated, agent interactions, internal agent control, agent message
handling functionality and system wide ontology. The final specification will provide
both a textual description and, where appropriate, graphical illustrations of key
components. To generate this specification the developer must follow an eleven-

stage methodology as illustrated in Figure 6-10.

Methodology Stages

Output

v
A

Requirements & Knowledge Capture

1

y

Task Decomposition

'

Ontology Design

'

Legacy System Reuse Potential

A4

Update Task Hierarchy

!

Identify Required Agents

'

* Requirements specification
* Activities knowledge

* Resource knowledge

* Reasoning knowledge

* Use Cases

C—p Task hierarchy

—=p

d * Domain ontology

« Services / data provided
« Control requirements

—=p

« Task data / information exchange
» Tasks performed by legacy systems

—p

d * Required agents

Data & Information Exchange Mechanisms

« Interaction tasks
* Data / information exchange

—=p

mechanisms

)

Realising Agent Functionality

'

Agent Modelling
¥

Agent Interactions Modelling

1}

Agent Behaviour Functions

* Realisation of decision support
functionality
* Realisation of secondary functionality

d « Agent templates

lj * Required interactions

« Interaction functionality
* Control functionality

—=p

Figure 6-10 Methodology for specifying decision support MAS.

145

The methodology combines both a top-down approach where the main tasks required
within the MAS are identified and assigned to agents and a bottom-up approach
where the re-use of legacy systems constrains the top-down approach. A
comprehensive description of each stage in the proposed methodology is presented in

the subsequent sections.

6.4.2 Stage 1 - Requirements and Knowledge Capture

The first objective is to understand the decision support functionality required of the
MAS through a high-level requirements specification, and to ensure any relevant
knowledge and case studies are captured. The overall decision support function,
which the MAS must perform, should quickly become apparent from the

requirements and knowledge captured during this stage.

The requirements and knowledge capture process should commence with a series of
elicitation meetings with engineers experienced both in the area to which decision
support is to be provided and in operating the software tools required to generate
information for decision support. The elicitation methodology adopted during
Telemetry Processor development (section 3.4.1) and described in [8] provides an

effective means of capturing and structuring the requirements and knowledge.

To provide the information necessary for later stages in the methodology the

elicitation process must focus on identifying several different types of knowledge:

o Activities knowledge - describes the decision support activities performed by the

engineer which the MAS may also need to perform, e.g. data retrieval.

o Resource knowledge - describes the data, software and hardware resources

necessary to perform the activities, e.g. a legacy alarm processor.

o Reasoning knowledge - provides the knowledge necessary to mirror the
reasoning processes used by the engineer to operate the existing decision support

tools, interpret the output data and to decide which data to collate.

A useful means of capturing this knowledge is via case studies: identifying actual
situations where the engineers have used existing decision support tools, or gathered

and interpreted the data necessary for decision support. During the elicitation

146

meetings, each case study should be ‘walked through’ with each engineer and the
activities performed by the engineer, the data and software resources used and the
reasoning processes followed during each case study recorded. To provide a
structured record of the knowledge captured during these elicitation meetings

knowledge transcripts must be produced.

It is important to note that the knowledge elicited during the initial meetings may not
consider all tasks required to facilitate integration and automation of legacy decision
support systems within the MAS. Interaction tasks, where the engineer would
previously have manually transferred data between the systems, can easily be
overlooked. Before knowledge transcripts are finalised, it is therefore critical that the
elicited knowledge is analysed and validated to determine whether a comprehensive
coverage of the system-system and engineer-system interactions are realised. If the
knowledge is lacking, further additional knowledge elicitation meetings should be

conducted.

Later in the methodology it will be necessary to determine the legacy system
functionality available to and used by engineers, to this end, the elicited activities and
software resource knowledge should be modelled as UML Use Case diagrams. These

graphical diagrams provide a useful addition to the knowledge transcripts.

The use case diagram presents a structured view of a system’s functionality [9]. It
does this by defining a number of actors, which model the roles users can play when
interacting with the system, and describing the Use Cases that those actors can
participate in. A Use Case describes one way in which a user can interact with a
system. The Use Case diagram contains a set of Use Cases which should define the
complete functionality of the system as seen from the user’s perspective. Although a
detailed description of Use Case diagrams, and Use Case modelling, can be found in
[9], a simple example will be used to introduce the concept and assist with its
application.

Consider the Energy Management System (EMS) used within power companies to
provide a real-time picture of network status. Users of the system can fulfil a range
of possible roles when interacting with the system, e.g. maintenance engineers

preparing switching schedules for necessary planned outages and control engineers

147

approving or declining these outages and remotely operating circuit breakers via
Tele-control. As illustrated in Figure 6-11, each of these roles can be depicted as an
actor. The EMS functions, as viewed from the perspective of each actor, are the Use

Cases and are represented as ellipses within the EMS system boundary.

Energy Management System (EMS)

Create Switching
Schedule \ 2
Kusesy
Check Schedule\/
Status
Maintenance Engineer

Uses»

«use:

usesy

Control Engineer

Figure 6-11 Example use case diagram for EMS system

Modelling of the elicited activities and resource knowledge as Use Case diagrams
completes the first stage of the methodology. Together with the Use Case diagrams
and knowledge transcripts, specification of the MAS can progress to identifying the
tasks which must be performed: Stage 2 — Task Decomposition.

6.4.3 Stage 2 - Task Decomposition

In the decision support arena, a MAS will be designed to perform a particular
decision support function, or high-level task. This task could be limited to the
interpretation of one data type with the MAS consisting of agents, performing the
same data interpretation function albeit distributed across the network, e.g. alarm
interpretation at each substation. Alternatively, the task could be to provide generic
decision support to a particular type of engineer with the MAS consisting of
heterogeneous agents, each interpreting different data. Regardless of the identified

application, in order for a MAS to perform its high-level task, the task must be

148

decomposed into sub-tasks which can, in turn, be assigned to agents for execution.
Through a process of inter-agent collaboration, sub-task execution is achieved and

the high-level task realised.

During this stage in the methodology the high-level task identified during
requirements capture will be decomposed into its constituent sub-tasks so they can be
assigned to agents later in the methodology. The principal output of the task
decomposition process will be a task hierarchy based on the transcribed knowledge

and case studies.

Generation of the task hierarchy commences with the identification of the high-level
task assigned to the MAS. This high-level task is the root task of the task hierarchy,

from which all sub-tasks will stem.

The knowledge transcripts and case studies are then analysed to identify the first
layer of sub-tasks. In the case of a high-level decision support task the first layer will
likely relate to the stages required to achieve the task. For example a condition
monitoring high-level task would consist of three stages, each represented by a sub-

task within the first sub-task layer as illustrated in Figure 6-12.

Condition Monitoring

Obtain Data Interpret Data Collate Results

Figure 6-12 Example task hierarchy — first sub-task layer

Each of the sub-tasks are then taken in turn and the knowledge transcripts and case
studies analysed to determine if the sub-task can be decomposed further into a
second layer of sub-tasks. At this point, further decomposition can be justified if the

task meets any one of the following criteria:
o The task requires operation, or access to, several separate systems.

o The task uses different data types each requiring a dedicated retrieval or

analysis mechanism.

149

o The task uses several types of knowledge, e.g. rules, cases and models.

Some sub-tasks, may already be decomposed to such a level that they only require
access to one particular system, e.g. a database, and only require a simple interaction
with the system. To decompose such tasks further would neither be logical nor

desirable.

The task hierarchy will contain tasks, which will eventually fulfil a core functional
role within the agents they are later assigned to and others that will provide the social
capabilities of the agents, facilitating interactions. To assist with later stages in the
methodology it is useful to distinguish these interaction tasks from their functional

neighbours in the task hierarchy — in this thesis a * symbol will be used.

Creation of the task hierarchy completes the second stage of the methodology.

Specification of the MASS can now progress to creating a suitable ontology.

6.4.4 Stage 3 — Ontology Design

The ontology is the vocabulary used by the agents to exchange information and data
resources. As such, it is the data dictionary that supports co-operation and social

ability and is therefore critical to the operation of the MAS.

An ontology is formally defined by Uschold et al [15] as “an explicit formal
specification of the terms in a domain and relations among them”. Given this
definition, the first stage in ontology design is to identify the terms used by the
engineer to describe the domain concepts [16]. For example, in an asset management
domain the following terms could be used to describe the domain concepts: plant

life, plant type, commissioning date, purchase cost, etc.

To derive a list of terms the transcribed knowledge and task hierarchy should be
analysed and every distinct term noted. At this stage it is important to get a
comprehensive list of terms without worrying about overlap between the concepts

they represent, relations among them or any properties that the concepts may have.

Having listed the terms the next step is to identify classes describing the domain
concepts. This is achieved by looking at the list of terms for common concepts which

describe the terms. For example, the terms transformer, generator and circuit breaker

150

can all be grouped under a class ‘Plant’ since they are all types of power system
plant. Since transformers can either be ground mounted or pole mounted, a
‘Transformer’ class could be created with sub-classes ‘Ground Mounted’ and ‘Pole

Mounted’. These sub-classes represent more specific types of ‘Transformer’.

The classes will enable the agents to provide and request particular types of data and
information resources. To facilitate requests for specific instances of a resource, such
as the commissioning date of a specific transformer, the attributes of each class need
to be defined. Attributes are used to describe each class, such as ‘substation’, ‘name’
and ‘commissioning date’. All sub-classes of a class inherit the attributes of that

class, e.g. the ‘Transformer’ class would inherit the attributes of the ‘Plant’ class.

Plant

-Commissioning Date : Date
-Substation : String

-Circuit : String

-Plant Name : String

FER

[I

Transformer Generator Circuit Breaker
-HV Voitage (kV) : integer -Voltage (kV) : Integer -Voltage (kV) : Integer
-LV Voltage (kV) : Integer -Type : String -Breaking Duty : Integer
-Type : String -Rating (MVA) : Integer| ~Type : String
-Excitation : String ~Insulating Medium : String
Pole Mounted Ground Mounted

-Pole 1D : Stringl -Address : String

Figure 6-13 Plant class hierarchy

The class creation process should be repeated until all listed terms are assigned to
classes and the classes organized into a class hierarchy. An example class hierarchy
is presented in Figure 6-13.

A useful technique for attribute identification is to note the parameters used by the
engineer to describe each term in the knowledge transcripts. In the case of classes

representing data types, the attributes can also be determined by looking at the data

151

parameters, e.g. the fields in a SCADA alarm. The types of data which will represent
each attribute should also be noted, e.g. String, Float, Integer, etc. The class
attributes and data type are indicated beneath each class in the class hierarchy as

indicated in Figure 6-13.

By the end of this stage in the methodology, an ontology should have been created
defining the key concepts within the application domain. This ontology will be
referenced later in the methodology when considering agent interactions.
Specification of the MAS can now progress to assessing the capabilities of legacy

systems.

6.4.5 Stage 4 - Legacy System Reuse Potential

The task hierarchy may already be suggesting possible agents based on visual
groupings of sub-tasks. However, the final agent task allocations cannot be
confirmed until the capabilities of legacy decision support tools are considered and
their potential for reuse within the MAS determined, since their reuse may constrain
the allocation of tasks to agents. It is therefore necessary to include a stage where the
legacy systems, their functional capabilities, their data requirements and their

potential for reuse can be determined.

The first step is to identify from the requirements specification, captured knowledge
and Use Case diagrams the available legacy systems and the capabilities currently
utilised. Each system should then be taken in turn and its functional and data

provision capabilities identified.

The functional capabilities should map directly onto tasks, some of which may be
indicated within the task hierarchy as being required within the MAS. Others may
not be required but should none the less be noted, as it may be beneficial to integrate
these currently non-essential tasks into an agent. This would make available all the
capabilities of the existing resource to the other agents within the MAS and any

future additional agents thereby realising a truly extensible MAS.

At this stage in the methodology it also important to capture the data and control

requirements of the legacy software and whether the original source code and

152

Application Program Interface (API) are available. This information will be used
later to help determine whether legacy system reuse is feasible and the means of
integrating the software into the agent. If available, software manuals or

specifications are a useful source of information for this task.

Software Resource Assessment: Name of legacy software

Resource Description: Brief description of software functionality

Source Code Available? | YN | API? | YN | Language: | Sofiware Language

List of the interactions with the user and other systems necessary to

Control Requirements :
start and control software execution.

Functional Capabilities:

Function Description Possible Task Mapping

If applicable, identification of the
associated task in the task
Description of the software function | hierarchy, which the legacy system
could possibly perform providing
integration is feasible.

Name of a software
function

If applicable, identification of the
associated task in the task
Description of the software function | hierarchy, which the legacy system
could possibly perform providing
integration is feasible.

Name of a software
Sfunction

Data Input Requirements:

Data Mechanism Ontology Mapping

Data name How data is input / uploaded Mapping of data to an ontology class

Data Provision Capabilities:

Data Mechanism Ontology Mapping

Data name How data is output / archived Mapping of data to an ontology class

Figure 6-14 Template for recording legacy system functionality

To provide a record of the legacy software assessment exercise, the template in
Figure 6-14 should be used. Textual descriptions of the legacy systems control
requirements, functional capabilities, data input requirements and data provision

capabilities can all be entered.

153

Agent Agent Agent

Existing Resource

Existing Resource

Transducer Wrapper Rewrite

Figure 6-15 Legacy system integration alternatives

To assess the reuse potential of a legacy system it is first of all necessary to recognise
the various integration alternatives available to the MAS developer. The alternatives

are illustrated in Figure 6-15 [17] and are described below:

Transducer

A transducer can be implemented that mediates between a legacy system and
other agents. The transducer accepts messages from other agents, translates
them into the existing software’s native communication protocol, and passes
those messages to the software. It accepts the software’s responses, translates
into the Agent Communication Language (ACL) and ontology, and sends the

resulting message on to other agents.

This approach has the advantage that it requires no knowledge of the software
other than its communication behaviour and APL It is, therefore, especially

useful for situations in which the software code is unavailable.

Wrapper

To implement a wrapper, code is added to the software program to allow it to
communicate in ACL. The wrapper can directly examine the data structures of
the program and can modify those data structures. Furthermore, it may be
possible to include calls out of the program so that it can take advantage of

externally available information and services.

This approach has the advantage of greater efficiency than the transducer
approach, since there is less serial communication. However, it requires

availability of the legacy system software code.

154

Rewrite

Only the wrapper and transducer options can be considered as facilitating true
legacy system reuse. A third and more drastic approach, is to rewrite the legacy

software. Although this is defeating the purpose of reusing existing systems to

perform agent tasks, it should not be overlooked as it provides and opportunity

to enhance the efficiency or functional capability of the final agent beyond

what would be possible in either the transducer or wrapping approaches.

Given the available integration alternatives, the decision on whether or not legacy

system reuse is possible is dictated by a number of factors, the most pertinent being:

Availability of Source Code and API: If neither the source code nor API
were known, then integration within an agent would not be feasible.
However, if the software code, API or both were available then legacy system
integration may be possible using either a transducer or wrapper and the

legacy system should be considered for reuse.

Software Language: If the language in which the legacy software was
originally coded was known, is no longer obsolete and is still supported, then,
providing the original software was available, it may be possible to modify
the existing software and integrate the legacy system within the agent. In such

cases the legacy system should be considered for reuse.

Control Requirements: If a significant amount of user interaction is
required to control the legacy system and upload data, then it may prove
difficult to effectively automate the system within an agent. The general rule
of thumb is that the fewer user interfaces that need to be automated then the

easier it will be to integrate a legacy system within an agent.

Using the legacy software assessment templates and by considering the factors which

dictate reusability, the feasibility of legacy system reuse should have been

determined. Furthermore, the most appropriate integration option should also have

been identified during this stage in the methodology.

155

6.4.6 Stage 5 — Update Task Hierarchy

Before proceeding with the remaining stages of the methodology, it is necessary to
update the task hierarchy with the information obtained during ontology modelling

and the preceding assessment of legacy system reuse feasibility.

The first step is to update the task hierarchy with the classes of information
exchanged by the interaction tasks. Each interaction task is taken in turn and the type
of information exchanged identified from the knowledge transcripts. The ontological
mapping of the identified information type to an ontological class is then obtained.
Finally, the information classes exchanged are placed beside each interaction task

with the symbol ‘=’ indicating that the resource is a required input to the task and

the symbol ‘<=’ indicating that the resource is an output of the task.

The next step is to group the tasks which are capable of being realised by reuse of

legacy systems.

To ensure an agent has full autonomy and control over the execution of tasks, those
tasks which can be performed through legacy system reuse, need to be assigned to an
individual agent. All the tasks performed by the legacy system therefore need to be
grouped together under a single high-level task which the agent can perform. To
indicate the grouping of tasks capable of being performed through legacy system

reuse, a box is placed around the tasks along with the name of the software which

performs the tasks.

6.4.7 Stage 6 — Identify Required Agents

At this stage in the specification process, the task hierarchy will indicate the high-
level task which the MAS must perform and the sub-tasks that must be assigned and
executed by agents within the MAS to realise the high-level task. The next stage is to
identify the required agents and to decide which agents best perform which tasks.

Given the array of legacy decision support tools commonly available for decision
support, and the fact that reuse would be desirable over development of new systems,

it is highly likely that many of the functional tasks in the task hierarchy can be

156

performed by legacy systems. The tasks capable of being performed through reuse of
legacy systems will already have been grouped in the task hierarchy. These task

groupings provide the first indication of the required agents.

It is logical to assign individual agents to the control and execution of each legacy
system so that complete autonomy can be realised. If it is determined during stage
five of the methodology that a legacy system will fulfil some, if not all, of the
functional sub-tasks under a single higher level task, then an individual agent should
be assigned the higher level task. This same agent should also be furnished with the
functional and interaction sub-tasks, composing the assigned high-level task, which
cannot be performed by the legacy system, since it is highly likely that these will

relate to the automation and control of legacy system.

Although legacy systems will perform many of the tasks within a MAS for decision
support, there will no doubt remain tasks that cannot be realised through legacy
system reuse. Some of these tasks may already be associated with a legacy system

and should have been assigned to an agent; others will remain to be assigned.

When assigning these remaining tasks to agents the efficiencies of the final MAS
must be a consideration. It would be inefficient to have several agents performing
tasks which each require access to a common data source, since each agent would
need to establish its own communications with the data source. A more elegant
approach would be to assign all tasks with a common data need to one agent, in this
case one communication with the data source would be sufficient, providing more

available communications bandwidth for other agents.

The information to base these decisions on should be found in the requirements
specification, knowledge transcripts and Use Case diagrams or by examination of the

ontological classes exchanged by interaction tasks. Factors to consider are:

= Access to Data Sources: The number of simultaneous access requests to a
data source may be limited, so the number of agents requiring access should

also be restricted by grouping tasks requiring the same data within one agent.

s Security Concerns: The data being processed by a set of tasks may be of a
sensitive nature, e.g. network performance statistics. For security reasons, it

may be necessary to limit data access to one agent.

157

= Reliability and Redundancy: It may be necessary to distribute tasks across
agents, at the expense of efficiency, to ensure an acceptable level of decision

support provision is maintained even in the event of failure of an agent.

Each agent will have a particular role within the MAS. This role should be a simple
textual description of the functionality provided by the agent. It may be as simple as
‘interpret condition monitoring data and provide plant condition information’. The
role should be determined by considering the high-level task and sub-tasks which the
agent has been assigned and by referring back to the knowledge transcripts. Using
the identified agent roles, simple agent names must be chosen to distinguish between

the agents specified during the methodology.

To identify the agent task assignments it is useful to mark on the task hierarchy the
high-level task performed by each agent. If this is done, as tasks are assigned to
agents, it not only provides a useful indication of the sub-tasks assigned to each

agent, but also identifies the tasks which remain to be assigned.

6.4.8 Stage 7 — Data and Information Exchange Mechanisms

So far the specification process has identified the interaction tasks each agent must
perform and the ontological classes of data and information exchanged. To provide a
more detailed specification, the mechanisms for achieving the provision and

obtaining of data and information between agents must be identified.

Interaction tasks can only provide or obtain a data resource by sending and receiving
a sequence of messages each structured using the ACL chosen for the MAS. This
methodology supports the most common ACL, namely the FIPA ACL specification
[18], which currently contains twenty-two different message types. Of these twenty-
two messages, a number are directly related to information and data exchange,
namely: ‘subscribe’, ‘confirm’, ‘query-ref’, ‘inform’, ‘failure’, ‘refuse’, ‘agree’ and
‘request’.

The primary mechanism for obtaining data or information is either through
subscribing for a regular update of new resources (sending a subscribe message),

querying for a specific instance or set of resources (sending a query-ref message) or

158

requesting generation of a resource through task execution (sending a request
message). The most appropriate mechanism for obtaining the data resource is

determined by considering how often and for what purpose the resource is required.

An interaction task responsible for the provision of a data resource should also
consider the permissible means of another agent obtaining the required resource.
More often than not if an agent is capable of providing a resource via subscription,
then provision via query-ref is not problematic. However, in many agents performing
online functional tasks such as alarm processing, requesting the generation of a
resource by execution of a task may cause undesirable delays in online processing so

provision of a resource by request is not permissible.

Of the eight ACL messages directly related to information and data exchange the
‘confirm’, ‘inform’, “failure’, ‘refuse’ and ‘agree’ messages play an essential role in
the message exchanges following the sending or receiving of a primary ‘subscribe’,
‘query-ref> or ‘request’ message. Their role is not important at this stage in the
methodology but will however be modelled during stage ten to facilitate the
identification of the required message handlers during stage eleven of the

methodology.

6.4.9 Stage 8 — Realising Agent Functionality

Having identified the required agents and their task assignments, the next stage is to
determine the most appropriate means of realising the functional tasks assigned to
each agent, which cannot be realised through legacy system reuse. The assigned
functional tasks fall into two categories: primary decision support tasks and
secondary decision support tasks.

Provision of decision support to power engineers, will often require systems capable
of performing processor intensive functions, such as data interpretation, statistical
analysis, signal processing, etc. Within a MAS for decision support, these demanding

functions must be performed by the primary decision support functional tasks within

each agent.

159

Many of the primary tasks, such as statistical analysis and signal processing, are
common across a number of domains and have well documented software algorithms
making them relatively simple to implement. However some may previously have
been performed by an engineer and rely on the engineers’ knowledge, éxperience and
reasoning ability to perform the task. Furthermore, these tasks may be domain
specific and a generic solution is neither available nor desirable. In this case
intelligent reasoning techniques should be used since software algorithms may not be

capable of implementing the reasoning ability.

There a number of techniques available with the choice of technique being largely
dependent on the type of input data, the availability and format of reasoning
knowledge and the type of output required. The most commonly used techniques are
knowledge based systems, case based systems and model based systems. A detailed
description of these techniques and their application suitability can be found in

section 3.2.1 of chapter 3.

In addition to the primary decision support tasks, agents may have been assigned
associated secondary tasks. Although not performing any demanding decision
support function, such as data interpretation, these secondary tasks are still essential
as they provide the functionality necessary to provide automated decision support.
For example, parsing data ready for interpretation or scheduling and prioritising

decision support based on received information.

When considering how to implement such secondary tasks it is important to consider
how the task will be invoked and executed, as this will influence the decision on the

most appropriate realisation method.

Using the knowledge transcripts and by consideration of when task execution would
be required, it may become apparent that some tasks should be invoked when the
agent is started and follow a repetitive and sequential task execution sequence.
Examples of such tasks could be the regular polling of monitoring devices for new
data or the scheduling of data for interpretation. The majority of these secondary
tasks can be implemented as algorithms using traditional programming languages

such as C++ and Java.

160

However, some tasks may be more reactive with the tasks’ execution order being
dictated by the timing and priority of requests and information received from other

agents. [t may be appropriate to implement such reactive tasks using rules.

On some occasions, it may even be necessary to implement a secondary decision
support task using a combination of algorithms and rules. This would be appropriate
when the agent needs to reprioritise its tasks in response to a change in conditions,

e.g. reprioritisation of data retrieval based on the receipt of new fault information.

6.4.10 Stage 9 - Agent Modelling

Thus far, the specification has identified the required agents, their task execution
responsibilities, and the mechanisms for data and information exchange. To collate
all this information, and model the abilities of each agent, the methodology uses
agent templates. Agent templates are a common theme across many of the
methodologies and they provide an ideal means of documenting the agents’ task
execution responsibilities and how they will be realised. The agent template used in

this methodology is presented in Figure 6-16.

AGENT NAME: | Agent A
AGENT ROLE: | Tpe agent’s decision support role in the MAS
Functional Tasks: Task Realisation Method
Task A Rules
Task B Rules, Algorithmic Code
Task C Name of Legacy system to be used
Interaction Tasks: Interaction Type Exchanged Resource
Obtain Resource B subscribe Resource B
Provide Resource A query-ref, request Resource A

Figure 6-16 Agent Modelling Template

161

The agent template begins with the name of the agent being modelled and the agent’s
decision support role in the MAS — these are obtained during stage six of the

methodology.

The functional tasks assigned to the agent are then listed along with the identified
task realisation method. The feasibility of realisation via legacy system reuse would
have been determined during stage five of the methodology. If legacy system reuse
was deemed infeasible, appropriate means for task realisation should have been
identified when specifying the agent functionality during stage seven, e.g. rules,
algorithms, etc..

The interaction tasks performed by the agent are also listed along with the
permissible interaction types and the exchanged ontological classes. This information
is obtained during stages three and seven of the methodology. Note that the

interactions types are the FIPA ACL performatives permissible for the interaction.

Before moving onto the interaction modelling stage of the methodology it is

important to consider the flexibility and extensibility of the MAS.

To ensure flexibility and openness it has already been highlighted that agents should
not have hard coded knowledge of the other agents within the MAS and the
resources they provide. Instead, agents requiring provision of a resource should be
able to query utility agents for the name and network location of agents which can
provide the required resource. Having identified a suitable agent, interactions and

resource exchange can proceed.

Although utility agents will normally be provided by the tool-kit used to implement
the final specification, it is important to note their requirement as part of the
specification.
Assuming, for the moment, that this methodology is only being used to specify one
self contained agent community, where all agents have full communications access
to other agents, then only two utility agents would be required, a:

o Nameserver agent to provide the network addresses of the agents

registered as being present in the MAS.

162

o Facilitator agent to act as a ‘yellow-pages’ providing a list of the abilities

provided by the registered agents.

However, in many cases the agent community may not be self-contained, with agents
distributed across a large network area. Furthermore, there may also be a requirement
for interactions between interacting communities of agents across different
platforms. In such cases, it may be necessary to duplicate these utility agent pairs
across the network, with both a Nameserver and Facilitator being placed at key
network nodes and at the interface between the communities. This would avoid
bottlenecks being established by the utility agents, allowing distribution of the

registered network addresses and abilities across a number of utility agents.

The initial decision on the most appropriate use and number of utility agents is based
on assessment of the requirements specification and knowledge transcripts. However,
the number of utility agents is largely dependent on the configuration of the MAS
when the agents are deployed on a network, and should therefore be left to final
system implementation. Given that this methodology is focussing on specification of

the MAS, it is sufficient to merely highlight the need for utility agents.

6.4.11 Stage 10 - Agent Interactions Modelling

Regardless of the domain to which MAS are applied, an essential characteristic of
MAS is the ability of the individual agents to interact. This is especially true within

power engineering decision support, the domain to which this methodology is aimed.

Many of the tasks engineers perform to generate information useful for decision
support can be classed as data and information collation. It is more than likely that
the MAS being specified using this methodology will have to automate some of the
data and information collation processes conducted by an engineer. The reasoning
knowledge captured during ‘walk through’ of the case studies in stage one of the
methodology will have identified the occasions when this is required, the software

resources involved and the data and information resources exchanged.

To automate the collation process, the agents within the MAS will need to interact

and exchange ontological classes representing data and information resources. Each

163

agent involved in the interaction will require an interaction task, or set of interaction
tasks, to manage its end of the interaction and these will have already been identified

during task decomposition and documented in the agent templates.

Automation of the collation process will only be achieved through each end of the
interaction sending and receiving messages constructed using the ACL chosen for the
MAS. This stage of the methodology models these message sequences so the
required agent message handlers for each end of the interaction can be established

during stage eleven of the methodology.

[Agent :] CFaci'ita‘or] ENameserver]
|

) : :
i |—| query-ref (Resource A) E i
i E inform (Agent A)] i
E H‘query-ref(address_of Agent A) i " H
g g inform (Agent A, host, port) E
E subscribe (Resource A) ”‘ E Er Time
failure (reason) E i i
refuse (reason) ! i
; gn ; !
i confirm (Resource A) ! E
' H : E
4’,. 4.’,. L’:.. "'_
ﬁ inform (Resource A) ‘: ! E
E = § R /
Sequence Diagram | SD_PEDA_xx: Subscribe for Resource A updates
Task Owner(s) Agent B Initiating Task Obtain Resource A
Task Owner(s) Agent A Responding Task Provide Resource A
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task | Provide Abilities

Figure 6-17 Example sequence diagram

The first step is to determine the collation processes which the MAS is required to
automate. These should have already been identified during task decomposition from

the captured reasoning knowledge.

164

Each collation process is taken in turn and the sequence of exchanges between agents
noted. The function an agent performs on the content of each received message is
also noted, as this will play an important part in determining the time to allow for the

receiving agent to execute the next stage in the interaction sequence.

Having listed all the required exchange sequences, the next step is to model these
message exchanges using sequence diagrams. An example of the sequence diagrams

used in the methodology is presented in Figure 6-17.

The sequence diagram in Figure 6-17 depicts the sequence of messages required for
Agent B to subscribe for automatic updates of Resource A. The table beneath the
sequence diagram gives the sequence diagram reference, the tasks associated with
each end of the interaction and the task owning agents as identified from the agent

templates. The agent initiating the interaction is coloured grey.

Beneath each agent, the agent timeline extends illustrating the execution lifetime of
the interaction. It is during this execution timeline that the consideration of
appropriate responses to received messages and the functions performed on received
data resources are considered. Although it is difficult to put an exact figure to the
amount of time taken to process a received message and respond, it is important to
specify the maximum amount of time allowed. This means that agents will know

how long to wait for an answer in response to a sent message.

The above process is repeated for each possible message sequence until a

comprehensive list of sequence diagrams is constructed.

6.4.12 Stage 11 - Agent Behaviour Functions

So far the methodology has specified the required agents, the functional and
interaction tasks they must perform and how each agent will control its task
execution and interactions with other agents. The Agent Functionality and Agent
Modelling stages have also identified appropriate means, legacy system or otherwise,
for realising the functional tasks assigned to each agent. The only remaining task is
to specify the behavioural aspects of each agent. At this stage the properties

necessary for legacy systems to behave as an intelligent agent are specified. The

165

properties software must possess are: autonomy, reactivity, pro-activeness and social
ability: the weak notions of agency [19]. Before the agent can exhibit autonomy,
reactivity and pro-activeness, it must be provided with a social ability. This is

achieved through the use of the ACL, ontology and message handlers.

The required message handlers are identified from the sequence diagrams created
during the Agent Interactions Modelling stage and will be implemented within the
final agents as rules which monitor the agent’s incoming mailbox for messages.
When a new message is received, the agent should react by firing the rule appropriate
to the received message and performing a function, thereby providing the agent with
reactivity. Several message handlers may need to fire and functions be performed in

a particular sequence before a particular interaction task is completed.

To provide agent autonomy an agent control function is necessary, which, at agent
start-up, will create the message handlers essential for reactive and proactive
behaviour and control the sequence and execution of the agent’s interaction, primary
and secondary decision support tasks. To design an agent control function the means
by which primary and secondary decision support tasks are to be realised becomes

paramount — these will have been determined during stage eight of the methodology.

Some tasks may have been identified as being purely reactive in nature, requiring
rule-based implementation; others may require more stringent controls over their
execution necessitating implementation as algorithms. To accommodate both these
approaches, an agent control function requires both algorithmic and inference
reasoning layers. To enable the eventual implementation of an agent control function
where the tasks reside within these layers must be specified for each agent. An agent

control diagram is a useful diagrammatical aid during this process.

As illustrated in Figure 6-18, an agent control diagram is split into an inference layer
and an algorithmic layer. At the top of the diagram the set of tasks invoked upon the
agent starting should be identified beginning with the inclusion of the ‘Register

location’ and ‘Provide abilities’ tasks.

166

4—————— Agent Control — Inference Engine ——————> |&——— Agent Control —- Algorithm —>
Start

b !

Pro-active Pro-active Reactive Provide
Task A Task B Task A abilities

Register
location

'
completion}

friggers |

Pro-active
Task C

Yy Execution

Algorithmic loop
Task A

Legacy Software

—

Algonthmic Algorithmic
L fask B Task ©

L

Figure 6-18 Agent control diagram

The ‘Register location’ task is essential as it is the only means by which the agent
can register with the Nameserver agent and register its presence within the MAS. It
must, therefore, be executed as soon as the agent starts. Once successfully registered,
agents could start querying the agent for information on its abilities. The next task to
be included in the agent control diagram should, therefore, be the reactive ‘Provide
abilities’ task. Residing within the agent’s inference layer this task will use message
handlers to monitor for and respond to requests from other agents for information on
the agents abilities. Design of the agent control function should now progress onto
identifying the tasks which must run in the algorithmic layer following execution of
the ‘Register location’ task.

The agent modelling templates created during stage nine should now be used to
indicate the agent tasks which are to be performed within the agents’ algorithmic
reasoning layer, i.e. those functional tasks realised through reuse of legacy systems,
intelligent reasoning techniques and algorithms. Some tasks may only be required to
perform a configuration function and should, therefore, be executed immediately
following the completion of the ‘Register location’ task. Others, performing an

essential role in the provision of automated decision support, may require the agent

167

control function to loop their execution in order to provide continuous data

interpretation and decision support provision.

The agent modelling templates will also have specified the interaction tasks required
in order for an agent to exhibit proactive and reactive behaviour, Each interaction
task identified in an agent modelling template will require the use of message
handlers and should, therefore, be placed within the inference layer in the agent
control diagram. Note, that some pro-active behaviour may only be necessary
following successful completion of another pro-active task, e.g. information on
where a fault has occurred must be at first obtained before fault related data can be
identified and retrieved. In such cases, the tasks responsible for this pro-active

behaviour should be placed in the inference layer below that which will trigger its

execution.

The inclusion of the secondary decision support tasks required for pro-active and
reactive behaviour concludes the design of an agent control function. The resulting
agent control diagrams provide a specification of the tasks which each agent is

required to invoke and the task execution sequence which must be managed.

6.5 Chapter Summary

This chapter has presented a methodology for the specification of MAS for power
engineering decision support. Existing methodologies have been reviewed and their

suitability for implementing decision support architectures as MAS assessed.

This assessment found that existing methodologies paid very little, if any, attention
to specifying the components of a MAS necessary to produce flexible and extensible
decision support architectures. Critically, none of the methodologies addressed
legacy system reuse, nor did they consider specification of the agent behaviour
functions necessary to automate legacy systems as agents and provide for
collaboration between agents. Furthermore, the methodologies were lacking in their
coverage of ontology specification and compliance with accepted FIPA

communications standards.

168

Although similarities can be drawn between the new methodology and the
methodologies reviewed in sections 6.3.1 to 6.3.4, the new methodology includes
additional stages specifically aimed at addressing the shortcomings of existing
methodologies in the field of decision support. Stages such as the ‘Ontology Design’,
‘Legacy System Reuse Potential’ and ‘Agent Behaviour Functions’ are just some of
the features of the new methodology which distinguish it from others. By
sequentially completing each stage in the methodology, a developer will create
templates, textual descriptions and graphical representations of the main components,
necessary to proceed with implementation of a MAS for decision support within the

power industry.

The next chapter describes the application of this methodology during the
development of the Protection Engineering Diagnostic Agents (PEDA) MAS for

automating post-fault disturbance analysis.

6.6 References

[1}. K.P. Sycara, “Multiagent Systems”, A Magazine, v19, n2, 1998, pp 79-92.

{21 C.A. Iglesias, M. Garijo, J.C. Gonzalez, “A Survey of Agent-Oriented
Methodologies”, Proc. 5 International Workshop on Intelligent Agents V: Agent
Theories, Architectures and Languages (ATAL-98), 1998.

[3]. G. Bush, et al, “The Styx Agent Methodology”, The Information Science
Discussion Paper Series, n 2001/02, January 2001, ISSN: 1172-6024.

[4]. J.C. Collis, D.T. Ndumu, H.S. Nwana, L.C. Lee, “Zeus agent building tool-kit”, BT
Technology Journal, v16, n3, pp 60-68, 1998

(51 D. Kinny, M. Georgeff, A.Rao, “A Methodology and Modelling Technique for
Systems of BDI Agents”, Lecture Notes in Artificial Intelligence, v1038, Springer-
Verlag, 1996, pp 56-71.

[6]. G. Caire, et al., “Agent Oriented Analysis Using MESSAGE/UML”, Proc. Second
International Workshop on Agent-Oriented Software Engineering (AOSE-2001),
Montreal, Canada, May 2001.

169

[7).

[8].

[9].

[10).

[11).

[12].

[13]).

[14].

[15].

[16].

(7).

[18].

(19].

C.A. Iglesias, M. Garijo, J.C. Gonzalez, J.R. Velasco, “Analysis and Design of
Multiagent Systems using MAS-CommonKADS”, Intelligent Agents IV: Agent
Theories, Architectures and Languages, Springer-Verlag, 1998, pp 313-326.

Schreiber, G, Akkermans, H, Anjwierden, “Knowledge Engineering and
Management: The CommonKADS Methodology”, MIT Press, 1999,

Priestley, M, “Practical Object-Oriented Design with UML”, McGraw-Hill
Publishing, 2000.

M. Wooldridge, N.R. Jennings, D. Kinny, “The Gaia Methodology for Agent-
Oriented Analysis and Design”, Journal of Autonomous Agents and Multi-Agent
Systems, v3, n3, 2000, pp 285-312.

FM.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, J. Treur, “DESIRE:
Modelling Multi-Agent Systems in a Compositional Formal Framework”,

International Journal of Cooperative Information Systems, v6, n1, 1997, pp 69-94.

N.R. Jennings, T. Wittig, “ARCHON: Theory and Practice”, Distributed Artificial
Intelligence: Theory and Praxis, 1992, pp 179-195.

M.F. Wood, S.A. DeLoach, “An Overview of the Multiagent Systems Engineering
Methodology”, in Proc. of the I International Workshop on Agent-Oriented
Software Engineering, Limerick, Ireland, pp 207-221, 10™ June 2000.

J. DiLeo, T. Jacobs, S. DeLoach, “Integrating Ontologies into Multiagent Systems
Engineering”, in Proc. of the Fourth International Bi-Conference Workshop on

Agent-Oriented Information Systems (AOIS), 15-16 July, 2002, Bologna, Italy.

M. Uschold, M. Gruninger, “Ontologies: Principles, Methods and Applications”,
Knowledge Engineering Review, v11, n2, June 1996.

N.F. Noy, et al, “Ontology Development 101: A Guide to Creating Your First
Ontology”, Knowledge Systems Laboratory Technical Report KSL-01-05, 2001.

M.R. Genesereth, S.P. Ketchpel, “Software Agents”, Communications of the ACM,
v37, n3, pp 48-53, 1994.

FIPA Communicative Act Library Specification, XC00037H,
http://www.fipa.org/repository/index.htmi

M. Wooldridge, et al, “Intelligent Agents: Theory and Practice”, The Knowledge
Engineering Review, v10, n2, 1995, pp 115-152.

170

http://www.flpa.org/repository/index.htmI

Chapter 7: Design of a MAS for Post-Fault
Disturbance Analysis

171

7.1 Chapter Overview

The following chapter outlines how the methodology proposed in chapter six has
been used to design a MAS for automating post-fault disturbance analysis. The
resulting multi-agent architecture is entitled Protection Engineering Diagnostic
Agents (PEDA) and consists of four core functional agents in addition to the

Nameserver and Facilitator utility agents.

This chapter will describe in detail how each stage of the methodology was used to
create the PEDA specification. By the end of the chapter the reader should have
gained a clear picture of the PEDA multi-agent architecture, its constituent

components and the design and engineering decisions taken during its development.

7.2 Introduction

Chapter two has already described in detail the manual post-fault disturbance
analysis task conducted by protection engineers. This post-fault disturbance analysis
process, illustrated again in Figure 7-1, is followed to validate the operation of a

protection scheme in response to a disturbance on the transmission network.

Incident SCADA Interpretation Cycle
Interpret

Data

-,
\
1
1
.
H
L
§_:
2 !
NS
5|
)
“l
i
s !
:l
-
1
1
1}
=

SCADA | Incidents & i

'
Retrieve [:>:
SCADA !

Identify &

ﬂ Retrieve Other [:3 Interpret
Data

Data

Identify
Incident
Events

Identify
Incident

' Interpret
...............................) Data

g
o
=
&

Useful
Information

—»

Increasingly Detailed Interpretation

Figure 7-1 Manual post-fault disturbance analysis

172

The protection engineer uses a number of software tools, at different stages of
disturbance analysis, to retrieve and interpret the disturbance data. The Telemetry
Processor, described in chapter four, automates the retrieval and interpretation of
SCADA data, identifying the incidents and pertinent events. Using the incident
information, the protection engineer can then turn to proprietary fauit record retrieval
software to initiate the retrieval of incident fault records from DFRs. The retrieved
fault records can then be interpreted using fault record interpretation software and be

used in a protection validation toolkit to validate the protection scheme operation.

Each software tool operates either as a separate application on the same PC or as
individual applications on dedicated PCs. The protection engineer must not only
operate each software tool but also select the pertinent data and information
produced or retrieved by the tool to be transferred to another tool for the next stage in
disturbance analysis. The integration of these tools and the automation of the entire

disturbance analysis process would lift this burden from the protection engineer.

Adopting an agent-based approach to achieve the automation of post-fault
disturbance analysis through integration of the existing software tools is appropriate

for a number of reasons:

1. Each software component within the integrated architecture will be required
to exhibit a high degree of autonomy to manage its own tasks and to achieve
the proactive dissemination of data and information to other software

components within the architecture.

2. Some form of negotiation or distributed co-ordination may be required
between software components to facilitate the transfer of a data or

information resource or to request the execution of a particular task.

3. It is highly likely that the integrated architecture will be deployed across a
number of PCs without any hardwired interconnection for communications,

instead, communications will be achieved via the corporate Intranet.

4. The integrated architecture will be required to be robust and flexible to
accommodate the temporary loss of a software component due to
communications problems, the removal of an obsolete software component or

the introduction of a new software component.

173

Given the appropriateness of an agent-based approach, the design of a multi-agent
architecture for automating post-fault disturbance analysis commenced. The PEDA
MAS was developed following the methodology presented in chapter six and the
specification process is described in detail throughout the remainder of this chapter.

Implementation of the specification will be described in chapter eight.

7.3 Requirements and Knowledge Capture

The first objective was to identify the desired PEDA functionality and to capture the
knowledge required to realise this functionality within the agents. This was achieved
by following the ‘Requirements and Knowledge Capture’ stage of the methodology —

described in section 6.4.2.

7.3.1 Requirements Capture

Before commencing with PEDA development it was important to assign PEDA a
global task which the PEDA agents would work together to perform. The assigned
task was ‘Automated Post-Fault Disturbance Analysis’ which was formally

defined as:

The automation of disturbance analysis retrieval and interpretation
activities and the prioritisation of these activities to ensure the timely

availability of decision support information to protection engineers.

The global task was determined through informal discussions with protection
engineers. However, to compile the more detailed requirements specification
necessary to progress PEDA development a more structured and formal approach
was required. The elicitation methodology adopted during Telemetry Processor

development (section 4.4.1) and described in [1] was used.

A series of structured knowledge elicitation meetings were conducted with engineers
experienced in performing post-fault disturbance analysis. The initial meetings
focussed on scoping of the disturbance analysis task assigned to PEDA and on

identifying suitable case studies for use during later knowledge elicitation meetings.

174

The later meetings focussed on identifying the knowledge and information necessary

for the latter stages in the specification process.

No formal list of specific requirements was forthcoming during these scoping

meetings, however five general requirements did emerge:

1. The existing software resources used by the engineer during manual

disturbance analysis should be reused if at all possible. These are:
o An online alarm processor — the Telemetry Processor.
o Proprietary fault record retrieval software.
o Offline fault record interpretation system.
o A protection validation toolkit utilising Model Based Diagnosis.

2. Once configured, the autopolling facility provided by existing proprietary
fault record retrieval software is static and does not allow for the
prioritisation of fault record retrieval based on disturbances. The retrieval
of fault records from DFRs on the circuit affected by a disturbance should

be automated and receive highest priority.

3. The interpretation of fault records should be automated with interpretation

priority being given to fault records related to the earliest disturbance.

4. As soon as possible after the disturbance the protection scheme operation

should be validated and any identified discrepancies diagnosed.

5. The eventual PEDA architecture should facilitate the introduction of new
software systems and removal of obsolete technologies without the

requirement for extensive reengineering.

It is these five general requirements which form the basis of the PEDA requirements
specification. The remainder of the specification was compiled from the activities,

resource and reasoning knowledge elicited from the engineers at later meetings.

175

7.3.2 Knowledge Capture

The identified case studies covered a number of disturbance types ranging from
simple circuit faults caused by a downed conductor to complicated double-circuit
faults caused by lightning strikes. These case studies provided scenarios which were
‘walked through’ with the engineers thus enabling the disturbance analysis tasks they
perform (activities knowledge), the software and data resources utilised (resource
knowledge) and the knowledge used to operate the software resources, interpret and

collate the data resources (reasoning knowledge) to be identified.

Capturing the activities knowledge and resource knowledge proved relatively
straightforward. The elicitation of reasoning knowledge was however more time-

consuming due to the need to identify three additional sub-sets of knowledge:

e Software Control: The engineering knowledge on how to operate the
software resources used during disturbance analysis. This knowledge was
especially important since existing software resources were required, where
possible, to be integrated into PEDA as agents. These agents would need to

have autonomous control over the execution of these legacy systems.

o Interpretation: The engineering knowledge used to interpret the data
resources and information generated by legacy systems. This knowledge

would, if required, be used to design the core functionality of data

interpretation agents.

¢ Data and Information Collation: The engineering knowledge used to decide
which data and information is pertinent to the particular disturbance analysis
being conducted. In addition, in the case of multiple disturbances, the
knowledge required to distinguish between and prioritise different

disturbances. This knowledge would be used to implement agent behaviour.

The knowledge was initially captured and transcribed into separate knowledge
transcripts. However, before the knowledge transcripts were finalised, the elicited
knowledge was analysed again to determine whether a comprehensive coverage of
the system-system and engineer-system interactions was present. It was found that,

knowledge in this area was lacking, so additional knowledge elicitation meetings

176

were conducted where the specifics of interaction between systems and between a
system and the engineer were captured. The importance of this interaction

knowledge will be demonstrated later.

To assist both with validation of the elicited knowledge and with later stages in the
design process the activities and software resource knowledge was modelled
diagrammatically as Use Case diagrams. The Use Case diagrams illustrate software
resource functionality and the functionality used by the engineer during disturbance
analysis. Note that the Use Cases present a picture of all the functions used by the
engineer during disturbance analysis and do not distinguish between activities. The
elicited activities knowledge records the sequence of activities and the software

functions used.

It should also be noted that a more detailed study of the functionality offered by each
software resource is conducted later in the ‘Legacy System Capabilities’ stage of the

applied methodology.

Fault Record Retrieval System

yses»

OFR

Engineer

Figure 7-2 Fault Record Retrieval System Use Case diagram

177

A separate Use Case diagram was created for each of the identified software
resources and is presented in Appendix B. Figure 7-2 presents a copy of the ‘Fault

Record Retrieval System’ Use Case diagram as an example of the PEDA Use Cases.

An additional benefit provided by the Use Case diagrams is that they provide an
ideal mechanism for validating that the captured activities and software resource
knowledge was correct. The Use Case diagrams and knowledge transcripts were

submitted to the engineers for validation and any errors or omissions corrected.

The knowledge captured during this process has not been included in the thesis,
however the reasoning knowledge utilised will become apparent during explanation

of later stages in the specification process.

7.4 Disturbance Analysis Task Decomposition

The intended primary role of PEDA was, and still is, to automate the overall post-
fault disturbance analysis process currently conducted by engineers. The agents
within PEDA would achieve this by coordinating the execution of the disturbance
analysis activities, or tasks, and facilitating the exchange of data and information
resources. Before the required agents and their task execution responsibilities could
be identified the disturbance analysis task assigned to PEDA had to be decomposed
into distinct sub-tasks. This was achieved by following stage two of the methodology

‘Task Decomposition’ — described in section 6.4.3.

The manual disturbance analysis process was already captured in the elicited
activities knowledge and demonstrated using actual historical case studies. Using this
elicited knowledge the decomposition of the disturbance diagnosis task was

conducted using the decomposition criteria described in section 6.4.3, namely:

“further decomposition can be justified if the task meets any one of the Sfollowing

criteria:

e The task required operation, or access to, several separate systems.

o The task uses different data types each requiring a dedicated retrieval or

analysis mechanism.

178

e The task uses several types of knowledge, e.g. rules, cases and models.”

Using the task decomposition criteria, the first layer of sub-tasks were identified as
‘Identify Incidents and Events’, ‘Retrieve Fault Records’, ‘Interpret Fault Records’,
and ‘Validate Protection Performance’. It was clear from the elicited knowledge that
each of these sub-tasks not only required access to different software resources but
also used differing types of knowledge, e.g. ‘Identify Incidents and Events’ used

rules to interpret SCADA whereas ‘Validate Protection Performance’ used models.

Each of these sub-tasks was taken in turn and the elicited knowledge further analysed
to determine if they could decompose further. In each case, further decomposition
was possible and a second layer of sub-tasks was identified. This decomposition

process continued until no further information could be gleaned from the knowledge.

As mentioned earlier in section 7.3, the initial knowledge capture process had not
captured effectively the interactions between systems and between the engineer and
systems. To illustrate this problem, consider the requirement for prioritised retrieval

of disturbance related fault records.

The initial transcribed knowledge indicated that incident information must be
obtained to locate the faulted circuit and identify the DFRs to prioritise retrieval
from. This activity is represented as the ‘Obtain identified incidents’ task within the
task hierarchy. However the provision of incident information was not explicit in the
initial knowledge transcripts, since the engineer obtained this information from the
Telemetry Processor. Analysis of the initial knowledge transcripts highlighted this
omission, and more detailed knowledge elicitation meetings were conducted. As a
result, the additional knowledge indicated the requirement for an additional sub-task

to the ‘Identify Incidents and Events’ task to ‘Provide Incidents’.

The resulting task hierarchy for PEDA is presented in Figure 7-3 with all interaction

tasks indicated by a * symbol.

179

s[opour uonadjord uny —
AWIYIS UO0NIN0IJ 1S
UoEPI[EA IANPIYISNY

UII' UOHEPIEA IXON 19PS —
a[npayos uonepijeA dofoasq

$p1033Y }neq paraldiau] uleqO |

S)uAPIOU] PIYHUIP] WEO

<110d3Y] UOLIEPI[EA U001 IPIAGLg —

P1033Y Jney 121d1ajuy g

uonye)dadaINu] INPIYIS —

pA033Y J[neq IXaN 193S

$p1033Y JNEJ PAAILINIY WIEIGO
SIUAPIOU PIYNUIP] MEIO —
«SP1033Y Jney pajaadidjuy apiaold —

KANJIqE[IBAY 1A JONBOIN
[eAanyg

AAPIY —— SIUIAY 10 VAVOS
anpayasay
[EASLIY KON 199195 — yuapouy yoadiayuy |
ANPIYPS VAvOs paeay juappu dnorn —
Buijjodoyny sjuapioug J0j VAVIS 1diagu)
ESUT) io)

VAVOS 43194
SIUPIDU] PAYHUIP] UIEIGO —

#SP1023Y }NeY] p1acsg — £SIUAAT pIAcag
»SHUIPIDUY IpIACE] —
xVAVOS plaold —

IdURWIOJIJ
uonddNoLg
EPIEA

sp10d3Yy

ney
jadadug

$p1033Yy

Jney
ALY

S)UIAJ pue
LETE]
AJnuap]

. —

e

sisoudeiq
dueqIn)si(g

Figure 7-3 PEDA task hierarchy

180

7.5 An Ontology for Post-Fault Disturbance Analysis

So far the elicited data and information resource knowledge had only been described
textually in the knowledge transcripts. This stage in the design process focussed on
the modelling of the knowledge so an ontology for post-fault disturbance analysis
could be created. This ontology would provide the vocabulary for information and

data exchange between PEDA agents.

Before proceeding with ontology design a literature search was conducted to
ascertain whether a suitable ontology already existed which could be reused or
adapted for use in PEDA. An ontology for fault diagnosis was found [2], however it
viewed fault diagnosis from the perspective of the control engineer. Furthermore it
did not encompass all the terms used by the protection engineers to describe
disturbance analysis. It was therefore deemed inappropriate and design of the post-

fault disturbance analysis ontology for PEDA commenced.

The knowledge transcripts and task hierarchy were analysed and every term used
during the description of a disturbance analysis activity, resource or referred to
during walk through of a case study were noted. Terms such as ‘Incident’,

‘SCADA”, “Circuit’ and ‘Transformer’ were identified.

Having listed the terms, the next stage was to identify classes describing the terms.
For example, the terms ‘Incident’, ‘Event’, ‘Interpreted Fault Record’ and
‘Protection Validation Report’ can all be grouped under a class ‘Information’ since
they are all generated by existing intelligent systems. This process was repeated until
all terms were assigned to classes and the classes organized into a class hierarchy as

illustrated in Figure 7-4.

The classes enable the agents to provide and request particular types of resource. To
facilitate requests for specific instances of a resource, such as a fault record from a
particular DFR, the attributes of each class had to be defined. These were identified
from a more detailed review of the data and information resource knowledge
captured in the knowledge transcripts and by examining the actual historical data

used in the case studies during capturing of the reasoning knowledge.

181

Disturbance Diagnosis

|

I | | 1
Data Information Device Location
l]
I T 1 o I I [I
SCADA FaultRecord FaultLocator Weather Substation Plant CircuitEnd Circuit

1
[| 1 1
' l | ! Radial TwoEnded ThreeEnded FourEnded
Incident Event InterpretedFaultRecord ProtectionValidationReport

[B N I R

(!

ProtectionDevice MonitoringDevice
il L
[{ I 1)) T 1
PlantProtection Intertrip DAR CircuitProtection FaultRecorder FaultLocator Weather RTU
TransformerP ion BusbarPr ion G Protection Di Py i UnitPr i DOCProtecti EarthFaultProtection

Figure 7-4 Post-fault disturbance analysis ontology class hierarchy — without

attributes

Data

-source_device : Device
-generation_date_time : Dat:
-real_date_time : Date

[

I I 1 —
SCADA FaultRecord Faultlocation Weather

-substation : Substation -COMTRADE_data_path : String -COMTRADE_data_path : String -wind_speed : Integer
-plant_status : String -COMTRADE_config_path : String -COMTRADE_config_path : String] |-wind_direction : String
-plant_name : String -source_path : String -source_path : String -temperature : Integer
-circuit : Circuit -humidly : Integer
-legend : String
-alarm_status : String
-site : String

Figure 7-S Extract from the post-fault disturbance analysis class hierarchy

Using the fault record data type as an example, it was clear from the knowledge
transcripts that fault records were actually proprietary data files stored in a directory
structure. Therefore one important attribute was the path to the original source data
file: the attribute source_path in the FaultRecord class. It was also evident that, for
the purposes of fault record interpretation and protection validation, each fault record
needed to be stored using the COMTRADE format [3]. COMTRADE format
requires both a .dat file to store each sample recorded in the record and a .cfg

configuration file to enable the identification of channels in the .dat file. It was

182

Transformer CircuitBreaker Generator Disconnector EarthSwitch Busbar

therefore necessary to include additional COMTRADE data path and
COMTRADE config_path attributes in the FaultRecord class.

The complete disturbance diagnosis ontology including attributes can be found in

Appendix C. An extract from the completed ontology is presented in Figure 7-5.

7.6 Possibilities of Legacy System Reuse

The desire for reuse of legacy systems within PEDA was stated in the requirements
specification. If possible, the agents within PEDA should reuse the data retrieval and
interpretation functions provided by these software resources to perform the tasks

identified in the task hierarchy.

To determine the task execution capabilities of legacy systems, the requirements
specification, captured knowledge and Use Case diagrams were analysed and the
available functionality noted. Mapping of every function to a disturbance analysis
task was not possible since the legacy systems had functions which, although used
during manual disturbance analysis, did not have any role in the automation of post-
fault disturbance analysis — the global task assigned to PEDA. However, these

functions were noted as they may become useful in later versions of PEDA.

Having identified the tasks performed by existing software, the availability of the
software for modification, its API and its control and data requirements had to be
ascertained. This information was obtained through familiarisation with the software

and access to available software documentation.

To capture the required information in a structured manner, the software assessment
template introduced in section 6.4.5 was used for each legacy system. The templates
generated for each of the software resources requiring reuse in PEDA can be found
in Appendix D.

Having captured all legacy system capabilities in the software assessment templates,
the PEDA specification process moved onto determining whether legacy system
reuse was possible and, if so, identifying which of the three integration alternatives

would be best suited for realising reuse of each legacy system.

183

As outlined in section 6.4.5 the decision on whether legacy system reuse is feasible is
based on: the availability of source code and API, the software language used and the
control and data requirements. Using the legacy software assessment templates
(see Appendix D) the following decisions were reached with regards the reuse
feasibility and selection of appropriate integration technique for each of the available

legacy systems:

7.6.1 Telemetry Processor Decision Support System

The availability of the source code, API and the use of Java made this system an
ideal candidate for reuse. Furthermore, all of the functional tasks, except ‘Search for
Incidents’, were required by the ‘Identify Incidents and Events’ task. There was no
need to rewrite the Telemetry Processor software or develop a transducer since the
availability of the source code allowed for use of a wrapper: the most efficient
approach for agent integration of software. It was evident from the software
assessment template in Appendix D.1 that the wrapper may need to perform a
database query to obtain the Incident, Event and SCADA information that the IEI

agent must provide.

7.6.2 Fault Record Retrieval Software

Although a number of functional tasks did map onto the ‘Retrieve Fault Records’
sub-tasks, the software was proprietary with neither the source code nor API being
available. A wrapper was not suitable due the unavailability of source code, so the
integration options under consideration were limited to either a transducer or a
rewrite. The options were further restricted to a rewrite by the fact that there was no

information on the API for the existing software thereby eliminating the transducer

option.

7.6.3 Fault Record Interpretation Decision Support System

Although the software did require user intervention, the availability of the API and

source code suggested that software reuse would be possible. Of the available

184

functional tasks, the tasks requiring user intervention could be ignored, as they did
not map onto any tasks in the task hierarchy. This left the ‘Interpret fault record’
function, which did have a direct task mapping. Legacy system reuse was, therefore,

feasible and would be limited to realising the ‘Interpret Fault Record’ task.

7.6.4 Protection Validation Toolkit (PV Toolkit)

Yet again, the availability of the API and source code facilitated software reuse.
Similar to the fault record interpretation software, the tasks requiring user
intervention did not have any mapping to the task hierarchy and could be ignored.
However, both the ‘Select protection scheme’ and ‘Validate protection performance’
software functions could be reused to perform the ‘Select Protection Scheme’ and
‘Run Protection Models’ sub-tasks of ‘Validate Protection Performance’ in the task
hierarchy. The availability of the source code made reuse of the Protection
Validation Toolkit to perform these sub-tasks assigned to PVD possible. Yet again,

the availability of the source code allowed for integration using a wrapper.

7.7 Task Hierarchy Update

The PEDA specification process had now reached a stage in the methodology, where
the task hierarchy required updating with the information obtained during ontology

modelling and assessment of legacy systems.

The task hierarchy was first updated with the classes of data and information
exchanged by the interaction tasks (indicated by an * symbol on the task hierarchy).
Each interaction task was taken in turn and the type of information exchanged
identified from the knowledge transcripts. The ontological mapping of the identified
data or information types to an ontological class was then obtained. Finally, each
exchanged ontological class was placed beside the appropriate interaction task with
the symbol ‘=’ indicating that the resource is a required input to the task and the

symbol ‘<= indicating that the resource is an output of the task.

The final amendments to the task hierarchy were to group the tasks capable of being

realised through reuse of the legacy systems identified in the Use Case diagrams.

185

41001 Ad

s[apou wo)d3joad uny
AUIAYIS UON)IN0LJ JIIIS

uonEPI[EA INPIYISIY
_|| uoHEPIEA XN 199[3S
anpayds uonepieA dopraaQg

(pL02ay o Jparasdisiu]) =

(uaprouy) =

$p1033y Jneyg pajaadiayu] weyqo
SJUAPIdU] PANUAP] UIEIO

(1aodayuonppiip (Uu01192104J) <=)10}y UOHEPI[EA UONIN0IG IPIAOIG

(pro32y3np,]) =
(aproup) =
(P02 v, paraidiagu) <

.

SSa 1yd p1033Y jinej u&h&h&uﬂm

uone).adiduy npayds

PA02IY JNeY IXIN IS

Sp10d3Y ey pPIAdLnY ulerqQ
SIUIPUY PAYnuap| weyqO
£SP1023Y 3Ineq paaadaduy Ipiroig

8

ANpqelieAY 35149 JONUOI

[EAILY NNy —
JNpaydIsay

anpayos [BAILIIDY IXIN 1IIPS —
Buigjodoyny
NwaI)

(tuoprou) => SHUIPIUJ PIYNRUIP] WIBIQO —

(paodayimo.{) < ¥SPI0J3Y Jnej iAol —

SjuaAg 10 YAVOS
yuaproug 3axdaaug

VAVIS pAedy juapidug dnoas
SHUIPIAU] 10} VAVIS 1adaaug
Ssadl VAVIS 431139y

i

(uang) = »SHIATY APIAOAY
(uapiouy) < ,SIUIPIU IPIACL]
(vavos) < +VAVIS 3piaoag

UBULIOJIN]
nondNoLJ
epEA

SPI033Yy
nneyq
adaaug

SPI0IY
iney
EYEIRE

S)uaAg pue
supU
INGLET o

—

e

sisousdeiq
ueqrnisiq

Figure 7-6 Task hierarchy updated with tasks performed by legacy systems and

exchanged ontological classes

186

Given that all except the proprietary fault record retrieval software could be used to
realise some, if not all, of the functional tasks in the task hierarchy, the functional
tasks which could be realised by each legacy system were grouped under an
abbreviated name for the legacy system, i.e. TP DSS (Telemetry Processor DSS),
FRI DSS (Fault Record Interpretation DSS) and PV Toolkit (Protection Validation
Toolkit). The remaining functional tasks would have their realisation methods

identified during stage eight of the specification process.

The revised task hierarchy, generated during this stage in the PEDA specification
process, showing the exchanged ontological classes and tasks that will be realised

through legacy system reuse is presented in Figure 7-6.

7.8 Required Disturbance Diagnosis Agents

The objective of the next stage in the PEDA specification process was to identify the
required agents and their task execution responsibilities. This was conducted by

following stage six of the methodology described in section 6.4.7.

It was clear from the task hierarchy in Figure 7-6 that the disturbance analysis task
assigned to PEDA could be broken down into four distinct root tasks, each with their
own set of sub-tasks. In all but the ‘Retrieve Fault Record’ root task, it had already
been determined that some sub-tasks would be achieved through reuse of legacy

systems with others remaining to have a task realisation method identified.

For those functional tasks to be realised through legacy system reuse, it is logical to
assign individual agents to the control and execution of the legacy systems so that
complete agent autonomy can be realised. On this basis, the higher-level tasks
encompassing each grouping of sub-tasks to be realised by a legacy system were

assigned to individual agents. This identified the following agents:

= [Incident and Event Identification (JEI) — responsible for control and

execution of the Telemetry Processor legacy system.

« Fault Record Interpretation (FRI) — responsible for control and execution
of the fault record interpretation software, specifically the fault record

interpretation functionality.

187

* Protection Validation and Diagnesis (PVD) — responsible for control and
execution of the protection validation toolkit, specifically the functionality to

select protection schemes and validate protection performance.

The high-level tasks assigned to these agents each had a combination of interaction
and functional sub-tasks, which were each to be realised through means other than
legacy system reuse. In each case, these remaining sub-tasks were directly related to
the automation and control of the legacy systems. It was, therefore, logical to assign

them to the same agents that controlled the legacy systems.

Having assigned agents to control of the legacy systems and their associated sub-
tasks, the PEDA design process turned to the ‘Retrieve Fault Records’ task and its
sub-tasks, all of which remained to have their agent task assignments determined.
Given that there were no constraints imposed by legacy systems, the efficiencies of
the final MAS needed to be considered when determining the most appropriate

assignment of these fault record retrieval tasks to agents.

Based on the requirements specification and knowledge transcripts, it was clear that
the ‘Retrieve Fault Records’ task, and its sub-tasks, would need to utilise the existing
communications infrastructure to access the remote DFR’s and retrieve any
generated fault records. The most efficient solution was, therefore, to assign the
‘Retrieve Fault Records’ task, and all its sub-tasks to one Fault Record Retrieval
(FRR) agent. This way, one agent would handle fault record retrieval and

communications management.

It is important to note that the creation of multiple fault record retrieval agents, each
handling communications with individual DFRs was considered. However, the
reliance on modems to dialup the DFRs and retrieve fault records did not lend itself
to agent communications. If and when, ScottishPower PowerSystems connect all
their substations to a wide area network, the number of agents assigned to fault

record retrieval should be reconsidered.

This completed identification of the agents and their task assignments. The identified

agents and their root tasks are illustrated in Figure 7-7.

188

Having identified the required PEDA agents and their task assignments, it was
necessary to specify the role each agent will play in achieving the global task

assigned to PEDA, namely: Automated Post-Fault Disturbance Analysis.

Each agent role was determined by considering, through analysis of its assigned tasks
and by making reference to the requirements specification, what other PEDA agents

and the engineers will ask of the agent and expect it to perform.

For example, the requirements specification stated that “the interpretation of fault
records should be automated with interpretation priority being given to the earliest
disturbance”. The ‘Interpret Fault Record’ task has been assigned to the FRI agent,
so it is the role of the FRI agent to meet this requirement. Furthermore, it is indicated
in the task hierarchy that the PVD agent must ‘Obtain Interpreted Fault Records’,
therefore FRI’s role in PEDA must be extended to include provision of interpreted

fault records to other agents.

This role identification process was conducted for each of the required agents and a

textual description of the roles documented in Table 7-1.

Agent Name Role within PEDA

Automated interpretation of transmission SCADA
alarms and the provision of SCADA data, and
incident and event information to agents.

Incident &Event
Identification (IEI)

Automated and prioritised retrieval of fault records

Fault Record Reestngl (FRIGS B8 the provision of fault records to agents.

Automated and prioritised interpretation of fault
records and the provision of interpreted fault records
to agents.

Fault Record Interpretation
(FRI)

Validation of protection performance and diagnosis
of protection failures and the provision of protection
validation reports to agents.

Protection Validation and
Diagnosis (PVD)

Table 7-1 PEDA Agent Roles

189

UOLEPI[EA NPIYISY
a[npayas uonepijeA dopasq

my1ool Ad

sjapowt uonddjoad uny

WIS UOI}IN0IJ 1I[OS

N —

uoNEPI[BA IXIN 199138

p

(piooayynoJparoidiou) =

(uaptouy) =
(140dayuoppIY AU011I2104]) <=

%xcumx::c;t =
(ruaproup) =
(4022 1np Jpatadiatu]) <

$p1029Y }neyq pareidiau] ureyqO |
SHUAPIdU] PAYNUIP] WIEIGO]

11009 UONEPI[EA UOII}0IJ IPIACIY —

S8 144

P1033y Nney 9adiuy j

uonejaidaayug ANPIYIS

P10 3Ne] IXIN 193§

$PJ023Y JNEJ PIAALIY WIEIqO
s)uaIpRU] paynuap] WeIqO
«SP1039Y 3[NBY PAjaadidju] apiaoag -

.

ANqE[IBAY 31AI(J0JUOA

[eAaLdY oo —
anpayasay

3MPaYds [BAJLIY IXIN IS —
Sugjjodoiny
aeaI)

(tuaptou) = SHUIPPUL PIYNUIP] UIBIGO —

(paodayInv.]) < ¥SPI029Y JNe] PIAGLd —

§sadl

VAVOS predy juapu) dnosn |
S)uIpRU] 10§ VAVS 1a1daajuy |—

SJUdAY 105 VAVIS
yuaprouf jaadaayuy ||

VAVIS 243113y 1

(aayg) <
(uaprou]) <
(vavos) <

+SIUIAT piroag
+SIUIPIIU] IPIACLY —
2VAVIS WPlaold —

dUBWI0YIA]
uond3oId
epieA
aiad

SpA033Y

nney
121d13yug

t.L4

SpI0dNY

}neq
3AIRY

a4
SJUIAY pue

sjuapru]
Ajnuap]

iar

. —

sisoudeiq
ddueqImsi(q

Figure 7-7 PEDA task hierarchy updated with agent task assignments

190

7.9 PEDA Data and Information Exchange

The next stage in the PEDA specification process was to detail the required data and
information exchanges between agents and to select appropriate mechanisms for
facilitating these interactions. This was conducted following stage seven of the

methodology, as outlined in section 6.4.8.

7.9.1 |IEl Data and Information Exchange

In essence, IEI is only providing the Telemetry Processor with the functionality
necessary to behave as an agent within PEDA. This agent behaviour is required to
enable the provision to other PEDA agents of the SCADA data retrieved by the

Telemetry Processor and any generated incident and event information.

IEI can only provide this data and information to other agents as instances of the
SCADA, Incident and Event ontological classes. IEI must, therefore, generate unique
instances of these ontological classes for each received alarm, incident and event
generated. This requirement would need to be realised during integration of the

Telemetry Processor within the agent.

Given that IEI should be able to provide instances of the Incident, Event and SCADA

ontological classes, the following FIPA ACL performatives were considered

appropriate for providing this information:

» ‘subscribe’: The ability for agents to subscribe for automatic updates of
Incident, Event and SCADA information was considered very important. IEI
was the only ‘real-time’ window on what is happening on the network and
other agents would need to be automatically informed of disturbances in

order to prioritise their tasks.

» ‘query-ref’: Given that some agents may not require regular updates of
Incident, Event and SCADA information, the facility to query for particular

instances of the available information was deemed appropriate.

191

Note that, due to the online nature of the Telemetry Processor, IEI cannot generate
Incident, Event or SCADA information at another agent’s request. Therefore, the

provision of a ‘request’ facility was not deemed appropriate.

7.9.2 FRR Data and Information Exchange

As identified in its role description, the primary function of FRR is to automate the
retrieval of fault records from DFRs. In addition, other PEDA agents must be able to
obtain these retrieved fault records from FRR when required. The obtaining of fault
records will be via messages constructed using the FIPA ACL and with the message

content specifying an instance of the FaultRecord ontological class.

To enable FRR to determine which of the retrieved fault records are required by the
other agents, FRR must create unique instances of the FaultRecord ontological class
for each retrieved fault record, populating the attributes of FaultRecord with the

details of the retrieved fault record.

To provide timely retrieval of disturbance related fault records, it was also noted that
FRR must prioritise fault record retrieval based on knowledge of what is happening
on the power system. Furthermore, to identify the DFRs most likely to contain fault
records directly related to the disturbance, FRR would require knowledge of the
circuit affected by the disturbance and the disturbance time window. Such

information is only available from IEI as ontological classes of the form Incident.

Given that FRR is required to prioritise fault record retrieval based on this
information, the easiest way to obtain the Incident information was deemed to be via
subscription to IEI, using the ‘subscribe’ performative available in the FIPA ACL.
FRR would, therefore, be automatically updated with incident information as it
becomes available, allowing FRR to concentrate on automated fault record retrieval

until prioritised retrieval is required.

The final step was to determine the mechanisms by which other agents could obtain

fault records. The following FIPA ACL performatives were deemed appropriate:

s ‘subscribe’: The provision of a FaultRecord subscription capability was

desirable so agents could obtain automatic updates of retrieved fault records.

192

= ‘query-ref’: Using this performative, agents would be able to specify the fault
records required by defining values for the attributes of the FaultRecord class,
e.g. by specifying a substation FRR would only respond with fault records
which have been generated by DFRs at the specified substation.

= ‘request’: Using this performative, agents would be able to specify the DFR
from which fault record retrieval is required by defining values for the
attributes of the FaultRecorder class, e.g. by specifying the DFR name, FRR
could initiate fault record retrieval and inform the requesting agent of any

retrieved fault records.

7.9.3 FRI Data and Information Exchange

As identified in its role description, FRI is responsible for fault record interpretation
and will use the legacy fault record interpretation software to generate text files
containing the interpretation results, e.g. fault type, faulted phases, fault clearance
time, etc. To allow other agents to obtain these interpreted fault records, it was
recognised that FRI must convert each textual interpreted fault record, generated by

the legacy software, to instances of the InterpretedFaultRecord ontological class.

Within PEDA FRI will only be able to obtain fault records from the FRR agent.
Section 7.9.2 has already described the mechanisms by which FRR will be able to
provide fault records. The mechanisms that FRI will use to obtain fault records now

had to be decided upon.

As identified in its role description, FRI is required to automate fault record
interpretation. In essence, this means that it must interpret every fault record
retrieved by FRR. The most efficient way of achieving this was deemed to be FRI
subscribing to FRR for automated FaultRecord updates, using the ‘subscribe’
mechanism provided by FRR.

To provide timely interpretation of disturbance related fault records, it was also noted
that, like FRR, FRI would require Incident information from IEL Yet again, the
easiest way to obtain the Incident information was deemed to be via subscription to

IEL, using the ‘subscribe’ performative available in the FIPA ACL.

193

Although at this stage in the specification process, it is clear that FRR will prioritise
fault record retrieval based on the same Incident information received by FRI, there
is no guarantee that FRR will have received Incident information — there may have
been a communications breakdown between IEI and FRR. Therefore, having been
automatically informed of an incident by IEI, FRI must assume that FRR hasn’t

received the incident information.

To ensure prioritised fault record interpretation, FRI must be capable of sending
‘query-ref” and ‘request’ messages to FRR. If, having sent a ‘query-ref’ message to
FRR asking for any fault records relating to the disturbance, FRR returns no fault
records, FRI must then ‘request’ fault record retrieval from the DFRs at each circuit

end affected by the disturbance.

The final step was to determine the mechanisms by which other agents could obtain

interpreted fault records. The following FIPA ACL performatives were deemed
appropriate:

» ‘subscribe’: The provision of a InterpretedFaultRecord subscription capability
was desirable so agents could obtain automatic updates of any interpreted

fault records.

= ‘query-ref’: Using this performative, agents would be able to specify the
interpreted fault records required by defining values for the attributes of the
InterpretedFaultRecord class, e.g. by specifying a FaultRecorder and time
frame FRI would respond with all the interpreted fault records generated from
interpretation of fault records retrieved from the DFR within the time frame

specified.

= ‘request’: Using this performative, agents would be able to specify the DFR
from which fault record retrieval is required by defining values for the
attributes of the FaultRecorder class, e.g. by specifying the DFR name, FRR
could initiate fault record retrieval and inform the requesting agent of any

retrieved fault records.

194

7.9.4 PVD Data and Iinformation Exchange

As identified in its role description, PVD was required to validate the operation of
protection schemes following a disturbance and diagnose any protection failures. The
core reasoning would be achieved through reuse of the Protection Validation toolkit,
which will generate protection validation reports. To allow other agents to obtain
these reports, it was recognised that PVD must convert each report, generated by the

toolkit, to instances of the ProtectionValidationReport ontological class.

To provide timely validation of a protection schemes operation in response to a
disturbance, it was also noted that, like FRR and FRI, PVD would require Incident
information from IEI. Yet again, the easiest way to obtain the Incident information
was deemed to be via subscription to IEI, using the ‘subscribe’ performative

available in the FIPA ACL.

Only having been informed of an incident, PVD should attempt to obtain the
interpreted fault records associated with the incident and necessary for protection
validation. Given this approach, subscription to FRI for automated fault record
updates is not logical. A better approach was to adopt the same query and request
process used by FRI to obtain incident related fault records from FRR, but this time

use ‘query-ref” and ‘request’ messages to obtain interpreted fault records from FRI.

Given that PVD must provide instances of the ProtectionValidationReport
ontological class, the mechanisms by which other agents could obtain this
information had to be identified. The following FIPA ACL performatives were

deemed appropriate:

= ‘subscribe’: The provision of a ProtectionValidationReport subscription
capability was desirable so agents could obtain automatic updates of any

protection validation reports generated by PVD.

s ‘query-ref’: Using this performative, agents would be able to specify the
protection validation reports required by defining values for the attributes of
the ProtectionValidationReport class, e.g. by specifying a time window, PVD

would respond with all reports generated within the time window.

195

It was considered that provision of a ‘request’ handling capability was not deemed
appropriate in the initial version of PVD. This was due to the ‘Incident’ driven nature
of PVD, ie. having subscribed to IEI for incident information, PVD will
automatically validate the protection performance for each identified incident.
Furthermore, it is not possible for PVD to perform a protection validation at the
request of another agent if no incident has occurred, since no fault records will be

available.

7.10 Disturbance Analysis Functionality

At this stage in the PEDA specification process, the functional tasks each agent must
perform to realise their disturbance analysis role in PEDA have been identified. In
addition, those tasks that can be realised through the integration and automation of
legacy systems within the PEDA agents have also been ascertained. The next
challenge was to specify the means by which tasks that cannot be realised through
legacy system reuse are to be implemented. This was conducted by following stage

eight of the methodology described in section 6.4.9.

The process started with the primary decision support tasks assigned to each agent,

i.e. those tasks performing the core reasoning necessary for disturbance analysis.

Given that primary decision support tasks are commonly processor intensive
functions, and often rely on mirroring an engineers’ knowledge, experience and
reasoning ability through use of Al techniques, only three PEDA agents could be
considered as having primary decision support tasks. These agents and their primary
decision support tasks, all of which are to be realised using legacy systems, are listed

in Table 7-2.

Although FRR had a number of functional tasks, none would require the
encapsulation of an engineer’s reasoning knowledge, use of an inference engine or
processor intensive reasoning, e.g. the ‘Retrieve’ task was only required to dialup
DFRs and retrieve fault records. The lack of primary decision support functions
within FRR combined with the fact that all other agents were to realise their primary

196

decision support functions via legacy systems meant that the specification process

could move onto the secondary decision support functions.

PEDA Legacy System Primary Decision Support Tasks
Agent Realised Using Legacy Systems
[EI Telemetry Processor * Interpret SCADA for Incidents

* Group Incident Related SCADA

* Interpret Incident SCADA for
Events

FRI | Fault Record Interpretation Engine | ®* Interpret Fault Record

PVD | Protection Validation Toolkit = Run Protection Models

Table 7-2 Primary decision support tasks within PEDA agents

Before proceeding, it should be noted that, if legacy systems were not available for
integration into [EL, FRI and PVD, the data being interpreted and available reasoning
knowledge would need to have been assessed to identify the most appropriate
reasoning techniques. Having identified the most appropriate reasoning techniques,
the interpretation knowledge elicited during stage one of the specification process

could have been used to design an appropriate reasoning engine.

The secondary decision support tasks assigned to each agent would allow realisation
of the autonomy, pro-active, reactive and social behaviour essential for PEDA to
achieve post-fault disturbance analysis. To determine the most appropriate means of

implementing these secondary tasks, it was necessary to consider how each task will

be invoked.

Following identification of the primary decision support tasks, it was clear from the
task hierarchy that ten secondary decision support tasks remained to have their task
realisation method identified. The ten tasks, their agent assignments and the chosen

realisation method are presented in Table 7-3.

To describe how the software mechanism appropriate to realising a secondary
decision support task was identified, the ‘Select Next Fault Record’ and ‘Schedule

Interpretation’ tasks assigned to FRI will be used.

197

PEDA | Secondary Decision Support Task Chosen Realisation Method
Agent
FRR | Select Next Retrieval Algorithmic Code
FRR | Create Autopolling Schedule Algorithmic Code
FRR | Reschedule Retrieval Rules, Algorithmic Code
FRR | Retrieve Algorithmic Code
FRR | Monitor Device Availability Algorithmic Code
FRI | Select Next Fault Record Algorithmic Code
FRI | Schedule Interpretation Rules, Algorithmic Code
PVD | Select Next Validation Algorithmic Code
PVD | Develop Validation Schedule Rules, Algorithmic Code
PVD | Reschedule Validation Rules, Algorithmic Code

Table 7-3 Chosen secondary decision support tasks realisation methods

So far in the PEDA specification process, it was clear from the role descriptions that
FRI must automate and prioritise fault record interpretation. Furthermore,
consideration of the required data and information exchanges identified that

prioritisation would be based on received incident information.

Fundamental to achieving its assigned role, FRI would be required to manage an
interpretation schedule containing all the fault records requiring interpretation. The
routing management of this schedule would require the ‘Schedule Interpretation’ task
to add received fault records to the schedule as they are received — this could easily
be achieved by algorithmic code. The ‘Schedule Interpretation’ task will, however,
require a reactive element which will execute every time a fault record is received,
adding the fault record to the schedule. This can be achieved using rules and an

inference engine.

Given that the ‘Schedule Interpretation’ task would have prioritised the fault record
interpretation, the ‘Select Next Fault Record’ task would only be required to select
the fault record with highest interpretation priority from the schedule. This

functionality can easily be achieved with algorithmic code.

198

7.11 Modelling of PEDA Agents

Agent modelling templates were created for each of the PEDA agents identified in
Figure 7-7 and are available in Appendix E. Each template was compiled by
collating the information identified during the previous stages of PEDA
specification, namely: the agent role description, the functional tasks assigned to the
agent, the decision on whether or not each functional task can be realised by a legacy
system, the interaction tasks assigned to the agent, the permissible interaction types

and the ontological classes exchanged by each interaction.

The requirements specification had indicated that the “PEDA architecture should
facilitate the introduction of new software systems and removal of obsolete
technologies without the requirement for extensive reengineering”. To achieve this

additional Nameserver and Facilitator utility agents were deemed essential.

PEDA only needs four agents to perform the required disturbance diagnosis
functionality. This combined with the likelihood that all these agents would be in
close network proximity to each other (probably in a head office computer room and
possibly even sharing the same PC’s) makes for a self-contained agent community
where only one instance of each utility agent is required. It wasn’t necessary to
model these utility agents, as they would be provided by the toolkit chosen to
implement PEDA — described in the next chapter.

7.12 Specification of PEDA Agent Interactions

The next stage in the PEDA specification process was to model the agent interactions
necessary to achieve automated disturbance analysis. The agent interactions
modelling process was conducted following stage ten of the methodology as

described in section 6.4.11 with the resultant diagrams illustrated in Appendix F.

The process commenced with the creation of sequence diagrams modelling the agent
interactions with the PEDA utility agents. These interactions are the most basic of all
the PEDA interactions and are essential for realising a flexible and extensible

architecture where agents can discover the abilities and location of other agents.

199

It should be noted that these interactions had not been explicitly specified thus far.
This is because they were not an essential part of the disturbance diagnosis task and
are instead a requirement of the MAS architecture itself. Many MAS simply do
without utility agents and hardcode the knowledge of other agents’ abilities and
locations into the agents within the MAS. Adopting this approach would still enable
the disturbance analysis task to be achieved but would result in an inflexible and

non-scalable architecture.

[PEDA Agent] ‘ Nameserver

l—‘ inform (address)

Time
confirm (address)

= o /

Sequence Diagram | SD PEDA 01: Nameserver registration

Task Owner(s) Any PEDA agent | Initiating Task Register location

Task Owner(s) Nameserver Responding Task Acknowledge Registration
Other participants | None Responding Task N/A

Figure 7-8 PEDA Sequence Diagram: Nameserver registration

The most basic interaction with a utility agent is at start-up with the registering of the
agents’ location. Sequence diagram SD PEDA 01 was created to model this

message exchange and is presented in Figure 7-8.

Another interaction sequence fundamental to the running of flexible and extensible
MAS is that initiated by the Facilitator to maintain an up-to-date record of the
abilities each agent can offer. On a regular basis (time interval configured by the
developer), the Facilitator requests an update from the Nameserver of the addresses
of all the agents within the MAS. Using this information, the Facilitator then queries
each agent about what abilities the agent can offer. This process is modelled in

SD PEDA_02 and is presented in Figure 7-9.

200

[PEDA Agent] l Facilitator

)

1

inform (address) > i
—v—‘

:

|

I

1
L

SD_PEDA_01 Time

confirm (address)

query-ref (address) r

inform (address)

query-ref (abilities)

inform (abilities)

'
.

Sequence Diagram | SD PEDA 02: Provide Abilities

Task Owner(s) Facilitator Initiating Task Request Abilities
Task Owner(s) Any PEDA agent | Responding Task Provide Abilities
Other participants | None Responding Task N/A

Figure 7-9 PEDA Sequence Diagram: Providing Abilities to Facilitator

PEDA agents must also be able to query the utility agents to identify the name and
location of agents capable of providing a desired resource. The sequence diagrams
modelling the ‘query for abilities’ and ‘query for address’ interactions are presented

in SD PEDA 03 and SD PEDA_04 respectively in Appendix F.

The agent modelling templates have described the mechanisms each individual agent
will use to provide its data and information resources and specified the associated
interaction tasks. To enable the later identification of the message handlers and
control functionality necessary to manage these interactions, the sequence of

messages required to obtain each desired resource were modelled.

The modelling process started by taking each agent in turn and identifying the
interaction tasks that facilitate the provision of data and information resources to
other agents, e.g. the ‘Provide Incidents’ task in IEI. The different interaction types
for each task were then identified from the agent modelling templates and a separate

sequence diagram was created for each interaction type. In addition to the agent

201

modelling templates the FIPA performative specification was used extensively as it

defined the most appropriate responses to each message type [4].

To create the sequence diagram, the interaction task executed by an agent requiring
the provided resource, the responding agent and interaction task and the resulting
message sequence all need to be considered. The provision of retrieved fault records
by request will be used to illustrate the sequence diagram creation process. The

generated sequence diagram is presented in Figure 7-10.

| Any PEDA Agent I lFaciIitatorIlNamaerverl
1

H 1
! ' H
E l_l query-ref (FaultRecord E i
E ' !
: ! inform (FRR) i
H | !
E [_T query-ref (address_of FRR) i i
i T '
E E inform (FRR, host, port)
| ' < —
E request (retrieve FRR FaullRecorder)J:l H
e : i
refuse (reason) o B !
U !
failure (reason) | i
j = E Time
agree (retrieve FRR FaultRecorder) :
s 0 :
4 ! i
1 |
] i
1 1
' 1
1 1
' 1
1 1
1 1
] 1
] 1
1]
1 |
H ! |
confirm (retrieve FRR FaultRecorder) | i
]
1
H query-ref (FaultRecord) E
< 1
] 1
inform (empty ser) _ E E
1
! inform (FaultRecord) = ! i
] > |
: . ; .
Sequence Diagram | SD_PEDA_13: Request Retrieval of Fault Record(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Retrieved Fault
Records
Task Owner(s) FRR Responding Task | Provide Fault Records
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task | Provide Abilities

Figure 7-10 PEDA Sequence Diagram: Request Retrieval of Fault Record(s)

202

The first step was to consider how a PEDA agent, such as FRI, would request the
retrieval of fault records. It was clear from the FRI agent template that the ‘Obtain
Retrieved Fault Records’ task would be used. This task would need to start by
identifying a provider of the FaultRecord data class specified in the ontology. A
‘query-ref” message with content FaultRecord would be sent to the Facilitator and
the task would then wait for an inform message from the Facilitator in response to
the ‘query-ref’. The response would identify the FRR agent as a provider of the
FaultRecord data class. A similar procedure would need to be conducted to query the
Nameserver for the network location of the FRR agent. Note that these message
sequences have already been modelled in SD_PEDA_03 and SD_PEDA _04.

Having agreed that the requested action is to be performed, the ‘Provide Retrieved
Fault Records’ task will begin the retrieval process. This process will take a
significant period of time as indicated by the size of the processing rectangle on the
FRR agent timeline. During this time the ‘Provider Retrieve Fault Records’ task will
have passed the request over to the core functional tasks to schedule and execute the
retrieval. The task control and execution sequence will be determined during the

next stage of the design process — ‘Agent Behaviour Functions’.

When the core functional tasks have completed retrieval the ‘Provide Retrieved Fault
Records’ task will send a ‘confirm’ message to the requesting agent. Upon receipt of
this message, the ‘Obtain Retrieved Fault Records’ task will send a ‘query-ref
message querying for the FaultRecord data classes just generated. The ‘Provide
Retrieve Fault Records’ task will respond with an ‘inform’ message containing either
an empty set if no fault records were retrieved or the retrieved instances of the

FaultRecord data classes.

The process followed to create the sequence diagram in Figure 7-10 was adopted for
each of the interaction tasks responsible for provision of a resource. Note that not all
of the sequence diagrams in Appendix F relate to interactions which occur within the
current version of PEDA, e.g. subscribe for Events. However these need to be

modelled to ensure the agents can provide all resources in case future agents are

introduced.

203

7.13 Required PEDA Agent Behaviour

The PEDA specification process had now reached perhaps the most significant, at
least in agent terms, point where the behaviour of each agent had to be specified.
Agent behaviour specification was conducted following stage eleven of the

methodology as described in section 6.4.12.

There are two aspects to the specification of agent behaviour which will be described

in detail in the sections to follow, namely:

» [dentification of the message handlers essential for pro-activeness, reactivity

and social interactions.

= Specification of the agent control functions required for agent autonomy.

7.13.1 Message Handlers

When an agent’s control function decides that it must interact with another agent it
will exhibit proactive behaviour by constructing and sending a message to one or
more agents. Message handlers must be present within the initiating agent to handle
and react to the messages received in response to the initial message. These message

handlers, essential for an agent’s pro-active behaviour, must be identified.

The agents that will respond to a message sent pro-actively by another agent must
also have message handlers to react appropriately to the received message. These

message handlers, essential for an agent’s reactive behaviour, must also be identified.

To illustrate how the message handlers required for both pro-active and reactive
behaviour were identified consider an agent’s subscription to IEI for Incident
information, as illustrated in the sequence diagram presented in Figure 7-11. For the
purposes of this illustration the ‘Any PEDA Agent’ will be PVD. The sequence of
agent interactions will be walked through, and the message handlers required for
each interaction identified, starting with the pro-active sending of the ‘query-ref
(Incident)’ message by the PVD agent for Incident subscription. Note that the
message handlers identified during this stage of the PEDA specification process and

referred to in the subsequent text are documented in Appendix G.

204

lFacilitatorI ' Nameserver I

IEI [Any PEDA Agent '

query-ref (Incident)

inform (IEI)

query-ref (address_of IEI)

inform (IEI, host, port)

i S
+

]
1
.5
1
subscribe (Incident) H Time
< 5
failure (reason) '
i
]
refuse (reason) :
> :
] |
i confirm (Incident) :'
E g E
H i i
/ / 7 7
/’ {] 7/ 7/
Ay et o ‘-
(q inform (Incident) . i | |
s = | R’
Sequence Diagram | SD PEDA 05: Subscribe for Incident updates
Task Owner(s) Any PEDA Agent | Initiating Task Obtain Identified Incidents
Task Owner(s) IEI Responding Task Provide Incidents
Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

Figure 7-11 Sequence diagram for Incident subscription

Before sending the ‘query-ref (Incident)’ message to the Facilitator, a message
handler must be created within PVD to handle the Facilitators’ response. The
creation of the message handler will be managed by the PVD agent control function,
the design of which will be described in the next section. Figure 7-12 presents the

message handler required to handle the Facilitators’ response, MH_PVD 03.

Having received, in the PVD agent’s incoming mailbox, an inform message from the
Facilitator containing IEI as an identified Incident provider, message handler
MH_PVD_03 will fire and respond by constructing and sending the ‘query-ref
(address of IEI)’ message to the Nameserver. Another message handler,

MH _PVD 04 will also be required to handle the response from the Nameserver.

205

The Nameserver should, after a short delay, respond with the inform (IEI) message
illustrated in Figure 7-12. On receiving the response, MH_PVD 04 will fire and send

a ‘subscribe (Incident)’ message to IEI.

In an open architecture, such as PEDA, agents may be required to limit the number
of agents subscribing for a particular resource so as to avoid the majority of agent
processing power being devoted to interaction tasks rather than the core functional
tasks. It is therefore possible that the IEI agent will either send a failure message, if
the original message cannot be understood, or a refuse message in response to
‘subscribe (Incident)’ as opposed to a ‘confirm (Incident)’ message confirming
successful subscription. Additional message handlers are therefore required, and

must be created by MH_PVD_04 on firing, to handle each possible response to

‘subscribe (Incident)’ received from IEIL

When the IEI agent receives the ‘subscribe (Incident)’ message it will exhibit
reactive behaviour by firing message handler MH_IEI_01 described in Figure 7-13.
This message handler will be created by the IEI agent control function when the
agent is started to provide the IEI agent with reactive behaviour. If subscription is
successful, the MH_IEI_01 message handler will respond with a ‘confirm (Incident)’
message and create a subscription rule to monitor for new Incidents and

automatically inform subscribed agents.

If Incident subscription has been successful, the PVD agent requires a message
handler to receive future ‘inform (Incident)’ messages from IEI and add them to its
memory. The required message handler, MH_PVD 08, is created when
MH_PVD_07 fires and remains in the PVD agent’s memory as long as the agent is
running.

The process followed to create the message handler templates in Figures 7-12 and 7-
13 was adopted for each of the PEDA agents. Each sequence diagram in Appendix F
was walked through and the required reactive and pro-active message handlers
documented in Appendix G. The message handler templates reference the sequence

diagram and initiating or responding task in the task hierarchy that they relate to.

206

YSE} SHUIPIdU] PaYRUIP] ureyqQ, A Aq paambaa siappuey aSessom aapawoag 7y-£ danSig

L0T

Alowaur 03 JUSPIOU] PPY ® (3uoprour) 2qIdsqns uapIou] wiojup | 80 AAd HW
SBl SIUSPIOU] PAYNIUAP] UlRIqQ), ARUIULID], e
saZessaw (Juaplou]) wLIojul A[puey 03 80 AAd HIA 21B31) (yuaprouy) aquosqns JuapIouy uguod | L0 dAd HW
uondLiosqns [nyssaoons 07 e
Jaje] idwaneal pue [esnjal Joj uoseal 507 e (Juaprou]) aquidsqns uosDaL asnjal 90 dAd HW
Jare] idwayeas pue amjrey Joj uosear o7 e (Juapiouy) aquOsqns UoSDaL aunjrey S0 dAd HW
‘asuodsax
Jqpuey o1 L0 AAd HN % 90 AAd HA ‘SO OAd HIN 2m31) e (awnu jua3p yo~ssaippe) Jor-A1onb | ssa4ppp uado wojul | 0 dAd HW
awivu Ju23p 0 (JUSPIOU]) AQLIISANS PUSS o
asuodsal ajpuey 01 0 QAd HIA 21831 = &
19A10sUWRN 03 (2uiwu jua3p Jo ssaIppe) jJoi-A1onb pusg e (puoprous) jos-Kaonb o s e o €0 dAd HW
oevany oo o], Ajday ug yudu0) Ay | qpadpuey
d 98esSIJ\| Surmoduy Idessop
Sjuapiou] paynuapy ureiqQ Ase], Suneniuy
sajepdn Juaprou] 10j 2quIsqNS — 50 V(Add (S | weaSeiq sduanbag
aAnoROl{ | anomeyag | aAd JuIBY

80¢

¥se) SHudpIou] apraoad, THI Aq paamnbaa so[puey s3essaw dA1)IvIY €1-£ 2anSiy

JuaSe paquIOsqns WLIoyUI A[[ed1jeWOINe
pu® BJEp JUSPIOU] Mou I0j Iojuow 01 3 uonduosgns, B wAI) O
1ua3e SuiquOsqNs 0} (JUAPIOU]) ULIJUOD PUIS O
uay) ‘sa3a[1ALd $S3008 1091100 dARY
s20p juade uiquOsqNs pue pooISISpUN dq Ued dFessaw Judde Suiquosqns Jj| e JuapIoU] aquIdSqns 10 Tl HA
juae 3uipuss o) (uospa.4) asnjaI pusg o
uayp ‘sa3a[IALId $5998 1991100 dARY JOU S20p Juade SuIqUOSANS JT e
1ua3e Furpuss o3 (vospa.l) amjiej puss 0
uay) ‘poojsIapun 3q Jouued dFeSSOUW QUIOSQNS J| »

judu0) adiy, Al s9puey
osuodsay aBessojy Sunwoouy aBessI

SjuapIoul apiaolg | yse] Suipuodsay

sajepdn Juaprou] Jojy 3quOsqNS — 50 V(AAd (IS | WeaSei sousnbog

2AnORYY | JAnolARYRg _ 141 Juady

7.13.2 Agent Control

The agents within PEDA are provided with autonomy by their agent control function,
which, at agent startup, creates the message handlers essential for reactive and
proactive behaviour and controls the sequence and execution of the agent’s
interaction, primary and secondary decision support tasks for the execution lifetime

of the agent.

To design the agent control functions, it was necessary to specify how each task will
be invoked and the task execution sequences. This was achieved by building upon
the details of the specification thus far, namely: the identified interaction and
functional tasks and how the primary and secondary decision support tasks were to

be realised.

It was clear from the results of the agent functionality stage (see Table 7-3), that
secondary decision support tasks would need to be implemented as algorithms, rules
or a combination of both. Therefore, within each agent, the agent control
functionality would need to manage both rule-based tasks, for interaction and
functional tasks handling prioritisation, and algorithmic functional tasks. Each agent
control function therefore required two reasoning mechanisms: inference and
algorithmic. Agent control diagrams were created for each agent to illustrate both the

inference and algorithmic agent control functionality — available in Appendix H.

To illustrate how an agent control diagram was created, the PVD agent control
diagram illustrated in Figure 7-14, and also available in Appendix H.4, will be used.
How each of PVD’s interaction and functional tasks are invoked and how the task

execution sequence was identified, will be described.

As with all PEDA agents, the PVD agent must manage the execution of its core tasks
while monitoring for, and reacting to, messages from other agents. The agent control
function is therefore required to create and manage a number of concurrent reasoning

streams which are illustrated in Figure 7-14.

209

Agent Control — Inference Engine ————» «———————— Agent Control — Algorithm —————— — p

|
L

v i
Provude Oblam .

P;olvllde Protection Identified | :‘o?"s.‘"

naie Validation Reports lncudents i i

MH PVD 08

................
v

1
h 4
Obtain Develop Incid i
Interpreted Validation | mqfem
Fault Records Schedule | Interpreted
MH I;l D 11} i Validation | FaulRecord(s) o o
OR ! i Schedule Validat
MH PVD 16} Incident | praersy:
H]
v L 4 Interpreted Incident
FaultRecord +
Reschedule Validation Interpreted

FaultRecord(s)

A

Run Protection
___Validation Toolkit

‘rotection
Scheme { Models

Validation
complete

Figure 7-14 PVD Agent control diagram

The primary reasoning stream runs in the algorithmic layer and controls the
execution of tasks which are nof triggered in reaction to the receipt of a new message
or additions to agent memory and are to be implemented as algorithms or via

integration of existing systems.

In this reasoning stream, each agent control function had to be designed to, at agent
startup, execute a ‘Register location” interaction task registering the agent’s physical
network location with the Nameserver. To handle queries from the Facilitator as to
the agent’s data and information provision abilities, an additional reasoning stream
had to be designed to, at agent startup, create, within the inference layer, the message
handlers necessary to process and respond to queries from the Facilitator. In the case
of PVD, the ‘Provide abilities’ task would respond to queries from the Facilitator,
indicating that PVD can provide instances of the ProtectionValidationReports

ontological class — this was identified from the agent modelling template.

Although neither the ‘Register location’ nor ‘Provide abilities’ tasks are explicitly
represented in the agent modelling templates, they had to be included in the agent

control diagrams as they facilitate information discovery and interactions between

210

the agents. Having specified the registering of the agent’s location and abilities, the

control of primary decision support tasks was considered.

Each PEDA agent is required to run online and continuously so the agent control
function had to be designed to loop the execution of the algorithmic functional tasks.
In the case of PVD, it is clear from Table 7-3 that the ‘Select Next Validation’ task is
to be realised using an algorithm. This secondary decision support task is required to
continuously check the validation schedule for Incidents for which the related
InterpretedFaultRecords have been collated. Only when a matching set of Incident

and IntepretedFaultRecords is found will they be selected and validation triggered.

The PVD agent modelling template indicated that the protection validation tasks of
‘Select Protection Scheme’ and ‘Run Protection Models’ were to be implemented
using the existing protection validation toolkit. The agent control algorithm had,
therefore, to be designed to invoke the execution of the protection validation toolkit
and input the Incident and InterpretedFaultRecords. The integration of the toolkit is
discussed in section 7.13.3. For the moment, it was sufficient to design the agent
control algorithm to trigger the validation on completion of the ‘Select Next
Validation’ task and to reinitiate the ‘Select Next Validation’ task on completion of

validation.

The FRR, FRI and PVD agents all exhibit proactive behaviour to establish the
mechanisms for obtaining the Incident information necessary for them to prioritise
their retrieval, interpretation and validation tasks. To handle this proactive behaviour,
an additional reasoning stream had to be included in the design of the agent control
function for each of the three agents. Design of the proactive reasoning stream within

PVD is described.

The proactive reasoning stream executes the ‘Obtain Identified Incidents’ task at
startup to commence the message sequence depicted in Figure 7-9 (SD_PEDA_05)
to identify and subscribe to a provider of Incidents. Having created and sent the first
‘query-ref” message to the Facilitator, the ‘Obtain Identified Incidents’ task will
create message handlers MH_PVD_03 to MH_PVD_08 to handle the responses as
indicated in Appendix G.4.2. Whenever an ‘inform (Incident)’ message is received,

MH_PVD_08 will fire and add the received Incident to memory.

211

When MH_PVD _08 fires, the agent control function must begin the retrieval and
collation of the InterpetedFaultRecords related to the Incident and create a validation
schedule, if one has not already been created. This was achieved by designing the
agent control function to create two additional concurrent reasoning streams when
MH_PVD_08 fires, one for each of the ‘Obtain Interpreted Fault Records’ and

‘Develop Validation Schedule’ tasks.

Across both these reasoning streams is the ‘Reschedule Validation® task which the
agent control function must invoke either when an Incident is provided by the
‘Develop Validation Schedule’ task or message handlers MH PVD 11 or
MH_PVD 16 fire in response to an InterpretedFaultRecord being received.

All PEDA agents are required to react to messages from other agents for provision of
generated resources, either by a ‘subscribe’, ‘query-ref’ or ‘request’ message. To
monitor the incoming mailbox for, and react to, these messages, an additional
reasoning stream is required to handle the agent’s reactive behaviour. Each agent
control function has been designed to initiate an additional reasoning stream in the

inference layer for just this purpose.

Within PVD, this additional reasoning stream is responsible for execution of the
‘Provide Protection Validation Reports’ task. This task requires no additional
functionality other than that included in message handlers MH_PVD 01 and
MH_PVD 02 designed earlier and presented in Appendix G.4.1. When either a
‘subscribe’ or ‘query-ref’ message is received the appropriate message handler will
fire and take the necessary action. This reasoning stream remains active for the

execution lifetime of the agent.

7.14 Chapter Summary

This chapter has demonstrated the successful application of the methodology,
described in chapter six, for specification of decision support MAS to the automation

of post-fault disturbance analysis.

Following the justification of a MAS solution to post-fault disturbance analysis

automation, the design issues covered within this chapter are:

212

Requirements and knowledge capture: Capturing of the protection engineering
requirements for automated disturbance analysis and the elicitation of the

activities, resource and reasoning knowledge for use within the MAS.

Disturbance analysis task decomposition: Specification of the disturbance

analysis task assigned to the MAS and its decomposition into sub-tasks.

Disturbance analysis ontology modelling: Identification and creation of an
ontology for representation of the core concepts within the field of power system

post-fault disturbance analysis.

Reuse of Legacy Systems: Assessment of whether legacy software can be reused

within the MAS to perform disturbance analysis sub-tasks.

Agent identification and modelling: Identification of the required disturbance

analysis agents and assignment of their functional and interaction subtasks.

Agent functionality: Identification of the most appropriate reasoning technique for

realising an agent’s disturbance analysis behaviour.

Agent interactions modelling: Modelling of the message exchanges necessary for

agent collaboration and essential for automation of disturbance analysis.

Design of agent behaviour: 1dentification of the message handlers essential for
agent’s social, proactive and reactive behaviour and design of the agent control

functions essential for agent autonomy.

The specification process described in this chapter resulted in a specification for the

PEDA MAS and its agents. The next chapter describes the implementation and

deployment of the PEDA MAS and evaluates its performance using a case study.

The models, templates and output of the specification process that form the bases of

the specification have been documented in Appendices B to H.

7.15 References

Schreiber, G., Akkermans, H., Anjwierden, “Knowledge Engineering and
Management: The CommonKADS Methodology”, MIT Press, 1999.

213

[2}.

[3].

[4].

A. Bemnaras, et al, “An Ontology for Fault Diagnosis in Electrical Networks”, ISAP
96, January 28 — February 2, pp 199-203, 1996.

“Standard Common Format for Transient Data Exchange (COMTRADE) for
Power Systems”, ANSVIEEE C37.111.1991

“FIPA Communicative Act Library Specification”, XC00037H, [Online],
Available: http://www.fipa.org/repository/index.html

214

http://www.fipa.org/repository/index.html

Chapter 8: PEDA Implementation and
Performance Evaluation

215

8.1 Chapter Overview

The previous chapter illustrated how the methodology presented in chapter six was
used to create a specification for the PEDA MAS. This chapter describes the

implementation of the specification.

The realisation of the agents through integration of legacy systems and
implementation of the message handlers and agent control functions essential for
agent autonomy, reactivity, proactiveness and social interaction is described. The
anticipated architecture for deployment of the agents within ScottishPower

PowerSystems is also presented.

The performance of the PEDA MAS is also evaluated using the case study described
in chapter four previously used to evaluate the Telemetry Processor’s performance.
In this chapter the performance evaluation focuses on evaluating PEDA’s ability to
manage the gathering and dissemination of disturbance diagnosis data and
information. It should be noted that although in this thesis the evaluation of PEDA’s
capabilities is limited to one case study in practice the performance of PEDA was

evaluated using a diverse range of case studies.

8.2 Selection of Agent Building Toolkit

A number of toolkits exist that allows developers to implement software systems as
as MAS. A report commissioned by AgentLink [1] provides a comprehensive review
of over thirty of the available toolkits. Three of the mainstream toolkits are briefly
reviewed below:

s Zeus Agent Building Toolkit [2] was developed by BT exact Technologies’

Intelligent Systems group and provides a library of software components and

tools that facilitate the design, development and deployment of MAS.

= JACK ([3] was developed by Agent Oriented Software Pty. and is an
environment for building, running and integrating commercial Java-based

multi-agent software using a component based approach. JACK agents can be

216

organized into teams for modelling team behaviour or performing joint tasks,

however they are restricted to running within a JACK environment.

* FIPA-OS [4] was developed by Emphoria as a component based toolkit for
enabling the rapid development of FIPA compliant agents. The Foundation
for Intelligent Physical Agents (FIPA) has issued many accepted and
experimental specifications for the specification of agent communication,
agent management and agent message transport. These specifications are
becoming the standard within the agent research community and the majority
are supported within FIPA-OS. This toolkit is the most widely supported and

is likely to remain so for the foreseeable future.

At the time of commencing the research within this thesis the Zeus toolkit was one of
the most well-supported and advanced toolkits available and was adopted for
implementation of the PEDA specification. However, as the research progressed,
more toolkits were introduced and support for the Zeus toolkit faltered. Nevertheless,

the Zeus toolkit continued to provide a suitable mechanism for implementing PEDA.

It should be noted that neither the methodology presented in chapter six, nor the
resulting PEDA specification, is tied in any way to a particular agent building toolkit.
The PEDA specification could have been implemented using any of the four toolkits
described above and by the majority of the toolkits summarised in the report

commissioned by AgentLink [1].

8.3 Specification Implementation

Implementation of the PEDA specification commenced with creation of the
disturbance analysis ontology. The ontology is a fundamental requirement of PEDA
and is used by all agents. It cannot be obtained through agent interaction at runtime

so therefore had to be created prior to agent implementation.

Ontology creation was relatively simple since Zeus [2] provided an ontology creation
facility. This allowed the classes and their attributes to be input into the software
which then created a textual representation of the disturbance diagnosis ontology in

an ontology file, a copy of which would be deployed with each agent,

217

Having created the disturbance analysis ontology, implementation of the PEDA
agents could proceed. Agent implementation was assisted by a facility within Zeus to
automatically generate agent shells written in Java. These agent shells segregated the
agent’s execution process into three execution threads that would run concurrently.
Two threads were devoted to the agent’s incoming and outgoing mailbox and
provided a common inference engine to manage the agent’s message handlers. The
remaining thread was the main algorithmic thread to manage execution of the agent’s

core functional tasks.

The agent shells also provide a FIPA compliant communications protocol for agent
interactions and execute the ‘Register location’ and ‘Register abilities’ tasks within
the main algorithmic thread. The following sections describe how the specification

was used to populate the agent shells to realise the PEDA agents.

8.3.1 Utility Agents Implementation

The Nameserver and Facilitator agents were the first to be implemented since the
other PEDA agents would be required to register their network locations and abilities
with them at startup. Implementation was straightforward since Zeus provided
generic utility agents which could be used within any MAS. No additional

configuration or software development was therefore required.

The Nameserver agent maintains a database of the name and network location of
agents that have registered with it. The Nameserver only exhibits reactive behaviour

since it is only required to receive and acknowledge an agents’ registration request.

The Facilitator agent maintains a database of the name and information and data
provision abilities of each agent. To gather the abilities information, the Facilitator
agent exhibits both pro-active and reactive behaviour. Pro-active behaviour is
exhibited by the regular querying of the Nameserver for addresses of agents, and
then the querying of each agent for its information and data provision abilities.
Reactive behaviour is exhibited by responding to an agents query for providers of a

data or information resource.

218

8.3.2 IEl Agent Implementation

IEI was the first, and perhaps simplest, of the PEDA agents to be implemented. The

implementation simplicity can be attributed to two features of the IEI specification:
* Functional tasks are realised through integration of the Telemetry Processor.
= [EI is not required to exhibit proactive behaviour.

The IEI agent control diagram in Appendix H.1 indicated that the only algorithmic
functionality requiring addition to the IEI agent shell was the Telemetry Processor
wrapper. Upon execution, the wrapper would run the Telemetry Processor software
within the agent’s algorithmic execution thread and output identified incidents and
events to the agent’s memory. These incidents and events would be added to memory
as facts constructed using the disturbance analysis ontology, i.e. Incident and Event,

which could, in turn, be disseminated to other agents by message handlers.

To achieve the required functionality, the PEDA specification identified that
additional software would be required to manage Telemetry Processor initiation and
configuration and monitor the output database for incidents and events. This
additional software would be introduced into the Telemetry Processor source code
via a wrapper. Analysis of the original source code identified two Java classes

dedicated to performing these functions.

To avoid source code modification, two new Java classes were written, specifically
for the wrapper, extending the original classes with functionality providing the
control of Telemetry Processor initiation and configuration and enabling output to
the agent memory of incidents and events as ontological facts. The wrapper runs the
Telemetry Processor by executing these classes overriding the original classes,

thereby providing the required functionality.

The final components of IEI to be implemented were the reactive interaction tasks,
namely: ‘Providle SCADA’, ‘Provide Incidents’ and ‘Provide Events’. The six
message handlers required to implement these tasks had already been specified and

were listed in Appendix G.1.1.

To implement the message handlers, the agent shell required the addition of the

message patterns that the agent must monitor its inbox for and the function which

219

should be executed when a matching message is received. The agent shell handled
the addition of each message pattern to the inference engine and the execution of the
function on firing of the message handler. The only remaining implementation task
was to write the function to be executed. This was a relatively simple task and only
required writing of code to create and send messages in response to the received

message or to generate additional message handlers.

The architecture of the implemented IEI agent is presented in Figure 8-1 illustrating
the components initially present in the agent shell, the additional groups of message
handlers to realise each interaction task and the wrapper required to realise the post-

fault disturbance analysis tasks assigned to [EI.

S N
IEI Agent
Agent Control Inference Engine Agent Control Algorithm
R

Message / Register Location

Inbox (Wrapper)

e Pk

Provide Abilities / * Engine Initiation &

/ Configuration
s ’ Agent
/ Provide Incidents Memory Telemetry
Processor
| Message / Provide Events
| Outbox |_* Output Functionality U
o
Provide SCADA
\r‘/
S J

Figure 8-1 IEI agent architecture

8.3.3 FRR Agent Implementation

Unlike IEI, none of FRR’s functional tasks were to be implemented using existing
software. Although software was available which effectively managed autopolling
and fault record retrieval, it did not offer any external software interfaces and the

source code was not available for modification. As a result, FRR could neither

220

interface with the software using a transducer nor extend the existing code using a

wrapper. A software rewrite was therefore required and had been specified.

At this stage in the research project, the focus was on implementing a PEDA
prototype to not only assess the quality of the specification produced by following
the proposed methodology but also whether a MAS brought the anticipated systems
integration and automated data collation benefits to post-fault disturbance analysis. It
was therefore neither desirable nor practical to expend time and effort on rewriting
the fault record retrieval software. An alternative was chosen which still allowed

evaluation of the multi-agent approach but avoided a software rewrite.

The alternative was to implement the ‘Retrieve’ task as an algorithm which, when
called by the ‘Select Next Retrieval’ task, would check a database of fault records
and wait between 30 seconds and 2 minutes before retrieving a fault record from the
database. The retrieved fault record would be added to the agent’s memory as a
FaultRecord fact, thereby simulating fault record retrieval from remote DFRs. This
avoided the development of software to handle and monitor communications with the

remote DFRs, a requirement of the ‘Monitor Device Availability’ task.

It must be emphasised that this is not how FRR will operate when eventually
deployed within ScottishPower PowerSystems. The deployed version of FRR will
have all the communications functionality necessary to dialup and communicate with
remote DFRs. However, until the new software arrives, this implementation is
sufficient to facilitate evaluation of the multi-agent approach to disturbance analysis.
Furthermore, to ensure this ‘mocked up’ version of FRR provides a sufficient
platform to assess PEDA’s disturbance analysis capabilities, the fault records used

were not random but reflected the real data to be used in the case study disturbances.

Within the ‘mocked up’ version of FRR the functional tasks were implemented in
Java as algorithms which could, all except ‘Reschedule Retrieval’, be executed
within the agent shell’s algorithmic execution thread by the agent control function
illustrated in Appendix H.2. ‘Reschedule Retrieval’ was part of the agent’s proactive

behaviour and would instead be executed in the shell’s inference engine.

The only proactive behaviour FRR is required to exhibit is performed by the ‘Obtain

Identified Incidents’ interaction task to subscribe to an incident provider. The

221

message handlers required by this interaction task had already been specified in
Appendix G.2.2 and were implemented within the agent shell in exactly the same
manner as in [EI. Message handler MH_FRR_09 is of particular significance since it
is responsible for triggering execution of the ‘Reschedule Retrieval® algorithm when

an inform message is received containing an Incident fact.

The final component was the ‘Provide Fault Records’ interaction task required for
reactive behaviour. The message handlers required to provide the ‘subscribe’,
‘query-ref” and ‘request’ message handling functionality were implemented in the
agent shell. Only message handler MH_FRR 03 for handling requests for fault

record retrieval is of particular relevance since it executed the ‘Reschedule Retrieval®

task on firing.

The architecture of the implemented FRR agent is presented in Figure 8-2.

s)
FRR Agent
Agent Control Inference Engine Agent Control Algorithm
—
. .)
Message / g R / Select Next Retrieval
Inbox -
/ Provide Abilities / (TR
Create Autopolling
Schedule)
/ Provide Fault Records/ Agent -
Memory (Monitor Device
Obtain Identified Availability J
y Message Incidents =
1 Outbox ()
Retri
[Reschedule Retrieval] SRS
_'___,) et
S oy

Figure 8-2 FRR agent architecture

8.3.4 FRI Agent Implementation

As described in FRI’s agent modelling template in Appendix E.3 and illustrated in
the agent control diagram in Appendix H.3, the FRI agent control function must

execute two interaction tasks to prioritise the interpretation of fault records for

222

proactive behaviour: ‘Obtain Identified Incidents’ and ‘Obtain Retrieved Fault

Records’.

The ‘Obtain Identified Incidents’ task is implemented using message handlers in
exactly the same way as in IEI and FRR, however message handler MH_FRI 09,
which adds a received Incident fact to memory, also triggers the execution of ‘Obtain
Retrieved Fault Records’ to initiate the retrieval of the incident related FaultRecord

facts and ensure that their interpretation is prioritised.

The message handlers implemented for the ‘Provide Interpreted Fault Records’

reactive task also trigger the ‘Obtain Retrieved Fault Records’ task to handle a

request for interpretation of fault records from a particular FaultRecorder.

Each possible trigger for ‘Obtain Retrieved Fault Records’ requires different
functionality. The task was therefore implemented as three sub-algorithms which
could be triggered independently:

» The first would be triggered by the agent control function and handled
subscription to a FaultRecord provider. Following subscription, MH_FRI 15

would fire and trigger the ‘Schedule Interpretation’ task for each received

FaultRecord.

* Firing of MH_FRI_03 on receipt of an interpretation request would trigger
the second. It would process the request and initiate the message sequence
depicted in SD_PEDA_19 to obtain the FaultRecords from the FaultRecorder
specified in the message. When the FaultRecords are received, MH FRI 18
or MH_FRI_23 would trigger the ‘Schedule Interpretation’ task.

* Firing of MH_FRI_09 on receipt of an Incident would trigger the third. It
would identify each FaultRecorder on the incident circuit, using the
substation and circuit identifiers, in the Incident fact and trigger the ‘Schedule

Interpretation’ task for each identified FaultRecorder.

The ‘Schedule Interpretation’ task was implemented as an algorithm which,
depending on what triggered its execution, would decide where to place the
FaultRecord fact in the interpretation schedule. FaultRecord facts related to Incidents

would received highest priority and would be placed at the top of the interpretation

223

schedule, followed by those related to request messages then FaultRecord facts

provided by subscription.

The ‘Select Next Fault Record” task was also implemented as an algorithm but
executed within the agent shell’s algorithmic execution thread. The agent control
function was written to execute the task as regular intervals until a FaultRecord was
available in the interpretation schedule. If more than one FaultRecord was available,

the FaultRecord at the top of the schedule was selected for interpretation.

As illustrated in the agent control diagram in Appendix H.3 and described in section
7.10 of the thesis, FRI requires integration of existing fault record interpretation

software to perform the agent’s ‘Interpret Fault Record’ task using a wrapper.

(i FRI Agent A
Agent Control Inference Engine Agent Control Algorithm
AR
/ Register Location / . .
\ Message Select Next
Inbox Fault Record
Provide Abilities S
Provide Interpreted & Wrapper
Fault Records
Agent F * Engine Initiation
Obtain Identified Memory * Fault Record Input
Incidents
Fault Record
H Message / Obtain Retrieved / Interpretation
- Outbox Fault Records Software
Interpretation
N Y,

Figure 8-3 FRI agent architecture

The wrapper was implemented using exactly the same approach as adopted for IEI
using Java classes to override existing classes and initiate the interpretation engine,
input the selected FaultRecord fact and create InterpretedFaultRecord facts
containing the destination directory of the interpretation results text file. The only

difference was that the integrated fault record interpretation software does not run

224

continuously and the agent control function must execute the wrapper each time a

new FaultRecord fact is provided by ‘Select Next Fault Record’.

The architecture of the implemented FRI agent is presented in Figure 8-3.

8.3.5 PVD Agent Implementation

The PVD realisation process commenced with implementation of the message
handlers required for the reactive interaction task ‘Provide Protection Validation
Reports’ — the message handlers are specified in Appendix G.4.1. The PVD agent
modelling template in Appendix E.4 indicated that the PVD agent was only required
to provide ProtectionValidationReports through ‘subscribe’ and ‘query-ref’ FIPA
performatives. This simplified the implementation process since no interactions with

other tasks were required.

The next components to be implemented were the message handlers required for
proactive behaviour. To exhibit proactive behaviour PVD was required to identify
and subscribe to a provider of Incident facts. This was achieved using the same
‘Obtain Identified Incidents’ interaction task as used in FRR and FRI. The only
difference being that on firing of message handler MH_PVD_08 in response to a
received Incident fact, two separate concurrent reasoning streams had to be created to
handle the ‘Obtain Interpreted Fault Records’ and ‘Develop Validation Schedule’

tasks. The agent shell would handle these reasoning streams.

The ‘Obtain Interpreted Fault Records’ task would also provide an aspect of PVD’s
proactive behaviour through an algorithm executed when the task is triggered by
MH_PVD _08. The same algorithm used in the ‘Obtain Retrieved Fault Records’ of
FRR to handle Incident facts was used to identify each DFR on the incident circuit
and generate a FaultRecorder fact. The algorithm then initiates the message sequence
depicted in SD_PEDA 20 and creates message handlers MH_PVD_09 to
MH_PVD_16 to handle collation of Incident related InterpretedFaultRecords. When

an InterpretedFaultRecord is received, the ‘Reschedule Validation’ task is triggered.

‘Develop Validation Schedule’ was implemented as an algorithm triggered when an

Incident fact is received. The algorithm was required to create a validation schedule,

225

if one did not exist, and update the schedule with the latest incident. The validation
schedule was implemented as a two dimensional array, as illustrated in Figure 8-4, so
that received InterpretedFaultRecord facts could be added to the validation schedule
and grouped with their related Incident facts. This would be performed by the

‘Reschedule Validation’ task.

InterpretedFaultRecord’s
Associated with Incident / Empty slots for

InterpretedFaultRecords

Incidents added to
validation schedule

Empty slot for {
Incidents

Figure 8-4 Illustration of the array used to hold the validation schedule

An algorithm was written for the ‘Reschedule Validation® task which would
reschedule the validation schedule based on the number of InterpretedFaultRecords
expected for an Incident and the number actually received. When all
InterpretedFaultRecords expected for an Incident were available it would be moved
to the top of the schedule and a flag set indicating that it is ready for validation. If all
expected InterpretedFaultRecords are not received within a timeout period, it may be

possible to perform a partial validation so the Incident is scheduled for validation but
with lower priority.
The ‘Select Next Validation’ task was also implemented as an algorithm but

executed within the agent shell’s algorithmic execution thread. The agent control

function was written to execute the task at regular intervals until an Incident is

scheduled for validation.

As illustrated in the agent control diagram in Appendix H.4, PVD requires
integration of an existing protection validation toolkit to perform the agent’s ‘Select

Protection Scheme’ and ‘Run Protection Models’ tasks using a wrapper.

The wrapper was implemented using exactly the same approach as adopted for IEI

and FRI using Java classes to override existing classes and initiate the interpretation

226

engine, select the protection scheme based on the incident circuit, input the selected
InterpretedFaultRecord facts and create ProtectionValidationReport facts containing

the destination directory of the protection validation report text file.

The architecture of the implemented PVD agent is presented in Figure 8-5.

3 PVD Agent)
Agent Control Inference Engine Agent Control Algorithm
]
/ Register Location o
\ & Select Next
essage F Validation
/ Inbox Provide Abilities)
Provide Protection (- Wrapper
Validation Reports
r + Engine Initiation
Obtain Identified « Interpreted Fault
Incidents Agent Record Input
ned | 4 fdemory * Protection Scheme
Obtained Interprete: Getecion
Fault Records
i - Protection
Message Develop Validation Validation
—{ Outbox Schedule Toolkit
r <0 p 5
Reschedule |_* Output Functionality 1 J
Validation \[/ p
L)

Figure 8-5 PVD agent architecture

8.4 PEDA Deployment

Although there is no physical restriction as to where the PEDA agents are deployed
in a network, it is logical to place the agents in close proximity to their primary data
sources and to those other agents involved in interactions so that communications
delays are minimised. It is therefore anticipated that the six PEDA agents will be

deployed in a utility’s data centre.

Data centres are often housed within a head-office with secure and reliable Ethernet

communications to other offices and WAN or dialup modem connections to the

227

SCADA RTU’s and DFRs installed in substations. Within the data centres, high-
specification PC’s and servers are used to archive retrieved SCADA and fault
records and serve the data to other parts of the company. This concentration of data
sources at the hub of the utility’s communications infrastructure makes the data

centre the ideal deployment location for the PEDA agents.

Utility’s Data Centre at Head-Office

e AR) R

|| Nameserer Facilitator IEI FRI

-
&

Rest of

co,manM Rest of
company

‘ Record

l

!

DFR F
—

Power System ™

=

[wli=]

Figure 8-6 Deployment of PEDA agents

The diagram in Figure 8-6 illustrates the deployment of the PEDA agents within a
utility’s data centre. There are two aspects of deployment which are not explicit in

Figure 8-6 but which are nonetheless essential to successful deployment:

= All agents must be deployed with knowledge of the Nameserver location.
This is realised by a text file containing the IP address deployed with the
agents. This ensures all agents can register their location at startup and then

ask for the location of the Facilitator to enable further information discovery.

228

s All agents must be deployed with a copy of the disturbance diagnosis
ontology. This ensures that all agents can understand the messages

constructed and sent by other agents.

Figure 8-6 should not be interpreted as the only way of deploying PEDA. One of the
benefits of MAS is that, provided all agents share the same network and have
knowledge of the Nameserver location, there is no restriction imposed on where the
agents reside in the network. The agents can therefore share the same platform or
have a greater distribution across the network. However, the sharing of a platform’s
processing power or greater communications distance may introduce delays into

inter-agent communications that would be minimised given the architecture in Figure
8-6.

The FRR agent is illustrated in Figure 8-6 as being deployed on the server which
previously managed the retrieval and archiving of fault records from DFRs using
proprietary fault record retrieval software. This deployment is necessary since FRR,
when it is eventually implemented with full functionality, will be required to control

fault record retrieval via the modem provided on the server.

It should be emphasised that at the time of writing this thesis PEDA had not been
deployed within an industrial setting. However, the PEDA agents had been deployed
within a laboratory environment and distributed across PC’s mirroring the
architecture illustrated in Figure 8-6. The only difference being that there was no
communications with DFRs and SCADA RTU’s installed on the power system.
Instead historical databases of SCADA alarms and fault records, generated during
actual disturbances, were obtained from ScottishPower PowerSystems and used to

evaluate the disturbance diagnosis performance of PEDA.

8.5 PEDA User Interface

Thus far, the research presented in this thesis has focused on the specification and
implementation of the PEDA agents required to automate post-fault disturbance

analysis. It is now appropriate, at this stage in the thesis, to consider the means by

229

which the protection engineer will gain access to the disturbance data and

information generated by PEDA, i.e. the user interface.

The most basic form of user interface utilised within PEDA are those that are
associated with each agent. These interfaces are opened automatically when each
agent is started and run on the same hardware platform as the agent. Each agent has

two distinct interfaces displaying the following:

* Agent Functionality: Provides a window on the interactions the agent has
been involved in and on its knowledge of ongoing disturbances, obtained
through the information received from other agents. The contents of both the
incoming and outgoing mailbox are displayed and the viewer can select each
message to view message detail. The information is received as instances of

ontological facts, which can also be viewed.

» Disturbance Analysis Functionality: This interface provides a window on the
disturbance analysis tasks the agent is performing and on the retrieved
disturbance data and generated information. In all but FRR, the original
legacy system user interfaces are reused, e.g. in IEI the Telemetry Processor
user interface illustrated in Figure 4-11 is used. In the case of FRR, a new
interface has been developed as a temporary measure until the new FRR

software arrives.

These individual agent interfaces are ideal for providing a local indication of the
interactions the agent has participated in and the results of the disturbance analysis
tasks the agent is performing. However, given that the PEDA agents may be
distributed across a large network and deployed on different platforms, the
requirement for the protection engineer to move between different local user
interfaces is not ideal. Not only may such transitions between PC’s and locals be
unfeasible but this is placing the onus on the protection engineer to collate all the

disturbance data and information PEDA has made available.

A more amenable and efficient solution is to use an agent to collate all the
disturbance data and information generated by PEDA for display to the user. This
User Interface agent would subscribe to all agents within PEDA, asking for updates

of any new disturbance data or information. When new data or information arrives,

230

the User Interface agent can make it available to the protection engineer via a single
user interface. Such an agent could operate anywhere within an organisation, even

running on a protection engineers desktop PC.

To demonstrate PEDA’s potential for collating disturbance related information and

for the purposes of evaluating PEDA, a PEDA User Interface agent has been created.

=10l x|
User Interface Dislogue | Mabox Received Information | Incidents | Events | FaukRecords | InterpretedFautRecords | ProtectionvalidationReport |
Type 1d Status
Event @fact_401 UNRESERVED =
Event @fact_S573 UNRESERVED
Event @Fact_745 UNRESERVED
Event @fact_917 UNRESERYED
Event @fact_1089 UNRESERVED
Event @Ffact_1354 UNRESERVED
Event @Fact_1619 UNRESERVED
Event @fact_1884 UNRESERVED
Event @fact_2149 UNRESERVED
Event @fact_2414 UNRESERVED
[Event @fact_2679 UNRESERVED
IFaultRecord @fact_2944 UNRESERVED
IFaultRecord @fact_3188 UNRESERVED
Event @fact_3432 UNRESERVED -:]
Attrbute | value
icircuit (:type TwoEnded :id fact_145 :modifiers 0 :attributes ((remote_end2 (:type CircuitEnd :id Fact_154 :modifiers 0 :attributes G-
[summary “SECOND MAIN PROT OPTD - SUBC § SUBA Autoswitching Sequence Complete”
isubstation (:type Substation :id fact_367 :modifiers 0 :attributes ((address xxxx)(phone_number xxxx)(name SUBC)(region xxxx)(class...
igeneration_date_time 20020722T132038970Z
ireal_date_time 20040517T1930015652
Ifinish_date_time 20020722T7132039280Z

Figure 8-7 User interface developed to evaluate PEDA

The snapshot of the PEDA user interface in Figure 8-7 shows how the user interface
is constructed from a number of tabbed panes. Each tabbed pane presents a different
insight into the activities of the User Interface agent and the disturbance data and
information provided by the PEDA agents. By selecting the appropriate tabbed pane,

the user can view the following:

s User Interface Dialogue: displays information on the current agent state and

a history of its activities, e.g. “Subscribing to IEI for Incident information”.

231

= Mailbox: displays the messages received and sent by the User Interface agent.

» Received Information: displays the information received by the User Interface
agent as instances of ontological facts. As illustrated in Figure 8-7, by
selecting a fact, the user can view the values attributed to each fact attribute —
note that the attribute values illustrated have been constructed using the

FIPA-SL and ACL.

» Incidents: displays a list of the disturbances PEDA has identified, as

Incidents generated by IEIL
s Events: displays a list of the events PEDA has identified.

s FaultRecords: displays a list of the fault records retrieved by PEDA,

indicating the date, time and DFR from which the fault record was retrieved.
s InterpretedFaultRecords: displays the results of fault record interpretation.

» ProtectionValidationReports: displays the protection validation reports

generated by PVD for each identified disturbance.

It must be emphasised that work is still required to develop the user interface into
one that can be deployed within ScottishPower PowerSystems. However, despite its
limited functionality, the current user interface has proved a useful tool for
demonstrating to the ScottishPower protection engineers how the disturbance data
and information produced by PEDA can be collated and displayed within an
individual interface, capable of being run anywhere.

Although the importance of a PEDA user interface cannot be underestimated, the
well-timed provision of accurate disturbance information to an engineer is strongly
influenced by the underlying PEDA architecture. It should also not be forgotten that
the principle goal of PEDA (as outlined in section 7.3.1), and the focus of the

research described in this thesis, has been:

“The automation of disturbance analysis retrieval and interpretation
activities and prioritisation of these activities to ensure the timely availability

of decision support information to protection engineers”.

232

It is, therefore, necessary to focus on evaluating the disturbance analysis capabilities
of PEDA and to assess the performance of the architecture in an online real-time
environment. The user interface issues will be revisited later in this chapter, when the

disturbance analysis capabilities of PEDA are discussed.

8.6 Evaluation of Disturbance Analysis Capability

An extensive testing program was conducted to evaluate PEDA’s disturbance
analysis capabilities. In the cases of IEI, FRI and PVD, the primary decision support
tasks assigned to each agent were realised through integration of legacy decision
support tools. There was, therefore, no need to test the core disturbance analysis
functionality of these agents, since the legacy systems, now integrated within the
agents to provide core functionality, had already undergone extensive testing prior to

their deployment as standalone systems.

In the case of FRR, the agents’ core disturbance analysis functionality was fault
record retrieval and, unlike the other PEDA agents, this was to be realised through
new software. However, the new software was not available and, in its absence, its
functionality had been emulated using simple algorithms, simulating fault record
retrieval. A simple testing program was followed to prove that fault records were
being retrieved as expected. A more formal approach to testing will need to be

followed when the final version of FRR is realised.

Testing of PEDA’s overall post-fault disturbance analysis capabilities was a more
challenging prospect due to a distinct lack of case studies with complete data sets.
Nearly all case studies were lacking in disturbance fault records due to the original
records being overwritten in the DFR buffers by new records before they could be

retrieved — a problem PEDA will overcome.

The following sections will present a case study used during testing which will
illustrate how PEDA manages the entire disturbance diagnosis process. This case
study has been derived from disturbances occurring on the sponsoring utility’s
transmission network. The actual information generated by the PEDA agents and

archived for timely presentation to the protection engineer will also be illustrated.

233

8.6.1 Case Study

The case study is the same as that used in section 4.6.1 of chapter four to illustrate
the Telemetry Processor reasoning methodology and to evaluate its performance.
This case study is ideal for evaluating PEDA’s performance since it tests PEDA’s
ability to retrieve, interpret and collate the SCADA alarms, fault records and
information generated by the PEDA agents for two distinct disturbances which are
close in both time and network location. It should be noted that this case study

merely represents one of a selection of case studies used during the actual evaluation

process.
SUBB4
—~/{—/—> SUBE_I
/
[:] SUBC4
|~O—7— suBe_2 = =
é] e hd
SUBG4+—{}—
1 e
|— /-{3—/—" SUBD e
7 SUBC2 +—{1— __l_
f:] o T
SUBSTATION B SUBSTATION_C

P RECORDER 1 RECORDER 1
l—— O ——— : =

CBI CBI _/J_/_

SUBSTATION A §| £ +_‘ SUBSTATION_A
| RECORDER 1 RECORDER 2 I
/ /
SUBA4
/ i
SGTI $ $ SGT2 SUBH
SUBA2 | T
/ T ¥ /
/ L S 9
| e/ e / Ll]

Figure 8-8 PEDA Case Study: Network Diagram

234

8.6.1.1 Power system network

The portion of the transmission network in which the disturbances took place and the
location of DFRs are shown in Figure 8-8. The protection schemes on both feeders

are illustrated in Figures 4-13 and 4-14 in chapter four.

8.6.1.2 SCADA alarms

As has already been noted in section 4.6.1.2, over 110 alarms were generated during
the disturbance and only the 38 directly related to the disturbances have been
presented in Table 4-2 of chapter four. This is significant, since the remaining 72
alarms would have been interpreted by the Telemetry Processor and not grouped as
being part of either disturbance, thereby demonstrating that the Telemetry Processor
and, consequently the IEI agent wrapping the Telemetry Processor, has itself collated

only disturbance related SCADA alarms.

8.6.1.3 Fault records

Each circuit within the sponsoring utility’s transmission network is monitored by a
DFR at each circuit end. The DFRs can be set to trigger on a variety of parameters
but by far the most common are: main protection operations, trip relay operations,
tripping of circuit breakers and voltage dips. Upon triggering the DFRs record the
circuit voltage and current analogues and the protection scheme digitals for a period

of 600ms (depending on the particular DFR and its configuration).

During the case study 41 DFRs operated, some triggering several times, generating
58 fault records. Many fault records were generated due to DFRs triggering in
response to voltage dips on circuits in the vicinity of the case study circuits. The fault
records generated by the DFRs on the circuits in Figure 8-8 during the disturbance

are presented in Figures 8-9 to 8-12.

235

Fault Records on SUBA4 / SUBB circuit

SUBSTATION_A RECORDER 1 triggered at 13:20:39.080

: 0
1 1 0 SUBTH 1INTTR
2 ||: 0 U
020 1 IN
MW)I . oo o0 00085 00 000950 00.1150 00.1350 00.1560 00.1 00.1950 002150 00.2350 002550 00

Figure 8-9 Fault Record - SUBSTATION_A RECORDER 1

SUBSTATION B RECORDER 1 triggered at 13:20:39.080

3S%8888 = =3 =

T T R Ry e —
Figure 8-10 Fault Record - SUBSTATION_B RECORDER 1

236

Fault Records on SUBA4 / SUBC circuit

SUBSTATION A RECORDER 2 triggered at 13:20:38.980

58 57
0.08 0.50 KA
0.00 033 KA
003 030 KA

-850 57

000 0D0OKA o,

i

o
@
3

OOO0O00»

coooooo
BBADDBN
cCEccceEc
DD DDD S D

Time (sec.) 000150 000350 000550 000750 000950 00.1150 00.1350 00.1550 00.1750 00.1950 00.2150 00.2350 00.2550 00 2750

Figure 8-11 Fault Record - SUBSTATION_A RECORDER 2

SUBSTATION C RECORDER 1 triggered at 13:20:38.980

n 00 0.39 KA

EXEENED
@ 0 AR oF SO

Figure 8-12 Fault Record - SUBSTATION_C RECORDER 1

237

8.6.2 Agent Interactions and Reasoning

To illustrate how PEDA retrieves, interprets and gathers the SCADA and DFR data

the tasks performed by each agent following startup and during the disturbances are

illustrated in Figure 8-13 and will be described.

PEDA
startup
Retrieving and
Interpreting
alarms
disturbance _y, _________ T
inceptions -
Grouping incident
alarms and
identifying events
IEI inform :
FRR, FRI & Incident
PVD of dissemination
Incidents i
FRR inform
F R‘l of _,
incident
fault records
. Retrieving and
FRI inform [nterpreung
PVD of alarms
incident %
interpreted
fault records

\
| IEI ' ‘ FRR

Subscribe to IEI Subscribe to IEI Subscribe to [EI
for incidents for incidents for incidents
i i !
Subscribe to FRR
for fault records
1
1
Autopolling & ; .
d'u . B Idling waiting | _
isseminating e
oved) for incidents
e Interpreting to validate
fault records received
fault records
T ! 1
-------- T TT LNy SRS SEUTC e bty G VoA S N N T
Reschedule
retrieval & a
retrieve incident Obtain
fault records incident
- fault records
1
g Obtain
Dlisse.mmate : Incident
inodent. o BT ET 8) interpreted -
fault records Interpret fault records
i incident
fault records
i
Disseminate
. - interpreted |----------- e o
Autopolling & fault records
disseminating T Validate
retrieved protection
fault records performance
Interpreting 0
received 1dli e
fault records ing waiting

for incidents
to validate

T
1

Figure 8-13 Tasks performed by each PEDA agent during the case study

238

Post-startup

Once all PEDA agents have been started and are registered with the Nameserver and
Facilitator, FRR, FRI and PVD identify IEI as a provider of incident information and
begin the incident subscription process depicted in SD_PEDA_05 in Appendix F.5.
At this point in time, IEI will already have begun online retrieval and interpretation
of SCADA alarms via the wrapped Telemetry Processor.

Having successfully subscribed to an incident provider, FRR will construct an
autopolling sequence based on a database of available DFRs and begin the retrieval
of fault records. Each time a new fault record is retrieved it is added to the agent’s

memory as a FaultRecord fact and automatically disseminated to subscribed agents.

Only FRI must follow an additional subscription process to obtain FaultRecord facts.
The interaction sequence followed is depicted in SD_PEDA 11 in Appendix F.11
and results in the automatic provision of FaultRecord facts to FRI when new fault
records are retrieved by FRR. Upon receipt of a new FaultRecord fact, FRI will
schedule the fact for interpretation. When interpretation of a received FaultRecord
fact is complete, the interpretation results are added to the agent’s memory as an

InterpretedFaultRecord fact and automatically disseminated to subscribed agents.

The only agent within PEDA that idles during normal power system operation is
PVD. To validate protection performance PVD needs incident information in order
to identify the protection scheme that operated in response to the disturbance and to
initiate the gathering of the InterpretedFaultRecord facts required for validation.
Therefore, following subscription to IEI for Incident facts, PVD must idle until an

Incident fact is received.

Once all the PEDA agents have been started and begun normal operations they

maintain this state until they are made aware of a disturbance.

Disturbance inceptions

If all power system monitoring data were immediately available, the first disturbance
indicators would be the SCADA alarms indicating protection operation at each

circuit end and the fault records generated by triggering of the circuit DFRs by

239

protection operation. However, all monitoring data is not immediately available with

fault records remaining in the DFR buffers until retrieved by FRR

IEI will be the first agent to realise that disturbances have occurred since the SCADA
alarms are the first type of monitoring data to be retrieved from the field, archived
and made available to the PEDA agents in the data centre. Although fault records
will exist, FRR will, more than likely, be in the process of retrieving fault records
from DFRs not related to the disturbances. This will continue until FRR is informed
by IEI that disturbances have occurred via Incident facts. FRI and PVD are also not

aware of the disturbances until they receive Incident facts.

Recognising alarm patterns indicating disturbance inception on both circuits, the
Telemetry Processor wrapped within IEI will create incident starts for each
disturbance and begin the grouping of incident alarms and interpretation of the
grouped alarms for incident conclusion and events. The reasoning process followed
by the Telemetry Processor at this point in the case study has already been described

in section 4.6.1.5 of this thesis.

At this point in the disturbance, IEI is performing the first three stages of the manual

disturbance diagnosis process conducted by protection engineers.

Incident dissemination

When the disturbances conclude the Telemetry Processor integrated within IEI
generates incident and event summaries, which are added to the IEI agent’s memory
as Incident and Event facts. To illustrate the structure of an Incident fact, the fact
generated by IEI for the disturbance on the SUBA4 / SUBB circuit is presented in
Figure 8-14. Note how many of the attributes are constructed from facts representing

instances of the classes in the disturbance diagnosis ontology in Appendix C.

On addition of the Incident facts to agent memory, subscription rules within IEI will
fire and automatically inform FRR, FRI and PVD of the new incidents. To comply
with FIPA standards [5] the inform message will contain a number of fields which
indicate the sender of the message, the intended receiver, the id of the message it is

being sent in reply to and the content. An example of the Incident inform message

240

sent from IEI to FRR in response to an earlier subscribe message with id FRR47 is
presented in Figure 8-15. The content field of this message has been constructed
using the FIPA SL content language [6] from the contents of the original subscription

message and the Incident fact presented in Figure 8-14.

(Incident :generation_date time 20020722T132039070Z

:finish_date_time 20020722T132039280Z

:real_date_time 20030804T0918366072

:substation (Substation :substation_name SUBA4)

:circuit (TwoEnded :source_end (CircuitEnd :substation (Substation
:substation_name SUBA4))

:remote_end2 (CircuitEnd :substation (Substation
:substation_name SUBB)))
:summary "SECOND MAIN PROT OPTD - SUBA4 / SUBB Autoswitching

Sequence Complete")

Figure 8-14 Incident fact for disturbance on SUBA4 / SUBB circuit

inform
:sender IElL
:receiver FRR
tin-reply-to FRR47
:content "(= (@all 2 (= 7?x (Incident))) (Incident ‘generation_date _time

20020722T132039070Z :finish_date_time 20020722T1320392807
:real_date_time 20030804T091836607Z :substation (Substation
:substation_name SUBA4) :circuit (TwoEnded :source_end
(CircuitEnd :substation (Substation :substation_name SUB_;\4))
:remote_end2 (CircuitEnd :substation (Substation :substation name
SUBB))) :summary "SECOND MAIN PROT OPTD - SUBA4 / SUBB
Autoswitching Sequence Complete")))”

Figure 8-15 FIPA inform message sent by IEI informing FRR of the Incident on
SUBA4 / SUBB circuit

Upon receipt of each Incident inform message, FRR reschedules its autopolling
sequence to prioritise the retrieval of fault records from DFRs on the incident

circuits. Retrieval from the incident DFRs does not commence until all fault records

have been retrieved from the current DFR.

When FRI receives an Incident inform message, it recognises that a disturbance has

occurred and begins the interaction sequence depicted in SD_PEDA 19 in Appendix

241

F.19 to obtain incident fault records. This interaction sequence is initiated for each
DFR on the incident circuit. Incident related fault records are not yet available, so
FRI sends request messages to FRR requesting retrieval of fault records from each
DEFR on the incident circuit. These request messages may seem unnecessary since we
know that FRR is already aware of the incident and is in the process of retrieving any
available fault records from DFRs on the incident circuits. However, in reality FRI
has no knowledge of whether FRR is aware of the incident and indeed what FRR is
intending on doing about it. To ensure FRI obtains the fault records required to fulfil

its role in PEDA it must, therefore, request fault record retrieval.

PVD also recognises that a disturbance has occurred when an Incident inform
message is received and begins the interaction sequence depicted in SD_PEDA 20 in
Appendix F.20 to obtain incident interpreted fault records. Again, this interaction
sequence is initiated for each DFR on the incident circuit. Incident related interpreted
fault records are not yet available, so PVD sends request messages requesting
interpretation of fault records from each DFR on the incident circuit between the
incident start and finish times. Similarly to FRI having no knowledge of whether
FRR is aware of the incident, PVD has no knowledge of whether FRI is aware of the

incident and must, therefore, request fault record interpretation.

The automatic dissemination of the Incident facts by IEI has resulted in the other
PEDA agents being made aware of the disturbances and begun prioritisation of
disturbance data retrieval and interpretation: the final stages of the manual
disturbance diagnosis process conducted by protection engineers. Furthermore, the
sending of request messages by PVD and FRI will ensure prioritised fault record
retrieval, fault record interpretation and protection validation even if FRR and FRI

failed to receive the Incident inform messages from IEL

At this point in the case study, IEI has completed its role in disturbance diagnosis
and resumed interpretation of SCADA alarms, FRR is beginning the retrieval of
disturbance related fault records, FRI is waiting to be informed of FaultRecord facts

by FRR and PVD is awaiting disturbance related InterpretedFaultRecord facts.

242

Dissemination of disturbance fault records

As fault records are retrieved from DFRs on the incident circuits they are added to
FRRs’ agent memory as FaultRecord facts. The disturbance related fault records
retrieved by FRR are illustrated in Figures 8-8 to 8-11.

FRR will have received a request message from FRI for each of the four DFRs
related to the incidents. As retrieval from each DFR is completed, a confirm message
is sent to FRI using the message id from the original request indicating that retrieval

is complete and all available fault records have been retrieved from the DFR.

Upon receipt of each confirm message, FRI continues with the interaction sequence
depicted in SD_PEDA 19 and constructs a query-ref message for the FaultRecord
facts between the incident start and finish time appropriate to the DFR from which
retrieval has been completed. These query-ref messages are sent to FRR which
responds with inform messages containing the FaultRecord facts matching the
queries. This ensures only FaultRecord facts generated during the incidents are
obtained and prioritised for interpretation. All other fault records retrieved from the
DFR are of lower priority and are automatically forwarded to FRI by FRR in

response to the earlier subscription for FaultRecord facts.

When a FaultRecord inform message with the in-reply-to field matching the id of a
sent query-ref message is received FRI knows that the FaultRecord facts contained
within the content field of the FIPA inform message are related to an incident. The
contained facts are added to the interpretation schedule with the earliest FaultRecord

fact being added to the top of the interpretation schedule.

The interactions between FRI and FRR following incident notification have resulted
in the prioritised retrieval and collation of disturbance related fault records. This
collaboration facilitates the prioritised interpretation of disturbance fault records and

the later timely validation of protection performance by PVD.

At this point in the case study, IEI is continuing to interpret SCADA alarms, FRR
has resumed normal autopolling, FRI is about to begin interpreting disturbance

related fault records and PVD is awaiting the provision of disturbance related

InterpretedFaultRecord facts by FRI

243

Dissemination of disturbance interpreted fault records
When the fault record interpretation software embedded within FRI has finished its

current interpretation, FRI selects the next FaultRecord fact from the top of the
interpretation schedule. The fact is input into the wrapper controlling the embedded
fault record interpretation software and the interpretation results output to agent
memory as an InterpretedFaultRecord fact. Only when FRI has interpreted all the
FaultRecord facts related to an earlier interpretation request from PVD will a confirm

message be sent indicating completion of the request.

Upon receipt of each confirm message, PVD continues with the interaction sequence
depicted in SD PEDA 20 and constructs a query-ref message for the
InterpretedFaultRecord facts between the incident start and finish time appropriate to
the DFR from which fault record interpretation has been completed. This query-ref
message is sent to FRI which responds with an inform message containing the
InterpretedFaultRecord facts matching the query. The received facts are added to the

validation schedule and grouped with their related Incident fact.

Only when a confirm message in response to each of the original request messages
and an inform message in response to each query-ref message sent to FRI have been
received will the incident be scheduled for protection validation. Note that there is
no guarantee that all of the inform messages received by FRI will contain
FaultRecord facts. Nevertheless, providing one or more FaultRecord fact is received,
validation should be attempted since it may be possible to gain valuable information

from a partial validation using only interpreted fault records from one circuit end.

At this point in the case study, IEI is continuing to interpret SCADA alarms, FRR is
continuing normal autopolling, FRI has finished interpreting disturbance related fault
records and resumed interpretation of fault records retrieved through autopolling and
PVD has received InterpretedFaultRecord facts from each of the DFRs on the

incident circuits and is ready to proceed with protection validation.

PVD selects the first of the incidents ready for validation from the validation
schedule. Using the Incident fact, the wrapper around the embedded protection
validation toolkit selects the circuit protection scheme and uploads the component

protection models. The wrapper then inputs the InterpretedFaultRecord facts into the

244

embedded software and runs the toolkit. The generated protection validation report is
output to the agent’s memory as a ProtectionValidationReport fact. This process is

repeated for the remaining incident in the validation schedule.

The collaborations between PVD and FRI following incident notification have
resulted in the collation of the interpreted fault records necessary for protection
validation. The agents within PEDA have now completed their role in disturbance

diagnosis and resumed their post-startup tasks.

8.6.3 Disturbance Data and Information Generated

The preceding section has described how the functional and interaction tasks within
each agent have enabled PEDA to retrieve, interpret and gather the case study
SCADA and DFR data presented in section 8.6.1. To assess the disturbance analysis
capabilities of PEDA, it is necessary to present the disturbance data and information
PEDA would make available to protection engineers given the agent interactions and

reasoning described in the preceding section.

It is anticipated that a PEDA user interface would collate and compile the
disturbance information generated by PEDA into disturbance reports for perusal by a
protection engineer. The information contained within the disturbance reports would
be obtained via inform messages reccived by the PEDA user interface agent from
IEI, FRR, FRI and PVD. However, given that the PEDA user interface has not
advanced beyond the prototype stage, no actual disturbance reports have been
generated for the case study. Nonetheless, two disturbance reports have been mocked
up using the disturbance data and information produced by PEDA and collated by the
prototype user interface: Figures 8-16 and 8-17. Although the look and feel of these
disturbance reports will undoubtedly change slightly when a PEDA user interface is

eventually implemented, the information contained within them will not.

Presented with the disturbance report in Figure 8-16, the protection engineer would
immediately glean from the disturbance summary that the protection scheme on the
SUBC4 / SUBA has begun an operating sequence at 14:20:38.97 and that an
autoswitching sequence had been completed by 14:20:39.28. The PEDA user

245

interface would have received this information via an Incident inform message from

IEL

POST-FAULT DISTURBANCE REPORT

Start: 14:20:38:97 | GpCOND MAIN PROT OPTD - SUBC4 / SUBA
Finish: 14:20:39.28 Autoswitching Sequence Complete

Phases Affected: Red-Yellow

Clearance Time: 69ms

High Level 1* and 2nd Main Protection operated successfully at SUBC4 > SUBA
Protection Ist and 2nd Intertrips received at both ends

Events 1* and 2nd Main Protection operated successfully at SUBA4 > SUBC
Results of

Protection All the components operated within the bounds predicted by the
Validation & models

Diagnosis

Detail on Protection Events
14:20:38:97 2nd Main Protection Operated ON at SUBC4
14:20:38:98 1st Main Protection Operated ON at SUBC4
14:20:39:02 2nd Main Protection Operated OFF at SUBC4
14:20:39:02 SUBC4 Circuit Breaker CB1 OPEN
14:20:39:03 st Intertrip Received ON at SUBC4 from SUBA
14:20:39:05 2nd Intertrip Received ON at SUBC4 from SUBA
14:20:39:05 Autoswitching in Progress at SUBC4 SUBA
14:20:39:07 2nd Main Protection Operated ON at SUBA4
14:20:39:07 st Main Protection Operated ON at SUBA4
14:20:39:09 1st Main Protection Operated OFF at SUBC4
14:20:39:10 Autoswitching in Progress at SUBA4 CB2
14:20:39:11 Ist Intertrip Received ON at SUBA4 from SUBC
14:20:39:13 SUBA4 Circuit Breaker CB2 OPEN
14:20:39:13 2nd Intertrip Received ON at SUBA4 from SUBC
14:20:39:15 2nd Main Protection Operated OFF at SUBA4
14:20:39:16 SUBA2 Circuit Breaker CB1 OPEN
14:20:39:16 SUBA2 Circuit Breaker CB3 OPEN
14:20:39:18 st Main Protection Operated OFF at SUBA4
14:20:39:24 Autoswitching in Progress at SUBA4 SUBC
14:20:39:28 Autoswitching Complete at SUBA4 CB2
14:20:39:28 All tripped circuit breakers did NOT close

L e SUBC4 / SUBA circuit was not restored by end of incident. Time el
14:20:39:28 _ - 06 260ms apsed

14:20:39:28 Autoswitching Sequence at SUBA4 CB2 took Om 0s 180ms

Figure 8-16 Post-fault disturbance report for first disturbance at 14:20:38:97

246

POST-FAULT DISTURBANCE REPORT

Start: :20:39:
art: 14:20:39:07 | GpCcOND MAIN PROT OPTD — SUBA4 / SUBB
Finish: 14:20:39.28 Autoswitching Sequence Complete

Phases Affected: Yellow — Earth

Clearance Time: 66ms
1* and 2nd Main Protection operated successfully at SUBA4 > SUBB

High Level 1* Main Protection operated successfully at SUBB4 > SUBA
Protection . g
Events Ist and 2nd Intertrips received at both ends
2nd Main Protection at SUBB4 > SUBA failed to operate
Results of .
Protectice One or more protection scheme components may have malfunctioned.
Valldatl?n & SUBA TR 1 may have malfunctioned.
Diagnosis

Detail on Protection Events
14:20:39:07 2nd Main Protection Operated ON at SUBA4
14:20:39:07 1™ Main Protection Operated ON at SUBA4
14:20:39:09 1™ Main Protection Operated ON at SUBB4
14:20:39:10 2™ Intertrip Received ON at SUBA4 from SUBB
14:20:39:10 Autoswitching in Progress at SUBA4 CB2
14:20:39.12 1" Intertrip Received ON at SUBA4 from SUBB
14:20:39:13 SUBA4 Circuit Breaker CB2 OPEN
14:20:39:16 2nd Main Protection Operated OFF at SUBA4
14:20:39:16 SUBA2 Circuit Breaker CB1 OPEN
14:20:39:16 SUBA2 Circuit Breaker CB3 OPEN
14:20:39:17 1* Main Protection Operated OFF at SUBA4
14:20:39:21 2nd Intertrip Received ON at SUBB4 from SUBA
14:20:39:21 1st Intertrip Received ON at SUBB4 from SUBA
14:20:39:23 Autoswitching in Progress at SUBB4 CBI
14:20:39:24 SUBB4 Circuit Breaker CB1 OPEN
14:20:39:25 1" Main Protection Operated OFF at SUBB
14:20:39:28 Autoswitching Complete at SUBA4 CB2
14:20:39:28 All tripped circuit breakers did NOT close

14:20:39:28 §UBA4 / SUBB circuit was not restored by end of incident. Time elapsed
=0m 0s 150ms

14:20:39:28 Autoswitching Sequence at SUBA4 CB2 took Om Os 180ms
14:20:39:07 2nd Main Protection Operated ON at SUBA4

Figure 8-17 Post-fault disturbance report for second disturbance at 14:20:39:07

247

Knowing that a protection operation had occurred, the protection engineer would
next be interested in whether the protection operated in response to a fault or had
operated without any fault on the circuit, i.e. a possible mal-operation. This can be
determined from the next section in the disturbance report, derived by the PEDA user

interface from InterpretedFaultRecord inform messages received from FRI.

The ‘Phases Affected’ and ‘Clearance Time’ sections indicate that a Red-Yellow
phase fault had occurred and was cleared by the protection in 69ms confirming that a
fault had indeed occurred. The protection engineer can now look to the next section
of the disturbance report for a high-level summary of how the protection scheme

responded to the fault.

Examining the high-level protection events the protection engineer would note that
the protection scheme on the SUBA4 / SUBC circuit operated correctly, with both 1%
and 2™ main protection operating at each circuit end and 1* and 2™ intertrips being
receive at each circuit end. These events will have been received by the PEDA user

interface from IEI as multiple Event inform messages.

At this stage, the protection engineer may decide not to progress any further with the
disturbance report since the high-level event summaries indicate that everything
within the protection scheme operated as expected. However, the ‘Detail on
Protection Events® section of the disturbance report would provide useful additional
information on what protection scheme components actually operated and when. The
event information contained within this section is derived from Event inform

messages received by the PEDA user interface from IEL

Looking at the events presented in the ‘Detail on Protection Events’ section of the
report, a non-protection engineer may consider it a contradiction that autoswitching
can be complete and all trip circuit breakers were not closed and the circuit not
restored by the end of the incident. However, it must be remembered that, to a
protection engineer, an incident is concluded when the protection scheme has
completed its sequence and not when the circuit is restored. In the case of
autoswitching, the circuit is not restored until 10-15 seconds have elapsed following

completion of the protection and autoswitching sequence. The closure of the circuit

248

breakers are, therefore, not within the timeframe of the incident identified by the

Telemetry Processor embedded within IEL

On examination of the second disturbance report in Figure 8-17 the protection
engineer would be immediately aware that the protection scheme on another feeder
emanating from SUBAA4, this time SUBA4 to SUBB, had operated 100ms after the
first disturbance. Furthermore, the phases affected information would indicate that a
Yellow-Earth fault had occurred, ruling out the possibility that the protection had

mal-operated when no fault was present.

Examination of the high-level protection events for this second disturbance would
also indicate that the 2" main protection failed to operate at the SUBB4 circuit end.
This is borne out by the absence of a “2" Main Protection Operated ON at SUBB4”
event in the detail on protection events section of the disturbance report. Given that
the presence of a fault had been confirmed from the phases affected information, the
protection engineer could now rule out the possibility of 1* main protection mal-
operation instead reaching the conclusion that 2" main protection at SUBB4 had

indeed failed. This would be noted as requiring further investigation.

Moving onto the results of the protection validation and diagnosis, the protection
engineer would be made aware that trip relay 1 (TR_1) at SUBA may have mal-
functioned. The PVD agent would have generated this diagnosis by validating how
the protection scheme should have operated against how it actually operated as

recorded in the interpreted fault records retrieved from FRI by PVD.

It is highly likely that the protection engineer would now turn to the PEDA user
interface and view the fault records pertaining to the disturbance (re: Figures 8-9 and
Figures 8-10). Analysis of the fault records from both substations would not only
confirm that the 2" main protection had failed to operate at SUBB4 (re: Figure 8-10)
but also that trip relay 1 at SUBA had indeed failed to operate (re: the SUB_B
IMPTR digital channel in Figure 8-9).

Returning to the disturbance report, the protection engineer can view a record of the
pertinent protection scheme operations in the ‘Detailed Protection Events’ section of
the report. Examination of these events would confirm the conclusions reached by

the high-level event summaries.

249

In summary, from the disturbance information gathered by PEDA, it would be clear
to the protection engineer that two almost simultaneous disturbances occurred and
that the protection scheme on the SUBA4 / SUBB circuit did not operate as would be
expected. Although the protection scheme did operate and clear the fault, it
highlights a potential problem which casts doubt on whether the protection scheme
would correctly isolate a future fault on the circuit. The protection engineer can use
the disturbance information gathered by PEDA as a basis for further investigations

into the failure of the 2" main protection at SUBB and trip relay 1(TR1) at SUBA.

It should also be noted that during a storm in excess of 100 disturbances may occur
and require analysis by the protection engineer. Without PEDA, the protection
engineer would have to resort to a manual approach with the increased risk of
overlooking the protection failures identified in the case study. As a consequence, the
network is at greater risk of a significant blackout, e.g. if the failure of trip relay 1 at
SUBA4 had gone unnoticed and there was a subsequent failure of trip relay 2 during
another disturbance, tripping of the circuit breakers at SUBA4 would not be possible

and a larger network area would need to be isolated to clear the fault.

8.6.4 Performance Assessment

Evaluation of PEDA’s disturbance analysis capabilities is only truly complete, if the
real-time performance of PEDA is assessed. To this end, the PEDA architecture was
deployed within a laboratory environment in a number of deployment configurations
ranging from all agents being distributed across different PCs to all agents running
on the same PC. In each configuration, the real-time performance of PEDA was

assessed using the case study presented in section 8.6.1.

To simulate the real-time feed of SCADA alarms, a software tool was developed to
input the case study SCADA alarms into the alarm database monitored by the IEI
agent at the same rate as they would arrive in an operational context. Simulation of
the fault record retrieval was, however, more difficult to achieve since the prototype
version of FRR did not have the communications functionality necessary to dialup
and communicate with remote DFRs. Nevertheless, the prototype FRR agent was

capable of simulating differing retrieval times by imposing delays of 30 seconds to 2

250

minutes between retrieval being initiated and the case study fault record being

available within the FRR agent as a FaultRecord fact.

Running the case study through PEDA for each deployment configuration it was
found that the Telemetry Processor wrapped within IEI would generate an Incident
summary and make it available for IEI to disseminate to other agents less than 1
second after the incident had been concluded. Furthermore, the subscription process
necessary for other agents to obtain updates of Incident, FaultRecord and
InterpretedFaultRecord information took, on average 162ms. Finally, the time taken
between the first incident being identified by IEI and PVD generating the second
protection validation report, thereby completing the disturbance analysis for the case
study, was found to range from 1 minute 17 seconds to 3 minutes 23 seconds. The
variations in disturbance analysis time can be attributed to: differing levels of
network traffic delaying the communications between agents, differing loadings of
CPU’s depending on how many agents were running on the one PC and the differing
simulated delays in fault record retrieval. All these factors would also be present in a

real-time operational environment.

If PEDA is to function in a real-time operational environment it must be flexible
enough to cope with loss of communications to agents and agents being stopped and
restarted by system administrators to facilitate reconfiguration of the architecture and
maintenance of PCs. To assess the flexibility of the architecture, communications
between the IEI and FRI agents were temporarily interrupted by physically
disconnecting and reconnecting the network cables between the PCs running each
agent. Monitoring of the communications prior, during and post communications
interruption showed that both the IEI and FRI agents continued to function and that,
although incident inform messages failed to be sent during the communications
interruption, those sent after restoration of communications were successfully
received by FRI. An improvement to each agent so it can make several attempts at

sending messages is scheduled for the next stage in PEDA development.

Flexibility was also assessed by stopping FRI running and restarting it on another
machine. This test proved successful with the new instance of FRI subscribing to IEI

and IEI sending Incident inform messages to the new agent.

251

To assess the extensibility of PEDA three instances of the FRR agent were created
and started at different times on different PCs increasing the number of PEDA agents
to eight and mimicking the introduction of agents into the architecture. Each agent
successfully started, registered with the Nameserver, identified from the Facilitator a
provider of Incident information and subscribed to IEI for Incident updates. IEI also
successfully informed each of the three FRR agents about new Incident information.
This approach not only proved that PEDA was indeed extensible but also represented
a realistic scenario where multiple FRR agents, each dedicated to the retrieval of
fault records from a particular network area, could be used to reduce the fault record
retrieval burden on the present FRR agent. The use of multiple FRR agents is seen as

one of the next major enhancements to the PEDA architecture.

8.7 Discussion

The preceding sections have described how a MAS for automating post-fault
disturbance analysis has been realised through implementation of the agents
identified in the PEDA specification. The disturbance analysis capabilities and
performance of the PEDA MAS have also been evaluated.

Using the agent shells provided by the Zeus agent building toolkit and through the
addition of reactive and algorithmic functions existing standalone software tools
have been given autonomy. These tools, previously used by protection engineers
during disturbance analysis and now operating as agents within PEDA, can now
collaborate and work collectively to monitor for disturbances on the transmission
network and generate the disturbance information pertinent to protection engineers.
This is a significant advance from the previous manual approach to disturbance

analysis for a number of reasons:

» Fault record retrieval is prioritised, thereby reducing the risk of critical

disturbance related fault records being overwritten during storm conditions.

» Protection engineers no longer require knowledge of how each individual

software tool operates.

252

= Protection engineers no longer need to transfer retrieved disturbance data or

information generated by a tool to another one for further analysis.

= As shown by the performance evaluation in section 8.6.3, all disturbance data
is retrieved, interpreted and archived less than five minutes after the
disturbance has occurred, ready for the protection engineer to begin post-fault

disturbance analysis.

Although the underlying PEDA architecture is flexible, extensible and capable of fast
automated post-fault disturbance analysis there is no means of informing a protection
engineer that disturbances have occurred. The prototype user interface does gather
the disturbance information and the final implementation of the user interface will
generate disturbance reports. However, the protection engineer is only made aware of
disturbances either through regular checking of the PEDA user interface or by
conversations with other company personnel such as control engineers and field
engineers. Significant delays can therefore result between a disturbance occurring
and the protection engineer viewing the available disturbance information. The level
of disturbance diagnosis assistance provided to protection engineers would be greatly
enhanced if the PEDA user interface agent could manage the pro-active notification
and dissemination of generated disturbance information to interested parties,

principally protection engineers.

This new enhanced PEDA user interface agent would have to maintain a user profile
for each protection engineer specifying their contact details, preferred notification
method and types of data and information of interest. A more efficient approach
would be to assign each protection engineer a unique agent devoted to the gathering
and notification of disturbance information pertinent to the individual. This is similar

to the concept of personal assistant agents proposed by Maes [7].

Personal assistant agents are another class of agents that act semi-autonomously for
and on the behalf of a user, modelling the interests of the user and providing services
to the user as and when required [8]. They are intended primarily to act as virtual
support staff, accomplishing routine support tasks allowing the user to concentrate on

their principal job function. These support tasks may relate to automatic filtering of

253

email messages or to the monitoring of Internet news sites for news of interest to the

user. The generic model for a personal assistant agent is illustrated in Figure 8-18.

: User \
Agenda | Directory Profile " §
g I T E |-
Q
5 k= -
= [g
User [4¢1¥ § Inference Engine E ——p 2
<
< 3 £
g 2 2
3 5 %
an o)
Agent-Agent Interface < g

Agent Agent Agent

Figure 8-18 FIPA Personal Assistant Model [8]

Within PEDA the personal assistant agents will more than likely take a similar form
to the engineering assistant agents proposed by Mangina [9] and used within the
COMMAS MAS. These engineering assistant agents provide each engineer with a
user interface to facilitate communications between the user and the COMMAS
software system, in an intelligent manner, so that appropriate information is given to
the users based on their profiles. The PEDA engineering assistant agents would

perform the same functionality and gather disturbance information directly from the
other PEDA agents through interactions.

Critical to the success of engineering assistant agents is the ability of a MAS, such as
PEDA. to accommodate the introduction of engineering assistant agents to the
architecture during runtime. Only with a flexible and extensible architecture, can new
engineering assistant agents be introduced with ease and the utility of the architecture
increased. The flexible and extensible architecture offered by PEDA is ideal for
accommodating engineering assistant agents. The research and development of these

agents is seen as one of the next major steps in PEDA development.

254

8.8 Chapter Summary

This chapter has described the realisation of the PEDA multi-agent engineering
system specified using the proposed MAS design methodology. The implementation
of the required PEDA agents and their deployment within an industrial setting has
been discussed. The disturbance diagnosis capabilities of PEDA have also been

evaluated using a case study derived from actual power system disturbances.

8.9 References

(1]. E. Mangina, “Review of Software Products for Multi-Agent Systems”, AgentLink,
June 2002.

[2]. H.S. Nwana, D.T. Ndumu, L.C. Lee, J.C. Collis, “ZEUS: A Toolkit for Building
Distributed Multi-Agent Systems”, Artificial Intelligence Journal, v13, nl, 1999,

pp129-186.
(3] Jack Intelligent Agents, http://www.agent-software.co.uk
[4]. FIPA-OS, http:/fipa-os.sourceforge.net/index.htm

[5]. “FIPA Communicative Act Library Specification”, XC00037H, [Online],
Available: http://www.fipa.org/repository/index.html

[6]. “FIPA SL Content Language Specification”, XC00008G, [Online], Available:
http://www.fipa.org/repository/index.html

[7]. P. Maes, “Agents that Reduce Work and Information Overload”, Communications
of the ACM, v37, n7, pp 31-40, 1994

[8]. “FIPA Personal Assistant Specification”, XC00083B, ([Online], Available:
http://www_fipa.org/repository/index.html

[9]. E. Mangina, “Agent-Based Approach for Intelligent Data Interpretation within

Monitoring Applications”, PhD thesis, University of Strathclyde, Department of
Electronic and Electrical Engineering, 2002.

255

http://www.agent-software.co.uk
http://fipa-os.sourceforge.netlindex.htm
http://www.fipa.orglrepository/index.html
http://www.fipa.org/repository/index.html
http://www.fipa.org/repository/index.html

Chapter 9: Conclusions and Future Work

256

9.1 Conclusions

The research presented in this thesis has dealt with applying a multi-agent approach

to the automation of post-fault disturbance analysis in order to provide levels of

decision support beyond those currently experienced by ScottishPower protection

engineers. Such decision support enhancements are required for a number of reasons:

The number of protection engineers skilled in the analysis of power system
disturbances has been reduced due to the rationalisation of operational functions
within the power industry. This emphasises the need for sophisticated data

interpretation systems to simulate the protection engineers’ approach to post-fault

disturbance analysis.

The availability of data from transmission network monitoring devices is
increasing in quantity, quality and scope resulting in the few remaining

protection engineers experiencing data overload.

With the deployment of new network monitoring technologies comes new data
retrieval and analysis software which the protection engineer must be adept at

using. This places additional strains on the limited pool of protection engineers.

Although decision support tools have been developed, none focus on the post-
fault disturbance analysis task in its entirety. Those decision support tools that do
exist focus on interpretation of data from a particular source, e.g. SCADA, and
have been adapted from control room applications. The protection engineer must
therefore further interpret the output of these systems to generate information

pertinent to the post-fault disturbance analysis task at hand.

A particular problem with the manual post-fault disturbance analysis process, as

detailed in chapter two, is that it is both time-consuming and laborious. Automation

of this manual process can realise true engineering benefits and savings:

e Automation eliminates the human error inherent in manual analysis which can

result in incipient protection failures being missed, particularly where large data

volumes are interpreted, e.g. following storms. The risk of protection mal-

257

operations being overlooked and becoming actual protection failures is therefore

reduced and the overall transmission network security enhanced.

e Disturbances are not predictable and the scheduled protection design,
commissioning and maintenance tasks performed by engineers often have to be
rescheduled to enable post-fault disturbance analysis. Automating the data
retrieval, interpretation and collation process lifts this burden from the protection

engineers allowing the engineers to spend more time on other activities.

e Using an automated approach to disturbance analysis disturbance reports can be
generated providing detail on the disturbance duration, network area affected and
plant involved. Other utility personnel can benefit from these disturbance reports,

such as control engineers, asset managers and customer services personnel.

As described in chapter two, post-fault disturbance analysis requires the retrieval,
interpretation and collation of data from a number of disparate network monitoring
technologies. A number of software tools are available to assist the protection
engineers with the retrieval and interpretation of data from these devices and have
been described in chapter three. Although useful, the existing software tools only
address a small sub-set of tasks required to complete post-fault disturbance analysis.
In order to assist the protection engineer with the entire post-fault disturbance
analysis process these existing tools must be augmented with new decision support

tools and integrated into an integrated decision support architecture.

Within this thesis multi-agent systems (MAS) have been advocated as an effective
means of realising such integrated architectures and, consequently, automated post-
fault disturbance analysis. Adopting a multi-agent approach is of real engineering

benefit for a number of reasons:

o Existing software systems need not be rewritten to be accommodated within a
multi-agent architecture. Instead developers can create software ‘wrappers’ that
encapsulate the legacy application and add the agent-based functionality. Where
wrapping is not feasible, transducers can be developed to act as an interface

between the existing system and the multi-agent environment.

258

e The multi-agent architecture is inherently modular facilitating the introduction
and removal of software components without extensive modifications to the
individual software components or the architecture itself. This facilitates
incremental development and extensibility of the architecture thereby slowing

obsolescence and prolonging the useful life of the decision support architecture.

e The multi-agent architecture also benefits from flexibility since communications
are dynamic and there is no hard-wiring of software components to one another.
The configuration of the architecture can, therefore, be changed and agents

redeployed without any need for software modifications.

e The individual software components, or agents, can be deployed across a range
of platforms and end-users can access the decision support information provided

via industry accepted internet protocols from their desktops.

Given the real engineering benefits of adopting a multi-agent approach to systems
integration, a methodology had to be created to enable the specification and design of
MAS for decision support within the power industry. To this end, chapter five
described a new methodology which not only encompassed the traditional aspects of
MAS design, such as task decomposition and specification of agent interactions, but
also addressed the engineering problems of designing a MAS for decision support
within the power industry, i.e. reuse of legacy systems and specification of the agent

behaviour functions necessary to achieve systems automation.

A key outcome of the reported research work is the successful application of the new
methodology to the design of the novel PEDA multi-agent architecture for automated
post-fault disturbance analysis. Chapter six has described how the methodology was
used to specify the agents required with PEDA, the social abilities of each agent and
the agent behaviour functions necessary to wrap the existing decision support tools
with agent functionality. By following the methodology it was recognised that
automated disturbance analysis could be realised by four core disturbance analysis
agents performing the following functions: automated SCADA interpretation,
prioritised retrieval of disturbance related fault records, prioritised interpretation of
disturbance related fault records and automated validation of a protection schemes

response to a disturbance.

259

In all but the agent responsible for prioritised fault record retrieval, the disturbance
analysis capabilities of the PEDA agents have been realised through the reuse of
existing software systems. The agent responsible for identifying disturbances through
automated SCADA interpretation is of particular significance since it uses a novel

alarm processor developed as part of the research presented in this thesis.

The Telemetry Processor, described in chapter four, has been developed as a
standalone intelligent system specifically aimed at automating the post-fault
interpretation of SCADA alarms. The novel reasoning architecture developed to
emulate the multi-stage approach to post-fault SCADA interpretation followed by
protection engineers has been described in detail and the performance of the
architecture evaluated. The development of this novel reasoning architecture and its
encapsulation within the Telemetry Processor provides protection engineers with

rapid disturbance analysis.

A functional prototype of the PEDA architecture has also been implemented and its
disturbance analysis capabilities assessed using actual power systems disturbances.
Chapter eight has described the implementation of the architecture and the
performance of PEDA for one particular case study. The performance evaluation
presented in chapter eight not only demonstrated the speed by which PEDA can
perform post-fault disturbance analysis but also described the flexibility and

scalability in the architecture.
In summary then, the main contributions of this thesis include:

1. The design, development and implementation of an intelligent system focussed on
assisting protection engineers with post-fault SCADA interpretation. Based on
the alarm processing requirements of ScottishPower protection engineers a
reasoning architecture capable of emulating the multi-stage reasoning process
followed during post-fault SCADA interpretation has been developed. This
architecture has been shown to function effectively and has been encapsulated
within the Telemetry Processor deployed at ScottishPower providing real-time

automated post-fault SCADA analysis decision support in an industrial setting.

2. The creation of a methodology for the specification of MAS for decision support

within the power industry using multi-agent technology. Following a critique of

260

existing MAS design methodologies and assessment of their suitability for
developing MAS for decision support within the power industry a new
methodology has been created. By following this methodology a developer can
ensure the reuse of legacy decision support tools and specify flexible and scalable

decision support architectures.

3. The design of a multi-agent architecture for providing post-fault disturbance
analysis decision support assistance to protection engineers through integration
and automation of existing sofiware systems. The creation of the new
methodology facilitated the specification and design of a multi-agent architecture
where the overall post-fault disturbance analysis task is decomposed into sub-
tasks, which can be performed by intelligent agents. Based on the requirements
of protection engineers and assessment of the existing decision support tools a

specification for the PEDA multi-agent architecture was created.

4. The implementation of a multi-agent architecture for automating post-fault
disturbance analysis using hybrid-data interpretation techniques across a
number of intelligent agents. Using the PEDA specification, a prototype
implementation of the PEDA multi-agent architecture has been created and the
disturbance analysis functionality within each agent implemented. Across these
agents data interpretation techniques appropriate to the disturbance analysis task

at hand are utilised, mainly through reuse of existing decision support tools.

5. Demonstration of the benefits adopting a multi-agent approach can bring to the
integration of decision support systems through the evaluation of a multi-agent
architecture using power system data generated from actual disturbances. The
prototype PEDA architecture has been evaluated using a complex case study
derived from actual power system disturbances. It has been demonstrated that
PEDA can retrieve, interpret, collate and archive all disturbance data within five
minutes of a disturbance occurring ready for the protection engineers to begin
post-fault disturbance analysis. Furthermore, the PEDA architecture has also

been shown to be flexible and extensible.

The significant outcomes of this research project along with the benefits and

opportunities associated with the development of decision support architectures using

261

multi-agent technology have been listed above. However, there are still a number of

potential avenues for further work building upon the results of the PhD research.

9.2 Future Work

Potential further work required to extend and refine the research presented in this

thesis, which in the author’s opinion will prove to be particularly productive,

includes:

Introduction of the fully functional FRR agent and deployment of PEDA within
an industrial setting. This would facilitate an extended evaluation period of both
PEDA’s disturbance analysis capabilities and its performance in a real-time

operational environment.

Application of the methodology to other areas of power engineering decision
support, such as assisting control engineers with fault management and asset
managers with targeting network investment. It may also be fruitful to assess the
suitability of the methodology for specifying MAS for non-decision support

applications such as condition monitoring.

At present the PEDA architecture is dependent on the IEI agent’s ability to
provide the incident information necessary to prioritise fault record retrieval and
interpretation and automate protection validation. To mitigate the risk of a failure
of either IEI or the SCADA archive leading to loss of disturbance analysis
capabilities additional IEI agents could be deployed and distributed across the
power system, each capable of retrieving SCADA directly from RTUs.

As it stands, the single FRR agent is a bottleneck within PEDA since it can only
handle a limited number of simultaneous retrievals increasing the time taken to
complete disturbance analysis. Multiple, more localised, FRR agents would solve
this problem since their retrieval workload would be significantly less making
them able to respond to fault record retrieval requests quicker than a single FRR
agent. Splitting the fault record retrieval task assigned to FRR amongst a number

of agents distributed across the power system would clearly be a worthwhile

exercise.

262

Extending the post-fault disturbance analysis capabilities of PEDA through the
introduction of new PEDA agents designed to handle the retrieval and
interpretation of data from other devices which provide useful information to the
protection engineer, e.g. Travelling Wave Fault Locators, weather monitoring
equipment and lightning detection equipment. Furthermore, the possibility of
integrating PEDA with other power systems MAS, such as COMMAS, to further

extend its disturbance analysis capabilities should also be explored.

Advancing the PEDA user interface beyond the prototype stage with the creation
of fully functional engineering assistant agents. As detailed in chapter eight, each
engineer requiring access to PEDA would benefit from an engineering assistant
agent dedicated to facilitating access to and displaying the disturbance
information of interest to the particular user. Furthermore, the functionality of the
engineering assistant agent could be extended beyond that of traditional user

interfaces to include the automated notification and dissemination of new

disturbance information to its user.

263

Appendix A: Telemetry Processor Rulebase

264

This appendix contains the rules derived from the alarm interpretation knowledge
clicited from protection engineers and used by the Telemetry Processor to interpret

SCADA alarms.

Only those rules used to generate the incidents and events in the case study in chapter
four are presented. The total numbers of rules for each rulebase used by the current

Telemetry Processor facility at ScottishPower PowerSystems are presented below:
o Incident Start Rulebase: 1
o Incident Conclusion Rulebase: 5
o Low-level Event Rulebase: 57

o High-level Event Rulebase: 16

A.1 Incident Start Identification Rules

The JESS rules present in the Incident Start Rulebase are as follows:

; *** Rule IS_1 - incident_start

(defrule incident_start
(alarm (substation ?sub01) (circuit] ?circ101) (circuit2 ?circ201) (feeder ?feeder01)
(date 7date01) (time 2time01) (ms_since1970 2ms1970_01) (hundredths ?ms_01)
(legend ?legend01&:(or (prot_alarm ?legend01) (general _inter ?legend01) (trip_alarm
?legend01)))
(alarmstatus ?status01&:(alarm_on ?status01)))
(alarm (substation ?sub02) (feeder ?feeder02)
(date 7date) (time 2time) (ms_since1970 ?mst970_02) (hundredths ?ms_02)
(plantid ?plantid02) (plantstatus ?plantstatus02))
(test (cb_open ?plantid02 ?plantstatus02))
(test (eq (sub-string 1 3 ?sub01) (sub-string 1 3 ?sub02)))
(test (before 7ms1970_01 ?ms_01 ?ms1970_02 ?ms_02))
(test (limit 2ms1970_01 ?ms_01 ?ms1970_02 ?ms_02 1000))
(test (call (fetch PROT_BUFFER) find_earliest prot_trip ?subOl 2circ101 2circ201 ?feeder01
Mms1970_01 ?2ms01))
=>
(call (fetch INC_START) add(new TelemetryProcessor.CoreClasses.Incidentldentifier ?date01
2time01 ?ms1970_01 ?ms_01 ?sub01 2circ101 ?circ201 ?feeder01 ?legend01)))

265

A.2 Incident Conclusion Identification Rules

The JESS rules present in the Incident Conclusion Rulebase are as follows:

; *** Rule IC_1 - autoswitching_complete

(defrule autoswitching_complete

(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01) (date
?date01) (time time01) (ms_since1970 2ms1970_01) (hundredths ?ms_01)
(legend ?legend01&:(auto_prog ?legend01))

(alarmstatus ?status01&:(alarm_on 7?status01)))

(alarm (substation ?sub02) (circuitl 2circ102) (circuit2 ?circ202) (feeder ?feeder02)
(date ?date02) (time 2time02) (ms_sincel970 ?ms1970_02) (hundredths ?ms_02)
(plantid ?plantid02) (plantstatus ?plantstatus02))

(test (cb_open ?plantid02 ?plantstatus02))

(test (call (fetch PLANT_OPS) earliest ?date02 ?time02 ?ms1970_02 ?ms_02 ?sub02

?plantid02 ?plantstatus02))

(timing (date ?date_x) (time ?time_x) (ms1970 ?ms1970_x) (hundredths ?ms_x))

(test (wait ?7ms1970_02 ?ms_02 ?ms1970_x ?ms_x 60000))

(alarm (substation ?sub03) (circuitl ?circ103) (circuit2 ?circ203) (feeder ?feeder03) (date
?date03) (time 2time03) (ms_since1970 ?ms1970_03) (hundredths ?ms_03)
(legend?legend03&:(auto_complete ?legend03))

(alarmstatus ?status03&:(alarm_off ?status03)))
(test (call (fetch PROT_OPS) latest_comp ?date03 ?time03 ?ms1970_03 ?ms 03 ?sub03
2circl_03 Zcirc2_03 ?legend 03 ?status_03))

(test (limit 2ms1970_02 ?ms_02 ?ms1970_03 ?ms_03 60000))

=>
(store CLOSED_STATUS true)
(bind ?summary (str-cat (call (fetch IDENTIFIER) getStarter) " - " (call (fetch
IDENTIFIER) getSub) " / " (call (fetch IDENTIFIER) getCircl) "
Autoswitching Sequence Complete™))
(store FINISH_RULE ?summary))

266

A.3 Low-Level Event Rules
The JESS rules present in the Low-level Events Rulebase are as follows:

; *** Rule LE_1 - First Main Protection Operation ON

(defrule st first_prot_on
(first)
(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuitl ?circ101) (circuit2 ?¢irc201)
(feeder ?feeder01) (voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms since1970 ?ms1970_01) (legend ?legend01&:(prot_first ?legend01))
(alarmstatus ?status01&:(alarm_on ?status01)))
2>

(bind ?rule_summary "1st Main Protection Operated ON")

(bind ?conclusion (str-cat "1st Main Protection Operated ON at " ?sub01))

(assert (first_pass (date ?date01) (time 7timeQ1) (hundredths ?ms_01) (ms1970 ?ms1970 01)

(sub ?sub01) (sub_novolt ?sub_nov01) (circl 2circi01) (circ2 2circ201)
(pass_id 1) (rule_id "1-1") (voltage ?volt01) (summary ?rule_summary)
(conclusion ?conclusion})))

(call (fetch FIRST PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
?ms1970_01 ?ms_01 ?date01 ?time01 ?ms1970 01
2hundredths01 ?sub01 ?circ101 ?circ201 ?volt01 x ?conclusion
?rule_summary "1-1" 1 1)))

; *** Rule LE_2 - First Main Protection Operation OFF

(defrule Ist_first_prot_off

(first)

(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuitl ?circ101) (circuit2 ?circ201)
(feeder ?feeder01) (voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms 01)
(ms_since1970 2ms1970_01) (legend ?legend01&:(prot_first ?legend01)) B
(alarmstatus ?status01&:(alarm_off ?status01)))

=>

(bind ?rule_summary "1st Main Protection Operated OFF")

(bind ?conclusion (str-cat " 1st Main Protection Operated OFF at " ?sub01))

(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970_01)

(sub ?sub01) (sub_novolt ?sub_nov01) (circ1 ?circ101) (circ2 ?2circ201)
(pass_id 1) (rule_id "1-2") (voltage ?voltO1) (summary ?rule_summary)
(conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
Mms1970_01 2ms_01 ?date0l ?time01 ?ms1970 01
?hundredths01 ?sub01 ?circ101 ?circ201 2voltd1 x 2conclusion
7rule_summary "1-2" 1 1)))

267

;3 *** Rule LE_3 ~ Second Main Protection Operation ON

(defrule Ist_second prot_on
(first)

(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuitl ?circ101) circuit2 ?circ201)
(feeder ?feeder01) (voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms_since1970 ?ms1970_01) (legend ?legend01&:(prot_first ?legend01)) B
(alarmstatus ?status0l&:(alarm_on ?status01)))

=
(bind ?rule_summary "2nd Main Protection Operated ON")
(bind ?conclusion (str-cat "2nd Main Protection Operated ON at " ?sub01))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970 01)
(sub ?sub01) (sub_novolt ?sub_nov01) (circ1 ?circ101) (circ2 ?¢irc201)

(pass_id 1) (rule_id "1-3") (voltage ?volt01) (summary ?rule_summary)
(conclusion ?conclusion)))

(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 2time01
2ms1970_01 ?ms_01 ?date01 ?time01 ?ms1970 01
2hundredths01 ?sub01 ?circ101 ?circ201 ?volt01 x ?conclusion
?rule_summary "1-3" 1 1)))

; *** Rule LE_4 ~ Second Main Protection Operation OFF

(defrule 1st_second prot_off

(first)

(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuitl ?circ101) (circuit2 ?circ201)
(feeder ?feeder01) (voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms_since1970 7ms1970_01) (legend ?legend01&:(prot_first ?legend01))

(alarmstatus ?status01&:(alarm_off ?status01)))
=>

(bind ?rule_summary "2nd Main Protection Operated OFF")

(bind ?conclusion (str-cat "2nd Main Protection Operated OFF at " ?sub01))

(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970_01) (sub

?sub01) (sub_novolt ?sub_nov01) (circl ?circ101) (circ2 ?circ201) (pass_id 1)

(rule_id "1-4") (voltage ?volit01) (summary ?rule_summary) (conclusion
?conclusion)))

(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
7ms1970_01 ?ms_01 ?date01 ?time01 ?ms1970 01
2hundredths01 ?sub01 ?circ101 ?c¢irc201 ?volt01 x ?conclusion
?rule_summary "1-4" 1 1)))

; *** Rule LE_5 - First Intertrip ON

(defrule 1st_first_intertrip_on
(first)
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01)
(voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms_since1970 ?ms1970_01) (legend ?legend01&:(first_inter ?legend01))
(alarmstatus ?status01&:(alarm_on ?status01)))
=>
(bind ?rule_summary (str-cat " 1st Intertrip Received ON"))
(bind ?conclusion (str-cat " Ist Intertrip Received ON at " ?sub01 " from " ?circ101))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms1970 7ms1970_01) (sub ?sub01) (circl %circ101) (circ2 %circ201) (pass_id
1) (rule_id "1-5") (voltage ?volt01) -
(summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
Mms1970_01 ?ms_0! ?date01 ?time01 ?ms1970 01 7ms 01
?sub01 ?circ101 2circ201 ?volt01 x ?conclusion Trule strmmary
“1_5" 1 1))) -

268

; *** Rule LE_6 - First Intertrip OFF

(defrule 1st first _intertrip_off
(first)
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01)
(voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms _01)
(ms sincel970 ?ms1970_01) (legend ?legend01&:(first_inter ?legend01))
(alarmstatus ?status0]&:(alarm_ofY ?status01)))
=
(bind ?rule summary (str-cat " st Intertrip Received OFF"))
(bind ?conclusion (str-cat "Ist Intertrip Received OFF at " 7sub01 " from " ?circ101))
(assert (first pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970 01)
(sub ?sub01) (circl 2circ101) (circ2 ?circ201) (pass_id 1) (rule_id "1—-6")
(voltage ?volt0 1) (summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
?ms1970 01 ?ms_01 ?date01 ?time01 ?ms1970 01 ?ms 01 ?sub01
2¢irc10t ?circ201 ?volt01 x ?conclusion ?rule_s?xmmary_"l~6" 1 D))

; *** Rule LE_7 - Second Intertrip ON

(defrule Ist_second intertrip_on
(first)
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder1)
(voltage ?voltO1) (date ?dateO1) (time ?time01) (hundredths ?ms_01)
(ms_sincel970 2ms1970_01) (legend ?legend01&:(first_inter ?legend01))
(alarmstatus ?status01&:(alarm_on ?status01)))
=>
(bind rule_summary (str-cat "2nd Intertrip Received ON"))
(bind ?conclusion (str-cat "2nd Intertrip Received ON at " ?sub01 " from " ?circ101))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970 01)
(sub ?sub01) (circl ?circ101) (circ2 ?circ201) (pass_id 1) (rule_id "l_-7")
(voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 2time01
7ms1970_01 ?ms_01 ?date01 ?time01 ?ms1970_01 ?ms_01 ?sub01
7circ101 2circ201 ?volt01 x ?conclusion ?rufe_summary "1-7" | 1))

; *** Rule LE_8- Second Intertrip OFF

(defrule 1st_second_intestrip_off
(first)
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01)
(voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms_since1970 ?ms1970_01) (legend ?legend01&:(first_inter ?legend01))
(alarmstatus ?status01&:(alarm_off ?status01)))
=>
(bind ?rule_summary (str-cat "2nd Intertrip Received OFF"))
(bind ?conclusion (str-cat "2nd Intertrip Received OFF at " ?sub0! " from " ?circ101))
(assert (first_pass (date ?date01) (time %time01) (hundredths ?ms_01) (ms1970 2ms1970 01)
(sub ?sub01) (circl 2circ101) (circ2 ?circ201) (pass_id 1) (rule id " l_-7")
(voltage ?volt01) (summary ?rule_summary) (conclusion ?conausion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
7ms1970_01 ?ms_01 ?date01 ?time01 2ms1970 01 ?ms 01 ?sub01
2circ101 %circ201 ?volt01 x ?conclusion ?rule_summary "1-7" 1 1)))

269

; *** Rule LE_8 — Autoswitching in Progress ON

(defrule Ist auto prog on

(first)
(alarm (substation ?sub01) (circuit] ?circ101) (circuit2 ?circ201) (feeder ?feeder01)

(voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01) (plantid ?plantid01)
(ms_since1970 ?ms1970_01) (legend ?legend01&:(auto_prog ?legend01))
(alarmstatus 7?status0i&:(alarm_on ?status01)))

=>
(bind ?rule summary (str-cat "Autoswitching in Progress ON"))
(bind ?conclusion (str-cat "Autoswitching in Progress at " ?sub01 " " ?circ101 " " ?plantid01))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 2ms1970_01)
(sub ?sub01) (circl ?circ101) (circ2 ?circ201) (pass_id 1) (rule_id "1-8")
(voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 2time01
?2ms1970_01 ?hundredths01 ?date01 ?time01 ?ms1970 01 ?ms_01
2sub01 ?circ101 ?¢irc201 ?volt01 ?plantid01 ?conclusion

7rule_summary "1-8" 1 1)))

; *** Rule LE_9 - Autoswitching Complete OFF

(defrule 1st_auto_complete_off

(first)
(alarm (substation ?sub01) (circuit! ?circ101) (circuit2 ?circ201) (feeder ?feeder01)

(voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01) (plantid ?plantid01)
(ms_since1970 2ms1970_01) (legend ?legend01&:(auto_complete ?legend01))
(alarmstatus ?status01&:(alarm_off 7status01)))
=>
(bind ?rule_summary (str-cat "Autoswitching in Complete OFF"))
(bind ?conclusion (str-cat "Autoswitching in Complete at " ?sub01 " "' ?circ101 " " ?plantid01))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970_01)
(sub ?sub01) (circ1 2circ101) (circ2 2circ201) (pass_id 1) (rule_id "1-9")
(voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)))

(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
?ms1970_01 ?hundredthsO1 ?date01 ?time01 ?ms1970_01 2ms_Ol

2sub01 ?circ101 ?circ201 ?volt01 ?plantid0] ?conclusion
?rule_summary "1-9" 1 1)))

270

; *** Rule LE_10 — Circuit Breaker OPEN

(defrule Ist_cb_open_alarm
(first)
(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuit] ?circ101) (circuit2 ?¢irc201)
(feeder ?feeder01) (voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms 01)
(ms _since1970 Yms1970 _01) (legend ?legend01) (plantid ?plantid01)
(plantstatus ?plantstatus01))
(test (cb_open ?plantid01 ?plantstatus01))
=
(bind ?rule summary (str-cat "Circuit Breaker OPEN™))
{bind ?conclusion (str-cat ?sub01 " Circuit Breaker " ?plantid01 " OPEN"))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970 01)
(sub ?sub01) (sub_novolt ?sub_nov01) (circl ?circ101) (circ2 ?circ201)
(plantid ?plantid01) (plantstatus ?plantstatus01) (pass_id 1) (rule_id "1-10")
(voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST _PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
2ms1970 01 ?hundredths01 ?date01 ?time01 ?msi970 01 ?ms Ol
2sub01 ?circi01 7circ201 ?volt01 ?plantid0l ?conclusion
?rule_summary "1-10" 1 1)))

; *** Rule LE_11 - Circuit Breaker CLOSED

(defrule 1st_cb_closed_alarm

(first)

(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuitl ?circ101) (circuit2 2¢irc201)
(feeder ?feeder01) (voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms_since1970 2ms1970_01) (legend ?legend01) (plantid ?plantid01)

(plantstatus ?plantstatus01))

(test (cb_closed ?plantid01 ?plantstatus01))

=>

(bind ?rule_summary (str-cat "Circuit Breaker CLOSED"))

(bind ?conclusion (str-cat ?sub01 " Circuit Breaker " ?plantid01 " CLOSED"))

(assert (first_pass (date ?date01) (time Mtime01) (hundredths ?ms_01) (ms1970 ?ms1970 on

(sub ?sub01) (sub_novolt ?sub_nov01) (circl 2circ101) (circ2 7circ201)
(plantid ?plantid01) (plantstatus ?plantstatusO1) (pass_id 1) (rule_id "1-1 1)
(voltage ?voit01) (summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
ms{970_01 ?hundredths01 ?date01 ?time01 ?ms1970_01 ?ms_01 ?sub0l
9¢irc101 ?circ201 ?volt01 ?plantid01 ?conclusion ?rule_summa—ry "1-11" 1 1))

271

; *** Rule LE_12- All tripped circuit breakers did not close

(defrule 1st_tripped_cb_closure_incomplete
(first)
(test (call (fetch PLANT _OPS) switchout_partial))
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01)
(voltage ?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01)
(ms_since1970 ?ms1970_01) (plantid ?plantid01) (plantstatus ?plantstatus01))
(test (cb_open ?plantid0 ! ?plantstatus01))
(test (call (fetch PLANT_OPS) earliest ?date01 ?time01 ?ms1970_01 ?ms_01 ?sub01 ?plantid01
?plantstatus01))
=>
(bind ?rule_summary (str-cat "Tripped_cb_Closure_incomplete”))
(bind ?conclusion (str-cat "All tripped circuit breakers did NOT close"))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 7ms1970 _01)
(sub ?sub01) (circl ?circ101) (circ2 ?circ201) (plantid ?plantid01) (voltage ?volt01)
(pass_id 1) (rule_id "1-12") (summary ?rule_summary) (conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event (fetch
FINISH_DATE) (fetch FINISH_TIME) (fetch FINISH_MS1970) (fetch FINISH_MS) (fetch
FINISH_DATE) (fetch FINISH_TIME) (fetch FINISH_MS1970) (fetch FINISH_MS)
2sub01 Zcirc101 ?circ201 2volt01 ?plantid01 ?conclusion ?rule_summary "1-12" 1 1)))

; *** Rule LE_13- Autoswitching sequence time period

(defrule 1st_auto_switching_period
(first)
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01) (voltage
?volt01) (date ?date01) (time ?time01) (hundredths 7ms_01) (ms_since1970 ?ms1970 01)
(plantid ?plantid0}!) -
(legend ?legend01&:(auto_prog ?legend01))
(alarmstatus ?statusO1&:(alarm_on ?status01)))
(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ202) (feeder ?feeder02) (voltage ?volt02)

(date 7date02) (time 2time02) (hundredths ?ms_02) (ms_sincel1970 ?ms1970_02) (plantid ?plantid02)

(legend ?legend01&:(auto_complete ?legend02))
(alarmstatus ?status02&:(alarm_off ?status02)))
=>
(bind ?rule_summary (str-cat "Autoswitching Sequence"))
(bind ?conclusion (str-cat "Autoswitching Sequence at " ?sub01 " " ?circ101 " took " (call (fetch
PLANT_OPS) switchout_period ?ms1970_01 ?ms_01 ?ms1970_02 ?ms_02)))
(assert (first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 2ms1970_01) (sub
2sub01) (circ! ?circ101) (circ2 2circ201) (plantid ?plantid01) (pass id 1)
(rule_id "1-13") (voltage ?volt01) (summary ?rule_summary) (conclusion
2conclusion)))

(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date02 ?time0?2
2ms1970_02 ?ms_02 ?date02 ?time02 7ms1970 02 ?ms 02
2sub02 %circ102 ?circ202 ?volt02 ?plantid02 ?conclusion
7rule_summary "1-13" 1 1)))

272

; *** Rule LE_14- Circuit was not restored by end of incident

(defrule 1st partial_switchout_time

(first)

(test (call (fetch PLANT_ OPS) switchout_partial))

(alarm (substation ?sub01) (circuitl ?circ101) (circuit2 ?circ201) (feeder ?feeder01) (voltage
?volt01) (date ?date01) (time ?time01) (hundredths ?ms_01) (ms_since1970 ?ms1970 01)
(plantid ?plantid01) (plantstatus ?plantstatus01))

(test (cb_open ?plantid01 ?plantstatus01))

(test (call (fetch PLANT_OPS) earliest ?date01 ?time01 ?ms1970_01 ?ms_01 ?sub01 ?plantid01

?plantstatus01))
2>

(bind ?rule_summary (str-cat "Restoration Incomplete”))

(bind ?conclusion (str-cat (call (fetch IDENTIFIER) getSub) " / "(call (fetch IDENTIFIER)
getCirc1) " " (call (fetch IDENTIFIER) getCirc2) " circuit was not restored by
end of incident. Time elapsed = " (call (fetch PLANT_OPS) switchout_period
2ms1970_01 Zhundredths01 (fetch FINISH_MS1970) (fetch FINISH_MS))))

(assert (first_pass (date (fetch FINISH_DATE)) (time (fetch FINISH_TIME)) (hundredths (fetch

FINISH_MS)) (ms1970 (fetch FINISH_MS1970)) (sub ?sub01) (circl
2¢irc101) (circ2 ?circ201) (plantid ?plantid01) (plantstatus ?plantstatus01)
(pass_id 1) (rule_id "1-14") (voltage ?volt01) (summary ?rule_summary)
(conclusion ?conclusion)))
(call (fetch FIRST_PASS) add(new TelemetryProcessor.CoreClasses.Event
(fetch FINISH_DATE) (fetch FINISH_TIME)
(fetch FINISH_MS1970) (fetch FINISH_MS)
(fetch FINISH_DATE) (fetch FINISH_TIME)
(fetch FINISH_MS1970) (fetch FINISH_MS) ?sub01 ?circ101 2circ201
?volt01 ?plantid01 ?conclusion ?rule_summary "1-14" 1 1)))

273

A.4 High-Level Event Rules

The JESS rules present in the High-level Events Rulebase are as follows:

; *** Rule HE_1- Successful First Main Protection Operation

(defrule successful _first_main_prot
(second)
(first_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?7ms1970 01)
(sub ?sub01) (sub_novolt ?sub_nov01) (circ1 ?circ101) (circ2 ?circ251)
(voltage ?volt01) (summary “Ist Main Protection Operated ON"))
(first_pass (date ?date02) (time ?time02) (hundredths ?hundredths02) (ms1970 ms1970_02)
(sub ?sub01) (sub_novolt ?sub_nov01) (circl ?circ101) (circ2 7circ201)
(voltage ?volt02) (summary "1st Main Protection Operated OFF"))
(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuitl ?circ101) (circuit2 ?circ201)
(voltage ?volt03) (date ?date03) (time ?time03) (hundredths ?ms_03)
(ms_sincel970 2ms1970_03) (legend ?legend03&:(trip_alarm ?legend03)
(alarmstatus ?status03&:(alarm_on ?status03))
(test (eq ?sub_nov01 ?sub_nov02 2sub_nov03)) (test (eq ?circ10] ?circ102 ?circ103))
(second_pass (sub_novolt ?sub_nov03) (summary "CBs that opened”) (conclusion ?conclusion04)
(date ?date04) (time ?time04) (hundredths ?ms_04) (ms1970 2ms1970_04)))
=>
(bind ?rule_summary (str-cat "Successful 1st Main Protection Operation"))
(bind ?conclusion (str-cat "Ist Main Protection operated successfully at " 2sub01 " -> " 2circ101))
(assert (second_pass (date ?date01) (time ?time01) (hundredths ?hundredths01)
(ms1970 ?ms1970_01) (sub ?sub01) (circ1 ?circ101) (circ2 ?circ201) (pass_id 2)
(rule_id "2-1") (voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)
(event_object (new TelemetryProcessor.CoreClasses.Event ?date01 ?time01 ?ms1970_01
7hundredths01 ?date01 ?time01 ?ms1970 01 ?hundredths01 ?sub012¢circ101 2circ201]
?volt01 x ?conclusion ?rule_summary "2-1" 2 1))))
(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date0] 2time01]
7ms1970_01 ?hundredths01 ?date01 ?time01 ?ms1970 01
2hundredths01 7sub01 circ101 2circ201 ?2volt01 x
?conclusion ?rule_summary "2-1" 2 1)))

274

; *** Rule HE_2- Successful Second Main Protection Operation

(defrule successful_second_main_prot
(second)
(first_pass (date ?date0]) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970 _01)
(sub ?sub01) (sub_novolt ?sub_nov01) (circl ?circ101) (circ2 ?circ201)
(voltage ?volt01) (summary “2nd Main Protection Operated ON"))
(first_pass (date ?date02) (time ?time02) (hundredths ?ms_02) (ms1970 ?ms1970_02)
(sub ?sub01) (sub_novolt ?sub_nov01) (circl ?circ101) (circ2 ?circ201)
(voltage ?volt02) (summary "2nd Main Protection Operated OFF"))
(alarm (substation ?sub01) (sub_novolt ?sub_nov01) (circuit] ?¢irc101) (circuit2 2circ201)
(voltage ?volt03) (date ?date03) (time ?time03) (hundredths ?ms_03)
(ms_since!970 ?ms1970_03) (legend ?legend03&:(trip_alarm ?legend03)
(alarmstatus ?status03&:(alarm_on ?status03))
(test (eq ?sub_nov01 ?sub_nov02 ?sub_nov03)) (test (eq ?circ101 ?circ102 Zcirc103))
(second_pass (sub_novolt ?sub_nov03) (summary "CBs that opened") (conclusion ?conclusion04)
(date ?date04) (time ?time04) (hundredths ?ms_04) (ms1970 2ms1970_04)))
=>
(bind ?rule_summary (str-cat "Successful 2nd Main Protection Operation"))
(bind ?conclusion (str-cat "2nd Main Protection operated successfully at " ?sub01 " -> " ?circ101))
(assert (second_pass (date ?date01) (time ?time01) (hundredths ?hundredths01)
(ms1970 ?ms1970_01) (sub ?sub01) (circl ?circ101) (circ2 ?circ201) (pass_id 2)
(rule_id "2-2") (voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)
(event_object (new TelemetryProcessor.CoreClasses.Event ?date01 ?time01 ?ms1970_01
2hundredths01 ?date01 7time01 ?ms1970_01 ?hundredths01 ?sub01?circ101
7¢irc201 2volt01 x ?conclusion ?rule_summary "2-2" 2 1))))
(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 2time01
7ms1970_01 ?hundredths01 ?date01 ?time01 ?ms1970 01
2hundredthsO1 ?sub01 2circ101 2¢irc201 ?volt0l x
2conclusion ?rule_summary "2-2" 2 1)))

; *** Rule HE_3- First Main Protection Failed to Operate

(defrule 1st_main_failed_to_operate
(second)

(first_pass (date ?date01) (time 2time01) (hundredths ?hundredths01) (ms1970 ?ms1970_01)
(sub ?sub01) (circl 2circ101) (circ2 ?circ201) (voltage ?volt01)
(summary ?rule_summary01&:(eq ?rule_summary01 "2nd Main Protection Operated ON")))
(not (first_pass (date ?date02) (time ?time02) (hundredths ?ms_02) (ms1970 ?ms1970_02)
(sub ?sub02&:(eq ?sub02 ?sub01)) (circl ?circ102&:(eq ?circ101 2circ102))
(circ2 ?circ202&:(eq 2circ201 ?circ202)) (voltage ?volt02)
(summary ?rule_summary02&:(eq ?rule_summary02 "1st Main Protection Operated ON"))))
=>
(bind ?rule_summary (str-cat "Failed Ist Main Protection Operation"))
(bind ?conclusion (str-cat " 1st Main Protection at " ?sub01 " -> " ?circ101 " failed to operate"))
(assert (second_pass (date (fetch FINISH_DATE)) (time (fetch FINISH_TIME)) (hundredths
(fetch FINISH_MS)) (ms1970 (fetch FINISH_MS1970)) (sub ?sub01) (circ1 ?circ101)
(circ2 ?circ201) (pass_id 2) (rule_id "2-3") (voltage ?volt01) (summary ?rule_summary)
(conclusion ?conclusion)))
(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event
(fetch FINISH_DATE) (fetch FINISH_TIME)
(fetch FINISH_MS1970) (fetch FINISH_MS)
(fetch FINISH_DATE) (fetch FINISH_TIME)
(fetch FINISH_MS1970) (fetch FINISH_MS)
?sub01 2circ101 ?circ201 ?volt01 x ?conclusion ?rule_summary
"2-3" 2 I))) -

275

; *** Rule HE_4- Second Main Protection Failed to Operate

(defrule 2nd_main_failed_to_operate
(second)
(first_pass (date ?date01) (time ?time01) (hundredths ?hundredths01) (ms1970 ?ms1970 01)
(sub ?sub01) (circl ?circ101) (circ2 ?circ201) (voltage ?volt01)
(summary ?rule_summary01&:(eq ?rule_summaryO1 "1st Main Protection Operated ON")))
(not (first_pass (date ?date02) (time ?time02) (hundredths ?ms_02) (ms1970 ?ms1970_02)
(sub ?sub02&:(eq ?sub02 ?sub01)) (circl ?circ102&:(eq 2circ101 2circ102))
(circ2 2circ202&:(eq ?¢irc201 ?circ202)) (voltage ?volt02)
(summary ?rule_summary02&:(eq ?rule_summary02 "2nd Main Protection Operated
ON")))
=
(bind ?rule_summary (str-cat "Failed 2nd Main Protection Operation"))
(bind ?conclusion (str-cat "2"! Main Protection at " ?sub01 * -> " %¢irc101 " failed to operate"))
(assert (second_pass (date (fetch FINISH_DATE)) (time (fetch FINISH_TIME)) (hundredths
(fetch FINISH_MS)) (ms1970 (fetch FINISH_MS1970)) (sub ?sub01) (circl ?circ101)
(circ2 ?circ201) (pass_id 2) (rule_id "2-4") (voltage ?volt01) (summary ?rule_summary)
(conclusion ?conclusion)))
(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event
(fetch FINISH_DATE) (fetch FINISH_TIME)
(fetch FINISH_MS1970) (fetch FINISH_MS)
(fetch FINISH_DATE) (fetch FINISH_TIME)
(fetch FINISH_MS1970) (fetch FINISH_MS) ?sub0! ?circ101
2circ201 ?volt01 x ?conclusion ?rule_summary "2-4" 2 1)))

; *** Rule HE_5- First and Second Main Protection Operating Successfully

(defrule 1st_ 2nd_main_successful

(second)
(second_pass (date ?date01) (time 7time01) (hundredths ?ms_01) (ms1970 ?ms1970 01)

(sub ?sub01) (circ1 2circ101) (circ2 ?¢irc201) (voltage ?volt01)
(summary ?rule_summary01&:(eq ?rule_summaryOl "Successful 1st Main
Protection Operation")) (event_object ?event01))
(second_pass (date ?date02) (time ?time02) (hundredths ?ms_02) (ms1970 ?ms1970_02)
(sub ?sub01) (circl ?circ101) (circ2 ?7circ201) (voltage ?volt02) (summary
2rule_summary02&:(eq ?rule_summary02 "Successful 2nd Main Protection
Operation™)) (event_object ?event02))
(not (second_pass (sub ?sub03&:(eq ?sub0l1 ?sub03)) (circl ?circl03&:(eq Zcirc101 Zcirc103))
(summary ?summary&:(eq ?summary "Successful 1st and 2nd Main
Protection Operation™))))
=>

(bind ?rule_summary (str-cat "Successful 1st and 2nd Main Protection Operation"))

(bind ?conclusion (str-cat "1st and 2nd Main Protection operated successfully at " ?sub01 " -> "

2circ101))

(assert (second_pass (date ?date01) (time ?time01) (hundredths 2ms_01) (ms1970 ?2ms1970 01)
(sub ?sub01) (circ1 ?circ101) (circ2 ?circ201) (pass_id 2) (rule_id "2-5") -
(voltage ?volt01) (summary ?rule_summary) (conclusion ?conclusion)

(event_object (new TelemetryProcessor.CoreClasses.Event ?date01 ?time01 2ms1970 01
?ms_01 ?date01 ?time01 ?ms1970_01 ?ms 01 ?sub01 ?¢circ101 ?circ201
?volt01 x ?conclusion ?rule_summary "2-5" 2 1))))
(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 2time01
ms1970 01 ?ms_01 ?date01 ?time01 ?ms1970 01 ?ms 01 ?sub01
2circ101 2circ201 7volt01 x ?conclusion ?rule_summary "2-5" 2 1))
(eventmanager (fetch SECOND_PASS) ?event01)
(eventmanager (fetch SECOND_PASS) ?event02))

276

; *** Rule HE_6- First and Second Intertrips Operated at Substation

(defrule Ist 2nd intertrip_at_sub
{second)
(first pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?2ms1970_01)
(sub ?sub01) (circ ?circ101) (circ2 ?circ201) (voltage ?volt01)
(summary ?rule_summary01&:(eq ?rule_summary01 "1st Intertrip Received ON")))
(first pass (date ?date02) (time ?time02) (hundredths ?ms_02) (ms1970 ?ms1970_02)
(sub ?sub01) (circl ?circ102) (circ2 ?circ202) (voltage ?volt02)
(summary ?rule_summary02&:(eq ?rule_summary02 "2nd Intertrip Received ON")))
>

(bind ?rule summary (str-cat "1st and 2nd Intertrip received at substation"))

(bind ?conclusion (str-cat " Ist and 2nd Intertrips received at " ?sub01 * from " ?circ101))

(assert (second_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?2ms1970_01)
(sub ?sub0l) (circl Zircl01) (circ2 7circ201) (voltage ?volt0l) (summary
2rule_summary) (conclusion ?conclusion) (pass_id 2) (rule_id "2-9")

(event_object(new TelemetryProcessor.CoreClasses.Event ?date01 7time01 ?ms1970 01
?ms_017date01 ?time01 ?ms1970_01 ?ms_01 ?sub01 ?circ101 ?circ201
2volt01 x ?conclusion ?rule_summary "2-6" 2 |))))

(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
2ms1970_01 ?ms_0) ?date0] ?time01 ?ms1970 01 ?ms 01
2sub01 ?circ101 ?circ201 ?voltDl x ?conclusion
2rule_summary "2-6" 2 1)))

; *** Rule HE_7- First and Second Intertrips Operated at Both Ends

(defrule Ist 2nd_intertrip_at_both_ends
(second)
(second pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 2ms1970_01)
(sub ?sub01) (circ1 %circ101) (circ2 ?circ201) (voltage ?volt01)
(summary ?rule_summary01&:(eq ?rule_summary0l "lIst and 2nd Intertrip
received at substation™")) (event_object 7event01))
(second_pass (date ?date02) (time ?time02) (hundredths ?ms_02) (ms1970 ?ms1970_02)
(sub ?sub02) (circ! 2circ102) (circ2 ?circ202) (voltage ?volt02)
(summary ?rule_summary02&:(eq ?rule_summary02 “Ist and 2nd Intertrip
received at substation™)) (event_object ?event02))

(test (eq (sub-string 1 3 ?sub02) (sub-string 1 3 2circ101)))

=>

(bind ?rule_summary (str-cat "1st and 2nd Intertrip received at both ends"))

(bind ?conclusion (str-cat "1st and 2nd Intertrips received at both ends"))

(assert (second_pass (date ?date01) (time ?time01) (hundredths ?ms_01) (ms1970 ?ms1970_01)
(sub ?sub01) (circl 2circ101) (circ2 2circ201) (voltage ?volt01) h
(summary ?rule_summary) (conclusion ?conclusion) (pass_id 2) (rule_id "2-7")))

(call (fetch SECOND_PASS) add(new TelemetryProcessor.CoreClasses.Event ?date01 ?time01
2ms1970_01 ?ms_01 ?date02 ?time02 ?ms1970 02 7ms 02
2sub0l ?2circ101 ?circ201 ?volt0l x ?2conclusion
?rule_summary "2-7" 2 1))

(eventmanager (fetch SECOND_PASS) ?event01)

(eventmanager (fetch SECOND_PASS) ?event02))

277

Appendix B: PEDA Use Cases

278

This appendix contains the use cases created during the Requirements and

Knowledge Capture stage of PEDA design described in section 7.3 of the thesis.
The use cases within this appendix are listed below:

e Telemetry Processor System

e Fault Record Retrieval System

e Fault Record Interpretation System

e Protection Validation Toolkit

B.1 Use Case - Telemetry Processor System

Telemetry Processor System

cuses»
Query Alarm Archive

Alarm Archive

«uses»

dentify Inciden
Alams

A

Configure Outpu
Database

System Administrator

View Incidents

>

«uses»

Search for
Incidents

Protection Engineer

279

B.2 Use Case — Fault Record Retrieval System

Fault Record Retrieval System

Configure
Autopolling

N

Manage Autopolling Connect to DFR

«uses» DFR

Start Manual
Retrieval

Engineer

Store Fault Record

280

B.3 Use Case — Fault Record Interpretation System

Fault Record Interpretation System

«uses»

«uses»
«uses»

Engineer

\/

Store Interpreted
Fault Record

«uses»

2\ Select Destination
Directory for Results,

<

«uses»

Select Interpreted
Fault Record

View
Interpretation Results

>

281

B.4 PEDA Use Case — Protection Validation Toolkit

Protection Validation Toolkit

Select Protection «uses»
Scheme
ause Inout Fault Records «uses oad Interpreted Match Fault Records
nput Fault Reco Fault Records with Circuit Ends
[> %
se «uge ausef»
«uses» «uses» «uses»
Q) Generate & Store
Start Toolkit Performance I validation Report
uses»

i uses.
Engineer View Protection «uses» Select Protection
Validation Repo Validation Repo

282

Appendix C: PEDA Ontology

283

This appendix contains the class hierarchy diagrams for the Disturbance Diagnosis

ontology created during the ‘Ontology Design’ stage of PEDA specification

described in section 7.5 of the thesis.

The class hierarchies within this appendix are listed below:

Disturbance Diagnosis Subclasses
Data Subclasses

Information Subclasses

Location Subclasses

Device Subclasses

C.1 Disturbance Diagnosis Subclasses

Disturbance Diagnosis

i

[I '] 1

Data Information J Device Location

-source_device : Device
-generation_date_time : Date{ -real_date_time : Date id : Strin -name : String
-real_date_time : Date . 9

-generation_date_time : Dat ‘name : String -address : String

-type : String -network_id : String

-substation : Substation

284

C.2 Data Subclasses

Data

-source_device : Device
-generation_date_time : Dat
-real_date_time : Date

i

. |

—
SCADA

1
FaultRecord

FaultLocation

1,
Weather

-substation : Substation)
-plant_status : String
-plant_name : String
-circuit : Circuit

-legend : String
-alarm_status : String
-site : String

-COMTRADE_data_path : String
-COMTRADE_config_path : String|
-source_path : String

-COMTRADE_data_path : String
-COMTRADE_config_path : String|
-source_path : String

-wind_speed : Integer
-wind_direction : Strin
-temperature : integer

-humidty : Integer

C.3 Information Subclasses

Information]

-generation_date_time : Dat

-

-real_date_time : Date

Incident

—

Event

-summary : String
-substation ; Substation
circuit : Circuit
-finish_date_time : Date|

J

-summary : String
-substation : Substation
-circuit ; Circuit
-finish_date_time : Dat
-incident : Incident

InterpretedFauitRecord

-fault_type : String
-clearance_time_ms : Integer]
-faulted_phases : String
-source_record : FaultRecord
-source_device ;: Device

285

ProtectionVafidationReport

-source_records : FaultRecord
-report_path : String
-summary : String

C.4 Location Subclasses

[

Buy}S : JueweaBueue Buipum-
uestooq : BupumAierual
s.obelu; : sdg wnu-

uesoog : Yva a10d ajburs
uespoq : Yy

Bung : wsueyosw-

5 “aued uespog : BBy der
;] . — Ue9|00g : SNOUONYIUAS- wijs | wnpew Dusdnud- Bulas : 968 OA™A
oc_awcp a_Mm:M%MQm- oc_bm: .:Ew!%aﬁo%\ﬂ Bug : wnpaw ™ Bunensur Buiag : abeyion- Buuls : seseyd Bw%w“moﬂ.oglh“
1S - 9780 HiS - el Bug : aBeyor Buws : odA- Buws : abBeyon] " Buias : adAi
yamsyyes 10320UV08Iq Jeqsng JomioueD) NN D JeuLIOjsuR]

_

|

pu3uNID : ppus vjowar]
PUIUNID : EPUS BIOWAl
pugpNIIY : ZpUs Bjowal

pu3uni) © gpud Sjowar
pu3unny : Zpua jowar

PUJUNLD : ZPUD SOWRH

pepuzino 4

pepu3zesiyl

pepuzoml

haBaju| : sinds™wnu-

1epey

286

v

Buras : uoneINByuoY-|
Buuyg : abeyon-

Bums : uoneoyisse|d
6au| : spua”wNU
pUFNIY : puUd 9ANOS-

unon

BSuu)s : 9Be) oA UOIOBUUOCD
uogejsgng : uongsqns-

\V4

Buws : Buner
Buiig : sweuTueld-
puUFHMAD : puUd UNAID
YUY | NN

puznnI

ued

Buig : aweu—uoge)sqns-
BuigS : UORROYISSEN-

_ |

uongsqng

]

v

Bung : pr ABojod o}
Buigs : uoibas-
Buug : souaseya pub

uoe207

C.5 Device Subclasses

uoplelciineqyue

UoR301420a

uoNI80IdNUN

JOVELNOD = Bulilg : IBwloj elp-

s)bew : spuueyd onbopuE WNY-

Buulg : pouad Buyjod-

UONED07 : LOGEBIO}

Buigs : Aorinooe

WD | POIORUOW Y NANO

PUZRNUD © Pue” JNAND-

sebo| : sjeuueyd [eubIpT wNU-

Sd9 = Buulg : ouAs aun
unan9 1 g~ BuuoyuowTINoN-
NI : | T PAUORUOW INOMD-

U0130810id 8 2uRIs!I () UORI8Y0IIOIRIBUSD couulo..n_._-auam_ UO1108 04l eWIOjSURI L]
Buwg : praweyos-
PNOUD : IMOIIO- wed : weyd
uoRII0IAINDILD uoIPN UGN

ueepog : ajod 8j6uIS
sobau : pousd 1IN0 0}
Buiss : own unepRal-
onewoyne = Buuls : e peep-
1860 : Spoys WU

BuulS @ SUOBRININWIWIO

Buurs : poypw SutddupeH

IAeqUORIeN0d

v

Buwyg : Jaunoenuew-
uongsgNS : UOREISaNS-

Buuig : p!
Buug : aweu-

aAeQ

pUZUID : puTIMID PNAUD © YNOM0 }NoIYD : pNan o
niLy uoneISIaILOM Joyed0TYned Jopicoayned uva dupe)
_ T]]
Bulng : Aouanbey oipe. AW
Buug : ssaippe” dH
Suuys © Jequnu-auoyd-
BuigS : WSIUEYOR W SUOHEDUNW WO pus ynaio
@onaqbunojiuon

287

Appendix D: Legacy System Assessment
Templates

288

This appendix contains the templates used to record the assessment of legacy system

capabilities during stage four of the PEDA specification process described in section

7.6 of the thesis.

D.1 Telemetry Processor Software Assessment

Software Resource Assessment: Telemetry Processor

Resource Description:

Online expert system for identifying transmission
network incidents and events.

Source Code Available? Y | API? Y| Language: | Java

5 e User intervention to upload a configuration file.
Control Requirements |, Telemetry Processor is started via a user interface.
e No further user intervention is required once started.

Functional Capabilities:

retrieves any new alarms.

Function Description Possible Task Mapping
Telemetry Processor queries the
Query alarm archive alarm archive at fixed intervals and | Retrieve SCADA

Interprets alarms looking for an

Identify incident iy 2
dentify incidents incident start and conclusion.

Interpret SCADA for Incidents

Searches for alarms occurring on
Identify incident alarms | the incident circuit between incident
start and conclusion.

Group Incident Related SCADA

Interprets incident alarms for

Identify incident event: . .
entify incide " pertinent protection events.

Interpret Incident SCADA for
Events

Allows user to search for historical

Not required in task hierarchy since

Search for incidents incidents via a web-based user PEDA will operate online and will
interface. not require historical searches.

Data Input Requirements:

Data Mechanism Ontology Mapping
Alarms Automatic alarm archive query SCADA
Data Provision Capabilities:

Data Mechanism Ontology Mapping
Incident Report | Database query Incident
Incident Event Database query Event
Alarm Database query SCADA

289

D.2 Fault Record Retrieval Software Assessment

Software Resource Assessment:

Proprietary Fault Record Retrieval Software

Resource Description:

Software developed by DFR manufacturers to manage
remote DFRs. Users can initiate manual retrieval of
fault records from remote devices. Time scheduled non-
prioritised autopolling is also possible.

Source Code Available? N

API? | N

Language:

Unknown

Control Requirements

User intervention to configure autopolling.
User intervention to identify DFR to initiate retrieval from.
User intervention to initiate retrieval.

Functional Capabilities:

and obtain the configuration details
necessary to begin retrieval.

Function Description Possible Task Mapping
User can select which DFRs to
autopolling.
Software or user can select the next
DFR selection DFR fo fetrieve fault records from Select Next Retrieval

Request retrieval of new
fault records from a
DFR

Software or user can begin retrieval
once connected to the DFR.

Retrieve

Monitor device

Software will log any device

Monitor Device Availability

communications communications problems.
COMTRADE User can request fault record ZI‘;’f’ etl]’uirea' ’.('I'S’“s;‘,h"[e’ archy since
conversion conversion to COMTRADE. ault records will already be

available in COMTRADE format.

Fault record viewing and
analysis.

User can view retrieved records and
perform routine analysis using the
tools provided by the software.

Not required in task hierarchy since
Sault records can still be viewed
using proprietary software.

Data Input Requirements:

Data

Mechanism

Ontology Mapping

DFR

User selects from list of available DFRs

FaultRecorder

Data Provision Capabilities:

Data

Mechanism

Ontology Mapping

Fault records

Stored as a file in a directory structure.
File can be accessed via software or via
Windows functions, e.g. My Computer

FaultRecord

290

D.3 Fault Record Interpretation Software Assessment

Software Resource Assessment:

Fault Record

Interpretation Software

Resource Description:

Software developed primarily to prepare faults records
for protection validation. Requires fault records in
COMTRADE format. Identifies protection operating
times, faulted phases and fault clearance time.

Source Code Available?

Y | API? Y

Java and C

Language:

Control Requirements

User intervention to start software.
User intervention to upload COMTRADE .dat and .cfg files.
User intervention to start interpretation.

Functional Capabilities:

fault record

and .dat files from the directory
structure.

Function Description Possible Task Mapping
Upload a COMTRADE User selects the fault record .cfg No mapping since PEDA will need
to schedule and automate the

selection of fault records for upload

Select destination
directory for results

User selects the destination
directory for the interpretation
results.

Not required in task hierarchy since
PEDA will be set to use a default
directory.

Interpret fault record

Software loads in the user selected
.dat and .cfg files and interprets the
fault record.

Interpret Fault Record

View interpretation
results

User can either view the
interpretation results on the user
interface or open the results file.

Not required in task hierarchy since
PEDA is only responsible for
disturbance diagnosis automation.

Data Input Requirements:

Data

Mechanism

Ontology Mapping

COMTRADE
fault record files

Manual selection and input of both the
.dat and .cfg COMTRADE files
associated with the original record

FaultRecord

Data Provision Capabilities:

Data

Mechanism

Ontology Mapping

Interpreted fault
record

Output by the software as a text file and
stored in a directory structure.

InterpretedFaultRecord

291

D.4 PV Toolkit Software Assessment

Software Resource Assessment: Protection Validation Toolkit

end.

An intelligent systems using MBD to validate
performance of transmission protection schemes.

Resource Description: Requires models of the protection scheme being
validated and interpreted fault records from each circuit

Source Code Available? | Y |[API? | Y | Language: |Java, XMLandC

e User intervention to start software.
Control Requirements | * User selects protection scheme to be validated.
e User selects input fault records from each circuit end.
e User intervention to start protection validation
Functional Capabilities:
Function Description Possible Task Mapping

User selects the protection scheme
to be validated from a library. The
software then retrieves and loads
the models.

Select protection scheme

Select Protection Scheme

User selects the .cfg and .dat files
from the directory structure for each
fault record.

Upload COMTRADE
fault records

No mapping since PEDA will need
to schedule and automate the
selection of fault records for upload

User selects the interpreted fault

Upload intecpreted fhul record files for each circuit end

No mapping since PEDA will need
to schedule and automate the

records from the directory structure. selection of interpreted fault records
Jfor upload
User initiates protection validation
Validate protection which reads the uploaded .
5 X . R
performance information and runs the protection | " Protection Models
models.

- g User can either view protection Not required i ; :
View protection R - p q.mred in task htlerarchy since
validation report validation report on the user PEDA is only responsible for

P interface or open the report file. disturbance diagnosis automation.

Data Input Requirements:

Data Mechanism

Ontology Mapping

Manual selection and input of both the

fault record files files for each circuit end.

COMTRADE .dat and .cfg COMTRADE fault record | FaultRecord

Interpreted fault | Manual selection of the interpreted fault
record files records from each circuit end.

InterpretedFaultRecord

Data Provision Capabilities:

Data Mechanism

Ontology Mapping

Protection Output by the software as a text file and
validation report | stored in a directory structure.

ProtectionValidationReport

292

Appendix E: Agent Modelling Templates

293

This appendix contains the agent modelling templates generated during stage eight of

the PEDA specification process described in section 7.10 of the thesis.

E.1 Incident and Event Identification (IEI) Agent

AGENT NAME: | Incident and Event Identification (IEI)

Automated interpretation of transmission SCADA alarms and the
AGENT ROLE: | yrovision of SCADA data, and incident and event information to

agents.

Functional Tasks: Task Realisation Method

Retrieve SCADA Existing system: Telemetry Processor

Interpret SCADA for Incidents Existing system: Telemetry Processor

Group Incident related SCADA Existing system: Telemetry Processor

Interpret Incident SCADA for Existing system: Telemetry Processor

Events

Interaction Tasks: Interaction Type Exchanged Resource
Provide SCADA subscribe, query-ref SCADA

Provide Incidents subscribe, query-ref Incident

Provide Events subscribe, query-ref Event

294

E.2 Fault Record Retrieval (FRR) Agent

AGENT NAME: | Fault Record Retrieval (FRR)
R 2t i, o of e et md G
Functional Tasks: Task Realisation Method
Select Next Retrieval Algorithmic Code
Create Autopolling Schedule Algorithmic Code
Reschedule Retrieval Rules, Algorithmic Code
Retrieve Algorithmic Code
Monitor device availability Algorithmic Code
Interaction Tasks: Interaction Type Exchanged Resource
Provide Fault Records subscribe, query-ref, request FaultRecord
Obtain Identified Incidents subscribe Incident

E.3 Fault Record Interpretation (FRI) Agent

AGENT NAME: | Fault Record Interpretation (FRI)

AGENT ROLE: | Automated and prioritised interpretation of fault records and the
provision of interpreted fault records to agents.

Functional Tasks: Task Realisation Method

Select Next Fault Record Algorithmic Code

Schedule Intepretation Rules, Algorithmic Code

Interpret Fault Record Existing system: Fault Record Interpretation Software
Interaction Tasks: Interaction Type Exchanged Resource

Provide Interpreted Fault

Records subscribe, query-ref, request | InterpretedFaultRecord

Obtain Identified Incidents subscribe Incident

Obtain Retrieved Fault Records | subscribe, query-ref, request | FaultRecord

295

E.4 Protection Validation & Diagnosis (PVD) Agent

AGENT NAME: | Protection Validation and Diagnosis (PVD)

AGENT ROLE: Validat.ion (')f protection perftox.'mance and _diagnqsis .of
protection failures and the provision of protection validation

reports to agents.

Functional Tasks: Task Realisation Method

Develop Validation Schedule Rules, Algorithmic Code

Reschedule Validation Rules, Algorithmic Code

Select Next Validation Algorithmic Code

Select Protection Scheme Existing system: Protection Validation Toolkit

Run Protection Models Existing system: Protection Validation Toolkit
Interaction Tasks: Interaction Type Exchanged Resource
Obtain Identified Incidents subscribe Incident

Obtain Interpreted Fault Records | query-ref, request InterpretedFaultRecord
;:;‘gge Protection Validation subscribe, query-ref | ProtectionValidationReport

296

Appendix F: PEDA Sequence Diagrams

297

This appendix contains the sequence diagrams created during the agent interactions

stage of the PEDA specification process described in section 7.12 of the thesis.

F.1 SD_PEDA 01 = Nameserver registration

[PEDA Agent]

inform (address)

I Nameserver

confirm (address)

i
o~

-

Time

v

Sequence Diagram | SD_PEDA_01: Nameserver registration

Task Owner(s) Any PEDA agent | Initiating Task Register location

Task Owner(s) Nameserver Responding Task Acknowledge Registration
Other participants | None Responding Task N/A

F.2 SD_PEDA_02 = Provide Abilities

[PEDA Agent]

inform (address)

Nameserver

],__-__

‘ Facilitator

SD PEDA 01 E | Time
™ I H confirm (address) H
¢ T !
' i
E _:_ tqucry-rcf (address) r
i i
E inform (address) i
: i
i query-ref (abilities) ! T
r T
r-r inform (abilities) T i
i | =N
| ! |
Sequence Diagram | SD PEDA _02: Provide Abilities
Task Owner(s) Facilitator Initiating Task Request Abilities
Task Owner(s) Any PEDA agent | Responding Task Provide Abilities
Other participants | None Responding Task N/A

298

F.3 SD_PEDA_03 = Query for abilities

[PEDA Agent]

]
ﬂ query-ref (ontology class)

Facilitator

I
}
|
|
1

E Time
E inform (agent name)
1

] |

| I
Sequence Diagram | SD PEDA 03: Query for abilities
Task Owner(s) Any PEDA agent Initiating Task Get provider
Task Owner(s) Facilitator Responding Task Provide Abilities
Other participants | None Responding Task N/A

F.4 SD_PEDA_04 = Query for address

[PEDA Agent]

|
l——l query-ref (address)

l Nameserver

>

inform (agent_name, address)

--_.{_——},____-

Time

v

Sequence Diagram | SD_PEDA_04: Query for address

Task Owner(s) Any PEDA agent Initiating Task Get address
Task Owner(s) Nameserver Responding Task Provide Address
Other participants | None Responding Task N/A

299

F.5 SD_PEDA_05 = Subscribe for Incident updates

=]

[Any PEDA Agent] ‘Facilita(or” Nameserver'
1

i i]
E —] query-ref (Incident) E :'
’ ! :
| | inform (IEI) ;
' e i
i T query-ref (address_of IEI) :' i
E 'E inform (IEI, host, port) E '
E 4+ subscribe (Incident) D‘ E T Time
failure (reason) E :' :'
"] 5 :
refuse (reason) : i
1 ’D E E
E confirm (Incident) : !
| i i
| & E 5
LI" ‘I'" ‘Ir/' 4.’,:
m inform (Incident) - i ! !
i] | R’
Sequence Diagram | SD PEDA 05: Subscribe for Incident updates
Task Owner(s) Any PEDA Agent | Initiating Task Obtain Identified Incidents
Task Owner(s) IEI Responding Task Provide Incidents
Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

300

F.6 SD_PEDA_06 = Subscribe for Event updates

[Any PEDA Agent lFacililator' l Nameserver'

' 1 : :
: H query-ref (Event) E E
7 :
: :: inform (IEI) E
E [r query-ref (address_of IEI) i i
; :. inform (IEI, host, port) i I l
1 ! < '
5 subscribe (Event) . T Time
<+ . :' !
failure (reason) : ! |:
PD ! !
refuse (reason) E E
> i
: _ O | 5
: confirm (Event) i H
] ']
] : :
E .; = :
- <, -, A
[“:[inform (Event) :'- ‘:r T
H |
E gn # ¥
{ 1
Sequence Diagram | SD PEDA 09: Query for Events(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Identified Events
Task Owner(s) IEI Responding Task Provide Events
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task | Provide Abilities

301

F.7 SD_PEDA_07 = Subscribe for SCADA Alarm

updates

' ! ! '
: H query-ref (SCADA) | |
L B !
H - '
5 | inform (IEI) ;
' ' .
.: [T query-ref (address_of IEI) ;’ '
«: .: inform (IEI, host, port) E | ’
subscribe (SCADA) l l | ? Time
e] '
failure (reason) ! ! E
O ! |
refuse (reason) - ! ;
! |
. O | :
; confirm (SCADA) | |
: 0] | |
| : : |
:': ‘I’_ "t‘ 4":
M inform (SCADA) i i !
T : :
H T : : v
Sequence Diagram | SD PEDA 07: Subscribe for SCADA Alarm updates
Task Owner(s) Any PEDA agent | Initiating Task Obtain SCADA
Task Owner(s) IEI Responding Task Provide SCADA
Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

302

F.8 SD_PEDA_08 = Query for Incident(s)

[Any PEDA Agent]

&acilitaton] Eameserver]

query-ref (Incident)

[]

query-ref (Incident)

p——

inform (IEI)

| I query-ref (address_of IEI)

|

inform (IEI, host, port)

inform (empty set)

g

inform (Incident)

Time

|
|
1
Tt
|
]
1
1
!
|
]
|
|
1
|
|
|
|
|
|
|
1
)
|
|
'

Sequence Diagram | SD PEDA_08: Query for Incident(s)

Task Owner(s) Any PEDA agent | Initiating Task Obtain Incidents

Task Owner(s) IEI Responding Task Provide Incidents

Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task Provide Abilities

303

F.9 SD_PEDA_09 = Query for Event(s)

e

query-ref (Event)

(Any PEDA Agent

~

T query-ref (Event)

Facilitator

)

[Nameservel)

inform (IEI)

| query-ref (address_of IEI)

PRpp———

inform (IEL, host, port)

:’%

inform (empty set) i

inform (Event)

cemmmamccmmccccenadacaad]

Sequence Diagram | SD PEDA 09: Query for Events(s)

Task Owner(s) Any PEDA agent | Initiating Task Obtain Events

Task Owner(s) IEI Responding Task Provide Events

Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

304

Time

F.10 SD_PEDA_10 = Query for SCADA Alarm(s)

3 N
(IEI [Any PEDA Agent E“acilitatoa @meserver]

ﬂ query-ref (SCADA)

inform (IEI)

query-ref (address_of IEI)

j
|
)
'
|

query-ref (SCADA) [r
<

|
inform (empty set) |

inform (IEL, host, port)

Time

-

inform (SCADA)

LR EEE SRS B

Sequence Diagram | SD PEDA 10: Query for SCADA Alarm(s)

Task Owner(s) Any PEDA agent | Initiating Task Obtain SCADA

Task Owner(s) IEI Responding Task Provide SCADA

Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

305

F.11 SD_PEDA_11 = Subscribe for Fault Record
updates

=4
[Any PEDA Agent ' [Facilitaton] [Nameserver

' | : :
:] 1
: |—| query-ref (FaultRecord) E E
: T ’
-]
: | inform (FRR) :
: . . :
| l l query-ref (address_of FRR) E |
' i3 i
E ' inform (FRR, host, port) E
: ' ! M H Time
: subscribe (FaultRecord) i |
: : :
failure (reason) : .: E
> [—_‘—] ¢ '
refuse (reason) i |
1 1
: gn i ’
: confirm (FaultRecord) H i
- 1
: gn ‘ |
H | 1
1 4
Z ¥ L’r P
[-‘-1 inform (FaultRecord) 1 : 5
|)
]]
1 1

<+

Sequence Diagram | SD PEDA 11: Subscribe for Fault Record updates
Task Owner(s) Any PEDA agent | Initiating Task Obtain Retrieved Fault
Records
Task Owner(s) FRR Responding Task Provide Fault Records
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task Provide Abilities

306

F.12 SD_PEDA_12 = Query for Fault Record(s)

)

query-ref (FaultRecord)

[Any PEDA Agent] &!cilitato

 —

ﬂ query-ref (FaultRecord)

inform (FRR)

query-ref (address_of FRR)

%

___dq__-__.

inform (empty set)

inform (FaultRecord)

]

inform (FRR, host, port)

"3

<

- o e

Time

Sequence Diagram | SD PEDA 12: Query for Fault Record(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Retrieved Fault
Records
Task Owner(s) FRR Responding Task Provide Fault Records
Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

307

F.13 SD_PEDA_13

Record(s)

Request

[Any PEDA Agent]

retrieval

—' query-ref (FaultRecord

of Fault

inform (FRR)

| query-ref (address_of FRR)

inform (FRR, host, port)

request (retrieve FRR FaultRecorder)

A

| T S

refuse (reason)

failure (reason)

s .

agree (retrieve FRR FaultRecorder)

confirm (retrieve FRR FaultRecorder)

query-ref (FaultRecord)

Time

inform (empty set) i
E inform (FaultRecord) >D
Sequence Diagram | SD _PEDA _13: Request Retrieval of Fault Record(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Retrieved Fault
Records
Task Owner(s) FRR Responding Task | Provide Fault Records
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task | Provide Abilities

308

F.14 SD_PEDA_14 = Subscribe for Interpreted Fault

Record updates

E [Any PEDA Agent J lFaciIiutor lNumeserver'

H : !]
5 H query-ref (lnterpretedFaultRecord),: E
: ' |
: | inform (FRI) E
' 1 '
i i3 H
: I—T query-ref (address_of FRI) | i
E .: inform (FRI, host, port) i ’ l
'] 1
i subscribe (InterpretedFaultRecord) E T Time
< - ! |
failure (reason) : ! .:
» i 1
refuse (reason) [j E E
’D ! !
E confirm (InterpretedFaultRecord) i :I
| ! 1
: gm i i
' 1 ']
) it ¥ 4 "R
"" "l" "’r‘ Ll'_
[-‘-Lin form (InterpretedFaultRecord) | i :
' |
: : R’
' 1 ']
Sequence Diagram | SD PEDA _14: Subscribe for Interpreted Fault Record updates
Task Owner(s) Any PEDA agent | Initiating Task Obtain Interpreted Fault
Records
Task Owner(s) FRI Responding Task | Provide Interpreted Fault
Records
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task Provide Abilities

309

F.15 SD_PEDA_15 = Query for Interpreted Fault

Record(s)

[Any PEDA Agent] Encilita(or [Nnmeservq

H query-ref (InterpretedFaultRecord)

inform (FRI) l ’

query-ref (address_of FRI)

inform (FRI, host, port)

query-ref (InterpretedFaultRecord) E Time
4 T :
Uﬁ inform (empty set) - E |:
i inform (InterpretedFaultRecord) E
i g | v
Sequence Diagram | SD PEDA 15: Query for Interpreted Fault Record(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Interpreted Fault
Records
Task Owner(s) FRI Responding Task Provide Interpreted Fault
Records
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task Provide Abilities

310

F.16 SD_PEDA_16 Request generation of

Interpreted Fault Record(s)

FRI [Any PEDA Agent] Eacilimor] [Namcservel]

:5 H query-ref (InterpretedFaultRecord) i ;
§ g P inform (FRI) :E
é ,—r query-ref (address_of FRI) E E
§ T‘ inform (FRI, host, port) 'E
g request (interpret FRI start finish FaultRecorder) D‘ E l:r
< . : !
refuse (reason) > E :: E'
failure (reason) ‘LEJ ; E Time
"] z |
agree (interpret FRI start finish FaultRecorder) | | i
*O E 5
| |
confirm (interpret FRI start finish FaultRecorder) g E
E - query-ref (InterpretedFaultRecord) :E ::
b inform (empty ser) L :: ; E
: :
5 inform (InterpretedFaultRecord) 5, j_ i E
s T by
Sequence Diagram | SD_PEDA _16: Request Generation of Interpreted Fault Record(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Interpreted Fault
Records
Task Owner(s) FRI Responding Task Provide Interpreted Fault
Records
Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

311

Subscribe for Protection

F.17 SD_PEDA_17 =
Validation Report updates

i) | —

query-ref (ProtectionValidationReport) |

»

e

inform (PVD)

query-ref (address_of PVD)

E inform (PVD, host, port) é | l
. e < i i Time
bscribe (P ValidationR ! '
;1 ribe (ProtectionValidationReport) U E :.
failure (reason) E E |
refuse (reason) E' ::
é confirm (ProtectionValidationReport) E é
[-'r] inform (Pto(eclionValidationRepon); E- Er Er
5 o i i
Sequence Diagram | SD PEDA 17: Subscribe for Protection Validation Report updates
Task Owner(s) Any PEDA agent Initiating Task Obtain Protection
Validation Reports
Task Owner(s) PVD Responding Task Provide Protection
Validation Reports
Other participants | NameServer Responding Task | Provide Address
Facilitator Responding Task Provide Abilities

312

F.18 SD_PEDA_18 = Query for Protection Validation

Report(s)

'
'
'
'
'
1
1
'
'
'
'
'
'
|
'
|
'
'
|
'
'
'
[

(Any PEDA Agent]

I—l query-ref (ProtectionValidationReport) |
]

I Facilitatorl Nameserver I

inform (PVD)

query-ref (address_of PVD)

inform (PVD, host, port)

<
query-ref (ProtectionValidationReport) H

nd
D inform (empty set)

inform (ProtectionValidationReport)

o s o s e i e e e s e i 0 e m wm o

Time

Sequence Diagram | SD PEDA 18: Query for Protection Validation Report(s)
Task Owner(s) Any PEDA agent | Initiating Task Obtain Protection
Validation Reports
Task Owner(s) PVD Responding Task Provide Protection
Validation Reports
Other participants | NameServer Responding Task Provide Address
Facilitator Responding Task Provide Abilities

313

F.19 SD_PEDA_19 = Obtain Fault Records

[

=

query-ref (FaultRecord)

—I query-ref (FaultRecord)

Sy

inform (FRR)

=

query-ref (address_of FRR)

S——

a

inform (FRR, host, port)

inform (FaultRecord)

T

inform (empty set)

request (retrieve FRR FaultRecorder)

]

‘7

4}----____

refuse (reason)

failure (reason)

d d--

agree (retrieve FRR FaultRecorder)

confirm (retrieve FRR FaultRecorder)

g

query-ref (FaultRecord)

Time

P T R . S

inform (empty set) 4’&]

g inform (FaultRecord)

: =¥y *
Sequence Diagram | SD_PEDA _19: Obtain Fault Records
Task Owner(s) FRI Initiating Task Obtain Retrieved Fault Records
Task Owner(s) FRR Responding Task | Provide Fault Records
Other participants | NameServer | Responding Task | Provide Address

Facilitator Responding Task | Provide Abilities

314

F.20 SD_PEDA_20 = Obtain Interpreted Fault Records

(= J(=)

T
]
query-ref (InterpretedFaultRecord) |
i

»

inform (FRI)

query-ref (address_of FRI)

|
Il
i
T
'
|
1l

inform (FRI, host, port)

a—
<

query-ref (InterpretedFaultRecord)

A

inform (InterpretedFaultRecord)

T o S

inform (empty set)

Time

request (interpret FRI start finish FaultRecorder)

d

1
i
i
gn
agree (interpret FRI start finish Faull.RecordeL)

»

SD PEDA 19 L_] 1
} ¢ confirm (interpret FRI start finish FaultRecorder) |

1]

refuse (reason)

failure (reason)

A

query-ref (InterpretedFaultRecord)

e e e mmc e c e m—————d]

E I inform (empty set) - ; |
i TJ— inform (InterpretedFaultRecord) . *
' i U
Sequence Diagram | SD PEDA 20: Obtain Interpreted Fault Records
Task Owner(s) PVD Initiating Task Obtain Interpreted Fault
Records
Task Owner(s) FRI Responding Task | Provide Interpreted Fault
Records
Other participants | Any PEDA agent | Responding Task | Provide Address
Facilitator Responding Task | Provide Abilities

F10

Appendix G: PEDA Message Handlers

316

This appendix contains the message handlers identified during the Agent Behaviour

Modelling stage of the PEDA design process described in section 6.9.1 of this thesis.
The message handlers within the appendix are listed below:

G.1 IEI Reactive Behaviour: MH_IEI_01 to MH_IEI_06

G.2 IEI Proactive Behaviour: None

G.3 FRR Reactive Behaviour: MH_FRR_01 to MH_FRR_03

G.4 FRR Proactive Behaviour: MH_FRR_04 to MH_FRR_09

G.5 FRI Reactive Behaviour: MH_FRI_01 to MH_FRI_03

G.6 FRI Proactive Behaviour: MH_FRI_04 to MH_FRI_23

G.7 PVD Reactive Behaviour: MH_PVD 01 to MH_PVD 02

G.8 PVD Proactive Behaviour: MH_PVD_03 to MH_PVD 16

317

8I¢

Jua3e paquIsSqNs ULIOJul A[[ednewomne
puB BIEp JUIPIOU] MAU JIoj Jojuow 01 2[nu uonduosqns, B AAeAI) O
1uaSe Suiqudsqns 01 (JUAPIOU]) ULIJUOD PUIS O
uatp ‘safa1and $$239® 102109 dARY
saop juaSe Suiquosqns pue poolsiopun aq ued aFessaw juafe Juiquosqns J| e JuapIou] aquIsqns 10 191 HW
1a8e Suipuas 01 (wospa.) asnja1 pudg 0
uay ‘sada[iaLid $S209® 1020109 2ARY 10U S0P JUATe SulqUOSNS J| .
juade Surpuas 01 (Wospa4) aI[Ie] pUS O
UQY} ‘pOOISIAPUN 2 JOUURD TLSSAW AQLIOSQNS J|
Y JuRuo) adAy a1 2puey
33eSSIA] SuTmoduy 3essa\
sjuapiouy apiaolg | Yse], Surpuodsay

sajepdn JuapIou] 10 3qUIsqNS — S0 vAdd dS | weaseiq duanbag
aAnoedy | Inoweyag | a1 yuady

dnoiAeyag 9AI3dedYy 3] 1L°6'D

juaby 3| — sio|pueH obesse 69

61¢

juage paqLIIsqns WIojul A[[edljewone
pue ®IEp JUSAF M3U 10j Jojuow o1 d[ni uonduosqns, ' deAI) O
juaSe Surquosqns 01 (JUSAT) WLILJUOD pUag O
uay) ‘sao[IALId $S3008 1091100 2ARY
soop juaSe Suiquosqns pue PoolsIdpun 3q Ued 3Fessau juoSe Juiquosqns Jj| e JuSAY aquIdsqns 70 141 HW
juaSe Surpuss 0y (uospa.L) asnjal pudsg O
uay ‘saa1aLid ss008 1021109 2ARY J0U S0P Jude Juiquosqns J e
juaSe Surpuas 0} (Uospa.) aIn[ie) pug O
Uay) ‘POOISIAPUN 3q JOUURD dFLSSIW dQLISANS J| ©
asuodsay e adiy a1 IpucH
a3essoy Surwoduy aBessO
SJuaAH opirolg | s, Sutpuodsay
soyepdn JuaAg J0j 2quIsqNS — 90 VAAd dS weadei(q 2uanbag
aAnoRaYy | anoeyayq | 141 Juady

0Tt

"19S Blep Jurydojewt
oyl Sururejuod juaSe Suikionb 01 ofessowr (Juoprou]) wuojul puss o
uaY) ‘punoj eiep Juplou] SulyolewW J| e e
1aSe Suikianb 01 oSessawr (Jos A1dwd) wojul pudg o sl pis-Lnoh 0 Tdl HA
uaY) ‘e1ep JUSPIOU] SuUIYANBWI OUJ] e
“JuRU0d dFessawr Joi-A1anb Jurysjew ejep JUIPIOU] 10 YY) e
uuo adA [pu
asuodsay s L a1 +e[pueH
33esSoA] surmoduy 33esSII
sjuapiou] apiAolg | ¥se], Suipuodsay
(syuapiouy 10y A1ond — 80 VAAd A | wesseiq 3duanbag
aAnoeay | Amoleydyg | a1 sy
JUdSe paquIdSqNS ULIOjul A[[eoljewoine
pue elep yQVDS Meu 10y Jojuow 0} dni uonduosqus, e LAY O
juaSe Suiquosqns 01 (YAVOS) UWLILJUOd pudg 0
uay ‘sa39[1ALId $S209R 1991102 dARY
soop juaSe Juiquosqns pue poolsiapun 2q Ued dFessow JudFe JulqUDOsQNS J e vavos aquIOSqNS €0 141 HA
juade Surpuss 0} (UOSPa.L) SNJAIPUSS O
uay ‘saSoiaLid ssa008 1091100 2ARY 10U S0P JudFe SuIqUOsqNs J] @
jus3e Suipuas 0) (4ospa.L) 2Im[Ie] PUSS O
uay) ‘poO}SIapuUN 3q J0UUERD STeSSIW AqUISqNS J| ©
ud)uo adA J[pu
asuodsay S L QI Jd[pueH
3SessoA Surmoduy BeSSIIA
VAVOS 2piaold | Ysey, Surpuodsay
seyepdn U]y VAVOS 10§ 2quasqns — L0 vVAdd ds | weiSeiq 3duanbag
aA1BIY anoiaeyag | a1 sy

icE

108 BIRp FUIydIRW
oy Sururejuod judde Suikionb 031 oFessow (YOyDS) wuojul pusg o
uay) ‘punoj elep YAVOS Sulgdrew jy e —
1ua3e Suikionb 01 aSessaw (10s Aydwia) uLiojur puag 0 vavos P 90 141 HA
uay ‘eIep YA VOS Sulydew oujy e
“Juaju09 dessaut JaI-A1onb Furyorew erep yQVOS 10J oY) e
uduo adA
asuodsoy xS L a1 puey
adessopA Surmoduy IBeSSI
VAVOS 2piaoig | ysey, Suipuodsoy
(suuely yAVOS 10§ &1ond — 01 VAdd (S | wesseiq 3duanbag
2A1ORIY | anoieyayq | A1 yuady
108 B1Rp
Suryoyew ayy Surureyuod juafe Juikianb 0y a8essowr (JuaAy) woyul pudag 0
uay) ‘punoy eiep JUAg Sulydew j| e — =
wade uikianb 01 aFessaw (19s Axdwad) wLojur pudag 0 JUdAY Joi-A1anb SO 1491 HW
uay) ‘ejep JuUAAY SuiyolewI ouj| e
“Juaju0d adessaw jai-A1anb Surysrew eiep JuoAT 10§ YooyDH e
JuNuUO) adAy, a1 s3[puey
S aBessopy Surmoouy adessop
SIUGAT 2pIACL] | st Sutpuodsay
(shuang 1oy K1and) - 60 V(A (S | wesdel(q duanbag
oAIDEY | JAnoeyag | El sy

(443

1uaSe paqLIdsqns ULIojul A[[Boljewolne
pue BlEp PIOOAYINE MU Ioj Iojiuowr o) dni uonduosqns, B 2jedar) O
1uade Surquosqns 03 (PI0dYINE,]) ULIJUOD PUsS O
Uy ‘sa391ALId SS09L 1031100 dARY
sa0p juade Suiquosqns pue poojsiepun aq ued dFessawl juaSe JulquOsqNs JI e plooayIneq aquIOSqNs 10 Y41 HN
1uaSe Surpuas 0) (4OSpa.4) sNJaI pUsS O
uaY} ‘sa59[1ALId SS300B 1031100 JARY JOU SI0P JUdFe JUIqUOSqNS] »
1uoSe Surpuas 0} (vosva.4) am[ie] pUg O
UaY} ‘pOOJSIapUN 3q JOUUED dFLSSOW dqLIOSqNS J| o

jud3uo)) Q&H a1 13[pueH
3SessoA] Surmoduy IBeSSII

asuodsay

Sp1093y 1neJ opiaold | Yse], Surpuodsay

sojepdn p10oay jne 10j 2quosqns — [vAdd dS weidei(udanbag

oAnoedy | amomeyeg | wid sy

JnoiAeyag aAl3oEY A4 L'0L'©

Juaby ¥yy4 — sio|pueH abessaNOL'D

‘moraeyaq dAnoe0Id Aue 11qIYxa Jou s0p Judde JH] YL - V/N

AnoiAeyag aAndeoldd |312°6'O

X4

195 Bjep Suryojew
oy Sutureiuod jusde Surkianb oy aessowr (prodyine,) wuojul pusg o0
uay} ‘punoj eiep piodayineq Sulydew j| e -

e Suikionb 0y afessow (30s A3dwd) uLiojul pusg 0 PO e 20 ¥dd HW

uay ‘eiep piodayne ulyoewi ouyy e

“Juaiu00 adessow Jos-A1anb Furyaew eyep piooaYIne 10§ Yo3yD e
i Juu0) adiy ar srpury

a8essapy Surwoduy adessa
SpI00dY Nk APIAcLd | NSEL LM |
(s)pa0ay e 10 A1nd — 71 vAdd (s | wesdeiq 3duanbag
aAnpEdy | Amolaeyag | Wi sy

1443

70 WAd H :A[owreu] ur sogessouwt
JoI1-A19nb 3[puRy 0} PaJEaId USAq Apeal[e Sey Id[puey dJessaw I[qeNns V (1" vadad s 29s) afessowr uuyuod jo Jurpuas
o) Sumopjoy juafe Sunsenbal ay) WO PaAIRdAI dFessoul JaI-A1anb ay aSeuew 0) paxmbai jou st Jo[puey aFessow Joi-A1onb v 0

910N

“uonajdwos uodn juade Sunsanbai 03 s3essow
(19p1099YI[NE] W 2AALAI) ULIJUOD © Puds pue uoneldidiaiur pajsanbas
Jo uonddwos 10y Jojuow 03 3ni uonddwod jsenbal, e eIy O
W UL YSe) [eALIOY d[Npayosdy, 12331 o
juaSe Sunsanbal 01 (19p1023yINE] WY] FAALNAI) 2213e pusg O
uay ‘sadaqiaud 1sanbai 1921109 sey JuaFe Junsanbas 10pI0dayIne] WY 2491121 1sanbai €0 W4 HW
(INV UMOWy SI 10p10day)ne] (INV Ppooisiopun aq ued aFessow jsonbai j| e
1uage Suipuoss 01 (ospa.) ASNJAI pUsg O
uay ‘saSaqiaid 3sanbai 1021109 ARy Jou $20p JudFe Funsonbaij] e
“juafe Sunsanbai 0y (wospa4) amjiej pueg ©

UY) “UMOWUN ST JPIOOYINE YO POOISIapUN 3q Jouued dFessowr sonbaij] e
Juu0) adAy a1 J2[puey
— aSessapy Surwoduy aBessopy
Sp100ay 1B apiaoly | yse] Surpuodsay

(5)p1029y ne] Jo [eAdLIRI 1saNbY — €1 VAdd dS weaseiq wﬂuﬂvow
ARy | anoleyayq | wid Juady

142

AIowaw 03 JUSPIOU] PPy (yuaprouy) aquIOsqns juaprou] uLoju| 60 WY HW
JSel SIUSpIoU] paynudp] ulelqQ, Aeululs], e
saessaw (JuapIou]) WLIOJUI A[puRy 01 60 WHA HWN ABID (yuapiou]) aquIosqns Juaprou| ULIJuod 80 W4 HW
uonduosgns [nyssaoons 307 e
101e] jdwa)ieal pue [esnjal 10j Uosear 30 e (quaprouy) aquosqns uosDaL asnjal L0 M¥d HW
1918 1dwayeal pue anjrej Joj uosear 307 e (quaprouy) 2quIsqns uosvad amjrey 90 WIJ HN
‘asuodsal
spuey 01 80 WA HA % L0 W4 HA ‘90 W¥d HW 221D e (awpu jua8p yo~ ssaippe) Jai-A1anb | ssa.uppp uadp uLojur S0 W4 HW
awipu Ju23p 0} (JUIPISU]) AQLIISQNS PUIS
asuodsai a[puey 03 G0 WMUJ HW 281D o S R
IoAIasaWeRN 03 (2wpu juadp Jo ssaippe) Ja1-A1anb puag e (opiow) Jo-A 200 SR uiojut v0 ¥4 HA
o] Ajday u uuo
asuodsay 1 Ardoy uy T~ Ay | qrvpueH
aBessapy Surmoduy adessopy
SuapIdU] paynuap] urelqo yse L, Suneniuy
sajepdn juapiou] 10§ 2qudsqNs — s vAAd dS weideiq 2uanbag

aAnoROIq |

anomeyaq |

4

Juady

inolAeyag dAIJOBOId ¥4

(A 3]

9Tt

Juage paqLIdsqNS ULIOJUl A[[EOIBWIOINE PUR BIEP
piodayyne jparaidiau] mau 10j Jojuow 01 d[ru uonduosqns, B e1) 0
1uade Suiquosqns 01 (piodayynejpareidiau]) uuyuod pusg o
uap ‘saSa[ianid $S209€ 1921100 2ARY
soop juaSe Suiquasqns pue poolsiapun aq ued aFessaw juafe Juiquosqns J] piooayinepaaidiau] aquoasqns 10 T4 HW
wade Suipuas 01 (wospas) asnjaipudg O
uap ‘sada[ianud ss2008 192103 2ARY 10U S0P JuFe Juiquasqns J|
1uade Sulpuas 0) (wospas) amjie] puas ©
U2y} ‘pOOISIAPUN 2q JOUURD AFLSSAW AGLIISANS J|
phir At juguo) a4y, a1 2[puey
adessapy] Surmoduy ABesSI
Sp102y J[ne paraudia] apiaolg | Yse], Sutpuodsay
sarepdn p1023Y Jnej pajeidiayu] 1oy aquosqng — ¢ VAdd (S | Weadeiq duanbag
2Anoeay | JAmoieyag | ndd Jasy

inolAeyag SAROESY ¥4 LLLO

Juaby N4 — si9|pueH abessaNLL'D

LTt

"19s BIRp SUIydIRW Y FUTUIRIUOD
wode Suikionb 03 a8essow (piodayynejpaleidioju]) uLIOjUI PUAS O
uay} ‘punoj eep piodayine jpajeidiou] Surgorew jy e S

jua8e Suikionb o0y afessour (3os A1dwd) wuioyur pusg 0 paconue Ipéasdzpy Jai-Kab 20 Tdd HN
uay) ‘eiep plodayyneJpalaidojul Sulydew ou jy e
“JuIu0) Fessaw JoI-A1anb Suryorew eyep piooayyneJpareidiauy oy Yoay) e

b jujuoy ad4y, ai spuey

aSessapy Surmodug IBesSIN
Sp1003Y]) ne.] pajasdiojuy apIAold | Nse], w,l__-g
(5)p100ay e pareadiayuy Joj Kond) — 5| VAdAd AS | wesdeiq uanbag
oAnoeay | amomeyag | A Ay

8¢
70 T HN :Ajowreu Ty ut sagessowr

Jo1-K1onb S[puey 0} PajEaId UL2q Apeai[e Sey IO[puey d3essaw d[qeins (91" VAdd (S 29s) 23essow wuyuod Jo JuIpuds

o) Sumorpoy juade Sunsonbal Yy WOy PIAIddI dFessow Jo1-K190b 2y oFeuew 0) paxmbai jou st Id[puey oFessow jo1-A1onb vy 0

910N
‘uona[dwos uodn juade Sunsanbai 03 a3essow (12p100YINe]
ystuy uejs [y Jeadisjur) wLyuod e puds pue uonejaidiul pejsanbai
Jo uonddwoo 10y soyuow o) dni uonddwod jsanbai, e sU) O
¥ ut yse uoneieidiayuy anpayog, 133U 0
juase Sunsanbai 0 (10p10dayine,] ystuy uels [y 1eadiaur) o3e pudg O
uay ‘saSapiaud jsanbai 102110 sey jusFe Sunsanbal JIop10oay3|ne] ystuy weis 1y 10idiour jsonbaz €0 NIA HN
NV UMOwy SI JOpI0oay)ne] (INV Poosiopun aq ued afessow jsonbai j| e
juade Surpuas 03 (UOsSDa.L) ISTYAI U O
uarp ‘saSaqianid 1sanba 1921100 9ARY JOU S0P JUATe Sunsonbarjy e
quage Sunsanbai 0y (vosva4) amjie) puag O
UQL) “UMOID[UN SI 19PIOINYINE,] YO POOISIPUN 3¢ JOUUED dFessau 1sonba1j] e
oy yuNuo) adAy, a1 2pueH
a3essaA Surmoduy 3esSA
SpJooay Jne, paraidiaju] apiaolg | NSeL Surpuodsay
(5)p100ay 3ne paraidiau] Jo uoneIduad 1sanbay — 9 1 vadd as | weaSeiq 2duanbag
oAnoedy [Amomeyag | nid sy

6C¢

Alowaw 0] JUSPIOU] PPY @ (Juapiouy) aqLIOsqns juaprou] uoju| 60 Tdd HN
jSe) SIUIPIOU] pay1uap] UleIqQ, ABUIULIRL, o
saSessow (Juaprou]) uLiojur d[puey 01 60 [YJ HN Ae21) e (Juaprouy) aqLIOsqns JuapIau| WLIJU0d 80 NId HA

uonduosqns [nyssaoons 507 e

1o1e] 1dwaneal pue [esnjal Joj uosedar 307 e (yuaprou]) aquIsqns uosvad asnjal L0 44 HA

1012] 1dwaneal pue 2un[re) 10j uoseal 307

(yuapiouy) aquIOSQNs uosvad amjre} 90 N4 HN

-asuodsaz a[puey 01 g0 [Md HN % L0 T¥d HIN ‘90 DM HIWARAID e - M e
oo 5B O) (RPE) SQEESEE ARG (awwu jua8p 3o~ ssaippe) yai-Aianb | ssaupp ua3p uLIoyul S0 N4 HN
asuodsai ajpuey 0} S0 Yd HN eI @ e
10A10SWRN 01 (2wpu u28p JO $SAIppe) Ja1-A1nb puag e (uaprouy) 3ai-Asonb apialguy oy ¥0 T HA
bk i o], Ajday uj JuAUO)) adly | (pa9rpueH
93BSSIA] SUTmWodu] JIdesso|

SJUapIoU] payNUAP] UIBIqO | Ase, Suneniuj

sayepdn JUapIoU] 10} 2qUSANS — 50 VAAd AS | Wesseiq uanbag

oanoeolg | amomaeyag | i sy

inoiAeyag aAlOBOId ¥4 A)

0¢ce

Alowauwi 0} prodayineq PPV ° AO._OOQ%__.E n—v 2quIdsqns plosayine] uLojur < ~IE nmlm.mz
3SB) SPI00Y [NBJ PAARLNRY UlRIqQ, dJeululR],
soFessoul (p1022y)[ne,]) WLIOjuT A[puey 03 S| [A HWN 831D * (p10ooayyne) aquIsqns | pIodYIne ULITJUOd $1 I HA
uondrosgns [nyssaoons 3077 e
1012 1dwaneal pue [esnjal 10j uosear 307 e (pr0o2ay1ney) 2quIasqns uospa4 asnjalx €1 T4 HN
l9)e| ﬂQEoﬁmo.— pue ainjrej 10j uoseal mo\._ - Av._ooomu_sa .mv 2qLIdsqns UoSDaA ainjrej N—I—M .mlmz
-asuodsal 2[puey 0} p| T4 HN % €1 M4 HW ‘Tl Tdd HA 21D o - i
- 3
o oS 01 (pI0XYINE) SQLISQNS PUSS o (awpu juaSp Jo~ ssaippe) Ja1-A1onb | ssa4ppp jua3p uLojul 11 4 HA
asuodsal a[puey 03 [[[dd HW 281D e S T
19A1052UIRN 01 (2wpu 1u23p JO $S2Ippe) Jai-A1onb puag e (paodaypime) yos-Asonb WanEow — 01 Tdd HW
psr s o], Ajday ug JuAuo) adfy | qpaspueH
23essaA] Surmodu] Idesso
SP1023Y JNe, PIAILNNY UILIqO yse], Suneniuy
sawpdn pioday JNE 10§ 2quOSqNS — 1| VAAd A | WweSeiq 3ouanbag
aA1RO1] | Inoiaeyag | i sy

£33

3Se} SPI0d3Y J[NE] PIASLISY UIEIGQ, eUIULD] @
*3]qe[IBAR 1€ SPI0dYI[ne Suryojews ou go1 o s
uoy} ‘7os Ajdwa — JUAQUOI J] (prooayine) joi-A1anb _ v“oQo,m::am uoyut €Z A HN
Alowaw 0} p1odaylnej ppy o
UaY] ‘pIOOYINE = JUAUOD J| @
"asuodsal a[puey 03 €7 ¥4 HW e21) o 19p100yNe] e
owpu u23p 0 (p10dayyne) Joi-A1onb puag e V/N | ¥y 2asmal uguoo c 4 HW
ona[dwod Jur 3 B E Iop1ooayIne] 3 e
uonajdwod Suresrpur aFessaw WU0d d[puey 03 77 T HW 181D @ | (1opiooayined Wi aAaLal) 15aNbal | w1 aadLRx 2013e 17 N4 HA
SPI003Y J[NEJ PIAILNY UIRIGQ), JLUIULIS) PUB [ESTJI 10] UOSE! S07 | (1p10oayyne] WY 2A3L21) 1sanbox uosvad amjrej 07 44 H
SPI023Y 1[NE PIAALNAY UIRIGQ), dJEUIULI3) PUB dIn|IE} 0] UOSEal 807 e | (10p1ooayine WY 2A3L0AI) Isanbal uosva. asnyal 61 T HN
asuodsal
a[puey 01 [T4 HN % 0T Idd HN ‘61 Tdd HW 2®21) ©
awpu uaSp 01 (19p100YINE] WY AALN2I) jsanbai puag © Gd
uay) ‘725 Aidwa = UANUOI J| ® (piooayyne) joi-K1anb | m“.ooxmﬁm uLoyut 81 N4 HN
Se) SPI00AY JNE PIAILNNY UIRIGO, AeUlULd] O
Alowau 0} p1odyYynej ppy ©
uay) ‘pIOONYINE = JUANUOI I e
“asuodsai ojpuey 01 81 ¥4 HIW 21D » - RN
3 - 8
owiou 1us80 0 (paoserymed) Joi-Kionb puss e (awpu jua8p Jo~ ssaippe) Jos-Aionb | ssa4ppp jussp uLIojur L1 T4 HA
asuodsal ajpuey 01 L] M4 HW 831D * L
1oA19s9UIRN O) (2wnu juaSp JO ssaIppe) Jo1-A1onb puog e (procoyumes) Jar-Asanb | umu juz30 Yoo 91 id-HN
T o Ajday uy yuARuo) adAL | qrsdpueH
4 aSessapy Surmoduy adessoy
SP1023Y JNE] PAAdLNY UIRIQO yse], Suneniuy
spi0day JNeJ uRqO — 61 VAdd (S | wesseiq 3duanbag
aAnoeOlj | AmoIARYRg | A yuady

(433

juage
paquosqns wuiojul AJ[ednewone pue eiep HodayuonepieAuonoaold
mau 10} Jojuow o) dmi uopduosqns, B Y O
1uoSe Suiquosqns 03 (LModayuonepI[EAUONI0L]) ULIUOd pUdS O
uay) ‘so8a[1ALId $S9008 1091100 dARY . o
soop jueSe Suiquosqns pue poolsiopun oq ued dFessowr juofe Julquosqns JI e 10dayuONEpI[EAUONIN0I] aqLIsqns 10 dAd HN
juaSe Surpuas 0) (vospa.) dsnjaIpues O
uay ‘sa3a1ALd $2008 1031109 JARY 10U S0P JudTe Suiquosqns Jj| e
juade Suipuas 03 (4ospa.) am[ie) pueS O
UaY) ‘pOOISIAPUN 2 JOUULD dFLSSAW dQLIOSQNS J @
asuodsay e wn® adAy 1 PpueyH
a3essop\ Surmoduy adesso
spoday uonepI[BA UONIA0I] IPIACI] | HSEBL Suipuodsay
sojepdn poday UOHEPI[EA UOIDA0I J0J dQUIISqNG — L [vaad as | wesdeiq duanbag
aA1OEIY | anoeyaq | aAd By

inoiAeyag aAldeay AAd L2L'O

Juaby QAd — si9|pueH abessaNZ LD

1333

“10s BIEp SUIYOIRW Y} SUTUILIU0D
waSe Suikionb 0y ofessow (Hodayjuoneprife AUOI02]01J) ULOjul pusg O
uay ‘punoj ejep podayuonepije AUONIS0I] Suiygoyewr jy e

juaSe Suik1anb 03 aessow (1os Aydwd) wLIOJUI pUSS O 110dayUoIIEpI[E A UOTII3101] Jo1-A1anb 70 dAd HN
uay) ‘e1ep podayuonEpI[EAUONO3}01] Sulyojew ouyy @
“JUQIUOD
ofessow Jor-Alonb Suryoiew elep U0daYUONEPIEAUONIANO0I] 10} YD
uNuo adA
asuodsay e (s a1 Jd[pueH
28essoA] Surwoduy 33essa
spoday uonepI[eA UON0101d 9pIAcld | HSBL Surpuodsay

(s)poday uonepieA uondjo1g Joy A1end) — § [vadad as | weaseiq souanbag
oAnpeay | Jmoieydg _ aAd sy

143

Kiowaur 0} JuapIou] ppy (tuapiou) aquDSQnS juapIdU] uuojuy | 80 AAd HW
3Sel SIUIPIdU] PAYIUAP] UleIqQ, JeuluLd],
soSessow (Juoprou]) uLiojul Apuey 01 80 AAd HW 18310 (3uaprouy) 2qusqns JuapIou] wyuod | L0 AAd HW
uondudsgns [nyssaoons 307
1o7e] 1dwaneal pue [esnjal 10j uosear 307 (quaprouy) aquSqns uosval asnyal 90 AAd HW
1212] 1dwa)IEAl pUER 2IM|Ie] 10J UOSeal 307 (tuaprouy) aquosqns uosvas A S0 dAd HW
"asuodsal 3 N
sipuey 01 L0 AAd HN % 90 AAd HIW ‘S0 QAd HW 221D (ouwu juaSp Jo~ ssa1ppe) Joi-Kionb | ssa4ppv ua3p uuojur | ¥0 AAd HW
awpu Jua3p 0} (JUIPIdIU]) AQLIOSQNS PUIS
SR PN Y0 dAd HW 21%210 (uapiouy) joi-Azenb | awwu a3y uLIojut €0 dAd HW
1oA1asoWERN 03 (2wnu juaSp Jo ssaippe) Ja1-A1onb puag
od o] Ajday uy JuAuO) adAy | (rsdpueH
a 28eSSoA] SUTWOdU] ABeSSIN
SJUdPIdU] Payyluap] ureIqo yse], Suneniuj
sayepdn Juaprouy 1oy 2quosqns — 50 vAdd dS weadei(2duanbag

aAndeOi{ |

anoieyaq |

dAd

sy

JnoiAeyag a@Al3oe0Id AAd

(AN

1333

yse} Sp102ay 1 ne] pareidiu] ureiqQ, ANBUIIDY,
‘a[qe[IeAe Biep HodayuoneIp[e Auonaaold uryorew ou oy 0 128
uay) ‘725 Apdwa = uANUOD J] (nodayuonepi[e Auons2o1g) Jjoi-A1onb | Ardwa | uodayuo woyur 91" dAd HW
Krowaw 0] BodayuonepeAuUond0Id PPY O 1epI[e AUOTIO01]
uay) ‘UodayuonepIe AuonI0I = JUNUOD J|
-asuodsai a[puey 01 9] JAd HIA 218210 10p102YINB] - =
awpu u28p 0) (LModayuonepIe AUONIN01) JoI1-K1onb puag VIN W 2A91ma1 uuguos | <1 dAd HW
1op102ayIneq
ordwos 19pI02)|ne = -
Suneorpur a8essoW WIJUOD d[puey 0} m_lgmlmwaw) oﬂmeo Hepmamd ysiuy ueis a1 | ¥ dAd HW
nestpul ystuy weys Y 1eadioyur) jsanbor 4 1eidiayur
Sp1093y (1opr0oayyney oG — = 21
yneq paroidiou] urelqQ, QIBUIULIA) puB [eSnjal Joj uoseal 07 ysiuy wers Y 10xdiaur) jsenbarx % | ¢ dAd HW
Sp1023Y (19p102ayne, = £
yneq pareadiou] urelqO, SJEUIULId} puR dn[e} Ioj uosedl 0] ysiug wels Y 1exdisjur) jsanbar i ®mas | 71 dAd HW
asuodsax a[puey
0l ¥I dAd HW % €1 dAd HN ‘71 dAd HW 2m®a1D ©
owpu Ju23p od
01 (Jop1odayyneq ysiuy uels [y 1eadiojur) jsenbar pueg o REAKE . N
(3ap, uow 25 Aduid — U303] (odayjuonepije A uona01yg) ja1-A1onb | odayuon wojul | [I dAd HW
BPI[EAUOII101J
yse) Sp10day Jneq pajaidiauy ureyqQ, JeUIULID] O
Alowaur 0] 1OdaYUOIBPI[EAUOIRI0I] PPV ©
uay) ‘WodayuoneprjeAuoId)0Id = JUAUO0I J]
‘asuodsar a[puey 01 [| QAd HW 21e21) i - -
3D JO $Sd 21-A1onb | ssa.uppv uadp uLojut
awnu ua3p 0) (prodayine jpaaidiaug) yoi-A1onb puag e Sk iy i o Ppo Ju | 01 dAd HW
asuodsa1 a[puey 01 0] AAd HI 21821 - _
~ dx -K1anb vy Jua3n uLoyul
IoAtasauwreN 01 (awpu uadp Jo ssaippe) jai-A1anb puag (piodaynegpataidiau) joi-Aian ! J% | 60 dAd HW
e o, Ajday uy juuo) | a4y | qyaspuey
4 a3essopy| Surmoduy IBessI
Sp1023y] 1 ne] paraidiau] ureigO yse] suneniuy
sp00ay J[nef paraidiauy urelqO - 07 VAdd (S | wesseiq duanbag
aAnROl] | anoeyayq | aAd Juady

Appendix H: PEDA Agent Control Diagrams

336

This appendix contains the agent control diagrams created during the Agent

Behaviour Modelling stage of the PEDA design process described in section 6.9.2 of

this thesis.
The agent control diagrams within the appendix are listed below:

IEI Agent Control Diagram
FRR Agent Control Diagram
FRI Agent Control Diagram
PVD Agent Control Diagram

337

H.1 IEl Agent Control Diagram

uonnsaxy
snonuiuo)

«——— Y081y — j04u0) U3y

—
SJuaAg 10§ ﬁ VAV IS

VAVDS Wapuj P}y
121di2uy _ wapiouy dnodr

g

—P L:) youp)
prouj

VAVDS
M A0} VAVOS # .ﬁu__:ux
|y e :

-

ﬁ 1059901 ABowald | uels

N e

_J

uoneso|

1918189y

S1uapIoy[vavos sanyIqe
apnoid aplaolg apIAOL]

3

m‘w

anSu7y aouasafuf — jouo) sy ————»

338

H.2 FRR Agent Control Diagram

a131dwos

[pasryay
Aupqefreay
QALY =W AETg |
JONUON
Jepiooayne
||' MM>O—.M~0QM0~ ANPIYOS = R [eASLY
WONINIBS | japjo0eyyned| Suijodomy | Japiodoyiined o[mpayesay
A
m]
|
a[npays % i ;
1 -— — 1 — —
3uijjodoiny 160 ¥4 HW | €0 ¥¥4 HW
e H !
i i
1 1
) t
H :
uonesoj _NMMHMM SpI099Y J[ney sanijiqe
1915139y : SpIAOIY Ipiaold

ureq0

f f 3

s

———— WYN403)y ~ 1043U0)) Uy > <« aurSuzg aouasafuy — josuo) sy ————p

339

H.3 FRI Agent Control Diagram

91dwoo
uonviasdasnuy

w PIOdIY 1Ne

~ 1aadimuy
aremyos uoneradsdinuy

p10o3Yy Yneg uny

|

piooayine

plooay 3ney]
IXaN 199]°S 21pados

piooaYdiined| uonesidisu]

uoneso|
1915189y

sjuaptou]
POy IUp]

ureiqo

picoayyne

uonezardiuy

3[npayos

.
£ A HW *
81 YA HW

<

$pi0o3y [ne4
poAaLnay
ureiq0

I 44 HAN

Sp1029Y Jneq
pawidinu]
apirosg

sanifiqe
apiaoid

£0 ¥4 HW

wzn_\qm.ﬁa

i

7 Y

S

——— w081y ~ josguo) uasy

—> <

auSuzy aouasafuy — josuo)) sy

%

‘

|

N

340

H.4 PVD Agent Control Diagram

19dwoo

uonvplvA
gopoiy) [wps)
LONANOL] ﬂ w UOLDAL0§ *
f Uiy DA IRETRN \.
|00, UOnEpI[EA
uondN0IJ UNy
(s)picoayyne ﬁ
pajaudiajug A r UuoHEPIEA INPIYISTY
. piooayiined
epny| pajaudia|
¥ s
1 Juspiou| 1 90 dAd HIW
uotepIeA 3NpaYdS \ : ¥0o
] - -
DONINRS [T o ovaniney | UCTEPIEA : ") [1°GAd HA
pajasdiajui : anpayds SPIooFY e
+ uonEpIEA pataadisyuy
usprul wapu) dojanag ureigo
SR e d
180°AAd HIW
sup1dU] suoday uonepies
H_mwouo_ Paynup| uonIN0IJ mu_”_mhﬁ
182§ UKo sp1noig P
4 L) W
———————— Wyns08)y - jos3u0) ISY > 4 awn8uzy asuasafuy — jo4u0) JUISY e

341

