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Abstract

The interactions between electromagnetic waves and magnetic fusion

plasmas are fundamental to a broad range of technologies considered

vital in achieving an efficient, energy producing tokamak. Sophisti-

cated diagnostic instruments utilise the wave-plasma scattering mech-

anism to make non-invasive plasma measurements while powerful mi-

crowaves can be coupled to the plasma to drive heat or currents in

the plasma. This research uses endeavours to deepen our understand-

ing of these plasma-wave interactions by utilising a variety of numerical

tools and performing novel modelling. The full-wave three-dimensional

(3D), finite difference time domain (FDTD) code EMIT-3D is developed

and utilised in conjunction with the Hermes fluid code using BOUT++

as a framework to study cross-polarisation Doppler-backscattering, in

which a low-amplitude extraordinary (X) mode wave launched into the

plasma is back-scattered into an ordinary (O) mode wave on magnetic

field fluctuations, and the O mode is recorded and analysed. Bench-

marking of the code was achieved by evaluating the simulated scaling

relationships between the back-scattered signal strength against pertur-

bation strength, and comparing this to theory. Excellent agreement was

found. Further modelling investigated non-Wentzel-Kramers-Brillouin

(WKB) effects and their pertinence towards back-scattering measure-

ments and found some significant influences at experimentally relevant

density length-scales. Furthermore, the forward scattered original-polar

signals are identified to have major contributions towards the perceived

back-scattered intensity under certain conditions, and an asymmetry in

the back-scattered profile was also identified. In addition, for high-power

microwaves having X mode polarisation, electron cyclotron current drive
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(ECCD) was modelled using the Torbeam ray-tracing code. However,

ECCD was shown to be an ineffective method of driving plasma current

in high beta and high density plasmas where the fundamental cyclotron

harmonics are cutoff. A promising alternative to ECCD at high plasma

densities are electron Bernstein wave (EBW) heating and current drive,

in which an O mode is converted into a slow X mode wave that in turn

is converted into an EBW that can propagate into the dense plasma.

The O-X mode conversion efficiency was studied with EMIT-3D, and

excellent agreement was found between this 3D code and several other

2D codes in simple plasma geometries. However, for a few test cases the

3D code predicted lacklustre mode conversion efficiencies when a more

complicated high beta MAST-U equilibrium was used in the modelling.
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1 Energy and Magnetic Confinement Fusion

1.1 Energy

The world has an energy problem. A high and consistent consumption of energy

has become a cornerstone of life in the developed world. The developing world uses

comparatively almost no energy at all. However, this is set to change. Consumption

of energy has been seen to be related to economic development. Considering that

the international political environment is almost uniquely described by capitalism,

economic power is the primary driving force for the development of the quality of

human life on earth. It is then both unreasonable and selfish to expect the developing

world to curb its industrial revolution in favour of lowering carbon emissions because

this would drastically diminish their ability to lift themselves out of poverty and

improve the quality of life of their citizens.
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Figure 1: Analysis of the Human Development Index (HDI) against Total Primary

Energy Demand (TPED) for a range of countries. Each dot corresponds to a country,

with the colour and size indicating US$ per capita, and population size, respectively.

The vertical blue line represents the minimum TPED associated with anHDI > 0.8.

The inset describes a selection of 15 countries between the years 1995 and 2008. Each

data point refers to a year within this range, and its color is solely indented for ease

of interpretation. Figure taken from [1].

Figure 1 illustrates this idea by representing the Human Development Index (HDI)

[2] against Total Primary Energy Demand (TPED). There are certain outlying data

points, however the correlation between TPED and HDI is clear. Countries with

an HDI less than 0.8 are considered to be developing nations, and we make the

assumption that these nations will aggressively seek to increase their HDI. The

increase of HDI is attained through an increase in economic power (one metric
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being the US$ per capita) and this relationship is discussed in [1]. This increase in

economic power results in the upward shift in TPED. It remains to be seen whether

or not this large, global upward shift in TPED can be done in a sustainable manner.

Only 25% of the worlds population [3] live in countries with an HDI greater than

0.8 and as such the increase in TPED from the remaining 75% will be challenging

to manage. As the demand on the Earth’s resources used for energy production

increases, the cost will increase and the availability will decrease. This raises national

security concerns and warrants far reaching considerations of future energy policies.

Clearly, for the benefit of climate change it would be desirable to source this increase

in the demand of energy from renewable sources. However, for the aforementioned

reasons it is likely that the choice of energy sources will be largely decided from an

economic viewpoint. It is difficult to make an assessment into energy security on a

global scale, since the availability of natural resources varies so significantly. This

analysis is then limited to an assessment of the energy security to the UK.

The UK’s reliance on fossil fuels is often mis-represented. This is because most

analyses considers only the methods by which the UK generates electricity. This is

misleading because the UK energy consumption is not limited to the consumption

of electricity. There are other significant demands, such as the energy required for

cars, lorries, gas heating, or aerospace transport. In 2019 the UK consumed a total

of 2203.9TWh. Of this total amount only 328.74TWh was electrical energy [4]. This

majority reliance on non-electric energy is illustrated in figure 2.

This is intensely pertinent to the discussion of energy security because the re-

liance on non-electric energy is provided almost exclusively by fossil fuels. Due to

the growth of developing countries putting progressive strain on access to natural

resources, the overwhelming reliance of the UK on fossil fuels can be considered a

serious security concern. The electrification of Britain will put immense pressure

on the electrical generation industry, and capacity will inevitably need to be drasti-
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Figure 2: The consumption of electricity in the UK represented as a fraction of the

total consumption of energy. Data taken from [4, 5].

cally increased. Figure 2 is reflected in the rest of this document by differentiating

between the consumption of energy and electrical energy. An average European

consumes 125kWh of energy per day [6]. The UK is relatively conservative, as the

annual consumption of 2203.9TWh amounts to 90.6kWh per person, per day. This

is an important number because it is ultimately the amount of energy which will,

at some point, need to be provided by renewable electrical energy production.
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Figure 3: Levelised energy cost estimates for the UK. A levelised analysis indicates

that all expenses, from birth until decommissioning, are accounted for. Abbreviated

for clarity are Operation and Maintenance (O&M), Closed Circuit Gas Turbine

(CCGT), Open Circuit Gas Turbine (OCGT), and Carbon Capture Storage (CSS).

Figure taken from [7].

How this electrical energy is produced, and how quickly the UK needs to shift from

fossil fuel reliance depends on the cost of renewable energy sources, and the projected

access to pertinent fossil fuels. Figure 3 shows an analysis of the cost to the UK

for a range of frequently used energy sources. The analysis is ’levelised’ meanning

that the overall costs are broken down into components. The five most cost effective

options, from most expensive to cheapest are nuclear fission, biomass, gas, solar

and wind. Considering the earlier political statement regarding the fundamental

incentive to pursue a higher HDI via an increase in US$ per capita (and therefore

TPED), we would expect the sources providing energy to the UK to be reflective
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of the most cost effective. Figure 4 shows where the UK sourced its electricity for

2019. The five aforementioned cost effective energy sources make up 90.4% of the

UK’s electricity supply.

Figure 4: Where the UK sources its electricity for the year 2019 [5] .

It may be surprising that the UK gets only 35.0% of its electricity from renew-

able sources, considering that wind and solar energy are the two cheapest forms of

energy available to the UK. This is doubly interesting when we consider the natural

wind resources the UK has. Compared to France and Germany, the UK has a 33%

and 71% greater potential for wind energy, respectively. The reason for this is likely

to be energy density. Wind energy is cheap, however it suffers from poor energy

density. The energy density of onshore and offshore wind energy is approximately

2W/m2 and 3W/m2, respectively. Onshore space is expensive and restricted, and

deep-offshore space is considered economically unviable. If 33% of the UK’s shallow

offshore space is used for wind turbines the farms would produce 16kWh per day, per

17



person. This amounts to only 17.6% of the UKs annual energy consumption. A wind

farm capable of delivering enough power to completely satisfy the needs of the UK

would need to be 3.67 times the size of Great Britain. A feat of engineering on this

scale is unreasonable. The other renewable sources are incapable of making a major

contribution towards fulfilling the large overall energy demand. Hydro suffers from

very weak energy densities. Lowlands and highlands have densities of 0.02W/m2

and 0.24W/m2, respectively. The UK is estimated to be capable of producing a

maximum of 1.5kWh per day, per person with hydro. This amounts to only 1.7%

of the UK’s energy consumption and would represent increasing the size of the UK

hydroelectric industry by a factor of 7.0 [6]. Biomass is already operating near its

maximum capabilities. The UK current sources approximately 6.37KWh per day,

per person from domestic and imported biomass. The government estimates that if

biomass policies are aggressively pursued, by 2050 the UK would be capable of de-

livering 8.02kWh of energy per day per person [8]. This amounts to only 8.9% of the

current UK energy demands. In regards to solar, there are two technologies; solar

thermal and solar voltaic. Solar thermal has a much higher efficiency of convert-

ing sunlight to useful energy at about 50%, although only provides low grade (high

entropy) thermal energy. Solar voltatic provides electrical energy but at a much

lower efficiency of 20%. While solar thermal may be useful for moving away from

fossil fuel driven heating, only solar voltaic is considered here for ease of compari-

son. At the equator the energy density of sunlight is about 1000W/m2. However,

Britain lies at an approximate latitude of 52◦. This, combined with average an-

nual cloud cover, and seasonal effects causes the average energy density of sunlight

on south-facing rooftops in the UK to be about 110W/m2. Covering every single

south facing roof-top in the UK with 20% efficiency solar voltaic panels would yield

approximately 5kWh per day, per person. This amounts to 5.5% of the UK’s en-

ergy consumption. Using strongly generous assumptions, wind(17.6%), solar(5.5%),
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hydroelectric(1.7%), and bioenergy(8.9%) have the potential of providing a total of

33.7% of the UK’s current energy consumption.

In consideration of the inability of renewable sources to meet our energy demands

we are forced to conclude that we will be highly dependent on non-renewable energy

sources for the foreseeable future. Figure 5 represents an estimate into the number

of years of supply of non-renewable energy source remaining globally, assuming that

current rates of consumption are maintained, which is optimistic. It is of particular

concern to the security of the UK’s energy supply to compare figures 4 and 5. Britain

is a country which critically depends on natural gas. This problem becomes more

concerning when we consider the distribution of natural gas sources. Figure 5 shows

that there are globally only about 50 years of supply of global natural gas resources

remaining. However, Europe has some of the lowest relative natural gas supplies

in the world, and has only 18 years of supply. The implications of this are serious;

relying on imports of a diminishing gas supply from countries outside of the single

market puts the reliability of British electricity supply into question. While the UK

imports negligible amounts of gas from Russia, in 2019 it imported approximately

62% of its gas from Norway [9]. Norway is a politically stable country with strong

cultural and historic ties to the UK. In other words this source of gas is unlikely to

suddenly stop flowing, and the British government considers the Norwegian supply

to be beneficial to the energy diversity of the UK. The British government ranked

the UK third highest out of all European countries on the gas supply index, which

is a measure of energy security. However, in 2019 the EU imported 27% of its gas

supply from Russia, and a further approximate 20% of its gas from Norway. The

implications of this must be considered.
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Figure 5: Remaining global non-renewable fuels remaining assuming current rate of

consumption is maintained. Data gathered from [10, 11].

Russia is not considered to be as politically stable as Norway. Should the Russian

gas supply cease then the EU would find itself heavily short on gas. Considering

the close relationship between Norway and the EU, it is conceivable that the Nor-

wegian gas supply would be more heavily relied upon to make up the loss of the

Russian supply. Should this occur, the UK may no longer be able to fulfil its gas

import demands from a reduced Norwegian source. Due to its inability to meet

the demand for gas by indigenous production, the reliance of the UK on gas as a

major source of its energy has strong implications for national security. The UK

must consider radically shifting it’s energy production away from natural gas and

fossil fuels generally. Considering that we have already ruled out self-sufficiency on

renewable sources there are four ways to fill the energy deficit left by fossil fuels.

Firstly, the UK could follow the French in depending on nuclear fission. In 1999
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the French government noted that French energy security was a significant concern.

At the time France imported more than 50% of it’s energy. What followed was a

massive investment in nuclear fission power. As of 2017 France sources about 75% of

its energy from nuclear fission, has become one of the worlds largest energy exporters,

a world leading country in the development of nuclear fission technology, and has

extremely low carbon emission per capita at 11% lower than the UK [12, 13]. While

successful, the French energy program is overshadowed by the ethical considerations

of fission energy. The probability of a major nuclear disaster can never be reduced to

zero, and nuclear fission power stations may present vulnerable targets for terrorism

or foreign powers. This ironically presents a problem for French energy security.

Additionally, French fission reactions are dependent on uranium which, similarly to

fossil fuels, has a limited global supply. There is an estimated 135 years of supply

of uranium remaining. It may also be possible to use thorium as a substitute; it is

thought that the abundance of thorium in the Earth’s crust is 3-5 times greater than

that of uranium, and the supply of thorium would be expected to last 405 years.

Secondly, it would be possible to heavily invest in coal energy. The combustion

of coal releases tremendous amounts of carbon dioxide and as a result of this, the

use of coal energy in developed nations comes with some political backlash. Addi-

tionally, the use of coal in the UK is very expensive at more than double the cost

of wind power. Using Carbon Capture Storage (CSS) technologies [14] the carbon

emissions of coal can be drastically reduced to become far less than natural gas,

and comparable to solar. The use of CSS would incur additional cost, increasing

the cost of coal energy by about 25%. The UK itself has almost no coal reserves.

However, the EU as a whole does have a significant amount [10]. Most of this coal is

concentrated in Germany, Poland, and the Ukraine. While the use of coal imports

from these countries is certainly a possibility, a sharp decline in the gas supply to

the EU may drastically increase the demand for coal all over the EU. Therefore, this
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does not represent a reliable path to energy security.

Thirdly, it would be possible to invest in massive solar energy projects in North-

ern Africa or the Arabian peninsula. These areas specifically because there is signifi-

cant amounts of desert which is mostly unusable for other projects, and the intensity

of sunlight is high. A solar farm the size of Wales (21025km2) would be able to pro-

vide 100% of the energy demands of the UK. A solar farm the size of Germany

would completely fulfil the energy demands of Europe. Figuratively it is easier to

illustrate the size of a singular solar farm, however realistically projects support-

ing building these solar farms would likely build many smaller farms, as opposed

to a single massive farm. This would increase the security of the energy supply

by reducing the importance of any single farm. The three countries near to Europe

with the highest economic potential for solar energy are Algeria (169PWh/y), Libya

(140PWh/y), and Saudi Arabia (125PWh/y). The whole of Europe consumes ap-

proximately 23PWh/y [6]. While Algeria and Libya are acutely unstable countries

due to civil unrest, economic instability, and civil war, Saudi Arabia is politically

stable and maintains strong, positive relations with the UK and its allies. Solar

farms on the Arabian peninsula are a potentially potent source of renewable energy

for the UK and Europe. Unfortunately the energy security of the UK would still

be a concern as the UK would be permanently, and heavily reliant on a single third

party.

The fourth and final option would be to invest in nuclear fusion technologies. As

a concept fusion energy is very much still in the research and development phase.

However, the UK is a world leader in the development of spherical tokamak tech-

nologies, and magnetic confinement fusion poses a real possibility of enabling the UK

to become totally energy independent from the rest of the world. The experimental

machine ITER is currently being built in Cadarache in France. This machine will be

capable of producing 500MW of power, however as a purely experimental machine
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it will not deliver any of this to a national grid. The ITER machine is scheduled

to achieve its first plasma at the end of 2025. One of the main goals of the ITER

project is to demonstrate the capability for fusion energy. The subsequent fusion

machines are DEMO and (PROTO). These are estimated to be capable of produc-

ing 2.0(4.5)GW of power. This amounts to an incredible 43.21(97.22)kWh per day,

per person. This is 47.7%(107.3%) of the UK’s energy demand. Fusion energy has

the unique potential to give the UK total energy independence, and the possibility

of powering the entire UK with a single power plant cannot be overstated. While

this is an exciting possibility, it is unlikely to happen due to the energy security

implications. Large-scale fusion power plants would share some of the security and

environmental concerns of fission plants, due to the handling and storing of nuclear

material. In fusion, this can be somewhat mitigated by minimising the stored fuel

on site [15], which is possible due to tritium breeding techniques (sec. 1.3). How-

ever, one of the most severe concerns would be the total reliance on a single piece

of infrastructure for energy. This would be a high values target in human conflict

situations, be it terrorism or other, and implies that it is unlikely that fusion re-

actors will be ran nationally. An international collaboration, building and sharing

a number of fusion plants would reducing the reliance on any particular site. As a

contributor to the ITER project, and provider of strong investment in the cutting

edge spherical tokamak machine MAST-U, the UK is uniquely well positioned with

trained scientists and fusion technologies to take advantage of fusion energy.

1.2 Magnetic Fusion

We say that we will put the sun into a box. The idea is pretty. The problem is, we

don’t know how to make the box. - Sebastien Balibar, Director of Research, CNRS.

Most methods for generating energy rely indirectly on the Sun. The Sun radiates

energy to Earth via photons. This energy heats pockets of air, causing the wind
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which we can harvest via turbines. The wind drives the waves on the oceans which we

utilise with wave-energy. These photons also drive the evaporation of water, which

condenses into rainfall. Hydro-power generates energy by utilising the gravitational

potential energy of water falling in high-altitude regions. Non-renewable fossil fuel

energy sources have similar origins. Plant life directly harvests the energy radiating

from the sun via photosynthesis. This energy is then transferred down a chain of

animal life, first by herbivore then carnivore animals. The deaths of these living

organisms over millions of years formed the coal, oil, and gas that we burn today.

The sun itself produces energy through nuclear fusion. Classically this process

occurs via a plasma having sufficient pressure for the nuclei to overcome the long-

range coulomb repulsive force in order to bind together through the short-range

strong nuclear force and form new, heavier nuclei. However, the core of the Sun is

quite cold at approximately 15 million degrees Celsius, doesn’t meet these conditions

and should be unable to fuse hydrogen together. Obviously the Sun does undergo

fusion and the mechanism by which this occurred remained a mystery until the

discovery of quantum mechanics in the 1920s. Observing figure 6, as two nuclei

approach one another the separation between them obviously decreases. As a result

the magnitude of the repulsive coulomb force (which is inversely proportional to

the square of separation) grows. The Sun is not hot enough for hydrogen nuclei

to overcome this coulomb barrier (U(R0)). However, with quantum mechanics the

hydrogen nuclei are not considered as particles but as waves. The waveform by

which the hydrogen nuclei are described has a non-vanishing probability of passing

some portion of its energy through the coulomb repulsive barrier, reaching a point

of separation whereby the attractive strong nuclear forces are dominant. Even at

room temperature the probability for this reaction is non-zero, although negligible.

Also in the Sun, the probability of this reaction to occurring is very low, and is

partly why all of the Sun’s hydrogen does not simply ignite in a single instant, but

24



burns slowly over billions of years.

Figure 6: Graphical representation of how quantum tunneling can allow two ions

with energy less than the coulomb barrier (UR0) to fuse. For two ions of equal

charge the position of the coulomb barrier is dictated by the point of "contact"

R0 = Ra +Rb for the species a, and b. Underlying image taken from [16].

In the Sun (and in most stars) the chain of reactions by which hydrogen is formed

into helium is called the proton-proton (pp) chain. This reaction chain consists of 3

stages which can be seen in figure 7. Due to the requirement of quantum tunneling,

this reaction has a low probability of occurring. Additionally, the pp chain is very

slow, taking billions of years to complete the overall combination of hydrogen into

helium. Fortunately the Sun is massive, with a mass of roughly 333000 times that

of the Earth. This shear size allows for these unlikely, and slow fusion reactions to

be sufficient to keep the sun burning and providing the conditions for life on Earth.
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Figure 7: The proton-proton chain by which the Sun generates energy. Image taken

with consent from [17]

Fusing hydrogen into helium releases significant amounts of energy. This is

because the binding energy of helium is greater than that of hydrogen. The binding

energy of an element (figure 8) can be thought of as the amount of energy which is

released when an element is formed. A nucleus which is said to be held strongly by

the nuclear force (high binding energy) exists in a low energy state. It has released

the energy (mass, E = mc2) its nucleons once held to become more stable. As such,

the binding energy is a measure of the minimum amount of energy that would need

to be returned to the nucleus in order to break it apart. The shape of the binding

energy curve in figure 8 is a result of the strengths and ranges of the attractive strong

nuclear and repulsive coulomb forces. A detailed description of this is given in [18].

Light, and heavy nuclei are not as strongly bound as the intermediate elements

which is why it is easier to facilitate nuclear reactions with the very light hydrogen

(fusion, joining) and very heavy uranium (fission, breaking).
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Figure 8: Binding energy per nucleon [19]

1.3 Fusion On Earth

Fusion via the proton-proton chain is unsuitable for our purposes on Earth because

the reaction takes billions of years. There are a number of different fuels suitable

for fusion on Earth and the most realistic make use of isotopes of hydrogen, 2H

(deuterium) and 3H (tritium). Observing figure 8 the difference in binding energies

between hydrogen and helium indicates that there would be significant yield if one

could fuse hydrogen into helium. Fusing nuclei together is difficult. This is especially

true on Earth because we do not have the strong gravitational fields of a star to

help generate massive pressures. Figure 9 shows the Lawson criterion, which is a

commonly used metric to illustrate under what conditions we might expect ignition

to occur in a controlled magnetically confined plasma, and included in the diagram

are three of the most suitable fuels, deuterium-tritium (D-T), deuterium-deuterium

(D-D) and deuterium-helium-3 (D– 3He). Ignition refers to the critical point when

the heat being generated by the fusion reaction has become equal to the heat losses.

27



Achieving a burning plasma (a plasma that has ignited) is an essential part of

magnetic fusion energy, whereby the expensive external heating systems can be

turned off.

Figure 9: Lawson criterion for ignition. The vertical red and green lines indicate

the temperature of the core of the Sun, and the optimal temperature for D-T fusion

on Earth. ne is the electron number density and τE is the plasma confinement time.

Image from [20].

Of the three fuels indicated in figure 9 the D-T nuclear reaction (solid line) is the

easiest to achieve. This is because a D-T plasma has the lowest ignition requirements

of temperature, with a minimum at the trough of the D-T line. On the horizontal

axis this trough lies at approximately 150 million degrees Kelvin which is about 10

times hotter than the core of the Sun. This extreme temperature is required partly

because we lack the Sun’s massive gravitational energy, and we compensate for this

with increased temperature. The D-T reaction goes as
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D + T −−→ 4He(3.67 MeV) + n(14.06 MeV). (1)

The 4He product is considered ‘ash’ and is a harmless, waste product that must

be removed from the plasma. The mechanism for removal is an area of active research

[21]. Removing helium ash is important due to bremsstrahlung power losses (photon-

radiative losses due to charged particle interaction and de-acceleration) scaling as

the square of the species charge. While removing the 4He mass from the plasma is

necessary, the energy of the 4He species is utilised in order to maintain a burning

plasma. With good confinement it is possible for a fusion plasma to become self-

sustaining if the kinetic energy from the 4He is kept within the plasma. It takes

a tremendous amount of electrical energy to bring a fusion plasma up to reaction

conditions. Starting at 50% tritium the DEMO plasma is estimated [22] to require

20GWh which would cost about 2 million dollars. Utilising the kinetic energy of the
4He ash to keep the reaction running without the need for external heating is essential

for economic reasons. Despite this huge initial electrical requirement fusion energy

is modelled [23] to cost between $0.13/kWh and $0.24/kWh (inflation accounted

for). The current price of electricity is about $0.13/kWh. While only the optimistic

predictions for the rate of fusion energy fall within acceptable economic limits, the

costs will fall significantly with subsequent reactor iterations.

Other than D-T there are other possible fuels for fusion. From figure 9 we can

see the Lawson criterion for D-D (dashed line) and D– 3He (dotted line). These

other fuels are considerably harder to fuse. Note that figure 9 has a logarithmic

scale. To reach ignition with D-D fuel, a temperature of 10 times higher than that

of D-T fusion would need to be achieved, in combination of a near 100 fold increase

of neτE. D– 3He fusion again requires a 10 times hotter plasma, but only requires

about 3 times higher neτE. For these alternative fuels, the temperature required to

access the troughs of the Lawson criterion are immense, approaching 1000 million
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degrees kelvin, or 67 times hotter than the core of the Sun. In addition to this,

the fusion reactor must be more sophisticated to be capable of holding a plasma

under fusible conditions at the higher neτE. There are strong benefits to using these

alternative fuels, but due to the tough requirements for ignition they would most

likely only be seriously considered in the distant future after the use of tritium raises

more difficulties than can be justified.

Deuterium is a naturally occurring heavy isotope of hydrogen. In every ton

of seawater there is approximately 33g of deuterium. Assuming that Earth has a

population of 6 billion people, there would be sufficient deuterium to supply each

person with 10000kWh every day for 1,000,000 years [6]. Considering that the

average European uses only 125kWh per day, deuterium on Earth is essentially

limitless. Tritium is another heavy isotope of hydrogen but it only occurs naturally

in trace amounts due to it being radioactive and having a half-life of 12.5 years.

It is extremely expensive. The US government is manufacturing tritium for use

in nuclear weapons at an estimated cost of $102, 000, 000 per kg [24] (adjusted for

inflation). Estimates into the global supply capabilities and consumption of tritium

for fusion energy have been made, and the most pessimistic scenario predicts that

the fusion community will exhaust its supply of tritium as early as 2045 [22]. This

poses an immense risk and challenge to fusion energy. The solution to this problem

is generally seen as the on-site production of tritium from lithium by

6Li + n −−→ T + 4He(3.67 MeV) + p(14.67 MeV) (2)

or

7Li + n(2.5 MeV) −−→ T + 4He + n (3)

.
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The fusion reactors will be surrounded by lithium, which will absorb the high-

energy 14.06MeV neutrons given off by the D-T reactions as shown in equation

(1), generating further tritium which can be stored and used in future reactions.

While this idea is comforting, lithium breeding blankets are relatively experimentally

un-researched. This is concerning and represents a strong challenge to the fusion

community, since the theoretically predicted Tritium Breeding Ratios (TBRs) are

uncomfortably close to break-even (1.0) and generally range from 1.0 to 1.20 [25–27].

Due to its atomic number, lithium is one of the most abundant elements on Earth.

However, the demand of lithium is high and is increasing. Its use in batteries

had lead to immense worldwide demand. Compared to this, the requirements of

lithium for fusion energy tritium breeding are likely to be negligible. Regardless,

the global supply of lithium is estimated to stretch to a maximum of 435 years

[28]. With the exclusion of far-future technologies such as space mining, this limited

supply indicates that D-T fusion will need to be phased out in favour of other, more

challenging fusible materials. D-D reactions are exciting due to the shear abundance

of deuterium and the safe, non-radioactive nature of the fuel. Two possible D-D

reactions are

D + D −−→ 3He(0.82 MeV) + n(2.45 MeV), (4)

D + D −−→ T(1.01 MeV) + p(3.03 MeV). (5)

Both of these reactions release far less energy than the D-T reaction, but may

be able to be used in a similar manner to D-T fusion. The 3He would contribute

towards the self-sufficiency of the burning plasma but would be considered ash and

would ultimately need to be removed from the plasma similarly to the 4He ash in the

D-T reaction. The tritium produced through equation 5 would quickly be consumed

according to equation (1). The proton product would not exit the plasma; it is a
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charged particle which would not be able to escape the magnetic fields which provide

confinement. Its kinetic energy would contribute to heating the plasma. D– 3He is

another feasible reaction, but not addressed in detail here due to the far-future

nature of sourcing 3He. Over billions of years solar winds have deposited significant

amounts of 3He on the moon’s surface. The most likely candidate for 3He sourcing

would be moon mining operations.
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2 Tokamak Physics

2.1 The Spherical Tokamak

Magnetic Confinement Fusion (MCF) aims to maintain a sustained reaction which

will generate energy consistently over time. The conventional tokamak is the most

advanced reactor design and a diagram can be seen in figure 10 (left). For Deuterium-

Tritium (D-T) ignition the core of the plasma must be heated to 150 million de-

grees. The significant amount of energy required to do this must be confined. This

means that the fuel (plasma) must be prevented from touching the vacuum vessel

(see fig 10), but also that the hotter fuel towards the core of the plasma must not

mix or transfer heat to the cooler parts of the plasma towards the edge. At these

temperatures the plasma (D-T fuel) is a ‘soup’ of charged (ionised) particles, and

confinement is achieved by application of a series of magnetic fields which hold the

plasma in place. In figure 10 the toroidal (blue) and poloidal (red) electromagnets

help generate the magnetic fields that confine the plasma. The magnetic fields are

named according to the toroidal-poloidal coordinate system; the toroidal dimension

is parallel to the toroidal magnets, and similar for the poloidal. The resulting mag-

netic fields form magnetic flux surfaces; nested torus shaped surfaces which restrict

the outward (radial) movement of ions due to the Lorentz force F = q(E + V×B)

which includes a restoring force (F = q(V × B)) that acts to resist the movement

of charged particles perpendicular to magnetic field lines. The charged particles

which make up the plasma have high mobility parallel to these flux surfaces but low

mobility perpendicular to them them.

Heating the core of the plasma to 150 million degrees is not easy. In order

to produce the confining poloidal magnetic fields, it is necessary to drive a strong

toroidal plasma current. This current heats the plasma though ohmic friction to
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about 20 million degrees. This upper limit is due to a general property of plasma

to become more conductive (less resistive) at higher temperatures.

Figure 10: Diagram of a conventional and spherical tokamak.Image from [29].

Heating the plasma further can be done with microwaves (Electron Cyclotron Reso-

nance Heating (ECRH) or Electron Bernstein Wave (EBW) heating), or with particle

accelerators (Neutral Beam Injection (NBI)). ECRH [30] uses powerful microwaves

which couple to the harmonics of the electron cyclotron frequency (similar to a mi-

crowave oven, except with plasma instead of water). EBW heating [31] also couples

powerful microwaves to resonant frequencies but it is a much more challenging tech-

nique. It is better suited to heating over-dense plasmas (see sec. 3.3) where the

microwaves are ‘cutoff’ and do not have direct access to the low resonant harmonics

near the plasma core.

A toroidal plasma device capable of reliably delivering fusion energy to an electri-

cal network would need to have high plasma beta (defined below), good confinement,

and steady state operation while maintaining a compact form and using as low as
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possible magnetic field strengths. The Spherical Tokamak (ST) concept shown in

figure 10 (right) is an advancement of the conventional tokamak concept, and is

under development to address these points. The advantages that the ST promises

derive from its aspect ratio. That is A = R/a where R is the radius of the machine

(‘major radius’), and a is the horizontal radius of the plasma itself (‘minor radius’).

These advantages will now be explained. The plasma beta

β =
PThermal
PMagntic

, (6)

refers to the ratio between the thermal pressure of the sustained plasma

PThermal = nekBTe, (7)

to the magnetic pressure that the background magnetic field is generating to confine

it

PMagnetic =
B2

2µ0

, (8)

where ne, kB, Te, B, and µ0 are electron number density, Boltzmann’s constant,

electron temperature, magnetic field strength, and permeability of free space, re-

spectively.

The thermal pressure (Eq. (7)) of the plasma is driven by the high temperature

and high number density requirements for fusion. The magnetic pressure (Eq. (8))

is driven by the high electrical powers used to power the toroidal/poloidal electro-

magnets, and drive a toroidal current to generate the background magnetic field.

The plasma beta is then a measure of machine efficiency. It measures a particular

machines attainable fusion parameters and compares it to the magnetic fields which

are required to confine such a plasma. As such, a higher plasma beta is favourable.

The confinement of a toroidal fusion device refers to the degree by which heat and
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particles are unable to move radially, across magnetic flux surfaces. A machine with

exceptional confinement will see very little radial movement. Effective confinement

is essential for an efficient fusion plasma device as the properties of the plasma at

its core will need to continuously be maintained at the required temperature and

density for fusion. Radial movement of any heat or density from the plasma core

into a colder region which has a lower reaction rate is undesirable as it reduces the

efficiency of the machine. The beta in STs is generally higher because of the shape

of the machine [32]; much higher safety factors can arise naturally in STs due to the

tight aspect ratio. This allows for a reduction in the poloidal background magnetic

field strength, reducing the denominator in the safety factor,

q =
rBφ

RBθ

, (9)

which is a measure of MagnetoHydroDynamic (MHD) stability. A fall below q = 2

results in the plasma becoming magnetohydrodynamically unstable. Small MHD

kink (current driven) or ballooning (pressure driven) instabilities [33] can grow,

leading to macroscopic changes to the plasma topology, causing severe degradation

of energy confinement or termination of the plasma. The magnetic pitch angle on the

outboard side of a ST is aggressive, and at first glance this would imply a low safety

factor. However, on the inboard side the pitch angle is more modest, and crucially

the toroidal circumference tiny when compared to the poloidal circumference. This

inboard difference in circumference vastly increases the safety factor, as the path-

length of a single toroidal rotation is very small. In a conventional tokamak the

toroidal circumference on the inboard side remains large. As a result stronger back-

ground magnetic fields (B0) are required to keep the safety factor above 2.0. Since

the plasma beta scales as β ∝ B−2
0 modest reductions of the background magnetic

field strength yield aggressive improvements in the plasma beta. The reductions in

the required B0 when comparing conventional tokamaks to STs are far from modest.
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Typically B0 is a factor of 10 lower on STs than conventional tokamaks [34]. The

magnetic fields in ITER (conventional tokamak) can reach 11.8T whereas MAST-U

(spherical tokamak) has a maximum of field of 0.8T . Furthermore, the upper limit

of achievable beta (the Troyon limit [35]) on a particular machine is limited by the

amount of drivable current. Driving higher currents reduces the safety factor, as it

increases the magnetic pitch angle. Since STs exhibit a much higher safety factor,

they are capable of driving much higher currents, and as such the beta limit becomes

higher. The highest plasma beta (normalised, βN = βI/aB) achieved in a conven-

tional tokamak was in DIII-D at β = 0.125(4.3) [36]. On a ST the record is held by

PEGASUS at β ≈ 1.0(14.0) [37]. Simply put, ST machines are more efficient.

Current conventional and spherical tokamak devices cannot be operated contin-

uously. This is because the plasma current is generated by ramping of a DC current

through a solenoid positioned at the centre of the toroidal device. Faraday’s law

∇× E = −∂B
∂t

(10)

dictates that this results in a time varying magnetic field. Should this magnetic

field interact with another electrically conductive material (i.e. a plasma), the there

exists some magnetic flux

ΦB =

∫ ∫
S

B · dS. (11)

Since the original DC current is being ramped, the magnetic flux is varying with

time which drives an electromotive force (EMF)

ε =
∂ΦB

∂t
. (12)

Should the EMF be driven in a a looped material with some resistance (i.e. a

toroidal plasma) a current will arise as
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V = ε− Ir, (13)

where V is the voltage, I is the current density, and r is the internal resistance of the

looped conductor (the toroidal plasma). This induced current is vital to the plasma

confinement as it is required to negate the effects of particle drifts. The realisation

that one cannot continue to ramp a current indefinitely means that such devices

must be "pulsed". In order words these devices cannot maintain the toroidal cur-

rent indefinitely. A fusion device which is generating energy for an electrical grid will

need to be able to run continuously in ‘steady state’. Current tokamak devices are

experimental and as such running in a pulsed configuration can be satisfactory for

the development of fusion research. While there are toroidal steady state machines

[38] which do not rely on the central solenoid, these Stellarator devices are funda-

mentally different to tokamak devices and do not present a solution to the pulsed

issue of tokamaks. It is possible to directly drive current using microwaves with

Electron Cyclotron Current Drive (ECCD). This technique couples powerful micro-

waves to the electron cyclotron harmonics within the plasma. Electrons travelling

in one toroidal direction are selectively heated by matching to the desired gyro-

frequency direction. Since the resistivity of a fully ionised plasma scales inversely

with temperature (see eq. (173) below), this translates into a reduced collisional

frequency and therefore increase in current density. It is also possible to directly

drive current with negative ion Neutral Beam Injection (NBI) [39]. Negative ions

are accelerated with strong electric fields before being passed through a neutraliser.

The now neutral atoms are fired into the tokamak along one toroidal direction and

couple their energy to the plasma through collisions. These ions can be deuterium

or tritium [40] for fuelling purposes, and negative ionisation is favoured due to bet-

ter energy retention post-neutralisation at higher energies. NBI has been seen [41]

on the conventional JT-60U tokamak to be capable of delivering 1MA of toroidal
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current using 3.5MW of power. This is can be put into perspective by observing

the requirements of NBI in the ITER [42] tokamak which seeks to drive 15MA with

20MW of NBI power. However, the main focus for non-inductive current drive in

spherical tokamak machines is the bootstrap current [43]. This current is intrinsi-

cally driven by the interactions between trapped (by magnetic fields) and passing

particles. The bootstrap current scales linearly with beta, and monotonically with

elongation [44]. The high beta advantages of STs have already been discussed,

and STs naturally tend towards elongation [45], which describes the shape of the

plasma. Defined as κ = b/a where b is the vertical plasma radius, and a is the

horizontal plasma radius, elongated plasmas have been associated with increased

plasma stability. Spherical Tokamak Power Plant design [44] has estimated that the

pressure gradient driven bootstrap current may be capable of driving up to 82%

of the required toroidal current. The remainder of the required current could be

attained through combinations of the diamagnetic currents which naturally arise in

a toroidal fusion device (estimated 8%), and small amounts from auxiliary (ECCD,

NBI) current drive systems.

Smaller machines are more favourable from a political perspective. While the

plasma volume is an important factor in the achievable fusion power, it must be

balanced with the cost of the machine. Increasing the major radius of a device

simply requires more infrastructure which drives up costs. Private investment into

magnetic confinement fusion energy is small, but some does exist [46]. There are

also other serious and reputable companies pursuing variations of magnetic fusion

[47, 48]. The reasons for poor private investment into magnetic confinement fusion

are likely complex, although cost and investor faith in the technology will be major

factors. The future of fusion energy lies with commercialisation of the technology.

Currently MCF is very much in a development stage which relies on vast governmen-

tal financial support. Similarly to the development of consumer electronics such as
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the smart-phone [49], private companies will at some stage need to take over when

the MCF concept becomes sufficiently developed. In the interest of fusion energy

it is desirable that this becomes feasible as quickly as possibly. To facilitate this,

current public research spending must be carefully targeted towards machines with

reasonable build-times, costs, and risks associated with them. These considerations

favour small, compact, and efficient machines with low magnetic field requirements,

such as the ST.

ST machines [32] have been, and continue to be, developed around the world with

the goal of an affordable and efficient fusion power-plant in mind. The UK has seen

particularly strong investment with START (1990-1998) [50], and then MAST (1999-

2013) [51] which has recently been upgraded to MAST-U (2019-pres.) [52]. The USA

has two machines; PEGASUS (2003-2019) [53] which is currently being upgraded

to Urania [54], and NSTX (1999-2015) [55] which was recently upgraded to become

NSTX-U (2015-pres.) [56]. Worldwide other ST experiments have been built such

as GLOBUS-M and GLOBUS-M2 (2001-pres.) [57, 58] (Russian Federation, 2001-

pres.), ETE [59] (Brazil, 2000-pres.), and TS-3/4 [60] (Japan). The conventional

tokamak is further ahead than the ST in its development cycle. This is evident from

the current world records for various important parameters. Virtually all the records

are held by conventional tokamaks, with the exception of the highest achieved plasma

beta. With the massive international investments being put into the ITER project

[61] it is likely that the conventional tokamak will achieve a burning plasma long

before any ST machine. The Q-factor is a measure of machine performance, and

measures the ratio between energy supplied to a fusion device and energy yielded

by fusion reactions. A machine reaching break-even would correspond to Q = 1.0.

The current world record is Q = 0.22 [62] and was achieving in 1997 by the CCFE

team on the JET tokamak. ITER is predicted to be the first fusion machine to

achieve a burning plasma, and is predicted to obtain Q = 10.0. The ST concept is
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at heart designed to address the concerns relating to the commercialisation of fusion

energy. Favouring small, compact devices with high plasma betas, and low magnetic

fields, future machines delivering energy to consumers will likely be STs as opposed

to conventional tokamaks.

2.1.1 The Plasma Edge

During low-confinement (L-Mode) experiments on ASDEX [63] a new operational,

high-confinement (H-mode) regime was discovered. This accidental discovery of the

transition between the L-mode to H-mode plasma immediately saw an improvement

of the confinement time by almost a factor of 2. H-mode transition occurs due to a

sharp region of strongly improved confinement arising near the plasma edge. This

region is named an edge transport barrier, and a sharp increase in edge number

density and pressure gradient follows its formation. The region encapsulating the

plasma edge up until the top of the high density gradient is called the pedestal.

Further towards the core, the number density continues to increase more gently and

the core profile is said to ‘sit’ on the formed pedestal. One possible explanation

for the transition into H-mode is that there exists a sudden and sharp increase in

the radial electric field (Er) strength which causes enhanced stability by inducing a

localised change in the plasma particle flow profile.

Figure 11 details experiments on DIII-D [64] which showed that a sudden peak

in Er (fig. 11a) correlates well to a simultaneous increase in ion temperature (fig.

11b), electron temperature (fig. 11c), and electron density (fig. 11d).
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Figure 11: DIII-D tokamak data showing a) The radial electric field Er at various

times vs major radius R showing the sharp increase in Er around the edge transport

barrier roughly 0.5cm in from the separatrix edge. b) The ion temperature Ti at

various times vs R. c) Electron temperature Te vs R and d) electron number density

ne vs R [64].

The gradient in the radial electric field dEr
dr

causes sheared flow. Sheared flow has

been seen to suppress certain micro instabilities [65], and this sudden change in Er

may cause a localised increase of poloidal (vθ = −Er
B0

) and toroidal (vφ = −ErBθ
B2

0
)

flow velocity [64].

The increase in plasma edge density and temperature gradients has a positive

effect on the overall performance of a toroidal fusion device. The center of the

plasma can more easily reach higher temperatures and densities as the core profiles

sits on the top of the pedestal profile. The H-mode has become a standard op-

erating regime for tokamak fusion. Despite this, the L-mode to H-mode transition

mechanism remains poorly understood, and empirically derived [66] power threshold

formulae are used to estimate the transition point based on fundamental tokamak

parameters. While considered baseline for modern tokamak reactors, H-mode and

the formation of the pedestal comes with challenges. Small-scale (less than the ion

gyro-radius) turbulence or ‘microturbulence’ is driven by the harsh temperature and
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density gradients that the pedestal provides. This turbulence is not well understood

but is thought to have significant influence over the transport mechanisms in the

plasma edge. Refined and controlled confinement, and pedestal control are crucial

aspects of running a tokamak plasma for fusion energy. Understanding the underly-

ing mechanisms by which microinstabilities arise and allow for cross-field transport

is cutting edge science.

2.2 Micro-turbulence

Fundamentally, Spherical Tokamaks (ST)s have a tight aspect ratio of a/R ≈ 1,

where a is the minor radius and R is the major radius. This is much higher than

in conventional tokamaks and enables operation at higher plasma betas. Because of

this tight aspect ratio ST plasmas exhibit strong toroidal geometry, meaning that

the plasma curvature, and magnetic field pitch angles can be high. This has been

seen to influence particle dynamics and the stability of the plasma, in part due to

the growth of microinstabilities. Microinstabilities are any non-catastrophic plasma

perturbations that have a wavelength smaller than the ion Larmor radius

ri =
miv⊥
qB0

, (14)

which is a measure of how tightly ions are gyrating around the magnetic field lines,

where mi is the ion mass, v⊥ is the ion velocity perpendicular to the background

magnetic field, q is the ion charge, and B0 is the background magnetic field strength.

These instabilities are driven by strong density ∂n/∂r and temperature ∂T/∂r gra-

dients, where r is the radial spatial dimension.

The transition from L-mode into H-mode causes the formation of the ‘pedestal’

region at the plasma edge. Roughly a few centimeters in width, the pedestal is a

narrow region with very strong density and temperature gradients. This formation

is fantastic for fusion energy, and is able to arise due to the development of the edge
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transport barrier. However, due to the strong plasma gradients microinstabilities

can become particularly unstable in this region. There are different types of mi-

croinstabilities and they are grouped into ‘modes’ based on their physical character-

istics. The Electron Temperature Gradient (ETG) modes and Microtearing Modes

(MTMs) are two examples of these non-catastrophic turbulent modes. They are of

particular interest because they are thought to cause significant ‘anomalous’ cross

field transport; transport of particles, momentum, and heat via mechanisms out-

side of the scope of coulomb collisions in quiescent plasmas (neoclassical transport).

These instabilities may constrain the height and shape of the pedestal profiles, and

their influence is often described by their contribution towards electron diffusivity,

χe. This diffusivity is the rate at which heat or particles are transported radially,

and can be determined experimentally [67] by observing how the heat or density dis-

tribution profiles vary with space and time. Physically, electrostatic turbulence such

as the ETG mode can directly perturb the particle flux surfaces. Turbulence with

strong magnetic field components such as the MTM can interact with the helical

background magnetic field and produce densely packed magnetic islands between

rational surfaces [68]. If the islands are large enough then field line "braiding"

between overlapping magnetic island chains can cause the breakdown of rational

surfaces (where the safety factor (eq. (9)) is a rational number) and coupling of fast

parallel particle transport to radial transport.

The pedestal of H-mode plasmas generally grow over time; the peak tempera-

ture and number density becomes higher, and the gradients become steeper. This

cannot continue indefinitely, and left unchecked the pedestal will become unstable

and Edge Localised Modes (ELMs) will arise. ELMs are not microinstabilities, they

are large, potentially catastrophic modes which can cause a violent eruption of heat

and particles from the plasma. This eruption can damage the tokamak. Even if

the plasma is not destroyed, the loss of heat and density causes a large and sud-
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den drop in the plasma profiles; the peak density and temperature in the pedestal

fall sharply, and the gradients weaken. The pedestal is shunted into a stable state,

meaning that the ELMs are no longer present. The pedestal must recover from this,

and the density and temperature profiles grow over time. Unchecked, this growth

eventually causes the pedestal to become unstable again, which results in another

ELM. ELMs are therefore cyclic instabilities. Since microinstabilities may have a

substantial role in driving anomalous transport, it is thought that they could be de-

cisive in the recovery and growth of the pedestal. Control over the microinstabilities

arising in the plasma edge may not only provide superior confinement but also yield

control over the growth of the pedestal. With advanced pedestal control it may be

possible to avoid growing the pedestal into an unstable state, avoiding the onset

of ELMs altogether. Furthermore, it has be seen [69] that strong plasma shaping

combined with exquisite plasma control allows for even more advanced performance

confinement regimes.

The ETG mode is generally considered electrostatic, however electromangetic

ETG modes do exist [70] and may also have significant implications for electron heat

transport. The electrostatic component of the ETG mode is on the electron scale,

with a spatial length-scale on the order of
√
ρeLTe [71] where ρe is the electron Lar-

mor radius. The mode’s contribution towards electron diffusivity is approximately

given [72] by

χe ≈
qvTe
Lne

(ηe − ηcr)
(

c

ωpe

)2√
βe, (15)

where q = RBθ
rBφ

is the safety factor, vTe =
√

kBTe
me

is the thermal velocity, Lne is the

electron density gradient length-scale, ηe = Lne
LTe

where LTe is the electron tempera-

ture gradient length-scale, ωpe is the electron plasma frequency, and βe is the electron

plasma beta defined in equation (6). ηcr is the critical value of ηe, above which tur-

bulence and transport increase locally. Values of χe ≤ 0 indicate that the ETG mode
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is stable. Whereas χe > 0 implies that the plasma conditions support some growth

of the turbulence which will reduce the quality of the confinement. The density or

temperature ‘length-scale’ refers to how strong the respective gradients are. A sharp

gradient would have a small length-scale. The electron plasma frequency (ωpe) is

the characteristic frequency of the natural oscillations of the plasma. This frequency

will be further addressed shortly, briefly in section 2.3.1, and more thoroughly in

section 3. While expression (15) is only an approximation of the influence of the

ETG towards diffusivity, an analysis yields insight into the drivers of the instability.

Electron temperature is indeed important as an increase in Te would drive up the

plasma beta (which is generally desirable), as well as the thermal velocity. How-

ever, the diffusivity scales only weakly with these parameters. The driving term is

primarily (ηe − ηcr) where ηe is the driver while ηcr is a restoring term determined

by the experiment. Since ηe is the ratio between the density and the temperature

length-scales, the prevalence of ETG induced electron transport requires a consid-

eration of both Lne , and LTe . The ETG mode is characterised by ‘twisting parity’.

Turbulence oscillates, and parity is a measure of the phase difference between the

magnetic and density oscillations. These two components are together considered

an ‘eigenmode’. This means that while a phase difference can exist, the density

and magnetic components oscillate at the same frequency and their amplitudes in-

crease/decrease in proportion to one another. Linear gyrokinetic simulations [73]

modelling an H-mode plasma at the mid-plane, near the plasma edge, predict the

eigenmode structures in figure 12 for the ETG mode (left) and the MTM (right).

The horizontal axis in figure 12 is in degrees, and refers to the poloidal position,

where 0◦ is the outboard mid-plane. The vertical axis is normalised amplitude. The

ETG mode shows twisting parity, and the MTM shows tearing parity.
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Figure 12: The linear gyrokinetic code GS2 [74] calculated eigenmode structures of

the ETG mode (left) and the MTM (right) at the outboard midplane [73].

Micro Tearing Modes (MTMs) are electromagnetic modes and have been under

research since the early 1960s. They are characterised by their tearing parity, and

large toroidal and poloidal wavelengths. Typically comparable to the ion Larmor ra-

dius, MTM wavelengths are on a much larger scale than that of the ETG mode. One

of the earliest analytical models of MTMs was developed in the late 1970s [75], and

the main drive mechanism is shown to come from the electron temperature gradient.

This analytical description recognises that the electron-ion collisional frequency is an

important variable when considering the growth rate of MTMs, and three separate

formulae were developed to describe the collisionless, semi-collisional, and collisional

limits. The analytical expressions for these limits becomes increasingly complicated

when moving from the collisionless to the collisional limit. However, a driver for

all of these limits is the rate of change of the magnetic vector potential, ∂Az(r)/∂r,

where Az(r) is the potential parallel to the toroidal dimension, which results in a

poloidal magnetic field. An electron temperature gradient could induce a magnetic

vector potential gradient due to currents induced according to Ampére’s law, by a
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gradient in the thermal velocity, since vTe =
√
kBTe/me. MTMs are also sensitive

to the magnetic shear length-scale [76], which refers to the degree by which the total

magnetic field vector varies with the radial dimension. Research into the nature of

MTMs is cutting edge science and is not fully understood. High beta devices (like

the ST) have been seen to be particularly susceptible to electromagnetic turbulence,

and a strong relationship between high beta and MTM growth rates has been seen

[77]. This is understandable because higher beta plasmas would require relatively

less energy for the magnetic field lines to become perturbed. Although [77] does ad-

mittedly also show that very high values of β cause suppression of MTMs, and the

reason for this is described as unknown. Numerical simulations [78] have been seen

to agree with an early analytical model [75] of the MTM, predicting that electron-ion

collisions are a crucial factor in driving an unstable MTM. Whereas, more recent

linear gyrokinetic simulations [77, 79] have observed MTM growth rates that are

either insensitive, or even, inversely proportional to electron-ion collisionality. In-

deed, MTMs have been seen [80, 81] to be unstable towards the plasma edge at low

collisionalities. Such discrepancies may be caused by physical differences between

MTMs in the core and MTMs in the edge of tokamak plasmas. There may also be

a drive mechanism present at low collisionality caused by the interaction between

trapped and passing particles [82, 83], an effect which the author’s state should

vanish without an energy dependent collisional operator. Contradicting this, MTM

modes have been found to be unstable even in the presence of an energy independent

collisional operator [84], and it is acknowledged that there are no known drivers that

would make this possible. There are a number of different drivers for the MTM and

there may be even more, unknown mechanisms for driving the instability. Neverthe-

less, it is at least accepted that the growth rate of MTMs has a strong dependence

on both the electron temperature gradient ∂Te/∂r, and the magnetic shear scale

length. These properties imply that MTMs could be particularly prevalent in the
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edge of spherical tokamak plasmas. The magnetic shear at the plasma edge of such

machines can be high. Additionally, the transition of the plasma into H-mode leads

to the formation of a pedestal which can lead to large ∂Te/∂r. It has been theorised

[68, 85] that the radial, anomalous, transport of heat and particles in a tokamak is

caused by the degradation or destruction of the magnetic flux surfaces. This can

cause the magnetic field to become stochastic in nature. It has been demonstrated

[86] that in toroidal geometry a single turbulent mode can lead to the destruction

of these surfaces. When this happens adjacent, destroyed surfaces can feature mag-

netic field lines with new stochastic properties that can ‘wander’, and overlap and

connect to one another. This effect, sometimes referred to as magnetic field line

braiding, can cause coupling between the radial transport and the far more rapid

parallel transport, reducing the quality of the confinement of the machine. MTMs

are thought to be an important contributor towards anomalous electron transport

[81, 87, 88]; their influence towards the electron diffusivity can be described [89, 90]

by

χe = RvTe

(
ρe
LTe

)2

. (16)

Similarly to the ETG mode, analysis of equation (16) shows that the MTM electron

diffusivity is sensitive to the electron temperature gradient. Importantly, equa-

tion (15) suggests that the ETG electron diffusivity scales linearly with increasing

electron temperature gradients, while equation (16) shows that the MTM scales

quadratically with the gradient.

The MTM is not well understood. Both ETG and MTMs are suspected to be

significant drivers of the anomalous transport in tokamaks, which can be two-order

of magnitude greater than neoclassical transport [91]. H-mode plasmas are prone to

sharp temperature gradients in the plasma edge, which has been shown to drive both

ETG and MTMs. However, STs seem particularly susceptible to MTM turbulence
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because of the higher beta, as well as a relationship between increased magnetic

shear [92] (or similarly increased shear flow [93] ) and the growth rate of the MTM.

In order to improve the quality of confinement and develop the ST concept it is im-

portant to study and understand the transport mechanisms occurring in the plasma.

Better understanding the MTM will be an important part of this study. Almost all

of MTM research is theoretical. This is partly because they are challenging to

measure experimentally. Developing a diagnostic technique that can discriminate

between heavily electromagnetic (MTM) and electrostatic (ETG) modes would be

tremendously helpful in the quest to understand microturbulence. The parity dif-

ferences between various microturbulent modes may assist in this endeavour. Due

to their opposing parity, discrimination between the ETG mode and the MTM may

be possible with simultaneous measurements of their produced density (δn/n) and

magnetic (δB/B) perturbation strengths. The ratio of (δB/B)/(δn/n) would give

an indication as to whether a detected mode was electrostatic, or electromagnetic.

Analysis [73] indicates that this ratio is predicted to be 0.38 for the MTM and

0.019 for the ETG mode. The density perturbation strength (δn/n) could be mea-

sured with Doppler Back-Scattering (DBS); a conventional technique. Measuring

the magnetic perturbation strength (δB/B) is far more challenging. This is partly

because δB/B is generally much weaker than δn/n, and harder to detect as a re-

sult. Cross-Polarisation Doppler Back-Scattering (CP-DBS) is a novel diagnostic

technique which aims to measure δB/B, and is the main focus of this thesis. Suc-

cessful development could enable access to previously unattainable experimental

turbulence information which could advance our understanding of microturbulence,

plasma transport, pedestal control, and plasma control.
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2.3 Perturbation Diagnostics

2.3.1 Doppler Back-scattering (DBS)

Microturbulence can cause perturbations in a tokamak density gradient or magnetic

field. The strengths of these perturbations are generally normalised to the relevant

background quantity. For instance, density perturbation strengths are measured as

δn/n where δn is the perturbed density, and n is the background density. Similarly,

the magnetic field perturbations are measured as δB/B. These perturbations are

3D structures. They are poloidally orientated modes which are extended along the

background magnetic field lines due to the excellent parallel transport. This concept

is illustrated in figure 13.

Figure 13: Simplified graphic showing how a poloidally orientated, single frequency

perturbation can be extended along the background magnetic field lines [94].

Microturbulent modes therefore have wave-numbers both perpendicular (k⊥), and

parallel (k‖) to the background magnetic field. These wave-numbers are physical

properties which can be measured, and are one piece of information which can be

used to help distinguish between different microturbulent modes. For example fig-

ure 12 indicates that the MTM has a much smaller wave-number than the ETG

mode, at k⊥ = 0.5cm−1 and k⊥ = 7.0cm−1, respectively. Plasma theory is cov-
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ered in section 3, however there is a single concept which needs to be mentioned

before microwave diagnostics can be discussed. Consider a narrow beam of light (of

microwave frequency for our purposes) propagating into the plasma, towards the

core. If we say that this beam has a linear polarisation, orientated parallel to the

background magnetic field, then it is said to be in ‘Ordinary-mode’ (O-mode) po-

larisation. This O-mode microwave beam will be propagating through increasingly

dense plasma. This is important because the plasma itself is also oscillating; the

electron plasma frequency

ωpe =

√
neq2

e

meε0
(17)

is a typical frequency of this plasma oscillation, where ne is the electron number

density, qe is the electron charge, me is the electron mass, and ε0 is the electric

permittivity of free space. With increasing number density, the plasma frequency

also increases. If the plasma frequency (i.e. number density) becomes high enough,

the microwave can be ‘blocked’ from propagating further. The region of plasma that

the microwave cannot enter is named ‘over-dense’, whereas the region which will

allow propagation is named ‘under-dense’. When the microwave hits the boundary

between the under-dense and over-dense plasma, it reflects. This boundary is named

the ‘cut-off’ and this reflection is utilised in diagnostic techniques. If the cut-off

is a homogeneous surface then specular reflection will occur. In reality, plasma

turbulence causes the cut-off to be perturbed. The wave-front of the microwave

reflects inhomogeneously from this surface resulting in ‘scattering’. That is, there

are ordered reflections (fig. 14) propagating in various directions, depending on the

wave-number spectrum of the perturbation at the cutoff.
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Figure 14: Scattering of a probing beam from a perturbed cut-off. The perturbation

has a single wave-number k⊥, and is moving poloidally with a velocity v⊥ [94].

The direction that the scattered microwave propagates in is predictable because

it is a function of the perturbation wave-number (k⊥). Figure 14 is a simplifica-

tion, because the cut-off is oscillating with only a single frequency. This produces

scattering in predictable ‘ordered’ directions. In reality, a plasma cut-off will be

oscillating with many frequencies and the wave-number spectrum is said to be a

continuum. This causes the ordered scattering to propagate in many directions. By

only detecting the scattering which propagates directly back along the original beam

path (back-scattering) we can use the Bragg condition to calculate the perturbation

wave-number responsible;

k⊥ = 2ki sin(θtilt), (18)

where k⊥ is the perturbation wave-number that caused the back-scattering. The

other quantities are defined by the experimental setup; ki is the wave-number of the

probing microwave, and θtilt is the angle which the microwave is launched at with

respect to the normal to the density gradient (defined figuratively in fig.14). The

Bragg condition allows back-scattering diagnostics to act as a sort of filter; a single
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wave-number can be probed out of the wave-number continuum. Varying θtilt allows

the wave-number continuum to be ‘scanned’, and by observing the relative intensity

of the back-scattered signal, we can acquire the perturbation strength (δn/n or

δB/B) at a particular wave-number. Furthermore, any frequency change of the

return signal is a result of Doppler shift. The turbulence causing the perturbed

surface at the cut-off is rotating, and this non-zero poloidal velocity causes the

frequency to shift. These three pieces of information are incredibly useful; observing

only the back-scattered signal allows for measurement of a single wave-number (k⊥),

the back-scattered signal intensity gives the strength of the perturbation (δn/n or

δB/B) at this wave-number, and the frequency shift of the return signal gives the

rotational velocity (v⊥) of the perturbation wave-number that we are scattering

from. These concepts underpin the mechanics of the diagnostic techniques Doppler

Back-Scattering (DBS) and Cross-Polarisation Doppler Back-Scattering (CP-DBS).

DBS and CP-DBS are very similar techniques. A launched microwave interacts

with a plasma cut-off, scatters, then yields information regarding the perpendicular

(to the background magnetic field) orientated turbulence which is perturbing the cut-

off surface. The interaction between the parallel orientated turbulence component k‖

and the probing beam ki is generally negligible [95] as k‖ is too small to be detected

by a reasonably sized probing beam. This is due to the fast parallel heat/particle

transport causing parallel perturbation wave-lengths to be large. Back-scattering

diagnostics are highly localised techniques. By this we mean that despite some

back-scattered signals being emitted at every point along the beam path, the vast

majority of the back-scattered power results from a narrow region of space at the cut-

off. There are two main reasons for this. Firstly, as the probing beam approaches the

cutoff the amplitude of the electric field Ei increases. Generally, the back-scattering

is strongest when Ei is largest, and Ei peaks at the cutoff. Secondly, the amplitude

of the turbulence is proportional to 1/k3
⊥ [96], and the scattering efficiency between
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the incident beam and this perturbation is proportional to 1/k2
⊥ [97]. One would

then expect generally stronger scattering for lower wave numbers. As a probing

beam propagates into higher densities, it’s wave number (ki) decreases. Due to

the aggressive scaling of perturbation strength, and scattering efficiency, the back-

scattering is highly localised to minimal values of ki which occur at the cutoff, as

the wavelength increases. In essence, the decreasing of ki, and the increasing of Ei

as the beam approaches the cut-off causes back-scattering diagnostics to be highly

localised.

Fundamentally, the scattering mechanism is driven by the interaction between

the incident radiation’s electric field (Ei) and the plasma electrons which are driven

to oscillation to produce a scattered wave. This interaction can be described by the

Lorentz force

F = q(Ei + ve ×B), (19)

where ve is the velocity of the electron, B is some magnetic field that the electron

is interacting with, and F is the force on the electron which drives the oscillations

and the resulting scattered beam. DBS is used to measure the density perturbations

(δn/n) and the mechanism is understandable by ignoring the interaction between

the electron velocity and the magnetic field. Equation 19 becomes

F = qEi, (20)

which is simply stating that a force exists when a charged particle is subjected to an

electric field. The oscillating force on the electrons drives a current density which is

given [98] by

δJ(δne) =
δn

n
σ̄Ei, (21)
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where δn
n

is the normalised perturbed electron number density. Zou et al. have used

the unmagnetised conductivity tensor such that σ̄ =
iε0ω2

pe

ω
where ωpe is the plasma

frequency.

The DBS technique is powerful; highly localised, non-intrusive, and capable of

providing information regarding the wave-number, amplitude, and poloidal rota-

tional velocity of density turbulence. It can give a direct measurement of δn by

observing the amplitude of the back-scattered wave generated by the oscillating

current density δJ(δn). Additionally, the diagnostic equipment can be situated far

from the plasma with the use of wave-guides. This would cause only a small amount

of space in the reaction wall to be required, and would allow for easier shielding of

the diagnostic instruments from the powerful neutron radiation that a fusion plasma

will emit.

2.3.2 Cross-polarisation Doppler Back-scattering (CP-DBS)

Cross-polarisation Doppler back-scattering (CP-DBS) uses the same fundamental

principles as the Doppler back-scattering (DBS) diagnostic technique, and as such

it features similar benefits. The diagnostic is highly localised, non-intrusive, the

equipment is relatively easy to fit onto a fusion device, and can provide informa-

tion into perturbation wave-number, amplitude, and poloidal rotational velocity.

Whereas DBS measures the density perturbation strength (δn/n) of turbulence at

the cut-off, CP-DBS measures the magnetic perturbation strength (δB/B). Simi-

larly to DBS the scattering of the probing beam is caused by coupling between the

charged electrons and the incident beam’s electric field. This can be described by

the Lorentz force shown in equation (19). Where the DBS mechanism focused on

the first term on the right hand side of this expression, the mechanism behind the

CP-DBS diagnostic utilises the second term; the interaction between the velocity of

the electron and some magnetic field. A probing beam drives electron oscillations

56



according to equation (20). Should this new velocity vector ve have a component

which is perpendicular to a magnetic field, a secondary force will be applied;

F = qeve × δB. (22)

Similarly to the DBS interaction, a small oscillating current is generated. However,

due to the cross-product relationship in equation (22) this new current δJ(δB) is

orthogonal to Ei. The current δJ(δB) generates a second scattered wave with po-

larization perpendicular to that of Ei. By definition, this second scattered wave

features a different polarisation to the launched beam. It is believed that by detect-

ing back-scattering in the polarisation orthogonal to that of the incident wave, the

magnetic perturbations can be measured.

Equation (22) illustrates the core principle behind the mechanism responsible

for the microwave scattering into the cross-polarisation. However, a more thorough,

qualitative representation of the perturbed current density is given [98] by

δJ(δB) =
ωce
ε0ω2

pe

σ̄(σ̄Ei ×
δB
B

), (23)

where σ̄ is the unperturbed plasma conductivity tensor, the form of which is depen-

dent on the particular plasma model as is discussed in section 3. Notably, Zou et al

features a typo where equation (23) has the ωce variable displayed incorrectly as ω.

CP-DBS has a number of potential issues [73] which stem from the weak am-

plitudes of the magnetic perturbations (δB/B � δn/n). The back-scattered signal

is so weak that it may be difficult to detect over spurious noise emitted from other

sources. Secondly, inaccuracies in matching the polarisation of the microwave to

the magnetic field pitch angle at the scattering location can lead to spurious and

misleading CP-DBS signals. Although, experimentally [73] the influence of the miss-

match angle can be minimized by passing the probing beam, and back-scattered sig-

nal through the same polariser. Non-WKB effects are also concerning; there exists
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no satisfactory analytical descriptions of electromagnetic waves interacting with a

strongly inhomogenous medium. The Wentzel–Kramers–Brillouin (WKB) approx-

imation can yield an analytical description of an electromagnetic wave interacting

with a near-homogenous medium, as it relies on the assumption that the medium

does not vary substantially. H-mode back-scattering diagnostics operate in aggres-

sively inhomogenous plasmas, and there may be important physical effects that the

WKB approximation cannot predict. The invalidity of the WKB solution in regards

to back-scattering diagnostics, the lack of any better analytical descriptions, and

the delicate nature of the CP-DBS signals are the primary drivers for the require-

ment of numerically expensive, full-wave numerical modelling. The WKB solution

is discussed in section 3.4. This research aims to extend current scattering theory

to better understand behaviour in the complex, anisotropic, inhomogenous pedestal

region and to what extent these potential issues affect CP-DBS measurements.
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3 Cold Plasma Model

In numerical modelling, it is often impractical to model all of the physical effects in

a particular system. The broad range of physics occurs at an equally broad range of

spatial and temporal scales, and depending on the aims of ones investigation some

ranges of these scales may be unimportant. The research in this thesis consists

of modelling very high frequency electromagnetic waves. The velocity and wave

oscillation period is overwhelmingly faster than the plasma thermal motion and

oscillations, which is to say that these plasma effects may be negligible; ignoring

and excluding them will not significantly reduce the accuracy of the results. Phys-

ical approximations are very common in theoretical science because it can enable

a reduction in the complexity required to model a system. This is advantageous

because the system becomes easier to understand, and often lowers the computa-

tional demands required to solve a problem. The ‘cold plasma dispersion relation’

is frequently used for modelling electromagnetic wave propagation in fusion plas-

mas. This model assumes that the plasma is cold; the electrons and ions have zero

background velocity, and thermal effects (such as thermal pressure) are ignored.

Furthermore, due to the mass difference between electrons and the ions, the ions

are much slower to respond to the stimuli of the electromagnetic wave. Due to the

fast time-scales that the plasma-wave interactions take place over, we completely

ignore the motion of ions in this model. Section 3.1 sets up the mathematical struc-

ture which section 3.2 uses to derive the cold plasma dispersion relation, which

describes the propagation of electromagnetic waves in cold, magnetised plasma. In

section 3.3 analysis is performed, identifying the possible modes of propagation,

and finding some wave-plasma interactions of interest. Finally, in section 3.4 the

WKB solution is derived, which allows for the modelling of electromangetic waves in

near-homogeneous mediums. The shortcomings of the WKB solution are identified,
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and an argument against the use of it in of modelling Cross-Polarisation Doppler

Back-Scattering (CP-DBS) is presented. This ultimately provides justification for

the use of full-wave numerical modelling techniques.

3.1 Cold Plasma Equations

In order to numerically model the interactions between electromagnetic waves and

plasma, we need to be able to describe the system mathematically. One of the

most simple ways of doing this is by using the cold plasma dispersion relation. In

order to derive this, we firstly need a closed system of equations which can describe

the system; electromagnetic waves interacting with a cold plasma. Electromagnetic

waves are coupled oscillations of electric and magnetic fields, and as such can be

completely described with Faraday’s and Ampère’s laws;

∇× E = −∂B
∂t
, (24)

∇×B = µ0J +
1

c2

∂E
∂t
. (25)

We need to be able to represent the interaction between the electromagnetic waves

and the plasma. We could think of this as the forces that the electromagnetic waves

exert on specific particles. The motion of an object as the result of some force can

be described by the equation of motion,

F = ma. (26)

Plasma particles are charged, and they are confined by strong magnetic fields. The

force exerted on a charged particle due to electric and magnetic fields is described

by the Lorentz force which is shown in equation (19). In order to describe the
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acceleration of the particle we model the plasma as a fluid, and make use of the

‘convective derivative’

D

Dt
=

∂

∂t
+ (v · ∇). (27)

We will be using it to measure how the electromagnetic wave driven acceleration

of an electron changes with time, while accounting for the background velocity of

the plasma. The Lorentz force (eq. 19) combined with the equation of motion (eq.

26) and the convective derivative of acceleration gives a momentum force balance

equation

qe(Ei + v×B) = m

[
∂v
∂t

+ (v · ∇)v
]
. (28)

3.1.1 Linearising

‘Linearising’ is to take a variable and split it into two parts, an equilibrium quantity

u0 and a perturbed quantity u1. By doing this the variable can be expressed in the

form of u = u0+u1, where u1 is assumed to be much smaller then u0. The assumption

is then made that any two perturbed quantities multiplied together have a product

so small we can consider it to be effectively 0. This simplifies the equations outlined

in section 3.1 and makes them easier to work with. Using the cross product identity

A × (B + C) = (A × B) + (A × C) our system of equations (eq.s (24), (25), and

(28)) becomes

(∇× E0) + (∇× E1) = −
(
∂B0

∂t
+
∂B1

∂t

)
, (29)

(∇×B0) + (∇×B1) = µ0(J0 + J1) +
1

c2

∂E0

∂t
+
∂E1

∂t
, (30)
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q

{
(E0 + E1) +

[
(v0 ×B0) + (v0 ×B1) + (v1 ×B0)

]}
=

m

{
∂v0

∂t
+
∂v1

∂t
+
[
(v0 · ∇)v0 + (v0 · ∇)v1 + (v1 · ∇)v0

]}
. (31)

3.1.2 Slowly changing background limit

We can apply a simplification of the system of equations detailed in section 3.1.1

by considering the time-scales over which the background (E0,B0,J0,v0), and per-

turbed (E1,B1,J1,v1) quantities, vary significantly. The background plasma profiles

are not constant. However, their variation in time is often slow in comparison with

the perturbed profiles. This is an important point to make as it allows us to ap-

proximate that the differential of these background quantities with respect to time

is negligible. Since the microwaves used in back-scattering diagnostics are of high

frequency they oscillate very quickly; over a single wave-length, the wave will ‘see’

only a tiny variation in the background quantities, meaning that this approximation

is likely safe. Additionally, for back-scattering diagnostics used in the plasma edge

the probing beam only propagates through a small amount of plasma, on the order of

1cm. This means that the magnitude of the background quantities (E0,B0,J0,v0) is

likely to change only very slightly, which also allows us to assume that the differen-

tials with respect to space are approximately zero. Finally, since we have eliminated

time and space varying background electric fields (E0), the electric field term on

the left side of equation (31) becomes constant, and can be ignored since it will

have no contribution towards the scattering mechanism (an oscillatory mechanism

by physical requirement). Applying these approximations our system of equations

(eq.s (29), (30), and (31)) becomes
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∇× E1 = −∂B1

∂t
, (32)

∇×B1 = µ0J1 +
1

c2

∂E1

∂t
, (33)

q[E1 + (v1 ×B0)] = m
∂v1

∂t
. (34)

3.1.3 Plane Wave Solution

Mathematically, electromagnetic waves are any oscillations in electric and magnetic

fields which solve equations (32) and (33). There are potentially an infinite number

of solutions to these equations, but by assuming one of the most basic we can simplify

our system of equations and more easily derive the cold plasma dispersion relation.

Appendix section 10.1 justifies and derives the 3D plane-wave solutions which are

E1(r, t) = E1 expi(k·r−ωt), (35)

B1(r, t) = B1 expi(k·r−ωt+φ), (36)

where k is the wave-vector, ω is the angular frequency, r is a spacial coordinate, and

φ is some phase difference. This allows us to further evaluate the spatial and tem-

poral differentials which operate on the electromagnetic wave’s electric or magnetic

components. Furthermore, the velocity induced onto a particle subjected to these

plane-waves must oscillate at the same frequency, meaning that

v1(r, t) = v1 expi(k·r−ωt+φ) . (37)

Our system of equations (eq.s (32), (33), and (34)) then becomes

ik× E1 = iωB1, (38)
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ik×B1 = µ0J1 −
iω

c2
E1, (39)

q[E1 + (v1 ×B0)] = −iωmv1, (40)

3.2 Cold Plasma Dispersion Relation

The behaviour of electromagnetic waves are described mathematically through ‘dis-

persion relations’. A dispersion relation is an equation that describes the relationship

between a wave’s frequency and wave-vector. The mathematical structure of these

relations can become complex in magnetised plasma, because they are dependent

on anisotropic medium that the electromagnetic waves are propagating through.

Magnetised plasma are complicated environments, but with the simplifications used

in section 3.1 we can derive one of the most simple dispersion relations in mag-

netic fusion; the cold plasma dispersion relation, which we will analyse. Firstly, we

identify the different types of electromagnetic waves that can exist in cold, mag-

netised plasmas. Secondly, we experiment and find interesting scenarios where the

electromagnetic wave’s wave-length approaches zero or infinity.

In order to derive the cold plasma dispersion relation we first employ Faraday’s

and Ampère-Maxwell’s laws (38)) and (39). To combine them we take the curl of

Faraday’s law and make use of the plane-wave solution approximation outlined in

section 3.1.3 to give

ik× (ik× E1) = iω(ik×B1). (41)

At which point Ampère’s law can be substituted into the right hand side, giving
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i

ω
(k× (k× E)) = µ0J−

iω

c2
E. (42)

We can explore the current term of equation (42) by using Ohm’s law,

J = σ̄ · E1, (43)

where σ̄ represents the plasma conductivity tensor; a term which has structure de-

pending on the properties of the plasma that the electromagnetic wave is interacting

with. Since we are modelling an anisotropic, magnetised plasma, the conductivity

needs to be a tensor,

i

ω
(k× (k× E)) = µ0σ̄ · E1 −

iω

c2
E. (44)

which can be arranged as

k× (k× E1) +
ω2

c2

(
Ī +

iσ̄

ε0ω

)
· E1 = 0, (45)

where Ī is an identity matrix. Additionally, we can use the definition of the dielectric

tensor ε̄ = Ī + iσ̄
ε0ω

to re-write the second term,

k× (k× E1) +
ω2

c2
ε̄ · E1 = 0. (46)

Because we utilised Ohm’s law (eq. 43), E1 is a common variable in both of the

terms of equation (46), and these terms can be combined. If we assume that the

electromagnetic wave described by equation (46) is propagating in the xz plane only

(ky = 0), then we can re-write this equation as


−k2

z 0 kxkz

0 −(k2
x + k2

z) 0

kxkz 0 −k2
x

 ·

Ex

Ey

Ez

+


ω2

c2
εx

ω2

c2
εy

ω2

c2
εz

 ·

Ex

Ey

Ez

 = 0, (47)
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or alternatively,


−k2

z + ω2

c2
εxx

ω2

c2
εxy kxkz + ω2

c2
εxz

ω2

c2
εyx −(k2

x + k2
z) + ω2

c2
εyy

ω2

c2
εyz

kxkz + ω2

c2
εzx

ω2

c2
εzy −k2

x + ω2

c2
εzz

 ·

Ex

Ey

Ez

 = 0. (48)

The form of this expression is sometimes referred to as M̄ · E = 0.

We have combined Ampère’s and Faraday’s laws into a wave-equation sensitive

to some plasma described by the matrix M̄ . In order to progress further we need

to evaluate M̄ by detailing our plasma; finding expressions for the components of

the plasma conductivity tensor. This involves describing how the plasma couples

to the electromagnetic wave, or in other words how the plasma particles respond

to the stimuli of the waves electric and magnetic fields (E1, B1). We can do this

by analysing the momentum force balance expression shown in equation (40). We

assume that the background magnetic field is parallel to the z axis (B0 = B0êz),

and re-write this vector equation (40) as three scalar equations,

q(Ex + vyB0) = −iωmvx, (49)

q(Ey − vxB0) = −iωmvy, (50)

q(Ez) = −iωmvz. (51)

These three equations can be re-written and simplified using the definition for ‘gy-

rofrequency’, ωce = (qB0)/m. This is the rate at which particles rotate around

background magnetic field lines. Equations (49, 50, 51) become

vx =
q

m

(
qωEx − ωceEy
ω2 − ω2

ce

)
, (52)

vy =
q

m

(
qωEx + ωceEy
ω2 − ω2

ce

)
, (53)
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vz =
q

m

i

ω
Ez. (54)

This allows us to form the structure of the conductivity tensor. We use the definition

of current density combined with Ohms law (eq. 43) to relate the particle velocities

to the conductivity tensor as

J = qv1n = σ̄ · E1, (55)

which results in the expression for the conductivity tensor

σ̄ =


q2n
m

iω
ω2−ω2

ce
− q2n

m
ωce

ω2−ω2
ce

0

q2n
m

ωce
ω2−ω2

ce

q2n
m

iω
ω2−ω2

ce
0

0 0 iq2

m
n
ω

 . (56)

The known structure of σ̄ can be used in the definition of the dielectric tensor

ε̄ = Ī + iσ̄
ε0ω

to yield

ε̄ =


1− ω2

pe

ω2−ω2
ce
−ωce

ω

iω2
pe

ω2−ω2
ce

0

ωce
ω

iω2
pe

ω2−ω2
ce

1− ω2
pe

ω2−ω2
ce

0

0 0 1− ω2
pe

ω2

 . (57)

Equation (57) shows the derived structure of the dielectric tensor. From here

we know the components (εxx, εxz, εyy, εzx, εzz) that we were seeking to evaluate,

and we could use these directly in equation (48). Although, there are quite a few

variables in equation (57) and it can be visually simplified by stating some relations,

R = 1−
ω2
pe

ω(ω + ωce)
= 1− X

1− Y
, (58)

L = 1−
ω2
pe

ω(ω − ωce)
= 1− X

1 + Y
, (59)

S = 1−
ω2
pe

ω2 − ω2
ce

= 1− X

1− Y 2
=
R + L

2
, (60)
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D =
ω2
pe

ω

ωce
ω2 − ω2

ce

=
−XY
1− Y 2

=
R− L

2
, (61)

P = 1−X. (62)

Using these relations, equation (57) becomes

ε̄ =


S −iD 0

iD S 0

0 0 P

 , (63)

which can be more easily combined with equation (48) to give


ω2

c2
S − k2

z −ω2

c2
iD ω2

c2
kxkz

ω2

c2
iD ω2

c2
S − (k2

x + k2
z) 0

ω2

c2
kxkz 0 ω2

c2
P − k2

x

 ·

Ex

Ey

Ez

 = 0. (64)

We can simplify expression (64) by multiplying through by a factor of c2/ω2, and

then using the definition of refractive index, N = kc/ω. We can also allow θ to

describe the angle between the background magnetic field (B0 = B0êz) and N. This

allows for Nx− > N sin θ and Nz− > N cos θ, and equation (64) becomes

M̄ ·E =


S −N2 cos θ2 −iD N2 sin θ cos θ

iD −N2 + S 0

N2 sin θ cos θ 0 −N2 sin θ2 + P

 ·

Ex

Ey

Ez

 = 0. (65)

The determinant of M̄ in expression (65) can be solved for both sin2 θ and cos2 θ

cos2 θ =
SN4 −N2(PS +RL) + P (S2 −D2)

N4(S − P ) +N2(PS − (S2 −D2))
, (66)

sin2 θ =
−P (N4 − 2SN2 +RL)

N4(S − P ) +N2(PS −RL)
. (67)

Finally, equations (66) and (67) can be combined divisively to give the cold plasma

dispersion relation
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tan2 θ =
−P (N2 −R)(N2 − L)

(SN2 −RL)(N2 − P )
(68)

3.3 Cold Plasma Waves

An analysis of the cold plasma dispersion relation (68) gives insight into the types

(polarisations) of electromagnetic waves that can exist in our cold, magnetised

plasma, and also gives information regarding interesting conditions under which

the wave’s wave-length tends to zero or infinity. There are two stages to this analy-

sis, which centre around θ; the angle between the background magnetic field and the

wave-vector (direction of propagation). The first is propagation perpendicular to the

background magnetic field where θ = π/2, and the second is parallel propagation

where θ = 0. The regions of interest are described by changes in the wave refractive

index (reciprocal wave-length) of N2 → 0, and N2 →∞. When the refractive index

of a wave becomes zero, the wave is ‘blocked’ from propagating further. The region

of plasma that the microwave cannot enter is named ‘over-dense’, whereas the region

which will allow propagation is named ‘under-dense’. When the microwave hits the

boundary between the under-dense and over-dense plasma, it reflects. The wave

is said to be ‘cut-off’. When N2 → ∞ an electromagnetic wave is said to be at

‘resonance’. This is a region of space where the wave couples strongly to the plasma

particles, and can drive heat and/or current.

3.3.1 Perpendicular Propagation

Propagation perpendicular to the background magnetic field gives θ = π/2. Ob-

serving equation (68) this yields
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∞ =
−P (N2

⊥ −R)(N2
⊥ − L)

(SN2
⊥ −RL)(N2

⊥ − P )
, (69)

which implies that the denominator has gone to zero,

(SN2
⊥ −RL)(N2

⊥ − P ) = 0. (70)

For equation (70) to be satisfied, either

SN2
⊥ −RL = 0, (71)

and/or

N2
⊥ − P = 0. (72)

Since the definition of refractive index is N = kc/ω, equations (71) and (72) de-

scribe how the wave’s wave-length and frequency vary according to certain plasma

parameters, S,R,L, and P (definitions in section 3.2). This means that, by defini-

tion, equations (71) and (72) are dispersion relations; they describe electromagnetic

waves. Specifically, equation (71) is called the ‘Extraordinary’ mode (X-mode), and

equation (72) is the ‘Ordinary’ mode (O-mode).

3.3.1.1 The Ordinary Mode

An electromagnetic wave that has a pure O-mode polarisation is defined by the

dispersion relation

N2
⊥ = P = 1−X = 1−

ω2
pe

ω2
0

. (73)

The refractive index of equation (73) has dependency only on the plasma frequency

ωpe, and the angular frequency ω0. In order for the refractive index to tend to infinity,

either the plasma frequency would need to tend to negative infinity (ωpe → −∞),
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or the angular frequency would need to tend to zero (ω0 → 0). Since neither of

these frequencies can be negative the O-mode polarisation does not feature any

resonances.

Now observing conditions where N2 can tend to zero, the single condition for

this requires ω2
pe/ω

2
0 = 1. Since ω0 is fixed and is defined by an experimental choice

of the frequency of the launched beam, ωpe is the variable of interest. The plasma

frequency is a function of the number density. At the plasma-vacuum boundary the

plasma frequency will be close to zero, but this increases and will peak in the core

of the plasma. If the plasma frequency (i.e. number density) becomes high enough

such that ωpe = ω0 the O-mode polarisation features a cut-off.

In conclusion, an electromagnetic wave behaving according to equation (73) is

in the O-mode polarisation. O-mode waves do not have any resonances, as the

refractive index cannot tend towards infinity. However, the dispersion relation does

allow for a single cutoff when the angular frequency equals the plasma frequency.

3.3.1.2 The Extraordinary Mode

An electromagnetic wave that has a pure X-mode polarisation is defined by the

dispersion relation

N2
⊥ =

RL

S
. (74)

As with all electromagnetic waves described by the cold plasma dispersion relation,

the interactions of major interest occur when the refractive index tends to either zero

or infinity. Equation (74) is substantially more complex than the O-mode dispersion

relation (73), and the definitions for R, L, and S are given in equations (58), (59),

and (60).

In order for the refractive index of equation (74) to tend towards infinity, either

R→∞, L→∞, or S → 0. The R variable is defined as
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R = 1− X

1− Y
, (75)

which cannot tend to infinity because the X and Y variables are always positive.

The second condition L→∞ is easier to asses. From the definition

L = 1− X

1 + Y
, (76)

it can be seen that L cannot tend to infinity due to the variables X and Y being

positive. Finally, a resonance condition of S → 0 is possible. S can be written as

S =
R + L

2
, (77)

and S = 0 would require

X = 1− Y 2. (78)

Since equation (78) is a multidimensional function of f(X, Y ) there are a range of

conditions whereby this expression could be satisfied and would cause the X-mode

polarisation (74) to feature a refractive index of N2 →∞. This is called the upper

hybrid resonance. It is described by

ωUH =
√
ω2
pe + ω2

ce, (79)

and represents the X-mode coupling to both the plasma frequency, and the cyclotron

frequency. For perpendicular polarisations this is unique to the X-mode, as the O-

mode dispersion relation shown in equation (73) does not feature any condition

where N2 →∞.

Observing now, conditions whereby the X-mode dispersion relation (74) can

feature a refractive index which is tending to zero, N2 → 0. For this to occur we

could need either S →∞, R→ 0, or L→ 0. Firstly, the variable S cannot tend to
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infinity as this would require X →∞, and the impossibility of this has already been

addressed. However, the variables R and L can indeed go to zero. Respectively, this

would require

1− X

1− Y
= 0, (80)

or

1− X

1 + Y
= 0. (81)

Similarly to equation (78), equations (80,81) are multidimensional functions of

f(X, Y ), so there are a range of combinations of X and Y where they could be

satisfied. These two expressions represent the two X-mode cut-offs denoted ωR and

ωL, respectively. They can be evaluated in terms of frequencies as the fast X-mode

cutoff

ωR =
ωce +

√
ω2
ce + 4ω2

pe

2
, (82)

and the slow X-mode cutoff

ωL =
−ωce +

√
ω2
ce + 4ω2

pe

2
. (83)

In conclusion, an electromagnetic wave behaving according to equation (74) is in

the X-mode polarisation. X-mode waves have a single resonance where the refractive

index tends towards infinity. This is called the upper hybrid resonance (ωUH) and

is described by equation (79). The dispersion relation also allows for two cutoff

frequencies ωR and ωL according to equations (82) and (83), respectively.
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3.3.2 Parallel Propagation

Propagation parallel to the background magnetic field gives θ = 0.0◦. Observing

equation (68) this yields

0 =
−P (N2

‖ −R)(N2
‖ − L)

(SN2
‖ −RL)(N2

‖ − P )
, (84)

which implies that the numerator has gone to zero,

− P (N2
‖ −R)(N2

‖ − L) = 0. (85)

Equation (85) implies that at least one of the three terms must be zero;

P = 1−X = 0, (86)

or

N2
‖ −R = 0, (87)

or

N2
‖ − L = 0. (88)

A dispersion relation describe how a wave’s wave-length and frequency vary

according to certain plasma parameters. While equation (85) does not strictly satisfy

this definition, it is still a dispersion relation because it can be understood that the

wave frequency is independent of the wave-number. From this, one can deduce

that the group velocity is equal to zero (vg = ∂ω/∂k) and under the cold plasma

approximation, this wave does not propagate. With a fixed, non-zero frequency of

ω0 = ωpe this is an electrostatic wave representing the ‘plasma oscillations’ whereby

particles simply oscillate around their equilibrium position. Equations (87) and (88)
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are more obviously dispersion relations. They describe electromagnetic waves called

the ‘right-hand’ and ‘left-hand’ waves, respectively.

3.3.2.1 The Right-Hand Mode

The right-hand wave (R-wave) is a circularly polarised wave that rotates clockwise,

and is described by the dispersion relation

N2
‖ = R = 1− X

1 + Y
. (89)

As discussed in section 3.3.1.2 the variable Y = ωce/ω0 describes the electron cy-

clotron frequency and is negative. Given this, the refractive index in equation (89)

can tend to infinity when ω0 = ωce. This represents the circularly polarised R-wave

oscillating in synchrony with the electron gyro-oscillations, coupling to the plasma

by driving the electron motion.

A cut-off also exists for the R-wave where N2 → 0, and requires

X

1 + Y
= 1, (90)

which can occur for a range of combinations of X and Y . This cut-off is also featured

in the X-mode polarisation and is shown in terms of frequencies in equation (82).

3.3.2.2 The Left-Hand Mode

The left-hand wave (L-wave) is very similar to the right-hand wave. It’s also cir-

cularly polarised except where the right-hand wave rotated clockwise, the left-hand

wave rotates counter-clockwise. Its described by the dispersion relation

N2
‖ = L = 1− X

1− Y
. (91)
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The L-mode does have a resonance at the ion-cyclotron frequency (ωci), however

since ions have been neglected in our model, a resonance does not arise from an

analysis of the cold plasma dispersion relation. The only region of interest for the

L-wave is a cutoff (N2 → 0) which occurs when

1− X

1− Y
= 0, (92)

which may be satisfied for a range of combinations of X and Y . Similarly to the

R-wave, this cut-off also features in the X-mode polarisation and is shown in terms

of frequencies in equation (83)

3.3.3 Mode Conversion

By taking perpendicular (θ = π/2) and parallel (θ = 0) limits of the cold plasma dis-

persion relation (68) we have identified the different polarisations of electromagnetic

waves that can exist in a cold magnetised plasma. One drawback of this method is

that the θ assumptions have restricted the possible modes to ’pure’ O,X,R, and L

waves. In other words by taking θ = π/2 and θ = 0 we have caused the refractive

index to become N → N⊥ and N → N‖, respectively. It is possible to achieve a

more general solution by re-arranging equation (68) in terms of N2. This is called

the Appleton-Hartree dispersion relation

N2
⊥ +N2

‖ = 1− 2X(1−X)

2(1−X)− Y 2 sin2 θ ± Γ
, (93)

where

Γ = [Y 4 sin4 θ + 4(1−X)2Y 2 cos2 θ]1/2, (94)

and it allows for calculation of the refractive index for arbitrary propagation angles

0 ≤ θ ≤ π/2. At non-absolute angles 0 < θ < π/2 the O-mode becomes left-
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hand circularly polarised, and forms a hybrid polarisation of the O-mode and the

L-mode. Similarly, the X-mode and R-mode are coupled. The choice of the positive

or negative sign before the Γ term causes the dispersion relation to describe either

the O-mode/L-mode or the X-mode/R-mode hybrid, respectively.

The nature of the dispersion relation can be explored by modelling N2
⊥ as a

function of X. Figure 15 shows how the fast X-mode (FX), O-mode (O), and slow

X-mode (SX) dispersion curves vary as a function of plasma density.

Figure 15: Perpendicular refractive index as a function ofX, with θ = 6◦. The curves

FX, O, and SX, are the fast X-mode, O-mode, and slow X-mode, respectively.

The fast X-mode is quickly rejected from the plasma due to the background magnetic

field choice of Y = 0.20. This corresponds to the ωR cutoff detailed in sections 3.3.1.2

and 3.3.2.1. The O-mode curve passes through its cutoff at X = 1.0 and enters an
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evanescent region whereby it becomes damped, when N2
⊥ < 0. Just above X = 1.2

the O-mode and slow X-mode curves can be seen to join onto one another. When this

occurs the two polarisations are said to become degenerate, and energy can pass from

one state to another. This is the principle of OX mode conversion. Its possible to

enable this conversion without the O-mode propagating into the evanescent region.

Such a condition leads to the maximum attainable conversion efficiency, as wave-

damping is avoided. This is achieved by launching the O-mode wave at an optimal

angle [99]

N‖,critical = sin(θ) =

√
Y

1 + Y
, (95)

where the parameter Y is the normalised cyclotron frequency Y = ωce/ω0, and θ

is the launch angle with respect to the density gradient. The converted SX mode

cannot propagate further into the plasma because of the ωL cut-off which is detailed

in sections 3.3.1.2 and 3.3.2.2. It propagates towards lower density plasma until

it approaches the upper hybrid resonance, ωUH , detailed in section 3.3.1.2. If our

plasma model allowed for warm plasma effects, it would be possibly for the X-mode

to couple to the plasma at ωUH and mode convert into the electrostatic Electron

Bernstein Wave (EBW). EBWs do not feature any cut-offs, and can propagate freely

into high density plasma. They can be used to drive heat and current near the

plasma core. The chain of mode conversion from the O-mode, to the SX-mode,

and then the EBW waves is called OXB mode conversion and is a plasma heating

and current drive technique under research for use on highly over-dense spherical

tokamak plasmas.

3.4 WKB Approximation

The Wentzel–Kramers–Brillouin (WKB) approximation is a method for finding ap-

proximate analytical solutions to time independent linear differential equations. It is
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useful when exact solutions are difficult or impossible to find. Consider an O-mode

polarised wave interacting with a homogeneous, magnetised plasma. Ignoring ions,

the electron particle motion as a consequence of the wave electric field must vary

sinusoidal. Assuming this oscillating has the form exp−iωt, a simple equation of

motion (F = ma) would then be

ve = − qe
iωme

E. (96)

The current density induced by this motion has the form

J = qnve = − q2
ene
iωme

E = −ε0
ω2
pe

iω
E. (97)

Ampère’s law can then be written as

∇×B =
iω2

pe

ωc2
E− iω

c2
E, (98)

or alternatively,

∇×B =
−iω
c2

(
1−

ω2
pe

ω2

)
E, (99)

where for an O-mode wave it can be said that the refractive index has the relation

N2 = 1−
ω2
pe

ω2
. (100)

Using the relation ω = cki Faraday’s law can be simply written

∇× E = ikicB, (101)

Let the O-mode wave be linearly polarized and propagating along the z axis. Let

the there also exist a background magnetic field B = Bêy. Due to the O-mode

polarisation, the wave’s oscillating electric field must be parallel to B. We can

combine Ampère’s (eq. (99)) and Faraday’s (eq. (101)) laws to give
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d2Ey(z)

dz2
+ k2

iN
2Ey(z) = 0. (102)

If we assume a plane-wave solution, which is derived and justified in the abstract in

section 10.1, solutions to equation (102) are of the form

Ey(z) = Aeiφ(z). (103)

Combining equations (102) and (103) we get

(
dφ

dz

)2

= k2
iN

2 + i
d2φ

dz2
. (104)

In order to evaluate this we need to know the phase φ relationship. For homogeneous

plasma

φ = kizN. (105)

However, this is not necessarily the case for an inhomogenous plasma where the

refractive index is dependent on position; N(z). The phase relationship may vary

greatly from equation (105) however if N(z) varies only weakly the structure of φ

will be similar to that in equation (105). Leaving exactly how small dN(z)
dz

needs to

be to satisfy this condition ambiguous for now, using equation (105) we can say that

dφ(z)

dz
' ±kiN(z), (106)

and

d2φ(z)

dz2
' ±ki

dn(z)

dz
' 0. (107)

Using equations (106) and (107) in equation (104) we get

dφ(z)

dz
' ±kin(z) +

i

2n(z)

dn(z)

dz
. (108)
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Equation (108) can be integrated to give φ(z) as

φ(z) ' ki

∫ z

n(z)dz + i ln
√
n(z). (109)

This phase relationship can be used with the plane wave solution in equation (103)

to give an analytical expression for the electric and magnetic fields

Ey(z) ' An−
1
2 (z) exp

(
±iki

∫ z

n(z)dz

)
, (110)

where also equation (101) gives the magnetic field

cBx(z) ' An
1
2 (z) exp

(
±iki

∫ z

n(z)dz

)
. (111)

Electromagnetic wave propagating into a medium with a slowly changing refrac-

tive index will undergo a small amount of reflection. However, equations (110) and

(111) don’t predict this. It may be that this is an acceptable approximation as in

practicality the amount of reflection may be negligible. However, when applied to

scattering theory such as a wave scattering from a plasma cutoff, the refractive in-

dex can change considerably over a short distance. Equations (110) and (111) again

have no explanation of this and are incapable of describing this physical effect. An

approximate condition [100] for validity of the WKB approximation is

∣∣∣∣ 1

n(z)

dn(z)

dz

∣∣∣∣� ki (112)

The WKB approximation is satisfied and valuable in DBS ray-tracing for obtain-

ing the radial position and the beam perpendicular wave number at the scattering

location near the cutoff. However the validity limit (eq. (112)) is invalidated in a

tokamak at cutoffs (N(z)→ 0) and resonances (n(z)→∞) (since dn(z)
dz
→∞ faster

than n(z), when magnetic shear is great or when the density gradient length scales

are comparable to the wavelength). In these strongly varying regions of refractive
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index the WKB approximation breaks down and may fail to predict the complex

physics associated with electromagnetic wave scattering. Of great importance is the

failure to predict any coupling [101] between the O-mode and X-mode waves. Their

dispersion relations become increasingly indistinguishable (degenerate) when their

wave numbers become similar. An approximate condition for this effect at a given

location in space is given by

|kO − kX | <<
2π

Ln
, (113)

where kO and kX are the O-mode and X-mode wave-numbers, and Ln is the density

gradient length scale. With the absence of more sophisticated analytical models,

such complex regions require full-wave numerical modelling in order to fully under-

stand the physics.
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4 Numerical modelling

A magnetised fusion plasma is a complex inhomogenous and anisotropic environ-

ment. Often modelled as a fluid, tokamak plasmas are said to be a ’soup’ of charged

particles. The number density of fusible plasma is of the order 1020m−3. The

modelling of an electromagnetic wave under a full kinetic description would require

calculating the influence of the electromagnetic wave on each particle, while track-

ing the electromagnetic interactions between each particle on every other particle.

This full encapsulation of the complete range of physical effects is both complex and

tremendously computationally expensive. It is also likely unnecessary; for instance,

the temperature at the core of an energy producing fusion plasma will likely be of

the order 30keV [102]. Ionised deuterium species will have an approximate thermal

speed of vth ≈ 0.002c. When compared to the speed of an electromangetic wave, it

is not an unreasonable approximation to consider the ions as completely stationary.

The choice of numerical method for a particular problem is heavily influenced by a

consideration of which approximations can be satisfactorily made, i.e., what physics

is thought to have little influence and can be excluded. In this chapter we discuss

two of the most common models utilised for the simulating of electromagnetic waves

in magnetised plasmas. In section 4.1 we briefly cover the ray-tracing method, which

is based on similar assumptions to the WKB approximation. In section 4.2 we dis-

cuss the full-wave, finite difference time domain modelling technique and justify its

usage as the main modelling method for this thesis.

4.1 Ray-tracing

One of the most computationally cheap methods of modelling electromagnetic waves

is ray-tracing. As we have seen in section 3 the interaction between an electromag-

netic wave and a plasma can be written as a set of coupled, linear, first order
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partial-differential equations of the form

M̄ (i∂/∂t,−iδ, r, t)ψ = 0, (114)

where the position vector r = (rx, ry, rz), the vector field ψ contains all of the

vectors important for electromagnetic wave propagation through plasma such as

wave properties E1 and B1, and plasma properties like J and E0. The matrix

M̄ describes the unperturbed plasma by containing all of the important physics

for any particular modelling problem. If we assume that the plasma is only varying

slightly with respect to one vacuum wavelength of the electromagnetic wave, then the

structure of ψ will vary only slightly from the form which resembles an homogeneous

plasma. This is to say that we are applying the WKB approximation to assume that

the spatial and temporal dependence of ψ(r, t) can be completely described through

the phase φ(r, t) of the wave. This is comparable to some of the approximations

made in the derivation of the cold plasma dispersion relation in section 3. Firstly,

we’ve assumed the slowly changing background limit detailed in section 3.1.2, where

any time or space derivatives of background quantities are zero, e.g.,

δE0

δt
≈ ∇×B0 ≈ 0. (115)

Secondly, we assume that perturbed plasma quantities vary with the same frequency

as the electromagnetic wave that induced them. This is identical to the assumption

that allowed the formation of equation (37) in section 3.1.3. This allows us to eval-

uate equation (114) according to the mathematical structure of the electromagnetic

waves driving the wave-plasma interactions. In other words, we have forced the

structure of ψ to feature a common factor of exp(iφ), where φ is fully described by

the type of electromagnetic wave. For instance, for plane-wave solutions (derived in

section 10.1)
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φ = k · r − ωt. (116)

Given this common factor of exp(iφ), equation (114) then becomes

M̄ (ω,k, r, t)ψ = 0. (117)

In general equation (117) has a seemingly infinite number of solutions. In one of the

most simple forms for a magnetised plasma, the matrix M̄ could be formed using

the cold plasma approximation as we have in section 3. In that case, the structure

of M̄ would be akin to that of equation (65). We can obtain the dispersion relation

of this plasma described by M̄ by taking the determinant and setting it to zero, as

ξ(ω,k, r, t) = det(M̄ (ω,k, r, t)) = 0. (118)

Each solution of this corresponds to a polarisation of wave that can exist in

the plasma, similarly to the identification of polarisations in section 3.3. Equation

(118) will typically have many solutions. However, for a given wave-vector k at a

specific position in space and time (r, t) then the dispersion relation will yield a

unique frequency for a wave described by (k, r, t). With the only unknown being

frequency, we could use equation (118) to say that

ω = Ω(k, r, t), (119)

where Ω is the known dispersion relation for our particular wave solution. In order

to model the dispersion relation given in equation (119), we use the ray-tracing

equations, which are

dr

dt
=
∂Ω

∂k
, (120)
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dk

dt
= −∇Ω, (121)

and

dω

dt
=
∂Ω

∂t
. (122)

Given the arguments to equation (119) at two adjacent time-steps as initial condi-

tions, equations (120)-(122) can be used to evaluate ω,k, and r. It would then be

possible to update Ω(k, r, t), and this process could then be repeated any number of

times desired, allowing modelling of the chosen polarisation as it propagates through

the medium described by M̄ (ω,k, r, t).

Ray-tracing calculations are fast and computationally inexpensive. The draw-

back is that their derivation relies upon the WKB approximation; the background

plasma gradient is assumed to be varying slowly with respect to the wavelength of

the electromagnetic wave, and the wave-vector is assumed to be changing slowly,

and there are several points of interest where this may be inappropriate. As an

electromagnetic wave approaches cutoffs and resonances the coupling between the

plasma and the wave becomes strong, and the wave-vector must change rapidly in

order for the electromagnetic wave to maintain its original polarisation. In addition

to these two cases, H-mode plasmas have steep plasma edge pressure gradients where

the plasma changes rapidly over a distance on the order of 1cm. This 1cm length-

scale is comparable to many microwave diagnostic and heating beams of interest for

spherical tokamaks. There exist numerical methods [103] which attempt to com-

bine ray-tracing and full-wave methods. These techniques would be most applicable

to cases where an electromagnetic wave is expected to propagate for a long time

before interacting with a non-WKB environment. These hybrid solvers are much

more computationally efficient than pure full-wave codes, however the coupling of

the two techniques may be challenging, and raises reliability concerns which need
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to be addressed on an individual basis. Bench-marking some solutions of a hybrid

code against a full-wave code would likely be required to justify accuracy.

4.2 Full-wave

Unlike ray-tracing, full-wave simulations give a full representation of the wave, and

this is achieved by directly solving Maxwell’s equations coupled with the equations

governing the plasma dynamics. A common approach for the modelling of elec-

tromagnetic waves under a full-wave model is the Finite Difference Time Domain

(FDTD) [104–106] method. This technique allows for numerical solutions to the

partial differential forms of Faraday’s (24) and Ampère’s laws (25). Evolving the

calculation in the time-domain allows for a broad range of frequencies to be studied

with a single simulation. Additionally, important wave-scattering effects such as

Doppler shift are intrinsically accounted for. It also allows for visualisation of the

evolving electromagnetic waves which can be invaluable in developing a deeper and

more intuitive understanding of the physical processes.

The FDTD technique is based on the ‘discretisation’ of Faraday’s and Ampère’s

laws over a 3D grid; the values of the electric and magnetic field components in

space, plus time are described at discrete points in space. The discretisation used

here is called a ‘Yee Cell’ [107] which is illustrated in figure 16. This is achieved

using centered finite difference formulae

∂

∂x
u|ni,j,k =

1

∆x
(u|n

i+ 1
2
,j,k
− u|n

i− 1
2
,j,k

) +O[∆x2], (123)

∂

∂t
u|ni,j,k =

1

∆t
(u|n+ 1

2
i,j,k − u|

n− 1
2

i,j,k ) +O[∆t2], (124)

where ∆x and ∆t represent the Yee cell spatial and time steps, respectively. The

u|ni,j,k notation represents some calculated field at spatial integers i, j, k and time-step

n. O[∆x2] and O[∆t2] represent higher order approximation errors.
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Figure 16: Diagram of a Yee Cell. Each side length is ∆x [108].

In figure 16, the electric and magnetic fields can be seen to be staggered; at any

single grid point there is only information regarding the electric field or the magnetic

field, but not both. This is a natural consequence of the centered difference formulae.

Applying equations (123) and (124) to Faraday’s and Ampère’s laws, we derive the

following expressions,

Bx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

= Bx|
n− 1

2

i,j+ 1
2
,k+ 1

2

+
∆t

∆x

[
Ey|ni,j+ 1

2
,k+1
− Ey|ni,j+ 1

2
,k
− Ez|ni,j+1,k+ 1

2
− Ez|ni,j,k+ 1

2

]
, (125)

By|
n+ 1

2

i+ 1
2
,j,k+ 1

2

= By|
n− 1

2

i+ 1
2
,j,k+ 1

2

+
∆t

∆x

[
Ez|ni+1,j,k+ 1

2
− Ez|ni,j,k+ 1

2
− Ex|ni+ 1

2
,j,k+1

− Ex|ni+ 1
2
,j,k

]
, (126)

Bz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k

= Bz|
n− 1

2

i+ 1
2
,j+ 1

2
,k

+
∆t

∆x

[
Ex|ni+ 1

2
,j+1,k

− Ex|ni+ 1
2
,j,k
− Ey|ni+1,j+ 1

2
,k
− Ey|ni,j+ 1

2
,k

]
, (127)

Ex|n+1
i+ 1

2
,j,k

= Ex|ni+ 1
2
,j,k
− c

2∆t

∆x

[
By|

n+ 1
2

i+ 1
2
,j,k+ 1

2

−By|
n+ 1

2

i+ 1
2
,j,k− 1

2

−Bz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k

+Bz|
n+ 1

2

i+ 1
2
,j− 1

2
,k
− ∆t

ε0
Jx|n+1

i+ 1
2
,j,k

]
,

(128)

Ey|n+1
i,j+ 1

2
,k

= Ey|ni,j+ 1
2
,k
−c

2∆t

∆x

[
Bz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
−Bz|

n+ 1
2
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2
,j+ 1

2
,k
−Bx|
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2

i,j+ 1
2
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2
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2
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2
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2
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ε0
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2
,k

]
,

(129)
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Ez|n+1
i,j,k+ 1

2

= Ez|ni,j,k+ 1
2
− c

2∆t

∆x

[
Bx|

n+ 1
2
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2
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ε0
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2

]
,

(130)

where equations (125)-(127) update the magnetic field components, and equations

(128)-(130)) update the electric fields. Careful analysis of one of the update equa-

tions shows that the magnetic field components never need to evaluate an electric

field component at the same position in space, and vice versa, the same is true for

the electric field components. This is one of the advantages of the FDTD technique;

only requiring a single grid point to hold information regarding the magnetic field,

or the electric field, significantly reduced the computational memory requirements

which can be large in full-wave calculations. Further memory efficiency is yielded by

consideration of the advancement of one of the electromagnetic components in time.

Calculation of time-step, say t = n + 1, only requires information regarding the

previous time-step (t = n). This results in only the current, and previous time-step

information requiring to be stored into memory at any single moment which is of

major significance.

In order to model to interaction between the electromagnetic wave and the

medium, Ampère’s law is coupled to the plasma through the current density term

(J). The structure of the equation representing J forms the ‘plasma response’. Aptly

named, the plasma response expression has structure depending on the physics that

has been included into the model. It literally dictates what the plasma is capable of

doing in response to the stimuli of the electromagnetic wave. The plasma response

equation generally does have some simplifications applied. This is done primarily for

three reasons. Firstly, incorporating a large range of physical effects into the plasma

response equation can lead to the expression becoming overly complicated. This will

have an adverse effect on the computational requirements of the simulation. In 3D

space, full-wave simulations are quite computationally expensive simply due to the

massive number of equations they are required to solve. The real cost of computing
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time drives efforts to minimise the number of calculations required to run an expen-

sive code. Furthermore, a complicated expression for the plasma response increases

the difficulty of the implementation of the code. Maxwell’s equations are wonder-

fully simple, and keeping the plasma response expression as simple as possible will

not only reduce the probability of a mistake arising when writing the code but also

makes the physical model easier to understand. A simple physical model will allow

users to more easily identify its capabilities and likely lead to a wider digestion of

the research. Thirdly, it can be wholly unnecessary to include a complete picture

of the wave-plasma interactions. The choice of plasma model ultimately depends

on the type of physics one wishes to model. The cold plasma model is frequently

used due to its simplicity. However, no kinetic or thermal effects are included. This

approach is perfectly reasonable providing that the physics of interest are thought

to be negligibly effected by these excluded effects. For the purpose of modelling

electromagnetic waves such as back-scattering diagnostics, or O-X mode conversion,

the cold plasma model is likely justified.
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5 EMIT-3D

EMIT-3D is an MPI parallelised, 3D, full-wave code developed at the University

of York by Williams, Thomas. [109] and Thomas, Matthew. [110]. It is a cold

plasma code that models an electromagnetic wave interacting with a plasma by cou-

pling Faraday’s and Ampère’s laws (24) and (25) to a plasma response equation.

has been Benchmarked [111] against the full-wave code IPF-FDMC [112] developed

by Alf Köhn at Stuttgart University, Germany, and used to generate data which

amounted to publicised research [96, 113]. Faraday’s and Ampère’s laws are discre-

tised over a 3D Yee Cell (fig. 16) using the Finite Difference Time Domain (FDTD)

method outlined in section 4.2. These equations model how an electromagnetic wave

interacts with some medium described by the plasma response equation, which is

derived under the cold plasma approximation in section 5.1. Being in the time-

domain, EMIT-3D allows for visualisation of the evolution of the electric and mag-

netic fields. The interpretation of numerical simulations can be difficult; the ability

to observe the microwave-plasma interaction over time can often assist, sometimes

greatly, in understanding the physics behind the interaction. This also helps to

develop a deeper understanding and intuition of the wave mechanics. Written in

programming language C, EMIT-3D has been developed into a software package;

it has a github page with documentation that gives detail into the usage of the

code and the input parameters. There are instructions and makefiles designed to

expedite the process of building and running the code on a range of commonly used

supercomputers. Currently private, access to the githib repository can be achieved

through Prof. Roddy Vann at the University of York. This chapter describes the

fundamental theoretical structure of the code, and includes developments that have

been made in advancing the numerical algorithm and widening the scope of physics

that EMIT-3D is capable of modelling. In section 5.1 the plasma response equa-
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tion is derived, which mathematically describes the physical capabilities of the code.

EMIT-3D uses certain normalisations as detailed in section 5.2, which may be of

help to future users. Section 5.3 covers the scaling performance of the code on the

Archer supercomputer. The Gaussian beam algorithm is discussed in section 5.4

with information on both linear and elliptically polarised waves; the latter being

particuarly useful for mode conversion studies. Finally, section 5.5 describes how

EMIT-3D deals with the boundary of the simulation domain. For further details or

support regarding EMIT-3D contact roddy.vann@york.ac.uk.

5.1 Plasma Response

The structure of the plasma response equations contain the mathematical details

of the physics model that full-wave simulations are approximating. EMIT-3D uses

the cold plasma approximation (see sec. 3.2) in order to couple the electromagnetic

waves to the plasma; a stationary, magnetised, inhomogeneous, and anisotropic

medium which is capable of sustaining electric fields. In this model these fields

arise solely due to the electromagnetic wave. The plasma response expression in

EMIT-3D uses equation (34) which was derived in section 3. Firstly, this expression

is re-written in terms of the current density, by multiplying through by a factor of

qn/m giving

∂J1

∂t
= ε0ω

2
peE1 + ωce(J1 × b̂0), (131)

where J1 = qnv1. To form equation (131) a unit-vector describing the direction of

the background magnetic field b̂0 = (bx, by, bz) is used, along with the definitions of

the plasma frequency

ω2
pe =

q2
ene
ε0me

, (132)
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and the cyclotron frequency

ωce =
qeB0

me

, (133)

which are the frequencies of the natural plasma oscillations, and the gyration of

electrons around background magnetic field lines, respectively. Equation (131) could

now be discretised in the same manner as Maxwell’s equations in section 4.2, and

used in a full-wave code. However, one further modification is made, and this is

due to the choice of technique for representing the boundaries of the simulation.

Discussed in further detail in section 5.5, a collisional damping term is added to

equation (131)

∂J1

∂t
= ε0ω

2
peE1 + ωce(J1 × b̂0)− J1ν, (134)

where ν represents collisionality. This allows us to remove energy from the simulation

to prevent un-physical boundary reflection of the electromagnetic waves.

The numerical solution to equation (134) is non-trivial and is derived in detail

in the PhD thesis of Williams, T. [96], and the result is presented; a discretised,

temporal update equation as

J1|n+ 1
2 = e−ν∆tΘJ1|n−

1
2 +

ε0ω
2
pe

(ν2 + ω2
ce)∆t

ΞE1|n, (135)

where

Θ = bibj [1− cos(ωce∆t)]− εijkbk sin(ωce∆t) + δij cos(ωce∆t), (136)

Ξ = bibjα− εijkbkβ + δijγ, (137)

α =
ω2
ce∆t

ν
+ ∆te−ν∆t

{
ν [cos(ωce∆t)− 1]− [ωce sin(ωce∆t)]−

ω2
ce

ν

}
, (138)

β = ωce∆t−∆te−ν∆t [ωce cos(ωce∆t) + ν sin(ωce∆t)] , (139)
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γ = ν∆t+ ∆te−ν∆t [ωce sin(ωce∆t)− ν cos(ωce∆t)] . (140)

where δij is the Kronecker delta which is defined as

δij = 0 if i 6= j,

δij = 1 if i = j.
(141)

and εijk is the Levi-Civita symbol defined as

εijk = +1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

εijk = −1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

εijk = 0 if i = j, or j = k, or k = i.

(142)

This is a simple model, and as such eliminates a wide range of interesting physics.

The simplicity has enabled the undertaking of this research, while maintaining all

the key physics which are thought to be of interest to (at least) plasma edge back-

scattering, electromagnetic mode-conversion, and beam broadening due to turbu-

lence. Of the made approximations, two are most note-worthy. The first is the

assumption that the plasma is cold. The cold plasma approximation is frequently

used in full-wave electromagnetic wave modelling, and heavily simplifies the theory

required to solve certain problems. For the aforementioned phenomena, this ap-

proximation is unlikely to have significant effect on the result. The reasoning for

this is the comparative time-scale of the evolution of the electromagnetic wave, and

the evolution of the plasma, which was discussed briefly in section 4. In forcing the

plasma to be stationary, this causes notably unphyscial effects for waves coupling

to the upper-hybrid resonance (UHR), and careful analysis is required to avoid mis-

interpreting the simulation results. This disadvantage can be mitigated by using a

collisional damping term in the plasma response equation [114] with a non-zero value

near the UHR. Furthermore, the electrostatic Bernstein wave cannot exist under the

cold plasma approximation. This causes X-B mode conversion modelling to be im-

possible as the description of Bernstein waves require warm plasma theory [115]. It
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is possible [114] to advance the numerical algorithm of a cold plasma full-wave code

to include some warm plasma effects by including an additional term in the dielec-

tric tensor of equation (57). This allows for the modelling of electrostatic Bernstein

waves. It also has the advantage of better representing the UHR, and removing the

need for the artificial collisional damping term. The second potentially significant

made approximation was that there are no background plasma flows (v0 = 0). Once

again, this approximation heavily simplifies the equation that EMIT-3D is required

to solve, both improving the ease of comprehension of the model and reducing the

computational resources required to solve the equations. The influence of this is

though to have a small effect on the X-mode dispersion relation. Original work de-

veloping the mathematical treatment which is required for developing a v 6= 0 cold

plasma dispersion relation is shown in section 10.2.

5.2 Normalisation

EMIT-3D uses a mixture of normalised and non-normalised variables. All of the

frequencies (ωpe , ωce , ω0 , ν ) where ν is the collisional frequency, are normalised,

whereas the vector fields (E , B , J) are not. This represents a change from the code’s

original implementation and allows for easier comparison between simulations which

use different values for fundamental numerical parameters such as the resolution and

Courant–Friedrichs–Lewy (CFL) number [116].

EMIT-3D uses Faraday’s law (24), Ampere’s law (25) and the plasma response

equation (134) derived in section 5.1. Normalising time to the time-step ∆t and

distance to the spatial step ∆x where spatial steps in all three spatial dimensions

are equal ∆x = ∆y = ∆z,

t′ =
t

∆t
, (143)
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x′ =
x

∆x
. (144)

Applying these normalisation to the partial derivative with respect to time and the

del operator,

∂

∂t
⇒ ∂

∂t′
1

∆t
, (145)

∇ ⇒ ∇′

∆x
. (146)

The frequencies are also normalised as

ω′0 = ω0∆t, (147)

ω′ce = ωce∆t, (148)

ν ′ = ν∆t, (149)

ω2
pe
′
= ω2

pe∆t
2. (150)

Applying the normalisation of the time (145) and space (146) derivatives, along with

the normalised frequencies (147)-(150) to EMIT-3D’s governing equations (24),(25),

and (134) we get

∂B
∂t′

1

∆t
= − 1

∆x
∇′ × E, (151)

∂E
∂t′

1

∆t
=

1

∆x
c2∇′ ×B− 1

ε0
J, (152)

∂J
∂t′

1

∆t
= ε0

ω2
pe
′

∆t2
E− ω′ce

∆t
J× b0 −

ν ′

∆t
J. (153)

The use of the definition of the CFL number
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Cr = c
∆t

∆x
, (154)

and the free space relation

B = µ0H, (155)

and the definition of the impedance of free space

Z0 = cµ0, (156)

Equations (151)-(153) simplify and become

∂H
∂t′

= −Cr
Z0

∇′ × E, (157)

∂E
∂t′

= CrZ0∇′ ×H− ∆t

ε0
J, (158)

∂J
∂t′

=
ε0
∆t
ω2
pe
′E− ω′ceJ× b0 − ν ′J. (159)

Equations 157-159 represent the normalised, theoretical usage of the governing ex-

pressions (24), (25) and (134)in EMIT-3D. Practically, these equations still need to

be discretised as we have done in sections 4.2 and 5.1.

5.3 Computational Performance

Understanding how well a piece of software performs under varying conditions is

important for the effective use of computational resources. It may be possible to

constrain simulations to one, or more dimensions, in order to reduce the compu-

tational demand, and increase the scientific output for a given amount of compu-

tational time. The relationship between varying dimension size and performance
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may be non-linear, and the reasonings behind this are numerous. A major potential

contributor being the code parallelisation; certain sizes of sub-process can be more

efficient than others. The performance is also dependent on each particular system’s

architecture. Several different High-Performance Computing (HPC) facilities were

utilised during the research towards this PhD, including Archer, Marconi, Cirrus,

Archie-West and multiple lower-tiered machines. While a thorough analysis would

require the computational performance of the code to be tested on each of these

machines, this is unnecessary; with entire node allocation (no sharing of nodes with

other users) the scaling of the efficiency is unlikely to change dramatically from

one machine to another. The following efficiency tests were conducted on the tier-1

machine Archer, based at the University of Edinburgh. Initially, the length ratio

between each of the 3 spatial dimensions is investigated for performance variation.

A spatially cubic simulation is compared to three of harsh dimensionality, and the

time-step duration is measured as the number of cores used for the simulations is

varied. In each of the 4 data sets the volume of the simulation is equal. Figure 17

shows the results of this analysis.
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Figure 17: An analysis into the computational performance of EMIT-3D when the

ratio between the 3 spatial dimensions are varied. The volume is kept constant

in each of the data sets. The red (squares) line shows a spatially cubic simulation,

whereas the blue, green and red (triangles) lines show an extreme ratio of the spatial

dimensions in the x, y and z dimensions, respectively. The simulation domain is

split such that each of the processors have an identical (or as close to as possible)

geometry.

While it is interesting to see that certain spatial dimensions fare better than others,

it is clear from figure 17 that spatially cubic simulations perform at much higher

efficiencies, whereas simulations utilising extended dimensions should be avoided if

possible.

Given that spatially cubic simulations perform better than non-cubic counter-

parts, it is also important to assess how well a particular experiment-relevant ge-

ometry scales with an increasing number of allocated cores. If the number of cores
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(i.e, the processing power) is increased by a factor of N , it would be desirable to see

the time taken to complete the calculation reduce by 1/N . In practise this is not

feasible for 2 main reasons. Firstly, each core is surrounded by ghost cells. These

are a layer of cells which surround a process, and store information which can be

passed to other processes. They are essential for the parallelisation, as they allow

for communication between neighbouring cores. The computational performance

will begin to saturate when the number of ghost cells in a simulation becomes sig-

nificant compared to the overall size of the domain. Secondly, it is commonplace

for parallel codes to use multiple nodes. This adds some networking demands as

signals must be passed and interpreted between different pieces of hardware. Many

HPC facilities now use very high performance interconnect systems between their

nodes, such as InfiniBand, which is capable of delivering speeds of up to 15GB/s.

For context, an L1 processor cache can deliver speeds of over 1TB/s, and the slower,

larger and generally shared L3 cache has a theoretical limit of 175GB/s. While it is

interesting to compare the above data-rates it would be an oversimplification to use

these speeds in order to attribute InfiniBand as the bottleneck, and conclude that

using an interconnect system which could match the L1 cache speed would result

in a linear increase in computational performance. The rate of a computation when

using a multitude of nodes is a function of many variables, and while a detailed

analysis of each electrical component is possible it would be tremendously compli-

cated, and costly in terms of time. It is far more widespread to perform an empirical

analysis of a particular piece of software. Figure 18 uses a spatially cubic box size of

1000x1000x1000 grid points, which was deemed an approximately appropriate size

for future simulations. The average time-step duration is analysed for fixed simula-

tion parameters, over a range of cores. Conducted on the now retired Archer-1 HPC

machine, each node features 48 cores. Every other data-point in figure 18 then not

only refers to an increase in cores allocated to the computation but also an increase
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in the number of nodes. Speed-up here is in reference to a single node (48 cores)

which has a speed-up value of 1.0.

Figure 18: Efficiency scaling of EMIT-3D running a 1000x1000x1000 grid point

domain, for a variety of cores. The red line indicates the perfect speed-up while the

green line indicates the achieved. The speed-up is in reference to a single node (48

cores).

The line in red refers to the perfect rate of speed-up, where the speed of the calcu-

lation has increased by a factor of N , where N is the factor by which the number

of cores used to perform the calculation has increased. As discussion previously

this theoretical rate is impossible to achieve because of additional computational

demands added when using additional cores and nodes. 3D Full-wave codes have

intense memory demands, and this forms the hard limit to the minimum number
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of nodes that can be used for a calculation. For the size of simulation used here

(1000x1000x1000) the code required approximately 250GB of memory. Each node

on Archer contains 64GB so the minimum node requirement here was 4. Figure 18

contains data-points which use less than 4 nodes (i.e, the lowest data-point used

24 cores, which is half a node.). This was achieved by purchasing 4-nodes for the

computation, and then ordering most cores to stand idle. While this is important

for the empirical analysis it is a waste of computational resources and should be

avoided. Using 4 nodes (192 cores) EMIT-3D scales extremely well, and has and

retains an efficiency of 94.25%. While the efficiency remains very good all the way

up to 384 cores (8 nodes) it does start dropping off beyond this point. Due to the

Archer-1 system using the high-quality InfiniBand interconnect system (as opposed

to Ethernet), this drop off is likely due to the influx of ghost cells into the simulation.

Each additional core increases the amount of ghost cells required, and the efficiency

starts to worsen when the number of ghost cells becomes a significant fraction of the

overall simulation domain, meaning that additional cores would have an increasingly

noticeable non-linear effect on the speed-up.

5.4 Gaussian Beam

A linearly polarised Gaussian beammay be launched in EMIT-3D over a 2D antenna-

plane by using the fundamental solution to the paraxial wave equation [117]. For a

beam propagating along the z-axis, the time-independent electric field distribution

is described by

Ex(r, z) = E0
ω0

ω(z)
exp

[
−r2

ω(z)2

]
exp

[
i

(
kz + k

r2

2R(z)
− ψ(z)

)]
, (160)

where the second, third, and fourth factors represent the beam amplitude, Gaussian

profile, and phase, respectively.
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An elliptically polarised beam may also be launched. This allows for pure O-

mode or X-mode beams to be launched at arbitrary angles to the background mag-

netic field. Using the relations defined in [118] the field distributions are described

as

Ez = − cot(θ)Ex, (161)

Ey =
2 cot(θ)Ex

Y 2 sin2(θ) +
√
Y 2 sin2(θ) + 4 cos2(θ)

. (162)

where θ is the angle between the background magnetic field and the beam wave

vector, and Y = ωce/ω0.

5.5 Boundaries

The boundaries of the simulation contain a damping layer designed to reduce the

reflected wave amplitude to zero. setting the boundary values to zero, for example,

electromagnetic waves interacting with the edges of the simulation domain would

simply reflect. By removing all the energy that enters the boundary an infinite

box is effectively simulated. Within the boundary layer the wave’s electric field is

multiplied by a cubic damping function D(r) of the form

D(r) = 1 +
13

T
((r − dbound)/dbound)3 , (163)

where T is the wave period, dbound is the boundary thickness and r ≤ dbound. The

boundary layer is three vacuum wavelengths thick, and at the edge the condition

E = 0 is enforced. This causes total reflection of any remaining signals, causing them

to propagate back through the damping region. This results in a total propagation

distance of six vacuum wavelengths over which the wave is damped.
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5.6 Pedestal

In order to model the H-mode plasma edge a modified tanh function [119] was

implemented. This function, shown in figure 19 allows for great control over the

simulated pedestal. The function and the definitions of the variables can be seen

from the figure.

Figure 19: Modified tanh function used for representation of the aggressive H-mode

plasma edge number density profile.

5.7 Importing Density and Magnetic Field Maps

The ability to import 2D density, and magnetic field maps was implemented into

EMIT-3D. This is essential for realistic modelling when the simulation domain needs
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to well represent an experimental environment. These maps can be attained through

the use of turbulence modelling software, or collaboration with fusion research cen-

ters such as Culham Centre for Fusion Energy (CCFE). Both of these sources were

ultimately utilised for the research in this PhD.

5.7.1 Importing Background Profiles

CCFE supplied reconstructed MAST-U [52] density, and magnetic field equilibrium

profiles. These were given for the purpose of Ordinary-Slow Extraordinary-Bernstein

(O-X-B) mode conversion studies for research into microwave-source O-X-B heating

systems. This research can be seen in section 8.2.

In order to import maps into a piece of software, care must be taken to en-

sure that all of the necessary pre-run-time steps are taken for the map to be valid

under the simulation parameters. For instance, the spatial scales given to the soft-

ware, and defined in the map must match. For importing a background map, these

considerations are detailed in section 8.2. Importing a density background map is

fairly straightforward. The file must exist before run-time and represent a 2D radial-

vertical plane. Due to the scalar nature of number density, the data can be imported

and directly taken to be the values of the plasma background density profile. At

run-time the density information is imported, and then extended along the toroidal

dimension, representing the excellent transport parallel to the background magnetic

field lines.

The magnetic background map requires some further considerations. The three

Cartesian components corresponding to the radial (Br), vertical (Bz), and toroidal

(Bt), must exist in separate, 2D radial-poloidal files before run-time. These files are

individually imported, at which time the spherical co-ordinate system uses them to

calculate the magnetic field vector on each grid-point, as
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φ = arctan

(
Bz

Bt

)
, (164)

θ = arctan

(√
B2
z +B2

t

Br

)
. (165)

The magnetic field magnitude is also required, and calculated on each grid-point as

B =
√
B2
t +B2

r +B2
z . (166)

These vectors and magnitudes are stored in memory for later usage by the plasma

response equation (135).

5.7.2 Importing Perturbation Profiles

Density and magnetic field perturbation maps were acquired by fluid turbulence

modelling with the Hermes (with BOUT++ framework) [120] code. The description

of the code and its usage is given in section 6.2.1. These perturbation maps were

combined with analytically produced background profiles, and used for the modelling

of Doppler Back-Scattering (DBS) and Cross-Polarisation Doppler Back-Scattering

(CP-DBS) experimental techniques. These scattering simulations are discussed in

section 7.

Similarly to section 5.7.1, importing and using the density maps is more straight-

forward than the magnetic field map. A small complication arises due to the need

to combine the perturbation map with the perscribed background profile. The 2D

radial-vertical file must exist before run-time. For the purpose of back-scattering

simulations, critically this profile must be normalised to the radial position whereby

one expects an electromagnetic wave to scatter from. This is key because this will

be the only radial location in the 2D plane where the perturbation is of the desired

strength. At run-time, this 2D profile is imported into EMIT-3D and extended along
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the background magnetic field lines. The values of the normalised 2D density profile

(n1) are set to appropriate magnitudes by the user input parameter δn/n0, as

n1 →
δn

n0

n0, (167)

where n0 is the strength of the analytically produced background density profile..

This density perturbation is then combined with the background as

n0 → n0 + n1. (168)

The magnetic field perturbations are dealt with similarly. Differing from section

5.7.1, the code does not deal with perturbations parallel to the background mag-

netic field as these are assumed to be negligible. The perturbed 2D radial-poloidal

components Br and Bz must be normalised to the expected radial position of scat-

tering. These profiles are imported into EMIT-3D at run-time and set to appropriate

magnitudes by the user input parameter δB/B0, as

Bz → Bz ∗
δB

B0

B0 (169)

Br → Br ∗
δB

B0

B0 (170)

where B0 is the background magnetic field strength, which is assumed to be homo-

geneous and set as a single-value user input. The variations in the magnetic field

vector are calculated as

φ = φ0 + arctan

(
Bz

B0

)
, (171)

θ = θ0 + arctan

(
Br

B0

)
, (172)

where φ0 and θ0 are the spherical coordinates describing the unperturbed background

magnetic field. The resultant magnetic field is then calculated with equation (166).
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The magnitude and direction of the magnetic field at each grid-point are now ready

to be passed to the plasma response equation (135) which couples these effects to

the electromagnetic wave.
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6 Numerical Turbulence

Turbulence is the most important unsolved problem of classical physics.

- Richard Feynman.

A plasma that is free from instabilities will feature a very low degree of cross-

field heat and particle transport, that is described by ’neoclassical’ physics. Building

upon classical transport theory, neoclassical transport [121] uses the Fokker-Planck

collision operator to analyse transport both parallel and perpendicular to the back-

ground magnetic field. It is a kinetic description which predicts transport due to

collisional effects. Where neoclassical expands on classical transport, is the inclu-

sion of transport effects as a result of non-uniform magnetic fields. Classical theory

assumed that the spatial variation of the magnetic field had no influence towards

particle transport. This is not applicable for tokamak devices, because the mag-

netic field variation can be strong. This variation causes particle trapping, and the

perpendicular motion of the gradient-B and curvature drifts of gyrating particles;

two naturally arising particle-motion effects, consequential of toroidal, magnetised

devices. Neoclassical transport theory then builds upon classical theory by includ-

ing non-uniform magnetic field effects into a model that already observed collisional

effects. Importantly, neoclassical theory assumes that the plasma is in a quiescent

state. Turbulent effects are excluded from the model. In reality, fusion plasmas are

not quiescent, and exhibit turbulence on a range of length-scales, including many

small scale fluctuations. These fluctuations are an effective way of transporting heat

and mass across magnetic field lines [122]. Described by anomalous transport theory,

the contribution of turbulence towards transport is often expressed through electron

or ion diffusivities. Compared to neoclassical transport, anomalous transport can

be an order of magnitude higher for the ions, and three orders of magnitude higher

for the electrons [123]. Turbulent behaviour is complex and not well understood,
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but the nature and drivers of the Electron Temperature Gradient (ETG) mode, and

the Micro-tearing Mode (MTM) are detailed in section 2.2.

In magnetic fusion plasmas, the electron temperatures can be so high that the

ions cannot trap them. The electrons escape the ion orbits, and the plasma can be

thought of as a ‘soup’ of charged particles. The particle interactions are dominated

by long range coulomb deflections that occur at distances far greater than the atomic

radius. In a fully ionised plasma this is the dominant type of interaction and leads

to a majority preference for small angle deflections. In such a case, these plasmas

are named collision-less. Collision-less plasmas can arise in the core of a tokamak,

where the pressures are high enough for fusion to occur on a reasonable time-scale.

It can be shown [124] that the resistivity of a fully ionised plasma goes as

η ∝ T
− 3

2
e , (173)

where η and Te are the resistivity and the electron temperature, respectively. Com-

monly referred to as the Spitzer resistivity, expression (173) indicates that for very

high temperature plasmas, the resistivity will be low. This leads to the core of

fusion plasmas having turbulent mechanisms that are dominated by non-collisional

effects. In the H-mode plasma edge the dominant damping mechanism is collisional

damping [125]. Fluid models are particularly suitable to plasmas where the motion

of the plasma is dominated by the E × B drift. This drift is well described by a

fluid model, because the motion itself is fluid-like; the velocity is the same for every

charged particle.

Understanding and being able to predict plasma turbulence is critical for the

development of future fusion reactors. Progress is gained by creating theoretical

models, and testing them against rigorous experimental measurements. Validated

models can be used to generate numerical turbulence. These turbulence maps can

then be used within full-wave codes to give detailed simulations of wave-plasma
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interactions. There exist several popular types of numerical methods for the mod-

elling of plasma turbulence. The choice of which depends on the region of plasma

one wishes to model and the goals of the experiment. In this chapter gyro-kinetic

and fluid plasma models are discussed.

6.1 Kinetic Model

Mechanisms such as Landau damping or neoclassical transport are ‘kinetic effects’

because they involve the finite Larmor radius or particle-wave interactions. There are

certain plasma regimes where kinetic mechanisms are thought to be closely related to

the plasma turbulence. Under such regimes it is necessary to include kinetic effects

in any plasma model aimed at well describing the turbulence. One example of such,

are gyrokinetic models. Gyro-kinetic simulations form a kinetic description of the

plasma turbulence, while respecting the gyrating nature of particles in a magnetised

plasma.

The description of a plasma can be thought of as the closure of Maxwell’s equa-

tions using constitutive variables such as density, temperature, or velocity. It is

convenient to describe these variables in terms of a phase-space distribution func-

tion

N(x,v, t) =
∑
k=1

δ[x− xk(t)]δ[v − vk(t)] (174)

where xk(t) and vk(t) satisfy the following equations of motions

dxk(t)

dt
= vk(t) (175)

,

dvk(t)

dt
=

q

m
E[xk(t), t] + vk(t)×B[xk(t), t] (176)
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,

where E(x, t) and B(x, t) are the microscopic electric and magnetic fields, respec-

tively. An expression for ∂N/∂t can be derived [126, 127] and is called the Klimo-

tovich equation

∂N

∂t
+ v · ∂N

∂x
+

q

m
(E + v×B) · ∂N

∂v
= 0. (177)

This an elegant expression which hasn’t utilised any statistical averaging and takes

into account all scales. Unfortunately since the Klimontovich equation tracks the

trajectory and interactions of each particle it is not tractable when modelling any

significantly sized plasma. In order to obtain a tractable expression the ensemble

average f = {N} of equation (177) can be taken

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v×B) · ∂f

∂v
= Cs, (178)

where Cs is the collisional operator. Cs varies depending on the situation and it can

lead to equation (178) being very challenging to solve. However, there are some cases

where it may be acceptable to ignore collisions and thus set the collision operator

to zero. This Cs = 0 condition yields the Vlasov equation

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v×B) · ∂f

∂v
= 0. (179)

This is a tractable, kinetic description of a plasma. It has been obtained through

averaging of the Klimontovich equation, and as such retains all of the kinetic physics.

The scope of the modelable physics of the Vlasov equation is somewhat reduced from

the Klimontovich equation due to the removal of the collisional operator. Certain

plasma regimes are indeed collisionless, however there are other situations where a

non-zero collisional operator is necessary for the accurate modelling of the plasma.

While the Vlasov equation is tractable it remains computationally challenging due
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to the phase-space (velocity-position) distribution function requiring 6 dimensions.

It is possible to reduce the computational demands further, by excluding kinetic

effects and considering the plasma as a fluid. This would certainly reduce the scope

of the modelable physics, but it represents an advancement in the theory and will

be discussed in the next section.

6.2 Fluid Model

Kinetic descriptions of fusion plasmas can be achieved through the Vlasov equation

(179). While this equation is tractable, it is demanding to solve due to the use of

6 phase-space dimensions. The metric of this kinetic equation can also be difficult

to work with, as the significance of a distribution function may not be immediately

obvious. Additionally, in an experiment distribution functions can be a difficult to

accurately measure. These two considerations imply that there is a certain discon-

nect between the theory and experiment. Due to this, the advancement of kinetic

theory into fluid theory is appealing. It is more intuitive to work with fluid quantities

(such as density and temperature), and these also tend to be some of the easier to

experimentally measure. The computational demand of fluid codes is tremendously

reduced from their kinetic counterpart, since only 3 dimensions are required.

In order to obtain the fluid equations the moments of the ensemble-averaged

kinetic equation (178) are taken. The zeroth, first, and second moments become the

continuity, momentum conservation, and energy conservation equations, respectively

[128],

∂ns
∂t

+∇ · nsvs = 0, (180)

msns
∂vs
∂t

+∇ ·Ps = qsns(E + vs ×B) + Fs, (181)
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∂

∂t
(
3

2
ps +

1

2
msnsv

2
s) +∇ ·Qs = qsnsE · vs +Ws + vs · Fs, (182)

where for particle species s, ns is the number density, vs is the velocity, Ps is the

stress tensor, Fs is the collisional friction with other species, Ws is the energy ex-

change with other species, and Qs is the energy flux density. Equations (180), (181)

and (182) are conservation equations and can be intuitively analysed by considering

the convective derivative. Let G be some physical quantity, and g(r, t) be its density.

We would expect

G =

∫
gd3r (183)

and considering G is conserved, then g(r, t) must vary according to the convective

derivative as

∂g

∂t
+∇ · g = 4g, (184)

where the divergence term ∇ · g represents the flow of the quantity g(r, t) into, or

out of some local region, and the differential term represents the change of g(r, t)

according to any sources or sinks described by 4g. An understanding of equation

(184) can yield some intuition into equations (180)-(182). Equation (180) indicates

that, locally, there are no sources or sinks of number density for species s. Equation

(181) shows that the momentum varies locally according to the Lorentz force and

the collisional friction term. Equation (182) shows that the energy changes locally

according to electrical work, energy exchange with some other species and by fric-

tional heating. In order to perform modeling with the fluid equations we need to

obtain a closed system. Currently there are too many variables and too few equa-

tions. In order to close a fluid system of equations an asymptotic scheme may be

used. This can be mathematically challenging and involves the detailed analysis of
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some small parameter. The choice of the small parameter depends on the system

one is attempting to describe. For instance, for collisional plasmas one choice may

be the ratio of the mean-free-path to the macroscopic length-scale of the system. For

collisionless and magnetised plasmas another option would be to choose the ratio

of the Larmor radius to the macroscopic length-scale. The details of the mathe-

matics describing asymptotic closure of the fluid equation in magnetised plasma are

complicated and are considered outside of the appropriate scope of theory for this

thesis. However, the process involves finding expressions for the unknown quantities

Ps, Fs, Qs, and Ws in terms of density, velocity and energy. In plasma physics a

common asymptotic technique is based on the work of Braginskii [128] which uses

the ratio of the mean-free-path to the macroscopic length scale of the system.

Fluid models are frequently used to predict the behaviour of plasmas in a mag-

netic field. Fluid codes are best suited to regions of the plasma where perpendicular

particle motion is dominated by E×B drifts, because the motion of the plasma is

fluid-like. This is figuratively visualised by considering that the E × B drift acts

uniformly on all particles, rather than kinetic transport mechanisms.

While fluid turbulence is generally low frequency ω < 106rads−1 [129], tokamak

plasma particles also gyrate around the magnetic field lines. For each species the

gyro-frequency is ωc = ZeB/m where Z and m are the charge state and mass,

respectively. Since generally ω << ωc the timescale over which fluid-like turbulence

evolves is much greater than that required to resolve the gyration. Due to this,

fluid turbulence codes typically treat each particle by its gyro-center, effectively

ignoring the effects of particle gyration. However, certain gyro-fluid codes [130–132]

do include some kinetic effects by using some moments of the gyrokinetic equation,

and including certain mechanisms that are typically ignored by the fluid equations.

The most prominent application of these models is to the tokamak plasma core.

Fluid codes are more applicable in regimes where collisional damping is the dom-
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inant damping mechanism. Unsurprisingly, collisional damping is significant under

regimes where the plasma is considered collisional. Observing the Spitzer resistiv-

ity (173), these collisional plasma regimes occur in the colder regions, namely the

plasma edge. In such regions fluid models make an approximation that kinetic ef-

fects are insignificant in driving turbulence, and thereby reduce both the complexity

of the model and the computational cost required to simulate it.

6.2.1 The Hermes code

The 3D plasma-edge fluid modelling code Hermes [120] uses the Braginskii closure

[128] mentioned in section 6.2. It employs the drift-reduction technique [133] which

allows for the simplification of the conservation of momentum expression (181). This

approximation assumes that perpendicular motion is dominated by the E×B drift,

which is likely reasonable when applied to the plasma edge since temperatures are

low. This approximation reduces the computational demand of Hermes, which can

be high, and allows for an expression for the vorticity to be obtained which assists

in closing the equations described in section 6.2.

Hermes is open-source software that is used in this research in conjunction with

the full-wave code EMIT-3D for the modelling of the Cross-Polarisation Doppler

Back-scattering (CP-DBS) technique. The Hermes turbulence calculation uses the

electron number density, electron temperature, and background magnetic field pro-

files as simulation inputs. It evolves these profiles over time to produce self-consistent

electromagnetic, fluid turbulence maps. These maps are then used in EMIT-3D for

the full-wave modelling of CP-DBS.

The simulation domain was set with the radial, poloidal, and toroidal axes having

sizes of 120cm, 60cm, and 1cm, respectively. The toroidal dimension was kept

small as the length of this dimension had some relationship to the code stability.

The plasma beta is set to β = 5.43% with the background magnetic field being
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homogeneous and parallel to the toroidal dimension. The electron number density

(blue) and electron temperature (red) profiles can be seen from figure 20. For the

initial time-step, this profile is homogeneous in the poloidal and toroidal dimensions.

After turbulence has had time to arise, this is no longer true, particularly for the

poloidal dimension.

Figure 20: Electron number density and electron temperature profiles used as inputs

into the Hermes turbulence calculation. These 1D profiles are initially homogeneous

in the poloidal and toroidal dimensions.

Figure 20 shows the electron number density and temperature length-scales of the

background profiles provided to Hermes at different spatial locations, which are

calculated, respectively, as
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LTe =
∂r

∂ ln(Te)
, (185)

Lne =
∂r

∂ ln(ne)
. (186)

The length-scales shown in figure Figure 20 are gentle compared to that of the

edge of an H-mode MAST plasma which could have an electron density length-scale

on the order of Ln ≈ 1.0cm. Attempts were made to provide Hermes with more

aggressive profiles which would be more comparable with the MAST experiments.

However, the Hermes calculation unfortunately becomes un-stable when the density

or temperature length-scales are pushed too low. The profiles shown in figure 20

were attained by trial and error. The length-scales were increased until unaccept-

able instability was seen, and then reduced until a simulation remained stable for

a satisfactory period of time. While this misrepresentation of the length-scales is

unfortunate, it is not problematic as the Hermes turbulence simulations do not need

to provide an accurate representation of the turbulence on any specific MAST shot.

The reason for this is two-fold. Firstly, it would be challenging to prove beyond rea-

sonable doubt that the results of a fluid turbulence calculation accurately represent

a particular MAST shot, because making the necessary experimental measurements

is a difficult task in itself. Fluid calculations may be satisfactory, however certain

physical effects are omitted in these models. Non-linear gyrokinetic simulations

are more thorough because they contain the kinetic effects that fluid codes have

neglected. However, these calculations are an active area of research and do not

presently exist for the plasma-edge region. Secondly, the purpose of the full-wave

simulations of the CP-DBS diagnostic is not to find agreement with a particular

experiment. This research is not in the position to conduct such simulations be-

cause our understanding of the mechanism behind the cross-polarisation scattering

interaction is poor. This research seeks to better understand the mechanism behind
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the interaction, and identify if there are any underlying non-WKB physical effects

which need to be taken into account when interpreting experimental CP-DBS mea-

surements. For these two reasons it is therefore deemed that providing Hermes with

electron number density and temperature profiles with length-scales greater than

that of experimentally relevant H-mode shots is acceptable.

One major advantage of using a numerical code to produce the turbulence pro-

files is that both the density and magnetic field perturbations are calculated self-

consistently. Using an analytic expression to induce perturbations in a full-wave

code would raise difficult questions as to how the perturbation phase difference has

influenced the result. By self-consistently producing the electromagnetic turbulent

profiles this issue is less of a concern. Although the exclusion of kinetic effects cannot

be dismissed and may also influence the result.

It has been pre-determined that the profiles (fig. 20) used as inputs for the Her-

mes code result in a simulation with a period of stability. The results are observed,

and the point at which any instabilities becomes significant is recognised. A single

time-step, taking during the stable phase is identified. The density (left) and mag-

netic (right) turbulence profiles at this step are shown in 2D poloidal-radial plane

in figure 21.
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Figure 21: Density (left) and magnetic (right) 2D turbulence profiles taken at some

stable time-step from a Hermes turbulence calculation.

The perturbations shown in figure 21 in both the density and magnetic profile appear

to be almost exclusively radial. This can be explained by considering the initial

conditions supplied to the Hermes calculation. At time-step t = 0 the profile shown

in figure 20 is homogeneous in both poloidal and toroidal (into the page) dimensions.

This means that all of the ‘free energy’ available for the driving of the turbulence is

directed in the radial dimension, since this is the only direction that the density and

temperature gradients are non-zero. This leads to the perturbations in this linear

growth phase to be orientated radially. Free energy is described mathematically as

gradients in the plasma profiles and has been discussed in section 2.2. The Hermes

simulation became unstable shortly after the time-step shown in figure 21. However,

if the simulation remained stable and was ran for more time then free energy would

begin to arise in the poloidal dimension as a result of the radial perturbations.

This would cause some poloidally orientated turbulence to grow, causing non-linear

growth. This effect would be heightened by the reduction of free energy in the radial

dimension. While Hermes does also track the temperature profile fluctuations, this
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data has been excluded from figure 21 because it is not used for the EMIT-3D

simulations as the plasma model is cold.

Previous attempts to produce electromagnetic fluctuations without turbulence

modelling software using analytical expressions failed. This is because the analytical

expressions were poorly designed and introduced significant amounts of divergence

in the magnetic field perturbations. It is useful to compare these previous attempts

with the turbulence simulations as it was unknown as to what an acceptable level

of divergence would be for use in a full-wave code. The divergence of the 2D radial-

poloidal magnetic field perturbation map shown in figure 21 (right) is calculated

and plotted in figure 22.The average degree of divergence is approximately 3×10−14

which confirms that the magnetic field is divergence-free up to the precision of the

computer.

Figure 22: The calculated divergence of the radial-poloidal magnetic field perturba-

tion map shown in figure 21 (right).

Figure 23 shows how the average density and temperature (left) and resultant
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magnetic field (right) fluctuation strength varies with the radial axis. These graphs

are used to locate a reasonable radial position about which to normalise the 2D

profiles shown in figure 21. The density and temperature fluctuation strengths vary

strongly with radial position. Whereas the average resultant magnetic fluctuation

strength increases monotonically. For the normalisation, the radial position of R =

100cm was chosen. This was done for three reasons. Firstly, if an antenna is

situated at the radial position of R = 0.0cm, there is a significant amount of vacuum

that the beam would be required to propagate through before interacting with the

normalised fluctuations at R = 100cm. This is important because test simulations

in modelling CP-DBS have made it clear that there must be a substantial vacuum

propagation path-length in order to detect the weak back-scattered signals over the

strong reflected probing beam. Secondly, at the position of R = 100cm we can

see from figure 23 that the density, temperature, and magnetic fluctuations are all

apparent to a significant degree. This may be unimportant but it indicates that, in

this region of space, all three fluctuating parameters have been able to interact with

one another in the Hermes calculation, perhaps leading to more realistic turbulence.

Thirdly, these exist approximately 15cm behind the R = 100cm position. This is

important to allow for the wave to evolve correctly around the scattering surface; a

cut-off situated too close to the R = 120cm boundary may erroneously damp signals

that are important in creating the back-scattered interference pattern.
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Figure 23: Average fluctuation strengths for the density and temperature (left) ,

and the magnetic (right) profiles.

The perturbation field maps are normalised at the aforementioned radial posi-

tion of R = 100cm. It is now necessary to perform Fourier analysis to determine

the wave-number spectrum of the turbulence. This is critical for the CP-DBS sim-

ulations because the wave-vector condition (18) for back-scattering must be satis-

fied. The results of this analysis are shown in figure 24, where the wave-number

spectra of the density and magnetic turbulence profiles are shown in black and

blue(radial)/red(vertical), respectively.
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Figure 24: Wave-vector Fourier analysis of the 2D perturbation maps shown in figure

27. The 1D signal was taken from each of the density and magnetic perturbation

profiles at a radial position of R = 100cm. The density wave-number spectrum

is shown in black, and the magnetic perturbation components in blue(radial) and

red(vertical). A major complimentary wave-number is identified at k0 = 2.63cm−1.

An important distinction must be noted between the wave-number spectra of the

simulated turbulence (fig. 24), and the turbulence expected to be present in an

H-mode tokamak plasma edge. The spectrum of the turbulence produced by the

Hermes code is discrete, whereas the turbulence in a tokamak has been modelled

[134] to be a continuum. The reason for this is that in reality there are a wide range

of turbulent modes at a broad range of length-scales, which are simultaneously

unstable to some degree in the complex and strongly inhomogenous environment of

an H-mode tokamak plasma edge. The Hermes simulation is a fluid approximation.

As such it does not include all of the relevant physics; most notably, it excludes
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Wave-number (cm−1) θ(◦)

2.63 7.223

3.34 9.164

5.61 15.559

Table 1: Wave-vectors which are apparent in both the density, and the magnetic

field turbulence maps shown in figure 21. Wave-vector Fourier analysis of these

maps is shown in figure 24. The θ column refers to the angle to the normal of the

density profile at which one must launch a 55GHz probing beam in order to match

the approximate condition for back-scattering shown in equation (18).

kinetic effects. The reasoning for using a simplified turbulence model has already

been made. The result of this, is that only certain turbulent modes, at certain length-

scales, can be modelled. This has resulted in the produced wave-number spectrum to

be discrete. In order to minimise the impact of this notable difference it is important

to choose a discrete wave-vector that is present in both the density, and the magnetic

wave-vector spectrum. So that when scattering using the Bragg approximation for

back-scattering it can be justifiably said that both the density, and the magnetic

wave-number spectra were appropriately matched. Three notable wave-numbers are

identified from figure 24. Given a launched wave of f = 55GHz, these wave-numbers

and the resulting required launch angle (calculated with equation (18)) are shown

in table 1.

All of the wave-vectors identified in table 1 could be argued to be appropriate in

one way or another, and there is no clear choice as to which to focus on. Ultimately

the wave-vector k0 = 2.63cm−1 was chosen for use in the CP-DBS simulations. This

was because of two reasons. Firstly, both the density, and the magnetic signals

have a major peak at this wave-number. Secondly, the angle required to match the
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approximate condition for back-scattering is small, but substantial. Smaller angles

can be more favourable due to the smaller computational domain required for the

simulations. For a given plasma and antenna configuration, larger injection angles

potentially require a larger simulation domain because of the increased poloidal

beam propagation path. With knowledge of the wave-vector spectra, the normalised

density, and magnetic perturbation maps (fig. 21) are ready for use in the full-wave

EMIT-3D simulations.

6.2.2 Analytic turbulence

The turbulence generated with the Hermes fluid code in section 6.2.1 constitutes a

reasonable attempt to generate a plausible scattering surface. Steps have been taking

to ensure this turbulence is as accurate as possible, however, we identify several

key expected differences between these numerically generated fluctuations and real

plasma turbulence. As a result of this, it is desirable to generate a secondary set of

electromagnetic fluctuations. This will allow for a comparison between the observed

scattering mechanics and will assist in identifying any physical effects which arise

as a result of the nature of the fluid turbulence.

In this section we create a simple, monochromatic piece of turbulence using a

trigonometric function of the form

δBvertical[j, k] = sin
j

λ
2π. (187)

Here, δBvertical[j, k] is the perturbed radial magnetic field at the grid position of

j, k which are indices. The λ variable is the desired wave-length of the fluctuation.

The toroidal component of the turbulence is assumed to be zero, and the radial

component is calculated according to the divergence free nature of magnetic fields

δBradial[j, k − 1] = δBradial[j, k]− δBvertical[j − 1, k] + δBvertical[j, k]. (188)
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Equations (187) and (188) give rise to the radial (left) and vertical (right) magnetic

field maps shown in figure 25.

Figure 25: Radial (left) and vertical (right) magnetic field perturbation maps gen-

erated analytically.

Fourier analysis of these analytically produced magnetic field perturbations is shown

in figure 26.
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Figure 26: Fourier analysis of the monochromatic turbulence produced with the

analytical equations (187) and (188). All three signals have wave-number k =

3.052cm−1

These fluctuations are then used within EMIT-3D in the same way as the Hermes

fluctuations described in section 6.2.1. This import process is detailed in section 7.1.
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7 DBS and CP-DBS Modelling Results

Cross-polarisation Doppler back-scattering (CP-DBS) is a novel diagnostic technique

that seeks to measure the wave-number, amplitude, and poloidal velocity of magnetic

perturbations induced by micro-turbulence. Outlined in section 2.3.2, this technique

is similar to conventional Doppler back-scattering (DBS) outlined in section 2.3.1,

but is much more challenging. The research presented in this chapter seeks to set

the fundamental basis for the modelling of CP-DBS simulations, addressing some of

the concerns with the diagnostic technique.

As discussed in section 2.3.2, the magnetic fluctuations (δB/B) measured by

CP-DBS can be small. This causes the CP-DBS electromagnetic signals to be weak

and one challenging aspect of the diagnostic is detecting the CP-DBS above noise

and signal contamination. This issue is discussed in section 7.3. Another major

concern for the feasibility of the diagnostic is coupling between the characteristic O

and X-mode waves due to non-Wentzel–Kramers–Brillouin (WKB) effects. Current

experimental CP-DBS diagnostic measurements rely on the O and X-mode waves

being independent modes that have negligible interaction with one another. This

may not be a valid assumption; interaction between the O and the X-mode can

occur when the polarization of the probing beam changes quickly [101, 135]. This

can happen when magnetic shear, or the background plasma density gradient is large.

It is thought that this interaction effect could be significant when the inequality

|kx − ko|
2π/Ln

<< 1.0 (189)

is approximately satisfied. This problem is discussed in section 7.4.

As described in section 6.2.1, the Hermes turbulence simulation runs in the time

domain. A snapshot is taken during the linear growth phase and a 2D poloidal-radial

slice is captured. The 2D electromagnetic turbulence snapshot is then normalized
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such that the RMS fluctuation amplitude is unity at a radial location that will

ultimately correspond to the microwave scattering location. At run-time EMIT-3D

can either omit the magnetic component and import solely electrostatic turbulence,

or import the fully electromagnetic turbulence snapshot. During the import the

2D turbulence structures are extended in the third dimension along background

magnetic field lines. These 3D turbulence structures are then multiplied by user

specified values to attain the desired fluctuation amplitudes. Figure 27 shows the

density and magnetic field fluctuations of the turbulence.

Figure 27: Waveform of the normalised number density (left) and the resultant

magnetic field (right). Signals are used for Fourier analysis.

A 50GHz X-mode Gaussian beam of 9cm diameter is launched perpendicular

to the background magnetic field, towards the plasma at an angle of θ = 7.223◦

to the normal of the scattering surface. This matches the vacuum approximation

condition for back-scattering shown in equation (18) since the wave-number analysis

of figure 24 gives a strong peak at k⊥ = 2.63cm−1. The microwave propagates

through approximately 13cm of vacuum before encountering the plasma. After a

short optical path length of Λ ≈ 2.5λ0 the X-mode wave interacts with the fast
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X-mode cutoff where the measurement of the background density length-scale is

important and is described in section 7.1. Highly-localised to the cutoff, Bragg

back-scattering from turbulence causes some scattered wave energy to propagate

back along the beam path. The cross-polarised O-mode signal generated by the

microwave interaction with magnetic turbulence has a slightly different beam path

to the back-scattered X-mode due to the different dispersion relation. However, the

short overall optical path length causes this difference to be negligible. The back-

scattered radiation propagates back to the antenna where it is detected. The power

ratio between the back-scattered O-mode and back-scattered X-mode is measured,

which is representative of the turbulence fluctuation.

7.1 Preliminary Modelling

The density perturbations are normalised such that the magnitude at the location

corresponding to the cutoff of the launched microwave is equal to unity. The desired

magnitude of the density perturbation can then be set as an input parameter to the

simulation, and varied easily without modifying the density perturbation map. The

resultant number density at some position in space is then calculated as

n→ n0 +
δn

n0

n0δn (190)

where n is the resulting number density, n0 is the background density, δn is the

normalised perturbation density, and (δn/n0) is the desired magnitude of the per-

turbation, given as user input and constant across the simulation domain. This

expression is part of the EMIT-3D algorithm and as such shouldn’t be treated as

an equation which can be manipulated by algebra. Specifically, the (δn/n) term is

fundamentally different to the δn term, because as mentioned δn is normalised (has

a value of unity at the scattering location).
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The magnetic field perturbations are more challenging to deal with due to their

vectoral nature. Hermes assumes that there are no magnetic perturbations parallel

to the background magnetic field which is parallel to the x− axis in this work. The

two perpendicular 2D radial-poloidal perturbed magnetic field maps are attained

from the Hermes turbulence calculations. These components are then combined

into a 2D map of the resultant magnetic field perturbation as

δB =
√
δB2

y + δB2
z . (191)

This field map is normalised in an analogous manner to the density map. The

normalisation occurs in such a way that the value of the resultant magnetic field

is equal to unity at the radial spatial position which will ultimately correspond to

the X-mode cutoff location in the forthcoming full-wave simulation. The spatial

location chosen for the normalisation is the same as when normalising the density

perturbation map. In order words, the resultant magnetic field and number density

perturbations maps are normalised, respectively, to the same position in space. The

normalised resultant magnetic field is then used to determine by what factor the

non-normalised magnetic field component needs to multiplied by. This results in

two separate 2D magnetic field perturbations; one for each perpendicular (to the

background) magnetic field component. This has the advantage of allowing the

desired magnetic field perturbation strength (δB/B) to be prescribed as an input

parameter into the simulation, and can be modified without requiring any pre-

simulation changes to the 2D perturbed magnetic field maps. The two normalised 2D

magnetic field maps are imported into EMIT-3D at run-time which. Each grid-point

over the 2D radial-poloidal plane reads the magnitude of the three magnetic field

components corresponding to that particular grid-point position in space. These two

components are then used to calculate the local direction of the magnetic field vector

in spherical coordinates according to the usual coordinate transform expressions
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B =
√
B2

0 + δB2 (192)

φ = arctan [By/B0] (193)

θ = arctan
[
(B2

0 +B2
y)/Bz

]
(194)

(195)

where By, and Bz are the magnitude of the magnetic field components parallel to the

Cartesian axes y and z, respectively, and δB is the resultant magnetic perturbation

aquied from equation 191. The above system of equations are unique to the case

where the background magnetic field is parallel to the x-axis. In other words B0 =

B0êx. The spherical coordinates θ and φ are defines as per the physics standard for

spherical coordinate systems shown in figure 28.

Figure 28: Physics standard for the spherical coordinate system.

The underpinning scattering theory [136, 137] predicts that for perpendicular

propagation (ki ·B = 0), when δB‖ = 0 the microwave scattering efficiency scales
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linearly with respective perturbation strength, and the density perturbations have

negligible contribution towards cross-polarization scattered signals, and vice-versa.

Using the cold plasma form of the conductivity tensor (56),

EXX ∝ Jδn =
ε0ω

2
peY Ex

ω(1− Y 2)

δn

n
(196)

EXO ∝ JδB =
iε0ωceω

2
peY Ex

ω2(1− Y 2)

δB

B
(197)

where EXX and EXO are the electric fields of waves scattered from the original X-

mode, into the X-mode and orthogonal O-mode polarizations, respectively. These

relations allow useful checks to see if the scattering is performing as we would expect.

Using a magnetic field perturbation strength of

δB

B
=
δn

n

1

20
, (198)

we scan through a range of values for δn/n. The perturbation ratio chosen and

shown in equation (198) was done so, as this was experimentally measured with

pioneering CP-DBS measurements on MAST [73].

Initially the plasma is described by setting the background plasma density and

magnetic fields. A modified tanh function [119] is used to model the aggressive

density profile of the H-mode pedestal. The expression along with the definition of

the variables are described in figure 5.6. A thin, roughly 2λ thick region around

the X-mode cutoff was used to measure the background density length-scale [138]

according to

Lne =
δr

δ ln(ne)
. (199)

Figure 29 shows an example of how the δr region is specified. The radial position

of the fast X-mode cutoff is determined (blue) and a thin δr = 1.0λ0 spatial region
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(red, dashed) is centered around the cutoff. Over the same region the change in

natural logarithm of the number density δ ln(ne) is measured which allows the use

of equation (199) for calculation of the density length-scale.

Figure 29: An example of how the density length-scales are calculated around the X-

mode cutoff (blue). The O-mode cutoff (green) is also featured. The red dashed lines

indicate the spatial region whereby δr and δ lnne are measured for use in equation

(199).

Observing equation (21), it can be seen that an increase in the magnitude of the den-

sity perturbation strength, δn/n should produce a linear response in the strength of

the scattered radiation. Similarly, equation (23) predicts the same linear relationship

with regards to the magnetic field perturbation strength and the cross-polarised scat-

tering. These relationships hold true until very high perturbation strengths where

an enhanced non-linear scattering response begins to become significant [139]. This

allow the formation of a basic parameter scan to confirm that the scattering mecha-

nism is functioning as expected. The expression calculating the scaling is consistent

with that used in [139] and is
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ni =
ln(Pi+1/Pi)

ln(σi+1/σi)
(200)

where Pi and Pi+1 are the detected powers for the present and subsequent data-

points, respectively. The σ variable refers to the perturbation strength, and ni

is the scaling power (i.e. P ∝ σni). The ratio of (δB/B0)/(δn/n0) = 1/20 was

kept constant. Using the electromagnetic turbulence described in section 6.2.1,

a scan through the perturbation strength was conducted over the range 10−5 <

δn/n0 < 100. The simulation domain was 3D with the radial, poloidal, and toroidal

dimensions having sizes of 60cm, 30cm, and 30cm, respectively. The antenna was

located deep into the radial dimension at r = 45cm so that there was plenty of space

behind the antenna to discriminate backscattering from reflections. Figure 30 shows

the results of these simulations, where the vertical axis represents the variable ni.

The parameter scans were conducted with the launch angle of θ = 7.0◦ and multiple

values of the normalised cyclotron frequency Y = ωce/ω0 were used. The value of

ni = 2.0 is the expected linear scaling between the scattered electric field strength

and the perturbation strengths. This is showing that the scattered power is varying

as the square of the perturbation strength.
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Figure 30: Scaling of the DBS and CP-DBS signal strength with increasing density,

and magnetic perturbation strengths. At all data points the ratio (δB/B)/(δn/n) =

1/20 is kept constant. The vertical axis Scaling Power is the variable ni in equation

(200)

At low perturbation strengths the scattering response is linear as expected. The

non-linear enhanced scattering regime can be seen to become noticeable in the DBS

signal (left) at around δn/n = 10−2. The enhanced non-linear regime gives way

to heavy suppression at extremely highly dn/n. This is roughly anticipated from

[139]. It is interesting to note that the background magnetic field strength seems

to play a significant role in determining the transition point between the linear and

non-linear regimes. Furthermore, certain values of Y = ωce/ω0 seem to not feature

enhanced scattering at all. The CP-DBS signal (right) scaling performs similarly

well for low values of δB/B, showing that the power is scaling as the square of

the perturbation strength, as expected. The CP-DBS mechanism transitions into

a suppressed regime at about δB/B = 10−3. At the highest values of δB/B the

scaling power increases sharply. The DBS and CP-DBS scaling power seem to have

a rough inverse relationship, and the sharp increase of the CP-DBS scaling power

at very high δB/B may suggest that there is some degeneracy between the X-mode
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and O-mode polarisations whereby energy is transferred between them.

The behaviour of the scattering mechanisms at very high perturbation strengths

is interesting, but complicated and unpredictable. These non-linear regimes are

actively avoided when conducting further DBS and CP-DBS simulations. This is

achieved by keeping the density and magnetic perturbations strengths below the

δn/n = 10−2 and δB/B = 10−3 thresholds observed in figure 30. The ratio of

(δB/B)/(δn/n) = 1/20 is applicable to MAST CP-DBS experiments [73] and was

kept constant in the scaling power parameter scan. It is conceivable that the transi-

tion point from the predictable linear regime (ni = 2) to the unpredictable regimes

(ni 6= 2) may vary if the perturbation ratio (δB/B)/(δn/n) 6= 1/20. As such, this is

kept constant in all presented simulations using electromagnetic plasma fluctuations.

Experimental DBS shot 30150 and CP-DBS shot 30422/23 [73] feature H-mode

plasmas. These plasmas ‘grow’ over time, meaning that the temperature and number

density gradients increase and pedestal knee shifts outward. This causes the plasma

to move through stable peeling-ballooning space towards a region of instability.

When the unstable region is reached a type III ELM can occur. Ejecting heat and

density from the plasma, this dramatic event lowers the temperature and number

density magnitudes and gradients in the pedestal, and shunts the plasma back into a

stable region of the peeling-ballooning limit. As a result of this, the plasma plasma

profiles can significantly vary over the entire ELM cycle. In order to account for this

variation, the ELM cycle was split temporally into thirds. Each third of the ELM

cycle had density and temperature profiles associated with it, which were obtained

by averaging over many cycles. A second hyperbolic tangent-like function was used

to re-construct these profiles using a handful of experimentally obtained variables.

Developed by Culham Centre for Fusion Energy, this function is

a2 − a4

2

[
(1 + a3x2)ex2 − e−x2

ex2 + e−x2
+ 1.0

]
+ a4, (201)

138



ELM third a0 a1 a2 a3 a4

1/3 0.992830 0.00482286 3.99573 0.0142420 0.911161

2/3 0.990538 0.00606494 5.01674 0.0100596 0.845323

3/3 0.987711 0.00576811 5.00048 0.000948642 1.00656

Table 2: Parameters for use in equation (201), for reproducing the background

number density profiles for each ELM cycle third, for the shot 30150.

where the variable x2 is given by

x2 =
(a0 − x)/2

a1

. (202)

The variables x and a in expressions (201) and (202) are similar to that of the

controlling variables in figure 5.6. The variable x is the value of the normalised

minor radius at some spatial position. The five a variables are

• a0 −→ The value of ψ at the mid-point of the pedestal.

• a1 −→ The pedestal half-width.

• a2 −→ Number density at the top of the pedestal, in units of 1019m3.

• a3 −→ The core plasma linear gradient.

• a4 −→ The pedestal offset, in units of 1019m3.

The values required to reproduce the number density profiles for each of the ELM

cycle thirds, for the shots 30150, and 30422/30423 [73], are in tables 2 and 3, respec-

tively. These tables are used in equation (201) in order to re-construct the density

profiles. These are shown in figure 31 for the DBS shot 30150 (left) and the CP-DBS

shot 30422/23 (right).

Taken around the fast X-mode cutoff, the number density length-scale changes as

the pedestal recovers post-ELM. The length-scales for each third of the ELM cycle
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ELM third a0 a1 a2 a3 a4

1/3 0.99356401 0.0055039399 3.0572400 0.0045404201 0.53272003

2/3 0.990640 0.00477613 3.42404 0.00362940 0.776848

3/3 0.989230 0.00523902 3.75963 0.000615675 0.731248

Table 3: Parameters for use in equation (201), for reproducing the background

number density profiles for each ELM cycle third, for the shot 30422/30423.

Figure 31: Re-constructed density profiles for the DBS and CP-DBS experiments

conducted in shots 30150 (left), and 30422/23 (right), respectively. Vertical lines

represent the position of the X-mode cutoff. Profiles have been re-created using

equation (201) along with the variables detailed in tables 2 and 3.
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can be seen printed in figure 31 for both shots 30150 (left) and 30222/23 (right).

Shot 30150 used conventional DBS and maintains a consistent density length-scale

of Ln = 0.961cm on average, with a tight standard deviation of 1.0%. Shot 30222/23

used the CP-DBS diagnostic. Comparatively, the number density length-scale varies

much more. The average value is Ln = 1.36cm and the standard deviation is 28.1%.

This discrepancy is the result of experimental parameters that are difficult to con-

trol, and has important consequences. It has been suspected that the scattering

mechanism underpinning the CP-DBS diagnostic may be sensitive to non-WKB po-

larisation interaction induced by polarisation degeneracy [73]. The degree to which

this may be apparent is indicated by the difference between the O-mode and X-mode

wave-numbers at the point of scattering. It is thought that when the wave-number

separation is small (eq. (189)) the injected beam may be able to freely exchange

energy between the O-mode and X-mode polarisations. Considering that the CP-

DBS diagnostic relies critically on the detection of very weak signals, this effect

may be detrimental to the reliability of the diagnostic. The variation of the density

length-scale over the inter-ELM period of shot 30422/23 may cause non-WKB ef-

fects to vary in significance over the same period. This could lead to variation in the

CP-DBS signal which may be misinterpreted as variations in turbulent perturbation

strength. As such, the significance of non-WKB effects must be better understood

for the CP-DBS diagnostic technique to warrant credibility. Simulations addressing

this are now discussed.

7.2 Simulation Setup

A 50GHz X-mode wave is launched perpendicular to the background magnetic field

with Y = 0.28, at a poloidal angle of θ = 7.223◦ which corresponds to wave-number

matching for back-scattering according to expression (18) of k⊥ = 2.63cm−1. The

electromagnetic wave interacts with electrostatic and electromagnetic turbulence
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in the plasma and scatters. An example of a typical simulation showing co-polar

electric fields only is shown in figure 32 where the antenna is situated at r = 45cm.

This is denoted the "main" simulation.

Figure 32: Co-polar electric fields as a result of a 50GHz X-mode beam launched

perpendicular to the background magnetic field at an angle of θ = 7.223◦ from a

position of r = 45cm. The beam propagates into the plasma and interacts with

electrostatic and electromagnetic turbulence. The resultant scattering cannot be

seen since the incident beam is overpowering the weak scattering signals. For mea-

surement, post-processing must be conducted to remove .

The scattered signals in figure 32 cannot be seen. This is in part due to the powerful

beam launched from the left side of the antenna dominating over the weak scattering
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beamlets. In order to measure the back-scattering, post-processing must be done in

order to highlight the scattered signals. An analogous simulation is conducted to

that of figure 32, except without any plasma; the wave simply propagates through

vacuum. This is denoted the ‘reference’ simulation. The signals being emitted

from the left side of the antenna in both the main and reference simulations never

encounter plasma. As such, during post processing it is possible to ‘eliminate’ this

signal by subtraction. Only the positions left of the antenna are altered in this

way; the signal emitted from the right side of the antenna remains unmodified. This

causes the antenna in the main simulation to appear as if there is only a signal being

emitted from the right side. This can be seen from figure 33 (left).

Figure 33: The same simulation as shown in figure 32. The signal being emitted

from the left side of the has been antenna removed in post-processing by subtracting

the same signal of the reference simulation. The color scale has also been drastically

reduced to highlight the back-scattering (right). The white color here signifies that

the electric field values are not represented by the vertical color scale.

It can be noted from figure 33 (left), that despite there being a region of apparently
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no electric field signal on the left side of the antenna, the back-scattering still cannot

be seen. This is because the colour-scale has been chosen to be appropriate for the

strongest present signals; it is not fine enough to detect the weak back-scattering. In

order to visuals these weak electric fields, the colour-scale range must be drastically

reduced, which eliminates the ability to observe the features of the launched beam.

This can be seen from figure 33 (right). Now detectable, the back-scattered signals

can now be measured and parameter scans can be conducted in order to perform

physical investigations into the cross-polarisation scattering mechanism.

EMIT-3D is a 3-dimensional code, and as such a robust measurement of the

back-scattered signal can be taken by observing the toroidal-poloidal plane. Figure

34 shows these planes in the co-polar (left) and cross-polar (right) polarisations at a

radial position of r = 0cm, where the electric field signals have been time-averaged

to eliminate phase effects.
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Figure 34: The same simulation as shown in figure 32. Toroidal-poloidal planes

showing the time-averaged RMS signal of the co-polar (left) and cross-polar(right)

polarisations. This 2D plane is taken at the radial position of r = 0cm.

A 2D integration is performed over the surface bound by the white horizontal lines,

therefore fully evaluating the back-scattered signal.

7.3 Detecting Backscattering Over Noise

Of primary interest to the cross-polarisation Doppler back-scattering (CP-DBS)

diagnostic, is whether the weak back-scattered signals can be detected over spurious

noise. Many sources of noise are not representable in EMIT3D. For instance, there

could be other electromagnetic instruments present in the tokamak. Signals emitted

from other machines could reflect in some way and be detected and misinterpreted by
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the CP-DBS system. Such issues must be considered by experimentalists, however,

in this work we evaluate only noise generated by the wave-plasma interaction itself.

Full-wave simulation in this section seek to compare back-scattering from simulations

using solely electrostatic turbulence, and others containing both electrostatic and

electromagnetic turbulence. This is in effect comparing the signals generated by

the DBS and CP-DBS systems and will help to identify the significance of the

magnetic perturbations towards cross-polar scattering. For the CP-DBS diagnostic

system to be useful the cross-polar signals generated by the interaction between

the wave and the magnetic fluctuations must be detectable over any similar signals

originating from the density perturbations. A parameter scan was conducted twice.

The turbulence perturbation strength was varied as 10−5 ≤ δn/n ≤ 10−1 while

keeping (δB/B)/(δn/n) = 1/20 constant. The background plasma density was

modelled with the tanh function described in section 7.1, with a length-scale of Ln =

2.0cm. In the first set of simulations the turbulence was electrostatic; there were

no magnetic perturbations and the back-scattered cross-polar signals arise from the

wave interacting with the density fluctuations. In the second set of simulations, the

turbulence was both electrostatic and electromagnetic. The back-scattered electric

fields were measured as described in section 7.2, and the original-polar signal was

compared to the cross-polar signal. The results can be seen from figure 35.
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Figure 35: Scaling of the DBS (co-polar) and CP-DBS (cross-polar) signals with

increasing density perturbation strength. The magnetic field perturbation strength

is varied such that the ratio (δB/B)/(δn/n) = 1/20 is held constant.

The green line shows the measured back-scattering into the original polarisation.

This is the signal that the DBS system would measure and represents back-scattering

from density perturbations. The strength of this signal remained unchanged when

moving from solely electrostatic turbulence to both electrostatic and electromag-

netic. This is expected because the magnetic signals should have negligible influence

on original-polar scattering. The cross-polarised back-scattered signals are shown in

blue and these represent the signals that the CP-DBS system would measure. When

purely electrostatic turbulence was used (solid blue line with no dots), no magnetic

turbulence is present and cannot therefore cause any scattering. The cross-polar sig-

nals detected here are from the divergence of co-polar signals originating from the
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density perturbations. With the inclusion of electromagnetic turbulence into the

simulation the strength of the cross-polar signal rose by almost an order of magni-

tude. While this is expected, it is an excellent result; it shows that in this simplistic

environment the cross-polar signals can be detected over any contributions from the

density perturbations. However, it must be noted that the CP-DBS signals in sim-

ulations containing electromagnetic turbulence are weaker than expected. Figure

36 shows the ratio of EXO/EXX where EXO and EXX refer to the cross-polar and

co-polar signals, respectively. These two variables are measured according to the 2D

toroidal-poloidal integration technique described in section 7.2.

Figure 36: The ratio between the cross-polar and co-polar signals displayed in

figure 35. The undotted line represents simulations with exclusively electrostatic

turbulence. The simulations constituting the dotted line featured both electro-

static and electromagnetic turbulence. In all of these simulations the ratio of

(δB/B)/(δn/n) = 1/20 is held constant.

The dotted line in figure 36 represents data taken from simulations which contained
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both electrostatic and electromagnetic fluctuations. The linear regime approxi-

mately 10−4 < dn/n < 10−2 gives a ratio of approximately EXO/EXX = 3 × 10−3.

Since the fluctuation strength ratio was held constant at (δB/B)/(δn/n) = 1/20,

the back-scattered appears unduly weak. However, observing the ratio between

equations (196) and (197) one can predict that

EXO
EXX

= Y 2 δB/B

δn/n
. (203)

Since the value of the normalised cyclotron frequency in these simulation is Y = 0.28,

the expected value of EXO/EXX can be calculated to be EXO/EXX = 3.92 × 10−3

which is reasonably close to the simulated value of EXO/EXX = 3× 10−3.

7.4 Non-WKB Effects

In order to evaluate the significance of interactions between the characteristic fre-

quencies (non-WKB effects) the inequality (113) is investigated. The numerator is

determined by the choice of normalised cyclotron frequency while the denominator

may be varied by altering the background density length-scale. The magnetic field

is set to Y = 0.28 which a scan through density length-scale is conducted. The

results are shown in figure 37.
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Figure 37: Parameter scan using Hermes fluid turbulence described in section 6.2.1.

The background density length-scale was varied while all other simulation param-

eters are consistent with that of section 7.3. The left-side vertical axis measuring

the backscattering signal ratio between the cross-polar (EXO) and co-polar (EXX)

electric fields. The right-side vertical axis in red indicates the limit of the inequality

(113) which represents the predicted significance of non-WKB effects.

It can be seen that the length-scale has a strong and non-monotonic effect on the

length-scale. While it is possible that non-WKB effects are causing the strong varia-

tion there is not enough evidence to form this conclusion. There are factors originat-

ing from the Hermes produced turbulence which may be causing difficult to diagnose

effects. Using monochromatic turbulence produced analytically the parameter scan

was repeated and vastly extended. This can be seen from figure 38.
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Figure 38: An analogous parameter sweep to that shown in figure 37, however,

analytical turbulence described in section 6.2.2 was used instead of the Hermes fluid

turbulence described in section 6.2.1. The range of the background density length-

scale was also vastly extended. The ratio between the cross-polar and co-polar

electric fields is displayed along with the limit of the inequality (113).

Similarly to figure 37, figure 38 shows a parameter scan through background

density length-scale. However, the analytical turbulence described in section 6.2.2

was used instead of the Hermes fluid turbulence described in section 6.2.1. This

analytically produced turbulence is a vast simplification on reality, however, the

interpretation of the scattering mechanism may be easier as a result. The scattering

efficiency has generally drastically improved with the transition from the Hermes

fluid fluctuations to the monochromatic analytically produced turbulence. While

this much higher measurement of EXO/EXX is no longer in agreement with equations

(196) and (197), this is to be expected due to the overly simplistic nature of the
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turbulence. As with the initial parameter scan of figure 37, figure 38 also shows

a non-monotonic tendency, with a strong dependency of the scattering efficiencies

with background density length-scale. The data also seems to be cyclical in nature,

at least below length-scales of Ln = 8.0cm. Observing the 2D simulation planes

in the cross-polarisation an interesting change in scattering mechanism was noted

towards higher length-scales which is related to the position of the O-mode cutoff.

Figure 39: Three simulations showing the cross-polar electric fields. The analytically

produced turbulence described in section 6.2.2 was used. The background density

length-scale is varied in each case, and correspond to three data points in figure 38

which are Ln = 6.2cm(left), Ln = 8.0cm(middle), Ln = 9.5cm(right). The vertical

coloured lines indicate the position of the fast X-mode cutoff (yellow), the upper

hybrid resonance (red) and the O-mode cutoff (green).

Figure 39 shows the cross-polar electric fields. The images are 2D radial-poloidal

plane of the data points Ln = 6.2cm(left), Ln = 8.0cm(middle), Ln = 9.5cm(right)

taken from the parameter scan detailed in figure 38. The coloured lines indicate

the fast X-mode cutoff (yellow), upper hybrid resonance (red), and O-mode cutoff
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(green) and the visible electric fields are in the cross-polarisation. Observing the

X-mode cutoff of the Ln = 9.5cm(right) simulation it can be seen that not only are

cross-polar signals being scattered back out of the plasma towards lower values of the

radial axis, but they are also forward scattering. Since this is the cross-polarisation

these electric fields are in the O-mode polarisation. The forward scattering can

be seen to propagate into higher density plasma until interacting with the O-mode

cutoff. At which point, the O-mode reflects from the cutoff surface. Depending on

the position of the O-mode cutoff relative to the X-mode cutoff, this reflected signal

can propagate back towards the antenna and interact with the back-scattered wave,

as can be seen in figure 39(left) the Ln = 6.2cm simulation. In order to evaluate

the significance of this reflected cross-polar signal a series of simulations were setup

with a flat core density profile. An example of which is displayed in figure 40.

Figure 40: Density profile of an example "flat-top" simulation (left) where the core

profile gradient has been reduced to zero. Cross-polar electric field signals (right)

are shown as a result of an X-mode beam scattering off of the X-mode cutoff. The

X-mode cutoff (yellow) is marked accordingly.

These flat-top simulations remove the O-mode cutoff from the simulation domain
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and hence remove the interaction between the back-scattered and reflected O-mode

waves. Another parameter sweep through background density length-scale is con-

ducted and overlaid onto the data shown in figure 37 for comparison. This is dis-

played in figure 41.

Figure 41: Length-scale parameter scan (left) showing the polarisation interaction

equation (189) in red. Simulations that used standard (solid black line) and flat-

top (dashed black line) background density profiles are shown comparatively. Co-

polar (green) and cross-polar (blue) independant electric field measurements are also

shown (right).

The simulations which used the standard background density profile detailed in

figure 39 feature the cyclical nature previously described. However, the simulations

that used a flat-top background density profile illustrated in figure 40 are near to

monotonic. The implication is that the reflection of the forward scattered O-mode

signal is causing the complex interaction resulting in cyclical behaviour which is

likely due to some relationship between the beam’s wavelength and the distance
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between the O-mode and X-mode cutoffs. The result of this effects is that the

back-scattering signal ratio varies significantly. The non-monotonic length-scale

parameter scan conducted with the Hermes turbulence shown in figure 37 could

be explained by this interaction, where only a half-cycle is being observed due to

the modest range of Ln. Furthermore, Both the standard and flat-top profiled

simulations suggest that the back-scattering efficiency has a strong relationship with

the background density length-scale towards shorter length-scales which could make

absolute experimental measurements challenging. The implications of this variation

with length-scale, as well as the structure of the back-scattered signals is investigated

in section 7.5.

It was expected that non-WKB effects could become significant when inequality

(113) was satisfied. In order words when the red vertical axes of figure 41(left) has a

value of much less than one. The trend of the flat-top data represented by the dashed

line in the same figure is monotonic at length-scales above Ln = 2.0cm. This density

gradient of Ln = 2.0cm also correlates roughly to the value of (|ko−kx|)/(2π/Ln) =

1.0. At length-scales shorter than Ln = 2.0cm the values of EXX/EXO change

dramatically. This sudden change is likely explained by non-WKB effects becoming

significant, where the O-mode and X-mode characteristic waves become degenerate

at the scattering location. Considering figure 31, the MAST experimental shots

back-scattered from the steepest regions of the pedestal where the density length-

scales were around Ln = 1.0cm. It may be that these hypothesised non-WKB

effects could be influencing the measurement. Additionally, three separate effects

may be compounding; the non-WKB effects seen at Ln < 2.0cm, then general

strong relationship between length-scale and scattering efficiency, and the complex

interaction effect seen in the standard density profile simulations where the O-mode

cutoff is reflecting the forward scattered cross-polar waves.

Evidently, more work in needed in this area. The simulations presented here
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represent a parameter sweep through background density length-scale, but many

other parameters remain constant. For instance the value of the normalised cy-

clotron frequency (i.e. the relative background magnetic field strength) and the

turbulence fluctuation ratio (δB/B)/(δn/n) may also have relationships with the

above discussed mechanisms. In order to apply CP-DBS effectively in these short

length-scale environments these potential relationships must be better understood

and give motivation for further full-wave simulations.

7.5 Experimental Detection

Beyond the significance of the non-WKB effects and spurious cross-polar reflection

described in section 7.4 there exist further experimental challenges relating to the

structure and position of the back-scattered cross polar signal. Figure 42 shows

the cross-polar electric fields in the poloidal-toroidal plane at a radial location of

r = 0cm for three different background density length-scales.
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Figure 42: Cross-polar electric fields in the poloidal-toroidal plane at the ra-

dial location of r = 0cm. Three different simulations are shown with back-

ground density length-scale of Ln = 1.727cm(left), Ln = 2.264cm(middle), and

Ln = 3.499cm(right). All three simulations are using the same parameters de-

scribed in section 7.2, with a standard background density profile featuring both

the fast X-mode and O-mode cutoffs.

While the co-polar electric field back-scattering returns reliably along the beam

path as is shown in figure 34, the cross-polar signal does not. As can be seen from

figure 42 the structures varies apparently according to the value of the background

density length-scale. While the detection method used in this theoretical work

uses a 2D system by integrating between the white horizontal lines, the typical

experiment cannot do that. CP-DBS systems do not use any sort of 2D detection

method, and are usually in a monostatic antenna configuration. This leads to the

detection of signals which propagate exactly back along the beam path, and would
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correspond to a 1D line taken at the centre of the toroidal dimension. Since there is

significant variation in the back-scattered structure of the cross-polar signal this may

lead to misinterpretation of the back-scattered signal ratio, and therefore inaccurate

measurements of the electromagnetic component of scattering fluctuations. It has

been seen in simulations that the variation of the back-scattered cross-polar electric

field structure is due to the complex interaction between the back-scattered, and

reflected forward-scattered cross-polar signals. This occurs when both the fast X-

mode and O-mode cutoffs are present in the pedestal and is described in detail in

section 7.4. Using the flat-top background density profiles also described in section

7.4 and in figure 40, the structure of the back-scattering stabilises, and no longer

varies with the value of the background density length-scale, as is shown in figure

43.
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Figure 43: Cross-polar electric fields in the poloidal-toroidal plane at the ra-

dial location of r = 0cm. Three different simulations are shown with back-

ground density length-scale of Ln = 1.832cm(left), Ln = 2.366cm(middle), and

Ln = 3.531cm(right). All three simulations are using the same parameters described

in section 7.2 but with a flat-top background density profile featuring exclusively

the fast X-mode cutoff described in figure 40

The reasoning behind the strong asymmetry in the back-scattered cross-polar electric

fields is unknown, and further study into this area would help in improving the CP-

DBS monostatic antenna experimental technique as well helping to better interpret

the measurements.

7.6 Summery of the DBS and CP-DBS modelling

The CP-DBS study has a dual focus; non-WKB effects as well as unforeseen possible

difficulties in experimentally detecting the cross-polar back-scattering.
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Simulations shown in figure 41 using a standard background density profile can-

not be relied upon due to their cyclical nature driven by the interactions between

cross-polar back-scattering and cross-polar reflections resulting from the fast X-mode

and O-mode cutoffs, respectively. The flat-top simulations give a more reliable rep-

resentation of the nature of the back-scattering mechanisms due to the removing of

the cross-polar reflection from the O-mode cutoff. Most striking in the data is the

strong dependency on background density length-scale above Ln = 2.0cm. Accord-

ing to equation (41) we would not expect non-WKB effects to be significant in the

region, and this relationship may lead to absolute measurements of electrostatic and

electromagnetic turbulent components to be challenging. However, relative mea-

surements should be feasible due to the predictable nature of the data in figure 41

above length-scales of Ln = 2.0cm and particularly towards the higher length-scales.

According to inequality (113) we expect non-WKB effects to become significant be-

low a value of one. Indeed in figure 41 we see a sudden and sharp change in the

trend of EXX/EXO when the value of inequality (113) falls to one at approximately

Ln = 2.0cm and below. Since the variation is seen to be only in the tens of percent

relative or even absolute experimental measurements could be possible so long as

the background density length-scale can be measured accurately. However, measure-

ments above |ko − kx|/(2π/Ln) = 1.0 would be far more simple to interpret. The

feasibility of using CP-DBS in the complex environment of |ko − kx|/(2π/Ln) < 1.0

would rely on a wide range of further full-wave simulations exploring these rela-

tionships at parameters not investigated here. Of particular interest if the role of

normalised cylotron frequency (which was fixed here at Y = 0.28 and turbulence

fluctuation ratio (fixed here at (δB/B)/(δn/n) = 1/20).

Experimental difficulties arising from unexpected asymmetries in the structure

of the back-scattered cross-polar electric fields may be significant, particularly if a

monostatic antenna configuration is used. Since the majority of the energy does
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not come back along the beam path it may be that experiments underestimate

the electromagnetic component driving the cross-polar back-scattering, causing the

turbulence to appear more electrostatic than it really is. It is far too premature

to adjust diagnostic design to account for this mechanism because the reason for

the asymmetry is unknown. More comprehensive work is required using a variety

of full-wave codes that use a range of different turbulent profiles to yield a deeper

understanding of the physics.
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8 Microwave Plasma Heating and Current Drive

The core of the sun is approximately 15 million degrees kelvin. This is sufficient to

enable fusion to occur via the p-p chain, over tremendously long timescales. The

Sun’s large mass makes this possible; the overwhelming pressure enables sufficient

fusion reaction rates in the core. On Earth, it isn’t possible use comparable pressures

to that of the sun. Additionally, depending on the p-p chain to instigate fusion would

be unfeasible due to the long timescales. As discussed in section 1.3 fusion for energy

must be achieved through classical mechanics. In order to do this the temperature

inside a tokamak fusion reactor must be far greater than that of the sun. The core of

the conventional tokamak ITER seeks to reach temperatures of 150 million degrees

kelvin.

Plasma heating and current drive techniques are critical to the success of fusion,

and in this section we explore the use of high-powered microwave beams to achieve

this. In section 8.1 we investigate Electron Cyclotron Current Drive (ECCD) which

directly couples microwaves to the cyclotron frequencies in order to drive toroidal

current. Using a MAST-U equilibrium, ray-tracing calculations are performed. The

viability of the ECCD technique is determined for use on spherical tokamaks (STs)

where access to the fundamental harmonics can be difficult due to the plasma be-

ing strongly overdense. In section 8.2 Electron Bernstein Wave (EBW) heating is

investigated. This technique utilises the O-X-B mode conversion process in order

to bypass the electromagnetic wave cutoffs. EBW heating is thought promising for

use on strongly overdense plasmas.

8.1 Electron Cyclotron Current Drive

The development of non-inductive heating and current drive methods is a critical

issue for the viability of future fusion reactors. Pulsed devices rely on ramping a DC
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current through a central solenoid in order to induce the majority of the toroidal

current. Nonviable for steady-state devices, alternative current drive methods need

to be developed. It is possible [140, 141] to drive significant amounts of current in a

tokamak using high-power microwaves, and one such technique for doing so is Elec-

tron Cyclotron Current Drive (ECCD) where current is driven by directly coupling

a launched microwave beam to the cyclotron resonances which naturally occur in

a magnetised plasma. However, spherical tokamak (ST) plasmas can be strongly

overdense to microwave frequencies which could couple to the lower cyclotron har-

monics near the plasma core. This has driven research into using ECCD at higher

harmonics such as the 2nd, 3rd, or even the 4th. It is expected that current drive

at the higher harmonics would be far below what is required for fusion energy. This

section aims to assess this concern by using the ray-tracing (sec. 4.1) code Torbeam

[142], with a high beta MAST-U pressure and magnetic field equilibrium as an input

in order to simulate the current drive. The density and magnetic field profiles of this

equilibrium can be seen from figure 45, while the spatial dimensional information is

shown in figure 46. In section 8.1.1 ECCD capabilities in the high beta MAST-U

equilibrium will be assessed by launching a 70GHz O-mode beam which couples to

the second and higher cyclotron harmonics. In section 8.1.2 a synthetic "low beta"

scenario is investigated by reducing the number density of the MAST-U high beta

equilibrium used in section 8.1.1 by a factor of 3.85. This enables access to the first

cyclotron harmonic with a 35GHz O-mode beam and corresponds to a potential ex-

treme low density MAST-U operating scenario. In section 8.1.3.1 another synthetic

"low beta" plasma is analysed by increasing the magnetic field strength of the high

beta MAST-U equilibrium by a factor of 2.0 giving an axial magnetic field strength

of approximately 1.12T, while the number density is unchanged. In this high mag-

netic field case the first harmonic is accessed by launching a 70GHz O-mode beam

from the outboard side. In section 8.1.3.2 another synthetic "low beta" plasma is
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synthesised by increasing the magnetic fields of the MAST-U high beta equilibrium

by a factor of 4.0. Here, a 70GHz O-mode beam couples to the fundamental cy-

clotron resonance. Finally, section 8.1.4 addresses the conclusions. In all ECCD

simulations the beam is launched with 1.0 MW of power, has a beam waist radius

of ω0 = 2cm, and a focal point chosen to give convergence at the absorption layer.

This work is intended to be pertinent to MAST-U and ultimately any current

drive technique which utilises microwaves will require the physical installation of an

antenna on the machine. The position of this antenna with respect to the plasma

has an influence on the beam propagation path, and hence, the achievable driven

plasma current. Figure 44 shows a schematic of MAST-U and gives an indication

towards the availability of free space. The super-x divertor [143, 144] configuration

shown in green causes the situation of an antenna with a high vertical position to

be challenging. The most obvious positions for the placement would be either close

to the equatorial plane, or between the P5 and P6 coils. Preliminary testing of

ECCD with Torbeam has shown that it is easier to obtain a longer path length

at the absorption surface with a more polar launch location. For this reason the

simulations detailed here have all used launch positions which would correspond to

situating the antenna between the P5 and P6 coils.
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Figure 44: A schematic of the MAST-U tokamak. The simulated ECCD antenna

position is situated between the P5 and P6 coils primarily because of the availability

of free space. An equatorial launch was not chosen due to longer beam propagation

path lengths at the absorption surface being easier to achieve with more polar launch

angles. Image from the MAST-U Users Website.

ECCD is a technique that exploits the cyclotron frequency to directly drive

current within a plasma. The absorption of these electromagnetic waves is achieved

via satisfaction of the resonance condition

ωi − k‖v‖ − lωce/γ = 0 (204)
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where ωi is the incident wave frequency, k‖ is the incident wave parallel wavenumber,

v‖ is the parallel electron velocity, l is an integer denoting harmonic number, ωce os

the cyclotron frequency, and γ is the relativistic factor defined as

1√
1− v2/c2

. (205)

When equation (204) is satisfied, coupling exists between the plasma electrons and

the wave, allowing energy to pass from one to the other. An overall parallel current

can be driven in the plasma due to three mechanisms. Coupling between the wave

and the plasma must exist via the satisfaction of equation (204). However, due to

the nature of the cyclotron frequency the electrons driven by this mechanism are

accelerated in the perpendicular direction. The collisional frequency has a inverse

relationship to particle energy, so when the electrons are accelerated there exists a

"hole" in the distribution function. The restoration via collisions of the distribution

function occurs faster than the accelerated electrons become isotropic, resulting in

a small net current. Finally, due to the mass difference between the electrons and

ions, the required ion velocity for momentum conservation is small and causes a

negligible amount of cancellation current.

8.1.1 ECCD in a high beta MAST-U equilibrium

Since the plasma is strongly overdense, ECCD coupling near the core of high beta

MAST-U plasmas will only be possible at higher cyclotron harmonics. In this section

we launch a 70GHz O-mode beam with P0 = 1.0MW and a beam waist of ω0 =

2.0cm which couples to the second and higher cyclotron harmonics. Figure 45 shows

how the number density, temperature, and magnetic field components vary as a

function of radial distance plasma in the equatorial plane. Figure 46 shows the

launch configuration. Images 46A and 46C show the antenna position and the beam

propagation path. Image 46B shows the radial positions where the beam interacts
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with the cyclotron harmonics as it propagates into the plasma. The red numbers on

images 46A and 46B denote the cyclotron harmonics.

Figure 45: High beta MAST-U equilibrium: Number density and temperature (left

panel) and magnetic field profiles (right panel) as a function of normalised minor,

and major radius. The dots represent experimental data which the software uses to

reconstruct the density and temperature profiles analytically.
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Figure 46: High beta MASTU-U equilibrium: A: Radial and vertical plasma cross

section showing the beam propagation path. B: Frequencies of the cyclotron reso-

nances and the critical surfaces as a function of radial ordinate. The black horizontal

line indicates where the 70GHz O-mode beam will interact with the cyclotron har-

monics. C: top-down cross-section of the tokamak and path of the launched beam.

This individual simulation corresponds to toroidal and poloidal launch angles of 7.5◦

and 10.0◦, respectively
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Figure 47: High beta MASTU-U equilibrium: A toroidal and poloidal launch angle

parameter sweep detecting the greatest possible driven current efficiency from an

70GHz O-mode launched from between the P5 and P6 coils with P0 = 1.0MW

coupling to the second and higher cyclotron harmonics.

In order to properly assess the capabilities of ECCD in this regime a 2D angular

parameter scan was conducted. The antenna position was fixed and variations in

the toroidal and poloidal launch angles were induced to find the maximum possible

current drive. Figure 47 shows the results of this scan. The peak current drive

achieved is poor at 4.0× 10−7 A W−1.

8.1.2 ECCD in a low beta plasma with low number density

STs can be strongly overdense, and this causes difficulty in accessing the lower

harmonics with ECCD. Lowering the plasma density would mitigate this problem;

a sufficiently sparse plasma density can result in low frequency waves having direct

access to the fundamental cyclotron harmonic. In this section the high beta MAST-

U equilibrium is modified by artificially reducing the number density by a factor
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of 3.85 to a maximum of 1.25× 1019 m3. This is understood to correspond to an

extremely low density, but possible, MAST-U operating scenario. A 35GHz O-mode

beam is launched with P0 = 1.0MW and a beam waist of ω0 = 2.0cm into the low

density plasma and couples to the first and higher cyclotron harmonics. Figure 48

shows the same equilibrium as in figure 45, but with the number density reduced by

a factor of 3.85.

Figure 48: "low beta" scenario due to low ne: The same MAST-U high beta equi-

librium used in section 2 but with the number density profile (left panel) lowered by

a factor of approximately 3.85. Compared to the original high beta case shown in

figure 45 the temperature (left panel) and magnetic field profiles (right panel) are

unchanged.
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Figure 49: "low beta" scenario due to low ne: A: Radial and vertical plasma cross

section showing the beam path. B: Frequencies of the cyclotron resonances and

critical surfaces as a function of radial coordinate. The black horizontal line indicates

where the 35GHz O-mode beam will interact with the cyclotron harmonics. C: top-

down cross-section of the tokamak and path of the launched beam. This individual

simulation corresponds to a toroidal and poloidal launch angle of 6.25◦ and 32.5◦,

respectively.
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Figure 50: "low beta" scenario due to low ne: A toroidal and poloidal launch angle

parameter sweep detecting the greatest possible driven current efficiency from a

35GHz O-mode beam launched from a particular antenna position and coupling to

the first and higher cyclotron harmonics.

Figure 49 shows the launch configuration. Images 49A and 49C show the an-

tenna position and the beam propagation path. Image 49B shows the radial posi-

tions where the 35GHz O-mode beam interacts with the cyclotron harmonics as it

propagates into the plasma. The red numbers on images 49A and 49B denote the

cyclotron harmonics. An angular parameter sweep is again conducted to find the

maximum achievable current drive efficiency by optimising the launch angle for this

antenna position. Figure 50 shows such a scan. A clear area of strong currents can

be seen towards higher toroidal launch angles. The current drive achieved here is

good at 0.06 A W−1.

8.1.3 ECCD in a low beta plasmas with strong magnetic fields

Using ECCD to access the lower harmonics in a high density plasma is possible
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providing that the cyclotron frequency is sufficiently high. In this section the high

beta MAST-U equilibrium shown in figure 45 is artificially modified by increasing

the strength of each magnetic field component. MAST-U will be unable to produce

magnetic fields of this amplitude. However, this experiment allows for the raising of

the cyclotron harmonic frequencies sufficiently so that a 70GHz O-mode beam may

couple to the lower cyclotron harmonics near the plasma core.

8.1.3.1 Increasing the magnetic fields by a factor 2.0

In this section the magnetic field components of the high beta MAST-U equilibrium

shown in figure 45 are increasing by a factor of of 2.0 giving an axial magnetic

field strength of approximately 1.12 T, resulting in a "low-beta" plasma. Figure

51 shows the modified plasma equilibrium with the increased magnetic field. The

O-mode beam was launched with P = 1.0 MW and a beam waist of ω0 = 2.0 cm.

Figure 52 shows the launch configuration. Images 52A and 52C show the an-

tenna position and the beam propagation path. Image 52B shows the radial posi-

tions where the 70GHz O-mode beam interacts with the cyclotron harmonics as it

propagates into the plasma. The red numbers on images 52A and 52B denote the cy-

clotron harmonics. An angular parameter sweep is conducted to find the maximum

achievable current drive efficiency by optimising the launch angle for this antenna

position. Figure 53 shows such a scan. The maximum current drive achieved here

is 1.25× 10−4 A W−1.

8.1.3.2 Increasing the magnetic fields by a factor 4.0

In order to attempt to couple the 70GHz O-mode beam more strongly to the funda-

mental harmonic a third "low beta" plasma is synthesised similar to that in section

8.1.3.1. Here, the MASTU-U high beta equilibrium detailed in section 8.1.1 is mod-

ified by increasing the magnetic field components by a factor of 4.0.
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Figure 51: "low beta" scenario due to increasing the magnetic field by a factor of

2.0 from the MAST-U high beta equilibrium. The magnetic field (right panel) has

been increased to give an axial magnetic field of 1.12T . Compared to the original

high beta equilibrium shown in figure 45 the temperature and number density (left

panel) are unchanged.

Figure 55 shows the launch configuration. Images 55A and 55C show the an-

tenna position and the beam propagation path. Image 55B shows the radial posi-

tions where the 70GHz O-mode beam interacts with the cyclotron harmonics as it

propagates into the plasma. The red numbers on images 55A and 55B denote the

cyclotron harmonics. An angular parameter sweep is once again conducted to find

the maximum achievable current drive efficiency by optimising the launch angle for

this antenna position. Figure 56 shows such a scan. The maximum current drive

achieved here is 2.05× 10−3 A W−1.

8.1.4 Summery of the ECCD modelling

The present Torbeam calculations detailed in section 8.1.1 have supported the ex-

pectation that ECCD in overdense ST plasmas would be an ineffective way of driving
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Figure 52: "low beta" scenario due to increasing the magnetic field by a factor of

2.0 from the MAST-U high beta equilibrium. A: Radial and vertical plasma cross

section showing the beam path. B: Frequencies of the cyclotron resonances and

critical surfaces as a function of radial ordinate. The black horizontal line indicates

where the 70GHz O-mode beam will interact with the cyclotron harmonics. C: top-

down cross-section of the tokamak and path of the launched beam. This individual

simulation corresponds to a toroidal and poloidal launch angle of 12.0◦ and 24.5◦,

respectively.

plasma current. The maximum current drive efficiency achieved using the high beta

MAST-U plasma equilibrium, with an 70GHz O-mode beam launched from an an-

tenna situated between the P5 and P6 coils, coupling to the second and higher

cyclotron harmonics, was a negligible 4.0× 10−7 A W−1. Conversely, in section 8.1.2

a "low beta" plasma was synthesised. Believed to be a feasible extreme low density

limit for MAST-U operation, the number density was reduced from the high beta

equilibrium case to a maximum of 1.25× 1019 m3. Figure 50 shows that a 35GHz O-

mode beam may couple to the first and higher cyclotron harmonics near the core and

gave good current drive efficiency at 0.06 A W−1. In section 8.1.3.1 we investigated
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Figure 53: "low beta" scenario due to increasing the magnetic field by a factor of

2.0 from the MAST-U high beta equilibrium. A toroidal and poloidal launch angle

parameter sweep detecting the greatest possible driven current efficiency from a

70GHz O-mode beam launched from a particular antenna position coupling to the

first and higher cyclotron harmonics.

another "low beta" plasma by artificially increasing the magnetic field strengths of

the MAST-U high beta equilibrium by a factor of 2.0 to give 1.12T on the mag-

netic axis. A 70GHz O-mode beam was coupled to the first and higher cyclotron

harmonics, and gave a current drive efficiency of 1.25× 10−4 A W−1. Finally in sec-

tion 8.1.3.2 another "low beta" plasma is synthesised by again artificially increasing

the magnetic field strength of the MAST-U high beta equilibrium. The field was

increased by a factor of 4.0 giving 2.25T on the magnetic axis. A 70GHz O-mode

couples more strongly to the fundamental harmonic compared to section 8.1.3.1 and

gave a current drive of 2.05× 10−3 A W−1. Considering the negligible current drive

of 4.0× 10−7 A W−1 achieved in section 8.1.1, it can be said that future steady-state
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Figure 54: "low beta" scenario due to increasing the magnetic field by a factor of

4.0 from the MAST-U high beta equilibrium. The magnetic field (right panel) has

been increased to give an axial magnetic field of 2.25T . Compared to the original

high beta equilibrium shown in figure 45 the temperature and number density (left

panel) are unchanged.

fusion reactors using overdense, high beta plasmas may need to investigate sources

of current drive outside of ECCD. However, if low density plasmas are a valid option

then ECCD may remain a viable technique.

8.2 Electron Bernstein Wave Heating

The bulk of plasma heating is done by neutral beam injection (NBI), and electro-

magnetic waves in the microwave range. NBI involves accelerating charged particles

to high velocities before they are neutralised, allowing for their transition across the

strong magnetic fields of a tokamak plasma. This is one of the most prevalent ways of

re-fueling a fusion plasma and often makes up a significant part of a fusion machines

heating capabilities. On the conventional tokamak ITER the NBI capabilities will
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Figure 55: "low beta" scenario due to high magnetic field: A: Radial and vertical

plasma cross section showing the beam path. B: Frequencies of the cyclotron reso-

nances and critical surfaces as a function of radial ordinate. The black horizontal

line indicates where the 70GHz O-mode beam will interact with the cyclotron har-

monics. C: top-down cross-section of the tokamak and path of the launched beam.

This individual simulation corresponds to a toroidal and poloidal launch angle of

12.0◦ and 29.50◦, respectively.

be massive, with two systems each capable of operating at 16.7MeV which will make

up 82.5% of the total external heating potential [145]. On spherical tokamaks using

NBI can be more challenging due to the poloidal magnetic field having comparable

strength to the toroidal magnetic field. This causes the gyro-motion of particles to

strongly depart from the guiding centre orbit. NBI calculations are generally based

upon guiding centre approximations [146] which exclude the classical effect of these

gyro-motions. The implication being that calculations become more complex when

dealing with spherical tokamaks. Although, NBI still forms a significant fraction of

the total heating power on some STs.

Electromagnetic microwave frequency waves are widely used for diagnostics [147]
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Figure 56: "low beta" scenario due to high magnetic field: A toroidal and poloidal

launch angle parameter sweep detecting the greatest possible driven current effi-

ciency from a 70GHz O-mode beam launched from a particular antenna position

coupling to the fundamental cyclotron harmonic.

but are also used in conjunction with NBI to form the non-ohmic heating capabilities

of tokamaks. Innovation in the development of high-power microwave technologies

[148] is enabling microwave heating to form a significant contribution to the overall

plasma heating. In conventional tokamaks, microwaves can be launched into the

plasma and propagate into stronger magnetic field regions until their angular fre-

quency (ω0 = 2πf) matches some resonance condition. The microwave can couple to

the plasma and drive the gyro-motion of the particles, delivering energy. ST plasmas

generally have higher values of plasma beta which can complicate this technique. If

the microwave should propagate into a high enough number density before it reaches

a satisfactory resonance frequency, the wave may interact with its cutoff, as detailed

in section 3; it can be be unable to propagate further into the plasma. Such plasmas
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are considered to be over-dense and the lower resonant frequencies often cannot be

directly reached. One option to circumvent this limitation would be to double the

angular frequency of the microwave and couple to the second resonance harmonic,

should it reside in underdense plasma. As explored with ray-tracing calculations in

section 8.1 this can be a satisfactory technique for driving current in ST plasmas

and similarly, this implies it could also be used for heating. However, in highly

overdense plasmas the second cyclotron harmonic can also be cut off. One could try

to couple to the third or higher harmonics but, again, as demonstrated in section 8.1

the coupling efficiency between the microwave and the plasma becomes progressively

weaker.

A second method for using microwave frequency waves to drive current and heat

in fusion plasmas may be achieved by using Electron Bernstein Waves (EBWs).

EBWs do not have a number density cutoff, they couple well to the cyclotron res-

onance harmonics [149], and are capable of effective current drive [150]. EBWs

are electrostatic waves that are sustained by coherent gyrations of electrons and as

such they cannot exist in a vacuum, and must be excited via coupling to externally

launched electromagnetic waves. Ordinary-Slow Extraordinary-Bernstein (O-SX-

B) mode conversion is one such technique for exciting EBWs. An O-mode wave is

launched at an optimal angle to the background magnetic field such that it can mode

convert to the SX wave. This conversion is highly localised to the O-mode cutoff,

as in this region the O and SX solutions to the cold plasma dispersion relation (sec.

3.2) become degenerate and the two polarizations can pass energy from one state

to another. The SX mode wave then turns around before reaching its high-density

cut-off and ultimately propagates towards lower density plasma until it approaches

the upper hybrid resonance where it becomes increasingly electrostatically polarized

and is transformed into an EBW. In this section we investigate the O-SX stage of

this conversion process. The O and SX polarisations can be derived from the cold
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plasma dispersion (sec. 3.2) relation and are therefore representable in EMIT-3D

using the cold plasma approximation. The EBW requires warm plasma effects and

cannot be modelled with EMIT-3D. In other words, EMIT-3D (sec. 5) assumes that

the plasma species are stationary, and since the EBW is sustained by the coherent

gyration (motion) of electrons the representation of this wave is outside of the capa-

bilities of the cold plasma model. The O and SX modes are electromagnetic waves

and do not require any particle motion to exist.

Results contained in this section may be used to contribute towards major de-

sign decisions for heating schemes on the MAST-U spherical tokamak. In order to

improve the reliability of the modelling, several different full-wave codes are used

to perform a comparative analysis. These codes are both spatially 3D (EMIT-3D)

and 2D (EMIT-2D, FFW, IPF-FDMC). An international collaborative effort by Dr.

Bengt Eliasson (FFW [151]), Dr. Alf Köh (IPF-FDMC [152]), Mr. David Wood-

ward (EMIT-3D [96]), and Ms. Lucy Holland (EMIT-2D) has made this possible.

The simulation results are primarily from EMIT-3D simulations, with comparisons

made with the other codes.

8.2.1 Elliptical Polarisation

In order to properly model the O-SX-B mode conversion process it is necessary to

launch an elliptically polarised wave. This is due to the requirement to launch the

wave at an angle to the background magnetic field for optimal mode conversion.

Should a linearly polarisation be used, the wave would be a mix of O-mode and

X-mode. A significant amount of the signal would therefore be rejected at the fast

X-mode cutoff, before the wave reached the O-mode cutoff where the O-SX mode

conversion can take place. Figure 57 shows the result of an EMIT-3D simulation

which represents this effect. The launched beam has a linear polarisation but also

propagates at an angle to the background magnetic field, which is parallel to the
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toroidal dimension. The launch angle has been chosen for optimum mode conversion

efficiency according to equation (95). In order to be a valid solution to Maxwell’s

equations, this linearly polarised wave must consist of a mixture of O-mode and

X-mode polarisations. As such, reflection of the X-mode component of the wave can

be seen at the X-mode cutoff.

Figure 57: A 2D time-averaged image of an EMIT-3D simulation, taken at the

centre of the 3D simulation domain. A linearly polarised O-mode is launched at the

optimal angle for mode conversion according to equation (95). Partial reflection of

the wave can be seen at the X-mode cutoff, demonstrating the undesirable mix of

O-mode and X-mode polarisations.

In order to perform useful simulations the launched beam must represent one

that is likely to be used in an experimental device. This would correspond to an

elliptically polarised beam, as a pure O-mode polarisation could be theoretically

achieved, avoiding the X-mode rejection seen in figure 57. This would increase the

achievable mode conversion efficiency. EMIT-3D was updated to include the math-
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ematical theory developed in [118]; the description of the Gaussian beam remains as

described in section 5.4, but the elliptical polarisation is achieved by using equations

(161) and (162). An analogous simulation to that shown in figure 57 was ran, using

an elliptically polarised beam instead of linearly polarised. The results are shown in

figure 58. The total rejected beam now appears to be roughly symmetrical around

the null point in the centre. The gap in the rejected beam is formed due to the beam

centre matching of the mode conversion condition; the fringes of the beam diverge

away from the optimal condition given by equation (95). The fact that each side of

the null point are roughly symmetrical indicates that there is now no notable energy

being rejected by the X-mode cutoff as was the case when the linearly polarised

wave was used; the beam is no longer a significant mixture of O-mode and X-mode

polarisations.
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Figure 58: A 2D time-averaged image of an EMIT-3D simulation taken at the centre

of the 3D simulation domain. The elliptically polarised O-mode is launched at the

optimal angle for mode conversion according to equation 95. There is minimal

reflection at the X-mode cutoff, indicating that the launched beam consists majorly

of the O-mode polarisation.

8.2.2 Benchmarking of full-wave simulation codes

A benchmarking between the 3D code EMIT-3D and the 2D codes EMIT-2D, IPF-

FDMC, and FFW is presented. There are two stages to the benchmarking process.

First, in section 8.2.2.1 the beam divergence of that launched with EMIT-3D is

compared to that of the 2D codes. The beams in the 3D and 2D codes, respectively,

should diverge at different and predictable rates due to the dimensional differences.

Second, in section 8.2.2.2 O-SX (O to Slow X) mode conversion is modelled with

a simple linearly increasing background number-density gradient. A basic math-

ematical treatment is presented which seeks to predict the difference in efficiency

as the simulations move from 2D to 3D. The numerical results and this analytical
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prediction are compared to one another.

8.2.2.1 Beam divergence

In this section a trivial vacuum configuration is used in order to verify basic agree-

ment of mathematically predictable beam divergence differences between the 3D

and 2D codes. A 28GHz Gaussian beam is launched, with the focal point situated

at the antenna plane. A time-averaged measurement of the simulation can be seen

in figure 59.

Figure 59: Time-averaged image of an EMIT-3D simulation. The shown 2D plane

is taken at the centre of the 3D domain. A 28GHz beam is launched into vacuum,

and the beam divergence is measured at each of the coloured lines for the purpose

of comparison with the 2D codes EMIT-2D, IPF-FDMC, and FFW.

The antenna plane is located at 0.0m on radial axis. Radial positions of 0.0m,

0.05, 0.10m, 0.15m, 0.20, 0.25m and 0.30m are chosen to analyse the beam and are

represented as coloured lines.
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In order to launch an electromagnetic beam in a numerical simulation an ex-

pression for the time dependent electric field must be obtained. Solutions to the

paraxial Helmholtz equation in both 2D and 3D can yield these expressions. These

solutions predict a different rate of beam divergence for a 2D and 3D beams. This

can be used to benchmark the codes which can form a useful check to see if they

perform as expected. The 2D and 3D paraxial Helmholtz equation solutions predict

that a Gaussian beam will diverge as
√
ω0/ωz and ω0/ωz, respectively. Figure 60

shows the results of this comparison.

Figure 60: The toroidal beam profiles are measured (left) at distinct radial positions

as indicated on figure 59. The peak electric field signals are compared to one another,

and against analytical expressions (right).

The signals from each code are shown (left) at the aforementioned positions along

the toroidal axis. At the beam centre, the peak of each signal along the radial axis is
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also shown (right) and compared to analytical functions. The 2D and 3D codes are

broadly found to diverge as expected, with the code FFW (dark yellow) diverting

modestly from the expected beam divergence at large radial distances.

8.2.2.2 Mode conversion efficiency in 2D and 3D

With the basic properties of divergence verified in section 8.2.2.1, it is possible to

benchmark EMIT-3D against IPF-FDMC, FFW, and EMIT-2D in a more rigorous

manner, by modelling O-SX mode conversion. This benchmarking can be done by

first analytically estimating (communicating with Dr. Bengt Eliasson) the differ-

ences in mode conversion efficiency between the 2D codes and EMIT-3D.

Let the mode conversion window be much wider than the width of the beam. We

can also assume that the reflection coefficient (R2D,R3D) has a parabolic dependence

such that

R2D = Ax2, (206)

R3D = A(x2 + y2) = Ar2. (207)

This assumption can be justified by observing the analytically calculable [99] fraction

of the beam that is successfully mode converted from the O-mode to the X-mode.

Figure 61 models this expression for a range of density length-scales (Ln), repre-

sented as a unit-less quantity by normalising to the wave-number (k0).
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Figure 61: Fraction of incident energy that is successfully O-X mode converted.

Various values of k0Ln are shown indicating different plasma length-scales. The

mode conversion window can be seen to be wider for stronger gradients (lower k0Ln).

Npar is the refractive index parallel to the background magnetic field. Npar,critical is

the parallel refractive index required for optimum mode conversion, calculated by

equation (95).

Observing figure 61 the parabolic nature of the transmission coefficient (and there-

fore the reflection coefficient) can be seen. At very small length-scales (k0Ln < 2.0)

Mjølhus’s formula has been seen to diverge from modelled values of the reflection

coefficient in 2D full-wave simulations [153]. Despite this, the reflection coefficient

remains parabolic. For any experimental beam, the intensity must be a function of

position; in 2D I2D = I(x), and in 3D I3D = I(r). From the definition of power

P2D =

∫ ∞
−∞

I2D(x) dx, (208)

P3D =

∫∫ ∞
−∞

I3D(r) dx dy = 2π

∫ ∞
0

I3D(r) rdr. (209)

The reflected power is the product of the power and the reflective coefficient

188



PR,2D =

∫ ∞
−∞

I2D(x)R2D dx =

∫ ∞
−∞

I2D(x)x2 dx, (210)

PR,3D =

∫∫ ∞
−∞

I3D(r)R3D dxdy = 2π

∫ ∞
0

I3D(r)r2 rdr, (211)

and the effective reflective coefficient is the ratio between the reflected power and

incident power

Reff,2D =

∫∞
−∞ I2D(x)x2 dx∫∞
−∞ I2D dx

, (212)

Reff,3D =

∫∞
0
I3D(r)r3 dr∫∞

0
I3D(r)r dr

. (213)

Applying this model specifically to a Gaussian beam, from equation (160) the electric

field profile varies as

E(x, z)2D = A2D exp

(
−x2

ω(z)2

)
, (214)

E(r, z)3D = A3D exp

(
−r2

ω(z)2

)
, (215)

where A2D and A3D are some constants. The intensity is proportional to the square

of the electric field

I(x, z)2D = A2
2D

[
exp

(
−x2

ω(z)2

)]2

(216)

I(r, z)3D = A2
3D

[
exp

(
−r2

ω(z)2

)]2

. (217)
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Using the expressions for the intensity of the Gaussian beam to calculate the effective

reflective coefficients

Reff,2D =

∫∞
−∞

[
exp

(
−x2
ω(z)2

)]2

x2 dx∫∞
−∞

[
exp

(
−x2
ω(z)2

)]2

dx
=
ω(z)2

4
(218)

Reff,3D =

∫∞
0

[
exp

(
−r2
ω(z)2

)]2

r3 dr∫∞
0

[
exp

(
−r2
ω(z)2

)]2

r dr
=
ω(z)2

2
, (219)

which indicates that the reflection coefficient of the beam modelled in 2D should be

roughly half of that modelled in 3D.

With a theoretical model in place to give predictive framework to the full-wave

simulations, a mode conversion simulation is performed and comparisons of the

mode conversion efficiency between EMIT-3D, EMIT-2D, IPF-FDMC and FFW

are conducted. A 28GHz O-mode beam is launched from vacuum into a magnetised

plasma. The beam is focused at the antenna plane, and has a waist radius of

ω0 = 4λ0, where λ0 is the vacuum wavelength. The magnetised plasma has a

homogeneous background magnetic field of B = 0.85T which gives a normalised

cyclotron frequency of Y = ωce/ω0 ≈ 0.85. The density gradient is modelled as

ne(z) = (z − zn,start)
2π

λ0

1

k0Ln
=
z − zn,start

Ln
, (220)

where zn,start = 0.15m, and the value of the normalised density length-scale is set

to k0Ln = 25.0. The density gradient then only varies along the radial axis. The

parallel wave-vector is matched for optimal mode conversion as modelled by equation

(95), by launching the O-mode wave at an angle of θ = 43.0◦ to the background

magnetic field. At the time of these simulations, EMIT-2D was unable to model

elliptically polarised waves. In order to perform a comparison between EMIT-3D and

EMIT-2D, an analogous simulation was run using a linearly polarised wave. For the

comparison between EMIT-3D, IPF-FDMC, and FFW, elliptically polarised waves
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were launched which more closely represents the anticipated experiments. These

simulations can be seen in figure 62 for both the linear (left) and elliptical (right)

cases.

Figure 62: Toroidal-radial plane taken at the centre of the injected beam for an

O-SX mode conversion simulation using EMIT-3D. A linearly launched beam (left)

and an elliptically polarised beam (right) are compared.

At the radial position R = 0m, the plane perpendicular to the path of the beam

propagation (toroidal-poloidal) is shown in figure 63 for both the linear (left) and

elliptical (right) polarisations. The signal of the launched beam can be seen to be

centered at about x = 0.25m. In order to calculate the mode conversion efficiency,

this is compared to the rejected beam which is centered about x = 0.55m. In

both the linear and elliptical cases there is a null-point in the centre of the rejected

beams, which corresponds to the part of the incident beam which strongly matched

the wave-number conditions for mode conversion, expressed by equation (95). In the

linear polarisation this null-point is less pronounced; a small, albeit strong beamlet

appearing at about x = 0.46m can be seen which corresponds to the rejected X-mode

that overlaps the rejected O-mode null-point. This rejected X-mode is an indication
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Figure 63: Perpendicular plane for an EMIT-3D O-SX mode conversion simulation

used a linearly launched beam (left) and an elliptically polarised beam (right).

that the launched O-mode beam was not pure in its polarisation, and consisted of

some O-mode/X-mode hybrid, as is to be expected with launching linear polarised

beams at intermediate angles (0 < θ < π/2) to the background magnetic field.

Observing the elliptical case (right) it is of interest to see that while the launched

beam is symmetrical, the rejected signal is not. This implies that there could be

some important 3D effects coming into play when modelling O-SX mode conversion.

The quantitative results of these simulations are presented in two stages; firstly for

the comparison between EMIT-3D and EMIT-2D using the linear polarisation, and

secondly using the elliptical polarisation to compare EMIT-3D, IPF-FDMC, and

FFW.

Two detection methods are used for a more thorough comparison. The 2D codes

EMIT-2D, IPF-FDMC, and FFW do not feature the poloidal axis, and the most

simple method ignores this plane. In this 1D case, the incident and reflected beams

are integrated over the toroidal dimension, at the radial position of R = 0.0m.

Since EMIT-3D does include the poloidal axis, the centre of the beam is taken,
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which corresponds to the poloidal position of P = 0.15m. Doing this, allows for the

detection methods used in each code to be identical. This is powerful because any

efficiency differences between the 3D and 2D codes may indicate that there are 3D

effects which propagate into the radial-toroidal plane that the 2D codes may not be

representing due to their reduced dimensionality.

The second detection method is unique to EMIT-3D and utilises the poloidal

plane. The mode conversion efficiency is calculated by integrating over the 2D

beam surfaces in the poloidal-toroidal plane. This 2D detection method is more

rigorous as it respects the multi-dimensional nature of the beam. According to the

above mathematical treatment, the mode conversion efficiency is expected to drop

due to the conversion window being smaller in 3D. This 2D detection method helps

to validate the mathematics, and will help identify if there are any important 3D

effects that have been overlooked, which require consideration when modelling O-SX

mode conversion in the 2D codes EMIT-2D, IPF-FDMC, and FFW.

Name of Code Detection Method Conversion Efficiency

EMIT-3D 2D 54.0%

EMIT-3D 1D 66.5%

EMIT-2D 1D 67.0%

Table 4: Comparative mode conversion efficiencies between the 2D (EMIT-2D) and

3D (EMIT-3D) full-wave codes when modelling O-SX mode conversion efficiency

using a beam launched with a linear polarisation as seen in figure 62 (left).

Using the linearly polarised wave, the results of the comparison between EMIT-

3D and EMIT-2D are shown in table 4. Using the 1D detection method, the two

codes show excellent agreement when comparing the achieved O-X mode conversion

efficiency. This is somewhat unsurprising, as the numerical algorithms are very

similar. When using the 2D detection method, the mode conversion efficiency drops
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in EMIT-3D sharply, as expected.

Name of Code Detection Method Conversion Efficiency

EMIT-3D 2D 73.0%

EMIT-3D 1D 88.8%

IPF-FDMC 1D 86.4%

FFW 1D 86.4%

Table 5: Comparative mode conversion efficiencies between the 2D (FFW, IPF-

FDMC) and 3D (EMIT-3D) codes when modelling the O-SX mode conversion effi-

ciencies of an O-mode beam launched with an elliptical polarisation, as seen if figure

62 (right).

Using the elliptically polarised wave, the results of the comparison between

EMIT-3D, IPF-FDMC, and FFW are shown in table 5. These codes have very

good agreement for the case of 1D detection. This is a marked result as each code

has been developed individually using different numerical techniques, and provides

re-assurance for their future comparison in more complex simulations that may be

more challenging to interpret. Comparing the 2D detection method of EMIT-3D

to the 1D method of IPF-FDMC and FFW, the conversion efficiency again drops

in EMIT-3D as expected. Importantly, the above analytical treatise seems to well

predict the differences in efficiency between 2D and 3D codes, and the error is within

a few percentage points. This implies that any 3D effects of the mode conversion

mechanism are negligible for O-SX modelling under the basic simulation parameters

used in this section. This is a good result as it gives reliability towards the numer-

ically cheap 2D codes. However, it cannot be said that 3D effects are negligible in

O-SX experiments relevant to MAST-U as the plasma is markedly more complex

than represented in these simulations.
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8.2.3 MAST-U equilibria

The benchmarking mode conversion simulation detailed in section 8.2.2 used a simple

plasma geometry. The background magnetic field was homogeneous and parallel to

the toroidal dimension, and the density gradient has been prescribed simply by the

analytical expression (220). While these simplistic plasma profiles are useful in order

to identify the functionality of numerical tools, form comparisons between them, and

validate certain theoretical models, they are not sufficient to satisfactorily represent

a spherical tokamak (ST) plasma. In reality the density profile of ST plasmas will

feature some curvature due to the toroidal nature of the device, which has not been

modelled by equation (220). The magnetic field is probably the most significant

difference which needs to be accounted for. In ST plasmas the magnetic fields can

have aggressive pitch angles which vary quickly over a short spatial distance. The

microwave imaging system SAMI [154] measured the magnetic pitch angles of MAST

to be on the order of θ = 30◦. The time and fiscal investments required to physically

develop an EBW heating system that can function on MAST-U is tremendous.

Numerical simulations are comparatively of negligible cost. Every effort must then

be made to accurately simulate every aspect of a potential EBW heating system

before efforts towards experimental construction can commence. In this section we

advance the O-SX mode conversion simulations by introducing a MAST-U, high

beta equilibrium profile in order to represent the density and magnetic field profiles

of a ST plasma. This is an important step towards reliable and therefore defensible

predictions towards the viability of EBW heating on MAST-U.

An important numerical issue with the modelling of the interaction between elec-

tromagnetic waves and strong number density gradients must be noted. Whereas the

gradient of the benchmarking cases studied in section 8.2.2 was a gentle k0Ln = 25.0,

the MAST-U equilibrium, H-mode plasma edge is much more aggressive. Detailed in

section 8.2.3.1, the density gradients are approximately k0Ln = 4.25. This causes an
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interesting numerical effect which is likely unique to cold plasma codes that cannot

correctly model the upper hybrid resonance and Electron Bernstein Waves (EBWs).

After O-X mode conversion, the energy in the X-mode polarisation interacts with

the upper hybrid resonance where in experiment it would couple to the plasma,

possibly converting to an electrostatic EBW. Cold plasma waves cannot simulate

this, and the X-mode energy builds up near the upper hybrid resonance where the

wavelength decreases with time. Subject to the density gradient, after sufficiently

large energies have built up, the X-mode begins to ‘leak’ out of the plasma. This is

an un-physical effect due to that the numerical grid in space no longer can represent

the short wavelength upper hybrid waves when the number of grid points per wave-

length becomes less than two (the Nyquist theorem). This leakage initially caused

erroneous interpretation of the full-wave results, as the mode-conversion efficiencies

seemed to be far lower than was expected. Figure 64 shows a time-trace of three

EMIT-3D simulations modelling O-X mode conversion.

Figure 64: Time-trace of the O-X mode conversion efficiency.

These simulations were conducted under the same parameters as those in the bench-

marking cases, of section 8.2.2; a simple plasma geometry, with a linear density gra-
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dient and homogeneous magnetic field. The most gentle gradient of k0Ln = 13.13

(blue) can be seen to plateau at around time-step 2250, where the efficiency remains

constant throughout the rest of the simulation. This signal represents the more

easily interpreted case, as the mode-conversion efficiency could be measured at any

point after saturation has been determined. The intermediate density gradient case

k0Ln = 3.43 (green) closely resembles the gradient of the MAST-U equilibrium.

This signal can be seen to plateau earlier, at around time-step 2000. The conver-

sion efficiency remains constant until around time-step 3400, at which point a sharp

decline can be seen. This decline represents the point at which the X-mode signal

has built up sufficiently at the upper hybrid resonance, and began to ‘leak’ out of

the plasma. As such, for the correct interpretation of the results, the measurement

of the mode-conversion efficiency must be carefully taken to be after the signal has

plateaued, but before leakage occurs.

8.2.3.1 Results

MAST-U has a major radius of R = 0.85m, typical minor radius of a = 0.65m,

maximum plasma current of 2.0MA, and a maximum background magnetic field

strength of B0 = 0.75T at R = 0.75m [155]. An equilibrium profile was provided by

CCFE corresponding to an H-mode, high plasma-β, high elongation scenario. The

poloidal cross section of the equilibrium profile is shown in figure 65. Two potentially

feasible antenna positions for the O-X-B heating system are identified, as

antenna 1 : R = 1.856m,Z = 0.95m (221)

antenna 2 : R = 1.868m,Z = 0.10m. (222)

Referencing the MAST-U schematic in figure 44, these antenna positions have been

chosen for similar reasons to that justified in section 8.1. Antenna 1 is situated
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in-between the P5 and P6 poloidal magnetic field coils, and Antenna 2 is located

close to the equatorial plane.

Figure 65: Cross-section of the MAST-U high beta, high elongation equilibrium

provided by CCFE. The white square indicates the sub-domain used in the full-wave

calculations. The yellow and white dots are the antenna position, and the estimated

location of O-SX mode conversion, respectively. The magnetic field properties at

the location of the white dot are used for the beam launch configuration.

The equatorial launch position (antenna 2) was chosen due to the likelihood of the

reduced complexity of the interpretation of numerical results.

The density length-scales of the equilibrium profile was measured. Two locations

were used, one close to the mid-plane and the other much more polar. These are
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intended to correlate to the approximate position of interaction of waves launched

from antennas 2 and 1, respectively, and the average normalised length-scale was

k0Ln = 4.25. With the simplified plasma geometry used in section 8.2.2.2 (a linear

density gradient varying only radially, and a homogeneous background magnetic

field), the O-SX mode conversion efficiency was modelled. Figure 66 shows the

results. Denoted in yellow and green dashed lines are the the MAST-U equilibrium

profile density length-scale relevant to antenna 2 and 1.

Figure 66: O-SX mode conversion efficiency as a function of the back-ground density

length-scale. The vertical yellow and green dashed lines represent the measured

length-scale of the MAST-U equilibrium profile pertinent to antenna positions 2

and 1, respectively.

Also plotted in figure 66 and shown by the solid green line, is an analytical expression

[156]

ηSX−FX = exp

(
−πk0LnY

2

√
(ωUH/ωce)− 1

X

)
, (223)

which predicts the efficiency of direct slow X-mode to fast X-mode (SX-FX) cou-

pling. At length-scales greater than approximately k0Ln = 3.6 the density length-
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scale and conversion efficiency feature an inverse, roughly constant relationship. At

intermediate length-scales of approximately 1.75 < k0Ln < 3.6 the efficiency drops

slightly, and plateaus. The reasoning behind this is unknown. Below k0Ln = 1.75

the efficiency begins a sharp decline, as would be expected due to the increasing

efficiency of direct SX-FX coupling. Since the density length-scales of the MAST-U

equilibrium are comfortably in the higher length-scale region (k0Ln > 3.6), the in-

terpretation of the mode conversion results should not require consideration of the

finer physical details associated with lower length-scales.

The MAST-U equilibrium profiles are given on a grid of 200 by 200 points, with

a spatial resolution of ∆R = 6.8mm and ∆Z = 16.0mm. This grid is far too

poorly resolved considering that the wavelength of the beam is λ0 ≈ 1.0cm. The

equilibrium profiles must then be interpolated so that they can be used within EMIT-

3D. The Piecewise Cubic Hermite Interpolation Polynomial (PCHIP) algorithm [157]

imported from the SciPy library [158] was used to do this. After interpolation the

number density profile along with each component of the background magnetic field

have ∆R = ∆Z = (1/20)λ0 and are imported into EMIT-3D at run-time. The

magnetic field vector at the approximated position of interaction (white dot in fig.

65) is measured. This is used for two considerations. First, to calculate the toroidal

launch angle required for optimum mode conversion, calculated with equation (95).

Second, to match the O-mode polarisation to the poloidal magnetic field pitch angle.

The magnetic field vector was assessed to have a magnitude of B = 0.85T with

vector components θB ≈ 0.0
◦ and φB ≈ 41.0

◦ . θB is the angle between the toroidal

dimension and the magnetic field vector in the radial-toroidal plane. φB is similarly

defined, except in the toroidal-vertical plane. The microwave is launched at an angle

of θ = 43.0
◦ and φ = φB. An elliptical polarisation is used in order to ensure that the

wave is close to a pure O-mode, avoiding large signal-rejection at the fast X-mode

cutoff. Figure 67 shows the results of the matched mode conversion simulation. The
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injected and rejected signals can be seen in the lower left corner, and the centre,

respectively.

Figure 67: O-SX Mode conversion simulation. An elliptical O-mode beam is

launched towards a plasma consisting of stationary MAST-U density and 3D mag-

netic field equilibrium profiles. The perpendicular toroidal-vertical 2D plane is taken

at the antenna plane (radial position R = 0m). The beam is launched at angles of

θ = 43.0◦ and φ = 41.0◦.

Within the rejected signal, striations can be seen which are the result of the MAST-U

equilibrium profile featuring a perturbed cut-off surface. The characteristic central

null is notably absent, as opposed to the simulations conducted in section 8.2.2.2.

This may be due to the MAST-U equilibrium featuring a curved, perturbed cutoff

surface, or it could indicate that the wave was not properly matched for mode

conversion. This simulation, along with another using φ = 0.0 are represented in

table 8.2.3.1.
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Poloidal angle Toroidal angle Conversion efficiency

0.0◦ 43.0◦ η = 0.5%

41.0◦ 43.0◦ η = 62.0%

Table 6: Full-wave simulation results obtained with EMIT-3D using the H-mode

MAST-U equilibrium with the beam launched from the near-equatorial (antenna 2)

position.

Using a heavily mismatched poloidal angle of φ = 0.0 gives almost no mode con-

version, as would be expected. However, matching the optimal mode conversion

conditions only gave an efficiency of 62.0%, which is surprisingly low. Considering

figure 66, one would expect to be able to achieve an efficiency of around η = 88.0%,

noting that the MAST-U equilibrium length-scales are marked with green and yel-

low lines. The 2D codes FFW and IPF-FDMC achieved efficiencies of η = 95%

and η = 93.8%, respectively. It is expected that the 2D codes predict higher mode

conversion efficiencies than 3D codes due to the mathematical reasoning described

in section 8.2.2.2. Both FFW and IPF-FDMC attained higher efficiencies when the

MAST-U equilibrium was used as opposed to the simplified plasma used in sec-

tion 8.2.2.2, which is expected due to the normalised length-scale reducing from

k0Ln = 25.0 to approximately k0Ln = 4.2. EMIT-3D did not share this success,

and predicted a reduced mode conversion efficiency. In an attempt to resolve these

discrepancies, the curvature of the density-gradient was investigated. The MAST-U

density equilibrium was artificially flattened, as shown in figure 68.
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Figure 68: The simulation domain shown in figure 65 is artificially flattened, in

order to determine the role of curvature in the mode conversion efficiency. Post-

flattening, the density profile more closely resembles that used in section 8.2.2.2.

The yellow dot indicates the antenna position, and the white dot is the estimated

point of wave-plasma interaction where the magnetic field vector is measured.

This flattening resulted in a rise of mode conversion efficiency to η = 67.0%. This

corresponds to a rise of approximately 5 percentage points, but does not explain as

to the discrepancy between the attained value, and the expected value of approx-

imately η = 88.0%. The lacklustre mode conversion efficiency may be somewhat

explained by the curvature of the magnetic field having a known detrimental effect

on the conversion efficiency [159]. Although, this should be able to be somewhat

mitigated by adjusting the focal point of the electromagnetic wave such that, at

the point of mode conversion, the curvature of the beam matches the curvature of

the magnetic field. It is also possible that the estimation of the interaction point

is inaccurate, leading to slight mismatches in the launch conditions. A 2D vertical-

toroidal parameter scan would be of great use in further understanding the O-X
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mode conversion efficiency in complex plasma environments, although this would be

expensive to conduct in 3D.

8.2.4 Summery of the EBW heating modelling

EMIT-3D was further developed to include the ability of launching an elliptically po-

larised wave for the purpose of modelling O-X mode conversion. This was achieved

and is detailed by comparing figures 57 and 57. The full-wave 3D code EMIT-3D,

and 2D codes EMIT-2D, IPF-FDMC, and FFW were benchmarked against one an-

other measuring divergence, and performed as expected as shown in figure 60. More

rigorously EMIT-3D was benchmarked against the other codes for the modelling of

mode conversion in a simple geometry. Addressed in tables 4 and 5 the conversion

mechanism performed as expected, with excellent agreement between the 2D codes

IPF-FDMC and FFW. EMIT-2D predicted a poor mode conversion efficiency in

comparison which is due to the launched beam being of linear polarisation. When

compared to a linearly polarised beam launched in EMIT-3D the two codes have

excellent agreement. Using elliptical polarisations EMIT-3D performed comparably

with IPD-FDMC and FFW when the 1D detection method was used, and saw an

expected drop in mode conversion efficiency when the full 3D nature of the code

was respected by using a 2D detection system. A critical nuance of cold plasma full-

wave calculations was identified and corrected for in figure 64. EMIT-3D was seen to

predict strong mode conversion efficiencies of up to 90% at shorter length-scales in

figure 66. Finally, an H-mode MAST-U density and magnetic field profile was used

to perform experimentally relevant simulations. These resulted in a lack-lustre mode

conversion efficiency of 62%. The most likely explanation for this is some mistake

in matching the beam’s polarisation to the background magnetic field, and further

simulations conducting parameter scans in launch angle space would be beneficial

to understanding this result.
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9 Conclusion

Having seen significant development, the full-wave, 3D, cold plasma code EMIT-3D

has been used to study a variety of mechanisms relating to the use of microwave

beams in fusion plasma. These studies fall under three categories; Doppler back-

scattering and cross-polarisation Doppler back-scattering modelling, ECCD, and

EBW heating. In this chapter we provide a conclusion to each of these section while

where relevent detailing future work.

9.1 Cross-polarisation Doppler back-scattering

The CP-DBS work verified the functionality of EMIT-3D by confirming the previ-

ously known scaling relationship shown in figure 35. The back-scattering efficiencies

measured in section 7.3 also have excellent agreement with the underlying theory.

An important interaction effect between back-scattered and reflected cross-polar

signals was identified which will need to be considered carefully when conducting

experimental measurements. Furthermore, the back-scattering efficiency was found

to have a strong dependency on the background density length-scale. Significant

potential non-WKB effects were identified at |ko− kx|/(2π/Ln) ≤ 1.0 at experimen-

tally relevant length-scales (0.9 < Ln(cm) < 1.8). Finally, an asymmetry in the

cross-polar back-scattered electric fields was noticed, and was explored in both the

standard and flat-top background density profiles. These studies were the first of

their kind, and as such it may be premature to conclude precisely which measures

should be taken to assist in experimental success.

Regarding the relationship between scattering efficiency and density length-scale,

simulations conducted at a range of magnetic field parameters are desirable to under-

stand if the normalised cyclotron frequency has any important influence. Further-

more, changing the turbulence fluctuation ratio (δB/B)/(δn/n) would be critical
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as if there exists a strong relationship between this length-scale effect and the elec-

tromagnetic nature of the turbulence itself this must be understood. Indeed, if the

turbulence fluctuation ratio has a strong role here then absolute measurements of

said ratio may be challenging. However, the background density length-scale is a

simple metric experimentally. Should the turbulence fluctuation ratio be indepen-

dent of this length-scale effect or easily predictable then absolute measurements of

the turbulence could be feasible.

Interestingly, the effect of non-WKB effects on the back-scattering efficiency seem

to become significant at |ko− kx|/(2π/Ln) = 1.0 which corresponded to Ln = 2.0cm

in our study and can be seen from figure 41. This regime is experimentally rele-

vant and corresponds to the steep and early knee of the pedestal. Understanding

how these non-WKB effects behave at a wider range of simulation parameters not

investigated here (varying the normalised cyclotron frequency and turbulence fluc-

tuation ratio) are critical to understand how the scattering mechanism will behave

in a general fusion plasma. As a first step we have identified the modest influence

of potential non-WKB effects to be at most tens of percent in the specific set of

parameters outlined in section 7. We have also shown that inequality (113) can,

at least in the cases investigated in this work, signify the beginning of a non-WKB

regime around values of |ko − kx|/(2π/Ln) = 1.0.

The unexplained asymmetry in the structure of the back-scattered cross-polar

electric fields remains a further experimental challenge. While this is less signif-

icant compared to the length-scale dependence of the back-scattering efficiency it

remains a difficulty which the diagnostic design must respect. Further simulations

are required to explore this effect.

It is clear from the complex nature of the interaction between electromagnetic

waves and a magnetised plasma that much more work is required to achieve a good

understanding of the relative mechanisms. The CP-DBS diagnostic seeks to exploit
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an interaction which is influenced by a number of fundamental plasma parameters

in ways which we simply do not understand. Full-wave, 3D numerical simulations

are paramount to improving our understanding.

9.2 Electron cyclotron current drive

The ray-tracing code Torbeam was using in section 8.1.1 to simulate the coupling be-

tween electromagnetic waves and the higher cyclotron frequencies which are the low-

est directly accessible in modern, high density, high beta spherical tokamak plasma

experiments. The ECCD technique was deemed inappropriate for such plasmas.

While there was moderate current driven in synthesised "low-beta" plasmas, gen-

erated by artificially lowering the number density, these do not generally reflect

cutting edge plasma experiments. This is partly because the bootstrap current is

widely considered to be essentially for the steady state operation of tokamak devices,

and this intrinsically driven current favours higher density machines.

9.3 Electron Bernstein wave heating

Significant development of the EMIT-3D code was conducted, enabling it to model

O-X mode conversion in cold plasmas. The code was successfully benchmarked

against EMIT-2D, IPF-FDMC, and FFW giving reliability in the simulated physics.

Excellent agreement and strong mode conversion efficiencies was seen between the

codes when modelling simple plasma profiles. However, EMIT-3D predicted lack-

lustre mode conversion efficiencies when a complex MAST-U density and magnetic

field equilibrium was used. The most likely explanation for this fall in efficiency is

that the electromagnetic wave was launched with some angle mismatch between its

polarisation and the background magnetic field lines. The code remains in a strong

position to conduct further mode conversion studies in the future, and this drop in
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efficiency could be investigated by parameter scans though the launched polarisation

of the beam. Further use of EMIT-3D in this area would be of great value to the

EBW heating technique since the code is 3D in nature and EMIT-3D, IPF-FDMC,

and FFW are all 2D. Using exclusively 2D codes to model EBW heating may leave

the work vulnerable to unexpected mechanisms which require three dimensions to

fully materialise.
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10 Appendix

10.1 Plane-wave solution to the homogeneous wave equation

Maxwell’s equations include Ampère’s and Faraday’s laws, respectively,

∇×B = µ0J + µ0
∂D

∂t
(224)

∇×E = −∂B
∂t

(225)

This form of equations is more similar to that which Maxwell himself produced.

Ampére’s law in this form is more complete. We have made no assumptions so the

medium at this stage, and Ampére’s law includes both bound and free forces. Here

we have

J = JF + JB, (226)

D = ε0E + P , (227)

B = µ0(H +M ), (228)

where

• JF and JB are free and bound currents.

• D and B are the Displacement Field and Magnetic Field respectively. They

represent the overall fields.

• E and H are the Electric Field and Magnetic Field Strength, respectively.

They represent the external electric and magnetic fields applied across a par-

ticular medium which arise as a result of free charges and currents.
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• P and M which are the Polarisation Field and Magnetisation Field, respec-

tively. These terms represent the internal electric and magnetic fields which

arise from bound charges and currents, and occur as a result of a applying an

external electric/magnetic field across a particular medium.

The Polarisation Field (or Polarisation Density) represents the density of permanent

or induced electric dipole moments P = ε0(εr − 1). Analogously to the Polarisation

Field the Magnetisation Field (or Magnetisation Density) represents the density of

permanent or induced magnetic dipole moments M = (∂m/∂V ), where ∂m is the

elementary magnetic moment and ∂V is the volume element. It would be good to

expand on P and M to discuss εr and capacitance, electric dipole moments, and

magnetic dipole moments. In a vacuum there are no internal forces, so there are

no bound charges or currents and therefore there are no Polarisation Fields and no

Magnetisation Fields. Maxwell’s equations then become

∇×H = ε0
∂E

∂t
, (229)

∇×E = −µ0
∂H

∂t
. (230)

We have used B = µ0H in Faraday’s law to make it consistant with Ampére’s law.

This is possible because M = 0 in vacuum. We can then couple these equations

together to form a generalised wave equation for vacuum. We are not making any

assumptions about the form of the electromagnetic wave at this stage.

∇× (∇×E) =
∂

∂t
(∇×B) = µ0ε0

∂2E

∂t2
. (231)

Using a vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A where A is any vector. As

we are in vacuum there is no charge density and ∇ ·E = 0 so we get

∇2E − µ0ε0
∂2E

∂t2
= 0. (232)
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This is a 3D wave equation that describes electromagnetic waves in vacuum. In order

to solve this an expression for the electric field must be found, and simplifying into 1D

makes this easier. To do this we will assume that the described electromagnetic wave

is propagating along the x-axis. Additionally we assume that the electromagnetic

wave’s electric field only has one component and is parallel to the y-axis E = E0êy.

We also need to assume that we are modelling a plane wave. This allows us to state

that for a given distance along z there is no variation of the electric or magnetic

fields along the y-axis or x-axis. The wave equation now becomes

∂2Ey
∂z2

− µ0ε0
∂2Ey
∂t2

= 0. (233)

In order to find a solution to this we need to try and deduce what a possible solution

might look like. There is a trivial solution at Ey = 0, however since we have two

partial differential equations with respect to z and t then the solution must be

f(z, t). One of the most simple forms this might make is Ey = t − z/c where we

have divided by c because t and z/c must be of the same dimensions in order to

appropriately apply the addition operator, and we know that electromagnetic waves

have a characteristic speed of c. We also know that electromagnetic waves oscillate.

Additionally Fourier showed that any complex oscillation can be represented by a

combination of cos functions. With this in mind we should include the cos function

in our deduced solution. You can use the sin function as well and the end result is

essentially the same. Some intricacies are brought up when converting to complex

form/

Ey = cos(z/c− t). (234)

Because we are now dealing with a trigonometric function, it would be convenient

if we could represent t− z/c in terms of 2π. An example of an increasing time now
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might look something like

t = 0(2π), t = 0.1(2π), ..., t = A(2π), (235)

where A is some number. We can do something similar for z/c, hence our solution

becomes

Ey = cos(2π(z/c− t)). (236)

We are now describing something that is propagating along x at the speed of x,

that has a sinusoidal electric field variation. This is beginning to sound more like an

electromagnetic wave, however we also know that electromagnetic waves can differ in

how often they exhibit this sinusoidal variation. We need to include the frequency of

the wave into the deduced solution. Experimenting with the cos function shows that

we can make a wave oscillate more, or less, but altering the variable f in sin(f ∗2π).

In addition to this sin must operate on a unit-less number. Currently our function

has units of time and multiplying by frequency will solve this problem. In light of

this we can include frequency into our deduced solution as

Ey = cos(2πf(z/c− t)). (237)

Expanding the brackets, and using the fundamental definition of angular frequency

ω = 2πf and wave-number k = ω/c we obtain

Ey = cos(kz − ωt). (238)

We also know that electromagnetic waves have different amplitudes to one another.

We can easily include this by multiplying by some peak amplitude, E0, which gives

Ey = E0 cos(kz − ωt). (239)
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We can use this expression in it’s complex form by applying Euler’s identity.

eiθ = cos(θ) + i sin(θ). (240)

If we take the only the real components of Euler’s identity we have

<{eiθ} = cos(θ) (241)

Now we can apply our solution from equation (239) into the real parts of Euler’s

identity in equation (241) to give

<{E} = <{E0e
i(kz−ωt)}, (242)

where generally the < notation is dropped giving

E = E0e
i(kz−ωt), (243)

You can then expand this solution to the 1D wave equation to allow a plane wave

to propagate along any 3D vector. This can be done through the vector r which is

simply an axis along which we evaluate the electromagnetic wave. Then our solution

becomes

E = E0e
i(k·r−ωt), (244)

where for a given vector k, suppose you choose r along the direction of k and denote

this the x-axis, then k · r = kx. We can then use this 3D plane wave solution as an

approximate solution to any wave-equation. We can also combine several waves of

the form (244) to produce any other wave.

10.2 Non-zero background flow dispersion relation

Observing the Force Balance equation we want to have each component of the

equation in terms of E1 so that we can eliminate E1 through matricies. This
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requires us to eliminate v1 and B1 in favour of E1. An expression for B1 can simply

be obtained from rearranging Faraday’s equation. Looking firstly at Faraday’s law,

we can rewrite this as

B1 =
k ×E1

ω
(245)

An expression for v1 is achieved by combining our expression for J1 from equation

with Gauss’ law, Faraday’s law and Ampère’s law. Rearranging the expression for

J1 in favour of v1 forms

v1 =
1

qn0

[J1 − qn1v0] . (246)

Substituting in Gauss law for n1

v1 =
1

qn0

[
J1 − qv0

ε0ik ·E
q

]
, (247)

where J1 can then be eliminated in favour of B1 and E1 by using Ampère’s law

v1 =
1

qn0

[
ik ×B1

µ0

+
iωE1

µ0c2
− v0ε0ik ·E1

]
. (248)

Finally, Faraday’s law is used to substitute for B1 as

v1 =
1

qn0

[
ik × k ×E1

µ0ω
+
iωE1

µ0c2
− v0ε0ik ·E1

]
=

ik × k ×E1

µ0wqn0

+
iωE1

µ0c2qn0

−v0ε0ik ·E1

qn0

.

(249)

This expression for v1 can now be used in conjunction with the expression for

B1 in the Force Balance equation
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ω′
(
ik × (k ×E1)

µ0wqn0

+
iωE1

µ0c2qn0

− v0ε0ik ·E1

qn0

)
= q

[
E1 +

(
ik × (k ×E1)

µ0wqn0

+

iωE1

µ0c2qn0

− v0ε0ik ·E1

qn0

)
×B0 +

(
v0 ×

k ×E1

ω

)]
(250)

or

ik × (k ×E1)

µ0wqn0

+
iωE1

µ0c2qn0

− v0ε0ik ·E1

qn0

− q

ω′

[
E1 +

(
ik × (k ×E1)

µ0wqn0

+

iωE1

µ0c2qn0

− v0ε0ik ·E1

qn0

)
×B0 +

(
v0 ×

k ×E1

ω

)]
= 0

(251)

Equation (251) will form the basis for eliminating E1 by setting up an ¯̄M ·E1 = 0

matrix. In order to do this we need to decompose equation (251) into its directional

components (êx, êy, êz).

Decomposition of equation (251) along with combining matrix expressions and

then assuming that k is in the xz plane, so that ky = 0, allows the following to be

formed


Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 ·

E1x

E1y

E1z

 = 0 (252)

Mxx =
i(−k2

z)

µ0ωqn0

+
iω

µ0c2qn0

+
−iε0v0xkx

qn0

− q

ω′
+
iε0B0zv0ykx

ω′n0

− q

ω′ω
(−v0zkz) (253)

Mxy =
−iB0z(−k2

x − k2
z)

ω′µ0ωn0

− iωB0z

ω′µ0c2n0

− q

ω′ω
v0ykx (254)
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Mxz =
i(kzkx)

µ0ωqn0

+
iε0B0zv0ykz

ω′n0

− q

ω′ω
v0zkx −

iε0
qn0

v0xkz (255)

Myx =
−iB0z(k

2
z)

ω′µ0ωn0

+
iωB0z

ω′µ0c2n0

+
iε0B0z(−v0xkx)

ω′n0

− iε0
qn0

v0ykx (256)

Myy =
i(−k2

x − k2
z)

µ0ωqn0

+
iω

µ0c2qn0

− q

ω′
− q

ω′ω
(−v0xkx − v0zkz) (257)

Myz =
−iB0z(−kzkx)

ω′µ0ωn0

+
iε0B0z(−v0xkz)

ω′n0

− iε0
qn0

v0ykz (258)

Mzx =
i(kxkz)

µ0ωqn0

− q

ω′ω
(v0xkz)−

iε0
qn0

v0zkx (259)

Mzy =
−q
ω′ω

v0ykz (260)

Mzz =
i(−k2

x)

µ0ωqn0

+
iω

µ0c2qn0

− iε0v0zkz
qn0

− q

ω′
− q

ω′ω
(−v0xkx) (261)

Where ω′ is now

ω′ = im[v0xkx + v0zkz − ω] (262)

Since we’re in the xz plane we can write kx = k⊥ = k sin θ and kz = k‖ = k cos θ

where θ is the angle between B‖ = B0z and wave propagation direction since we’re

considering plane waves. This is an important step before normalising as we use

the relation for refractive index N = ωk
c

and let U = v0
c

where Ux = vx
c
, Uy = vy

c
,

Uz = vz
c
. By this

ω′ = im[v0xk sin θ + v0zk cos θ − ω] (263)

ω′ = im[UxωN sin θ +UyωN cos θ − ω] (264)
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ω′ = imω[N(Ux sin θ +Uy cos θ − 1

N
)] (265)

It’s also key to note that each element in matrix (252) has equal dimensions, and

since we have ¯̄M ·E = 0 we can multiply through by a scaler with no consequence

to the R.H.S of the equation. This allows us to look at any single element to obtain

a normalisation factor which we can apply on ¯̄M .

Observing Mzy as it is the most simple element, we have

Mzy =
−q
ω′ω

v0yk cos θ (266)

Mzy =
−q

imω[N(Ux sin θ +Uy cos θ − 1
N

)]
UyN cos θ (267)

Mzy =
iq

mω

Uy cos θ

[(Ux sin θ +Uy cos θ − 1
N

)]
(268)

In order to make Mzy dimensionless we would have to multiply through by mω
iq
.

This is our normalisation factor.

With this in mind, we can now normalise each element of matrix (252). Let

Uθ = (Ux sin θ +Uy cos θ − 1
N

)

Mxx = −N
2 cos2 θ

X
+

1

X
− UxN sin θ

X
+

1

NUθ
− iY

X

Uy sin θ

Uθ
− Uz cos θ

Uθ
(269)

Mxy = −iY
X

N

Uθ
+
iY

X

1

NUθ
+
Uy sin θ

Uθ
(270)

Mxz =
N2

X
sin θ cos θ − iY

X

Uy cos θ

Uθ
+
Uz sin θ

Uθ
− UxN cos θ

X
(271)

Myx =
iY

X

N cos2 θ

Uθ
− iY

X

1

NUθ
+
iY

X

Ux sin θ

Uθ
− UyN sin θ

X
(272)

Myy = −N
2

X
+

1

X
+

1

NUθ
− (
Ux sin θ +Uz cos θ

Uθ
) (273)

Myz = −iY
X

N sin θ cos θ

Uθ
+
iY

X

Ux cos θ

Uθ
− UyN cos θ

X
(274)
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Mzx =
N2

X
sin θ cos θ +

Ux cos θ

Uθ
− UzN sin θ

X
(275)

Mzy =
Uy cos θ

Uθ
(276)

Mzz = −N
2 sin2 θ

X
+

1

X
− UzN cos θ

X
+

1

NUθ
− Ux sin θ

Uθ
(277)

It’s necessary to investigate the reliability of these results before using them to

conduct further research. Taking the matrix comprised of elements (269) → (277)

and setting v0 = 0 we would expect to find a scaler which we could multiply said

matrix through by to give the previous textbook result shown in matrix. This is

not what we see, while this is not reassuring it does not mean that these results

are wrong It is possible to obtain the same solution from two different equations,

although further analysis is required. It is possible to return to matrix(X) by mul-

tiplying through by a 3x3 matrix. This 3x3 matrix is very complicated and requires

computationally simultaneously solving equations to obtain but it does exist. This

is reassuring but it is not a conclusive result.

Setting v0 = 0 and using elements (269) → (277) to plot the dispersion relation

analogous the method using in section, we would expect an identical result to that

obtained in figure. Figure shows such an analysis.
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