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Abstract

In recent years, the Artificial Intelligence community has embraced
computer games as a key platform for research and application. This
has ranged from exploring different games for new challenges, to
applying trusted AI methodologies in commercial software. However,
much of the applied research has focussed on the creation of reactive
agents; software designed to adapt to circumstances as they arise while
achieving a local, predefined goal. This often leads to AI game players
that neither reason about distant goals nor reconsider their actions
should events alter the state of the game significantly. Research in the
field of Automated Planning and Scheduling specialises in abstract,
model-based deliberation that could resolve these issues. Despite this,
it has been given little attention in games research to date.

In this thesis, we chronicle an endeavour to integrate model-based
deliberative tools found in planning with robust reactive control in
a continuous and dynamic game. This is achieved by designing a
layered agent architecture that adopts the JavaFF planning system
for decision making, while relying on established reactive control to
interface with the world. To create our reactive actuators, we apply
Evolutionary Algorithms to Artificial Neural Networks; a common
approach for agent design. These neural networks are then merged
using the Subsumption paradigm, a top-down hierarchy that decom-
poses control into unique facets of behaviour while dictating order of
precedence. Our research explores the challenges in interfacing the
planner with a library of reactive controllers, how plan actions are
broken down for execution, and issues that arise due to adversarial
agents, uncertainty and inaccurate world models. Our end product
provides a unique approach to plan monitoring and execution, creating
a goal-driven and reactive agent controller. Through the use of robust
and decoupled components, our agent is capable of achieving long-term
goals while adapting to new situations and reacting accordingly.
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Chapter 1

Introduction

It is equally wrong to speed a
guest who does not want to go,
and to keep one back who is eager.
You ought to make welcome the
present guest, and send forth the
one who wishes to go.

Homer, The Odyssey

In every walk of life, we are faced with decisions that make and shape our
destiny as it unfolds through our lifetime. Each decision you make changes not
only your life, but also the world around us. Changes made, and their impact
on the world are dependent on the person making the decision that instigates
the change and their status in the social/political structure of modern society.
However, it all relies on the same underlying principles, irrespective of the impact
or importance of that decision, be that determining whether to get out of bed
one morning, or to prepare for international conflict. Ultimately, we rely on our
understanding of the world and how lives, our own or those of others, will be
affected by that change.

That is not to say that all decision making is the same, since the decision of
senior political figures to deploy a military force is driven by the desire to provide
security and reassurance to the people of that country - and also slightly less
altruistic virtues. Meanwhile, you the reader have probably contemplated what
you want for your breakfast/lunch/dinner today. This decision will be driven by
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you probably feeling hungry, your preferences in food and your lifestyle habits.
However, in the grand scheme of things both of these are incredibly important
decisions: since irrespective of how secure your country is, failing to eat will starve
you to death. Conversely, we feel it best that government officials never make
important decisions on an empty stomach.

But why did you make that choice at that time? Why did we drive that
particular road through town? Why do we spend half of our day working in
a job? Why am I drinking a cup of tea whilst writing this? Heck, why am I
even writing this thesis and why are you reading it? The reasons behind each
of these decisions, irrespective of selfish or altruistic reasons, are driven by our
desire to complete prescribed tasks that, in time, lead to some form of reward.
Such a reward can be explicit and immediate, such as getting home from work 20
minutes earlier, to something long term and implicit like improved health or the
respect/love/admiration of friends, family or colleagues. Ultimately, it is about
making the right choice at the right time given our knowledge and understanding
of the world and how we can improve our lives, and those we care about, as a
result. Our ability to reason about the world through thought and deliberation,
and instinctively react to situations with such competence and clarity, is what
separates us from other creatures on this planet. As such, the ability to replicate
these intelligent thought processes for use in industrial/commercial/scientific
applications without the need for a human to be present would carry great
potential. This led to the creation of Artificial Intelligence (AI), a scientific
pursuit to engineer intelligence in a computationally sound form:

Artificial Intelligence (AI) is the study of intelligent behaviour (in
humans, animals and machines) and the attempt to find ways in which
such behaviour could be engineered in any type of artefact. (Whitby
[2003], pg. 1)

Historically, the idea of “intelligent behaviour” has been strongly debated within
the AI community. It has been argued that we should use human intelligence
as the example, creating machines that think or act like humans. However, as
research in AI has grown, it has encompassed fields as diverse as computer science,
discrete mathematics, logic, economics, psychology and even philosophy (Russell
and Norvig [1995]). This has weakened the argument to rely on human intelligence
as the benchmark, since many of these fields still debate how it actually functions.
Hence, a more contemporary interpretation of the AI mandate has arisen that
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revolves around the concept of rationality, and how it may be applied to a decision
maker called an Agent. Rationality and agents are the cornerstone of the AI
textbook ‘Artificial Intelligence: A Modern Approach’ by Stuart Russell and Peter
Norvig and are described as follows:

[Rationality is] an ideal concept of intelligence. . . A system is rational
if it does the “right thing", given what it knows. (Russell and Norvig
[1995] pg. 1).

An agent is just something that acts (agent comes from the Latin
agere, to do). . . A rational agent is one that acts so as to achieve the
best outcome or, when there is uncertainty, the best expected outcome.
(Russell and Norvig [1995] pg. 4)

Essentially, if any person or automaton makes the best action in any circum-
stance, then it can be said to act rationally and will yield optimal returns. Note
that it is argued by the authors that rationality is an ideal intelligence, rather
than any intelligent behaviour. Whilst humans are intelligent beings, often our
decisions are irrational as they are affected by our point of view or perspective1.
Ironically, rationality is what separates AI systems from their human creators.

So how does an agent act rationally? Do they react to situations as they
happen? Do they deliberate on the problems at hand to find an optimal solution to
a distant goal? Do they explore the world and behave according to the knowledge
they have accrued along the way? In short, the answer to all of these situations
is yes - provided the best action is taken. Different approaches for rational agents
have emerged as a result of the myriad of sub-disciplines in the AI community.
Within these disciplines, many provide unique and interesting takes on the reactive
and the deliberative agent. However, there is a great divide that separates reaction
from deliberation; while the former acts on the knowledge of the present, the
latter relies on understanding the world in general and how actions may affect it
in the future. In this thesis we are interested in trying to merge these types of
behaviour together to create a rational and robust agent for a game environment.

In this introductory chapter we aim to give the reader an insight into the
fundamentals of rational agents and the challenges provided by applying them to
game environments.

1Our personal or religious beliefs, desires or motivations
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1.1 Rational Agents

Computers can do that?!!

Homer, The Simpsons

Here we introduce the key concepts and fundamental models required in order
to construct rational and robust AI agents.

1.1.1 Agents and Environments

As previously noted, in modern AI literature the primary decision maker is often
referred to as an agent. An agent is often determined by the world it must interact
with, called the Environment. The agent is responsible for making rational
decisions on how to act within this environment. These actions will in most cases
instigate change in the environment and possibly the agent itself. These entities
interact continually, resulting in a cycle of perception and action by the agent. We
can refer to any type of AI system designed for rational decision making within
an environment as an agent. Furthermore, an agent may be a hybrid of intelligent
systems, with the purpose of becoming more effective in its prescribed task. A
task will often be a set of conditions in the world that the agent must achieve, and
will often require multiple interactions with the environment to achieve it. These
tasks could potentially range from low-level goals, e.g. avoiding a nearby obstacle,
to more complex and abstract achievements, e.g. navigating through a building.
Irrespective of the task, the agent will aim to maximise utility by completing tasks
as efficiently as possible. In order to effectively accomplish prescribed tasks, an
agent ideally requires several important components, notably:

• A consistent and accurate model of the environment.

• An understanding of how actions affect the environment.

• A measurement of success and conversely, a measure of failure.

The first two points are the most challenging, since different environments in
the real world vary in attributes. For an agent to operate, it must be aware of
the qualities of the environment. Once we can characterise an environment, we
can begin to address how to model it for problem solving purposes. According
to Russell and Norvig [1995], any environment can be conceptualised as follows:
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Fully or Partially Observable : Observability relates to the amount of infor-
mation available to the agent relative to the task at hand. If the agent
has access to all information relevant to the decision making process, then
the environment is fully observable. Otherwise we operate under partial
observability, where we are not privvy to all factors relevant to our choice of
action. A simple example of this is the game of poker: where we are only
aware of the cards in our hand and at best an educated guess of what cards
other players may be holding.

Deterministic or Stochastic : In more simple circumstances we assume a
Deterministic world, where our actions will always result in a specific
outcome. However in uncertain (Stochastic) environments, we must develop
an understanding of how likely it is that a future scenario can arise based
on a particular action being carried out.

Episodic or Sequential An Episodic environment requires that an agent select
an action irrespective of the previous episode. Furthermore, the selected
action should have no effect on the subsequent episode. Meanwhile Sequential
environments, such as chess, require the agent to consider the actions it has
taken previously and the consequences of future actions.

Static or Dynamic An environment such as chess is considered Static as the
environment does not change during deliberation. However, a car racing
game would be considered Dynamic since the world is changing as the player
thinks, forcing them to consider actions faster and more frequently.

Discrete or Continuous Such distinction can be made based on the way in
which time progresses and the way the environment is modelled. A game of
chess would be considered a Discrete problem, due to the finite number of
board configurations and their distinct separation through players moves.
Unless playing with a clock, time has no relevance to this problem. Mean-
while, a racing game would be considered Continuous due to the effect time
has on decision and progress and the consecutive scenarios that occur as a
race progresses.

Single or Multi-Agent We must define which entities exist in the environment
and affect the overall problem. However, we must consider whether such an
entity has behavioural traits that merit consideration as an agent, rather
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than simply as a dynamic element of the environment. They may be an
opponent as in a game of chess, or a cooperative agent whom we may need
to communicate with.

These attributes define the features of the environment; however they do not
necessarily dictate the difficulty of subsequent problems. Naturally, if we are
dealing with a non-deterministic environment with imperfect information - acting
in a world we know little about and are unsure of how our actions will affect
it - then we are (typically) dealing with a very challenging problem. This does
not necessarily mean that an environment where we know everything leads to
trivial problems. Perhaps the simplest and most recognisable of these problems
is a Rubik’s cube. We can see every part of the cube’s surface and know how
our immediate actions change that surface; thus, the cube is deterministic and
fully observable. As a result, the majority of people who have ever been faced
with a Rubik’s cube will understand how one works, but how many people can
solve it? A slightly more complex example is the game of chess, where we can
see all pieces on the board (fully observable) and we know how each piece can
be moved (deterministic). However, playing chess well is very difficult. This is
due to the sheer number of different moves that can be made throughout a game.
Furthermore, it is a multi-agent problem, since an opposing player adds another
dimension of complexity to the game. Now we must also consider every move
made against our agent and how it may constrain future action selection. This
selection of potential actions, referred to in search literature as branching factor, is
too large for most people to comprehend, even when constrained by an opponent’s
choices. Therefore, it is often necessary to reduce selection across a set of useful
actions. While there has been success in creating a chess playing computer system
- IBM’s Deep Blue - this arose thanks to supercomputers that traversed hundreds
of thousands of potential actions throughout any given match (Campbell et al.
[2002]), with very little informed decision making taking place. Ultimately it is
the features of an environment and the decision space they create, that dictates
the difficulty of any problems it may present.

Once the rules of the environment have been established, we then require some
type of representation or model that the computer will understand and process.
Modelling an environment and its characteristics is often one of the most time
consuming and difficult aspects of problem construction. This is in part due to
the wealth of data that can potentially be represented, raising questions of how it
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should be represented and how much should actually exist within the model. As
a reactive agent, we may only want to consider that which is relevant to our goal
and that which we must react to. Meanwhile, for a more deliberative system, we
may only be interested in the more abstract changes our existence may have in
the world. As such we may ignore much of the finer details in the world as they
are irrelevant. These issues amongst others must be addressed once we decide on
how we wish to solve a problem within the environment.

Finally, a measurement of success is required in order for us to solve a problem.
Like any rational agent, even AI requires a reason to go about its business. An
agent requires not only a Goal to satisfy, but a means to measure how close it
is to reaching that goal. Think of any action you do in your everyday life, it is
never carried out merely because you can, but rather because there are goals that
need to be satisfied. One works a regular job, eats lunch and attends a gym on
a normal day because they have goals to earn money, stop feeling hungry and
maintain fitness. Ultimately, we require a means to select and justify actions
based on the (perceived) value of their outcome and whether they bring us closer
to satisfying our goals. Perhaps unsurprisingly, even AI constructs require the
same thing.

Problem Modelling

In research the agent is often assigned a challenging task it must complete, typically
by interacting with the environment in order to generate a particular State; a set
of specific conditions set by the researcher. This relies heavily on not just the
model of the world, but how our measurement of success relates to the model.
Even from our limited experience, we have observed that this is perhaps one of
the most challenging, yet exciting, aspects of research, since we must spend time
considering the many facets of the problems we wish to solve. Notably:

• How do we model the problem to store it on the computer?

• Given the model, what kind of decision-making process can then be used to
solve the problem?

• Is the measurement of success in the model sufficient? Or is it necessary for
us to create a supplementary reward structure specifically for this problem?

As we stated previously, the ‘world’ we wish to consider will carry many
characteristics that dictate how we model it. For example, we may model board
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games such as chess and draughts1 in a similar fashion given that they are both
board games with similar rules. However we would model backgammon differently
as the rules and characteristics of the game differ. One must also consider the level
of granularity that must be applied to the model, i.e. how much detail is applied
based on the level at which we view it from. Granularity is strongly dependent
on what kinds of problems you wish to solve and the kind of decision making we
wish to focus our interests upon. This is important as we do not want to take
on any unnecessary information in order to solve the problem, nor do we wish to
make the problem any more challenging. For example, if we consider an agent
that decides how to navigate through a building based on observing directions
found on signs to a goal location, do we need to model the mechanics of the leg
or wheel being used to move the agent? Do we need to model the contents of
each room in the building? Answering these questions is an important aspect
of the modelling process and is defined primarily by the scope of the research
and also the methodology that we wish to apply. Hence, in circumstances where
multiple methodologies are applied within a framework or achitecture, there can
potentially be multiple models of the same world tailored to suit each approach.

In order to facilitate an agent’s ability to reason, and potentially learn, about
the environment, we require a measurement for success. This is achieved through
Reward, conceptually a numeric value that measures how valuable or desirable
a particular state is and the action used to attain it. Naturally, these rewards
are structured with respect to the environment and the goal. This can then be
tied into a search or learning construct (as we shall see later) to provide a useful
metric for performance. Typically, a rational agent’s goal is to accrue as much
reward as possible.

An example reward structure for chess or draughts would simply dictate
winning or losing a match and how close a particular state is to achieving that
goal. But you may wonder how this is effective given the large number of moves
to win one match. If we were to provide a reward for each subgoal, such as the
taking of a piece, then a decision making system may become too wrapped-up
in taking specific pieces as effectively as possible, without looking at the bigger
picture (Sutton and Barto [1998]). It is important to ensure that rewards are not
only easy to quantify but are then propagated through the environment’s reward
structure effectively to ensure optimal performance.

1Also known as checkers.
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1.1.2 Solving Problems in the Environment

In the previous section we explained in broad terms the role of an agent in an
environment and how it must then create a robust computational model in order
to reason about it. However, these models are often dictated by the type of
problem a researcher is keen to address. Like many other complex problems in
engineering and science, there is no ‘silver bullet’1 to rational decision making and
as a result there are a variety of different disciplines within the AI community
that address many different problems. It is beyond the scope of this thesis to
identify and summarise all of these areas, but we now give a brief account of two
areas of interest, notably reactive and deliberative control.

Reactive Control

Reactive actions are an example of common human behaviour and are an area ripe
for exploration in AI disciplines. Unlike deliberative action selection, often referred
to as Action Theory (White [1968]) by philosophers, reactive or reflex actions are
often taken from a more biological perspective. Reflex action or simply ‘reflex’ in
humans is considered an involuntary and virtually spontaneous movement of the
body as a response to a stimuli (Purves et al. [2004]). These responses range from
tendon reflexes to actions within the central nervous system. In fact it has been
argued that basic functions such as breathing, digestion and heartbeat are reflex
actions. In short, a reaction is a simple response to a series of signals fed from
our body’s senses.

Our previous work in Thompson [2006, 2005] focussed on low-level decision
making for reactive agents; where the agent must consider what actions to make
at every discrete time point. Low-level decision problems, like reflex actions,
must factor incoming readings from agent sensors and subsequently interact with
components in light of this information. Motor control in robots and autonomous
vehicles is a fine example of this, where the AI system responsible will be fed data
from a variety of sensors. The agent will then be required to interface directly
with the motor controls to effectively and immediately respond to the stimuli
fed to it. These are often complex and challenging problems that require the
agent to handle a variety of inputs and outputs in real-time. Due to the level
of granularity and the scope of the data used by reactive agents, they are often

1The term often used to signify the one and only solution we will ever require to solve all
problems in a given problem area.
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constrained to solving local problems with immediate effect. Furthermore, they
are incapable of reasoning about larger issues that pertain to the sensor data
they can receive. For example, we can create a reactive agent that may learn to
navigate an environment using the sensor data. But this data, and the reactive
nature of the agent, would be insufficient for finding the optimal path through
the environment.

For a reactive control problem, there are two distinct paths we can take. Often
these problems can be solved using a hand-written solution created by a human
designer, where we simply dictate action based on a certain state. However, in
a worst case scenario, there may be a substantial number of similar states with
only minor differences that have no defined action. It may be the case that an
existing choice would be sufficient for these similar circumstances had the designer
accommodated for it.

The human brain is often capable of compensating for these issues, since a
sharp mind will recognise the situation regardless and act according to instinct.
This occurs since, while the circumstance may differ, the general case remains
the same. This ability is referred to as generalisation and is a natural process
of the human brain. However, to apply it computationally requires structured
mathematical models tailored to suit the specific problem.

A popular remedy is to apply a machine learning algorithm to learn what
action should be made in each state. These learning methods often consider
how we can Generalise action selection by recognising similar scenarios and then
attributing a particular action to satisfy them. However, generalising a problem
can often be very challenging, as there may be hundreds or even thousands of
similar situations that are then placed under the same heading. This issue is often
resolved through the use of a function approximator, which acts as the decision
maker and approximates the best action to take in a given situation by generalising
the possible states. A common function approximator is a computational model
known as a neural network. Neural networks, when trained correctly, provide
a powerful, customisable and computationally cheap tool for creating reactive
agents.

The application of neural networks for reactive control is key to our research.
We explore the background and effectiveness of neural networks in Chapter 2,
followed by exploring our own work in neural net application, in Chapter 3.
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Deliberative Reasoning

In contrast, there are also a variety of systems that deal in deliberative reasoning.
These decision processes often operate on a symbolic level, resulting in an abstract
model of the world they describe, but seldom interface with it directly. A prime
example being the research field of Automated Planning (AP), where the system
is responsible for making series of high-level decisions to achieve future goals.
However, given that an AP system operates on such abstract levels of reasoning,
it is incapable of considering lower-level decisions.

Automated Planning is a discipline within the AI community that aims to
achieve one of the most fundamental concepts of human intelligence; the delibera-
tion process that dictates action selection and ordering based on our understanding
of future outcome. Planning is a resourceful activity when dealing with large,
complex and even unfamiliar situations by stripping the problem to the fundamen-
tal concepts prior to any reasoning. This process is highly valuable in a variety of
different real world scenarios, ranging from everyday situations such as planning
your day’s trip through the shops to the safety critical and risky situations found
in power stations, disaster recovery and autonomous vehicle control (Rajan et al.
[2009], Bernard et al. [2000]). Often in the latter situations we can be dealing
with large problems that carry a high cost for any action that is carried out,
potentially including loss of life, hence we require not just good, feasible plans but
we need them quickly. These human faculties are one of our definining intellectual
characteristics, hence the drive for automation by modelling this deliberation
process computationally.

The variety of research in the AP community seeks to harness the deliberative
power that planning can bring and apply within a variety of applications. The
potential for tools that give users access to efficient and effective planning resources
is certainly attractive. Engineering and logistics often rely on planning based tools
to optimise performance, predict overall cost of materials and project lifecycles.
While there are a significant number of current applications and success stories, AP
as a research field is still in its infancy. Seminal breakthroughs in automated
planning led to the use of representations for abstract decision problems, yet there
is still a significant amount of work to be carried out in exploring additional forms
of complexity, ranging from the control of resources through metrics to the addition
of multiple actors and the management of time and scheduling actions within
a specified timeframe. Furthermore, while current AP technology works well in
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discrete, deterministic, fully-observable, single-agent problems, applying these
principles to continuous, non-deterministic and stochastic systems is a vibrant
and active research field.

Our interests are in applying the classical - deterministic, discrete, sequential
and static - form of planning to a complex, dynamic game. While these are
tried and tested methods, there are challenges in employing them for deliberative
reasoning in such a challenging environment. These range from how best to model
the problem at hand, to the level of detail that is applied to the model. Can we
model the environment to a reasonable degree and rely on more granular forms of
reasoning to take control? Can we then exploit the power of a planning system to
provide alternative solutions if things go awry?

In Chapter 2, we provide a complete breakdown of the classical planning
approaches and representations; with a succinct technical background as well as
highlights of important research in the community.

1.2 The Challenges of Game-based Research

If you watch a game, it’s fun. If
you play at it, it’s recreation. If
you work at it, it’s golf.

Bob Hope

In this thesis, we explore the creation of reactive and deliberative agents in a
game environment. At this point we wish to highlight the usefulness of applying
research within game or toy environments. We begin by addressing the use of toy
domains for problems, followed by the benefits of AI research in games. Finally
we explore the impact this has on both AI research as a whole and the video
games industry.

Use of Toy Domains & Simulation Historically, toy domains are often
necessary to explore and test new algorithms and ideas. Furthermore, these are
often developed as a simulation due to the impractical costs of manufacturing
and developing systems for the real world. As we will see later in this thesis,
we implement some of our research in the EvoTanks domain, a simple game
involving tanks that are assigned different tasks. Not only is a simulation of this
environment far easier to manipulate and control, it is far more cost effective.
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After all, we sincerely doubt any PhD student receives sufficient funding for the
use of full-size tanks to have them repeatedly destroy one another.

Furthermore, a simulation of a problem carries many assumptions that benefit
the researcher. In these circumstances we remove many of the implementation
problems that would challenge the engineer responsible for manufacturing the
physical equivalent. This allows the AI researcher to focus on designing the agents’
decision making process. This scenario is common in a variety of AI research,
since many intelligent systems require test problems to ascertain the effectiveness
of the technology, as well as simulation test-beds to visualise how the system
would operate when plugged into the intended, no doubt expensive, hardware.
This in turn often leads to more effective research, as it permits greater freedom to
explore ideas and try additional tests without budget and, in some cases, temporal
constraints, since a simulation can operate faster than real-time.

AI & Games Applying AI practices to games is now a popular avenue for
research and development. Games are a fantastic test bed to explore the application
of AI methods given their complexity and the challenges they present. Typically,
these games present an established problem domain with a set of actions a player
can apply in an environment to achieve a goal. During play, the player needs
to make informed decisions to ensure their progress. These decisions can range
from reacting to nearby events, or acting towards achieving tasks across a larger
time frame. As they progress further, they are rewarded for their efforts, with
an impetus to continue playing to achieve the final goal of the game. As you
may have already surmised, these traits sound similar to the AI concepts we have
discussed so far in this chapter.

The practicality of applying AI to these problems also applies to video games.
In fact, it could be deemed more practical given the larger range of problems
video games provide and the fact that any existing game software is essentially
a problem simulator; by providing a challenging problem domain that can be
interfaced with using the actions available to the human player. By interfacing
an AI agent to the software directly, rather than through a keyboard or controller
peripheral, we can introduce a range of complex and interesting problems to
researchers. This in turn can benefit game developers themselves since to date, the
control of cooperative or adversarial characters in video games is often reactive.
Furthermore, this reactive behaviour is dictated either using hardcoded behaviours
or, at best, simple AI practices. Moreover, there is a lot of room for improvement
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in these behaviours, ranging from the creation of more robust reactive control, to
the use of deliberative agents that could provide assistance or genuine competition
to the player.

Research in Games-based AI Whilst research in games is not novel, in
recent years a growing community of AI game-based researchers has emerged. A
prime example of this can be found in the IEEE Conference on Computational
Intelligence and Games (IEEE CIG); an international academic conference that
occurs on an annual basis, with the purpose of disseminating and promoting
research in theoretical and applied AI research in games. Furthermore, in the
United Kingdom is the Engineering and Physical Sciences Research Council
(EPSRC) AI and Games Network, a networking community that convenes several
times a year for workshops. The intention of the network is to provide a meeting
point for academic game-research enthusiasts and representatives from the UK
game industry to come together for discussion and potential collaboration. The
benefits of these organisations are twofold. Researchers have become increasingly
aware of the benefits of applying AI practices to games, to the point that there are
now respected members of AI communities advocating their application (Laird
and VanLent [2001]). Such applications range from the ability to construct
test problems in established and robust simulators, to being able to observe
the performance of these AI constructs as they interact with the human player.
Meanwhile, the games industry is now taking an active interest in the potential
benefits that AI can bring to their products, from reducing development time to
enhancing the overall experience for the player.
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1.3 Research Goals
I’ll tell you the problem with the
scientific power that you’re using
here: it didn’t require any
discipline to attain it. You read
what others had done and you
took the next step.

Dr Ian Malcolm, Jurassic Park

In this section, we give the reader a clear indication of our research goals,
the steps we intended to take in achieving them and how this is reported within
the thesis. However, we begin by providing background on our previous research
that led to our goals being formulated. Next we discuss the concept we wish to
explore and the contributions it will provide to the research community. We then
highlight each of the research goals this project tackles, identifying the areas of
the thesis that address them.

1.3.1 The Idea. . .

Our previous work focussed primarily on creating reactive control for low-level
execution problems using the aforementioned neural networks described in fuller
detail in Chapter 2. We applied these neural networks to a dynamic, continuous
game environment called EvoTanks, which forces tanks to compete with one
another in a small enclosed arena. This was achieved by comparing different
forms of evolution-based machine learning algorithms that trained the neural
network controllers. These evolutionary algorithms searched for solutions against
a defined criteria, with the reactive controllers gradually evolving to satisfy our
requirements,

However, after our research detailed in Thompson [2005] and Thompson [2006]
was completed, the benefits and drawbacks of the approach had become apparent.
These reactive controllers, while capable, were limited in scope in terms of their
flexibility and functionality. While each controller was robust and its behaviour
effective, they could only solve one simple goal. This reflected much of the work
to date in video game AI. Hence we wished to explore how we can build a reactive
controller that required deliberative faculties; an agent that would need to decide
on multiple actions to complete an assigned goal. Such deliberation could readily
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be achieved using planning and scheduling methodologies, the challenge then
being to find a feasible means to include such high level deliberation while still
interacting with a dynamic game in real time.

The fusion of planning and execution is far from a novel concept, with a
plethora of research in monitoring and execution. Many practical applications
can be found in sensitive and safety-critical situations such as the aforementioned
control of autonomous underwater vehicles and spacecraft. However, given the
risk and substantial cost of these scenarios, these systems are often monitored
by a team of human experts with actual execution being carried out by carefully
hand-crafted and rigorously tested controllers. As such, we considered applying
our trained reactive controllers in an architecture that allowed them to represent
and satisfy the conditions and intentions of actions modelled in a classical planning
system. To our knowledge this was a rather fresh yet interesting application of
neural networks. Furthermore, it was also an opportunity to highlight how classical
planning could be applied to a dynamic and continuous game; an approach that
to date had been ignored by the community at large. Finally, this would provide
a natural extension to our previous research whilst also exploring the challenges of
complete autonomy in plan execution; a synergy between an abstract deliberative
process with a collection of low-level reactive controllers that satisfy the planner’s
intent.

However if we were to apply these neural nets within an agent controller, we
had to ensure that they would not only be sufficiently robust, but capable of
handling a range of complicated tasks. To date our agents have been effective but
did not ‘scale-up’, i.e. if we made changes to a problem in the EvoTanks game to
make it more challenging, then our agents proved incapable of solving it. This
inability came from the use of neural networks as a reactive controller and the
simple learning algorithms we had applied to date. Hence we wanted to explore
methods that would allow us to create and subsequently solve more challenging
problems while maintaining a simple yet effective approach.

1.3.2 The Contributions

This work would provide two significant contributions to the research community
and established literature. The largest contribution this would give is a powerful
application of automated planning and scheduling technologies in gaming. As
discussed in the following chapter, little work has been applied to date in applying

16



Chapter 1. Introduction

automated planning within the computational intelligence and games field. The
majority of research to date focusses on the creation of action policies for agents
using machine learning algorithms. Typically the end product of these algorithms
is an agent that is reactive in nature and can respond to changes in the environment,
but cannot deliberate on long-term goals. By applying planning as a deliberative
component, this can be realised, provided we still have a significant reactive
component that can interface with the environment.

The requirement for reactive control to interact with the world leads to our
second significant contribution: notably that our intended agent architecture
will merge a planner with reactive controllers. As we previously discussed, the
merger of planning with execution is not a novel concept. However, it is typically
associated with high integrity systems where there is a high risk of potential losses.
This is not the case here, given that we are operating in a simulated environment.
As a result, we can explore the potential of applying different control mechanisms
for execution. By introducing neural network controllers as the reactive control
element, we explore a different approach to plan-driven execution, while also
highlighting to the computational intelligence and gaming community that such
controllers can be employed in a novel fashion.

The use of the neural networks and the planner combined will also lead to an
agent that is not only intelligent, but computationally cheap to and autonomous
in execution. While there will be a processing overhead to develop the actual plan
of action, the execution will be intelligent and fast provided the neural network
controllers are trained sufficiently. This will lead to a complete autonomy in
the system from top to bottom, allowing us to craft to intelligent agents that fit
specific problem domains.
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1.3.3 Research Goals

At this juncture we now state each of the main research goals we aim to achieve
in this thesis. These research goals are the key questions we seek to answer as
our work develops. Furthermore, we indicate how these will impact our research
contributions, the challenges they provide and the areas of the thesis that address
them.

• To create an effective agent controller that incorporates deliberative reasoning
based on a discrete, deterministic model in the context of a continuous and
dynamic game environment.

This goal seeks to address our desire to apply classical planning to games.
Naturally there are a series of challenges that we face in creating the
necessary models to function within a game environment. To understand
how to create the models we must understand how classical planning systems
and their representations work. This allows us to understand the power and
limitations behind their usage. We explore how classical planning models
are constructed in Chapter 2. Furthermore, we introduce a challenging game
environment in Chapter 4 and discuss in depth how we create a discrete and
deterministic model based upon it.

• To explore a new evolution-based learning methodology that allows us to
train our simple neural networks to solve more challenging problems.

As previously noted, our application of evolutionary learning algorithms will
not allow us to scale our reactive controllers to more challenging scenarios.
Given our intent to use them in a challenging new game environment, we
needed to ensure that they were robust and effective in their prescribed task
if we wish to attain a reliable autonomy in our architecture. To understand
how this learning methodology is created, we begin by providing a breakdown
of evolution based methodologies in Chapter 2. In Chapter 3 we explore this
goal in detail, discussing the agent design, the learning methodology and
an extensive series of tests. The results of this work proved strong enough
to merit publication at conference level in Thompson and Levine [2008].
Further work in this area was conducted by final year honours student
Fraser Milne under our supervision. This was published the subsequent year
in Thompson et al. [2009].
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• To integrate a classical planner with a collection of neural networks to
achieve deliberation and reactive reasoning.

This goal once achieved would lead to the most important contribution of
our work. This requires us to integrate work from the previous two goals
within our agent architecture. The work found in Chapter 5 addresses
this challenge directly as we create our new agent architecture. In this
architecture we build individual components that manage the planning
system and the collection of reactive controllers and test the complete
system in our new game environment. We then reflect on these results
and the benefits, drawbacks and contributions that this new architecture
provides in Chapter 6. The work in Chapter 5 has also been published at
conference level, as shown in our publication list, found in Appendix G.

• To build an agent controller that is effective at solving a range of complex
problems while comprised of relatively simple and robust components.

In order to ensure that we have created a fast and robust system, we sought
to ensure that the system is comprised of effective and small components.
This design choice can be seen throughout Chapters 3, 4 and 5 as we build
our modular planning system.

1.3.4 Challenges

Furthermore, our initial goals will lead to some challenging issues in implementa-
tion. Hence we are keen to provide answers to the following questions:

• How can we scale-up our reactive agent controllers without compromising
behaviours established in our previous work?

This was our biggest concern when seeking to create our new reactive
controllers. We address this concern in Chapter 3 by employing a layered
learning approach that is discussed in depth in Chapter 2.

• How can the reactive neural network controllers represent the planner’s
actions and how can we associate them?

When building our agent architecture, we needed to ensure that the ‘gap’
that existed between the planning system and neural networks was resolved.
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This is tackled in Chapter 5 through the use of a rule based system acting
as an intermediate.

• How do we compensate for factors such as enemy agents or artefacts with
quantified characteristics that cannot be modelled in a discrete, deterministic,
classical planning system?

This challenge is again another factor that needed to be addressed when our
agent architecture was created. We address this issue again in Chapter 5
through the use of the rule system.

1.4 Dissemination and Publication of Research

As highlighted in Section 1.3, the major components of our research found in
Chapters 3 and 5 of this thesis have been published at international conference level.
Given that our research is focussed on applying AI practices to game environments
we have submitted our research to the IEEE Symposium on Computational
Intelligence and Games. Our publications range from the major contributions of
our thesis in Chapters 3 and 5, to side-projects outwith the scope of this thesis.
As part of this thesis, we have provided a complete publication list at the time of
submission in Appendix G.

20



Chapter 2

Technical Background & Related
Research

If you steal from one author, it’s
plagiarism; if you steal from many,
it’s research.

Wilson Mizner

The research in this thesis crosses a variety of areas within AI. Due to the
breadth of work involved, it is important the reader be able to understand a variety
of different AI methods, at least on a conceptual level. This chapter provides
a technical background to the main research areas explored within the thesis,
namely the application of artificial neural networks combined with evolutionary
algorithms to create reactive behaviours and the use of automated planning and
scheduling for deliberative faculties. Furthermore, we provide an investigation into
related research in creating reactive agent controllers through machine learning
and advances in plan formulation, monitoring and control.

We begin by exploring the means by which we can create simple reactive agents.
This leads on to a formal introduction to artificial neural networks, followed by the
design concepts and history of evolutionary computation. These topics highlight
how, by combining these methods effectively, reactive control can be achieved.
Following this is an exploration into how evolutionary learning can be applied to
more complex situations, indicating a desire to ‘scale-up’ reactive controllers to
more challenging environments that require a breadth of functionality.
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The second half of this chapter explores deliberative reasoning technology,
starting with a breakdown of classical planning approaches and the traditional
representations used to model domains and individual problems. This is followed
by a brief introduction to a variety of advanced planning techniques, incorporating
metric optimisation, temporal planning and scheduling. Finally, to highlight the
work to date in merging deliberation with execution, we explore the integration of
monitoring and control systems with planning platforms.
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2.1 Evolving Artificial Neural Networks

In this section we explore the technical background and research history of appli-
cations required to create an effective reactive controller. While we could explore
the large variety of techniques available we focus specifically on the combination
of Artificial Neural Networks with Evolutionary Algorithms. Both of these tech-
nologies have proven to be very popular with researchers, a judgement based on
the vast wealth of research available and accessible via journals, conferences and
online resources. We endeavour to streamline this background section to provide a
succinct and straightforward clarification, focussing on elements important to our
research while highlighting other important areas for completeness and potential
further reading.

2.1.1 Artificial Neural Networks

My CPU is a neural-net processor;
a learning computer.

The Terminator, Terminator 2:
Judgement Day

An Artificial Neural Network (ANN) is a non-linear mathematical model
that processes information through a connectionist approach to computation; a
parallel distributed processing methodology that adapts individual units and their
connectors to generate interesting and intelligent output signals. Like many of
the methodologies explored in this section, ANNs incorporate features of natural
biological processes and constructs. The ANN specifically adopts concepts of
human neurology by mimicking the structure and functional design of biological
neural networks found within the brain. Traditionally an ANN is comprised of
a series of processor units called Neurons, interconnected by a series of links
called Synapses. A Neuron is connected through numerous layers of computation.
Typically these are organised in a series of layers that either interact directly with
the environment, as a result of being connected to input signals or act as actuators.
Otherwise they are ‘hidden’ within the structure of the network, i.e. they only
interact with neighbouring neurons in nearby layers (Russell and Norvig [1995]).

A simple example of an ANN can be found in Figure 2.1, where we see a
3-layer network consisting of nine neurons. Directed edges in this figure represent
the synapses as the output signal of each individual neuron is transferred across to
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Figure 2.1: A simple example of a layered, feed-forward artificial neural network
(ANN). This network is comprised of three layers: an input layer containing three
neurons, a hidden layer of four neurons and an output layer of two neurons. Note
the directed edges representing the synapses of the network, connecting each
individual layer.
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the next layer of the network. Connectivity within neural networks traditionally
involves layered topologies, where neurons from one layer are only connected to
the next layer, hence there are no connections between nodes within the same
layer, nor connections that skip ahead to future layers in the network. The two
most common forms of network structure are referred to as feed-forward and
recurrent networks. Feed-forward networks can be considered similar to a directed
acyclic graph, i.e. all links are unidirectional and there are no cycles within the
network. Meanwhile a recurrent network is not constrained in a similar fashion,
permitting the formation of arbitrary topologies.

Feed-forward multi-layer neural networks can often be considered as an effective
non-linear mathematical model of a desired function, providing a direct mapping
of some given set of inputs to a desired set of outputs. As a result, the ANN
acts as a function approximator that will, if correctly configured, generate the
appropriate output when required. Typically, these networks need to be tailored,
or as we shall see in Section 2.1.2, trained, to satisfy this function from an initial
(typically incorrect) state (Bishop [2005]). This allows agent designers to configure
a network to create a generalised and robust solution without the need for a
complex mathematical model by the designer. Perhaps most importantly, this is
one method of creating a reactive controller.

For an agent to achieve reactive control, we require that the agent is capable
of adapting behaviour with respect to changes in sensor data. Furthermore, we
also require these changes to occur quickly so as to ensure that the agent can
respond to changes as effectively as possible. This can be achieved by training
an ANN with respect to a particular task you wish to achieve. Once it is suitably
trained, the generalised solution will provide an adequate action policy based on
the incoming sensor data. Also, given the speed at which the output is generated,
the network appears to ‘react’ to changes in the sensor data. This means that an
agent driven by the likes of a trained ANN can be relied upon to act as a reactive
controller in a dynamic environment.

The reasoning behind the term ‘network’ in ANN is based on the assumption
that the ANN’s non-linear function f(x), is comprised of a series of individual
functions gi(x) for each incoming neuron. Furthermore, these can be considered
the summation of other functions. This leads to a network structure shown in
Figure 2.2, where the final function is dependent on the summation of those in
the preceeding layer and so on back to the original input x. The most typical form
of value propagation - which we use in this thesis - is a non-linear weighted sum
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Figure 2.2: A simple dependancy graph within an Artificial Neural Network. Note
that each function is comprised of a series of functions in the previous layer.

shown in equation 2.1. This equation computes the output value of a given neuron
using the collection of preceding functions weighted against a specific value w, and
a predefined function within the neuron itself K, commonly known as a Transfer
Function.

f(x) = K(
∑
i

wigi(x)) (2.1)

A transfer function defines the output of a neuron given the set of inputs.
In ANNs, the transfer function is designed to mimic the action-potential firing
within a biological neuron, with typically a binary output, i.e. either the neuron
is firing or not. In order to ensure robustness in a single neuron to both increasing
input space as well as the potential number of inputs, the transfer function
will be normalisable: conforming the potential input to within a defined range
(Haykin [2008]). Transfer functions differ based primarily on the designer’s
preference; however the two most common are the Sigmoidal (f(x) = 1

1+e−x ) and
the Hyperbolic Tangent (tanh(x) = sinhx

coshx = e2x+1
e2x−1).

Note that in Equation 2.1 that each of the preceding neuron functions (gi(x))
has a corresponding weight assigned to it (wi(x)). The weight vector ~w =
(w1, w2, w3, . . . , wn) is the key to modifying and tailoring a given network, allowing
for different patterns of behaviour depending on the values within the vector.
In the next section we explore the application of evolutionary algorithms and
specifically, how these search methodologies can be applied to optimise neural
networks for a given problem. Given the non-linear behaviour of ANNs, they
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are suitable for modelling complex relationships between input/output sets or
patterns of data. This in turn makes ANNs very effective for problems in pattern
recognition, function approximation, data classification and sequential decision
making.

2.1.2 Evolutionary and Genetic Algorithms

Mutation: it is the key to our
evolution. It has enabled us to
evolve from a single-celled
organism into the dominant
species on the planet. This process
is slow, and normally taking
thousands and thousands of years.
But every few hundred millennia,
evolution leaps forward.

Professor Charles Xavier, X-Men

In this section we explore the use of evolutionary and genetic algorithms; a
learning process inspired by biological evolution. Throughout we provide a quick
account of the history, definitions and terminology used, as well as a brief review
of the benefits and drawbacks of such learning algorithms.

Introduction to Evolutionary Computation

Evolutionary Computation (EC) is an iterative, parallel approach for improving
the quality of potential solutions to problems where Candidates1 move towards
more optimal solutions using a guided random search. As the name would suggest,
the method of improvement is dictated by Darwinian principles of evolution. EC
emerged from a variety of research by independent computer scientists in the
1950s and 1960s keen to explore the potential of applying evolutionary principles
to engineering problems. The field itself was defined through a range of different
approaches that, while sharing interests in applying evolutionary principles, pre-
sented unique means of implementation. Research by Fogel, Owens and Walsh
resulted in the field of evolutionary programming (Fogel et al. [1966]), where

1potential solutions

27



Chapter 2. Technical Background & Related Research

evolved solutions were represented through Finite-State Machines (FSMs); a sym-
bolic representation of state and transition. Evolutionary programming, coupled
with evolutionary strategies and genetic algorithms, led to the birth of the EC
community and provided the foundation for future research (Mitchell [1996]).

As time has progressed many more practices have been labelled under the EC
banner; such as swarm intelligence, artificial life, cultural algorithms and artif-
ical immune systems. To retain their identity, the three original practices are
commonly referred to in modern literature as Evolutionary Algorithms (EAs): a
subset of EC that use selection and modification practices inspired by biological
evolution, specifically the concepts of natural selection and reproduction through
crossover and mutation. Candidate solutions are considered individual members
of a Population where they and their environment is defined through a Fitness
Function; a function that encapsulates the purpose of a candidate and quantifies
its optimality with respect to the goals assigned to it. The population improves,
or perhaps more appropriately, evolves, through generational improvement biased
towards higher fitness solutions. Throughout these methodologies, future can-
didates can be formulated courtesy of modification operators. These operators
range from swapping subsections of encodings (crossover) to making minor fluc-
tuations to an existing encoding (mutation). Once more these are inspired by
real biological functions. In our research we focus specifically on two methods of
learning: evolutionary strategies and genetic algorithms.

The Evolutionary Strategy (ES) was introduced by Ingo Rechenberg in the
mid-1960s in the two seminal publications (Rechenberg [1965, 1973]), with further
development presented by Hans-Paul Schwefer in Schwefel [1975] that provided an
effective optimisation algorithm. ESs are an iterative approach that rely heavily on
mutation as a search operator to explore the local solution-space. An evolutionary
strategy often utilises problem-dependent representations for search and will
operate until some criterion is met that satisfies the designer. Often the point of
reference for the search is restricted to a small set of candidates, while selection
for advancement runs on a strict ranking of solutions by fitness. Depending on
the number of potential mutations permitted, the search process can fluctuate
from being an open, parallel search to a greedy random walk. The original ES by
Rechenberg was highly aggressive due to the restricted size of the population of
candidates. Only one solution was kept as the current point of search, with one
mutation per cycle. Should this mutation prove to be a more valuable solution
then it replaces the current best, otherwise it is discarded. This is known in
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literature as a (1+1) ES. More generally, λ mutations can be generated to compete
with the current best, once again with the best solution becoming the new point
of reference. This can be found in literature as a (1+λ) ES (Beyer and Schwefel
[2002]).

At the time of its conception, the Genetic Algorithm (GA) was a major innova-
tion when compared to other approaches within the ES community. The original
genetic algorithm was created by John Holland in the 1960s and developed further
by Holland’s collaborations with students and colleagues at the University of
Michigan until the 1970s. What differentiated GAs from both evolutionary strate-
gies and evolutionary programming was the general formalism that emerged from
Holland’s research (Mitchell [1996]). Holland’s published work found in Holland
[1975], presented the GA as an abstraction of the biological evolutionary process,
resulting in a theoretical framework for adapting evolutionary mechanisms. Hol-
land’s GA focusses on populations of Chromosomes; strings of ones and zeros akin
to a binary representation. Iterative improvement of a population arises through
a form of natural selection, a process that selects candidates for reproduction.
The key difference of the GA natural selection process compared to Rechenberg’s
fitness ranked ES was that fitter solutions would be capable of reproduction on
average. This allows for poorer candidates to survive in the population as means
of ensuring diversity while preventing premature convergence on sub-optimal
solutions. The selection process results in a ‘parent set’ of chromosomes which
is then used to create the new population. This is achieved through a mix of
crossover, mutation and inversion. Crossover acts as a simple implementation of
biological recombination by exchanging subsections of two chromosomes to create
new solutions. Mutation modifies values within the string stochastically while
inversion simply inverts individual bits in the chromosome.

Since a variety of applied methodologies have emerged within the EA commu-
nity, continued research has blurred the boundaries that exist between GAs, ES
and evolutionary programming (Mitchell [1996]). The term “genetic algorithm”
is used to represent a variety of research that differs greatly from the original
concept expressed in Holland [1975]. Often researchers rely on a (µ + λ) EA;
a contemporary evolutionary algorithm that relies on a population of parents
(µ)) with a set of mutated offspring (λ), with crossover as an additional operator.
While this could be expressed as either a contemporary EA or as an evolutionary
strategy, it will frequently be presented in published research as a genetic algorithm
(Mitchell [1996]). In this thesis we adopt such flexibility, given that the research
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contained here was inspired from the original GA concept but does not strictly
adhere to the representation and mechanisms.

Terminology

Here we provide a thorough explanation of the terminology used across a range
of EAs. The definitions given in this section are consistent with the majority of
existing research and are the basis of our experimentation with EAs throughout
this thesis. It must be noted at this point that there are no rigorous definitions
for EAs that clearly differentiate them from GAs. For the remainder of this thesis,
we will adhere to the terminology shown in Definition 1. In Definition 1, we
provide a simple indication of the fundamental components of any evolution-based
search algorithm. Furthermore a brief breakdown of the learning process is shown
in Algorithm 1.

Definition 1 A typical evolutionary/genetic algorithm is comprised of the follow-
ing components:

• A Chromosome definition: A concise representation of a point in the search
space, thereby creating a potential solution to the problem. The character-
istics and requirements of a problem will define the representation applied.
Traditionally a chromosome is a string of numbers bound within a strict
range. This can range from binary numbers to a more expressive range.
Inspired by biological notation, a chromosome is sometimes referred to as the
genotype of the solution, given that it is a structured, symbolic representation
of the final product.

• A Population of Chromosomes: A population must consist of a number
of candidate solutions. This allows for a parallel search given that each
candidate represents a unique point in the search space. The EA/GA search
is responsible for the management and gradual improvement of quality within
the population.

• A Fitness Function: A simple algorithm that scores the performance of a
particular chromosome within the population. This algorithm is required to
effectively grade each candidate with respect to a series of strict criteria that
define the problem. Naturally, this criteria is domain-dependent; as such,
the accuracy of any fitness calculation will also be reliant on the domain.
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In some domains our fitness function may give a 100% accurate measure
of solution quality, whereas in other situations it may only give a rough
estimate based on the user’s demands.

• Selection: A process that will select chromosomes from the population,
denoting them as a parent. Parents are a subset of the population that is
responsible for reproducing the candidates for the subsequent generation.
The selection process will be guided by the fitness function increasing the
probability of selection p(c) for a given chromosome ‘c’. Assuming a given
fitness function θ is normalised, as limθ(x) → 1 then limp(c) → 1.

• Variation: Once a parent set has been established, we must create new
candidates to be inserted into the population to continue the learning process.
Two of the most common forms of variation are established using crossover
and mutation.

– Crossover: A function designed to mimic biological crossover of parent
genes. This is achieved by swapping sections of the parent chromosomes
with one another, creating new candidate solutions from previously
successful ones.

– Mutation: A simple method that causes small changes to a given
chromosome. This will often be dictated by the chromosome formalism.
A simple example in a binary string may be to swap a 0 for a 1 at a
given point in the string. Typically mutation may occur with a small
probability at each position within the chromosome string.

The chromosome definition is one of the most important and challenging
aspects of EA design. A chromosome must effectively behave as a “blueprint”
for the final product (Mitchell [1996]), which can then be understood and later
translated for application. As defined, the chromosome exists as the genotype of
a given solution, providing a means to recognise gene patterns between individual
candidates. This genotype - for the sake of evaluation and later, practical use
- must be able to effectively translate to the application it is designed for (the
phenotype) and operative effectively. Conversely, the genotype must be designed
with sufficient care to ensure that it is capable of representing the intentions of
the designer.

The population of candidates can vary depending on the learning model ap-
plied. Traditionally we consider a snapshot of an existing population to represent
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Algorithm 1: A basic outline of an evolutionary algorithm, where each
candidate is assessed in turn, a parent set is created by the selection method,
and the population is recreated using the modification operators.
Input: The initial randomised population of chromosomes P and a given

fitness function θ
Result: An evolved population that is optimised with respect to the fitness

function.
Evolutionary-Algorithm(P,θ)1

for i← 0 to MaxGenerations do2

for j ← 0 to PopulationSize do3

candidate ← Pj4

evaluate(candidate,θ)5

end6

parents ← selection (P)7

for k ← 0 to PopulationSize do8

Pk ← modify (parents)9

end10

end11

return best (P)12

one generation. Given that evolutionary learning is an iterative process, we tra-
ditionally replace the contents of the population at the end of every generation
with new candidates. This is commonly referred to as a generational population
model, where future generations contain candidates created using selection and
modification operators. A popular alternative method is known as steady-state
populations, where the set of candidates is relatively fixed, with only a subset
of candidates being replaced in each cycle. Hence, when the selection/modifica-
tion process has created n new solutions, these will often replace the n poorest
candidates in the population.

Finally, the fitness function also requires a significant amount of attention,
since this is the primary form of assessment. It is important to consider how
the fitness criterion is established and what exactly is demanded by the user.
An EA is a parallel search that will potentially explore large numbers of possible
solutions. If the fitness function is not defined correctly, then incorrect solutions
will often emerge as a result. Furthermore, sufficient conditions or constraints
must be applied in the fitness function to prevent the search returning what could
be considered undesired yet ‘correct’ solutions1.

1A simple example: We are interested in creating an agent that does not collide with nearby
walls, so we devise a fitness function that scores the agent solely on how frequently it collides
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Another consideration is ‘noise’ that may occur in fitness computations, i.e.
small errors that may occur in sensor readings and calculations or fluctuations
in performance at a task involving some element of chance. Very noisy fitness
functions can potentially lead to uncertainty in determining just how ‘fit’ a
given solution is. Thus changes could be made to a chromosome that lead to
an improved fitness, however from the designers perspective the improvement
is marginal (Beyer [1998]). There is a common misconception that EAs are
resistant to noise due to their reliance on Darwinian evolution-based mechanics.
However, work found in Rechenberg [1973] showed that increasing noise levels
can severely impact the progress rate of a simple (1+1) ES. Two potential yet
simple means of noise reduction are discussed in Fitzpatrick and Grefenstette
[1988]; increasing the number of evaluations per candidate - thus averaging across
numerous measurements while maintaining constant control parameters - and
increasing the population size. In Chapter 3 we briefly discuss how we have tackled
this problem with the use of a large number of fitness calculations and a modest
population size.

In order to move from one generation to the next, we require a series of
operators that will create new candidate solutions that move us towards our
desired goal. In order to achieve this, we require the selection, crossover and
mutation operators shown in Definition 1. Selection is a crucial component of
the search process, given that it is responsible for deciding what solutions we
should continue to explore given their potential with respect to the fitness function.
Once we have made this selection, the crossover and mutation operators help to
introduce variation in the population by creating new candidate solutions from
the selected set. There are a variety of different selection methods that can be
used based on the user’s preference. We will now attempt to summarise some of
the methods commonly used in research.

Fitness-Proportionate Selection As the name would suggest, fitness-proportionate
methods weigh the probability of a chromosome being selected for reproduction
based on the fitness it accrued during evaluation. In rank-based selection, this
selection is dictated by ranking against the absolute fitness values of a solution
(Baker [1987]). However, in fitness-proportionate selection, we scale the candi-
date’s fitness against the average fitness of the population. The two most common

with nearby obstacles. Hence, the learning algorithm will find what is naturally the simplest
and most effective solution: an agent that doesn’t move.
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implementations are roulette wheel and stochastic universal sampling (Mitchell
[1996]).

Roulette wheel can be envisioned as the name would suggest, with each
candidate solution being visible on a wheel. However the size of each slot on the
wheel is proportional to the fitness of a particular chromosome. Hence better
solutions have a larger chance of being selected. The parent set is then created by
spinning the wheel several times until a sufficient number is selected. Stochastic
universal sampling was designed to circumvent the (very) small probability that
poor solutions can still fill the entire parent set using roulette wheel (Baker [1987]).
In this version, instead of spinning the wheel n times, it is only spun once. However
there are now n equally spaced pointers that select all of the parents at once.

Fitness-proportionate methods are often used since they can prevent stagnation
and maintain diversity within a population. If all parent candidates have high
fitness levels, this can lead to premature convergence of search, since it prevents
any real exploration from taking place. Also, once all solutions are strongly similar,
then the evolution will grind to a halt. It is in the best interest of the search to
have a population of varying fitness.

Tournament Selection Tournament selection is focussed on running small
‘tournaments’ between a number of chromosomes, with winners being passed on
for repopulation. We select a random cluster of solutions based on a specified
tournament size n. These n solutions are then ordered based on fitness, and the m
candidates (where m ≤ n) are then selected from the tournament. Traditionally,
the best solution is added to set m with probability p. This probability then
propagates such that the second best is selected with probability (p× (1− p)) up
to (p× ((1− p)n)) for the poorest solution. The tournaments are then run again
and again until we have sufficient numbers of parents selected. In deterministic
tournament selection - the method we have adopted - once ranking has taken
place the best m candidates are always selected. We can reduce the selection
pressure - the restricting force of selection that dictates future iterations - in the
tournament by increasing the size of the tournament (n) or by increasing the
number of solutions (m) retrieved per tournament (Miller and Goldberg).

Elitism Elitism is a rather simple addition to the selection process, typically
applied alongside the designer’s method of choice. In the seminal publication
by De Jong [1975], the selection process is forced to retain n of the best chromo-
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somes from the generation. Thus ensuring that the best chromosomes are kept
for future generations.

This highlights one of the challenges in evolving solutions to problems: since
fitness-proportionate and tournament selection ensure diversity in search, which
can lead to not having all of the top solutions in the subsequent generation. In
fact we state that having the parent set consist entirely of ‘fitter’ solutions can
cause premature convergence.

So why have two contradictory practices? We feel that it is important to
consider the parameters such as population size, number of parents per generation
and the number of elite parents selected. Bear in mind we are applying this to
an existing selection method. Hence, through elitism we allow the population
diversity to maintain through generations but we still want to have some control
of how many good solutions are retained.

Crossover and Mutation For the modification process, like other aspects
of EAs, there are a variety of different forms of both crossover and mutation. Here
we shall provide a quick outline of the canonical form of each with our specific
applications explored later in this chapter and again in Chapter 3.

Crossover is perhaps the most defining aspect of the GA yet it is a rela-
tively simple concept in both theory and practice. The basic principle revolves
around schema theory devised in Holland [1975], where Holland considers each
substring of the chromosome as schema or building block. Crossover is then
introduced to guide the evolutionary search by building up blocks of correct
substrings, resulting in the desired product. In Holland’s original GA, future
chromosomes were constructed by defining a pivot somewhere within both parents
strings which effectively divides the string into two blocks (not necessarily of equal
length). Once the pivot is placed, children are created by swapping blocks between
chromosomes. This result in two unique offspring that are built from their parents.
In Figure 2.3, we see a simple example of Holland’s method, typically known
as single-point crossover. A pivot is defined in the middle of the string (for the
sake of the example), followed by a clean swap. When dealing with simple string
chromosome representations, it is common to see multiple-point crossover as well
as more complex variants.

Mutation is a simpler form of modification, where we make small modifications
to the chromosome string. Of course this is strongly dependent on the chromsome
representation; while Holland’s GA would invert binary digits, different setups
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Figure 2.3: An example of single-point crossover from Savic et al. [1995], where a
pivot is specified for both strings, followed by a swap to create two new offspring.

will require intelligent and relevant modifiers. Typically mutation can occur under
a user-defined probability, it is then a choice of the designer whether each position
in the string is mutated or a probability exists for each individual point to be
mutated.

It is still open to debate whether mutation is a better approach for modification
to crossover or indeed vice versa. A thorough investigation of their capabilities
can be found in Spears [1993], where the author attempts to assess the reliability
of each method. Spears concludes that while both are potentially very “disruptive”
methods1, he believes that crossover provides a more reliable and effective modifi-
cation process. Meanwhile, Muhlenbein [1992] contradicts and strongly argues
against Spears claims. Arguing that while employing a EA/GA with crossover and
mutation is a useful means of parallel search, a traditional ES relying solely on
mutation will always outperform it. Essentially, there is a fine line when dealing
with crossover and mutation for any GA, where an adequate balance must be
reached in order to gain maximum effectiveness.

1While it has been argued in the likes of Holland [1975] that crossover is useful in building
up good solutions, it is also commonly recognised that both methods can potentially do as much
damage to a solution as it can aid it.
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Benefits and Drawbacks of Evolutionary Algorithms

The first and perhaps most obvious benefit of applying an EA to a given problem is
the parallel search process that filters inadequate solutions. Unlike more traditional
search algorithms where we are only assessing a small number of solutions at a
given juncture (typically only one), here we now have large numbers of candidates
at every step of the search. In fact the number that are explored is dictated only
by the researcher responsible. The use of a population not only leads to parallelism
in search but it can also then be integrated in execution. If the user is dealing
with a computationally expensive task and has the facilities for parallel execution,
i.e. a multi-processor computer, this can speed up the search process even further
as entire populations take less time to evaluate. EAs are also considered valuable
due to their adaptive qualities when searching for solutions.

In the early days of AI, Expert Systems emerged by compiling large sets of
rules crafted by experts of the respected field. While these systems were good at
solving the task prescribed, it was often a very specific problem. Hence the system
could not adapt to even mild variations of the problem. In comparison, EAs
require only simple models and functions for assessment and improvement. This
abstraction ensures that solutions do not converge on a small set of problems. In
fact it provides sufficient flexibility to allow for variations of varying complexity
to be introduced, relying on the Darwinian paradigm to push towards effective
solutions. Of course this flexibility can only be stretched so far, and as a result
more contemporary research has explored means to stretch it even further. This
relevant research is explored in detail in Section 2.2.

Another key benefit is the abstraction of the agent requirements from the
overall domain. Here our genotype only carries that which is relevant to the
specific task, allowing us to throw away the excess baggage. Conversely, the
translation from genotype to phenotype is often a challenging prospect, where the
designer must ensure that the chromosome formulation is sufficiently succinct, yet
expressive.

As we previously mentioned, the “survival of the fittest” approach taken
by EAs is another key benefit since it means that a solution can easily be found to
a given problem, even in more challenging search spaces. This is in part due to the
search making no assumptions of the fitness landscape. However this is a double
edged sword: as we previously mentioned the fitness function does not require
fine-grained criteria to search for solutions. Despite this, sufficient information
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must be provided to ensure satisfying results. This can lead to two scenarios;
either the search satisfies the stated requirements, but the solution is too ‘simple’
for your demands, or the search becomes so constrained that it ignores large
areas of the potentially useful search space. To ensure diversity and variety we
must ensure that a balance is achieved between our demands of the solution and
those imposed in the fitness function. Often this will result in intelligent solutions
that behave in a manner the designer would not have thought of. Whether this
is desirable is of course relevant to the context and, especially in robotics, how
acceptable it would be with respect to the domain1.

Truthfully, the simplicity of the evolution model and process is the greatest
benefit and largest drawback, since it is an easy method to begin searching for
solutions but is difficult to master. Ultimately, we feel that applying an EA to
solve an optimisation problem is less a scientific practice and more of an art
form. When conducting our preliminary tests we often see a phase of trial and
error as we seek to discover the combination that will guide the search most
effectively. One has to consider that there are a large number of parameters or
features that have to be maintained; chromosome definition, learning algorithm
applied, fitness function, selection method, population/parent size etc. There
are a myriad of possibilities where one small decision can lead to drastically
poorer results. Continued experimentation will often give a researcher a more well
rounded inclination of what will work and what won’t. This is not to say that
genetic algorithms are a black art, given that several researchers, notably David
Goldberg and Fernando Lobo, have made significant contributions in addressing
the requirements of EA parameters and proposing some specific methodologies
for researchers to employ (Lobo et al. [2007]).

Machine Learning Methods

EAs and EC in general are just some examples of machine learning algorithms
that exist in the AI field. Machine learning is the class of algorithms that rely
on data from the problem domain to gradually improve computer control and
decision making through, typically iterative, training. However in deciding on a
particular machine learning algorithm, one has to consider whether alternative
algorithms are more suited. This can range from the use of supervision in the

1For example, an automated car with aggressive cornering and drifting may be acceptable,
but a car that drives round a track backwards will be discarded. While it satisfied our fitness
requirements, it behaves outwith our defined range of acceptance.
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learning process to simply applying different learning models.
The (non) application of a supervised learning algorithm is described in Sutton

and Barto [1998] as the contrast between instructive and evaluative feedback. In
a supervised learning algorithm we, the user, already know the correct answer
to a given situation. Hence the feedback provided to the agent (e.g. fitness
function of an EA) by the model is purely instructive. In short, it tells the agent
exactly what the action/result should have been based on those inputs. This
can lead to a more controlled learning process since the ‘feedback’ received is
far more precise. In fact it can be argued it is no longer feedback, since the
signals received are never in the context of the action taken, just whether you
were right in that scenario. Furthermore, searching the state-action space is now
a non-issue, since we now focus on modifying the features of our solution in order
to generate the correct answer the next time a particular scenario occurs. Of
course this ‘tweaking’ is relative to the decision-process being applied, whether
it be a decision tree, ANN etc. Conversely, an evaluative feedback algorithm
(like most EAs) is often more suited when we do not have instructive feedback
available for every potential scenario that can occur. In this situation, the feedback
evaluates the performance of an agent in that situation. The fitness function in a
non-supervised EA is a prime example of evaluative feedback, where we score how
well the candidate performed against our criteria. Typically this function will be
normalised to provide a smooth fitness space for the search to traverse, giving us
a clear indication of which candidate was better than the other. This will then
influence the search to look for solutions that hopefully improve on the current
best.

One final issue we need to consider is the level of granularity in the evaluation.
Training an ANN using an EA to solve a given task is relatively coarse-grained,
since the fitness function will score performance against the overall goal (such as
navigating an environment to a given point) rather than each individual action.
An alternative is to assess the agent at each action it makes, and model the search
space around improving each individual step. This is typical of another machine
learning paradigm called reinforcement learning, where we provide evaluative
feedback for every action made weighted against a learning rate. Like EAs, there
are a multitude of reinforcement learning algorithms, ranging from Monte-Carlo
to Temporal Difference Learning (TD). In Monte-Carlo we record the reward of all
future-actions from each state to a terminal state1 and then propagate the reward

1Either the goal state, or a state that eliminates the possibility of future exploration.
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back through the state-action space, whereas in TD we dictate at what point this
value is propagated back. TD(0) refers to the version of Temporal Difference where
we propagate back at every step, while Monte-Carlo could be considered TD(n) -
where n is the number of actions taken to a terminal state. A common application
is the use of TD(λ) where the λ variable allows the user to dictate the depth of
reward-propagation. TD(λ) is a common alternative to EAs for agent design, with
some debate flaring over which of the two is the most useful method to apply.
Work in Lucas [2008] explores the effectiveness of TD in comparison to EAs by
assessing the “information rate” of each method, i.e. the number of useful bits of
information that can be used by each learning method. The results and argument
made by the author show that in certain circumstances, it is far more practical to
apply TD to a problem than relying on what is potentially a wasteful EA. This is
because TD will harness a lot more of the information throughout the learning
process to get to the goal than an evolution approach.

Throughout this thesis we have applied EAs for our learning algorithm for
numerous reasons. Firstly as the reader may have realised, an EA has a relatively
simple structure and is an easy algorithm to implement. The level of granularity
provided by EAs suits our approach, given that we are not too interested in exactly
how the agent behaves in order to get to the goal. In fact we have previously
highlighted one of the benefits of EAs is the diversity in results that can emerge,
which we feel is one of the biggest attractions of the approach. In our previous
research we have spent significant time in applying EAs to our agent problems,
hence prior to beginning our thesis we already had a substantial amount of existing
software that helped us start off smoothly. Furthermore, given that we had yet to
apply TD in any of our research, it was still unclear to us whether it would be
easy to apply in our problem domains, or whether the diversity in solutions would
arise. The idea of a TD-driven approach for our work in the EvoTanks domain
(see Section 3.2) is a notion we wish to explore in the near future.

Training Neural Networks with Evolutionary Algorithms

We recall that the ability to modify the behaviour of the ANN relies on the weight
vector ~w and to an extent the network topography, since ~w is determined by
the ANN’s configuration. In order to adapt an ANN to a specific problem, we
must find an ideal collection of weights, or even a specific network configuration
that, when applied, represents the desired behaviour. However, to explore all
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possible configurations of such networking would be a time consuming process.
Applying a GA to search for an optimal network configuration, commonly

known as Evolutionary Artificial Neural Networks (EANNs), or simply neuro-
evolution is now a seasoned practice amongst AI researchers. EANN can be applied
to learn network topologies, transfer functions, input configurations and learning
rules. However, the most common application - and the focus of our research - is
to evolve the values in the weight vector (Yao [1993]). This is achieved by defining
the chromosome representation to be the weight vector of the network. Hence,
the evolution now explores the possible combinations of weights that optimise the
defined fitness function.

Perhaps the most common EANN application is the field of evolutionary
robotics, where these principles are applied to the control systems of mobile robots.
Typically, the ANN becomes the primary decision making process of the robot
and is required to act upon incoming sensor readings to achieve pre-determined
goals. By feeding data from the robot sensors to the ANN and with the output
neurons corresponding to the actuators, the network will have complete control
of the robot once it is correctly trained. To achieve this, we use an EA with a
population of weight vectors; which are evaluated by testing them in the robot
against a fitness function representing the goals it must achieve. Typically, these
evaluations are made in a simulation of the robot’s functionality. As the reader
may have surmised, this lends to their application in game environments.

Training an ANN is dependent on whether training data is available for analysis.
If training data is available, then a supervised learning approach is applied, by
attempting to improve the accuracy of the network to generate desired output y
given input x. This typically requires a back-propagating ANN in order to revise
weights based on error calculations. However, if no training data is available then
the system will be allowed to search more expansively across all potential solutions.
This is a more suitable solution for situations where accruing data regarding the
environment may be too difficult to achieve due to time or space constraints (e.g.
hand annotating all possible input/outputs for a robot with multiple sensors). In
this thesis we do not employ a supervised learning approach, given that it would
take a significant amount of time to create all relevant training data. Instead, we
rely on the guiding fitness function and assessment-by-evaluation to move our
search to more effective solutions.

To modify the chromosome of an EANN there are a variety of methods that can
be explored. In our research, we turn to work by Montana and Davis highlighted
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in Mitchell [1996] to provide a suitable crossover operator. Given that crossover
can be a rather disruptive process, it is best to focus on an implementation that
works in harmony with the ANN phenotype. The creatively titled Montana-Davis
crossover isolates areas of the chromosome that correspond to the weights of
incoming synapses for an arbitrary neuron. This set of weights is swapped with
those of a set of similar size, hence we are swapping weights between neurons of
similar topology. It is argued by Montana and Davis that this approach proves
less disruptive to the parent solutions as it only modifies individual neurons.
Our previous experience in applying this method concurs with this argument.
For mutation, we apply random ‘noise’ across the entire chromosome. If a child
chromosome is selected for mutation, then the contained genes are visited in
sequence. Should the probability of mutation be achieved then an additional value
is added to the current gene within the range −1 ≤ x ≤ 1. Where the resulting
weight exceeds the imposed range of ±5 it is then reset to the nearest valid point.

Examples of EANN Application in Game Research

Historically, applying EANNs has proven to be a suitable search method for
exploring behavioural spaces. Even in the relatively recent research field of
computational intelligence and games there is a significant number of research
papers published annually that explore the creation of interesting controllers for
small scope problems.

A fine example of iterative development and improvement in games-based
control can be found in work in the online ‘Asteroids’ based space-fighter XPilot.
Numerous publications by Matt and Gary Parker focussed initially on weight
vector training for fixed topologies, but more recent work found in Parker and
Parker [2007] has explored EANN application for both topology and weight vector
optimisation. Other work in XPilot, such as Parker and Parker [2008] has explored
the evolution of an agent’s sensitivity to stimuli, while Parker and Parker [2006]
applied a modified GA to operate on distributed systems in an effort to accelerate
the learning process. This research has resulted in a small community of XPilot AI
developers, culminating in a competition at the CIG 2007 symposium.

Another domain that has generated a vibrant community can be found in the
Simulated Car Racing competition. In this domain, developers are challenged
to create intelligent reactive controllers for The Open Racing Car Simulator
(TORCS); an open-source racing game that provides a programmable interface
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for AI drivers. Like XPilot, the car racing competition has been nurtured by
iterative improvements and expansions. In this case, significant contributions
made by Julian Togelius and Simon Lucas explored different approaches for ANN-
driven players. This ranged from applying such learning methods as co-evolution
(explored later in this chapter) in Togelius et al. [2007], to comparing the use of an
evolved ANN with TD methodologies in Lucas and Togelius [2007]. The Simulated
Car Racing community is still highly competitive, with recent competitions at
the IEEE Congress on Evolutionary Computation (IEEE CEC) and Genetic and
Evolutionary Computation Conference (GECCO) in 2009 and an upcoming event
at the CIG 2010 conference.

Another competition domain which has arisen from game-based research
is Super Mario, where researchers create reactive controllers to aid the world-
renowned plumber in navigating hazardous environments. Whilst a relatively new
problem area for research, ANNs have already been considered for application
as shown in Togelius et al. [2009]. To date this approach has been moderately
successful, but has scope for future improvement.

This is not to say that all research in games has been driven by competition
domains. Two notable examples of games research that have received significant
acclaim are NERO and Galactic Arms Race, where in each case the player
themselves become involved in the optimisation process. The NERO game,
developed at the University of Texas at Austin, is a real-time simulator that allows
designers/players to become involved in the learning process by interacting with
candidates. This is achieved through a feature-rich interface with the game that
allows the user to tweak the algorithm in real-time, coupled with the real-time
Neuroevolution of Augmenting Topologies (NEAT) methodology (Stanley et al.
[2005]). Meanwhile, Galactic Arms Race developed at the University of Central
Florida, is an interesting new multi-player video game that has applied ANNs
for content creation. In this domain, variations of ANNs called Compositional
Pattern-Producing Networks (CPPNs) are applied in the NEAT algorithm to
evolve new types of weapons for players to use, based on their preferences, in
real-time (Hastings et al. [2009]).
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Further Challenges In each of the aforementioned problem domains, we are
dealing with an agent requiring only a small number of actions to respond to
incoming stimuli1. However, these methods often struggle when more complex
dynamics are admitted to the environment or indeed, when the problem is upgraded
to a more challenging task.

A simple example of complex dynamics is the game of (Ms) Pac-man, where
the trivial - yet socially disturbing - task of navigating through a series of corridors
chomping on pills is made all the more challenging thanks to four ghosts haunting
the protaganist. Significant time and effort has been spent in exploring the
challenges in creating reactive control that can scale to the Pac-man problem,
ranging from training a ruleset using an EA in Gallagher and Ryan [2003],
Gallagher and Ledwich [2007] to the application of an ANN controller in Lucas
[2005]. However it is noted that the majority of this research has been conducted
in smaller toy versions of the problem2. Lucas’s ANN based approach used an
input vector of handcrafted data that was selected by the designer. The resulting
behaviours were mixed, with adequate behaviour registering in deterministic
versions of the game (akin to Pac-man) against a poorer performance in the
more complex, non-deterministic circumstances (Ms. Pac-man). It could be
argued that one of the most challenging aspects of an ANN-driven approach is
trying to generalise the navigation component while considering the ghosts in any
circumstance. Results to date suggest that this is an area ripe for exploration
which may benefit from a more layered or scaled-up approach.

1From our previous examples: incoming fire from enemy ships, turns in the race-
track. . . Goombas.

2The irony of a toy version of a game problem does not escape us.
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2.2 Scaling-up Behaviours

What about escalation?. . .We
start carrying semi-automatics,
they buy automatics. We start
wearing Kevlar, they buy
armor-piercing rounds.

Jim Gordon, Batman Begins

As shown in the previous section, there is a variety of exciting and practical
applied research in EANNs for games. However, there still remains a significant
amount of work to do, notably addressing the concept of adapting to new features
that are added to simple problems. These additions either make the original task
more challenging, or affect agent behaviour whilst de-coupled from the assigned
goal. A simple example of each case could be found in a navigation problem,
where adding obstacles makes the task more challenging with respect to the goal,
while incoming fire from enemy players adds complexity that is not part of the
navigation mandate. In this section, we focus on the range of methodologies
applied to scaling-up reactive controllers to address these issues. This, as we
previously mentioned, often emerges due to normal methodologies being confined
to problems of limited scope. When considering a new learning methodology,
ideally the following should be taken into consideration:

• How can we scale our controllers to cope with a larger behavioural search
space?

• How do we ensure we achieve the proper behaviour without, unknowingly,
pruning large areas of potentially useful search space?

• How do we add new functionality to a controller without compromising the
behaviour we have already learned?

Now we shall briefly highlight the breadth of research in addressing these
concerns, focussing specifically on the chosen method applied within our research.

2.2.1 Incremental Evolution

Incremental evolution provides a simple yet progressive approach that builds
upon previously established methods. Returning to the specification for an EA,
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incremental evolution shakes things up by providing additional fitness functions,
thus changing the evaluation criteria throughout the learning process. Typically,
learning will proceed on an established fitness function until a specified fitness
has been reached, at this point the function is swapped out for the next in
sequence. The learning process continues as normal but we now have a new fitness
function in place. Each fitness function is designed to bring about supplementary
behaviour that the designer wishes the agent to harness and can be considered
a decomposition of the desired behaviour. The trick of the incremental process
is that it can smooth the fitness landscape, having the search navigate unique,
and typically simpler, fitness landscapes rather than a larger, more complex
one. Work in Gomez and Miikkulainen [1997] gives a strong insight into how
incremental evolution can be used for complex behaviours. This is achieved by
initial training on simple problems and then subtle modifications are made to
increase the complexity of a problem without the population and search becoming
lost in the process. This method has proved to be successful provided time is
taken for intelligent design, with popular examples such as the NEAT approach
mentioned previously (Stanley and Miikkulainen [2002]), to Multi-agent Enforced
Sub-Populations (ESP) found in Yong and Miikkulainen [2001].

2.2.2 Modularised Evolution

Another popular extension of the traditional evolution paradigm is modularised
or modular evolution. Here a potential solution is presented from the composition
of several individual modules trained in the learning process. These modules
are typically complete neural networks themselves, though naturally smaller
than a regular stand-alone one, hence each individual ANN must be trained.
One of the most important aspects of modular evolution is highlighted in Nolfi
[1997] and Calabretta et al. [2000], where it is shown that there is no enforced
decomposition for each module, hence each individual component/ANN does not
necessarily represent a unique aspect of the complete behaviour. Even a simple
navigation example which could be deconstructed as a) basic navigation and
b) collision detection and avoidance, may not appear in such a manner in the
resulting controllers. Even in the circumstance where there are only two modules,
their behaviour may be difficult to classify, yet their combined behaviour would
be immediately recognisable.
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2.2.3 Co-evolution

Co-evolution is another example of a simple learning methodology that can lead
to more effective and robust solutions. Co-evolution’s origins can be traced back
to the 1980s courtesy of W. Daniel Hillis. Hillis was researching the minimum
number of comparisons required for correct sorting networks for any arbitrary
size n, an active area that had originally emerged in the 1960s. At the time,
research had focussed particularly on networks where n = 16, with results of
63 and 60 comparisons made though no proof of optimality was ever provided
(Mitchell [1996]). Hillis’s initial attempt using a traditional GA with random test
cases proved unsuccessful. In questioning the worth of random tests beyond the
initial generations, Hillis used an approach where the problems evolved against
the solutions and vice versa. This generated a predator-prey dynamic where
the prey learns new defences against the predator, while they in turn evolve
new means to eliminate their quarry, spiralling into a biological arms race. In
this case, the series of solutions acted as predators while the problems acted as
prey. This forced the problems to gradually increase in difficulty as the solutions
became better in solving them1(Hillis [1990]). One of the strongest benefits of
co-evolution is the ability to avoid the trappings of local maxima within a fitness
space, often allowing a strong general solution to emerge. Our previous experience
in applying co-evolution found in Thompson [2006] concurs with this argument,
where co-evolution applied to our EvoTanks domain resulted in interesting general
players that performed better than our previously developed niche players.

2.2.4 Neural Network Ensembles

Neural Network Ensembles (NNE) presented in Hansen and Salamon [1990] have
risen in popularity due to their ability to improve ANN generalisation for complex
optimisation problems (Sharkey [1996]). As we have previously highlighted, ANNs
are an ideal application for generalisation for a variety of problems, particularly in
supervised learning where we attempt to reach a compromise that will effectively
cover a large set of training data. By creating a generalised solution, in theory
it should still prove adequate for data not originally in the data set. In practice
this is not always the case, and often the accuracy of the ANN can be called
into question. NNEs provide a solution to this problem by essentially clustering

1As an aside, this approach gave Hillis a solution of only 61 comparisons, 1 away from the
reported best.
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a collection of ANNs. Unlike modularised evolution, where each network was
part of a whole, the ANNs in an NNE are redundant: each of them provides
a solution to the same task, or task component. However each ANN will have
been trained using a different learning method to provide a little variety (Shu
and Burn [2004]). This setup can lead to an improvement in generalisation and
robustness as multiple controllers will be asked to suggest or predict the output
of a given input signal. Once all have provided their ‘predictions’, then the NNE
will statistically devise the adequate response. NNEs have been applied in a wide
range of challenging optimisation problems such as medical diagnosis, time-series
prediction and evolutionary robotics (Sharkey [1999]). Furthermore there are
now a variety of defined NNE architectures, with a range of popular methods
dependent on the problem. While NNEs are an exciting avenue for researching
evolutionary robotics, it has already been noted that they are used primarily for
supervised learning methods.

2.2.5 Subsumption

The term subsumption architecture was first coined by Rodney Brooks in Brooks
[1986] and received much interest throughout a series of publications in the
mid-1980s. The principle of subsumption was to provide an alternative form of
controller construction to the traditional layered approach commonly used in
behaviour-based robotics shown in Figure 2.4. The traditional approach would
split modules into control functions that were executed sequentially, only to
continue in a cyclic process. Brooks suggested a more modular approach where
intelligent behaviours are constructed from subcontrollers tailored to deal with
individual facets of the desired behaviour (Figure 2.5). Primarily, it was intended
as an alternative to sub-planning execution systems; execution modules that
existed beneath control planners that were designed to manage and operate the
low-level components of the actuators, as discussed in the somewhat arrogantly
titled ‘Planning is just a way of avoiding figuring out what to do next’ (Brooks
[1987]). Here each controller would operate as an individual reactive perceptron
with an intelligent, high-level behaviour emerging from the functional composition
of the individual subcontrollers (Brooks [1991, 1992]).

A simple example of a subsumption architecture is shown in Figure 2.6. As
we can see the system is broken down into a series of modules that are organised
in a top-down order. This order exhibits a hierarchy where higher modules carry
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Figure 2.4: The traditional layered decomposition of robot control systems as
suggested in Brooks [1986].

Figure 2.5: A decomposition of the same robot in Figure 2.4, except now it is
based on individual behaviours required for the overall behaviour (Brooks [1986]).
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Figure 2.6: A simple subsumption architecture as proposed in Brooks [1986].

a greater priority for execution at run-time. Each module has access to any
subset of available inputs from the agent sensors, however whether a particular
layer succeeds in sending a signal to the actuators is dictated not by the layer in
question but whether any of the n layers above it are sending signals.

At every execution-step, the modules are processed in sequence from top to
bottom. Should a layer exhibit an output, then it inhibits all layers beneath it from
executing. This subsuming behaviour may be used to override individual outputs
or entire controllers and is dictated by the designer’s preference. The principle
behind this feature is that with intuitive design of each subcontroller, the top
layers of the architecture would not necessarily need to hardcode particulars of an
agent’s behaviour; instead they simply know when to place an override command
depending on sensor data. The resulting architecture can in theory create more
expressive and robust behaviours through the composition of simple components
that are trained to override others at the correct time. Brooks envisaged that
behaviour construction would emerge from the bottom-up, starting purely in
primitive and reactive control, with higher layers composing intelligent behaviour
using the controllers beneath it. In recent years this notion has been challenged in
the robotics community, with many recognising that situations will occur where a
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lower layer must override a higher one. Given that we apply this methodology in
our research, we have decided to adhere to a strict high-to-low subsumption in
our controller architecture.

The biggest benefits of the subsumption approach are undoubtably the modular
approach to behaviour construction and perhaps more importantly the ability to
have the controllers read from the sensors and interact directly with the actuators.
This means that there is no middleware that constructs a model for the agent
to base its decisions on, instead it acts based on real world data. This concept
addresses the chief concern of execution with modelled approaches: we know what
needs to be done but how do we go about doing it?. In Moravec [1983], the author
made the observation that, at that time, many model-based architectures required
secondary models to compensate for the raw sensor data. Hence the argument
made by Brooks to remove the world model, leading to a simple and ultimately
very effective approach as shown below:

. . . it often becomes easier to use the world as its own model, and
sense the pertinent aspects of the world when it is necessary. This is a
good idea as the world really is a rather good model of itself. Continual
sensing automatically adds robustness to the system as there is neither
a tendency for world model to be out of date, nor are large amounts
of computation poured into making sure it is not. Brooks and Flynn
[1989] pg.479.

While we would not entirely agree with this statement, it does correlate strongly
to our desire to apply an ANN-driven approach. ANNs require continual sensing
of the environment in order to ensure robust and effective behaviours for a given
problem. A further benefit of a subsumption method is an iterative approach
to the development and testing of components within the hierarchy. Again this
suited our requirements, since we can then create a layered learning procedure
that trains each controller in-turn. This is not to say that the approach does not
have drawbacks. Perhaps the most obvious limitation is the number of useful
layers that can be applied. In practice we can only really apply a small number of
layers atop one another before they conflict with each other too frequently.

These conflicts also impact the flexibility and potential functionality of the
architecture, since we cannot have too many controllers with de-coupled goals.
Ideally, it is best that we have controllers that facilitate and aid one another. Of
course, another drawback is that since we precisely define each controller and how
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it operates in conjunction with others, it suffers from poor flexibility at run time.
While subsumption has proved to be very popular in the field of behaviour-based
robotics, it has received little attention in the evolutionary robotics community.
Perhaps the only contribution made to the field prior to our own was the masters
dissertation of Julian Togelius in Togelius [2004]. The author made the rather
astute observation that applying subsumption to an EA would not only embrace
the benefits of both incremental and modular evolution, but also circumvent issues
that may detract researchers from applying them. This resulted in a new training
method dubbed layered evolution where the desired behaviour is broken down into
individual ANNs that are trained sequentially. Once a controller has completed
training, then the next one is placed on top of it and continues anew. Note that
an individual fitness function is present for each unique controller to allow it to
achieve its particular mandate. As a result the layered evolution method shifts
the focus (fitness function) of training as it progresses like incremental evolution,
thus when this shift occurs the controller being trained also changes. This resolves
one of the more persistent problems faced by incremental learning, that as the
learning criteria shifts the candidate will often ‘forget’ information it has already
learned. The use of multiple ANNs to compose a complete behaviour is similar to
a modular evolution approach, however each controller is designed as a specific
functional decomposition of the goal. This in turn focusses the training process to
specific sub-goals at each layer, drawing similarities to the incremental evolution
approach.

2.2.6 Scaled Reactive Control

The methodologies described in this section aim to give the reader a fuller under-
standing of the variety of methodologies available for scaling reactive control to
more complex problem domains. As we shall see in Chapter 3, we embrace the
subsumption paradigm for our EANN research and deploy it to improve the reac-
tive control established in our previous work. While these approaches are suitable
for more complex domains, there is still no opportunity for deliberation during
action selection; in each case we are given means to enhance existing reactive
control, either through improved learning algorithms or modular development.
Whilst this will improve robustness and functionality we are still reacting to the
local environment. We address this lack of deliberation in the following section
where we introduce the reader to the field of automated planning.
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2.3 Automated Planning

In preparing for battle I have
always found that plans are useless,
but planning is indispensable.

Dwight D. Eisenhower

As previously highlighted in Chapter 1, Automated Planning (AP) is a branch
of AI research that focusses on the creation of action sequences to solve tasks.
In more general terms it is the ability to model environments and the effect
that actions can have within them in a computational structure. By utilising
this information, we can create a series of transitions where the world gradually
transforms into that which we desire. Resulting plans from AP systems are often
applied by intelligent agents such as autonomous robots and unmanned vehicles.

In this technical background we expand upon this brief introduction and
explore the the formalisms and methodologies common in Automated Planning
technology. We begin by exploring the Classical Planning approach; a method
suited for single-agent, deterministic, fully observable problem domains. This
includes the underlying principles of deterministic planning, the languages used
to model problem domains and varying search methodologies. We conclude this
section by discussing JavaFF, the classical planner we have chosen to apply in
this research.

2.3.1 Classical Planning

Classical Planning refers to a class of planning systems and problems that carry
out their search for potential plans under a series of assumptions related to the
environment and the fundamental effect that actions will have within it. This
is a useful approach to problem solving, since it is common in science to make
restrictive assumptions to devise models and techniques to solve the basic problems.
This often provides an effective groundwork to scale-up to more complex instances
in the future (Ghallab et al. [2004]). In order to achieve this, classical planning
relates to the study and exploration of restricted state-transition systems. A
formal definition of such a transition system, adapted from Ghallab et al. [2004],
is given in Definition 2.
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Definition 2 A restricted state transition system (Σ) used within classical plan-
ning is a 3-tuple Σ = (S,A, γ) where:

• S = {s1, s2, . . .} is a finite set of States; an abstract representation of the
world with respect to the potential tasks that could arise, with each state
consisting of a finite set of propositions or atoms that define it.

• A ={a1, a2, . . .} a finite set of actions; each is a formally defined action that
requires some set of conditions to execute (Preconditions) with a correpsond-
ing set of Effects that arise from its completion.

• γ : γ(s, a)→ s′, a state transition function. A function that associates some
given state-action tuple γ(s, a) with the resulting future state (s′) should the
action a be committed within state s.

A restricted state transition system within a classical planning framework
must also adhere to a series of assumptions that maintain the consistency and
correctness of the system. These assumptions, adapted from Ghallab et al. [2004],
are highlighted in Definition 3.

Definition 3 The restricted state transition system shown in Definition 2 requires
a series of restrictive assumptions to maintain a robust and consistent system.
The assumptions made with respect to the system Σ are as follows:

• Σ contains a finite set of states.

• Σ is a fully observable system. The system always has complete knowledge
of a given state, with respect to the abstraction used to represent it. Hence
no information can be concealed from the planner nor can ‘new’ information
emerge in any given state unless it is the result of a state transition.

• Σ is deterministic with respect specifically to the state transition function
γ. A deterministic system dictates that should a given action ‘a’ be applied
in state ‘s’ then there is only one possible outcome of applying that action.
This is adhered to since the function is a state-action tuple γ(s, a) whose
only output is one specific future state (s′).

• No outside factors (known in literature as ‘events’) can manipulate Σ; only
the actions committed by the planning controller affect the state of the
system.
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• A planner utilising Σ only handles restricted goals; a specific listing of state
atoms that represent a goal state or are encompassed by a set of goal states.

• The resulting solution to the planning problem must be a linearly ordered
sequence of actions. This sequence is formulated by the planner’s execution.
Specific constraints on states to be avoided or specific trajectories through
the state-space cannnot be specified. The planning system must be allowed
to solve the problem without interference or user-defined constraints.

• Actions have no measured duration; the transition from one state to another
through a committed action is instantaneous. This is referred to as implicit
time and is modelled specifically within γ, since it contains no explicit
representation of time taken.

• Planning is carried out offline, i.e. the system carries out the complete
planning process using the model representation of the environment expressed
by Σ prior to execution of any actions. Dynamic changes that occur within
the environment during the planning process are ignored until planning is
completed.

The restricted state transition system provided and the list of assumptions
it must adhere to are adequate for a classical planning platform. The term
classical planning is found in literature to classify planning platforms that focus
on deterministic, static, finite and fully-observable environments. In older texts
this is often referred to as STRIPS planning, a reference to the STRIPS planner
and domain representation language that emerged from seminal publications in
this area, notably Fikes and Nilsson [1971]. We specifically discuss the STRIPS
planner and representation in Section 2.3.2.

Given the definition of the state transition system, we express a planning
problem in a similar mannner. A symbolic representation for a classical planning
problem is defined in Definition 4.

Definition 4 A planning problem for a restricted state transition system - Σ =
(S,A, γ) is defined as a triple P = (Σ, s0, sg) where:

• s0 is the initial state of the problem, a set of atoms and propositions express-
ing the state from which the search commences.

• sg is the goal state, a set of atoms and propositions that represent the desired
future state that the planner must reach.
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The resulting solution to the problem is a sequence of actions α = (a1, a2, . . . , ak),
each corresponding to a particular state visited within the state space σ =
(s0, s1, . . . , sk), such that applying an action from α to the corresponding state
within σ will result in a future state according to the state transition system
γ(sn−1, an). This leads to a natural progression through the state space such that
s1 = γ(s0, a1), s2 = γ(s1, a2), . . . sk = γ(sk−1, ak) where sk is the goal state.

One of the key benefits of the restricted state transition system is that it can
be said to be Markov or have the Markov property. The Markov property for
an agent dictates that once it absorbs a piece of information, it can summarise
this data and retain it for future use. Classical planning frameworks adhere to
the Markov property since they rely on formal definitions of state and retain
any knowledge we have of this state. Should the system move from an arbitrary
state s to a successor s’, then all relevant information is retained and transferred
to the successor. This in turn allows us to summarise all relevant information
of the world and in time - when approaching planning problems - allows us to
summarise past actions and events. Put simply, if we observe any (reachable)
state in the state-space, we can create a path to the initial or goal state using the
existing propositions and the transformations permitted by actions. Of course,
a lot of information is lost along the way, since the agent’s continual interaction
with the (modelled) environment instigates change, hence facts of the world must
be deleted. However, if we are at any state in the middle of the planning problem,
given our framework we can then trace our history from the initial state to our
current state. This is beneficial in sequential decision making, since systems that
exhibit the Markov property allow decision making to ignore previous history,
thus eliminating the need for a complex representation to express prior decisions.
Furthermore, selecting actions as a function of a Markov state is just as good as a
function of a complete action history (Sutton and Barto [1998]).

Given Definitions 2 through 4, a restricted, abstract yet concise planning
platform is defined. These are the cornerstones of the classical planning framework
and allow researchers to focus on the two most important aspects of planning:
representation and search. A language must be defined that can adhere to our
restricted state transition system while generalising across a range of potential
problem definitions that may be expressed by the researcher. Following this, an
effective search algorithm must be deployed that will traverse the state space
formulated by our definition language and generate plans.
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Given that the research within this thesis focusses on classical planning, we
highlight the significant areas of classical representation, followed by a brief
breakdown of the planning systems that incorporate these models. We focus
specifically on the planning platform used in this research, the Fast Forward (FF)
planner.

2.3.2 Classical Planning Representations

Representations for planning systems vary depending on the scope of research
and the granularity of plans that designers wish to generate. The majority of
these representations have been derived from those used in classical planning.
Planning representations or languages are by necessity restricted, a design choice
that may inhibit the expressiveness of the languages. This in turn restricts the
number of possible solutions to a problem. Initial thoughts would suggest this is
an undesirable feature, however not only will it restrict the number of potential
solution states, it reduces the search space the planner would traverse. This is
highly beneficial since we wish to guide the logical inference within the search as
effectively as possible without constraining its capabilities. Not only must the
language be suitably expressive, but also be pliable to an extent that a planning
algorithm can be tailored to process the language and search within its defined
constraints.

STRIPS

One could argue that the STanford Research Institute Problem Solver (STRIPS)
language is the father of modern planning languages. The STRIPS representation
was the language incorporated in the planning program of the same name developed
by Richard Fikes and Nils Nilsson (Fikes and Nilsson [1971]). While the STRIPS
planner has long since been superseded, the STRIPS language is still a valuable
research and teaching resource for problem modelling within planning frameworks,
with a number of variants and extensions that have since permutated throughout
the planning community (Russell and Norvig [1995], Ghallab et al. [2004]).

Formally, STRIPS is a set-theoretic representation, i.e. it relies on a series of
propositional statements that provide an abstract model of the world by stating
whether some object or variable carries a specific quality. Naturally these symbols
are labels expressed using natural language that the designer can understand.
For example, a proposition to represent you are reading this chapter could be
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expressed as ReadingChapter(LiteratureReview) or Reading(ThesisChapter2). In
these examples the propositions have been grounded with a specific value; however
in planning we can search for particular values. This use of natural language
provides a greater readability than the use of a simple symbolic representation.
Given our definitions of the state-transition system and planning problem in
Definitions 2 and 4, we do not formally define the states that will arise beyond
those that exist at the start and end of the plan. A set-theoretic representation
allows us to avoid the trappings of a state-transition representation, where we
would formally label each possible state that could emerge (Ghallab et al. [2004]).
This would make state recognition an arduous process. Hence the use of natural
language provides a greater range of expressiveness, since the state’s meaning
becomes far more obvious to the casual observer.

To formally define a STRIPS problem, we refer back to Definition 4, where
we require an initial and goal state, thus identifying the starting position for our
search as well as the situation we wish to reach in order to generate an appropriate
plan. To achieve this, a series of grounded propositional statements are provided
for both initial and goal state, giving us a clear indication of what is required. Note
that extra propositions may arise during planning as actions are applied; however
we need only be concerned with the goal state definition. Provided these specific
statements are a subset of the final state in the plan, then the planning process
has proved successful. These definitions are then coupled with the operators or
actions that can be utilised in the planning process. STRIPS actions require two
specific definitions; preconditions that represent the series of conditions that must
be true (or not true) in order to execute a particular action, and postconditions
(typically known as effects in planning literature) that represent the change to the
world that arises from execution.

An example STRIPS definition can be found in Figure 2.7. In this simple
problem, we require what will ultimately be a 1-step plan to move an agent from
location A to an adjacent location B. This is formally defined in the initial and
goal state of the problem. Furthermore we provide an action that facilitates the
movement between these locations. This action states that in order to move
between two locations (X and Y ), the agent must be at the initial location and
an added constraint that the two locations must be next to one another. The
adjacent definition helps us add greater detail to the model and similar definitions
can add necessary constraints that more explicitly define the environment being
explored. Note in the postconditions of the move action, we negate the condition
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initial state: at(A), adjacent(A,B)
goal state: at(B)

actions:

move(X, Y)
preconditions: at(X), adjacent(X,Y)
postconditions: not at(X), at(Y)

Figure 2.7: A sample problem defined in the STRIPS language that requires a
1-step plan to move from location A to location B. Note the use of predicates that
give natural language explanations of their function leading to easier understanding
of the action definitions.

that our agent is at the initial location. This is referred to in literature as a delete
effect, where we must negate a specific statement, and maintain it within a list of
atoms that are also considered not true in the current state.

The notion of negative atoms in the STRIPS planning language is rather
deceiving. Any atom that is not explicitly described in the current state description
is assumed false. This can cause problems since in certain circumstances the user
may not have a complete definition of the initial state (typically a circumstance
that arises due to a mistake by the designer). The assumption that all other
atoms are false may later impede the planning process in circumstances that are
not immediately obvious to the designer.

There are several extensions that have been applied to the STRIPS formalism
prior to the introduction of more contemporary languages. These range from the
introduction of quantified expressions (e.g. a robot can carry n items), existential
quantification in goals and the introduction of typed variables.

Planning Domain Description Language (PDDL)

The Planning Domain and Description Language (PDDL) can be considered a
natural extension of the classical (STRIPS) representation. PDDL was initially
developed by Drew McDermott as an attempt to standardise planning representa-
tions throughout the Automated Planning (AP) community (McDermott et al.
[1998]). Defining features of the language came in the form of typed variables that
constrain the arguments of predicates and actions, negative preconditions, condi-
tional effects and the use of quantification in expressing pre- and post-conditions.
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Many of these features were initially suggested as part of the ADL representation
found in Pednault [1989]. These features are all achieved while maintaining the
Lisp-like structure and style of the STRIPS representation. Once this standard
was formed, it would provide the formal representation that would be used at
the International Planning Competition (IPC). Since its unveiling in 1998, PDDL
has become an active research endeavour in itself, with a variety of publications
focussing on new extensions to expand the expressive capabilities of the language.
PDDL requires two separate files for execution: a domain file, which describes the
features of the environment and the actions used to interact within it, coupled
with a problem file, that simply defines an individual problem instance complete
with initial and goal state. We see an example domain definition in Figure 2.8,
where we have incorporated the same functionality as the STRIPS example in
Figure 2.7. A keen reader will note supplementary information added to the do-
main definition. As mentioned above, one of the defining features of the language
is the introduction of typed variables, unlike STRIPS where the actual identity of
a constant is implied from its use. For example, in STRIPS we can identify the
location of our agent in the environment as location A by stating at(A) (as shown
in Figure 2.7). However there is no definition within the problem that states A
is a location. Instead we run on the assumption that since it has been used in
this predicate, then it must be a location. In PDDL we can go a step further by
introducing a type for the constant. Referring back to Figure 2.8, we observe that
the concept of a location is now strictly typed. Hence it enforces the constraint
that we only apply a location object in the at and adjacent predicates. This has
no effect on the expressive power of the language, however it provides a clearer
understanding of the relationships intrinsic to this domain. Similar functionality
can be achieved in STRIPS, however it is far more concise using these typed
variables.

A sample problem instance is shown in Figure 2.9, where we now define the
same problem instance as that found in Figure 2.7. Note that we must now define
the domain that this problem refers to and explicity define the types of objects
used. As we have previously stated, this does not provide any more expressive
power for the planning system; however it increases the readability and ease of
understanding of the problem. This PDDL problem is relatively easy to read and
understand through the use of defined location objects and the predicates applied.

Given the prominence of the PDDL language at the IPC, it is unsurprising to
note the wealth of extensions and continued attention it has received within the AP
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(define (domain sample_domain)
(:requirements:typing)
(:types location)

(:predicates
(at ?l1 − location)
(adjacent ?l1 ?l2 − location)

)

(:action
move
:parameters(

?startLocation − location
?endLocation − location)

:precondition (and
(at ?startLocation)
(adjacent ?startLocation ?endLocation))

:effect (and(not (at ?startLocation)) (at ?endLocation))
)

)

Figure 2.8: A PDDL domain specification akin to the STRIPS example in Fig-
ure 2.7, where we need only define the objects in the domain and the applicable
actions. Note we introduce a location type that as a result constrains the at
predicate to use only location variables within problem instances. While similar
functionality is achievable within STRIPS definitions, PDDL provides a more
effective means of modelling this constraint.
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(define (problem sample_problem)
(:domain sample_domain)
(:objects

locationA − location
locationB − location

)

(:init
(at locationA)
(adjacent locationA locationB)

)

(:goal (and (at locationB) ))
)

Figure 2.9: Code from a PDDL domain problem file. The simple example provided
is designed to reflect the problem defined in Figure 2.7. Given the new typed
constraints of the domain as shown in Figure 2.8, we must now explicitly define
the objects in the environment.

community. One of the first major steps taken with the language was introduced
at the 2002 IPC, where the challenge of handling time and numeric resources was
proposed to the AP community. To ease this transition, Fox and Long [2003]
introduced a series of extensions into PDDL 2.1. This version introduced an explicit
model of concurrency into domain definitions: a representation for time that
allowed for durative actions to be expressed under certain restricting assumptions.
These durative actions also permitted the use of discrete or continuous effects (in
a limited capacity), where an effect could be expressed as occurring during or after
the completion of the action. It was observed by the authors themselves in Fox
and Long [2003] that the expressive capabilities of PDDL 2.1 in fact exceeded
the capabilities of planning systems at the time. However it is clear that this
unveiling had significant impact on the community, not only due to its integration
into future IPC events but also the reaction of fellow researchers. Within the first
year of the release of PDDL 2.1, many of Fox and Long’s contemporaries within
the community, notably Hector Geffner and Drew McDermott responded with
opinion pieces to critique and discuss the changes that were introduced.

McDermott’s commentary found in McDermott [2003] addressed his concerns
over the semantics and syntax of durative actions in PDDL 2.1. An example of
this was that functions are permitted within the language; however they could
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only incorporate non-numeric arguments.

A paradigmatic example is (amount-in tank1), which might denote
the volume of fuel in tank1. A term such as (object-at-distance 3) is
not allowed. Why these restrictions? Because many planners eliminate
all variables at the outset of a solution attempt by instantiating
terms with all possible combinations of the objects mentioned in
the problem statement. . . (it) means that general functions can’t be
part of the language. If we had a function midpoint : Location ×
Location→ Location then it would generate an infinite set of terms
such as (midpointloc− a(midpointloc− bloc− a)). McDermott [2003]
pp.145-146.

While McDermott agreed that functions were an important feature to be
incorporated into the language, his reservations rested on the restricted syntax
and complex semantics that arose in an effort to accommodate contemporary
planning systems. Ultimately he feared that PDDL may restrict the progress of
the community when future advances in the language were becoming restricted in
an effort to provide for existing systems.

Meanwhile Geffner produced a more complimentary response found in Geffner
[2003], where his area of discussion focussed on the application of time, resources
and concurrency. Notably that a lack of explicit resource robs the language of a
simple and clean form of concurrency.

. . . in PDDL 2.1, as in Graphplan, the level of concurrency is defined
implicitly in terms of the syntax of pre and postconditions. . . . In any
case, the account of concurrency based on action interference as defined
in Graphplan and PDDL 2.1 carries certain implicit assumptions and
the question is whether we want to make those assumptions, and
whether they are reasonable or not. Geffner [2003] pp.141-142.

A final concern was the intent of PDDL 2.1 to have an influence on research
within the planning community, in essence trying to pull the community away
from ‘toy’ domains and into the realm of realistic applications. While Geffner
agreed that this kind of progress was important, he sought a cautionary approach
to ensure that these toy domains are retained as an important research avenue, the
argument being that while they are conceptually simple problems they have not

63



Chapter 2. Technical Background & Related Research

only proven to be computationally challenging but also provided the community
focus.

Despite the reservations of some researchers (not just Geffner and McDer-
mott), PDDL 2.1 has continued to be embraced by the AP community and is
perhaps one of the most important additions made to the language. It has pro-
vided a highly expressive language that serves as the standard and is more than
adequate for creating a range of unique and diverse problem domains.

However this was not the only major contribution presented by Fox and Long,
with a latter implementation named PDDL+ in Fox and Long [2006]. This
latter iteration was based on the PDDL 2.1 framework and introduced means of
modelling autonomous processes that are generated and triggered either by the
planning agent or a similar process, addressing an issue found within PDDL 2.1
that the application of continuous durative actions relied on only the planning
agent itself to be responsible for any change occurring within the world.

To date three more extensions have been made from the groundwork presented
by Fox and Long, with PDDL 2.2 introducing state variables that can be computed
as a function of other variables and timed initial literals; facts that will become
either true or false at time points known in advance (Edelkamp and Hoffmann
[2004]). Meanwhile, PDDL 3.0 allowed the user to refine the plan-solutions through
a series of contraints and preferences (Gerevini and Long [2006]).

While these extensions have proven valuable, there is a price to pay for adding
expressiveness to the language. Namely, additional time is required in order to
compute a plan. In our research, we need the planning process to be as efficient as
possible. Therefore, it makes sense to adopt a ‘simple’ and abstracted model of the
world and make the resulting plans feasible through robust execution. Hence, for
the domain definitions explored and utilised in Chapters 4 and 5, we are content
with using the subset of PDDL 2.1 that is applicable in the JavaFF planner.

2.3.3 Fast-Forward Planner/Java-FF

Here we take a look at the Fast-Forward (FF) planner and JavaFF - a Java
implementation of Fast-Forward - since this is the planning platform we have
chosen to conduct our research. Given the scope of our research and the manner
in which the planner is applied (shown later in Chapter 5), it is not necessary for
the reader to have a concrete understanding of the search mechanics employed.
However for the sake of completeness, we dedicate time to explore the history and
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significance of these systems and a brief overview of the inner workings.
The FF planner is a domain-independent planning system developed by Joerg

Hoffmann. Developed in the C programming language, it is capable of handling
a range of different planning problems through PDDL. FF has proven to be a
highly effective planning system, scoring as the most successful automatic planner
in the second International Planning Competition, held at the fifth International
Conference on AI Planning and Scheduling (AIPS’00) (Hoffmann [2001]). Future
iterations of the system then competed in the 3rd and 5th IPC in the metric and
conformant tracks respectively.

Forward Search & Heuristics

FF is inspired by the Heuristic Search Planner (HSP) developed by Blai Bonet and
Hector Geffner (Bonet et al. [1997]). HSP relied on the use of the forward-search
approach shown in Algorithm 2. Forward-search behaves as the name would
suggest, by moving forward from the initial state typically by selecting applicable
actions non-deterministically and generating the new state using the transition
function. If the resulting state is our desired goal state, then the search can
terminate.

One notable difference in the version of forward-search employed in HSP is
the use of a guiding heuristic. A Heuristic is a function that ranks all successor
states based on locally (heuristically) available information about the problem.
Hence they operate as a ‘rule of thumb’, providing a general strategy for solving
the problem by guiding the forward search in the best direction. Furthermore, it
contains only the list of nodes that have been generated but not visited, hence no
nodes will be visited twice in the search. This leads to an informed search, where
the agent now makes an intelligent decision about where next to explore in the
state-space. When we are dealing with search problems we are often interested
in finding the shortest path from initial to goal state. Therefore, the heuristic is
interested in estimating the shortest path to the goal state. One important aspect
of the heuristic is that it will reduce the branching factor of the search-space,
i.e. it will reduce the number of possible actions that may be taken since the
heuristic will score certain branches very poorly. Conversely, it is important
that the heuristic does not overestimate the distance to the goal. It is best if
the heuristic estimates a state distance to be less than or equal to the actual
distance. If the heuristic never overestimates the path length, then it can be
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Algorithm 2: An outline of the forward-search algorithm (Ghallab et al.
[2004])
Input: The initial state s0, a series of operators O and the goal state sg
Result: The resulting plan π that reaches from s0 to sg
Forward-search(O,s0,g)1

s← s02

π ← the empty plan3

for ∞ do4

if s satisfies g then5

return π6

end7

applicable ← {a | a is a ground instance of an operator in O, and8

precond(a) is true in s}
if applicable = ∅ then9

return failure10

end11

non-deterministically choose an action a ε applicable12

s← γ(s,a)13

π ← π.a14

end15

considered admissible. An admissible heuristic will ensure that the agent explores
all available and valid areas of the state-space, since if the heuristic overestimated,
then it can potentially block successor states from being explored.

The FF Heuristic

FF, like HSP, is reliant on a relaxed heuristic that estimates the distance of the
current state to the goal. A relaxed heuristic will remove certain assumptions
of the problem in order to give a rough approximation of potential plan length
and cost. In both FF and HSP this is achieved by refraining from deleting the
preconditions of actions after they are selected. While this results in a situation
where contradicting facts can occur (e.g. a robot is in location A and B), this
relaxation improves performance in complex domains by providing heuristics that,
while not admissible, provide useful information about the domain in question
(Hoffmann [2001]). The lack of an admissible, relaxed heuristic is due to the
search complexity for calculating the length of an optimal, relaxed plan being
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NP-hard1 (Bylander [1994]). Fortunately work found in Bonet et al. [1997]
introduced an effective means of approximating the relaxed solution length by
trading admissibility for more informative heuristic values. This is achieved by
computing weight values for all facts in the relaxed problem based on their distance
to the goal, assuming that all facts are independent. FF however removes this
assumption and relies on a new heuristic that prunes the potential search space,
resulting in a heuristic that for any given state, computes the length of a shortest
plan using the relaxed planning task.

Now of course the challenge is how to represent this relaxed plan state space.
Since no action preconditions are removed, any state can have a potentially
massive number of facts and can often be easily confused with one another to the
casual eye. Hence the relaxation heuristic is applied to plan-graph techniques to
provide a simple yet highly effective reachability analysis. As a result, the metric
is commonly known as the Relaxed Plan Graph (RPG) heuristic.

One final aspect of the RPG heuristic is that it can be applied to find actions
that may lead to what could be deemed ‘more useful’ states when building the
plan (Hoffmann and Nebel [2001]). When the search process is conducted, this
information is used to prune the successor states that are visible during the search
process.

Planning-Graph Techniques

Planning-graph techniques provide a different approach to visualising the state-
space we have thus far associated with planning methodologies. In the classical
planning definitions we have used throughout, we consider the problem as a
connected state-space, with the resulting plans being a sequence of actions that
traverse from a starting state to an end state. However, planning-graphs are
interested in showing the Reachability of a goal in a planning problem, i.e. whether
the intended goal state is in fact reachable from the initial state. However
reachability in planning problems cannot be computed tractably (Ghallab et al.
[2004]), thus plan-graphs rely on a relaxed reachability estimate by suggesting
series of layers that express the planning problem. Fact layers indicate all possible
propositions based on any combination of actions executed in preceeding states.

1NP-hard = non-deterministic polynomial-time hard: a class of computational complexity.
A problem is NP-hard if the algorithm that solves it can be translated to solve any previously
defined NP problem. To put it simply, an NP-hard problem is “at least as hard as any
NP-problem.” Weisstein
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Hence in the very first fact layer (fact-layer-0), we can only see the propositions
that exist at the initial state. The subsequent fact layer is then separated by the
first action layer, which shows all possible actions that can be committed based
on the propositions found in the preceeding fact layer. The effects of these actions
are then added to the subsequent fact layer, showing all possible facts that could
exist if any action is taken from the initial state, including taking no action at
all. This leads to the situation where conflicting facts exist within the fact layers,
therefore mutual exclusion (or mutex) relations must be included in the fact layers.
These mutex relations indicate the pairs of facts that cannot possibly exist within
a given state, with these relations being propagated across action layers. Once a
fact layer exists that contains all propositions that reflect the goal state with no
mutex relations across them, the graph need no longer expand and the search for
a solution can commence.

A simple example of a planning-graph can be seen in Figure 2.10, where we
have taken our PDDL domain and problem files shown in Figures 2.8 and 2.9
and modelled the graph to the point the goal is reachable. The initial fact
layer (fact-layer-0) shows the propositions active at the initial state. From here
we see the propositions required (denoted by directed arrows) that activate the
‘move’ action in action-layer-1. This in turn creates the at(locB) proposition while
deleting at(locA). Therefore the red marker is used to signify a mutex relation,
indicating that these two propositions cannot exist together. Given that all
propositions of the goal state from Figure 2.9 exist in fact-layer-1 and no mutex
relations hold between them, a search can then begin to create the simple 1-step
plan of this example.

The first system that was capable of exploiting these reachability graphs was
(perhaps unsurprisingly) GraphPlan (Blum and Furst [1997]). GraphPlan relies on
the knowledge that we can compute the reachability graph to generate the facts
encompassed by the goal state. Using this it can then traverse the graph backwards
to reach the initial state and create the sequence of actions that will become our
desired plan.

Searching for Solutions

As shown previously, the RPG heuristic provides a value of reachability based
upon the relaxation of the problem. However, despite being able to compute this
value in polynomial time, the process still proved too costly when assessing large
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fact-layer-0

(at locA)

(adjacent locA, locB)

action-layer-1

move(locA, locB)

<no-op>

fact-layer-1

(at locA)

(at locB)

(adjacent locA, locB)

Figure 2.10: A simple example of a planning-graph inspired by the PDDL domain
model and problem used in Figures 2.8 and 2.9.

state-spaces. As in HSP, a compromise is made by using a simple local-search
algorithm. HSP was reliant on the use of a Hill Climbing (HC) algorithm, a greedy
local-search algorithm when applied to planning in its simplest form behaves like
the aforementioned forward-search algorithm shown in Algorithm 2, however now
the applicable actions are dictated by whether their heuristic value is better than
the current best. Meanwhile, FF was based on enforced HC; a hillclimber that
operates a more strict successor selection policy1 (Hoffmann [2001]). If we return
to Algorithm 2, we will note that an action is selected at random from the set of all
applicable actions. This is how the most primitive form of HC operates, provided
the successor has a better heuristic value. In enforced hill-climbing however, the
action is dictated by finding the successor state with the best heuristic estimate,
but only provided it is an improvement on the current states value. This selection
is achieved using the breadth-first approach, whereby the complete set of potential
successors is taken from the current state and are assessed sequentially. As we
stated previously, the RPG heuristic is also used to recognise the useful actions
for achieving goals in the relaxed problem. When the set of potential successors
is created, the only states observed are those that are earmarked by the heuristic,

1Also referred to in literature as steepest-ascent hill climbing.
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thus preventing the system from visiting potentially attactive yet misleading
states. Once any state is found with the better (smaller) heuristic value then it is
immediately selected and replaces the current ‘best’ state.

However, this can lead to a potential situation where there are no successor
states whose heuristic value is greater than or equal to the current best, therefore
there is no immediate action the algorithm will take. This is commonly known as
a Plateau in the search space. In the event of reaching a plateau. FF will apply a
breadth-first search that checks all successor states at each ‘depth’ of the search
space1. Furthermore, this approach removes the ‘useful action’ constraint from
the RPG heuristic. The breadth-first search encounters new states and applies the
RPG heuristic to each until a state is found with a better heuristic value. Once
a suitable successor is found, then the path to that state, which may be one or
more actions, is added to the current plan and the search resumes as normal.

Java-FF Java-FF is as the name implies, an implementation of Hoffmann’s FF
planner developed in the Java programming language. It was developed by the
team of Andrew Coles, Amanda Coles, Maria Fox and Derek Long at the University
of Strathclyde. Ultimately the purpose of this was to provide an effective teaching
tool for undergraduate students participating in AI practicals (Coles et al. [2008]).

JavaFF replicates the structure of Hoffmann’s FF planner using the source
code from the previously established temporal planner/scheduler CRIKEY (Coles
et al. [2009]). In order to successfully replicate the performance of FF, Coles
ensured that the forward-chaining enforced HC was applied to the state space
while using the RPG heuristic, with the additional breadth-first search method
in the event of plateaus. This version does not consider many of the extensions
made to FF and focusses on recreating the core functionality while ensuring it
can operate as a useful open-source teaching and research tool.

2.3.4 Advanced Planning

In our research we have focussed entirely on classical planning systems and
representations. These methods have proved to be suitably adequate for dealing
with fully observable, deterministic planning problems. However this is not to
say that this is the pinnacle of research within the AP community. In fact it is

1For further reading on basic state-space techniques, please consult Russell and Norvig
[1995].
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merely the tip of the iceberg, as researchers have continued to explore the notion
of plan-construction under more constricting circumstances. This ranges from
having to consider the overall time taken to execute a plan to plan-creation while
not having a good understanding of even what state you are in. For completeness
we briefly highlight the range of research beyond classical planning.

While the use of planning systems and algorithms developed by AP researchers
has proven effective, there are alternative approaches that can be made to finding
solutions. One of the most notable is the use of Boolean/Propositional Satisfiability
(SAT) notations, which encode a planning problem as a series of propositional
statements. The challenge then being to find a means to satisfy all conditions in
the formula. A satisfiability decision procedure is then responsible for determining
whether the problem is satisfiable. If this proves to be the case, the system extracts
a plan based on the assignment process of the decision procedure. This is perhaps
best shown in the planner called Blackbox, which takes the concept of planning
as satisfiability and applies it to STRIPS models in Graphplan. Furthermore,
empirical evaluations of Blackbox suggest that existing SAT solvers are capable
of solving benchmark planning problems competently (Kautz and Selman [1999]).

Another popular approach is the encoding of a Constraint Satisfaction Problem
(CSP), which considers the planning problem as a series of variables that must be
given a value within a specified domain. However, as the name would suggest, there
are a series of constraints that exist across the variables. These can range from
simple boolean constraints (e.g. A 6= B or A > B) to the use of real-values (e.g.
A ≥ 5). In the case of boolean constraints, then similar approaches used for SAT
problems can be adopted, while more real-valued expressions can be approached
from an linear or integer programming perspective. This approach could be argued
to be more popular than SAT techniques, with CSPs again carrying a large existing
community. Furthermore, they have been heavily adopted in heuristics and search
processes for planning algorithms (Ghallab et al. [2004]). Like Blackbox, similar
ventures have explored translating planning graphs into CSP problems. In fact it
has been argued that the CSP approach outperforms SAT encodings in both time
and space complexity (Do and Kambhampati [2001]).

One of the most prominent areas of modern planning research is the application
of temporal planning. In this field, the assumption of discrete-time steps made in
Definition 3 is broken. Hence each action now has a specified duration, providing
another metric that must be reduced. This revelation also impacts the behaviour
of preconditions and effects of an action, since we may require a specified situation
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to not only hold true at the beginning of an action, but remain throughout the
duration. Temporal planning also introduces the notion of scheduling, where we
can now assume that a plan may execute as a series of parallel processes rather
than a sole series of sequential actions (Ghallab et al. [2004]).

Finally, another important area of planning research breaks more of our
classical planning assumption, whereby uncertainty occurs in the planning model.
Uncertainty can be introduced through non-determinism in actions and partial
observability of the world. In non-deterministic actions, actions may result in
one of a number of possible states, while partial observability removes the ability
to see all relevant information about a given state. This results in a planner
having to rely on a ‘belief state’, where the system runs on an assumption that it
is in a state based on observations from the environment. Managing this state
recognition and planning throughout is a challenging area of planning research and
receives much attention from our peers in the fields of engineering and robotics
(Ghallab et al. [2004]).

2.3.5 Planning Applied to Games

To conclude this section, we highlight some of the most renowned applications of
planning in games in recent years. However, to carry out such a research review
is rather taxing. This is due to a lack of agreed terminology amongst researchers.
There are many examples of applied ‘planning’ in games that, if observed from the
perspective of some planning researchers, would be considered nothing more than
the application of an informed search algorithm, such as A*. Planning systems
typically differ from informed search algorithms in two key ways; the application
of domain knowledge to inform heuristics, and the use of a set-theoretic language
such as STRIPS or PDDL. Hence for this review, we have focussed on research
that maintains some of these planning concepts.

One of the most renowned examples of planning applied to games in recent
years is the work conducted by Jeff Orkin. Orkin, a Ph.D. researcher and former
game developer, introduced a new approach to game-AI known as Goal Oriented
Action Planning (GOAP). The GOAP approach was introduced in Orkin [2006] as
means to create intelligent opponents for the first-person shooter game F.E.A.R.
developed by Monolith Productions and released on the PC, Playstation 3 and
Xbox 360.

The key to the GOAP approach is stated specifically in the title of Orkin
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Figure 2.11: The three state FSM used to control the enemy agents in the game
F.E.A.R. from Orkin [2006],

[2006]: ‘Three States and a Plan: The A.I. of F.E.A.R.’. The three states existed
within a FSM shown in Figure 2.11, and the plan was derived using A* to navigate
through this FSM in order to achieve a goal. At this juncture this seems wasteful,
given that the set of states is so small. However, it was reliant on the FSM’s
association with the action set. Instead of representing all potential states that
could arise from applying the action set, the FSM focusses on the need for an agent
to move or commit an animation. The selection of animations at particular states
in the FSM would be dependant on them satisfying conditions to be achieved. This
was represented courtesy of a representation similar to that of traditional STRIPS,
with the search for the correct animations carried out by A* search. If an action
could satisfy a current goal, it could then be executed. If the goal is satisfied then
another could be provided to the agent and it could continue on until it is, as
intended, defeated by the human player.

The GOAP approach arose as an extension of work Monolith incorporated into
previous titles, where their enemy agents would have a specific FSM associated
with a goal they wanted to achieve. The agent would then execute an action
that was applicable in their current state within the FSM until the goal state was
achieved. However, the same FSM was applied for the same goal across all classes
of agents. This led to the problem where any class-specific behaviour would have
to be added as an extension to the FSM for that specific goal. Naturally, this
proved unmanageable over time. However, using the GOAP approach with the
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reduced state space within the automata, the specific actions any class would carry
out were stored in their own action list and could be selected via the ‘Animate’ or
‘Use Smart Object’ states. This allowed the designers to create independant action
sets that result in effects the planner could recognise. Ultimately, this decouples
the action sets from the goals and allows for a greater freedom to add, modify or
remove classes of agent from the game without compromising the remainder of
the system.

While this was an important breakthrough in AI applications in commercial
games, it came with a cost. Given that the game was responsible for managing
large numbers of enemy agents in real-time, an intelligent approach was required to
manage the agents computation. Given that in a commercial title the CPU cycles
are typically devoted to physics, animation and graphics rendering, one needs
to consider how AI processes can be introduced. These challenges are discussed
in detail in Orkin [2005], where the author explains how the agent architecture
can handle this form of “lightweight planning” through the use of distributed
processing, caching sensor perceptions to working memory and intelligent garbage
collection.

Another researcher who has built an impressive résumé in planning applications
for games is Héctor Muñoz-Avila. In Munoz-Avila and Fisher [2004], Muñoz-Avila
introduces a new approach for developing agents for the first-person shooter
game Unreal Tournament using task-network planning. Hierarchical Task Network
Planning (HTN Planning) is an alternative planning approach that represents
phases of plans as high-level tasks. These tasks are then decomposed into a series
of primitive tasks that correspond to actions the agent can execute, or compound
tasks which in turn contain more primitive or compound tasks. Futhermore,
there exists a series of ordering relationships between tasks that dictate temporal
constraints, allowing for a more expressive formalism than traditional STRIPS-
based planning operator representations (Erol and Nau [1995]). The HTN approach
was adopted in the authors Java Bot controller which acts as the main client to
the Unreal Tournament server. While the Java Bot code would handle events and
state modelling, the HTNs were then introduced to satisfy particular strategies
that were requested once particular events were recognised.

Muñoz-Avila continued exploring this HTN approach in Hoang and Muñoz-
Avila [2005], with the intent to expand the Unreal Tournament bot controller to
operate at a more trategic level. In this instance, the HTNs would devise tactics
for team-based objective matches such as ‘domination’; where a series of points
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must be controlled and maintained by the player in order to increase their score.
The HTN would delegate compound tasks to individual agents with respect to
a particular strategy, and the agents, under the control of a FSM, would then
execute primitive actions in the task network. This would result in a plan that
satisfied specific temporal constraints between the agents. In testing these HTN
managed agents against a team of improved FSM-driven players, the task-network
approach was far more successful.

Meanwhile in Lee-Urban et al. [2007], the same design principles behind
the HTN approach are explored with the intent to apply them in the context
of a Real-Time Strategy (RTS) game. This work sought to expand the Simple
Hierarchical Ordered Planner (SHOP) developed by planning researcher Dana
Nau (Nau et al. [1999]). SHOP is an HTN planner that specialises in specific HTN
planning problems where the subtasks of each network is totally ordered, i.e. the
set of actions has a strict linear order of execution. The modified version of the
planner, dubbed ‘Learn2SHOP’, integrated a learning algorithm that acted as
a knowledge transfer system. Using the MadRTS engine, RTS problems were
defined and a selection of ‘skeletal’ HTN methods - methods that required further
clarification - acted as training samples. By evaluating these training samples by
executing them in-game, the learning algorithm would be able to refine the HTN
operators to operate generically rather than for specific concrete instances. This
work was then evaluated using a transfer-learning task, where it successfully
transposed knowledge from one specific problem instance in similar, yet different
circumstances.

Further Challenges As can be seen from the research detailed in this section,
a lot of time has been spent in integrating planning at either a simple level to
automate animation selection, or as a more strategic element. At present one of
the larger challenges faced is execution, given that at present, these works are
still heavily reliant on hand-craft FSMs in order to execute actions. While these
are certainly reliable, this often comes at the cost of extensive development time
and testing. If a suitable controller could be learned for all or part of the agents
functionality, then this lead time could be reduced. This challenge is addressed in
Chapter 5 where we provide a potential solution to this problem.

Another important challenge is the level of difficulty associated with the
planning problems these approaches are trying to resolve. Looking back on the
work in Orkin [2006], would this prove sufficient for more demanding levels of
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functionality? If we wanted our agent to be able to devise solutions to puzzles, could
this approach be adopted? Given that no pre-processing of domain information
is attempted when using an algorithm such as A*, we hypothesis that such a
setup would struggle with more demanding problem domains. In Chapter 4
we introduce our test domain that should prove a challenge even to established
planning platforms.
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2.4 Layered/Hybrid Architectures

Sometimes people are layered like
that. There’s something totally
different underneath than what’s
on the surface. But sometimes,
there’s a third, even deeper level,
and that one is the same as the
top surface one. Like with pie.

Joss Whedon

In Section 2.2, we explored a range of the methodologies applied to increase
reactive controller scope and robustness. This was followed by our introduction
to the field of automated planning in Section 2.3.1 where we defined the theory
and practice of deliberation using discrete, abstract and deterministic planning
models. However, having defined our deliberative approach, we must find a
means to interface this decision making process with reactive control. This leads
onto our final background section where we discuss the creation of layered agent
architectures.

As their name would suggest, a hybrid or layered architecture describes the
use of multiple, functional components with an imposed hierarchy for execution.
Concepts introduced in Section 2.2, such as Incremental Evolution, Neural Net En-
sembles and Modular Evolution are not hybrid given they rely on one core method.
While subsumption can be considered similar to a hybrid architecture in terms of
an imposed hierachy, each component still adheres to particular stereotypes and
interfaces. With these architectural types we do not face this problem. Instead,
time must be spent on how components interact and communicate with one an-
other. In fact, an empirical evaluation of the available forms of agent architecture
in Muller [1999] denotes subsumption early on as a reactive architecture: a class
of controller only interested in correct and optimal behaviour for situations with
a limited amount of information. In contrast, layered architectures are presented
as an organised structure combining both reactive and deliberative controllers
in an attempt to achieve coherent behaviour as a whole. Muller’s observation of
the agent architecture community, perhaps unsurprisingly, still holds true today;
namely that most agent architectures are designed for autonomous control systems,
typically to solve distributed resource allocation or act as an expert cooperative
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system.
However, this is a relatively open classification. While there is a substantial

amount of research in developing layered architectures, very few sub-disciplines
or core methodologies have emerged. At present, it is reminiscent of early AI
research, where many researchers attempted different ad-hoc approaches before any
standard practices were defined. This too, is readily apparent in the application of
planning technologies. In this section, we introduce plan execution and monitoring
systems; layered architectures that rely on AP systems for deliberation and
problem modelling, whilst utilising defined control models for execution. However,
as we shall see, this research ranges from stronger understanding of plan actuators,
to expressing greater control over processes at the plan level. At present, the only
defining characteristic to unify these approaches is that of an arbitrary planning
system which has been installed as the highest level of control. This of course
makes our reporting on the subject something of a challenge!

Perhaps one of the most renowned and successful examples of plan and exe-
cution integration is NASA’s Deep Space 1 (DS1) mission that launched from
Cape Canaveral in October of 1998. The DS1 mission was the first in a series
of missions by NASA designed to test new technologies that would be strategi-
cally deployed in future missions. Amongst an array of hardware and software
components the Autonomous Remote Agent (RA) system was also included; an
on-board planning and scheduling system designed to take complete control of
the spacecraft. The mission successfully completed and was retired in December
of 2001 after recording images and data of Comet Borrelly, at which point the
engines were shut off, adding to the tonnes of metal currently floating in orbit
around the planet (Bernard et al. [2000]). The RA system was developed with the
intent of testing a platform for complete autonomous control of space missions.
NASA realised that in time spacecraft must be capable of navigation and control
with little or no human intervention. This can lead to increased functionality,
robustness and flexibility while also reducing the cost needed for ground control
(Ghallab et al. [2004]). However, there is of course the signifcantly high risk that
millions of dollars of engineering and pre-planning are rendered null and void
due to a glitchy AI system. The RA system was designed to circumvent these
issues using three main components: a Planner/Scheduler that carried a mission
manager, an executive and a mode identification and reconfiguration module.
The planner, naturally, formulated a long-term plan for goal achievement, using
short-term problems based on the mission profile. Using the executive’s model of
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the state and the mode identification module it would schedule the actions of the
plan accordingly. For the DS1 mission the RA system was tested against three
simulated faults while in space; a failed sensor that needed reactivation, a failed
sensor that provided false information and an altitude thruster that was ‘stuck’
in the OFF position. In each circumstance the RA successfully resolved each
issue - by reactivating the first sensor, ignoring the second one and switching to a
navigation mode that did not require the malfunctioning thruster. This provided
strong evidence of a successful planning, fault diagnosis and recovery (Bernard
et al. [1999]).

Another example of plan-centric monitoring and execution can be found at
the Monterey Bay Aquarium Research Institute (MBARI) in California, USA.
The institute focusses on the investigation and discovery of physical, chemical,
biological and geological properties within the local coastal front through the use of
Autonomous Underwater Vehicles (AUV). This is a scenario that is strongly similar
to that found in the DS1 missions, given that an autonomous system is separated
from the human users due to challenging and life-threatening environments. Hence
an effective control and execution system is required to navigate the murky depths.
In Rajan et al. [2009] we are introduced to the T-REX executive; a hybrid
executive that carries an onboard temporal planner. This planner is responsible
for developing temporally flexible plans, a plan that carries a series of flexible
intervals and constraints between individual actions/waypoints in execution. This
planner is then tied to a series of hand-coded actuators at a vehicle control
interface. However, it also passes through extra phases of deliberation in a top-
down manner that decompose as well as consider the addition of science missions
within the flexible timeframe. Interestingly, the authors state the main reason
for this plan-driven approach is to circumvent the shortcomings of subsumption
architectures that is clearly articulated in Bellingham et al. [1990] as follows:

An area where layered control has the potential for increased
sophistication is in the mechanism for resolving conflicting commands
from behaviors into one output command. As described previously, the
[subsumption] output command is generated by the highest priority
active behavior. However, a more sophisticated response can be
achieved by modifying the method by which the output command is
generated.

The current conflict resolution strategy generates responses that
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are particularly inefficient in certain circumstances. An example
of inefficiency is demonstrated by the conflict between a high level
behavior attempting to command the vehicle to the surface, and a low
level behavior attempting to prevent the vehicle from impacting the
bottom. If the low level behavior determines that the vehicle is too
close to the bottom, it will command the vehicle to a minimum altitude.
Only after the vehicle has attained that altitude will the higher level
behavior be allowed to control the vehicle. This is inefficient since the
high level behavior’s command would have satisfied the requirements
of the low level in the first place.(Bellingham et al. [1990] pp. 6)

This is an interesting contrast to the comments made when discussing the
subsumption architecture and clearly highlights issues in relying on scaled-up
reactive control. If we employ too much functionality in the system then we are
tied down by conflicting components that will impede performance. This was for
us, further fruit for thought.

In other areas of hybrid executives, research focusses more on enhancing the
performance of the reactive component in relation to the plan-based approach.
An interesting example of this can be found in Stulp and Beetz [2005], where the
authors sought to learn performance of plan actuators in order to improve the
efficiency of the agent’s plan execution. The task at hand is a simple football
scenario that would arise in the likes of the RoboCup competition1, where the
agent must acquire a football and turn with it towards the goal. The argument
made by the authors is that a traditional approach does not consider the context
of action. Hence in the problem example, the authors sought to improve the
efficiency of the agent’s navigation as it moves towards the ball, turning to the goal
and dribbling it into the net. By formulating performance models and subgoal
refinement, behaviour can appear less disjointed and more contextual. A second
example in this vein explored plan execution behaviours as structured stochastic
processes through the use of dynamic Bayesian networks in Infantes et al. [2006].
By gathering and applying knowledge of behaviour capabilities, it allows for better
understanding of the agents functionality.

Conversely, research in plan execution architectures has explored execution
control from a planning perspective. Research in Gallien et al. [2008] explores
the creation of a partial-order-causal-link temporal planner called IxTeT based

1An international robotics competition whose aim is to develop autonomous football robots
to promote research and education in artificial intelligence.
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on CSPs for inclusion within a distributed robot control architecture. When
executed the IxTeT operates as a temporal executive, maintaining control over
continued operation of actions and as a procedural executive expands and refines
the actions into commands at a functional level. Meanwhile in Effinger et al. [2005]
we are introduced to a planning system dubbed Kirk that decompses task-level
commands expressed in Reactive Model-Based Programming Language (RMPL)
into Qualitative-State plans through the use of Temporal Planning Networks.

Finally, research in Robertson et al. [2006] and Robertson and Williams [2006]
reports on advances in rover test-bed systems. The authors note that in complex,
critical systems almost every component provides a potential point of failure.
This is an unfortunate by-product of the size and complexity of systems required
in order to approach and solve these tasks. To provide error proof code is a
challenging task due to the sheer size of the number of known (and unknown)
cases that can arise. The importance of these papers are three key observations
made by the authors:

• Often assumptions made by control software prove to be false during execu-
tion.

• Software may be attacked by a hostile agent, seeking to interrupt its execution
or may simply be reacting to its presence.

• Continued changes to software often introduces compatibility issues between
components.

In order to address these issues, the agent software must be able to recognise
and diagnose failures when they occur. To do this effectively, recognition software
must be capable of isolating the component where failure has occurred and
find an alternative means of execution. However to achieve this we require
numerous models to successfully monitor the execution. This ranges from models
of component relationships to models of intended behaviour and known errors.
Ultimately, an agent or system must be capable of sensing its own state and
reasoning about it. These concepts have been taken on board when designing
our own agent architecture. During our discussion in Chapter 6 we will return
to these observations and highlight how we have addressed these concerns in our
own work.
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2.5 Summary

In this chapter, we explored the four key areas from whence our research drew for
this thesis: evolutionary artificial neural networks, scaled reactive control through
subsumption, classical planning and planning execution and monitoring systems.

In Section 2.1 we introduced artificial neural networks and followed the process
to create reactive control by tailoring these networks utilising an evolutionary
algorithm. Next we explored how this approach can be expanded upon using
richer learning methodologies, allowing us to scale our control to more complex
problem domains.

To accommodate for any deliberative faculties we wished to be present, we
explored the field of classical planning; a research area that focusses on discrete,
deterministic decision making using abstract models of the environment. Finally,
we explored approaches made in layered architectures to provide an insight into
how AP systems have previously been adopted into agent frameworks.

As we observed, the concept of a layered architecture that incorporates de-
liberation with execution is far from novel. However, our intended approach, to
implement classical planning with ANNs for a game environment, is a unique
application of such methods. As seen in Section 2.4, these systems require estab-
lished models of execution for plan-actions. Our approach intends to circumvent
these models by providing generalised action-policies supplied by a neural network.
We hypothesised this approach would remove many execution concerns, given
that we can rely on these reactive controllers providing they have been suitably
trained. Furthermore, as is evident from the state of game-based research, apply-
ing a classical planning algorithm to direct reactive controllers is an area ripe for
exploration.

At this juncture, we have introduced the reader to our field of interest and
the relevant technical and research background for our intended application. In
the next chapter, we will look at the first phase of research that was conducted
for this thesis. This phase was intended to improve our reactive controllers by
training layers of artificial neural networks within a subsumption framework. This
work will later be adopted in Chapter 5, where we apply the JavaFF planner in
an agent architecture to assume control of these reactive faculties.
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Chapter 3

Creating Robust Reactive
Control

Control, control, you must learn
control!

Yoda, The Empire Strikes Back

3.1 Introduction

In this chapter we report on our work in creating reactive controllers that can
operate in challenging environments. As we have previously stated this research
focusses on developing ANNs that are capable of dealing with a variety of features
in the environment and can add new behaviour to accommodate fresh issues
that arise. To carry out this research we use our established problem domain
called EvoTanks (Thompson [2005]) to explore the use of different network config-
urations. As the reader progresses through this chapter they will be introduced to
our subsumption-inspired reactive controller designed to provide a “plug’n’play”
approach to behaviour formulation and how it compares with other approaches
on prepared test examples.

We begin this chapter by introducing the reader to the EvoTanks environment
in Section 3.2, describing the features of the game world, why it proves to be an
interesting testing domain and our prior research in the game. Section 3.3 then
describes our controller design in detail as well as the learning methodology applied.
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Section 3.4 highlights our results in training a variety of different controllers, first
individually and then in combinations of up to three layers of control. To assess the
effectiveness of this approach we compare it with other methods and discuss the
product in Sections 3.5 and 3.6 respectively. We then finish with our concluding
remarks in Section 3.7.

3.1.1 Goals

The goals of the research in this chapter are:

• Devise a suitable implementation of the subsumption methodology that
would enhance the control of our neural networks without compromising
trained behaviours.

• Create a series of controllers that not only test our approach but can
effectively achieve what our planning domain requires.

• Devise an effective learning process to train reactive controllers within our
subsumption hierarchy as quickly as possible.

• Compare this approach with other approaches to ensure our approach is
worth incorporating into future work.
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3.2 EvoTanks
Any problem caused by a tank can
be solved by a tank.

Peter Griffin, Family Guy

EvoTanks is a game environment designed initially to develop reactive agents
for local tasks using machine learning algorithms. The domain is inspired by the
video game Combat released for the Atari 2600 in October 1978. Combat is a
top-down game where two human players would compete against one another
for the highest score, featuring over 27 different gameplay modes, all of which
are variations of combat between tanks, bi-planes and jets. The tank game in
Combat shown in Figure 3.1 gave control of two tanks to human players with the
intent of scoring the highest amount of damage possible within the time limit,
with competition taking place in one of three locales; an empty field, a simple or
complex maze.

When regarded as an AI problem, it appears challenging but still within the
realms of reactive control. EvoTanks is a deterministic game world, yet unlike
BruceWorld it is also fully-observable; giving the agent complete knowledge of
the world. This complete observability means that trained EANNs will generalise
action selection for different scenarios competently, given that EvoTanks is a
problem with relatively small scope. Our choice of ANN application is reinforced
given the continuous and dynamic elements of gameplay. The one outstanding
factor here is that we are again dealing with other agents whose actions affect our
own, i.e. this is a multi-agent problem. This issue, as shown later, is incorporated
into the tank’s decision making process when necessary.

EvoTanks faithfully mimics the Combat tank game, a Java implementation
existing as an enclosed square arena measuring 600 by 600 pixels in size. A
standard EvoTanks game (shown in Figure 3.2) includes two agents with the
intent of eliminating their opponent as quickly as possible. Each agent is limited
to basic movement; forwards, backwards, turn left or right and firing of the cannon.
Each agent is capable of activating one or more of these actions at each discrete
time-step of the simulation approximately every 15 milliseconds, meaning the
agent can for example move forwards, turn left and fire simultaneously. Each
movement action is fixed to a predefined distance (2 pixels) or angle (4 degrees)
per update. Once any action is committed, there is a minimum delay before that
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Figure 3.1: A screenshot of the tank mode from Combat. The agent’s goal is to
generate as large a score as possible by damaging the enemy agent within the
time limit.

same action can be committed again The delay is 1 simulation cycle for movement
and turning and 50 cycles for firing the cannon. The cannon is fixed to the front
of the tank and carries an unlimited supply of ammunition. Each agent starts
with a maximum shield strength of 100 points, and suffers a loss of 25 points
for each collision with the environment or if hit by enemy fire. An agent will
successfully win a match provided the enemy has lost all shield points within the
time limit (1000 time steps), otherwise the match is declared a draw.

EvoTanks provides an interesting environment for the testing and development
of trained reactive controllers. The game presents a significant challenge given
the need to have knowledge of the local environment as well as the enemy agent.
Despite the limited amount of movement, there is still sufficient room for a variety
of different strategies to be formulated. To further complicate issues for AI or
human players, there is also an array of pre-programmed, scripted players built
for the game:

Sitting Duck/Lazy Tank/Random: The Sitting Duck and Lazy Tank are sim-
ple and docile agents that do not commit any movement actions throughout
a match. While the sitting duck is fairly self explanatory, the only difference
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Figure 3.2: A screenshot from the EvoTanks game. The match in progress shows
one similar to Figure 3.1, where two agents are attempting to eliminate one
another within the time limit.
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between it and the lazy tank is that the latter will fire its cannon at every
available opportunity. The Random agent will, as expected, commit one
or more random actions at every timestep. These agents were originally
designed just to provide players a target to focus their behaviour against.

Hunter: An aggressive opponent that turns to face the opponent and moves
towards them while firing the cannon. This kamikaze agent ignores all
concerns for its own well being and continues onward. This often presents
quite a challenge for the player, since the aggressive opponent forces quick
thinking to ensure survival.

Sniper: A defensive opponent that tries to maximise the distance between the
player and itself while attempting to remove points from the player’s shields
with long distance shots. Once it has reached a minimum distance from the
player (300 pixels) it shall remain in place. This agent provides the opposite
challenge from the Hunter, since we are dealing with an enemy that will
continue to evade while ensuring a defensive position.

Turret: Perhaps the most challenging opponent due to its fixed position. It
maintains some ability from the Hunter; constantly turning to face the
opponent and firing whenever capable, however it is incapable of movement.
This lack of movement actually reinforces the defensive capabilities of the
agent, as the opponent must be able to survive the barrage of incoming fire
in order to make a kill-shot.

Each of these opponents were initially designed to facilitate our requirements
during our previous research using EvoTanks. While agents are only capable of
simple actions, the agent API1 provides a variety of information that can be used
to assist the decision making of the player. This point is further elaborated on in
Section 3.3.

3.2.1 Previous EvoTanks Research

Our initial research in EvoTanks was to take our variant of the Combat tank-game,
and attempt to train a feed-forward, multi-layered ANN that could compete
against one of the array of scripted agents shown above. A supervised learning

1Application Programming Interface: An interface that provides a range of functionality to
allow a software component to interact with another system.
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method was not applied due to the lack of training data available for our agents.
Given that each agent relied on low-level normalised data, it was deemed plausible
that an agent would be able to learn appropriate behaviours from the provided
stimuli (Thompson [2005]). The resulting product was promising, with successful
agents that learned to out manoeuvre their opponents and develop interesting
and varied behaviours.

However one of the main drawbacks was that the evolved agents became niche
players: i.e. the agents were, potentially, optimal with respect to the tank they
trained against. Hence agents would learn how to eliminate one script competently,
but were unable to compete effectively against other agents - even those with
minor differences in behaviour. To counteract this, a competitive co-evolution
model was applied to the population (Thompson et al. [2007]). Small tournaments
comprising two teams of 10 agents would play against one another, the intention
being to provide sufficient understanding of a candidate’s fitness with respect to
the rest of the population by playing against a random sample of other players.
Evidence from Thompson [2006] suggested the performance of the learning system
was affected by the number of players. Further experimentation indicated that 10
agents was sufficient for the tournament assessment. The co-evolution approach
was evaluated against a 1+1 ES where each candidate was assessed against all
scripted agents. Results published in Thompson et al. [2007] indicated that the
1+1 ES was more efficient in generating strong behaviours. The ES would often
generate more efficient strategies that sought to eliminate the enemy player as
quickly as possible. Meanwhile the co-evolution approach generated more diverse
strategies, with final fitness values often just below what could be considered an
upper-bound generated by the ES. Work in a similar vein can be found in Tan
[2008], where a hybrid competitive-cooperative model was applied instead of the
simple competitive model shown in Thompson et al. [2007]
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3.3 Agent Design

See first that the design is wise
and just: that ascertained, pursue
it resolutely; do not for one repulse
forego the purpose that you
resolved to effect.

William Shakespeare

Throughout the development of our individual networks, we deemed it impor-
tant that simplicity in the design should remain paramount. Resulting behaviours
must be relatively robust and efficient, however as we wished to retain an elegance
in the design, we tried to ensure that each component would be small and simple.
Provided sufficient effort was made in the design phases, then resulting behaviours
would become easier to formulate through our subsumption hierarchy.

In Section 3.3.1 we provide a breakdown of the controller design; how the
subsumption is deployed and the parameters that hold across all ANNs. We also
provide the full list of controllers that are later explored in detail in Section 3.4.1.
This is followed by a breakdown of the learning methodology in Section 3.3.2 that
explores how we train these multi-layered controllers.

3.3.1 Controller Design

Our reactive controller is composed of a series of feed-forward, multi-layer ANNs
that are placed atop one another within the subsumption hierarchy. Each network
is designed to have four layers; inputs, outputs and two intermediate layers of
hidden neurons. This topology has persisted since our previous work in Thompson
et al. [2007] and given the success enjoyed from this approach, we committed to
use the same topology throughout this research. The hidden neurons within the
middle layers typically range from three to five per layer, with each neuron using
a hyperbolic tangent (tanh) transfer function. This is employed to reduce the
initial bias in the network that other transfer functions, such as the sigmoidal
approach do not compensate for. By using this approach we constrain the size
of each network, with typically less than 30 synapses in each controller. As the
weight of each synapse is constrained within a range of ±5, each chromosome
is a series of weight values within this range. This small network topology and
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gene range allows for fast training times as shown in Section 3.4. An example
subsumption layout composed of three networks is shown in Figure 3.3.

Our subsumption approach dictated that an agent should be able to use any
available information about the domain in order to generate an appropriate action.
Therefore, any subset of information from the domain could be used in each
network. To faciliate this in the EvoTanks environment, we developed the Oracle;
a separate Java class that keeps up to date information about all entities within
the environment. Should we require specific information to be available then it
would be easy to add a new method to achieve this. A complete list of available
inputs can be found in Table 3.1 with a list of the required inputs and the resulting
outputs. Note that each output is normalised: a common process that ensures
values conform to a specific range using an appropriate scale. As we can see,
each piece of resulting data is normalised within the range of −1 ≤ x ≤ 1 or
0 ≤ x ≤ 1. Normalising the inputs to the ANN ensures more effective training
than using the data without any scaling, since the network has a smaller range
of inputs to generalise. The ranges introduced above were selected due to our
success in previous EvoTanks experiments. In the case of our EvoTanks controllers,
each ANN would typically use two to four inputs from the game. Each input
selected was dictated by the goal and function of each controller and is explored
further in Section 3.4.

Furthermore, each network within the hierarchy is allowed to provide signals
to any outputs of the subsumption controller. In the EvoTanks domain each ANN
can have up to three output neurons to commit actions to the subsumption
controller. These neurons correspond to forward/backward movement, left/right
rotation and firing the cannon. Hence, each individual layer can provide values
for any or all of these outputs. Positive output in the movement neuron triggers
a ‘move forward’ action and a ’turn right’ action in the rotation output neuron,
while negative values for these neurons result in the opposite effect. In order to
fire the cannon the fire output value needed to exceed a predefined threshold
(≈ 0.01). For both movement and rotation outputs there exists a range of ±0.05
and ±0.03 respectively that operate as ‘null’ outputs, i.e. should the value exist
within this range then the agent will not commit an action.

The traditional subsumption approach advocated by Brooks dictated that a
top-down order of precedence is required for all controllers within the hierarchy.
We have adopted this approach in our version applied throughout this chapter.
However, we have taken the liberty of only restricting individual outputs through
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Figure 3.3: An example subsumption architecture with three neural network
controllers placed atop one another to dictate a hierarchy of execution. Agents
utilise a subset of all available inputs and activate a subset of the outputs.
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Table 3.1: The complete list of information available to an EvoTank agent courtesy
of the Oracle.

Data Normalised Output Range
Distance from Point/Target 0 ≤ x ≤ 1
Angle from Point/Target −1 ≤ x ≤ 1
Enemy Angle to Agent −1 ≤ x ≤ 1

Distance from Nearest Shell 0 ≤ x ≤ 1
Angle from Nearest Shell −1 ≤ x ≤ 1

Wall Intersection Angle Ahead −1 ≤ x ≤ 1
Wall Distance Ahead 0 ≤ x ≤ 1

subsumption rather than complete controllers. As a result, each output of the
agent will be executed by the layer with the highest order of precedence that
has provided a value for that output. As previously stated, in EvoTanks each
controller is able to provide an output for the move, turn and fire commands
of the agent. So in the case of our subsumption hierarchy, at each time step in
the game the controllers in the hierarchy are queried in descending order to see
whether they have a response for the ‘move’ action. Should a controller specify a
signal for an action then this is submitted to the agent to process and all layers
beneath it are ignored. If no signal is provided at this layer, then we consult the
next controller down in the hierarchy. This continues until we have reached the
bottom layer, where if no signal is provided, then that action will not occur on
that time step. This process is then repeated to see if the ‘turn’ and ‘fire’ outputs
will be executed at that time step.

Given the nature of this subsumption process, we hypothesised that placing
the core behaviour of a controller at the bottom of the hierarchy was the best
approach. This decision actually contradicts the original concept in Brooks [1986],
where it is suggested that the goal behaviour be built incrementally as we add
more layers to the top of the hierarchy. This would be achieved by adding reactive
control at the bottom followed by more abstract and goal specific control at the
top. What we wanted to achieve was building the basic functionality of our
controller at the very bottom layer and submit ‘updates’ to the behaviour in the
form of supplementary layers.

To reflect these decisions, our controllers were built with one of two possible
functions; as either a base controller, where the controller is responsible for the
basic functionality or as a layer controller designed to operate in conjunction
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with lower layers. These layer controllers must assist in dealing with information
de-coupled from the base controller’s goal. Each layer controller would be designed
to associate with a feature that could be added to a problem instance. Given the
nature of the subsumption hierarchy it was important that layer controllers only
activate when they are required. As shown in Section 3.4, our layer controllers
only activate when dealing with a specific feature of the environment. This results
in only having to train responses to the input and saves having to learn when to
ignore inputs. We hypothesised that this would result in faster training times. To
explore this approach, a handful of controllers were created which we could test
in EvoTanks.

Provided is the list of sub-controllers we built for EvoTanks, with the name of
each controller suggesting their function:

Destroy Target (Base): Agent is charged with the elimination of a specified
target.

Visit-Waypoint (Base): Agent must drive towards a fixed coordinate in the
world.

Grab-Item (Base): Agent must retrieve an item from a position in the world.

Detect-Obstacles (Layer): Sense nearby obstacles and prevent collisions.

Dodge-Shells (Layer): Sense incoming enemy fire and attempt to avoid them.

Once we introduce the learning methodology for our subsumption controller,
we will return to these sub-controllers in Section 3.4 and explore the process of
how we created effective ANNs to satisfy our requirements.

During execution of the subsumption, layer selection was deliberated across
each individual output. Since sub-controllers only provide outputs for actions
they require, this gave us a different form of behaviour; since our controllers
could learn to interrupt only those actions that were of interest to them. This
gave us the freedom to create controllers that did not provide connections to
certain outputs, effectively ignoring them. More importantly, it allowed for
more than one sub-controller to be in control of the overall behaviour, since an
individual layer may want to only override one output and permit the lower layers
to proceed as normal, as shown in our 2-layer experiments in Section 3.4.2. At
each time-step of the EvoTanks game, all networks within the hierarchy processed
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outputs based on the current available data from the Oracle. Once completed,
the top-down subsumption approach was applied across all outputs to select the
committed action. Therefore movement, rotation and firing were triggered by the
network which committed the output while holding the highest position within
the hierarchy.

3.3.2 Learning Methodology

Now we had a series of networks placed atop one another within the subsumption
framework, our next step was to devise a training approach which would ensure
the controllers were trained effectively. Our approach was inspired by the layered
evolution previously discussed in Togelius [2004]. The overall process is summarised
in Algorithm 3.

Algorithm 3: A breakdown of the training process for individual subcon-
trollers.
Input: A queue of controllers Q of size l, where the tail is the top controller

in the hierarchy and vice versa.
Result: A trained hierarchy of ANNs tailored to the Subumption paradigm,

R

Assign fitness function for training from Q01

addController(Q0,R)2

for i← 0 to l do3

for j ← 0 to MaxEval do4

best i ← train(Qi)5

end6

freeze(best i, Qi)7

if i < l − 1 then8

addFeatureToEnvironment(Qi+1)9

addController(Qi+1,R)10

end11

end12

Having decided what our goal controller is, we begin by separating the controller
into individual neural networks. The separation process is typically an intuition
based decomposition and relies on our understanding of what we wish to achieve.
Each ANN is comprised of the same topology and parameters described previously,
with the only obvious differences emerging from their function and the required
inputs and outputs to achieve them. Subsequently we select the order that they
are to be trained, beginning with the base controller which is placed naturally
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at the bottom of the hierarchy, then commencing the selected learning process
(EA, ES) for a specified number of evaluations using a standard training problem.
Once training is concluded for this controller it is frozen in place, i.e. it is not
trained any further and the behaviour is now fixed. We take the next controller
we wish to train and insert it into the subsumption hierarchy above the frozen
controller(s) and begin its training. When training the next controller we operate
under the same format as before, however we change the problem instance slightly
to reflect on the changes necessary to justify the additional control. This cyclic
process continues until we have completed training all controllers, resulting in the
layered controller shown in Figure 3.3.

An example learning process may be to create a controller that can navigate
through an environment and avoid nearby obstacles. The English description
would often give us a sufficient idea of how to separate the behaviour, so in
this example we detach obstacle avoidance from basic navigation, resulting in
two controllers to train, namely visit-waypoint and detect-obstacles. Again, our
description gives us an indication of the basic functionality and the additional
control, dictating the order of training. We first place the visit-waypoint controller
into the hierarchy and give a simple navigation example for it to train against.
Once this phase completes, we freeze the navigation controller and add the obstacle
avoidance controller on top. The obstacle controller is next to be trained by using
the same number of evaluations. The training instances used in this example are
shown in Figure 3.4. In Figure 3.4(a) we see the base controller being trained in a
simple environment, prior to the inclusion of obstacles for the avoidance controller
in Figure 3.4(b).
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(a) Navigation Only

(b) Navigation & Obstacles

Figure 3.4: An example of environment modification to reflect the change of
controller being trained. In Figure 3.4(a) we see basic navigation training, followed
by the inclusion of an obstacle for the avoidance controller in Figure 3.4(b). 97
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3.4 Implementation & Training

Training is everything. The peach
was once a bitter almond;
cauliflower is nothing but cabbage
with a college education.

Mark Twain

In this section we explore the creation and training of ANNs designed to
facilitate our base and layer sub-controllers for the subsumption controller. We
begin by exploring each of the controllers in turn, highlighting the design of each
neural network. When examining base controllers, we also provide results from
our testing to ensure their validity. We will give the design and layout of layer
controllers within Section 3.4.1, however, testing and experimentation is found
in Section 3.4.2, where we begin to combine layers of networks to assess their
capabilities in more challenging environments.

3.4.1 Individual Sub-Controllers

In this section we provide detail of each individual controller, the inputs used,
how they are normalised with respect to the environment and what outputs
are subsequently generated. We wish to remind the reader that each individual
controller is a standard multi-layer feed-forward artificial neural network. Each
neuron utilises a tanh transfer function and there are no bias nodes within any of
the networks.

Recall that each individual network can retrieve inputs from the Oracle (see
Table 3.1), each of which has been appropriately normalised with respect to the
environment. This is required since the range of unscaled data may vary and can
become, on occasion, very difficult for a network to learn from. For example, if
we feed a distance value into the network then we could potentially be feeding
any value from zero to the length of the diagonal of the EvoTanks arena. As a
result, we would need to generalise our control policy for any value in the range
of 0 ≤ x ≤≈ 849. This would require a significant amount of time to train, since
we not only consider all values of x but also any potential combination of inputs
involving x. Thus the data must be normalised in a manner that reduces the
potential range of inputs as well as smoothens the input space.
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To assess the validity of our subcontroller design, we apply the (1+1) ES as
the learning algorithm of choice. If we refer back to Section 3.2, this is due to
results in previous research found in (Thompson et al. [2007]), where we concluded
that the (1+1) ES provides a potential lower-bound on fitness. In the coming
sections we provide graphs of performance and the accompanying tables that
indicate how well our controllers perform with respect to their fitness functions.
Furthermore, we also require a means to assess the statistical significance of these
results. Whilst presenting this data indicates how well the agent performs, we
must ensure a confidence in these returns in order to validate our findings. This
can be achieved utilising a sample size equation with confidence intervals, a simple
test found in statistical texts that suggests the number of observations required
to constitute a particular assumption with a specified level of confidence. This
equation is provided in Equation 3.1.

n = 1.962σ2

α2 (3.1)

The sample size calculation above is designed to indicate the number of
experimental runs (n) required to attain a 95% confidence, corresponding to a
z-distribution of 1.96, that the standard deviation of the sample mean (σ) is
within an error bounds (or confidence interval) of 0.1 fitness (α). In the context
of our learning experiments, we can take the fitness statistics from a set of results,
and calculate how many experiment runs are required to ensure a 95% confidence
that the findings can be duplicated within 0.1 of the mean. This is very important
when dealing with evolutionary based algorithms since a good result can be the
fortunate product of randomly instantiated variables. The confidence interval of
0.1 was considered sufficient for any successful behaviour given the simplicty and
urgency of the fitness functions. If the learning algorithm could not consistently
generate fitness values within this constraint, then either the heuristic, or the
learner was insufficient for the problem. Providing our testing set is sufficient,
the resulting sample size would give a strong indication of the robustness of the
search process.

Learning Parameters

The learning parameters we apply for the following experiments are provided
in Table 3.2, with a summary of the ANN parameters in Table 3.3. Unless
otherwise stated, each controller is trained for 50,000 evaluations. One evaluation is
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Table 3.2: The standard learning parameters applied across all of our (1+1)ES
and Genetic Algorithm experiments.

(1+1) Evolutionary Strategy Parameters

No. Games
Per Candidate

Total No.
Evaluations

Probability
of Mutation

Mutation
Range

Chromosome
Weight
Range

50 50,000 40% ±1 ±5

Table 3.3: A recap of the parameters applied across all of our neural networks
during training.

Neural Network Parameters
Transfer
Function

Turn
‘Null’ Space

Move
‘Null’ Space

Fire
Threshold

tanh ±0.03 ±0.05 0.01

considered a complete EvoTanks game that concludes due to the agent completing
the task, the tank being destroyed or the max time limit being reached (Tgame ≡
Tmax). Our previous research in Thompson [2005] and Thompson et al. [2007]
provided evidence to suggest that 50 evaluations should be made to assess each
candidate in the learning process. Once completed, we take the average fitness
across the 50 runs, giving a reasonably accurate measure of fitness.

We apply the mutation methodology introduced in Section 2.1.2, where we
introduce random noise within the range of ±1 to each gene in the chromosome
with probability p. As we can see from Table 3.2, this will occur with a probability
of 40% for each gene. Should the value of a particular gene exceed the range of
±5, then it is reset to the closest extremity.

Lastly, we provide the parameters of the neural network. As previously noted,
each neuron in the network runs under a TanH transfer function. Furthermore,
we remind the reader of the ‘null’ ranges for the turn and movement outputs and
the threshold required for the fire neuron output to be accepted.

Addressing Fitness Noise As previously discussed in Chapter 2, we must
consider the effects of noise on our fitness calculations as we run the learning
algorithms. The first way to address this is to ensure each candidate is assessed
for a sufficient number of games. An insufficient number of trials may assist a
given candidate in sustaining itself within the population thanks to a fortunate

100



Chapter 3. Creating Robust Reactive Control

and beneficial initialisation. By taking the average of these 50 games then the
noise in individual fitness calculations will be addressed. However, we must also
consider the setup of each individual evaluation. If this was left to simple random
instantiation, then noise would practically remove any credibility from the fitness
of a candidate. As a result, we generate 50 sets of experiment configurations,
i.e. starting positions and directions, prior to any learning taking place. When
a particular candidate is selected, it will use these 50 experiment configurations
across the evaluations. This same set is then used to assess all candidates. This
ensures that the agents are assessed under equal terms and prevents further noise
being introduced.

Visit-Waypoint

We begin with one of our three base controllers named visit-waypoint. As the
name would suggest, the controller’s function is to move an agent from its current
position to some specific (x, y) position (or waypoint) in the world as quickly as
possible. The agent only considers the position in the world it is planning on
reaching and its actions are based solely on what is needed to reach this waypoint.

The controller relies on two inputs; the distance of the waypoint from the agent
and the angle from the front of the agent. This provides two important pieces of
information, how far the agent is away from the goal position and what angle it
has to turn to face it. For ease of training both of these inputs are normalised
(as shown in Table 3.1), the distance variable is normalised with respect to the
length of the arena and the angle represented as a polar coordinate from the front
of the tank.

The performance of the ANN is assessed by how quickly it reaches the waypoint
(Tgame) with respect to the maximum number of timesteps in an EvoTanks game
(Tmax). We represent this in our fitness function shown in Equation 3.2. In an
effort to push the agents to perform better in the learning process, we penalise
them for every timestep they fail to reach the waypoint. Thus the longer an agent
takes to reach the waypoint then the larger the penalty to the score. Whilst
this forces the agent to perform as efficiently as possible, it also ensures that the
agent does not become complacent as it can never achieve the maximum score,
as it is impossible to reach a waypoint in one timestep. This ensures that the
learning process will continue to search for new solutions instead of stagnating.
The penalty is scaled so that the maximum penalty is 0.5, our intention being
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that the 0.5 is the minimum score that can be attributed to a successful test.

Fsucceed = 1− (( 0.5
Tmax

)× Tgame) (3.2)

However should the agent fail to reach the waypoint within the time limit
then the agent is assessed based on how close it got to reaching the waypoint.
In Equation 3.3 we model how close the agent came to reaching the waypoint
(DFinal) and then scale the reward based on the distance travelled in respect to the
initial distance (DStart) from the goal. Bonus fitness is attributed for how closely
the agent reaches the waypoint, with a cap at 0.5 since at this point the agent is
actually reaching the waypoint and will instead be assessed with Equation 3.2.
This in turn provides a rather smooth scale for progression, as a solution achieves
greater fitness the closer it reaches the waypoint, followed by a gradual increase
past the 0.5 mark as the candidate begins to become more efficient.

Ffail = 0.5− (( 0.5
DStart

)×DFinal) (3.3)

The reader may note that Equation 3.3 can lead to situations where the agent
receives a negative score. This occurs when the agent moves further away from the
waypoint compared to its position at the beginning of the test. While we could
have rectified this, it provided a clear-cut indication of really poor solutions and
we hypothesised that this would assist in the scoring and improvement process.

To assess agents using this ANN, we ran a series of random problem instances.
Initially we ran tests using random positioning of the player using the visit-
waypoint controller with one static, fixed waypoint in the bottom-right corner of
the world. When assessed using both a 1+1 ES and a generational evolutionary
model with a population of 200 candidates, this proved highly effective. We
continued this phase of experimentation to explore results in moving the waypoint
to the remaining corners of the environment culminating at the absolute centre.
Once more, using the same search strategies, adequate and capable solutions were
discovered. Leading us onward to our final phase of testing, we dictated that both
players and destinations be randomly placed throughout the environment.

For our final tests, the agent is placed randomly in an empty EvoTanks arena
and the waypoint to be reached is also assigned a random position as shown in
Figure 3.5. However, we enforced a rule that the minimum starting distance was
600 pixels to ensure the agent can easily traverse large areas. This is in part due
to the normalisation of the distance input once used in earlier EvoTanks research.

102



Chapter 3. Creating Robust Reactive Control

Figure 3.5: An example visit-waypoint test, where a randomly assigned waypoint
and agent are placed in the world. The agent must now traverse the world as
quickly as possible to the highlighted waypoint marker.

The original normalisation resulted an input range of −0.5 ≤ x ≤ 0.5 rather than
the current setup 0 ≤ x ≤ 1 (Thompson [2005]). While it proved sufficient for
close quarters situations where tanks fought against one another, it proved to be
ineffective across long distances as the input would reduce to 0 when the agent
approached the centre of the arena. The agent could move no further forward
as it was not given a weighted input. Each visit-waypoint network consists of
two feed-forward hidden layers of three neurons. Combined with the two inputs
and two outputs (movement and rotation), this results in a complete network
composed of 10 neurons and 21 weights to be trained in the learning process.

In Figure 3.6 we show learning trends for three experiments using 50,000
evaluations. These results are tied to the data provided in Table 3.4 which

103



Chapter 3. Creating Robust Reactive Control

Figure 3.6: Three runs of the visit-waypoint controller using our (1+1) evolutionary
strategy. Each agent is given 50 matches to generate their average fitness, with a
1000 separate candidate mutations.
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Table 3.4: Statistics gathered from 10 runs of the visit-waypoint controller,
including the three runs shown in Figure 3.6. Note the small standard deviation
across this set of data and the low sample size requirements to achieve 95%
confidence of success within a 0.1 range of the mean.

Statistic Value
Maximum 0.8412
Minimum 0.8361
Mean 0.8385
Std. Dev.(σ) 0.0013
Sample Size (α = 0.1) <1

provides a spread of statistics from ten runs of the visit-waypoint experiment.
Note that the three runs from Figure 3.6 are part of this data set. The fast learning
evident in Figure 3.6 suggests that the controller’s design choices were intuitive.
Agents learn efficient behaviours very quickly, with the desired behaviours emerging
within the first 5000 evaluations. Further evidence in Table 3.4 shows that the
best fitness often peaks at around the 0.84 mark. Given the penalty issued for each
timestep that the agent fails to reach the goal and the minimum initial distance,
this is an impressive result. This suggests a trained agent on average takes only
300 game cycles to reach the target waypoint. These statistics indicate also that
there is little variation in the resulting solution’s performance. Given that the
difference between best and worst solutions is slightly greater that 0.005 and a
very low standard deviation it suggests that agents would easily learn efficient
performance. Further evidence to support this, is the result from the sample size
calculation. Based on our sample data, we only require one run of the learning
algorithm to achieve 95% confidence in our returns. This gives significant evidence
to suggest that this learning process will almost always generate results akin to
the statistics in Table 3.4.

The resulting behaviours from the experiments are directed and efficient. Each
agent will often hammer-on the forward action and then turn in the correct
direction in order to reduce the angle from the front of the tank to the waypoint.
In almost all instances the agent will maintain a constant forward moving action.
While we are no doubt highly satisfied with these results, we wondered whether
we could in fact improve the performance and the desired controller. Given the
behaviour of the resulting neural nets and how quickly the agents learn how to
solve the problem, we were curious to see whether agents require both inputs.
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Figure 3.7: A series of experiments running the same problem as that in Figure 3.6,
however instead of running with two inputs to the network the agent only runs
on the normalised angle input.

The constant forward movement suggested that the distance variable may not
be required and since the agent minimises the angle to face the waypoint, it
was hypothesised that if we remove the distance input we could achieve similar
performance using a smaller network. In Figure 3.7 we show three runs of a
reduced network, where the controller runs on only one input, thereby reducing
the number of weights to 16. The resulting trends indicate that this is in fact
not the case, with a drastic loss in performance across all runs when compared to
those provided in Figure 3.6. The resulting behaviours appear to lack focus that
perhaps the distance input provided.

However, our resulting agents suffered from a minor setback. In certain
situations the agent would become highly proficient in reaching the waypoint by
reversing rather than moving forward. This is caused by a lack of information

106



Chapter 3. Creating Robust Reactive Control

within the fitness function, since the equation merely states that a candidate must
reach the goal location as quickly as possible. This leads to a potentially wasteful
search process since we do not collect information on the performance, other than
the final result: Did the agent reach the waypoint or not? This highlights one of
the issues that can arise in evolutionary learning, since adding new information
in the fitness function can potentially prune useful areas of search space. Do
we really wish to potentially constrain our search by demanding more within
the fitness function? Furthermore, this situation can also arise due to not using
a supervised learning process. This is the evaluation vs. instruction tradeoff
that is described in Sutton and Barto [1998]. In supervised learning we provide
instruction, whereby an agent must change behaviour to mimic the prescribed
methodology reflected in the training data. Whereas our approach lends to the
evaluation style, where we merely reward an agent based on how well it performs
in respect to the fitness criteria (Yannakakis et al. [2007]). Of course it can lead
to situations such as this, where an agent successfully achieves our desired goal,
but in an undesirable fashion.

We required means to ensure that this ‘erroneous’ behaviour occurred far less
frequently. This was particularly relevant for our 1+1 ES experiments, where this
phenomenon was observed regularly. However we were concerned whether changing
the fitness function would impact the learning process. Our first approach sought
to provide a solution by changing the rules of the EvoTanks game, by simply
reducing the reversal speed of a tank, as until this point the agent could move
at the same forward speed as it could backwards. Now the agent moved at one
fourth speed when reversing. While this proved effective in reducing the number
of situations this occurred it did not curb the behaviour. This can be attributed
to the learning process, since variations of the reversing behaviour could improve,
leading to a local maxima within the search space that a hillclimbing algorithm
will traverse to the peak. Our second approach was to used a modified fitness
function as shown in Equation 3.4. The modified version placed a strong emphasis
on the agent facing directly towards the goal location. In practice this proved to
be far more successful, however it changed the search landscape significantly. Now
an agent would receive far more reward simply for facing in the right direction due
to the weights selected (best fitness values would often reach 0.95). Whilst this
proved successful, throughout the remainder of the work we continue to use the
original function in Equation 3.2 as reduced speed had decreased the number of
reversing incidents to within an acceptable range. This decision was made given
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that the new fitness landscape would not be as smooth as the original.

Fsucceed = (1− (( 0.5
Tmax

)× Tgame)× 0.5) +

(1− (TangleFromWaypoint

180 )× 0.5) (3.4)

Destroy-Target

Our next base controller is the original premise that our work is based upon shown
in our prior research found in Thompson [2005, 2006]. This agent is designed to
eliminate an assigned target as quickly and effectively as possible.

This neural network is given information about a specific target, typically
another agent, but destructable static objects were also explored, albeit briefly.
The Oracle provides three inputs; the distance from the agent to the specified
target, the angle the agent must turn to face the target and finally the angle that
the target must turn to face the agent, assuming the target is a hostile enemy,
otherwise it is zero. As in the case with our other controllers, all of our inputs are
normalised within a reduced range. Distance inputs are normalised with respect
to the diagonal of the arena and the angles are represented as polar coordinates.

This controller is assessed not only by how quickly the agent eliminates
the enemy player, but also by how effectively it achieves this. As is shown in
Equation 3.5, the agent is assessed primarily by how quickly it eliminates the
assigned target. As was the case with the visit-waypoint controller, the agent
is penalised for every timestep taken to complete the task to ensure that no
stagnation occurs in the learning process since there are potentially (while not
necessarily feasible) better solutions to be found. Should the agent fail to eliminate
the target then it is assessed according to Equation 3.6. In this instance the
candidate is given a bonus for every timestep it survives in the environment. This
is designed to smooth the fitness landscape, as this will promote solutions that
do not succumb to enemy fire as easily as others. Once more a lower limit of
0.5 is set for successful evaluations, whilst an upper limit of 0.5 is set for failed
evaluations. This provides a smooth transition from failing to successful scores.

However, note that this efficiency measurement only comprises 80% of the
total fitness. The remaining 20% fitness can be attained from Fhealth shown in
Equation 3.7, where the fitness is attributed to the number of health points the
agent has retained from the initial maximum (Hmax), and the number of hit points
that have been removed from the target. Thereby a candidate that completely
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eliminates the target while not taking any damage itself, will be considered a
more efficient solution. In the event that the agent fails to complete the task
within the prescribed time limit, then a score of 0.5 is automatically assigned.
While we wanted to measure how well the agent could retain shield points, we
still felt it was paramount to measure the our fitness primarily on the efficiency
measurement. This accounts for why the efficiency measurement covers 80% of
the overall fitness.

Fwin = ((1− (( 0.5
Tmax

)× Tgame))× 0.8) + (Fhealth × 0.2) (3.5)

Flose = ((( 0.5
Tmax

)× Tgame)× 0.8) + (FHealth × 0.2) (3.6)

Fhealth = (Agenthealth × 0.125) +

((Hmax − Targethealth)× 0.125) (3.7)

To assess candidate solutions during our learning process, we test each ANN
against all six of the scripted agents we previously described in this chapter. Each
scripted agent was designed to explore different aspects of desired behaviour in
our previous EvoTanks projects, therefore we use all six to assess our candidate
solution. Whilst our visit-waypoint experiment required only 50 runs of the
EvoTanks game to assess our controller, this instance needed to gain a strong
mean fitness against each enemy agent. This leads to a need to run against all
agents 50 times, resulting in 300 matches played per candidate. Given this requires
more matches per candidate, we must also increase the total number of evaluations
from 50,000 to 300,000. Our previous research found in Thompson et al. [2007]
showed that this approach was successful in finding capable solutions and in fact
generated more efficient results than the use of the competetitive co-evolution
model. Therefore in this instance we decided to use the best method to achieve
the most optimal performance. With respect to the potential noise in the fitness
experiments, we prepare 50 sets of starting positions and directions for both the
evolving and scripted players. The evaluations will use the same 50 start points
and directions while testing across all six enemy scripts.

We provide fitness trends from a sample of three runs of this experiment in
Figure 3.8 with statistics across ten runs in Table 3.5. In all of the trial runs

109



Chapter 3. Creating Robust Reactive Control

Table 3.5: A series of statistics reflecting on 10 runs of the destroy-target controller.
The results provide a strong mean considering the challenge this task presents,
which is further highlighted by the maximum and minimym scores attained
throughout these runs. However despite this, we remain confident that the agent’s
performance is relatively robust given the result of the sample size calculation.

Statistic Value
Maximum 0.7315
Minimum 0.5482
Mean 0.649
Std. Dev.(σ) 0.06882
Sample Size (α = 0.1) 1.82

shown it is evident that the agent learns how to eliminate its enemies rather
effectively by clearly surpassing the 0.5 fitness mark in the best cases. However,
Table 3.5 suggests that results are often mixed; with final fitness ranging from
high performance past the 0.8 mark, to the poorest of our sample runs barely
succeeded on average. This range can be attributed to the increasing difficulty of
the problem when agents are introduced to the hunter, sniper and turret agents.
These scripted agents are often highly aggressive or defensive in strategy and
prove difficult even for humans to eliminate in play. This loss of fitness is tied not
only to the penalty for time taken, but also since an agent will lose health when
fighting the more aggressive opponents. The major flaw in the agent design that
has existed since our original research is that we do not provide information on
incoming shells for the agent. This gives rise to an assessment of the candidate
based on criteria it has no knowledgable of, nor means of correcting. Agents
have in the past sought out creative solutions that help to avoid the enemy fire,
often at the expense of efficiency. A potential solution is explored later in this
chapter when we provide an additional controller that can facilitate the avoidance
of enemy fire.

Grab-Item

Our third base controller, dubbed ‘Grab-Item’ is designed to provide an agent that
will navigate through an environment and pick up a specified object. This controller
is similar to visit-waypoint given that it must visit a pre-defined destination in
the world. However, the additional requirement to pick up an object is what
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Figure 3.8: A series of destroy-target experiments training against the scripted
agents described in Section 3.2. Due to the higher difficulty of the task, the agents
are given significantly more matches to train with.
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distinguishes it from its predecessor. We wished for the controller to only use
the ‘grab’ actions when necessary, rather than continually attempting to pick-up
the item regardless of where it is. This was decided on as in real life an agent
that continually moves to pick up an item when it is not within nearby proximity
would appear clumsy or ill-informed1. In turn this provides a greater challenge
and requires a more defined neural network, since the network must be able to
recognise the specific sets of data that correspond to being within close proximity
of the specified object. Only then should the grab action be committed.

This agent operates using similar inputs to the visit-waypoint controller; the
distance to the item and the angle of the item from the front of the agent. Once
again the distance input is normalised with the respect to the length of the diagonal
of the game arena, and the angle is converted into polar coordinates. This network
now has three actions for interfacing with the environment; movement and turn
actions corresponding to those we have seen previously and a grab command that
- for the sake of this experiment - overrides the fire cannon action. Running on a
2-input, 3-output, multi-layer ANN with two hidden layers of three neurons, this
leads to a chromosome length of 24 weights for training.

To evaluate this controller, we once again provide random positions for the
tank agent and the item it is charged with retrieving, while retaining the minimum
distance of 600 pixels as before. The fitness function for grab-item mimics the
visit-waypoint method of assessing success and failure shown in Equations 3.2
and 3.3 respectively. The only notable difference is where the test terminates:
visit-waypoint tests end once the agent has reached its destination or the time
provided has elapsed. However, grab-item experiments are dictated by two
conditions; whether the agent has committed the grab action within the time limit
and whether the agent was in close proximity of the item when the grab action
occurred. This is made clearer through our pseudocode example of the grab-item
update() code shown in Algorithm 4.

Results from running these experiments are provided once again in two formats.
Figure 3.9 presents learning trends from three runs of the controller within a
1+1 ES. In our learning trends we note that the learning process is capable of
finding effective solutions. However we observe that in this instance there is
one specific run where the learning process stalls, but then recovers after 20,000
evaluations. This circumstance arose due to the fitness function penalising the

1If of course we can suspend disbelief that a tank trying to pick up an object is perfectly
normal.
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Algorithm 4: A pseudo code description of the update loop used in the
grab-item agent.

while TCurrent ≤ TMax do1

if grab then2

if objectClose then3

fitness =FitnessSucceed();4

return fitness;5

end6

else7

fitness =FitnessFail();8

return fitness;9

end10

end11

UpdateNetwork();12

MoveAgent();13

TCurrent + +;14

end15

fitness =FitnessFail();16

return fitness;17

agent for not grabbing the item despite closing the distance as much as possible.
This low fitness result was reached by an agent that has learned to move towards
the controller, but failed to learn when to pick it up. Due to the nature of the
fitness criteria, the agent must initially refrain from any grab actions, otherwise
the game terminates and evaluation concludes. However, this can later cause
problems such as this where the agent must now learn to use this action at the
appropriate time. Fortunately in this circumstance the agent resolves this issue
before search terminates, although this situation may not be rectified within the
time. This can be observed in Table 3.6, which provides statistical data acros
10 runs of the experiments. While the most successful results score very well,
with a maximum performance of 0.841 and an strong average result just over the
0.8 mark, the reader will observe that the standard deviation of the results is
significantly higher. This, tied with the results from poorer solutions - which fail
to solve the problem - suggests that this is not as robust as previous controllers.
Evidence to this effect can be found in the sample size results, indicating we would
require approximately four individual runs of this experiment in order to achieve
90% confidence in the mean. This is by no means a disastrous result, but it does
however appear clear that extra work is required to improve the robustness of this
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Figure 3.9: A series of experiments running the grab-item controller in a 1+1
Evolutionary Strategy.

controller in training situations. The final behaviours however are useful and we
can exploit these in the next chapter.

Avoid-Obstacles

When deciding on what controllers we wanted to make available, we decided it
was important to have some functionality that allowed an agent to avoid nearby
obstacles within an environment. It was our original intention to build a neural
network that could be plugged into our subsumption hierarchy that would allow
previously trained behaviours to retain the assumption that no obstacles exist
in the world (i.e. we do not need to provide inputs for them), since the new
controller would address this issue. However the design of the sensors and how the
agent would utilise them was an issue, due to having had no previous experience
developing this type of sensor. We decided that whilst the intended product would
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Table 3.6: A list of statistics based on 10 runs of the grab-item base controller.
These results are interesting, since it appears the agent is not always successful in
grabbing the item within the time period. As is noted by the failing minimum
score as well as the large standard deviation from the mean. The sample size also
indicates there is room for further development in order to increase our confidence
in returns.

Statistic Value
Maximum 0.8410
Minimum 0.5215
Mean 0.807
Std. Dev.(σ) 0.1004
Sample Size (α = 0.1) 3.87

be a controller for the higher layers, initial testing for our designs would be within
a base controller. This would determine the effectiveness of certain designs and in
addition, visualise their behaviours.

As a result, we created the avoid-obstacle controller, essentially a proof of
concept that would allow us to test whether we could develop these sensors to
suit our needs. At this juncture we had yet to test the subsumption controllers
in any way, therefore we devised avoid-obstacles as a base controller for testing.
In time, we took the knowledge accrued from this work and developed the layer
controller detect-obstacles, with the results from testing given in Section 3.4.2.
Given our intentions to develop these sensors for a layer controller, this introduced
two problems for our avoid-obstacle ANN. Firstly, we needed to ensure a constant
input to the network, and secondly we had to test it in an arena according to a
defined fitness function. We now explore how these issues were addressed.

Adapting the Input Sensors for Testing The issue of constant input to the
network arose from our adopted ANN design, notably that we do not include
bias nodes within the network. Typically, bias nodes provide constant positive or
negative input to the network. Without them, the network is dependent solely
on the values received from the input nodes. In our intended layer controller, we
wished only for the sensors to activate when obstacles were within close vicinity of
the tank. However, if we were to test that kind of controller without bias nodes,
there would be no input to the network when in an open area. As a result, we
needed to find an alternative means of testing that would allow us to test the

115



Chapter 3. Creating Robust Reactive Control

sensors while forgoing the option of adding bias nodes. In time, we decided the
best option was to design our sensors initially to provide a constant feed to the
network.

Therefore in the avoid-obstacle controller, the network is provided two inputs.
This sensor reading allows the agent to potentially ‘see’ as far as the length of
the diagonal of the arena, which is sufficient to observe any of the surrounding
walls. At every time-step of the simulation, the Oracle calculates the exact point
where the sensor collides with a wall in the environment. From this point the
Oracle calculates the distance of this point to the tank agent. The second network
input is also based on the sensors point of collision, except this time the angle
of intersection with the wall is calculated. Once again, each of these inputs are
normalised, with the distance normalised with respect to the diagonal of the arena,
and the angle within 90 degrees, the largest possible angle of intersection .

Creating a Fitness Function To address the second issue, we created a fitness
function that would allow us to measure the performance of a candidate during the
learning process. This led to a small stumbling block, since we needed to measure
the performance of the agent in a quantitative manner yet all we really sought was
a qualititative assessment. Given that this controller would not be used as part of
the subsumption framework, nor would it be applied in future experiments, we
sought only to assess whether these sensors could achieve our desired behaviour. A
natural reaction to this situation is to simply transcribe our desired functionality -
do not collide with any nearby obstacles - into a fitness function. However, one has
to be aware of the trappings such fitness definitions can cause, since we are dealing
with evolutionary search processes that are dictated solely by the parameters fed
to it. In such a circumstance where we ask for an agent that does not collide
with the nearby environment, the most effective solution is an agent that does
not move. So how can one ensure the functionality arises in an effective fitness
function?

Our improvised solution was to force exploration of the environment. If an
agent is forced to visit portions of the environment and then fill it with obstacles
it will satisfy our needs. Our initial intention was to prepare a n× n grid that
would exist beneath the game map. The fitness function to assess this would then
require adequate exploration of all grids within the matrix (GridsPerAxis2). If
an agent succeeded in visiting all grids, it would simply be penalised by the time
taken, while failing solutions would receive fitness dictated by the number of grids
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visited. The two resulting functions are found in Equations 3.8 and 3.9.

Fsucceed = 1− (( 0.5
Tmax

)× Tgame) (3.8)

Flose = ( 0.5
GridsPerAxis2 )×GridsV isited (3.9)

Testing In conjunction with this fitness criteria, we provided a series of test
environments for the arena; simple arena, halved arena and quarter arena (shown
in Figure 3.11). As the name would imply, the latter two divide the game world
into halves and quarters that dictate a particular kind of navigation. Our initial
consideration was to create more complex maps and in-turn increase the complexity
of the exploration grids. However we hypothesised that this would ultimately lead
to failure. If we consider that our agents are not ‘aware’ of the grid, then it would
become increasingly difficult to visit each cell. This hypothesis can be surmised
from Figure 3.10, where we give example paths of how to navigate increasingly
larger grids.

To verify this hypothesis we quickly tested our (1+1)ES on a 3 × 3 grid.
As shown in Table 3.7, our concerns were justified. Furthermore, the resulting
behaviours show little performance and give little indication as to whether the
sensors are successful, leading to our tests being conducted using 2× 2 grids. The
results in Table 3.8 show that the agent was capable of manoeuvering throughout
the environment without colliding with obstacles. Whilst the fitness results from
the quarter-arena do not look too promising, the actual behaviours were more
rewarding. In the first two arenas, the agent would be placed at random and
would then learn to traverse the environment. In the later examples, the agent
would often become trapped in one quarter of the arena as the response to the
nearby walls would be too sensitive to allow for a stable path to be maintained.
Interestingly, applying neural nets from the first two experiments in the quartered
arena proved capable of navigating irrespective of their starting position. Having
observed these behaviours, our confidence determined we could proceed.

Detect Obstacles

The results from the avoid-obstacle experiments provided sufficient evidence that
obstacle detection and avoidance using our sensor setup could be achieved. Whilst
the biggest issue with the avoid-obstacle results was the agents’ inability to
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(a) 2× 2 (b) 3× 3

(c) 4× 4

Figure 3.10: Example paths that we predict the agent would need to traverse in
order to complete exploration grids of sizes 2× 2 (a), 3× 3 (b) and 4× 4 (c) in
the simple-arena. Note that as the number of grids per axis increases, the path
required will become more complex. This would prove difficult for a simple fitness
function to model succinctly.
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(a) Simple Arena (b) Halved Arena

(c) Quarter Arena

Figure 3.11: The three arenas used for the training phase of the avoid obstacle
controllers. Each places the obstacles to separate the environment in different
ways.
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Table 3.7: The average results of testing the avoid-obstacle controller using a
(1+1)ES on a 3 × 3 exploration grids (three runs per map). As predicted, the
agents perform poorly.

Arena Average Fitness (Std. Dev.)
Simple-Arena 0.409 (±0.0102)
Halved-Arena 0.388 (±0.0445)
Quarter-Arena 0.347 (±0.077)

Table 3.8: The average scores from agents attempting to navigate through a 2× 2
arena using the avoid-obstacle controller. While highly successful in the first two
tests, agents did not fare well in the quarter-arena.

Arena Average Fitness (Std. Dev)
Simple-Arena 0.776 (±0.027)
Halved-Arena 0.693 (±0.016)
Quarter-Arena 0.363 (±0.217)

navigate complex environments, this was no longer a concern, since it is expected
that our agents’ navigation will be dictated by any of the first three controllers
described in this chapter. The goal of an obstacle detection controller is simply to
recognise potential collisions and move the agent away from them. Now that we
have discerned that the avoid-obstacle setup can recognise and avoid obstacles, to
an extent, the next step is to reduce and improve the setup to work as a layer
controller within the subsumption framework.

The controller is once again a feed-forward multi-layer network, with 2 mid-
layers of 3 neurons. As the agent is responsible solely for navigation, we only
allow it control of the rotation since we assume it will continue moving courtesy
of the lower layers. The controller contains the largest number of input sensors,
with four different sensors designed to assist the agent in obstacle avoidance and
recognition. The first two inputs are based on the main sensor within the avoid-
obstacle controller. The agent relies on a forward sensor that unlike our previous
design only stretches 75 pixels ahead. We tested using a range of distances from
50 pixels to 150, but we found that in practice a distance of 75 was reasonably
adequate. This sensor once again feeds two inputs; the distance to the intersecting
wall - normalised with respect to the arena such that the closer the obstacle is,
the stronger the signal - and the angle that the agent intersects with the wall.
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Figure 3.12: A tank approaching an obstacle at angle a.

Normalising the intersecting angle was a challenging prospect that had to be
addressed.

In initial tests of the avoid-obstacle controller, we noted that the agent would
often navigate around obstacles in one direction. Our first hypothesis was that this
occurred as a result of our preliminary normalisation method. Similar to previous
angle based inputs, we converted the values into polar coordinates. However,
unlike our previous designs we may require the agent to also consider its current
trajectory towards the obstacle. By referencing Figure 3.12, we observe that an
agent may be moving towards an obstacle with angle a, meanwhile it could also
generate the same intersection angle b by approaching the wall on a different
trajectory. Our interest was now on how we could exploit this information to
suggest the correct action in a given circumstance. A simple approach is to apply
basic trigonometric functions to ascertain the gradient or slope of the line from
the front of the tank to the edge of the sensor with respect to the surface of the
obstacle. The slope describes the ‘steepness’ or ‘grade’ of the line from the tank’s
current position to the sensor. If we have the (x, y) coordinates of each object,
then we can simply calculate the slope ‘m’ as shown in Equation 3.10.

m = ∆y
∆x = ysensor − ytank

xsensor − xtank
(3.10)

The larger the value of this slope, then the steeper the line. Hence a slope
parallel to the wall (i.e. of 0 degrees) is considered to have a slope of 0. Whilst
a trajectory perpendicular to the obstacle would be deemed to have no slope,
this would require an absolutely perfect 90 degrees intersection. Once the slope
of the trajectory has been calculated, we can then calculate the actual angle of
intersection the agent will make with the wall shown in Figure 3.12. Provided
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the intersecting surface has no slope, which is the case in EvoTanks, since all
surfaces are either perfectly horizontal of vertical), then we can calculate the
intersecting angle with relative ease by taking the inverse or arc tangent of the
slope (Equation 3.11).

θ = arctan(m) (3.11)

By employing this method and running some preliminary tests, we came to
several conclusions, notably:

• Should the slope (m) be positive, and the obstacle surface be horizontal (i.e.
∆y = 0) then the resulting angle will be positive. This will suggest the agent
turn right to ride along the perimeter of the wall in a counter-clockwise
direction.

• Conversely, should the slope be negative and the obstacle surface is horizontal,
then the angle will be negative. Suggesting the agent should turn left and
navigate the obstacle in a clockwise fashion.

• Should the slope intersect a vertical wall surface (i.e. ∆x = 0), we must
first calculate the angle as normal for both types of slope, then negate the
complementary angle. This will give the correct angle and sign for this
situation.

The data from the slope and angle of intersection would allow us to provide
useful information to the neural network controller. The angle values were then
normalised within the range of −1 ≤ x ≤ 1, where negative values always
corresponded to left turns and positive values to right turns. Irrespective of sign,
the stronger value would always indicate a greater need to turn. Hence the agent
should intend to reduce this value by turning accordingly and then riding parallel
to the obstacle surface. where a stronger negative value would arise if the slope
was positive to suggest left turns. In the following section we provide experimental
results from applying this controller in different navigation challenges.

Dodge-Shells

Our second layer controller was (as suggested by the title) was introduced to
address an outstanding issue from our previous research, the incoming fire from
enemy agents. As observed earlier in this chapter, the destroy-target uses a
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challenging fitness function for the agent. This is the result of having part of the
assessment based on how much of the agents’ health remains, despite having no
knowledge of the incoming shells. This controller sought to address this, allowing
agents to generate different behaviours for navigation and combat by exploiting
the given information.

Furthermore, the controller relies on a fairly simple topology and setup. The
controller is fed only information on the nearest incoming shell. The importance
of a shell is dictated by a semi-circle with a radius of 50 pixels that covers the
front of the agent. The closest shell within this semi-circle is then determined
to be the most relevant. From this shell we gather two inputs for the network;
the angle of the shell relative to the tanks current heading, and the distance.
Once again these values are normalised in accordance with previous angle and
distance inputs. In our initial tests, we had a full circle of visibility rather than
a semi-circle. However this often led to circumstances where the agent would
react to situations that were unnecessary, such as enemy fire it has previously
avoided passing behind it. This controller was subject to a series of varying
experiments to address how well it would perform in both navigation and combat
circumstances, notably how the information could be used in a navigation task -
such as reaching a distant point in the world - or in a combat scenario against
an opposing player. For navigation experiments this can easily be achieved by
introducing one or more Turret players into a given scenario, forcing the agent to
avoid incoming fire. However, when dealing with combat experiments, this is one
controller where no changes are required, as we simply shift our controller focus
during the subsumption training. In the following section, we explore applying
this controller in both of these scenarios and highlight the results and overall
performance in testing.

Summary

As shown in Table 3.9, we provide a short summary of each controller, their inputs,
outputs and standard topology. Now that our controllers were formally defined
and the base controllers suitably tested, our next phase was to insert them into
the subsumption framework and explore the performance and adaptability of our
additional layer controllers to handle new external stimuli.
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Table 3.9: A summary of the ANN topology and input vectors for our sub-controller
designs.

Name Topology Inputs Outputs

Visit-Waypoint 2-3-3-2 Distance
Direction

Movement
Rotation

Destroy-Target 3-3-3-3 Distance
Direction(×2)

Movement
Rotation

Fire

Grab-Item 2-3-3-3 Distance
Direction

Movement
Rotation
Grab

Detect-Obstacles 4-3-3-1
Intersect
Angle(×3)
Distance

Rotation

Dodge-Shells 2-3-3-1 Distance
Direction Rotation

3.4.2 Layered Controllers

In this section we explore combinations of the aforementioned individual con-
trollers within the subsumption framework. We have introduced our three base
controllers - visit-waypoint, destroy-target and grab-item - in detail in the previous
section, whilst also giving an indication of the two additional layer controllers -
detect-obstacles and dodge-shells - that would be used for handling added com-
plexity within any given environment. We provide now some feedback on how
well these ANN designs adapt to changes in the environment, and whether our
prescribed learning methodology in Algorithm 3 would prove sufficient for this
task.

Visit-Waypoint & Detect-Obstacles

Our first experiment explores the effectiveness of introducing our obstacle avoidance
controller with the navigation behaviour provided by the visit-waypoint controller.
We observed from the results shown in Table 3.4 and Figure 3.6 that the controller
proved more than adequate for visiting randomly instantiated waypoints within a
given environment. Now we must assess the performance of the detect-obstacle
controller in these obstacle littered scenarios.

To achieve this, we need to decide how to add the obstacles to the environment.
A simple - yet as we shall see, rather effective - approach was to maintain
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the original experiment parameters for the visit-waypoint experiments shown in
Section 3.4.1. We position a waypoint randomly in the environment, provided it
is at least 600 pixels from the agent. In addition we place a fixed, static obstacle
in the arena. This is a fixed 200× 200 obstacle that sits exactly in the centre of
the arena as shown in Figure 3.15.

Naturally, we need to ensure variety in training to prevent niche behaviours
from emerging. So the reader may question the use of a single, fixed obstacle.
However, if we consider the nature of the inputs for the detect-obstacle as discussed
in Section 3.4.1 (and in fact all inputs we provide to our agents), the data is
egocentric, i.e. all data is relative to the agent utilising it. Hence the position of
the wall in the arena is irrelevant, rather, it is where the wall is from the agent.
Provided the position of the agent and the goal are generated at random with
the obstacle always impeding the path, it ensures the agent will always have to
navigate around it. Furthermore, since we are dealing with random positioning,
it means the traversal and avoidance of the obstacle will differ in each instance,
hence the inputs and more importantly the experience for the agent will differ
in each evaluation. This effectively achieves the same results as moving the wall
with minimal effort.

We conducted ten tests of the (1+1) ES using our layered learning approach
(Algorithm 3). Each layer was given 50,000 games to achieve the best possible
fitness. We provide learning trends of three experiments in Figure 3.13 and the
table of statistics in Table 3.10. As can be seen the agent quickly learns how to
visit the randomly assigned waypoints in the environment. Once we reach the
midpoint in the graph, the point where the first controller is frozen, we introduce
the detect-obstacle controller for training. The first point to note is that the
agent quickly corrects any issues with the obstacle and learns an effective strategy
for passing them. However, there is a drop in overall fitness that may at first
glance appear disappointing. However, the agent is still under the learning criteria
of the original fitness function, receiving a penalty for the time taken to reach
the goal location. Given that the agent now has to navigate around this fixed
obstacle, the average time to complete an evaluation will increase with the penalty
in each run also advancing. Hence, we should expect a small reduction in the best
performance.

Referring to the statistics in Table 3.10 we see an average of 0.756, which is a
modest decrease from the 0.84 average found in the visit-waypoint experiments.
The standard deviation and sample size accrued indicate that we can be confident
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Figure 3.13: The result of training against the visit-waypoint criteria firstly in an
empty environment and then in a cluttered environment. It is important to note
that after the sudden drop in fitness in the centre of each plot, the subcontroller
being trained shifts to the next layer of the architecture for training.
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in the results attained. The final behaviours rely heavily on the sensors provided,
as expected. The agents will exhibit a ‘wall-hugging’ behaviour when in the
vicinity of obstacles. Once a sensor has established there is an obstacle nearby,
the agent will follow the perimeter until it has passed the wall and the path to the
goal is clear. Quality in this behaviour can vary, since we will see instances where
the agent will either traverse the perimeter smoothly or will rock back and forth
in a unrefined manner. Nevertheless these controllers prove to be fairly robust,
since they are able to clear different obstacle-filled environments in other tests
after this initial training, and again in Chapter 5.

There was however one small setback; each controller would always traverse a
given obstacle counter-clockwise. We hypothesised at the time that this would
not be an issue and correcting the normalisation previously applied to the input is
all that would be necessary. However, we soon learned this was not the case. We
spent an exorbitant amount of time on different normalisation approaches such as
simple inversion of previous values to scaling to a smaller range. We even explored
removing the normalisation entirely or simply providing a specific value (+1 or
−1) as input to trigger the desired action. Irrespective of our efforts, successful
experiments would always find counter-clockwise traversal the best choice. Often
solutions would explore the notion of travelling clockwise but would often fail to
complete the task in this fashion. After much consideration, we are still uncertain
as to why this approach - which we believed to be a simple and plausible one
- would not yield a behaviour to our standards, much to our frustration! We
hypothesise that the network may propagate a strong positive signal with respect
to the turn action. This in turn would lead to our best solutions, where they would
always travel counter-clockwise around an object competently and efficiently. Like
any parent, we are frustrated with how stubborn our creations have been, but we
cannot argue with the effectiveness of the resulting behaviour.

Destroy-Target & Dodge-Shells

Our second layered experiment explores the application of the dodge-shell con-
troller. For this experiment we sought to add this functionality to the destroy-
target controller. In this experiment, we explore whether providing this desired
information through the subsumption layer leads to improvement.

Once again we need to set the modifications to the environment for this
experiment to take place, however in this instance no changes are required! Given

127



Chapter 3. Creating Robust Reactive Control

Table 3.10: A list of statistics based on 10 runs of the visit-waypoint & detect-
obstacle SNA controller.

Statistic Value
Maximum 0.8078
Minimum 0.6305
Mean 0.756
Std. Dev.(σ) 0.069
Sample Size (α = 0.1) 1.828

that we first train the destroy-target controller, there will already be an enemy
agent that is shooting our agent. Hence, the necessary stimuli for the new controller
is already provided. In the event that this stimuli was not already present, we
would introduce a Turret for the experiment to ensure there is incoming enemy
fire.

We now provide results based on running this 2-tier controller. In Figure 3.14
we provide an indication of the learning trends from three arbitrary runs of this
experiment, while in Table 3.11 we provide a statistical breakdown of ten runs
of the experiment. Note that this experiment only permits 300,000 evaluations
for the destroy-target phase as a before, with 600,000 permitted overall. The
learning trends shown in Figure 3.14 show promise, as we note that the best fitness
of the agent actually improves after we introduce the additional layer. Unlike
the previous 2-layer experiment the agent has actually improved in performance
because it is now avoiding the incoming enemy fire better than it had previously
done, thereby scoring better in the fitness function. Whilst the difference in fitness
between training phases is not large, it leads to significantly different playing
strategies.

We observed that the players would pay attention to incoming fire and attempt
to avoid it as it approached the enemy. When dealing with enemies in close
quarters we see two strains; one which will continue to dodge the fire at the
expense of a potential attack, or simply ignore fire at close range and develop
a Hunter-like behaviour - attacking the enemy relentlessly until only one is left
standing. Meanwhile these new faculties appeared beneficial to agents that would
attempt to pick off the enemy from a distance, since they could maintain a
defensive position and only occasionally shift to avoid fire, subsequently returning
to a fixed position.
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Figure 3.14: The result of training against the destroy-target criteria firstly against
the agents with the base controller and then with shell dodging faculties.

Table 3.11: Statistics from 10 runs of a 2-layer architecture containing the destroy-
target controller at base level and the dodge-shells network as a layer controller.
Results overall prove promising, with high final fitness that almost reaches the
same levels as those shown in Table 3.5. The low minimum fitness is also of
interest, as it is slightly higher than that found in Table 3.5.

Statistic Value
Maximum 0.72
Minimum 0.571
Mean 0.646
Std. Dev.(σ) 0.0479
Sample Size (α = 0.1) 0.883
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Statistically, we note that the additional controller can provide a small boost
to the final score. As we can see from the minimum fitness in this experiment,
as well as the original destroy-target tests in Table 3.5, this is a challenging
test for the agents to surpass, however it appears that the supplementary layer
can improve final scores, as well as impact behaviour. In closing, this allows us
to add the information as a separate layer to the controller without increasing
the number of neurons/weights in the base ANN. The difference in mean fitness
between the standalone controller (Table 3.5) and the additonal layer experiments
in (Table 3.11) are marginal across the 10 individual runs, with the single-layer
approach performing better on average by 0.003 fitness. Agents tend to ‘shuffle’
when in the presence of enemy fire; quickly navigating away from a shell and then
returning control to the lower layers. We have considered the possibility that
while the new behaviours are more efficient in terms of health retained, they take
longer due to the evasive shuffle. This would result in the time taken increasing,
and hence the penalty for increased time taken may well have had an effect on
the mean fitness recorded.

3-Layer Controller: Visit-Waypoint, Detect-Obstacle & Dodge-Shells

We have shown that we can combine two controllers using the subsumption
hierarchy. Our next step is now to combine the maximum number of three
controllers into one subsumption controller. For this experiment we focus on the
navigation problem shown in Figure 3.15, where the agent must avoid obstacles
and incoming enemy fire, thus requiring the visit-waypoint, detect-obstacle and
dodge-shells controllers.

The training is similar to the previous 2-layer navigation task, however after
the detect-obstacle controller has completed, it too is frozen to allow for the dodge-
shell controller to be trained. Given that we are now training the dodge-shell
control, we require two turret agents that are placed within close proximity of
the waypoint. This would prove challenging for any agent learning this task, as
the turrets are arguably the most difficult script to overcome due to their strong
firing accuracy and offensive play.

Once again we conduct ten runs of the experiment, each controller being
given 50,000 evaluations for training. We provide learning trends from three
arbitrary runs in Figure 3.16. We again we see a gradual decline in best fitness
seen previously in Figure 3.13 with the first two phases similar to our previous
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Figure 3.15: The training scenario for our three layer controller, requiring obstacle
avoidance and shell-dodging capabilities.
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Figure 3.16: A breakdown of running the 3-tier navigation problem using the
evolutionary strategy. The performance in the first two learning phases are similar
to that shown in Figure 3.13, however we see the agent learn to compensate for
the added complexity of the incoming enemy fire in the final training segement.
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Table 3.12: Statistics of 10 runs on the 3-layer subsumption experiment. We see a
range of results that suggest the agent can continue to perform without significant
loss of overall fitness.

Statistic Value
Maximum 0.642
Minimum 0.589
Mean 0.618
Std. Dev.(σ) 0.0176
Sample Size (α = 0.1) 0.119

results. We observe there is a larger decrease in fitness between the second and
third phases of training. This can be accounted for with two important facts:
firstly the fitness function’s time penalty will again be an important factor, since
the agents will be taking even longer than before to reach the target, given that
they are having to avoid incoming enemy fire. Secondly, while the resulting
behaviours prove successful, there is still a chance that agents may on occasion
be overwhelmed and destroyed by the turrets. While the shuffle action is an
effective strategy, it is not always successful. Nevertheless this proves to be a
success, since the agent is able to learn how to avoid the oncoming enemy fire as
it moves towards the goal. Further improvement could be made by providing a
greater understanding of the trajectory of an incoming shell or even the position
of the agent that fired the shot. Trajectories could potentially be modelled using
a recurrent ANN that feeds the previous timesteps outputs back to the network
for processing. The statistical data from these experiments is shown in Table 3.12,
and we are satisfied with these final results. The mean fitness is relatively strong
considering the additional challenges, with on average a drop in fitness of less
than 0.15. In game cycles this means that the agent now takes, approximately, an
extra 300 cycles on average to solve the task. Our sample size and relatively low
standard deviation also provides high confidence in these results.

It becomes clearer through this navigation problem that the fitness of the
final product is strongly dependent on the results of the very first controller in
the architecture. This effectively ‘caps’ fitness with an upper bound, and any
subsequent controllers will be challenged to ensure the drop-off is not substantial.
Interestingly it also has an effect on a population based learning approach. In
Figures 3.17 and 3.18 we provide learning trends from our EA approach. Here
we give a population of 200 candidates 10 generations to search for high fitness
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candidates (again 50 games per candidate). First we can observe that the best
results are once again strong, with best fitness slightly above the mean from
Table 3.12. However it is the average population fitness that is the focus here.
Note that while the best solutions are typically slightly below the ES approach,
the average fitness is significantly poorer with a large amount of deviation from
the mean. Thankfully as we can see, the average does improve as the learning
process progresses. However we see two interesting events during the learning
process. Firstly, as we shift the focus to the next controller, we see a dramatic
increase in average fitness. This is because the entire population now shares the
best controller from the previous phase as the base control. Now that additional
layers are being trained, we have - in contrast to the upper bound explained
earlier - a lower bound on fitness that is introduced by retaining vital information.
In both instances we see gradual improvement within the populations and as
we enter the final phase we see another interesting development, when training
the final layer the standard deviation of the population tightens significantly.
This results in convergence in the population as well as little difference between
the population mean and the best solution. This occurs not only due to the
introduction of another frozen controller - increasing the lower-bound - it also
is due to the nature of the final layer. This layer is required to avoid incoming
enemy fire where necessary, otherwise relinquish control to the pre-established
layers. Furthermore, it has little ability to impede or modify previously trained
behaviour. This often means that behaviour and fitness for the most part will be
relatively similar, hence the dramatically reduced standard deviation within the
population.
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Figure 3.17: A sample run of our population-based evolution algorithms on the
3-tier experiments. The evolution while successful does not provide the same high
scores as the evolutionary strategy in Figure 3.16.
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Figure 3.18: A second sample run of the evolution process on the 3-tier experiment.
The results prove similar to those shown in Figure 3.17. The average fitness trends
show the population gradually improves as training progresses, in part due to the
learning process, but also due to the addition of new controllers as training shifts
focus.
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3.5 Comparative Results

Facts are stubborn things, but
statistics are more pliable.

Mark Twain

So far in this chapter, we have provided a breakdown of each of our individual
controllers created in the EvoTanks environment for the subsumption framework.
Our results from the previous section provided sufficient evidence to suggest that
the approach we have described can effectively combine behaviours using a simple,
staged learning process. This process allows us to add additional complexity to the
game environment and then compensate for it using the subsumption approach.

In this section we will address how well this approach performs in comparison
to more traditional learning approaches. To achieve this, we focussed primarily
on using traditional, monolithic neuroevolution methods. This was achieved by
training a standard, feed-forward ANN to take in all available inputs relevant to
the task at hand. Given that this would lead to a far larger number of inputs
than previous, more neurons were provided to the hidden layers. Given the fully
connected approach we have maintained within our networks, we decided to provide
10 neurons per hidden layer. This in turn increases the number of dimensions
available to explore the behavioural search space, since we provide many more
synapses between layers to retain the fully connected topology. Whilst this could
potentially prove to be a drawback for the agent, given the far larger search space
to explore, we were confident that adequate results would be generated by this
size of ANN.

Next we had to provide a suitable scenario for comparison. It was decided
that the 3-layer task - visit-waypoint, detect-obstacle, dodge-shell - would prove
a challenging prospect for all parties. As shown previously in figure 3.15, this
requires the agents to reach points in the world whilst navigating around obstacles
and avoiding enemy fire. Not only is this challenging in terms of the environmental
complexity, but also having to contend with eight inputs from the environment.
While an input vector of this size is far from uncommon in neuroevolution research,
it was the driving factor behind the increase in neural network sizes explained
previously, ultimately leading to a complete neural network with a total of 210
synapses through the fully connected topology.

We conducted two experiments for the comparison. The first approach was
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handed the complete problem for each evaluation. Therefore in every EvoTanks
game a random waypoint was assigned within an obstacle-filled arena with enemy
agents and the player had to reach the waypoint as usual. The second method
was fed the problem in stages, akin to the staged learning applied in Algorithm 3
using the same milestones to instigate change to the environment.

At this time we did consider whether applying incremental or modular ap-
proaches for comparison would prove a worthwhile venture, given that a sub-
sumption approach could be argued to carry strengths from both approaches.
However, we felt that any attempt to apply an incremental learning algorithm
would contradict with the concept underlying our staged learning process. This is
largely due to the necessity in changing fitness function during an incremental
learning algorithm. To achieve this, we would need to create an additional fitness
function for each of the layer controllers, and then find an appropriate weighting
between each fitness in order to maintain a smooth landscape. However, this
would contradict the approach we have taken throughout. This is also the reason
why we did not compare these results against Togelius’ approach, as we do not
wish to assess individual layers under a unique criteria. The underlying concept
of the approach was to build upon the initial behaviour without the necessity of
additional functions. Furthermore, a modular approach was not considered for
experimentation. While we were under time constraints during development, we
concede that a modular experimentation could be explored. However we consider
it to be too modular, since it operates on a neuron by neuron bases. This approach
while modular seeks to retain an identifiable functionality within each individual
network, that which a traditional modular approach cannot provide.

For the experiment, each method was given 150,000 evaluations (3000 eval-
uations at 50 games each) to complete the learning process. This is the same
number of evaluations given to the 3-layer experiment discussed previously, hence
ensuring a level playing field. In the incremental environment experiment, we
must make changes to the complexity of the game state at the same points in
our subsumption experiment. Hence at the 50,000 and 100,000 evaluations, we
instigate change in the world. Each experiment is a (1+1) ES to ensure a fair
comparison between all three experiments.

To provide an effective and valuable measurment of comparison. We employ
the Student t-test to assess the statistical difference and potential significance
between these approaches. The t-test is calculated as shown in Equation 3.12
below:
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Figure 3.19: A graph of three runs on the complete neural network approach with
a static, complete environment. In each instance the agents fail to complete the
task, with the agent failing to pass beyond the 0.5 in all instances.

t = x̄α − x̄β√
varα
nα

+ varβ
nβ

(3.12)

The t-test is designed to assess two datasets α and β by calculating the
difference between group means (x̄α and x̄β) against the variability of the samples
(the standard error of the mean difference). The resulting t-value can then be
utilised to assess whether this ratio is statistically significant. Each experiment is
conducted ten times, and based on this information we then conducted the t-test.

Our calculations are based on the initial results of the 3-layer experiment in
Table 3.12 and the resulting data from our comparative experiments. The complete
network test results are found in Table 3.13 and the incremental evironment test
results in Table 3.14. Furthermore, we provide learning trends of three arbitrary
runs from these results in Figures 3.19 and 3.20.

The results for the complete network approach prove interesting, as can
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Table 3.13: A list of statistics based on 10 runs of the complete controller training
on the static environment. The maximum and mean suggest that the agent can
perform reasonably in some instances. However the minimum score recorded and
large standard deviation tell a less promising tale.

Statistic Value
Maximum 0.5032
Minimum 0.4481
Mean 0.47
Std. Dev.(σ) 0.0188
Sample Size (α = 0.1) 0.1356

Table 3.14: A list of statistics based on 10 runs of the complete controller training
on the incremental environment. The results do not prove as effective as those
found in the other experiment in Table 3.13.

Statistic Value
Maximum 0.4636
Minimum 0.376
Mean 0.4152
Std. Dev.(σ) 0.02918
Sample Size (α = 0.1) 0.3272
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Figure 3.20: A graph of three runs of the complete neural network approach with
an incremental environment. In each instance the agent’s performance decreases
below establised norms (found in Figure 3.16). Given that the subsumption
approach succeeded on average while the complete network scores below the 0.5
watermark.
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Table 3.15: A breakdown of the results of our t-test calculations.

Statistic Value
3-Layer Mean 0.618

Complete Static Mean 0.47
Complete Increment Mean 0.415

3-Layer vs Complete Static t-value 2.46
3-Layer vs Complete Increment t-value 2.97

Complete Static vs Complete Increment t-value 0.386
p-value (α = 0.05, df = 18) 2.101
p-value (α = 0.01, df = 18) 2.880

be seen from Table 3.13 and Figure 3.19. The three arbitrary learning trends
would suggest that this approach is ill-suited to the problem, with the mean
fitness significantly below the 0.5 success threshold. Furthermore, by applying
an incremental approach the learning process does not succeed on average. The
learning trends in Figure 3.20 are similar to those previously shown in our 3-layer
experiment (Figure 3.16). However, the drop in fitness between training phases
is too steep and the agent fails to recover from it. This is corroborated by the
statistics in Table 3.14 which shows the average fitness well beneath the 0.5
threshold.

Once again we provide the sample size results for each of the experiments. Our
confidence in the results of the incremental environment are very strong, given
that it requires only one run in order to achieve a 90% confidence in the mean and
standard deviation. However, we require one extra run for the static environment
approach, nonetheless we have high confidence in the 10 runs executed. This
sample size from the complete run indicates that this approach can succeed given
the confidence we have in the mean and the standard deviation. While this is far
from an optimal solution it does indicate that it is feasible and could potentially
be explored using different network topologies.

Next we provide the resulting t-values from all three experiments in Table 3.15.
The results prove are satisfying, with the t-values exceeding the threshold of the
p-value at the 5% level for the 3-layer approach being compared to both the static
and incremental approaches. In this instance, we disprove the null hypothesis that
there is no difference in performance. This statistically proves that the 3-layer
approach to this problem is more effective by comparison. Even more encouraging
is the t-value of the comparison between the 3-layer approach and the incremental
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environment, indicating that we also disprove the null hypothesis at the 1% level.
However, it is interesting to note that while there are significant differences in the
means and standard deviation, the t-test cannot statistically verify a difference in
performance between the 3-layer approach and the static environment method at
the 1% level. This could be attributed to the difference in mean fitness being less
than 0.2 for these approaches. We have hypothesised that given the continued
performance of the 3-layer approach, we could prove statistical significance at
the 1% level using a greater number of runs. Finally, given the minor difference
in mean and variance, there is no evidence to suggest that the complete-static
approach is more effective than the incremental method.

3.6 Discussion of Results

The results in Sections 3.4 and 3.5 provide strong evidence that our subsumption
approach for creating robust actuators for our environment is effective. We now
take this opportunity to discuss the significance of the results published, the
methodology applied, the potential benefits and drawbacks incurred from the
approach. In chapter 6, we return to these remarks and discuss the impact of this
work in conjunction with the agent framework introduced in Chapter 5 and reflect
on the thesis as a whole. For now however, we focus specifically on the research
reported in this chapter.

The resulting hierarchical framework provides a simple yet effective approach
to allow for new functionality to be introduced into a reactive controller. Hence we
have a means to adapt to new features in an environment without compromising
any pre-trained functionality of our controllers. It is important at this juncture
to reflect on the similarities and differences to the layered evolution approach
presented by Togelius. The most notable difference is the use of a sole fitness
function in order to train multiple layers of the hierarchy, which is perhaps
the strongest advantage that our approach provides. This is a truly interesting
learning mechanism, given that the learning process can find good solutions using
a heuristic which, in the case of layer controllers, does not provide any useful
information relative to the controller itself. In section 3.4 we presented findings
that indicate the controller will learn how to circumvent the added complexity
in the environment and will continue to complete the original assigned task,
despite circumstances where the agent would have failed had it not been for the
controllers adapting to change. In order to train any additional behaviour, we
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only require a suitable fitness function for the base control, and properly designed
layer controllers to characterise our desired functionality.

In terms of controller construction, the reader may have observed already that
none of these fitness functions are particularly complex. The fitness functions
hardly constrain the controller requirements and in-turn the search process. There
are a few restructions on how the agent should perform, as is indicated by some of
the interesting behaviours we generated, but there are certainly high expectations.
This is one of the benefits of EAs, since we can take a ‘hands-off’ approach to
the learning process; by providing a simple learning heuristic tied to a purely
evaluation-based iterative improvement paradigm.

However, it is important that controller design is given appropriate care
and attention, since sensor and sub-controllers must complement the desired
functionality in a way to make our goals achievable. Each of the individual neural
networks is relatively small in size when compared to contemporary research,
where we often require hundreds of synapses to achieve results. As we have seen
throughout this chapter, the average controller carries less than 30 synapses. This,
tied to the results from our learning process indicate two important findings; the
controllers are relatively easy to learn and they can, in most instances, be trained
fairly quickly.

The results of the most successful comparative measure - the complete static
neural network - provide an interesting reflection on the 3-layer experiment due
to the time taken and the overall quality of results. We observe that 150,000
evaluations are provided for this approach and it fails to yield as effective results,
while the subsumption trains three controllers with potentially wasted evaluations,
as can be seen in the learning trends of some instances, where the agent only
requires 20% of the evaluation time to reach a near optimal fitness plateau.

Ultimately the greatest opportunity this approach presents is the ability to
create intelligent behaviour through a ‘plug ‘n’ play’ approach, i.e. we can
take resulting chromosomes from our experiments and put them together into
different configurations. Furthermore, we assume at this juncture we can safely
use controllers that were trained in one experiment with another problem domain.
Whilst the data is dependent on the experiment they were trained in, we are
confident that the ANNs have generalised the control policies successfully. In
future, further study may be required, but at this point in the research we felt it
safe to continue and awaited the results from inserting these controllers within
our architecture discussed in the subsequent chapter.
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Upon completion we reflected on the overall approach and ultimately how
much it diversifies from the original methodology by Togelius. After consideration,
we felt that each is an individual entity that can be explored for different uses. The
work conducted in Togelius [2004] provides a thorough empirical investigation into
utilising the subsumption concept through machine learning. In our work we have
taken the original concept and sought to provide evidence that we can streamline
the approach while ensuring applicability in different domains. The original
concept provides a more expressive formalism, where more expert knowledge can
be applied to refine the resulting controllers. The level of detail that can be
given to each layer can then be determined by the designer, where we can see
specifically crafted behaviours emerging as a result of Togelius’s work. While this
is certainly a strong piece of work and an applicable solution to the problem, we
argue that it is not always convenient or viable in many situations and this is
where our approach finds its audience. Our methodology removes the necessity
for extra fitness functions for each controller, relying on EA methods to bypass
the necessity of expert knowledge. This freedom allows for robust agents that
are constructed modularly. The designer can dictate the facets of an agents
behaviour by the selection of subcontrollers instead of through a complex fitness
formula. As a result, our approach provides an alternative and we reflect on this
by including Table 3.16: an amended version of the table found in Togelius [2004].
Our approach can be considered as a modular approach reliant upon functional
decomposition of desired behaviour. However despite our sole fitness function, the
problem continues to evolve akin to methods in incremental evolution.

This is not say our approach does not suffer from drawbacks. One such
drawback is applying neural networks in such a fashion. We are not stating at this
point that ANNs are a poor choice for this approach, but we wish to highlight that
significant time must be taken to ensure each controller is appropriately designed.
In the case of the layer controllers, we must ensure that this does not interfere
with base performance when not required, by only providing local, temporary
input. Meanwhile, the base controller must always provide input, either from
sensors or bias nodes, to ensure consistent behaviour. Ultimately, poor design
will lead to conflicts between controllers and ineffective results, hence the series of
tweaks and modifications we have described throughout this chapter.

Whilst not necessarily a drawback, one issue we wish to raise at this juncture
is the necessity to understand how the desired goal behaviour can be functionally
decomposed into individual ANNs. The user must decompose their goal behaviour
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Table 3.16: An amended version of the table found as Figure 1 in Togelius
[2004], in which the author breaks down the 4 different approaches to evolutionary
robotics, with our approach providing a new 5th approach.

One Layer Many
Layers

Many
Functionally
Different
Layers

One
Fitness
Function

Monolithic
Evolution

Modularised
Evolution

Our
Approach

Many
Fitness

Functions

Incremental
Evolution N/A Layered

Evolution

into individual layers according to their own expert knowledge of both the en-
vironment and their requirements. Furthermore, they must then develop agent
sensors based on this understanding.

Ultimately, there is a limit to the capabilities of applied neural networks for
agents either in simulated or real-world situations, and to an extent this is one
of the main arguments of this thesis. The work conducted in this phase of the
research was intent on exploring a different means to enhance the expressiveness
and capabilities of multi-layer perceptrons for execution in low-level problems.
We cannot expect highly complex behaviours to emerge from this approach,
but we would expect robust and effective control to be trained that ensure a
high confidence in their execution. Once we have these solutions, they can then
be exploited in our agent framework capable of reasoning beyond the scope
of EA/ANN approaches.
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3.7 Summary

To conclude we return to our goals highlighted at the opening of this chapter,
with the intent of discussing how our goals and concerns have been addressed.

The goals of this chapter were stated as follows:

• Devise a suitable implementation of the subsumption methodology that would
enhance the control of our neural networks without compromising trained
behaviours.

Our controller design (section 3.3.1), provides a simple yet surprisingly
effective means to build control in a hierarchical fashion. The controllers
are built atop one another within a subsumption hierarchy, allowing us to
create more expressive control without compromising individual behaviours.

• Create a series of controllers that not only test our approach but can effec-
tively achieve what our planning domain requires.

The individual base and layer controllers shown in section 3.4.1 provide
a range of different behaviours: from navigation and combat to obstacle
avoidance and evasion. While these do not cover the complete range of
actions within the Nakatomi domain description, they provide a range of
control for many of the more challenging actions in the domain model.
Furthermore, the additional layer control helps to remove much of the
low-level uncertainty that the environment creates, allowing the high-level
decision process to ignore it, assuming that our controller should succeed in
execution.

• Devise an effective learning process to train the controllers within our sub-
sumption hierarchy as quickly as possible.

Our learning methodology in section 3.3.2, inspired by the layered evolu-
tion approach by Togelius provides a simple yet effective training process.
This methodology uses a sole fitness function to train a series of different
controllers that address unique aspects of the desired functionality. Results
of training 2-layer and 3-layer controllers (section 3.4) show that this is a
fast and reasonably robust approach for training controllers either through
a (1+1) evolutionary strategy or a more traditional EA based approach.
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• Compare against other approaches to ensure our approach is worth incorpo-
rating into future work.

In section 3.5 we compare against more traditional monolithic evolutionary
approaches. The the two comparative measures provided different results,
with one succeeding in the task on average. Statistically however, we find a
significant difference in our performance to these measures.

3.7.1 Further Work

While we have carried a significant body of work in this chapter, there are still
ideas we wish to address as a matter of interest. To date we have conducted
research into specific ideas, while others have been left for future work. Here
we briefly highlight work conducted outside of the scope of the thesis general
direction as well as potential future work we may wish to carry out.

Expanding the Control-Set We came to the conclusion that while this work
was valid and results proved effective, the domain was too small for us to explore
a wide range of behaviour. As such it would be interesting to explore much more
diverse and challenging environments that require many more controllers than
EvoTanks. This would allow us to ascertain how many layers we can combine in
one hierarchy before control becomes too demanding.

Learning the Hierarchy Automatically Having a larger set of subcontrollers,
one challenge that would arise is deciding in what order they be placed in the
subsumption hierarchy. At present they are added based on our own intuition
and, given the small set of subcontrollers, this was not really an issue. Adapting
the learning algorithm to explore which are the best combinations of controllers
would prove an interesting future venture.

Remove the Functional Decomposition Another idea we have considered
is again based on modifying the training algorithm. Instead of being given the
pre-determined layers and the defined order, could we take the modular evolution
approach and create layers that act effectively as a whole but individually do not
necessarily carry a functional behaviour? While this would remove the ‘plug‘n’play’
functionality, it may provide assistance in dealing with larger and more complex
problems.
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Explore Different Learning Methods One idea we have considered is whether
performance would differ if applied to a different learning algorithm. Perhaps
the most obvious choice would be to apply the TD(λ) approach as discussed in
Chapter 2.1. The approach made famous in Tesauro [1994] would change our
learning algorithm to rely on one sole back-propagating ANN that would use
the TD algorithm to explore the environment and update the network weights as
it progressed, continually fine-tuning the network until we have reached a sufficient
level of performance. To date, we have begun to explore how to apply TD learning
to Algorithm 3, however work was still in its early stages at the time of submission
of this thesis.

Exploring the Subsumption Further. . .

Once we had completed this work, several questions were left regarding the best
means for utilising the subsumption concept. This led to two direct questions we
wished to explore:

• Would iterative re-training of the layers lead to more successful results?

• Can we combine base controllers into the subsumption to create behaviours
that rely on more than one behaviour, thus creating a behaviour with more
than one type of functionality?

Work exploring these questions was conducted by Fraser Milne under our
supervision. The concluding results were later published in Thompson et al.
[2009], indicating:

Iterative re-training of layers can improve performance: By re-training lower
layers while still having layers above causes the lower layers to change their
behaviour with respect to the overall hierarchy. In a visit-waypoint/detect-
obstacles hierarchy, re-training the bottom layer improves the overall per-
formance. We surmise that the lower-layer is no longer simply navigating
to the point, instead it is now navigating to a point with the assumption
that an unknown control (i.e. the higher layers) can deal with the obstacles.
Statistics often indicated that results would improve or become more robust
in time.

Merging base controllers is feasible: Tests in combining visit-waypoint and
destroy-target layers into one hierarchy indicates that we can combine
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base subcontrollers. Given the constant activity of these subcontrollers we
hypothesised that the higher layer would simply maintain control throughout.
However results in Thompson et al. [2009] disprove this.

3.7.2 Closing Remarks

In this chapter, we have chronicled our efforts to build robust reactive control
for local scope problems. The results of our training experiments in Section 3.4
indicate that our streamlined version of the layered evolution approach yields
robust and adaptable behaviours that enhance agent control with relative ease.
We are confident that these reactive controllers will be sufficient for their intended
application.

In the next chapter, we introduce a new problem domain that will require
not only the controllers described in this chapter, but also the use of the JavaFF
planner. We introduce the planning model that will be used to solve problems in
this domain and explore how these correspond to our reactive controller.
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Creating the Problem Domain

If knowledge can create problems,
it is not through ignorance that we
can solve them.

Isaac Asimov

4.1 Introduction

In this chapter we present our problem domain entitled BruceWorld. The simulated
world represented by BruceWorld is designed for an agent requiring deliberative
reasoning coupled with reactive control in order to succeed, as it should be, given
that we designed it with our research interests in mind. That said, it is still a
valid game similar in gameplay to traditional video games. After a thorough
introduction to BruceWorld and the features of the environment in Section 4.2, we
progress to our modelling process. In Section 4.3 we introduce our abstract model
of the BruceWorld game dubbed Nakatomi. Nakatomi is a PDDL representation
that models the features and interactions of the environment for our planning
approach. Furthermore, whilst the actions an agent may select from Nakatomi
are modelled succinctly, there are still issues pertaining to execution and they
will require the effective and robust reactive controllers from Chapter 3 to achieve
them. We highlight how these controllers we have created correspond with the
actions with those in the planning model.
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4.1.1 Goals

In this chapter we shall:

• Introduce BruceWorld, a partially observable, deterministic, sequential,
dynamic and continuous game with multiple agents. We explore the features
of interactivity within the environment, the adversarial elements of the world
and the range of goals that can be assigned to a playing agent.

• Present the Nakatomi domain, the PDDL representation of the BruceWorld
game, describing to the reader how elements of the BruceWorld game are
modelled or otherwise.

• Discuss the benefits and disadvantages of this modelling approach, and
how our design decisions have an impact on the remainder of the research
conducted throughout this thesis.

152



Chapter 4. Creating the Problem Domain

4.2 The BruceWorld Game Environment
Yippee-ki-yay!

John McClane, Die Hard

BruceWorld is a game environment designed specifically to provide an interest-
ing problem domain to test and evaluate reactive controllers, such as trained ANNs.
However, the problem scope is such that a deliberative reasoning process such as
planning is a necessity. BruceWorld was developed using the Java programming
language to ensure an ease of development and portability, courtesy of the object-
oriented approach of the language. The setting of BruceWorld is confined to the
interior of an office building where the agent may be assigned goals that require
navigation through a series of connected rooms to aid hostages found within the
environment1. A simple problem example can be seen in Figure 4.1.

4.2.1 Problem Definition

At this juncture it is important that the reader has a clear understanding of the
problem, the entities that act within it, the actions and interactions that can take
place and important features of the gameplay. We shall take time to describe in
finer detail each aspect of the BruceWorld game.

The Environment: As previously noted, the environment is a simple representa-
tion of an office building. Each given problem consists of one or more rooms
filled with office clutter that act as obstacles. Pairs of rooms can be connected
in three ways; either via a small corridor, a doorway or an air vent.

• A corridor is the simplest and easiest way to move between rooms.
Providing the corridor is not blocked, any agent can move through it
with relative ease.

• A doorway acts similarly to a corridor but a door can potentially block
the path of an agent. If a door is open, then the agent can act as normal;
however, if a door is closed then we assume that it is locked. In order
to open a locked door, an agent must find the corresponding switch.
Each switch is pressure-sensitive and requires an agent to stand on

1The idea is inspired by the movie Die Hard, hence the name is derived from the lead actor
Bruce Willis.
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top of it. Whilst pressed, the door will remain open. However, if it
is released the door will then close again. An agent must therefore
remain atop the switch for the doorway to be accessible.

• An airvent is another means to move between rooms, requiring the
agent to crawl through it to reach another location.

Characters: There are three types of character that can exist in any problem,
notably Bruce, hostages and terrorists.

• Bruce is the protaganist of our game and is the only agent that any
player (be it human or AI) can control. Bruce can move between rooms
in any manner he decides and can carry a First-Aid Kit on his person
at any given time should he find one in the world. He also wields a
gun that can be used to remove any opposition.

• Hostages are more docile than Bruce and can only move around
via corridors and doorways and can also step on switches for doors.
However, they will not do these of their own volition, requiring Bruce to
delegate such actions to them. While Bruce can dictate the actions of
a hostage, their communication is via a one-way radio and no messages
can be sent back. A further constraint is that the limit of their ability
to act is based on their emotional state. A hostage can be found in one
of five states:

Calm: In the calm state, a hostage will act as normal.
Uneasy: An uneasy hostage will not carry out any action, unless they

have been trapped in a locked room and the door opens. At this
point the agent will run through the doorway and then remain
frozen. However, Bruce can slap a hostage which subsequently
calms them down.

Delirious: A delirious hostage acts the same as an uneasy hostage,
however Bruce cannot revert them to a calm state. Another option
is to knock them out, rendering them unconscious.

Unconscious: An unconscious hostage is (unsurprisingly) incapable
of any action and cannot be revived. However Bruce can carry
unconscious hostages one at a time.

154



Chapter 4. Creating the Problem Domain

Injured: If a hostage is injured, Bruce must heal them prior to their
moving. This can be done using a First-Aid Kit which will return
them to a state of calm.

• Terrorists are aggressive agents that remain within a given room.
They will often move around the room on a simple patrol and continue
to do so until they spot Bruce. At this point they will attack aggressively
until either they or Bruce are defeated. Note that they will not attack
Hostages.

Threats: Not only do Terrorists represent a potential threat to Bruce, there may
also be Bombs littered throughout the environment that can detonate at any
moment. If Bruce or any hostage is caught within the vicinity of a bombs
blast radius, it will kill them instantly. The potential threat of a bomb is
determined by the remaining length of fuse and the blast yield it generates.
This information can be obtained by Bruce upon seeing a bomb in a room,
allowing him to defuse a bomb provided it has not detonated.

Uncertainty: When a problem map is presented to Bruce, he relies entirely on
the description provided. However, while the physical layout of the world
will not differ, aspects may be hidden from his view until he enters specific
rooms. For example, objects may not be in the location they were thought
to be, hostages may be in different mental states and additional terrorists
or bombs may be in rooms that we were not initially aware of. The ‘real’
state of a room and the characters in it only become apparent when Bruce
enters said room.

In a given BruceWorld map, Bruce can be assigned a variety of goals, ranging
from basic navigation through the environment to acquiring first aid kits or
rescuing hostages. Furthermore, goals can be assigned that dictate the final
position or state of a hostage and may require a variety of actions to be conducted
in order to achieve them.

Next we reflect on the environment descriptors from Russell and Norvig [1995]
highlighted in Chapter 1, providing an explanation behind our choices.

BruceWorld is Partially Observable: As stated in the problem definition,
Bruce does not have a complete understanding of the world state when the
game begins. Terrorist and bombs are hidden in future locations, while the
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Figure 4.1: A screenshot from the BruceWorld game. The game in progress
challenges agent1 (Bruce) to rescue a hostage (hostage1 ) from behind a locked
door. However an enemy terrorist named Boris awaits Bruce in the next room,
and obstacles/clutter exist in the rooms (though very little in this example) that
the agent must navigate around.
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assumed state of hostages could be called into question. As Bruce explores
more of the environment, many of these concerns are resolved as he can now
see the situation in that particular location. Interestingly, once Bruce has
visited all locations in a given map, the problem becomes fully observable.

BruceWorld is Deterministic: Despite the partial observability, any action
made by an agent will achieve the desired state. Unless it is stated that a
particular path is blocked or an agent is unfit to travel, then any movement
throughout the map will succeed. Furthermore, any interaction with other
agents or artefacts will succeed as determined. Given the nature of the game,
it would not be difficult to change many actions to become non-deterministic.
A simple example could be that slapping a hostage may have no effect, or
result in an unforeseen state.

BruceWorld is Sequential: Bruce, or any other agent, must consider its actions
with respect to the intended future goal and those that have preceeded it.
For example, if Bruce is navigating through a series of locations to a specific
room, he must remember where he is headed, and where he has came from,
in order to progress to the goal.

BruceWorld is Dynamic: As any agent executes an action, other events occur
throughout the environment, such as agents moving around locations to
the dwindling fuses on bombs. This is readily apparent when Bruce fights
terrorists, as each agent must consider its actions quickly and frequently to
succeed.

BruceWorld is Continuous: Given the dynamic changes that occur in the
environment and the effect time has on bombs, we consider the game
continuous. This presents further challenges for our intended approach,
given that classical planning is typically applied in static and discrete
problems.

BruceWorld is a Multi-Agent problem: As we can see in the problem def-
inition, there are three types of agent in the game: Bruce, hostages and
terrorists. Bruce is reponsible not only for his own survival, but that of the
hostages and may need to suggest actions for them to carry out. Further-
more, Bruce must also consider the actions of terrorists and how they may
impede his progess.
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Table 4.1: A summary of all types of entity that exist within the BruceWorld
game.

Locations Connectors Agents artefacts
Room Corridor Bruce First Aid Kit

Doorway Terrorist Switch
Air-Vent Hostage Crates

Bombs

A summary of all types of entity that exist within the BruceWorld game can
be found in Table 4.1 for reference.

4.2.2 Game Mechanics

Each agent is capable of basic movement throughout the environment; forwards,
backwards, turn left or right. This movement is always relative to the agent and
based on their current heading. Agents are capable of activating one or more
of these actions at each discrete time-step of the game. Movement is fixed to
a predefined distance of 2 pixels for Bruce and 1.75 for terrorists and hostages,
with turning set at 4 degrees at each update of the execution cycle. Once any
navigation action is committed, there is a minimum delay of 1 cycle before that
same action can be carried out again. Each agent, unless predetermined as injured,
starts with the maximum 100 health points. Hostages and terrorists will suffer a
loss of 25 points for each collision with the environment or if attacked by a weapon.
Meanwhile, Bruce is capable of taking up to six hits before death, meaning a
loss of 17 points in either case. Bruce and Terrorists can damage other agents
through attack actions by either using bare fists or weaponry. Bruce carries a
gun that may be fired at a distance but only in the direction he is facing, whilst
Terrorists can carry guns or knives that can only be used at close range. Guns
cause 25 points of damage, while knives deduct 10 and 5 points for bare-fisted
attacks. There is a 50 cycle delay before any weapon can be used again. A given
bomb will carry a fuse with a minimum length of 5 and a maximum of 10. The
fuse of a bomb will decay by one unit every 400 in-game cycles.

4.2.3 Challenge

Now that we have explained the game, a pertinent question is whether it is
challenging to play. The game relies on two aspects; moving the player around
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the environment and eliminating opponents, and problem solving. In the latter
case, we have to consider how certain issues can be resolved, such as how to enter
particular rooms given they are locked and whether we can reach bombs prior to
detonation.

For a human player, the game proves challenging in large problem maps.
In this case the player needs to devise a plan of action and quickly execute it
for fear of bombs killing Bruce or any hostages. There is also the challenge of
eliminating enemy terrorists while avoiding the enemy fire. Despite this, any
seasoned video game player should be able to solve these problems comfortably
once they understand the control-scheme and mechanics of BruceWorld.

For a computer-based player, the challenge is significantly harder. While we
are dealing with achieving assigned goals, we must also consider other factors, such
as active bombs and enemy agents. As a result, any software agent must somehow
factor this into the decision making. This reiterates points made in Section 2.1.2,
where we discussed how the Pac-Man games introduced new dynamics that prohibit
typical EANN-driven reactive control from solving problems. This problem moves
one step further than Pac-Man, by forcing the agent to consider actions from a
different perspective. In Pac-Man we are dealing with one enclosed maze, but
in BruceWorld we may need to consider our navigation from a more abstract
level. If moving to a particular location, which may be n locations away from us,
we must consider how to model that space so Bruce can reach it safely. While
Pac-Man could only ‘chomp’ pills or ghosts, Bruce can move, shoot, grab items,
step on or off switches, slap, punch and carry hostages. This larger action set has
a significant impact on decision making and problem modelling. Finally, given
the range of actions that can be executed and the possible states that can emerge,
problem maps can provide the player with a range of different goals. While a
human can adapt to these changes, it will have significant impact on any AI agent.
Perhaps most importantly, it will prohibit any one reactive controller from being
able to perform competently, given that it needs to be able to solve any potential
set of goals that may arise, which is simply beyond the scope of reactive control.

For an automated player to be able to solve a variety of different BruceWorld
maps, it needs the ability to deliberate; to consider how to achieve each goal
presented to it and devise a series of actions that will achieve them. It needs a
robust means of executing these actions, since they will operate in any situation
that is deemed necessary, i.e. they are generalised. Finally, it must also consider
outside factors that may potentially impede progress, such as terrorists and bombs.
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We have addressed the issues of robust execution previously in Chapter 3 and will
later explore how they can be managed deliberatively in Chapter 5.

4.2.4 Existing Problem Domains

Now that we have established our problem domain, the reader may question why
we have chosen to create a new domain rather than use of the existing domains in
the computational intelligence and games field.

Previously in Chapter 2, we discussed a range of research being conducted in
games domains. These problem domains included X-Pilot, Ms. Pacman, Super
Mario AI, the TORCS racing simulator and Unreal Tournament. There are a
large number of problem domains that are available to researchers for application.
Outside of the examples named above, there are also a range of strategy games
that have a competitive track, including DEFCON, the open source strategy game
ORTS and Starcraft.

While these are established competition tracks, at the time of our research
we were not confident in our ability to build an architecture that could compete
with established competitors. As a result, we decided to create a new domain
that carried characteristics that reflected our research goals. As such, we have
taken the dynamic, continuous elements of games such as X-Pilot and Mario and
created a reactive control problem. Meanwhile, the game also requires numerous
actions to be planned ahead and subsequently executed. This relies on the same
strategic thinking that has been employed in the Unreal Tournament research
chronicled in Chapter 2.

It is our intent that, provided the results in Chapter 5 proved satisfactory, that
we would be able to transfer the resulting agent architecture to other domains.
This is discussed in Chapter 6 as we reflect on the research conducted across
Chapters 3 and 5.
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4.3 The Nakatomi Domain Model
Models are to be used, not
believed.

Henry Theil

Once the BruceWorld problem was defined, we required a model for the planner
to understand this complex environment. It was important to ensure that whilst
this model was sufficiently expressive, it retained a certain amount of abstraction.
While we could model the game with a large amount of granularity, it would
have a negative impact on JavaFF’s performance. As such, it was important we
followed several rules:

1. The model requires to be adequately expressive to allow us to represent any
potential BruceWorld game map.

2. The model must be sufficiently abstract to ensure the planner’s search
process is still tractable.

3. The model must conform to the subset of PDDL used by JavaFF.

At this juncture, we relied on the assumption that if an abstract and expressive
model was provided we could resolve any problem presented. Moreover, execution
of any action modelled in the domain should be applicable using some form of
reactive or scripted control. This assumption plays a key part in our layered
architecture explored in Chapter 5.

Having taken these points into consideration, we created the Nakatomi domain;
a PDDL representation of BruceWorld1. This approach was taken in order to
permit agents to reason about possible plans to resolve problems. However,
given the nature of plan models and the abstraction required to ensure ease
of deliberation, decisions are made to exclude or reduce detail in certain areas.
Throughout this section we highlight the approach taken to model the BruceWorld
game and explore how these decisions affect our controller design.

1Nakatomi is also taken from the film Die Hard, and is the name of the company whose
office building the protaganist finds himself trapped in throughout the story.
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4.3.1 Domain Description

The environment and all actors within it are represented as a series of defined
types. For ease of reading we refer to the definitions previously suggested in
Chapter 2 and inspired by representations defined in Ghallab et al. [2004] as well
as the PDDL language.

In section 4.2 we provided a definition of the BruceWorld game. One of the
defining aspects is the range of different objects within the game: from the three
types of agent; Bruce, hostages and terrorists, to locations, switches and first
aid kits. As previously discussed in Chapter 2, one expressive component of
the PDDL language is the ability to define typed objects. In the following section,
we introduce several type hierarchies for modelling components of the BruceWorld
game.

Domain Types

Any object from the BruceWorld game we wish to express within the Nakatomi
domain definition must adhere to a specific type. For our purposes we have
expressed an ‘object’ supertype, which permits inclusion within one of the following
sets:

• location - Corresponding to any room or vent in the environment. Rooms
and vents are labelled under their specific subtype but can also be referred
to using the location supertype.

• artefact - Any bomb, aid kit or switch is a member of the artefact supertype,
with specific types expressed for each individual item.

• person - Bruce and hostages are expressed within the person supertype.
This permits specific actions for each type as well as general actions that
either type can utilise. Note that terrorist agents are not expressed under
this supertype.

• door - As the name suggests, expresses door objects.
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This is expressed within the domain file (see Appendix A) as shown below:

(define (domain nakatomi)
(:requirements :typing)
(:types location door person artefact − object

room vent − location
switch aidkit bomb − artefact
agent hostage − person

)
.
.
.

Note that doors within the BruceWorld game are merely a subtype of the
general object type. Since doors do not adhere to any of the characteristics implied
by each category (it is neither an individual, an artefact to be interacted with,
nor an agent), it was decided to represent it as an individual type. Furthermore,
the terrorist agent is completely omitted from the domain definition. This design
choice was enforced since terrorists cannot be accurately modelled within PDDL
2.1, since (as previously highlighted in Section 2.3.2) the language focusses all
change in the environment specifically at the plan-executing agent. Therefore, no
change in the environment triggered by the enemy, even something as simple as
moving between locations, could be modelled in the language. While this could
potentially be achieved using PDDL+, such an integration would add a large
amount of complexity to the model. Furthermore, the few planners that can
handle PDDL+ could not generate solutions in the small timeframe we have in
mind.

Next, we define the range of attributes that can be assigned to give descriptions
of the current state of the world. As previously discussed in Section 2.3.2, it is
important that all propositional statements of the environment retain an ease of
understanding through the use of natural language. Subsequently, we explore a
variety of simple yet effective descriptors that can highlight the gameplay features
described in Section 4.2.
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Domain Predicates

Objects can be described using a variety of predicate objects as follows. Each
predicate carries a typed argument, hence only objects of that specific type are
permitted to use it. Based on the definition of the game, we can make certain
assumptions as part of the model.

(at ?obj1 − person ?l − location)

Any person can be described as existing within a specific location.

(in ?a − artefact ?r − room)

Any artefact in the problem can be described as lying in a room in the environment.

(on ?obj1 − person ?s − switch)

Any agent type can be described as standing atop a switch object.

(corridor ?x ?y − room)

This identifies that there is a connection between two rooms via a corridor.
However this constraint only ensures there is a connection from x to y. In order
to make a corridor bi-directional, we must also provide a predicate to indicate
that the opposite direction is also valid.

(blocked ?x ?y − room)

This predicate indicates that the path between these two rooms is blocked and
cannot be traversed. Again, this is uni-directional.

(doorway ?x ?y − room ?d − door)

As the name would suggest, this indicates that there is a doorway that connects,
room x and y. We also specify the actual door object that is in place between these
two rooms. This is required, in conjunction with the variety of door predicates
that follow. Furthermore, this predicate must operate in the same fashion as the
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‘corridor’ predicate, i.e. one statement only ensures a uni-directional link between
rooms. For bi-directional connectivity two statements must be made to indicate
the ability to travel from x to y and then vice versa.

(ventilated ?x − room ?y − vent)

Indicates a room is connected to an airvent. Unlike the ‘corridor’ and ‘doorway’
predicates, we are corresponding to an actual object, since vents are described
as unique objects within the environment. This also prevents the need to ensure
bi-directional links exist as we are dealing with two unique object types.

(controls ?s − switch ?d − door)
(open ?d − door)
(closed ?d − door)

The first predicate pairs a particular switch object with a corresponding door, thus
providing an easy correlation that can be used in their opening. The remaining
predicates simply provide an indication of the current state of a given door.

(calm ?h − hostage)
(uneasy ?h − hostage)
(delirious ?h − hostage)
(injured ?h − hostage)
(unconscious ?h − hostage)

These predicates are a series of hostage descriptors that represent the range of
different states these agents can exist in. These predicates are mutually exclusive
in practice, i.e. only one of these descriptors holds true in any given state of a
hostage agent. The series of actions for interacting with hostages (shown later
in Section 4.3.1) give an indication of how a hostage can move from one state to
another in accordance with the game definition.

(free ?a − agent)
(carrying ?p − agent ?h − hostage)
(holding ?p − agent ?k − aidkit)
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As part of the BruceWorld game, we require the Bruce agent to be able to carry
items around the world, either ‘aidkit’ artefacts or hostage agents. The ‘free’
predicate ensures that the agent can only carry one hostage (as shown through its
application in Section 4.3.1).

(armed ?b − bomb)
(disarmed ?b −bomb)

Finally, we have the predicates that indicate the state of a bomb object.

These predicates provide a suitable description of the game world in a clas-
sical planning representation. There are features of the environment previously
described in Section 4.2 that are not included in this representation (a subject
that we continue to raise throughout this chapter, as well as the potential benefits
it can provide us).

Next, we present the range of actions that can be applied within the domain
and the key to expressing the nature of the game world. The basis of these actions
are modelled again on our description of the game and the logical decisions that a
player would make during play.
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Domain Actions

Finally, we introduce the series of actions that can be executed within the Nakatomi
domain. For each type of action, we provide the complete PDDL listing with
precondition and effects. Any similar, yet marginally different actions are listed
only with their action signature. The formal definitions of all actions can be found
in the complete PDDL domain file found in Appendix A.

Move Actions We begin with the move actions that move agents between
rooms, starting with the WALK-AGENT-THROUGH-CORRIDOR action:

(:action WALK−AGENT−THROUGH−CORRIDOR
:parameters
(?agent − agent
?room−from − room
?room−to − room)

:precondition
(and (at ?agent ?room−from) (corridor ?room−from ?room−to))
:effect
(and (not (at ?agent ?room−from)) (at ?agent ?room−to))

)

Similar move actions in the model are as follows:

WALK−AGENT−THROUGH−DOORWAY(?person,?room−from,?/
room−to,?door)

WALK−HOSTAGE−THROUGH−CORRIDOR(?hostage,?room−from,?/
room−to)

WALK−HOSTAGE−THROUGH−DOORWAY(?hostage,?room−from,?/
room−to,?door)

WALK−UNEASY−HOSTAGE−THROUGH−DOORWAY(?hostage,?/
room−from,?room−to,?door)

WALK−DELIRIOUS−HOSTAGE−THROUGH−DOORWAY(?hostage,?/
room−from,?room−to,?door)

These move actions are designed to express an agent’s ability to navigate
through the environment, whether it be through a corridor or a doorway. Note that
there are additional actions designed specifically for hostages. This is expressed
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not only through the name but also by restricting the type of the first parameter.
These are in place to prevent a hostage from moving around certain areas of the
environment whilst in an incapacitated state. Note the use of actions for hostages
in uneasy and delirious states; while we would have preferred to simply use a
negative precondition, as is permitted in PDDL 2.1, sadly the JavaFF parser -
much to our frustration - does not recognise them.

Each of these actions relies on an agent navigating from one particular area
within the world to another. In each case we need to ensure that the agent moves
through the corridor or doorway effectively. Naturally, our visit-waypoint reactive
controller is well suited for this problem. This controller, combined with the
detect-obstacle controller in a subsumption hierarchy will be employed to execute
these actions in Chapter 5.

Switch Actions These actions allow us to move on or off switches that control
doors. This is conceptualised in STEP-ON-SWITCH;

(:action STEP−ON−SWITCH
:parameters
(?agent − agent
?switch−room − room
?switch − switch
?door − door)

:precondition
(and (at ?agent ?switch−room) (in ?switch ?switch−room)
(closed ?door) (controls ?switch ?door))
:effect
(and (open ?door) (not(closed ?door))
(on ?agent ?switch) (not (at ?agent ?switch−room)))

)

Similar switch actions are as follows:

STEP−OFF−SWITCH(?agent,?switch,?switch−room,?door)
HOSTAGE−STEP−ON−SWITCH(?hostage,?switch,?switch−room,?door)
HOSTAGE−STEP−OFF−SWITCH(?hostage,?switch,?switch−room,?door)

These actions introduce switch objects and the effect they have on doors in the
environment. Stepping on a switch will result in the corresponding door opening,
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while the opposite can be said for stepping off the switch. Again we have specific
actions for hostages and agents to ensure behaviour is consistent and accurate.

While these actions are responsible for stepping on or off switches, the mechan-
ics of movement required to achieve these operates the same as normal navigation.
As a result, we employ the visit-waypoint and detect-obstacle subsumption hierar-
chy similar to the move actions. The only difference being the destinations visited
and how we decide on the point in the world we wish to reach. These issues are
discussed in Section 5.3.4.

Vent Actions We have two actions for manoeuvring through air vents, this is
shown in the following two PDDL blocks:

(:action CRAWL−IN−VENT
:parameters
(?agent − agent
?room−from − room
?vent−to − vent)
:precondition
(and (at ?agent ?room−from) (ventilated ?room−from ?vent−to))
:effect
(and (not (at ?agent ?room−from)) (at ?agent ?vent−to))

)

(:action CRAWL−OUT−VENT
:parameters
(?agent − agent
?vent−from − vent
?room−to − room)
:precondition
(and (at ?agent ?vent−from) (ventilated ?room−to ?vent−from))
:effect
(and (not (at ?agent ?vent−from)) (at ?agent ?room−to))

)

These actions model an agents’ ability to move through airvents into different
rooms in the environment. Note there is an explicit constraint that only Bruce
(type agent) can move through vents, forcing hostages to move through the world

169



Chapter 4. Creating the Problem Domain

using more conventional means. Once again, these are simple navigation actions
which our reactive controllers can facilitate.

Bomb Actions We have only one action associated with bombs, allowing Bruce
to defuse it providing it is still active. While this action was deemed necessary
in preliminary tests, we later remove this action from the model as discussed in
Section 5.4.3.

(:action DEFUSE−BOMB
:parameters
(?agent − agent
?bomb − bomb
?current−room − room)
:precondition
(and (at ?agent ?current−room) (in ?bomb ?current−room) (armed ?bomb))
:effect
(and (disarmed ?bomb) (not (armed ?bomb)))

)

Hostage Actions Next we have a series of actions designed to interact with
the hostage.

(:action SLAP−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?current−room − room)
:precondition
(and (at ?agent ?current−room) (at ?hostage ?current−room) (uneasy ?hostage))
:effect
(and (not (uneasy ?hostage)) (calm ?hostage))

)

Other hostage actions include:

KNOCK−OUT−HOSTAGE(?agent,?hostage,?current−room)
PICK−UP−HOSTAGE(?agent,?hostage,?current−room)
PUT−DOWN−HOSTAGE(?agent,?hostage,?current−room)
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As we can see, these actions change the state of the hostage in question.
Slapping an uneasy hostage will induce calm and allow them to apply delegated
actions. Meanwhile, if a hostage is delirious they must be knocked out, rendering
them immobile and unconcscious. This in turn necessitates actions allowing for
them to be picked up by our Bruce agent and carried to wherever is deemed
necessary.

With the exception of PICK-UP-HOSTAGE, we do not require any reactive
controllers for these actions. Instead we can facilitate the intended effects by
coding the action into a simple script which only requires the agents involved
to execute. Meanwhile, the PICK-UP-HOSTAGE action requires the grab-item
reactive controller, with the added subsumption layer to deal with obstacles. As
previously stated, this is discussed in detail in Section 5.3.4.
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Other Actions Our final three actions deal with aidkits and blocked corridors:

(:action PICK−UP−FIRST−AID−KIT
:parameters
(?agent − agent
?aidkit − aidkit
?current−room − room)
:precondition
(and (at ?agent ?current−room) (in ?aidkit ?current−room))
:effect
(and (holding ?agent ?aidkit) (not(in ?aidkit ?current−room)))

)
(:action PATCH−UP−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?aidkit − aidkit
?current−room − room)
:precondition
(and (at ?agent ?current−room) (holding ?agent ?aidkit)
(at ?hostage ?current−room) (injured ?hostage))
:effect
(and (not(holding ?agent ?aidkit)) (not(injured ?hostage)) (calm ?hostage))

)
(:action CLEAR−RUBBLE
:parameters
(?agent1 − agent
?agent2 − agent
?current−room − room
?blocked−room − room)
:precondition
(and (at ?agent1 ?current−room) (at ?agent2 ?blocked−room)
(blocked ?current−room ?blocked−room))
:effect
(and (not(blocked ?current−room ?blocked−room))
(corridor ?current−room ?blocked−room)
(corridor ?blocked−room ?current−room))

)
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The first two actions deal with the use of first-aid kits in the BruceWorld game.
One is a simple pick-up action which again uses the grab-item and detect-obstacle
controller, whilst the other is the application of the aidkit to a specific injured
hostage that can be achieved via a simple script. Our final action clears blocked
corridors and does not have a corresponding controller, instead it is merely scripted.
Note that in this instance there must be two agents available in order to execute
it. One agent must be on either side of the blocked corridor, hence the need to
specify each room.

4.3.2 Benefits of a Plan-Model Approach

One of the most notable aspects of our PDDL model is the abstraction applied
to different aspects in the game. This ranges from abstracting the environment
to only consider an agent’s general location, to the omission of the Terrorists
from the model. This is to ensure simplicity remains paramount whilst trying
to solve problems, but also makes large sequences of low-level actions far easier
to comprehend given the high-level interpretation attached to specific sequences
(e.g. moving between locations). A further benefit of modelling the BruceWorld
game within a strict representation such as PDDL is it aids in enforcing specific
constraints on behaviour due to the reliance on typed actions and the state-
transition system. This allows us to reinforce constraints made by the game’s
design to maintain an accurate portrayal of the limits imposed, without necessarily
relying on them in the game-engine. An anecdote that testifies to this is that
during testing of the game and our architecture we came to the realisation that no
code had been applied to the engine to ensure that the agent could not carry more
than one hostage at a time - a simple mistake! However, the action of carrying a
hostage between rooms negates the (free agent1) proposition in the plan-model,
hence our agent could in fact only carry one hostage at a time as we explicitly
stated that was a constraint of the behaviour. Therefore, the addition of the
constraint in our model reinforced the original rules of the world, and provided a
small anecdote showing the benefits it can provide!
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4.4 The Research Challenges Ahead. . .

A lot of people say, ‘Well, I like a
challenge.’ I don’t like challenges.
Life is tough enough without any
challenges.

Jackie Gleason

4.4.1 How Do We Solve BruceWorld?

BruceWorld as a problem domain suits our needs given that it provides an
environment which neither of our research interests could solve with ease. In fact
it succeeds in existing as both a planning problem and a challenging reactive
control task. While time could certainly be spent exploring how we could devise
reactive control to solve this problem, we suspect that the solution would not
be as flexible as our own findings. Reactive control for this problem would need
to extend across multiple ‘actions’ of the PDDL model. This could perhaps be
achieved by developing a policy for control using TD(λ). However, can we rely on
this policy for different configurations of a particular problem? More interestingly,
what happens if we change the problem slightly? Or if the previously mentioned
uncertainty is in effect, and what we initially considered to be the problem is
no longer the case? Do we need to develop an entirely new policy or controller
now in order to solve it? In fact, how can we recognise that a change in action is
necessary during runtime?

Conversely, approaching this problem from a planning perspective utilising our
defined model would be feasible using scripts for all actions. However, the time
taken in creating these scripts may be wasteful, furthermore can they be relied
upon in all possible circumstances that arise in the game? Assuming no complex
scripts other than basic movement were permitted, what level of granularity would
be required to solve even the most basic of problems?

These are questions that highlight the real difficulty this somewhat simple
game presents for both methodologies. However, applying planning with reactive
control would circumvent many of these problems by relying on the benefits of each
approach. The tasks that can be assigned to the player often require a series of
different actions to be executed in sequence. Given this conjunction of individual
actions it would seem necessary that a deliberative decision process is applied.
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However, there are issues in executing each of these actions, dealing with the
packing crates that litter the environment, to the terrorists and bombs that can
interfere with execution. This provides a fantastic opportunity to apply low-level
control to make intelligent generalised actuators that perform irrespective of the
specific plan-action being executed. Yet, there are still other issues that need to
be addressed caused by the use of the plan model and the ‘gap’ of knowledge
between the low-level controllers and the plan model.

4.4.2 Introducing Reactive Actions

The use of a virtual environment for our problem allows us to make a series of
assumptions of the world in the game engine, such as the physics of the environment
and the removal of unnecessary factors. Meanwhile, further assumptions are built
within the plan-model. What is important is that these assumptions are correctly
understood to a point where it will not impede our intended agent architecture.
The assumptions made in the Nakatomi model, while necessary, will lead to
problems once we attempt to execute actions within the game world.

For example, how do we deal with terrorists from this planning perspective? As
the reader will have noted, no PDDL types or actions are associated with terrorists
and the destroy-target controller. This results in the terrorist not existing in the
Nakatomi model: an assumption that makes the planning process much easier.
However, if we have no means of modelling the terrorist at present, how can this
controller be selected for execution when needed? This also applies to the the
defusal of bombs. How do we decide that a bomb needs defused at a given point
in time?

Another consideration is whether additional actions need be made in the case
of actions where the PDDL pre-conditions have been satisfied but the action
cannot be executed. An example of this is the SLAP-HOSTAGE action, where
the PDDL action dictates that the hostage and agent must be in the same room
as one another. While this is perfectly valid, the level of granularity applied does
not allow us to consider whether the agent and hostage are physically next to
another, which is essential for this action to be permitted.

For each of these cases, we must provide means to address them during the
execution of our PDDL plan. As a result we provide means to introduce extra
actions for execution, denoted as reactive actions, that respond to changes in the
environment that the planner does not model and is not factored by the ANN
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controllers from the previous chapter. This is achieved courtesy of a rule-based
system that denotes whether extra actions are required in specific circumstances.
This issue is described in greater detail in Section 5.3.3.

4.4.3 Applying the Reactive Controllers

As indicated during Section 4.3.1, our intent was to associate particular PDDL
actions with the reactive controllers found in Chapter 3. Given their performance
in testing, they will prove adequate in dealing with any challenges with regard to
executing the actions we have prescribed in the plan. It was our intention that
these reactive controllers will solve one specific task, with the assumption that
the correct combination will result in problem resolution. Given we can provide a
series of good-quality, generalised controllers then our planning assumptions of a
simple environment can be maintained, since the issue of ensuring effective control
can be passed down to the reactive controllers. Although issues still remain in
dealing with potential uncertainty or discrepencies in the plan-model, we will
address them in detail in Chapter 5.

4.5 Summary

In this chapter, we have introduced the BruceWorld game, a partially observable,
deterministic, sequential, dynamic and continuous game with multiple agents. We
discussed at length the features of the environment as described in Chapter 1, the
adversarial elements that may impede a player’s progress and the goals that can
be assigned to the player. We followed this with a brief discussion on the challenge
it presents to a human player, and more importantly, the increased difficulty for
any attempts of AI control.

Next, we introduced the Nakatomi domain, an abstract PDDL model of
the BruceWorld game that we intend to apply in our layered architecture. We
described in detail the types, predicates and actions that are used to conceptualise
BruceWorld in such an abstract representation and how our reactive controllers
correspond with sets of PDDL actions.

We concluded with a discussion of the merits, drawbacks and challenges
presented by the Nakatomi model. Specifically, we discussed how these design
decisions impact on the research chronicled in this thesis.

Next in Chapter 5, we introduce our layered architecture, installing our reactive
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controllers from Chapter 3 beneath the JavaFF planner. With the BruceWorld
problem domain now fully defined, we subsequently address how these unique
approaches resolve the challenges our domain presents to them. As we shall see,
there are many issues that arise when merging these approaches together. We
explore how our agent architecture is designed to compensate for these issues,
and devise a lengthy evaluation process to ensure that the agent is robust and
adaptable as possible.
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Chapter 5

Creating a Plan-Driven Agent
Architecture

You know what I’ve noticed?
Nobody panics when things go
“according to plan.” Even if the
plan is horrifying!

The Joker, The Dark Knight

5.1 Introduction

In this chapter we provide a thorough account of the design and testing of our
plan-driven agent architecture. Previously in Chapter 4, we gave an account of the
BruceWorld problem environment and the essential role it played within testing
phases. In this chapter we explore the design features necessary for an agent to be
able to interact with the BruceWorld environment and solve a variety of problems.
To achieve this, we introduced the Realtime Executive for Automated Plans using
Evolutionary Robotics (REAPER). This chapter documents our incorporation of
the FF planner for deliberation and how we circumvent issues that arise from using
a discrete planner within a continuous, dynamic game environment. Furthermore,
we explore how our evolved reactive controllers from Chapter 3 are integrated
within the architecture and our delegation of plan actions selected from the
Nakatomi PDDL domain.
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5.1.1 Goals

The goals of this chapter are as follows:

• Introduce the PDDLWorldBuilder : a java framework designed to parse
PDDL problem instances and translate them into environments for testing.
Furthermore, we explore how the BruceWorld parser translates particular
features of the Nakatomi domain into actual BruceWorld test instances.

• Introduce the REAPER architecture, proposing a potential solution to the
BruceWorld game. We provide in-depth detail of the three main components
of our agent; the Plan Manager, Rule Controller and Controller Library.

• Implement a series of tests to assess the effectiveness of the approach and
highlight any areas of significance for discussion.

5.2 PDDL World Builder

One of the important aspects of creating a plan-driven architecture is we must
ensure that the plan-model is sufficiently accurate. As highlighted in Brooks
and Flynn [1989], inaccurate models lead to excessive processing overheads in an
attempt to retain accuracy. For the purposes of testing we wanted to ensure the
plan-model for any given problem run was 100% accurate (unless we dictated
otherwise, a feature we address later in this chapter). Furthermore, we needed also
to create the problem instances for testing, since at first we relied on constructing
problem files by hand. The solution to our problems came in the form of the
PDDL World Builder, a simple framework that would parse PDDL problem files
for the Nakatomi domain and construct the BruceWorld games based on the
initial state. This provided us with two benefits; the automation would remove
the need to handcraft problems for the BruceWorld game, as we could build them
from the existing PDDL files, which were easier and faster to construct. Secondly,
it would ensure consistency between the plan-model and environment at the very
beginning of testing, given the problem is directly mapped from the supporting
planning files.

To create our problem instances, the system requires only the PDDL problem
and domain file. While it then adheres to the provided problem description there
is still room for variety in each test. We previously highlighted in Chapter 4 that
while the PDDL model provides a suitable abstraction of the problem, it also
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strips away many of the physical and geographical attributes. For example, if
we look at the Nakatomi problem file shown in Figure 5.1, we have two agents;
Bruce and a hostage who needs to be rescued and moved to location l1. Given
that the model operates at a high level of abstraction, it removes many of the
assumptions made about the layout of the world. Hence, in this example, whilst
we have two locations connected by a doorway, we have no concept of orientation
or physical dimensions. Where is location l1 with respect to l2? It could in
the simplest case be north, south, east or west of l2. In fact, we are not even
aware of the dimensions of each location. Moreover, where exactly are the agents
within the locations? Where in l1 is the switch for the door? In this rather
simple example we can highlight several aspects of the physical environment that
are left ambiguous as a result of the PDDL model. While we can easily picture
this problem in our minds, it does not necessarily represent one specific problem
instance. In fact, this PDDL model represents a series of unique problems, that
when viewed from this level of abstraction look exactly the same. The ambiguity
found in the problem files is exploited by the PDDL World Builder in order to
instil variety in the test problems.

While this variety is irrelevant from a planning perspective, it is important
from an execution level. When testing our agent, we must ensure that our reactive
controllers are capable of executing plans in a variety of situations. Handcrafting
specific problems to test our agents would not be sufficient as there may be
circumstances our reactive controllers are not tested against. An automated
process that generates unique versions of each problem helps to address these
concerns, allowing us to create a variety of different physical environments whilst
retaining accuracy of the planning models.

As highlighted in Section 4.3, many features of the BruceWorld game are
not expressed within the Nakatomi domain description. We need to consider
whether there are terrorists or bombs in the environment and whether there are
obstacles in each of the rooms. Such features provide further diversification for
each problem, allowing us to test our agent further. While adding obstacles to
the environment is merely an issue for reactive controllers to consider, threats to
our agent differ since we must then change or pause our plan of action in order to
deal with them. This would require new actions being inserted into our plan, a
challenge we address later in Section 5.3.

A simple pseudocode of the process is shown in Algorithm 5, where we begin
by generating each object in the PDDL problem file. Each object definition is a
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(define (problem FLEXIBILITY−EXAMPLE)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
l1 − room
l2 − room
s1 − switch
d1 − door
)

(:init
(at agent1 l1)
(at hostage1 l2)
(in s1 l1)
(doorway l1 l2 d1)
(doorway l2 l1 d1)
(controls s1 d1)
(closed d1)
(calm hostage1)
)

(:goal (and
(at agent1 l1)
(at hostage1 l1)
))

)

Figure 5.1: A simple PDDL problem modelled from the Nakatomi domain. The
abstraction used at the planning level leaves much of the physical description
open to conjecture.
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tuple (name, type), hence it is quite easy to recognise each individual object in
the world and generate the corresponding in-game object. Each in-game object
is instantiated assuming it is a basic instance of that type. Hence it represents
this object under the assumption no predicates have made any explicit statements
regarding its current state. We also define the physical characteristics of the
environment as objects are created. Thus when generting a location we give it an
arbitrary size, with each axis within the range of 200 to 350 pixels.

Algorithm 5: A breakdown of the process taken to convert the PDDL
problem files into BruceWorld problem instances.
Input: Nakatomi problem file p
Result: BruceWorld problem definition d
foreach object: p do1

generateObject(object,d)2

assignUncertaintyProbability(d)3

generateThreats(d)4

end5

foreach predicate: p do6

object ←findObject(predicate,d)7

initialiseObject(object,predicate,d)8

end9

startLocation ← findStartLocation(d)10

sortGeographicalPositioning(startLocation,d)11

Next we parse the predicates of the initial state in the problem file. Given that
each predicate carries several arguments, we structure them so the first argument
is always the object we are describing. This makes the parsing process easier, as
can be seen in Figure 5.1, where the at predicate is always followed immediately
by the agent we are describing. In the case of a corridor or doorway we state the
start location first, followed by the desination. In order to retain a similar layout,
the door described in any doorway predicate is always provided last. To apply
these predicates we find the object we have created in the game and then apply
the specific predicate to that object.

During the predicate parsing phase, we also consider the physical layout of
the problem. When defining ventilation, corridors or doorways between locations
we detail references to the connecting corridor, door or air vent java objects in
addition to an indication of whether this object is to the north, south, east or
west of the location. This not only helps reinforce the connectivity as dictated by
the predicates but also prepares each object for placement.
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Once all in-game objects have been modified to represent the current state
of the game world, the next phase is to sort the geographical positioning of
the level. Beginning with the starting position of Bruce, we place the location
itself, Bruce and any accompanying agents or artefacts within the space. Once
completed, we assemble a list of all adjoining locations. Provided these locations
are not already positioned, we site them within the world keeping the previous
location in memory as a point of reference. Once this final phase is completed,
the BruceWorld problem is complete. Once loaded into the game, our agent can
then begin deliberation from the initial state of the problem.

One additional feature in the world builder is the ability to modify the original
problem to make it more challenging. Given that the world builder can already
generate variants of the same problem, we considered the possibility of adding
or modifying constraints. Reflecting on our game definition in Chapter 4, the
introduction of Terrorists and bombs can greatly change the flow of execution
when trying to solve a problem. Hence we focussed on creating a simple (yet useful)
means to add them into existing problems. We refer to this as introducing threats,
since they provide additional challenges or issues that must be addressed during
execution. A second approach was to inject uncertainty into the problem. We
wanted to have a simple modifier that makes subtle changes to the initial state
without compromising the problem. Hence when hostages are created there is a
(user defined) probability that their initial state will change.

To add threats to the environment, we rely on a defined probability distributed
across all locations in the problem that suggests the odds of a bomb or terrorist
(or both) emerging in a given location. During the predicate parsing phase we
consider this possibility for each location. If the probability is satisfied then we
generate a bomb and/or a terrorist agent. The bomb is created with a random
initial state (in terms of blast yield and fuse length); however the fuse length is
long enough to ensure that the bomb does not detonate prior to Bruce being able
to defuse it (if needed). Moreover, the terrorist is placed at random within the
room with a randomly assigned weapon provided.

Modifying the problem was slightly more challenging, given that we were still
dealing with a deterministic planning problem. We surmised that Bruce should
execute as normal until a situation arose where his plan-model did not reflect
the actual state of the game. At this juncture, execution would pause while a
new plan of action was generated. Hence we wanted any modifications made to
entities to only become apparent when the agent is in the same room. That way
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the agent is forced to re-plan during execution. However, we were limited by the
flexibility in what changes can be made to the problems. We needed to ensure
that modifications to the current state did not impede progress in a given problem.
Such a case would arise by manipulating switch objects: such as modifying which
door the switch controls (if there is more than one (switch,door) pair) or changing
the location of the switch. This would necessitate running a validation process to
ensure we can still reach/operate the switch and continue as normal. As a result,
the only modification we could apply with confidence was to manipulate the state
of a hostage, forcing more or less actions from the Bruce agent due to the new
state.
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5.3 REAPER Controller
Ted? Don’t “Fear the Reaper”!
[air guitar]

Bill S. Preston Esq, Bill & Ted’s
Bogus Journey

The product of our research is the REAPER architecture; a hybrid executive
that is a preliminary step in deliberative reasoning with reactive control for
games. REAPER is designed to allow the integration of a classical planning
system with reactive agent controllers. While the use of neural networks dictates
the agent’s behaviour is primarily reactive, the installed JavaFF planner helps
provide means of deliberation. As shown throughout this chapter, the architecture
proves itself capable of generating goal-driven, varied yet reactive control.

The REAPER architecture is comprised of three individual components. The
three modules are described as follows:

The Plan Manager (PM): Responsible primarily for generating plan-solutions
to problems. Once plans are generated, the system is responsible for ensuring
consistency between the plan-model and the actual game-world as each action
is executed.

The Rule Controller (RC): A rule base whose primary function is to associate
reactive controller configurations with specific plan actions. Furthermore,
it also runs a second validation process that ensures actions are valid for
execution with respect to threats or other geographical issues.

The Controller Library (CL): A controller interface generates the required
controllers for a specific action. These controllers range from a collection of
pre-trained reactive behaviours to hardcoded scripts.

These modules are designed to exist as de-coupled sections of the architecture.
Each has a specified interface that is visible to other parts of the system. It is
our intention to allow sufficient flexibility for modifications throughout without
impeding overall performance. Next, we explore each of these controllers in detail,
highlighting the design of each component and how they assist in generating our
plan-driven, reactive agent.
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5.3.1 Controller Layout and Execution

The complete layout of the agent architecture is shown in Figure 5.2. Once
the executive is queried for action, we begin by accessing the PM, where model
consistency is validated and the system either begins planning or continues
execution of a pre-processed plan. Once an action is decided upon, the system
moves into the RC, where further validation takes place. As indicated later in this
chapter, a series of rules is checked to ensure no threatening entities may impede
progress. However, the RC’s primary function is to select a specific controller for
execution. Once decided upon the final phase is initiated by requesting the required
actuator from the CL. On retrieval this is passed to the agent for execution.

5.3.2 Plan Manager

The PM houses the JavaFF planning system and is responsible for the deliberative
control of the agent. It is responsible for two primary functions - ensuring the
plan-model is consistent and, to our knowledge, accurate with respect to the game
environment and generate/monitor plans for the execution process.

Model Verification The first of the PM’s two responsibilities is paramount: if
we do not have an accurate model then we cannot hold any confidence in plans
generated by JavaFF. In the provision of a means to verify the current state of
the world, we can continue holding an assurance that resulting plans will not only
be feasible for execution but also create our desired state in the world.

To begin this verification process we need our own model of the world state
and a means to express it in the system. This is a non-issue thanks to the type
system used in the JavaFF planner. JavaFF models PDDL propositions from
the domain using a Proposition class, storing the predicate symbol (descriptor)
in addition to a list of Parameters, the objects that ground the predicate. For
our verification purposes we created a compare() method in the Proposition class,
providing an easy way to verify whether two Proposition instances represent the
same predicate.

Subsequently we need to generate the state from the environment to carry
out our model check. Each BruceWorld class representing an in-game object
type includes a method generateStatePredicates() which will provide all relevant
information about that specific object using the JavaFF Proposition type. An
example of the code applied to a switch object can be seen in Figure 5.3.
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Figure 5.2: A diagram indicating the layout and execution flow within the
REAPER framework
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public List<Proposition> generateStatePredicates(){

state.clear();
Proposition in = new Proposition(new PredicateSymbol("in")/

);
in.addParameter(new Variable(this.getEntityName()));
in.addParameter(new Variable(this.getLocation()./

getEntityName()));
state.add(in);

if(BruceWorld.REPLAN){
Proposition controls = new Proposition(new /

PredicateSymbol("controls"));
controls.addParameter(new Variable(this./

getEntityName()));
controls.addParameter(new Variable(this./

connectingDoor.getEntityName()));
state.add(controls);

}

return state;
}

Figure 5.3: An example of the code attached to each in-game entity in the Bruce-
World game. This code allows us to represent an object in the PDDL language
using the built-in propositions in the JavaFF planner. This example is taken from
the switch object for controlling doors. Note the use of two PredicateSymbol
objects “in” and “controls”, matching the predicates used for describing switches
in the Nakatomi domain file.
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The code block in Figure 5.3 shows how we generate the two predicates that
represent the switch object. First it provides the ‘in’ predicate, showing where
this switch is and the ‘controls’ predicate to indicate what door it affects when
pushed. As we previously explained, this is achieved by instantiating Proposition
objects and then adding the relevant predicate symbols and parameters. Note the
conditional block in the code that dictates whether we are in re-plan mode. This is
a deliberate design choice dictated by the behaviour of the JavaFF planner. When
JavaFF initially reads in the domain and problem files to begin planning, it will
identify certain aspects of the problem to be constant. By constant we assume that
a particular predicate will remain the same throughout as dictated by its behaviour
prescribed by the domain model. Hence, these specific predicates become grounded,
i.e. they become fixed facts within the problem and are no longer considered open
to manipulation during search. In JavaFF, the system does not model grounded
predicates within the class that is used to represent individual planning states1.
This is of great importance during plan monitoring and re-planning, which we will
highlight later in this section. With these components in place, model verification
became a far more simple process. Using our representation of the current state,
we simply compare the Proposition objects stored within the PM to the retrieved
collection of Propositions generated by the in-game objects. The Proposition
objects stored within the PM belong to our stored model of the environment as
part of the plan management process which we will now highlight in detail.

Planning Management When we initialise a given problem instance in the
BruceWorld game, we know that the in-game world (or rather our view of it) will
directly match the PDDL description in the problem file thanks to the PDDL
WorldBuilder software. The next step is to then feed the problem and domain file
to JavaFF to create a plan. Once a plan is devised, JavaFF will output the plan
in sequence via the standard output, hence it will display on the development
environment’s console, UNIX terminal, DOS prompt etc. However, we wanted to
be able to store the plan in a simple and compact manner within the PM, allowing
us to reference it at a later point.

By exploring the JavaFF framework, we became familiar with how the system
models and represents states, actions and plans. States are represented in the
JavaFF system using the TemporalMetricState class, containing all relevant Propo-

1This is with the intent of making the planning process easier, since there are less variables
to consider.
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sitions that model the state predicates. As previously mentioned, this contains all
information about the current state with the exception of the grounded predicates.
Furthermore, actions are expressed within their own individual class (TimeS-
tampedAction), with plans easily represented as a list of these action objects in
the correct order. One of the benefits of the TimeStampedAction is that it can
be applied to any TemporalMetricState object to generate the successor state
according to the restricted state transition system. Hence, we exploit this feature
as part of the plan management process. At the beginning of the planning process,
the system grounds the problem (since all relevant facts are provided) and from
this point we can acquire the initial state. We retrieve this initial state and store
it within the plan manager, providing a starting point of reference for the model
verification process. Once JavaFF has completed the planning process we retrieve
the complete sequence of actions that JavaFF has surmised will attain the goal
state. These are then utilised for the actual execution by the executive.

Plan Execution & Re-Planning Having now the initial state and list of
plan-actions we can begin actual execution of the plan. The initial state adopted
during the planning process is now used as our frame of reference for execution and
from hence forward referred to as the current state. Using our model verification
process, the Propositions retrieved from the game environment are compared
against those found within the current state. Should this prove successful, the
next phase is to ensure that the action we wish to apply in this state is applicable.
Action applicability is once again a simple check thanks to the built-in functions
within JavaFF. After having completed both checks we present the current action
as output from the PM to be sent to the remaining systems for verification and
execution.

Once a signal has been received to indicate that the current action has been
completed, we update our internal model of the environment by applying the
TimeStampedAction object of the current action to the current state (Tempo-
ralMetricState) object, this process transforms the current state object into the
successor state. Hence we have applied the state transition function from Defini-
tion 2 in our model to create the new current state. We then simply replace the
current action with the next action from the queue, which should now be applicable
in the current state. We repeat this process until all actions are executed. Once
all actions are complete a final check is run to ensure this is in fact the goal state.
If this is the case then no further actions are provided from the PM.
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However there will of course be circumstances where either the model ver-
ification phase fails or the current action is not applicable. To accommodate
for this, the system can commit a re-plan. To achieve this, we need to correct
any inaccuracies in the state model prior to re-planning. Therefore we query
all relevant objects within the game environment to gather all the information
required for a new PDDL problem file. This will naturally include terms that
may have been grounded during the planning process (thus the conditional flag in
Figure 5.3). Initially we sought to insert this information directly into a problem
object within the planner, allowing it to immediately run the planning process.
However as we began to explore this idea it seemed more viable (read: easier) to
simply generate a PDDL problem file that reflected the current state of the game
and then load that file in as one would normally. Therefore code was written to
generate a PDDL problem file in the local directory that carried all information
about the current state. This information is then loaded into the JavaFF planner
and planning takes place. Providing a successful plan is found, we then continue
execution as normal.

One final aspect is to ensure that the original goal(s) are satisfied. As such,
one final feature of the PM is to ensure that all originally assigned goals of the
planner are completed prior to declaring that execution has been a success. This
is achieved by checking the current state against the grounded goal conditions
via a simple function within the JavaFF framework. In the event that not all
goals are satisfied, then a re-plan is committed to create a new chain of actions
that will satisfy these goals. Otherwise, the system reports that execution has
successfully completed.

5.3.3 Rule Controller

The RC is the second phase of deliberation for the executive. Once the PM
has completed model verification and any required planning, the next action for
execution has been selected. Now we have an action, our next step is to select the
corresponding controller - be it scripted or pre-trained - that will facilitate the
demands of the PDDL action. Furthermore, it is also designed with the intent of
carrying out additional checks against features of the environment that do not
exist in the plan-model, notably, hostile elements in the world that cannot be
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modelled as part of the planner’s model due to its existential point of view1. This
allows us to introduce extra actions for execution, a point we alluded to at the
end of Chapter 4. To achieve this, the system revolves around two rule bases;
the threat rule base and the controller rule base. For each rule base we have a
large collection of rules for reference. However, we needed to ensure the rules are
easy to model and the lookup process was relatively fast. To facilitate this, we
used the Prolog programming language.

Prolog is one of the most prominent and arguably the most popular logic pro-
gramming language and is used broadly in AI as well as computational linguistics.
A logic programming language is a declarative, procedural language that in turn
carries a theorem-proving underlay. A user can declare a series of fixed statements
and deductive rules that, when used with the theorem-proving system, allows for
logical inference to be carried out. While Prolog is capable of these faculties, one
particular benefit is it is also very fast. Having previous experience in writing
Prolog we felt it would be the best choice to model our relatively simple rules
in the RC. The only issue now outstanding was how to integrate Prolog code
into our Java-written framework. Fortunately the SWI-Prolog distribution also
includes the JPL interface; a bi-directional Java-Prolog framework that allows for
Prolog predicate integration in Java as well as Java method calls in Prolog files.
Hence we used the JPL interface to allow us to easily code-up our rule base in
Prolog and integrate it into the REAPER framework.

Classification One issue that needed to be addressed was how can we translate
our real world information into a form that we can then reference from our rule
base? If we wish to ascertain which action should be made based on the current
state of the environment we need a classification process for resolving the in-game
data and labelling it in a manner that represents its value and additionally makes
it practical for the Prolog querying process. A simple example found throughout
our rules is the notion of distance: certain rules flag different actions based on
the approximate distance of our agent to a specific object. However, writing an
individual clause for each potential input is costly and wasteful. Thus it is in
our best interests to classify this data into particular sets, from whence we can
then provide clauses to consider whether an input is within a defined range. But
of course how do we define these input ranges? Do we - the designer - decide

1Given that a classical planning system observes all change in the world with respect to the
executing agent, we cannot express changes of state in other agents.
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how relative something is? Or should we use a more structured approach for
classification?

We turned to classical set theory to address this problem. Set theory dictates
that a value is a member of set provided it is within the constraints of membership
- i.e. the value is either a member of the set, or it isn’t. Given that we can
create different sets with unique membership criteria, it is to be expected that
particular values can appear in more than one set. For example, the number 1 is
not only a member of the set of positive numbers, but in the sets of odd and prime
numbers. Provided we could generate the membership constraints for a collection
of data using some informed analysis, we could then rely on these sets to give us
information about in-game objects. Returning to our distance example, we could
decide whether a particular distance exists in more than one set. If positionally,
we are relatively close to an object but still too far away to really do anything
with it, then that distance value could be considered a member of both ‘close’ and
’near’ sets, as there will be some overlap between the definition of a close object
and a near object.

To achieve classification, we required the constraints of set membership to
be defined for the in-game data. We were directed to a simple yet effective tool
written by Richard Jensen1 dubbed FuzzyGen (Jensen and Shen [2008]). FuzzyGen
generates simple set definitions from a supplied dataset. To accommodate this
code, we wrote simple dataset generators that would provide our required sample
data; including distances between two objects, blast yields and fuse lengths of
bombs and the health of a given agent. Whilst we could have fed information
directly from an in-game test, we found it an easier process to write these simple
dataset generators, provided we adhered to the constraints of the in-game world
that were dictated by the PDDL World Builder. For example, the distance variable
would be generated as any distance between the dimensions of the largest possible
room (subtracting the bounding boxes of the agents) to the minimum distance
between two objects. Once these sets were completed, then the corresponding
labels for each set are used as arguments for any clause that relates to in-game
information. We provide a breakdown of the resulting sets from Jensen’s code in
Appendix B.

Once the sets were defined, we implemented a simple membership function
within the RC that gathers all relevant information for any rule base query. On

1Special thanks to Michelle Galea for her advice and assistance in getting this code running
properly.
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completion of the data collection, it is checked against our sets and the specific
value is replaced one or more corresponding set labels. These label are then used
as an argument for the subsequent rule base queries.

Threat Rule Base

The threat rule base is designed to address the hostile elements in the game world.
While in BruceWorld we have sought to address hostile entities, this is not a
vital component for all problem domains. What is important here is that these
rules address issues the planning system cannot. This is due not only to the level
of abstraction that is typically applied in planning, but also since deterministic
planning does not lend itself to dynamic environments with multiple agents. It
is for the latter reason we have explored the creation of a rule base to facilitate
their inclusion into our deliberation process.

All threatening entities in the environment must be assigned a threat level to
indicate whether a specific entity will impede the progress of our agent. There
are three threat levels: low, medium and high, with individual clauses applying
one of these threat levels dependent upon the circumstance it represents. These
are then connected to a series of action rules that dictate which action should be
selected based on the threat level.

To clarify, we use bombs as an example; bombs carry numerous attributes that
must be considered in assessing their threat level. Naturally, the more damage a
bomb can inflict and the time remaining to detonation have a major impact on
their threat level. However, our model cannot express the decaying fuse, nor infer
the potential damage it represents. Therefore, we require a series of rules that
indicate how threatening a particular bomb actually is.

To achieve this, we have a small rule base that dictates a threat level based on
the distance of the bomb, the blast yield and remaining fuse length. The block
below shows a sample of the clauses and the bomb threat rule found in our rule
base.
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bomb_threat(DIST,YIELD,FUSE,THREAT,ACTION):−
bomb_threat_level(DIST,YIELD,FUSE,THREAT),
bomb_threat_action(THREAT,ACTION).

.

.

.
bomb_threat_level(close, high, low, high).
bomb_threat_level(close, high, medium, high).
bomb_threat_level(close, high, high, medium).
.
.
.
bomb_threat_action(high,defuse_bomb).

This code block (on the previous page) shows a collection of prolog clauses
that specify the threat level of the bomb. We determined this threat level based
on combinations of distance (DIST ), blast yield (YIELD) and fuse length (FUSE).
This threat level can then be supplied as an argument to the threat action rule
shown at the top of the code block. This rule combines the threat level clause
with the action clause at the bottom. As such we can imply from the high-level
language used to describe our clauses, whether an action is required in specific
circumstances. For example, if a bomb is close to an agent, with a high blast yield,
and medium or low fuse length, it is a significant threat and must be defused.

By replacing any ground fact with a variable we can query the theorem-prover
to produce results based on our existing clauses. In this instance, we would run
the bomb_threat rule and provide a specific input for DIST, YIELD and FUSE
but replace the ACTION input with a variable (say X). Hence, once we have a
complete rule base that covers all relevant possibilities it then becomes a simple
look-up process.

The same principle is also applied to the terrorists as well, however we have a
much larger rule base, given that a terrorist can carry different weapons. For the
reader’s convenience we have provided all threat clauses and rules in Appendix C.
If any threat rules fire, then these are issues that the agent must deal with imme-
diately. Terrorist threats take precedence over bomb threats in the BruceWorld
game. The reasoning behind this is that an agent could attack a player while they
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are in the process of disarming a bomb.
If any of these rules fire, then the architecture responds by halting the current

plan-action from executing and introduces the required response to the controller
rule base for execution. Should an action selected by the plan manager be ignored,
it will have to be considered on the following execution cycle. This functionality
allows the agent to react to items in the environment that the planner cannot
visualise. As a result, any destroy-target controllers that are employed, or any
action that indicates the intent to defuse a bomb (outwith those specified by the
planner) is a reactive action introduced by the RC.

Controller Rule Base

While the rule base was used to address issues that were beyond the scope of
the planner, the controller rule base is a look-up table for individual actions. We
associate actions from either the plan or threat rules with the actual controllers
used in the environment. However this is not a simple one-to-one association
as there are certain issues that have to be addressed when dealing with specific
actions.

To clarify, we refer back to an example given at the end of Chapter 4. In
the PDDL actions of the Nakatomi domain (Chapter 4 & Appendix A) we have mul-
tiple actions that interact with hostage agents (SLAP-HOSTAGE, KNOCKOUT-
HOSTAGE etc.). For each of these actions we state in the PDDL model that the
agent must be in the same room as the hostage. This is a correct assumption
in terms of the planning-level abstraction, however we must consider real-world
practicalities. Namely, if we are to slap/knockout/pickup a hostage, then we must
not only be in the same room, but physically next to the hostage in question.
Hence we now have two functions for the controller rule base to perform: not only
must it provide a direct association from PDDL and threat rules to the actual
controllers. it must also provide bridge actions for specific plan actions. These
bridge actions act similar to the reactive actions used in the threat rule base
and fix small inconsistencies between models (such as distances to hostages) in
execution.

To facilitate this approach we provide two rule sets. The first provides a
simple lookup function. These clauses are provided for actions where no issues
need be remedied prior to execution. Such an example is a move action between
locations, since the reactive controllers we apply will resolve any issues in execution.
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Therefore we simply associate a particular action with the corresponding controller
to be used in the environment as shown below:

quick−lookup(walk−agent−through−corridor,visit_waypoint).
quick−lookup(walk−through−doorway,visit_waypoint).
quick−lookup(walk−hostage−through−corridor,visit_waypoint).
quick−lookup(step−on−switch,visit_waypoint).
quick−lookup(step−off−switch,visit_waypoint).
quick−lookup(crawl−in−vent,visit_waypoint).
quick−lookup(crawl−out−vent,visit_waypoint).
quick−lookup(put−down−hostage,put_down_hostage).

The first argument of each of the above rules corresponds to one of the PDDL
actions in our Nakatomi domain, while the second argument is one of the controllers
available in the CL. In the example we see an association with not only the visit-
waypoint base controller but also an extra controller named after the PDDL action
‘PUT-DOWN-HOSTAGE’. As we will see in the following section, this is one of a
set of hardcoded controllers available for execution.

The second rule set provides clauses for situations where a bridge action may
be required. These clauses are dependent on the action and the circumstances
required for successful execution. An example can be found on the next page.

slap−hostage(close,uneasy,slap−hostage).
slap−hostage(far,uneasy,visit−waypoint).
slap−hostage(near,uneasy,visit−waypoint).
slap−hostage(close,_,re−plan).

This is the set of rules in place for the slap-hostage PDDL action. The first
variable we consider is the distance of the agent to the hostage. If we are relatively
close to the hostage then we are satisfied, however if the agent is further away
then we indicate that the agent must use the visit-waypoint controller to visit
the hostage prior to slapping them. Furthermore, we have added to the clause
that the hostage must be in the uneasy state for execution to take place. The
precondition of this action dictates that the hostage must be in an uneasy state
prior to being slapped. If any other situation occurs (denoted by the ‘_’ value in
the final clause) then we force the execution to halt and re-plan at the PM level.
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This is an extra precautionary measure that the PM should be able to recognise
beforehand.

In future, we could explore the possibility of the environment being in a state
of constant change. As a result, clauses such as these could prove useful during
deliberation. For now however, it is simply an error catch that should never be
triggered. For further reference, the complete series of controller rules can be
found in Appendix D.

Once a controller has been selected then we must retrieve it for actual execution.
To do this the result is passed down to the control library.

5.3.4 Controller Library

The third and final component of REAPER is the controller library. The CL is
designed to act as an interface for the retrieval of specified controllers that are then
used to instigate the changes demanded by the plan or to resolve issues highlighted
by the RC. To retrieve a controller, we require three pieces of information:

The Action: Naturally, we need to know what action the agent wishes to execute.

The Actor: The agent that will execute the desired action must be assigned to
the retrieved controller.

The Focus: The entity that the action will interact with to achieve a goal.

The focus is a key component of controller construction that directs the
actions we try to execute. As the action varies, so does the focus: in navigation
situations the destination location will be considered the focus of the controller. In
BruceWorld, if we are interacting with a hostage, switch or bomb then that entity
is considered the focus of the action. This information is required to ensure that
the controller can not only reference the entity for its own purposes (such as the
inputs to the ANN hierarchy) but in certain situations be able to apply changes
to the focus as part of the action. A simple illustration of this is the slap-hostage
action, where we must change the state of the hostage having completed the
action.

The CL houses two types of controller for use in the game. Primarily it is
a repository for reactive controllers, in this instance our ANNs we explored in
Chapter 3. Secondly, it also houses a small collection of hardcoded, scripted
behaviours. These scripts are provided to resolve particular actions that we have
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not trained ANNs to accomplish. Often these scripts represent PDDL actions that
do not exhibit any physical actions we can observe given the level of abstraction
and control we have enforced in the BruceWorld game. Rather, they simply
script the necessary changes to the current state of the environment to satisfy
the post-conditions of the PDDL action. Referring to the slap-hostage action, we
do not consider the actual action that takes place here, since movement of the
agents’ arm is outwith the controls of the game. However we still need to ensure
that the resulting state in the hostage still arises. Hence the script implements
the changes required to represent the post-condition state.

To provide a simple controller creation scheme, the CL relies on a factory
method design pattern; an object-oriented programming design pattern that
provides an interface for object creation without specifically referencing the object
type to be created. Hence there may be multiple types of object we can create
while only using a simple variable to indicate what type we require. In this
instance we have resorted to the use of enumerated types in the Java language for
identification. An enumerated type allows us to maintain a series of constants
or members whilst also providing basic functionality for each member. In this
instance we have created an enumeration whose members are all potential actions
retrievable from the CL. Each member of the action enum carries the relevant
code required to retrieve the desired controller.

Retrieving a Reactive Controller To retrieve one of our pre-trained reactive
controllers from the CL we provide the interface with the controller name, actor
and focus. Note from the examples shown in the RC (Section 5.3.3) and the
complete list of control rules in Appendix D that we only ever request one of our
base controllers for retrieval, since we are only interested in the goal we wish to
achieve. The additional layer controllers are the concern of the CL, where one
of our subsumption layered controllers that is prepared for execution. Referring
back to the tasks of the ANNs discussed in Section 3.4.1, we require the relevant
information to build each controller. Here we provide a breakdown of how each
controller is constructed.

Visit-Waypoint: In this instance, the controller focus is the destination of the
agent. By passing this location we then generate a position in the room as
the target waypoint. Next we consider whether this is the only destination
location we require or the final position in a chain of locations. If we are
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in a situation where the agent must walk from one room to another, we
provide intermediate waypoints to guide the agent more effectively.

To visit each waypoint in the sequence, we modified the existing visit-
waypoint controller to store a queue of waypoints to be reached. There
is no need to concern ourselves with the performance of the agent in this
instance, as we already have a collection of chromosomes that can effectively
reach one waypoint. We simply shift the focus of the ANN inputs once the
agent has reached the waypoint at the front of the queue by removing it
and focussing on the new head of the queue.

Once our waypoint queue is constructed it is fed into our objective class and
we build the ANN controller. We build our standard two-input, two-output,
feed-forward network with two hidden layers of three neurons and initialise
the weights with a chromosome stored from our experiments. By then
attaching a detect-obstacle layer controller through the subsumption setup,
this network is also initialised with a pre-trained chromsome’s weights. This
means it must adhere to the topology we used during those experiments.
In this instance we assume the agent will require obstacle avoidance and
navigation capabilities due not only to the layout of the world but the
additional obstacles in each of the locations. We also assume there will be
no hostile agents attacking our agent at this juncture as in accordance with
the deliberation process we have shown in this chapter, this action would
not be allowed unless we were confident no other agents would interfere.

Grab-Item: In this case, the focus is the artefact we wish to retrieve. Due to
the design of the executive, we rely on the assumption that not only is the
agent in the same room as the artefact but there are no hostile elements
that may interfere with execution. Hence we draw our inputs for the ANN
base controller from the artefact object. In progressing, we next add a
detect-obstacle layer controller on top to ensure the agent can manoeuvre
around obstacles in the location. Once again we set the topologies and
initialise the weights of the ANNs based on the chromosomes from our
previous experiments.

Destroy-Target: Using the focus of the enemy target, we assign the three inputs
used to operate the ANN. Once the weights are initialised with those of an
existing chromosome, the addition of a dodge-shell controller on top of the

200



Chapter 5. Creating a Plan-Driven Agent Architecture

base layer provides evasive capabilities.

Once the controller is fully constructed, the system stores it in the main class
and awaits the signal for execution. While these controllers are reasonably robust,
we are aware that there is a possibility they may fail to complete their assigned
action. Therefore, when the signal is sent to activate the controller and run it
in the game, we set a limit of 2000 in-game time steps to complete the assigned
action. This is more than sufficient to execute any given action effectively. If this
time limit is exceeded, the game terminates with an error message indicating the
reactive controller is at fault.

Retrieving a Scripted Controller The retrieval of scripted behaviours is
a relatively simple process. Initially, we request that a reactive controller be
retrieved from the controller library. This is the standard procedure for controller
retrieval since for the majority of actions the library will return an ANN hierarchy.
If no reactive controller is retrieved we know that a scripted controller is available
for this action, therefore we retrieve the scripted controller for this action by
retrieving the enumerated type for that action. Each enumerated type in the CL
stores an execution script if no reactive controller is available. Once we have
retrieved the enumerated type we then initialise the scripted action with the
relevant actor and focus. In the case of interacting with a hostage, the actor is
assigned as the Bruce agent, while the hostage is assigned as the focus of the
action. Moreover when executed, it will simply apply the appropriate changes to
the world through these entities.

5.4 Testing & Results

Computers are useless. They can
only give you answers.

Pablo Picasso

In this section we now assess the performance of our agent architecture against
a series of increasingly challenging tests in the BruceWorld game. We begin by
reporting on our initial tests that validated our approach, followed by implementing
some small test maps as normal followed by applying threats and uncertainty. To
give a clearer indication of how the architecture works in operation, we provide
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step-by-step walkthroughs from some of these experiments. Finally, we run a
series of more challenging maps to assess performance, followed by comparing
the effects of increased threats, maximum uncertainty and the effect of removing
model validation and threat detection from the agent.

5.4.1 Initial Tests

Before beginning proper testing, we wanted to assess the performance of each
facet of the architecture during construction. This necessitated the testing of five
unique scenarios:

1-Step, 0-Sub-Step Problems: Scenarios where the planner would create a
solution with only one action to execute. When an action passed from the
planner it mapped directly to a controller and executed with no bridge
actions. Moving from one room to the next provided a simple test to satisfy
our concerns.

1-Step, 1-Sub-Step Problems: A problem where the agent needs to commit
a bridge action prior to executing the original action. This situation was
easily created by interacting with hostages or defusing a bomb in the same
location, given that the agent would have to move over to the object to
undertake the desired action.

n-Step, 0-Sub-Step Problem: Committing multiple directly-mapped actions
and executing them sequentially. Simple corridor navigation tasks through
multiple locations were used for this test.

n-Step, n-Sub-step Problem: These reflect a standard problem instance for
the Bruce agent to execute. This was done using some simple tests involving
both navigation and object retrieval/interaction.

Hostage Actors: These problems would test the actor function of the system
to ensure that actions could also be delegated to the hostages for execution.

These tests were not considered as part of our complete system evaluation,
but were merely conducted to assess the basic functionality of the system during
construction and are reported to highlight our structured implementation and
testing. Once confident that a piece of functionality would operate effectively,
we would then run these simple test problems for verification. Once satisfied, we
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would proceed to developing and refining the next piece of functionality. Only
once all tests were completed did we move onto our basic performance tests.

5.4.2 Basic Performance Tests

For our first series of performance tests we wanted to cover the range of functionality
that the architecture provides. We required a set of simple problems where the
solutions would require bridge actions, threat resolution and resolving model
inaccuracies from uncertainty. A brief description of each test case is given below,
with a complete listing of each PDDL problem file found under Appendix E.

BasicTest1 - Figure 5.4: The agent must navigate through a sequence of loca-
tions and corridors to reach a destination location.

BasicTest2 - Figure 5.5: A hostage is trapped in a nearby location with an
armed bomb. Our agent must defuse the bomb and escort the hostage back
to the starting position.

BasicTest3 - Figure 5.6: A hostage is trapped inside a nearby room blocked
off by a locked door. The agent must unlock the door and allow the hostage
to escape.

BasicTest4 - Figure 5.7: This is similar to BasicTest3 except there are two
hostages trapped in separate rooms. Agent must rescue and escort both
hostages to the goal location.

BasicTest5 - Figure 5.8: Our agent must escort two hostages to a nearby
location. However one hostage is unconscious and the other is in an uneasy
mental state.

Each of these problems combined with our definition of the BruceWorld game
satisfy our intentions made in Chapter 1 to create tasks that are outwith the scope
of the reactive EA-trained ANNs and the deliberatve AP methods. However,
theoretically it is plausible that our new agent is capable of solving them.

We focus many of these initial problems on hostage retrieval, since potential
uncertainty will have an impact on overall performance. We assessed each problem
instance 10 times in the standard mode (i.e. no modifications to the problem) and
a further 10 times with the hostile entities and uncertainty added to the model.
This was to assess how well our agent performed when faced with elements that
may impede progress, or force the agent to rethink the plan of action.
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Bruce: 
Starting at 
Location l1

Destination: 
Location l6

Figure 5.4: One instance of the BasicTest1 problem file in BruceWorld, showing
six fully connected rooms that the agent must navigate through.

204



Chapter 5. Creating a Plan-Driven Agent Architecture

Hostage: 
Must be escorted 

to Location l1

Bomb
must be Defused

Figure 5.5: A map of the BasicTest2 problem in the BruceWorld game. In this
instance, Bruce must escort a hostage between two locations, but not before
checking whether the bomb in l2 requires defusing.
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Active bomb 
with 

fuse length of 7

Bruce: 
Starting at 
Location l1

Hostage h1: 
Must move 
from l3 to l1

Terrorist
in location l2

Figure 5.6: A BruceWorld map of the BasicTest3 problem, where Bruce must
unlock the door between locations l2 and l3 and guide the hostage back to l1.
However in this instance, threats such as a terrorist and an active bomb have
been included.

Results

We provide a series of statistics from running each initial problem as normal in
Table 5.1 and then with a 100% probability of threats and uncertainty in Table 5.2.
After discussing these results, we will then give an execution walkthrough of select
instances to clarify the exact behaviour of the agents.

In the case of threats and uncertainty, we have ensured that at least one
bomb and one terrorist exist in the problem. Furthermore, if any aspect of the
problem can be modified through uncertainty, then at least one change will be
made. These results indicate that the agent can solve the majority of the provided
test runs. Furthermore, it is also capable of solving these problems for the most
part when adversarial agents and uncertainty are added to the problem. One of
the most notable changes that happens when threats and uncertainty are added,
is the significant increase in the average number of actions per problem. These
additional actions are the result of actions deliberated from numerous re-plans
and flagged rules. Re-plans may result in additional resolution actions for issues
we were not aware of until the agent encountered them, while the rule base will
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Hostage2: 
Must be escorted to 

Location l1

Hostage1: 
Must be escorted to 

Location l1

Two locked doors
with switches.

Figure 5.7: A BruceWorld map of the BasicTest4 problem. This instance is very
similar to BasicTest3, except now there are two hostages in separate locations.

Table 5.1: Statistics from 10 runs of our basic performance test problems. We
provide statistics regarding agent performance, as well as the number of times the
system interacts with JavaFF and the Prolog rule base.

Instance Completed
Initial
Plan

Length

Average
No. Actions

Average
PM Runs

(Avg. Time)

Average
RC Runs

(Avg. Time)
BasicTest1 10 5 5 1 (85.7ms) 5 (<1ms)
BasicTest2 10 3 3.78 1 (182.6ms) 3.78 (<1ms)
BasicTest3 9 6 6.78 1 (212.78ms) 6.78 (1.44ms)
BasicTest4 10 8 8 1 (209.3ms) 8 (<1ms)
BasicTest5 10 5 6 1 (177ms) 7.11 (<1ms)
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Bruce: 
in location l1

2 Hostages: 
1 unconscious

1 uneasy

Goal: 
all agents 

in location l2

Figure 5.8: An instance of the BasicTest5 problem in BruceWorld, where Bruce
must assist two hostages in uneasy and unconscious states to the adjacent location.
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Table 5.2: Statistics from 10 runs of each of our basic performance problems when
running with threats and uncertainty. This has a considerable impact on the
number of actions that are committed, as well as the number of interactions (and
the average time taken) with JavaFF and the Prolog rule base.

Instance Completed
Initial
Plan

Length

Average
No. Actions

Average
PM Runs

(Avg. Time)

Average
RC Runs

(Avg. Time)
BasicTest1 8 5 9.86 3.29 (100ms) 21 (1.14ms)
BasicTest2 10 3 10.89 3.11 (30ms) 24.9 (<1ms)
BasicTest3 8 6 12 3.14 (83ms) 15.4(2ms)
BasicTest4 8 8 13.8 3.75(62ms) 14.75(1.13ms)
BasicTest5 8 5 14.86 3.86 (47.4ms) 18.71 (<1ms)

be demanding supplementary actions due to the threats recognised in the RC
clauses.

Perhaps unsurprisingly, in the threat/uncertainty runs (Table 5.2) there are
a larger number of failed tests. In order to fail a test either a circumstance
arose that the system could not generate an appropriate response to, or the
agent was eliminated due the threatening elements that were introduced. Given
that we were present to observe each test we can safely conclude that the latter
circumstance was responsible. In each incompleted test, failure occurred as a
result of the destroy-target controller being unable to eliminate a terrorist, or
a bomb detonated and killed one of the agents. While we have created capable
reactive controllers that are adept at solving tasks, the destroy-target task was
always challenging for the agents. Given that we made some real progress with
the final controller, it still does not win every match on average. There is one
similar instance in Table 5.1 where the agent also failed due to the performance
of the reactive controller. This was due to the area it was moving through being
heavily cluttered by objects obstructing the route. While typically the agent will
navigate around these objects rather competently, in this situation the placement
of the obstacles was such that they boxed the agent in. While there was a path
that could be navigated through this area, the obstacle sensors found the area too
‘hot’ to traverse and would often attempt to turn the agent around and backtrack.
However given the goal oriented nature of its behaviour, it would then - much to
our frustration - turn around and try again. This continued until the permitted
time for the the action expired and the test was considered a failure.
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System Performance During these initial tests we made some interesting
observations of the performance of the planner and prolog querying. These are
aspects of the system that we wished to assess for two reasons. Planning is often a
time and CPU consuming process, and when dealing with game software, the time
taken to carry out this deliberation would become noticeable to the player. Hence
we wanted to check to see just how quickly this can be completed on average.
When observing the RC performance, we wished to ensure that accessing the
Prolog code through the JPL interface would not cause similar bottlenecks in
processing.

Returning to the results shown in Table 5.1, we can see the runtimes from
JavaFF and the JPL Prolog queries. In the standard problems we observe a
significant amount of time is taken for the JavaFF planner to complete the initial
plan. The actual time measures 213 milliseconds in the worst instance, given this
is somewhat irrelevant on a human level, it is a significant amount of processing
time, especially when we take into consideration that game developers wish to
commit very few CPU cycles to AI processes per second. Naturally we were
concerned about the average time taken when the system requires multiple re-
plans to deal with model inaccuracies. Surprisingly, the JavaFF times in Table 5.2
tell a different tale. As we can see, the average time to plan is significantly reduced.
We observed during these initial tests that any re-plans would consume very little
CPU cycles in comparison to the initial run. The time taken for the initial run
can be attributed to loading the planner itself into memory, once this is completed
then we can trust the planning process to run much faster.

On a more positive note, when we observe the JPL Prolog queries in both
series of tests we note that the querying process is incredibly fast. Often in the
standard tests, we note that the number of prolog queries will naturally correlate
to the number of actions in the plan since we need to retrieve the related controller.
However, when we modify the problem, the number of Prolog queries explodes.
This can be attributed to the increased number of actions taken to complete
the plan, which can be observed from the difference in the initial number of
plan actions to the number of actions executed. Furthermore, there will also be
multiple references to the threat rule base to assess whether the threats found
in the environment merit recognition and future resolution. Nevertheless the
time taken is truly satisfying, given that regardless of the number of queries
made, the average time is approximately measured as 1 millisecond. In fact in
many circumstances the average time would be less than 1 millisecond, since the
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difference in system time could not be measured in nanoseconds.

Agent Behaviours We assessed the performance of the agent based not only
on the success in completing a given test problem but by also observing the agent’s
behaviour. Fortunately as we observed from the tabled results, agents were capable
of completing the majority of these test instances. The actual behaviours appeared
very focussed and consistent between tests. When hostile elements were added to
the problem, the agent would react to and deal with these competently, resolving
each issue in the current location in decreasing order of priority. We also observed
situations where the agent recognised bombs that would not pose a sufficient
threat to merit defusing, hence it would continue the execution of the plan without
consideration for the bomb. Agents would immediately recognise inaccuracies in
the state model when made apparent and the forced re-plan would be successful
in all cases. Hence the model is sufficient given that there were no circumstances
where the agent failed to model and re-plan. Once our agents generated a new
plan, they would continue without any complications and complete the task (even
after multiple re-plans). As noted previously, all failures occurred as a result of
the evolved controllers being unable to complete a task or simply timing out. No
failures ever occurred at the planning level.

An interesting observation was made when running BasicTest5 using the threat
and uncertainty modifiers where the planner would ocassionally give inaccurate
plans to the agent. When the agent recognised that changes had been made
to the game due to the uncertainty, the PM would be forced to regenerate the
state and commit a re-plan. This re-plan would create a series of actions whose
terminal state did not reflect the final state of the problem. The system would
continue to execute the actions until the final action was completed. As expected,
the PM recognised that the model and final state do not match and another
re-plan is committed. At this point the correct sequence to reach the goal state
was calculated and execution proceeded as normal. While we were pleased to see
our agent compensate for this turn of events, we were concerned as to how this
circumstance would arise. A first course of action was to assess the circumstances
in the game that would result in this incorrect plan.

To highlight this bizarre occurrence, we refer to the actual problem and the
modified instance that led to the erroneous plan. Referring to listing 5.9, the
original problem revolved around moving two hostages from location one to the
goal location two. Given that there is only a corridor between the two locations
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(:init
(at agent1 l1)
(free agent1)
(at hostage1 l1)
(at hostage2 l1)
(unconscious hostage1)
(uneasy hostage2)
(corridor l1 l2)
(corridor l2 l1)
)

(:goal (and
(at agent1 l2)
(at hostage1 l2)
(at hostage2 l2)
))

Figure 5.9: The original PDDL description of BasicTest5.

this is a relatively simple plan of action once we devise how to deal with each
hostage. Due to the initial state of each hostage, this led to a complete plan
length of five actions as shown below:

(SLAP−HOSTAGE agent1 hostage2 l1)
(PICK−UP−HOSTAGE agent1 hostage1 l1)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l1 l2)
(WALK−HOSTAGE−THROUGH−CORRIDOR hostage2 l1 l2)
(PUT−DOWN−HOSTAGE agent1 hostage1 l2)

When we changed the problem using our uncertainty modification, a variety
of different initial states emerged due to each hostage being assigned the calm,
delirious or uneasy state. These new states were the culprit for our odd re-plan,
with the simplest example occurring in listing 5.10. In this case, the agent would
now have to carry the two hostages into the other room.

Interestingly, JavaFF would often return a plan that would move one agent
into the other room but not the other. At first we feared this may be the result of
an error in the domain description leading to what is referred to as a ‘teleportation
problem’; a flaw where two objects of the same type share attributes to the point
the planner considers them the same object, such as two trucks (in the DriverLog
domain) being in separate locations yet loading a package in one truck means you
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(:init
(at agent1 l1)
(free agent1)
(at hostage1 l1)
(at hostage2 l1)
(unconscious hostage1)
(unconscious hostage2)
(corridor l1 l2)
(corridor l2 l1)
)

Figure 5.10: One of the PDDL states from BasicTest5 that resulted in an erroneous
plan.

can immediately unload it from the other truck. This however, this did not appear
to be the case, and after thoroughly examining the domain model there was no
conclusive indication as to why this error occurred. We eventually discovered it
was caused by an error in the JavaFF planner itself and not in our system. We
explore this issue again in greater detail in Section 5.4.6, where we report on our
efforts to resolve this issue after it caused further concern during our advanced
tests.
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Solution Walkthrough: BasicTest1 (Standard)

While the resulting statistics in Tables 5.1 and 5.2 are satisfactory and give an
indication of overall performance, the actual pattern of behaviour may not be
immediately obvious to the reader. To conclude this phase of testing, we select
three problems and explore exactly how the architecture acts across the whole of
the execution. In this section we begin with the easiest problem from this phase
of testing: BasicTest1.

BasicTest1 can be found in Appendix E.1, where the agent must navigate
through a series of five corridors from the start location l1 to the goal location l6.
In this test we have decided to explore this problem without the uncertainty of
threats added. An example of this problem in the BruceWorld game can be seen
in Figure 5.4. The resulting plan of action from JavaFF is simple: move between
each room via the corridors and avoid any of the obstacles that get in our way:

(WALK−AGENT−THROUGH−CORRIDOR agent1 l1 l2)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l2 l3)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l3 l4)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l4 l5)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l5 l6)

Given we have not added threats or uncertainty then the agent need only
execute each action from the plan in sequence. We shall now walk through the
plan execution, explaining how each component behaves in this instance and
ultimately show how the agent reaches the goal state and terminates execution.
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1. Initial State: (at agent1 l1))

(a) The Plan Manager is fed the model of the world and the plan is
generated.

(b) The PM first ensures that the model is accurate, which proves suc-
cessful. At this point the first action (WALK-AGENT-THROUGH-
CORRIDOR agent1 l1 l2) is taken from the queue of remaining actions
and passed to the Rule Controller.

(c) The RC first checks for any Terrorists or Bombs in the room. Given
there are none it will move to the controller rules and flag one of the
quick-lookup clauses. This will return the desired controller: visit-
waypoint.

(d) This is fed to the controller library where the visit-waypoint sub-
controller is selected. The start and end locations are parsed from
the PDDL action (l1 and l2) and the controller library builds a simple
path through the corridor to l2 (as discussed in Section 5.3.4). This path
of waypoints is fed to the visit-waypoint subcontroller. It is then added
to the base layer of a subsumption hierarchy and a detect-obstacle
controller is placed atop and deemed as ready.

(e) The subsumption controller is fed to the agent and the agent executes
the action until the reactive controller indicates the action is completed.

2. Going for a Stroll: (at agent1 l2/l3/l4/l5)

(a) PM will first update the model to coincide with the executed action,
then verify the current state is not the goal state. Once verified it will
next check to ensure there are still actions remaining in the plan. Since
both are valid, execution will continue.

(b) Steps 1(a) through 1(e) are then repeated since the case will be the
same in all states.

3. Goal State: (at agent1 l6)

(a) PM assesses the current state of the world, recognises it as the goal
state and terminates execution.
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Solution Walkthrough: BasicTest 5 (Standard)

For our second solution walkthrough, we will look at BasicTest5 under standard
conditions. The problem (visualised in Figure 5.8) was to move two hostages from
one location to another nearby location (again see Appendix E for full PDDL
definitions). However, one of the hostages is unconscious, and the other is feeling
uneasy. As neither can move to the goal location of their own volition, Bruce is
required to intervene. The resulting plan is given below:

(SLAP−HOSTAGE agent1 hostage2 l1)
(PICK−UP−HOSTAGE agent1 hostage1 l1)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l1 l2)
(WALK−HOSTAGE−THROUGH−CORRIDOR hostage2 l1 l2)
(PUT−DOWN−HOSTAGE agent1 hostage1 l2)

The resulting plan is more diverse than the previous one; the agent first slaps
the uneasy hostage in order to calm him down, then picks up the unconscious
hostage. Now the agent must walk to the goal location l2 with one hostage over
his shoulder and the other following behind him. All that remains in order to
complete the problem is to put the unconscious hostage on the floor.

1. Initial State: (at agent1 l1) (unconscious hostage1) (uneasy hostage2)

(a) PM is fed the PDDL model of the problem and the plan is generated.

(b) PM runs a successful model verification to ensure everything is correct,
and selects the first action (SLAP-HOSTAGE) to run through the Rule
Controller.

(c) RC will verify no threats exist in the environment and so we can focus
on the plan-action. When querying the controller rule base no result
will be generated from the quick-lookup clauses. Hence the system
must explore clauses specific to the SLAP-HOSTAGE action. The
system classifies the distance between the agents and applies it to the
slap-hostage clause. Assuming the circumstance in Figure 5.8 for the
sake of our walkthrough, the system recognises Bruce is too far from
the hostage. Hence a visit-waypoint bridge action is flagged.

(d) The visit-waypoint flag is sent to the CL, the subsumption controller is
provided with the destination within close proximity of hostage2 and
the agent executes the action.
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2. Slapping Around: (at agent1 l1) (unconscious hostage1 (uneasy
hostage2))

(a) After model verification is completed, the agent will recognise that the
SLAP-HOSTAGE action has yet to be completed. The PM will flag it
for execution.

(b) This time the RC will approve the action since the additional condition
that Bruce be close to the hostage is now satisfied. Subsequently it
will send a message for the slap-hostage controller.

(c) Once this message is received in the CL, the system will recognise there
is no subsumption controller for this action. Instead an instance of the
agent is provided the necessary scripted actions to execute the slap
action.

(d) The controller is retrieved from the CL and subsequently executed.

3. Heavy Lifting: (at agent1 l1) (unconscious hostage1) (calm hostage2)

(a) The model is updated and verified and the PICK-UP-HOSTAGE action
is selected.

(b) RC runs the quick-lookup clauses and finds the corresponding controller
is grab-item and sends a message to the library.

(c) The library takes information from the current state to plot the course
for the grab-item controller. A 2-layer subsumption controller is built
with additional detect-obstacle layer for obstacle avoidance.

(d) The agent executes the controller, moving through the environment to
pick up the unconscious hostage.

4. On the Move: (at agent1 l1) (carrying agent1 hostage1) (calm
hostage2)

(a) The next two actions (WALK-AGENT-THROUGH-CORRIDOR &
WALK-HOSTAGE-THROUGH-CORRIDOR) simply correspond to
visit-waypoint controllers. Bruce and hostage2 in turn are fed 2-layer
subsumption controllers with waypoint navigation and obstacle avoid-
ance which are executed sequentially.
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5. Baggage to Declare: (at agent1 l2) (carrying agent1 hostage1) (at
hostage2 l2)

(a) The final action to execute is PUT-DOWN-HOSTAGE.

(b) Once the model is verified, the RC dictates that the put_down_hostage
controller must be retrieved. CL finds a corresponding hardcoded
controller and it is fed to the agent for execution.

(c) Once the action is completed, the plan-model is updated and the goal
state validated, execution completed.

Solution Walkthrough: BasicTest3 (Threats and Uncertainty)

For this final walkthrough, we visit BasicTest3. However this time we have ensured
that the threats and uncertainty in the world are active. In this instance not
only will the problem differ from the model at some point, but there will also be
bombs and terrorists present in the game. In Figure 5.6 we see one instance of
the problem in BruceWorld. However, unlike our last two walkthroughs, we see
there is an active bomb and a terrorist in locations l1 and l2 respectively. Once
deliberation starts, the following plan is constructed:

(WALK−AGENT−THROUGH−CORRIDOR agent1 l1 l2)
(STEP−ON−SWITCH agent1 l2 s1 d1)
(WALK−HOSTAGE−THROUGH−DOORWAY hostage1 l3 l2 d1)
(STEP−OFF−SWITCH agent1 s1 l2 d1)
(WALK−HOSTAGE−THROUGH−CORRIDOR hostage1 l2 l1)
(WALK−AGENT−THROUGH−CORRIDOR agent1 l2 l1)

We conduct this final walkthrough through based on the example in Figure 5.6.

1. Initial State: (at agent1 l1) (at hostage1 l3) (calm hostage1)

(a) The plan model is verified for accuracy, however verification fails due
to the bomb in location l1. Hence the plan model is reconstructed from
the current state of the game and the plan is re-formulated. However,
the same plan is constructed since no goals were given in the problem
file to defuse a bomb.

(b) Now that the model is clean and the refreshed plan in is place, the
move action is sent to the RC.
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(c) RC checks the local environment for any threats. The bomb in location
l1 is picked up (at present, the agent cannot see the terrorist in l2) and
classifies the distance, fuse length and blast yield against the threat
rules. Given that each feature may lie in more than one set, we run all
combinations and select the result with the highest threat level. Given
the distance is close and the fuse length is medium then irrespective
of blast yield the bomb will be flagged with at least a medium threat
level. Hence the bomb will need to be defused and the defuse_bomb
action is selected as a reactive action.

(d) The defuse_bomb action is passed through the controller rule base,
with no quick-lookup result. Instead we run the classified distance
through the bridge clauses. At this distance the agent is close enough
to defuse the bomb. Hence the defuse_bomb action is sent to the CL.

(e) The hardcoded defuse_bomb controller is retrieved and the action
executed.

2. Moving On: (at agent1 l1) (at hostage1 l3) (calm hostage1)

(a) The model is checked again, however due to the bomb being disarmed
we are once again inaccurate. The model and plan are refreshed to
ensure all is correct.

(b) The first plan-action (WALK-AGENT-THROUGH-CORRIDOR) is
selected, no threats are detected by the RC and a 2-tier navigation
controller is built. The action is executed without any problems.

3. Fightin’ Time: (at agent1 l2) (at hostage1 l3) (calm hostage1)

(a) The PM approves model accuracy, selects STEP-ON-SWITCH action
and passes this action to the RC.

(b) The RC recognises there is a terrorist in the room and assesses the
enemy’s capabilities using the threat rules. A destroy-target controller
is selected as the next action.

(c) The CL selects a destroy-target subcontroller and sets the focus of the
controller as the terrorist. An additional dodge-shell controller is added
to create a 2-tier subsumption controller.

(d) The agent executes and attacks the terrorist and, with a bit of luck,
survives unscathed.
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4. To the Rescue: (at agent1 l2) (at hostage1 l3) (calm hostage1)

(a) The PM selects the STEP-ON-SWITCH action again since the plan-
model is still valid.

(b) The RC notes no threats or issues with execution and selects the
visit-waypoint controller.

(c) A 2-tier visit-waypoint/detect-obstacle controller is built and pointed
towards the switch. The agent moves to stand on switch.

(d) Once completed, the model is updated and a visit-waypoint/detect-
obstacle controller is sent to the hostage to exit the now unlocked
doorway.

(e) Another simple execution moves the agent back into location l21

5. Hang on a minute. . . : (at agent1 l2) (at hostage1 l2) (uneasy
hostage1)

(a) The PM model check proves inaccurate as a result of the uncertainty
in the world. Now that Bruce can actually see the hostage he identifies
his uneasy condition, hence the state is recreated and a new plan is
built. The new plan adds an extra (SLAP-HOSTAGE agent1 hostage1
l2) action to the front of the existing plan.

(b) The RC notes that there is too large a gap between the two agents
and an additional visit-waypoint bridge action is required. The agent
moves closer to the agent.

(c) The model is verified, the rules are satisfied and the SLAP-HOSTAGE
action is executed.

6. Let’s Get Out of Here!: (at agent1 l2) (at hostage1 l2) (calm
hostage1)

(a) The two remaining move actions process as normal with no further
complications.

(b) Goal state is reached and executive terminates.
1Note he actually moves back into the room. This is because even though in the plan-model

a switch is in a room, an agent can only be on a switch or in a room.
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Throughout these three walkthroughs, we’ve seen a variety of different circum-
stances such as model failure, additional threats, bridge actions that the executive
has dealt with accordingly. This gives us a clear indication of how the system
operates and how dependent the agent is on each individual component.

5.4.3 Advanced Tests: Setup and Preliminary Results

Up to now we have carried out a series of tests that give us some indication of
our agent’s capabilities. Furthermore, we have also explored how the architecture
solves problems in specific circumstances courtesy of our solution walkthroughs.
To complete our testing process, we wanted to carry out a series of tests to assess
the flexibility of the system and the maximum level of performance it can attain.
In short, we wanted to see just how far we could push the agent before it is
incapable of solving the problem. This would be dictated by the problems we
assign to it and the level of threat and uncertainty applied. We hypothesised that
provided the system continues to operate within memory constraints then the
system should be able to solve any problem and handle any uncertainty that is
applied, under an assumption that the uncertainty does not result in unsolveable
problems. We believed that the greater the threat level, the more likely it is that
agents would eventually succumb to the overwhelming odds. Hence, we aim to
discover at what level of threat such circumstance arises. A second but equally
important test to run, was to highlight the importance of each aspect of the
system. While the walkthroughs have shown how each component plays a part in
the execution, are we really that reliant on them to solve each problem? If we
simply ignore threats or plan-model accuracy can we still solve our test problems?
This will help conclude whether our efforts in creating these components were
necessary.

In order to conduct these tests, we decided to create a new set of problems.
These new problems are more challenging than the tests used previously and
littered with more obstacles in the environment than before. Below we give a
brief description of each problem, with the complete PDDL definitions found in
Appendix F.

AdvancedTest1 - Figure 5.11: The agent must navigate through a series of
rooms to a specific location. There Bruce must retrieve a first aid kit to take
back to an injured hostage. Once the hostage is healed, another unconscious
hostage must also be picked up and escorted to the goal location.
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AdvancedTest2 - Figure 5.12: Bruce must crawl from one location to two
others to restore an uneasy and an unconscious hostage, carrying one to
the goal and then helping the other to escape from a locked room prior to
ensuring his own escape.

AdvancedTest3 - Figure 5.13: Bruce and three hostages are trapped in four
separate rooms connected via four doorways. Each room has a switch
connected to a door, hence the agents must cooperate in order to release
each other from their room to the goal location.

AdvancedTest4 - Figure 5.14: A large problem spanning 10 locations. The
agent must assist one hostage in getting from one side of the map to the
other, while also ensuring that the hostage in the room with him can still
reach his goal location next door.

We encountered issues with plan construction when trying to create some
of these new problems. Once we had established a given problem file we would
test it against the JavaFF planner to ensure that for the simplest case the agent
must be able to execute and solve the problem. However JavaFF, specifically the
RPG heuristic, would ocassionally struggle with some of the ideas we wanted to
introduce. One casualty of this is the blocked predicate which restricts movement
across specific corridors. To maintain some simplicity in the planning model, we
simply denote a path from A to B is blocked, and once the CLEAR-RUBBLE
action is applied, a corridor is constructed between these two points as an effect.
However the JavaFF heuristic will ignore the fact that the path is no longer
blocked, hence solutions were never found during any of our preliminary tests. As
a result we tried to provide challenging problems whilst ensuring that they are
solveable using the RPG heuristic.

Standard Test Results

We begin by providing statistics from 30 runs of each advanced problem file in
Table 5.3. In these results we see more instances where the agent fails to satisfy
the assigned goals, with AdvancedTest4 proving the most challenging. Our reports
from running these experiments indicated that this was due to controller time-out
when attempting to execute an action. In each circumstance, this arose from the
agent’s inability to completely navigate through a heavily cluttered environment
prior to the action timeout. From our observations we noted this was due to the
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Unconscious 
Hostage2

Injured 
Hostage1

Aidkit

Bruce

Figure 5.11: One instance of the AdvancedTest1 problem. Here Bruce must move
to a vent, crawl through to grab an aidkit to help a hostage and then also deal
with the unconscious hostage on the other side of the map.
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Hostage1 needs 
slapped and 

assisted through 
doorway.

Hostage2 needs 
carried to l3

Figure 5.12: In AdvancedTest2, Bruce needs to bring one hostage to their senses be-
fore he helps them get out from behind a locked door, then retrieve the unconscious
hostage and put them both at the goal location. 224
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4 Agents
4 Doors

4 Switches

Goal: All 
Agents in l4

Figure 5.13: The AdvancedTest3 problem is a tricky puzzle since there are four
doors to four locations. The agents must work together to get from one room to
another.
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Hostage2 
moves from 

l5 to l6

Hostage1 
moves from 

l1 to l10

Bruce 
moves from 

l1 to l9

Figure 5.14: The final AdvancedTest file shows Bruce having to navigate across
a large range of locations to help get one hostage to the other side. Meanwhile,
another hostage needs to move to the next room, however the plan hinges on his
cooperation.
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Table 5.3: Statistics from 30 runs of our basic performance test problems. Note the
average number of actions is taken only from the successfully completed examples.

Instance Completed
Initial
Plan

Length

Average
No. Actions

Average
PM Runs

(Avg. Time)

Average
RC Runs

(Avg. Time)
AdvancedTest1 21 20 22.76 2 (459ms) 22.14 (1.95ms)
AdvancedTest2 20 21 21.85 1 (778ms) 21.9 (2.05ms)
AdvancedTest3 27 10 10 1 (754ms) 10 (4.15ms)
AdvancedTest4 16 25|26 26.81 1.56 (3942ms) 26.56 (1.5ms)

(not particularly long) reach or view of the obstacle avoidance sensor. The random
placement of obstacles could lead to situations where the agent would continually
react to stimuli and be unable to move competently.

While we provide these results primarily for comparison with later tests, it is
interesting to observe two aspects of the planning process. Firstly, the time taken
to devise a plan of action is significantly larger than those shown in Table 5.1. As
we stated previously, it was our intention to create more challenging problems for
the system to solve. Whilst the architecture is successful in devising plans we
are now entering large numbers of CPU cycles to achieve success. In the rather
taxing AdvancedTest4, note that the average time can now be measured in whole
seconds. Keeping focus on AdvancedTest4, we also note that the initial plan
length varies between 25 and 26 steps and the Plan Manager may be executed
more than once. Similar behaviour can be observed in AdvancedTest1, where the
system always created an initial plan of 20 steps but would later re-run the Plan
Manager. Investigation into this phenomenon led us to discover that JavaFF was
once again at fault. The planner would, in the case of AdvancedTest1 always and
AdvancedTest4 often, devise a plan that failed to satisfy all goals. As a result,
the system would note at the end of plan execution that a goal was not satisfied
and a new plan was constructed to amend this fault, often with the new plan
being only one or two actions in length. This once again caused concern and we
highlight later in this section the further work conducted to resolve this issue.

For the reader’s consideration we provide the individual plan times from the
AdvancedTest4 runs in Table 5.4. As shown previously from the average of this
sample in Table 5.3, this problem takes a significant amount of time for the
agent to solve. Furthermore, we observe that in the event JavaFF constructs a
sub-optimal plan of 26 steps, then a re-plan is necessary at a later juncture.
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Table 5.4: Records of the total time taken in order to plan solutions for the first
10 runs of AdvancedTest4. We also provide the subsequent replan times when
necessary.

Instance Init. Plan Length Plan Time 1 Plan Time 2
Run 1 26 5573 101
Run 2 25 6650 n/a
Run 3 26 3659 93
Run 4 25 4417 n/a
Run 5 26 3451 102
Run 6 25 5278 n/a
Run 7 26 3540 130
Run 8 25 6376 n/a

Run 9 (Fail) 26 4271 n/a
Run 10 (Fail) 25 6534 n/a

5.4.4 Advanced Tests: Threats and Uncertainty

Next we test the maximum level of threat and uncertainty that can be applied
before our agent is unable to complete the problem. We begin by assessing the
performance of each problem with varying threat levels, followed by examining
how well the agent reacts to increased modifications to the problem.

Threat Density

In our previous threat experiments we increased the probability of a terrorist
or bomb existing somewhere within the problem file. Given there were few
locations in these problems this still posed a significant challenge. Here we wish
to increase the potential number of threats that exist throughout the problem file.
As our advanced tests carry larger numbers of locations, we wished to assess how
many threats can be inserted before the agent fails frequently. At this juncture,
we hypothesised that the inclusion of large numbers of terrorists would have a
significant impact on the results. While handling one or two terrorists per problem
may be difficult, placing them throughout all locations was beyond the capabilities
of our reactive controllers. Conversely, we were confident that the agent could
easily deal with increasing numbers of bombs, provided sufficient time is given to
reach them.

In Tables 5.1 and 5.3 we observed that the agent may be unable to complete the
task due to a controller failure. This is due to the obstacle detection being unable
to handle the randomly instantiated obstacle positioning. However we did not
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want this to interfere with our experimental results. Hence in these experiments,
any game terminated due to an obstacle controller failure was ignored. Only
pertinent failures are reported from these sample runs.

For each threat experiment, we focus on the number of bombs or terrorists
that exist in the problem with respect to the number of locations. This is referred
to from here as threat density. As the threat density increases, the probability of
Bruce encountering a threat in each location also increases. We begin by running
each advanced problem with bombs included; as the threat density increases, the
number of bombs gradually increases until all rooms hold one bomb. We then
apply the same principle to terrorists and finally using both bombs and terrorists
in the same problem.

Upon commencing our bomb tests, we came to the conclusion that adding
them to the domain description may have been a poor design decision. While
we were keen to include bombs in the PDDL domain to allow problems that
require their defusing, their inclusion as threats often results in inaccuracies in
the current plan-model. This is highlighted by our walkthrough of BasicTest3,
where the agent had to rebuild the state model after the discovery of a bomb in
location l1. As a result, the PM was forced to commit a re-plan due to a model
inconsistency. While this resolved the model inaccuracy, it had no real impact
on the plan, since bomb defusal is considered a problem for the RC. Thus we are
commiting numerous re-plans for no real purpose. This was highlighted when
we approached AdvancedTest1, where the agent would rebuild the model and
re-plan 16 times in the worst case, even though no further actions were included
in the plan. Therefore from this point on, we remove the bomb assertions from
the PDDL domain file.

Bombs Only For our bomb density experiment, we ran each problem 10 times
at threat densities of 0.2, 0.5 and 1.0. This was intended to gradually increase the
difficulty of the problem as the tests continued. The results from these experiments
are summarised in Table 5.5. As can be seen from these results, success and
average progress in these problems decreases - with the exception of AdvancedTest2
- as the number of bombs increases. As bomb density increases, the amount of
time spent defusing them also increases. Given that Bruce is preoccupied by
disarming an increasing number of bombs, the remaining bombs have a greater
chance of exploding. As a result, many of these tests terminated as a result of
Bruce reacting to nearby bombs, while a hostage in a distant location was killed
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Table 5.5: Results of running each advanced test file 10 times at bomb densities
of 0.2, 0.5 and 1.0.

Instance Bomb Density Completed Average Progress
AdvancedTest1 0.2 7 92.4%
AdvancedTest2 0.2 4 71.7%
AdvancedTest3 0.2 10 100%
AdvancedTest4 0.2 5 76.9%
AdvancedTest1 0.5 3 68.6%
AdvancedTest2 0.5 5 76.1%
AdvancedTest3 0.5 10 100%
AdvancedTest4 0.5 4 78.2%
AdvancedTest1 1.0 0 43.2%
AdvancedTest2 1.0 6 79.06%
AdvancedTest3 1.0 5 85%
AdvancedTest4 1.0 3 74.14%

by a bomb merely feet from them. In these cases, the bomb could have been
defused by Bruce; however this action was queued behind all plan-actions that
led him to the bomb’s location and defusal of all bombs in previous locations (or
they luckily exploded without anyone nearby). If Bruce had a greater knowledge
of the world then he would have recognised which bombs carried a greater threat
across the scope of the problem and could act accordingly.

Terrorist Only Next we gradually increased the number of terrorists found in
each problem. As we stated previously, it was hypothesised that the agents would
struggle to complete problems as the number of terrorists increased. Once again,
we ran each of the advanced test files for 10 separate runs with threat densities of
0.2, 0.5 and 1.0. The results from these experiments can be found in Table 5.6,
where we can see that our concerns were justified. At the lower threat density
levels, the agent is capable of eliminating terrorists and continuing on to complete
the plan. However, this is not as frequent as we would have liked. Two problems
have been highlighted by these experiments; the quality of the reactive controllers
and the context in which they are executed.

Our destroy-target reactive controller was designed to eliminate one opponent
as efficiently as possible for EvoTanks. While the results in Section 3.4 show that
this can be achieved, we must realise that the controller’s ‘lifespan’ was the time in
which it executed in EvoTanks. As such, if an agent eliminated the opponent with
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Table 5.6: Results of running each advanced test file 10 times at terrorist densities
of 0.2, 0.5 and 1.0.

Instance Terrorist
Density Completed Average

Progress

Average
Terrorist

Elimination
AdvancedTest1 0.2 5 63.2% 60%
AdvancedTest2 0.2 4 48.7% 60%
AdvancedTest3 0.2 9 93.9% 90%
AdvancedTest4 0.2 4 53.1% 55%
AdvancedTest1 0.5 3 43.6% 50%
AdvancedTest2 0.5 2 37.2% 46.7%
AdvancedTest3 0.5 2 65.83% 35%
AdvancedTest4 0.5 0 37.7% 26%
AdvancedTest1 1.0 0 11.25% 20%
AdvancedTest2 1.0 0 14.4% 20%
AdvancedTest3 1.0 1 47.7% 32.5%
AdvancedTest4 1.0 0 11.7% 11%

only 1 hitpoint remaining, the match would terminate and a fitness value would
be assigned based on their performance. However, the next time this behaviour
was executed, the health bar was replenished. In BruceWorld, the agent is then
expected to continue as normal, with the possibility of finding another enemy to
eliminate. However in these circumstances, the playing field is often no longer
level since the agent has now less hitpoints than their opponent. To rectify this in
the future, we would require a new training scenario that is more relevant to the
manner these controllers are executed.

There are further issues relating to the context in which the destroy-target
controller is executed. While the controller is only really interested in eliminating
the enemy opponent, we may also need to consider other factors beyond the
perceived scope of relevance. For example, there were several instances where
the execution failed since a hostage was caught in the crossfire between Bruce
and a terrorist and killed. This is a different case where the context of the action
must be considered in order to prevent undesired results in practical application.
Again this could potentially be resolved in future work using BruceWorld-related
learning evaluations.

Terrorists & Bombs For our final threat assessment, we run the same experi-
ments again with both terrorists and bombs inserted into the problem. We are

231



Chapter 5. Creating a Plan-Driven Agent Architecture

Table 5.7: Results of running each advanced test file 10 times at terrorist and
bomb densities of 0.2.

Instance Density Completed Average
Progress

Average
Terrorist

Elimination

Terrorist
&

Bomb
Deaths

AdvancedTest1 0.2 4 50.7% 60% 100%/0%
AdvancedTest2 0.2 6 67.2% 70% 100%/0%
AdvancedTest3 0.2 7 36.56% 70% 100%/0%
AdvancedTest4 0.2 4 54.06% 50% 50%/50%

interested to see how well the agent can cope with these larger problems when
dealing with more prevalent threats. For this experiment we decided to run at a
threat density of 0.2, since our previous results indicated the probability of success
would be low.

Table 5.7 shows the results of this experiment. We are pleased to note while
the average progress and number of runs completed has dropped, there is only
a modest depreciation between these statistics and those in Tables 5.5 and 5.6.
Furthermore, it appears that the inclusion of bombs at this terrorist density level
has little impact on the overall performance. In the majority of situations where
the agent failed it is a direct result of the terrorist agent(s) killing Bruce. Only
in a small number of situations in AdvancedTest4 was this the result of bomb
detonation. In some situations Bruce would lose a hitpoint while attempting to
navigate through cluttered areas to defuse an active bomb. This worked to the
benefit of the terrorists as it meant they would begin any future conflict at an
advantage. It is clear from this work that the reactive controllers for eliminating
threats would require more extensive testing and refinement for any practical
applications.

Uncertainty Testing

For our uncertainty testing, we ran the same advanced test files but now with
uncertainty applied to any entity that is susceptible to modification. Hence the
state of all hostages in these problems would be affected. When creating these
tests, we needed to highlight the effectiveness of the model verification and re-
planning modules of the architecture. We hypothesised that, irrespective of the
test being ran, the architecture will always solve a problem provided the following
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conditions hold true:

• The state-space is still soluble, i.e. irrespective of the changes made by the
uncertainty, a solution can still be found by the planner.

• Given the nature of the game, any action dictated by Bruce to a hostage
must still be executable after uncertainty is applied.

We believed that the planner will always find a valid, although not necessarily
optimal, solution to any changes we made, provided the first assumption holds true.
Ultimately, this test would highlight that the architecture is still bound within
the constraints of the planner’s capabilities. Furthermore, given the egocentric
nature of the architecture and the game’s constraints on knowledge of the world,
we assumed the agent would fail in certain circumstances. In these cases, the
agent would not be aware of the state of other entities, given he cannot see them
as he is in another room. When these circumstances arise, the agent should fail in
execution.

The result of running each advanced test file under such conditions is found
in Table 5.8. It’s clear in the case of AdvancedTest1 & 2 that irrespective of the
changes made to the problem the agent can still solve it through re-planning. In
fact in these examples, the changes often resulted in a plan that was shorter than
the inital one. This is very common in AdvancedTest2, where changing the states
of the two hostages resulted in new solutions. Returning to the screenshot of
this test shown in Figure 5.12, we can see there is a hostage trapped behind a
locked door with only air vents providing an alternative route. In some of our
test runs this agent changed from being uneasy to delirious. The resulting plan
that accommodated for this change would knock the hostage out and carry him
through the airvents to the goal. Previously, the agent was given no impetus to
knock out the hostage, as no provision for such an action was allowed when in
an uneasy or calm state. As a result, the agent would take a far longer1 route to
completion. As for the other hostage, if he was not unconscious this would often
lead to shorter paths, such as slapping him or not needing to interact with him at
all.

Conversely, the agent cannot solve any instance of AdvancedTest3 or Ad-
vancedTest4 when uncertainty is applied, as we expected! These files were built
deliberately with the intent to fail during uncertainty execution. Whilst each

1Though potentially optimal with respect to the state
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Table 5.8: Results of running each advanced test file 10 times with a 100% chance
of hostages being effected by uncertainty.

Uncertainty

Instance Completed Init Plan
Length

Plan Actions
Completed
(Mean)

Re-plans
(Mean)

AdvancedTest1 10 20 19.4 1.8
AdvancedTest2 10 21 13.7 1.7
AdvancedTest3 0 10 0.9 0
AdvancedTest4 0 25-28 0.33 0.44

Reduced Uncertainty
AdvancedTest3 1 10 2.2 0.23
AdvancedTest4 10 25-28 28 1.8

of these tests were challenging, they did not lend themself to modification as in
doing so Bruce must dictate actions to hostages that can no longer apply them.
While certain changes made to the problem render it insolvable, there are a larger
class of problems that are solvable from a planning perspective but insolvable at
execution due to the game’s constraints. If we made changes to the game to allow
Bruce to ‘see’ the state of any hostage before execution then a re-plan could be
committed and a solution would be created, provided the state-space was still
soluble. However the point here is to highlight that our agent is operating at an
individual level within the constraints of the world.

Returning to Table 5.8, we provide a series of extra experiments with Reduced
Uncertainty for AdvancedTest3 and AdvancedTest4 where we ensure that the
state space is not only soluble, but also ensure that each action can be executed
under the constraints of the world. In the case of AdvancedTest4 this meant we
could only modify the hostage in location l1 since we have no concrete knowledge
of the state of hostage h2. As we can see in Table 5.8, this meant that the agent
could solve the problem effectively.

However, in the case of AdvancedTest3, if we only modified agents that were
in full-view from the initial state, then we would have to run the problem with no
uncertainty applied! Our compromise was to make select changes to the problem
that ensured a plan could be created irrespective of the modification. As such,
successful execution was then reliant on a specific subset of plans where the agent
would not dictate actions to modified hostages until the model discrepancy was
rectified. Essentially, having devised plan P from our defined world state w, we
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needed P to execute such that it does not conflict with the real world state w’. If
a conflict occurred, then the execution would terminate and be considered a failed
attempt. However, if during execution our architecture recognised that w 6= w′,
we could commit our re-plan to generate plan P’ and continue as normal. While
this was technically feasible, given the conditions classical planners operate under,
notably in Definition 3 (Chapter 2) where it’s stated that we cannot influence
plan creation, the chances of success were slim.

As we can see in Table 5.8, the agent was successful in one instance and
the average number of plan actions completed improved. In this one successful
instance, the agent was fortunate in not dictating any actions to a hostage that
was incapable of executing them (i.e. executing P did not conflict with world w’).
Furthermore, as Bruce progressed through the environment, he then discovered
the model discrepancy and re-planned. This allowed Bruce to ‘fix’ any hostage
prior to dictating an action to him. Ideally, we would have liked to dictate to the
planner the manner in which the agent executed the plan. However, this kind of
interference is not permitted and would be rather difficult to incorporate into the
existing planner.

5.4.5 Advanced Tests: Feature Removal Testing

In our final tests, we explore how strongly our architecture relies upon the threat
detection and plan-model verification components of the Rule Controller and
Plan Manager. To achieve this, we run the same combined bomb/terrorist threat
experiment with a density of 0.2 shown previously and turn off the threat detection
code built within the RC. This is followed by running the same uncertainty
experiments as in the previous section but without the model validation and
re-planning features of the PM. We hypothesised - nay, hoped - that the removal
of these key features would lead to poorer results from the agent.

The results of running in a threat-filled environment with the threat detection
removed are shown in Table 5.9, while the uncertainty tests are shown in Table 5.10.
As we can see from Table 5.9, the removal of threat detection even at a 0.2 density
level has an impact on performance when compared to the results in Table 5.7.
Prior to execution we considered the possibility that the agent would be able
to solve these problems comfortably given that it could simply ignore a lot of
what is happening around it. However, this was not necessarily the case. Bruce
would often spend time interacting with hostages and switches while, unbeknownst
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Table 5.9: Results of running the REAPER architecture without any threat-
detection faculties. We run against each advanced test file 10 times at terrorist
and bomb densities of 0.2. We see a notable decrease in completed instances
when compared to Table 5.7.

Instance Completed Average
Progress

Average
Terrorist

Elimination

Terrorist
&

Bomb
Deaths

AdvancedTest1 3 46.74% 0% 71.4%/28.6%
AdvancedTest2 3 60.95% 0% 42.9%/57.1%
AdvancedTest3 7 91% 0% 66.6%/33.3%
AdvancedTest4 3 64% 0% 71.4%/28.6%

to Bruce he is being assaulted by a nearby terrorist. Other - often amusing -
situations included leaving a hostage in a room with an active bomb and even
escorting them to the said room before handling other affairs. In fact it was
seldom the case that Bruce himself would be killed by the bomb, but rather one
of the hapless hostages entrusted to his care. This accounts for the increased
percentage of bomb deaths in these experiments.

Meanwhile, the uncertainty experiments with plan verification removed, also
yielded satisfying results, with no run being able to complete a problem instance.
In these circumstances, the agent would ignore the differences in the world and
attempt to execute the action the plan had prescribed. Given that in many of
these cases the action could either not be executed or simply had no effect (e.g.
slapping an unconscious hostage), eventually the game or the architecture would
raise an error indicating that execution was infeasible. For the sake of completeness
we provide results using the reduced uncertainty setup for AdvancedTest3 and
AdvancedTest4. As expected, this yields the same results. This is damning
evidence that strongly supports the model verification approach, since the results
shown in Table 5.8, while not perfect, yielded far stronger returns.

The difference in results indicates that while Bruce potentially can survive
without any threat detection, i.e. he merely focusses entirely on the plan-goal
assigned, the success rate decreases. Whereas when the model verification is
removed, Bruce is completely incapable of solving problems with uncertainty. This
gives substantial credence to our argument that both threat-detection and model
verification with re-planning provide greater functionality than without.
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Table 5.10: Results of running the REAPER architecture without the model-
recognition and re-plan faculties. We run against each advanced test file 10 times
with a 100% chance of hostages being effected by uncertainty. This approach has
a significant impact on performance when compared to results in Table 5.8.

Uncertainty

Instance Completed Init Plan
Length

Plan Actions
Completed
(Mean)

Re-plans
(Mean)

AdvancedTest1 0 20 2 0
AdvancedTest2 0 21 1 0
AdvancedTest3 0 10 0 0
AdvancedTest4 0 25-28 0 0

Reduced Uncertainty
AdvancedTest3 0 10 1.8 0
AdvancedTest4 0 25-28 0 0

5.4.6 Domain Validation & Plan Discrepenacies

Now that our testing and evaluation was complete, we wished to spend time
analysing the discrepancies in the planner’s solutions we previously discovered
in BasicTest5 and which also occurred periodically in AdvancedTest1 and Ad-
vancedTest4. We previously discussed in our results section that the architecture
is capable of handling these invalid plans, due to the discrepancies that arise in
the PM’s model validation forcing a re-plan. However, it is in our best interests
to understand whether the plan-model itself is at fault or whether this is an issue
in the JavaFF planner.

Domain Validation We began by examining the Nakatomi PDDL domain
file to ensure there are no loopholes or gaps in the model’s logic. This was
achieved by first re-examining it by hand, which lead to no real insight, followed
by the application of VAL, is an automatic validation tool developed by Richard
Howey, Maria Fox and Derek Long as part of the 3rd International Planning
Competition in 2002. The reader may recall from Section 2.3.2 that the 3rd
IPC released PDDL2.1 to the planning community. Thus, VAL was provided to
give researchers a tool to validate domain models and the plans that competitors
would generate during the IPC competition. Since then, VAL has been extended
to incorporate features of later versions of PDDL, notably PDDL3 and PDDL+
(Howey et al. [2004]).
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To apply VAL we require the domain file, problem files and a selection of
resulting plans. We used our advanced test files coupled with a selection of different
solutions generated by JavaFF. Other than an insignificant discrepancy1 in the
domain model, which we quickly corrected, VAL confirmed that the Nakatomi
domain model was sound and valid. Furthermore, VAL recognised both valid and
invalid plans that JavaFF generated. Note the invalid plans are often those that
remove one or more actions that satisfy the final goal in the problem. Hence we
were satisfied that our model was not at fault and we turned our attention to the
JavaFF planner.

JavaFF Satisfied with the results from VAL, we decided to turn to the JavaFF
planner. Our intention was to discover whether the JavaFF planner or the built-
in scheduler was at fault during the advanced tests in Section 5.4.3, and more
importantly, why this issue persisted.

The JavaFF planner creates a total-order plan, i.e. a plan that is defined
in sequential order and must be executed as such. Once this plan is devised,
the scheduler generates a time-stamped plan where each action is given a time
stamp to indicate at which stage of execution it can be effected. Often multiple
actions will be assigned the same time-stamp, given they are actions that do
not conflict with one another or share resources. We begin by verifying that the
time-stamped plan is a completely scheduled plan and that no actions are lost
during the scheduling process.

We applied AdvancedTest1 and AdvancedTest4 to JavaFF and explored both
the total-order and time-stamped plans generated. A simple report that we posted
to our terminal indicated the number of actions in each plan, followed by the
complete plan being displayed. It is at this juncture we note an anamoly; in both
instances, the total-order and time-stamped plan lengths are reported as the same,
while the time-stamped plans are missing one or more actions. These missing
actions are those that the PM’s re-plans always generate. While the time-stamped
plan is missing an action, our real concern was the total-order plan giving an
incorrect action count.

The plan length is provided courtesy of an action hash set2 that is accessible
via the Plan interface. Upon further examination, this action set is generated from

1VAL demanded we change the type of a particular argument in one action.
2A hash set, table or map is a data structure that associates data with a key or identifier

using a hash function.
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a separate list stored within the TotalOrderPlan class. This list is the original
solution generated by the planner and contains all actions in total order. Also,
when running the scheduler, it takes as input the hash set of the plan-actions.
The error in the scheduler arises from the hash set; the key used for the hash
function is the action name and parameters. Given that each action is identified
in the hashset by its name and parameters, then any future actions with the same
name and arguments either overwrite the existing action with that key value or
are simply ignored as one already exists. In short, multiple occurrences of the
same action are removed from the plan due to the hashset.

Our findings correspond to both the anomolies in BasicTest5 as well as those
in AdvancedTest1 and AdvancedTest4. In each of these cases, the missing actions
were identical to those that existed earlier in the plan. Hence we are satisfied that
the error can be resolved by ignoring the result from the JavaFF scheduler or,
perhaps more appropriately, filing a bug-report with the JavaFF developers in
our department!

5.5 Summary

To conclude this chapter, we return to the list of goals we presented at the
beginning of this chapter. We shall briefly highlight how our research goals have
been addressed with the work contained herein. In Chapter 6, we will reflect
upon the body of work as a whole, incorporating the work in reactive control
from Chapter 3. This will allow us to highlight significant features, contributions,
benefits and potential drawbacks of the research in this thesis.

• Introduce the PDDLWorldBuilder: a java framework designed to parse
PDDL problem instances and translate them into environments for testing.
Furthermore, we explore how the BruceWorld parser translates particular
features of the Nakatomi domain into actual BruceWorld test instances.

In section 5.2 we introduce the world builder software designed to trans-
late PDDL problem files into BruceWorld maps. Given that we constructed
problem instances from the planning files, there were many aspects of the
problem left open to customisation as a result of the level of abstraction.
Hence, the world builder software is capable of building BruceWorld levels
that vary in physical layout and positioning. This ensures that while each
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test instance relies on the problem file, we still create a relatively unique
problem for the reactive controllers.

• Introduce the REAPER architecture, proposing a potential solution to the
BruceWorld game. We provide in-depth detail of the three main components
of our agent; the Plan Manager, Rule Controller and Controller Library.

The REAPER architecture is designed to incorporate our subsumption-
layered ANNs introduced in chapter 3 while providing the ability to sat-
isfy distant goals using AP approaches. To encapsulate these within
the REAPER agent, we started by creating the PM, a system designed to
contain the JavaFF planner. The PM is capable of assimilating a plan-model
from the environment to be used for the planning process. Once plans are
constructed, the system manages the remaining actions to be executed and
ensures model accuracy during execution, forcing a re-plan if necessary. Next
we have the CL, an easy to use interface that creates the relevant controller
for a given action. Given that we are basing our execution on plan actions,
it creates controllers that reflect the actions in the PDDL domain model.
The CL constructs subsumption-layered ANNs and grounds them with re-
spect to the current state of the environment. The CL also provides the
opportunity to provide scripts for actions if we do not have pre-trained ANN
controllers. Lastly, we have the RC that provides a valuable rule base to
bridge the gap between the plan-model view and reactive control view. This
not only associates PDDL actions with the respective controllers in the CL
but also models other issues that are beyond the scope of the plan model
such as threatening entities and action preconditions outwith the planner’s
perspective.

• Implement a series of tests to assess the effectiveness of the approach and
highlight any areas of significance for discussion.

In the penultimate section of this chapter, we have provided a series of tests
to assess the functionality of the architecture. This begins by extensive tests
in varied problems to ensure the ability to execute plan actions directly, add
bridge actions for unresolved preconditions and address hostile entities. Next
we approached more complex, puzzle problems that required large numbers
of actions in one plan. Fortunately, the agent rose to the challenge. Further
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experimentation tested the agent’s resilience to threats and discovered that
whilst capable, the agent is not infallible. For robust execution, we require
further work in creating domain-specific reactive controllers. Moreover, the
agent, as expected, is constrained by the capabilities of the planner and the
environment. Therefore, if there is no solution to the existing task, then
the agent will fail to complete a problem. However, we discovered that
a REAPER-lite approach, stripped of model checking and threat detection,
performs significantly poorer on average.

5.5.1 Closing Remarks

In this chapter we have introduced the agent architecture which we set out to
achieve in Chapter 1. This was achieved by building individual components that
managed the JavaFF planner, our evolved reactive controllers from Chapter 3 and
a series of prolog rule bases to act as the glue between these features. The extensive
series of tests that followed indicated that the agent is capable of solving large
problems outwith the scope of individual reactive control and can accommodate
for changes in the problem on the fly.

In our closing chapter, we take stock of the research reported in this thesis and
reflect on how we have achieved the goals set out in Chapter 1. We discuss how
the work found both here and Chapter 3 provides a unique approach to introduce
deliberative control and highlight the benefits, drawbacks and contributions of
the research.
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Discussion & Conclusion

There is something fascinating
about science. One gets such
wholesale returns of conjecture out
of such a trifling investment of
fact.

Mark Twain

In this final chapter, we reflect on our research presented in this thesis. In
reaching this point we have already discussed the results of the learning procedure
in Chapter 3, however, we have only examined the benefits and drawbacks of
the learning approach on its own and not in the context of our overall work.
Firstly, we shall examine the design decisions made for our agent and the overall
results, highlighting both the benefits and drawbacks of our approach and the
contributions it provides. Furthermore, there exists potential for continued work
in this project and we wish to highlight those areas that are worthy of exploring
in addition to new ideas that have arisen from our time in this project.
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6.1 Reflecting on our Research and Results

The outcome of any serious
research can only be to make two
questions grow where only one
grew before.

Thorstein Veblen

The work presented in this thesis shows an interesting and unique method for
creating a high-level of autonomy and control for agents in games. In turn, this
work addresses our research goals established at the beginning of this thesis. The
executive introduces a hybrid architecture that creates a unique synergy between
neural network-driven reactive controllers with the deliberative capabilities of
a classical planning system. This achieves long-term deliberation and problem
solving at an abstract level whilst the reactive control addresses local, real-time
information. We take this opportunity to reflect on our research goals and questions
originally highlighted in Chapter 1:

• To create an effective agent controller that incorporates deliberative reasoning
based on a discrete, deterministic model in the context of a continuous and
dynamic game environment.

The REAPER agent introduced in Chapter 5 is a hybrid architecture that
is driven primarily by the JavaFF planner. JavaFF is responsible for the
creation of plans and monitoring of their execution in our BruceWorld
game. As shown in Chapter 4, BruceWorld is a continuous, dynamic
environment with imperfect information that is beyond the capabilities of
typical reactive control. Through the use of the Nakatomi PDDL domain
model, we can model this problem as a discrete, deterministic problem
with perfect information and create solutions to problem instances. This
relies on the other components of the system to resolve any issues that are
not modelled at the planner’s level of abstraction during execution. This
resulting controller could potentially be used for creating agents that can
interact with the user/player in a game environment or simulation.

• To explore a new evolution-based learning methodology that allows us to
train our simple neural networks to solve more challenging problems.
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In Chapter 3 we introduced our variant of the layered evolution approach
created by Togelius. This layered approach to evolutionary learning combined
with Brooks’ subsumption architecture, creates an incremental, modular,
yet simple approach for training a collection of Neural Networks for solving
a class of problems. Such a modular approach allows a ‘plug’n’play’ method,
where we can build a library of different solutions to each controller and
insert them into the subsumption architecture for execution.

• To integrate a classical planner with a collection of neural networks to
achieve deliberation and reactive reasoning.

The Plan Manager component of REAPER integrates the JavaFF and
is driven by the actions derived by the planner. To execute these plans,
we associate our reactive neural network controllers with particular plan
actions. By delegating plan actions to the neural nets, we achieve a high level
of autonomy by then interfacing with the environment through real-time
reactive control.

• To build an agent controller that is effective at solving a range of complex
problems while comprised of relatively simple and robust components.

The design of the reactive controllers in Chapter 3 and the complete agent
architecture in Chapter 5 relies on a series of simple, yet robust components.
Our neural network designs are small and robust, while REAPER is reliant
on a renowned planning system coupled with a clear and understandable
plan-domain model. In order to glue these features together, we rely on an
expressive but straightforward rule base defined in the Prolog programming
language.

Of course in order to achieve these goals, there were a series of challenges that
needed to be addressed. Now that the work has been completed, it is now our
belief we can address the questions these challenges presented:

• How can we scale-up our reactive agent controllers without compromising
behaviours established in our previous work?

Our evolutionary algorithm for training subsumption layered reactive con-
trollers scales our behaviours for more complex and challenging problems
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without the risk of previously established behaviours being undermined
or ‘forgotten’. As was indicated in Togelius [2004], the layered evolution
approach combines the benefits of the incremental and modular approach.
Our approach can add new features to the environment, then adapt the agent
behaviour by including complementary controllers within the hierarchy. This
prevents any circumstance where the previously tried and tested behaviours
are removed entirely, though they may be superseded by higher-ranked
layers. The results shown in Section 3.5 illustrate that this approach works
well for our EvoTanks game and statistically outperforms more traditional
evolution-based approaches.

• How can the reactive neural network controllers represent the planner’s
actions and how can we associate them?

The Rule Controller shown in Chapter 5 provides a clean interface between
the PDDL model and the reactive controllers provided for the domain. This
relies on the assumption we have built reactive controllers that achieve the
effects of a PDDL action. The clauses in the RC allow the designer to
define which controller(s) will be used in the event of specific plan-actions.
This is applied through the Controller Library by grounding the selected
reactive controller with respect to the context of the plan action. Once this
is achieved, execution can commence.

• How do we compensate for issues that cannot be modelled in a classical plan-
ning system that are also beyond the capabilities of our reactive controllers?

The threat rule base found in the Rule Controller allows us to model
circumstances that are beyond the planner’s scope such as enemy agents.
Furthermore, the controller rule base also provides clauses that ensure
other action pre-conditions beneath the plan-model’s level of granularity are
satisfied prior to the execution.

6.1.1 Subsuming Neural Networks

At the end of Chapter 3 we discussed the results from our experiments in Sec-
tions 3.4 and 3.5 respectively. Here we briefly highlight the important conclusions
made from this phase of the research.

The first, and perhaps most important point, is that the methodology proved
to be very effective for the problems assigned to it. The layered training approach
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provides a simple tool to build agent behaviours atop one another. Furthermore,
the approach carries some novelty in streamlining the learning process, as seen
from observing how agents learned to compensate for additional complexity in
the problem. In these circumstances, the fitness criteria would not explicitly state
addressing these issues as a requirement, instead the performance was dictated
by both the basic task to perform and the environment that it was initialised in.
This is achieved by exploiting the EA search process, since we need only define the
basic constraints of the problem, within reason, and allow the search to do its job.
In select scenarios we explored, the additional layers in the subsumption would
learn the best form of behaviour relative to the problem irrespective of the simple
fitness criteria. This underlying assumption provides a fantastic opportunity for
modular development, allowing us to focus - as Brooks initially suggested - on the
individual facets of our agents behaviour.

6.1.2 REAPER Architecture

Our series of tests conducted in Section 5.4 were designed to assess the overall
performance of our agent and the limitations of functionality. The results from
these tests suggest we can rely on our agent to solve reasonably complex problems
up to a reasonable level of threat and uncertainty. Of course at present we have
only tests within the BruceWorld game to verify performance, but we are confident
that the architecture is designed in a manner that can then be applied to different
domains. This is a matter that will be discussed further thoughout this chapter.

Reactive, Goal-Driven Agents

The REAPER architecture creates versatile, reactive, goal-driven agents. This
agent is capable of long-term deliberation through state-space search to devise a
plan of action, further deliberating these plans to low-level reactive controllers that
can affect the environment. Furthermore, the agent is able to monitor progress on
plans it executes and can rectify issues in real time. Interestingly, the execution
monitor introduces a new form of reactive behaviour, where the system responds to
the plan-model by attempting rectification through a re-modelling and re-planning
process. However, changes to the environment can occur on a level that is beneath
the planner’s notice. Hence, we have two further levels of modelling present. The
Rule Conroller is designed to suggest a course of action should changes arise
or where our actual performance is not yet synchronised with the plan-model
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(e.g. fixing assumptions of physical positioning in the world prior to an action
occurring). Finally, the controllers in the library provide not only the means to
effect the actions in the plan but can also resolve other issues in execution, since
they have modelled the local environment with respect to their goal. The use
of ANNs provides robust reactive control that ensures an action can be completed
irrespective of the characteristics of a given scenario provided it adheres to the
rules and constraints of the domain. This is due to the ANNs’s ability to generalise
across a set of scenarios once it has passed through the evolutionary learning
process. Furthermore, the use of the subsumption-layered ANNs allows us to
introduce new environmental challenges and create behaviours to resolve them.
This means we can create controllers that accommodate for each plan-action’s
basic requirements, allowing addition of extra behaviours to the hierarchy to
address context-specific challenges.

One interesting observation to be made from the architecture is the series of
assumptions that carry down through the layers of control that ensure robust
performance. These assumptions are carried down through each layer of control,
allowing them to operate without the need for consistency checks between the
individual components. The planning level takes on board all possible information
at that level of abstraction and providing the user has developed an appropriate
domain model, should encapsulate all potential goals we wish to achieve in our
environment. Once we have ensured the model is valid prior to execution, then
the assumption that it is valid is carried all the way down through the system.
Given the small time-span between plan action being verified to execution actually
taking place, this is a safe assumption to make. In the Rule Controller, we also
take steps to ensure that the action is safe to execute. However, the clauses do not
run checks against the state model. Rather, we assume that the Plan Manager
has verified the action is valid and continues as normal. Finally, the controllers in
the Controller Library do not consider other aspects of the environment beyond
the scope of their functionality; they have no concept or knowledge of the overall
plan in progress. We assume at this juncture that there cannot be any issues
with our choice of action. Furthermore, these controllers are only designed for
one immediate task, since we rely on other controllers in the library to carry out
any other required actions. Conversely, the implementation of a planning system
using an abstract model also relies heavily on the reactive controllers being able
to handle all sorts of immediate threats or issues only visible from that level of
scope, such as the layout of environments to obstacles and aggressive opponents.
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Design

When approaching the architecture design we were keen to ensure it was compact,
robust and simple. When combining different methodologies and practices there
is always the concern the system will become entangled in implementation issues
and/or become domain specific due to modelling concerns. The architectures’
system design ensures that while we may require particular subclasses to define
domain-specific instruction, the overall framework remains a distinct system.
Furthermore, each of the three main components exists relatively isolated from
one another. Although there are certainly domain-specific dependencies between
each unit during the actual execution of the agent, significant changes made to each
element will have no lasting impact. When we look specifically at how each system
operates, we can observe that the provided interfaces turn these components
into black-boxes. This means we can manipulate the internal workings of each
component without fear of breaking the overall structure. Whilst we are content
using the JavaFF planner, given our experience with Java and the open-endedness
of the software, there is sufficient flexibility to allow for other planners to be
installed into the PM. The greatest advantage this provides will be within the CL
where - as we have already seen - a provision for different controllers that can either
be scripted, ANNs or otherwise. This provides an opportunity for transference of
the executive to other problem domains.

Arguably one of the strongest benefits of our design decisions is it would not
be difficult to transfer the agent for use in different problem domains. However,
it is important to highlight that this does require a certain amount of domain
expertise. This capability is required due to the need for a PDDL domain
file, problem definitions, rule clauses for the RC and programmed or trained
controllers for the CL. It is entirely feasible that we can apply this executive to
more challenging problem domains, since the essential structure of the system
will remain intact. If we were to create a build of the system that denies the user
access to the architecture itself but allows the creation of domain specific models
and controllers, then this software could be made more broadly available.

Reflecting on Related Work

If we take a moment to reflect on the related work documented in Chapter 2, we
can see how our direction and potential research impact compares to others.
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Brooks & Subsumption Consider the work of Brooks and his subsumption
architecture, our layered approach has embraced his vision set out in Brooks [1987]:
to create a hierarchical control system that operates underneath a control planner.
Furthermore, subsumption was invented to avoid the need for sub-level planning
and execution systems, a principle we have adopted. While our original intention
was to find a means to integrate EA-trained ANNs with classical planning systems,
our final product reflects Brooks’ vision; a point only now realised in hindsight.
The use of subsumption and the ANN controllers also led to other observations,
namely we have realised the world really is a rather good model of itself. Despite
their limitations and restrictive scope when dealing with larger problems, neural
networks - due to their nature as function approximating perceptrons - are a
fantastic mechanism for feeding relevant data from the world in real time and
generating appropriate responses almost immediately. This helps navigate the
issue highlighted in Moravec [1983] that secondary models are required for the
sensor data. The neural networks model the sensor data with respect to a
particular task. Providing sufficient training has taken place, the network should
be able to generalise responses across large sets of possible states. Viewed from
another perspective, we return to the comments made in Bellingham et al. [1990],
specifically, the shortcomings of applied subsumption and why the authors strived
to apply a planner-based control system. The authors expressed their concern in
providing too much functionality as a layered system with simple conflict resolution
dictated by the hierarchical priority. In our work we have circumvented these
potential problems by presenting to the user the opportunity to create multiple
individual controllers representing the individual plan actions. These controllers
are relatively expressive and robust whilst relying on the subsumption paradigm.
Hence, we have exploited many of the key benefits that Brooks conveyed while
avoiding the trappings highlighted in Bellingham et al. [1990].

Williams & Agent Architectures Finally, we return to arguments by Brian
Williams and his colleagues in Robertson et al. [2006]. In Chapter 2, the authors
highlighted several issues that can arise when constructing agent architecutre
systems. We recap these points and highlight how our executive incorporates
measures for these issues below:

• Often assumptions made by control software prove to be false during execu-
tion.
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As shown in Chapter 5, the PM retains a copy of the remaining actions to be
executed from the plan, and the current state based on the progression of the
said plan. If any inaccuracies exist, we redefine the problem instance based
on the game state and run the planner again to ensure our assumptions of the
world are once again accurate, before continuing to satisfy our assigned goals.
Furthermore, the planning level only carries assumptions of general problem
structure and relationships between entities. Should these change, within
the constraints of the domain file, we can easily rectify this. Moreover, any
assumptions of successful execution rely on the neural network controllers.
These reactive controllers model the world directly in real time and are
designed using the subsumption to provide flexible, generalised and robust
behaviours to execute an action. This compensates for many execution issues
created by different problem scenarios, which in-turn allows the planner to
retain the assumption that any selected action can be executed successfully.

• Software may be attacked by a hostile agent, seeking to interrupt its execution
or may simply be reacting to its presence.

We embraced this concept rather literally by including hostile entities in
BruceWorld. These entities exist solely to interupt our agent’s execution.
We have compensated for this on two levels, firstly with the RC providing
supplementary, expert-crafted rules that allow the user to define the be-
haviour should one of these circumstances arise. Furthermore, the ANN
subsumption-controllers can be designed to either directly address these
threats, with an RC clause stating this controller should be applied, or add
extra functionality to a given behaviour to react (evasively) to these hostile
elements whilst focussing on the actual task at hand.

• Continued changes to software often introduces compatibility issues between
components.

Each component within the REAPER architecture exists in isolation as an
individual component. This gives a certain degree of flexibility, allowing us
to modify individual components; such as the planner within the PM and
the controllers existing within the CL, without fear of any incompatibility.
This is providing we adhere to the principal functionality of each component
and any domain-dependencies (e.g. required controllers in the CL). Given
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this flexibility, the substituting of different planners can be done to assess
performance and explore new modelling approaches. Perhaps, more intrigu-
ing is the ability to introduce new reactive controllers for solving individual
actions or maintaining a collection of unique yet redundant controllers for
each feat.

6.2 Benefits, Drawbacks and Contributions

The men who create power make
an indispensable contribution to
the Nation’s greatness, but the
men who question power make a
contribution just as indispensable,
especially when that questioning is
disinterested, for they determine
whether we use power or power
uses us.

John F. Kennedy

To conclude discussing our research, we take a moment to highlight, and
potentially re-iterate, the benefits, drawbacks and contributions of our work.

6.2.1 Benefits

Layered Autonomy: One of the strongest aspects of REAPER is that once
the architecture is provided with all the relevant controllers and domain
models, it requires no interaction from the designer and can execute any
plan competently. It is for all intents and purposes a simple, expressive and
completely autonomous agent platform.

Adapting to New Goals/Problems: Once the controllers have been clearly
defined and the plan-model validated, the agent can then solve a variety
of different problems providing the complexity is not beyond the planner’s
present ability to solve. Even so, there is still a significant range in the
problem maps we can build in BruceWorld for this problem. Besides, if new
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issues arise during execution - as shown from our uncertainty experiments -
the agent can resolve these provided the rules of the world and model are
maintained.

Customisation: There are a myriad of opportunities within the REAPER frame-
work for extension and customisation. The interfaces between each compo-
nent provide a black-box view of each component. This allows us to modify
them as we see fit, provided the desired output is still generated, implying we
can explore the development and application of new REAPER configurations
within the framework. This too allows us to dictate which controllers are
utilised for specific actions and how to construct them independently from
the architecture.

Control and Understanding: The behaviour of the agents and their action
selection is dictated by three main components of the architecture; the
plan-model, the rule base and the collection of controllers. Consequently,
any action taken by the agent can immediately be recognised as either
being caused by the planner or the rule base. Moreover, all actions are
executed with controllers the user has either crafted by hand or trained. In
short this provides us with clear control over the agent’s behaviour in any
situation while allowing it to retain its autonomy. This allows for a clear cut
understanding of what the agent will do in any given situation. No situation
should arise where the designer must contemplate why their agent has made
a particular action.

Simple Planning with Execution: Unlike many other plan monitoring and
execution systems, ours is simple yet robust. We have relied on using small,
competent components and combined them to create an architecture that,
while not ideal for space or underwater exploration, would be suitable for
game or simulator software. The ability to use planning - a powerful tool
for complex problem solving - and subsequently monitor the execution of a
resulting plan with such a reduced setup is definitely ripe with potential.

Reusable and Stackable Controllers: The use of the controller library and
subsumption hierarchy allowed us to create a catalogue of unique controllers
for problems, or even subproblems, and combine them in useful and chal-
lenging ways. This permits controllers to be reusable and interchangeable,
yet can also be placed atop one another to create new useful behaviours. In
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time, we could develop vast numbers of redundant controllers that provide a
specific functionality (e.g. navigation controllers) that could be transferred
to new domains.

6.2.2 Drawbacks

Naturally, there are some drawbacks to our approach and it’s important we address
these issues and allude to how they may be avoided in future iterations.

Expert-Driven System: Every level of the architecture requires input from the
designer and is reliant on domain-specific information. This is most apparent
at the planning and rule levels, where we must create a series of domain
specific rules and an entire planning-domain model in order for the agent to
even consider execution. The designer must have a clear understanding of
all elements in a given problem domain and the relationships that they have
with one another. One needs to understand the effect an agent can have on
an entity and how that can be modelled as a useful action. Furthermore they
must also understand more specific conditions outwith the planner’s level of
control that must be defined as clauses in the RC. Potentially these could
be avoided through the use of a rule learning algorithm that could ascertain
the conventions of the domain. There are a multitude of existing rule
learning systems (including evolutionary rule learning) that, with sufficient
modification may prove suitable for this purpose.

Repeated Trial and Error: For someone new to the architecture, it may take
some time to develop specific rules and controllers that create the user’s
desired performance. While we can easily edit and swap elements in these
components, a lot of trial and error may arise prior to the agent behaving
in the manner we intended.

Controller Development and Training: During the period of our research,
we developed REAPER as a natural progression from our subsumption-based
reactive control. As such, it was integrated into the architecture, and for
the sake of time and ease we used controllers from the EvoTanks game. For
a new and different domain it may take some time to create and train these
agent controllers, the benefit being that once created they can be used at a
later date provided no extra training or modification is required. However, if
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a supervised learning method is employed, a significant amount of training
data may need to be amassed prior to development.

Time Taken to Construct Plans: As we saw in the advanced tests in Sec-
tion 5.4.3, the time taken to construct a plan for the most complex instances
could reach several seconds in the worst case. This length of time could
have a serious impact on performance in many dynamic games where time
spent ‘thinking’ about the problem, thus prohibiting reaction taking place,
could result in failure.

Inability to Solve All Prescribed Problems: As was briefly discussed in Sec-
tion 5.4.3, we were unable to provide solutions to all problems that we
explored as a result of the RPG in the JavaFF planner. This could have an
impact on other problem domains or creating larger, more complex instances.

6.2.3 Contributions

Finally, our research must make a significant contribution to the existing work
in the field. Here we highlight the features and characteristics of our work that
constitute its importance.

Classical Planning for Games: This research is - to the best of our knowledge
- one of the first attempts to apply classical planning methodologies to a
sequential, continuous game environment. Our results from experimentation
are, if anything, a proof of concept; that we can apply planning technology to
create intelligent, deliberative agents for games. One of the great challenges
ahead now lies in exploring how planners can be adapted to these environ-
ments more effectively, to ensure that planning can be achieved effectively
and quickly without constraining computational resources.

Planning & Neural Networks: Another key contribution is the merger of a
classical planner with artificial neural networks. While a merger of planning
and execution is far from novel, execution is often handled by a scripted
controller. Furthermore, as described in Chapter 1, agents in video games
are typically constructed using hardcoded programs or are reactive in nature
as a result of a machine learning methodology being applied. As a result,
adopting ANN control to realise the actions of the PDDL is an interesting
application of established reactive control methodologies. Furthermore, from
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a reactive control perspective, we provide an executive that allows us to apply
the ANN/subsumption driven control in environments where deliberation is
essential, while retaining the advantages the reactive approach provides.

Autonomy in a Plan-Driven Framework: While plan execution and moni-
toring is far from novel, it is rare for any plan-driven agent to act completely
autonomously given the safety-critical situations they are often deployed in.
This work provides evidence that we can create customisable, deliberative
and reactive autonomy in a plan-driven architecture.

Fast & Cheap Intelligent Agents: Our agent is reliant on several layers of
control and deliberation - despite this, processing time and resource con-
sumption is low. The use of reactive control, courtesy of the ANNs gives us
a fast, cheap and robust solution to our execution problems. Furthermore,
as shown in Chapter 5, the use of the rule clauses for further deliberation is
a very fast and clean process. At present our only concern is the planning
system; while it is often cheap to solve small problems, there are issues with
initialisation overheads and tackling large, complex problem instances.

6.3 Further Work
Next time, baby.

Jim Rhodes, Iron Man

As is often the case with any thesis, the work submitted raised more questions
than it answers. It is necessary therefore to provide ideas for further work that
could be explored by either the author or a fellow student. In this instance, there
is still a sizeable amount of work available in extending the system to cope with
new features or enhance existing functionality. Following is a short summary
detailing plausible expansions to the executive.

Planner Expansion One area we would like to explore is the challenge in
adding more complexity at the planning level of the architecture. Throughout
this research we used a classical planning system due to elegance and simplicity
of a discrete, deterministic approach. Now that we have applied such a model,
we would be interested in exploring whether we can add new features such as
scheduling, metrics or temporal constraints. These could be of use for an agent in

255



Chapter 6. Discussion & Conclusion

a game reliant on resource acquisition and management, in addition to puzzles or
tasks that must be completed within specified time frames, or through the use
of concurrent actions. Given the nature of the PM it would not be a significant
undertaking to swap-out JavaFF and replace it with another planner - provided
sufficient time is taken to integrate it into the PM. The real challenge exists in
the execution flow of the system and the added constraints it may carry through
to the RC. For example, consider dealing with hostile entities once again while
running on a short amount of time and/or limited resources that may be consumed
when dealing with the said threat. Are we confident that applying these actions
without the planner’s approval will not jeopardise plan completion?

The integration of a different planning system we hope would also circumvent
the problems we’ve had in creating complex test problems that are simply beyond
JavaFF’s capabilities. While FF proved capable for the most part, it is not suited
to particular domains and problems as a result of the RPG heuristic (Hoffmann
and Nebel [2001]). It would be in our best interests to explore different planning
approaches; such as the local-search inspired LPG (Gerevini and Serina [2002]) or
through the use of SG-Plan, a planner that focusses on subgoal resolution (Chen
et al. [2004]). Planners are also applicable in temporal and metric driven domains,
which could be applied to the modelling process.

Prior to submission, we began building a new version of the REAPER executive
that could incorporate concurrent actions. This new version carries an updated PM
that allows for a series of individual, concurrent plans that arise by scheduling the
existing plan. Furthermore, we have expanded the executive to allow for multiple
actions to be executed in one action step. However, integrating the scheduling
process with the JavaFF planner has proven to be a time consuming process, given
that the scheduler in JavaFF needs to be corrected, as indicated in Section 5.4.6.
As a direct result of the additional corrections, this extension was not completed
in time for our submission, but we hope to complete it in the near future.

Agent Modelling One noted issue we faced throughout this research is the
lack of agent modelling in classical planning systems. It would be useful if we
could devise a planning system which is able to model the behaviour of other
agents/entities as part of the state-space exploration. In fact, what we would
prefer is the opportunity to create an agent modelling language that can then be
applied to a classical planner. This would provide us with a planning perspective
that can observe the effect other agents have on the world, whilst retaining the
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elegance of a discrete, deterministic PDDL-modelled approach. This is not to say
that agents have never been modelled in planning domains before now. Multi-
agent (MA) planning is a research field intent on exploring the possibilities of
numerous agents interacting with one another in a planning problem. However,
the majority of MA planning assumes that all agents in the problem are altruistic,
cooperative and have similar goals, e.g. drivers in a taxi company. As a result,
most MA planners construct individual plans for each agent, followed by an
extensive scheduling process that determines which actions are executed when
and by whom (De Weerdt et al. [2005]). Meanwhile, there has also been work
in adversarial planning; where the other agent in the domain is our opponent
(Willmott et al. [1998], Applegate et al. [1990]). However, this differs from our
intended research, as it has focussed primarily on game-tree style problems where
the actions take place in sequence and the two agents are assumed to be ‘pure’
adversaries, i.e. a reward for one agent is penalty for the other. What we are
interested in is the creation of a logic or calculus that can allow us to observe
two forms of engagement; state-triggered and action-triggered actions shown in
Figure 6.1. The former occurs in a circumstance where an opponent carries out an
action in response to a state our agent has created. Whereas the latter is an action
an opponent may carry out having observed our agent execute a specific deed. In
either circumstance these may be actions we wish to counteract or exploit for our
own benefit. A simple example of this can be found in Real-time Strategy (RTS)
games, where the player is often concerned with the acquisition and consumption
of resources littered throughout the map, in order to achieve goals. In an RTS
domain, the player will typically have agents whose sole purpose is to seek out,
harvest and retrieve resources at the base of operations. Using our proposed
agent-modelling language, an opposing player may recognise changes in the world
state as a result of our player’s actions. This may lead to state-triggered actions
to counter our strategy; such as attacking our strongholds to potentially destroy
our resource refineries, or at least cause significant damage to them, forcing us to
spend these resources in maintenance and repairs. Furthermore, if the agent may
commit an action-triggered behaviour upon realising we are attempting to mine a
particular resource deposit, then it may be able to eliminate our harvesters before
any resources are retrieved.

Goal Creation Another interesting area for expansion is the notion of goal-
creation. At present we assign the goal that the agent must achieve, and while this
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Figure 6.1: A diagram that highlights the possibility of state and action-triggered
actions by an opposing agent. This could potentially be modelled within an agent
calculus or language and integrated into our classical planning approach.
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was suitable for our purposes we would be interested in having these goals generated
by the agent itself. Research in real-time goal formulation found in Coddington
[2007b] and Coddington [2007a] explores the concept of motivations instilled
within an robot-agent. These motivations are instilled by the agents ‘belief system’
that dictates what is an important goal to satisfy, such as recharging batteries
or examining areas of interest. This could help introduce supplementary actions
for our agent to consider its own mortality in a hostile situation or even carry
out more interesting behaviours as it explores possibilities beyond our original
plan-driven mandate.

Automated Rule Generation Finally, the clauses found within the RC are
at present hand-coded and expert driven. While this was preferable given our
time constraints, it would be of interest to explore how to automate this process.
Evolutionary rule generation, such as the work found in Bedingfield and Smith
[2003], are designed to take the traditional EA concept and apply it to classification
problems. Work in this area could allow for the creation of rules specifically for
a given domain. The use of an evolutionary search process could potentially
discover new rules that are not only useful but never considered by the designer.
Furthermore, the use of random or evolved problem generation could help to
create test cases that are beyond those that a human would initially consider,
thus preventing the exploitation of holes in the behaviour that the designer did
not consider.
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6.4 Conclusion
People do not like to think. If one
thinks, one must reach conclusions.
Conclusions are not always
pleasant.

Helen Keller

To conclude, in this thesis we have explored the integration of reactive and
deliberative control into a sole AI agent. This has arisen from our intention to
expand previous research in reactive control using evolutionary algorithms to train
artificial neural networks for small yet challenging game environments. In our
previous research we explored the benefits and limitations of the reactive approach
and considered the integration of abstract decision making to circumvent the
lack of internal state that such function approximators are denied. Hence, our
mandate was to explore how far we could push these reactive controllers for such
problems, followed by investigating the capabilities of automated planning - a
proven deliberative methodology - and explore the feasibility of combining these
approaches into an agent framework.

Inspired by the work of Togelius, we explored the approach of layered evolution,
where we combine the focus-shifting learning of incremental evolution with the
de-centralised approach of modular evolution and organise it within a hierarchical
subsumption structure. Experimentation in this learning philosophy was conducted
in the EvoTanks environment; a small adversarial domain where tank-based agents
faced a series of challenges designed by the user. Our modified layered evolution
process proved highly effective, with results indicating it would perform better
than traditional approaches. With this phase of work completed, we felt that the
capabilities of our reactive control had reached a satisfactory level. Now we could
construct effective and robust behaviours that deal with goal-specific tasks whilst
compensating for dynamic local stimuli. Should an initial inability to handle
these stimuli arise, then we could explore the creation of add-on controllers to
facilitate it. However, while these individual neural networks could solve a series
of tasks individually, they could not resolve larger problems given our need to
shift between different controllers for specific circumstances.

To address this issue, we introduced the REAPER architecture: an executive
that managed a library of individual hand-coded or evolved controllers. Controller
selection was then dictated by a top-level deliberation process that used the
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JavaFF classical planning system. By creating an abstract representation of the
problem domain, we could reason how to solve goals by generating plans that
could then be executed sequentially using our library of behaviours. This was
enhanced with a Prolog-driven rule base system that could address other aspects
of the domain beyond either the planner or the evolved neural networks. The
resulting product is a goal-driven, yet reactive architecture that achieves a synergy
between the abstract deliberation of planning systems, with the reactive control
of neural networks. Furthermore, it also creates an agent that is dependent on
reactive control to interface with and act within an environment, but also has
an internal state that can reason about distant goals and how to achieve them,
preventing the agent from being trapped in dead-ends.

We test this framework in BruceWorld; a problem domain of our creation.
Extensive testing showed the system is relatively fast at constructing solutions for
challenging environments and can delegrate actions correctly to the appropriate
reactive controllers. Further experimentation assessed that the agent is capable
of compensating for issues outwith the planner’s perspective or changes made to
the world during execution. However, performance against hostile elements is
constrained by the capabilities of the reactive controllers provided. Lastly, we
highlighted that a stripped-down version of this architecture that is not reliant on
validation and threat-detection performs poorer on average.

In closing, our research has introduced a versatile, robust and interesting new
approach for agent controllers that could potentially be applied to game-based
agents.
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Glossary

Agent The name given to the core AI system or program responsible for assimi-
lating information from the local (modelled) environment and acting upon
it accordingly.

Artificial Intelligence (AI) The branch of computer science focussed on the
study and creation of intelligent, rational systems. These systems perceive
the world through reduced, mathematically structured models and maximise
utility through intelligent deliberation and action.

Artificial Neural Network (ANN) A non-linear mathematical model that
mimics the structure and functional aspects of biological neural networks
found in the brain. Each neural network consists of layers of Neurons
and Synapses to process and propagate information from inputs to outputs.

Automated Planning (AP) The subdiscipline of Artificial Intelligence that
focusses on the realisation of action chains through abstract modelling of
problems and systems. The subsequent strategies (i.e. plans) to these
problems are optimised with respect to domain specific performance metrics.

Candidate One potential solution in a population of chromosomes being evolved
for a specific task.

Congress on Evolutionary Computation (CEC) One of the largest and most
prominent conferences within the Evolutionary Computation community
organised by the IEEE.

Chromosome The term used for the representation of a solution in a Genetic
or Evolutionary Algorithm. This term is used given that, like biological
chromosomes, it carries the ‘DNA’ that builds the candidate solution.

Computational Intelligence and Games (CIG) One of several emerging aca-
demic conferences that focus on the application of computational intelligence
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techniques to game environments as well as applied research in commercial
video game products.

Controller Library (CL) A series of scripted and pre-trained ANNs for execu-
tion hidden behind a query interface within the REAPER architecture.

Continuous A continuous environment is factored by dynamics such as time
progressing and other agents. This has an effect on state modelling, making
individual states harder to identify since they are no longer factored solely
by our agent. Nonetheless, a continuous environment can still be modelled
discretely.

Constraint Satisfaction Problems (CSP) The expression of a particular task
or problem as a series of variables that can carry values within a specified
domain. The challenge being to assign values to variables while adhering to
a series of constraints that dictate the possible solutions that can be found.

Deterministic An environment can be considered deterministic if by applying
an action, it only results in one specific outcome.

Discrete A feature often attributed to environment modelling. If the model is
discrete, then we are often dealing with a collection of unique finite states
that differ due to specific actions made by an agent.

Deep Space 1 (DS1) The first mission of NASA’s new millenium program that
was chartered for the purposes of testing new technologies for space science
programs. The mission launched on October 24th 1998 and retired on
December 18th 2001 after successfully taking images from Comet Borrelly.

Dynamic Used to describe an environment which changes frequently, without
giving the agent time to consider their action. This often results in more
reactive control from the agent.

Evolutionary Algorithm (EA) Perhaps the most common form of Evolution-
ary Computation. Evolutionary algorithms are parallel, heuristic based
search processes that use biological representation and modification func-
tions.

Evolutionary Artificial Neural Network (EANN) The process of applying
an Evolutionary Algorithm to an Artificial Neural Network. This can be
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used to search for an optimal network configuration, learning rule or more
commonly, the values used in the ANN weight vector.

Evolutionary Computation (EC) A subdiscipline of Artificial Intelligence
that focusses on solving complex combinatorial problems using an iterative
process often inspired by biological evolution.

Effect The resulting changes to the world model as a result of a plan action.

Environment The local surroundings of an agent that it is designed to interact
with. These environments can differ in size and scope depending on the
problem we are trying to solve.

Episodic An environment that runs in individual epochs. As such, decisions in
individual episodes have no effect on one another.

Engineering and Physical Sciences Research Council (EPSRC) A British
Research Council that provides government funding to UK universities for
research grants and postgraduate study in engineering and physical sciences
(mathematics, artificial intelligence and computer science).

Evolutionary Strategy (ES) A search algorithm similar to the Hill Climber
that adopts biological representation and search expansion. One of the three
founding methodologies of Evolutionary Computation.

Fast Forward (FF) The Fast-Forward planner, a domain-independent planning
system developed by Joerg Hoffmann.

Fitness Function The equivalent of a heuristic in an Evolutionary Algorithm.
The fitness function is used to assess the quality of an evolved candidate.

Finite-State Machine (FSM) FSMs, also known as Finite-State Automata,
are a mathematical abstraction used to represent the behaviour of computer
programs. This allows for a designer to symbolically represents states of
an agent or program. Furthermore, one can state the conditions necessary
to move between states, and the effects actions have that necessitate such
transitions.

Genetic Algorithm (GA) One of the principal fields of Evolutionary Compu-
tation/Algorithms, GAs are a parallel, heuristic-guided search technique
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used to solve complex combinatorial problems. They search for exact or
approximate solutions to problems in a multidimensional search space by
mimicking traits of Darwinian evolution and biological reproduction.

Genetic and Evolutionary Computation Conference (GECCO) The largest
conference in the field of Genetic and Evolutionary Computation. A merger
of the International Conference on Genetic Algorithms (ICGA) with the
Annual Genetic Programming Conference (GP).

Generalise Generalisation is the basis of deductive inference, whereby a concept
is extended to a less specific criteria. In this instance a given concept A is
considered to still adhere to this criteria, while other existing yet different
concepts, B, will also match. For example, animals are a generalisation of
birds, since all birds are animals but so are dogs, cats etc. In AI practices,
this concepts extends to states, where we must consider whether a series of
indvidial scenarios generalise under the same context. If this occurs, then
we need only create a policy to act on each generalised state, rather than
every possible state in the world..

Goal A set of one or more conditions that must be found in a state to satisfy the
planning process. A plan will then traverse the state-space from initial-state
to goal-state.

Hill Climbing (HC) A simple yet highly effective local-search algorithm. Hill-
climbing begins with a random, typically poor, solution to a given problem
and then makes small, incremental changes to the solution by exploring
nearby successors in the state-space. Typically, once no further improvement
can be made to the solution then the process will terminate. The changes
made will be dictated by the selection algorithm applied, which can range
from simple (random) changes, to more strict policies for successor selection.

Heuristic A ‘rule of thumb’ that guides an informed search towards the goal
state. Provided the heuristic estimates the distance to the goal correctly,
the resulting solutions will border on optimal.

Hierarchical Task Network Planning (HTN Planning) An alternative ap-
proach to automated planning that relies on a series of high-level tasks that
can be decomposed to primitive tasks/actions. A task network emerges as a
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result of constraints that can be enforced across the series of tasks in the
hierarchy.

International Conference on Automated Planning and Scheduling (ICAPS)
The internationally recognised forum for researchers involved in planning
and scheduling technology. ICAPS is the resulting conference from the
merger of the International Conference on Artificial Intelligence Planning
and Scheduling (AIPS) and the European Conference on Planning (ECP).

International Planning Competition (IPC) The formal planning competi-
tion held by the AP community. Traditionally held and organised by
researchers involved in the International Conference on Automated Planning
and Scheduling (ICAPS).

Neuron A mathematical function that acts as simple represention of a biological
neuron. An ANNs typically consists of layers of these artificial neurons. A
neuron’s output is achieved by passing the summation of inputs through a
non-linear transfer function.

Neural Network Ensembles (NNE) Collections of redundant neural networks
that are clustered to improve generalisation and robustness of agent be-
haviour by statistically selecting a response based on each networks outputs.

Observability A feature of modelled environments that impacts on the informa-
tion available to an agent. If the environment is fully observable, then all
information relevant to action selection is available, otherwise, the world is
only partially observable.

Planning Domain and Description Language (PDDL) A planning defin-
tion language first devised by Drew McDermott in 1998 as means to standard-
ise planning description languages for competitive purposes (International
Planning Competition 1998/2000). This language is now an international
standard in planning communities and is a highly active research endeavour,
with several notable extensions within the last 10 years.

Plateau A region of search-space where the heuristic values of all successor states
is greater than or equal to the best seen so far. Hence there is no immediate
‘better’ path in sight, which can lead to disastrous circumstances unless
concessions are made in the search algorithm.
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Plan Manager (PM) The planning segement of the REAPER architecture,
responsible for managing and monitoring the planning and execution of
agents.

Population A collection of chromosomes that are being evolved as part of an
Evolutionary Algorithm.

Precondition A series of conditions that must be in place prior to a plan action
being executed.

Autonomous Remote Agent (RA) An onboard planning and scheduling sys-
tem that was one of the twelve systems tested during NASA’s DS1 mission.
It is an onboard software system can enable goal-specific control of the
spacecraft integrated with a robust fault recovery mechanism.

Rule Controller (RC) A series of rules designed to supplement the Plan Man-
ager within the REAPER architecture as well as provide a correlation
between PDDL actions and low-level reactive controllers.

Reachability Reachability in planning problems is whether a given state can
be reached from the initial state in the problem. This is a key component
of larger planning problems where reachability analysis becomes essential
through the use of tree or graph structures.

Realtime Executive for Automated Plans using Evolutionary Robotics (REAPER)
Our architecture for devising and executing plans within game based en-
vironments. The system is comprised of the FF planner, a prolog rule
base and a collection of pre-trained neural networks for execution. Each
component existing within its own individual and de-coupled component of
the architecture.

Reward Typically a numeric value that conceptualises the value of an action.
This can be used to direct the action selection process.

Relaxed Plan Graph (RPG) A relaxed plan graph can be found to be similar
to traditional plan graphs, however predicates found in the fact layers are
never deleted. Despite this, mutually exclusive facts are ignored, allowing
all possible actions to be created at a given action layer.
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Propositional Satisfiability (SAT) The expression of a problem as a series of
boolean statements, with the intent to satisfy all statements as true. Thus
proving the problem is satisfiable.

Sequential An environment where action selection is effected not only by the
actions that have preceded it, but also by the potential impact they may
have in the future.

State A unique configuration of values that represent the situation in an envi-
ronment.

Static A static environment is one that does not change during deliberation.

Stochastic An attribute of modelled environments. Stochasticity implies that an
environment is non-deterministic, such that applying an action may result
in one of a handful of different scenarios.

STanford Research Institute Problem Solver (STRIPS) The seminal plan-
ning platform developed by Fikes and Nilsson in 1971. While the abbreviation
was initially devised to represent the planner, it is more commonly used to
represent the set-theoretic language that was utilised within the planner to
express problem instances. This is now considered the standard given that
the language is still currently used while the STRIPS planner has long since
been superseded.

Synapse In a biological nervous system, a synapse is a connection that permits
the passing of electrical or chemical signals between cells. In an ANN it
represents a weighted connection between Neurons.

Temporal Difference Learning (TD) One of the most common Reinforce-
ment Learning algorithms. The concept is to propagate reward values from
a defined depth in the search space across preceding states based on selected
actions.

The Open Racing Car Simulator (TORCS) A multi-platform, open-source
racing simulator. While a fully functional racing game in its own right, it is
also a research platform for AI development. This has resulted in numerous
competitions in developing the most efficient AI racing drivers.
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Transfer Function The function built within an artificial Neuron. This func-
tion will absorb all incoming, weighted values and then pass them to the
output connection via a mathematical function.

VAL An automatic validation tool for the PDDL language. It is capable of
examining plans and domains written in PDDL2, PDDL3 and PDDL+.
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Appendix A

Nakatomi Domain Definition

In this appendix we provide the complete code listing for the Nakatomi PDDL
domain file. This domain file is described in detail in Chapter 4 and used to
model problem instances for our work in Chapter 5. A complete list of problem
instances based on this domain file can be found in Appendices E and F.

(define (domain nakatomi)
(:requirements :typing)
(:types location door person artefact − object

room vent − location
switch aidkit bomb − artefact
agent hostage − person

)

(:predicates
(at ?obj1 − person ?l − location)
(in ?a − artefact ?r − room)
(on ?obj1 − person ?s − switch)
(corridor ?x ?y − room)
(blocked ?x ?y − room)
(doorway ?x ?y − room ?d − door)
(ventilated ?x − room ?y − vent)
(controls ?s − switch ?d − door)
(open ?d − door)
(closed ?d − door)
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(calm ?h − hostage)
(uneasy ?h − hostage)
(delirious ?h − hostage)
(injured ?h − hostage)
(unconscious ?h − hostage)
(free ?a − agent)
(carrying ?p − agent ?h − hostage)
(holding ?p − agent ?k − aidkit)
(armed ?b − bomb)
(disarmed ?b −bomb)

)

(:action WALK−AGENT−THROUGH−CORRIDOR
:parameters
(?agent − agent
?room−from − room
?room−to − room)

:precondition
(and (at ?agent ?room−from) (corridor ?room−from ?room−to))
:effect
(and (not (at ?agent ?room−from)) (at ?agent ?room−to))

)

(:action WALK−AGENT−THROUGH−DOORWAY
:parameters
(?agent − agent
?room−from − room
?room−to − room
?door − door)

:precondition
(and (at ?agent ?room−from) (doorway ?room−from ?room−to ?door)
(open ?door))
:effect
(and (not (at ?agent ?room−from)) (at ?agent ?room−to))

)
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(:action WALK−HOSTAGE−THROUGH−CORRIDOR
:parameters
(?hostage − hostage
?room−from − room
?room−to − room)

:precondition
(and (at ?hostage ?room−from) (corridor ?room−from ?room−to) (calm ?/

hostage))
:effect
(and (not(at ?hostage ?room−from)) (at ?hostage ?room−to))

)

(:action WALK−CALM−HOSTAGE−THROUGH−DOORWAY
:parameters
(?hostage − hostage
?room−from − room
?room−to − room
?door − door)

:precondition
(and (at ?hostage ?room−from) (doorway ?room−from ?room−to ?door)
(open ?door) (calm ?hostage))
:effect
(and (not(at ?hostage ?room−from)) (at ?hostage ?room−to))

)

(:action WALK−UNEASY−HOSTAGE−THROUGH−DOORWAY
:parameters
(?hostage − hostage
?room−from − room
?room−to − room
?door − door)

:precondition
(and (at ?hostage ?room−from) (doorway ?room−from ?room−to ?door)
(open ?door) (uneasy ?hostage))
:effect
(and (not(at ?hostage ?room−from)) (at ?hostage ?room−to))

)
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(:action WALK−DELIRIOUS−HOSTAGE−THROUGH−DOORWAY
:parameters
(?hostage − hostage
?room−from − room
?room−to − room
?door − door)

:precondition
(and (at ?hostage ?room−from) (doorway ?room−from ?room−to ?door)
(open ?door) (delirious ?hostage))
:effect
(and (not(at ?hostage ?room−from)) (at ?hostage ?room−to))

)

(:action STEP−ON−SWITCH
:parameters
(?agent − agent
?switch−room − room
?switch − switch
?door − door)

:precondition
(and (at ?agent ?switch−room) (in ?switch ?switch−room)
(closed ?door) (controls ?switch ?door))
:effect
(and (open ?door) (not(closed ?door)) (on ?agent ?switch)
(not (at ?agent ?switch−room)))

)
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(:action HOSTAGE−STEP−ON−SWITCH
:parameters
(?agent − hostage
?switch−room − room
?switch − switch
?door − door)

:precondition
(and (calm ?agent) (at ?agent ?switch−room) (in ?switch ?switch−room)
(closed ?door) (controls ?switch ?door))
:effect
(and (open ?door) (not(closed ?door)) (on ?agent ?switch)
(not (at ?agent ?switch−room)))

)

(:action STEP−OFF−SWITCH
:parameters
(?agent − agent
?switch − switch
?switch−room − room
?door − door)

:precondition
(and (on ?agent ?switch) (in ?switch ?switch−room)
(open ?door) (controls ?switch ?door))
:effect
(and (not(open ?door)) (closed ?door) (not(on ?agent ?switch))
(at ?agent ?switch−room))

)
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(:action HOSTAGE−STEP−OFF−SWITCH
:parameters
(?agent − hostage
?switch − switch
?switch−room − room
?door − door)

:precondition
(and (on ?agent ?switch) (in ?switch ?switch−room) (open ?door)
(controls ?switch ?door))
:effect
(and (not(open ?door)) (closed ?door) (not(on ?agent ?switch))
(at ?agent ?switch−room))

)

(:action CRAWL−IN−VENT
:parameters
(?agent − agent
?room−from − room
?vent−to − vent)
:precondition
(and (at ?agent ?room−from) (ventilated ?room−from ?vent−to))
:effect
(and (not (at ?agent ?room−from)) (at ?agent ?vent−to))

)

(:action CRAWL−OUT−VENT
:parameters
(?agent − agent
?vent−from − vent
?room−to − room)
:precondition
(and (at ?agent ?vent−from) (ventilated ?room−to ?vent−from))
:effect
(and (not (at ?agent ?vent−from)) (at ?agent ?room−to))

)
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(:action DEFUSE−BOMB
:parameters
(?agent − agent
?bomb − bomb
?current−room − room)
:precondition
(and (at ?agent ?current−room) (in ?bomb ?current−room) (armed ?bomb))
:effect
(and (disarmed ?bomb) (not (armed ?bomb)))

)

(:action SLAP−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?current−room − room)
:precondition
(and (at ?agent ?current−room) (at ?hostage ?current−room) (uneasy ?hostage))
:effect
(and (not (uneasy ?hostage)) (calm ?hostage))

)

(:action KNOCK−OUT−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?current−room − room)
:precondition
(and (at ?agent ?current−room) (at ?hostage ?current−room)
(delirious ?hostage))
:effect
(and (not(delirious ?hostage)) (unconscious ?hostage))

)
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(:action PICK−UP−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?current−room − room)
:precondition
(and (at ?agent ?current−room) (free ?agent) (at ?hostage ?current−room)
(unconscious ?hostage)) :effect
(and (not (at ?hostage ?current−room)) (not (free ?agent))
(carrying ?agent ?hostage))

)

(:action PUT−DOWN−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?current−room − room)
:precondition
(and (at ?agent ?current−room) (carrying ?agent ?hostage))
:effect
(and (at ?hostage ?current−room) (free ?agent) (not(carrying ?agent ?hostage)))

)

(:action PICK−UP−FIRST−AID−KIT
:parameters
(?agent − agent
?aidkit − aidkit
?current−room − room)
:precondition
(and (at ?agent ?current−room) (in ?aidkit ?current−room))
:effect
(and (holding ?agent ?aidkit) (not(in ?aidkit ?current−room)))

)
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(:action PATCH−UP−HOSTAGE
:parameters
(?agent − agent
?hostage − hostage
?aidkit − aidkit
?current−room − room)
:precondition
(and (at ?agent ?current−room) (holding ?agent ?aidkit)
(at ?hostage ?current−room) (injured ?hostage))
:effect
(and (not(holding ?agent ?aidkit)) (not(injured ?hostage)) (calm ?hostage))

)

(:action CLEAR−RUBBLE
:parameters
(?agent1 − agent
?agent2 − agent
?current−room − room
?blocked−room − room)
:precondition
(and (at ?agent1 ?current−room) (at ?agent2 ?blocked−room)
(blocked ?current−room ?blocked−room))
:effect
(and (not(blocked ?current−room ?blocked−room))
(corridor ?current−room ?blocked−room)
(corridor ?blocked−room ?current−room))

)

)
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Set Classification Data

In this appendix we produce the data generated from Richard Jensen’s automated
set creator FuzzyGen (Jensen and Shen [2008]). We cover each relevant aspect of
the environment that was used as part of the classification process in the Rule
Controller of the REAPER architecture (Section 5.3.3 and Appendices C and D).
Each set of results produces three sets, a low, middle and high range for the
dataset, denoted as a left-shoulder, trapezium and a right-shoulder. By plotting
the dataset values against the membership function, we see a trend similar to that
shown in Figure B.1.

B.1 Blast Yield

To measure the blast yield sets, we required a range of values that express the
potential range of the blast yield. Hence we wrote a simple piece of code that

Figure B.1: A typical graph of the resulting set classification.
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would randomly generate values within the range of 50 ≤ x ≤ 300 pixels. Statistics
from the dataset are in Table B.1, followed by the set classification in Table B.2.

Table B.1: Statistics of the blast yield source data.

Statistic Value
Minimum 50.0
Maximum 299.0
Mean 173.63
Variance 5312.9
Std. Dev. 72.89

Table B.2: Values of the blast yield sets.

Set Start Middle End
Left Shoulder −∞ 100.74 159.05
Trapezium 100.74 159.05, 188.2 246.52

Right Shoulder 188.2 246.52 ∞

B.2 Distance

Once again we create a dataset reflecting the minimum and maximum distance
that we will measure between two agents in the same room. This is dictated by
the potential dimensions of a given room, where the maximum dimension size is
300 pixels and each object is instatiated at bare minimum of 40 pixels from the
perimeter. Statistics are in Table B.3 and set data in Table B.4.

Table B.3: Statistics of the distance source data.

Statistic Value
Minimum 3.0
Maximum 329.0
Mean 147.68
Variance 4839.75
Std. Dev. 69.57
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Table B.4: Values of the distance sets.

Set Start Middle End
Left Shoulder −∞ 78.08 133.73
Trapezium 78.08 133.73, 161.56 217.21

Right Shoulder 161.56 217.21 ∞

B.3 Fuse Length

This set reflects on the maximum and minimum length of a bomb fuse. The
dataset used was based on a fuse being of length 1 ≤ x ≤ 10. The statistics
from the dataset are provided in Table B.5, followed by the set classifications in
Table B.6.

Table B.5: Statistics of the fuse length source data.

Statistic Value
Minimum 1.0
Maximum 10.0
Mean 5.529
Variance 8.3
Std. Dev. 2.88

Table B.6: Values of the fuse length sets.

Set Start Middle End
Left Shoulder −∞ 2.64 4.95
Trapezium 2.64 4.95, 6.1 8.41

Right Shoulder 6.1 8.41 ∞
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B.4 Health

Our final set is based on the range of health an agent can have, this is naturally
in the range 0 ≤ x ≤ 100. Table B.7 provides statistics from the health dataset,
while Table B.8 shows the set classification made by FuzzyGen.

Table B.7: Statistics of the health source data.

Statistic Value
Minimum 1.0
Maximum 100.0
Mean 48.23
Variance 828.5
Std. Dev. 28.7

Table B.8: Values of the health sets.

Set Start Middle End
Left Shoulder −∞ 19.44 42.47
Trapezium 19.44 42.47, 53.98 77.01

Right Shoulder 53.98 77.01 ∞
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Rule Controller Knowledge Base:
Threat Rules

In this appendix we highlight the complete set of rules and clauses that are used
as part of the Rule Controller’s threat detection process (Section 5.3.3). In short,
each rule is designed to express the threat level of a given entity to the Bruce
executive in the environment. This threat level is calculated based on various
pieces of information from the current state of the game world and is passed
through a a fuzzification process to express the numeric values symbolically.

C.1 Agent Threats

We begin with the agent_threat rule, where we check the threat level of a given
agent based on an informed classification of its capability to impede our progess.
This is determined by the distance it is from our agent and the armament it is
carrying. Then using this threat level we then decide on what action (if any)
should be taken to resolve this threat.

agent_threat(DIST,ARM,THREAT,ACTION):−
agent_threat_level(DIST,ARM,THREAT),
agent_threat_action(THREAT,ACTION).

Next we explore the clauses used as part of this rule and the knowledge base we
have defined. In the following set of clauses, we denote a threat level to different
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combinations of distance and armament. Note that in certain examples we use ‘_’
to represent any and all potential inputs for the specific variable.

agent_threat_level(close,gun,high).
agent_threat_level(close,knife,medium).
agent_threat_level(close,none,low).
agent_threat_level(near,gun,medium).
agent_threat_level(near,_,low).
agent_threat_level(far,gun,medium).
agent_threat_level(far,_,low).

To complete the agent threat knowledge base, we provde a simple set of clauses
that dictate if an agent carries at the bare minimum a medium threat level, then
we must eliminate it.

agent_threat_action(high, destroy_target).
agent_threat_action(medium, destroy_target).

C.2 Bomb Threats

Next we look at the threat posed by bombs in the environment. We classify the
threat level of a bomb based on three pieces of information; the distance of the
bomb to the agent, the blast yield and the remaining fuse on the bomb. Once
again we have a simple rule setup for ascertaining the correct action.

bomb_threat(DIST,YIELD,FUSE,THREAT,ACTION):−
bomb_threat_level(DIST,YIELD,FUSE,THREAT),
bomb_threat_action(THREAT,ACTION).

Lastly, on the following page we provide the knowledge base for the bomb
threat level and the corresponding action clauses. These are very similar to the
agent threat level clauses we saw previously.
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bomb_threat_level(close, high, low, high).
bomb_threat_level(close, high, medium, high).
bomb_threat_level(close, high, high, medium).
bomb_threat_level(close, medium, low, high).
bomb_threat_level(close, medium, medium, medium).
bomb_threat_level(close, medium, high, medium).
bomb_threat_level(close, low, low, high).
bomb_threat_level(close, low, medium, medium).
bomb_threat_level(close, low, high, low).
bomb_threat_level(near,_,low,high).
bomb_threat_level(near,_,medium,medium).
bomb_threat_level(near,_,high,low).
bomb_threat_level(far,_,_,low).

bomb_threat_action(medium,defuse_bomb).
bomb_threat_action(high,defuse_bomb).
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Rule Controller Knowledge Base:
Controller Rules

In this appendix we give the complete set of controller rules found within the Rule
Controller of the REAPER executive. Furthermore we also provide commentary
to explain the different rules and how we came to this final collection.

Our controller rules base is designed to allow us to immediately associate facts
of the world to corresponding actions that must be taken. Each of these rules is
designed to correlate to (one or more) PDDL actions found in the nakatomi.pddl
file (Appendix A). The concept being that when we are dealing with an action in
the world, we must ensure that we are satisfied with all of the conditions ranging
from planner-level down to a lower-level.

The first series of rules on the following page are the quick-lookup rules, where
we immediately associate a particular PDDL action with a reactive or hardcoded
controller.
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quick−lookup(walk−agent−through−corridor,visit_waypoint).
quick−lookup(walk−agent−through−doorway,visit_waypoint).
quick−lookup(walk−hostage−through−corridor,visit_waypoint).
quick−lookup(walk−calm−hostage−through−doorway,visit_waypoint).
quick−lookup(walk−uneasy−hostage−through−doorway,visit_waypoint).
quick−lookup(walk−delirious−hostage−through−doorway,visit_waypoint).
quick−lookup(hostage−step−on−switch,visit_waypoint).
quick−lookup(hostage−step−off−switch,visit_waypoint).
quick−lookup(step−on−switch,visit_waypoint).
quick−lookup(step−off−switch,visit_waypoint).
quick−lookup(crawl−in−vent,visit_waypoint).
quick−lookup(crawl−out−vent,visit_waypoint).
quick−lookup(put−down−hostage,put_down_hostage).
quick−lookup(pick−up−first−aid−kit,grab_item).
quick−lookup(pick−up−hostage,grab_item).

Next we consider the finer details of each action to ensure that which we refer
to as ‘low-level preconditions’ are satisfied before we proceed further. If they are
not satisfied, then we must consider applying bridge actions that satisfy these
preconditions, allowing us to proceed with the original action. In all of these
instances we need to resolve any issues in the spatial relationship between the
two objects. Put simply, we need to ensure that while an entity is in the same
room as another, it must be physically close to it in order to carry out any sort
of interaction. Otherwise, a supplementary action is required in order to satisfy
these requirements.
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slap−hostage(close,uneasy,slap_hostage).
slap−hostage(far,uneasy,visit_waypoint).
slap−hostage(near,uneasy,visit_waypoint).
slap−hostage(close,_,re−plan).

knock−out−hostage(close, delirious, knock_out_hostage).
knock−out−hostage(near, delirious, visit_waypoint).
knock−out−hostage(far, delirious, visit_waypoint).
knock−out−hostage(close, _, re_plan).

patch−up−hostage(close, patch_up_hostage).
patch−up−hostage(near, visit_waypoint).
patch−up−hostage(far, visit_waypoint).

clear−rubble(close, clear_rubble).
clear−rubble(near, visit_waypoint).
clear−rubble(far, visit_waypoint).

defuse−bomb(close, defuse_bomb).
defuse−bomb(near, visit_waypoint).
defuse−bomb(far, visit_waypoint).

This shows the complete list of clauses used for the controller rule base.
Based on these clauses our agent can execute any action from the PDDL domain
description.
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BruceWorld Initial Test Files

E.1 BasicTest1

(define (problem BASIC−TEST−1)
(:domain nakatomi)

(:objects
agent1 − agent
l1 − room
l2 − room
l3 − room
l4 − room
l5 − room
l6 − room
)

(:init
(at agent1 l1)
(free agent1)
(corridor l1 l2)
(corridor l2 l1)
(corridor l2 l3)
(corridor l3 l2)
(corridor l3 l4)
(corridor l4 l3)
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(corridor l4 l5)
(corridor l5 l4)
(corridor l5 l6)
(corridor l6 l5)
)

(:goal (and
(at agent1 l6)
))

)
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E.2 BasicTest2

(define (problem BASIC−TEST−2)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
b1 − bomb
l1 − room
l2 − room
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l2)
(unconscious hostage1)
(corridor l1 l2)
(corridor l2 l1)
(in b1 l2)
(armed b1)
)

(:goal (and
(disarmed b1)

(at hostage1 l1)
))

)
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E.3 BasicTest3

(define (problem BASIC−TEST−3)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
l1 − room
l2 − room
l3 − room
s1 − switch
d1 − door
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l3)
(in s1 l2)
(corridor l1 l2)
(corridor l2 l1)
(doorway l2 l3 d1)
(doorway l3 l2 d1)
(controls s1 d1)
(closed d1)
(calm hostage1)
)

(:goal (and
(at agent1 l1)
(at hostage1 l1)
))

)
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E.4 BasicTest4

(define (problem BASIC−TEST−4)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
hostage2 − hostage
switch1 − switch
switch2 − switch
d1 − door
d2 − door
l1 − room
l2 − room
l3 − room
l4 − room
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l2)
(at hostage2 l4)
(calm hostage2)
(calm hostage1)
(in switch1 l1)
(in switch2 l3)
(doorway l1 l2 d1)
(doorway l2 l1 d1)
(doorway l3 l4 d2)
(doorway l4 l3 d2)
(corridor l1 l3)
(corridor l3 l1)
(controls switch1 d1)
(controls switch2 d2)
(closed d1)
(closed d2)
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)

(:goal (and
(at agent1 l3)
(at hostage1 l3)
(at hostage2 l3)
))

)
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E.5 BasicTest5

(define (problem BASIC−TEST−5)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
hostage2 − hostage
l1 − room
l2 − room
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l1)
(at hostage2 l1)
(unconscious hostage1)
(uneasy hostage2)
(corridor l1 l2)
(corridor l2 l1)
)

(:goal (and
(at agent1 l2)
(at hostage1 l2)
(at hostage2 l2)
))

)
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BruceWorld Advanced Test Files

F.1 AdvancedTest1

(define (problem ADVANCED−TEST−1)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
hostage2 − hostage
kit1 − aidkit
l1 − room
l2 − room
l3 − room
l4 − room
l5 − room
l6 − room
l7 − room
l8 − room
v1 − vent
)

(:init
(at agent1 l1)
(free agent1)
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(at hostage1 l5)
(at hostage2 l6)
(injured hostage1)
(unconscious hostage2)
(in kit1 l8)
(corridor l1 l2)
(corridor l2 l1)
(corridor l2 l3)
(corridor l3 l2)
(corridor l3 l4)
(corridor l4 l3)
(corridor l3 l5)
(corridor l5 l3)
(corridor l2 l7)
(corridor l7 l2)
(corridor l6 l7)
(corridor l7 l6)
(ventilated l3 v1)
(ventilated l8 v1)
)

(:goal (and
(at agent1 l4)
(at hostage1 l4)
(at hostage2 l4)
))

)
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F.2 AdvancedTest2

(define (problem ADVANCED−TEST−2)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
hostage2 − hostage
s1 − switch
d1 − door
l1 − room
l2 − room
l3 − room
l4 − room
l5 − room
v1 − vent
v2 − vent
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l2)
(at hostage2 l4)
(uneasy hostage1)
(unconscious hostage2)
(corridor l2 l5)
(corridor l5 l2)
(corridor l3 l4)
(corridor l4 l3)
(doorway l3 l5 d1)
(doorway l5 l3 d1)
(controls s1 d1)
(closed d1)
(in s1 l5)
(ventilated l1 v1)
(ventilated l3 v1)
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(ventilated l1 v2)
(ventilated l2 v2)
)

(:goal (and
(at agent1 l3)
(at hostage1 l3)
(at hostage2 l3)
))

)
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F.3 AdvancedTest3

(define (problem ADVANCED−TEST−3)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
hostage2 − hostage
hostage3 − hostage
s1 − switch
s2 − switch
s3 − switch
s4 − switch
d1 − door
d2 − door
d3 − door
d4 − door
l1 − room
l2 − room
l3 − room
l4 − room
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l2)
(at hostage2 l3)
(at hostage3 l4)
(calm hostage1)
(calm hostage2)
(calm hostage3)
(doorway l1 l2 d1)
(doorway l2 l1 d1)
(doorway l2 l4 d2)
(doorway l4 l2 d2)
(doorway l3 l4 d3)
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(doorway l4 l3 d3)
(doorway l1 l3 d4)
(doorway l3 l1 d4)
(controls s1 d4)
(closed d1)
(controls s2 d3)
(closed d2)
(controls s3 d1)
(closed d3)
(controls s4 d2)
(closed d4)
(in s1 l1)
(in s2 l2)
(in s3 l3)
(in s4 l4)
)

(:goal (and
(at agent1 l4)
(at hostage1 l4)
(at hostage2 l4)
(at hostage3 l4)
))

)
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F.4 AdvancedTest4

(define (problem ADVANCED−TEST−4)
(:domain nakatomi)

(:objects
agent1 − agent
hostage1 − hostage
hostage2 − hostage
s1 − switch
s2 − switch
s3 − switch
s4 − switch
s5 − switch
d1 − door
d2 − door
d3 − door
d4 − door
d5 − door
l1 − room
l2 − room
l3 − room
l4 − room
l5 − room
l6 − room
l7 − room
l8 − room
l9 − room
l10 − room
v1 − vent
v2 − vent
)

(:init
(at agent1 l1)
(free agent1)
(at hostage1 l1)
(at hostage2 l6)
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(calm hostage1)
(calm hostage2)
(doorway l1 l2 d1)
(doorway l2 l1 d1)
(corridor l2 l3)
(corridor l3 l2)
(doorway l3 l4 d2)
(doorway l4 l3 d2)
(doorway l4 l5 d3)
(doorway l5 l4 d3)
(doorway l6 l7 d4)
(doorway l7 l6 d4)
(ventilated l7 v1)
(ventilated l8 v1)
(doorway l8 l9 d5)
(doorway l9 l8 d5)
(ventilated l9 v2)
(ventilated l4 v2)
(corridor l2 l7)
(corridor l7 l2)
(corridor l1 l10)
(corridor l10 l1)
(controls s1 d1)
(closed d1)
(controls s2 d2)
(closed d2)
(controls s3 d3)
(closed d3)
(controls s4 d4)
(closed d4)
(controls s5 d5)
(closed d5)
(in s1 l6)
(in s2 l9)
(in s3 l4)
(in s4 l1)
(in s5 l3)
)
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(:goal (and
(at agent1 l9)
(at hostage1 l10)
(at hostage2 l5)
))

)
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Publication List

For the examiners consideration, we provide a list of all papers that have been
published at conference level during the period of our studies. Each paper has
been subjected to peer review and accepted after making appropriate corrections.
We also denote the number of known citations made by other researchers where
necessary.

• Real-time Execution of Automated Plans using Evolutionary Robotics
T. Thompson and J. Levine. Proceedings of the 2009 IEEE Symposium on
Computational Intelligence and Games (CIG 2009). September 2009.

• Improving Control Through Subsumption in the EvoTanks Do-
main T.Thompson, F. Milne, A. Andrew and J. Levine. Proceedings of
the 2009 IEEE Symposium on Computational Intelligence and Games 2009
(CIG 2009). September 2009. (1 citation)

• Scaling-up Behaviours in EvoTanks: Applying Subsumption Prin-
ciples to Artificial Neural Networks. T. Thompson and J. Levine. Pro-
ceedings of the 2008 IEEE Symposium on Computational Intelligence and
Games 2008 (CIG 2008). December 2008. (2 citations)

• An Evaluation of the Benefits of Look-Ahead in Pac-Man. T.
Thompson, L. McMillan, J. Levine, and A. Andrew. Proceedings of the
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2008). December 2008. (2 citations)
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ceedings of the 2008 IEEE Symposium on Computational Intelligence and
Games 2008 (CIG 2008). December 2008.
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