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Abstract    

Due to the growing demand for oil and gas the offshore industry has been moving its 

activities into deeper waters. As a consequence of this, the use of longer tubulars has 

become inevitable. Moreover, the move has also led to the subsea structures being 

exposed to more severe currents. These issues have caused an increasing concern as 

to how to suppress the vortex-induced-vibration (VIV) of marine risers in order to 

avoid their early fatigue failure.  

The aims of this thesis were to investigate the mechanism of instability in riser 

fairings and to develop an analytical model to predict critical instabilities in the 

design phase. In particular the aim was to evaluate the mechanism of vortex 

formation, review the available methods of mitigating VIV, such as adding a vortex 

suppression device, and evaluate the advantages and disadvantages of using riser 

fairings. 

Initially, an analytical model was developed for a simpler case of a two-dimensional 

(2D) problem. Governing equations were derived, based on Lagrange’s equations, 

and then the hydrodynamic forces were calculated and the effect of motion in these 

forces was taken into consideration. The final equations were linearised and an 

eigenvalue analysis was employed to systematically obtain multiple solutions; to 

examine their stability with the emphasis on identifying the critical current speed for 

a given system. Some physically meaningful dimensionless parameters were defined 

and the characteristic equation was made dimensionless. This model was validated 

against the available test results and showed a good agreement. Then the impact of 

each dimensionless parameter in instability onset was assessed. This parametric 

study indicated hydrodynamic properties of fairing are very crucial to instability. 

Next, the behaviour of flow in vicinity of a selection of fairing profiles was 

evaluated, using a CFD method. 
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The results of this study demonstrate the effect of the section’s details in 

hydrodynamic performance of fairing, in particular, the impacts of the angle of the 

leeside as well as adding fins to the trailing edge. 

The next step in this research was to expand and apply the analytical 2D model to the 

3D problem; a top tensioned vertical riser. A parametric study of a 3D model was 

carried out to assess the validity of the 2D parametric study and then to investigate 

the effect of the new parameters. 

Overall, this study has provided riser designers with a theoretical tool to predict the 

instability onset in a system of riser and fairing and presented guidelines which can 

assist a riser engineer in impeding this destructive vibration in the event the 

preliminary design was diagnosed with the risk of instable behaviour. 
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Chapter 1  

Introduction 

1.1 Need for Energy  

Energy has been continuously a major concern for man since the Stone Age. He has 

been looking for new sources of energy to move the wheel of life. Wood as fuel for 

fire and animals as power for agriculture were the primary types of energy 

throughout the early stages of human development. Due to population growth, a 

further demand for energy was induced and over many centuries man began to think 

and investigate other sources of energy. In the Palaeolithic Age wood was used for 

fire. Four thousand years later in the New Stone Age wood was then replaced by 

coal. Finally, six thousand years ago, petroleum was discovered as natural oil seeps 

on the ground’s surface (Britannica, 2008) and became an accessible resource for 

ancient people.  

Over the millenniums energy demand increased at a gradual rate until the late 18th 

century, when due to the industrial revolution, mankind’s thirst for all kinds of 

energy intensified greatly at a rapid rate. This rapid change in human’s energy 

consumption has never been quenched and is still rising dramatically year after year 

(Figure  1-1). According to the recent BP statistical report of world energy, the annual 

world energy consumption had about 62 percent growth over the past 26 years, a big 

jump from 6800 to 11000 million tonnes oil equivalent per year (BP, 2007). 

Fossil fuels in general are still forming the major portion of this massive demand of 

energy. In particular, oil and natural gas alone provide about 60 percent of today’s 
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world energy and this causes oil and gas to emerge as the foremost and top 

demanded source of energy in recent decades.  

 
 

 
 

Figure  1-1  World Energy Consumption Over The Past Two Decades (BP, 2007). 

Initially oil was collected from surface oil seeps. Then, people dug pits to facilitate 

the oil extraction. As the demand increased, surface oil collection did not yield 

enough supply and as a consequence of this the exploration for under-surface 

reservoirs started. The land-based exploration and production for crude oil was 

subsequently developed.  

As the oil explorations were being extended, the oil pioneers of the late 1800’s 

stepped into the sea in 1887 in California, where the first ever exploration drilling of 

more than a few feet of water was carried out (Patel, 1989). Since then, the trend of 

oil exploration and production in shallow water has gradually increased with the oil 

industry beginning its move offshore in the late 1940s, seeking new oil reservoirs 

with greater rewards (Patel and Witz, 1991).  

1.2 The Meaning of Deepwater 

The first offshore operations were in the United States where a gradual move was 

made from the swamps of Louisiana into the Gulf of Mexico (GoM). Exploration 
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began in shallow water of about 20 metres deep with the aid of submersible drilling 

units. Following the Second World War, offshore activity in GoM rapidly moved 

into deeper waters. By 1959, an oil production platform had been installed by Shell 

in 30.5 m of water.  

Increasing oil prices accelerated exploration and production of deepwater 

installations, continuously pushing and changing the frontier of operations and 

definition of deepwater operations. Between 1970 and 1978, the capability of fixed 

platform in terms of water depth improved substantially from around 120 m through 

to the largest depth to date of 311 m in the GoM (Figure  1-2). 

 

 
Figure  1-2  Evolution of Deep Water Production Capability (Patel, 1989). 

Market demand for oil encouraged the oil industry to go deeper and deeper while 

fixed platforms could not be deployed in further depths. Consequently, as the 

meaning of deepwater was changing, the conceptual design of platforms was 

enhancing from fixed platform to ‘Tension Leg Platform’ (TLP), ‘Spar platform’ and 

finally ‘Floating Production Systems’ like FPSOs (Figure  1-3 and Figure  1-4).  

In today’s world with the recent advances in exploration and production technology 

the minimum water depth at which a field is classed as deepwater needs to be 
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redefined. However, due to its specific nature and further technological advances it is 

very likely that it will require a new definition in the future.  

 

 
Figure  1-3  Bottom Supported and Vertically Moored Deepwater Systems. 

 

 
Figure  1-4  Floating Production Systems in Deepwater. 
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According to U.S. Department of Interior Minerals Management Services (MMS), 

water depth of more than 1,000 ft or 305 m is currently considered as ‘deep water’ 

and activities in depths of more than 5,000 ft or 1524 m is defined as ‘ultra-deep 

water’ (Richardson et al., 2008).  

This very recent report shows that deep water has continued to be a very important 

part of the total GoM production. At the end of 2007, it provided approximately 72 

percent of the oil and 38 percent of the gas in the region. Moreover, a record high of 

15 rigs were operating in ultra-deep water. Twenty-two wells were drilled in water 

depths of 7,500 ft (2,286 m) or greater, representing 46 percent of all development 

wells drilled in 2007. This indicates the importance of deepwater operations at 

present. As tabulated in Table  1-1, exploration and discovery so far has been carried 

out in a water depth greater than 9,700 ft (2,950 m). 

 
Table  1-1  Deepest Discovery in The Gulf of Mexico (Richardson et al., 2008). 

 
Discovery Water Depth (ft) Discover year 

Tiger 9,004 2004 

Silvertip 9,226 2004 

Tobago 9,627 2004 

Stones 9,571 2005 

Trident 9,721 2001 

 

Thus, the concept of deepwater has completely changed throughout the 50-year 

history of offshore industry and now it is approaching the frontier of 3,000 m depth. 

Throughout the pioneering deep water discoveries there is one constant concept that 

has been always accompanying deep water production and that is the need for a tool 

to connect the seabed to the water surface, in other words, the need for a riser for 

drilling and production. 
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1.3 Types of Riser 

A riser system essentially consists of conductor pipes connecting floaters on the 

surface to a wellhead on the seabed (Bai and Bai, 2005). The riser should be as short 

as possible to reduce the associated costs but it must have sufficient flexibility to 

allow for large displacement of the floater at top end. 

There are generally two kinds of riser, rigid risers and flexible risers. A hybrid riser 

is a combination of these two. 

The first generation of marine riser system was deployed on fixed platforms, 

normally located in shallow waters. It comprised of a continuous length of rigid pipe 

which was either clamped to the platform structure or put in a pre-installed guide 

casing. Rigid risers in deeper water, used later on, can be classified to subcategories 

of top tensioned riser (TTR) and catenary riser. 

Top Tensioned Risers (TTRs) 

TTR is used as a conduit between floating units, such as spars and tension leg 

platforms (TLPs), and subsea systems on the sea floor which are typically directly 

below the platform, allowing for vertical well access (Figure  1-5). Thus, TTR 

consists of vertical pipes drawn straight from seabed to sea surface. Like a cable, it is 

kept straight with the aid of high top tension at connection to the platform or support. 

TTR can serve throughout the offshore works for drilling, injection, production and 

export operations. 

The ordinary TTR is very sensitive to heave motion of the top support due to wave or 

current loads because the rotation at top and bottom connection is limited. Moreover, 

heave motion alters the tension magnitude at the top and therefore it needs a 

tensioner to compensate the variation of the top tension. Lack of adequate top tension 

will cause larger bending moment along the riser especially if the riser is subject to 

harsh sea current.  
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In general, a TTR comprises of the following key components: 

• Main body is made up of rigid segments known as joints. Steel is 

predominantly used in their fabrication however titanium, aluminium or 

composites are the other alternatives. 

• Successive joints (typically of 50-ft length) are linked by connectors. 

• The riser is supported at top end by a tensioning system called tensioner.  

 

 
Figure  1-5  Top Tensioned Risers (TTR). 

Some portions of the main body along the riser length may be covered by buoyancy 

modules to reduce the required tension at top end. Using buoyancy modules 

increases the diameter and can lead to some adverse side effects like higher drag 

force.  

Catenary Risers 

The catenary layout allows the riser to be self-compensated for the heave motion of 

the top end, i.e. the bottom part of riser is in contact with seabed and is lifted or 

lowered (Figure  1-6). The catenary riser still needs a ball/flex joint at the upper 

Risers 
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support to provide rotational freedom. The bottom end can be smoothly laid down to 

the sea floor or can be connected directly to the subsea completion or wellhead 

through a steep wave configuration.    

Steel catenary risers (SCR) are made up of steel joints. They can be assembled by 

welding or threading individual riser joints.  

 
 

 
Figure  1-6  Catenary Riser Layout. 

SCR in comparison with TTR can withstand larger vessel motion. Thus, it is a 

possible substitute to flexible riser for deepwater FPSOs (floating production, storage 

and offloading system) where the cost of riser system for new field development is 

significant compared to the total field development cost due to the number of riser 

lines needed. There has been an increasing interest in SCR as they are more cost 

effective due to the low unit cost of steel pipe compared to flexible pipe. Moreover, 

the possibility of selecting larger diameter for SCR is a bonus which allows higher 

flow rates and lower number of risers to be required. 

But they are sensitive to environmental loads, e.g. wave and current because of low 

effective tension in the riser. The design and installation challenges of using SCR in 

Riser 
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ultra-deepwater floating production system are primarily originated from higher 

hang-off tension caused by its weight. 

Flexible Risers 

Flexible pipes were initially used in calm weather environment in pioneering work 

carried out in the late 1970s (Bai and Bai, 2005). However, since then flexible pipe 

technology has developed rapidly and today flexible risers are employed in various 

projects with large vessel motions in harsh weather conditions.  

Flexural flexibility of these risers (Figure  1-7) is achieved through the use of multiple 

concentric layers of different materials in the fabrication of pipe wall. This flexibility 

gives many advantages to this type of risers such as prefabrication and storage of 

long lengths on reel which reduces the transport and installation cost and also 

suitability for use in highly dynamic applications such as catenary moored vessels.  

 
 
 

 
Figure  1-7  Flexible Riser. 

 

Flexible riser configurations can be classified in six main groups as shown in Figure 

 1-8. The selected configuration is influenced by many parameters including water 

depth, host vessel access or hang-off location, field layout, environmental data and 

the host vessel motion characteristics. 

Riser 
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Figure  1-8  Flexible Riser Configurations (Bai and Bai, 2005). 

 

Hybrid Risers 

As the oil industry went further offshore and in deeper water, simultaneously the new 

concept of floating production, storage and offloading was introduced through the 

deployment of FPSO or semi-submersible vessels. The natural consequence of that 

was larger excursion of top floating structure. Thus, based on the available deepwater 

systems, a new riser system was devised to fulfil this need too. The single or multiple 

line hybrid risers (HR) aimed to de-couple the vessel motions from the vertical steel 

riser through the use of flexible jumpers (Figure  1-9).  

The first use of hybrid risers was a single hybrid riser (SHR) installed in 1988 for 

production in Green Canyon by Cameron (Bai and Bai, 2005). As the hybrid risers 

became popular and attractive to engineers, the second generation were designed in 

the form of a bundled hybrid riser (BHR); fabricated at an onshore site with 

installation by towing out and upending for development of Total’s Girassol field in 

West of Africa. More recently, the third generation hybrid riser was employed, 
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consisting of a SHR which could be installed from a drilling vessel (Bai and Bai, 

2005). 

 

 
Figure  1-9  Hybrid Riser System. 

 

One of the advantages for hybrid riser is that it facilitates the design of a clear and 

well-organised subsea layout on the sea floor as can be seen in Figure  1-9. 

From top to bottom, a typical hybrid riser comprises of following main components 

(Figure  1-10): 

• The flexible jumper, between the top of the riser and hang-off point in the 

floating vessel. 

• The sub-surface buoyancy tank. 

• The free standing vertical section. 

• The bottom section including rigid jumper spools and connectors. 

• The anchor base foundation. 
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Figure  1-10  Hybrid Riser Main Components. 

1.4 A Danger for Deepwater Risers  

All of the above types of marine risers are being used in production of oil but prior to 

the phase of production in the process of exploration and development of a new 

offshore oil field, drilling thousands of metres beneath the seabed is one of the key 

and most significant stages. Drilling in deepwater and remote areas is carried out 

with the help of drilling risers. As the water depth increases toward ultra deep water, 

the integrity of drilling risers is a crucial issue and a series of integrity analysis, 

therefore, needs to be done to ensure the safe and smooth operation of drilling even 

in harsh environmental conditions. Drilling risers are classified in the category of top 

tensioned risers (TTR). Thus, apart from the importance of production TTRs, due to 

vital role of drilling riser, TTRs and associated problems have been one of the main 

concerns for marine riser designers. 

As the oil industry targets new reservoirs in ever deeper water, with respect to TTR 

design, many technical issues which were already neglected in shallower waters have 

arisen and become a challenge for further development. For instance, high 

hydrostatic pressure near the seabed can cause damage to the riser and lead to the 

collapse of the pipe wall. On the other end of the riser, it should be able to withstand 
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the excessive displacement of the floating structure due to the long mooring system. 

Moreover, a much lengthier riser entails heavier weight which obviously demands 

either higher top tension or buoyancy modules. Higher top tension requires larger 

platforms and much more sophisticated equipments but on the other hand, the usage 

of buoyancy modules increases the riser diameter and naturally increases the drag 

force which is a pre-existing problem for the integrity of a TTR in deep water.  

Above all, there is another critical problem called vortex-induced-vibration (VIV). 

Fatigue damage induced by this type of vibration can be detrimental to the riser and 

lead to early structural failure. The severity of this damage depends on a wide range 

of parameters and thus, to riser engineers, VIV has always been a trouble which 

needs extra measures and mitigation to be harnessed.  

Various methods have been proposed to control this phenomenon. Among them, 

outfitting the riser with a VIV suppression device is one of the most prevalent 

techniques. These devices reduce the VIV in different ways and each has its own 

advantages and drawbacks. For instance, helical strakes, which may be called the 

first generation and perhaps the most implemented device, suffers from an increase 

in the drag force which is one of the problematic issues with a VIV suppression 

device. In light of this problem, engineers were encouraged to seek a device which 

was capable of mitigating VIV while simultaneously reducing drag. Thus, the 

concept of the riser fairing that met the necessary requirements was introduced.  

However, in recent years tank tests have revealed that fairings used to mitigate VIV 

for a range of current velocities are exposed to severe vibrations when the current 

velocity exceeds the upper limit. These vibrations have different features from VIV 

and are generally characterised as the system being unstable. This newly emerged 

destructive phenomenon has led to the fairing designer having to carry out extensive 

model testing on the stability of each suggested fairing profile. Therefore, it is vital 

and beneficial to predict the instability onset condition for a given system 

theoretically in the design phase rather than through extensive model testing. An 

analytical model which had been developed for flutter type vibrations of aeroplane 

wings was adapted to a riser fairing case, however, it was found to have too many 
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assumptions which could result in errors and restrict the scope of use in a marine 

application. 

Hence, there is a gap in industry for a more accurate and comprehensive model. This 

study endeavours to respond to this need by developing an analytical model to 

predict the instability of a riser fairing and also provide guidelines to help prevent the 

onset of unstable vibration. 
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Chapter 2  

Aims of The Thesis 

The targeted objectives of this project are as follows: 

a) To thoroughly research vortex-induced-vibration (VIV) and to critically 

review the associated mitigation methods implemented on marine risers. 

b) To develop an analytical model for instability of deepwater riser fairings and 

to provide designers with a theoretical tool to predict the onset of vibration. 

c) To identify the key parameters in instability onset of riser fairing and to 

investigate their influences through conducting a parametric study. 
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Chapter 3  

Critical Review 

This chapter will investigate the concepts of vortex, vortex shedding and vortex-

induced-vibration (VIV). It will then elaborate the significance of VIV in marine 

risers design and explain the general methods of tackling the issue. The family of 

riser fairings will be proposed as one of the most suitable devices of tackling the 

above issue and will be addressed methodically having its merits and failings 

discussed.  Finally, the areas requiring further attention will be proposed. 

3.1 Vortex-Induced-Vibration (VIV) 

In an ideal fluid which in definition has no viscosity, a vortex is a type of flow in 

which streamlines comprise of co-centric circles. In this type of flow, fluid particles 

swirl in the same direction about the centre of vortex in different orbits with various 

velocities (Figure  3-1).  

 

 
Figure  3-1  Single Vortex in Ideal Fluid. 

θ̂  
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The strength of the rotational field is measured by a parameter called ‘circulation’. 

Circulation, Г, of a fluid region is defined as the line integral of velocity vector along 

a closed path (Blevins, 2001), 

V dlΓ = ⋅∫   3-1 

Where V  is the velocity vector; (.) is vector dot product; and dl denotes the vector 

element of integration path. The equation of continuity of incompressible fluid is in 

the form of Laplace’s equation, 

V 0∇⋅ =   3-2 

where ∇  is the vector gradient operator. The velocity potential function of a vortex 

flow is computed based on its circulation,  

ˆ
2
Γ

ϕ = θ
π

  3-3 

Since ∇  is a linear operator, it is possible to superimpose two potential flows like 

vortex to construct a third potential flow. Figure  3-2 illustrates two vortices with 

opposite but equal circulation. It is readily shown (Blevins, 2001) that these two 

vortices form a flow pattern in which one of the streamline encompasses both 

vortices, moving with a specific velocity, Γ/(2π )a , in the direction perpendicular to 

the line connects the centre of two vortices. The variable a , is here the distance of 

two vortex centres. 

 

 
Figure  3-2  Two Potential Vortices with Opposite but Equal Circulation (Blevins, 2001). 
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Likewise, a number of potential vortices can be considered simultaneously. Figure 

 3-3 depicts an infinite double staggered row of vortices in which vortices on each 

row has opposite sign from those on the other row. 

 

 

Figure  3-3  Infinite Double Staggered Row of Vortices (Blevins, 2001). 

Back to the reality, in a viscose fluid like water about an obstacle, boundary layer 

growth and flow separation are governed by inertia of flow particle and viscosity of 

fluid. Reynolds number is a dimensionless parameter to show the ratio of inertial 

force to viscous force, 

UDRe =
ν

  3-4 

where U is the free stream velocity; D is the maximum section width; and ν denotes 

the kinematic viscosity of fluid. As the Reynolds number rises, the inertia force 

becomes dominant and the flow is far more likely to separate from the back of 

obstacle. 

As a viscous fluid particle or cell moves toward the frontal edge of a body like a 

cylinder, the pressure intensifies from free stream pressure to stagnation point 

pressure in front of the cylinder. The high pressure region in the vicinity of the 

leading edge pushes fluid particles about the cylinder and causes boundary layer to 

develop about both sides. At very low Reynolds number, e.g. Re < 5, the fluid flow 

follows the cylinder contours and the boundary layer is bound to the cylinder surface. 

However, high pressure is not capable of forcing the flow about the aft section of the 

cylinder at a high Reynolds number. Thus, at a point ahead or aft of the widest 

section of body, depending on the Reynolds number, boundary layers separate from 

each side of cylinder and build two shear layers that continues aft in the flow 

(Blevins, 2001). Since a particle on the inner edge of separated boundary layer, 
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which was in contact with cylinder surface, moves more slowly than a particle on the 

outer edge, which is still in contact with the free flow; both shear layers turn in 

behind the cylinder and fold on each other and form two discrete swirling vortices as 

shown in Figure  3-4. 

 

 
a) 

 
b) 

Figure  3-4  Bound Vortices Behind a Circular Cylinder a) Schematic b) Flow Visualisation. 

As the Reynolds number increases, the vortices become unstable and by any small 

perturbation, they begin to leave at the near wake of the cylinder and move 

downstream with the flow. When a pair of vortices or a single vortex leaves the 

body, the above cycle is repeated and the new vortices are formed in their place 

again. This phenomenon is called ‘vortex shedding’ as it looks like that the structure 

is shedding vortices. The train of periodically shed vortices behind the cylinder was 

first investigated by von Karman and is associated with his name as ‘von Karman 

Vortex Street’ (Figure  3-5). 
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Figure  3-5  Von Karman Vortex Street Aft of a Circular Cylinder. 

Bluff structures, when located in fluid flow, shed vortices and as the vortices are 

shed from one side and then the other, pressure distribution changes continuously 

over the body surface (Figure  3-6). The oscillating pressure imposes time-variant 

forces on structure and causes elastic structures to vibrate. This type of vibration that 

originates from vortex shedding is known as ‘Vortex-Induced-Vibration’ or in brief 

‘VIV’. 

 

 
Figure  3-6  Variation of Pressure Distribution in Vortex Shedding (Blevins, 2001). 

The most important VIV parameters are: the lift coefficient, the shedding frequency 

(Strouhal number), the shedding frequency bandwidth and the correlation length 

(Pantazopoulos, 1994). 

The dynamic force in cross-flow direction due to shedding vortices is conventionally 

referred to as lift force. As was mentioned earlier, this force is a direct result of 

fluctuating pressure distribution. For a cylinder in steady flow, it is an alternating 

force that in some cases can be considered regular and periodic while in other 

situations its behaviour seems very complicated and rather random.  

Vortex shedding frequency is often described by the Strouhal number (S), a 

dimensionless proportionality parameter of the form, 
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sf DS
U

=   3-5 

where fs is a frequency associated with vortex shedding in Hertz; D is the cylinder 

diameter; and U is the free stream flow velocity. It should be noted that the Strouhal 

number characterises the mean or predominant spectral frequency, fs, and gives no 

detail about the range of frequencies present. The Strouhal number of a stationary 

circular cylinder is a function of Reynolds number and to some extent, surface 

roughness and free stream turbulence (Blevins, 2001). 

The general description of vortex shedding so far may imply that it is a two-

dimensional phenomenon. But experimental evidences from uniform and shear flows 

about stationary cylinders indicate that the shed vortices have a significant length in 

the axial (along the cylinder axis) direction, leading to term ‘vortex cell’ 

(Pantazopoulos, 1994). The three-dimensionality of vortex shedding can be 

characterised by a span-wise correlation length. The degree of correlation between 

vortex shedding or associated lift forces along the cylinder axis is a key factor in 

determining the net force, and consequently, vibration amplitude. Like the other 

characteristic of vortex shedding, correlation length is also dependent on Reynolds 

number. It tends to decrease with increasing turbulence. Typical values for stationary 

cylinders (Blevins, 2001) range from 100 or more diameters for laminar vortex 

streets at Re = 60 to 20 diameters at Re = 100 and 5 diameters for fully turbulent 

vortex streets at Re = 104. If the free stream flow velocity varies over the cylinder 

length at transitional Reynolds number, these cells also develop and vortex shedding 

frequency fluctuates discretely in ladder-like steps along the span with each step, 

spanning about 4 diameters. 

3.2 Impact on Deepwater Marine Risers 

Deepwater marine risers are flexible bluff structures. They are flexible because even 

though their diameter can reach up to 0.6 metres in steel catenary risers (SCR), the 

ratio of length to diameter, which is conventionally called aspect ratio, is very high 

and they behave like a tensioned string or wire.  
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They are also placed in category of bluff structures. By definition, “a bluff structure 

is one in which the flow separates from a large section of the structure’s surface. … 

The primary purpose of these structures is not to gain lift or minimize drag …, but 

rather to bear loads, contain flow … These structures are not aerodynamically 

optimised. Flow-induced vibrations are usually regarded as a secondary design 

consideration” (Blevins, 2001).  

Consequently, due to flexibility and bluffness, marine risers are one of the structures 

which are very much prone to vortex-induced-vibration.  

The significant point here is that when the structure transforms from rigidity to 

flexibility, the mechanism of coupled system of structure and fluid can vary a great 

deal. This is due to the fact that generally, fluid flow and the flexible structure are 

coupled through the force exerted on the structure by the fluid and vice versa. The 

fluid force causes the structure to vibrate. As the structure vibrates, its orientation to 

the flow changes and the fluid force and behaviour may change too, in order to adapt 

itself to the new situation because as the fluid exerts a force on the structure in its 

new position, the structure exerts an equal but opposite force on the fluid.  

Therefore, hydrodynamic forces on a flexible cylinder like riser, which is capable of 

oscillating, are much more complex than forces on a stationary cylinder due to 

reciprocal interaction between the oscillating cylinder and the fluid medium. In 

general, hydrodynamic forces on an oscillating cylinder include the added mass and 

the damping force in addition to lift and drag. 

The motion of cylinder influences the wake, particularly vortex shedding, aft of the 

structure in different ways. Blevins (2001) explored many researches and 

summarised the effects of transverse vibration of a cylinder with frequency at or near 

the vortex shedding frequency in five items. According to his summary, the cylinder 

vibration may: 

(1) Increase the strength of vortices and alter the lift force. 

(2) Escalate the spanwise correlation of the wake. 

(3) Push the vortex shedding frequency to shift to the frequency of cylinder 

vibration. This state is called lock-in or synchronisation.  



3. Critical Review 

 
© Mahdi Khorasanchi, 2009 23

(4) Amplify the mean drag on the cylinder. 

(5) Change the phase, sequence, and pattern of vortices in the wake. 

The fluid forces imposed on the cylinder by vortex shedding will be a function of the 

cylinder’s vibration amplitude and may be self-limiting at large amplitude (Blevins, 

2001, Pantazopoulos, 1994). In brief, as cylinder’s vibration at resonance with vortex 

shedding increases in amplitude, the cylinder’s motion organises the wake and 

spanwise correlation increases. The vortex strength increases and so does the lift 

coefficient with it (Blevins, 2001). However, it should be noted that the relation of 

lift coefficient and vibration amplitude is not an endless cycle. There is a consensus 

in literature that lift increases with response amplitude up to a point, then decreases 

with further increases in amplitude (Pantazopoulos, 1994). 

Now, in the design point of view, marine risers have low damping and they are 

subject to currents. Thus, likely resonance results in large amplitude vibration with a 

broad lock-in band. As flow velocity escalates, the riser passes from one resonance to 

another and sustains the oscillation. This type of vibration is of high importance 

because of its potential to lead to destructive motions and severe damage. This 

vibration shortens the fatigue lifespan of the riser and can end up with early fatigue 

failure which causes disruption in production flow and imposes higher unexpected 

costs on industry due to the down time loss and repair expenses.  

On the other hand, the drag coefficient is mainly a function of the section shape and 

the dynamics of flow in terms of the Reynolds number. However, the drag can be 

amplified by this vibration to the extent of two or three times the normal value. High 

drag, however, is not as problematic in shallow water and on fixed platforms but is 

very difficult to deal with in deepwater. High drag results in excessive joint angle in 

a drilling riser and forces the rig owners to halt the drilling operation. This again 

imposes unforeseen costs on the industry due to the down time. The solution to high 

drag and its aftermath is to raise the tension of the riser, only if it can bear higher 

stresses. Implementation of higher tension requires larger platforms or further 

equipment and both of them swallow a huge amount of investor’s money. 
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Above all, the problem of VIV in marine risers and its adverse consequences become 

worse as the oil industry is stepping in deeper waters. Working in extremely deep 

water needs longer risers. Deploying higher length of riser reduces its natural 

frequency and this phenomenon makes the vibration more susceptible to lock-in or 

synchronise with the vortex shedding. In simple terms, it raises the risk of resonance 

and jeopardises the durability of the riser. Moreover, a longer riser provides more 

structural flexibility and consequently lets the system experience a larger amplitude 

of vibration. This may intensify the lift and drag forces and exacerbates the 

conditions. 

Eventually, due to the fact that VIV can be seriously harmful to marine risers and the 

severity of this problem increases in deeper waters, this has inspired engineers to 

seek for methods of mitigating these vibrations. These methods will be addressed in 

the next section. 

3.3 Methods of Mitigating VIV 

Reducing the risk of resonant vortex-induced-vibration and associated amplification 

of the mean drag is one of the design concerns for engineers. VIV and its 

consequences are a function of a combination of structural properties and flow and 

therefore can be substantially confined by modifying either the structure or the flow. 

The aim of the first two methods below is to manipulate the structural properties 

while the last two methods try to alter the flow in vicinity of the body. 

(A) Tune Design Parameters to Avoid Resonance  

If the structure is designed appropriately in order to keep the natural frequency of the 

structure in the mode of interest (fn) outside of the shedding frequency bandwidth, 

then the risk of resonant vibration in that specific mode will diminish dramatically.  

One appropriate way to achieve this is through stiffening the structure. But stiffening 

is usually more feasible for smaller structures. The difficulty of applying this 

technique to long marine risers is that they behave like a tensioned cable and the 

main stiffness is due to end tension and increasing the tension as earlier mentioned, if 
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possible, imposes higher costs. Moreover, very large values of riser length 

predominantly control the natural frequency. 

(B) Increase Structural Damping 

If the resonant VIV is not avoidable, the next method is to raise the structural 

damping. Then the motion will be controlled and the amplitude of vibration will 

abate. In particular, selecting appropriate damping could limit the peak amplitude at 

resonance to a value less than the deflection induced by drag (Blevins, 2001). 

There are many general methods to increase the damping. They can be classified into 

two main areas of tuned and wide range. Most types of dampers for hydro-

dynamically loaded structures are heavy and mechanically complicated (Barltrop and 

Adams, 1991). Two tuned dampers which have been deployed in marine field are 

‘chain dampers’ and ‘nutation dampers’. Chain dampers are rubber-covered chain, 

restricted in a container installed on the structure. Nutation dampers consist of tanks 

in which water sloshing dissipates energy. Drawbacks of using either one of these 

dampers on a marine riser include a widened projected area, an increase in the drag 

force and additional weight considerations. Wide frequency band damping can be 

produced by adding rubber or other visco-elastic materials in joints. This type of 

damper demands higher flexibility of structure, particularly if they are designed to 

damp high amounts of energy. 

(C) Streamline Cross-Section 

It was explained in Section  3.1 that vortices are formed aft of the structure when the 

flow is separated from the body surface. Consequently, if the separation from the 

structure can be minimised, then the vortex formation followed by vortex shedding 

can be minimised too and drag will decline accordingly. To achieve that, the leeside 

of a structure needs to be streamlined. To be effective, a streamline cross section 

should be in the form of a taper of a 6 longitudinal for each unit lateral or an included 

angle of the taper less than 8 to 10 degrees (Blevins, 2001, Ericsson and Reding, 

1980, Grimminger, 1945, Hoerner, 1965). This restriction elongates the section 

length which may be not acceptable for a set of risers in operational conditions, 
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unless a blunt end section is used. Moreover, streamlining is most practical when the 

direction of current is fixed relative to the structure and the structure is stiff enough 

not to undergo flutter type instability which will be explained later in  Chapter 4.  

Thus, this method is not deployable for marine risers which experience currents from 

various directions across their service life, unless the streamlining shield is free to 

rotate and align itself to current. This became the concept for introduction of a VIV 

suppression device, called ‘fairing’, which will be presented in detail in Section  3.5. 

(D) Add a Vortex Suppression Device 

The purpose of installing a vortex suppression device is to control or manipulate the 

flow in the neighbourhood of the body, in order to disrupt or prevent the formation of 

an organised vortex street with long correlation length.  

For better understanding and phenomenological explanation of the mechanism of 

suppressing vortices, it is necessary to clarify two concepts, ‘entrainment layer’ and 

‘confluence point’ (Zdravkovich, 1981). The entrainment layers supply the 

irrotational fluid necessary for the growth of vortices in addition to rotational fluid in 

separated shear layers. The confluence point shows the region where the two 

entrainment layers from opposite sides of the cylinder converge and interact. The 

timing of vortex shedding is governed by the switch of the confluence point from one 

side of the wake axis to the other. Therefore, it can be expected that vortex shedding 

is quelled by interfering with shear layers or entrainment layers, or on the other hand, 

by preventing the confluence-point switch. 

To achieve this goal, there is a wide range of VIV suppression devices which fall 

into two groups of active and passive. Most of them are classified in the latter group 

which can be sub-divided further to reflect the function and method of suppression. 

Passive devices are categorised in three subgroups of ‘topographical devices’, 

‘shrouds’ and ‘near-wake stabilisers’ (Zdravkovich, 1981). 

A topographical device is any device which modifies the cylinder’s contour without 

being located mainly in the wake of cylinder. It suppresses the vibration through 

impact on shear layers separation and accordingly on the formation of vortices. 
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These devices are usually multi-directional and can be effective. But the tendency to 

increase drag is their main shortcoming. They include strakes, fins, studs and semi-

sphere bumps. 

Shrouds are, by definition, devices situated with a gap from cylinder’s surface such 

that it accommodates a flow of fluid in this gap. They suppress the vibration in two 

ways. The boundary layer separation is disrupted by leading section and the vortex 

growth and shedding are influenced by trailing section of shroud. Shrouds are multi-

directional but may not be quite as effective if their design is not appropriate 

(Barltrop and Adams, 1991). Shrouds have the advantage over topographical devices 

that the drag penalty is not as great. Shrouds can be produced in different forms 

including perforated, gauze, axial rods and axial slats. 

Near-wake stabilisers are devices designed to be located predominantly in the wake 

of a cylinder. They mitigate the vortex shedding by affecting the switch of the 

confluence point. In other words, the wake of a cylinder shedding vortices is unstable 

and asymmetric; these devices help to stabilise the wake and remove the asymmetry 

of the wake. They are also capable of hindering the formation of vortices by 

extending the shear layers downstream and preventing the entrainment of fluid across 

the wake of cylinder. As they should always lie in the wake, they are conceptually 

unidirectional but if due to variation of current direction, the wake is not fixed, they 

should be free to rotate about the cylinder. Therefore, their multi-directionality 

requires firstly their ability to rotate and secondly their capability to align themselves 

to current direction and wake. If so, these devices can be very effective at reducing 

both drag force and vortex-induced vibration. Lengthy chord is the drawback which 

can be crucial for a set of risers in operational conditions. Fairings, splitter plates and 

guide vanes are the traditional examples of these means. 

Active devices, as implied from the classification, need motive power to disturb the 

flow and eliminate vortex shedding. They can be subdivided into blowing or suction 

devices. Blowing devices generate columns of air bubbles or water jets around the 

cylinder to interfere with flow and prevent the mechanism of vortex formation. 

Suction devices do this by entraining the water. Active devices can be used multi-

directionally. They work well if the length of excitation is limited (Barltrop and 
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Adams, 1991). Such system is difficult to be implemented on a long riser. In 

addition, it requires pumps and power and can be not as cost effective as passive 

devices. 

Generally, vortex-shedding suppression devices are widely used for deepwater 

marine risers and hence will be elaborated in the next section. 

3.4 Vortex-Shedding Suppression Devices 

In Section  3.3, four methods of mitigating VIV were introduced and the associated 

penalties were explained. As was alluded, the first three methods are mainly related 

with design parameters which are not very flexible in marine risers. Consequently, 

the last method, addition of a vortex-suppression device, is often deployed if VIV is 

a concern in the riser design. 

A wide range of VIV suppression means has been devised to date that each of them 

falls in a group of classification presented in the previous section. Blevins (Blevins, 

2001), Zdravkovich (Zdravkovich, 1981) and Rogers (Rogers, 1983) summarised the 

main tools with associated merits and drawbacks. These devices, as shown in Figure 

 3-7, include (a) helical variations (protrusions, strakes or grooves), (b) different types 

of shroud, (c) axial slats, (d) spoiler plates, (e) stepped cylinder or semi-spheres 

bumpers, (f) ribbon or hair cables, (g) splitters, (h) pivoted guide-vanes or (i) 

streamlined fairings and finally active devices such as bubble jet, water jet or suction. 

Among these techniques, helical strakes are first-generation technology and 

apparently the most prevalent device for inhibition of VIV on risers, pipelines and 

other tubulars offshore. Helical strakes typically have three different raised sections 

or protrusions around the circumference of a column, much like a screw, with a pitch 

of several times the diameter of the cylinder and height of approximately ten percent 

of the diameter. 

Because they are wrapped helically, helical strakes shorten the correlation length of 

the vortices. Vortices are shed in finite cells and finite lengths from helical strakes 

and the shorter the vortices, the weaker they are. The principle is similar to that of 

the helical protrusions on industrial chimneys, first seen in the early 1950s.  
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Figure  3-7  Add-on Devices for VIV Suppression of Cylinders (Blevins, 2001, Kumar et al., 
2008). 

Helical strakes have the advantage that they are effective irrespective of the direction 

of current. They also have high VIV suppression efficiency, typically the VIV 

response amplitude is reduced by 80% (Rogers, 1983). However this VIV 

suppression comes with a detrimental side effect in the form of increased drag. The 

drag on the bare risers, even without the increase, is already extremely difficult to 

deal with in deep waters. With the increase, the problem is further exacerbated. 

Helical strakes increase drag because they cause early separation of the flow around 

a tubular and amplify Cd (Shell Global Solutions’ website). Moreover, they widen 

the effective frontal area as well. 

Another problem associated with helical strakes on subsea pipelines and risers is that 

their efficiency is reduced by increased water drag, which results from build up of 

marine growth (Armstrong, 2004a). In other words, marine growth on helical strakes 

degrades their VIV suppression capability. It requires underwater cleaning 
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technology or anti-fouling coating to retard marine growth (Shell Global Solutions’ 

website). 

The other shortcoming of deploying helical strakes on marine risers is that they are 

substantially reduced in VIV suppression when they are on a downstream (or down 

current) tubular (Allen et al., 2008). 

Large drag of helical strakes was a great challenge for industry. Therefore, the 

attentions turned into a device which can simultaneously suppress VIV as well as 

reduce the drag. To this end, fairings became an option. The “teardrop” profile of the 

fairings could reduce drags and eliminate VIV.  

Fairings are relatively a new field in marine risers VIV and will be discussed in more 

details in the next section. 

3.5 Riser Fairing  

(A) Description 

Outfitting all or some portions (often the upper joints) of the riser with fairings is 

relatively a common method and maybe the most effective and best field-proven 

solution to both drag and VIV (Barltrop and Adams, 1991, Cuming-Corp.). As 

mentioned earlier in Section  3.3, fairings are classed in the subgroup of ‘near-wake 

stabilisers’ and they reduce both drag and motion by streamlining the fluid current 

round the riser and consequently weakening the vortices shed aft of the body. Thus, 

they need to be in the form of a streamlined profile. 

Fairings are typically of ‘teardrop’ geometry, varying in terms of the chord length, 

nose thickness, span length and tip and tail details. Figure  3-8 illustrates the most 

common types of fairing which are generally specified in terms of the ratio of chord 

length (c) to thickness (t). The face of fairings is usually either convex or flat in the 

leeside. The trailing edge can vary from a sharp point end to rounded or even flat 

blunt end. The fairing tail may be equipped with a pair of wedges, rounded bumps or 

perpendicular fins to enhance the performance. It is usual to have blunt trailing edge 

with some out-turn of the plates to provide stability (Gardner and Cole, 1982). The 
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in-line fins have been also implemented in some other cases. Fairings are also 

generically closed sections, fully encapsulating the riser. The space within the fairing 

can be used for buoyancy material. But, a derivative of this scheme is to allow flow 

between the two side plates in an open section in which the fairing consists of a fin 

portion only, strapped to the riser length at discrete points (Figure  3-9). The plates 

may be shorter than those of a fairing and the buoyancy material can be included 

(Barltrop and Adams, 1991, Grimminger, 1945, Lee et al., 2006a).  

 

 
 

a) 
 
 

 
b) 

Figure  3-8  Typical Geometry of a Riser Fairing.  

a) Convex Face with Rounded Tail, b) Flat Leeside, Blunt End with Fins. 

 
 
 

 
 

Figure  3-9  Tail-Fin Fairing (Lee et al., 2006a). 

Ortloff et al. from Exxon Production Research Company patented one of the earliest 

fairings in 1983 (Ortloff et al., 1983) which had the ordinary shape of convex face 

c

t
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with a blunt edge fitted with a pair of perpendicular plate fins (Figure  3-10). In 

addition to that, there are also a number of other profiles that have been introduced 

and patented as riser fairing. In 1995, Allen and Henning from Shell Oil Company 

introduced the concept of the short fairing for the first time (Allen and Henning, 

1995b). Short fairing as shown in Figure  3-11 with c/t ratio in the range of 1.25 to 

1.5 was patented as a non-rotatable device. Later that year, the inventors proposed 

the flexible fairing (Allen and Henning, 1995a) which in fact was comprised of a 

deformable shroud (Figure  3-12), capable of adjusting itself in response to changes in 

flow direction. It was claimed that they would be tolerant of marine life growth. A 

modified design of quasi-fairing showed good VIV suppression performance (Brown 

and King, 2008). Six years after introducing the short fairing, Allen et al. modified 

and promoted the idea again and announced the ultra-short fairing (Allen and 

Henning, 2001c). According to their definition, “the ultra-short fairing has a leading 

edge substantially defined by the circular profile of the marine element for a distance 

following at least about 270 degrees thereabout and a pair of shaped sides departing 

from the circular profile of the marine riser and converging at a trailing edge” 

(Figure  3-13). The chord to thickness ratio (c/t) of such a section should be between 

about 1.10 and 1.20. One year later, Masters et al. patented a completely new design 

named ‘a dual-fin splitter’ (Figure  3-14). The new design was found to have very 

good VIV suppression quality while at the same time having its drag very low 

(Masters et al., 2002, Spencer et al., 2007). 

 

 

 
Figure  3-10  Ortloff et al Fairing (Ortloff et al., 1983). 
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Figure  3-11  Short Fairing (Allen and Henning, 1995b). 

 
 
 
 
 
 

 
Figure  3-12  Flexible Fairing (Allen and Henning, 1995a). 

 
 
 
 
 
 
 

   
Figure  3-13  Ultra-Short Fairings (Allen and Henning, 2001c). 
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Figure  3-14  Snap-on Rotating Reduction Fairing (Masters et al., 2002). 

 

Due to operational constraints, generally the chord length must be relatively short 

and thus, the fairing typically resembles a very thick foil. However, as the ocean 

currents can come from any direction, the fairing differs from a fixed foil or wing in 

the sense it is free to swing about the central riser. Moreover, in the spanwise 

direction the fairing is not continuous along the riser length; rather it is made of 

many finite but contiguous segments. 

Regardless of section profile, Figure  3-15 shows schematically a fairing in three 

successive stages, i.e. installation, submergence and operation. Installation and 

retrieval is one of the challenging aspects and therefore, many fairings have been 

developed and patented which are quite different with respect to the installation 

method and apparatus (Denison et al., 2000a, Denison et al., 2000c, Denison et al., 

2000b, McMillan and Allen, 2006, McMillan et al., 1999, Ortloff et al., 1983, 

Sweetman, 1998). Allen and Henning also suggested a staggered fairing system 

consisting of an array of non-rotative fairings with different orientations along the 

axis of marine element (Allen and Henning, 2001b) to protect it from VIV over an 

extended range of angles of attack. They also expanded the scope of fairing 

application to spars and developed a spar-fairing and accordingly designed the 

necessary installation method (Allen and Henning, 2001a). 
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Figure  3-15  Riser Fairing at Installation, Submergence and Operation. 
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(B) Scope of Application  

Fairings operate most efficiently while the riser is in a near vertical configuration 

(Bai and Bai, 2005). Thus, they are typically used on vertical or near-vertical risers. 

They have been successfully deployed on upper catenary section of SCRs, drilling 

risers and top tensioned risers including Auger, Mars, Ursa, Brutus and Na Kika. 

The use of fairings in a marine application had been even greater than risers and 

spars. In the late 1970s/early to mid 1980s, a number of studies commenced to 

develop designs of faired cables (Nair and Hegemier, 1979, Nair and Hung, 1984, 

Wingham, 1983, Wingham and Keshavan, 1978, Vandiver and Mazel, 1976). At the 

time, faired cables with 4 < c/t < 10 were successfully deployed for towing 

underwater objects, however, some instabilities in the form of divergence at low 

speeds and  flutter at high speeds were reported too (Nair and Hung, 1984, Nair and 

Hegemier, 1979). Faired cables were typically continuous and the faired part was not 

free to rotate. More significantly, they were still far thinner than the riser fairing.  

In seeking the behaviour of a typical riser fairing, as a fairing looks like a foil, either 

an airfoil or hydrofoil, its characteristics may be initially assumed to be like those of 

foils. Foils have been investigated quite well in aerodynamics (Fung, 2002, Abbott 

and Von Doenhoff, 1959, Anderson, 2007, Bertin and Smith, 1998, Dowell et al., 

1995) and hydrodynamics (Newman, 1999, Breslin and Andersen, 1994, Saunders, 

1956). Many experimental works has been carried out on various sections in different 

conditions and based on these findings several theoretical methods have been 

established to predict the dynamics of foils. Most of these theories are on the basis of 

inviscid flow which is not applicable in dynamics of fairings in seawater. Moreover, 

they assume foils to be thin; which is completely different from riser fairings with 

the thickness to chord ratio of several times larger. It should be noted that thickness 

can play an important role in determining hydrodynamic properties of fairings; 

firstly, it raises the drag, secondly, it makes vortex shedding more likely due to 

resembling a bluff section, thirdly, a higher thickness could lead to early separation, 

stall phenomena and alter the slope of lift coefficient curve adversely, and finally, a 

higher thickness results in a higher Reynolds number and different governing 

conditions.  
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All in all, riser fairings demonstrated different features and were not comparable to 

thin foils typically used in aviation or the marine industry. They needed separate 

investigation and many experimental studies therefore have focused on their merits 

and drawbacks as follows. 

(C) Merits 

Like helical strakes, fairings are an omnidirectional device, but in regard to merits, 

fairings are a lower-cost alternative to them (Allen and Allen, 2008) with a number 

of other advantages. 

Firstly, they are generally considered to be more effective solution to deepwater VIV 

of marine risers (Armstrong, 2004a, Rogers, 1983). They also benefit from lower 

drag coefficient relative to a bare cylinder. The drag coefficient for such a device, 

provided that it is continuous and based on the full width, is about 0.3. However, if 

the fairings are in short sections it will be significantly higher, for example Cd = 1.0 

for a cylinder and spaced fairings at a Reynolds number of 105 (Barltrop and Adams, 

1991). In general, excellent VIV suppression performance and drag reduction of 

various fairing sections have been reported in many references (Lee et al., 2004a, 

Allen et al., 2007a, Gardner and Cole, 1982, Ikeda et al., 2003, Lee et al., 2006a, 

Grant and Patterson, 1977, Grimminger, 1945).  

It should be noted that suppression effectiveness is a function of the chord to 

thickness ratio (c/t) (Allen and Henning, 2008); however, c/t is not sufficient for 

determining fairing performance. There are other significant parameters which 

should be taken into account including detailed design of fairing geometry (face and 

tail), centre of mass and centre of lift (Slocum et al., 2004, Miyazaki et al., 2008). 

Nevertheless dynamic characteristics such as the location of the centres of mass, 

pressure and rotation plus lift and moment coefficients, though vital, are often not 

reported (Lee and Allen, 2005, Lee et al., 2004a, Lee et al., 2005, Lee et al., 2004b, 

Slocum et al., 2004). The hydrodynamic forces, their trend versus variation of angle 

of attack and the location of hydrodynamic centre were addressed for a few given 

sections (Allen, 2003, Calkins, 1984, Grant and Patterson, 1977, Ikeda et al., 2003). 
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These parameters are relatively difficult to calculate accurately due to lack of 

information about the detailed design of a fairing in literature.  

The second advantage is that when located on downstream tubulars, fairings have a 

significantly lower drag and suppress VIV more effectively than helical strakes 

(Armstrong, 2004a, Lee et al., 2006b, Allen et al., 2008). 

Thirdly, their VIV suppression performance is less sensitive to their exterior being 

covered with marine growth and will continue to mitigate VIV more effectively over 

time (Armstrong, 2004a, Allen et al., 2008). 

An added benefit of introducing fairings for VIV suppression is that they not only 

minimise the vortex excitation, but also generate large hydrodynamic damping in the 

range of 0.10 to 0.18 (Lee et al., 2004b). It should be noted that test results on small 

fairings are very conservative for determining the resulting displacements for a real 

pipe with fairings because fairings on longer spans will additionally reduce the pipe 

vibration due to damping of adjacent sets of fairings (Allen et al., 2007a). 

Fairings can be designed to have neutral buoyancy in water as well. 

(D) Difficulties 

Chord Length 

In the process of selecting a fairing for a given riser, one of the controversial issues is 

how to determine the appropriate chord length. On the one hand, clearance margins 

with the guidelines, capital and running time cost considerations and the desire to 

minimise weight all point towards a short and stubby fairing. On the other hand, the 

relationship between performance and chord length point toward a longer fairing 

(Grant and Patterson, 1977). 

Fairings with longer chords (about 2.3D and longer) have been known to often 

suppress VIV quite effectively, but are also prone to a type of instability called 

flutter. While flutter can be minimised by careful design of the fairing, these design 

changes can be expensive to implement. Moreover, these expensive longer chord 

fairings, which are heavier, entail higher installation costs too. This means long 



3. Critical Review 

 
© Mahdi Khorasanchi, 2009 39

chord fairings should only be used when other, more economical, alternatives have 

been exhausted (Allen et al., 2007a). 

Coverage Length 

The next design parameter to be selected is the necessary length which should be 

fitted with fairing and its location along the riser. If the current profile is not uniform, 

naturally fairings are at least required in those parts that experience the highest 

current speeds. 

According to the observations, there is no necessity to cover the entire riser with 

fairings. It has been reported that fairings can be effective even if they only cover 

25% to 50% of the cylinder length provided that they are split into short lengths and 

that the gap between the length is not greater than a few diameters (Barltrop and 

Adams, 1991). In fact fairings can be very effective even if they only cover the anti-

node area of vibration (Allen et al., 2007a). But if the flow region is long, or the 

vibration modes are high, the effects of fairings is more localised and more fairings 

are needed to achieve the VIV suppression objective (Lee et al., 2004b). 

Test data confirmed that fairings have a strong local presence, consisting of a large 

reduction in the exciting lift forces together with significant damping. It means if a 

cylinder has a significant fairing coverage, the VIV will be dominated by excitation 

from currents outside of the fairing segment (Allen et al., 2007b, Lee et al., 2005). 

This test data revealed that the effectiveness of fairings in VIV suppression increases 

with increased fairing density until a density of 70% is obtained. Beyond that, 

increases in fairing coverage do little to reduce the vibration. Hence, risers in the 

field can be fitted with less than full coverage of fairings if the fairings cover the 

region experiencing the highest velocities. 

In general, the VIV behaviour of a marine riser is very much dependent on the total 

length of coverage with fairings and also the arrangement/distribution of fairings 

along the riser length. This makes the VIV modelling of such riser more complicated 

and demands extensive test data and model calibration (Lee and Allen, 2004, Lee and 

Allen, 2007).  
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Installation and Costs  

Following design, installation and cost are the other significant points. They include 

material cost and weight, installation time and cost, and ability to retrofit. One of the 

important considerations is quick and easy assembly to speed installation on the riser 

in the moonpool, and robust construction to withstand wave action during riser 

service life (Cuming-Corp.).  

Fairings are relatively easily installed in the yard, during pipe lay operations or via 

retrofit (Armstrong, 2004a). Nevertheless, special methods may be required for each 

case (Armstrong, 2004c, Armstrong, 2004b, Armstrong, 2006, West et al., 2007). 

Fairings have been fitted in many locations in severe environments, such as 

deepwater currents in the Gulf of Mexico, including on the MARS and URSA 

tension leg platforms. A deepwater spar in a case study demonstrates the feasibility 

of retrofit and replacement of high-drag helical strakes with fairings. 

The decision to run fairing on drilling risers is critical in terms of the additional cost 

to run fairings versus downtime cost from suspended operations due to current 

conditions causing excessive flex-joint angles. Balch et al discussed the appropriate 

conditions for using fairing. They developed a systematic approach to determining 

the requirements for fairings in drilling program (Balch et al., 2003). 

A way of minimising fairing cost is to use tailfin fairing. It can be very light and fast 

to install, with potentially less material cost than a full fairing (Allen et al., 2007a, 

Lee et al., 2006a). Tail fairings are very effective at suppressing VIV and rival full 

fairings and helical strakes in their VIV suppression ability (Lee et al., 2005). 

Marine Growth 

Like the helical strakes, durability and the continuance of good performance after 

installation is the next concern. There exists a possibility that marine growth 

gradually degrades the fairing performance and threatens its function. 

It is clear that if the current is variable, fairings must rotate freely without inducing 

torque on the main structure. This requires that fairings be provided with low-friction 

bearing surface and designed to generate sufficient turning moment to guarantee 
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accurate ‘pointing’ (minimum angle of attack) into the current. Therefore, their 

ability to weathervane reliably over long periods is vital to their performance in most 

offshore locations, particularly tidal zones. 

The question is whether fairings will continue to swing freely on risers over time to 

align with current. Fairings have been shown to move freely about tubulars without 

need for cleaning. On the MARS tension leg platform, for example, the fairings 

installed on production risers in 1996 continue to move freely. Moreover, copper 

rings have been incorporated on thrust collars to retard marine growth and to keep 

fairings weathervane (Shell Global Solutions’ website). 

It has been reported that the presence of surface roughness on the exterior surface of 

a fairing can reduce its effectiveness in streamlining the flow. Moreover, fairings 

with large hard marine growth are not as effective on a downstream cylinder as when 

on an upstream cylinder (Allen, 2003, Allen and Allen, 2008). But they still have 

substantial VIV suppression capability relative to the bare pipe. Short fairing has 

shown excellent performance with surface roughness (Lee and Allen, 2005). Short 

fairings performance was investigated more profoundly in terms of suppression 

capability, and how it is influenced by other parameters, e.g. upstream tubulars, 

marine growth, Reynolds number and aspirated section (Allen, 2003, Pontaza and 

Menon, 2008). 

Misalignment 

Eventually, there remain two main concerns including misalignment and instability 

which demand special attention. Each of them can lead to malfunction of fairing and 

causes fairing to jeopardise the riser instead of protecting it. 

Fairings are designed to streamline the flow around the riser. The best performance 

occurs when they are in line with coming current and the more distortion from this 

position happens, the more deterioration of performance is expected. Thus, one of the 

characteristics of an ideal fairing is the ability to align itself to current accurately. 

However, for some fairings it was observed that the fairing did not point itself into 

the current properly (Grant and Patterson, 1977, Calkins, 1984, Meyer et al., 1995). 



3. Critical Review 

 
© Mahdi Khorasanchi, 2009 42

An angle of attack of zero was not a stable equilibrium orientation because if it 

represented a stable equilibrium configuration, then any disturbance from that 

position would produce a moment tending to bring it back while quite the reverse 

was documented. Any small angle of attack set up a moment forcing the fairing to 

rotate more. Misalignment or equilibrium orientation at an angle rather than zero 

increases both the drag force and the risk of vortex shedding from the leeside of the 

fairing which both are in contradiction to the defined goals of using fairing. 

Moreover, it introduces dual equilibrium positions on the two sides of zero angle of 

attack and small oscillations between these positions were observed. These small 

amplitude oscillations or so called ‘fishtailing’ may be controlled by adding 

appropriate trailing-edge fins or bumps but the mechanism is not yet clear. 

This problem should be assessed in the light of section hydrodynamic characteristics 

but it has been reported that this problem is more common for some specific fairings. 

Particularly fairings with a very short chord, 1.10D to 1.25D, do not all align 

perfectly with the flow even at high speeds (Allen et al., 2007a). Therefore, there is a 

lower limit for chord to thickness ratio in an effective fairing. 

Instability 

The more important and major concern is that in the model test of some fairing 

designs, researchers have observed instability at higher Reynolds numbers.  

Some designs demonstrated typical VIV response meaning that these sections, 

though streamlined to some extent, were still experiencing vortex shedding and 

associated vibrations while some other designs exhibited self-induced oscillation or 

dynamic instability characterised by the increase of responses upon excitation 

(Ericsson and Reding, 1980, Ikeda et al., 2003, Lee and Allen, 2005, Meyer et al., 

1995, Slocum et al., 2004). The frequency of this vibration was reported to be less 

than the frequency of corresponding vortex shedding (Braaton et al., 2008). 

Dynamic instability, defined in a classical sense, is the fact that response of a system 

increases with time which is caused by negative damping in the system (Lee and 

Allen, 2005). Lee and Allen expound that in the context of VIV, dynamic stability 
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can be described otherwise. As the flow speed increases the VIV motion of a 

cylinder rises to a certain level, and then the motion interferences with the vortex 

shedding process and begins to break up the symmetric pattern of alternate vortices. 

The motion magnitude does not increase even if the flow speed continues to rise, 

thus the process is self-limiting. When the cylinder is fitted with VIV suppression 

devices, such as fairing, the dynamic properties may change. Fairings, if not properly 

designed, can rotate and form a dynamically unsymmetrical section which entails lift 

force and may amplify the vibration beyond that of a bare riser. This type of 

vibration is not self-limiting anymore.    

Some researchers tried to explain the source of the problem through early separation 

of boundary layer and stall (Calkins, 1984, Ericsson and Reding, 1980). Accordingly, 

it was recommended to reduce the angle of fairing contour in the leeside to match the 

fairing design to the flow regime (Ericsson and Reding, 1980, Grimminger, 1945). 

Qualitatively, the onset of instability due to stall at low Re and subsequent 

restoration of stability with increasing Re is consistent with movement of the 

separation point away from the pivot point as Re is increased. 

Meyer et al argued that observed instability was due to the fact that the centre of 

rotation of the fairing was located behind the aerodynamic centre (Meyer et al., 

1995). They proposed a few methods to rectify the problem including effectively 

moving the centre of rotation closer to the leading edge by lengthening the fairing 

and also moving the lift vector to the trailing edge by contouring the fairing shape. 

Meyer et al and Calkins advised to reduce the high pressure on the upper surface of 

the fairing near the trailing edge by adding vortex generators (Meyer et al., 1995, 

Calkins, 1984). They along with other researchers suggested to employ trailing-edge 

wedge or fin to tackle the problem of instability and misalignment by creating 

additional moment to counter the unstable moment (Calkins, 1984, Grant and 

Patterson, 1977, Meyer et al., 1995, Gardner and Cole, 1982).  

An analytical model was also proposed to explain the instability. This model was 

based on a simple two-dimensional model of airfoil flutter to predict the threshold 

velocity at which large oscillations had been observed in tank tests (Slocum et al., 

2004). The model estimated the critical current velocity for the simple cases but was 
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unable to explain the evolution of motion thereafter and why the observed motion 

reached steady-state amplitude. The model did not provide a basis for prediction of 

this speed limit for other modes or other riser configurations and did not include the 

effect of friction damping or hydrodynamic damping. 

On the other hand, it has been emphasised that short fairings produce responses for 

operational conditions that can be characterised as both low and dynamically stable 

(Lee and Allen, 2005). In fact, the dominant suppression mechanism may be due to 

large hydrodynamic damping that they generate (Lee et al., 2004b). This large 

damping can be a key reason to prevent the instability of short fairings response. 

Short fairing was further assessed in terms of motion trajectory of the midpoint of the 

riser (Lee et al., 2004a). A new design called ‘a dual-fin splitter’ is claimed to be 

significantly more stable (with no tendency to flutter) than short (1.5D) or long 

(2.5D) fairings (Spencer et al., 2007). 

In summary, important issues with respect to the use of riser fairings include ease of 

installation, hydrodynamic performance and long-term reliability/durability. Drag 

reduction is the key to extending the operability window. Extending operability will 

increase the risk of VIV and VIV will naturally increase the drag. Use of fairings, 

although reducing the drag, introduces an additional risk associated with instability. 

Fairings also impact the operability window due to increased run/retrieve time. It 

follows that there exists a trade-off between improved hydrodynamics and 

durability/installation issues. 

3.6 Areas Needing Research 

The ultimate goal of designing an optimum fairing is to develop a section with as 

short as possible length that gives stable performance, high level of suppression, low 

drag coefficients, and is more easily handled and fitted offshore. This goal has been 

and is still of interest to oil companies and is forming many researches.  

For instance in late 2004, Shell published the results of some of the ongoing tests on 

fairing performance, with or without stabilisers and surface roughness, and also the 

impact of coverage length (Allen and Lee, 2004). At the time, fairing design 
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including hydrodynamic performance and stability was one of the future interests to 

BP (Sworn, 2004). Both samples disclose the significance of the issue to industry. 

Despite the research interests and all studies carried out to date, this literature survey 

uncovers the following areas which suffer from lack of sufficient clarity and need 

further investigation. 

(A) Misalignment and Fishtailing 

According to reports, some fairings fail to orient themselves to current or undergo 

fishtailing. It was also documented that adding fins or wedges to the trailing edge can 

improve the fairing performance and control this phenomenon. The roots of the 

problem are not clear and the mechanism in which fins stabilise the fairing needs to 

be probed. Moreover, as fishtailing oscillations are seemingly similar to other types 

of vibration, sometimes it is confused with them. Further investigations are required 

to distinguish fishtailing and its causes from other vibrations. 

(B) Instability 

Many studies on riser fairings have depicted oscillations with monotonic growth of 

vibration amplitude with velocity increment. This is the characteristic of an 

instability rather than VIV. Thus, while complete removal of vortex shedding 

remains a concern for fairing design, the mechanism of stability should be separately 

regarded in fairing analysis as well. To this end, more test data is needed to confirm 

the mechanism. On the other hand, a dynamic model should be developed to 

establish the criteria governing the onset and mechanism of fairing instability. The 

available simple analytical model suffers from some imperfections and does not 

consider all parameters involved in the stimulation of instability or its confinement. It 

has limitations and simplifying assumptions which can cause errors. Hence, making 

definitive predictions possible necessitates a comprehensive, reconstructed and 

improved model. In this analytical model, the influence of body velocities on angle 

of attack must be considered. Moreover, the effects of different types of damping 

including hydrodynamic, friction and structural damping which were ignored in the 

existing model must be added as well. 
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(C) Damping 

Positive damping inherently dissipates energy and alleviates dynamic motions of a 

system. It can also control the unstable oscillations and confine the vibration 

amplitude. The important question is whether this is the case for fairings too. Many 

studies have stipulated that adding fairings to the riser not only suppresses the vortex 

shedding but also increases the damping of the system greatly. In fact this question 

may be raised as to whether this is merely large damping of the fairing which 

mitigates the violent vibrations of vortex shedding and also prevents instability 

alone. This can be a reasonable scepticism because tests revealed that some types of 

fairing were still shedding vortices while they suppressed the vibrations as well. For 

instance, the computational simulation of a riser fairing showed that the VIV 

suppression was caused by the rapid wagging of the fairing tail (Chen et al., 2006). 

Moreover, fairings featured with large damping capability were reported to have no 

tendency to flutter instability. Besides, such a high level of damping could originate 

from or be a combination of various parameters. For instance, contribution of 

rotational friction is indeterminate. Some studies state that the rotational friction 

between fairing and riser can be very high and this may have contributed to its 

suppression efficiency. Thus, further tests are required to focus on the level of 

damping and the mechanisms generating it in order to have better understanding of 

the role of different damping. 

(D) Mechanism of Suppression 

In general, fairings are expected to streamline the flow and prevent the boundary 

layer from separation from the fairing circumference as the primary element of 

vortex shedding. Thus, the suppression performance of a fairing can decline rapidly 

due to flow separation in a specific range of Reynolds number as some studies 

reported. Consequently, the prospective investigations should explore the 

relationship between flow attachment/separation and Reynolds number for various 

fairing designs with a range of c/t, face and tail details. It is also necessary that 

physical testing, supported by CFD or theoretical analysis, should be planned to 

discover the mechanism of VIV suppression particularly for shorter fairings. 
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(E) Interference Effects 

It has long been recognised that in steady flow, vortices shed from one cylinder onto 

a second parallel cylinder can have a very marked effect on its dynamic forces 

(Barltrop and Adams, 1991). There are also some observations on the effect of one 

helical strake on another helical strake located in downside. Thus, this important 

issue must be addressed for fairings too. The suppression performance of fairings 

fitted to downstream risers in arrays can be influenced by the presence of upstream 

fairings. The role of riser spacing and fairing geometry is not well assessed for a 

wide range of configurations (Lee et al., 2006b) and needs further theoretical 

developments and physical testing investigations to validate the theory. 

3.7 Why ‘Instability of Fairing’ for Further Research 

Indeed the outstanding advantage of fairings, i.e. drag reduction, apart from other 

superiorities to many suppression devices particularly helical strakes remains no 

doubt that fairings in general are the ideal available tool. 

On the other hand, the literature review in this chapter revealed that most of the 

studies accomplished to date are based on experimental methods. They are usually 

either industry-ordered tests or experiments for commercial purposes. They typically 

contain data acquired from sophisticated tests followed by explanations for 

observations. Each individual study concludes that for specific conditions, their 

design is the suitable solution. In other words, they mainly endeavour to fulfil 

industrial needs and rectify their problems.  

For instance, installation and associated costs is one of the operational concerns and 

many methods have been established to answer that and facilitate operation. Another 

example can be the observation of misalignment. This problem was also resolved 

experimentally and it was qualitatively advised to implement fins to the trailing edge.  

Besides, there is a tendency or, to put it more simply, a competition of developing 

new patented designs and proving through tests that they show good performance in 

VIV suppression and drag reduction with no susceptibility to instability for a wide 

range of current velocities. While velocity may not be the only measurable criterion 
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for the onset of unstable oscillations there, in fact, exists a combination of parameters 

governing or endangering the fairing stability. 

In contrast, very little work attempted to analytically address the roots of instability 

and to develop a thorough model to make the definitive prediction possible. In other 

words, analytical approach to the fairing’s problem was removed from the prevalent 

methodology sphere. If the problem is supposed to be solved once and for all it 

demands reverse engineering. What this means is instead of running many tests to 

conclude the stable conditions, the governing mechanism along with parameters 

involved must be firstly discovered and then an analytical model ought to be set up to 

anticipate the threshold of problem occurrence and finally the importance and 

influence of each components should be clarified. Such model needs to consider the 

role of effective components as below. 

The Role of Structural Properties 

Structural properties of riser and fairing form one of the key elements in stability of 

the system. Their contribution to stiffness hinders the instability while their damping 

dissipates absorbed energy from outside and relieves any external excitation prone to 

lead to excessive oscillations. Riser properties include material, dimensions (length 

and diameter), damping, tension and its variation due to weight. Fairing has also 

similar structural variables plus the length of riser fitted with fairing (coverage 

length) and its position. Moreover, riser and fairing constitute an integrated system 

and their interaction produces rotational friction which can help the stability. 

Besides, a remarkable challenge is that such a theoretical model should provide a 

method of how to calculate these parameters. 

The Role of Fairing Hydrodynamic Characteristics 

Hydrodynamic characteristics of fairing are in the focal point of attention. They can 

lead to instability as much as they can suppress vortex-induced-vibration. 

Assessment of the following issues is essential in analysing the hydrodynamic 

performance of a fairing. They include potential of separation and vortex shedding, 

hydrodynamic coefficients, pressure distribution and the location of centre of 

pressure, added mass and so on. Variation of some parameters with fairing 
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orientation relative to current is a significant point and needs to be studied. In 

addition, the effect of adding fins or blunt end on pressure distribution and 

hydrodynamic coefficients should be investigated too. 

The Role of Ocean Current 

Ocean current is the external element which inputs forces into the system. It can also 

play the role of a damper depending on whether that specific area is fitted with a 

fairing or is bare. Current velocity may vary along the riser length in different forms. 

Moreover, the important point is the real velocity that a system experience. The real 

velocity and its orientation are influenced by system motion relative to current. 

Clearly, the best analytical model for prediction of likely instability must be based on 

a combination of the above groups of parameters. With this in mind, a successful 

approach needs to be able to tackle the problem from a variety of perspectives. In 

fact, as mentioned above, the majority of existing approaches are experimental and 

tend to concentrate attention mainly on the velocity as the measurable and critical 

variable with little or no attention being paid to the role of other elements. There is 

therefore a need for a more comprehensive and holistic analytical model. The present 

study will focus on this issue. 

3.8 Research Strategy 

This study has targeted the investigation of riser fairing performance and theoretical 

prediction of likely instability. Firstly, this research will seek a more comprehensive 

understanding of the mechanism of instability and possible methods of approaching 

the issue. Secondly, an analytical model will be established initially for a simple case 

of two-dimensions (2D) and subsequently be expanded to the comprehensive case of 

a three-dimensional (3D) riser fairing. Finally, the role of the significant parameters 

will be assessed and analysed. On this basis, the present study comprises of the key 

steps below. 

Step 1: Provide a clear perception of the mechanism of instability and methodology. 

Step 2: Develop the analytical model for 2D case. 
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Step 3: Identify the key parameters playing a significant role. 

Step 4: Assess the hydrodynamic coefficients as a key variable for a few fairings. 

Step 5: Expand the developed analytical model to 3D case. 

Step 6: Application of model to examples and parametric study. 

The rest of this documented research will follow in the above step-wise structure. 
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Chapter 4  

Dynamics of Instability in Fairings 

This chapter will first explore the types of fluid-induced-vibration and will then 

compare the attributes of fairing instability with the characteristics of these vibrations 

to identify the type of instability and associated possible causes. Afterwards, it will 

explain what method of approaching this problem suits the purpose of developing an 

analytical model for this phenomenon and what consequences selection of this 

method entails in terms of assumptions and limitations. 

4.1 Introduction 

The philosophy of using fairings as a VIV suppression device is to hinder the large 

amplitude oscillations, however, literature surveys revealed that at a higher Reynolds 

number, or in simple terms higher current velocity for a given section, the structure 

again encountered cross-flow vibration which could lead to instability. The 

characteristic of vibration, in this case, was different from that of VIV because the 

VIV was self-limiting and the amplitude of oscillation did not increase when the 

current velocity exceeded a certain level. Instead, the reverse of the above was 

observed and the amplitude increased along with the velocity. Figure  4-1 shows the 

behaviour of system against the increase in current speed (Blevins, 2001). The first 

peak in the vibrations is caused by vortex shedding aft of the bare riser. The second 

peak at higher reduced velocity is associated with the instability of a riser fitted with 

fairings. Thus, vortex-shedding does not play the main role in this oscillation and the 

source of problem is different from VIV with self-limiting attribute. 
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Figure  4-1  Typical Response of A System vs. Reduced Velocity. 

 

To discover the element causing this sort of unstable oscillation in riser fairings, 

different types of fluid-induced-vibration are discussed in the following. Their causes 

and characteristics will be scrutinised as well to find the best match.   

4.2 Types of Fluid-Induced-Vibration 

The first type of fluid-induced-vibration is VIV. In brief, it was mentioned that bluff 

structures when located in a stream shed vortices alternately from each side of the 

body. This induces a periodic force in the direction perpendicular to the line of 

current motion and the body wobbles back and forth. If the frequency of vortex-

shedding is close to the natural vibration frequency of the body, resonance and 

subsequent large-amplitude oscillations will set in. The considerable feature of VIV 

is that the process is self-limiting. 

A different type of vibration is the ‘galloping’ of transmission lines during a sleet 

storm. The cause of galloping has been shown to be a cross section formed by ice. 

Such a section is unstable in wind and means the aerodynamic force exerts a negative 

damping component so that once the oscillation is started it will continue to build up. 

Flow about circular cylinder with perfect symmetry will not trigger galloping, a 

general prerequisite for which is some asymmetry in the aerodynamic forces 

associated with the cross flow (Dowell et al., 1995). 
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In general, a structure with noncircular cross-section is subject to a fluid force that 

varies with orientation to the flow. As the structure oscillates, its orientation changes 

and so does the fluid force. If the oscillating fluid force tends to synchronise itself 

with vibration and consequently increase the amplitude of vibration, the structure is 

dynamically unstable and can end up with very large-amplitude vibration. All 

noncircular cross-sections are susceptible to this sort of vibration which can be 

divided into two groups, i.e. ‘galloping’ and ‘flutter’.  

Differences between galloping and flutter lie in the historical usage of the terms. 

‘Galloping’, as illustrated in Figure  4-2 and Figure  4-3, is the term used by civil 

engineers for one degree of freedom instability of bluff structures in winds and 

currents (Blevins, 2001). Similar to VIV, galloping is characterised by a separated 

flow in the rear of the body, i.e. a flow that does not follow the contour of the solid 

body (Fung, 2002). 

‘Flutter’ is aerospace terminology for coupled pitch-plunge instability of airfoils 

(Figure  4-4). Flutter is another type of self-excited oscillation which does not 

necessarily involve flow separation. The best example occurs in the field of 

aeronautics where streamlining is a rule and flow separation is avoided. But in cases 

that separation may happen over part of the body, it is called ‘stall flutter’.  

As the literature survey confirms, the characteristic of fairing vibration best matches 

an instable behaviour rather than VIV. Moreover, observations in a tank tests have 

indicated that the system experiences coupled transverse-torsion motion in 3D space 

as shown in Figure  4-5. Thus, it can be concluded that the instability of system 

should be in the form of ‘flutter’. 
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Figure  4-2  Galloping (Plunge) – 2D. 
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Figure  4-3  Galloping (Torsion) – 2D. 
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Figure  4-4  Flutter – 2D. 
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Figure  4-5  Schematic Pattern of Fairing Flutter in 3D. 

 
 

4.3 Classical Flutter 

To describe the physical phenomenon of foils flutter, consider a simple foil mounted 

in a wind tunnel at small angle of attack like a cantilever beam (Fung, 2002). When 

there is no flow in the wind tunnel and the model is disturbed, say by a poke with a 

rod, oscillation sets in which is damped gradually. When the speed of flow in the 

wind tunnel gradually increases; the rate of damping the oscillation first increases. 

With further increase of the flow speed, however, a point is reached at which the 

damping rapidly decreases. At the critical flutter speed, an oscillation can just 

maintain itself with steady amplitude. At speeds of flow above the critical, a small 

accidental disturbance of the foil can serve as a trigger to initiate an oscillation of 

excessive violence. In such circumstances, the foil suffers from oscillatory instability 

and is said to flutter. Experiments show that the oscillations are self-sustained, i.e. no 

external oscillator or forcing source is required.  
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Flutter Mechanism 

The oscillatory motion of a fluttering foil has both flexural and torsional components. 

A rigid foil so constrained as to have only flexural degree of freedom (DOF) does not 

experience flutter. In general, coupling of several DOFs is an essential feature for 

flutter. The steady oscillations that occur at the critical speed is harmonic. A three-

dimensional experiment of a wing shows that the flexural movements at all points 

across the span are approximately in phase with one another, and likewise the 

torsional movements are in phase too, but the important point is that the flexure is 

90o out of phase from the torsional movement (Figure  4-6). It is this phase difference 

that induces the flutter (Fung, 2002). It has been shown in aerodynamics that flutter 

occurs because the speed of flow affects the amplitude ratio and phase shift between 

motions in various DOFs in such a way that energy can be absorbed by foil from the 

stream passing by.  

 

 
Figure  4-6  Plunge and Torsion Out of Phase in Flutter. 

 

Flutter Theories 

Many efforts have been accomplished to set up a theoretical model for analysis of 

wing flutter and its causes. The coupled interaction of wing motions and flow 

response and associated forces causes tremendous complication. Governing 

equations are comprised of terms representing structural characteristics and motions 

of wing as well as aerodynamic forces which are dependent on the wing motions. 
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Thus, the aerodynamic forces should be calculated along with solving the equations 

of motion. To this end, many have tried to establish a method to find the fluid force 

term and replace it in governing equations. 

The most recent method introduces sophisticated computational fluid dynamics 

(CFD) in order to solve the complicated Navier-Stokes equations for which it is not 

inherently possible to find an analytical solution in a general case. But few years 

before, when numerical methods were not so popular and feasible, several analytical 

methods were developed for special cases with the aid of simplifying assumptions. 

Frequently simplifying assumptions are made with respect to the spatial or temporal 

dependence of the aerodynamics forces. There are two widely used approximations 

for spatial dependence, i.e. ‘Slender Body’ and ‘Strip Theory’ (Dowell et al., 1995).  

The first approximation based on spatial consideration is possible when the airfoil is 

of high aspect ratio or one is dealing with slender body. In such cases the chordwise 

spatial derivatives (rates of change) may be neglected compared to spanwise rates of 

change and hence the chordwise coordinate effectively becomes a parameter rather 

than an independent coordinate. It is useful as an asymptotic check on numerical 

methods for slender bodies and high aspect ratio wings. 

In strip theory approximation, one employs the known results for two-dimensional 

flow (infinite span airfoil) to calculate the aerodynamic forces on a surface of finite 

span. The essence of the approximation is to consider each spanwise station as 

though it was a portion of an infinite span wing with uniform spanwise properties. 

With the aid of using strip theory method, the three-dimensional (3D) problem is 

simplified to two-dimensional (2D) case. Then there exists three simplifying 

assumptions to calculate the aerodynamic force exerted on a 2D airfoil, i.e. ‘Theory 

of Wing-section’, ‘Linearised Thin-airfoil Theory’ and ‘Quasi-steady Assumption’. 

Theory of wing section dates back to the 1930s when Theodorsen gave an exact 

treatment of the problem of determining the 2D potential flow around wing section 

of any shape (Theodorsen, 1933, Theodorsen and Garrick, 1934, Abbott and Von 

Doenhoff, 1959). In this method, viscosity is neglected and the potential flow 
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conditions hold and in the light of that, it is tried to transform the potential flow 

around an airfoil to potential flow around a circle which is easily calculated. It is 

based on the theorem of conformal representation stated by Riemann almost two 

centuries ago. Thus, the aerodynamic forces are known in an analytical form and 

they can be replaced by the force term in governing equations of body motion. 

Eventually, it results in an analytical solution for airfoil flutter in inviscid flow 

(Theodorsen and Garrick, 1940, Theodorsen and Garrick, 1942, Theodorsen, 1935). 

Linearised thin-airfoil theory is also based on potential flow in inviscid fluid. It says 

that if a steady 2D flow stream passes an airfoil, disturbances are imposed into the 

flow in such a manner that the resultant flow is tangent to the airfoil. According to 

the aerodynamic theory, the thin airfoil can be replaced by a continuous distribution 

of vorticity. The total lift force is the sum of contribution of each individual vorticity. 

In addition, for a thin enough airfoil of small camber, the surface of the airfoil differs 

only infinitesimally from a flat plate. The induced velocity over the airfoil surface, to 

the first order of approximation, can be calculated by assuming the vortices to be 

situated on the chord axis (Fung, 2002). Through these simplifying assumptions, 

aerodynamic forces can be calculated analytically. 

Quasi-steady assumption was introduced in order to make the analysis of a moving 

airfoil simple. It states that the aerodynamic characteristics of an airfoil whose 

motion consists of variable linear and angular motions are equal, at any instant of 

time, to the characteristics of the same airfoil moving with constant linear and 

angular velocities equal to the actual instantaneous values. 

The strip theory approximation, to change a 3D problem into 2D case, is clear and its 

meaning is generally accepted but this is not true for the quasi-steady assumption. Its 

qualitative meaning is generally accepted, i.e. one ignores the temporal memory 

effect in the aerodynamic model and assumes the aerodynamic forces at any time 

depend only on the motion of airfoil at that specific time and are independent of the 

motion at earlier times. That is, the history of foil motion is not taken into account  as 

far as determining aerodynamic forces (Dowell et al., 1995). As a result, the viscose 

fluid force can be measured in wind-tunnel tests on stationary models held at various 

angles. 
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Nevertheless, most galloping and flutter analysis utilises quasi-steady fluid dynamics 

(Blevins, 2001). In general, the quasi-steady assumption is valid only if the 

frequency of periodic component of fluid force, resulted from vortex shedding, is 

well above the vibration frequency of structure, fs >> fn, so that the fluid responds 

quickly to any structural motion. This requirement is often met at higher reduced 

velocities such that n(U / f D)⋅  > 20. Below this limit, the quasi-steady assumption is 

questionable and for galloping-like instabilities of bluff structures, VIV may occur 

simultaneously. In this case, both vortex shedding and instability can excite the 

vibration. Then the structure responds to vortex shedding near the vortex resonance, 

U/fyD ≈  5, and to instability at higher reduced velocity U/fyD > 5. In such 

conditions, the predictions of instability theory become relatively poor because the 

quasi-steady forces induced by changes in angle of attack are obscured by unsteady 

vortex shedding forces acting at the same or similar frequencies. 

4.4 Differences from Classical Wing Flutter 

The observations of wing flutter and fairings instability are in conformity and 

therefore it can be deduced that the governing mechanism is the same. However, 

when it comes to the stage of setting up an analytical model to explain and predict 

these phenomena, a number of subtle distinctions emerge which do not let the 

researcher apply available flutter theories to fairing instability blindly. Existing 

analytical theories for flutter as discussed have been developed for thin airfoils. 

The essential assumptions of thin-airfoil theory are (1) that the lifting characteristics 

of an airfoil below stall are negligibly affected by viscosity, (2) that the airfoil is 

operating at a small angle of attack, and (3) that the resultant of the pressure forces 

(magnitude, direction, and line of action) is only slightly influenced by the airfoil 

thickness, since the maximum mean camber is small and the ratio of maximum 

thickness to chord is small (Bertin and Smith, 1998). Typically, airfoil sections have 

a maximum thickness of approximately 12% of the chord. Thus thin airfoil relative 

to chunky fairing and inviscid flow relative to viscous seawater are two major 

assumptions which differentiate fairing instability from classical flutter. The main 
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differences between fairing instability and classical flutter in developing an 

analytical model can be outlined as follows. 

(A) Viscosity 

The effects of viscosity on hydrodynamic forces of foil are to produce two types of 

drag as follows (Anderson, 2007). (1) Skin friction drag, that is, the component in the 

drag direction of the integral of the shear stress over the body. (2) Pressure drag due 

to separation, that is, the component in the drag direction of the integral of the 

pressure distribution over the body. The occurrence of separated flow over an 

aerodynamic body not only increases the drag but also results in a substantial loss of 

lift. 

(B) Thickness 

Thickness plays a critical role in hydrodynamic characteristics of a foil because 

thickness causes the flow in vicinity of the foil to change behaviour and thus the 

pressure distribution over the foil contour will alter. Eventually, the resultant of the 

pressure forces will be quite different for foils with different thickness. For instance, 

the centre of pressure of a thick foil moves with variation of foil orientation (angle of 

attack) (Grant and Patterson, 1977) whereas it is assumed to be fixed in classical 

flutter analysis. In addition, the net vertical force on structure is the vector sum of lift 

and drag in the vertical plane. For thin airfoil at small angles of attack, the lift is 

much larger than drag. So the vertical force is almost entirely due to lift. But this is 

not true for bluff structures and thick foils like fairing. 

(C) Torsional Stiffness 

A wing of an airplane is a continuous structure which can be modelled as a cantilever 

beam with both flexural and torsional stiffness. Torsional stiffness provided by 

structure is advantageous in controlling the flutter. But, riser fairings are designed to 

freely swing about the riser and therefore, there exists no torsional stiffness to restore 

a distorted fairing to initial condition except the torsional stiffness generated by 

hydrodynamic forces. Consequently, the absence of torsional stiffness of structure 
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and replacement of its role with hydrodynamic stiffness results in an influential 

difference from classical flutter.  

(D) Frictional Damping 

An oscillation is called dynamically unstable if the oscillating body extracts energy 

from the flow in completing a cycle. If the oscillating body has neither external 

excitation nor internal friction, then the dynamic instability can be identified with 

flutter. Internal friction dissipates energy and modifies the kinematic relations (the 

amplitude ratio and phase relationship between various DOF) of the oscillation of an 

elastic system. Hence, when there is internal friction, the dynamic instability alone 

cannot be directly identified with flutter (Fung, 2002). 

All above distinctions between fairings instability and classical flutter of airfoils 

imply that dealing with fairing instability requires further attention and classical 

flutter theories cannot be employed directly. Thus, there exists a need to set up a new 

and holistic model for fairings instability. 

4.5 Methodology 

The purpose of this study is to investigate the flutter type instability of fairing 

analytically in order to set up the governing criterion for instability onset. It seeks an 

analytical model that can describe the physical mechanisms causing instability and 

determine how it is related to the characteristics of system. Such a model should 

provide some guidance on design changes that may remove the instability or hinder 

its onset to a higher threshold speed and provide a basis for determining whether 

instable behaviour observed in tests is common to all fairing designs or it is limited 

only to fairings with particular design characteristics. Establishing such model needs 

governing equations and forces to be derived. 

Equations of motion will be in the form of structural terms representing body motion 

and also terms indicating hydrodynamic forces. Hydrodynamic forces are dependent 

on the body motion and therefore they are coupled and interrelated with other terms. 

Thus, to solve such problem, hydrodynamic forces should be first defined with 

respect to body motion. 
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To this end, the exact solution of governing Navier-Stokes equations ends up with 

sophisticated numerical work and requires the method of computational fluid 

dynamics (CFD). Consequently, the main analytical features are masked by the 

calculative complications which are not compatible with primary defined goal. Thus, 

using simplifying approximations, both spatial and temporal, to find an analytical 

answer is inevitable. 

To remove the effect of three-dimensionality on hydrodynamic forces, ‘strip theory’ 

approximation is deployed. Thereby, it is assumed that hydrodynamic characteristics 

of a 3D fairing are equal to that of a 2D section and spanwise variations of force are 

negligible. 

Now, the question is how to define hydrodynamic forces of a 2D moving fairing. 

Fairings resemble a typical foil but as was earlier mentioned, the theory of wing-

section with analytical solution for forces and centre of pressure is not applicable due 

to assumption of inviscid fluid and potential flow. Likewise, the thin-foil theory, 

linearised or unsteady, cannot be employed either because of its associated 

assumptions that are not valid here.  

The last remaining method is to seek a solution under the assumption of quasi-steady 

dynamic derivatives. The quasi-steady assumption introduces important 

simplifications that one will have no difficulty in carrying through a detailed analysis 

explicitly. Therefore, it seems advantageous to use the quasi-steady theory for this 

study.  

Therefore, based on the details explained thus far, the general approach to model the 

instability of riser fairing will be in the form of first, identifying all degrees of 

freedom. Then the equations of motion will be derived through using Lagrange’s 

equation. The force term will be replaced with hydrodynamic forces obtained under 

the assumptions of quasi-steady condition and strip theory. Last step is to assess the 

stability of assembled equations against infinitesimal disturbance from equilibrium 

position. It will be done through eigenvalue analysis. 
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With regard to assessing stability against infinitesimal disturbance, it should be noted 

that in a large proportion of all cases, an adequate definition of flutter properties of a 

system can be obtained by studying the stability of infinitesimal motions 

(Bisplinghoff et al., 1996). It is then sufficient to analyse the vibration with 

exponential time dependence ept (p complex), since all other small motions can be 

built up therefore by superposition. If slight deformation is unstable, it is an 

undesirable situation regardless of the stability of the bigger ones. On the other hand, 

the larger displacements are usually stable if the small ones are. In fact, they may 

have much greater stability, as in the case of amplitude limitation due to stalling on 

the flutter oscillations, which is often observed on very flexible aero-elastic models 

in the wind tunnel. 

Assumptions 

The development of the analytical stability model discussed in the following chapters 

is based on few assumptions outlined below: 

- Fairing segments are installed on a vertical top tensioned riser. 

- Individual fairing segments are rigid structures and do not experience any 

deflection. 

- Fairing segments are free to rotate about the riser and there is no structural 

torsion-stiffness. 

- Entrapped water within the fairing shell moves with the fairing as a rigid 

body. 

- ‘Strip theory’ approximation is employed to reduce the three-dimensionality 

of hydrodynamic characteristics of fairing to a two-dimensional section. 

- ‘Quasi-steady’ assumption is considered and the effect of flow history is 

eliminated. 

- As observed in the tank tests, motion in-line with the current direction is of 

very limited amplitude in comparison with cross-flow translation, e.g. 0.6D 
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against 4D (Braaton et al., 2008), and has negligible effect on flutter-type 

instability. 

- Any disturbance or motion from equilibrium position at the instability onset 

is of small amplitude. 

- Lift, drag, moment and added mass (for all degrees of freedom) are the 

hydrodynamic forces taken into account. 

- According to quasi-steady assumption, lift, drag and moment are functions of 

instantaneous angle of attack (AoA). But the effects arise from cross-flow 

translation as well as influences due to time variation of AoA (torsional 

velocity) are to be considered. 

These assumptions impose some limitations on the application of this model which 

will be discussed in the following. 

Limitations 

This model will be helpful in determining the threshold velocity at which the 

instability can occur for a given system of riser and fairing, however, it is not capable 

of explaining the evolution of unstable motion and its development in subsequent 

stages. Whether the amplitude of this unstable motion continues to increase or is 

interrupted later by other events is out of the scope of this model. 

The other major limitation of the theory outlined so far is that the hydrodynamic 

coefficients are assumed to vary only with angle of attack, but experience shows that 

the coefficients are affected by turbulence and vortex shedding. Turbulence in the 

mean flow can either reduce or increase the tendency toward instability (Blevins, 

2001). On the other hand, the quasi-steady assumption employed in this method 

requires that the vortex shedding frequency be well above the natural frequency of 

structure. It should be noted that as the fairing is devised to remove vortex shedding, 

such a situation is not very likely but just in case the fairing still experiences some 

vortices, this condition should be assessed too. 
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It should be mentioned that all research discussed in this study is based on 

linearization of hydrodynamic forces. Since real physical phenomenon are not linear, 

the question always arises how good the linearised theory is as an approximation to 

the real case, and to what extent of magnitude of the variables concerned is linearised 

theory valid. Unfortunately, so little is known about the nonlinear case that the 

question raised cannot be answered. At present, it can only be said that experimental 

observations show the linearised theory of flutter type instability represents fairly 

closely the real situation in the neighbourhood of the critical instability speed, 

provided that the amplitude of motion remains small (Fung, 2002).  

In the next chapter, the analytical model will be developed within this framework for 

the simple case of two-dimension to identify the role of parameters involved. It will 

be expanded to three-dimensional case later. 
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Chapter 5  

2D Theoretical Model 

This chapter focuses on developing an analytical model for simplified case of a two-

dimensional (2D) problem. It explains how to eliminate the third dimension, riser’s 

length, and elaborates the process of modelling the mechanism of system instability 

step by step. Finally, the established model is verified against available experimental 

data. 

5.1 Introduction 

A system of riser and fairing in practice consists of a vertical top-tensioned riser (see 

Section  4.5) which can deform due to its flexural stiffness and also a set of fairings 

attached to the riser and free to rotate about it while moving with it transitionally.  

In general, such a system of a continuous elastic body/riser plus fairings has 

infinitely many degrees of freedom (DOFs). However, owing to its particular 

construction, if the elastic deformation of fairing cross-section is negligible relative 

to other deformations and the fairing being treated as a rigid body, then regardless of 

negligible stream-wise displacement, the system motions in any section along the 

riser length can be described with sufficient accuracy by two quantities: the 

deflection at centre of rotation as a reference point and the angle of rotation about 

that point, i.e., the flexural and the torsional deformations, respectively. A flutter-

type mode is comprised of these two elements. 
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The motion of such 3D dynamic system looks at the first glance too complicated to 

be evaluated analytically. In order to decompose this complexity into several simpler 

problems it seems suitable to remove the third dimension by considering its effect on 

a 2D model. This simplified model provides the ground to easily and without any 

confusion identify the key parameters. 

To reduce the full problem to a 2D case, it is required to pick a section along the riser 

length including one of these fairings and remove the rest of the system, however, in 

order to analyse the selected section or fairing individually, it is necessary to take the 

influence of the removed part into account. 

Thus, the simplified 2D model should be made of a riser, a fairing surrounding it, as 

well as a combination of transverse stiffness and transverse-torsion damping, which 

represents the effect of a riser in the third dimension. Such a model can also simulate 

the case consisting of a set of fairings installed on a rigid riser supported with springs 

at two ends. 

This chapter will be limited to two-dimensional coupled transverse-torsion dynamics 

of this system. In the following, based on the assumptions described in Section  4.5, 

the degrees of freedom and corresponding hydrodynamic forces are identified first. 

The equation of motion will be established using the Lagrange’s equations. As was 

mentioned earlier, the hydrodynamic forces are functions of the system motion and 

the effect of the fairing’s motion therefore will be considered next. The resultant 

equations are linearised and an eigenvalue analysis is carried out to find the situation 

at which a system goes unstable. The obtained criterion is converted into 

dimensionless form through defining meaningful dimensionless parameters. 

Eventually, the developed 2D analytical model will be used to predict the instability 

onset condition for a tank test. This comparison helps to verify the level of model 

agreement with what happens in reality. Later on, the influence of friction damping is 

further discussed. 
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5.2 Governing Equations of Motion 

Before proceeding to set up the governing equations, it is first necessary to identify 

the system in terms of the degrees of freedom for each body and associated external 

or interactional forces. Suppose a cross-section of a riser fitted with fairings as 

shown in Figure  5-1. The sea current flows in this plane in X direction from left to 

right.  

 

 
Figure  5-1  Local and Global Coordinates, Degrees of Freedom. 

A riser is a pipe, possibly covered by buoyancy module, filled with fluid and is 

supported by a spring in cross-flow (CF) direction which depicts the contribution of 

the rest of the riser. Moreover, the rest of the riser can dissipate energy through 

oscillation in CF direction. This phenomenon is simulated by a damper, shown by a 

dash-pot. As the test reports showed large amplitude vibration in CF direction, it is 

assumed that the negligible motion in line with the current is unimportant in 

comparison with CF oscillation (see Section  4.5). With this in mind, the riser has 

only transitional DOF and merely moves transversely, y(t). The riser also interacts 

with the fairing which results in transverse and torsional forces, y
intF  and intFθ  

respectively. What should be noted is that the goal in fabrication of the fairing is that 
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it experiences as little torsional friction as possible to easily align itself to current. 

Therefore, it can be deduced that this friction force can affect the rotational freedom 

of fairing and induces no tangible deformation in the riser, hence, meaning there is 

no need to consider another DOF for torsion of the riser. 

On the other hand, a fairing is a teardrop-shape shell which is believed to be 

constructed robust enough not to bear any structural deformation induced by 

hydrodynamic forces (see Section  4.5). It embraces the riser in the nose and follows 

its transverse motion. In addition, it is designed to weathervane about the riser (see 

 4.5). Consequently, the fairing has two DOFs and while moving transversely with the 

riser y(t), it rotates independently θ(t). As mentioned above, the riser and fairing 

impose mutual forces at their interface, i.e. y
intF  and intFθ . More importantly, the 

interaction of the system with the surrounding fluid and current is through fairing and 

associated hydrodynamic forces. The hydrodynamic forces which have components 

in the direction of fairing’s DOFs consist of lift, drag, moment and added mass. The 

resultant component for corresponding DOF will be derived later. It should be noted 

that the fairing may be filled with buoyancy material which is rigid and behaves as a 

part of the fairing. Nevertheless, there are other types of fairings which are hollow 

and the sea water penetrates into them. The entrapped water within the fairing’s shell 

is assumed to follow its motion and thus the entrapped water is treated as a rigid 

body like the previous case, i.e. a solid fairing (see Section  4.5). 

A very effective method for deriving equations of motion for dynamic systems is to 

use Lagrange’s equations. These equations state that, 

i
i i

d L L( ) Q
dt q q

∂ ∂
− =

∂ ∂
  5-1 

where the superscript dot denotes the derivative with respect to time and,  

L = T – V, Lagrangian 

T = Kinetic energy 

V = Potential energy 

Qi = generalised forces 

qi = generalised coordinates 
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In this case, as was explained earlier, the motion of whole system requires two 

independent DOFs, y(t) and θ(t), to be fully described. So, these DOFs can be used 

as the generalised coordinates. The convention of positive direction for them is as 

illustrated in Figure  5-1, i.e. upward for y(t) and clockwise for θ(t). 

Prior to applying the Lagrange’s equations to this problem, a coordinate system 

needs to be defined in order to specify the displacement and motion of each point. 

The local coordinate system ( , )ζ η  is fixed on the fairing, moving and rotating 

correspondingly with it (Figure  5-1). Its origin is located at the centre of rotation 

(CR), i.e. centre of riser. The global coordinate system is fixed on the platform (in 

the plane of cross-section). Consequently, the global coordinates (X,Y) of any point 

on the fairing and riser have three terms, local coordinate plus transverse and angular 

displacements of the origin of local coordinate system. 

X 0= + ξ +ηθ   

Y y= +η−ξθ   5-2 

The velocity of each point in the global coordinate system is easily obtained. 

X = ηθ   

Y y= −ξθ   5-3 

The kinetic energy of the whole system is composed of two parts, energy of solid 

bodies, i.e. riser (T1) and fairing (T2), and energy of fluid motion (T3) induced by 

moving body. Taking the interaction forces between riser and fairing into account, 

let’s derive the equation of motion for each of them separately. 

Kinetic energy of the riser is, 
1
2

2
r1 m yT =   5-4 

where mr is the mass of riser.  

Potential energy is accumulated in the spring, 
21

y2V k y=   5-5 
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The influence of CF damping is presented in the conventional form of a non-

conservative viscose damping force, yC y− , where Cy is the damping coefficient of 

riser. 

The other forces imposed on the riser come from the interaction interface with the 

fairing and as was described in the system identification contain y
intF  and intFθ   for 

transverse and torsional DOFs respectively.  

By substituting these variables in Lagrange’s Equations ( 5-1) and taking y(t) as the 

only DOF or generalised coordinate, iq , it gives,  

1
2

2 21
r y2L T V m y k y= − = −  

y
r y y y int

d L L( ) m y k y Q C y F
dt y y

∂ ∂
− = + = = − +

∂ ∂
 

Eventually, the governing equation of motion for riser CF transition can be written, 
y

r y y intm y k y C y F+ = − +   5-6 

The fairing is in contact with the riser on the inner side and interacts with fluid and 

current on the outer side. As it moves or swings, it pushes fluid particles and thus, the 

kinetic energy of the system comprises of two parts, one from the fairing’s body (T2) 

and one from fluid (T3). By integrating the kinetic energy of a particle on the fairing, 

it renders, 

2 2

1 1
fr fr2 2

2 2 2 2 2 2 2
2 A A

T (X Y ) d d ( y 2 y ) dA= + ρ ξ η = η θ + − ξ θ+ξ θ ρ =∫ ∫  

1 1
2 2

2 2
fr xm y J S y= + θ − θ   5-7 

where mfr, Sx and J are the mass, first mass moment of area and polar mass moment 

of inertia for fairing respectively. 

2
fr frA

m dA= ρ∫  

2

2 2
frA

J ( ) dA= η + ξ ρ∫  

2
x frA

S dA= ξρ∫  
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The kinetic energy of fluid domain is obtained by integrating the kinetic energy of a 

fluid particle over the whole domain, 

( ) ( )2 2y y1
2 x x y y2 fluid

T yu u yu u dAθ θ⎡ ⎤= + θ + + θ ρ =⎢ ⎥⎣ ⎦∫   

( ) ( )( ) ( ) ( ) ( )2 22 22 y y 2 y y1
x y x y x x y y2 fluid

y u u u u 2y u u u u dAθ θ θ θ⎡ ⎤⎛ ⎞= + + θ + + θ + ρ =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫  

2 21 1
a a a2 2m y J S y= + θ − θ   5-8  

where y
xu  denotes the velocity of a fluid particle in x direction induced by unit 

velocity of the fairing in y direction (y 1)= . Interestingly, ma, Ja and Sa are the 

conventional and well-known parameters so-called added mass. They are 

respectively the added mass parameters for CF transition, angular motion and their 

mutual effects on each other. 

( ) ( )( )2 2y y
a x yfluid

m u u dA= + ρ∫  

( ) ( )2 2

a x yfluid
J u u dAθ θ⎛ ⎞= + ρ⎜ ⎟

⎝ ⎠∫  

( )y y
a x x y yfluid

S u u u u dAθ θ= − + ρ∫  

It should be noted that no potential energy is reserved in the fairing as it is free to 

rotate.  

Forces exerted on the fairing come from two different sources. One group arises 

from interface with the riser and includes y
intF−  and intFθ− . intFθ−  represents the 

torsional friction resulted from angular oscillation of the fairing against the riser. 

This friction absorbs energy and works as a damper. For simplicity, this non-

conservative force is modelled here with a viscous type damping term and will be 

discussed later in Section  5.8. 

intF Cθ
θ− = − θ  

The other group of forces is hydrodynamic forces which have components in the 

direction of both DOFs/generalised coordinates. So, the resultant forces are,  
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[ ] y
y inty

Q Hydrodynamic Force F= −   5-9 

[ ]Q Hydrodynamic Force Cθ θθ
= − θ   5-10 

By substituting Equations ( 5-7) and ( 5-8) in Lagrange’s Equation ( 5-1), Lagrangian 

will be, 
1 1
2 2

2 2
fr a a x aL T V (m m )y (J J ) (S S )y= − = + + + θ − + θ  

By taking both DOFs of y(t) and θ(t) as the generalised coordinates and replacing the 

corresponding forces from Equations ( 5-9) and ( 5-10) , the Lagrange’s equation 

gives two coupled equations for transverse and torsional motions of the fairing 

respectively, 

[ ] y
fr a x a inty

(m m )y (S S ) Hydrodynamic Force F+ − + θ = −   5-11 

[ ]a x a(J J ) (S S )y Hydrodynamic Force Cθθ
+ θ− + = − θ   5-12 

In summary, the governing equations of the riser’s CF transition as well as the 

fairing’s both transverse and torsional motions have been derived. To remove the 

term of internal force, y
intF  in Equation ( 5-11) is substituted from Equation ( 5-6), 

[ ]fr a x a r y yy
(m m )y (S S ) Hydrodynamic Force m y k y C y+ − + θ = − − −   5-13 

By re-arranging the Equations ( 5-12) and ( 5-13), the final equations of motion of the 

whole system are obtained,  

[ ]a y y x a y
(m m )y C y k y (S S ) Hydrodynamic Force+ + + − + θ =   5-14 

[ ]x a a(S S )y (J J ) C Hydrodynamic Forceθ θ
− + + + θ+ θ =   5-15 

where  

r frm m m= +  

The next step is to calculate the hydrodynamic forces acting on the fairing at an 

instantaneous position during the vibration. 
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5.3 Hydrodynamic Forces and Effect of Motion on AoA 

In general, a fairing like any other foil when exposed to a current feels hydrodynamic 

forces which include drag, lift, moment and added mass. The latter has already 

emerged through the process of deriving equations of motion. A fairing is a three-

dimension body which swings in the fluid and the associated hydrodynamic forces 

therefore inherit this characteristic. As was explained in Section  4.5, if the spanwise 

length of the fairing is adequately long, the ‘Strip Theory’ approximation can be 

deployed to eliminate the effect of third dimension along the riser and reduce the 

problem to a 2D case in the plane of the fairing cross-section.  

However, it is quite obvious that although the direction of current is constant, the 

fairing still oscillates in this plane and like any foil such as airplane’s wing, the 

hydrodynamic forces depends on the position of the fairing relative to the current 

direction, or in other words angle of attack (AoA). More significantly, sea water is a 

fluid and not a rigid body. So, its reaction, to any disturbance caused by the fairing’s 

motion, does not respond in a prompt manner. To put it more simply, the 

hydrodynamic forces at a specific time not only depend on AoA but also they may be 

influenced by the history of fluid’s motion. This adds to the complexity of the issue 

and makes the analysis face some difficulties. To tackle this issue, it was elaborated 

in methodology (see Section  4.5) as to why it is necessary to use the ‘Quasi-Steady’ 

assumption and remove the flow history. As a result, hydrodynamic forces of the 

fairing depend on only instantaneous AoA, α. 

Prior to writing down the equations of hydrodynamic forces, there exists another key 

phenomenon which needs serious attention and should never be neglected. By 

considering the ‘Quasi-steady’ assumption, the hydrodynamic forces become a 

function of instantaneous AoA, but as the fairing is swinging in the constant sea 

current, its transverse and torsional velocities have effect on relative flow velocity, 

Urel. In other words, what a moving fairing experiences at a distortion angle of say θ 

is quite different from what a fixed fairing feels at the same angle of θ. As shown in 

Figure  5-2, it is due to the fact that the fairing’s velocity has components inline and 

perpendicular to current velocity and therefore they change the vector of relative 

current velocity. Accordingly, the instantaneous angle of attack, α, is not equal to the 
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instantaneous distortion angle, θ. It should be noted that as explained in Section  4.5, 

since the motion in-line with the current direction is of small amplitude compared 

with CF oscillation, the associated effect on AoA is therefore ignored. 

When the fairing moves upward in +y direction, what the fairing feels is a current 

flowing downward in –y direction. Thus, with reference to Figure  5-2, the 

instantaneous AoA may be written as,  

α = θ−β   5-16 

where 

y Rarctan( )
U
− θ

β =   5-17 

R is the distance of a reference point from the centre of rotation. It is used to describe 

the resultant of variations of the AoA over the fairing’s circumference which are 

induced by the angular velocity, θ . In fact, angular velocity generates a vertical 

component of velocity vector which varies over the section by horizontal distance 

from pivot point. It will be further clarified later in Section  6.1. If R 0> , by 

convention the reference point is located aft of the CR. 

 
 
 

 
Figure  5-2  Instantaneous Angle of Attack (AoA). 

Now, the force components arising from hydrodynamic forces should be derived for 

each DOF. Suppose a fairing at an instantaneous distortion angle of θ (see Figure 

 5-2). In these circumstances both lift and drag have a component in the direction of 
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y. In addition, there exists a moment striving to turn the fairing about the pivot point. 

All these forces are calculated based on the relative current velocity, Urel, and 

instantaneous incidence angle of α. If it is assumed that the hydrodynamic 

coefficients have been measured at the centre of rotation (CR), then the 

hydrodynamic force for each degree of freedom consists of, 

[ ]y
Hydrodynamic Force (Lift) cos (Drag) sin= × β− × β =  

2 21 1
rel L rel D2 2U cC cos U cC sin

α α
= ρ × β− ρ × β   5-18 

[ ] 2 21
rel M(cr)2Hydrodynamic Force U c C

θ α
= ρ   5-19 

where CD, CL and CM(cr) are drag, lift and moment coefficients respectively, 

measured at CR with respect to chord length, c. 

If the moment coefficient (CM) is measured at a point aft of the centre of rotation for 

a distance w, then CM should be modified by following equation, 

M M(w) L D(cr)C C (w / c)(C cos C sin )
α ααα

= − α + α   5-20 

By substituting these force terms in Equations ( 5-14) and ( 5-15), the final form of 

equations of motion will be as below, 

( )21
a y y x a rel L D2(m m )y C y k y (S S ) U c C cos C sin

α α
+ + + − + θ = ρ β− β   5-21 

2 21
x a a rel M(cr)2(S S )y (J J ) C U c Cθ α

− + + + θ+ θ = ρ   5-22 

5.4 Linearization 

This study as was expressed in objectives (see  Chapter 2) is seeking the onset 

condition for instability of the riser fairing. In other words, it tries to discover the 

condition at which a fairing that has been aligning itself to the current suddenly loses 

its stability and any small distortion from equilibrium position, i.e. zero AoA, may 

develop subsequently and the amplitude of vibration escalates instead of dissipating 

to its normal state.  

To this end, the appropriate approach is to give the system an infinitesimal 

disturbance from equilibrium position (Section  4.5) and then track down the trend of 
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oscillation’s amplitude to see what conditions makes it rise or descend. The postulate 

of very small amplitude vibration at instability onset provides the ground to 

reasonably assume that the variation of hydrodynamic forces is linear in this interval.  

Thus, for a small AoA of α, the hydrodynamic coefficients at this angle can be 

expanded in Taylor’s power series about the equilibrium position and the non-linear 

terms are removed, 

( )2L
L L 0

0

CC C O
α α=

α=

∂
= +α + α

∂α
  5-23 

( )2D
D D 0

0

CC C O
α α=

α=

∂
= +α + α

∂α
  5-24 

( )M(cr) 2
M(cr) M(cr) 0

0

C
C C O

α α=
α=

∂
= + α + α

∂α
  5-25 

where 2O( )α  means terms proportional to 2α  and higher powers of α  have been 

neglected. It should be noted that for a section symmetric about the stream direction, 

e.g. fairings, lift and moment coefficients at rest (α = 0) are zero in these equations. 

The variable α in the above equations is itself a function of velocities. With this in 

mind, this variable also needs to be expanded in Taylor’s series similarly. With 

reference to Equations ( 5-16) and ( 5-17), it can be easily written as,   

2y R y R y Rarctan( ) ( ) O ( )
U U U

⎛ ⎞− θ − θ − θ
β = = + ⎜ ⎟

⎝ ⎠
  5-26 

2y y RR O ( )
U U U

⎛ ⎞θ − θ
α = θ−β = θ− + + ⎜ ⎟

⎝ ⎠
  5-27 

Now it is time to linearise the hydrodynamic forces in equations of motion. The 

process is to substitute Equations ( 5-23) to ( 5-27) in Equations ( 5-21) and ( 5-22) and 

keep the terms containing DOFs (y, θ and their derivatives) up to only first order. To 

remove the ambiguity which may arise in the midway of process, it is carried out 

here step by step for the first one. It will be the same for the second one.  
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First the drag and lift coefficients in the right-hand side of Equation ( 5-21) are 

replaced by Equations ( 5-23) and ( 5-24). Then the variable α is substituted from 

Equation ( 5-27) and the result is rearranged. This will give,   

( )2 21 1
rel L D rel L2 2 0

U c C cos C sin U c C
α α α=

ρ β− β = ρ ( )0

D 0
cos C sin

α=
β − β +  

2 L D1
rel2

0 0

C CU c cos sin
α= α=

⎛ ⎞∂ ∂
+ ρ β− β θ⎜ ⎟∂α ∂α⎝ ⎠

 

2
rel L D1

2
0 0

U C Cc cos sin y
U α= α=

⎛ ⎞∂ ∂
− ρ β− β⎜ ⎟∂α ∂α⎝ ⎠

 

2
rel L D1

2
0 0

RU C Cc cos sin
U α= α=

⎛ ⎞∂ ∂
+ ρ β− β θ⎜ ⎟∂α ∂α⎝ ⎠

 

With reference to Figure  5-2, the trigonometric terms are equal to 

rel

Ucos
U

β =  

rel

y Rsin
U
− θ

β =  

Substitution of these two terms results in, 

( ) ( )( )21 1
rel L D rel D2 2 0

U c C cos C sin U c C y R
α α α=

ρ β − β = ρ − − θ +  

( )L D1
rel2

0 0

C CU c U y R
α= α=

∂ ∂
+ ρ − − θ

∂α ∂α

⎛ ⎞
θ⎜ ⎟⎜ ⎟

⎝ ⎠
 

L D1
rel2

0 0

C C y RU c
U Uα= α=

⎛ ⎞∂ ∂ θ
− ρ − −⎜ ⎟∂α ∂α ⎝ ⎠

y
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

L D1
rel2

0 0

C C y RRU c
U Uα= α=

⎛ ⎞∂ ∂ θ
+ ρ − −⎜ ⎟∂α ∂α ⎝ ⎠

⎛ ⎞
⎜ ⎟θ
⎜ ⎟
⎝ ⎠

 

The cross-lined terms are of second order or higher. Therefore, their very small 

influence is negligible and they should be omitted. By rearranging the terms, it leads 

to, 
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( )2 L1 1
rel L D rel2 2

0

CU c C cos C sin U c U
α α

α=

⎛ ⎞∂
ρ β− β = ρ θ⎜ ⎟∂α⎝ ⎠

 

L1
rel D2 0

0

CU c C y
α=

α=

⎛ ⎞∂
− ρ +⎜ ⎟∂α⎝ ⎠

 

L1
rel D2 0

0

CRU c C
α=

α=

⎛ ⎞∂
+ ρ + θ⎜ ⎟∂α⎝ ⎠

 

Since relative velocity (Urel) in the above equation is multiplied by terms of first 

order, in order to finally reach the linear terms, the constant term in relative velocity 

should be kept only. It means,  

2

1
rel 2

y R y RU U 1 U 1 U
U U

⎛ ⎞⎛ ⎞ ⎛ ⎞− + θ − + θ
= + ≈ + ≈⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Using this, eventually the right-hand side of Equation ( 5-21) will be in the form of, 

( )2 2 L1 1
rel L D2 2

0

CU c C cos C sin U c
α α

α=

⎛ ⎞∂
ρ β− β = ρ θ⎜ ⎟∂α⎝ ⎠

 

L1
D2 0

0

CUc C y
α=

α=

⎛ ⎞∂
− ρ +⎜ ⎟∂α⎝ ⎠

 

L1
D2 0

0

CRUc C
α=

α=

⎛ ⎞∂
+ ρ + θ⎜ ⎟∂α⎝ ⎠

  5-28 

Similar process for Equation ( 5-22) will render,  

2 22 21 1
rel M(cr) rel M(cr)2 2 0

U c C U c C
α α=

ρ = ρ
0

M(cr)

0

C

α=

⎛ ⎞∂
+α =⎜ ⎟⎜ ⎟∂α⎝ ⎠

 

2 M(cr)21
rel2

0

C
U c

α=

⎛ ⎞∂
= ρ θ+⎜ ⎟⎜ ⎟∂α⎝ ⎠

2 22 2
M(cr) M(cr)rel rel1 1

2 2
0 0

C CU c RU cy
U U

α= α=

⎛ ⎞ ⎛ ⎞∂ ∂ρ ρ
− + θ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

M(cr)2 21
2

0

C
U c

α=

⎛ ⎞∂
= ρ θ+⎜ ⎟⎜ ⎟∂α⎝ ⎠

M(cr) M(cr)2 21 1
2 2

0 0

C C
Uc y RUc

α= α=

⎛ ⎞ ⎛ ⎞∂ ∂
− ρ + ρ θ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

  5-29 
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By replacing the hydrodynamic force terms in Equations ( 5-21) and ( 5-22) with 

linearised terms from Equations ( 5-28) and ( 5-29) and re-arranging the result, the 

equations of motion will finally be in the following form, 

( ) ( )L1
a y D y x a2 0

0

Cm m y C Uc C y k y S S
α=

α=

⎛ ⎞⎛ ⎞∂
+ + + ρ + + − + θ+⎜ ⎟⎜ ⎟⎜ ⎟∂α⎝ ⎠⎝ ⎠

 

2L L1 1
D2 20

0 0

C CRUc C U c 0
α=

α= α=

⎛ ⎞ ⎛ ⎞∂ ∂
− ρ + θ− ρ θ =⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

  5-30 

 

( ) ( )M(cr) M(cr)2 21 1
x a a2 2

0 0

C C
S S y Uc y J J C RUcθ

α= α=

⎛ ⎞ ⎛ ⎞∂ ∂
− + + ρ + + θ+ − ρ θ+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

 

M(cr)2 21
2

0

C
U c 0

α=

⎛ ⎞∂
− ρ θ =⎜ ⎟⎜ ⎟∂α⎝ ⎠

  5-31 

The behaviour of the obtained equations is to be investigated and the amplitude of 

oscillation induced by an infinitesimal distortion should be tracked down in the next 

stage.  

5.5 Eigenvalue Analysis 

The purpose of this step is to assess the trend of amplitude variation through time 

when a small disturbance from equilibrium position occurs due to any instantaneous 

external excitation, e.g. abnormality in flow or so on. This analysis reveals what 

conditions makes the system suddenly switch the response from a diminishing 

oscillation to an increasing vibration and lose its stability. 

The equations of motion are two coupled homogenous linear differential equations of 

second order. To reduce the order of equations to first order, it is necessary to define 

two auxiliary variables for derivatives of first order (Harris and Stocker, 1998),  

Ŷ y=   5-32 

Θ̂ = θ   5-33 

By substituting them in equations of motion and rearranging the terms, it gives, 
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( ) ( ) L1
a x a y y D2 0

0

Cˆ ˆ ˆm m Y S S k y C Uc C Y
α=

α=

⎛ ⎞⎛ ⎞∂
+ − + Θ = − − + ρ + +⎜ ⎟⎜ ⎟⎜ ⎟∂α⎝ ⎠⎝ ⎠

 

2 L L1 1
D2 2 0

0 0

C C ˆU c RUc C
α=

α= α=

⎛ ⎞ ⎛ ⎞∂ ∂
+ ρ θ+ ρ + Θ⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

  5-34 

 

( ) ( ) M(cr)21
x a a 2

0

Cˆ ˆ ˆS S Y J J Uc Y
α=

⎛ ⎞∂
− + + + Θ = − ρ +⎜ ⎟⎜ ⎟∂α⎝ ⎠

 

M(cr) M(cr)2 2 21 1
2 2

0 0

C C ˆU c C RUcθ

α= α=

⎛ ⎞ ⎛ ⎞∂ ∂
+ ρ θ− − ρ Θ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠

 

  5-35 

Equations ( 5-32) to ( 5-35) can be easily re-written in the matrix form, 

 

( ) ( )

( ) ( )

a x a

x a a

A X

y1 0 0 0
ˆ0 m m 0 S S Y

0 0 1 0

0 S S 0 J J ˆ

+ − +
=

θ

− + + Θ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

 

2L L L1 1 1
y y D D2 2 20 0

0 0 0

M (cr ) M (cr ) M (cr )2 2 2 21 1 1
2 2 2

0 0 0

B

0 1 0 0

C C C
k C Uc C U c RUc C

0 0 0 1

C C C
0 Uc U c C RUc

α= α=
α= α= α=

θ

α= α= α=

∂ ∂ ∂
− − + ρ + ρ ρ +

∂α ∂α ∂α

∂ ∂ ∂
− ρ ρ − − ρ

∂α ∂α ∂α

⎡ ⎤
⎢ ⎥⎛ ⎛ ⎞⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎜ ⎟⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎝ ⎠⎠ ⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ X

y

Ŷ

ˆ
θ

Θ

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

  5-36 

Or in short form, 

A X B X⋅ = ⋅   5-37 

A general solution in exponential form is assumed, 
t tX ae X a eλ λ= → = λ   5-38 
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where a  is a vector of constants. It is substituted in Equation ( 5-37), resulting in, 
t tA a e B aeλ λ⋅ λ = ⋅   5-39 

Or by rearranging, it is simplified to, 

A B a 0⎡ ⎤λ − ⋅ =⎣ ⎦   5-40 

This matrix equation needs to have non-trivial solution to illustrate the response of 

system to a disturbance. More significantly, this response should be stable. In 

summary, the following conditions should be regarded in solving the above matrix 

equation, 

(1) having non-trivial solution: a 0≠  

(2) stability of response ( )tX aeλ=  

This linear homogenous equation has non-trivial solutions only if the matrix is 

singular which requires the matrix determinant to be zero. Moreover, the stability of 

system dictates that the amplitude of response should decline and the vibration 

should abate through the time. This means the real part of power in assumed 

exponential solution should be negative. Consequently, to satisfy the above 

conditions, it necessitates having, 

(1) A B⎡ ⎤λ − =⎣ ⎦ singular det A B 0⎡ ⎤→ λ − =⎣ ⎦  

(2) Real( ) 0λ <  

Setting the determinant to zero gives, 

det A B⎡ ⎤λ − =⎣ ⎦  

( ) ( )( ) ( ) ( ) ( )

( ) ( )

2L L L1 1 1

y a y D x a D2 2 20 0

0 0 0

2 2 2 2M ( cr ) M ( cr ) M ( cr )1 1 1

x a a2 2 2

0 0 0

1 0 0

C C C
k m m C Uc C U c S S RUc C

0 0 1

C C C
0 S S Uc U c J J C RUc

α = α =

α = α = α =

θ

α = α = α =

λ −

∂ ∂ ∂
+ λ + + ρ + − ρ − + λ − ρ +

∂α ∂α ∂α

λ −

∂ ∂ ∂
− + λ + ρ − ρ + λ + − ρ

∂α ∂α ∂α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

0=   5-41 
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If the above equation is expanded, it renders a characteristic equation in λ which in 

this case is a polynomial of fourth degree, 
4

i
i

i 1
c 0

=

λ =∑   5-42 

where the coefficients ic  as anticipated in Section  3.7 are functions of three 

categories of variables, i.e. structural properties of the riser and fairing, 

hydrodynamic characteristics of the fairing and finally current velocity. Therefore, 

for a given system of a riser and fairing, current velocity is the only variable which 

governs the instability onset. 

( )( ) ( )2
4 a a x ac m m J J S S⎡ ⎤= + + − +⎣ ⎦  

 

( )M(cr)2 L1 1
3 D x a2 2 0

00

C Cc Uc RUc C S S
α=

α=α=

⎡⎛ ⎞∂ ⎛ ⎞∂
= ρ − ρ + + +⎢⎜ ⎟⎜ ⎟⎜ ⎟∂α ∂α⎢ ⎝ ⎠⎝ ⎠⎣

 

( ) ( )M(cr)2L1 1
y D a a2 20

0 0

CCC Uc C J J C RUc m mθα=
α= α=

⎤⎛ ⎞⎛ ⎞ ∂⎛ ⎞∂
+ ρ + + + − ρ + ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎦

 

( ) ( )M(cr)2 2 L1 1
2 y a a D y2 2 0

00

C Cc k J J U c m m Uc C C C Cθ θα=
α=α=

⎡ ⎛ ⎞∂ ⎛ ⎞∂
= + − ρ + + ρ + +⎢ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂α ∂α⎢ ⎝ ⎠⎝ ⎠⎣

( ) M(cr)2 2L1 1
x a y2 2

0 0

CCU c S S RUc C
α= α=

⎤⎛ ⎞∂⎛ ⎞∂
− ρ + − ρ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α ⎥⎝ ⎠ ⎝ ⎠ ⎦

 

 

M(cr) M(cr)2 2 2 2 L1 1 1
1 y y2 2 2

00 0

C C Cc U c C Uc U c k Cθ
α=α= α=

⎡ ⎛ ⎞ ⎛ ⎞∂ ∂ ⎛ ⎞∂
= − ρ + ρ ρ + +⎢ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α ∂α⎢ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣

 

M(cr) M(cr)2 2 2L1 1 1
y D2 2 20

00 0

C CCRUc k Uc C U c
α=

α=α= α=

⎤⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞∂
− ρ − ρ + ρ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α ∂α ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎦

 

 

M(cr)2 21
0 y2

0

C
c U c k

α=

⎡ ⎤⎛ ⎞∂
= − ρ⎢ ⎥⎜ ⎟⎜ ⎟∂α⎢ ⎥⎝ ⎠⎣ ⎦
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Analysis of the roots of this characteristic equation results in the stability criterion. In 

other words, for a given configuration of a fairing and riser, it gives the threshold 

current speed at which unstable behaviour may occur. Unstable motion is diagnosed 

whenever one of the roots, iλ , has positive real part. 

5.6 Dimensionless Form 

Classifying the variables involved in Equation ( 5-42) and making them 

dimensionless assists the designer to have a better understanding of the true physical 

parameters that influence the stability. In fact, the magnitude of the physical 

parameters varies from case to case and this makes it difficult for engineers to make 

a judgment about the critical range of variables. But defining meaningful 

dimensionless parameters provides them with a valuable toolbox and facilitates the 

perception of complexities associated with the plurality of engaged parameters.  

Prior to stepping into the process of specifying these parameters, it is noteworthy to 

say that in addition to transverse spring stiffness, the last term on the left hand side of 

the second equation of motion, e.g. Equation ( 5-31), can be interpreted as 

hydrodynamic torsional stiffness (for further discussion, see Section  5.9). Thus, 

angular velocities and natural frequencies of both motions are calculated as below, 

y
y y

a

k
2 f

m m
ω = π =

+
  5-43 

( )M(cr)2 21
a2

0

C
2 f U c J Jθ θ

α=

∂
ω = π = − ρ +

∂α
  5-44 

The first step in making the Equation ( 5-42) dimensionless is to identify the 

dimension of its terms. By referring to Equation ( 5-38), it is clear that λ is of the 

dimension of (1/Time), i.e. Dim[λ] = (Time)-1. A quick look at the terms of Equation 

( 5-42) indicates that they all have the dimension of (Mass)2.(Length)2.(Time)-4. So, it 

requires to select appropriate parameters for these dimensions, i.e. mass, length and 

time, and then to divide this equation by them. Mass of the system and chord length 

of the fairing, i.e. a(m m )+  and c respectively, are appropriate terms for the 

dimension of mass and length. As the system has two natural periods for transverse 
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and torsion vibration, thus selecting a period for time is not reasonable. Instead, the 

term c/U generates a general equivalent for dimension of time which can be applied 

to both DOFs.  

So, each term of the characteristic Equation ( 5-42) should ultimately be divided by 

the term 2 2 4
a(m m ) .(c) .(U / c)+  to make it dimensionless. Afterwards, by rearranging 

the terms it gives,   

( ) ( )

i4 4
i i

i 2 4 i2
i 1 i 1 a

cc 0
U / cm m c U / c −

= =

λ⎛ ⎞λ = =⎜ ⎟
⎝ ⎠+ ⋅ ⋅

∑ ∑   5-45 

 

( ) ( )

2

a x a
4 2

a a

J J S Sc
m m c m m c

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 

( ) ( )
2 2

M(cr) L
3 D 0

0a a0

Cc c R Cc C
2 m m 2 m m c α=

α=α=

⎡⎛ ⎞∂ ⎛ ⎞ρ⋅ ρ⋅ ∂⎢⎜ ⎟= − +⎜ ⎟⎜ ⎟+ ∂α + ∂α⎢ ⎝ ⎠⎝ ⎠⎣

( ) ( )
2

y yx a L
D 0

0a a y a

2CS S c C C
m m c 2 (m m ) U / c 2 m m α=

α=

⎛ ⎞⎛ ⎞ ω ⎛ ⎞+ ρ⋅ ∂
+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⋅ + ⋅ω + ∂α⎝ ⎠⎝ ⎠ ⎝ ⎠

 

( ) ( ) ( )
2

M(cr)a a
2 2

a a a a 0

CJ J 2C J J c R
m m c 2 (J J ) m m c U / c 2 m m c

θ θ

θ α=
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Generally speaking, models discussing the VIV of a cylinder typically suggest that 

the appropriate dimensionless parameters that are useful in describing the vortex-

induced response of continuous structures are (1) structural damping factor, (2) 

reduced velocity, (3) mass ratio, (4) ratio of stationary cylinder shedding frequency 

to natural frequency, (5) aspect ratio and (6) Reynolds number (Blevins, 2001). 

Reduced velocity is a good tool to measure to what extent the body is likely to 

interact with vortex shedding in its own wake. Mass ratio “is often used to measure 

the susceptibility of lightweight structures to flow-induced vibration. As the ratio of 

fluid mass to structural mass increases, so does the propensity for flow-induced 

vibration”. These suggestions give guidelines as to how to select the dimensionless 

parameters.  

With this in mind, a detailed look into the coefficients of the above equation inspires 

more clues about how to define the meaningful dimensionless parameters in this 

specific case. Taking the above  into consideration, it reaches the conclusion of 

defining the following dimensionless parameters, 

U / c
λ

λ =   5-46 

2 a
2

a

J J
(m m ).c

+
γ =

+
  5-47 
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  5-53 

r
RR
c

=   5-54 

where the imaginary part of λ  shows the ratio of the time that takes a flow particle to 

pass the chord length to the period of oscillation; γ  is the radius of gyration about 

pivot point; rS  is the dimensionless distance of centre of gravity from pivot point; A  

is the inverse of mass ratio; yζ  and θζ  are the damping ratio of transverse and 

torsional motions in water respectively; ryU  and rU θ  are the reduced velocities; and 

rR  is the dimensionless distance of reference point. 

By substituting the above parameters in Equation ( 5-45), the dimensionless form of 

characteristic equation will appear as the below,  
4

i
i

i 1
c 0

=

λ =∑   5-55 

22
4 rc S⎡ ⎤= γ −⎣ ⎦  

( ) ( )M(cr) y2 2L
3 r r r r D 0

0 ry r0

C Cc A S R A R S C 2 ( )
U U

θ
α=

α= θα=

⎡ ⎤∂ ξ⎛ ⎞ ξ∂
= − + γ − + + γ +⎢ ⎥⎜ ⎟∂α ∂α⎢ ⎥⎝ ⎠⎣ ⎦

 



5. 2D Theoretical Model 

 
© Mahdi Khorasanchi, 2009 88

2
y M(cr) y2 2L

2 r D2 0
0ry r ry rry 0

L
r

0

C Cc A 1 2R 2A C 4
U U U UU

CAS

θ θ
α=

α=θ θα=

α=

⎡ ⎛ ⎞ξ ∂ ξ⎛ ⎞ξ ξγ ∂
= − + + γ + + γ +⎢ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂α ∂α⎢ ⎝ ⎠⎝ ⎠⎣

⎤∂
− ⎥∂α ⎦

2
y M(cr) M(cr)2r

1 D2 2 0
ry rry ry0 0

C CRc A 2 2 A C
U UU U

θ
α=

θα= α=

⎡ ⎤⎛ ⎞ξ ∂ ∂ξγ
⎢ ⎥= − + + −⎜ ⎟⎜ ⎟ ∂α ∂α⎢ ⎥⎝ ⎠⎣ ⎦

 

M(cr)
0 2

ry 0

C1c A
U α=

⎡ ⎤∂
= −⎢ ⎥

∂α⎢ ⎥⎣ ⎦
 

This equation should be then solved for λ  to see if the second condition, i.e. 

Real( ) 0λ < , is met and any disturbance from equilibrium position dies out. If not, 

the system is in an unstable status.  

The characteristic Equation ( 5-55) is of the fourth degree and an analytical approach 

leads to a very complicated solution and does not have a lot of benefit in specifying 

when one of the roots becomes unstable. Likewise, if it is also attempted to assess the 

roots of this quartic equation with the aid of Routh-Hurwitz stability criterion 

(Wiggins, 1990), it will end up with a complex solution which does not make any 

useful points. Thus, this equation remains to be solved numerically for a given 

system of the riser and fairing to find the current velocity at which systems becomes 

unstable.  

To this end, Equation ( 5-55) is solved for a small velocity and the stability of roots is 

checked by assessing the sign of their real part. If all roots are stable, then the 

equation is solved again for an increment in velocity and roots are investigated 

accordingly. This loop is continued and the trend of roots variation against velocity 

increase is tracked down until either the real part of one of the roots becomes positive 

and system goes unstable or the magnitude of velocity exceeds the possible current 

limit in reality. 

In the next step, this procedure will be followed for a tank test to verify the 

robustness of the model. 
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5.7 Verification 

A series of cylinder tests was carried out by ExxonMobil at the David Taylor Model 

Basin (Slocum et al., 2004). One of the tests was on a rigid cylinder with the fairing 

shown in Figure  5-3.  

 

 
Figure  5-3  ExxonMobil Fairing on a Rigid Cylinder. 

In part of these tests, a submerged horizontal spring mounted cylinder was towed 

through still water while transverse motion was measured. A rigid test cylinder with 

a diameter of 22cm and a length of 3.9m was fitted with six independent fairing 

segments, each with a span of 61.2cm, a chord length of 52.6cm, and a maximum 

thickness of 23.2cm. This system can be modelled with a fairing and a transverse 

spring as explained in this chapter. 

Based on the measured specifications of the test, the dimensionless parameters are 

evaluated as below:  

A = 0.8435  

γ2 = 0.0792  

Sr = 0.2016 

Rr is a reference length for average effect of angular velocity on the angle of attack 

(see Section  6.1). For an airfoil which rotates about its elastic axis, Rr is chosen to 

give the AoA at a point three-quarters of the way back from the leading edge 

(Blevins, 2001). Since CR is at the centre of circular nose of fairing, Rr should be 

less than half of chord length. Thus, Rr is selected here as 0.40. 

Rr  = 0.40 
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With respect to damping, some experimental tests report high level of in-water 

damping ratio for riser fitted with fairing, e.g. 0.10 to 0.18 (Lee et al., 2004b). But 

since the riser is rigid in this test and does not experience any tangible deformation, 

its contribution to the transverse damping of the system is smaller. Thus, half of the 

reported value in technical literature was deployed for ξy in calculation. Moreover, as 

the tests emphasise on the rotational freedom of fairing, the positive role of torsional 

friction damping is ignored in favour of being on the safe and conservative margin. 

yξ  =  5 % 

θξ  =  0 % 

The last required data is the hydrodynamic coefficients of the fairing. A CFD 

analysis was performed as part of this study on a selection of fairing profiles 

including this section (see  Chapter 7). The analysis was done at Reynolds number of 

5x104 at different angles of attack. On the contrary, the tank test was carried out at 

much higher Reynolds number of about 5x106. Since the hydrodynamic coefficients 

are sensitive to Reynolds number, the lift-curve slope and mean drag at aerodynamic 

centre were selected according to reported data (Slocum et al., 2004). These 

coefficients are scaled to the chord length of the fairing based on Equations ( 5-18) 

and ( 5-19). 

L o
C /∂ ∂α  = 1.146 (1/rad)  

D o
C = 0.176 

Lift-curve slope, measured at the aerodynamic centre, was shifted to centre of 

rotation (CR) to compute the moment-curve slope, 

M(cr) o
C /∂ ∂α  = -0.0344 (1/rad) 

The critical reduced velocity, Ucr, at which the real part of a solution to characteristic 

Equation ( 5-55) becomes positive, is obtained numerically by increasing the reduced 

velocity and solving this equation at each step. For this case study, the analytical 

model shows the system becomes unstable at Ucr = Ury(critical) = 0.51, which is located 

in the range of test results (0.42-0.56) (Slocum et al., 2004). This demonstrates the 

good agreement of theoretical model with previous experiment.  
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The trace of eigenvalues is illustrated in Figure  5-4. The red circles in this figure 

show the eigenvalues corresponding to the highest velocity at which a pair of them 

crosses the imaginary axis and their real part becomes positive. According to 

Equations ( 5-46) and ( 5-52), the imaginary and real parts of roots are multiplied by 

Ury to remove the effect of non-dimensionalisation. Hence, the horizontal and 

vertical axes in this figure are Real( y/λ ω ) and Imag( y/λ ω ) respectively. The 

imaginary part of eigenvalue, Imag(λ), represents the frequency of vibration while 

the real part shows the trend of amplitude variation. 

As the governing equations are coupled, the relevant eigenvector or mode shape of 

each eigenvalue is coupled in the sense it has elements in both DOFs. Thus, it is not 

possible to attribute the modes into pure transverse or torsion motion.  
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Figure  5-4  Trend of Eigenvalues by Velocity Increment.  

5.8 Torsional Friction Damping 

Damping in general has remarkable effects on stability analysis of a system as it can 

affect the system and change its behaviour. When a dynamically stable system goes 

unstable, the balance of energy exchange is reversed. This means the system is 

equipped to absorb energy from outside more than it scatters. Thus, any infinitesimal 

disturbance from rest can trigger the mechanism of putting energy into the system 
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and raise the amplitude of vibration. Consequently, any mechanism capable of 

dissipating energy and altering the rate of energy exchange in favour of stability is of 

interest to designer. Damping in any form has this feature and therefore must be 

taken into consideration in stability appraisal.  

Regarding a system consisting of a riser and fairing, various phenomena are engaged 

in damping the energy of self-induced vibration. Imagine this system in still water. 

There is no torsional stiffness and hence any torsional displacement will remain 

stationary. In other words, any torsional position is in neutral equilibrium and thus no 

motion and energy damping mechanism exist. However, in the case of transverse 

distortion, structural stiffness of the riser tries to bring the riser back to the initial 

condition and the motion created in the fluid is allied with a damping motion. This 

damping induced by the riser’s structural damping in fluid was demonstrated in 

equations of motion by the term of yC y .  

Then, when the fluid flow comes into play, some other terms appear too. As was 

mentioned in Section  5.6 and will be further explained thoroughly later on in Section 

 5.9, fluid current produces a hydrodynamic torsional stiffness which attempts to align 

the fairing to the current direction. Therefore, this rotation in fluid is associated with 

a torsional hydrodynamic damping. Moreover, drag and lift force of the fairing in the 

presence of a current put some thrust in transverse damping. This hydrodynamic 

damping emerged in equations of motion through the expansion of hydrodynamic 

forces.  

The third type of damping in the system of a riser and fairing originates from friction 

generated as a result of the fairing’s motion against riser’s circumference. 

As illustrated in Figure  3-9 to Figure  3-14, a fairing is in contact with the riser at 

collars located at the two ends and possibly through some pads in between. Thus, 

upon any rotation these surfaces rub on each other and generate friction which is 

technically called dry friction, a friction force between objects in the absence of any 

lubricant. In this case, the frictional forces are practically independent of the 

magnitude of the velocity of motion and they act in opposite direction to this velocity 

(Magnus, 1965). If the two sliding surfaces are separated with a thin film of 



5. 2D Theoretical Model 

 
© Mahdi Khorasanchi, 2009 93

lubricant, then the viscosity force in lubricant comes into play and forms part of the 

friction mechanism. So, the characteristics of combined dry and viscous friction 

damping change. 

Models and Characteristics 

Several models have been proposed to describe and formulate the friction damping. 

They are used individually or in combination to represent the friction in a system. 

The most famous models include Coulomb damping, viscous damping and hysteretic 

damping. 

Charles-Augustine de Coulomb suggested the earliest model for dry friction and 

because of that, dry friction is sometimes known as Coulomb friction. In his simple 

model, the friction force is proportional to the normal force exerted between 

surfaces. The friction force is related to the normal force through the coefficient of 

friction, μ, which is a function of surface properties like roughness. This friction 

force resists the motion and therefore is in the opposite direction of motion, y .  

FrictionF  = NormalF × μ × sign( y )  5-56 

This resisting force which is independent of the velocity reduces the amplitude of 

vibration in a linear way. The amplitude loss per cycle is equal to 4 FrictionF /K, where 

K shows the stiffness of the dynamic system (Beards, 1996). Coulomb damping does 

not alter the natural frequency of vibration.  

Many other dry friction formulations have been derived based on the classical 

(discontinuous) Coulomb model (Duan, 2004, Duan and Singh, 2006), for example 

stick-slip friction law in which the friction force or torque is defined as a function of 

the relative velocity or a modified micro-slip model in terms of an elasto-plastic 

shear layer. In-depth description of these models is out of the scope of this study and 

the reader is referred to the cited references.  

Viscose damping model is also deployed to describe the friction energy loss. In this 

model, the resisting force is proportional to velocity through damping coefficient, Cy. 

FrictionF  = Cy × y   5-57 
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Contrary to Coulomb friction model, viscose damping changes the natural frequency 

of system and is characterised by an exponential decay of oscillation (Beards, 1996).  

Hysteretic model is the other well-known damping model which is sometimes used 

to explain the friction effect. Hysteretic damping or complex stiffness mostly 

emerges in describing the internal friction of solid materials in which there is a phase 

angle between stress and stress induced strain. While viscose damping is frequency 

dependent, hysteretic damping is independent of the frequency of vibration, ω 

(Beards, 1996).  

FrictionF  = HystC y× × sign( y )  5-58 

These models are used individually or in a combination form to describe the physics 

of different systems. Mathematically, the term representing viscose damping model 

is much easier to deal with and therefore it is very common to define an equivalent 

viscose damping coefficient for other models, i.e. Coulomb and hysteretic. The 

equivalent viscose damping coefficient is defined in a way that the energy dissipated 

in a cycle is equal in both viscose and Coulomb/hysteretic system. If YA shows the 

amplitude of vibration, the equivalent viscose damping coefficient for Coulomb 

damping is (Beards, 1996, Blevins, 2001), 

eq Normal
y

A

4 FC
Y

⋅ ⋅μ
=

π⋅ω⋅
  5-59 

where ω again is the frequency of vibration. Likewise, the equivalent viscose 

damping coefficient for hysteretic damping is calculated as, 

Hysteq
y

2 C
C

⋅
=

π⋅ω
  5-60 

Friction in Fairing 

As explained earlier in this section, the fairing and riser are in contact and any twist 

of the fairing produces friction forces whose resultant is a torque resisting the 

rotation of the fairing. For the simple model of Coulomb damping, the normal force 

which presses the two surfaces to each other mainly comes from the resultant of fluid 

force on the fairing, i.e. drag and lift. At an angle of attack, say α, since the fairings 
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section is chunky and not designed like thin airfoils to generate small drag and large 

lift, the drag force is much bigger than lift. Thus, the role of drag in normal force is 

predominant. Consequently, the helpful effect of lift force on increasing the normal 

force and associated friction can be ignored in favour of being on the conservative 

side. There could exist also a small component originating from clamping the fairing 

to the riser but it should be very tiny as the fairing is clamped loosely to enable it 

weathervane freely.  

So, the normal force at an angle of attack say α, is, 

( ) 21
rel D2N Drag U cC

αα
= = ρ  

Through the process of linearization as explained in Section  5.4, the normal force 

will be simplified to, 

2 D1
D2 0

0

CN U c(C )
α=

α=

∂
= ρ +α

∂α
 

If sr  and μ shows the outer radius of a steel riser and the coefficient of friction 

respectively, using Equation ( 5-56) with above normal force gives the friction torque, 

( )2 D1
Friction D s2 0

0

CT U c (C ) sign( ) r
α=

α=

∂
= ρ +α ×μ× θ ×

∂α
 

This expression consists of two terms. The first term is Coulomb friction. By 

comparison with Equation ( 5-58), the second term resembles the hysteretic friction 

model. Thus, the equivalent viscose damping coefficient for each term is obtained 

through Equations ( 5-59) and ( 5-60). 

( )21
D s2 0eq Normal

1
A A

4 U c (C ) r4 FC
Y

α=
θ

θ

μ ⋅ ρ ⋅⋅ ⋅μ
= =

π⋅ω⋅ π⋅Ω ⋅Θ
  5-61 

( )21
D s2Hyst 0eq

2

2 U c ( C / ) r2 C
C α=

θ
θ

μ ⋅ ρ ∂ ∂α ⋅⋅
= =

π⋅ω π⋅Ω
  5-62 

where AΘ  and θΩ  indicate the amplitude and frequency of torsional vibration 

respectively. It should be noted that θΩ  is the frequency of vibration not the natural 
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frequency of torsional vibration, θω . In stability analysis, therefore, it is equal to the 

imaginary part of λ, i.e. Imag(λ) = θΩ . 

These equivalent viscose damping terms should be added to the torsional viscose 

damping (C )θ  in the second governing equitation of system, i.e. Equation ( 5-31). 

Eventually, all torsional viscose damping terms in characteristic Equation ( 5-42) are 

to be substituted by the expression of ( eq eq
1 1C C Cθ θ θ+ + ). Accordingly, making this 

term dimensionless with reference to Equation ( 5-51) gives, 
2eq 21

Deq 1 0 a s2
1

a A a a

D sr r0
2

A

4 (C ) cC (m m )c r U / c U / c
2 (J J ) 2 (m m ) (J J ) c Imag( )
2 (C )A r U

Imag( )

θ α=
θ

θ θ

θα=

μ ρ +
ξ = =

⋅ + ⋅ω πΘ + + λ ω

μ ⋅ ⋅
=

πΘ γ λ

 

2eq 21
Deq 2 0 a s2

2
a A a a

D sr r0
2

2 ( C / ) cC (m m )c r U / c U / c
2 (J J ) 2 (m m ) (J J ) c Imag( )
( C / )A r U

Imag( )

θ α=
θ

θ θ

θα=

μ ∂ ∂α ρ +
ξ = =

⋅ + ⋅ω πΘ + + λ ω

μ ∂ ∂α ⋅ ⋅
=

πγ λ

 

where srr  is the dimensionless form of the riser’s outer radius.  

Adding these terms makes the solution of characteristic equation more complicated 

because now two variables AΘ and Imag(λ ) are unknown. Thus, it should be solved 

in a trial and error loop as explained below.  

For a specific Ury (e.g. (Ury)i) inside the loop of increasing Ury,  

• Ignore the friction effect and calculate oλ . It gives oθΩ = Imag( oλ ). 

• Take the friction into account and for an initial value of AΘ  (e.g. 2
π ) 

calculate λ . It gives Imag(λ ) and Real(λ ). 

• Reduce AΘ  and calculate λ  until Real(λ ) < 0. Then 
jθ

Ω = Imag(λ ). 

• To monitor the convergence, check the condition 
j j 1 j 1

( ) /
− −θ θ θΩ −Ω Ω < ε . 

If it is satisfied, then ((Ury)i, AΘ ) gives the next point and exit the loop. If 

not, go one step back and reduce AΘ . 



5. 2D Theoretical Model 

 
© Mahdi Khorasanchi, 2009 97

This algorithm gives a curve of AΘ  versus Ury. Such a curve shows the maximum 

value of AΘ beyond which the system is unstable for a specific Ury (Figure  5-5). This 

means that for a specific Ury, if the torsional disturbance is less than A max( )Θ  then it 

will diminish and finally die out. As a consequence the system is stable, however 

beyond that, the system is unstable and the amplitude of vibration may grow. 

 
Figure  5-5  Effect of Considering Friction Damping. 

Effects and Conclusion 

To analyse the effect of adding Coulomb and hysteretic terms of friction damping, 

the above algorithm will be applied to the case studied in Section  5.7 for verification 

of the model. With respect to the point that the fairing should be free to weathervane, 

the sliding friction coefficient is relatively small. For rubbing smooth steel surfaces, 

the friction coefficient varies between 0.1 to 0.5. The average value is selected as 

0.30. The test report did not mention anything about the slope of the drag coefficient. 

Thus, by considering the growth of projected area due to small rotation of the fairing, 

the parameter ∂CD/∂α can be estimated. In fact for this fairing with 23.2 cm diameter 

and 52.6 cm chord, the rotating arm behind the pivot point is 52.6 – 23.2/2 = 41 cm. 

A small rotation (α) of this arm will increase the projected area (PA) of the unit span 

to as large as 41×α .  

new oPA PA 0.41 0.232 0.41= + ×α = + ×α  

New Drag = 21
new Do2 U PA Cρ ⋅ ⋅ = 2 New1

o Do2
o

PAU PA C
PA

ρ ⋅ ⋅  

Ury 

AΘ  Unstable 

Stable 



5. 2D Theoretical Model 

 
© Mahdi Khorasanchi, 2009 98

Thus, the equivalent drag coefficient can be defined as, 

New
D EQ Do

o

PA(C ) C
PA

=  

Consequently, the slope of the drag coefficient can be estimated as below, 

∂CD/∂α = o oD EQ D D New o o(C ) C C (PA PA ) / PA 0.176 0.41 / 0.232 0.311
− − × α

= = =
α α α

 

It should be noted that the parameter ∂CD/∂α appears as a hysteretic term only. The 

above algorithm produces Figure  5-6 for considering only the Coulomb term of 

friction damping. This figure says that when Ury declines, the maximum amplitude of 

disturbance has a vertical asymptote of about Ucr = 0.51 which is identical to the 

previous result when the effect of friction damping was ignored. Accordingly, as Ury 

increases this maximum limit reduces. In other words, this figure clarifies if Ury < 

Ucr, then the system is stable for any small amplitude of torsional distortion and it 

will eventually die out. But when Ury > Ucr, for the system to be stable, the amplitude 

of distortion should be less than a specific value. Otherwise, the system goes 

unstable. 

Taking both Coulomb and hysteretic terms into account demonstrates more 

interesting results in Figure  5-7. This figure shows that adding the effect of hysteretic 

term pushes the curve upwards and to the right. It means that the hysteretic term 

improves the stability and the system goes unstable at a higher velocity and larger 

disturbance. For ∂CD/∂α, larger than what was estimated, the curve is moved 

upwards and further to the right, boosting the stability. 

This behaviour of term eq eq
1 2C Cθ θ+  may be justified through the torsional damping 

term in the second governing equitation of system, i.e. Equation ( 5-31). This term is, 

 M(cr)eq eq 21
1 2 2

0

C
C C C RUcθ θ θ

α=

⎛ ⎞∂
+ + − ρ θ⎜ ⎟⎜ ⎟∂α⎝ ⎠
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Figure  5-6  Effect of Considering Friction, Coulomb Term. 
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Figure  5-7  Effect of Considering Friction, Coulomb and Hysteretic Terms. 
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In this term, eq
1Cθ  and eq

2Cθ  are proportional to the squared of velocity (Equations 

( 5-61) and ( 5-62)). At small current velocity, the hydrodynamic torsional damping 
21

M(cr)2 0
RUc ( C / )

α=
− ρ ∂ ∂α  is large enough to keep system stable. This is the case for 

velocities less than Ucr, however, for higher Ury, eq eq
1 2C Cθ θ+  comes into play which has 

a reciprocal dependence with amplitude. 

Therefore, one may conclude that friction has conservative effect on the amplitude of 

disturbance and, to be on the safe side, can be ignored or equalised to a viscose 

damping. The latter is also convenient mathematically and will be deployed in this 

study. 

5.9 Discussion 

In this chapter, since the three-dimensional physics of a riser fitted with fairings was 

complicated, it was simplified to a two-dimensional problem for a fairing on a rigid 

riser. Two degrees of freedom was identified, i.e. cross-flow translation of the riser 

and fairing as well as angular twist of the fairing. The equations of motion for these 

DOFs were derived with the aid of using Lagrange’s equation. Hydrodynamic forces 

including drag, lift and moment emerged as a part of governing equations. These 

forces were dependent on instantaneous AoA and therefore, the effect of motion, 

both transverse and torsional, on the real AoA was considered. Based on the purpose 

of this study, i.e. the assessment of instability onset conditions, an infinitesimal 

disturbance from the equilibrium position was assumed to track the tendency of 

amplitude; whether it decreases and dies out or increases and leads to instability. 

Within this small interval from equilibrium position, the variation of hydrodynamic 

coefficients was reasonably postulated to be linear. Thus, by using Taylor’s series, 

the hydrodynamic coefficients were expanded and non-linear terms were removed. 

This resulted in Equations ( 5-30) and ( 5-31) which will be discussed further below. 

Finally, an eigenvalue analysis was carried out to clarify when the real part of one of 

the roots/eigenvalues becomes positive and the system goes unstable. The 

characteristic equation was made dimensionless to meaningfully present the 

significance of physical parameters in the instability criterion. At the end, the effect 

of torsional friction damping was further investigated.   
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Now, there are a number of points which need additional attention.  

Coupling in Governing Equation of Motions 

First of all, it should be noted that the governing Equations ( 5-30) and ( 5-31) are 

coupled in two ways.  

These equations are coupled inertially through the term x a(S + S ) , the first mass 

moment of area. This demonstrates how the acceleration in one DOF affects the 

inertia of the other DOF.  

They are also interrelated hydro-dynamically through the angle of attack. It is due to 

the fact that hydrodynamic coefficients, which exist in both equations, were written 

in a linear form of AoA. In addition, AoA is influenced by the distortion angle as 

well as both transverse and torsion velocities, y  and θ . Thus, these terms as a part of 

AoA emerge in these equations and inter-relate them thoroughly together. 

Hydrodynamic Damping 

Secondly, through the process of expanding hydrodynamic coefficients at a small 

AoA, a number of hydrodynamic terms contributing to stiffness and damping 

appeared in the governing Equations ( 5-30) and ( 5-31). These terms expounds how 

the hydrodynamic characteristics of a fairing can change the behaviour of the system.  

For example, it is obvious that if the system absorbs energy instead of dissipating 

that through damping, the amplitude of vibration rises continuously and systems goes 

unstable. In other words, if one of the damping coefficients becomes negative, it 

means part of the system is gaining energy and, depending on its extent, it can 

provide the ground for potential instability. Therefore, negative damping can be 

interpreted as an alert for the risk of instability. Back to these equations, the two 

terms of LC1
D2 00

RUc( C )∂
∂α α=α=

ρ + θ  and M (cr )C21
2 0

( Uc )y∂
∂α

α=
− ρ  in Equations ( 5-30) 

and ( 5-31) respectively are parts of the hydrodynamic contribution of the fairing to 

damping. Thus, according to the above explanation, they should be positive 

otherwise they obtain energy instead of scattering it. Consequently, one can say that 
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having a positive coefficient in these terms is a necessary condition for stability of 

the system, whereas having no roots with a positive real part for the characteristic 

Equation ( 5-55) is the sufficient condition. All in all, it can be said that to avoid the 

instability in the system of the riser and fairing, the necessary and sufficient 

conditions below should be satisfied, 

Necessary condition:  M (cr )C

0
0 ∂

∂α
α=

< −           and LC
D 00

0 ( C )∂
∂α α=α=

< +  

Sufficient condition:  Ury < Ucr 

Hydrodynamic Stiffness 

The third point relates to yet another contribution of the hydrodynamic coefficients 

and it should be noted that the coefficient of the last term in the left hand side of 

Equation ( 5-31), M (cr )C2 21
2 0

( U c )∂
∂α

α=
− ρ θ , can be interpreted as the only torsional 

stiffness which is generated by moment coefficient of the fairing. Thus, if this 

stiffness is positive, which in fact is identical to satisfying one of the necessary 

conditions above, the generated moment by fluid force on the fairing, twists it back 

and helps the fairing with self-alignment to the current. However, in case of negative 

torsional stiffness, i.e. M(cr) 0
( C / ) 0

α=
− ∂ ∂α < , any infinitesimal rotation from the rest 

will develop further. In this case, the zero AoA will not be the equilibrium position 

any more. The equilibrium position as shown in Figure  5-8 will be at an angle like α2 

at which the moment coefficient is zero and the slope of moment curve is negative. 

Since the fairing is a symmetric section, therefore its lift and moment coefficients are 

counter-symmetric. Thus, instead of one single point of equilibrium at zero AoA, 

there exist two identical equilibrium positions at AoA of α2 and -α2. In this case, at 

any infinitesimal twist, say 0+, the slope of moment curve is positive and 

consequently the rotation develops in the positive direction of AoA up to angle α1. At 

this point, the moment is still positive and hence twists the fairing in the positive 

direction further while the magnitude of moment reduces. This continues up to the 

point α2. At this point, there is no moment to rotate the fairing and, moreover, the 

slope of the curve is negative and any disturbance will be restored by generation of 
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appropriate counter-moment. It means α2 and likewise its counterpart -α2 are the 

equilibrium positions. In the case of any disturbance, the fairing may switch between 

these two equilibrium positions depending on the strength of counter-moment. This 

shift and transition between equilibrium positions resemble the fishtailing as several 

studies reported that (see sections  3.5 and  3.6). Thus, if any modification to the 

fairing’s section, e.g. adding fins, can resolve the issue of moment coefficient, then 

the problem of misalignment, and one of the likely causes for fishtailing, will be 

sorted out. Therefore, it can be concluded that these issues are quite separate and 

independent of instability and can occur while the fairing is statically stable at its 

equilibrium positions rather than zero AoA. In other words, misalignment and 

perhaps fishtailing in one hand and instability in the other hand are two different 

mechanisms with different governing parameter; one by the moment coefficient and 

the other by the characteristic equation. 

 

 
Figure  5-8  Equilibrium AoA. 

Identifying hydrodynamic stiffness has another interesting outcome. More scrutiny 

of the last term in the left hand side of Equation ( 5-31) reveals that torsional stiffness 

is proportional to the square of current velocity. It means that as a result of any rise 

in velocity, the system becomes stiffer torsionally and it is therefore expected that the 

α 

CM(cr) 

α2 0 

M (cr )C 0∂
∂α >  

M (cr )C0 ∂
∂α<  

α1 
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frequency of torsional vibration increases too. On the other hand, it should be noted 

that the imaginary part of the eigenvalue, Imag(λ), represented the frequency of 

vibration. This feature is illustrated in Figure  5-4 where the imaginary part of two 

conjugate eigenvalues on the left branches is shown to be increasing. In fact, as the 

current speed increases, the associated frequency of these eigenvalues rises too. More 

interesting is that through the process of increasing current velocity and solving the 

characteristic equations to draw Figure  5-4, as the current speed starts from nearly 

zero, the only torsional stiffness which is due to hydrodynamic force and 

proportional to the square of current velocity is therefore very small and almost zero 

at the beginning. Thus, since there is no torsional stiffness, the frequency of vibration 

should be zero as well. Another look to Figure  5-4 confirms that the left branches 

commence from the origin point where the frequency and amplitude are zero. 

Now, after development and verification of the theoretical model and also perception 

of the physical meaning of governing equations, it is necessary to assess the role and 

influence of key variables identified in Section  5.6. The next Chapter has been 

dedicated to this issue. 
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Chapter 6  

Key Parameters 

This chapter presents more details of the key parameters identified through the 

development of the theoretical model in the previous chapter. The physical meaning 

of these variables is explored and a method is presented to calculate them for a given 

system. Finally, a parametric study is carried out to assess the role of each parameter 

and its influences on the instability onset. 

6.1 Introduction 

In developing the theoretical model in the previous chapter, it was uncovered that 

there are three categories of parameters involved in triggering the instability of the 

riser fairings (see characteristic Equation ( 5-42)). They include hydrodynamic 

characteristics of the fairing, structural properties of the system as well as current 

velocity.  

Hydrodynamic characteristics of the fairing appeared in the form of hydrodynamic 

coefficients and their derivates, i.e. DC , LC∂
∂α  and M ( cr )C∂

∂α  at zero AoA. The other two 

groups, i.e. structural properties and current velocity, formed the dimensionless 

parameters as below (see Equations ( 5-46) to ( 5-54)). 

U / c
λ

λ =  

2 a
2

a

J J
(m m ).c

+
γ =

+
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x a
r

a

S SS
(m m ).c

+
=

+
 

2

a

.cA
2(m m )

ρ
=

+
 

y
y

a y

C
2 (m m )

ξ =
⋅ + ⋅ω

 

a

C
2 (J J )

θ
θ

θ

ξ =
⋅ + ⋅ω

 

ry
y

UU
.c

=
ω

 

M (cr )

2

r C

0

UU
.c A

θ −∂
θ ∂α

α=

γ
= =
ω

 

r
RR
c

=  

The perception of their physical meaning can help later on in the parametric study to 

gain a better understanding of what is changing in the system in reality and what 

influences it entails. 

Of the first parameter, λ comes from the Equation ( 5-38), tX aeλ= , and therefore its 

imaginary part means the frequency of likely oscillation. The term of c/U is the time 

taking a flow particle to pass a distance as long as the chord. Thus, λ  relates this 

time to the period of oscillation. 

The next parameter, γ, is also physically meaningful. The fraction of 

a a(J J ) /(m m )+ +  is by definition the square of the radius of gyration about the pivot 

axis, including the added mass effect. Thus, γ is the dimensionless form of this radius 

with respect to chord length. 

Sr is a geometrical parameter. The fraction of x a a(S S ) /(m m )+ +  implies the 

distance of the gravity centre of all rotating masses including added mass effect from 

y axis. Hence, Sr is a dimensionless description of this distance with respect to chord 

length. 
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The last geometrical characteristic, A, is related to a well-known concept in 

hydrodynamics, namely Mass Ratio. Mass ratio is defined as the model mass, which 

includes structural mass and added mass, to the mass of fluid it displaces (Blevins, 

2001). Mass ratio can be a measure of susceptibility of light-weight structures to 

flow-induced vibration. Generally speaking, as the ratio of fluid mass to structural 

mass increases, so does the inclination toward flow-induced vibration. With this in 

mind, A in this case is equal to the inverse of mass ratio of a square section with a 

side as long as the chord. 

There are two sources for structural damping, a vibrating riser which produces 

transverse damping and torsional friction between the riser and fairing which 

generates torsional damping. Considering the added mass effect, ξy can be illustrated 

as the in-water structural damping ratio of transverse motion while ξθ is the damping 

ratio for the viscose equivalent of torsional friction damping.  

The impact of current in stability emerges in the form of free stream velocity, U. To 

make it dimensionless, it is divided by a parameter of length dimension, i.e. chord 

length, and also a parameter of frequency dimension, i.e. frequency of vibration (fy or 

fθ). As the fairing vibrates in the flow, transversely or torsionally, it traces out a wave 

path. The wave length of the path for one cycle is U/f(y or θ). Thus, reduced velocities, 

Ury and Urθ, are proportional to the ratio of this wave length to chord length. The 

point here is as the frequency of vibration is influenced by the square root of the 

system stiffness and the torsional stiffness of the fairing and riser system is generated 

by hydrodynamic forces which itself is related to the square of current velocity, 

therefore the torsional reduced velocity, in contrary to transverse reduced velocity, is 

a constant parameter and does not change with current velocity increment. 

Apart from hydrodynamic coefficients of the fairing which originates directly from 

its hydrodynamic properties, there exists another parameter relating to hydrodynamic 

characteristics of the fairing. It is due to the fact that when the fairing moves 

transversely without rotation, all the points on the contour of the fairing have the 

same vector of velocity and therefore, the change in AoA induced by vibration is 

identical for all points. Thus, the situation at which hydrodynamic coefficients are 

measured is fulfilled and the conventional definition of hydrodynamic coefficients 



6. Key Parameters 

 
© Mahdi Khorasanchi, 2009 108

holds here. The dilemma arises when the fairing starts to rotate about the riser. In 

torsional vibration, AoA changes with angular position, θ, plus angular velocity, 

d / dtθ . However, the point is that the magnitude and direction of velocity, and 

accordingly its X and Y components, vary over the section. To put it more simply, 

angular velocity generates a vertical component of velocity vector which varies over 

the section by the horizontal distance from the pivot point. Naturally as illustrated in 

Section  5.3, the variation of vertical component of the fairing’s velocity induces a 

variable change in AoA at each point along the section. Thus, the definition of 

measurable hydrodynamic coefficients at which the whole section stands at a specific 

AoA is violated here. To adapt this variation of AoA to conventional definition, an 

approximation simulating the effect of angular velocity on the flow field is required. 

By considering that the fairing is a symmetric section, a reference point on the chord 

at a radius R with respect to the centre of rotation is chosen. This is used for 

evaluation of the change in AoA induced by torsional velocity, d / dtθ . Eventually, 

Rr is the dimensionless description of this distance with respect to chord length. 

6.2 Calculation of Properties 

The previous section gave some in-depth interpretation of dimensionless parameters. 

Prior to investigation of their effect in stability of the fairing, it is helpful to provide a 

tool to calculate these values for a typical section, though the exact calculation of 

them requires further attention to the details of each particular section. These 

parameters are classified in three groups of sectional properties, damping and 

hydrodynamic effects. 

(A) Sectional Properties 

A fairing’s typical section is illustrated in Figure  6-1. It consists of a riser conveying 

fluid or drill, buoyancy module embracing riser and the fairing shell. The fairing 

shell contains the riser and buoyancy module in nose and the rest is filled with sea 

water. As mentioned in Section  4.5, entrapped water is assumed to move with the 

fairing shell and is treated as a rigid body. 
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Figure  6-1  Geometry of Typical Fairing. 

Through the process of calculation, a number of physical parameters are required 

which are defined below. 

 

b b,Aρ : Density and area of buoyancy module 

s s,Aρ : Density and area of steel riser 

f f, Aρ : Density and area of riser internal fluid 

fr fr, Aρ : Density and area of fairing 

w,Aρ : Density and area of entrapped water 

 

frt : Thickness of fairing plate 

sr : Outer radius of steel riser 

fr : Inner radius of steel riser 

br : Outer radius of buoyancy module  

tr : Outer radius of total/fairing thickness  1
b fr 2r t t= + =  

 

b : The width of blunt end 

d : Distance from middle of fairing to centre of rotation 

frL : Length of fairing leeside 

sr  

c 

b 

tr  

fr  

frL

d 
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Thin shell of the fairing can be approximated by a semi-circular plate at the nose, 

two straight plates on the leeside and a flat plate at the tail. With reference to Figure 

 6-1, the area occupied by water, riser etc can be evaluated as, 

( )2 2
b b sA r r= π −  

( )2 2
s s fA r r= π −  

2
f fA r= π  

( )1
fr t b fr fr2A r r 2L b t⎡ ⎤= π + + +⎣ ⎦  

( ) ( ) 21 1
w fr b fr b b2 2A b 2t 2r c 2t r r⎡ ⎤ ⎡ ⎤= − + − − − π⎣ ⎦ ⎣ ⎦  

Following that, structural mass is easily calculated as below, 

m: Structural mass per unit length  f f s s b b fr frA A A A= ρ +ρ +ρ +ρ  

The entrapped water is equal to,  

( )a In
m : Interior added mass  wA= ρ  

The fairing is not a simple geometrical section like a circle and therefore there is no 

closed-form equation for its exterior added mass. Thus, using an approximation is 

required. Newman (1999) recommended simulating hydrofoil by an ellipse rather 

than a plate. Consequently, if the major and minor diameters of an ellipse with major 

diameter along the x axis are denoted by 2aell and 2bell respectively, the added mass 

coefficients of this ellipse spinning about its centre are easily calculated by using the 

mapping method,  (Brennen, 1982, Newman, 1999), 

( )a-ellipse yy
m  = 2

ellaρ⋅π⋅  

( )a-ellipse y
m  

θ
= ( )a-ellipse y

m  
θ

= 0 

( )a-ellipsem  
θθ

= ( )22 21
ell ell8 a bρπ⋅ −  

Where a ij(m )  is the added mass in i direction due to acceleration in j DOF.  

From this there are two issues with respect to the fairing. The first point is which 

ellipse shall be used when estimating the fairing’s added mass. The second difference 
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is that the fairing is rotating about the centre of the riser which is not located in the 

middle of the chord length. This will be addressed later on in the calculation of the 

torsional added mass. 

There are various options in selecting the equivalent ellipse, for example, equality of 

chord and thickness of the fairing and ellipse, equality of chord and area and also 

equality of thickness and area. A common and simple method is to use the equality 

of chord length and thickness. Thus, the exterior added mass of fairing for transverse 

motion can be estimated by 

( )a Ex
m : Exterior added mass  21

4 c= ρπ  

Eventually, the sum of these two values gives the total added mass of the fairing. 

( ) ( )a a aIn Ex
m m m= +  

As the tension varies along the riser because of weight, sometimes it is necessary to 

have the in-water/wet weight to calculate the tension difference at the riser’s two 

ends, (Tt - Tb). The in-water weight is lighter because of the buoyancy force. 

Buoyancy force per unit length             ( )f s b frA A A A g= + + + ρ  

Weight (flooded system) in air per unit length       f f s s b b fr fr( A A A A )g= ρ +ρ +ρ +ρ  

Weight in water = weight in air – buoyancy force  = t b(T T ) / L−  

The polar mass moment of inertia is the next parameter to be evaluated. According to 

Equation ( 5-7), this variable should be integrated over the rotating part. As the riser 

and buoyancy module are fixed, the rotating parts consist of thin shell of fairing plus 

the entrapped water. The latter is considered as interior added polar mass moment of 

inertia. The polar mass moment of inertia for each plate of the fairing is calculated 

about its own local coordinates and then is shifted to the centre of rotation. Each 

bracket in the following equation corresponds to these plates, i.e. semi-circle nose, 

endplate and two flat plates of leeside respectively. 

( ) ( ) ( ){
( ) ( )( ) ( )( ) }

4 23 31 1 1 1
fr t b fr fr fr t fr2 2 2 12 2

2 23 31 1 1 1
fr fr fr fr fr fr t t12 4 2 4

J r r b t b t b t c r t

2 L t L t L t b r b c r

π ⎡ ⎤⎡ ⎤= ρ + + + + − − +⎣ ⎦ ⎣ ⎦

⎡ ⎤+ + + + − + −⎢ ⎥⎣ ⎦
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As mentioned earlier, the contribution of entrapped water is in the form of interior 

added mass. Again, it is treated as a rigid body. To facilitate the calculation, it is 

divided into a trapezoid minus a semi-circle of the riser and buoyancy module. The 

trapezoid is also broken down into a rectangle and two triangles. The polar mass 

moment of inertia is calculated about the local coordinates for each of these and is 

then shifted to the centre of rotation.   

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )( ){ }

331
a t t12In

3 23 41 1 1 1 1 1 1
t t t t t t b12 2 2 2 2 2 4

J b c r 4b c r

2 r b c r r b c r r b c r b r

= ρ − + − +

⎡ ⎤+ ρ − − + − − + − − − ρπ⎣ ⎦

 

It was explained above that there is no explicit equation to calculate the exterior 

added mass of a fairing and therefore it is approximated by an equivalent ellipse with 

the same diameters. For a rotating ellipse about its centroid with major diameter of 

2aell, the added polar mass moment of inertia is as below (Bishop and Price, 1979, 

Brennen, 1982, Newman, 1999). On the other hand, the added first mass moment of 

area, ( )a-ellipse y
m

θ
 and ( )a-ellipse y

m
θ

, shows the effect of added mass in torsional DOF 

when the body in a fluid moves transversely and vice versa. For an elliptic section 

rotating about its centroid, the added first mass moment of area is zero due to 

symmetry about both major and minor diameters. In other words, no torsional torque 

is induced when the body accelerates in the transverse direction or no transverse 

force is generated by rotation about the centroid. 

( ) ( )22 21
a-ellipse ell ell8m  = a b

θθ
ρπ⋅ −  

( ) ( )a-ellipse a-ellipsey y
m  = m 0

θ θ
=  

But, the important issue is that fairing spins about the centre of the riser, at a distance 

from mid-chord and this effect should be considered. Let’s imagine an ellipse 

rotating by θ  about a pivot point at a distance, say d, from its centroid on chord 

while the pivot point moves transversely by y  (Figure  6-2). When the origin of 

coordinate system is transferred to the new pivot point, added masses should be 

transferred to the new coordinate system as well. It is done through the well-known 

equations below. 
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( ) 2
a a a yyNew

(m ) (m ) (m ) dθθ θθ= + ×  

( )a y a y a yyNew
(m ) (m ) (m ) dθ θ= + ×  

Consequently, substituting relevant values in above equations gives  

( )( ) 2 2 2 2 21
a-ellipse 8New

m (a b ) a d
θθ

= ρπ − +ρπ  

( )( ) ( )( ) 2
a-ellipse a-ellipsey yNew New

m m a d
θ θ

= = ρπ  

 
Figure  6-2  Added Polar Mass Moment of Inertia for an Ellipse. 

This formulation is in conformity with that of a plate rotating about one edge 

(Brennen, 1982). Eventually, the exterior added polar mass moment of inertia for a 

fairing can be estimated by, 

( ) ( )22 2 2 21 1 1
a t8 4 4Ex

J ( c r ) c d⎡ ⎤= ρ π − + π⎣ ⎦  

For a fairing the distance d, from mid-chord to pivot point i.e. centre of riser, is, 
1

t2d c r= −  

The sum of these two added polar mass moments of inertia, i.e. interior and exterior, 

gives the total value,  

( ) ( )a a aIn Ex
J J J= +  

The first mass moment of area is the next parameter to be evaluated. Similar to 

previous parameter, this variable is only integrated over the rotating parts (refer to 

Equation ( 5-7)). For the thin shell of the fairing, this parameter is calculated for each 

2a 

d

y  

θ  
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plate and is shifted to the centre of riser. The first moment of area for the semi-circle 

plate of nose is easily obtained by,  

( ) 2
semi ring fr fr0

S r sin t r d 2t r
π

− = θ θ =∫  

The sum of this parameter over all the fairing’s plates gives,  

( )( ) ( ) ( )21 1
x fr fr b t fr t fr fr t2 2S 2t r r b t c r 2L t c r⎡ ⎤= ρ − × + + − + × −⎢ ⎥⎣ ⎦

 

Similarly, the entrapped water is modelled as a rigid body and divided into a 

trapezoid minus a semi-circle. 

( ) ( ) ( )( ){ }2 2 31 1 1 2
a t t t b2 6 2 3In

S b c r 2 r b c r r⎡ ⎤= ρ − + − − −⎣ ⎦  

If the fairing is approximated by an equivalent ellipse, the added first mass moment 

of area, ( )a ExS  corresponds to the parameter of ( ) ( )a-ellipse a-ellipsey y
m m

θ θ
=  of ellipse as 

calculated above.  

( ) ( )21
a 4Ex

S c d= ρπ  

Thus, the total first mass moment of area is obtained by the sum of these two values, 

( ) ( )a a aIn Ex
S S S= +  

With the aid of these calculations, the dimensionless properties of section, γ, Sr and 

A, can now be easily computed. 

2 a
2

a

J J
(m m ).c

+
γ =

+
 

x a
r

a

S SS
(m m ).c

+
=

+
 

2

a

.cA
2(m m )

ρ
=

+
 

Area moment of inertia is mainly generated by the riser as the buoyancy module is 

ductile and the fairings are also made in segments.  

( )4 41
riser s f4I I r r= = π −  
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Considering the riser as a tensioned bending beam, the natural period of the 

fundamental transverse mode vibration in water can be written, 

24
a

4 2

y
a

TEI
L L
m m

ππ +
ω =

+
 

Where E is the Young’s Modulus of the riser, Ta is the average tension and L is the 

riser’s length.  

Consequently, when cr ry(critical)U U=  is obtained by solving the characteristic 

equation, then the critical current velocity (m/s) is critical cr yU U .( .c)= ω . 

(B) Damping 

It was clarified in  Chapter 5 that apart from hydrodynamic damping which emerges 

from the expansion of hydrodynamic coefficients, there are two other damping 

elements, structural/transverse damping of the system as well as torsional friction 

damping. 

Structural damping of cylindrical bodies in still water has been widely investigated 

by many researchers. Nevertheless, to the author’s knowledge very limited data is 

available on the damping of cylinders outfitted with fairings with the only known 

study of its kind being published by Lee et al in 2004. This study showed that 

deploying the fairings  on the riser generates large in-water damping in the range of 

0.10 to 0.18 (Lee et al., 2004b). For comparison purpose, the in-water damping for a 

bare cylinder without fairing is below 5% based on similar tests. 

Moreover, the fairing is in contact with the riser at collars located at the ends and 

possibly through some pads in between. The friction coefficient depends on the 

substance of these rubbing pads and their surface roughness. These pads could be 

made-up of Teflon, brass and copper (Denison et al., 2000a). Thus, the friction 

coefficient will be in the range of 0.04 to 0.74. 
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(C) Hydrodynamic Properties  

The theoretical model developed in  Chapter 5 indicated two sets of hydrodynamic 

properties are needed. The first group comprises of hydrodynamic coefficients of the 

fairing section or their derivatives, in particular CD, ∂CL/∂α and ∂CM(cr)/∂α. At a 

specific Reynolds number and surface roughness, they depend on the geometry of 

section and its details like tail, sharp end or blunt end, with fin or without fin. This 

produces a broad variety of sections which each of them needs separate and thorough 

investigation. Hence,  Chapter 7 has been dedicated to the assessment of a few 

common sections. These parameters will be discussed there in detail. 

The second set of hydrodynamic properties includes the parameter of Rr. It was 

explained in the introduction that Rr is a reference length for the average effect of the 

angular velocity on the AoA. Using vortex-strip theory, Fung (2002) calculated the 

lift and moment force of a thin foil in rotation and transition. He demonstrated that 

the lift coefficient of such a foil can be written in the form of L LC C / [**]= ∂ ∂α ×  

where, 

( )3
04

y[**] c x
U U

θ
= θ− + −  

The parameter 0x  is the distance of where y is evaluated, i.e. centre of rotation, to 

the leading edge. Thus, lift coefficient of an oscillating thin foil is measured based on 

the angle of attack at a reference point located at ¾-chord. In other words, for a thin 

foil, Rr is chosen to give the AoA at a point three-quarters of the way back from the 

leading edge (Blevins, 2001). With respect to the equation R = R 0x - x  where Rx  is 

the distance of the reference point from leading edge, if R>0, the reference point is 

aft of the pivot and if R<0, it is forward of the pivot. For thin foil, Rx  = ¾c. 

As there is no such data available for thick foils like a fairing, it is again necessary to 

estimate the range of this parameter. Fung in his mathematical method deploys the 

thin plate model for thin foils. His calculation results in Rx = ¾c. Now, consider a 

rotating circle about its centroid in the same inviscid flow as Fung assumed. Because 

of symmetry, no AoA is generated and thus R = 0 or Rx = 0x = ½c. It means the 
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reference point for circle is its centroid. Thus, from a circular section to a flat plate 

section, the reference point moves from the midway point to the point three-quarters 

of the way back from the leading edge, i.e. ½c < Rx  < ¾c. If it is assumed that the 

riser is located in the foremost part of the fairing with approximately circular nose, 

then the pivot point is at least as long as ½t back from leading edge, 0½t x< , where t 

is the thickness of the fairing. However, since the fairing always has a trailing edge, 

the pivot point will never exceed the mid-chord point, 0x ½c< . Hence, the reference 

length of R for a fairing is in the range of, 

½c - ½c < (R = R 0x - x ) < ¾c - ½t 

Consequently, the dimensionless form of Rr varies within the range below,  

0 < Rr < ¾ - ½ t/c  

For example, the reference length in a fairing with thickness to chord ratio of 60%, 

i.e. t/c = 0.6, is in the range of 0 < Rr < 0.45. The further pivot point moves away 

from leading edge, the smaller Rr becomes. Moreover, as the fairing grows in 

thickness, the reference point comes forward toward leading edge and Rr becomes 

much smaller. 

6.3 Example 

Grant and Patterson (1977) performed a series of wind-tunnel tests on two fairing 

sections for a drilling project off the coast of Brazil. The length to thickness ratio of 

the selected fairing was fixed at 2. As illustrated in Figure  6-3, this fairing with the 

total thickness of 1.016 m (40”) embraced a riser of 0.609 m (24”) diameter plus the 

choke and kill lines. No buoyancy module was used and sea water filled the gap 

between the riser and fairing’s shell. The fairing was fabricated from 0.0034 m (10 

gauge) steel. The riser carries drilling mud with the density of 1795.97 kg/m3 (18 

lb/gallon). The effects of the choke and kill lines are ignored in this example. 

The first group of parameters to calculate is the sectional properties. To this end, it is 

necessary to evaluate the physical variables as listed in Section  6.2(A). Since no 

buoyancy module was used in this case and the gap between the riser and fairing’s 

shell was filled with seawater, the density of buoyancy module is equal to that of 
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seawater, bρ = ρ = 1025 kg/m3. The steel riser had the density of sρ = 7850 kg/m3. It 

was filled with drilling mud with the density of 1795.97 kg/m3.  

 

 

Figure  6-3  Riser Fairing for SEDCO 702 (Grant and Patterson, 1977). 

As mentioned above the fairing was fabricated from 0.0034 m (10 gauge) steel and 

the density of fairing was frρ = 7850 kg/m3. Since nothing was mentioned in the 

paper about the wall thickness of 0.609 m (24”) steel riser, it is assumed to be in the 

typical range of 0.04 m, therefore, the outer radius of the riser and fluid flow 

conveyer can be easily calculated as sr =  0.3048 m and f sr r= − riser’s thickness = 

0.2648 m. The total thickness of the fairing was reported 1.016 m (40”). Thus, the 

outer radius of the fairing and the gap between the riser and fairing are tr =  0.508 m 

and b tr r= − fairing’s thickness = 0.5046 m. By considering the length to thickness 

ratio of 2, the chord length will be c = 2.032 m. The variable d, the distance from 

middle of the fairing to centre of rotation, as mentioned earlier is calculated as 
1

t2d c r= − =0.5080 m. Finally, as the end edge of the fairing is sharp, b = 0 m, and 

the length of the fairing’s leeside is calculated as 2 2 21
fr t t 2L (c r ) (r - b)= − +  or 

frL = 1.6066 m. All the required variables to calculate dimensionless parameters are 

summarised below. 
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ρ = 1025 kg/m3 

bρ = 1025 kg/m3 

sρ = 7850 kg/m3 

frρ = 7850 kg/m3 

fρ = 1795.97 kg/m3 

 
frt = 0.0034 m 

sr =0.3048 m 

fr =  0.2648 m 

tr = 0.5080 m 

br =  0.5046 m 

 
b = 0 m 

c =2.032 m 

d = 0.5080 m 

frL = 1.6066 m 

By using the equations derived in Section  6.2(A), the areas occupied by water, riser 

etc are evaluated. 

bA =  0.5080 m2 

sA =  0.0716 m2 

fA =  0.2203 m2 

frA =  0.0164 m2 

wA =  0.3615 m2 

All masses involved are calculated then. 

m =  1606.8 kg/m 

( )a In
m =  370.5 kg/m 

( )a Ex
m = 3324.0 kg/m 

am =  3664.5 kg/m 
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Polar mass moment of inertia is the next parameter to be evaluated. 

J =  479.0 kg.m 

( )a In
J =  288.4 kg.m 

( )a Ex
J = 1099.1 kg.m 

aJ =  1387.5 kg.m 

First mass moment of area is calculated next. 

xS =  51.8 kg 

( )a In
S =  314.6 kg 

( )a Ex
S = 1688.6 kg 

aS =  2003.2 kg 

Eventually, with reference to the definition of dimensionless parameters at the 

beginning of this chapter, three of them can be obtained now. 

2 a
2

a

J J
(m m ).c

+
γ = =

+
 0.0853 

x a
r

a

S SS
(m m ).c

+
= =

+
 0.1908 

2

a

.cA
2(m m )

ρ
= =

+
 0.3992 

No data was reported in Grant and Patterson’s research about the damping properties 

of the system. Hence, with reference to the discussion presented in Section  6.2(B), 

damping coefficients are selected in the lower bound which results in the smallest 

critical current velocity. 

yξ =  0.05 

θξ =  0.01 

Following the wind-tunnel test, Grant and Patterson (1977) presented a curve for 

each hydrodynamic coefficient at various AoA (Figure  6-4). In this figure, Ca, Ct and 

Cm represent the axial force, total force and moment coefficients respectively. 

Accordingly, the required hydrodynamic coefficients are obtained as below. 
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D o
C =  0.09 

L o
C /∂ ∂α =  3.05               (1/rad) 

M(cr) o
C /∂ ∂α =  -0.24         (1/rad) 

The last hydrodynamic property to obtain is the reference length of Rr. It was 

estimated in Section  6.2(B) that Rr is in the following range. 

0 < Rr < ¾ - ½ t/c  

In this example, the ratio of c/t is equal to 2.0 and therefore, Rr is at most 0.50 for a 

flat plate. As explained earlier, it reduces for a fairing and is estimated as 0.40. 

rR =  0.40 

 
Figure  6-4  Force Coefficients of Fairing Model (Grant and Patterson, 1977). 

Now, all the necessary parameters to analyse the stability of a two-dimensional 

system are available.  
2γ =  0.0853 

rS =  0.1908 

A =  0.3992 

yξ =  0.05 
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θξ =  0.01 

D o
C =  0.09 

LC

o

∂
∂α =  3.05 

M (cr )C

o

∂
∂α =  -0.24 

rR =  0.40 

The characteristic Equation ( 5-55) is used again here. Starting from zero, the reduced 

velocity of Ury increases gradually and for each increment this equation is solved 

numerically until the real part of an eigenvalue becomes positive. In this example, 

the analytical model shows the system goes unstable at Ucr = 0.43. The trajectory of 

real and imaginary parts of eigenvalues, as Ury rises, is demonstrated in Figure  6-5. 

Red circles correspond to critical Ury where the real part of solution has crossed over 

the imaginary axis. 
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Figure  6-5  Trend of Eigenvalues by Velocity Increment. 
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6.4 Results of Parametric Investigation 

The above example demonstrated a method to estimate the parameters required in the 

model. In this section, a parametric study is carried out to identify how the variation 

in each of these parameters influences the threshold of instability.  

For this study, the set of parameters corresponding to the above example is selected. 

Each parameter varies in the range of half to five times of the present value unless 

otherwise is stated. The red circle in following figures shows the base case. 

(A) Effect of Drag, Cd 

Figure  6-6 shows that the instability onset is not particularly sensitive to the drag 

coefficient. The drag coefficient came into play through the process of finding 

instantaneous AoA and emerged in hydrodynamic damping terms. The undesirable 

effect of drag on Ucr is negligible perhaps because it is the sum of drag and lift slope 

which forms a term in hydrodynamic damping. Moreover, the value of drag in this 

example is much less than the lift slope and therefore its impact is not tangible. 
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Figure  6-6  Ucr vs. Drag Coefficient. 
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(B) Effect of Lift, ∂CL/∂α 

Lift force as observed in Figure  6-7 has an adverse effect on stability of the system. 

In fact, the threshold of stability reduces as the slope of the lift coefficient increases. 

In other words, as the fairing diverges from its design philosophy, which is 

streamlining the flow and becomes similar to foils generating high lift force, it loses 

its suitability for use on a riser. 
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Figure  6-7  Ucr vs. Lift Coefficient. 

(C) Effect of Moment, ∂CM/∂α 

The moment coefficient displays both a positive and negative role in instability. In 

Figure  6-8, as the absolute value of ∂CM/∂α rises, the critical reduced velocity can 

increase or decline based on where the initial value is.  

As was discussed in Section  5.9, that ∂CM/∂α < 0 is a necessary condition for 

stability and when it is violated, the system is unstable. Further investigation 

confirms this issue in this example and shows that the real part of one of the 

solutions is positive for a very small current speed if ∂CM/∂α > 0. 
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In addition, it was revealed that if MC /  ∂ ∂α  becomes large enough, it makes the 

system stable for a normal range of Ucr. In this example, for large MC /  ∂ ∂α  the 

system was still stable while Ucr increased up to 6. For instance when ∂CM/∂α = -1.2, 

the trend of eigenvalues for Ucr up to 6 has been shown in Figure  6-9.  
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Figure  6-8  Ucr vs. Moment Coefficient. 

 
Figure  6-9  Trend of Eigenvalues at High Moment Coefficient. 
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(D) Effect of Transverse Damping 

According to Figure  6-10, and as was expected, transverse damping delays the 

instability to a higher current velocity and improves the stability span. 
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Figure  6-10  Ucr vs. Transverse Damping. 
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(E) Effect of Torsional Damping 

Likewise, torsional damping improves the stability (Figure  6-11). In this figure 

damping ratio varies between 0.5 to 10 times of the base value as this value was very 

small. 
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Figure  6-11  Ucr vs. Torsional Damping. 
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(F) Effect of Structural Properties, A 

Earlier in the introduction to this chapter, it was explained that parameter A is equal 

to the inverse of mass ratio of a square section with a side as long as the chord. 

Therefore, it is proportional to the ratio of fluid mass to structural mass. Moreover, it 

was also mentioned that, in general, as the ratio of fluid mass to structural mass 

increases so does the inclination toward flow-induced vibration. Here in this 

example, Figure  6-12 is in conformity with this principle and confirms the above 

point. It also demonstrates that as A rises, the critical reduced velocity declines. 
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Figure  6-12  Ucr vs. A. 
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(G) Effect of Structural Properties, γ2 

According to Figure  6-13, parameter γ which is a dimensionless symbol of the radius 

of gyration about the pivot axis has a positive influence on Ucr. This shows that as 

the distribution of mass increases its distance from the pivot point, the system 

becomes unstable when a higher velocity is reached. One simple conclusion may be 

that adding mass to the tail of the fairing, like bumps and fins, improves the stability.  
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Figure  6-13  Ucr vs. γ2. 
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(H) Effect of Structural Properties, Sr 

Parameter Sr, as explained in Section  5.9, shows how two DOFs are coupled 

inertially. Figure  6-14 says that as the level of coupling decreases and DOFs become 

inertially independent, critical reduced velocity is shifted to higher values.  

This study showed that beyond a certain amount of Sr, for instance 0.292 in this 

example, the system is unstable for any small current velocity. Thus, in Figure  6-14 

Sr varies within 10% to 150% of base value. 
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Figure  6-14  Ucr vs. Sr. 
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(I) Effect of Hydrodynamic Property, Rr 

It was discussed in the calculation of parameters (Section  6.2(C)) that the parameter 

Rr will be in the range of 0< Rr < ¾ - ½ t/c. In this example with the length to chord 

ratio of 2, Rr cannot exceed 0.5. Therefore, in the parametric study shown in Figure 

 6-15, Rr varies between 0.5 to 1.5 times the base value (Rr = 0.40). The upper limit is 

selected beyond physical limit merely to investigate the effect of this parameter more 

clearly. 

Figure  6-15 indicates that the critical reduced velocity increases and then decreases 

as the length of Rr extends. 
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Figure  6-15  Ucr vs. Rr. 
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6.5 Summary 

With respect to the theoretical model developed in the previous chapter, this chapter 

focused upon the analysis of the identified key parameters. At the beginning, the 

physical meaning of dimensionless parameters was discussed. It was followed by 

providing a method to calculate the required variables. Then, as an example this 

method was applied to a riser fairing used on SEDCO 702, off the coast of Brazil. 

Finally, based on this example, a parametric study was carried out to examine the 

role of each variable.  

Hydrodynamic coefficients had a significant role in the stability of the system. The 

lift coefficient had an adverse effect while the moment coefficient, depending on its 

value, could have positive or negative influences.  

As expected, damping either transverse or torsional enhanced the stability. 

The behaviour of parameter A confirms the principle that an increase of the structural 

mass of a body in the flow enriches the stability. More interestingly, growth in radius 

of gyration, γ, resulted in higher critical velocity. This showed the benefit of mass 

distribution in stability. It can be concluded that adding mass to the tail of the fairing 

improves the stability. Thus, adding fins or bumps to the trailing edge, as reported in 

the literature, has another stabilising effect apart from improving the hydrodynamic 

coefficients. 

Parameter Sr was an indicator of how two DOFs are coupled inertially. Its 

investigation made clear that as these modes become more independent, the stability 

is strengthened. In other words, this instability is made from a combination of the 

torsional and transverse modes with phase and amplitude that gain energy from the 

flow and when either mode acts alone, the system is stable. Blevins (2001) explained 

this through the natural frequency. What he showed was that at the onset of 

instability, there is a tendency for natural frequencies of both transverse and torsional 

modes to unite to form a single frequency-coupled mode that does not exist without 

flow. Based on present studies, one way to hinder the instability of the fairing is to 

reduce Sr and coupling by moving the mass centre towards the pivot point. This idea 
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is called “mass balancing” in aerodynamics. Additionally, this study showed that if 

Sr exceeds a limit, the system will be unstable at any small flow.  

The trend of Ucr versus Rr was very important. Rr exposed two distinct behaviours. 

Depending on the range of variation, increase of Rr can boost or weaken the stability. 

In summary, the parametric study confirms the significance of two parameters which 

were already neglected by Slocum et al (2004) in a simpler model. They include 

damping and the effect of body’s motion in AoA. In light of this study, it was 

uncovered that many elements are involved in determining the instability threshold. 

Among these, hydrodynamic coefficients possess a vital role. Hence, the next chapter 

will discuss these coefficients for a set of fairing sections. 
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Chapter 7  

Section Hydrodynamic Coefficients 

This chapter centres on the computation of hydrodynamic coefficients of a two 

dimensional fairing section. In this chapter, the available methods for obtaining 

information about hydrodynamics of a thick foil will be assessed. Then, the 

appropriate method is chosen and accordingly the selected sections will be 

investigated. The impact of some important details like adding fins will be evaluated 

and finally, the results will be presented in way to render useful guidelines for the 

design of new fairing sections. 

7.1 Introduction 

The analytical model developed by the author showed that the threshold of instability 

to a large extent depends on the section hydrodynamic properties of the fairing. Thus, 

this chapter was planned to investigate the hydrodynamic characteristics of a few 

profiles which have been already used or are suggested to be utilised in industry. 

They include NACA0070, Shell’s Short Fairing, Guide Vane and Exxon-Mobil’s 

fairing with various size fins. In short, this study aims to: 

• Identify the hydrodynamics coefficients of sections. 

• Measure the suppression capability of each profile. 

• Clarify the effect of adding fins to the trailing edge of a fairing. 

At the beginning, the fairing profiles are shown in scale. A short discussion probes 

the controversial aspects of this study such as mesh convergence. Then the summary 
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results are illustrated which explain the discrepancies between behaviour of sections 

and assist the designer with comparing the characteristics of different sections. In 

Appendix A, the reader can find the detailed results of each individual section. The 

offset tables of all profiles are also given in Appendix A for further research. 

7.2 Thick Foil and Available Methods 

Riser fairings look like a foil and therefore hydrodynamic characteristics of a typical 

fairing profile may initially be assumed to be like those of foils. Foils have been 

investigated extensively in aerodynamics and hydrodynamics. A number of 

theoretical methods have been established to predict the dynamics of foils. As 

explained earlier in  Chapter 4, these theories are on the basis of inviscid flow which 

is not applicable in dynamics of fairing in seawater. Moreover, they assume foils to 

be thin, quite different from fairings with the thickness to chord ratio of several times 

larger. High thickness is a great challenge for analytical methods and due to rare 

usage of a thick foil and by the advent of numerical methods; no other purely 

theoretical approach was developed for the analysis of these foils in a viscous fluid. 

In consequence, the available theories are not an appropriate tool for assessing the 

hydrodynamic behaviour of the fairing. 

Beside the development of theoretical models, huge amount of experimental works 

has been carried out on various foil sections in different conditions. The purpose of 

these studies was mainly related to application of foils in aviation. Accordingly, the 

majority of selected profiles were asymmetric and among the minority which had 

symmetric section, the thickness was occasionally high. For example, Bullivant, 

Eastman et al, and Raghunathan et al reported the test data for three thick foils of 

NACA0021, NACA0025 and NACA0035 with thickness to chord ratio of 0.21, 0.25 

and 0.35 respectively (Bullivant, 1941, Eastman, 1932, Eastman et al., 1933, 

Raghunathan et al., 1988). These comprised the data of the thickest foils at the 

disposal of author. Nevertheless, the thickness to chord ratio of 35 percent was still 

below the minimum value for a fairing. In addition, a fairing may benefit from some 

subtle details like fins which these studies had not considered. Thus, there is not 
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sufficient data to make a rational judgment about the hydrodynamic behaviour of a 

fairing. 

For these reasons, there is no other choice than doing some specific studies on a 

fairing’s section. In order to analyse a new profile, there exists two methods; physical 

modelling in the lab and computational modelling. The purpose of this portion of 

research is to assess a few sections and identify the generic behaviour of a fairing. 

While complex physical modelling may give more accurate results, this research, as 

mentioned above, only requires a generic outlook of the behaviour of a fairing and 

therefore it was decided that a computational method would match the objectives of 

this research the best. 

It should be noted that numerical solutions, e.g. CFD (computational fluid 

dynamics), are not absolutely exact and accurate solutions and have their own 

limitations and dependencies. Like physical modelling, CFD modelling has delicate 

features too, e.g. selection of parameters and discretization of domain, and therefore 

needs to be deployed with extreme care. The result depends on many parameters 

including Reynolds number. Despite these restrictions, due to the lack of test data, 

CFD analysis is a good tool to distinguish the behavioural differences of these 

profiles. In other words, if this CFD study cannot give the exact value of required 

parameters for a real case at least it will bring to light their trend. This study has 

benefited from the FLUENT software package (Version 6.2). 

7.3 Fairing Profiles 

Four sections were selected for CFD analysis. The first profile is NACA0070, a 

simple symmetric airfoil from aviation with adequate thickness to chord ratio of 70 

percent to accommodate a riser. The second profile is called the “Short Fairing”. It 

involves a new concept which was introduced by Shell Global Solution (Allen and 

Henning, 1995b). The next profile is a guide vane with a blunt end. This closed 

section has been reported to have good streamlining capacity (Rogers, 1983). The 

last profile is the section ExxonMobil used in the tank test (Slocum et al., 2004). To 

investigate the influences of adding fins to the trailing edge of the fairing, the latter 

section will be assessed for four sizes of fins, i.e. without fin section and sections 
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with fin length of 3, 5 and 7 percent of chord length. These seven profiles are shown 

in Table  7-1. This table also gives the thickness to chord ratio of each section. The 

location of the centre of rotation (CR) on the chord line is also presented in the form 

of a fraction of the chord length. It is measured from the leading edge. The offset 

tables of all used profiles are also given in Appendix A for further research. 

Each of these profiles will be assessed at four angles of attack (AoA), 0o, 5o, 10o and 

15o. 
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Table  7-1  Selected Fairing Profiles for CFD Analysis. 

 

 Shape c/t t/c 
(%) 

CR  
(%c) 

NACA0070 

 

1.43 70 35.03 

Short Fairing 

 

1.49 67 33.50 

Guide Vane 

 

1.49 67 33.50 

Exxon’s Fairing 0% 

 

2.27 44.1 22.05 

Exxon’s Fairing 3% 

 

2.27 44.1 22.05 

Exxon’s Fairing 5% 

 

2.27 44.1 22.05 

Exxon’s Fairing 7% 

 

2.27 44.1 22.05 
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7.4 Definitions 

Prior to establishing the computational model in FLUENT software package, it is 

necessary to define the coordinate system and some variables which will be used 

later. 

Coordinate System  

The coordinate system is defined as shown in Figure  7-1. For all sections in this 

study, the origin is at the nose of section or in other words, at the front point on the 

chord line. The reference point of the moment is the centre of rotation (CR), located 

at the centre of embedded circle (riser) and measured from the front point in 

percentage of the chord length. Similar to the previous convention in  Chapter 5, the 

angle of attack (AoA) and moment are both positive in the clock-wise direction. Lift 

is positive upwards. Drag is positive in the flow direction, i.e. positive in the x-axis 

direction.  

 

 
 

Figure  7-1  Coordinate System in CFD Analysis. 

 

Non-dimensional Coefficients 

In this chapter, the free stream velocity U and its associated pressure op , as well as 

the thickness and chord length of the foil, t and c respectively, are used for most non-

U X 

α
CR

Y
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dimensional results. More specifically, the mean drag, lift and moment coefficients 

are defined as follows.  

d
2

L
2

M
2 2

Mean _ DragC 1 U c
2

Mean _ LiftC 1 U c
2

Mean _ MomentC 1 U c
2

=
ρ

=
ρ

=
ρ

 

where ρ is the fluid density.  

The foil may be also subject to unsteady hydrodynamic forces. These unsteady 

components are periodic and they are measured by the force fluctuation amplitude 

from its mean level, i.e.  

d
2

L
2

M
2 2

Drag _ AmplitudeAmp(C ) 1 U c
2

Lift _ AmplitudeAmp(C ) 1 U c
2

Moment _ AmplitudeAmp(C ) 1 U c
2

=
ρ

=
ρ

=
ρ

 

The mean pressure p, i.e. dynamic pressure averaged over the time, along the upper 

and lower surfaces of the foil is also given. The pressure coefficient is defined as, 

0
p

2

p pC 1 U
2

−
=

ρ
 

According to Equation ( 3-5), Strouhal number is defined as,  

sf tS
U
⋅

=  

where sf  is the force fluctuation frequency in Hertz.   
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Reynolds number is defined here based on the chord length as 

c
U cRe ⋅

=
ν

 

where ν  is kinematic fluid viscosity. 

Wall Y-plus Y+  is a variable used in discretizing domain near the walls and is 

defined as,  

p

Fluid

u y
Y τ+ ρ

=
μ

 

where uτ  is the friction velocity, py  is the distance from point P to the wall, and 

Fluidμ  is the fluid viscosity at point P.  

7.5 Discretization, Mesh Convergence and Reynolds Number 

Prior to investigation about the impact of the fairing’s section on its behaviour, it is 

necessary to address couple of issues that influence the accuracy and validity of 

results. They include discretization and mesh generation plus Reynolds number.  

Discretization 

The size of the domain is the first parameter to be determined. In this study it is a 

rectangle of 25c long and 10c wide where c is the chord length. The head of the 

fairing is located 5c back from the front edge of domain (Figure  7-2). A structured 

grid was used to generate the mesh inside the domain. According to the guideline of 

FLUENT package, the first cell next to the fairing’s wall should be small enough to 

be located inside boundary layer and the parameter Y-plus be less than unit. An 

interface boundary (Figure  7-3) was also employed at a distance far enough from the 

fairing. In this study it consists of a circle of 2.5c diameter of which the centre is 

located at mid-chord of the fairing. This technique facilitated the rotation of the 

fairing with no need to re-generation of mesh.  

The chord length of the fairing was set to 1 m. The number of elements for each 

model was in the range of 105000 to 150000 quadrilateral cells. The period of vortex 
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shedding behind a circular cylinder of the same diameter was calculated and time 

step was selected as a fraction of 1/20 to 1/50 of this period. The total run time was 

about 40 times this period. This run time was sufficient during the run to reach to 

stable situation. 

 

 
Figure  7-2  Computational Domain and Mesh, NACA0070. 

 
 

 
Figure  7-3  Mesh Close to The Fairing, NACA0070. 
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Mesh Convergence 

Generally, numerical solutions including CFD are approximate methods to approach 

to the exact solution when it is not achievable analytically. Therefore, all numerical 

solutions have an error to some extent and this inaccuracy is dependent on many 

parameters including mesh or discretization of geometry in terms of its pattern and 

number of cells. In theory, accuracy of numerical analysis of a simple problem is 

proportional to the density of mesh and by increasing the number of cells for a 

specific case, the solution will converge toward the exact analytical solution. 

However, this is not so straightforward for complicated problems. In this case, this is 

the task of the researcher to validate the results and identify what mesh density is 

suitable for a given problem. Moreover, the researcher should decide about the mesh 

pattern and layout in terms of the type of element and relative local density of mesh. 

The researcher then specifies which part of grid needs finer mesh and by how much. 

In the present study dealing with turbulent flow, there is another parameter to be 

considered. In turbulent flow, in addition to what mentioned above, the first cell next 

to the wall should be small enough to be located in narrow boundary layer. It is 

measured in CFD analysis by a variable called Y+  which should be less than one to 

fulfil this condition. To keep Y+  under one, it requires fine mesh in vicinity of object 

or more generally walls. This question may arise again as to how much fineness is 

necessary to achieve an accurate result. Consequently, the mesh fineness and 

associated value of Y+  is another significant issue in mesh convergence. 

To assess the effect of these parameters on the present study, a few analyses were 

carried out on NACA0070 with different meshes at a fixed Reynolds number. The 

results are shown in Table  7-2. These results are corresponding to NACA0070 

profile at incident angle of o15  using the realisable k-ε  turbulence model in 

FLUENT package. 

All meshes are in conformity with the pattern illustrated in Figure  7-2 and Figure 

 7-3. Meshes 1, 4 and 5 comprise of 103k cells and the only difference is in the 

distribution of cell density in imaginary circle surrounding the object. Mesh 2 with 
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202k cells is now as twice as fine than mesh 1 and, by contrast, mesh 3 with 66k is 

now as twice as coarse. Test 1 is identical to the data presented in Appendix A. Tests 

2 to 5 are for the same conditions as test 1 except the mesh. In particular, in tests 4 

and 5, the cells in vicinity of object have been shifted inward in order to reduce Y+ .  

 
Table  7-2  Effect of Mesh Convergence on Hydrodynamic Coefficients of NACA0070 at 15o. 

 
Test Rec Mesh Cells Y+ Cd Amp(Cd) CL Amp(CL) CM Amp(CM) 

1 5x104 1 103k 0.860 0.510 0.008 -0.492 0.103 0.023 0.014 
2 5x104 2 202k 0.868 0.499 0.006 -0.505 0.100 0.023 0.014 
3 5x104 3 66k 0.859 0.520 0.008 -0.470 0.110 0.022 0.014 
4 5x104 4 103k 0.200 0.458 0.008 -0.593 0.098 0.023 0.013 
5 5x104 5 103k 0.038 0.425 0.009 -0.662 0.093 0.024 0.012 

 

With regard to the effect of mesh convergence, it can be easily deduced from the 

comparison of first three tests that the increase in population of cells along with 

keeping key parameter Y+  fixed, will reduce the drag coefficient by two percent and 

will raise the absolute value of lift coefficient by the same percentage. The moment 

coefficient plus the amplitudes of hydrodynamic coefficients are relatively 

insensitive to mesh population. 

Comparison of Tests 1, 4 and 5 reveals the influence of cell density in vicinity of 

object on drag, lift and moment coefficients and their associated amplitudes. In this 

specific case, moment coefficient plus the amplitudes of all hydrodynamic 

coefficients are relatively constant against the reduction of Y+ , however, the decline 

in Y+ from 0.86 to 0.20 results in to 10% decrease of drag coefficient and 20% 

increase of lift coefficient. Therefore, hydrodynamic coefficients are sensitive to the 

size of cell next to the wall and cell density in this area. It is noticeable that for a 

specific case, say a given profile and Rec, the value of Y+  does not change 

dramatically for different incidences and it is quite constant during the run for each 

incidence. Table  7-3 conveys the magnitude of Y+  at different incidences for Test 1. 
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Table  7-3  Variation of Y+ Due to Different Incidences, NACA0070. 
 

AoA 0o 5 o 10 o 15 o 
Y+ 0.826 0.830 0.844 0.860 

 

Effect of Reynolds Number 

The next important issue to be specified is Reynolds number (Re). It is clear that as 

Re changes, so do the hydrodynamic coefficients; it also influences the CFD model. 

As the current velocity increases and the flow falls into the critical or supercritical 

group, CFD modelling needs very sensitive caution. Thus, for the main part of this 

study which seeks the behaviour of hydrodynamic parameters, Rec was selected to be 

in subcritical domain; almost about 5x104 (see Appendix A for each case). In 

addition, the general effect of Reynolds number has been probed in the following. 

The point here is about the effects of the Reynolds number on the fairing 

hydrodynamic coefficients. It has been observed that the Reynolds number has a 

considerable influence on hydrodynamic coefficients. For instance, a Reynolds 

number increase in subcritical flow leads to drag coefficient decrease but in CFD 

analysis, it should be clarified to what extent this issue is tackled. 

To this end, a few runs for different Reynolds number were carried out on the profile 

of NACA0070 at the incidence of 15 degree, using the realisable k-ε  turbulence 

model in FLUENT package. About 126k cells were utilised to discretize the domain 

and the mesh pattern was the same as what was illustrated in Figure  7-2 and Figure 

 7-3. The only difference was the distance of the first cell from the wall due to 

shifting the cells in the vicinity of object toward the walls to keep the parameter of 

Y+  almost constant and around 0.5 and to eliminate its influences. The results are 

shown in Table  7-4 and Figure  7-4 to Figure  7-6. The results are consistent with a set 

of experimental data (Hoerner, 1992). 

It is deduced from Figure  7-4 that by increasing Reynolds number, hydrodynamic 

coefficients vary relatively sharply up to Rec of 6x105 and then, the rate of response 
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to variation of Rec drops down. As it is expected from experimental test data, this 

figure indicates that regardless of the sign, absolute value of the drag coefficient 

reduces by moving toward a higher Rec while the absolute value of lift and moment 

coefficients rises. This variation in hydrodynamic coefficients can reach up to two 

times for a jump in the Reynolds number from 5x104 to 1.6x106.  

Figure  7-5 along with the Table  7-4 indicates that for this range of variation in the 

Reynolds number, the amplitude of the drag coefficient which is a symbol of in-flow 

vibration can triple whereas the amplitude of the lift coefficient decreases by 11% at 

Rec of 6x105 and then increases again. The amplitude of the moment coefficient 

changes by about 15%. The remarkable point here is that for all values of Reynolds 

number, the cross-flow vibration is dominant (Figure  7-6).  

 

 

 
Table  7-4  Effects of Reynolds Number on Hydrodynamic Coefficients of NACA0070 at 15o.  

 
Test Rec Y+ Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) 

1 5x104 0.492 0.475 0.005 -0.550 0.091 0.024 0.013 
2 1x105 0.490 0.427 0.006 -0.673 0.087 0.025 0.013 
3 2x105 0.566 0.383 0.007 -0.800 0.081 0.029 0.012 
4 4x105 0.521 0.339 0.011 -0.940 0.081 0.038 0.012 
5 6x105 0.483 0.316 0.013 -1.002 0.080 0.045 0.011 
6 8x105 0.480 0.307 0.013 -1.034 0.085 0.049 0.011 
7 1x106 0.465 0.295 0.014 -1.053 0.086 0.051 0.011 
8 1.2x106 0.481 0.289 0.015 -1.062 0.084 0.053 0.011 
9 1.4x106 0.474 0.284 0.015 -1.073 0.086 0.055 0.011 

10 1.6x106 0.441 0.279 0.015 -1.077 0.087 0.058 0.011 
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Figure  7-4  Hydrodynamic Coefficients vs. Rec, NACA0070 at 15o. 
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Figure  7-5  Amplitude of Hydrodynamic Coefficients vs. Rec, NACA0070 at 15o. 
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Figure  7-6  Hydrodynamic Coefficients & Their Amplitudes vs. Rec, NACA0070 at 15o. 

 

7.6 Summary Results 

In order to make sure the software is used correctly, the outcome of CFD analysis for 

NACA0070 was verified against test data (see Figure  7-4). Then, each section was 

assessed at four AoA. For each case, the time history of drag, lift and moment 

coefficients was obtained. Figure  7-7 shows a sample result for the lift coefficient of 

NACA0070 at zero AoA. After the full development of flow when the results 

reached a stable status, the mean and fluctuating components of hydrodynamic 

coefficients were extracted from such figure. The summary of these results are 

presented in the following. Full details of results are available in Appendix A. 
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Figure  7-7  Sample Result, Time History of Lift Coefficient, NACA0070 at 0o. 

 

Drag Coefficient 

Figure  7-8 to Figure  7-10 show the drag coefficient and its amplitude. Figure  7-8 

indicates that Cd of the vane increases with AoA while it reduces for NACA0070. It 

is almost constant for the Short Fairing.  

In Figure  7-9, the amplitude of drag oscillation is negligible when the sections are in 

line with the current. But as AoA increases, so does the drag oscillation. 

Nevertheless, Figure  7-10 states that the amplitude of the drag coefficient relative to 

its mean value is almost minute. 

According to Figure  7-8 and Figure  7-9, by increasing the fin length, the mean drag 

coefficient declines slightly at the zero incidence angle while the drag coefficient 

amplitude is relatively constant and therefore, in this case, the fins are of benefit to 

drag at normal position (0o AoA). At a higher incidence angle, the longer fin raises 

both mean drag and its oscillatory component. For example, the 5% fin increases 

mean drag around 30% from 0.209 to 0.273 at angle of 5o. The remarkable point is 

that for sections without the fin and 3% fin, Cd slightly declines at the beginning 

(from 0o to 5o) and then rises again.  

(s) 
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Figure  7-8  Drag Coefficients of Different Sections. 

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

AoA (deg)

C
d A

m
pl

itu
de

NACA70
Shell
Vane
Exxon0
Exxon3
Exxon5
Exxon7

 
Figure  7-9  Drag Coefficient Amplitudes of Different Sections. 
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Figure  7-10  Drag Coefficients & Their Amplitudes of Different Sections. 

 

Lift Coefficient 

The mean lift coefficient is shown in Figure  7-11. As expected for the fairing section, 

which is a symmetric profile around chord, the mean lift coefficient is zero when the 

fairing is aligned to the current, i.e. zero AoA. What really matters here however is 

the lift coefficient slope which plays a significant role in stability of the fairing. It is 

observed in this figure that the slope of the lift coefficient at zero AoA is negative for 

five sections except the guide vane and Exxon’s fairing with long fins. Experiments 

had already confirmed the negative lift coefficient up to 20 degrees for NACA0070 

(Hoerner, 1992). It was attributed to the separation of the flow at the leeside 

(Ericsson and Reding, 1980). To some extent, the Short Fairing with a high angle of 

leeside demonstrates similar behaviour. By contrast in the guide vane, a low angle of 

leeside, minimises flow separation and tries to keep it attached to the surface. Hence, 

experiment confirms that CL of this section grows with the AoA  (Grimminger, 

1945).  
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The amplitude of the lift oscillation is plotted in Figure  7-12. These curves are a 

good scale to measure the severity of shed vortices and associated cross flow (CF) 

forces. At zero AoA, the NACA0070 and Short Fairing experience the highest CF 

forces. The guide vane is in the third place. Large CL amplitude of some sections 

means they still experience vortex shedding and may have the chance of undergoing 

VIV. In case of instability, CF forces can trigger extensive vibrations. Contrary to 

drag, oscillatory component of lift coefficient is noticeable in comparison with mean 

value (Figure  7-13). 

With regard to the effect of adding fins, Figure  7-11 illustrates how using longer fins 

shifts L o( C / )∂ ∂α  from negative values to positive ones. Thus, adding fins helps the 

stability of the fairing. On the other hand, Figure  7-12 indicates that at the normal 

position (0o AoA), the lift coefficient amplitude which is a sign of CF forces is 

reduced by fitting and prolonging fins. So, fins improve the VIV suppression 

capability of the fairing. The key point here is that by lengthening the fins, the 

improvement rate of suppression capability falls down. It means the 2% jump in fins’ 

length from 3% to 5% has a larger impact than the 2% jump from 5% to 7% in fins 

length. All in all, this study shows fins improve both stability and VIV suppression 

capability of the fairing profiles. 

This is consistent with experimental tests which were carried out by Grant and 

Patterson. Their observations proved that the medium sized fins stabilised the fairing 

at zero AoA without increasing drag. The small fins did not stabilise the fairing, and 

the large fins added to the drag while increasing the stability over that for the 

medium fins (Grant and Patterson, 1977). 
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Figure  7-11  Lift Coefficients of Different Sections. 
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Figure  7-12  Lift Coefficient Amplitudes of Different Sections. 
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Figure  7-13  Lift Coefficients & Their Amplitudes of Different Sections. 

 

Moment Coefficient 

The moment coefficient measured at the centre of rotation is illustrated in Figure 

 7-14. Again for symmetric profiles of the fairing, the mean value of this coefficient is 

zero when the fairing is in line with the flow. This figure states that at this Reynolds 

number, one of the necessary conditions for stability, i.e. M(CR ) o( C / )∂ ∂α < 0, is 

satisfied for the guide vane and Exxon’s fairing with the two longest fins. It should 

be noted that this parameter was also identified as a sign for misalignment and 

propensity to potential fishtailing (see Section  5.9). For example for Exxon’s fairing 

with the fin length of 0.03c, comparison of this curve with Figure  5-8 reveals that the 

equilibrium position for this profile is at an angle about 6 degrees rather than normal 

zero AoA. Similar to lift coefficient figure, NACA0070 and Short Fairing has an 

analogous trend at a different level. This is the case in Figure  7-15 too. This figure 

presents the amplitude of oscillations for moment coefficient. At zero AoA, the 

Exxon7 has the best performance in the sense it produces minimum amplitude for 
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rotational moment. The NACA0070 and Short Fairing are in the next place. 

According to Figure  7-16, most profiles generate small moment amplitude at zero 

AoA. 

The small amplitude of the moment oscillation may be because of two separate 

reasons. The first reason is that the given profile streamlines flow well and therefore 

sheds weak vortices or no vortices at all. This results in a small amplitude for both 

lift and moment forces. The second reason is that in the given profile, the pivot point 

is located near the centre of pressure and consequently, hydrodynamic forces have a 

small arm for an overturning force and therefore produce a small moment about this 

pivot point. By considering the large lift amplitude and small mean moment of these 

sections, NACA0070 and Short Fairing, the small moment amplitude seems to be 

due to the latter reason.  

With regard to the impact of adding fins, it is observed in Figure  7-14 that fins 

changes the moment coefficient slope from positive to negative and satisfies the 

second necessary condition of stability. Moreover, negative moment coefficient slope 

makes the fairing align itself correctly. Thus, fins eliminate the misalignment and the 

status of dual equilibrium position which may be a latent cause for fishtailing. On the 

other hand, fishtailing can be excited by the oscillatory component of the moment 

force. Figure  7-15 shows that adding fin reduces the moment coefficient amplitude 

and accordingly mitigates the fishtailing problem. It should be mentioned again that 

by lengthening the fins, the improvement rate of fishtailing falls down, similar to 

improvement rate of cross flow vibrations.  
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Figure  7-14  Moment Coefficients of Different Sections. 
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Figure  7-15  Moment Coefficient Amplitudes of Different Sections. 
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Figure  7-16  Moment Coefficients & Their Amplitudes of Different Sections. 

 

Strouhal Number 

For each case, i.e. a specific profile at a given angle, the frequency of oscillation for 

lift/moment coefficient was measured. It is drawn in dimensionless form of Strouhal 

number in Figure  7-17. This figure says that moving from Exxon fairings to 

NACA0070, Short Fairing and then the guide vane brings along higher frequency of 

force oscillation. This feature may be of interest to designers to reduce the risk of 

resonance and associated destructive vibration. 

According to Figure  7-17, adding fins has a small effect on frequency of vortex 

shedding at no incidence angle. 
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Figure  7-17  Strouhal Number of Different Sections. 

 

Pressure Distribution Over Foils With Fin 

The effect of adding fins on pressure distribution over the Exxon section was also 

scrutinised. Figure  7-18 and Figure  7-19 shows the mean pressure coefficient on 

upper and lower surfaces at two AoA, 0o and 5o respectively. When the Exxon 

fairing with or without fin is in line with current, there exists symmetry on both the 

upper and lower surfaces and therefore corresponding curves for each profile overlap 

each other. Figure  7-18 says that at zero AoA for the Exxon fairings with different 

fin-lengths, the mean pressure coefficient is almost the same except at the vicinity of 

trailing edge. In other words, at zero AoA adding fins will, in general, change the 

pressure coefficient near the tail of the fairing.  

However, this is not the case at higher angles. For example at the angle of 5o as 

shown in Figure  7-19, longer fins reduce the pressure coefficient on the upper 

surface and increase it on the lower surface. Moreover, on the leeside of the fairing 
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they bring the crossing point of these two curves forward. This has two impacts on 

the hydrodynamic coefficient. It counter-balances the pressure on two surfaces and 

results in a smaller negative lift or even positive lift. Furthermore, near the trailing 

edge it produces larger counter-moment which tries to return the fairing back to a 

zero angle of attack. This corrects the moment coefficient from positive for the 

fairing without a fin to negative for the fairing with the longest fin.  
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Figure  7-18  Effect of Adding Fin on Mean Pressure Coefficient At 0o. 

 
Figure  7-19  Effect of Adding Fin on Mean Pressure Coefficient At 5o. 
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Stability and Capability of VIV Suppression 

In summary, the drag coefficient plus the necessary conditions of stability are 

presented in Figure  7-20. In this figure from left to right, the drag coefficient, which 

was defined based on chord length, declines. Among three sections of the 

NACA0070, Short Fairing and the guide vane with relatively similar thickness to 

chord ratio, the guide vane generates the smallest drag force. On the other hand, this 

figure says that at this Reynolds number only two sections of the guide vane and 

Exxon7 satisfy the necessary conditions of stability. Nevertheless, the Short Fairing 

slightly violates the condition related to torsion. In practice, this might be 

compensated by other damping, e.g. friction, and the system becomes stable. The 

effect of adding fins on stability is more obvious in this figure. It should be noted that 

with respect to stability, adding fins only helps to satisfy the necessary conditions of 

stability but does not guarantee the stability of the system which requires the 

investigation of the characteristic equation. 

Considering the oscillation amplitude of hydrodynamic coefficients as a criterion for 

the severity of fluctuating force, Figure  7-21 shows the capability of suppressing 

VIV for each profile. Lower amplitude of the lift coefficient means the fairing is 

more capable of mitigating the vortex shedding. As was mentioned earlier, a small 

amplitude of moment coefficient could be because of another reason and therefore is 

not an appropriate tool to measure the capacity of alleviating VIV. Among the first 

three sections on the left hand side, i.e. the NACA0070, Short Fairing and the guide 

vane, the latter demonstrates the best performance. This superior behaviour may be 

due to a low angle of leeside which impedes the flow separation from surface and 

consequent vortex formation. This figure also embodies the positive impact of 

adding fin on VIV suppression capability of the fairing. 
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Figure  7-20  Necessary Conditions of Stability. 

 
 
 

 
 

Figure  7-21  Capability of Suppressing VIV at 0o. 
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7.7 Fairing Length vs. Operational Constraints 

The design philosophy of a fairing is to prevent vortex formation by streamlining the 

flow and avoiding flow separation. Blevins believes that to be effective, streamlining 

the downstream side of a profile requires an angle of taper less than 8 to 10 degrees 

(Blevins, 2001). Otherwise, flow separation may happen which is followed by 

vortices and associated vibration. Moreover, flow separation can change the positive 

lift slope into negative. 

When some fairing profiles demonstrated vibrations, some researchers tried to 

explain this through early separation of the boundary layer (Calkins, 1984, Ericsson 

and Reding, 1980, Ikeda et al., 2003). Accordingly, it was recommended to reduce 

the angle of the leeside of the fairing, to avoid vortices and negative lift slope 

(Ericsson and Reding, 1980, Grimminger, 1945). 

For example, Grimminger tested several open-end sections as guide vanes for the 

purpose of reducing drag and vibration. He reported that drag became less when the 

width of the opening at the rear of the guide vanes was increased and therefore the 

angle of leeside decreased. His observations showed that this width can be almost as 

much as the diameter of the cylinder itself and the guide vanes will still prevent 

vibrations of the cylinder. He concluded the performance of the system in terms of 

reducing drag and vibration can be made considerably better than the performance of 

the cylinder alone, provided the distance between edges of the vane is large, i.e. 

downstream side angle is small, and also provided the leading edges start well 

forward of the 90-degree point around the cylinder. Meyer et al. stated the latter in a 

different way (Meyer et al., 1995). He reported that for some profiles with circular 

nose, the flow separates shortly after reaching the fairing. In order to stop this and 

keep the flow attached to the surface, the fairing profile should be contoured so that 

the flow continues to slip over the foil (Figure  7-22). This leads to a thicker fairing 

and to keep the angle of leeside constant it needs a longer chord.  

In this study, comparison of three sections of the NACA0070, Short Fairing and the 

guide vane confirms the effect of leeside as well. These profiles have relatively 

similar thickness to chord ratio. The NACA0070 and Short Fairing with steep 
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downstream side generate higher lift amplitude and have negative lift slope whereas 

the guide vane with low angle of leeside streamlines the flow more effectively and 

has positive lift slope. 

 

 
Figure  7-22  Modification in Circular Head of Fairing, a) Original b) Modified. 

In brief, the key issue in design of a fairing is to prevent flow separation for 

anticipated current speed. The angle of leeside plays a significant role in keeping 

flow attached to the surface and generally speaking, longer fairings suppress the VIV 

more effectively and are more likely to have positive lift slope.  

On the other hand, operational constraints do not allow for the use of lengthy 

profiles. One solution to fulfil both requirements is to clip the trailing edge of the 

fairing. In other words, the blunt-end is the result of constraining the fairing profile 

to the same cross-sectional envelope as the original section when the leeside angle is 

reduced and the trailing-edge is prolonged to improve the behaviour.  

But this question certainly arises as to what consequences this technique entails. In 

response, Ericsson and Reding says that drag force is extremely sensitive to the 

blunt-end length, whereas data indicates that trimming the trailing edge does not 

significantly manipulate the slope of lift curve based on the actual chord length 

(Ericsson and Reding, 1980). Grimminger (1945) also reported good performance of 

several guide vanes with the blunt and open ends. They behaved very well in 

reducing drag and mitigating VIV. 

a) 

b) 
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This fact was observed in this study as well. The guide vane with the closed end 

presented very good performance characteristics in comparison with the NACA0070 

and Short Fairing. 

Consequently, it may be concluded that reducing the steepness of leeside is the top 

priority and clipping the trailing edge in favour of having lower angle of downstream 

side is quite reasonable, although it may alter drag. 

7.8 Concluding Remarks 

In previous chapters an analytical model had been established for instability of a riser 

fairing and it was observed through the parametric study that the hydrodynamic 

coefficients have a significant impact in this mechanism. Thus, this chapter was 

designed to assess the hydrodynamic behaviour of few profiles. 

Due to the lack of data in literature about the hydrodynamics of thick foils, the CFD 

analysis method was selected as it was more appropriate for the purpose of this study 

in comparison with physical modelling like wind tunnel tests. Four main sections 

were chosen and three sizes of flat fin were installed on one of the profiles as well. 

Each section was assessed for four incidence angles and the hydrodynamic 

coefficients along with their oscillation amplitude were measured. The influences of 

adding fins were probed and an explanation of how they change the behaviour of the 

fairing was given. In brief, adding fins enhances the stability of the riser fairing by 

modifying the slope of lift and moment coefficients. It boosts the VIV suppression 

capability and improves the self-alignment characteristic of the fairing as well. 

Moreover, this study explored the effect of reducing the angle of leeside and clipping 

the tail of the fairing.  

These techniques are usually used to create a better and more operable fairing. In the 

eyes of a riser designer, the best fairing has several hydrodynamic features. 

• It streamlines the flow efficiently with no flow separation and therefore 

causes minimum VIV.  

• It produces small drag. 

• It experiences no instability. 
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• It will be able to align itself to current. 

• It will be free of fishtailing. 

In such a fairing, the maximum thickness is located as close to leading edge as 

possible to keep the centre of rotation forward of the hydrodynamic centre for 

weathervane stability. 

Operationally, in a good fairing profile the thickness to chord length ratio is selected 

relatively high in order to reduce the required operational space for the fairing. 

Generally speaking, it is very difficult to reconcile all the above virtues in a single 

fairing profile. Thus, it is necessary to compromise with some features.  

Preliminary study of this chapter implies that the guide vane not only is adequately 

short for operational ease but also presents acceptable performance in VIV 

suppression and stability and therefore should be added to the list of desirable fairing 

profiles. 

So far two-dimensional (2D) model has provided the basis to understand the 

mechanism of instability in a riser fairing and to identify and scrutinise key 

parameters. Now, it is time to expand this model to the real case of three dimensions 

and take the effect of length into consideration. The next chapter is dedicated to this 

issue.  
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Chapter 8  

3D Theoretical Model 

In this chapter the analytical model will be expanded to a three-dimensional case. At 

first, the model will be developed for a general case in which tension and current 

speed varies along a riser partially covered with fairings. Then, the complicated 

general model will be simplified for the uniform case in which all parameters are 

constant along the riser length. Finally, the general model will be validated against an 

experimental case. 

8.1 Introduction 

 Chapter 5 explored a two-dimensional model for instability of a riser fairing. The 

effect of third dimension along the riser was modelled by a spring. The necessary 

assumptions were explained and the limitations and the scope of validity of this 

model were clarified.  

With the same assumptions and limitations in mind, this model is expanded to a top 

tensioned riser. It is also assumed that the riser cross-section is uniform along the 

length at all depths and therefore, its properties like flexural stiffness are constant. 

Likewise, fairing is assumed to have a uniform profile wherever it is installed. 

Therefore, its structural properties and hydrodynamic behaviour are constant. As 

mentioned before, the entire riser length is not necessarily covered by fairings. 
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In addition to the coverage, there are other variables varying along the riser. Current 

profile may be non-uniform, for example a sheared flow. Tension may also decrease 

from the top end to the bottom of the riser if the weight of the system is not carried 

by other means.  

All these variation along the riser length (Figure  8-1) distinguish a general 3D 

problem from uniform 2D case and therefore a separate model is required.  

In reality, the riser fairings are in segments with finite length (Figure  8-1). Many of 

these individual segments are installed to cover part of a riser. They behave 

independently and are not continuous. The important point is that in practice the ratio 

of a fairing’s span to a riser’s length is so small that one may assume the fairings are 

continuous. For instance, if a riser of 700m length is fitted with fairings of 7m span 

(Grant and Patterson, 1977) which is one of the longest reported segments, this ratio 

equals to 0.01, small enough to assume continuity of the fairing. This ratio will be 

much less for shorter span length of the fairing. 

 
Figure  8-1  Three-Dimensionality of Riser with Fairings. 

U
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8.2 General Case 

Governing Equations 

In this case, the riser is outfitted partially with fairings in the area that the vortex 

shedding is severe. Therefore, it can be assumed that in the area remaining, fluid 

current has no exciting role and only behaves as a damper. Moreover, tension 

reduces from top end to the bottom end due to the weight. The riser is also exposed 

to a non-uniform current. 

To differentiate the two parts of the riser, i.e. the bare riser and the portion fitted with 

the fairing, it is necessary to define a parameter s(z) that specifies the spanwise 

extent of the area fitted with fairings, 

s(z) = 
1,
0,
⎧
⎨
⎩

       
Fitted with fairing
Bare riser

  8-1 

The entire riser can move in cross-flow direction which comprises the first degree of 

freedom, y(z,t) . A fairing, wherever installed along the riser length (s=1), moves 

transversely with the riser, y(z,t) , but it is also permitted to weathervane which 

introduces the second degree of freedom, (z,t)θ . 

Consequently, the degrees of freedom (DOFs) in 3D model, as shown in Figure  8-2, 

consist of,  

y y(z, t)=   8-2 

(z, t)θ = θ   8-3 

The origin of the coordinate system is located at the bottom end of the riser. Axis x is 

in line with the current direction and positive z is upward. For an observer looking at 

the system from the riser’s top end, the definitions of positive AoA and cross-flow 

displacement are identical to those in 2D case, i.e. positive AoA in clockwise 

direction and positive y normal to the plane and inward. 

The riser and fairing interact and exert forces on each other in both DOFs. The 

interaction forces can be written as,  
y y

int intF F (z, t)=   8-4 
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int intF F (z, t)θ θ=   8-5 

The riser, where not fitted with fairings, is subject to current and therefore its cross-

flow motion induces hydrodynamic damping (Blevins, 2001, Barltrop and Adams, 

1991). By keeping the linear term, this damping which depends on current velocity 

and drag coefficient can be simplified as:  

CF damping effect of bare riser = ( )1
Dr2 UcC y(z, t) 1 s(z)− ρ −   8-6 

 

 
Figure  8-2  Free Body Diagram, 3D Model. 

For simplicity in presentation, the riser’s equation of motion is restricted to the case 

of planar, small angle, linear strain analysis of an initially straight riser. Then, it is 

x

z y
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qualified to be modelled as a tensioned beam (API, 1998, Patel and Witz, 1991). The 

static equilibrium equation for lateral displacement of a tensioned beam is, 
2 2

y
e2 2

d d y d dyEI(z) T (z) F (z)
dz dz dz dz

⎡ ⎤ ⎡ ⎤− =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
  8-7 

where E is the Young's modulus; I is the moment of inertia, EI denotes the bending 

stiffness of the cross section and Te is the effective riser tension. yF  is the applied 

lateral load, not including the applied hydrostatic and pressures. 

The beam’s resistance to deformation consists of flexural stiffness and more 

importantly, geometric stiffness originating from axial tension. The tension to be 

taken into account in analysing an immersed, fluid-filled tube-like riser is known as 

effective tension, Te. Effective tension at a cross section can be formulated clearly as, 

e n i i o oT T ( P A ) ( P A )= + − × − − ×   8-8 

where nT  is axial tension in the structural element (pipe wall); i iPA  is axial tension 

in the internal fluid column ( iA = internal sectional area, iP = internal pressure); 

o oP A  is axial tension in the displaced fluid column ( oA = external or displaced cross-

sectional area, oP = external pressure). 

For a uniform riser’s section, bending stiffness (EI) is constant along the riser’s 

length but the tension force varies along the z axis because of the riser’s weight. The 

variable tension, Te(z), is equal to,  

e t r b rT (z) T (L z) w T z w= − − ⋅ = + ⋅   8-9 

where tT  and bT  are the top and bottom tensions respectively and rw  indicates the 

in-water weight of the riser per unit length, 

( )r r frw m m s(z) g Buoyancy Force(z)= + ⋅ −   8-10 

Consequently, by substituting Equation ( 8-9) and with the assumption of constant EI 

for uniform cross section, the static equilibrium Equation ( 8-7) can be expanded as, 
(IV) y

e rEI y (z) T (z) y (z) w y (z) F (z)′′ ′⋅ − ⋅ − ⋅ =   8-11 
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where prime is the symbol of the derivative with respect to the z axis. 

The dynamic governing equation can be obtained from Equation ( 8-11) by 

incorporating inertia forces and a mechanism for energy loss. This model is adequate 

for many riser analyses and moreover, the description of this model can be used to 

introduce most of the fundamental concepts (API, 1998). Assuming viscose 

damping, the appropriate term for energy loss will be yC y⋅  (Clough and Penzien, 

1993), where the superscript dot indicates the derivative with respect to time.  

The inertia force of a bare riser contains the effect of a riser’s structural mass r(m )  

and added mass ar(m ) . For this part of the riser, the applied load consists of 

hydrodynamic damping as stated in Equation ( 8-6). Hence, the equation of lateral 

motion for this part can be written as, 

( )(IV) 1
e r r ar y Dr2EI y T y w y m m y C y UcC y (1 s)′′ ′⎡ ⎤⋅ − ⋅ − ⋅ + + ⋅ + ⋅ = − ρ −⎣ ⎦   8-12 

For the portion of the riser fitted with a fairing, it does not have contact with water 

and therefore the inertia force contains the effect of only structural mass. The lateral 

interaction with the fairing makes the applied load. Thus, the equation of lateral 

motion for this part is,  
(IV) y

e r r y intEI y T y w y m y C y F s′′ ′⎡ ⎤⋅ − ⋅ − ⋅ + ⋅ + ⋅ =⎣ ⎦   8-13 

The final equation of the riser’s lateral motion is obtained by the summation of 

Equations ( 8-12) and ( 8-13) as follows, 

( )(IV) y 1
e r r ar y int Dr2EI y T y w y m m (1 s) y C y F s UcC y (1 s)′′ ′⋅ − ⋅ − ⋅ + + − ⋅ + ⋅ = − ρ −   8-14 

Since the fairing is permitted to spin, the only torsional contribution of the riser is the 

friction torque, FrictionT  between the rubbing surfaces of the riser and fairing. The riser 

is assumed stiff enough not to undergo any torsion. 

Friction intT F sθ⎡ ⎤=⎣ ⎦   8-15 
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For simplicity, equivalent viscose damping, as discussed in Section  5.8, can be 

deployed for the frictional damping, FrictionT Cθ= θ . Thus, the torsional interaction 

force is,  

intC F sθ
θ⎡ ⎤θ =⎣ ⎦   8-16 

It is assumed that the cross-section of the fairing does not change along the riser. 

Thus, for an element of the fairing with unit height, the governing situation is 

identical to that of 2D section. Consequently, by using Lagrange’s equation as fully 

explained in Section  5.2, the governing equations of motion for two DOFs of the 

fairing will be the same as Equations ( 5-11) and ( 5-12). They state, 

[ ] y
fr a x a inty

(m m )y (S S ) Hydrodynamic Force F s⎡ ⎤+ − + θ = −⎣ ⎦   8-17 

[ ]a x a int(J J ) (S S )y Hydrodynamic Force F sθ
θ

⎡ ⎤+ θ− + = −⎣ ⎦   8-18 

In summary, with the aid of considering the interaction forces, the governing 

equations of the riser and fairing were derived individually. To remove the terms of 

interaction, they are substituted from Equations ( 8-14) and ( 8-16) in Equations ( 8-17) 

and ( 8-18). By re-arranging the result, it gives, 

( )(IV)
e r r fr a arEI y T y w y m (m m )s m (1 s) y′′ ′⋅ − ⋅ − ⋅ + + + + − ⋅ +  

[ ]1
y Dr x a2 y

(C UcC (1 s)) y (S S ) s Hydrodynamic Force s+ + ρ − ⋅ − + θ =   8-19 

[ ]x a a(S S )y (J J ) C Hydrodynamic Force sθ θ
⎡ ⎤− + + + θ+ θ =⎣ ⎦   8-20 

Hydrodynamic forces were already described in Section  5.3. The final form of these 

hydrodynamic forces emerged in Equations ( 5-28) and ( 5-29). That is, 

[ ] ( )LC21
2y 0

Hydrodynamic Force U c ∂
∂α α=

= ρ θ  

( ) ( )L LC C1 1
D D2 20 00 0

Uc C y RUc C∂ ∂
∂α ∂αα= α=α= α=

− ρ + + ρ + θ   8-21 

 

[ ] ( )M (cr )C2 21
2 0

Hydrodynamic Force U c ∂
∂αθ α=

= ρ θ+  

( ) ( )M (cr ) M (cr )C C2 21 1
2 20 0

Uc y RUc∂ ∂
∂α ∂α

α= α=
− ρ + ρ θ   8-22 
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By replacing these linearised hydrodynamic force terms in Equations ( 8-19) and 

( 8-20), the governing equation will emerge as below, 

( )(IV)
e r r fr a arEI y T y w y m (m m )s m (1 s) y′′ ′⋅ − ⋅ − ⋅ + + + + − ⋅ +  

( )( )LC1 1
y D Dr x a2 200

C Uc C s UcC (1 s) y (S S ) s∂
∂α α=α=

+ + ρ + + ρ − ⋅ − + θ  

( ) ( )L LC C21 1
D2 200 0

RUc C s U c s 0∂ ∂
∂α ∂αα=α= α=

− ρ + θ − ρ θ =   8-23 

 

( ) ( )( )M (cr ) M (cr )C C2 21 1
x a a2 20 0

(S S )y Uc y (J J ) C RUc−∂ −∂
θ∂α ∂α

α= α=

⎡− + − ρ + + θ+ + ρ θ⎢⎣
 

( )M (cr )C2 21
2 0

U c 0 s−∂
∂α

α=

⎤+ ρ θ = ⎥⎦
  8-24 

 

Galerkin’s Method 

The coupled differential equations are varied in time and space and they are too 

complicated to be solved in closed form. Thus, it is necessary to introduce a trial 

solution in series form for variation in space, 
N

i i
i 1

y(z, t) (z)p (t)
=

= φ∑   8-25 

N

j j
j 1

(z, t) (z)q (t)
=

θ = φ∑   8-26 

where i (z)φ  comprises the basis functions or in other words mode shapes. ip  and jq  

are unknown functions of time which are to be determined. For a simply supported 

flexural beam with constant axial force, the governing equation of transverse 

displacement is equivalent to a simple Strum-Liouville differential equation and the 

basis functions will be in the form of sinusoidal mode shape (Clough and Penzien, 

1993). As the boundary conditions at the two ends of the riser are identical to that of 

a simply supported beam, these basis functions satisfies the boundary conditions for 

this problem as well and can be deployed in this study for uniform or non-uniform 

tension. Thus,  
i z

i L(z) sin( )πφ =   8-27 
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Consequently, in governing Equations ( 8-23) and ( 8-24) the required derivatives with 

respect to time and space will be as below,  

( ) ( ) ( )
N N

i i z i
i i iL L L

i 1 i 1

y cos p pπ π π

= =

′ ′= = φ∑ ∑  

( ) ( ) ( )
N N2 2i i z i

i i iL L L
i 1 i 1

y sin p pπ π π

= =

′′ = − = − φ∑ ∑  

( ) ( ) ( )
N N4 4(IV) i i z i

i i iL L L
i 1 i 1

y sin p pπ π π

= =

= = φ∑ ∑   

 

( )
N N

i z
i i iL

i 1 i 1

y sin p pπ

= =

= = φ∑ ∑  

( )
N N

i z
i i iL

i 1 i 1

y sin p pπ

= =

= = φ∑ ∑   

 

( )
N N

j z
j j jL

j 1 j 1

sin q qπ

= =

θ = = φ∑ ∑  

( )
N N

j z
j j jL

j 1 j 1
sin q qπ

= =

θ = = φ∑ ∑   

Substitution of the trial solution and required derivatives in the governing equations 

leads to two equations in which ip  and jq are unknown and should be determined.  

In theory in order to find the coefficients of a trial solution to a partial differential 

equation, it is sufficient to set the weighted residual to zero for infinitive number of 

weight functions. There are many methods of selecting weight function but one of 

the most prevalent methods, which is also used in the Finite Element Analysis, is 

Galerkin’s Method. Galerkin suggested using the shape/basis functions as weight 

functions. It will be very beneficial when the set of basis functions are orthogonal, 

like this problem. 

To implement Galerkin’s method here, the trial solution will be replaced in the 

governing equations and each of the governing equations will be multiplied by shape 

functions individually and integrated over the domain, i.e. the riser’s length. The 
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obtained integral is set to zero. By using N shape functions, this leads to N individual 

equations for each governing equation. 

For instance, the first governing equation and a shape function, e.g. kφ , gives, 

L

k0
(z)φ ⋅∫ [Eq. ( 8-23)] dz = 0  8-28 

This integral consists of several terms. Substituting the terms of governing Equation 

( 8-23) gives them as below, 

( ) ( )
NL L4 4(IV) i k L

k i k i kL L 20 0
i 1

EIy dz EI p dz EI pπ π

=

+ ⋅φ = φ φ =∑∫ ∫  

 

( )( ) ( )
N NL L L2 22i i

e k t r i k i r i k iL L0 0 0
i 1 i 1

T y dz T w L p dz w p z dzπ

= =

′′− ⋅ ⋅φ = − ⋅ φ φ + π φ φ =∑ ∑∫ ∫ ∫  

 ( )( )
N 12 2k L

kit r k r iL 2
i 1

T w L p w pπ

=

= − ⋅ + π ϒ∑  

 ( )
1 L2i

ki k iL 0
z dzϒ = φ φ∫  

 

( )
N N 2L L 2i

kir k r i k i r iL0 0
i 1 i 1

w y dz w p dz w p
= =

′ ′− ⋅ ⋅φ = − π φ φ = − π ϒ∑ ∑∫ ∫  

 ( )
2 L

i
ki k iL 0

dzπ ′ϒ = φ φ∫  

 

( )
L

r fr a ar k0
m (m m )s m (1 s) y dz+ + + + − ⋅φ =∫  

 
N NL L

r ar i k i fr a ar i k i0 0
i 1 i 1

(m m )p dz (m m m )p s dz
= =

= + φ φ + + − φ φ =∑ ∑∫ ∫  

 
N 3

L
kir ar k fr a ar i2

i 1

(m m )p (m m m ) p
=

= + + + − ϒ∑  

 
3 L

ki k i0
s dzϒ = φ φ∫  
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( )( )L
L C1 1

y D Dr k2 200 0
C Uc C s UcC (1 s) y dz∂

∂α α=α=
+ + ρ + + ρ − ⋅φ =∫  

 

( )

( )
( ) ( )

L

L

N NL L
1

y i k i Dr i k i20 0
i 1 i 1
N LC1

D Dr i k i2 0 00
i 1

N N4 5
CL 1 1

ki kiy k Dr i D Dr i2 2 2 00
i 1 i 1

C p dz cC p U dz

c C C p Us dz

C p cC p c C C p

= =

∂
∂α α=α=

=

∂
∂α α=α=

= =

= φ φ + ρ φ φ +

+ ρ + − φ φ =

= + ρ ϒ + ρ + − ϒ

∑ ∑∫ ∫

∑ ∫

∑ ∑

 

 
4 L

ki k i0
U dzϒ = φ φ∫  

 
5 L

ki k i0
Us dzϒ = φ φ∫  

 

( ) ( ) ( )
N N 3L L

kjx a k x a j k j x a j0 0
j 1 j 1

S S s dz S S q s dz S S q
= =

− + θ ⋅φ = − + φ φ = − + ϒ∑ ∑∫ ∫  

  

( ) ( )L L
NL LC C1 1

D k D j k j2 20 00 00 0
j 1

RUc C s dz Rc C q Us dz∂ ∂
∂α ∂αα= α=α= α=

=

− ρ + θ ⋅φ = − ρ + φ φ =∑∫ ∫  

 ( )L
N 5

C1
kjD j2 00

j 1
Rc C q∂

∂α α=α=
=

= − ρ + ϒ∑  

 

( ) ( )L L
NL LC C2 21 1

k j k j2 20 00 0
j 1

U c s dz c q U s dz∂ ∂
∂α ∂αα= α=

=

− ρ θ ⋅φ = − ρ φ φ =∑∫ ∫  

 ( )L
N 6

C1
kj j2 0

j 1
c q∂

∂α α=
=

= − ρ ϒ∑  

 
6 L 2

kj k j0
U s dzϒ = φ φ∫   8-29 

In short, through the process of expanding Equation ( 8-28) these variables needed to 

be calculated. 

( )
1 L2i

ki k iL 0
z dzϒ = φ φ∫  

( )
2 L

i
ki k iL 0

dzπ ′ϒ = φ φ∫  
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3 L
ki k i0

s dzϒ = φ φ∫  

4 L
ki k i0

U dzϒ = φ φ∫  

5 L
ki k i0

Us dzϒ = φ φ∫  

6 L 2
ki k i0

U s dzϒ = φ φ∫  

Similarly, applying this procedure on the second governing equation gives, 
L

h0
(z)φ ⋅∫ [Eq. ( 8-24)] dz = 0  8-30 

By substituting the Equation ( 8-24) in the above integral, following terms appear. 

( ) ( ) ( )
N N 3L L

hix a h x a i h i x a i0 0
i 1 i 1

S S ys dz S S p s dz S S p
= =

− + ⋅φ = − + φ φ = − + ϒ∑ ∑∫ ∫  

  

( ) ( )M (cr ) M (cr )
NL LC C2 21 1

h i h i2 20 00 0i 1
Uc ys dz c p Us dz−∂ −∂

∂α ∂α
α= α==

− ρ ⋅φ = − ρ φ φ =∑∫ ∫  

 ( )M (cr )
N 5C21

hi i2 0i 1
c p−∂

∂α
α==

= − ρ ϒ∑  

 

( ) ( ) ( )
N N 3L L

hja h a j h j a j0 0
j 1 i 1

J J s dz J J q s dz J J q
= =

+ + θ ⋅φ = + φ φ = + ϒ∑ ∑∫ ∫  

 

( )M (cr )
L C21

h20 0
C RUc s dz−∂

θ ∂α
α=

+ + ρ θ ⋅φ =∫  

 ( )M (cr )
N NL LC21

j h j j h j20 00j 1 j 1
C q s dz Rc q Us dz−∂

θ ∂α
α== =

= φ φ + ρ φ φ =∑ ∑∫ ∫  

 ( )M (cr )
N N3 5C21

hj hjj j2 0j 1 j 1
C q Rc q−∂

θ ∂α
α== =

= ϒ + ρ ϒ∑ ∑  
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( ) ( )M (cr ) M (cr )
NL LC C2 2 2 21 1

h j h j2 20 00 0j 1
U c s dz c q U s dz−∂ −∂

∂α ∂α
α= α==

+ ρ θ ⋅φ = ρ φ φ =∑∫ ∫  

 ( )M (cr )
N 6C21

hj j2 0j 1
c q−∂

∂α
α==

= ρ ϒ∑   8-31 

Consequently, by using trial solution and Galerkin’s method, (2 N)×  coupled 

equations are obtained, 

( ) ( )( )

( ) ( )
( )

L

L

N N1 24 2 2 2k kL L
ki kik t r k r i r iL 2 L 2

i 1 i 1
N 3

L
kir ar k fr a ar i2

i 1
N N4 5

CL 1 1
ki kiy k Dr i D Dr i2 2 2 00

i 1 i 1
N 3

C1
kjx a j D2 0

j 1

EI p T w L p w p w p

(m m )p (m m m ) p

C p cC p c C C p

S S q Rc C

π π

= =

=

∂
∂α α=α=

= =

∂
∂α αα=

=

+ − ⋅ + π ϒ − π ϒ +

+ + + + − ϒ

+ + ρ ϒ + ρ + − ϒ

− + ϒ − ρ +

∑ ∑

∑

∑ ∑

∑ ( )
N 5

kj j0
j 1

q
=

=

ϒ∑

 

( )L
N 6

C1
kj j2 0

j 1
c q 0∂

∂α α=
=

− ρ ϒ =∑                   i 1 to N=   8-32 

 

( ) ( ) ( )M (cr )
N N N N3 5 3 3C21

hi hi hj hjx a i i a j j2 0i 1 i 1 i 1 i 1
S S p c p J J q C q−∂

θ∂α
α== = = =

− + ϒ − ρ ϒ + + ϒ + ϒ∑ ∑ ∑ ∑  

( ) ( )M (cr ) M (cr )
N N5 6C C2 21 1

hj hjj j2 20 0j 1 j 1
Rc q c q 0−∂ −∂

∂α ∂α
α= α== =

+ ρ ϒ + ρ ϒ =∑ ∑         h 1 to N=   8-33 

These (2 N)×  equations are only functions of time variables, i.e. pi(t), qi(t) and their 

derivatives. They can be rewritten in matrix form. To this end, vector 2NX  is defined 

as the vector of unknown variables, 

1

N

2N

p

p
X =

1

N

q

q

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

  8-34 
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With this in mind, writing the above (2 N)×  equations in matrix form leads to the 

following matrix equation,  

X CX KX 0+ + =M   8-35 

where the square matrices 2N 2N×M , 2N 2NC ×  and 2N 2NK ×  are,  

 

( )
3

kjki x aM S S− + ϒ

=M

( ) ( )
3 3

hi hjx a aS S J J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + ϒ + ϒ
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
3

kifr a ar
ki 3

L
kkfr a ar r ar 2

(m m m ) k i
M

(m m m ) (m m ) k i

⎧ + − ϒ ≠⎪= ⎨
⎪ + − ϒ + + =⎩

  8-36 

 

 

 

( )L
5

C1
kjki D2 00

C Rc C

C

∂
∂α α=α=

− ρ + ϒ

=

( ) ( )M (cr ) M (cr )
5 3 5C C2 21 1

hi hj hj2 20 0
c C Rc−∂ −∂

θ∂α ∂α
α= α=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ρ ϒ ϒ + ρ ϒ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

( ) ( )
( ) ( )

L

L

4 5
C1 1

ki kiDr D Dr2 2 00
ki 4 5

C1 1 L
kk kkDr D Dr y2 2 200

cC c C C k i
C

cC c C C C k i

∂
∂α α=α=

∂
∂α α=α=

⎧ ρ ϒ + ρ + − ϒ ≠⎪
= ⎨
⎪ ρ ϒ + ρ + − ϒ + =
⎩

  8-37 
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( )L
6

C1
kjki 2 0

K c

K

∂
∂α α=

− ρ ϒ

=

( )M (cr )
6C21

hj2 0
0 c −∂

∂α
α=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ρ ϒ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

( ) ( )( )

1 2
2 2

ki kir r
ki 1 2 4 22 2 k kL L

kk kkr r t rL 2 L 2

w w k i
K

w w EI T w L k iπ π

⎧π ϒ − π ϒ ≠⎪= ⎨
⎪π ϒ − π ϒ + + − ⋅ =⎩

  8-38 

 

Eigenvalue Analysis 

Similar to the 2D case in  Chapter 5, the purpose of this step is to assess the trend of 

the vibration amplitude variation through the time when a small disturbance from 

equilibrium position occurs. This analysis reveals at what conditions this amplitude 

may not diminish and leads to instability of the system. 

A general solution in exponential form is assumed, 
t tZ ae Z a eλ λ= → = λ   8-39 

where a  is a vector of constants. This solution is substituted in Equation ( 8-35).  

2 tC K a e 0λ⎡ ⎤λ + λ + =⎣ ⎦M   8-40 

Similar to the 2D case, this matrix equation needs to have non-trivial solution to 

illustrate the response of system to a disturbance. More significantly, this response 

should be stable.  

This linear homogenous equation has non-trivial solutions only if the coefficient 

matrix is singular which requires the matrix determinant to be zero. Moreover, the 

stability of the system dictates that the amplitude of response should decline through 



8. 3D Theoretical Model 

 
© Mahdi Khorasanchi, 2009 182

the time. This means the real part of power in assumed exponential solution should 

be negative. Consequently, to satisfy the above conditions, it necessitates having, 

(1) 2 C K⎡ ⎤λ + λ + =⎣ ⎦M singular 2det C K 0⎡ ⎤→ λ + λ + =⎣ ⎦M  

(2) Real( ) 0λ <  

Setting the determinant to zero renders a characteristic equation in λ which is of 

2 2N× degree. Analysis of the roots of this characteristic equation results in a 

stability criterion which clarifies whether an unstable behaviour may occur. Unstable 

motion is probable whenever a root iλ  has positive real part. 

Dimensionless Form 

As explained in Section  5.6, classifying the variables helps to have a better 

understanding of true physical parameters that influence the stability.  

The first step in making the characteristic equation dimensionless is to identify the 

dimension of its terms. Equation ( 8-39) reveals that λ is of the dimension of 

(1/Time), i.e. Dim[λ] = (Time)-1. 

With reference to Equations ( 8-36), ( 8-37) and ( 8-38), each of three matrices 

2N 2N×M , 2N 2NC ×  and 2N 2NK ×  consists of four square sub-matrices of size N. A quick 

look to the elements of these sub-matrices indicates they have different dimensions. 

It has been shown below, 

 

Dim[ 2N 2N×M ] = 
(Mass) (Mass) (Length)⋅

2(Mass) (Length) (Mass) (Length)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅⎣ ⎦

 

 

 

Dim[ 2N 2NC ×  ] = 

-1 -1(Mass) (Time) (Mass) (Length) (Time)⋅ ⋅ ⋅

-1 2 -1(Mass) (Length) (Time) (Mass) (Length) (Time)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⋅⎣ ⎦
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Dim[ 2N 2NK ×  ] = 

-2 -2(Mass) (Time) (Mass) (Length) (Time)⋅ ⋅ ⋅

-2 2 -2(Mass) (Length) (Time) (Mass) (Length) (Time)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⋅⎣ ⎦

 

 

Now, this needs to select appropriate parameters for these dimensions, i.e. mass, 

length and time. Chord length of the fairing is an appropriate term for the dimension 

of length. Mass of the system if entirely fitted with fairings, i.e. a(m m ) L+ ⋅  where 

r fr(m m m )= + , suits the dimension of mass. Similar to the 2D case, the term c/U 

generates a general form for the dimension of time but the point here is that U varies 

over the riser length. So, a constant velocity Uo needs to be selected, for example the 

velocity at the water surface and the current velocity profile is defined as function of 

Uo. 

U = ( )oU U ,z   8-41 

With reference to the dimension of expression 2R C K= λ + λ +M , each row and 

column of 2N 2NR ×  should be divided by appropriate dimensions as shown below, 

 
1(c)−

×  

( )

( )

1 2
a o 11 12

1 1 2
a o

(m m ) L (c/U ) R R

(m m ) L (c) (c/U )

−

− −

+ ⋅ ⋅ ×

×+ ⋅ ⋅ ⋅ 21 22

0
R R

=   8-42 

 

Applying this procedure results in the dimensionless form of 2N 2NR × ,  

2R C K= λ + λ +M  

where similar to 2D case, 
oU / c
λ

λ = . Dimensionless matrices M , C  and K  are,  
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( )
3

kjx a
ki

a

S S
M

(m m )c L
+ ϒ

−
+

=M

( ) ( )
3 3

hi hjx a a
2

a a

S S J J
(m m )c L (m m )c L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +ϒ ϒ⎢ ⎥−
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
3

kifr a ar

a
ki 3

kkfr a ar r ar

a a

(m m m ) k i
(m m ) L

M
(m m m ) (m m )1 k i

(m m ) L 2 (m m )

⎧ + − ϒ⎪ ≠
⎪ +⎪= ⎨
⎪ + − +ϒ

+ =⎪
+ +⎪⎩

  8-43 

 

 

11 12
ki kjC C

C =

21 22
hi hjC C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

 

( )

( )

L

L

4 5
2 21 1

ki kiC2 2
Dr D Dr00

a o a o

11 4 5
2 21 1ki kk kkC2 2

Dr D Dr00
a o a o

y y

a y o

c c k iC C C
(m m ) U L (m m ) U L

C c cC C C
(m m ) U L (m m ) U L

C c k i
2(m m ) U

∂
∂α α=α=

∂
∂α α=α=

⎧ ρ ρϒ ϒ ≠⎪ + + −
⎪ + +
⎪
⎪
⎪= ⎨ ρ ρϒ ϒ⎪ + + − +

+ +⎪
⎪ ω⎪ =+
⎪ + ω⎩
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( )L

5
21

kjC12 2
kj D 00

a o

c RC C
(m m ) c U L

∂
∂α α=α=

ρ ϒ
= − +

+
 

M (cr )

5
21

hiC21 2
hi

0a o

cC
(m m ) U L

−∂
∂α

α=

ρ ϒ
= −

+ ⋅
 

M (cr )

3 5
21

hj hjC22 a 2
hj 2 0a a o a o

cC (J J ) c RC 2
2 (J J ) (m m )c U L (m m ) c U L

−∂θ θ
∂α

α=
θ

ρ+ ω ϒ ϒ
= +

⋅ + ⋅ω + +
  8-44 

 

 

( )L

6
21

kjC2
ki 20

a o

cK
(m m ) U L

K

∂
∂α α=

ρ ϒ
−

+

=

M (cr )

6
21

hjC2
20a o

c0
(m m ) U L

−∂
∂α

α=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ρ ϒ⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

( )

2 2 2 21 2
r r

ki ki2 22 2
a ao o

2 2 2 21 2
ki r r

kk kk2 22 2
a ao o

24 2 4 2 2
t r

2 24 2
a ao o

w L c w L c
k i

(m m )L (m m )LU U

K w L c w L c
(m m )L (m m )LU U

T w LEI c k c k k i
(m m )L 2 (m m )L 2U U

⎧ π ⋅ ⋅ π ⋅ ⋅
ϒ − ϒ ≠⎪ + +⎪

⎪
⎪⎪= π ⋅ ⋅ π ⋅ ⋅⎨ ϒ − ϒ +⎪ + +
⎪
⎪ π − ⋅π =+ +⎪

+ +⎪⎩

  8-45 

 

It should be noted that the first natural frequency of a taut string is 2 2T / mLπ where 

T is the tension, m is mass per unit length and L is the total length of string. 

Moreover, the first natural frequency of a simply supported uniform beam is 

4 4EI / mLπ  where EI is flexural stiffness. With this in mind, all terms in expression 
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( 8-45) are meaningful. For example, rw L⋅  is the total wet weight of the riser and 

therefore the term 2 2
r a[ w L /(m m )L ]π ⋅ +  is the squared of natural frequency of this 

riser in water when it acts as a cable under a uniform tension equal to its weight. 

Likewise, the term 2 2
t a[ T /(m m )L ]π +  means the squared of natural frequency of 

such cable under the uniform tension of Tt. Similarly, the term  4 4
a[ EI /(m m )L ]π +  is 

the squared of natural frequency of this riser in water when it acts as a simply 

supported beam. In this study, 2 2
t a[ T /(m m )L ]π +  is used as the main transverse 

natural frequency and the other two are defined as a fraction of that. 
2

t
y 2

a

T
(m m )L

π
ω =

+
  8-46 

To this end, two parameters FF and TTF are defined as Flexural Factor and Top 

Tension Factor respectively. FF shows the ratio of flexural stiffness to the stiffness 

induced by tension. TTF is the ratio of top tension to the riser’s wet weight. 
2

2
t

EIFF
T L
π

=
⋅

  8-47 

t

r

TTTF
w L

=
⋅

  8-48 

With reference to last term on the left hand side of Equation ( 8-24) and with the help 

of definition for torsional frequency in 2D case (see Equation ( 5-44)), the torsional 

natural frequency for 3D case is defined as, 

( )2 M(cr)21
o a2

0

C
U c J Jθ

α=

∂
ω = − ρ +

∂α
 

Taking the dimensionless parameters for the 2D case in mind, a more precise look to 

Equations ( 8-43) to ( 8-45) suggests the following dimensionless parameters for the 

3D case as well. 

2 a
2

a

J J
(m m ).c

+
γ =

+
  8-49 

x a
r

a

S SS
(m m ).c

+
=

+
  8-50 
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2

a

.cA
2(m m )

ρ
=

+
  8-51 

y
y

a y

C
2 (m m )

ξ =
⋅ + ⋅ω

  8-52 

a

C
2 (J J )

θ
θ

θ

ξ =
⋅ + ⋅ω

  8-53 

o
ry

y

UU
.c

=
ω

  8-54 

M (cr )

2
o

r C

0

UU
.c A

θ −∂
θ ∂α

α=

γ
= =
ω

  8-55 

r
RR
c

=   8-56 

They are identical to what has been already defined in the 2D case, however, since 

part of the riser may not be fitted with a fairing and consequently the possibility of 

having the mass change over the length, a Mass Factor (MF) is required. The MF 

will show the ratio of total mass (added-mass inclusive) of a bare part to the total 

mass of a riser segment covered with the fairing.  

r ar

a

m mMF
m m
+

=
+

  8-57 

With reference to the above equation and definition of m, i.e. structural mass of the 

riser and fairing r fr(m m )+ , it is clear that fr a ar a(m m m ) /(m m ) 1 MF+ − + = − . 

The dimensionless form of integrals 
1

kiϒ  to 
6

kiϒ  will be, 

( )
1 1 L2i

ki ki k iL 0
z dzϒ = ϒ = φ φ∫   8-58 

( )
2 2 L

i
ki ki k iL 0

dzπ ′ϒ = ϒ = φ φ∫   8-59 

3 3 L
1 1

ki ki k iL L 0
s dzϒ = ϒ = φ φ∫   8-60 

o o

4 4 L
1 1

ki ki k iU L U L 0
U dz⋅ ⋅ϒ = ϒ = φ φ∫   8-61 
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o o

5 5 L
1 1

ki ki k iU L U L 0
U s dz⋅ ⋅ϒ = ϒ = φ φ∫   8-62 

2 2
o o

6 6 L 21 1
ki ki k iU L U L 0

U s dz
⋅ ⋅

ϒ = ϒ = φ φ∫   8-63 

Finally, by replacing the above dimensionless parameters in Equations ( 8-43) to 

( 8-45), matrices M , C  and K  are given as, 

 

3

kjki rM S− ϒ

=M

3 3
2

hi hjrS

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ϒ γ ϒ⎢ ⎥
⎢ ⎥⎣ ⎦

 

3

ki

ki 3
1

kk 2

(1 MF) k i
M

(1 MF) MF k i

⎧
− ϒ ≠⎪= ⎨

⎪ − ϒ + =⎩

  8-64 

 

 

11 12
ki kjC C

C =

21 22
hi hjC C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

( )
( )

L

L

4 5
C

ki kiDr D Dr00
11

4 5ki
yC

kk kkDr D Dr00
ry

A C A C C k i
C

A C A C C k i
U

∂
∂α α=α=

∂
∂α α=α=

⎧
ϒ + ϒ + − ≠⎪⎪= ⎨ ξ

⎪ ϒ + ϒ + − + =
⎪⎩

 

( )L

5
C12

kjkj r D 00
C AR C∂

∂α α=α=
= − ϒ +  
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M (cr )
5

C21
hihi

0
C A −∂

∂α
α=

= − ϒ  

M (cr )
3 5

C22 2
hj hjhj r

0r

C 2 AR
U

−∂θ
∂α

α=
θ

ξ
= γ ϒ + ϒ   8-65 

 

 

( )L

6
C

kjki 0
K A

K

∂
∂α α=

− ϒ

=

M (cr )
6

C
hj

0
0 A −∂

∂α
α=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

ϒ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 2

kiki
2

ry
ki 1 2

4 2 2
kiki

2 2 2
ry ry ry

( ) k i
TTF U

K
( ) k FF k k k i
TTF U 2U 2TTF U

⎧
ϒ − ϒ⎪ ≠

⎪ ⋅⎪= ⎨
⎪ ϒ − ϒ ⋅ +⎪ + − =

⋅ ⋅⎪⎩

  8-66 

In the end, these matrices are substituted in characteristic equation below, 
2det C K 0⎡ ⎤λ + λ + =⎣ ⎦M   8-67 

This equation is of 2 2N× degree for λ . All roots of this characteristic equation 

should have negative real part in order to have a stable system.  

In summary, the following steps will be taken in order to analyse the stability of a 

given riser and fairing in the 3D model. The current profile varying in depth is 

specified as a function of a specific speed, Uo. A set of shape/mode functions is 

selected and integrals 
1

kiϒ  to 
6

kiϒ  are calculated from Equations ( 8-58) to ( 8-63) for 

all mode functions. Three factors of FF, TF and MF are obtained and dimensionless 

parameters are calculated from Equations ( 8-49) to ( 8-56). Afterwards, three 
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matrices M , C  and K  will be assembled through Equations ( 8-64) to ( 8-66). 

Finally, Equation ( 8-67) is solved for λ . To find the threshold of instability, Uo and 

accordingly Ury are increased and for a velocity increment the above procedure is 

repeated until the real part of one of the roots of Equation ( 8-67) becomes positive. 

These equations will be less complicated for special cases like uniform 

configuration. This case will be explored in the following. 

8.3 Uniform Case 

In this case, all conditions are uniform along the riser. More precisely, the entire riser 

is fitted with a fairing. The system is exposed to a uniform current and tension is 

constant at all levels.  

Entire coverage with the fairing means Mass Factor in Equation ( 8-57) and s(z) in 

Equation ( 8-1) are equal to one. 

MF = 1 

s(z) = 1 

Uniform current profile says that in Equation ( 8-41), 

U = oU(U ,z) = Uo 

Constant tension throughout the riser means the riser’s weight is either negligible 

compared with tension or is compensated by other equipments like buoyancy 

modules. All in all, having constant tension in Equation ( 8-9) mathematically results 

in, 

t bT T=  

rw 0=  

Thus, the inverse of Top Tension Factor in Equation ( 8-48) is zero. 

1 0
TTF

=  
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As discussed earlier, sinusoidal shape functions of Equation ( 8-27) fit to this case as 

well. These functions are orthogonal and therefore integrals 
3

kiϒ  to 
6

kiϒ  are zero 

unless the indices i and k are equal. 
3 L

s
ki k iL 10

2

0 k i
dz

k i
≠⎧

ϒ = φ φ = ⎨ =⎩
∫   

o

4 L
U

ki k iU L 10
2

0 k i
dz

k i⋅

≠⎧
ϒ = φ φ = ⎨ =⎩

∫  

o

5 LUs
ki k iU L 10

2

0 k i
dz

k i⋅

≠⎧
ϒ = φ φ = ⎨ =⎩

∫  

2

2
o

6 LU s
ki k i 1U L 0

2

0 k i
dzUs

k i⋅

≠⎧
ϒ = φ φ = ⎨ =⎩

∫  

With respect to integrals 
1

kiϒ  and 
2

kiϒ  which are used in Equation ( 8-66), since the 

inverse of TTF in this equation is zero, there is no need to calculate these integrals. 

Three dimensionless matrices M , C  and K  are to be calculated next. By 

substituting above magnitudes in Equation ( 8-64), M  emerges in the form of a 

matrix with four diagonal sub-matrices. 

11 N N 12 N N

21 N N 21 N N

I I
I I

× ×

× ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M M
M

M M
 

 
1

11 2=M  1
12 r2 S= −M  

1
21 r2 S= −M  21

22 2= γM  

where N NI ×  is the identity matrix of size N. Replacing the variables in Equation 

( 8-65) shows that similar to M , C  is also a matrix with four diagonal sub-matrices. 

11 N N 12 N N

21 N N 22 N N

C I C I
C

C I C I
× ×

× ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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( )L yC1
11 D2 00

ry

C A C
U

∂
∂α α=α=

ξ
= + +  ( )LC1

12 r D2 00
C AR C∂

∂α α=α=
= − +  

M (cr )C1
21 2 0

C A −∂
∂α

α=
= −  M (cr )C2 1

22 r2 0r

C AR
U

−∂θ
∂α

α=
θ

ξ
= γ +   

Equation ( 8-66) reveals that in the uniform case, K  is also a matrix with diagonal 

sub-matrices. 

11 12 N N

22 N N

K K I
K

0 K I
×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

4 2

2
ry

4 2

2
ry

4 2

2
ry

(i 1) FF (i 1)
2U

i FF i
2U11

(i 1) FF (i 1)
2U

N N

0 0 0 0

0 0 0 0

0 0 0 0K

0 0 0 0

0 0 0 0

− ⋅ + −

⋅ +

+ ⋅ + +

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

LC1
12 2 0

K A ∂
∂α α=

= −  

M (cr )C1
22 2 0

K A −∂
∂α

α=
=  

If these three matrices are substituted in characteristic Equation ( 8-67), it gives, 

( ) ( )
( ) ( )

2 2
11 11 N N 11 12 12 12 N N2

2 2
21 21 N N 22 22 22 N N

C I K C K I
det C K det

C I C K I

× ×

× ×

⎡ ⎤λ + λ + λ + λ +
⎢ ⎥⎡ ⎤λ + λ + = =⎣ ⎦ ⎢ ⎥λ + λ λ + λ +⎣ ⎦

M M
M

M M
 

 

 
( )( ) ( )
( ) ( )

2 2
11 11 N N 11 22 22 22 N N

2 2
12 12 12 N N 21 21 N N

det C I K C K I

C K I C I

× ×

× ×

⎡= λ + λ + ⋅ λ + λ + −⎣
⎤λ + λ + ⋅ λ + λ =⎦

M M

M M
 

 

 

( ) ( )
( )
( ) ( )

2 2
11 11 22 22 22 N N

2
22 22 22 11

2 2
12 12 12 21 21 N N

det C C K I

C K K

C K C I 0

×

×

⎡= λ + λ ⋅ λ + λ + +⎣

λ + λ + −

⎤λ + λ + ⋅ λ + λ =⎦

M M

M

M M
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Since N NI ×  and 11K  are both diagonal matrices, the last expression is the determinant 

of a diagonal matrix which that equals to the product of diagonal elements. This 

means to find λ , each of diagonal terms should be set to zero. This results in N 

fourth degree equations of λ . For instance, for ith diagonal element it states, 

( ) ( ) ( )2 2 2
11 11 22 22 22 22 22 22 iiC C K C K kλ + λ ⋅ λ + λ + + λ + λ + +M M M  

 ( ) ( )2 2
12 12 12 21 21C K C 0λ + λ + ⋅ λ + λ =M M  

Substituting scalar parameters in above equation and re-arranging the result leads to 

a quartic characteristic equation, 
4

i
i

i 1
c 0

=

λ =∑   8-68 

22
4 rc S⎡ ⎤= γ −⎣ ⎦  

( ) ( )( )M (cr ) LC yC2 2
3 r r r r D 000 ry r

c A S R A R S C 2 ( )
U U

∂ ∂ θ
∂α ∂α α=α=α=

θ

⎡ ⎤ξ ξ
= − + γ − + + γ +⎢ ⎥
⎢ ⎥⎣ ⎦

 

( )M (cr ) L

L

2
Cy yC2 2

2 r D2 000ry r ry rry

C
r 0

Gc A 1 2R 2A C 4
U U U UU

AS

∂ ∂θ θ
∂α ∂α α=α=α=

θ θ

∂
∂α α=

⎡ ⎛ ⎞ξ ξξ ξγ
= − + + γ + + γ +⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣

⎤
− ⎥

⎦

M (cr ) M (cr )
2

C Cy 2r
1 D2 2 00 0ry rry ry

R G Gc A 2 2 A C
U UU U

∂ ∂θ
∂α ∂α α=α= α=

θ

⎡ ⎤⎛ ⎞ξ ξγ
⎢ ⎥= − + + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

M (cr )C
0 2 0

ry

Gc A
U

∂
∂α

α=

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

where G is related to the ratio of flexural and tensile stiffness for ith mode, i.e. when 

only i (z)φ  is used in approximating y(z, t)  and (z, t)θ , 
4 2G i FF i= ⋅ +  

Apart from the appearance of parameter G, these coefficients are very similar to 

those of a 2D case. More precisely, in the case tension is predominant in the riser’s 

stiffness and the effect of flexural stiffness is negligible, i.e. FF = 0, then the 2D 
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analysis is identical to the 3D analysis of a uniform problem for the first mode where 

G = 1. 

8.4 Verification 

As part of the VIV research activities NDP (Norwegian Deepwater Programme), a 

series of cylinder tests was carried out at MARINTEK to investigate the 

effectiveness of fairings (Braaton et al., 2008). This work was partly a follow up 

activity to the work reported by Slocum et al (2004). 

A top tensioned flexible riser was tested with two different fairing designs in uniform 

current profile at different towing speeds. The riser model was made of a fibreglass 

reinforced pipe with the length of 9.324 m, the outer diameter of 20 mm and the wall 

thickness of 1.5 mm.  

In part of this study, the riser model was fully covered with Fairing II. This fairing 

was similar to the one used in Slocum et al (2004) in terms of section profile and it 

was smaller in scale by a factor of about 6.4 (see Figure  5-3 and Figure  8-3). They 

had a span length of 88.2 mm, a chord length of 84 mm and maximum nose 

thickness of 36 mm. The given specifications of the test set-up are presented in Table 

 8-1 and Table  8-2. The ratio of fairing’s span to riser’s length is 0.009 and therefore 

using the continuous model is valid. 

 
Figure  8-3  Fairing II on The Flexible Riser Model (Braaton et al., 2008). 
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Table  8-1  Riser Model Data. 

 
Parameter  Dimension  
Total length between pinned ends  9.324 m  
Outer diameter  20 mm  
Wall thickness of pipe  1.5 mm  
Bending stiffness, EI  90.1 Nm

2
 

Young modulus for pipe, E  2.4 10
10 

N/m
2
 

Axial stiffness, EA  2.09 10
6 
N 

Mass of riser (flooded)  0.518 kg/m  
Axial tension (top/bottom)  670/640 kN  

 
Table  8-2  Faring II Data. 

 
Parameter  Dimension  
Chord length  84 mm  
Maximum thickness  36 mm  
Span-wise length of section  88.2 mm  
Number of sections  96  
Chord length to thickness ratio 2.33  
Mass in air  1.170 kg/m  
Weight in water  0.000 N/m  
Mass of riser (flooded) with 
fairings  1.579 kg/m  

Pre-tension (top/bottom)  625/603 N  
Reynolds number range  3200-95000  

 

Detailed specifications of the fairing and clamping system are not given in the paper. 

Thus, it is necessary to approximate the required dimensionless parameters based on 

equations derived in Section  6.2(A). To check the estimation with real data, masses 

of the flooded riser alone and with fairing on are used as the benchmark. 

Calculation of the flooded riser mass shows that the density of pipe is 3350 kg/m3. 

The fairing in this test is not thin shell and hollow section. To match the equations 

with this case, the density of the fairing and entrapped water are assumed equal and 

an imaginary thickness of 1 mm is considered for the fairing plate. Calculation of the 

flooded riser mass fitted with fairing indicates that the average density of the fairing 

material including the clamping system is 750 kg/m3. All the required variables to 

calculate dimensionless parameters are summarised below. 



8. 3D Theoretical Model 

 
© Mahdi Khorasanchi, 2009 196

ρ = 1000 kg/m3 

bρ = 750 kg/m3 

sρ = 3350 kg/m3 

frρ = 750 kg/m3 

fρ = 1000 kg/m3 

 
frt = 0.001 m 

sr =  0.010 m 

fr =  0.0085 m 

tr =  0.018 m 

br =  0.017 m 

 
b = 0.0047 m 

c =0.084 m 

d = 0.0239 m 

frL = 0.0677 m 

By using the above estimated variables, the calculated masses compare well to the 

real values in Table  8-3. 

 
Table  8-3  Accuracy of Calculated Mass vs. Measured Values. 

 
Parameter  Measured (kg/m) Calculated (kg/m) 
Mass of flooded riser 0.518 0.519 
Mass of flooded riser with fairing 1.579 1.662 
Mass of fairing in air 1.170 1.144 

 
 
 

The above estimated values give the structural dimensionless parameters as below. 

A = 0.4894  

γ2 = 0.1006  

Sr = 0.2613 
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With regard to Mass Factor, the added mass coefficient of a bare cylinder in theory is 

1. Accordingly, Mass Factor will be worked out as, 

r ar

a

m mMF 0.116
m m
+

= =
+

 

The Young modulus of the pipe along with the top end and bottom end tensions are 

given. Thus, wet weight of the system, natural transverse frequency and parameters 

FF and TTF can be easily calculated. 

rw    = t b(T T ) / L−  = 2.197 N 

yω    = 3.142    (rad/s) 

FF    = 0.0164 

TTF = 28.410 

No hydrodynamic characteristic was measured in the test; however, the fairing 

section is similar to Slocum et al (2004). Thus, regardless of the Reynolds number 

effect in the subcritical range, hydrodynamic properties of this fairing are assumed to 

be identical to previous one. That is, 

Rr  = 0.40 

D o
C = 0.176 

L o
C /∂ ∂α  = 1.146            (1/rad)  

M(cr) o
C /∂ ∂α  = -0.0344    (1/rad) 

The typical drag coefficient for a bare cylinder when calculated based on diameter is 

about 1.2. In the present formulation, it needs to be scaled to the fairing chord length. 

DrC = 1.2 ×  (20mm/84mm) = 0.286 

With respect to damping, contrary to rigid cylinder tests, a flexible riser experiences 

noticeable deformation and therefore contributes in the transverse damping of the 

system. Thus, to be on the safe margin the lower limit of reported in-water damping 

for a riser fitted with a fairing, i.e. 0.10 to 0.18 (Lee et al., 2004b), is selected.  

In the research it is emphasised that the fairing is free to rotate, therefore the positive 

role of torsional frictional damping is ignored. 
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yξ  =  10 % 

θξ  =  0 % 

The entire riser was outfitted with fairings and exposed to uniform current profile. 

oU U=  

For the above parameters and by considering the first five modes, the 3D analytical 

model developed in this chapter predicts that the system goes unstable at Ucr = 0.72. 

Figure  8-4 shows that in this example Ucr is not sensitive to the number of considered 

first few modes. With reference to definition of Ury, this critical reduced velocity is 

equal to towing speed of 0.19 m/s. 

o ry yU U c= ⋅ω ⋅ = 0.72 ×  3.142 ×  0.84 = 0.19 m/s 

Test results (Figure  8-5) show that the amplitude of vibration for Fairing II has two 

peaks. The onset of increasing amplitude for the first peak occurs at towing speed of 

about 0.20 m/s and for the second peak about 0.60 m/s. Despite some approximation 

in parameters, the theoretical model anticipated the range of velocity of the first peak  

accurately. Nevertheless, the important question is that whether this large amplitude 

vibration happens due to VIV or instability of the system. 
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U
cr

 
Figure  8-4  Effect of Considering Limited Number of Modes. 
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The frequency of predominant vibration was also measured in the test. Figure  8-6 

shows this frequency along with the predicted vortex-shedding frequency for Fairing 

II (fs2). In this figure, the measured frequency of vibration for the bare riser is very 

close to the predicted frequency of VIV (fs1) and confirms that oscillation of the bare 

riser was due to VIV. On the contrary, the frequency of vibration for Fairing II at two 

amplitude peaks is less than fs2 and it can be concluded that they indicate the 

instability of the system and not VIV. 

Although the predicted instability coincides with the velocity range of large 

amplitude vibration in the above test, it is still difficult to make a judgment on the  

validity of the model for other cases due to external factors. For example, lack of 

repeated test data raises the question about reliability and approximating mass, added 

mass, natural frequency and hydrodynamic coefficients have left some uncertainties 

both in the model test and also in the assumed parameters. In addition, the ability of 

the model in more complex conditions, like sheared flow profile and partly coverage 

of the riser with fairing, remains to be verified against further model tests. 

 

 
Figure  8-5  Threshold of Instability Onset, Test Results (Braaton et al., 2008). 
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Figure  8-6  Frequency of Predominant Vibration, Test Results (Braaton et al., 2008). 

 

8.5 Comments 

In this chapter, an analytical model was developed for a top tensioned riser in general 

form. This model was applied to a tank test and predicted the threshold of instability 

reasonably well.  

In the general case, the selected shape functions in Galerkin’s method are orthogonal, 

but since some variables like tension and current velocity varies over the length, the 

resultant equations are coupled and the final vibration mode (eigenvector) is a 

combination of mode shapes. Thus, it is not possible to distinguish the instable mode 

and say which mode goes unstable first. In other words, in the general case what can 

be determined is merely the critical reduced velocity, Ucr.  

The other important issue is the convergence of the result versus number of 

considered modes. The rate of convergence may vary from case to case but it should 

be noted that lower modes must be always considered while the number of modes is 

being increased for the sake of convergence. Otherwise, it is very likely to miss the 
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lowest current velocity which entails instability of the system. For instance, Figure 

 8-7 shows the lowest Ucr versus different set of five modes for the example used in 

this chapter for verification. 
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Figure  8-7  Effect of Missing Lower Modes in Ucr. 

 

The complicated model of the general case was simplified for the uniform case. In 

this specific case, the characteristic equation turned into independent equations for 

each mode. This equation was identical to the characteristic equation in the 2D case 

except the emergence of a new term which stated the influence of using different 

modes. 

To track the effect of this parameter in the critical velocity of a uniform case, an 

example is considered in which all parameters along the riser are equal to the 

corresponding value at the top end of the riser used in this chapter. Figure  8-8 

demonstrates the trend of Ucr versus the mode number in uniform conditions. This 

figure shows that by increasing the mode number, Ucr rises too and after the first few 

modes, the critical reduced velocity is so high that there may exist no sea current 

velocity to excite the instability of higher modes. This figure also clarifies how 

taking the flexural stiffness into account influences Ucr in each mode. In general, the 
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effect of flexural stiffness in raising Ucr becomes more noticeable as the mode 

number increases. 
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0

1

2

3

4

5

6

7

8

Mode No.

U
cr

 

 

FF = 0.00
FF = 0.05
FF = 0.10

 
Figure  8-8  Ucr vs. Mode Number, Uniform Case. 

 

This chapter centred on developing the 3D analytical model for fairing instability. 

The effects of some parameters like fairing hydrodynamic characteristics on critical 

velocity were already investigated for 2D model in  Chapter 6. The next chapter will 

check if these effects are the same in the 3D model and will also discuss the 

influences of new parameters which emerged in this chapter such as current profile 

and coverage length. 
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Chapter 9  

3D Example and Parametric Study 

Numerical examples are discussed in this chapter. At first, the general conditions will 

be considered and the critical current velocity will be calculated. Then, the effect of 

dimensionless parameters will be assessed in order to evaluate the consistency of the 

2D study with this case. Finally, the influences of new parameters emerging from 

considering the third dimension will be investigated too.  

9.1 Introduction 

The preceding chapter explored the governing equations of the riser and fairing 

system in real conditions, i.e. three-dimensional form. An analytical model was 

developed for stability of this system in general conditions. This model led to such 

complicated characteristic equations that predicting the effect of different parameters 

in improving or deteriorating the stability of the system was not straightforward.  

Further investigation indicated that in the case of considering uniform conditions for 

all variables along the riser length, this complex characteristic equation will be 

simplified to that of a 2D problem but with the emergence of a new parameter. 

Therefore, the parametric study carried out in the 2D case holds here as well and 

there is no need to repeat it again. The only difference refers to the new parameter, 

G. It was already demonstrated that in uniform conditions higher mode results in 

higher critical velocity. This is the case for higher values of the Flexural Factor too. 

In summary, it can be concluded that as parameter G increases, so does the critical 

velocity. 
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Now, it is time to apply the 3D analytical model to a real general case and assess 

how each parameter impacts the stability. 

9.2 An Example of the General Case 

Specifications of a real drilling riser working off the coast of Brazil were presented 

in Section  6.3. Grant and Patterson states in their paper that this riser was deployed in 

water of 500 feet (152.4 m) depth without installation of buoyancy modules (Grant 

and Patterson, 1977). In this example, this riser will be considered in a water of 

double depth, i.e. 300 m. Thus, in order to keep the tension in the same range, it is 

necessary to implement the buoyancy module as well. 

Buoyancy materials are in various forms. For instance, in water depths no more than 

600 m they vary from typical materials weighing about 771 kg/m3 to ultra-light 

materials (353 kg/m3) and super ultra-light materials (320 kg/m3) (Wang and 

Watkins, 2004). In this example, “Standard Density” material 24 lb/ft3 (384 kg/m3) 

from Cuming corporation brochure is selected. 

Tension at the top end of the riser (Tt) is 1471 kN. The bottom end tension will be 

calculated later based on the wet weight of the system. 

The CFD analysis of a few fairing sections in  Chapter 7 indicated that the guide vane 

is one of the profiles that satisfy the necessary conditions for stability. Moreover, it 

benefits from the relatively short chord length which facilitates the operational 

conditions. Hence, this fairing is chosen for this example. If the impact of Reynolds 

number on hydrodynamic coefficients is ignored, the use of this profile means, 

 
Angle of leeside = 6o  

t/c = 0.67 

rR =  0.40 

D o
C =  0.329 

L o
C /∂ ∂α =  1.432               (1/rad) 

M(cr) o
C /∂ ∂α =  -0.309         (1/rad) 
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Fairing shell of 10 mm thickness is fabricated from reinforced fibreglass (1500 

kg/m3). Based on what is mentioned above, all design parameters are summarised 

below (For definition of parameters, reader is referred to Section  6.2(A)). 

ρ = 1025 kg/m3 

bρ = 384 kg/m3 

sρ = 7850 kg/m3 

frρ = 1500 kg/m3 

fρ = 1795.97 kg/m3 

 
frt = 0.010 m 

sr =0.3048 m 

fr =  0.2648 m 

tr = 0.5080 m 

br =  0.4980 m 

 
b = 0.804 m 

c =1.516 m 

d = 0.250 m 

frL = 1.014 m 

By using the equations derived in Section  6.2(A), structural dimensionless 

parameters are obtained. 
2γ =  0.0699 

rS =  0.1577 

A =  0.3298 

With reference to the discussion presented in Section  6.2(B), damping ratios are 

selected in the midrange. 

yξ =  0.10 

θξ =  0.05 
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The riser length is 300 m and the wet weight of flooded system is calculated as 3.6 

kN per unit length. Young’s modulus for steel riser is 212×109 N/m2. Accordingly, 

bottom tension and three dimensionless factors of TTF, FF and MF are easily 

calculated, 

TTF = 1.362 

FF   = 0.0461 

MF  = 0.5438 

bT    = 39.85 tons 

Natural frequency of transverse vibration in water is obtained from Equation ( 8-46), 

yω =  0.2125   (rad/s) 

Finally, if the drag coefficient of a circular cylinder, i.e. bare riser with buoyancy 

module of 0.5046m radius, is assumed as 1.2, the scaled drag coefficient with respect 

to the fairing chord length is, 

DrC = 1.2 ×  (2×0.5046m/1.516m) = 0.799 

This riser system is exposed to a sheared current in which the current velocity at the 

bottom end of the riser is equal to 20% of that at the top end. If Uo is measured at the 

top end of the riser, the current profile for a riser of unit length will be, 

U = Uo ×  (0.8×Z + 0.2) 

To produce a general problem, it is assumed that the upper half of the riser is fitted 

with fairings. 

All parameters required in the model are now available. By considering the first three 

modes, the analytical model anticipates that this system goes unstable when the 

reduced velocity (Ury) exceeds 1.98. Figure  9-1 shows that in this example the first 

three modes are the minimum required number of modes to achieve the convergence 

in result and obtain Ucr accurately. The solutions to characteristic equation of 

stability are plotted in Figure  9-2 for each velocity increment.  

With reference to the definition of reduced velocity and by substitution of natural 

frequency and fairing chord length in Equation ( 8-54), this model predicts that the 
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system is prone to instability when the current velocity at the top end, where Uo is 

measured, is about 0.64 m/s. 

o ry yU U c= ⋅ω ⋅ = 1.98 ×  0.2125 ×  1.516 = 0.64 m/s 
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Figure  9-1  Effect of Considering Limited Number of Modes. 
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Figure  9-2  Trajectory of Eigenvalues, General Case, First 3 Modes. 
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9.3 Parametric Study 

A parametric study on the 2D model was carried out in  Chapter 6. As emphasised 

earlier, the 2D model is very similar to the 3D model in the uniform case and 

therefore the results of that parametric study is valid here and there is no need to 

repeat them. 

However, as the 3D problem moves toward general conditions, it is necessary to 

investigate to ascertain whether those results are still applicable to 3D conditions or 

not. To this end, this section will first explore the effect of common parameters and 

compare the trend of variations in the general case with that in the 2D model. Then 

the impact of new parameters emerging in the 3D model will be probed as well. 

The general example explained earlier in this chapter is used for this parametric 

study. Similarly the first three modes are selected and each parameter varies in the 

range of 50% to 150% of the present values unless otherwise stated. The red circle in 

the following figures shows the base case.  

(A) Common Parameters 

There are many dimensionless parameters in the 3D model which were already 

defined in the 2D model too. Their physical meaning was illustrated in  Chapter 6. In 

the following, the trend of stability versus variation of these parameters in the 3D 

model is compared with that in the 2D model. 

Effect of Drag, Cd 

The variation of critical reduced velocity (Ucr) versus drag coefficient is plotted in 

Figure  9-3. This graph does not show a remarkable adverse impact of drag in the 

stability of the system. Comparison of this plot with Figure  6-6 reveals that it was the 

case for the 2D model as well. It was explained there, that it might be due to the fact 

that the sum of drag and lift slope forms the hydrodynamic damping terms and as the 

drag is small relative to lift slope, its impact is not tangible. 
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Figure  9-3  Ucr vs. Drag Coefficient, 3D Model. 

 

Effect of Lift, ∂CL/∂α 

The 2D parametric study indicated that an increase in the slope of the lift coefficient 

curve makes the system more vulnerable and results in lower Ucr (see Figure  6-7) 

(Khorasanchi and Huang, 2009). Figure  9-4 confirms this fact in the 3D case where a 

decreasing non-linear relationship with evidence of a discrete drop is observed when 

∂CL/∂α changes from 82% of its value in base case to 84% of that. Further 

investigation showed that this is due to the change of the instable mode as shown in 

Figure  9-5. In this figure, the eigenvalue which first crosses the imaginary axis is 

highlighted by an ellipse. Therefore, an increase of the lift coefficient entails the 

mode change and in each mode causes Ucr to decline. 
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Figure  9-4  Ucr vs. Lift Coefficient, 3D Model. 
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a) ∂CL/∂α = 82% Base Case   b) ∂CL/∂α = 84% Base Case 

Figure  9-5  Mode Change Due to Increase of Lift Coefficient, 3D Model. 

 

Effect of Moment, ∂CM/∂α 

Figure  6-8 in the 2D study showed that for small moment slope, its increase led to 

lower Ucr but then the trend of variation changed and moment slope improved the 
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stability. The present 3D example is consistent with the second part of this graph. In 

Figure  9-6, Ucr grows when the absolute value of the moment coefficient increases. 

Again there is a discrete movement in the smooth curve which is due to mode change 

as presented in Figure  9-7. 
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Figure  9-6  Ucr vs. Moment Coefficient, 3D Model. 
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a) ∂CM/∂α  = 78% Base Case   b) ∂CM/∂α  = 80% Base Case 

Figure  9-7  Mode Change Due to Increase of Moment Coefficient, 3D Model. 
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Effect of Transverse Damping 

In conformity with Figure  6-10, transverse damping improves the stability status in 

the 3D case as well. In Figure  9-8, Ucr rises up with higher damping ratios.  
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Figure  9-8  Ucr vs. Transverse Damping, 3D Model. 
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Effect of Torsional Damping 

Torsional damping plays a positive role in confining the instability. This was already 

observed for the 2D model in Figure  6-11 and was repeated for the 3D model in 

Figure  9-9. 
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Figure  9-9  Ucr vs. Torsional Damping, 3D Model. 
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Effect of Structural Properties, A 

It was well explained in  Chapter 6 that parameter A is proportional to a ratio of fluid 

mass to structural mass and has been shown, in general, as this ratio escalates so does 

the inclination toward flow-induced vibration. This principle was observed in the 2D 

model as well (Figure  6-12). It is also spotted in this example in Figure  9-10. This 

figure shows a good agreement and demonstrates that as A rises, the critical reduced 

velocity falls down and the system becomes more susceptible to instability.  
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Figure  9-10  Ucr vs. A, 3D Model. 

 

Effect of Structural Properties, γ2 

Figure  6-13 in the 2D study revealed that larger magnitudes of parameter γ2 hinder 

the instability onset to higher velocity. This is the general trend in Figure  9-11 as 

well. However, at small values of γ2 where it is about half of the base case, it shows 
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different behaviour and increase of γ2 reduces Ucr. This is along with a discrete drop 

between 66% and 68% of value in the base case. Similar to previous figures, this is 

due to mode change (Figure  9-12). 
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Figure  9-11  Ucr vs. γ2, 3D Model. 
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a) γ2 = 66% Base Case    b) γ2 = 68% Base Case 

Figure  9-12  Mode Change Due to Increase of γ2, 3D Model. 
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Effect of Structural Properties, Sr 

The previous study for the 2D model demonstrates an increase of Sr, endangering the 

stability of the system which leads to lower values of Ucr (Figure  6-14). This is the 

case for the main part of curve in this example. The discrete drop in Figure  9-13 is 

due to a mode change between 70% and 72% of initial value (Figure  9-14). 
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Figure  9-13  Ucr vs. Sr, 3D Model. 
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a) Sr = 70% Base Case    b) Sr = 72% Base Case 

Figure  9-14  Mode Change Due to Increase of Sr, 3D Model. 
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Effect of Hydrodynamic Property, Rr  

The previous study (Figure  6-15) discovered that the growth of Rr at first improves 

the stability and increases Ucr. This continues up to the point where further growth of 

Rr beyond that has adverse impact on instability and decreases Ucr. Figure  9-15 

demonstrates this behaviour in the 3D case again.  
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Figure  9-15  Ucr vs. Rr, 3D Model. 

(B) New Parameters 

Taking the third dimension into consideration introduces new parameters. These 

parameters either demonstrate the impact of the third dimension in stiffness, e.g. riser 

length (L), wet weight ( rw ) and tension at top end ( tT ) or show the variation of 

variables along the riser length such as current profile and length of coverage with 

fairings. The first group of variables were categorized in two dimensionless 

parameters, i.e. Top Tension Factor (TTF) and Flexural Factor (FF) while the second 

group needs to be addressed individually. In the following the influence of these 

parameters will be investigated. 
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Effect of Top Tension Factor (TTF) 

Based on the definition of TTF in Equation ( 8-48), this parameter is the ratio of 

tension at the top end of riser ( tT ) to the wet weight of the entire system ( rw L⋅ ). 

Thus, for a given system, an increase in TTF will result in a higher stiffness and 

should improve the stability. Figure  9-16 proves this trend. In this figure since TTF 

cannot be less than one, TTF varies between 80% to 180% of the base value. This 

figure shows higher critical velocity for larger values of TTF.  
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Figure  9-16  Ucr vs. TTF, 3D Model. 

 

Effect of Flexural Factor (FF) 

Parameter FF was defined in Equation ( 8-47). This variable presents the ratio of 

flexural stiffness to the stiffness generated by tension. In theory, higher flexural 

stiffness helps the stability but as the role of this parameter in total stiffness is very 

small, in practice, change of this variable does not influence the stability to a large 

extent (Figure  9-17). 
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Figure  9-17  Ucr vs. Flexural Factor (FF), 3D Model. 

 

Effect of Coverage Length 

Figure  9-18 demonstrates the effect of coverage length in stability. The ratio of top 

portion outfitted with the fairing to the total length of the riser is plotted in the 

horizontal axis. With the assumption that the part of the riser which is bare does not 

produce vortices and only contributes to damping the vibration; this figure shows 

fitting longer segment of the riser with fairings will increase the risk of instability 

and reduces Ucr.  

Moreover, longer coverage of the riser can change the mode of instability. This 

appears in the form of a discrete drop in Figure  9-18. It was investigated in Figure 

 9-19. Vertical axis in the latter figure is proportional to imaginary part of the 

eigenvalue and implies the frequency of vibration. It was said that modes are coupled 

but if one attributes the upper curves with higher frequency to higher mode numbers 

of vibration, this means that covering the top part of the riser provokes higher modes 
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(Figure  9-19 (a)) and as the length of coverage increases, lower modes (Figure  9-19 

(b)) are excited subsequently. 
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Figure  9-18  Ucr vs. Length of Coverage, 3D Model. 
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a) Cov. L. = 126% Base Case   b) Cov. L. = 128% Base Case 

Figure  9-19  Mode Change Due to Increase of Coverage Length, 3D Model. 
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Effect of Current Profile 

In this example sheared current was investigated. Current velocity at the top end was 

selected as the measure for instability analysis (Uo). It was mentioned earlier in 

Section  9.2 that if Uo is measured at the top end of the riser (Figure  9-20), the current 

profile for a riser of unit length will be, 

U = oU (aa Z bb)× × +  

The term (aa Z bb)× +  shows the type of variation in current profile. Since this term 

should be equal to one at the top end (Z = 1) where Uo is measured, this means 

aa 1 bb= − . In other words, the current profile is only a function of bb which shows 

the ratio of current speed at bottom end to that at the top end. For this example in the 

base case, the current velocity at the bottom end of riser was equal to 20% of that at 

the top end, i.e. bb = 0.20 (see Section  9.2). When bb = 1, it presents the uniform 

current condition. 

 
Figure  9-20  Sheared Current Profile.  

The process of drawing the trend of critical velocity against the variation of bb is as 

below. For a specific value of bb, Uo increases from zero until the system goes 

unstable. Then the corresponding Ury is calculated based on Uo. Figure  9-21 shows 

Uo 
(z  = L), Z = 1 

(z  = 0), Z = 0 

bb > 1 bb = 1 bb < 1 

Uo Uo 
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this trend when the bottom to top ratio of current velocity varies within the range of 0 

to 2. 

For the base profile (Uo = 1), when bb > 1 current velocity is higher at the lower end 

and in general is larger at all points along the riser compared to when bb < 1 (Figure 

 9-20). Naturally, larger profile leads to lower critical velocity. This is observed in 

Figure  9-21. From left to right, as the parameter bb increases and current profile 

enlarges critical velocity declines. 
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Figure  9-21  Ucr vs. Bottom/Top Ratio of Current Speed, 3D Model. 

9.4 Summary of Findings 

It was explained that the 2D model is identical to the 3D model in the uniform case 

for mode number one when flexural stiffness in comparison to tension is negligible 

(FF = 0). For other mode numbers or when FF is considerable, the new parameter G 

comes into play. It will enhance the stability. 

Afterwards, a typical riser was selected and the stability of this system fitted with the 

guide vane as fairing was investigated. Based on this example, a parametric study 
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was carried out for the 3D general case. First the common parameters between the 

2D and 3D models were probed. This investigation disclosed that the general 

behaviour of these parameters is similar in both models and the discussions presented 

in  Chapter 6 holds here. Although the 2D parametric study was consistent with the 

study of the 3D case, some new features emerged. In the 3D model, variation of 

parameters may result in the change of mode and this was accompanied by a discrete 

movement in continuous curves. Generally speaking, the impact of dimensionless 

parameters was identical in both studies and within each mode. 

This study also looked into the effects of new parameters introduced in the 3D 

model. The impact of the riser’s length, in-water weight and top tension along with 

flexural stiffness, was summarised in two dimensionless parameters namely Top 

Tension Factor (TTF) and Flexural Factor (FF). In addition, the variation of some 

features along the riser such as length of coverage and current profile were also 

considered. 

This part of parametric study indicated the variation of TTF entails tangible 

influences on critical velocity while small amount of Flexural Factor does not change 

the stability status notably. Nevertheless, the positive effect of TTF is not highly 

significant compared with some other parameters like hydrodynamic coefficients. In 

addition, raising the top tension is a very expensive decision. Therefore, in order to 

impede the instability, modifying the fairing is more cost effective than increasing 

the top tension. 

Length of coverage plays an important role in the instability onset and the excited 

mode. This impact is far more severe for shorter length of coverage but as this length 

exceeds for instance 80% of the riser’s total length in this example, it loses its 

importance and the curve flats.  

The last issue to address was the current profile. Sheared flow was investigated and 

the obtained results clarified that distribution of current speed along the riser is 

critical to stability condition.  
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Chapter 10  

Discussion 

This chapter presents a review of what was done in this study. It will discuss the 

selected method and enlighten the challenges encountered through the process of 

solution. It will review the lessons learnt and describe the contributions of this study. 

Eventually, it will enlarge on areas that need further research and investigation in 

future. 

10.1  A Look Back 

It was mentioned that the oil and gas demand has increased dramatically over the 

past decades and caused producers to look for new reservoirs in ever deeper waters. 

Such development requires longer tubulars including risers of all types. As the 

industry deploys lengthy risers, new features appear which can endanger the 

serviceability life span of these infrastructures. Vortex-induced-vibration (VIV) was 

one of these new challenges. Several techniques were devised to overcome this 

difficulty. Fitting a riser with VIV suppression equipment became one of the most 

common methods. This type of equipment varies in many aspects such as the way 

they mitigate vibration. Among them, the riser fairing emerged when reduction of 

drag was also a serious concern for designers in addition to VIV.  

This study tried to explore the merits and drawbacks of riser fairings. Some of the 

reported difficulties were diagnosed for further research like misalignment and more 

significantly propensity of instable behaviour at high current velocity. The latter was 

recently observed in some experiments and needed a theoretical assessment to 
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identify the roots involved and also predict this situation for forthcoming designs. To 

this end, this study initially explored various types of fluid-induced-vibration and 

their causes. It was found out that possible instability of a riser fairing is similar to 

classical wing flutter in some ways and simultaneously different in some features and 

therefore demands separate investigation. 

Theoretical analysis of this phenomenon necessitated setting up the governing 

equations of the system which consists of a riser, fairing and fluid. The interaction of 

the fairing with surrounding fluid made the problem so complicated that Navier-

Stokes equation could not solved analytically for the moving fluid around the fairing. 

One available approach was to use computational methods but this would make the 

solution very case sensitive and mask the primary aim of providing a tool for 

prediction of this problem in future projects. Consequently, this purpose along with 

the complexity of the problem called for some assumptions to simplify the situation 

and make an analytical solution possible. In return, these assumptions dictated some 

limitations to the application of the method. 

At first, and in the light of the above assumptions, an analytical model was 

developed for a simpler case of a two-dimensional (2D) problem. By the use of 

Lagrange’s equations, the governing equations were derived. Hydrodynamic forces 

were calculated and the effect of motion on these forces was taken into 

consideration. The obtained equations were linearised and an eigenvalue analysis 

was carried out in order to find the situation at which the real part of one of the 

solutions becomes positive and system goes unstable. Through defining physically 

meaningful dimensionless parameters, the characteristic equation was made 

dimensionless. This model was validated against the results of a lab test and showed 

a good agreement. Then the effect of torsional friction damping was assessed. 

A method was presented to calculate the necessary dimensionless parameters for a 

given system of a riser and fairing. This method was deployed in a real example and 

the critical condition was determined. Afterwards, the impact of each dimensionless 

parameter on instability onset was assessed. This study showed that some 

parameters, e.g. hydrodynamic coefficients, are more important and influential. 
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Therefore, a few fairing sections were selected and the behaviour of flow in vicinity 

of these profiles was evaluated. With the aid of the CFD method, hydrodynamic 

coefficients of these sections were obtained. This study demonstrated the effect of 

section’s details on hydrodynamic performance of a fairing. Particularly, the impacts 

of adding fins, blunt end as well as the angle of leeside of the fairing were seen.  

When the influence of parameters involved in the model was fully explored, the 

limited model of two-dimensional was expanded to three-dimensional (3D). Similar 

to the previous model, the governing equations were derived and by using the 

Galerkin’s method, continuous partial differential equations along the riser length 

were converted to several equations with time variable only. An eigenvalue analysis 

was carried out and the obtained characteristic equation was made dimensionless. 

The majority of the defined dimensionless parameters were in common with the 2D 

model while a few new parameters emerged as well. The simpler case of having a 

uniform condition along the riser was also assessed and it was illustrated how it 

relates to the 2D model. The 3D model was verified against a lab test and was in 

conformity with the results. 

Eventually, based on the 3D model, a parametric study was devised for two 

purposes; firstly to assess the validity of the 2D parametric study and to compare the 

impact of common parameters in the 2D and 3D models, and secondly, to investigate 

the effect of new parameters. This study corroborated the consistency of the 2D 

parametric study with that of the 3D model.  

It should be noted that this analytical study was based on the assumptions explained 

in Section  4.5. Using these assumptions imposed some limitations on the scope of 

this model. One of the key issues was that this model postulates the quasi-steady 

condition. To be valid, it requires the frequency of periodic components of fluid 

force to be above the vibration frequency of the structure. This condition is usually 

met at a high reduced velocity (see Section  4.5). It was also mentioned that the 

design philosophy of a fairing is to streamline the flow and prevent any vortex 

formation. Thus, in an ideal case no VIV and cyclic fluid force exists and therefore 

the above condition holds. This study indicated that some fairing profiles still 

generate vortices and undergo associated periodic forces. Thus, this necessitates 
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checking the validity of the quasi-steady condition for each case by comparing the 

frequency of the structure with the frequency of the fluid force. In general, Blevins 

believes this condition is satisfied if the reduced velocity is high enough, for example 

about Ury = 1.90 (equivalent to U/fyD > 20 for a fairing with 60% thickness to chord 

ratio). 

The other lesson learnt from this study relates to the linearization. Since the 

phenomenon of instability with many hydrodynamic and structural parameters 

involved is not linear in nature, the question may arise that to what extent the 

linearised model is a reliable approximation of the real case? Fortunately, good 

agreement of theoretical result with experimental data showed that such assumption 

can predict the onset conditions for instability fairly accurately. Nevertheless, it 

cannot anticipate or explain the evolution of motion once the instable vibration starts. 

This is not only because of linearization but because other events may come into play 

like stall, turbulence and vortex shedding. 

10.2  Own Contributions 

This study opened new windows to the subject of riser fairing and illuminated some 

relevant outstanding and un-researched issues. This project expanded the knowledge 

of a riser fairing in different aspects some of which are outlined below. 

A) This study developed a more accurate analytical model to predict the 

instability onset of a riser fairing system in ocean currents. 

B) This model took the effect of damping, both hydrodynamic and structural, 

into consideration. 

C) The parametric study prepared a valuable guideline and tool for designers 

enabling them to decide what change in which direction delays the possible 

instability. 

D) This research helped to understand the root of another well-known 

shortcoming of fairing, i.e. misalignment. 
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E) The investigation of hydrodynamic behaviour of a few fairing sections 

disclosed constructive issues like the effect of adding fins and gave some 

hints to move toward ideal profile. 

10.3  Future Research  

This study delivered the predefined goal of assessing the instability of a riser fairing 

but through this journey, this study found other issues and aspects of a riser fairing 

which were out of the scope of this project and on the other hand deserve a separate 

and more comprehensive look. They can be summarised as following. 

A) This study only addressed the onset conditions of instability and did not 

investigate the evolution and development of excessive vibration when the 

instability was triggered. Moreover, some tests showed that for current 

velocities much beyond the critical velocity, system obtained its stability 

again (Braaton et al., 2008). Thus, post-stability-loss behaviour of system is 

one of the significant issues to be probed further. 

B) This project assessed the effect of partial coverage of a riser with fairing. This 

study assumed that if a portion of a riser is left bare it means this segment 

does not experience any VIV and only contributes to the hydrodynamic 

damping of system. However, in reality there may exist cases that part of a 

riser undergoes VIV while because of other reasons like cutting the costs, it is 

left without suppression device. Consequently, vortex shedding from this part 

may excite the instability of the whole system at velocities lower than what 

was predicted. Therefore, a separate study should tackle the issue and probe 

the excitation effect of VIV in the bare part. 

C) Added mass in both forms, interior and exterior, emerged through the process 

of model developing. The entrapped water was modelled like a solid body as 

interior added mass. The calculation of exterior added-mass of an arbitrary 

fairing profile was also a challenge. This was done through an approximation 

of a fairing with other simple sections. But more realistic modelling of 
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entrapped water and accurate calculation of exterior added-mass requires a 

separate study. 

D) Another parameter appeared in the analytical model was R, a reference length 

to denote the effect of angular velocity on AoA. This parameter was already 

calculated for thin foils in aviation industry but no data was available for 

thick foils. Naturally, nothing has been mentioned so far about this parameter 

in more complicated profiles like fairing. On the other hand, this parameter 

proved to be very influential in the stability limit. Therefore, the impact of 

thickness and changing other details of a profile on this parameter needs 

further research. 

E) Many commercial fairing sections have been introduced. There are other 

sections in the literature which has this potential but have not been considered 

yet. Investigation of hydrodynamic behaviour of more fairing profiles will 

provide a precious database for riser engineers to select from for a specific 

project. In addition to hydrodynamic coefficients, such database should also 

keep the effect of various alterations in the fairing profile like fins or blunt 

end. This information directs toward optimum section. 
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Chapter 11  

Conclusion 

The first objective of this project was to explore the issue of vortex-induced-

vibration (VIV) in general and to assess the associated impacts on marine risers. This 

research looked at the mechanism of vortex formation and reviewed the available 

methods of mitigating the generated vibrations. It appraised various methods among 

which adding a vortex suppression device was one of the popular techniques. This 

study went through the pros and cons of using a riser fairing. Fairing had many 

advantages to other suppression devices but suffered from some difficulties as well. 

The critical review showed that misalignment and instability were the most 

significant reported drawbacks. 

This research targeted the issue of probable instability. As this fact was already 

tested and observed in experimental programmes, this project addressed the issue in a 

new way and developed an analytical model for this physical phenomenon. This 

model was more complete than the previous simple model and disclosed the effect of 

damping of different types including hydrodynamic and structural. This model 

indicated that there are two necessary and sufficient conditions for stability of 

system. To be satisfied, necessary condition requires positive factor for resultant 

damping in governing equations whereas sufficient condition demands negative real 

part for the solution of characteristic equation. Through establishing the above 

model, it was also understood that the other significant shortcoming of fairing, i.e. 

misalignment, have some roots in common with instability.   
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The last aim of this research was to identify the key parameters in instability onset of 

a riser fairing. The above analytical model clarified that there is a combination of 

three parameter sets which governs the stability of system. They consist of structural 

properties, hydrodynamic characteristics of fairing and finally current speed. The 

present study investigated the influence of all factors through conducting a 

parametric study. This survey showed how mass and its distribution contributed to 

the stability of the system. Moreover, this probe indicated that covering the riser with 

a fairing beyond the necessary length dictated by VIV would increase the risk of 

instability. In addition, this investigation emphasised on the high importance of the 

hydrodynamic features of the fairing section.  

Pursuant to this fact, a separate CFD assessment of these aspects for a few fairing 

sections revealed that the small slope of fairing contour in the leeside is very 

effective in enhancement of fairing performance. It affirmed the worth of this action 

even at the price of clipping the trailing edge in order to keep the operability of such 

fairing at the same level. Furthermore, this CFD study illustrated how adding fins 

manipulates the pressure distribution over the fairing section and modifies 

hydrodynamic coefficients. The CFD study along with the above theoretical model 

helped to explain why some tests had already reported that installation of fins 

increases the stability and also improves the self-alignment capability of fairing and 

reduces its fishtailing. 

Overall, this research project provided the riser designers with a theoretical tool to 

predict the instability onset in a system of a riser and fairing. Moreover, it presented 

valuable guidelines which direct and enable the design engineer to hinder this 

destructive vibration if preliminary plan was diagnosed with the chance of instable 

behaviour during service life.   
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NACA0070 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.826 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 103158 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.608 0.002 0 0.125 0 0.017 0.21 1000 
5o 0.600 0.005 -0.100 0.125 0.006 0.017 0.20 1000 
10o 0.572 0.007 -0.250 0.125 0.013 0.016 0.21 1000 
15o 0.510 0.008 -0.492 0.103 0.023 0.014 0.22 1000 
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Figure A-1  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-2  Computational Domain And Mesh. 

 
 

 

 
 

Figure A-3  Mesh Close To The Fairing. 
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0o 

 
Figure A-4  Pressure Coefficient At 0o. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Arc length / c

M
ea

n 
pr

es
su

re
 c

oe
ffi

ci
en

t

Upper surface
Lower surface

 
Figure A-5  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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Figure A-6  Pressure Coefficient At 5o. 
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Figure A-7  Mean Pressure Coefficient Around The Fairing Surface At 5o. 
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10o 

 
Figure A-8  Pressure Coefficient At 10o. 
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Figure A-9  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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15o 

 
Figure A-10  Pressure Coefficient At 15o. 
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Figure A-11  Mean Pressure Coefficient Around The Fairing Surface At 15o. 
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Short Fairing 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.885 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 111284 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.549 0.001 0 0.110 0 0.018 0.21 1000 
5o 0.550 0.006 -0.013 0.112 0.011 0.018 0.21 1000 
10o 0.550 0.012 -0.032 0.107 0.021 0.018 0.21 1000 
15o 0.551 0.016 -0.053 0.113 0.033 0.016 0.20 1000 
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Figure A-12  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-13  Computational Domain And Mesh. 

 
 
 

 
 

Figure A-14  Mesh Close To The Fairing. 
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0o 

 
Figure A-15  Pressure Coefficient At 0o. 
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Figure A-16  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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5o  

 
Figure A-17  Pressure Coefficient At 5o. 
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Figure A-18  Mean Pressure Coefficient Around The Fairing Surface At 5o. 



Appendix A. CFD Results 

 
© Mahdi Khorasanchi, 2009 251

10o 

 
Figure A-19  Pressure Coefficient At 10o. 
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Figure A-20  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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Figure A-21  Pressure Coefficient At 15o. 
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Figure A-22  Mean Pressure Coefficient Around The Fairing Surface At 15o. 
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Guide Vane 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.908 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 147341 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.329 0.002 0 0.084 0 0.022 0.28 1000 
5o 0.446 0.017 0.125 0.127 -0.027 0.036 0.23 1000 
10o 0.597 0.043 0.250 0.240 -0.040 0.052 0.19 1000 
15o 0.690 0.050 0.400 0.250 -0.045 0.055 0.17 1000 
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Figure A-23  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-24  Computational Domain And Mesh. 

 
 

 
 

Figure A-25  Mesh Close To The Fairing. 
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0o 

 
Figure A-26  Pressure Coefficient At 0o. 
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Figure A-27  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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5o 

 
Figure A-28  Pressure Coefficient At 5o. 
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Figure A-29  Mean Pressure Coefficient Around The Fairing Surface At 5o. 
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10o 

 
Figure A-30  Pressure Coefficient At 10o. 
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Figure A-31  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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15o 

 
Figure A-32  Pressure Coefficient At 15o. 
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Figure A-33  Mean Pressure Coefficient Around The Fairing Surface At 15o. 



Appendix A. CFD Results 

 
© Mahdi Khorasanchi, 2009 259

Exxon’s Fairing without Fin 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.839 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 130522 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.2716 0.0001 0 0.075 0 0.028 0.18 2200 
5o 0.209 0.002 -0.545 0.060 0.065 0.025 0.21 1400 
10o 0.285 0.006 -0.275 0.175 0.035 0.070 0.21 650 
15o 0.365 0.015 0.005 0.175 0.005 0.063 0.19 600 
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C /
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Figure A-34  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-35  Computational Domain And Mesh. 

 
 
 

 
 

Figure A-36  Mesh Close To The Fairing. 
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0o 

 
Figure A-37  Pressure Coefficient At 0o. 
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Figure A-38  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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5o 

 
Figure A-39  Pressure Coefficient At 5o. 
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Figure A-40  Mean Pressure Coefficient Around The Fairing Surface At 5o. 
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10o 

 
Figure A-41  Pressure Coefficient At 10o. 
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Figure A-42  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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15o 

 
Figure A-43  Pressure Coefficient At 15o. 
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Figure A-44  Mean Pressure Coefficient Around The Fairing Surface At 15o. 
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Exxon’s Fairing with Fin (3%) 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.935 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 146164 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.2664 0.0002 0 0.058 0 0.023 0.18 2500 
5o 0.241 0.006 -0.317 0.097 0.010 0.040 0.19 1000 
10o 0.352 0.006 0.135 0.215 -0.085 0.085 0.18 1000 
15o 0.445 0.006 0.425 0.200 -0.130 0.071 0.16 1000 
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Figure A-45  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-46  Computational Domain And Mesh. 

 
 
 

 
 

Figure A-47  Mesh Close To The Fairing. 
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0o 

 
Figure A-48  Pressure Coefficient At 0o. 
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Figure A-49  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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5o 

 
Figure A-50  Pressure Coefficient At 5o. 
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Figure A-51  Mean Pressure Coefficient Around The Fairing Surface At 5o. 
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10o 

 
Figure A-52  Pressure Coefficient At 10o. 
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Figure A-53  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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15o 

 
Figure A-54  Pressure Coefficient At 15o. 
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Figure A-55  Mean Pressure Coefficient Around The Fairing Surface At 15o. 
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Exxon’s Fairing with Fin (5%) 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.934 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 146164 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.2542 0.0002 0 0.041 0 0.016 0.17 2700 
5o 0.273 0.012 -0.090 0.013 -0.048 0.052 0.20 1000 
10o 0.407 0.016 0.400 0.240 -0.160 0.095 0.18 1000 
15o 0.510 0.011 0.650 0.225 -0.204 0.078 0.15 1000 
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Figure A-56  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-57  Computational Domain And Mesh. 

 
 
 

 
 

Figure A-58  Mesh Close To The Fairing. 
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0o 

 
Figure A-59  Pressure Coefficient At 0o. 
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Figure A-60  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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5o 

 
Figure A-61  Pressure Coefficient At 5o. 
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Figure A-62  Mean Pressure Coefficient Around The Fairing Surface At 5o. 
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10o 

 
Figure A-63  Pressure Coefficient At 10o. 
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Figure A-64  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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15o 

 
Figure A-65  Pressure Coefficient At 15o. 
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Figure A-66  Mean Pressure Coefficient Around The Fairing Surface At 15o. 
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Exxon’s Fairing with Fin (7%) 
 
 
U    = 0.08 (m/s) 
Rec = 5x104  
Y+  = 0.935 
 
Turbulence model: Realisable k − ε  
Size of computational domain (L (upstream-downstream) x W): 25c (5c-19c) x 10c 
Number of cells: 153364 
 

Results 
 
AoA Cd Amp(Cd) CL Amp(CL) Cm Amp(Cm) St. No. Run(s)

0o 0.2477 0.0002 0 0.035 0 0.015 0.17 2700 
5o 0.302 0.018 0.090 0.150 -0.095 0.065 0.19 1000 
10o 0.448 0.025 0.585 0.245 -0.215 0.096 0.16 1000 
15o 0.561 0.017 0.810 0.230 -0.257 0.081 0.14 1000 

 
L 0

C /
α=

∂ ∂α    = +1.031 

M(CR ) 0
C /

α=
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Figure A-67  Hydrodynamic Coefficients & Their Amplitudes. 
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Figure A-68  Computational Domain And Mesh. 

 
 
 

 
 

Figure A-69  Mesh Close To The Fairing. 
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0o 

 
Figure A-70  Pressure Coefficient At 0o. 
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Figure A-71  Mean Pressure Coefficient Around The Fairing Surface At 0o. 
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5o 

 
Figure A-72  Pressure Coefficient At 5o. 
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Figure A-73  Mean Pressure Coefficient Around The Fairing Surface At 5o. 
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10o 

 
Figure A-74  Pressure Coefficient At 10o. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Arc length / c

M
ea

n 
pr

es
su

re
 c

oe
ffi

ci
en

t

Upper surface
Lower surface

 
Figure A-75  Mean Pressure Coefficient Around The Fairing Surface At 10o. 
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15o 

 
Figure A-76  Pressure Coefficient At 15o. 
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Figure A-77  Mean Pressure Coefficient Around The Fairing Surface At 15o. 
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Fairings Offset Table 

NACA0070 
X Y  X Y  X Y  X Y 

0 0  22.0456 34.0815  63.8940 24.6149  99.7109 0.7818
0.0081 0.9336  22.9528 34.2941  64.7205 24.1839  99.8343 0.6089
0.0327 1.8669  23.8664 34.4776  65.5445 23.7482  99.9254 0.4169
0.0741 2.7995  24.7851 34.6326  66.3662 23.3079  99.9811 0.2118
0.1327 3.7313  25.7081 34.7597  67.1854 22.8631  100.0000 0
0.2090 4.6618  26.6344 34.8599  68.0023 22.4140    
0.3030 5.5906  27.5632 34.9338  68.8167 21.9606    
0.4153 6.5174  28.4937 34.9825  69.6288 21.5030    
0.5461 7.4418  29.4251 35.0068  70.4386 21.0413    
0.6958 8.3632  30.3568 35.0075  71.2462 20.5757    
0.8646 9.2814  31.2882 34.9858  72.0515 20.1061    
1.0531 10.1957  32.2189 34.9425  72.8545 19.6326    
1.2613 11.1057  33.1484 34.8784  73.6553 19.1553    
1.4897 12.0108  34.0763 34.7944  74.4539 18.6744    
1.7386 12.9105  35.0023 34.6915  75.2502 18.1897    
2.0081 13.8041  35.9263 34.5704  76.0444 17.7015    
2.2987 14.6912  36.8477 34.4320  76.8364 17.2097    
2.6106 15.5709  37.7664 34.2769  77.6262 16.7144    
2.9440 16.4426  38.6825 34.1063  78.4138 16.2157    
3.2994 17.3057  39.5955 33.9204  79.1993 15.7134    
3.6769 18.1592  40.5056 33.7201  79.9825 15.2078    
4.0766 19.0025  41.4124 33.5062  80.7636 14.6988    
4.4992 19.8346  42.3162 33.2790  81.5426 14.1865    
4.9443 20.6547  43.2167 33.0393  82.3193 13.6710    
5.4125 21.4619  44.1139 32.7876  83.0939 13.1521    
5.9037 22.2551  45.0078 32.5245  83.8663 12.6299    
6.4183 23.0334  45.8985 32.2505  84.6365 12.1045    
6.9561 23.7958  46.7859 31.9659  85.4044 11.5759    
7.5171 24.5411  47.6701 31.6714  86.1703 11.0441    
8.1016 25.2682  48.5509 31.3672  86.9338 10.5091    
8.7090 25.9760  49.4287 31.0538  87.6952 9.9709    
9.3395 26.6633  50.3031 30.7316  88.4542 9.4295    
9.9928 27.3290  51.1744 30.4009  89.2110 8.8849    

10.6683 27.9719  52.0427 30.0621  89.9657 8.3373    
11.3657 28.5909  52.9078 29.7155  90.7178 7.7864    
12.0846 29.1849  53.7698 29.3613  91.4678 7.2324    
12.8240 29.7529  54.6290 29.0000  92.2154 6.6752    
13.5833 30.2938  55.4852 28.6317  92.9607 6.1149    
14.3616 30.8069  56.3383 28.2567  93.7037 5.5514    
15.1581 31.2912  57.1887 27.8751  94.4442 4.9848    
15.9717 31.7462  58.0364 27.4875  95.1823 4.4151    
16.8012 32.1712  58.8812 27.0937  95.9179 3.8421    
17.6455 32.5660  59.7232 26.6941  96.6511 3.2661    
18.5033 32.9303  60.5626 26.2889  97.3819 2.6869    
19.3735 33.2638  61.3994 25.8782  98.1101 2.1045    
20.2548 33.5667  62.2335 25.4621  98.8358 1.5189    
21.1459 33.8391  63.0650 25.0410  99.5590 0.9302    
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Short Fairing 
 

X Y  X Y  X Y  X Y 
0 0  16.4388 28.8300  49.6219 29.3655  88.9625 0.5000

0.0075 0.7085  17.0524 29.1844  50.2394 29.0180  89.7418 0.5000
0.0300 1.4167  17.6733 29.5257  50.8494 28.6575  90.4840 0.5000
0.0674 2.1243  18.3014 29.8538  51.4516 28.2841  91.1909 0.5000
0.1198 2.8310  18.9362 30.1686  52.0458 27.8981  91.8641 0.5000
0.1872 3.5363  19.5775 30.4699  52.6317 27.4996  92.5052 0.5000
0.2694 4.2401  20.2251 30.7575  53.2090 27.0888  93.1159 0.5000
0.3665 4.9420  20.8786 31.0314  53.7776 26.6659  93.6974 0.5000
0.4785 5.6417  21.5377 31.2914  54.3370 26.2311  94.2512 0.5000
0.6052 6.3388  22.2022 31.5374  54.8871 25.7845  94.7787 0.5000
0.7466 7.0331  22.8718 31.7693  55.4277 25.3264  95.2811 0.5000
0.9027 7.7243  23.5461 31.9870  55.9585 24.8569  95.7595 0.5000
1.0733 8.4120  24.2248 32.1904  56.4792 24.3764  96.2152 0.5000
1.2585 9.0960  24.9077 32.3794  57.3399 23.5805  96.6491 0.5000
1.4581 9.7758  25.5945 32.5538  58.2006 22.7846  97.0624 0.5000
1.6720 10.4514  26.2848 32.7138  59.0613 21.9887  97.4560 0.5000
1.9002 11.1222  26.9783 32.8591  59.9219 21.1929  97.8309 0.5000
2.1425 11.7880  27.6747 32.9896  60.7826 20.3970  98.1879 0.5000
2.3988 12.4486  28.3738 33.1055  61.6433 19.6011  98.5279 0.5000
2.6691 13.1036  29.0751 33.2065  62.5040 18.8052  98.8517 0.5000
2.9531 13.7528  29.7784 33.2926  63.3647 18.0093  99.1601 0.5000
3.2508 14.3958  30.4834 33.3639  64.2254 17.2135  99.4539 0.5000
3.5621 15.0323  31.1897 33.4202  65.0861 16.4176  99.7336 0.5000
3.8867 15.6622  31.8971 33.4616  65.9468 15.6217  100.0000 0.5000
4.2246 16.2850  32.6052 33.4880  66.8075 14.8258  100.0000 0.4500
4.5756 16.9005  33.3136 33.4995  67.6682 14.0299  100.0000 0.4000
4.9395 17.5085  34.0222 33.4959  68.5289 13.2341  100.0000 0.3500
5.3162 18.1087  34.7305 33.4774  69.3896 12.4382  100.0000 0.3000
5.7055 18.7007  35.4383 33.4439  70.2503 11.6423  100.0000 0.2500
6.1072 19.2844  36.1452 33.3954  71.1110 10.8464  100.0000 0.2000
6.5212 19.8594  36.8510 33.3320  71.9717 10.0506  100.0000 0.1500
6.9473 20.4256  37.5552 33.2537  72.8324 9.2547  100.0000 0.1000
7.3853 20.9826  38.2576 33.1604  73.6931 8.4588  100.0000 0.0500
7.8349 21.5302  38.9579 33.0524  74.5538 7.6629  100.0000 0
8.2960 22.0683  39.6557 32.9296  75.4144 6.8670    
8.7684 22.5964  40.3508 32.7920  76.2751 6.0712    
9.2518 23.1144  41.0429 32.6398  77.1358 5.2753    
9.7461 23.6221  41.7315 32.4729  77.9965 4.4794    

10.2511 24.1192  42.4165 32.2916  78.8572 3.6835    
10.7664 24.6055  43.0975 32.0958  79.7179 2.8876    
11.2919 25.0809  43.7741 31.8856  80.5786 2.0918    
11.8273 25.5450  44.4462 31.6612  81.4393 1.2959    
12.3724 25.9976  45.1134 31.4226  82.3000 0.5000    
12.9270 26.4387  45.7754 31.1699  83.3966 0.5000    
13.4908 26.8679  46.4319 30.9033  84.4409 0.5000    
14.0635 27.2851  47.0826 30.6229  85.4356 0.5000    
14.6450 27.6900  47.7273 30.3288  86.3828 0.5000    
15.2348 28.0826  48.3656 30.0211  87.2850 0.5000    
15.8329 28.4627  48.9972 29.7000  88.1442 0.5000    
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Guide Vane 
 

X Y  X Y  X Y  X Y 
0 0  14.3451 27.4834  53.4500 31.4000  100.0000 21.8625

0.0065 0.6577  14.8884 27.8542  54.5583 31.2833  100.0000 21.2000
0.0258 1.3152  15.4389 28.2143  55.6667 31.1667  100.0000 20.5375
0.0581 1.9722  15.9963 28.5634  56.7750 31.0500  100.0000 19.8750
0.1033 2.6284  16.5605 28.9016  57.8833 30.9333  100.0000 19.2125
0.1613 3.2836  17.1312 29.2286  58.9917 30.8167  100.0000 18.5500
0.2322 3.9375  17.7082 29.5444  60.1000 30.7000  100.0000 17.8875
0.3159 4.5899  18.2913 29.8487  61.2083 30.5833  100.0000 17.2250
0.4124 5.2406  18.8803 30.1416  62.3167 30.4667  100.0000 16.5625
0.5217 5.8892  19.4749 30.4228  63.4250 30.3500  100.0000 15.9000
0.6437 6.5355  20.0749 30.6923  64.5333 30.2333  100.0000 15.2375
0.7783 7.1794  20.6801 30.9500  65.6417 30.1167  100.0000 14.5750
0.9256 7.8204  21.2902 31.1957  66.7500 30.0000  100.0000 13.9125
1.0854 8.4585  21.9051 31.4294  67.8583 29.8833  100.0000 13.2500
1.2577 9.0933  22.5244 31.6510  68.9667 29.7667  100.0000 12.5875
1.4425 9.7245  23.1479 31.8604  70.0750 29.6500  100.0000 11.9250
1.6396 10.3521  23.7755 32.0575  71.1833 29.5333  100.0000 11.2625
1.8490 10.9756  24.4067 32.2423  72.2917 29.4167  100.0000 10.6000
2.0706 11.5949  25.0415 32.4146  73.4000 29.3000  100.0000 9.9375
2.3043 12.2098  25.6796 32.5744  74.5083 29.1833  100.0000 9.2750
2.5500 12.8199  26.3206 32.7217  75.6167 29.0667  100.0000 8.6125
2.8077 13.4251  26.9645 32.8563  76.7250 28.9500  100.0000 7.9500
3.0772 14.0251  27.6108 32.9783  77.8333 28.8333  100.0000 7.2875
3.3584 14.6197  28.2594 33.0876  78.9417 28.7167  100.0000 6.6250
3.6513 15.2087  28.9101 33.1841  80.0500 28.6000  100.0000 5.9625
3.9556 15.7918  29.5625 33.2678  81.1583 28.4833  100.0000 5.3000
4.2714 16.3688  30.2164 33.3387  82.2667 28.3667  100.0000 4.6375
4.5984 16.9395  30.8716 33.3967  83.3750 28.2500  100.0000 3.9750
4.9366 17.5037  31.5278 33.4419  84.4833 28.1333  100.0000 3.3125
5.2857 18.0611  32.1848 33.4742  85.5917 28.0167  100.0000 2.6500
5.6458 18.6116  32.8423 33.4935  86.7000 27.9000  100.0000 1.9875
6.0166 19.1549  33.5000 33.5000  87.8083 27.7833  100.0000 1.3250
6.3979 19.6908  34.6083 33.3833  88.9167 27.6667  100.0000 0.6625
6.7898 20.2191  35.7167 33.2667  90.0250 27.5500  100.0000 0
7.1919 20.7396  36.8250 33.1500  91.1333 27.4333    
7.6041 21.2522  37.9333 33.0333  92.2417 27.3167    
8.0264 21.7565  39.0417 32.9167  93.3500 27.2000    
8.4585 22.2525  40.1500 32.8000  94.4583 27.0833    
8.9002 22.7398  41.2583 32.6833  95.5667 26.9667    
9.3514 23.2184  42.3667 32.5667  96.6750 26.8500    
9.8119 23.6881  43.4750 32.4500  97.7833 26.7333    

10.2816 24.1486  44.5833 32.3333  98.8917 26.6167    
10.7602 24.5998  45.6917 32.2167  100.0000 26.5000    
11.2475 25.0415  46.8000 32.1000  100.0000 25.8375    
11.7435 25.4736  47.9083 31.9833  100.0000 25.1750    
12.2478 25.8959  49.0167 31.8667  100.0000 24.5125    
12.7604 26.3081  50.1250 31.7500  100.0000 23.8500    
13.2809 26.7102  51.2333 31.6333  100.0000 23.1875    
13.8092 27.1021  52.3417 31.5167  100.0000 22.5250    
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Exxon’s Fairing without Fin 
 

X Y  X Y  X Y  X Y 
0 0  25.6238 21.8224  62.5408 14.4647  97.8433 4.1865

0.0138 0.7799  26.3991 21.7365  63.2692 14.2839  98.5622 3.9710
0.0552 1.5588  27.1744 21.6506  63.9975 14.1030  99.2811 3.7555
0.1241 2.3358  27.9497 21.5647  64.7259 13.9222  100.0000 3.5400
0.2204 3.1098  28.7250 21.4788  65.4543 13.7413  100.0000 3.1860
0.3440 3.8799  29.5003 21.3929  66.1827 13.5605  100.0000 2.8320
0.4949 4.6452  30.2756 21.3070  66.9111 13.3796  100.0000 2.4780
0.6726 5.4047  31.0510 21.2211  67.6394 13.1988  100.0000 2.1240
0.8772 6.1574  31.8263 21.1352  68.3678 13.0179  100.0000 1.7700
1.1082 6.9024  32.6016 21.0493  69.0876 12.8059  100.0000 1.4160
1.3654 7.6388  33.3769 20.9634  69.8065 12.5904  100.0000 1.0620
1.6486 8.3656  34.1522 20.8775  70.5254 12.3749  100.0000 0.7080
1.9572 9.0820  34.9170 20.7256  71.2443 12.1594  100.0000 0.3540
2.2910 9.7869  35.6809 20.5675  71.9632 11.9439  100.0000 0
2.6495 10.4797  36.4447 20.4093  72.6821 11.7284    
3.0323 11.1593  37.2085 20.2511  73.4010 11.5130    
3.4389 11.8250  37.9724 20.0929  74.1199 11.2975    
3.8688 12.4758  38.7362 19.9347  74.8388 11.0820    
4.3214 13.1111  39.5001 19.7765  75.5577 10.8665    
4.7962 13.7299  40.2639 19.6183  76.2766 10.6510    
5.2926 14.3316  41.0277 19.4601  76.9955 10.4355    
5.8100 14.9153  41.7916 19.3019  77.7143 10.2200    
6.3477 15.4803  42.5554 19.1437  78.4332 10.0046    
6.9051 16.0260  43.3193 18.9855  79.1521 9.7891    
7.4814 16.5517  44.0831 18.8273  79.8710 9.5736    
8.0759 17.0566  44.8470 18.6692  80.5899 9.3581    
8.6879 17.5402  45.6108 18.5110  81.3088 9.1426    
9.3167 18.0018  46.3746 18.3528  82.0277 8.9271    
9.9613 18.4409  47.1385 18.1946  82.7466 8.7116    

10.6211 18.8569  47.9023 18.0364  83.4655 8.4962    
11.2952 19.2494  48.6662 17.8782  84.1844 8.2807    
11.9828 19.6177  49.4300 17.7200  84.9033 8.0652    
12.6830 19.9615  50.1584 17.5392  85.6222 7.8497    
13.3948 20.2803  50.8868 17.3583  86.3411 7.6342    
14.1175 20.5737  51.6151 17.1775  87.0599 7.4187    
14.8502 20.8414  52.3435 16.9966  87.7788 7.2033    
15.5918 21.0830  53.0719 16.8158  88.4977 6.9878    
16.3416 21.2983  53.8003 16.6349  89.2166 6.7723    
17.0984 21.4868  54.5286 16.4541  89.9355 6.5568    
17.8615 21.6485  55.2570 16.2732  90.6544 6.3413    
18.6298 21.7831  55.9854 16.0924  91.3733 6.1258    
19.4024 21.8905  56.7138 15.9115  92.0922 5.9103    
20.1783 21.9704  57.4421 15.7307  92.8111 5.6949    
20.9565 22.0229  58.1705 15.5498  93.5300 5.4794    
21.7361 22.0478  58.8989 15.3690  94.2489 5.2639    
22.5162 22.0500  59.6273 15.1881  94.9678 5.0484    
23.2962 22.0500  60.3557 15.0073  95.6866 4.8329    
24.0732 21.9942  61.0840 14.8264  96.4055 4.6174    
24.8485 21.9083  61.8124 14.6456  97.1244 4.4019    
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Exxon’s Fairing with Fin (3%c) 
 

X Y  X Y  X Y  X Y 
0 0  26.3899 21.7376  78.3949 10.0717  100.7637 5.1708

0.0134 0.7695  27.4725 21.6176  79.4399 9.7643  100.4806 4.5662
0.0537 1.5381  28.5552 21.4977  80.4849 9.4569  100.1975 3.9617
0.1208 2.3049  29.6378 21.3777  81.5299 9.1495  100.0000 3.3380
0.2146 3.0688  30.7205 21.2577  82.5749 8.8421  100.0000 2.6704
0.3350 3.8289  31.8031 21.1378  83.6199 8.5347  100.0000 2.0028
0.4818 4.5845  32.8858 21.0178  84.6649 8.2273  100.0000 1.3352
0.6550 5.3344  33.9684 20.8979  85.7099 7.9199  100.0000 0.6676
0.8542 6.0778  35.0388 20.7004  86.7549 7.6126  100.0000 0
1.0792 6.8138  36.1054 20.4795  87.8000 7.3052    
1.3298 7.5415  37.1721 20.2586  88.8450 6.9978    
1.6056 8.2601  38.2387 20.0377  89.8900 6.6904    
1.9063 8.9685  39.3054 19.8168  90.9350 6.3830    
2.2316 9.6661  40.3720 19.5959  91.9800 6.0756    
2.5810 10.3518  41.4387 19.3750  93.0250 5.7682    
2.9541 11.0250  42.5053 19.1541  94.0700 5.4608    
3.3505 11.6847  43.5720 18.9332  95.1150 5.1534    
3.7697 12.3302  44.6386 18.7123  96.1600 4.8460    
4.2112 12.9607  45.7052 18.4914  96.7680 4.6672    
4.6744 13.5753  46.7719 18.2705  97.3760 4.4883    
5.1587 14.1735  47.8385 18.0496  97.9840 4.3095    
5.6637 14.7543  48.9052 17.8287  98.5919 4.1306    
6.1886 15.3172  49.9670 17.5867  99.1999 3.9518    
6.7328 15.8614  51.0242 17.3242  99.4918 4.4758    
7.2957 16.3863  52.0814 17.0617  99.7613 5.0493    
7.8765 16.8913  53.1386 16.7992  100.0309 5.6229    
8.4747 17.3756  54.1957 16.5367  100.3004 6.1964    
9.0893 17.8388  55.2529 16.2742  100.5700 6.7700    
9.7198 18.2803  56.3101 16.0117  100.5983 6.7555    

10.3653 18.6995  57.3673 15.7493  100.6274 6.7405    
11.0250 19.0959  58.4245 15.4868  100.6574 6.7251    
11.6982 19.4690  59.4816 15.2243  100.6883 6.7093    
12.3839 19.8184  60.5388 14.9618  100.7202 6.6929    
13.0815 20.1437  61.5960 14.6993  100.7530 6.6761    
13.7899 20.4444  62.6532 14.4368  100.7867 6.6588    
14.5085 20.7202  63.7104 14.1743  100.8215 6.6409    
15.2362 20.9708  64.7675 13.9118  100.8573 6.6225    
15.9722 21.1958  65.8247 13.6494  100.8942 6.6036    
16.7156 21.3950  66.8819 13.3869  100.9323 6.5841    
17.4655 21.5682  67.9391 13.1244  100.9714 6.5640    
18.2211 21.7150  68.9898 12.8383  101.0117 6.5433    
18.9812 21.8354  70.0349 12.5309  101.0533 6.5220    
19.7451 21.9292  71.0799 12.2235  101.0961 6.5001    
20.5119 21.9963  72.1249 11.9161  101.1401 6.4774    
21.2805 22.0366  73.1699 11.6087  101.1855 6.4541    
22.0500 22.0500  74.2149 11.3013  101.2323 6.4302    
23.1393 22.0500  75.2599 10.9939  101.2804 6.4055    
24.2246 21.9775  76.3049 10.6865  101.3300 6.3800    
25.3072 21.8575  77.3499 10.3791  101.0469 5.7754    
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Exxon’s Fairing with Fin (5%c) 
 

X Y  X Y  X Y  X Y 
0 0  26.2075 21.7578  76.0629 10.7577  101.4752 6.6831

0.0134 0.7695  27.2446 21.6429  77.0639 10.4632  101.1028 5.8896
0.0537 1.5381  28.2817 21.5280  78.0649 10.1688  100.7304 5.0962
0.1208 2.3049  29.3187 21.4131  79.0659 9.8743  100.3580 4.3027
0.2146 3.0688  30.3558 21.2981  80.0669 9.5799  100.0000 3.5060
0.3350 3.8289  31.3929 21.1832  81.0679 9.2854  100.0000 2.6295
0.4818 4.5845  32.4299 21.0683  82.0689 8.9910  100.0000 1.7530
0.6550 5.3344  33.4670 20.9534  83.0699 8.6965  100.0000 0.8765
0.8542 6.0778  34.4999 20.8120  84.0709 8.4021  100.0000 0
1.0792 6.8138  35.5216 20.6004  85.0720 8.1076    
1.3298 7.5415  36.5433 20.3888  86.0730 7.8132    
1.6056 8.2601  37.5651 20.1772  87.0740 7.5187    
1.9063 8.9685  38.5868 19.9656  88.0750 7.2243    
2.2316 9.6661  39.6085 19.7540  89.0760 6.9298    
2.5810 10.3518  40.6303 19.5424  90.0770 6.6354    
2.9541 11.0250  41.6520 19.3308  91.0780 6.3409    
3.3505 11.6847  42.6737 19.1192  92.0790 6.0465    
3.7697 12.3302  43.6955 18.9076  93.0800 5.7520    
4.2112 12.9607  44.7172 18.6960  94.1964 5.4236    
4.6744 13.5753  45.7389 18.4844  95.3128 5.0952    
5.1587 14.1735  46.7607 18.2728  96.4292 4.7668    
5.6637 14.7543  47.7824 18.0612  97.5456 4.4384    
6.1886 15.3172  48.8041 17.8496  98.6620 4.1100    
6.7328 15.8614  49.8224 17.6226  99.4789 4.4478    
7.2957 16.3863  50.8350 17.3711  99.9741 5.5009    
7.8765 16.8913  51.8477 17.1197  100.4694 6.5539    
8.4747 17.3756  52.8604 16.8683  100.9647 7.6070    
9.0893 17.8388  53.8730 16.6168  101.4600 8.6600    
9.7198 18.2803  54.8857 16.3654  101.4883 8.6455    

10.3653 18.6995  55.8984 16.1140  101.5174 8.6305    
11.0250 19.0959  56.9110 15.8625  101.5474 8.6151    
11.6982 19.4690  57.9237 15.6111  101.5783 8.5993    
12.3839 19.8184  58.9364 15.3597  101.6102 8.5829    
13.0815 20.1437  59.9490 15.1082  101.6430 8.5661    
13.7899 20.4444  60.9617 14.8568  101.6767 8.5488    
14.5085 20.7202  61.9744 14.6054  101.7115 8.5309    
15.2362 20.9708  62.9870 14.3539  101.7473 8.5125    
15.9722 21.1958  63.9997 14.1025  101.7842 8.4936    
16.7156 21.3950  65.0124 13.8510  101.8223 8.4741    
17.4655 21.5682  66.0250 13.5996  101.8614 8.4540    
18.2211 21.7150  67.0377 13.3482  101.9017 8.4333    
18.9812 21.8354  68.0504 13.0967  101.9433 8.4120    
19.7451 21.9292  69.0559 12.8188  101.9861 8.3901    
20.5119 21.9963  70.0569 12.5244  102.0301 8.3674    
21.2805 22.0366  71.0579 12.2299  102.0755 8.3441    
22.0500 22.0500  72.0589 11.9355  102.1223 8.3202    
23.0934 22.0500  73.0599 11.6410  102.1704 8.2955    
24.1334 21.9876  74.0609 11.3466  102.2200 8.2700    
25.1705 21.8727  75.0619 11.0521  101.8476 7.4765    
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Exxon’s Fairing with Fin (7%c) 
 

X Y  X Y  X Y  X Y 
0 0  26.1163 21.7679  74.8969 11.1007  102.9636 10.2341

0.0134 0.7695  27.1306 21.6555  75.8759 10.8127  103.0110 10.2102
0.0537 1.5381  28.1449 21.5431  76.8549 10.5247  103.0598 10.1855
0.1208 2.3049  29.1592 21.4307  77.8339 10.2367  103.1100 10.1600
0.2146 3.0688  30.1735 21.3183  78.8129 9.9487  102.8023 9.5051
0.3350 3.8289  31.1877 21.2060  79.7919 9.6608  102.4946 8.8501
0.4818 4.5845  32.2020 21.0936  80.7709 9.3728  102.1870 8.1952
0.6550 5.3344  33.2163 20.9812  81.7499 9.0848  101.8793 7.5403
0.8542 6.0778  34.2304 20.8678  82.7289 8.7968  101.5716 6.8853
1.0792 6.8138  35.2297 20.6609  83.7080 8.5088  101.2639 6.2304
1.3298 7.5415  36.2290 20.4539  84.6870 8.2209  100.9562 5.5754
1.6056 8.2601  37.2282 20.2470  85.6660 7.9329  100.6485 4.9205
1.9063 8.9685  38.2275 20.0400  86.6450 7.6449  100.3409 4.2656
2.2316 9.6661  39.2268 19.8331  87.6240 7.3569  100.0332 3.6106
2.5810 10.3518  40.2261 19.6261  88.6030 7.0689  100.0000 2.8944
2.9541 11.0250  41.2253 19.4192  89.5820 6.7810  100.0000 2.1708
3.3505 11.6847  42.2246 19.2122  90.5610 6.4930  100.0000 1.4472
3.7697 12.3302  43.2239 19.0053  91.5400 6.2050  100.0000 0.7236
4.2112 12.9607  44.2232 18.7983  92.5203 5.9166  100.0000 0
4.6744 13.5753  45.2225 18.5914  93.5005 5.6283    
5.1587 14.1735  46.2217 18.3844  94.4808 5.3399    
5.6637 14.7543  47.2210 18.1775  95.4611 5.0516    
6.1886 15.3172  48.2203 17.9705  96.4414 4.7632    
6.7328 15.8614  49.2196 17.7636  97.4216 4.4749    
7.2957 16.3863  50.2118 17.5259  98.4019 4.1865    
7.8765 16.8913  51.2023 17.2800  99.3029 4.0742    
8.4747 17.3756  52.1927 17.0341  99.7368 4.9993    
9.0893 17.8388  53.1831 16.7881  100.1707 5.9244    
9.7198 18.2803  54.1735 16.5422  100.6045 6.8495    

10.3653 18.6995  55.1639 16.2963  101.0384 7.7746    
11.0250 19.0959  56.1543 16.0504  101.4723 8.6998    
11.6982 19.4690  57.1447 15.8045  101.9061 9.6249    
12.3839 19.8184  58.1351 15.5586  102.3400 10.5500    
13.0815 20.1437  59.1255 15.3127  102.3687 10.5355    
13.7899 20.4444  60.1160 15.0668  102.3982 10.5205    
14.5085 20.7202  61.1064 14.8209  102.4286 10.5051    
15.2362 20.9708  62.0968 14.5750  102.4599 10.4893    
15.9722 21.1958  63.0872 14.3291  102.4921 10.4729    
16.7156 21.3950  64.0776 14.0831  102.5254 10.4561    
17.4655 21.5682  65.0680 13.8372  102.5596 10.4388    
18.2211 21.7150  66.0584 13.5913  102.5948 10.4209    
18.9812 21.8354  67.0488 13.3454  102.6311 10.4025    
19.7451 21.9292  68.0392 13.0995  102.6685 10.3836    
20.5119 21.9963  69.0229 12.8285  102.7070 10.3641    
21.2805 22.0366  70.0019 12.5406  102.7467 10.3440    
22.0500 22.0500  70.9809 12.2526  102.7875 10.3233    
23.0705 22.0500  71.9599 11.9646  102.8296 10.3020    
24.0878 21.9926  72.9389 11.6766  102.8730 10.2801    
25.1021 21.8802  73.9179 11.3886  102.9176 10.2574    
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