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Chapter 1

Introduction

What is the amount of reversible work needed to bring a molecule from gas phase to

solvent? It turns out that this question is not just a matter of scientific curiosity. Accurate

predictions of phenomena such as solubility, partition coefficients, substrate binding, acid

dissociation constants, all in one way or another depend on how accurately we can

measure or predict this quantity1–11. The aim of this thesis is to develop a theory-based

computational method for computing this amount of work.

Formally, the problem is to predict the free energy change, ∆GA, occurring upon transfer

of molecule from gas phase to liquid A12. This free energy tells us the probability P

to find a molecule in a specific phase compared to gas: PA/Pgas = exp [−∆GA/(RT )],

where T is the temperature and R is the gas constant.

There are multiple factors which make prediction of solvation free energies difficult13,14.

First of all, a good approximation of intermolecular potentials between molecule (solute)

and liquid (solvent) is required15. Second, one has to take into account all possible

conformations in which solute can exist in the solution and the gas phase16. Finally, and

most importantly, one also has to consider all possible configurations of solvent molecules

around the solute; after all, the affinity of a molecule to the phase is determined not only

by the solute-solvent interactions, but also by the solvent-solvent ones17–19. The nature

of all involved forces is quantum-mechanical; this puts ab initio prediction of ∆GA into

the category of (practically) unsolvable quantum many-body problems.

To make progress, we need to make some approximations. To an extent, each approxima-

tion we make is a trade-off between the speed of the model and its domain of applicability.

1



Chapter 1. Introduction 2

Figure 1.1: The solvation free energy is equal to the reversible work required to bring
molecule from (ideal) gas phase to solvent. Alternatively, it can be computed from its

equilibrium concentration ratio in two phases.

A classical molecular dynamics simulation, which uses only a few approximations, is a

very general tool that can be applied to systems where quantum effects are not relevant to

the motion of particles20. At the same time, methods based on statistical learning, such

as quantitative structure-property relationships (QSPR), are less generally applicable

and are usually limited to systems and compounds that are sufficiently similar to the

training data21,22. As one would expect, molecular dynamics uses a large number of

computational resources, while QSPR calculations are practically effortless.

A family of methods based on classical density functional theory and related integral

equation theories offer an attractive balance between speed and generality6,23–25. The

idea behind these methods is to ignore unimportant degrees of freedom in a solvent and

view it as a local density field ρ(r). In the absence of an external potential, the solvent

will be homogeneous with the value of local density in each point being equal to the bulk

number density ρ(r) = ρ. However, bringing a solute molecule in a solvent introduces

an external field φ(r), which breaks the symmetry. As a result, solvent re-distributes

itself around a solute, giving rise to a new density distribution ρ(r;φ) that is uniquely

determined by the external potential. Moreover, a new density field will be such that the
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Figure 1.2: A particle with a spherically symmetric potential φ(r) is placed at the
origin. The surrounding solvent rearranges, forming multiple solvation shells. The
dependence of its average density ρ(r) can be obtained using classical density functional

theories. The units are arbitrary.

total free energy of the system will be minimised. The last two statements are the key

results of density functional theory, known as the Hohenberg–Kohn–Mermin theorems26.

Similarly to the electronic version of the density functional theory, the classical functional

that relates the system’s density field ρ(r) to its free energy is unknown. Therefore, one has

to use approximations, tailored to a given problem. Moreover, often, such approximations

lead to non-trivial results and are best understood through the applications of theory to

specific problems27.

In this thesis, we focus on one of the most popular approaches, called three-dimensional

reference interaction site model or 3D-RISM6,28–30. It is commonly categorised as an

integral equation theory we will see that it is naturally derived and analysed from the

viewpoint of classical density functional theory. The approach owes its popularity to its

simplicity, robustness, speed, as well as the fact that it can be applied to biologically

relevant solutions such as water with dissolved electrolytes. In 3D-RISM, the response

of the solvent to external perturbation is essentially linear. This makes the approach
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accurate for small perturbations, but it ultimately fails to describe larger ones, such as

the creation of a cavity in a bulk solvent.

However, recently, some studies have shown that with a few empirical corrections, 3D-

RISM can also be used to predict solvation free energies of small molecules with a good

accuracy31–36. Later, Sergiievskyi and co-workers demonstrated that these corrections

are related to the overestimated bulk pressure of the liquid, found in 3D-RISM37,38.

They came up with a theory-based pressure correction to 3D-RISM (PC), which, while

removing a need to introduce empirical adjustments to the model, was not as accurate as

empirical alternatives. Building upon the work by Sergiievskyi et al., we introduced what

is now called an advanced pressure correction (PC+)39–42. While this correction was

initially suggested based on empirical observation, it is now clear that it has a physical

basis, as we discuss in the second half of the thesis.

The main goal of the thesis is to investigate the accuracy and the scope of

3D-RISM advanced pressure correction, PC+. We show that while PC+ suffers

from a range of problems related to its approximations, ultimately, for molecular solutes,

it can predict solvation free energies with a good accuracy in water as well as in a range of

nonpolar solvents. Since the model does not have adjustable parameters, it can be applied

to both pure liquids as well as mixtures with comparable accuracy. Additionally, it can

be useful for prediction of the first derivatives of free energy such as entropy or enthalpy,

although, the accuracy is lower. Through the thesis, we compare model performance with

other approaches and discuss their advantages and downsides.

1.1 Structure

The thesis is split into two halves, with the first mostly dedicated to the review of the

background theory and previous results, and the second concerned with the new findings,

analyses, and discussion. Specifically, we dedicate the second chapter to solvation

thermodynamics, third to the exact results in simple liquids theory, and fourth to

approximations necessary for computing liquids structure and free energy. The second

part of the thesis starts with the fifth chapter in which we introduce pressure corrections

and present a number of analytical results that justify it and establish its limits. The sixth

chapter is mostly concerned with the accuracy of the model when applied to water, while
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the seventh chapter discusses non-aqueous solvents. We wrap everything up with the

conclusion that summarizes the main findings and suggests directions for future research.

The thesis is supplemented by two appendices dedicated to the methodology of the

calculations performed throughout the thesis as well as additional figures and tables that

did not fit into the main part of the work.



Part I

Theoretical background

6



Chapter 2

Solvation thermodynamics

The first half of the chapter discusses a number of useful results from statistical mechanics

with derivation based on the Ref. 12. The second half of the chapter is largely based

on the recent research literature on solvation thermodynamics and contains a couple of

original results.

2.1 Classical partition function

In this thesis, we will be mainly concerned with solvation in common solvents near room

temperatures. Typically, the behaviour of atomic nuclei in such systems can be described

sufficiently accurately using classical statistical mechanics12,26,43. Electrons in these

systems do behave quantum mechanically, but in many cases, their interactions can be

reasonably well approximated by empirical potentials.

Equilibrium properties of the system can be conveniently described using partition

functions. For simplicity, we assume that particle interactions do not depend on their

orientation a. Then the partition function of N indistinguishable classical particles in the

canonical ensemble takes the following form:

QN =
qN

h3NN !

∫∫
exp [−βH (p1 · · ·pN , r1 · · · rN )] dr1 · · · drN dp1 · · · dpN , (2.1)

aThe orientation dependant potentials do not change much conceptually, but make notation more
cumbersome.

7



Chapter 2. Solvation thermodynamics 8

where h is Planck’s constant, H is the Hamiltonian of the system, β = 1/kT , with

k being the Boltzmann constant and T is temperature. r is the position vector, in 3

dimensions given by r = [x, y, z] and p is the momentum vector, given by p = [px, py, pz].

The integrals are taken over all possible positions and momenta for each particle. To

simplify notation, whenever the limits on the integral sign are omitted, it is implied that

integration is performed over the whole range of possible values.

Another quantity appearing in the equation, q is the single-particle partition function,

containing degrees of freedom which we assume to be entirely independent of particle’s

position and interaction with other particles. For molecules, it can be typically factored

into a product of the partition functions for each degree of freedom q = qrotqvibqel, with

subscripts rot, vib, and el representing rotational, vibrational, and electronic degrees of

freedom. The exact form of these functions depends on the molecule in question44.

For our systems of interest, kinetic and potential energy are independent so that Hamil-

tonian can be split into two parts

H (p1 · · ·pN , r1 · · · rN ) =
N∑
i=1

p2
i

2mi
+ U(r1 · · · rN ), (2.2)

where mi is the mass of the i-th particle and U is the potential energy of the whole

system. Substituting the above expression into 2.1 and integrating over momenta we get

QN =
qN

N !Λ3N
ZN . (2.3)

Here we introduced the so-called thermal de Broglie wavelength, which is defined by

Λ =

√
h2

2πmkT
. (2.4)

Another new quantity in the equation, Z, is called the configurational partition function

and is defined as

ZN =

∫
exp [−βU(r1 · · · rN )] dr1 · · · drN . (2.5)

For the majority of systems, the configurational partition function cannot be evaluated

analytically. One notable exception is an ideal gas for which U = 0 everywhere. The
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ideal gas partition function is then

QigN =
qN

N !Λ3N

∫
dr1 · · · drN =

qNV N

N !Λ3N
, (2.6)

where V is volume.

An average value of some observable quantity A(p1 · · ·pN , r1 · · · rN ) can be conveniently

expressed via a partition function. Note that the probability density Pr to find system in

a state r1 · · · rN ,p1 · · ·pN is

Pr =
1

QN
exp (−βH) dr1 · · · drN dp1 · · · dpN , (2.7)

where we omitted the dependence of H on the phase space position for clarity. It follows

that an average of some quantity A is

〈A〉 =
1

QN

∫∫
A (r1 · · · rN ,p1 · · ·pN ) exp (−βH) dr1 · · · drN dp1 · · · dpN , (2.8)

where 〈· · · 〉 here denote ensemble average.

In addition to the canonical ensemble (which has constant N , V , and T ), one can also

define the isobaric-isothermal ensemble that has constant pressure P , number of particles

N , and temperature T . For such systems the partition function becomes

∆N =
1

V0

∞∫
0

exp (−βPV )QN dV, (2.9)

where V0 is a unit volume that is used to make ∆ dimensionless. In the grand canonical

ensemble, the constant quantities are chemical potential µ, temperature T , and volume V .

The number of particles, N , is allowed to vary. The corresponding partition function is

Ξ =
∞∑
N=0

QN exp (βNµ) . (2.10)

2.2 Free energies

The second law of thermodynamics states that the equilibrium state of an isolated

thermodynamic system maximizes its total entropy45. However, in practice, we rarely
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deal with isolated systems. For systems in contact with some external reservoirs this law

can be reformulated in the following way: at equilibrium, the thermodynamic system

minimizes its corresponding thermodynamic potential, which depends on the systems

constraints. For systems subject to NV T conditions (canonical ensemble) the appropriate

potential is Helmholtz free energy F , for NPT condition (isobaric-isothermal ensemble)

it is Gibbs free energy G, and for µV T conditions (grand canonical ensemble) it is the

grand potential Ω.

Importantly, the thermodynamic potentials (free energies) are linked to partition functions

in the following way

F = −kT lnQN ,

G = −kT ln ∆,

Ω = −kT ln Ξ.

(2.11)

These relationships provide a link between thermodynamics and statistical mechanics.

Similarly to partition functions, free energies can be decomposed into contributions from

kinetic energy (ideal gas) and from potential energy (usually called excess free energy).

These parts can be expressed in terms of partition functions using equations 2.11, 2.6,

and 2.3

F = −kT lnQigN − kT ln
Z

V N
= F ig + F ex, (2.12)

where superscript ig indicates ideal part and ex excess part of the free energy. F ig can

be readily evaluated using 2.6 and Stirling’s approximation

F ig = −NkT ln
qV

Λ3
+ kT lnN !

≈ −NkT ln
qV

Λ3
+ kT (N lnN −N)

= NkT
(
ln Λ3ρq−1 − 1

)
.

(2.13)

2.3 Chemical potential

The chemical potential of the i-th type of particle in a multicomponent mixture is defined

as:

µi =

(
∂F

∂Ni

)
T,V,Nj 6=i

. (2.14)
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The above expression is perfectly valid for other thermodynamic potentials as long as

appropriate constraints are chosen (for example, the derivative can be taken with respect

to Gibbs free energy G if pressure instead of volume is fixed).

The chemical potential, despite often being considered as a somewhat mysterious quan-

tity46, actually, has a straightforward physical meaning. Similarly to how thermodynamic

free energies can be viewed as generalizations of the potential of classical systems (hence

the name thermodynamic potential), the derivatives of the said potentials are similar to

forces. µi can be viewed as a force exerted by the system on the particle of type i, with

negative and positive signs corresponding to particles being driven into and out of the

system respectively.

Two, more formal definitions of chemical potentials within statistical mechanics, will be

presented below. Both derivations will be presented in the canonical ensemble, but almost

identical results hold in systems with other constraints. To simplify notation, we will be

viewing solvation in a one-component system where the inserted molecule is identical

to other particles (the same results hold true where the inserted molecule is distinct).

This subject is given much attention since the main goal of the thesis is an estimation of

chemical potentials in various systems.

It can be shown12 that in the thermodynamic limit where N →∞ (or in other words,

when the insertion of a new particle does not change the composition of the system):

µ = F (N + 1)− F (N) (2.15)

with all other variables kept constant. Combining this equation with 2.11 we get

µ = −kT ln
QN+1

QN
= −kT ln

[
qN+1N !Λ3N

qNN !(N + 1)Λ3(N+1)

ZN+1

ZN

]
. (2.16)

Then

µ = −kT ln

[
q

(N + 1)Λ3

∫
dr1 · · · drN drN+1 exp(−βUN+1)∫

dr1 · · · drN exp(−βUN )

]
. (2.17)

To move forward we need to split the potential energy of system with added particle

UN+1 into two parts:

UN+1 = UN (r1 · · · rN ) + Euv(r1 · · · rN , rN+1) (2.18)
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where Euv is the interaction (binding) energy of the particle N + 1 to the rest of the

system. The superscript uv denotes interactions between the solute, the particle being

inserted, and solvent, the medium. Substituting the above back into equation 2.17 we

get:

µ = −kT ln

[
q

(N + 1)Λ3

∫
dr1 · · · drN drN+1 exp(−βEuv) exp(−βUN )∫

dr1 · · · drN exp(−βUN )

]
, (2.19)

where dependencies of potential energies on positions of all particles were omitted for

clarity. This equation can be further simplified by noting that in a homogeneous liquid

the potential energy depends only on the relative positions of particles. By setting

r′i = ri − rN+1 for position vectors 1 · · ·N and integrating out rN+1 we get

µ = −kT ln

[
qV

(N + 1)Λ3
〈exp(−βEuv)〉0

]
, (2.20)

where 〈· · · 〉0 denote the averaging over positions of all particles (the chemical potential

does not depend on the moment, so their values are unimportant). In the thermodynamic

limit V/(N + 1) ≈ V/N :

µ = kT ln
(
ρΛ3q−1

)
− kT ln 〈exp(−βEuv)〉0 (2.21)

This important result was first discovered by Widom in 196347,48. In the above equation

the chemical potential is clearly split into ideal and non-ideal parts, with

µig = kT ln
(
ρΛ3q−1

)
. (2.22)

and

µex = −kT ln 〈exp(−βEuv)〉0 . (2.23)

There is an alternative and equally useful statistical mechanics expression for chemical

potential that was first derived by Kirkwood in 193549,50. Imagine insertion of a single

particle into the system as a continuous process during which particle-system interactions

are slowly turned on. To characterise such a process we introduce a modified Hamiltonian

H(λ), with λ = 0 representing an uncoupled state in which N + 1-th particle does not

interact with the rest of the system, and λ = 1 being a final state in which all particle-

system interactions are turned on. The approach is quite general since any continuous
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function H(λ) satisfying the above requirements would suffice.

The derivative of free energy with respect to coupling parameter is given by:

dF

dλ
= −kT d

dλ
ln

∫∫
exp [−βH (λ)] dr1 · · · drN+1 dp1 · · · dpN+1

= −kT
∫∫
− dH(λ)

dλ exp [−βH (λ)] dr1 · · · drN+1 dp1 · · · dpN+1∫∫
exp [−βH (λ)] dr1 · · · drN+1 dp1 · · · dpN+1

.

(2.24)

Expressing the above in terms of an ensemble average we get:

dF

dλ
=

〈
dH(λ)

dλ

〉
λ

, (2.25)

which after applying the fundamental theorem of calculus becomes

∆F =

1∫
0

〈
dH(λ)

dλ

〉
λ

dλ. (2.26)

In the case of a linear coupling of solute-solvent potential energy H(λ) = H(0) + λEuv,

equation 2.26 reduces to

µex =

1∫
0

〈Euv〉λ dλ, (2.27)

where we necessarily get µex, since the mass of the inserted particle, and thus, the total

kinetic energy of the system was unchanged. Practically, the linear coupling is not always

convenient, but from the theory perspective, it gives exact results.

Assuming a linear dependence of interaction energy on the coupling strength (linear

response) 〈Euv〉λ = 〈Euv〉λ=1λ+ 〈Euv〉λ=0(1− λ), we can obtain a useful rough estimate

of the free energy change

∆F ≈
1∫

0

dλ〈Euv〉λ=1λ =
1

2
〈Euv〉λ=1 +

1

2
〈Euv〉λ=0, (2.28)

which is just an average of initial and final particle system interaction energies. For

chemical potential, this equation is not very useful, since 〈Euv〉λ=0 is not well defined,

but for some smaller perturbations, such as adding electrostatic charge to the inserted

formula, this equation is quite accurate51.
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Comparing the two obtained equations for the chemical potential, it may appear that

Widom’s formula (2.21) is computationally more convenient as the interactions are

computed only in one state, as opposed to equation 2.26 in which one has to compute

dH(λ)/ dλ in a number of systems with varying λ. However, in the case of dense systems,

Kirkwood’s equation is advantageous. For most liquids random insertions of a particle

will cause overlap, resulting in a significant number of trials required for expression

〈exp(−βEuv)〉0 to converge52. On the other hand, using Kirkwood’s formula, one can

start with a system in which particle is already fully coupled and then slowly decouple it,

letting the surroundings relax. Such an approach is guaranteed to yield a good estimate

of µ independent of the density of the system. For this reason, the majority of chemical

potential calculations employ Kirkwood’s formula.

Finally, it is useful to consider the relationship between the chemical potential and the

ensemble from a thermodynamic perspective. Intuitively, it seems reasonable that as long

as macroscopic thermodynamic parameters such as pressure or density are identical, and

the system is sufficiently large, the chemical potential would be independent of the types

of system constraints. However, if we write out the equations for insertion explicitly, we

will notice that this independence is realised through the cancellation of ensemble specific

contributions53.

Let’s denote the chemical potential obtained by differentiating Helmholtz free energy

at constant volume as µV and the one obtained by differentiating Gibbs free energy at

constant pressure as µP . To see the relationship between these quantities we right out

G(T, P,N) = F (T, V (T, P,N), N) + PV (T, P,N) (2.29)

and then using a chain rule53:

µP =

(
∂G

∂N ′

)
T,P,N

=

(
∂F

∂N ′

)
T,P,N

+ P

(
∂V

∂N ′

)
T,P,N

=

(
∂F

∂N ′

)
T,V,N

+

(
∂F

∂V

)
T,N

(
∂V

∂N ′

)
T,P,N

+ P

(
∂V

∂N ′

)
T,P,N

=

(
∂F

∂N ′

)
T,V,N

= µV , (2.30)
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where in the third equality we used the identity P = − (∂F/∂V )T,N and we used

superscript N ′ to separate introduced particle from the rest of the system. The partial

derivative appearing in the above expression (∂V/∂N ′)T,P,N = V̄ is called the partial

molar volume. It indicates by how much system volume changes when we introduce

a small number of new particles; we will discuss it in more detail in later section. At

constant pressure, the extra work required to increase system size by PV̄ is compensated

by a decrease in free energy due to the system expansion.

An analogous procedure can be performed in the case of the Grand potential. We start

by writing

Ω(T, V, µ) = F (T, V,N(T, V, µ))− µN(T, V, µ). (2.31)

Assuming the solvated particle is distinct from the rest

µµ =

(
∂Ω

∂N ′

)
T,V,µ

=

(
∂F

∂N ′

)
T,V,µ

− µ
(
∂N

∂N ′

)
T,V,µ

=

(
∂F

∂N ′

)
T,V,N

+

(
∂F

∂N

)
T,V

(
∂N

∂N ′

)
T,V,µ

− µ
(
∂N

∂N ′

)
T,V,µ

=

(
∂F

∂N ′

)
T,V,N

= µV , (2.32)

where µ = (∂F/∂V )T,V,N was utilised. The quantity (∂N/∂N ′)T,V,µ is directly related to

partial molar volume. In appendix B.1 we show that (∂N/∂N ′)T,V,µ = −ρV̄ . Then in

a grand canonical ensemble, we obtain extra µρV̄ energy from the particle bath, but it

gets compensated due to a decrease of particle number inside the system.

2.4 Solvation free energy

To discuss solvation thermodynamics we first need to define a term solution. According

to IUPAC "Gold Book"54: "Solution is a liquid or solid phase containing more than

one substance". A dominant component of the solution is usually called solvent, while

minor components are referred to as solutes. In most of our discussion, we will be dealing

with infinitely dilute solutions in which concentrations of solutes, as well as their mutual

interactions, tend to zero.



Chapter 2. Solvation thermodynamics 16

According to Ben-Naim, the solvation may be defined as the process of transferring a

solute from a fixed position in an ideal gas phase into a fixed position in the solvent6,12.

To express this definition analytically, we need to introduce the pseudo-chemical potential,

which is a chemical potential associated with a stationary particle. It is typically denoted

as µ∗ and is given by

µ∗ = µ− kT ln ρΛ3. (2.33)

The solvation free energy is defined as

∆G∗ = µ∗l − µ∗ig = ∆µ∗, (2.34)

where superscript l indicates solvent and ∗ refers to Ben-Naim’s definition. As we saw in

the previous section, the value of chemical potential is ensemble-independent and thus

∆G∗ = ∆F ∗ = ∆Ω∗. However, in practice, the symbol ∆G is used to indicate that the

system is connected to a constant pressure and temperature bath.

Expressing everything in terms of µex (defined via the equation 2.21) we can rewrite the

previous equation to get:

∆G∗ = µex − kT ln
ql

qig
. (2.35)

Clearly, if the internal partition function of the molecule is unaffected by the phase

transfer, ∆G∗ is equal to the coupling work of the solvent or µex.

Ben-Naim’s convention for solvation free energies is not the only one in use. Another

commonly used way of expressing solvation free energies is based on standard states. The

process of solvation is then described as a transfer of a compound at a standard gaseous

state (a hypothetical state of pure substance at which it exhibits ideal gas behaviour and

has standard pressure P o = 1 bar) to the standard solution state (a hypothetical state of

an ideal solution at standard pressure P o and molality bo = 1 mol kg−1). Solvation free

energies corresponding to this process are denoted as ∆Go.

While the use of standard states has many advantages, for the process of solvation they

are not very convenient. Within the standard-state approach, solute molecules change

their density during the transfer, which leads to an artificial dependence of derivatives

of solvation free energy on quantities such as thermal expansion or compressibility.

Additionally, one molal standard state is far from infinite dilution; defining such state
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as an ideal solution in which solute molecules do not interact with each other is not

physically meaningful.

Due to the above reasons, in this thesis, we will be primarily using Ben-Naim’s definition

of solvation. For simplicity, we will also drop the unnecessary ∗ and will simply denote

corresponding solvation free energies as ∆G, ∆F , or ∆Ω, depending on the system. To

convert from one type of definition to another, we can use equation 2.34. Then

∆Go = ∆G∗ − kT ln
ρl
ρg

= ∆G∗ − kT ln
bouMvρvkT

P o
,

(2.36)

where Mv is the molar mass and ρv is the density of the solvent. For water at 298.15 K

and standard pressure, this corresponds to ∆G∗ = ∆Go − 1.9 kcal/mol.

2.5 Decomposing solvation free energy

A lot of insight can be obtained by examining various decompositions of solvation free

energy into different components. In this section, we will demonstrate the separation of

excess chemical potential into energetic and entropic components, following the approach

that is commonly used in thermodynamic and statistical mechanics treatments of the

subject, and in section 2.6 we will approach this task from the simulations perspective.

Ben-Amotz et al. have demonstrated that one can formally decompose µex into two

equivalent representations51,55

µex = 〈Euv〉λ=1 + β

1∫
0

dλλ
[ 〈

(Euv)2
〉
λ
− 〈Euv〉2λ

]
= 〈Euv〉λ=1 +

1

β
ln 〈exp [β(Euv − 〈Euv〉)]〉λ=1 ,

(2.37)

where brackets 〈· · · 〉λ denote averaging in the ensemble of interest at a particular coupling

strength λ. The first term in the both equations is the strength of interactions between

solvent and fully coupled solute, and it represents an enthalpic contribution to the solvation

free energy. Both second terms represent an entropic contribution to the solvation free

energy and will be denoted as −TSuv; they are both proportional to fluctuations of

solute-solvent interaction energy. Integrating the first of the above equation by parts we
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get

µex = 〈Euv〉λ=1 +
β

2

[ 〈
(Euv)2

〉
λ=1
− 〈Euv〉2λ=1

]
+ · · · , (2.38)

where · · · represent higher order cumulants that disappear if the fluctuations of solute-

solvent energy are Gaussian.

From the previous paragraph, we can see that µex = Euv − TSuv, which is a very

convenient decomposition from the theoretical point of view. The entropic contribution

is always positive −TSuv ≥ 0 and energetic is negative for the absolute majority of

solutes. Note that within the linear response approximation, discussed in section 2.3,

−TSuv = −1/2Euv + 1/2Euv0 .

We can also decompose the excess chemical potential of solvation µex using more con-

ventional definitions of solvation energy and entropy; however, these values have solvent-

solvent contributions that will cancel each other out. We start by using the following

definition of chemical potential

µex = ∆U − T∆S, (2.39)

where ∆S is the excess solvation entropy given by

∆S = −
(
∂µex

∂T

)
V

(2.40)

and ∆U is the change in system’s excess internal energy, given by

∆U =

[
∂ (µex/T )

∂ (1/T )

]
V

. (2.41)

In the above equations, subscripts indicating that we are dealing with the excess quantities

were dropped for clarity.

Let us first look at the change in excess internal energy ∆U . Similarly to equation 2.15,

the following result holds ∆U = U ex(Nv, Nu = 1) − U ex(Nv, Nu = 0). Then we can

formally write

∆U = 〈Uvv + Euv〉λ=1 − 〈U
vv〉λ=0 = Euv + ∆ 〈Uvv, 〉 (2.42)



Chapter 2. Solvation thermodynamics 19

where Uvv is the interaction energy of solvent atoms and ∆Uvv = 〈Uvv〉λ=1 − 〈Uvv〉λ=0

is called the solvent reorganization energy.

The above equation contains a term accounting for the solute-solvent and the solvent-

solvent interactions. Both terms can be either positive or negative. It also should be

noted that the first term is relatively easy to compute, as for typical potentials 〈Euv〉λ=1

is short ranged. On the other hand, ∆ 〈Uvv〉 is the difference of two large interaction

energies and is usually difficult to evaluate.

To obtain an expression for solvation entropy ∆S, we note that

T∆S = −T
(
∂µex

∂T

)
V

= β

(
∂µex

∂β

)
V

= β

1∫
0

dλ
∂ 〈Euv〉λ
∂β

, (2.43)

where we used the Kirkwood-Buff expression for chemical potential (equation 2.27) to

obtain the final equality. We can simplify the integrand in the above by writing out its

definition

∂ 〈Euv〉λ
∂β

=
∂

∂β

∫
dr1 · · · drN drN+1E

uv exp [−βUN+1(λ)]

Z(λ)

=
−〈UN+1(λ)〉 〈Euv〉 Z2(λ) + 〈Euv UN+1(λ)〉 Z2(λ)

Z2(λ)

= −〈UN+1(λ)〉 〈Euv〉+ 〈Euv UN+1(λ)〉

= −〈Uvv〉λ 〈E
uv〉λ − λ 〈E

uv〉2λ + 〈Euv Uvv〉λ + λ
〈
(Euv)2

〉
λ

= −〈Uvv〉λ 〈E
uv〉λ − 〈E

uv Uvv〉λ − λ
[
〈Euv〉2λ −

〈
(Euv)2

〉
λ

]
,

(2.44)

where we used 〈UN+1〉λ = 〈Uvv〉λ + λEuv to obtain the fourth equality. Returning back

to equation 2.43 we get

T∆S = −β
1∫

0

dλλ
[
〈Euv〉2λ −

〈
(Euv)2

〉
λ

]
− β

1∫
0

dλ
[
〈Uvv〉λ 〈E

uv〉λ − 〈E
uv Uvv〉λ

]
.

(2.45)

Ben-Amotz, and earlier Yu and Karplus, have shown that12,56

∆Uvv = −β
1∫

0

dλ
[
〈Uvv〉λ 〈E

uv〉λ − 〈E
uv Uvv〉λ

]
. (2.46)
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This equation combined with the result above gives us the final expression

T∆S = T∆Suv + ∆Uvv. (2.47)

Notice that both internal energy change ∆U and solvation entropy ∆S contain contri-

butions due to solvent reorganization energy Uvv. However, it cancels out when we add

individual derivatives µex = ∆U − T∆S = Euv − T∆Suv.

Following Ben-Amotz, we can extend these results to other ensembles

∆Gs = EuvP − TSuvP + PV̄ ,

∆Ωs = Euvµ − TSuvµ + µρV̄ .
(2.48)

The rationale behind µρV̄ term was given at the end of section 2.3. Note that since the

averaging is done in different ensembles, generally EuvP 6= EuvV 6= Euvµ , with the same

holding true for entropy. Similarly, derivatives of free energy are not necessarily equal

in different ensembles. Even though the chemical potential is ensemble-independent, its

decompositions are not.

2.6 Numerical experiments

The dynamics of the majority of liquids at room temperature can be well approximated

using Newton’s equations of motion26. Thus, in principle one could simulate the liquid by

putting a sufficient number of molecules in a box, giving them initial velocities according

to the Maxwell-Boltzmann distribution and then updating their positions and velocities

using the force F = −∇U(r1 · · · rN ). This is the basic idea behind molecular dynamics

(MD) simulations, which is an extremely powerful tool for studying liquids and their

solutions.

The success of molecular dynamics simulation largely depends on the quality of the

approximation of intermolecular potential U . In all of the simulations performed in this

thesis, we assumed that U is pair decomposable:

U =
∑
i,j

uij(rij), (2.49)
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where
∑
i,j

is the sum over all pairs of interacting sites (particles), rij is the distance

between them, and uij is the pair potential.

The form of uij depends on whether sites i and j are part of the same or different

molecules. If sites i and j are both located on the same molecules, the interaction between

them will depend on the types of bonds present in the molecule. For i and j which are

parts of different molecules, or are separated by a sufficiently large number of bonds, the

pair potential is usually given by the sum of short-ranged and electrostatic potentials:

uij(r) = uLJij (r) + uelij(r),

uLJij (r) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
,

uelij(r) =
qiqj

4πε0rij
,

(2.50)

where εij is the Lennard-Jones well depth, σij is the Lennard-Jones diameter, q is the

partial charge, and ε0 is the vacuum permittivity. The 12-6 Lennard-Jones potential is the

most commonly used model to approximate short-ranged repulsive forces that originate

due to repulsion of electronic clouds as well as somewhat longer range (decaying as r−6)

attractive forces due to dispersion interactions.

The equation 2.50 defines the most standard and commonly used form of the intramolecular

potential57. Potentials of this form are robust and fast. However, they ignore a number of

potentially significant effects such as polarization, charge transfer, multi-body interactions,

etc.

The process of finding the interaction parameters describing each site is largely empirical.

The Lennard-Jones parameters are usually fit to reproduce macroscopic parameters such

as density or viscosity. In case of the water, there are a number of models with varying

sophistication and number of sites. For a typical organic solute, one can take parameters

from various force fields. More simple ones, such as general Amber force field (GAFF)58,

will have a single set of Lennard-Jones parameters per element, while more advanced

ones, such as the optimised potential for liquid simulations (OPLS), have a number of

different force field constants depending on the elements bonding59–61.

To estimate Lennard-Jones interactions between different types of atoms, one can use

various combination rules. For all simulations in the thesis, we will be using so-called
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Lorentz-Berthelot rules57

σij =
σi + σj

2
εij =

√
εiεj , (2.51)

where σi and εi are input taken from the force fields, and σij and εij are inputs fore

equations 2.50.

An accurate set of partial charges should ideally reproduce an electrostatic potential field

produced by the real molecule. Additionally, partial charges should be compatible with

Lennard-Jones parameters. The solvent models typically come with specifically adjusted

charges. For solutes, one commonly has to perform an electronic structure calculation to

find the molecules electron density distribution and then fit partial charges to it. In the

case of GAFF, a typical procedure is to use Austin model one (AM1) method to estimate

the distribution of valence electrons approximately and then correct it using semi-empirical

bond charge corrections (BCC) scheme, abbreviated as AM1-BCC62. This approach has

been well established and is known to yield good estimates of non-bonding parameters.

More sophisticated schemes, such as charge model five (CM5), use full electronic structure

calculations with large basis sets and hybrid electronic density functional theories.

Once parameters have been fit, the solvation free energy can be calculated by slowly

coupling (or decoupling) the solute to the solvent. The procedure is split into two stages.

At the first stage, one turns on the solute Lennard-Jones parameters, at the second –

partial charges. Thus, the solvation free energy can be formally split into:

∆F = ∆FLJ + ∆F el. (2.52)

The above equation presents an alternative scheme for decomposing solvation free energies

(besides thermodynamic decomposition into enthalpic-entropic parts), useful in computa-

tional chemistry. Since electrostatic free energy can be calculated relatively accurately

by modelling solvent as a dielectric continuum, one can combine it with some empirical

way of approximating ∆FLJ to obtain a computationally cheap method for deducing

solvation free energies without any solvent modelling. Simple models that use partial

charges for the electrostatic part include the generalised Born and Poisson-Boltzmann

models. Alternatively, models such as SMD or SM-12 combine an empirical ∆FLJ term

with continuum charge distributions derived from quantum mechanics.
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2.7 Ionic solvation

In the preceding sections, we discussed solvation in the bulk phase of a solvent, ignoring

any effects caused by the liquid-gas boundary. For situations when solutes are neutral

such an approach is entirely justified since the range of the interfacial effects is small.

However, in the case of the charged solutes (for which the sum of atomic charges is

non-zero), the nature of the liquid interface actually does affect the solvation free energy,

although, the forces inside the bulk are independent of it63.

Any homogeneous bulk phase P will have a characteristic constant potential φPG, called the

Galvani potential. It can be expressed as a sum of the Volta potential ψP and interfacial

potential χP :

φPG = ψP + χP . (2.53)

Typically, all three potentials would depend on both the other phases in contact with

the bulk phase as well as the shape of the surface. However, an isolated phase with a

homogeneous surface polarization has ψP = 0, so φP = χP . In this case, the Galvani

potential is uniquely determined by properties of the phase and is independent of its

shape or size63. This is the situation we will be primarily concerned with, so the terms

Galvani and surface potential are going to be used interchangeably.

In the bulk phase, the Galvani potential is constant and thus does not affect the forces

between the particles in any way. However, it has a noticeable effect on the insertion

of ions, shifting their intrinsic chemical potentials µ̄ by an amount proportional to the

charge b:

µ = µ̄+ qφPG (2.54)

where q is the total charge of the ion. In the electrochemical literature, the quantity µ

is often called the "real" or electrochemical potential and intrinsic chemical potential

µ̄ is called the "chemical potential"64. On the other hand, in the theory of liquids, the

situation is reversed: the real chemical potential is called the "chemical potential" and

is denoted as µ, whereas intrinsic chemical potential is usually given a special symbol.

Throughout the thesis, we will be using the latter notation26.
bThe name intrinsic comes from the fact that this is a chemical potential arising purely due to the

interactions within the system, without any contribution from the external field, in this case, φPG.
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Figure 2.1: A schematic drawing demonstrating the dependence of electrostatic
potential on the distance from the water-air interface.

AH(g) A−(g) + H+(g)

AH(aq) A−(aq) + H+(aq)

∆G∗s(AH)

∆Gor,g(AH)

∆Gor,s(AH)

∆G∗s(A
−) ∆G∗s(H

+)

Figure 2.2: Thermodynamic cycle relating solvation free energy of an ion A– to the
solvation free energies of acid AH, its dissociation free energies ∆Go

r in both gas and
solvent, and solvation free energy of the proton. Since free energy of the system is
independent of the path, we have ∆G∗

s(AH) + ∆Go
r,s(AH) = ∆Go

r,g(AH) + ∆G∗
s(A−) +

∆G∗
s(H+), from which ∆G∗

s(A−) can be deduced.

The Galvani potential φPG, and thus µ̄, are experimentally inaccessible quantities. Even

though µ is in principle measurable using certain electrochemical techniques (for example

by measuring absolute electrode potentials of the metal in solvent63,65,66), a commonly

involved approach to measuring chemical potentials (solvation free energies) of ions is

done in a different way. One usually measures a hydration free energy of proton and

then obtains solvation free energies of other ions from appropriate thermodynamic cycles

involving the dissolution of neutral compounds. For example, the solvation free energy

of an ion A– can be obtained from the cycle shown on the figure 2.2. In case an ion B+
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cannot be easily protonated or does not have protons, its solvation free energy can be

deduced from the solvation free energy of the ionic pair AB, where A– is some anion

with a known free energy of transfer.

Note that the sum of solvation free energy of a pair of ions AB is independent of the

phase’s Galvani potential:

µ(A+n) + µ(B−n) = µ̄(A+n) + nφPG + µ̄(B−n)− nφPG

= µ̄(A+n) + µ̄(B−n) = ∆G(AB),
(2.55)

where n is the charge on the ion. Thus, the type (intrinsic or real) of solvation free energy

of the ion is determined by the type of solvation free energy of a proton. A number

of recent articles suggest that the commonly used value for the solvation free energy

of proton in water, 265.9 kcal/mol by Tissandier et al.67, contains a contribution from

surface potential68–70. It follows that hydration free energies of single ions, evaluated

using Tissandier’s value of proton’s hydration free energy, are also "real".

2.8 Applications
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In this section, we will briefly overview the relation of solvation free energy (chemical

potential) to other solution thermodynamic quantities that present interest to chemical

engineers, as well as environmental and life scientists.

The solvation free energy is directly related to Henry’s law. Henry’s law states that the

amount of dissolved gas is proportional to its partial pressure above the solution12. The
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proportionality factor is called the Henry’s law constantH. This constant is used in various

areas of environmental research since it describes the distribution of species between air

and liquid cloud droplets, rivers, wastewaters, as well as other naturally occurring liquid

reservoirs. In the literature, a number of different definitions of Henry’s law exist, with one

of the most common involving dimensionless Henry constant Hcc = c(solution)/c(gas),

where c stands for the molar concentration71. It can be related to Ben-Naim’s solvation

free energy through:

∆G∗ = −RT lnHcc, (2.56)

where R is the universal gas constant. From the previous equation, it follows that solvation

free energy and Henry’s law constant are two different names for the same quantity.

Knowing solvation free energies at different concentrations allows one to compute solute

activities, which are useful for understanding the properties of concentrated solutions.

Assuming finite number density of solute ρu, we can recast expression 2.21 into the

following form12

µ = µo + kT ln ρu + kT ln γD,ρ, (2.57)

where γD,ρ is the activity coefficient and µo is the standard chemical potential. Above

quantities are measured on the number density ρ scale, but can be converted to more

commonly used molar or molal scales12. Relating this equation to our previous results

one finds that

µ∗ρu − µ
∗
0 = ∆G∗ρu −∆G∗0 = kT ln γD,ρ, (2.58)

where subscripts ρu and 0 correspond to finite and infinitely dilute concentrations of

solute respectively.

Finally, solvation free energies can be used for predicting the equilibrium state of reactions

and complex formations in different mediums. Thus, they present a considerable interest

for areas of chemistry, biology, and material science that are concerned with the formation

of various compounds in solutions. Consider the following reaction:

A −−→←−− B. (2.59)

The equilibrium constant K and Gibbs free energy are related as Kig = exp
(
−β∆Gigr

)
,

where superscript ig indicates that reaction takes place in ideal gas phase. To obtain the

equilibrium constant in the liquid phase we construct a thermodynamic cycle similar to
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figure 2.2. Then:

K l = exp
[
−β(∆Gigr −∆G∗A + ∆G∗B)

]
= Kig exp[−β(∆G∗B −∆G∗A)]. (2.60)

Knowledge of solvation free energies allows one to compute reaction equilibria in any

medium from the free energy of the gas phase reaction, which can often be computed

relatively accurately using quantum chemistry based methods or estimated on the basis

of the bond strengths.
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Theory of simple liquids

In this chapter, we overview the main aspects of classical density functional theory. The

focus is on the exact results that can be obtained for simple liquids. Both the derivations

and the structure of the chapter are based on Ref. 26.

3.1 Particle densities and distributions

Condensed matter systems such as liquids and solids are difficult to study. They consist of

a large number of electrons and atomic nuclei interacting with each other in a complicated

manner. To describe such systems one usually has to ignore unimportant degrees of

freedom. For example, when studying molecules at room temperature vibrations of bonds

and angles can be neglected.

A systematic approach towards the reduction of degrees of freedom is called coarse-

graining. The basic idea is to replace values of a rapidly varying observable with its

average value over certain volume72. As a result, we get a continuous and smoothly

varying function that is called an order parameter field.

For the description of liquids, a natural order parameter is an ensemble average of the

instantaneous density ρI(r):

ρ(r) =
〈
ρI(r)

〉
=

〈
N∑
k=1

δ(r− rk)

〉
, (3.1)

28
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where δ(r) is Dirac’s delta function and N here is the total number of atoms in a system.

ρ(r) is usually called a single-particle density distribution, or local density, and it shows

an average density of atoms in the volume element dr. The product ρ(r) dr thus shows

an average number of particles at that position.

A related quantity, called the pair distribution function, describes the correlation between

single-particle densities:

ρ(2)(r1, r2) =

〈
N∑
l=1

N∑
m=1
m 6=l

δ(r1 − rl)δ(r2 − rm)

〉

=
〈
ρI(r1)ρI(r2)

〉
− ρ(r1)δ(r1 − r2).

(3.2)

Note that due to the m 6= l condition, two particles found in positions r1 and r2 must

be different. Thus, ρ(2)(r1, r2) dr1 dr2 can be interpreted as an average number of pairs

formed by particles in volume element dr1 with particles in a volume element dr2 with a

condition that two particles in a pair must be different12.

It is useful to consider integrals of particle distribution functions. Using the property of

the delta function ∫
V
ρ(r) dr = 〈N〉V , (3.3)

where 〈N〉V is the total number of particles in the box V . In homogeneous liquids, local

density should be constant by the definition. It follows that ρ(r) = N/V = ρ. Similarly,

we can take a double integral of pair distribution function to find

∫∫
V
ρ(2)(r1, r2) dr1 dr2 =

〈
N2
〉
V
− 〈N〉V . (3.4)

Then, the volume average of the pair distribution function is

ρ
(2)
avg,V =

〈
N2
〉
V
− 〈N〉V
V 2

= ρ2

(
1− 1

N

)
≈ ρ2. (3.5)

Since in the ideal gas there are no correlations, the value of pair distribution function in

it must be constant throughout the box, or in other words: ρ(2)
id (r1, r2) = ρ

(2)
avg.

In real liquids, as the distance between r1 and r2 increases, the value of the pair distribution

function tends to the ideal limit: ρ(2)(r1, r2)→ ρ(r1)ρ(r2). Hence, it is useful to define a
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Figure 3.1: Radial distribution function of Ar near its boiling point obtained via
molecular dynamics simulations using parameters from Ref. 73.

pair correlation function

g(r1, r2) =
ρ(2)(r1, r2)

ρ(r1)ρ(r2)
, (3.6)

which quantifies deviation of ρ(2)(r1, r2) from its large distance behaviour. In isotropic

liquids, the pair distribution function only depends on the distance between two particles

g(r1, r2) = g(|r1 − r2|) = g(r), with g(r)→ 1 as r →∞. This spherically averaged pair

distribution function is often referred to as the radial distribution function. An example

of this function for argon near boiling point is shown in figure 3.1.

Finally, following Ben-Naim, we also define conditional local density:

ρ(r2/r1) =
ρ(2)(r1, r2)

ρ(r1)
, (3.7)

which shows the local density at r2, given a particle in r1. From equation 3.6 it follows

that g(r1, r2) = ρ(r2/r1)/ρ(r2) for isotropic systems g(r) = ρ(r2/r1)/ρ. These equations

suggest an interpretation of the pair correlation function as a scaled local density of a

system, in which a single particle is fixed at r1 and other particles are moving in its field.

Using this interpretation, we can view both inhomogeneous and homogeneous liquids

under the same framework.
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3.2 Free energy functionals

The basic ideas behind the classical density functional theory of liquids can be illustrated

in the following manner. Suppose we have (in general) an inhomogeneous system of

interacting particles. Such system can be split into small volume elements containing

nj = ∆Vjρj number of particles. As particles are free to move from one compartment

to another, the free energy of each individual volume element is best described using

the grand potential Ωj = Fj − µnj , where µ is the chemical potential, constant in each

compartment. To satisfy grand canonical ensemble condition, the whole system must be

connected to external heat and particle reservoirs.

Assume that there is a spatially varying external potential φj that interacts with particles.

Then, the Helmholtz free energy of each volume component is given by Fj = F ig +Fex +

njφj , where F is an intrinsic Helmholtz free energy and superscripts ig and ex denote

ideal and excess contributions. Taking the derivative of the above expression with respect

to the number of particles in a box, we get:

(
∂Fj
∂nj

)
V,T

= µ = µ̄igj + µ̄exj + φj , (3.8)

where µ̄ stands for the intrinsic chemical potential, familiar from the section 2.7. Notice

that while the total chemical potential µ is constant throughout the system, the quantity

µ̄j = µ̄ig + µ̄exj is spatially varying. Also, since µig = µ̄ig, we will ignore the superscript.

The simple arguments described in the previous two paragraphs can be made formal by

shrinking the volume of each box element to an arbitrarily small value and substituting ρj

with single particle density, introduced in the previous section. The total grand potential

becomes a functional of density26

Ω[ρ] = F [ρ] +

∫
ρ(r)φ(r) dr− µ

∫
ρ(r) dr, (3.9)

with F being an intrinsic free energy functional related to Helmholtz free energy F in

the following way

F [ρ] = F [ρ]−
∫
ρ(r)φ(r) dr. (3.10)

The intrinsic Helmholtz free energy turns out to be a much more useful quantity than

normal Helmholtz free energy for the description of these inhomogeneous systems.
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Similarly to what we had before, F can be split into two parts F = F id + Fex, where

F id is an ideal part, given by

F id = kT

∫
ρ(r)

{
ln
[
Λ3ρ(r)

]
− 1
}
dr. (3.11)

This is the same equation as we found in section 2.2 and Fex is an excess contribution

(relative to an ideal gas). Notice that we dropped an internal partition function q since we

are going to deal with liquids of particles without any internal structure in this section.

While the explicit form of Fex[ρ] is usually unknown, it is possible to compute the change

of Fex relative to some reference system. Similarly to the approach presented in section

2.3, one first splits the pair potential between densities into reference and perturbation

parts:

uλ(r1, r2) = u0(r1, r2) + λu(r1, r2). (3.12)

By gradually increasing the perturbation part of the interaction between particles, we

can find the change in the excess free energy:

Fex[ρ]−Fex[ρ0] =
1

2

1∫
0

dλ

∫∫
ρ(2)(r1, r2;λ)u(r1, r2) dr1r2. (3.13)

The formula above forms the basis for various perturbation theories and simplifications.

Together with n-particle densities, free energy functionals form a useful set of tools to study

liquid systems. The particle densities describe the structure of the liquid, while free energy

functionals incorporate energetic information. A rigorous basis for these ideas, called

density functional theory, is summarised in two results, called Hohenberg–Kohn–Mermin

theorems26,74,75.

The first theorem states that for a given µ, T and V ,the equilibrium density distribution

ρeq(r) is uniquely determined by an external potential φ(r) acting on the system. Thus,

the equilibrium particle distribution ρeq(r;φ) is a unique functional of the external

potential. As a result, it follows that the intrinsic free energy functional F [ρ] is a unique

functional of the single particle density ρ(r).
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The second theorem states that equilibrium density ρeq minimizes the grand potential Ω

for a given external field φ: (
δΩ

δρ(r)

)
ρ=ρeq ,φ

= 0 (3.14)

and

Ω[ρ;φ] ≥ Ω, (3.15)

where equality only applies when ρ(r) = ρeq.

These theorems and density functional theory, in general, can be applied to both quantum

and classical systems. Since its original formulation in the 1960s, the theory has been

mostly applied in many-electron systems76,77, although quite a lot of work has also been

done in the field of classical liquids25,27. The field is too broad to cover completely. Thus,

we will only cover the results associated with 3D-RISM and related theories, leaving more

advanced approaches mostly for future work.

3.3 Functional derivatives and correlations

Particle densities and correlations can be naturally obtained as derivatives of free energy

functionals. This approach provides more insight into their relation with each and

with various system properties. In this section we define a number of useful functions

that can be obtained by differentiating free energy functionals and relate them using

Ornstein-Zernike equation.

We start by rewriting equation 3.9:

Ω[ρ] = F [ρ] +

∫
ρ(r) [φ(r)− µ] dr

= F [ρ]−
∫
ρ(r)µ̄(r) dr.

(3.16)

The intrinsic free energy functional does not explicitly depend on µ̄. It follows then that:

δΩ[ρ]

δµ̄(r)
= −ρ(r), (3.17)

where δ indicates a functional derivative. This equation can also be used as an alternative

definition of a single particle density78.
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After lengthy algebraic manipulations, it is possible to show that the second derivative

of the grand potential with respect to intrinsic chemical potential gives a correlation

between density fluctuations26:

−kT δ2Ω[ρ]

δµ̄(r1)δµ̄(r2)
= χ(r1, r2)

=
〈[
ρI(r1)− ρ(r1)

] [
ρI(r2)− ρ(r2)

]〉
=
〈
ρI(r1)ρI(r2)

〉
− ρ(r1)ρ(r2)

= ρ(2)(r1, r2) + ρ(r1)δ(r2 − r1)− ρ(r1)ρ(r2).

(3.18)

The last equality in the above equation follows from equation 3.2. The function χ(r1, r2)

is called a density-density correlation function. Note that using equation 3.17 we can

rewrite the above functional derivative in a number of different ways that will be useful

in the later chapters

χ(r1, r2) = − δ2βΩ[ρ]

δβµ̄(r1)δβµ̄(r2)
=

δρ(r1)

δβµ̄(r2)
. (3.19)

It is clear that at large separations where r = |r2 − r1| goes to ∞, the fluctuations of

density become independent of one another and χ(r1, r2) should approach 0.

Let us define a total correlation function h(r1, r2), given by

h(r1, r2) =
ρ(2)(r1, r2)− ρ(r1)ρ(r2)

ρ(r1)ρ(r2)
= g(r1, r2)− 1. (3.20)

Then using equations 3.18 and 3.20

χ(r1, r2) = ρ(r1)ρ(r2)h(r1, r2) + ρ(r1)δ(r2 − r1) (3.21)

In the absence of any inter-particle correlations (ideal gas), ρ(2)(r1, r2) ≈ ρ(r2)ρ(r1) for

any two points, and thus h(r1, r2) = 0. The total correlation function contains only

non-ideal (excess) pair correlations.

An alternative family of correlation functions emerges if we take the functional derivatives

of the intrinsic free energy with respect to density. Writing the first derivative we get

δF
δρ(r)

=
δF id

δρ(r)
+
δFex

δρ(r)
= µig(r) + µ̄ex(r). (3.22)
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Figure 3.2: Total correlation function (left) and direct correlation function (right)
of liquid argon near its boiling point. The correlation functions were extracted from

molecular dynamics simulations performed with parameters taken from Ref. 73.

Ignoring the ideal part, we define the derivative of excess free energy as a direct correlation

function:

c(r) = −β δF
ex[ρ]

δρ(r)
= −βµ̄ex(r). (3.23)

The direct correlation function incorporates the effects of many-body interactions within

the system. One can find its relationship with single particle density by considering

derivative of grand potential δΩ
δρ(r) = kT ln

[
Λ3ρ(r)

]
− kTc(r) + φ(r) = 0. Rearranging

the last result we get Λ3ρ(r) = exp [βφ(r) + c(r)], which reveals the direct correlation

function as a type of generalised potential.

Analogously, we can define a two-particle direct correlation function:

c(2)(r1, r2) = −β δ2Fex

δρ(r1)δρ(r2)
=
δc(r1)

δρ(r2)
, (3.24)

which reveals the effect of density change at r2 on the direct correlation function at r1.

The higher order direct correlation functions can be obtained in a similar way.

In isotropic liquids, the total and direct correlation functions depend only on the separation

between particles. Both of them also tend to 0 as r → ∞. An example of a typical

behaviour of these functions for simple liquids is shown in figure 3.2.
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Is it possible to relate the two types of correlation functions we defined above? The

answer is yes. To obtain a meaningful relation, we start by writing down the identity

that follows from the equation 3.1926:

∫
χ(r1, r3)χ−1(r3, r2) dr′ =

∫
δρ(r1)

δβµ̄(r3)

δβµ̄(r3)

δρ(r2)
dr3 = δ(r2 − r1), (3.25)

where χ−1(r1, r2) is the functional inverse of the density-density correlation function.

Using equation 3.22 we can express it via direct correlation function:

χ−1(r1, r2) =
δβµ̄(r1)

δρ(r2)
=
δ ln Λ3ρ(r1)

δρ(r2)
− δc(r1)

δρ(r2)

=
1

Λ3ρ(r1)

δΛ3ρ(r1)

δρ(r2)
− δc(r1)

δρ(r2)

=
1

ρ(r1)
δ(r1 − r2)− c(r1, r2).

(3.26)

Plugging this result back into 3.25 we find:

∫
[ρ(r1)ρ(r3)h(r1, r3) + ρ(r1)δ(r3 − r1)]

[
δ(r3 − r2)

ρ(r3)
− c(r3, r2)

]
dr3

=

∫ [
ρ(r1)h(r1, r3)δ(r3 − r2)− ρ(r1)ρ(r3)h(r1, r3)c(r3, r2)

+
ρ(r1)

ρ(r3)
δ(r3 − r2)δ(r3 − r1)− ρ(r1)δ(r3 − r1)c(r3, r2)

]
dr3

=ρ(r1)h(r1, r2)− ρ(r1)c(r1, r2)−
∫
ρ(r1)ρ(r3)h(r1, r3)c(r3, r2) dr3

+ δ(r2 − r1) = δ(r2 − r1).

(3.27)

Cancelling delta functions and dividing everything by ρ(r1) we get the famous Ornstein-

Zernike relation:

h(r1, r2)− c(r1, r2) =

∫
ρ(r3)h(r1, r3)c(r3, r2) dr3 (3.28)

that will be the topic of next section.
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3.4 Ornstein-Zernike and mixtures

The physical meaning of the Ornstein-Zernike equation can be understood by expressing

the total correlation function in terms of direct correlation functions:

h(r1, r2) = c(r1, r2) +

∫
c(r1, r3)ρ(r3)c(r3, r2) dr3

+

∫∫
c(r1, r3)ρ(r3)c(r3, r4)ρ(r4)c(r4, r2) dr3 dr4 + · · ·

(3.29)

The total correlation of densities (particles) at point 1 and point 2 is given by direct

correlation of densities plus correlation through one intermediate point, two intermediate

points and so on.

For homogeneous and isotropic fluids the equation can be simplified:

h(r) = c(r) + ρ

∫
c(|r′ − r|)h(r′) dr′. (3.30)

We can see that as ρ→ 0, h(r) ≈ c(r), indicating that at low densities the correlation

between particles is purely due to "direct" interactions between them, while as densities

become larger, indirect interactions start playing a greater role.

To simplify equation 3.30 further, we need to use a Fourier transform, which we define in

the next two paragraphs. In this thesis, we will use the following convention of a Fourier

transform F

F {f} (k) = f̂(k) =

∫
f(r) exp(−ik · r) dr, (3.31)

where · stands for dot product. The inverse Fourier transform is given by

F−1
{
f̂
}

(r) = f(r) =
1

(2π)3

∫
f̂(k) exp(ik · r) dk. (3.32)

Generally, f̂(k) is a complex valued function. However, the majority of transforms in

this thesis are going to be performed on spherically symmetric functions for which f̂(k)

is strictly real. Moreover, in that case, the Fourier transform simplifies and we have79:

f̂(k) =
4π

k

∞∫
0

f(r)r sin(kr) dr (3.33)
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Figure 3.3: Fourier transforms of the total correlation function (left) and the direct
correlation function (right) from figure 3.2.

and

f(r) =
1

2πr

∞∫
0

f̂(k)k sin(kr) dk. (3.34)

We will be mostly applying Fourier transforms on convolutions since they simplify

considerably in k-space:

F

{∫
f(r′)g(r− r′) dr

}
(k) = f̂(k)ĝ(k). (3.35)

Coming back to equation 3.30 and taking Fourier transform of both sides we can write

down:

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k). (3.36)

We obtain a simple algebraic equation, from which we can obtain expressions for h(k) or

c(k)

ĥ(k) =
ĉ(k)

1− ρĉ(k)
ĉ(k) =

ĥ(k)

1 + ρĥ(k)
. (3.37)

The above results can be readily extended to mixtures. Consider a system containing n

different types of particles labelled i = 1 . . . n. The average density of a particle of type i

is given by

ρi =
Ni

V
= xiρ, (3.38)
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where Ni is the total number of particles of type i and xi is their mole ratio.

While the definition of single particle density ρi(r) in mixtures remains the same, the

expression for two-particle density ρ(2)
ij (r1, r2) depends on whether i and j are the same

species. If i = j, equation 3.2 still holds, but for i 6= j we no longer have to worry about

the correlation of particle with itself:

ρ
(2)
ij (r1, r2) =

〈
Ni∑
l=1

Nj∑
m=1

δ(r1 − rl)δ(r2 − rm)

〉
=
〈
ρIi (r1)ρIj (r2)

〉
. (3.39)

These two conditions can be summarised in a single equation using the Kronecker delta

δij :

ρ
(2)
ij (r1, r2) = 〈ρIi (r1)ρIj (r2)〉 − δijρ(r1)δ(r1 − r2). (3.40)

Similarly, for the density-density correlation function we have

χij(r1, r2) =
δρi(r1)

δµ̄j(r2)
= hijρi(r1)ρj(rj) + δijδ(r1 − r2)ρi(r1). (3.41)

The multicomponent Ornstein-Zernike equation is similar to its single component version:

hij(r1, r2) = cij(r1, r2) +
n∑

m=1

ρm(r3)cim(r1, r3)hmj(r3, r2) dr3, (3.42)

where n is the number of components in mixture. The main difference is that in the

multicomponent case we have to account for interactions through other types of species.

For a homogeneous mixture we have:

hij(r) = cij(r) +
n∑

m=1

ρkcim(|r1 − r2|)hmj(r2) dr2 (3.43)

in real space, and

hij(k) = cij(k) +

n∑
m=1

ρmcim(k)hmj(k) (3.44)

in Fourier space. Summation over indices suggests a convenient matrix form:

H(k) = C(k) + DC(k)×H(k), (3.45)
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where D is the diagonal matrix of species densities:

D =


ρ1 0 0 . . . 0

0 ρ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ρn

 , (3.46)

and correlation functions are grouped into matrices in which ij-th element describes the

correlation between particles of type i and j: C(k) = [cij(k)], and H(k) = [hij(k)].

3.5 Linear response

In section 2.5 we discussed the linear response in the context of solvation free energy.

The solute-solvent energy depended linearly on the coupling strength. Here we take a

more general and microscopic approach, additionally considering the spatial dependence

of the response.

Consider a uniform liquid exposed to a weak external potential δφ(r) (here we use δ to

indicate that the field is small) that couples to local density in the usual way:

Ωδφ = Ω0 +

∫
δφ(r)ρ(r) dr. (3.47)

For a weak perturbation we would expect that the density response can be described

using the first order Taylor expansion:

δρ(r) =

∫
δρ(r)

δβφ(r′)

∣∣∣∣
φ=0

βδφ(r′) dr′ , (3.48)

where δρ(r1) = ρδφ(r1)− ρ0. The density response is linear, but nonlocal. Notice that

since φ(r) = µ− µ̄(r), we can use equation 3.19 to obtain

− δρ(r1)

δβφ(r2)
=

δρ(r1)

δβµ̄(r2)
= χ(r1, r2)

= ρ(r1)ρ(r2)h(r1, r2) + ρ(r1)δ(r2 − r1),

(3.49)

where the derivatives are assumed to be taken in the unperturbed system with φ = 0.

The above equation shows a connection between a density-density correlation and liquid



Chapter 3. Simple liquids 41

susceptibility to an external field. This result is quite general and is valid for all classical

systems80. Note that in statistical mechanics texts the static susceptibility is typically

defined as χ = β 〈δAδA〉, but in the reference interaction site model (RISM) literature

the above definition is more widespread6,28,81.

For simplicity, in the following, we focus on the response of an isotropic reference system.

In that case liquid susceptibility depends only on the separation between two points

χ(r1, r2) = χ(|r2 − r1|) = χ(r). Applying the convolution theorem (equation 3.35) we get

δ̂ρ(k) = −βχ̂(k)δ̂φ(k), (3.50)

where k = |k|. This is a remarkable result that allows us to calculate the perturbation of

liquid density due to a field with a certain periodicity. Since χ̂(k) = ρ
[
ĥ(k)ρ+ 1

]
, we

can see that response is quite sensitive to the wavenumber, and can be both amplified or

weakened (see figure 3.3).

Equation 3.50 suggests that there is a dual relationship between the density perturbation

and the potential. We can rewrite the previous equation as

βδ̂φ(k) = −χ̂−1(k)δ̂ρ(k) (3.51)

in which the inverse of susceptibility χ−1(k) determines a field created by a periodic

density modulation ∆ρ(k). Similarly, since δφ = −δµ̄ we have

βδ̂µ̄(k) = χ̂−1(k)δ̂ρ(k) (3.52)

that describes the effect of density modulation on the intrinsic chemical potential.

Using equation 3.52 we can express the inverse of susceptibility as a functional derivative

χ−1(|r2 − r1|) = −δβφ(r1)

δρ(r2)
=
δβµ̄(r1)

δρ(r2)

=
1

ρ(r1)
δ(r2 − r1)− c(|r2 − r1|),

(3.53)

where the last equality was obtained using equation 3.26. This result is similar to 3.49,

providing an alternative interpretation of the total and the direct correlation functions as

non-ideal components of the system response to a perturbation. Completing the parallel

between susceptibilities, we express the inverse of susceptibility as a correlation function
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between intrinsic chemical potentials

χ−1(r1, r2) = 〈δβµ̄(r1)δβµ̄(r2)〉 , (3.54)

where, as usual, δµ̄(r) = µ̄δρ(r) − µ̄0. The above expression follows directly from the

fluctuation-dissipation theorem80.

These results can be readily generalised to multicomponent mixtures. The response of

the local density of component i to an external field that couples to densities 1 · · ·N is

given by

δρi(r) =
N∑
j=1

∫
δρj(r)

δβφj(r′)
βδφj(r

′) dr′, (3.55)

or when written in terms of the density-density correlation functions (susceptibilities):

δρi(r) = −β
N∑
j=1

∫
χij(r, r

′)δφj(r
′) dr′. (3.56)

As previously, it is easier to work with vectors and matrices when dealing with mix-

tures. Using vectors δρ(r) = [δρ1(r) · · · δρn(r)], δφ(r) = [δφ1(r) · · · δφn(r)], and matrix:

X(r1, r2) = [χij(r1, r2)] we can rewrite the above equation as:

δρ(r) = −β
∫

X(r, r′)δφ(r′) dr′. (3.57)

Assuming an isotropic system and taking the Fourier transform of all elements of matrices

and vectors, we obtain the extensions of the previous results:

δ̂ρ(k) = −βX̂(k)δ̂φ(k),

βδ̂φ(k) = −X̂
−1

(k)δ̂ρ(k),

βδ̂µ̄(k) = X̂
−1

(k)δ̂ρ(k).

(3.58)

Note that unlike equation 3.51, in which we were dealing with the algebraic inverse

of susceptibility, in the above we have the matrix inverse of the susceptibility matrix.

Similarly to the single component case, these results are valid only for small external

fields δφ and density perturbations δρ.
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3.6 Connection to experiment

The integrals of correlation functions are related to a variety of thermodynamic properties

of liquids and can be used to construct an equation of state. First, let us relate direct

correlation function to the average fluctuations of particles.

For single and pair local densities we have the following normalization conditions∫
V ρ(r) dr = 〈N〉V and

∫∫
V ρ

(2)(r1, r2) dr1 dr2 = 〈N2〉V − 〈N〉V . Combining these two

equations with 3.20 we find that:∫∫
V
h(r1, r2)ρ(r1)ρ(r2) dr1 dr2 =

∫
ρ(2)(r1, r2)− ρ(r1)ρ(r2) dr1 dr2

= 〈N2〉V − 〈N〉2V − 〈N〉V

=
〈
(δN)2

〉
V
− 〈N〉V ,

(3.59)

where δN = N−〈N〉 and
〈
(δN)2

〉
V
is the mean square fluctuation of a number of particles

in volume V . In a translationally invariant medium the particle density is constant and

the direct correlation function depends only on distance r, so
∫∫

ρ(r1)ρ(r2)h(|r2 −

r1|) dr1 dr2 = Nρ
∫
h(r) dr. Rearranging the two previous equations we get:

1 + ρ

∫
h(r) dr =

〈N2〉 − 〈N〉2

〈N〉
= kTρχT , (3.60)

where χT is the isothermal compressibility. The last equality can be proven using

χT = (∂ρ/∂µ)V,T /ρ
2 and the definition of the grand canonical partition function82.

We can also express compressibility using the direct correlation functions. Notice that

since the integral over real space is equal to the value of the Fourier-transformed function

at k = 0:
∫
f(r) dr =

∫
f(r)e−0·r dr = f̂(k = 0), we can write:

kTρχT = 1 + ρĥ(k = 0) =
1

1− ρĉ(k = 0)
, (3.61)

where the last equality follows from equation 3.36.

The above equation provides a connection between the integral of the direct correlation

function and the pressure of liquid83. Using the definition of isothermal compressibility
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Figure 3.4: Comparison of experimental and theoretical structure factors (left) and
radial distribution functions (right) for argon at 85K (close to its boiling point). Experi-
mental data is taken from Ref. 86. Theoretical predictions are obtained using molecular

dynamics, with simulation parameters taken from Ref. 73.

we get ρχT = (∂ρ/∂P )T,V . Plugging this back into equation 3.61 we obtain

(
∂P

∂ρ

)
T,V

= kT [1− ρĉ(k = 0; ρ)] . (3.62)

Finally, integrating between initial and final densities ρ1 and ρ2 we obtain the equation

of state

∆P = kT∆ρ−
ρ2∫
ρ1

[ρĉ(k = 0; ρ)] dρ, (3.63)

where ∆P = P2−P1 and ∆ρ = ρ2−ρ1. Thus, we have related experimentally measurable

changes in pressure to the changes in the integral of the direct correlation function. The

Kirkwood-Buff theory allows us to extend these results to multicomponent mixtures84.

These, more general relationships, have been used for validating both theoretical and

experimental measurements of pressure in mixtures of various liquids85.

Finally, we note that it is possible to measure correlation functions directly using spec-

troscopy26. The idea is to perturb bulk liquid using small-angle neutron or x-ray scattering

(radiation with longer wavelengths is too coarse to probe atomic structure of liquids and

describes more macroscopic properties). The scattering cross section for the wave vector

k is proportional to the liquid structure factor S(k), with the proportionality constant

depending on the experimental set-up86. In the case of simple liquids, the structure factor
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S(k) is related to the total correlation function as:

S(k) = 1 + ρ

∫
h(r)e−ik·r dr = 1 + ρh(k). (3.64)

Notice that the structure factor is directly related to the Fourier transform of susceptibility

S(k) = χ(k)/ρ.

Figure 3.4 shows the argon structure factor and radial distribution functions deduced

from the former using the above equation. The experimental results, taken from Ref. 86,

are compared to the molecular dynamics simulation. Both experimental measurements

and theoretical simulations were performed at 85 K with argon density ρ = 0.021Å−3.

The theory and experiment agree almost precisely, which might be expected, considering

that the Lennard-Jones potential constants used in simulations were fitted to reproduce

the experimental structure factor.
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Theory of molecular liquids

This chapter overviews approximations required to compute the free energy of molecular

liquids in site-site formalism. The 3D-RISM equations and closures are derived in detail

starting from the results from Refs. 81,87. We finish by introducing the main problem of

the thesis.

4.1 Hypernetted-chain approximation

All results in the last chapter were exact. However, they do not provide a tractable way

of computing free energies – to do so one needs to introduce some kind of approximation.

Although a variety of approaches exist26, we are going to consider one of the most basic

approximations, built on the expansion of free energy functional around its equilibrium

value. For clarity, in this section we are going to focus on its derivation from the viewpoint

of simple liquids; the case of molecular liquids is described for example in Ref. 37.

In section 3.2 we obtained the expression for a grand canonical functional:

Ω[ρ] = F [ρ] +

∫
ρ(r)φ(r) dr− µ

∫
ρ(r) dr, (4.1)

46
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where the intrinsic free energy functional was given by

F [ρ] = kT

∫
ρ(r)

{
ln
[
Λ3ρ(r)

]
− 1
}
dr + Fex0 [ρ]

+
1

2

1∫
0

dλ

∫∫
ρ(2)(r, r′;λ)uλ(r, r′) dr dr′.

(4.2)

The coupling constant λ linearly interpolates between initial and final interaction strength

between individual particles:

uλ(r, r′) = u0(r, r′) + λu(r, r′), (4.3)

similarly to how a single particle was slowly coupled to the rest of the system when

computing a chemical potential (see section 2.3).

While the algebraic expression for the functional is relatively straightforward, it turns

out that its application to realistic systems is essentially impossible. Indeed, to do it one

would need to know the dependence of pair density ρ(r, r′;λ) on λ, which is clearly very

non-linear26.

A simpler approach is to take the problematic excess part of free energy functional and

expand it into Taylor series around an isotropic system with density ρ0. This approach is

often referred to as the (functional) density expansion26,27 and it leads to

Fex[ρ] = Fex[ρ0] +

∫
δFex

δρ(r)

∣∣∣∣
ρ=ρ0

∆ρ(r) dr

+
1

2

∫∫
δ2Fex

δρ(r)δρ(r′)

∣∣∣∣
ρ=ρ0

∆ρ(r)∆ρ(r′) dr dr′ + FB[ρ],

(4.4)

where FB contains all higher order terms. Note that we defined partial derivatives of

excess chemical potential in the section 3.3. Rewriting the expression using the definitions

of the direct correlation function we obtain

Fex[ρ] = Fex[ρ0] + µex0

∫
∆ρ(r) dr

− 1

2
kT

∫∫
∆ρ(r)∆ρ(r′)c0(|r′ − r|) dr dr′ + FB[ρ],

(4.5)

where we used the fact that in a homogeneous system c(r) should be constant. Substituting

the above expression back into the intrinsic free energy functional and using µ0 =



Chapter 4. Molecular liquids 48

µex0 + kT ln ρ0Λ3 we get

F [ρ] = kT

∫
ρ(r)

{
ln
[
Λ3ρ(r)

]
− 1
}
dr

+ Fex0 [ρ0] + µ0

∫
∆ρ(r) dr− kT

∫
∆ρ(r) ln ρ0Λ3 dr

− 1

2
kT

∫∫
∆ρ(r)∆ρ(r′)c0(|r′ − r|) dr dr′ + FB[ρ].

(4.6)

Finally, we cancel out the terms containing the de Broglie wavelength and plug the above

expression into equation 4.1 to obtain

Ω[ρ] = Ω0 + kT

∫ [
ρ(r) ln

ρ(r)

ρ0
−∆ρ(r)

]
dr +

∫
ρ(r)φ(r) dr

− 1

2
kT

∫∫
∆ρ(r)c0(|r′ − r|)∆ρ(r′) dr dr′ + FB[ρ].

(4.7)

where Ω0 = kT
∫
ρ0 ln ρ0Λ3 dr + Fex[ρ0] − µ0

∫
ρ0 dr. The five terms in the above

expression correspond to reference, ideal, external, second order, and higher order excess

contributions to the grand canonical functional. As one may guess, the FB[ρ] term,

incorporating all higher order functional derivatives is generally unknown30.

We can find the density distribution ρ(r) which minimizes equation 4.7. To do it, we take

a functional derivative with respect to density

δΩ[ρ]

δρ(r)
= kT ln

ρ(r)

ρ0
+ φ(r)− 1

2
kT

∫
c0(|r′ − r|)∆ρ(r′) dr′

− 1

2
kT

∫
∆ρ(r)c0(|r′ − r|) dr +

δFB[ρ]

δρ(r)
= 0.

(4.8)

It follows that

ρ(r) = ρ0 exp

[
−βφ(r) +

∫
∆ρ(r′)c0(|r′ − r|) dr′ − δFB[ρ]

δρ(r)

]
. (4.9)

This is an integral equation for ρ(r). One way of solving it is to make the following

approximation:
δFB[ρ]

δρ(r)
= B(r) = 0, (4.10)

where in the context of integral equation theories B(r) is referred to as a bridge function.

The above assumption is called the hypernetted-chain (HNC) approximation (the name

comes from the original derivation88, which considered cluster diagrammatic expansion of

the configurational partition function). Extracting c0(r) from an equilibrium simulation,
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Figure 4.1: Liquid argon local density near hard wall. Both singlet HNC calculations
(red line) as well as molecular dynamics simulations (blue line) are performed at standard

pressure and 85 K. The details of the calculations can be found in appendix A.

we can find an equation with a single unknown, which is possible to solve iteratively for a

given external potential φ(r). When combined with c0, the method is often referred to as

the singlet HNC or HNC1 approximation, since both ρ and u depend only on a single

coordinate.

An obvious question to ask is how good such an approximation is? The answer is not too

good. While it can reproduce density oscillations of hard spheres near a wall, when it

comes to liquids with both attractive and repulsive forces, HNC fails quite significantly27.

As a demonstration, consider the results obtained for liquid argon near a hard wall (figure

4.1). While molecular dynamics predicts a slight decrease in density near the wall, caused

by the formation of an interface, HNC predicts oscillations similar to what is observed

for liquids with purely repulsive interactions.

It is not hard to rationalize the failure of HNC to describe the formation of an interface.

Since HNC only retains second order correlations in liquids, it captures its essential

characteristic, namely, the dominant repulsive forces between particles with rather weak

attractive components89. As we shall see, while this does not usually present a problem
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for describing a bulk liquid structure, the formation of interfaces is mostly due to long

ranged attractive potentials which require a more sophisticated description. Additionally,

a hard planar wall creates a huge region of excluded volume. This can hardly justify the

use of a second order Taylor expansion that is valid only for small changes in density.

Before moving on it is useful to relate the singlet HNC approximation to the linear

response approach, discussed in section 3.5. From the equation 4.7 we find

∆FHNC [ρ] = kT

∫ [
ρ(r) ln

ρ(r)

ρ0
−∆ρ(r)

]
dr

− 1

2
kT

∫∫
∆ρ(r)c0(|r′ − r|)∆ρ(r′) dr dr′.

(4.11)

Then the change in chemical potential is given by

∆µ̄(r) =
δF
δρ(r)

= kT ln
ρ(r)

ρ0
− kT

∫
c0(|r− r′)∆ρ(r′) dr′. (4.12)

Contrast this to a linear response change in intrinsic chemical potential obtained via

equation 3.52:

∆µ̄(r) = kT

∫
χ−1(|r− r′|)∆ρ(r′) dr′

= kTh(r)− kT
∫
c0(|r− r′)∆ρ(r′) dr′,

(4.13)

where two terms in the second equality correspond to the local and non-local contributions

to the change in intrinsic chemical potential. We can see that HNC model approximates

the excess part of the chemical potential via the linear response approximation, while the

ideal (local) contribution is exact. From this, it is reasonable to suggest that the singlet

HNC should give somewhat more accurate results than the standard linear response

approach, but they are not going to be significantly different. At the chapter 5 we will

see that this is exactly what happens.

The failure to describe interfaces does not render HNC useless. Notably, it can quite

accurately describe the bulk structure of simple liquids. To do so, we use an idea

by Percus26 and treat equation 4.9 as an expression for the pair correlation function

g(r) = ρ(r)/ρ0 in the homogeneous liquid

g(r) = exp

[
−βu(r) + ρ

∫
h(r′)c(|r − r′|) dr′

]
, (4.14)
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Figure 4.2: Comparison of liquid argon radial distribution functions (left figure) and
direct correlation functions (right figure) predicted by molecular dynamics simulation
(blue lines) and HNC calculation (red lines). For both simulation and theory interactions
between argon atoms was approximated using Lennard-Jones potential from Ref. 73.

where we used ∆ρ(r) = ρh(r) and the external potential takes a meaning of a pair

potential u(r) between particles. Using the Ornstein-Zernike equation (3.30) we obtain

g(r) = exp [−βu(r) + h(r)− c(r)] . (4.15)

When the above two equations are solved simultaneously, they are sometimes referred to as

the pair HNC approximation (HNC2) to distinguish from its singlet form. The resulting

solution gives direct and total correlation functions for isotropic liquids. Note that

whenever we have equations that are solved for correlation functions (such as equations

4.15 and 4.9), we view them as an integral equation approach.

To test the accuracy of the model we apply the above equation to our model system of

liquid argon. Both molecular dynamics simulation and HNC calculations were performed

using the same Lennard-Jones potential and conditions. The results, shown in figure

4.2, demonstrate a surprisingly good agreement between the two. Compared to the hard

wall, a single argon atom creates a much less significant perturbation. Additionally, an

attractive r−6 part of the pair potential prevents any "drying" of the liquid close to the

argon surface, making MD and HNC radial distribution functions quite similar.
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4.2 Molecular liquids

So far, we have dealt only with simple (monoatomic) liquids. This made the discussion

significantly easier and essentially cut the dimensionality of the problem by two. Indeed,

to fully specify the position of a rigid molecule in space, one not only has to keep track of

its spatial location r but also of its orientation, which is typically specified using Euler

angles ω 90. Alternatively, one can keep track of the positions of individual atoms (or

more generally, molecular sites) in the molecules that interact with each other. While this

approach can significantly increase the dimensionality in the case of polyatomic liquids, it

allows us to write down extensions of the equations used to describe simple monoatomic

fluids. In this thesis, we will be mostly using the second approach.

While the interacting sites approach to predicting liquid structure and properties is

relatively old91–93, the first papers in which it was formalised as a part of density

functional theory were written by Chandler, McCoy, and Singer (CMS) only in 198681,87.

This theory provides a basis for various interaction site models such as reference interaction

site model (RISM) or polymer reference interaction site model (PRISM).

In general, we have a mixture of M different molecules containing n1 +n2 + · · ·+nM = N

different sites. For some molecule α, each site has some local density ρiα(r) that couples

to an external field φiα(r). We will use Greek letters α, β, . . . to indicate different

types of molecule in the system, and indices i, j, . . . to specify sites. For simplicity,

we assume that each site in a molecule is unique (thus, water, for example, will have

two distinct hydrogens) and has the same (macroscopic) density as the molecule itself

ρ1α = ρ2α = · · · = ρnαα = ρα.

In CMS theory, we set the chemical potential of molecule α to be equal to the sum of

chemical potentials of its individual sites:

µα =

nα∑
i=1

µiα. (4.16)

This assumption can be regarded as a condition for chemical equilibrium. We also require

all molecules to be rigid. This condition is not very problematic, as different conformations

can be treated as different species.
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The Grand canonical functional for such a system can be written in terms of the site

densities94

Ω[ρ] = F [ρ] +
N∑
i=1

∫
ρi(r)φi(r) dr−

N∑
i=1

∫
µiρi(r) dr

= F [ρ]−
N∑
i=1

∫
ρi(r)µ̄i(r) dr,

(4.17)

where ρ is the vector of all site density distributions and F is the intrinsic free energy

functional for polyatomic liquids. For clarity, we suppressed molecule subscripts.

We can formally separate F from equation 4.17 into an ideal gas part and excess. Even

for a mixture of polyatomic molecules, an ideal gas is still defined to be the uniform

mixture of all particles, with absolutely no correlations present81. Thus, the following

holds

F [ρ] = F id[ρ] + Fex[ρ]

=
N∑
i=1

kT

∫
ρi(r)

{
ln
[
Λ3
i ρi(r)

]
− 1
}
dr + Fex[ρ].

(4.18)

Here, F ex contains corrections not only for non-ideality, but also, for the fact that the

sites belonging to the same molecule are actually bonded.

The intrinsic chemical potentials of each site are obtained by taking the derivative of

grand potential with respect to the site densities:

µ̄i(r) =
δF
δρi(r)

= µidi (r) + µ̄exi (r) = kT ln
[
Λ3
i ρi(r)

]
− kTci(r), (4.19)

where we introduce the direct correlation function in the site formalism, defined as:

ci(r) = −β δF
ex

δρi(r)
. (4.20)

The density distributions of individual sites can be obtained by taking the functional

derivative of the Grand potential

ρi(r) = − δΩ

δµ̄i(r)
. (4.21)
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Similarly to the simple fluid case, the second derivative of grand potential gives (site)

density-(site) density correlation function or site-site susceptibility81:

χij(r1, r2) = − δβΩ

δβµ̄i(r1)δβµ̄j(r2)
=

δρi(r1)

δβµ̄j(r2)
= 〈δρi(r1)δρj(r2)〉 , (4.22)

with δρ(r) = ρI(r)− ρ(r). Repeating manipulations presented in the beginning of section

3.3, we can relate χij(r1, r2) to the pair distribution function ρ(2)
ij (r1, r2):

χij = ρ
(2)
ij (r1, r2) + δijδ(r2 − r1)ρ(r1)− ρi(r1)ρj(r2)

= δijδ(r2 − r1)ρi(r1) + ρi(r1)ρj(r2)Hij(r1, r2),
(4.23)

where Hij = ρ
(2)
ij (r1, r2)/ρi(r1)/ρj(r2)− 1, will be referred to as a whole total correlation

function. Equation 4.23 suggests that Hij should be similar to its simple fluid analogue:

total correlation function hij . However, there is an important difference: while hij

contains only intermolecular correlations between different particles, Hij contains both

inter- and intramolecular correlations.

Similarly to atomic liquids, χij(r1, r2) determines the linear response of a system to a

perturbing external field. Its functional inverse then characterizes fluctuations of chemical

potential (section 3.5) χ−1
ij (r1, r2) = 〈δβµ̄iδβµ̄j〉. We can split the correlations into

ideal/excess parts by defining an analogue of the two-particle direct correlation function,

which we will call the whole site-site direct correlation function Cij 81:

χ−1
ij (|r2 − r1|) =

δβµ̄i(r2)

δρj(r1)
= β

δµidi (r2)

δρj(r1)
+ β

δµ̄exi (r2)

δρj(r1)

=
δijδ(r2 − r1)

ρi
− Cij(r1, r2).

(4.24)

Here again, Cij(r1, r2) is similar to its simple fluid analogue, but in addition to intramolec-

ular also contains intermolecular correlations.

Combining all definitions introduced in this section, we can arrive at an Ornstein-Zernike-

like expression for site-site polyatomic fluids. Let us assume a homogeneous liquid and

write the definition of the functional inverse for the site-site susceptibility95:

N∑
k=1

∫
χik(r1 − r′)χ−1

kj (r′ − r2) dr′ = δijδ(r1 − r2). (4.25)
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In the above equation, the left hand side contains a convolution of two functions. Taking

the Fourier transform of both sides we get
N∑
k=1

χ̂ik(k)χ̂−1
kj (k) = δij , which can be readily

expressed in a matrix form X̂(k)X̂
−1

(k) = I, where X̂ = [χ̂ij(k)] is the N by N matrix

of Fourier transformed site-site susceptibilities and X̂
−1

(k) is its matrix inverse.

Taking Fourier transform of expressions 4.23 and 4.24 we get

χ̂ij(k) = δijρi + ρiρjĤij(k) χ̂−1
ij (k) =

δij
ρi
− Ĉij(k). (4.26)

It follows that the equation 4.25 can be re-written as:

[
DI + DĤ(k)D

] [
D−1I− Ĉ(k)

]
=
[
I + Ĥ(k)D

] [
I− Ĉ(k)D

]
= I. (4.27)

This is a site-site Ornstein-Zernike equation, written in terms of whole correlation

functions96.

Essentially, all equations in this section were definitions, based on few assumptions.

These equations do not offer any insight into how to compute free energies or correlation.

Similarly to the situation with simple liquids, to make any actual predictions we will have

to make some guesses regarding free energy functionals.

4.3 Intramolecular correlation function

There is a special type of correlation that is not present in the case of simple liquids.

These are correlations due to intramolecular bonding. In this section, we will briefly

discuss them and explore their behaviour using the example of water.

Instead of combining all inter- and intramolecular correlations of χij(r1, r2) in a single

term, we can split them into two separate functions:

χij(r1, r2) = ρi(r1)ωij(r1, r2) + ρi(r1)ρj(r2)hij(r1, r2), (4.28)

where ωij(r1, r2) is called the intramolecular correlation function and contains correlations

of a site with itself or with its bonded neighbours. hij(r1, r2) is called the site-site total

correlation function and contains site-site correlations between different molecules.
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For the next couple of paragraphs we return to the full notation of sites and write iα to

indicate site i in the molecule of type α.

Formally, ωiα jβ(r1, r2) is defined via the following expression30:

ωiα jβ(r1, r2) = δiα jβδ(r2 − r1) + δαβ(1− δij)

〈
M∑
α=1

δ(r1 − riα)δ(r2 − rjα)

〉
, (4.29)

where M stands for total number of distinct molecules in the system and riα is the

position of the site i on the molecule α. For isotropic liquid we can simplify this equation

to get

ωiα jβ(r) = δiα jβδ(r) + δαβ(1− δiα jβ)
δ(r − Liα jα)

4πL2
iα jα

, (4.30)

with r = |r2 − r1|, and Liα jα is the distance between sites i and j in a rigid molecule of

type α. The 4πL2
iα jα term in denominator ensures correct normalisation of the function.

In the absence of any intermolecular interactions hij = 0, thus χij(r) = ρjωij(r), or in

matrix notation X(r) = ω(r)D, where ω(r) = [ωij(r)]. Then, from the equation 4.27

we have I − Ĉ(k)D = ω̂−1(k), where ω̂−1(k) is the matrix inverse of ω̂(k) = [ω̂ij(k)].

Conceptually, ω̂−1(k) is the intramolecular part of I − Ĉ(k)D, similarly to how ω̂(k)

contains the intramolecular part of I + Ĥ(k)D96. We can then formally write

I− Ĉ(k)D = ω̂−1(k)− ĉ(k)D, (4.31)

where ĉ(k) = [ĉij(k)] is a matrix of site-site direct correlation function — an intermolecular

part of Cij(r) defined via this equation.

The content of the last couple of paragraphs can be summarised by the following two

equations:

D−1X(r) = δ(r)I + H(r)D = ω(r) + h(r)

X−1(r)D = δ(r)I−C(r)D = ω−1(r)− c(r)D.
(4.32)

This decomposition of correlations allows us to conveniently separate bonding and

intermolecular effects on the liquid structure.
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Figure 4.3: Water intramolecular site-site correlation function (left figure) and its
functional inverse (right figure).

We illustrate the properties of ω(r) for the example of water. The matrix of intermolecular

correlations in this case is given by:

ω(r) =



δ(r) δ(r−LOH)
4πL2

OH

δ(r−LOH)
4πL2

OH

δ(r−LOH)
4πL2

OH
δ(r) δ(r−LHH)

4πL2
HH

δ(r−LOH)
4πL2

OH

δ(r−LHH)
4πL2

HH
δ(r)


. (4.33)

The Fourier transform can be taken analytically and produces:

ω̂(k) =



1 sin(kLOH)
kLOH

sin(kLOH)
kLOH

sin(kLOH)
kLOH

1 sin(kLHH)
kLHH

sin(kLOH)
kLOH

sin(kLHH)
kLHH

1


. (4.34)

In principle, the matrix inverses of the above functions can be written analytically as well,

but they do not have a simple form96–98. Additionally, ω−1(k) is undefined at k → 0.

We can, however, still perform both matrix inversion and inverse Fourier transforms

numerically and define ω−1(k = 0) = lim
k→0

ω−1(k). Figures 4.3 and 4.4 show the behaviour

of all intramolecular correlation functions in both real and momentum spaces. As you

can see, ω−1(r) is similar to −ω(r), although it contains extra components that can be
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Figure 4.4: Fourier transforms of water intramolecular site-site correlation function
(left figure) and its inverse (right figure).

defined by a sum of convolutions of delta functions97. Its sharp spikes at r = LOH and

r = LHH can be rationalised as a strongly favourable interaction which enforces a certain

distance between bonded atoms:

β∆µi ≈ ∆ρj(r)ω
−1
ij (r). (4.35)

In Fourier space intramolecular correlation functions oscillate with a constant frequency

determined by bond distances in the molecule.

4.4 1D-RISM

After long preparations we are now ready to write the site-site Ornstein-Zernike equation

for homogeneous liquid in a more common form

[
ω̂(k) + ĥ(k)D

] [
ω̂−1(k)− ĉ(k)D

]
= I. (4.36)

Opening brackets and rearranging terms results in ĥ(k)Dω̂−1(k) = ω̂(k)ĉ(k)D+ĥ(k)Dĉ(k)D.

Multiplying both by ω̂(k)D−1 from the right side gives us the usual form of the site-site

Ornstein-Zernike equation26

ĥ(k) = ω̂(k)ĉ(k)ω̂(k) + ĥ(k)Dĉ(k)ω̂(k), (4.37)
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where we utilised Dω̂(k)D−1 = ω̂(k). This equation can be re-written in real space to

give

hij(|r1 − r2|) =
N∑
k=1

N∑
l=1

∫∫ [
ωik(|r1 − r′|)ckl(|r′ − r′′|)ωlj(|r′′ − r2|)

+ hlj(|r′′ − r2|)ρlckl(|r′ − r′′|)ωik(|r1 − r′|)
]
dr′ dr′′.

(4.38)

Although quite cumbersome, this is a direct extension of the Ornstein-Zernike equation for

mixtures of simple liquids (3.43), with intramolecular correlation function ω(r) accounting

for additional propagation of interactions through the intramolecular correlations.

To obtain a theory for bulk polyatomic liquids, one has to combine equation 4.38 with

another suitable expression. One possibility is to use an HNC-like closure (eq. 4.15)

hij(r) + 1 = exp [−βuij(r) + hij(r)− cij(r)] , (4.39)

where uij(r) is a site-site interaction potential energy at separation r. One can also

combine site-site Ornstein-Zernike equation with the Percus-Yevick (PY) closure:

hij(r) + 1 = exp [−βuij(r)] [hij(r)− cij(r) + 1] , (4.40)

which is known to be reasonably accurate for hard sphere systems26.

As we saw in the first section of the chapter, for simple liquids, HNC (as well as the

PY closure26,99) can be rationalised from the viewpoint of a density expansion of free

energy. However, the use of these closures for liquids with site-site interactions is harder

to justify. Indeed, the diagrammatic analysis shows that these closures lead to a number

of unphysical interactions26,93,100. Nevertheless, experience has shown that both HNC

and PY approximations tend to produce relatively reasonable results even for molecular

liquids. Usually, PY describes more accurately hard sphere systems, while HNC tends to

be better for liquids interacting via Lennard-Jones and Coulomb potentials26.

For strongly interacting systems, the convergence of HNC closure might become problem-

atic due to the exponent on the right side of 4.39 becoming increasingly significant. This

problem can be addressed by approximating the greater than one part of the exponential
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Figure 4.5: Water oxygen-oxygen radial distribution functions (left figure) and par-
tial structure factors (right figure) from RISM and molecular dynamics at standard

conditions.

function via a Taylor expansion. Defining t∗ij(r) = −βuij(r) +hij(r)− cij(r) we can write

gij(r) =


exp

[
t∗ij(r)

]
if gij(r) ≤ 1

n∑
k=0

1
k! t
∗
ij(r) if gij(r) > 1.

(4.41)

This closure is called a partial series expansion of order n (PSE-n)101. The case n = 1 is

often referred to as Kovalenko-Hirata (KH) closure.

The approach, as we described it, can be successfully applied to liquids interacting only

via short-ranged potentials such as oxygen, nitrogen, bromine,102 or CS2 103. However,

it makes incorrect predictions of an important characteristic of polar molecules: the

dielectric constant. To address this issue, a dielectrically consistent reference interaction

site model (DRISM) has been proposed, in which the dielectric constant becomes a fixed

input parameter104. The correction somewhat redefines the direct correlation function,

but does not change equations 4.39 or 4.41. Thus, to decrease the number of acronyms, we

will be referring to both standard as well as dielectrically consistent theory as 1D-RISM,

but it will be assumed that polar liquids are treated via the DRISM approach.

Since water occupies a central theme in this thesis, it is useful to examine some failures

of RISM theory when it is applied to it. Figure 4.5 demonstrates the site-site radial

distribution functions of SPC/E water (cSPC/E in case of RISM105), obtained at 298 K
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using molecular dynamics (MD) and 1D-RISM with HNC and KH closures. While the

oxygen radial distribution functions look quite similar, the RISM water is radically different

from MD one. A comparison of oxygen partial structure factors SOO(k) = 1 + ρĥOO(k)

shows that neither of the closures can predict the characteristic doublet structure of

the first peak, which has been linked to the tetrahedral structure of water and voids

existing in the actual liquid. Similarly, comparison of coordination numbers (table B.1)

as well oxygen-hydrogen radial distribution functions (figure B.1) points towards a lack

of hydrogen bonding and a much simpler structure of 1D-RISM water when compared to

MD results.

Despite all of the mentioned shortcomings, 1D-RISM is still one of the most useful methods

for quickly predicting susceptibilities χ of molecular liquids. This might come as a bit

surprising, considering all the problems with 1D-RISM we have listed. However, while

1D-RISM fails to describe short order structure of a liquid (k > 1Å−1), it predicts longer

wavelength responses relatively accurately. At the same time, obtaining accurate (and

smooth) descriptions of these regions of correlation functions with MD proves to be quite

problematic due to the very slow convergence. Also, most of the information regarding

the electrostatic response of water is also connected to the small wavenumber part of

the susceptibility. This makes the DRISM model (with its ability to take experimental

dielectric constant as an input parameter) as an arguably better-suited approach for

predicting the low-frequency dielectric response of liquid than conventional MD.

4.5 3D-RISM as a density functional theory

It is not difficult to extend the 1D-RISM model to the situations in which one of the

components is present at infinite dilution6. This way one can apply the theory to model

single molecule solvation. However, within this approach, all correlation functions are

spherically symmetric, which makes applications to large, non-spherical solutes somewhat

problematic.

The three-dimensional reference interaction site model (3D-RISM) provides a clearer

picture of the solvation. The main idea is to treat the solute surrounded by the bulk

solvent as an inhomogeneous system, in which external potential is produced by the solute.
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The distribution of the solvent sites around the solute is determined by minimizing the

total free energy of the system.

The derivation of 3D-RISM proceeds similarly to the derivation of HNC approximation,

except that the Grand potential is substituted with its site-site version (equation 4.17). We

start by writing down a second order expansion of excess intrinsic free energy functional,

defined via equation 4.18:

Fex[ρ] = Fex[ρ0] +
N∑
i=1

∫
δF
δρi(r)

∣∣∣∣
ρ=ρ0

∆ρi(r) dr

+
1

2

N∑
i=1

N∑
j=1

∫∫
δ2F

δρi(r)δρjr′

∣∣∣∣
ρ=ρ0

∆ρi(r)∆ρj(r
′) dr dr′ + FB[ρ],

(4.42)

where ρi is the number density of site i, ρ = [ρ1, ρ2, · · · , ρN ], subscript 0 indicates

reference density, relative to which expansion is being taken, and FB [ρ] collects neglected

terms in the expansion.

Assuming a homogeneous reference state and using definitions of the whole site-site direct

correlation function from equation 4.24, we get

Fex[ρ] = Fex[ρ0] +
N∑
i=1

µ̄exi

∫
∆ρi(r) dr

− kT

2

N∑
i=1

N∑
j=1

∫∫
Cij(|r′ − r|)∆ρi(r)∆ρj(r

′) dr dr′ + FB[ρ].

(4.43)

We write down the full intrinsic free energy functional using equations 4.18, 4.19, and

cancel terms containing the thermal de Broglie wavelength

F [ρ] =
N∑
i=1

kT

∫
ρi(r) ln

ρi(r)

ρi,0
dr + Ω[ρ0] +

N∑
i=1

µi,0

∫
ρ(r) dr

− kT

2

N∑
i=1

N∑
j=1

∫∫
∆ρi(r)Cij(|r′ − r|)∆ρj(r′) dr dr′ + FB[ρ].

(4.44)
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Figure 4.6: Distribution of hydrogens around caffeine, with regions of lower density
coloured in yellowish colour and regions of higher in blue.

Defining the isotropic grand potential as Ω[ρ0] =
∑N

i=1

[
kT
∫
ρi,0 ln ρi,0Λ3

i dr− µi,0
∫
ρi,0 dr

]
+

Fex0 [ρ0] we can obtain an expression for the change of the grand potential

Ω[ρ] = Ω[ρ0] +
N∑
i=1

kT

∫ [
ρi(r) ln

ρi(r)

ρi,0
−∆ρi(r)

]
dr +

N∑
i=1

∫
ρi(r)φi(r) dr

− kT

2

N∑
i=1

N∑
j=1

∫∫
∆ρi(r)Cij(|r′ − r|)∆ρj(r′) dr dr′ + FB[ρ].

(4.45)

As we can see, this expression differs from the density expansion for simple liquids only

via presence of intramolecular correlations, summarised by C.

The free energy change from the expression 4.45 is obtained by minimizing the Ω for a given

external potential. Setting FB[ρ] = const results in a 3D-RISM/HNC approximation,

which we will for simplicity call 3D-RISM.

As one would expect from the second order expansion, 3D-RISM is accurate only for

small density changes and breaks down for the larger one. Unfortunately, placing a solute

into the liquid makes a region of space inaccessible for solvent, making ∆ρ(r) = 0 inside

the solute core. This does count as a significant perturbation and leads to poor solvation

thermodynamics predictions.
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Figure 4.7: Distribution of water oxygens (blue) and hydrogens (red) in a large box
with uO =∞ for z < 20Å. You can see that some hydrogens can be found arbitrarily

far away from the oxygens.

Interestingly, despite its shortcomings, the 3D-RISM model is still capable of producing

relatively reasonable density distributions around small solutes. Figure 4.6 demonstrates

a typical result of a 3D-RISM calculation. You can see a distribution of hydrogen sites

around the caffeine molecule. It is easy to see hydrogen bonds as well as outlines of the

first coordination shell. While it was difficult to compare these results directly to methods

such as molecular dynamics, we believe that qualitative pictures are mostly identical. A

number of studies confirm that for solutes described via Lennard-Jones and electrostatic

potentials 3D-RISM predicts solvent distributions that are in good agreement with both

other computational methods as well as experimental observations, even in the case of

macromolecules106–110.

One of the effects which 3D-RISM fails to account properly for is solvent bonding. Recall

that just as intermolecular correlations, intramolecular correlations are also described

only up to second order. Thus, we expect them to be inaccurate to some extent. On

the figure 4.7 you can see a distribution of water oxygens and hydrogens near a hard

wall, defined only for oxygens via uO(z) = ∞ for z < 20Å and uO(z) = 0 otherwise.

Hydrogens are not restricted by any potential. You can see that the density of hydrogens
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is non-zero at arbitrary distances from oxygen atoms, even though built-in intramolecular

correlation functions ω requires them to be at exactly 1Å from oxygens.

In the previous two sections, we described 1D and 3D-RISM approaches. While quite

similar, it is important to emphasize a major difference between them. In 1D-RISM one

starts with unknown total and direct correlation functions, but the system is assumed

to be homogeneous. It is similar to pair HNC discussed at the beginning of the section.

Within 3D-RISM, the direct correlation functions between solvent molecules are fixed,

and the system density is varied. This approach is closely related to singlet HNC (HNC1).

Note that while HNC1 is capable of describing anisotropic systems, it comes at a cost:

the singlet Ornstein-Zernike approaches lose a power of density in accuracy compared to

pair approximations99.

4.6 3D-RISM as an integral equation theory

We can also treat 3D-RISM as an integral equation approach30. A theoretical background

of this approach can be found in Ref. 79 and Ref. 111. The main idea is to reduce the

6-dimensional Ornstien-Zernike equation90 to get

Dĥ(k) = X̂(k)ĉ(k), (4.46)

where ĥ(k) is the vector of solute-solvent total correlation functions (∆ρi = hiρi), and

ĉ(k) = [ĉ1, ĉ2, · · · , ĉN ] is the vector of solute-solvent direct correlation functions. The

above expression is typically called the solute-solvent Ornstein-Zernike equation and

assumes that the solute is present at infinitely low concentration. Similarly to 1D-RISM

or HNC theories, this equation needs to be supplemented with a proper closure.

Although one often introduces closures to the above equation by modifying analogous

closures from simple liquid theories, we can formally derive a HNC-like closure starting

from 3D-RISM free energy functional (equation 4.45). Recall the equilibrium condition

in grand canonical ensemble δΩ/δρ[r] = 0. Applying it to the 3D-RISM/HNC functional,

we get:
Ω[ρ]

ρi(r)
= 0 = ln gi(r) + βφi(r)−

N∑
j=1

∫
∆ρj(r

′)Cji(|r′ − r|) dr′. (4.47)
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Rearranging this expression we get an integral equation for density distributions of solvent

sites:

ρi(r) = ρi,0 exp

−βφi(r) +
N∑
j=1

∫
∆ρj(r

′)Cji(|r′ − r|) dr′
 . (4.48)

We use equation 4.24 to simplify the above and get

gi(r) = exp

−βφi(r) +

N∑
j=1

∫
∆ρj(r

′)

[
δijδ(|r′ − r|)

ρi
− χ−1

ji (|r′ − r|)
]
dr′

 . (4.49)

Integrating the δ function we obtain

gi(r) = exp

−βφi(r) + hi(r)−
N∑
j=1

∫
∆ρj(r

′)χ−1
ji (|r′ − r|) dr′

 , (4.50)

which, with the aid of 4.46, is transformed into

gi(r) = exp [−βφi(r) + hi(r)− ci(r)] , (4.51)

a 3D-RISM equivalent of HNC closure.

For strongly attractive potentials, the 3D-RISM/HNC system of equations can be quite

difficult to converge. Similarly to 1D-RISM theory, we can introduce a partial series

expansion of order n (PSE-n) of HNC equation101. Defining t∗i (r) = −βui(r)+hi(r)−ci(r)

we write

gi(r) =


exp [t∗i (r)] if gi(r) ≤ 1

n∑
k=0

1
k! t
∗
i (r) if gi(r) > 1.

(4.52)

In practice combining the PSE-3 closure and equation 4.46 is the fastest and the most

robust way to minimise the 3D-RISM/HNC functional.

3D-RISM equations, written in terms of the solute-solvent correlation functions, are often

referred to as an integral equation theory or a molecular theory of liquids. Using this

form, one can also write a somewhat simpler expression for the solvation free energy using

thermodynamic integration (equation 2.26). In the case of 3D-RISM/HNC one arrives

at30

∆ΩHNC = kT

N∑
i=1

ρi

∫ [
1

2
h2
i (r)− 1

2
hi(r)ci(r)− ci(r)

]
. (4.53)
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Figure 4.8: Solvation free energies of Lennard-Jones solutes with σ given on x axis
and ε = 4 kcal/mol. On y axis you can see the difference in free energies by PSE-n and

HNC closures.

To verify that this expression is consistent with the 3D-RISM/HNC functional one needs

to substitute ln gi(r) = −βφ(r) + hi(r) − ci(r) into equation 4.45. Applying the same

approach to PSE-n closure, one obtains101

∆ΩPSE−n = ∆ΩHNC − kT
N∑
i=1

ρi

∫ {
Θ [hi(r)]

t∗i (r)n+1

(n+ 1)!

}
dr, (4.54)

where Θ is a Heaviside step function:

Θ(x) =


0 if x < 0

1 if x ≥ 0.

(4.55)

On figure 4.8 you can see how the differences in free energies computed by PSE-n and

HNC closures depend on the solute size. The system is water with Lennard-Jones solutes

of different radii and ε = 4 kcal/mol. These results should not be generalised, as the

precise magnitude of the disparity between closures depends on the type of solute and

their size. However, in general, the differences between free energy changes from PSE-n

closures and HNC becomes small quite fast, especially for n ≥ 3.
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For this thesis, the majority of calculations with realistic and larger solvents was done

with the PSE-3 closure to avoid convergence issues, while calculations on model solutes

were mostly done with HNC. However, it will be assumed that the conclusions which will

be drawn for PSE-3, also hold for HNC and vice versa.

4.7 Partial molar volume

Partial molar volume is defined as a change in system’s volume upon addition of an i-th

component at constant pressure6:

V̄i =

(
∂V

∂Ni

)
P,T,Nj 6=i

=

(
∂µi
∂P

)
P,T,Nj 6=i

, (4.56)

where the second equality was obtained using Maxwell’s relation45. Usually, the partial

molar volume is discussed as a part of solvation thermodynamics, but due to its relation

to integral equation theories, we decided to present it here.

Similarly to other thermodynamic quantities, it can be split into ideal and excess contri-

butions. Using equation 2.23 we get:

V̄i =
∂µexi
∂P

+
∂µigi
∂P

=
∂µexi
∂P

+ kT
ln ρ

∂P

= ∆Vi + kTχT ,

(4.57)

where the last equality was obtained using equation 3.60, and ∆Vi stands for the excess

part of partial molar volume. Thus, kTχT is the molecule volume arising due to its

kinetic energy, while ∆Vi depends purely on intramolecular interactions12.

The excess volume of a solute ∆V in a single-component solvent can be expressed through

a total correlation function12,112:

∆V = −
∫

[g(r)− 1] dr = −
∫
h(r) dr. (4.58)

This relation can be readily interpreted for a solute that has h(r) = −1 for points inside

the solute and h(r) = 1 for other regions of space. To obtain a more general interpretation

we need to introduce the concept of the Gibbs dividing surface.
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Figure 4.9: A schematic depiction of Gibbs dividing surface for the case of planar
interface. The surface, shown as a dashed line divides solvent local density (blue line) in
such way that excess of solvent to the left of the surface (region shaded in red) is equal

to the depletion of solvent to the right of the surface (region shaded in green).

The Gibbs dividing surface is a two-dimensional boundary, dividing an interface in such

a way that the excess of solvent in one phase is equal to its depletion from another (see

figure 4.9)113,114. For a spherical solute we can express it as

4π

RG∫
0

g(r)r2 dr + 4π

∞∫
RG

[g(r)− 1] r2 dr = 0, (4.59)

where RG is a radius of the Gibbs dividing surface. Adding the above equation to equation

4.58 we find:

∆V = −4π

∞∫
0

[g(r)− 1] r2 dr + 4π

RG∫
0

g(r)r2 dr + 4π

∞∫
RG

[g(r)− 1] r2 dr

= −4π

RG∫
0

[g(r)− 1] r2 dr + 4π

RG∫
0

g(r)r2 dr

= 4π

RG∫
0

r2 dr =
4

3
πR3

G.

(4.60)

Thus, for a spheric solute, excess volume is equal to the volume enclosed by the Gibbs

dividing surface. This result also holds for a solute with an arbitrary shape113. It gives

us a convenient way to define both volume and surface of a solute that are consistent

with each other.
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For a multi-component solvent, solute partial molar volume becomes dependent on the

solvent component molar volumes. For instance, in the case of a two-component solvent

we have V̄s = −ρAV̄AGsA − ρBV̄BGsB, where G represents the Kirkwood-Buff integral

Ḡij =
∫
hij(r) dr. A simpler expression can be obtained using direct correlation functions

V̄s = kTχT

[
1− ρ

N∑
i=1

∫
ci(r) dr

]
, (4.61)

with excess volume defined by

∆Vs = −kTχTρ
N∑
i=1

∫
ci(r) dr. (4.62)

Partial molar volumes in this thesis were computed using the above equations.

4.8 Solvation free energy from 3D-RISM

Chemical potential (or solvation free energy) of a solute can be expressed as a change in

the grand potential of a solvent due to the presence of a single molecule94:

µex = ∆F = Ω[ρ]− Ω[ρ0], (4.63)

where we will reserve the symbol ∆F to specifically denote solvation free energy in

Ben-Naim’s definition whenever we do not have to worry regarding the ensemble in which

the process takes place. As was already discussed in section 2.8, the ability to accurately

predict solvation free energies has much practical value. A major practical advantage of

3D-RISM models, when compared to molecular dynamics, comes from the possibility to

obtain free energy changes from a single (or a couple of) end-point calculation, without

the need to perform a thermodynamic integration. It is not surprising that much effort has

been put into predicting solvation free energies by interaction site models. An overview

of all proposed models is beyond the scope of the thesis; besides, a number of excellent

articles have been published on this subject6,115–117. Here we will only discuss a few

corrections related to 3D-RISM.

Molecular dynamics simulations provide a straightforward way for evaluating the accuracy

of 3D-RISM free energy functionals. A comparison of the results with experiment
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Figure 4.10: Comparison of molecular dynamics and PSE-3 Lennard-Jones components
of hydration free energies (left figure) and electrostatic components (right figure) for 504
molecules from Mobley dataset, which is discussed in detail in section 6.1. Molecular

dynamics results are taken from Ref. 13. All values are in kcal/mol

provides a somewhat less clear picture since, in addition to errors arising from 3D-RISM

approximations, one has to take into account the accuracy of the potentials, the validity

of the classical approximation, experimental errors, etc. On the other hand, a comparison

of 3D-RISM solvation free energies with those from molecular dynamics allows us to

directly assess the accuracy of 3D-RISM free energy expression, provided that the same

potentials are used.

We have already discussed (section 2.6) that it is possible to split solvation free energy

into Lennard-Jones and electrostatic contributions formally. To do so within 3D-RISM

theory, we simply compute solvation free energies of a molecule with and without partial

charges on atomic sites. Figure 4.10 demonstrates that while electrostatic components of

free energy predicted by 3D-RISM are relatively accurate, the Lennard-Jones components

practically do not correlate with molecular dynamics.

Recently, some studies have demonstrated that it is possible to significantly improve the

accuracy of 3D-RISM solvation free energies using corrections of the form:

∆FUC = ∆F3D−RISM + aV̄ + b, (4.64)

where UC stands for universal correction, a and b are empirical coefficients that depend

on the solvent and closure, and ∆F3D−RISM is the 3D-RISM free energy, most typically
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computed with KH closure31,35,116. Another correction, called NgB, was developed

specifically for water35

∆FNgB = ∆FKH +
kTρO

2
(1− γ)

∫
Vin

cLJO (r) dr, (4.65)

where ρO is the density of oxygen sites in water, γ is an empircial coefficient, cLJO is the

direct correlation function for water oxygens, evaluated without the solute charges, and

Vin is the volume inside the solute, defined via the solute-solvent potential energy.

Both of the corrections introduced above significantly improve the accuracy of 3D-RISM

solvation free energies (B.2). However, these corrections were introduced empirically

and did not suggest reasons why they might be effective or how empirical coefficients

might depend on the solvent or thermodynamic conditions. In the next chapter, we will

introduce correction schemes that do not require prior parametrization and can be applied

to a much larger variety of systems.
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Chapter 5

Pressure corrections

The chapter is dedicated to the main theoretical results of the thesis. We first show how

the HNC functional can be conveniently split into a couple of contributions. Identifying

the overestimated component we eliminate it, introducing simple and advanced pressure

corrections. The remaining sections are dedicated to discussing pressure corrected models

in the context of water solvation. We are using simple model solutes to focus on physical

insights instead of the individual peculiarities of realistic molecules.

5.1 Dissecting HNC free energies

For clarity we introduce the following notation a

〈f |g〉 =
N∑
i=1

∫
fi(r)gi(r) dr,

〈f |K|g〉 =

N∑
i=1

N∑
j=1

∫∫
fi(r)Kij(r, r

′)gj(r
′) dr dr′

(5.1)

where f and g are vectors of functions containing N elements, and K is an N by N

matrix of functions, also referred to as kernel.

Using the above notation we can rewrite the 3D-RISM/HNC functional (equation 4.45)

as:

β∆Ω[ρ] = 〈ρ|ln g〉 − 〈∆ρ|1〉+ 〈ρ|βu〉 − 1

2
〈∆ρ|C|∆ρ〉 (5.2)

aA similar notation can be found, for example, in Ref. 118.

74
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where 1 represents a vector of functions equal to 1 everywhere and ln g = [ln g1(r) · · · ln gN (r)].

To simplify this expression we also rewrite the condition for equilibrium 4.47: ln g +βφ =

〈C|∆ρ〉. Plugging this into the equation 5.2 we obtain the change of grand potential at

the equilibrium

β∆Ω[ρ] = 〈ρ|ln g + βu〉 − 〈∆ρ|1〉 − 1

2
〈∆ρ|C|∆ρ〉

= 〈ρ| 〈C|∆ρ〉 − 〈∆ρ|1〉 − 1

2
〈∆ρ|C|∆ρ〉

=
1

2
〈ρ|C|∆ρ〉+

1

2
〈ρ0|C|∆ρ〉 − 〈∆ρ|1〉

=
1

2
〈ρ|C|ρ〉 − 〈ρ|1〉 − 1

2
〈ρ0|C|ρ0〉+ 〈ρ0|1〉 ,

(5.3)

where ρ0 is the vector of the site densities in the reference system.

To interpret the above results we recall that Ω = −PV . To connect the integrals of the

correlation functions to the pressure, we can use the compressibility theorem, introduced

in the section 3.6. Cummings and Stell have derived its extension for the interaction site

fluids96

β
∂P

∂ρ
=

N∑
i=1

N∑
j=1

xi

[
δij − ρjĈij(0)

]
, (5.4)

where ρi = xiρ. After a bit of algebra we can recast this result in the matrix form

β

(
∂P

∂ρ

)
V,T

= ρxT
[
D−1 − Ĉ(0)

]
x = 1− ρxT Ĉ(0)x, (5.5)

where x = [x1 · · ·xN ] is the vector of the mole fractions of the sites and superscript T

denotes a transpose. To obtain the pressure we need to integrate the above expression.

In general, it is not possible to do it in a straightforward manner, since C depends

on the density of the system. However, within the HNC approximation we assume

direct correlation functions to be constant (the same as in the reference system), so the

integration can be performed analytically from ρ = 0 to ρ = ρ0 =
∑N

i=1 ρi0 to produce

βP0 =

N∑
i=1

ρi0 −
1

2
ρ0

TC(k = 0)ρ0, (5.6)
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where P0 indicates the pressure (free energy density) of a homogeneous system. The

grand potential is then

βΩ0 = −βP0V = −〈ρ0|1〉+
1

2
〈ρ0|C|ρ0〉

= −V
∑
i

ρi +
V

2

∑
ij

ρiρjĈij(0).
(5.7)

Note that an identical expression for homogeneous pressure in 3D-RISM was obtained by

Sergiievskyi et al.38 as well as by a number of others for singlet HNC in general99,119,120.

To find the pressure in the case of an inhomogeneous system we can use the exact result

obtained by Pozhar et al.121

P (r; ρ) = ρ(r)

[
µ̄(r; ρ)−

∫ 1

0
dλµ̄(r;λρ)

]
, (5.8)

where µ̄(r; ρ) is the intrinsic chemical potential at r and the λ parameter controls density

ρλ(r) = λρ(r). The result can be readily extended to multicomponent systems

P (r;ρ) = ρ(r) ·
[
µ̄(r;ρ)−

∫ 1

0
dλµ̄(r;λρ)

]
, (5.9)

in which scalars µ and ρ are substituted by vector analogues. Within the HNC approxi-

mation

µ̄i = kT ln Λ3
i ρi(r) + µ̄exi0 (r)− kT 〈Ci0|∆ρ〉i , (5.10)

where subscript 0 indicates that both excess quantities were evaluated at some reference

system. Then, using 〈Ci0|∆ρ〉 = 〈Ci0|ρ〉 − 〈Ci0|ρ0〉 and taking the integral, we get

P (r;ρ) =
N∑
i=1

ρi(r)
[
kT ln Λ3

i ρi(r) + µ̄exi0 (r)− kT 〈Ci0|∆ρ〉

−kT ln Λ3
i ρi(r) + kT − µ̄exi0 (r) +

kT

2
〈Ci0|ρ〉 − kT 〈Ci0|ρ0〉

]
= kT

N∑
i=1

ρi(r)

[
1− 1

2
〈Ci0|ρ〉

]
.

(5.11)

It follows that for an inhomogeneous system:

βΩ[ρ] = −β
∫
P (r;ρ) dr = −〈ρ|1〉+

1

2
〈ρ|C|ρ〉 , (5.12)

where we dropped the subscript from C for consistency with previous results.
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The findings of the past couple of paragraphs highlight that the HNC free energy

corresponds to nothing else but ∆ΩHNC = −∆PV , which perhaps is not very surprising.

However, these results at least point out that the theory is internally consistent. Moreover,

they readily highlight the problems with the approximation; indeed, using equation 5.6

one readily finds that liquid water at room temperature and normal density has a pressure

of about 9500 bar, almost 9500 times larger than normal b. It is apparent that a single

set of direct correlation functions evaluated for a bulk system cannot be used to describe

regions with low (or high) liquid density (compared to the reference system), which is

precisely what HNC does.

Note that the final result in equation 5.3 can be also expressed as

β∆Ω[ρ] = ∆N +
1

2

∑
ij

∫∫
Cij(|r1 − r2|) [ρi(r)ρj(r)− ρi0ρj0] dr1r2, (5.13)

where ∆N =
∑N

i=1 ∆ρi(r) dr. We can obtain the same result from equation 24 in reference

94, by setting FB = const and using equation 4.32 to relate the whole and site-site direct

correlation functions. We can see that 3D-RISM/HNC is essentially identical to the site

density functional theory of Jianzhong Wu and coworkers, provided that one sets the

bridge function to zero24,94,122,123.

Instead of expressing solvation free energy purely using the bulk solvent direct correlation

functions, we can also split it into somewhat more familiar terms. Utilizing the HNC

equilibrium condition 4.47 and the third equality in equation 5.3, we find

β∆Ω[ρ] =
1

2
〈ρ|ln g + βu〉+

1

2
〈ρ0|C|∆ρ〉 − 〈∆ρ|1〉 . (5.14)

To simplify the expression further we note that

∫∫
f(x− x′)g(x′) dx′ dx =

∫
g(x′)

[∫
f(x− x′) dx

]
dx′ =

∫
g(x′) dx′

∫
f(y) dy,

(5.15)

which follows from the Fubini–Tonelli theorem124. Using this result we can rewrite the

second term as

∑
ij

ρ0i

∫∫
Cij(|r− r′|)∆ρj(r′) dr′ dr =

∑
ij

ρiρjĈij(0)Gj , (5.16)

bThe results are evaluated using experimentally measured water radial distribution functions, reported
by Soper et al.
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where we used the definition of Kirkwood-Buff integral Gj =
∫
hj(r) dr12. For multicom-

ponent solvent we obtain

∆Ω =
kT

2
〈ρ|ln g + βu〉 − kT

N∑
i=1

ρiGi

1− 1

2

N∑
j=1

ρjĈij(0)

 . (5.17)

If solvent is a single component liquid with density ρ0 and N sites, Gj = Gi = −∆V and

the expression can be simplified further

∆Ω =
kT

2
〈ρ|ln g + βu〉+Nρ0kT∆V − kTρ2

0

2
∆V

∑
ij

Ĉij(0)

=
kT

2
〈ρ|ln g + βu〉+ P0∆V.

(5.18)

In the above equation one can readily identify entropic, enthalpic, and pressure terms,

contributing to the total solvation free energy. However, it is important to note that since

we are dealing with the grand potential, P0∆V does not represent the familiar expansion

work for the NPT system. The origin of this term is effectively entropic in nature.

Two above equations (5.17 and 5.18) are one of the main results of the thesis and can

be readily used to both understand the failures of 3D-RISM theory and to formulate

reasonable approximations.

5.2 Hydrophobic solvation

The hydrophobic effect is traditionally associated with (a) unusually high solvation free

energies of apolar molecules in water, usually several kilocalories compared to organic

solvents and (b) the tendency of apolar compounds in water to aggregate to minimize

their surface area125,126. Additionally, several other properties became associated with it

such as negative solvation entropy, large system heat capacity increases upon solvation,

and entropy convergence at higher temperature126,127.

Here we focus on idealised situation in which our solutes are hard spheres with interaction

given by

uhard−O(r) =


∞ if r < σhard−O

0 otherwise.
(5.19)
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Then solvation is determined entirely by entropical and pressure effects. This makes

hydrophobic solvation an ideal example using which we can better understand the problems

of the 3D-RISM model.

Interestingly, a lot of insight into the failures of 3D-RISM model can be obtained by

examining a significantly simpler model of hydrophobic solvation, called information

theory (IT)128,129. Let us define PV (N), a probability that N water molecules can be

found in volume v. We assume that water fluctuations can be described by Gaussian

distribution

Pv(N) ≈ 1√
2πσv

exp

[
−(N − 〈N〉v)2

2σv

]
, (5.20)

with 〈N〉v = ρv being an average number of particles, and σv =
〈
(δN)2

〉
v
a mean square

fluctuation in volume v.

The probability of hard sphere solvation is equivalent to water molecules fluctuating and

creating a large enough cavity for the sphere to fit. Then, using ∆F = −kT lnPv(0) we

obtain

∆FIT = kT

[
ρ2v2

2σv
+

1

2
ln(2πσv)

]
. (5.21)

Associating the position of water molecules only with the locations of oxygens, we obtain

σv from the equation 3.59:

σv =

∫∫
v
hOO(|r1 − r2|) dr1 dr2 + ρv. (5.22)

From the same equation it follows that at the limit of v →∞, mean square fluctuations

are linked to isothermal compressibility lim
v→∞

σv = kTρ2vχT giving

∆FIT =
v

2χT
+
kT

2
ln
(
2πkTρ2vχT

)
. (5.23)
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Figure 5.1: Dependence of surface energy of hard spheres in water depending on their
radius. Monte Carlo (MC) results are taken from Ref. 131.

The corresponding expression for hard sphere hydration free energy in 3D-RISM is quite

similar:

∆FHNC =
kT

2
〈ρ|ln g〉 − kT 〈∆ρ|1〉+

kT

2
〈ρ0|C|∆ρ〉

=
kT

2
〈ρ|ln g〉 − kT

2
〈∆ρ|1〉 − kT

2
〈ρ0|X−1|∆ρ〉

=
kT

2
〈ρ|ln g〉+ ∆V

(
kT

2
ρ0 +

1

2χT

)
,

=
kT

2
〈ρ|ln g〉+ P0∆V,

(5.24)

where to obtain the first equality we used equation 4.26, and the second followed from

the result by Imai et al.130 ρ0T X̂−1(0)ρ0 = 1
kTχT

and equation 5.16. You can see

that while additional terms are different in two models, essentially both models suggest

that hydrophobic solvation free energy scales proportionally to the volume of the solute.

Additionally, in 3D-RISM the proportionality constant is simply the pressure of bulk

liquid (equation 5.18), which using the above results can be conveniently expressed for a

single component liquids as P0 = 1
2 (kTρ0 + 1/χT ).

The figure 5.1 shows predictions of the change of solvation free energy per unit area

depending on the hard sphere radius, made by three different models. In principle, as
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hard solute radius r gets larger and larger ∆Ω/(4πr2)→ Pr
3 + γ, where γ is the surface

tension between hard solute and solvent. Thus, these type of figure allows us to evaluate

both pressure and surface tension within the model.

The results of information theory agree well with Monte-Carlo simulations for small

solutes (r < 4Å), but become progressively worse for larger solutes. The 3D-RISM/HNC

approach consistently predict surface energy values larger than the two models, but shows

trends which are quite similar to information theory.

Monte-Carlo predictions provide a good insight on hydrophobic phenomena. Before

diameter of a hard sphere reaches 1 nm, its solvation free energy scales with the volume

of the sphere, while afterwards, with its surface area. The reason for this behaviour has

been rationalised by Chandler, Weeks and co-workers in a number of important papers

on the hydrophobic effect131–136.

The hydration free energy of small molecules largely depends on the strength of hydrogen

bonding. Bulk water forms a strong tetrahedral network, which, despite being quite

dynamic, rarely breaks down substantially to form solute cavities. Whenever, cavities

do occur, water tries to maintain its bonding network if possible; thus the structure of

solvent around small cavities is quite similar to that of bulk water. This is the reason

why approaches such as information theory are able to accurately describe solvation free

energy for small molecules using mean square fluctuations obtained without the presence

of a solute.

Near larger solutes, which resemble planar interfaces, the water surface layer undergoes

substantial reorganization. The bulk-like hydrogen bonding network is substituted with

an interfacial structure similar to water-air interface. The molecules are oriented with

O-H bonds towards the solute and the density of water right next to the solute is lower

than that found in the bulk. The decrease of density occurs due to the force imbalance:

the interfacial water molecules do not experience a lot of attraction towards hydrophobic

solute, but are strongly drawn in by the bulk water. These rearrangements help decrease

the free energy of hydrophobic solvation, making the creation of larger cavities much

more probable than what one would expect from simple Gaussian behaviour.

The dewetting transition is missed by both IT and 3D-RISM. The hydrophobic effect in

these models occurs due to the linear increase of water chemical potential as a consequence
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of solute excluded volume, and they cannot capture its more subtle details.

5.3 Pressure corrections for solvation free energy

As we saw in the previous section, 3D-RISM largely overestimates bulk solvent pressure

(predicting water at normal conditions to have pressure of about 9500 bar). The high

pressure arises because of the truncation of the free energy expansion at the second

term. The dominant forces in water at equilibrium are mostly repulsive, with attractive

forces being generally canceled out. We expect a low order expansion to capture general

trends, which are repulsive, and to neglect more subtle attraction interactions, which

are described by triplet and higher order correlation functions. This neglect becomes

especially problematic when describing interfaces, which are dominated by collective, long

distance interactions.

Notably, the large compressibility pressure of 3D-RISM (evaluated using 5.6) is quite

consistent with the behaviour of radial distribution functions. The contact theorem26,138

tells us that in the limit of an infinitely large hard sphere, bulk pressure is related to the

value of solvent density right next to the hard sphere

P0 = ρkTg(R), (5.25)

where g(R) is the value of oxygen radial distribution function at the surface of the hard

sphere. Thus, at standard conditions, the 3D-RISM contact value of the oxygen radial

distribution function with a hard sphere should approach P0/(ρkT ) = 7.2. From figure

5.2 we can see the contact value approaches 6, which is close to what is predicted using

compressibility route pressure (although, it is known that singlet HNC only satisfies the

contact value theorem at low densities120). Additionally, the shape of the 1D-RISM

partial oxygen structure factor, shown in figure 4.5 resembles experimentally observed

structure factors for bulk water at P = 4000 bar139.

In view of the above, it is reasonable to try to correct 3D-RISM by subtracting the

overestimated pressure work

∆FPC = ∆F3D−RISM − P0∆V, (5.26)
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Figure 5.2: Both figures demonstrates hard sphere–water oxygen radial distribution
functions for spheres of various radii. Figure (a) is taken from Ref. 137 and was obtained
using Monte Carlo simulations. Radial distribution functions in figure (b) were calculated

using 3D-RISM/HNC.

where P0 is the 3D-RISM bulk pressure, ∆V is the excess volume of solvent, and PC

stands for pressure correction.

We also introduce another way of correcting 3D-RISM results:

∆FPC+ = ∆F3D−RISM − P0∆V + Pid∆V, (5.27)

where Pid = ρidkT is an ideal gas pressure with ρid =
∑M

α=1 ρα being the number

density of solvent molecules, not sites. We call this equation the advanced pressure
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Figure 5.3: This figure mirrors figure 5.1, except now instead of information theory
and HNC we compare results by PC and PC+ models.

correction (PC+), and this is one of the main results of the thesis c. For single component

solutions both corrections can be conveniently defined as ∆FPC = kT
2 〈ρ|ln g〉+ 1

2 〈ρ|u〉

and ∆FPC+ = kT
2 〈ρ|ln g〉+ 1

2 〈ρ|u〉+ Pid∆V .

Figure 5.3 demonstrates the scaling of hydration free energies from PC and PC+ correc-

tions. As can be seen, the 〈ρ|ln g〉 /2 term in the PC correction scales with solute surface

area and defines its surface tension. Notice that PC+ effectively sets liquid pressure

to its ideal value, which for liquid water at ambient conditions is Pid = 1372 bar. It is

quite a bit larger than the pressure of water at standard conditions and leads to the

overestimation of solvation free energy for larger volumes. However, the approach, at

least for hard spheres, is relatively accurate up to R ≈ 1 nm. This is twice the size of

fullerene C60 and covers much of the domain of conventional pharmaceutical, analytic

and organic chemistries.

Since the beginning of the chapter we have been discussing hard spheres. While these

solutes are quite convenient from a theoretical point of view, almost none of the actual
cNote that the correction was discovered essentially by accident, and was initially referred to as initial

state correction (ISc)39,140. Only after publication by Sergiievskyi et al.38 it was recognized that the
correction was related to 3D-RISM pressure and the name PC+ become popular40,42,115,116.
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Figure 5.4: Solvation free energies of Lennard-Jones solutes with different radii and
ε = 0.125 kcal/mol in water. The estimate of MD solvation free energies for larger radii

was done using equation 5.28.

molecules resembles them. Between pretty much any two materials there would exist

dispersion interactions, typically approximated by Lennard-Jones potential.

The attractive forces are usually quite weak, on the order of 0.2kT , but are enough to

practically remove most dewetting effects between water interface and surface, making pair

distribution function predicted by 3D-RISM and molecular dynamics much more similar.

Figure 5.4 shows hydration free energies for a series of Lennard-Jones spheres, predicted

by molecular dynamics, PC, and PC+. To extrapolate results of molecular dynamics

to higher radii we estimated the contribution of dispersive interactions assuming that

water structure is unperturbed by the sphere outside its exclusion radius (a reasonable

approximation for these solutes136,141)

Udisp = ρ4π

∫ ∞
σLJ−O

4εLJ−O

[(σLJ−O
r

)12
−
(σLJ−O

r

)6
]
r2 dr, (5.28)

where both σLJ−O and εLJ−O were computed using Lorentz-Bertholetz rules. The

total solvation free energy was estimated via ∆FLR−LJ = Udisp + γA, where we used

γ = 76 mJm−2 137.
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Overall, the results are similar to those that were obtained for hard spheres. PC+, due to

its ideal pressure scales similarly to molecular dynamics up to r ≈ 1 nm. Because dispersion

interactions are relatively weak, their description within both molecular dynamics and

3D-RISM is similar, changing the picture little compared to that of hard spheres.

5.4 Free energy of charging

Consider a soft sphere with a charge q located at the centre. Its interaction potential

with the surrounding solvent can be expressed as:

Uuv(q) = ULJ + Uel = ULJ + qΦ, (5.29)

where Φ is the solvent generated electrostatic potential in the centre. The charging free

energy is the reversible work required to change the solute charge from 0 to q. It can be

found using Kirkwood’s charging formula:

∆Fel =

q∫
0

〈
∂Uuv(q

′)

∂q′

〉
q′
dq′ =

q∫
0

〈Φ〉q′ dq
′, (5.30)

where 〈Φ〉q′ is the electrostatic potential in the centre of the ion with charge q′.

It is commonly stated that the charging free energy in water can be well approximated

using a linear response relationship. Technically speaking, it is a bit more complicated;

a standard linear response implies 〈Φ〉q′ = q′〈Φ〉1 + (1 − q′)〈Φ〉0. However, for water

(and other dipolar solvents) one typically encounters a piecewise-linear (piecewise-affine)

response63,142; that is:

〈Φ〉PLq′ = 〈Φ〉0 −


q′C+ if q′ ≥ 0

q′C− if q′ < 0.

(5.31)

Both the potential in the uncharged cavity 〈Φ〉0 as well as constants C+ and C− depend

on the size and "stickiness" of the solute.

Notably, theories which model water as a polarizable continuum cannot predict asymmetry

of the solvent response, regardless of whether they take into account local or non-local

polarizabilities142. Popular approaches such as the Born model or Poisson-Boltzmann
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Figure 5.5: Electrostatic potential inside the soft solute with σ = 3.8Å and ε =
0.125 kcal/mol depending on its charge.

and their modifications incorporate charge asymmetry by scaling the ion radius. This

makes RISM models quite interesting, since they do predict piecewise linear response

without any parametrization.

Evidently, the reason for RISM "awareness" of solute charge is due to the use of two

separate fields: one for water oxygens and one for hydrogens143. Figure 5.5 demonstrates

the dependence of the water potential on the solute charge, predicted by three different

models. We can see that while 3D-RISM correctly predicts the charge dependence of

the water response, its scaling is predicted to be strictly linear, in agreement with the

equation 5.31. At the same time, more precise molecular dynamics simulations do show

deviations from it at the higher charges. The effect is due to dielectric saturation: in

discrete solvent after certain point the polarization reaches maximum density and response

becomes sublinear63. Such saturation does not occur in 3D-RISM; similarly, in the case

of hard sphere solvation 3D-RISM predicted response was always exactly proportional to

the solute’s volume.

Even though 3D-RISM does not predict saturation of the dielectric response, the accuracy

of its approximation at moderate charges is more than enough to correctly predict charging

free energies for the majority of common molecules. Figure 5.6 demonstrates predictions
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Figure 5.6: Top figures: charging free energy of Lennard-Jones sphere (left) and
Lennard-Jones dipole (right) in water. The dipole consists of two Lennard-Jones spheres,
separated by 2Å. Both the sphere and dipole sites have σ = 3.8Å and ε = 0.125 kcal/mol.
Bottom figures: difference in charging free energy predictions between 3D-RISM models

and molecular dynamics.
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of charging free energies by 3D-RISM for a simple sphere and dipole. The volumes of

van-der-Waals solutes do not depend on the charge, but their excess volumes still change

due to the increased attraction. Thus, it makes sense to use pressure corrections even

in the context of charging free energies. As the figure illustrates, this does not show

considerable improvement for single ions, but improves solvation free energy predictions

for dipoles.

5.5 Effect of corrections on solvation thermodynamics

In this section, we will discuss solvation thermodynamics of 3D-RISM/HNC and its

pressure corrections. For simplicity and along with the main goal of the thesis, we restrict

the discussion to single-component solvents, although extension to multicomponent

mixtures should be relatively straightforward.

Previously (section 2.5) we have shown that solvation free energy can be split into

energetic and entropic contributions. Specifically, for solvation in the grand canonical

ensemble we had ∆Ωs = Euvµ − TSuvµ + µρV̄ . Examining the derivation of 3D-RISM one

can see that µρV̄ = µρ
∫

∆ρ(r) dr gets canceled out because of the way we define excess

intrinsic chemical potential (section 4.5). Thus, one can split 3D-RISM solvation free

energy into ∆F3D−RISM = Euv − TSuv, where Euv takes a clear physical meaning, and

TSuv is simply defined using the above equation. We will see that such decomposition

provides a sensible way of analyzing 3D-RISM and its pressure corrections.

We start by defining solute-solvent interactions in the usual way Euv = 〈ρ|u〉. Then

solute-solvent entropy is given by SuvHNC = −k 〈ρ|ln g〉 + k 〈∆ρ|1〉 + k/2 〈∆ρ|C|∆ρ〉.

Using a rough estimate 〈∆ρ|C|∆ρ〉 ≈ ∆ρ̂(0)Ĉ(0)∆ρ̂(0) and the fact that for most

liquids Ĉ(0) < 0, we can see that SuvHNC is negative, consistent with the general result

from section 2.5.

The ∆SuvHNC can be split into the ideal gas entropy change, given by ∆SidHNC =

−k 〈ρ|ln g〉+ k 〈∆ρ|1〉, as well the excess (or ring entropy, as it has been referred to by

some authors144,145) contribution ∆SexHNC = k/2 〈∆ρ|C|∆ρ〉. The minimization of the

grand potential leads to

∆SuvHNC = −k/2 〈ρ|ln g〉+
1

2T
〈ρ|u〉 − 1

T
P0∆V. (5.32)
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The above result is interesting since we can readily interpret this entropy as a sum of

logarithm of insertion probability for a hard solute within HNC model (equation 5.24) and

a linear response entropy change occurring due to introduction of attractive interactions.

Recall that −T∆SuvLR = −1/2Euv + 1/2Euv0 , where 1/2Euv0 corresponds to solute-solvent

energy without any coupling between solute and solvent; for a hard solute Euv0 = 0 and

we recover equation 5.32. Note that the presence of a linear response component in singlet

HNC is not surprising, considering that in the section 4.1 we demonstrated that this

model essentially treats ideal part of chemical potential exactly and excess part via linear

response approximation.

A similar result has been obtained by Sanchez et al146,147 using a more general approach.

They found that

∆Suv = k lnPins − k ln 〈exp [−β(EuvI − Euv)]〉a − k lnPa, (5.33)

where Pins is the probability that a randomly inserted molecule will experience an

attractive or zero interaction energy ∆Euv ≤ 0; the second term is the familiar solute-

solvent fluctuation energy, except the averaging is performed over the states where

solute-solvent interactions are attractive. Pa is the probability that a fully inserted

molecule will have an attractive interaction energy, which for the majority of normal

molecules ≈ 1. We can see that by setting k ln 〈exp [−β(EuvI − Euv)]〉a = −(1/2T )Euv

(this result is exact in the linear response regime148) one recovers the HNC solute-solvent

entropy.

Thus, after analyzing HNC entropy we found it to be consistent with other statistical

mechanics theories. Its main problem is the overestimation of the hard solute insertion free

energy, which as we have already discussed, stems from the failure to describe interface

formation. Then we can readily interpret PC and PC+ corrections as adjustments to

incorrect Pins from the HNC approximation. For PC, entropy becomes

∆SuvPC = −k/2 〈ρ|ln g〉+
1

2T
〈ρ|u〉 (5.34)

and for PC+

∆SuvPC+ = −k/2 〈ρ|ln g〉+
1

2T
〈ρ|u〉+ k 〈∆ρ0|1〉 , (5.35)

where ∆ρ0 is the change in solvent density.
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From the equations above it is not necessarily obvious which approximation should lead to

a better estimate of solvation free energy. A clearer picture can be obtained if we rewrite

the expression in terms of ideal/excess contributions. Both PC and PC+ models have

identical excess entropies ∆SexPC = ∆SexPC+ = k/2 〈ρ0|C|∆ρ〉. The ideal entropies are

then ∆SidPC = −k 〈ρ|ln g〉 and ∆SidPC+ = −k 〈ρ|ln g〉+ k 〈∆ρ0|1〉. For a single component

molecular solvent the solute-solvent entropy can be expanded in terms of n-particle

correlation functions, with first terms given by149,150

∆Suv = −kρ0

∫
g(r) ln g(r) dr + kρ0

∫
g(r)− 1 dr

− kρVi
Ω

∫
g(ω) ln g(ω) dω + · · · ,

(5.36)

where ρ is the solvent density, ω is the Euler angle, Ω =
∫
dω, and Vi is the unit volume.

From the expression above we can see that the PC+ model, unlike PC, contains both

first terms in the expansion. Thus, one can expect it to reproduce solute-solvent entropy

slightly better. In all site-site models, the orientational contribution (the second line

of equation 5.36) is partially approximated by summation of ρ ln g terms over different

solvent sites.

A more straightforward way of analyzing 3D-RISM thermodynamics is to simply compare

it directly to molecular dynamics. As usual, we chose water as our solvent and the first

six linear alkanes (methane to hexane) as our solutes due to availability of data. The

molecular dynamics simulations were performed by Gallicchio et al.151 who used TIP4P

water model and OPLS force filed parameters for alkanes. We use the same force field,

combined with cSPC/E water model for 3D-RISM.

Before we proceed it is important to discuss the way we compute solvation entropies and

enthalpies within different models. Since 3D-RISM is formulated in the grand ensemble,

that is, under conditions of constant temperature, volume and chemical potential, it can

seem that we can only compute properties within this particular ensemble. However, it is

possible to work around this problem by evaluating necessary derivatives numerically over

multiple simulations in which only necessary thermodynamic variables are varied and

others are kept constant. Recall that as long as macroscopic thermodynamic parameters

are identical, the chemical potential will be independent of the ensemble. Thus, to evaluate,

for example, temperature derivative of chemical potential under constant pressure, we

run calculations at two separate temperatures, but identical pressures.
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Figure 5.7: Dependence of free energy, entropy and enthalpy of linear alkanes on their
surface area (number of atoms). The molecular dynamics results are taken from Ref.

151.

The approach described above will yield the best estimates we can get with RISM for

constant pressure enthalpies, entropies as well as their higher derivatives; however, it

will also lead to a conceptual problem. The set of temperatures and densities (input

parameters for 3D-RISM calculation) corresponding to a constant pressure in real water

actually leads to a variety of different values within the 3D-RISM approximation. Thus,

any 3D-RISM entropies and enthalpies that we obtain via standard formulas will actually

contain contributions from the derivatives of 3D-RISM pressure. This is not a very

significant problem since essentially any water model will have a different phase diagram,

making these dependences additional error contributions. For simplicity, we are going to

use the symbol ∆G for both experimental (simulated) and 3D-RISM free energies, even
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Figure 5.8: Solute-solvent components of alkanes solvation free energy. The definition
of the quantities can be found in the main text. The molecular dynamics results are

taken from Ref. 151.

though the later technically corresponds to ∆Ω.

Figure 5.7 demonstrates predictions of solvation free energy, enthalpy, and entropy

obtained from molecular dynamics, PC and PC+. For reference, the same figure with the

comparisons between uncorrected 3D-RISM and MD is included in appendix B (figure

B.3). The solvation entropy from RISM models was calculated numerically via:

∆S(T ) = −∆G(T + ∆T )−∆G(T −∆T )

∆T
, (5.37)
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where we used ∆T = 2.5 K; to get enthalpy we used

∆H = ∆G+ T∆S. (5.38)

The density of bulk water at different temperatures was taken from Ref. 152. Note

that these predictions are for thermodynamic entropies and enthalpies, related to their

solute-solvent components as ∆S = ∆Suv + ∆Hvv/T and ∆H = Euv + ∆Hvv, where

∆Hvv is the solvent reorganization energy.

The alkanes are essentially chains of fused Lennard-Jones spheres. The behaviour of

solvation free energy that we observed in the case of a single Lennard-Jones sphere (figure

5.4) is essentially identical for these solutes. In the case of PC, the dispersion interactions

between solute and solvent dominate, making the free energy ∆GPC become progressively

negative with the increase of surface area. Conversely, the PC+ approximation of insertion

probability results in a correct scaling of ∆G with solute size, although its value is smaller

than the one predicted by molecular dynamics.

The predicted solvation enthalpy and entropy are smaller in magnitude for both 3D-RISM

models when compared to molecular dynamics. The differences between PC+ and PC

models is mostly due to solvation entropy ∆S. The enthalpies in the two models differ

only slightly due to the temperature dependence of water density.

On figure 5.8 you can see a further decomposition of previous quantities into solute-solvent

and solvent-solvent terms. The solvent reorganization is obtained from ∆Hvv = ∆H−Euv.

Perhaps surprisingly, the overall agreement of these quantities between 3D-RISM and

MD is quite good, despite the fact that all solute-solvent energies and entropies do

depend on the ensemble. Notably, Euv is predicted essentially correctly, considering the

fact that water models were not identical in 3D-RISM and MD. This indicates that for

smaller solutes the solvent density distribution within 3D-RISM/HNC is in relatively

good agreement with MD, and disagreement primarily comes from the entropic part.

Additionally, as we expected from our analysis in the beginning of the chapter, PC+

model has a better Suv estimate, mostly due to its ideal part.

The accuracy of ∆Hvv predictions is quite interesting, considering that this quantity is

significantly overestimated in 3D-RISM/HNC (figure B.3). Within the linear response

approximation one has ∆Hvv = −1
2E

uv 153. As figure 5.9 demonstrates, this result is



Chapter 5. Pressure corrections 95

Figure 5.9: Correlation between solvent reorganization energy and solute-solvent
interaction energy for the first 6 linear alkanes. The units are in kcal/mol.

relatively accurately satisfied by molecular dynamics, as well by PC and PC+ models.

Once we get rid of overestimated insertion free energy contribution to 3D-RISM/HNC,

the model starts giving a number of predictions that treat solute-solvent interaction via

the linear response approximation.



Chapter 6

Applications

In contrast to the previous chapter, here we are primarily concerned with realistic solutes

and comparison with experimental measurements. We discuss the solvation of neutral and

charged molecules in water at various temperatures. The accuracy of pressure corrected

3D-RISM models is compared to other approaches. The chapter is based on two previously

published articles: Refs. 39 and 40.

6.1 Neutral molecules

We start by comparing PC and PC+ predictions to molecular dynamics hydration free

energies. The differences in the results then occur primarily due to the approximations in

the model and not due to the inaccuracies of the force field, which would have been a

major error source when comparing to experiment.

Unfortunately, the popular 3D-RISM water models are different from water models

used in molecular dynamics. As we saw in section 4.5, the hydrogen atoms’ density

can behave quite independently from the oxygen one. Thus, leaving hydrogen atoms

without Lennard-Jones parameters, which is commonly done in the water models used

for molecular dynamics, will inevitably cause hydrogens to "spill" into the solutes. To

avoid it, all 3D-RISM water models employ small Lennard-Jones parameters on hydrogen

atoms.

One of the largest evaluations of hydration free energies using molecular dynamics was done

by Mobley et al13. They computed and published both Lennard-Jones and electrostatic

96
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contribution to hydration free energies of 504 molecules, using quite long simulation runs

to ensure low uncertainty. The set of solute molecules was quite diverse and included all

the main functional groups such as alcohols, carboxylates, aromatic compounds, amines,

etc. All solutes were described used general amber force field (GAFF) and AM1-BCC

partial charges. Water was approximated using the standard TIP3P model59.

For 3D-RISM calculations, we used the same solute potentials. We did not try to take

into account their conformations and simply used a single minimised geometry. Water

was described by the conventional cSPC/E model105, which differs from ordinary SPC/E

model by Lennard-Jones potentials on hydrogen atoms, mentioned earlier. More technical

details are summarised in the appendix A.

The comparison between HNC results and molecular dynamics was already provided in

figure 4.10. The performance of PC and PC+ models is presented in figure 6.1. As we

can see, the PC model fails to predict nonpolar free energies ∆Fnp (which correlate with

cavity creation free energy), while PC+ does capture general trends. The polar part of

hydration free energy ∆F p is approximated with a reasonable accuracy by both models.

The total hydration free energy is estimated by PC+ quite well.

Both models perform worse for polar molecules that have more negative solvation free

energies. The larger outliers tend to be the molecules containing negatively charged

oxygen or hydrogen atoms, such as 2-ethoxyethanol or hydrazine. It is quite likely that

the presence of Lennard-Jones sites on hydrogen atoms becomes increasingly important

and thus 3D-RISM describes them somewhat differently. Another potential source of

error is a lack of conformational sampling, but it is unlikely to cause a large effect.

After comparing our corrections to MD, we decided to compare their accuracy against the

actual experimental data. The molecules were taken from the already familiar dataset by

Mobley et al. The uncertainty of experimental values in the set was estimated by authors

to be around 0.2 kcal/mol. Figure 6.2 demonstrates hydration free energy predictions

of MD, solvation model density (SMD)154, PC+, NgB, and UC models to experimental

measurements.

SMD is the most accurate model among those compared, with an error of 1.1 kcal/mol.

When using SMD, we followed the recommended protocol, involving running two electronic

structure calculations, which we performed in both vacuum and liquid phases154. The
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geometries were optimised in both phases, using the M06-2X functional155, combined

with the MG3S basis set156. The free energy was computed by subtracting the molecules

energy in water from the energy in the vacuum. Thus, SMD is the only model which

takes into the account polarization contribution to hydration free energy. We also expect

the continuous charge distribution from quantum calculations to be more accurate than

the point charges used in MD and RISM models.

A major shortcoming of SMD is that it estimates the non-polar part of free energy

empirically, utilizing an equation based on solvent surface tensions, parametrized to fit

experimental hydration free energies154. This limits the applicability of the method to

compounds without complicated structure and functional groups. However, for simple

and small molecules such as those which were the part of the Mobley’s dataset, SMD

and related methods are probably the best choices since they can utilize accurate charge

distributions from quantum mechanics and their empirical approaches to estimating cavity

energies are not too inaccurate.

The PC+ model error is not much larger than the one seen from MD. The systematic

errors due to its approximation of free energy as well as errors of utilised force field

(GAFF/AM1-BCC) cancel out favourably, making the overall accuracy quite good. It

performs better than 3D-RISM models with empirical corrections such as NgB and UC,

but shows results which are poorer than MD and SMD. Overall, it seems that while PC+

is moderately accurate, it still performs worse than other common methods for predicting

hydration free energies of neutral molecules.

Other 3D-RISM based models such as PC, UC, and NgB perform worse. We already

discussed the issues with PC at the beginning of the section. The performance of UC on

the other hand can likely be improved by a more careful choice of parameters used to fit

the model (we used the values provided in section 4.8).

Before closing this section, it is interesting to discuss possible effects of the force field

on the results. As molecular dynamics results show, a substantial part of the error can

be attributed to the inaccurate solute-solvent interaction energy. Thus, a more accurate

force field might in principle substantially improve the accuracy of the result.

We did not want to explore these possibilities in too much detail as, due to the number

of force fields and water models available, such as investigation would warrant a separate
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Figure 6.3: The influence of different force fields on the accuracy of PC+ results when
compared to experiment. All values are in kcal/mol.

study. However, as a test we performed a few calculations investigating the sensitivity of

PC+ results to the choice of interaction potential energy between solute and solvent (figure

6.3. In the first two tests (demonstrated on the first row) we used the standard cSPC/E

water susceptibility functions computed with 1D-RISM, and varied Lennard-Jones and

partial charges on solutes. Neither combination of CM5 and OPLS-2005, nor AM1-BCC

and GAFF2 (an updated version of GAFF force field, introduced in AmberTools version

16157) substantially improved the accuracy of free energy predictions, when compared

to experiment. At the same time, standard parameters, combined with other water

susceptibility functions, do slightly improve the accuracy of PC+ results (second row in

the figure). We used standard 1D-RISM calculations with the cTIP3P105 water model

for one test and carefully smoothed experimental water radial distributions by Soper et

al. for another158. As these results show, more sophisticated or empirical water models

might present an easy route towards further improving solvation free energy predictions
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from PC+ approximation.

6.2 Predicting the temperature dependence of ∆G

It is difficult to predict hydration free energies at non-standard conditions or estimate

their derivatives. First of all, the majority of the empirical/semi-empirical models are

parametrized at 298 K and are only suited for computing solvation free energy and nothing

else. Even approaches such as molecular dynamics, which can in principle access a wide

range of conditions, usually require very extended calculation runs to estimate free energy

derivatives with low uncertainty.

The above makes 3D-RISM based models interesting since they can be used at any

thermodynamic conditions and can produce results with high numerical accuracy.

To test 3D-RISM at non-standard conditions, we used a set of experimental solvation free

energies, measured at many different temperatures. For each compound, that dataset

had at least five hydration free energy measurements, all made at different temperatures

between 0 and 100 degrees Celsius. The data was compiled by Chamberlin et al., and

presented in Refs. 159 and 160; for this reason, we will refer to this data as the Chamberlin

dataset. To extract accurate solvation entropies and heat capacities from this data, we

fit the following equation to all measurements, discarding the molecules to which this

relationship fits poorly:

∆G(T ) = ∆G(T ∗)−∆S(T ∗)(T − T ∗) + ∆Cs(T
∗)

[
T − T ∗ − T ln

(
T ∗

T

)]
, (6.1)

where T ∗ is an arbitrary temperature, which we set to 298.15 K, ∆G(T ∗) is the solvation

free energy at that temperature, ∆S(T ∗) is solvation entropy, and ∆Cs(T
∗) is the solvation

heat capacity change, defined as:

∆Cs(T ) =
∂∆H

∂T
=
∂∆G+ T∆S

∂T
. (6.2)

The equation 6.1 is known to accurately fit the temperature dependence of hydration free

energy in quite large temperature ranges (since the dependence of solvation heat capacity

on temperature is not very significant) and is used in experiments to measure solvation

entropies and heat capacities.
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Figure 6.4: Comparison experimental and computed hydration free energies at 298 K.
The data is taken from the Chamberlin dataset. All values are in kcal/mol.

For computational evaluation of solvation free energies we used geometries of solutes

guessed using Openbabel software package161,162 and further optimised with OPLS_2005

force field60. Each experimental solvation free energy at different temperature was

matched by a corresponding 3D-RISM calculation. Water density and dielectric constants

at each temperature were evaluated using interpolation functions provided in the Water

Society manual163 (the relative uncertainty of the density is around 0.0001% and for the

dielectric constant is 0.01%). After performing all calculation we used equation 6.1 to

extract solvation thermodynamic parameters from 3D-RISM calculations. For all solutes,

it fit the data with practically perfect accuracy.

Before analyzing derivatives, we first checked how accurately PC+, NgB, and UC models

could predict standard temperature solvation free energy on this dataset. The results are

shown in figure 6.4. As you can see, the accuracy of these models on the Chamberlin

dataset is lower than on the Mobley dataset. The reason for that is the larger diversity of

the Chamberlin dataset, which covers a broader range of molecules and combinations of

functional groups. Thus, the simple force field used for all 3D-RISM models (GAFF/AM1-

BCC) might be somewhat poorly applicable to them.

Figure 6.5 demonstrates a comparison between predicted and experimental entropies and

heat capacities. One can immediately see that free energy derivatives are predicted with

much poorer accuracy than free energy itself. The average error in predicted entropies

by PC+ accounts for about 20% of its total value. For NgB and UC it is about 70%
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Figure 6.5: Comparison of predicted and experimental solvation entropies and heat
capacities, evaluated using equation 6.1. Both entropy and heat capacity are in units of

cal/mol/K.
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Figure 6.6: Root mean square error of solvation free energy of 3D-RISM models on
Chamberlin dataset depending on temperature.

and 130% respectively. For solvation heat capacities, none of the models correlated with

experiment.

It is not surprising for a model to give reasonable free energies while failing to predict

its derivatives. Recall that enthalpic and entropic contributions tend to be larger than

solvation free energy and have opposing signs (section 2.5). Other significant factors are

the force fields that are parametrized specifically to reproduce free energies, ignoring both

solvation entropies and enthalpies.

Despite giving poor estimates for solvation entropies and heat capacities, as figure 6.6

shows, the accuracy of free energies across the 273–373 K range remains similar for NgB,

and almost constant for PC+. This is not surprising, considering that the absolute

value of solvation free energies at this range, for smaller molecules, changes at most

by 1–2 kcal/mol. Moreover, since the error in entropy predictions by PC+ is unbiased,

half of the solvation free energy improves towards the higher temperatures (for instance,

overestimated ∆G at 298 K combined with underestimated entropy will result in more

accurate solvation free energy estimates at higher temperature). The larger problems in

solvation heat capacities for all of the models are not significant enough to affect free

energies at this temperature range. It is also worth noting that regardless of the somewhat

inflated accuracy of solvation free energies at other temperatures, these predictions are
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Figure 6.7: Correlations between solute-solvent and solvent reorganization energies.
R2 stands for coefficient of determination. All values are in kcal/mol.

still significantly better than "0 hypothesis" estimates, made under the assumption that

solvation free energy does not depend on the temperature at all (figure B.2).

Concluding the discussion of solvation thermodynamics we go back to the linear response

relationship ∆Hvv = −Euv/2, discussed in the section 5.5. As one would expect, the

relation only holds for the PC+ model, with empirical model failing to reproduce it.

It is possible that re-parametrization of both modes with the aim of recovering this

relationship might improve the accuracy of their solvation entropy predictions.

To conclude this section, we analysed the performance of solvation free energy predictions

by PC+, NgB, and UC on the extensive dataset of solvation free energies, covering

temperatures from 0 to 100 degrees Celsius. Compared to empirically parametrized

models, PC+ showed better results across all temperatures. However, even the model

with more theoretical basis still cannot accurately predict the derivatives of free energy

due to inherent difficulties associated with this task. It is also worth mentioning that

very recently Johnson et al. extended both UC and NgB by introducing temperature

dependence into empirical coefficients116. This approach might result in improved

entropies for empirical models, but it remains to be tested on a larger dataset.
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6.3 Ionic solvation

As we demonstrated in the first section of the chapter, using continuum models such as

SMD, it is possible to predict solvation free energies of small neutral molecules with around

1 kcal/mol accuracy. The situation is quite different in the case of charged compounds,

for which even the most accurate implicit models show relatively poor results (typical

accuracies of about 5 kcal/mol for water solvation). The reason for these difficulties is

associated with much larger interaction energies between solute and solvent, as well as

some effects (such as charge asymmetry) that cannot be described by continuum models.

Considering the above information, applications of models such as PC+ to ionic solvation

seems quite promising. In section 5.4 we demonstrated that 3D-RISM is capable of

predicting reasonable charging free energy for Lennard-Jones solutes. To test its accuracy

in a more realistic setting, we turned to polyatomic ions. Both experimental hydration

free energies and solute geometries were taken from the 2012 version of the Minnesota

solvation database70,164. These values are based on the hydration free energy of the

proton = 265.9 kcal/mol67. When selecting compounds from the database, we avoided

water clusters as well as ions that were structurally similar to other chosen molecules.

We ended up selecting 70 compounds in total: 36 anions and 34 cations.

The non-bonding parameters for ions were derived from GAFF and were combined with

AM1-BCC charges. We started by performing all free energy calculations with PC+ and

then repeated calculations using molecular dynamics. The results are shown in figure 6.8.

As you can see, the agreement between MD and PC+ is quite good. However, neither of

the methods agreed well with experimentally measured values. The reason for that is

the lack of explicit water-air boundary in both MD and 3D-RISM. The whole system

is schematically demonstrated at the figure 6.9. While in simulations the potential in

the empty cavity is φ0, in experimental settings it has an extra contribution from the

Galvani potential φG, making it φ0 + φG.

To correct the solvation free energies from both models, we need to add an extra qφG

term, accounting for the transfer from one phase to another. The question is, which

φG to use? Simulations using various models have shown that it is extremely sensitive

to the water representation. It has a value of 3000 mV when measured using ab initio
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Figure 6.8: Comparison of 3D-RISM/PC+ ionic hydration free energies with molecular
dynamics results (left) and experimental values (right). Galvani potential is not taken

into account. All values are in kcal/mol.

Figure 6.9: Schematic demonstration of interfacial potential jumps in solution.
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approaches, while atomistic simulations give estimates close to 600 mV. The experimental

data are also quite conflicting63.

To understand the disparities in φG estimates it is important to consider different

contributions towards the interfacial potential. It has been shown that electrostatic

potential across any interface is given by165,166

φvl = − 1

ε0

zl∫
zv

dz′z′〈ρq(z′)〉

≈ − 1

ε0

zl∫
zv

〈
Pz(z

′)
〉
dz′ +

1

ε0
[〈Qzz(zl)〉 − 〈Qzz(zv)〉]

= φD + φQ,

(6.3)

where φvl = φl − φv is the electrostatic potential difference between a liquid and vacuum,

z is the direction perpendicular to the interface towards vacuum, zl and zv are positions

sufficiently deep into the liquid and vacuum (we assume that liquid vapour contribution

is negligible), ρq is the charge density, and ε0 is the vacuum permittivity. In the above,

the first line corresponds to the solution of the one-dimensional Poisson equation, while

the second line is obtained by the Taylor expansion of the charge density in terms of

molecular multipoles. The average polarization at z′ is given by

〈
Pz(z

′)
〉

=

〈∑
m

δ(z′ − zm)

(∑
i

qimzim

)〉
, (6.4)

with indices m and i indicating molecules and sites respectively, zm being the z coordinate

of molecular centre, qim is the charge of the site i of molecule m, and zim is the z

component of distance rim from the molecular centre to site i. Similarly, the quadrupole

contribution is

〈Qzz(zl)〉 =

〈∑
m

δ(z′ − zm)

(
1

2

∑
i

qimz
2
im

)〉
. (6.5)

For clarity, we combined dipolar and quadrapolar contributions to the potential into φD

and φQ respectively. Note that from equation 6.3 it follows that φQ does not depend on

the structure of the interface and instead is only determined by the values of quadrupole

contributions inside the liquid (since it is zero in the vacuum).

As was demonstrated by Remsing et al.165, the φD is reasonably similar across models,

and also is quite small for the water-vacuum interface, while φQ is a larger quantity and is
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the one responsible for disparities across the models. However, it gets canceled out from

the sum of the cavity and Galvani potentials since it does not depend on the structure of

the interface

φ0 + φG = −φ0
D − φ0

Q + φvlD + φvlQ = −φ0
D + φvlD, (6.6)

where superscripts 0 and vl denote cavity-liquid or liquid vacuum interfaces respectively.

Thus, to compare solvent potentials as well as ionic solvation free energies across different

models, one has to compare solvation free energies with Galvani potential contribution

taken into account. Moreover, the Galvani potential has to be evaluated within the

model so that quadrupole contribution to the solute-solvent potential is cancelled by the

corresponding contribution to φG 63.

While evaluation of the Galvani potential in MD does not present a lot of difficulties (one

can simply use the Poisson equation defined in the first line of equation 6.3), it is hard to

obtain it from 3D-RISM. In principle, one can construct a planar air-liquid interface in

3D-RISM; however, as we have seen in section 5.3, such an interface will have a density

distribution quite different from the one observed in the experiment and will have quite a

large dipole across it. An alternative approach was suggested by Reif and Hunenberger

for molecular simulations63. A potential inside a small cavity will be mostly determined

by φQ, since φD ≈ 0. Then the quadrupole contribution can be evaluated directly via

φQ ≈ φ0 =
1

4πε0

N∑
i=1

∫
ρi(r)qi
r

dr, (6.7)

where r = |r− r0|, with r0 being the center of cavity.

Since the MD calculations were done with SPC/E water, we used the results of Beck

who found its Galvani potential to be −14.9 kcal/mol/e (−650 mV)69. Within 3D-RISM,

setting the size of hard sphere cavity to r = 0.5Å (same as grid size), we found the

cSPC/E water Galvani potential to be −13.43 kcal/mol/e (−606 mV).

The figure 6.10 demonstrates the comparison of real free energies (with Galvani contri-

butions included) from PC+, MD, and experiment. Not only accounting for Galvani

potential improves the agreement between RISM and MD, bringing it to the level of

neutral particles, but it also dramatically improves the agreement of PC+ predictions

with experiment.
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Figure 6.10: The same comparison as in figure 6.8, but with model Galvani potentials
taken into account. All values are in kcal/mol.

Figure 6.11: Left figure: 3D-RISM/PC+ ionic hydration free energies compared to
experiment. The force field is OPLS/CM5. Right figure: SMD ionic hydration free
energies; electronic structures are computed with MG3S/M06-2X level of theory. The

values are in kcal/mol.
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While the agreement between the PC+ and experimental ionic solvation free energies was

relatively good, the error was still larger than in the case of neutral compounds. At least

part of the error originates from the approximate solute charges that we obtained using

the simple AM1-BCC scheme. While it does not introduce much of a problem in the case

of neutral compounds (section 6.1), for charged molecules an accurate charge distribution

is crucial since their solvation free energy is dominated by the charging free energy term.

To accurately estimate the partial charges on solute atoms we used CM5 charges, obtained

via electronic structure calculations. These partial charges in combination with OPLS

non-bonded parameters, decreased the error of the PC+ model quite significantly (figure

6.11).

In the figure 6.11 we have also shown the prediction of the same ionic hydration free

energies obtained by SMD. The SMD calculations were run with the same basis set and

theory level as calculations we performed to evaluate CM5 charges. Thus, the charge

distribution of solutes in both PC+ and SMD calculations were practically identical. The

observed difference between the two models is then likely related to the asymmetry of

water electrostatic response, which is missed by continuum methods such as SMD but is

captured by 3D-RISM.
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Beyond pure water

In this chapter, we show a few applications of 3D-RISM/PC+ to systems other than pure

water. The major difficulty here is not theoretical but rather finding an appropriate model

of the solvent. In the case of salt solution, the problem is solved by essentially a brute-force

approach, while for non-aqueous solvents we develop a coarse-grained approximation.

The chapter extends Refs. 41 and 42.

7.1 Setschenow constant

Dissolving salts in water significantly affects its structure and polarity. Consequently,

it changes solvation free energies, solubilities, activities, and other thermodynamic pa-

rameters of solutes167–170. Understanding and modeling these effects is quite important

since both the natural water reservoirs as well as water in biological tissues will have

a considerable amount of ions. Thus, to accurately determine the nvironmental fate of

compounds as well as their distribution in cellular environments one has to take into

account effects of dissolved ions171–174. Additionally, techniques such as purification,

polymorph control, and yield improvement all utilize salt related effects175–177.

In the context of solvation, the effects of salt on partition coefficient can be quantified

using Setschenow’s equation178:

log10

(
K1/water

K1/salt water

)
= kSC, (7.1)

113
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Figure 7.1: The change in hexanol hydration free energy depending on NaCl con-
centration. The experimental trend is estimated from the experimental Setschenow’s

constant.

where C is the molar concentration of salt in solution, kS is the Setschenow’s (or salting

out) constant, and K is a partition coefficient of a compound between two phases, given

by

K1/water = [solute]water / [solute]1 , (7.2)

in which square brackets denote equilibrium concentrations. Setting phase 1 to a dilute

gas, we can express the above equation in terms of corresponding solvation free energies12

to get

∆GC = ∆G0 + kSRTC ln(10), (7.3)

where ∆G stands for solvation free energy, subscripts C and 0 denote salt concentrations

in water, R is the universal gas constant, and T is temperature.

kS is largely determined by molecular size. In sodium chloride solutions, the surface

tension of water increases proportionally to the salt concentration179, and thus, provides

a positive contribution to the solvation free energy of a molecule. However, this is not

the only factor contributing to the Setschenow’s constant180. Polar regions of molecules

interact strongly with salts, and this can provide negative contributions to ∆G181. Thus,
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Figure 7.2: Accuracies of Setschenow’s constants predictions by COSMO-RS (left)
and pp-LFER model (right). Both experimental and computed values are taken from

Ref. 178. All values are in l mol−1.

to accurately predict kS , one has to take into account the change of solvent surface

tension, favourable interactions between solute and salts, and correlations between anions

and cations.

The figure 7.1 demonstrates how much the solvation free energy of a compound is affected

by the dissolved NaCl. It also demonstrates predictions by PSE-3 and PC+, which we

will discuss in greater detail in the following section.

7.2 Predicting solvation free energy in salt solutions

Despite the importance of salt effects, the majority of computational approaches struggle

to incorporate them. The difficulties stem from the fact that effects of salts on solvation

free energy are largely non-electrostatic and arise mainly due to the changes in ∆FLJ .

Figure 7.2 compares experimental values of Setschenow’s constants to predictions from

two computational models. The experimental measurements were performed by Endo et

al., for a set of 42 environmentally relevant compounds. Estimates of kS made with a

conductor like screening model for real solvents182 (COSMO-RS) are relatively poor. The

model’s inaccuracy is likely caused by its assumption of piecewise surface interactions

between surface elements. Better predictions are made by the polyparameter linear free
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Table 7.1: Lennard-Jones parameters of NaCl models used in this study. The values
of σ are in Angstroms and ε in kcal/mol.

Abbreviation σNa εNa σCl εCl Ref.

da 2.584 0.100 4.401 0.100 184
jc 2.160 0.353 4.830 0.013 185
de 1.890 0.199 4.410 0.199 186
hoa 2.130 1.540 4.400 0.100 187
hob 2.230 0.650 4.400 0.100 187

energy relationship (pp-LFER) approach, developed by Abraham and co-workers21,183.

The model typically uses an empirical equation of the type:

log10K = c+ eE + sS + aA+ bB + vV, (7.4)

where K is the partition coefficient between two phases, E is solute excess molar refraction,

S is polarizability, A is solute H-bond acidity, B is solute H-bond basicity, V is the solute

molar volume, and lowercase letters are adjustable parameters that depend on the

phases between which solutes are distributed. If one applies the above equation to

the distribution of molecules between pure water and 1 M solution of sodium chloride,

log10K = kS . While the accuracy of the model is quite remarkable, the coefficients c, e, s,

a, b, v were determined using this dataset. Thus, to at least some extent this agreement

reflects the success of the linear regression.

To predict the Setschenow’s constants using 3D-RISM we first need to obtain susceptibility

functions χ for the bulk salt solutions. We decided to calculate them using the 1D-RISM

approach with the HNC closure. As an input, the 1D-RISM calculations require site

interaction potential energies. Pretty much all NaCl force fields use the same charges

for ions: plus and minus one. However, there are quite a few options for Lennard-Jones

parameters188–191.

For simplicity, we limited our attention to only five sodium chloride models that were

compatible with SPC/E water192 and developed with Lorentz-Berthelot combination

rules57 in mind (table 7.1). The Lennard-Jones parameters in different models were

fit to different experimental observables. Dang’s NaCl force-field parameters (da) were

developed by fitting interaction energy, the first peak of the radial distribution function,

and coordination number184. Joung and Cheatham’s model (jc) is based on fitting the

experimental hydration free energies of ions, as well as lattice constants and energies185.



Chapter 7. Beyond pure water 117

Table 7.2: Accuracies of different models for predicting Setschenow’s constant. The
units are l/mol.

Model RMSE SDE bias r2

OPLS/CM5
da 0.028 0.028 0.005 0.840
hob 0.036 0.029 -0.021 0.823
jc 0.051 0.034 0.038 0.789
hoa 0.058 0.029 -0.050 0.818
de 0.085 0.037 -0.076 0.713

GAFF/AM1-BCC
da 0.032 0.032 -0.004 0.800
jc 0.043 0.034 0.025 0.772
hob 0.050 0.035 -0.035 0.750
hoa 0.078 0.042 -0.066 0.650
de 0.119 0.062 -0.102 0.300

Other models
pp-LFER 0.028 0.028 -0.002 0.844
SEA a 0.051 0.035 0.037 0.706
MD/TIP3P a 0.120 0.029 0.116 0.848
COSMO-RS 0.315 0.114 0.293 0.670

a The accuracy of the model was evaluated on a different dataset.

Deublein and co-workers (de) adjusted NaCl Lennard-Jones parameters to reproduce

experimental density at a range of concentrations186. Finally, Horinek et al. developed

multiple force fields, by taking Dang’s Cl– ion parameters and adjusting Na+ parameters

to match the solvation free energy of the ion pair187. Since this approach does not lead

to a unique pair of ε and σ, the authors proposed models based on small ε (we could not

converge this model in 1D-RISM), large ε (hoa), and medium ε values (hob).

Table 7.2 compares accuracies of Setschenow’s constant predictions by different salt models.

The results by the polyparameter linear free energy relationship (pp-LFER), semi-explicit

assembly (SEA), molecular dynamics simulations with TIP3P water and Joung-Cheetham

ions (MD/TIP3P), and COSMO-RS182 are taken from previous studies178,193. In the

literature, one can also find a few more chemoinformatics methods for Setschenow’s

constant prediction based on other descriptors or various machine learning methods194–197,

but the accuracy of these models did not significantly exceed the accuracy of the pp-LFER

approach. We found that predictions made with Dang’s salt force field (da), combined

with OPLS/CM5 force field for solutes, had the best agreement with experimental data

among the studied 3D-RISM models, both in terms of its accuracy and the correlation.



Chapter 7. Beyond pure water 118

RISM calculations based on other salt models had similarly low random error, but larger

biases.

In 3D-RISM/PC+ calculations we used two different sets of force fields to describe solutes:

OPLS/CM5 and GAFF/AM1-BCC. Only the salt model by Joung-Cheetham (jc) showed

better results when paired with GAFF/AM1-BCC solutes. In all other cases the use of

OPLS/CM5 parameters improved predictions by various extents.

The results from PC+ with Dang’s salt model are similar to the pp-LFER model that

was fit on Endo’s dataset using six adjustable descriptors. It outperforms both SEA and

COSMO-RS models, which are both partially based on the idea that summing surface

elements of a solute is a useful strategy for predicting solvation free energies. 3D-RISM, on

the other hand, takes into account correlations between densities of solvent at the surface

of solute, which most likely contributes to its better accuracy. Notice that accuracies

of both SEA and MD/TIP3P models are evaluated on a different dataset for which

3D-RISM with Dang’s NaCl force field has RMSE = 0.038 l/mol, SDE = 0.029 l/mol,

bias = −0.025 l/mol, and r2 = 0.798. The slight decrease of accuracy is likely explained

by the use of less reliable experimental data.

It is useful to note that we defined PC and PC+ models using equations 5.26 and

5.27. Then, for solvents consisting of multiple different species ∆GPC 6= kT/2 〈ρ|ln g〉+

1/2 〈ρ|u〉. Instead using equation 5.17 we have

∆ΩPC =
kT

2
〈ρ|ln g + βu〉 − kT

N∑
i=1

ρiGi

1− 1

2

N∑
j=1

ρjĈij(0)


− kT∆V

N∑
i=1

ρi

1− 1

2

N∑
j=1

ρjĈij(0)

 ,

(7.5)

which cannot be simplified a lot further due to Gi 6= −∆V . We can define the PC+ prime

model as:

∆ΩPC+′ =
kT

2
〈ρ|ln g + βu〉 − kT 〈∆ρ|1〉 . (7.6)

However, this definition of PC+ leads to worse results (see table B.2).

Molecular dynamics based predictions of Setschenow’s constant, despite achieving im-

pressive correlation with experimental data (r2 = 0.848), have a large positive bias. We

believe that the origin of this bias is likely related to the chosen salt model (jc) and force
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Figure 7.3: Setschenow’s constants by 3D-RISM/PC+ with Dang salt model compared
to experimental measurements by Endo et al. Results on the left and right figures are
obtained with OPLS/CM5 and GAFF/AM1-BCC force fields respectively. B-A stands

for bisphenol A. The values are in l/mol.

fields: GAFF with TIP3P water. It is likely that a combination of Dang salt model and

SPC/E water would reduce the bias in the prediction and make molecular dynamics

simulations one of the most accurate ways of predicting Setschenow’s constant, although,

quite time consuming.

Figure 7.3 has a comparison between Setschenow’s constants predicted by 3D-RISM with

Dang’s NaCl model and those from experimental measurements. For both calculations

made with OPLS/CM5 and GAFF/AM1-BCC parameters, one major outlier is bisphenol

A (B-A). In both cases 3D-RISM calculations overestimate its kS by 0.13 l/mol: more

than four times greater than the average prediction error for Dang’s model. This molecule

was also an outlier in 3D-RISM calculations with other salt models. While potentially this

might be the result of measurement error, we believe that the reason for this lies in the fact

that bisphenol A binds relatively strongly to sodium ions via π-cation interactions. We

performed electronic density functional theory calculations to test this hypothesis. The

optimization was done using the same level of theory and software as for the initial molecule

preparation. Optimised geometries for bisphenol A with and without sodium atoms,

shown in figure 7.4, indicate significant structural rearrangement as well as considerable

bonding between Na+ and both phenol rings. These type of interactions are difficult to

characterize using conventional force fields198, and would require a quantum mechanics
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Figure 7.4: The optimised geometries of bisphenol A with and without Na+ ion. The
distances, shown in Angstroms, are measured between the centres of benzene rings and

the ion. SMD model was used to take into account solvent effects.

approach to dispersion interactions. Additionally, conventional 3D-RISM operates with

rigid solutes and does not capture salt-induced changes in solute conformation.

7.3 Non-aqueous solvents and the corresponding state prin-

ciple

3D-RISM is generally poorly suited for a description of solvents with a large number of

sites. As solvent molecules gets larger, it gets harder to generate susceptibility files, as well

as the speed and convergence of 3D-RISM calculations become slower. Additionally, since

intramolecular correlations are also approximated in 3D-RISM, as the number of sites

increases, the description of bonding within solute becomes poorer, which also negatively

impacts 3D-RISM performance.

A solution to this problem is to coarse-grain organic solvents. In principle, there a number

of conventional schemes available, but they all tend to be quite slow. However, when
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reviewing the literature we discovered a scheme based on the corresponding state principle

that lets one predict coarse-grained interaction parameters in a straightforward manner.

According to the corresponding states principle, reduced critical temperature

T ∗c =
kTc
ε

(7.7)

and reduced critical density

ρ∗c = ρcσ
3 (7.8)

are constants for all classical fluids with orientation-independent interaction poten-

tials199,200. Here k is the Boltzmann constant, Tc and ρc are critical temperature and

density, σ is effective particle diameter and ε is a constant that determines the strength

of intramolecular interactions. This principle can be further extended to non-spherical

molecules by assuming T ∗c and ρ∗c are functions of molecular shape and electrostatic

properties199.

It follows that knowing T ∗c and ρ∗c for a single reference fluid, one can easily obtain

intermolecular interaction parameters ε and σ for many others from their critical properties.

This idea has been used by a number of authors to construct coarse-grained models of

real fluids and estimate their properties at a wide range of conditions201–211. Most of

them came to the conclusion that with the exception of a few simple fluids such as argon,

nitrogen, or methane, the majority of the real fluids cannot be adequately described by

just two simple parameters and require either additional fittings or more complicated

interaction potentials.

However, a precise description of solvent behaviour and phase diagram is frequently

not necessary for an accurate estimation of solvation free energy, as can be seen by a

number of successful implicit solvation models154,182. As we demonstrated in section

2.5, solvation free energy is independent of solvent reorganization energy, so it most

likely can be estimated using a rather simple coarse-grained model. Thus, to construct

an approximation for a number of organic solutes we simply used the reduced critical

parameters of Lennard-Jones fluid: T ∗c,LJ = 1.313, ρ∗c,LJ = 0.304 that were obtained by

Okumura et al. using molecular dynamics212.

Since we were mainly interested in predicting solvation free energies, we decided to focus on

popular solvents for which a large amount of data are available. The Minnesota solvation
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Figure 7.5: The basic idea behind coarse graining used for 3D-RISM calculations. The
real liquids are approximated as spheres interacting via Lennard-Jones potentials with

parameters deduced using equations shown on the figure above.

database contains a large collection of measurements made at standard conditions. From

it we picked 17 non-associating solvents, listed in the table 7.3. The table lists critical

properties liquids, taken from Ref. 213, as well as parameters of Lennnard-Jones spheres

approximating these liquids (obtained via equations 7.8 and 7.7). Note that the solvent

xylene is a mixture of isomeric ortho-, meta- and para-forms of xylene.

Of course, a spherical Lennard-Jones fluid is a poor reference system for most of these

solvents. For this reason, isooctane, heptane, and decane were also modelled as chains of

Lennard-Jones spheres composed of m segments, each separated by a bond of length σ.

The choice of m was motivated by an equation employed in Statistical Associating Fluid

Theory (SAFT) and in some molecular dynamics studies210,214,215

m = 1 +
n(C)− 1

3
, (7.9)

where n(C) is the number of carbons in the linear alkane. m = 3 for heptane and

m = 4 for decane follow directly from the equation. We also assumed that m = 2 would

be a reasonable choice for isooctane. The σ and ε parameters for chain beads were

similarly obtained using equations 7.7 and 7.8, but using critical points for the 2-mer
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Table 7.3: Critical properties and Lennard-Jones parameters.

Name Tc [K] ρc [nm−3] ε [kcal/mol] σ [nm]

1,2-dichloroethane 561.60 2.74 0.85 0.48
acetonitrile 545.00 4.11 0.82 0.42
benzene 562.05 2.35 0.85 0.51
bromobenzene 670.15 1.86 1.01 0.55
carbon disulfide 552.00 3.76 0.84 0.43
carbon tetrachloride 556.35 2.18 0.84 0.52
chloroform 536.40 2.52 0.81 0.49
cyclohexane 553.80 1.96 0.84 0.54
diethyl ether 466.70 2.15 0.71 0.52
dimethyl sulfoxide 729.00 2.65 1.10 0.49
ethyl acetate 523.30 2.11 0.79 0.52
isooctane 543.80 1.29 0.82 0.62
isooctane (2-mer) 0.61 0.49
n-decane 617.70 1.07 0.93 0.66
n-decane (4-mer) 0.54 0.39
n-heptane 540.20 1.41 0.82 0.60
n-heptane (3-mer) 0.52 0.40
octanol 652.50 1.21 0.99 0.63
toluene 591.75 1.91 0.90 0.54
xylenes 624.57 1.59 0.95 0.58

(T ∗c,LJC2 = 1.78, ρ∗c,LJC2 = 0.149, Ref. 216), 3-mer (T ∗c,LJC3 = 2.063, ρ∗c,LJC3 = 0.088, Ref.

217) and 4-mer (T ∗c,LJC4 = 2.26, ρ∗c,LJC4 = 0.0625, Ref. 218) Lennard-Jones chain fluids.

7.4 Solvation of model solutes in Lennard-Jones fluids

Now that we have defined the solvents, we can start predicting solvation free energies of

various solutes in them. However, before doing it, we first test the applicability of pressure

corrections to these liquids by comparing results of HNC and PC+ approximations to

molecular dynamics.

The figure 7.6 compares predictions of hard sphere solvation free energies in a Lennard-

Jones fluid at reduced temperature T ∗ = kT/ε = 0.701 and reduced density ρ∗ = ρσ3 =

0.005. The 3D-RISM results are evaluated against estimations from the Lum-Chandler-

Weeks (LCW) model that is known to be quite accurate and agrees well with MD

predictions. The trends in errors of 3D-RISM models are similar to those observed for

water (figures 5.1 and 5.3), however, now PC+ model underestimates the insertion free

energy of the solute, while HNC gives relatively good predictions up to the point where
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Figure 7.6: Solvation free energy per unit area for solutes of radii r in the Lennard-Jones
liquid with T ∗ = 0.701 and ρ∗ = 0.843. LCW results are taken from Ref. 137.

the interface forms. It seems that the compressibility-based estimate of insertion free

energy that is employed in HNC works well for Lennard-Jones fluids.

We also wanted to check how well can 3D-RISM predict solvation free energies of

Lennard-Jones solutes that offer a somewhat more accurate representation of typical

molecules. We performed a number of molecular dynamics free energy simulations in

model dichloroethane and tetrachloromethane. In total we used 90 different solutes that

had all possible combinations of σ = 0.6, 1.4, 2.2, · · · , 7.0Å, and ε = 2−7, 2−6, 2−5, · · · ,

22 kcal/mol. The simulations were performed at NVT conditions to make sure that the

density of Lennard-Jones spheres matched the density of the real liquids at 298 K. Note

that all molecules in the system are uncharged; we are primarily comparing the accuracy

of insertion free energy estimates.

Comparison of MD solvation free energies with both PC+ and HNC predictions is shown

in figure 7.7. When compared to water, the agreement of PC+ with MD was poorer,

while agreement of HNC with molecular dynamics was significantly better. Interestingly,

while absolute values were predicted slightly more accurately by HNC, the trends were

captured more faithfully by PC+.
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Figure 7.7: Calculated Lennard-Jones solutes solvation free energies against MD data.
Dichloroethane and CCl4 models are defined in table 7.3. All values are in kcal/mol.

These findings demonstrate that 3D-RISM, when applied to Lennard-Jones fluids, cannot

predict interface formation. Similarly to what happens in the case of water, the results

between two models agree only up to a certain solute size. Moreover, the PC+ correction

seems to work significantly worse and does not approximate the insertion free energy too

well.

7.5 Comparison with experimental values

As we discussed previously, we also evaluated the accuracy of our solvent approximation

using experimental data from Minnesota solvation database154,164. We selected data

for 17 popular solvents, presented in table 7.1. Chosen solvents have 1247 associated

experimental measurements for 482 unique solute molecules.
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Figure 7.8: Computed solvation free energies of a number of compounds in apolar
solvents (as defined in table 7.4) against experimental data. COSMO-RS results are

taken from Ref. 219. All values are in kcal/mol.

The solvent susceptibility functions were generated using 1D-RISM, with a bulk density of

model solvents set to experimental number densities at 298 K213. The solute geometries

were obtained from the Minnesota database; non-bonding parameters were taken from

the OPLS-2005 force field. All partial charges were set to zero.

The figure 7.8 demonstrates the accuracy of PC+ predictions for apolar solvents, with

table 7.2 showing a more detailed breakdown. For comparison, we also plotted COSMO-

RS predictions made for the same set of solvents. You can see that while PC+ results

are poorer than those made by more advanced model, they are still within acceptable

1 kcal/mol range.

The same approach is significantly less successful for polar solvents, which often interact

with the solutes via strong specific interactions. As figure 7.9 demonstrates, the accuracy

of PC+ is almost two times worse when compared to the predictions in polar solutes.

This decrease of accuracy is not surprising since our coarse-grained models of solvents

lack electrostatic charges. Still, the existence of any correlations between PC+ and

experimental values suggests that this approximation still allows us to roughly estimate

solvation free energies in these solvents.

In view of the results in section 7.4, the overall accuracy and correlation of PC+ predictions

with experimental data seems surprising. The HNC model, which showed better agreement

with MD values of solvation free energy for Lennard-Jones fluids, actually correlated
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Figure 7.9: Computed solvation free energies of a number of compounds in polar
solvents (as defined in table 7.4) against experimental data. COSMO-RS results are

taken from Ref. 219. All values are in kcal/mol.

Solvent N RMSE SDE bias

Apolar
1,2-dichloroethane 39 1.16 1.07 0.47
benzene 71 1.28 1.28 0.04
bromobenzene 27 1.17 1.15 -0.23
carbon disulfide 15 0.94 0.89 -0.30
carbon tetrachloride 79 0.85 0.84 -0.11
cyclohexane 103 1.01 0.75 -0.67
isooctane 32 0.98 0.68 -0.70
isooctane (2-mer) 32 0.63 0.60 -0.21
n-decane 39 1.70 1.23 -1.17
n-decane (4-mer) 39 0.68 0.56 -0.38
n-heptane 67 0.95 0.86 -0.42
n-heptane (3-mer) 67 0.74 0.74 0.05
olive oil 218 1.30 1.06 -0.75
toluene 51 1.00 0.99 0.08
xylenes 48 1.00 0.99 -0.10

Polar
acetonitrile 7 2.23 2.13 0.67
chloroform 107 1.86 1.37 1.25
diethyl ether 70 2.21 1.65 1.47
dimethyl sulfoxide 7 2.65 2.65 0.01
ethyl acetate 22 3.02 2.18 2.09
octanol 245 2.24 2.22 0.31

Table 7.4: Accuracies of solvation free energy predictions by 3D-RISM/PC+ for various
solvents. RMSE stands for root mean square error, SDE is standard deviation of error.

Energies are in kcal/mol.
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worse with experiment (figure B.5). The PC+ solvation free energy estimates made with

coarse-grained solvents agree better with experimental values than predictions made with

the same solvent and molecular dynamics. In other words, making an approximation in

solvation free energy improves the result! It is not entirely clear why exactly this occurs;

it is likely that a simplistic, mean-field estimate of solvent parameters made with the

corresponding state principle, works best when combined with a simple, linear-response

like free energies, given by pressure-corrected models.



Chapter 8

Conclusion

The main goal of this work was to develop a 3D-RISM-based advanced pressure correction

model, PC+, and to investigate its scope of application and accuracy. The key findings

of the thesis can be summarised as follows:

• From the theoretical point of view, the PC+ model is based on a linear response

approximation to solvation free energy, combined with an estimate of cavity creation

work. It was shown that the PC+ model could provide accurate predictions of the

solvation free energy as long as both of these approximations hold. Chapter 5.

• For a pure aqueous solvent, the approach turns out to be quite useful; it predicts

hydration free energies with an accuracy of about 1.3 kcal/mol and 3.0 kcal/mol for

small neutral and charged molecules correspondingly. Chapter 6.

• The model can also be applied to aqueous NaCl solutions. It was shown that

the model could significantly improve estimates of the Setschenow’s constant for

molecular compounds compared to commonly used models; with a properly chosen

salt representation, pressure-corrected 3D-RISM can achieve a good accuracy in

quantitative predictions of the Setschenow’s constant. Chapter 7.

• Finally, we demonstrated that PC+ could also be applied to non-aqueous solvents.

A major problem of such systems, a large amount of sites and flexibility, was

solved by introducing a consistent coarse-grained approximation. This approach

in combination with PC+ led to an accuracy of about 1 kcal/mol for a range of

non-polar solvents. Chapter 7.

129
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• Notable failures of the model include its relatively poor prediction of the solvation

entropies and a failure to accurately estimate the changes in the heat capacity

occurring due to the solute insertion. Additionally, the model provides poor

performance for polar non-aqueous solvents such as DMSO or methanol. Chapters

6 and 7.

The work warrants further investigations. From the theoretical point of view, it is still

not entirely clear why the pressure-correction approach works well for multicomponent

mixtures. We also left for future investigations a possibility of defining a self-consistent

pressure corrected functional and a detailed analysis of corresponding density distributions

obtained via it. Additionally, it is also worthy to test a combination of pressure corrections

with advanced free energy functionals such as anisotropic HNC or hydrostatic approxima-

tions. Even without focusing on the theory itself, we believe that extra improvements of

the model can be achieved by using more sophisticated solute-solvent potentials, as well

as testing more optimal models of solvents, designed specifically with 3D-RISM/PC+ in

mind.



Appendix A

Methodology

Throughout the thesis, the majority of the calculations were performed using the same

software and settings. For this reason, we decided to summarize the general methodology

in this appendix, mentioning specifics of each calculation in appropriate parts of the main

text.

A.1 1D-RISM

In the thesis, 1D-RISM calculations were primarily used to generate the susceptibility

functions for 3D-RISM calculations. The calculation inputs are molecule geometry, its

Lennard-Jones parameters, and partial charges, as well as bulk solvent density and

dielectric constant, which we obtained from the experimental data.

The majority of the actual calculations were performed with the rism1d program30,105,220

included in the AmberTools 15 package221. Calculations performed with AmberTools 14

or 16 versions only differed in the additional output, while the susceptibility functions

remained the same. The 1D-RISM equations were solved with a tolerance set to 1×10−12

and grid spacing to 0.025 Å. Note that whenever solvent had partial charges, and thus

an associated dielectric constant, we used the dielectrically consistent formulation of

1D-RISM (DRISM).

Most commonly we used either HNC or PSE-3 closures, which gave practically identical

results. For solvents other than pure water it was often impossible to converge susceptibility

131
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functions starting with these closures. Typically, we obtained an initial solution using the

KH closure, then tried to converge using the PSE-2 closure, using the KH susceptibility

function as the initial guess. Only after obtaining PSE-2 solution did we move to perform

PSE-3 or HNC calculations. Quite often, we also had to adjust parameters such as force

field, temperature or density to obtain a good initial guess. Weaker interacting systems

provided reasonable starting guesses for further calculations.

A.2 3D-RISM

The input for 3D-RISM calculations includes external field specification (typically in the

form of force field potential of a solute molecule) as well as bulk solvent susceptibility

functions.

Most of the 3D-RISM calculation in the thesis were performed using rism3d.snglpnt

program from AmberTools 15 package. Similarly to 1D-RISM, part of the calculations

were done using different versions; however, it did not affect the results. For the majority

of the calculations we used a grid spacing set to 0.5Å, buffer to 25Å, and tolerance to

1× 10−5. Calculations performed in the early stages of the thesis used finer grids with a

0.3Å spacing, 30Å buffer and 1× 10−10 tolerance. However, we found that solvation free

energy was largely unaffected by the change in grid settings and the additional precision

obtained with the finer grid was offset by a significantly larger computational time (often

about 10 longer CPU times).

To simplify the calculation of pressure corrections as well as solvation free energy workflow

we created a small script, hosted on https://github.com/MTS-Strathclyde/PC_plus.

The majority of the 3D-RISM calculations were performed with the PSE-3 closure. The

solvation free energies were almost unaffected by the choice of closure, with differences

between HNC and PSE-3 often being smaller than the uncertainty due to the grid spacing.

At the same time, PSE-3 calculations converged quicker and more reliably, which led us

to prefer this particular closure.

https://github.com/MTS-Strathclyde/PC_plus
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Figure A.1: We performed two sets of calculations on the Mobley dataset (described
at the beginning of section 6.1) using standard and fine grid settings. The comparison
of free energies (kcal/mol) is shown on the left, and in run time on the right figure.

A.3 Molecular dynamics

Molecular dynamics simulations in this thesis were performed using Gromacs 5.04 soft-

ware222. We used a cubic box with periodic boundary conditions. All bonds with

hydrogens were kept rigid using LINCS algorithm of 12-th order. Dynamics was simulated

using the Langevin integrator, with a reference temperature of 298.15 K and a friction

constant of 1.0 ps−1.

For short-range interactions, a pair list was generated using a Verlet cut-off scheme.

Lennard-Jones interactions were smoothly switched off between 9 and 12Å. The cut-off

artifacts were accounted for using long-range pressure and dispersion corrections as

implemented in Gromacs. Electrostatics interactions were treated using particle-mesh

Ewald (PME) method223 with 12Å real space cutoff, 1.2Å Fourier spacing, 6-th order

spline interpolation, and tolerance set to 10−6. For uncharged solvents, we used simple

cut-off electrostatics.

The solvation free energy was typically computed using 20 separate calculations at each

λ, decoupling first electrostatics and then Lennard-Jones interactions between solute

and solvent. Intramolecular interactions within a solute were kept the same at all

lambda values. Calculations with modified electrostatics interactions were performed at

λ = 0, 0.25, 0.5, 0.75, 1. The decoupling of Lennard-Jones interactions was done using
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calculations at λ = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95,

1.0. This setup has been shown to give good convergence17.

Before running MD simulations at each λ, we performed 5000 steps of steepest descent

optimization. After that, we performed 200 ps equilibration and 1300 ps production

runs. Typically, we used either 1 fs or 2 fs time steps. For NPT runs, the pressure was

kept constant at 1 bar using Berendsen barostat224, with time constant set to 1 ps and

compressibility to 4.5× 10−5 bar−1.

After completing the simulations, the intrinsic hydration free energy was evaluated using

Multistate Bennett Acceptance Ratio (MBAR)225. The actual calculation was performed

using a python script alchemical-analysis.py17.

A.4 Force fields and geometry

To generate the initial geometry of molecules we typically used the Openbabel software

package161,162. For some molecules, further refinement of geometry was performed using

the quantum chemical package Gaussian 09, Revision D.01226. The calculations were

performed with the M06-2X functional155, and MG3S basis set156. Molecules that were

not further optimized using the Gaussian package were simply optimized using assigned

force field parameters.

For the majority of the solutes, we assigned either GAFF/AM1-BCC non-bonded param-

eters or the OPLS_2005 force field, combined with CM5 charges. Due to the amount of

data we used only software which did the assignment automatically. The GAFF/AM1-

BCC workflow mainly relied on the antechamber program found in the AmberTools

package. The program was used to both assign parameters as well as to evaluate partial

charges. For OPLS force field assignment we used the Maestro package227.

Similarly to quantum chemical geometry optimization, CM5 charges were evaluated with

Gaussian 09 software at the MG3S/M06-2X level of theory. The solvent was represented

using the SMD model154 and charges were extracted from output files using the CM5PAC

program228.
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Additional Results

B.1 Partial molar volume and grand canonical ensemble

We want to represent the following partial derivative (∂N/∂N ′ )T,V,µ in terms of partial

molar volume V̄ = (∂V /∂N ′ )T,P,N . For this we are going to rely on the following

mathematical relationship
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Applying it to the initial derivative we obtain
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To proceed further we use the Gibbs-Duhem relationship µ = −sdT + vdP , where s is

molar entropy and v = 1/ρ is molar volume. Applying it to the first derivative in the

above equation we get
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Figure B.1: Site-site radial distribution functions of SPC/E water (cSPC/E in case of
DRISM calculations).

Applying the same procedure for the second derivative in equation B.2 we get
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since (∂N/∂V )T,P,N ′ = ρ. Finally, we plug in the above two results into original equation

to obtain
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= −ρV̄ , (B.5)

which is our final relationship.

B.2 Extra figures and tables

In this section, we included a few extra figures and tables that did not make it into the

main thesis. All of them are referenced and discussed in the main text.
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Model O - O O - H H -H

r g(r) CN r g(r) CN r g(r) CN

HNC 3.000 2.767 9.371 1.800 1.217 0.734 2.650 1.101 6.400
PSE-3 3.000 2.738 9.374 1.800 1.218 0.734 2.650 1.101 6.398
KH 2.975 2.338 9.988 1.800 1.221 0.728 2.650 1.089 6.155
MD 2.760 3.098 4.327 1.760 1.607 0.951 2.380 1.365 5.518

Table B.1: Location of the first peak in Å r, the value of radial distribution function
in the first peak g(r), and coordination number CN for site-site radial distribution

functions in SPC/E (cSPC/E in case of DRISM) water model.

Figure B.3: The figure mirrors figures 5.7 and 5.8, but instead of pressure corrected
models uses HNC results. The molecular dynamics results are taken from Ref. 151.
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Figure B.4: Root mean square error of solvation free energy of 3D-RISM models on
the Chamberlin dataset. Unlike figure 6.6, here we do not vary temperature in 3D-RISM

calculations, using the value of ∆G at 298 K for all comparisons.

Table B.2: Accuracies of different models for predicting Setschenow’s constant using
PC+’ correction (defined using equation 7.6). The units are l/mol.

Model RMSE SDE bias r2

OPLS/CM5
da 0.225 0.061 0.217 0.722
hob 0.195 0.055 0.187 0.752
jc 0.366 0.091 0.354 0.617
hoa 0.136 0.050 0.126 0.796
de 0.079 0.049 0.062 0.744
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Figure B.5: Comparison of computed (3D-RISM/HNC) and experimental solvation
free energies in polar and apolar solvents (as defined in section 7.5). All values are in

kcal/mol.
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