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Abstract

The ability to realise quantum simulation experimentally at extremely low temperature

provides the capability to microscopically control macroscopic quantum phenomena.

The control over cold atoms in optical lattices offers an excellent platform to study the

out-of-equilibrium behaviour of strongly correlated systems, especially spin physics that

can be realised with multicomponent gases. In this field a major ambition is to observe

sensitive many-body phenomena such as quantum magnetism.

This thesis contains theoretical and numerical studies of many-body dynamical phe-

nomena of spin models with two-component bosonic atoms in optical lattices. Firstly,

beginning from a state with all effective magnetic spins in the same direction, we inves-

tigate dynamics of spin-spin correlations, and how they behave for different spin models.

Most of the results explored in this thesis use reduced Hilbert space techniques, based

on the Density Matrix Renormalisation Group, and the representation of Matrix Prod-

uct States and Matrix Product Operators. Using numerical methods in 1D we compute

non-equilibrium dynamics, ground states, and thermal states for these systems. We also

study and compare their behaviour in terms of spin correlation functions and induced

currents. We find in some cases, where the current is non-decaying for the ground state,

a decay for the rotated state with time, since the decay of the long-range correlations

becomes important. Furthermore, we explore changes that occur when we add long-

range interactions to the models, and analyse how the correlations can be affected by

the presence of disorder. We found that in the regime of short and intermediate range

interactions, the correlations are affected by the disorder, whereas these effects were

suppressed for long-range interactions.

One of the challenges in ongoing experiments remains reaching the low temperatures/en-

tropies necessary for some particularly sensitive interacting states. We investigate the

magnetically ordered quantum states that can be engineered in these two-species bosonic

models, studying techniques to prepare states with a very low entropy using adiabatic

and near-adiabatic protocols. We compute the corresponding dynamics, modelling these

techniques for realistic experimental parameters. We also show how the same models can

give rise to entanglement that is potentially useful for quantum enhanced metrology, and

characterise the states we can prepare in terms of their Quantum Fisher Information.

Lastly, we analyse the effect of dissipation in these models.

Our results provide an interesting experimental perspective to probe the difference be-

tween mean-field spin states and the true ground states for effective spin models. In

summary, our studies offer innovative new results to study spin models in optical lat-

tices, which should be feasible with current experimental techniques.



Acknowledgements

It was 2013, I was working full time at Airbus in Germany and doing a Master in Medical

Physics in my free time. It is when I bumped into quantum physics. It came across

my life as a hurricane, swallowing the rest of my free time, my holidays, and my future.

And it is the best thing that could ever happen to me. Through an online course I

asked Charles Clark for advice, and he put me in touch with my supervisor, Andrew

Daley. I cannot thank you enough Andrew, not only for offering me the MRes, and

the opportunity to continue with the PhD, but for everything else. I had the chance

to collaborate with amazing people, and spent time in one of the top universities in

the world. Moreover, I have built a new career, connections, and this is thanks to your

support. Thanks for giving me the chance to spend time doing so many other activities,

and travel across the globe, besides my research.

I would like to thank my viva committee: Beatriz Olmos and Elmar Haller for their

comments and suggestions.

Thanks to our collaborators, it has been a great pleasure to work with you all!

I arrived in Glasgow feeling an old student, but I could not feel more younger again,

than being surrounded by this group of people, who made me laugh, and go crazy, but

people I could count on if I needed to complain about something. Thanks to the bunch

of the QOQMS group: Alex, Francois D., Guanglei, Jorge, Rosaria, Tomohiro, Saubhik,

Suzanne... Thanks to the rest of the Glaschu group, you guys made this a funny odyssey!

Thanks to Anton and Johannes for their patience teaching me, answering my questions,

and for all of the jokes in between.

Thanks to all those people who were telling me I could do it. People from Spain, from

Germany, from France, and from everywhere else I have met during this journey!

Thanks to my family, my parents and my brother, being always there for me, and

supporting me on each new adventure. ¡Gracias de verdad!

And of course to my partner, François, who changed his life to follow me to pursue this

PhD, and for being there every single day, standing at my side, in my ups and my downs.

Merci mon amour!

I could not have made it without you all!

iv



Contents

1 Introduction 1

1.1 Short background and overview . . . . . . . . . . . . . . . . . . . . . 1

Quantum simulation . . . . . . . . . . . . . . . . . . . . 2

Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . 3

Quantum magnetism . . . . . . . . . . . . . . . . . . . . 3

Numerical methods . . . . . . . . . . . . . . . . . . . . . 4

Thesis overview . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Contributions during PhD . . . . . . . . . . . . . . . . . 7

2 Cold atoms in optical lattices 10

2.1 Optical Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Atoms interaction with a light field . . . . . . . . . . . . . . . 11

Spin dependent lattices . . . . . . . . . . . . . . . . . . 13

2.1.2 Energy bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The Bose-Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Superfluid to Mott Insulator transition . . . . . . . . . . . . 17

J � U : Superfluid (SF) phase . . . . . . . . . . . . . . . . . 17

U � J : Mott Insulator (MI) phase . . . . . . . . . . . . . . 18

Phase transition . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Experiments with optical lattices: state of the art and outlook . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Spin models with ultracold atoms 21

3.1 Quantum Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Superexchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Bose-Hubbard model for two bosonic components . . . . . . . . . 23

3.2.1 From Bose-Hubbard to spin models . . . . . . . . . . . . . . 25

n=2: Spin-1 model . . . . . . . . . . . . . . . . . . . . . 25

n=1: Spin-1/2 model . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Ground state magnetic ordering . . . . . . . . . . . . . . . . . 28

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Numerical Simulation 31

4.1 Exact Diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Density Matrix Renormalisation Group (DMRG) . . . . . . . . . . 34

The area law . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



Contents vi

4.2.1 Matrix Product States (MPS) . . . . . . . . . . . . . . . . . . 36

Singular Value Decomposition (SVD) . . . . . . . . . 37

The Schmidt Rank . . . . . . . . . . . . . . . . . . . . . 37

Matrix Product Operators MPO . . . . . . . . . . . . 40

4.2.2 Variational search for the ground state . . . . . . . . . . . . 41

4.2.3 Time evolution algorithms: TEBD, TDVP . . . . . . . . . . 42

4.2.3.1 Time-Evolving Block Decimation Algorithm (TEBD) 42

4.2.3.2 Time Dependent Variational Principle (TDVP) . . 44

4.2.4 Finite temperature algorithm: The Ancilla method . . . . 46

4.3 Open quantum systems . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 The Master Equation . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Quantum Trajectories and the quantum jump approach . 50

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Engineering magnetic ordering of rotated spin states and probing dy-
namics in quantum simulators 53

5.1 Preparation of spin rotated states . . . . . . . . . . . . . . . . . . . . 54

5.2 Comparison of the rotated state with the ground state . . . . . . 55

5.3 Exploring properties of states by out-of-equilibrium dynamics . . 56

5.4 Thermal states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Background: Statistical Mechanics . . . . . . . . . . . . . . . 60

5.4.2 Results for thermal states . . . . . . . . . . . . . . . . . . . . . 62

5.4.3 Rotated states as thermal states . . . . . . . . . . . . . . . . . 64

5.4.4 Thermalisation dynamics . . . . . . . . . . . . . . . . . . . . . 67

5.5 Probing the states with spin currents . . . . . . . . . . . . . . . . . 71

5.5.1 Study of the currents on the rotated state . . . . . . . . . . 72

5.5.1.1 Initial state . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1.2 Time evolution of the spin currents . . . . . . . . . 73

5.5.1.3 Spin-spin correlations . . . . . . . . . . . . . . . . . . 74

5.5.2 Comparison with the ground state . . . . . . . . . . . . . . . 74

5.5.2.1 Dynamical results . . . . . . . . . . . . . . . . . . . . . 75

5.5.2.2 Energy difference after “kick” . . . . . . . . . . . . . 81

5.5.3 Critical velocity and excitation spectrum . . . . . . . . . . . 83

5.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Adiabatic state preparation and metrology with cold atoms in optical
lattices 86

6.1 Introduction to adiabatic state preparation . . . . . . . . . . . . . . 87

6.2 Antiferromagnetic state preparation using adiabatic ramps . . . . 90

6.2.1 Model with a staggered magnetic field . . . . . . . . . . . . . 91

6.2.2 Model with a tilted magnetic field . . . . . . . . . . . . . . . 93

6.2.2.1 Study of the energy gap . . . . . . . . . . . . . . . . . 94

6.2.2.2 Resulting ramps . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Study of an XY-ferromagnet . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Adiabatic ramps for the spin-1/2 model . . . . . . . . . . . . 97

6.4 Spin models and metrology . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Quantum Fisher Information . . . . . . . . . . . . . . . . . . . 98



Contents vii

6.4.2 Characterising the ground state: useful entanglement for
metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2.1 Case with negative interactions . . . . . . . . . . . . 102

6.4.3 Adiabatic State Preparation . . . . . . . . . . . . . . . . . . . 103

6.4.3.1 Ramp in ∆ 6= 0: Optimal Control . . . . . . . . . . . 105

6.4.3.2 Ramp to ∆ = 0 . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.4 Effects of dissipation . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Spin dynamics in the presence of long-range interactions and disorder115

7.1 Long-Range Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.2 Transition studies in different regimes . . . . . . . . . . . . . 121

7.2 Presence of disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Conclusions & Outlook 129

Appendices 132

A Convergence studies 133

A.1 Time evolution for a large number of spins . . . . . . . . . . . . . . 133

A.1.1 Spin-1 model time evolution . . . . . . . . . . . . . . . . . . . 133

A.1.2 Spin-1/2 model time evolution . . . . . . . . . . . . . . . . . . 136

A.2 Finite temperature calculations . . . . . . . . . . . . . . . . . . . . . 138

A.2.1 Spin-1 model finite temperature calculations . . . . . . . . . 138

A.2.2 Spin-1/2 model finite temperature calculations . . . . . . . 139

A.3 Spin currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141



Chapter 1

Introduction

“ Those who are not shocked when they first come across quantum theory

cannot possibly have understood it.

”
Niels Bohr,

Essays 1932-1957 on Atomic Physics & Human Knowledge

1.1 Short background and overview

From the foundations of quantum mechanics at the beginning of the twentieth century,

to the cutting edge research for applications in quantum technologies, the field of Atomic

Molecular and Optics (AMO) physics has a continued history. After the 1960s, with the

development of the laser, the ability to use light to control matter at the quantum level

has enabled us with the tools to unfold new theoretical and experimental methods to

expand our understanding of physical phenomena in an unprecedented way.

The following development of experimental techniques to cool atoms to ultracold tem-

peratures led to Nobel-prize winning discoveries, such as to W. D. Phillips, S. Chu,

and C. Cohen-Tannoudji in 1997 “for development of methods to cool and trap atoms

with laser light” [1–3], and E. Cornell, C. Wieman, and W. Ketterle in 2001 “for the

achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early

fundamental studies of the properties of the condensates” [4–6].

This ability to realise experiments at extremely low temperatures provide physicists the

capability to microscopically control macroscopic quantum phenomena. The importance

1



1.1. Short background and overview 2

of realising these regimes with atomic gases is that the level of microscopic control and

first principles understanding was particularly high, because of the techniques developed

over the course of many decades. In the ensuing years, this generated the ability to

engineer new Hamiltonians, leading to the research field of quantum simulation.

Quantum simulation

The concept of a quantum simulator can be summarised as “the intentional engineering

of the quantum characteristics of a physical model using a particularly controllable quan-

tum system”. This definition came from Richard Feynmann’s famous article [7] after his

seminal lecture “Simulating Physics with Computers”. The enormous advances in iso-

lating, controlling and detecting quantum systems since then has transformed quantum

simulation into a rich field where new insights into many-body physics can be gained.

Quantum simulators can be applied to solve problems in different fields, such as spec-

troscopy applications [8], the understanding of high temperature superconductivity in

condensed-matter physics [9], studies in high-energy physics [10], or quantum chemistry

[11].

The motivation for quantum simulation is to tackle the complexity and difficulty of

classically simulating quantum systems computationally. The design of a quantum sim-

ulator starts with the proper mapping of the Hamiltonian of the system to be simulated.

The exponential growth of the Hilbert space with system size creates the difficulty of

simulating these many-body Hamiltonians on a classical computer, mainly due to the

large amount of memory needed to store a quantum state, and the amount of operations

required to simulate its evolution in time [12, 13]. Understanding many-body quantum

systems can be hard, even using state-of-the-art numerical techniques on the largest

classical supercomputers. Thus, to investigate models or effects in condensed matter

physics which are hard to access via classical computers, quantum simulators provide

a particularly interesting alternative to study dynamical phenomena in many-body sys-

tems.

Currently, there are several experimental platforms for quantum simulation, such as ion

traps [14, 15] , superconducting circuits [16], quantum photonics systems [17], and ultra-

cold neutral atoms [18]. The macroscopic control over cold atoms in optical lattices offers

an excellent platform to investigate out-of-equilibrium dynamics of strongly correlated

systems, such as spin models, which are usually motivated by solid state physics. In this

thesis, we use optical lattices as the interface between ultracold atoms and condensed

matter.

Chapter 1



1.1. Short background and overview 3

Optical lattices

Optical lattices are periodic potentials created by a pair of counter-propagating laser

beams far detuned from an optical transition. This potential is formed via the AC-

Stark effect, and it provides access to study many-body physical phenomena. Optical

lattices provide a platform to realise experimentally simplified models of condensed

matter, as an instrument to understand physical phenomena, such a high-temperature

superconductivity, which is an example of strongly correlated quantum matter.

Many examples for strongly correlated systems are based in different types of Hubbard

models, first proposed to describe how electrons move in a crystalline structure [19].

Although electrons are fermions, in the lab, these experiments are possible with both

fermions and bosons. Quantum degenerate gases of fermions are particularly well suited

to the simulation of solid-state systems, as they obey Fermi–Dirac statistics, where the

behaviour of the electrons in a solid can be simulated directly. With the realisation

of Bose-Einstein Condensation, and some advantages in cooling bosons to low temper-

atures, the Bose-Hubbard model was realised first. Today these kind of experiments

are possible with different kind of both bosonic and fermionic species (for a review on

quantum simulation of the Hubbard model with ultracold fermions in optical lattices

see for example [20]). The phase diagram of this Bose-Hubbard model was presented

theoretically by Fischer et al. [21], and a proposal for implementation of this with cold

atoms was first proposed by Jaksch et al. [22].

The first experimentally realised phase transition in ultracold atoms between the Mott

insulator and the superfluid regime in a weakly interacting Bose gas was observed in an

optical lattice by Greiner et al. [23]. This first realisation was made just by varying

the lattice depth, which changes the ratio between interactions and tunnelling (kinetic

energy) in the system. These days the possibility to use Feshbach resonances for some

atomic species [24] provides independent control over interactions. This offers new op-

portunities to observe sensitive many-body processes, such as quantum magnetism, when

introducing more than one atomic spin state.

Quantum magnetism

Quantum magnetism is at the heart of many fundamental phenomena in condensed

matter physics. In ultracold atoms it can be described by quantum many-body states of

spins coupled by interactions. In cases where we have only on-site interactions between

particles, the magnetic ordering of spins is driven by the critical energy for superex-

change, the antiferromagnetic coupling between neighbouring spins [25, 26].

Chapter 1



1.1. Short background and overview 4

In order to observe magnetic correlations, the motional temperature has to be lower than

this effective spin-spin coupling energy, or superexchange, which is in the nanokelvin

range. The first observation of superexchange in a double-well potential was experi-

mentally achieved in 2008 [27]. In the last years incredible progress has been made in

the field. A review of some of the most promising implementations to study quantum

magnetism can be found in [28].

The behaviour of a gas at temperatures close to absolute zero depends on whether the

atoms in the gas are fermions or bosons. Latest advances in the field of degenerate Fermi

gases now offer the possibility of loading ultracold fermionic gases into optical lattices.

Furthermore, antiferromagnetic magnetic ordering has been recently observed in optical

lattices [29–32].

Probing many-body quantum systems is now a reality thanks to diverse experimental

techniques and the possibility to use quantum microscopes to detect and study atoms

in optical lattices at the single-particle level [33–35]. These new opportunities offer an

unprecedented control of many-body physics [18, 36].

However, the challenge in ongoing experiments still remains to reach the low temper-

atures/entropies necessary for some of the most interesting phenomena [37], such as

pairing of itinerant particles in analogy with high-temperature superconductors. In the

case of magnetic ordering with bosons in optical lattices, there are still many open ques-

tions, both theoretically and experimentally. The main research of this thesis focusses in

answering several questions in this field. To achieve this level of accuracy in the study of

quantum many-body states and their dynamical properties theoretically, we use specific

numerical methods to solve these complicated calculations.

Numerical methods

The study of quantum many-body systems is related to Hamiltonians whose exact solu-

tion is very difficult to tackle due to the exponential growth of the Hilbert space H with

the system size. Just to calculate the ground states in these systems it is necessary to

diagonalize a matrix of dim(H) ·dim(H), and the evolution will be a matrix exponential,

requiring large matrix multiplications.

Considering a spin-1/2 chain with a local dimensional d = 2 and M sites, the total

Hilbert space will have a dimension of dim(H) = 2M . For a system with 50 spins, the

dimension is thus dim(H) = 250 ≈ 1015, requiring a memory on the order of tens of

thousands of terabytes. Although this could be possible using supercomputers, adding

some more spins would result in a hard task to be performed.

Chapter 1
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One approach will be by using specific symmetries and parallelism, which is the basis of

optimisation in the implementation of the Exact Diagonalisation (ED) technique [38].

Another solution is to find numerical methods that, by using approximations, can still

capture the most relevant features of these cold many-body systems with a reasonable

computational cost.

The density matrix renormalization group (DMRG), introduced by S. R. White [39, 40],

transformed the way ground states of large one-dimensional systems were calculated.

DMRG relies on the idea of truncating the Hilbert space by keeping the most important

basis states, based on the amount of bipartite entanglement in the system, without

a significant change of the physical features. Subsequently, these methods provide an

accurate representation for low excited states in one-dimensional systems with gapped

Hamiltonians.

The efficient representation of these ground states was generalised by applying Matrix

Product States (MPS) [41, 42], also used to study the time evolution of these systems,

as the Time Evolving Block Decimation algorithm (TEBD) introduced by Vidal [43, 44].

New methods have since been designed to study specific systems, mainly using the

extension of Matrix Product States to operators, Matrix Product Operators (MPO)

[42, 45, 46]. Some of the methods used in this thesis include additionally Hamiltonians

with long-range interactions [47], and finite temperature calculations [48].

Furthermore, we can now perform calculations also when these systems are coupled

to an environment, by simulating the dynamics of the master equation using quantum

trajectories techniques [49–51].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

In summary, we have seen how experimental advances with ultracold atomic gases allow

us to construct strongly correlated many-body systems. This means that the Hamil-

tonians can be engineered experimentally. Thus, we are now in the era of quantum

engineering, where systems can be designed, controlled and manipulated in unprece-

dented ways, allowing us to study the systems and physics of interest.

Quantum simulations and its applications run from quantum information to quantum

metrology, on both a theoretical and experimental level [36, 52, 53].

Thesis overview

The generalised Bose-Hubbard model for two-component bosons on an optical lattice is

used to investigate the physics that is associated with a variety of spin models.

Chapter 1



1.2. Thesis outline 6

The main focus of this thesis is to study the quantum many-body physics and dynamics

of these spin models for realistic experimental realisations. This objective is addressed

for four major topics:

1. dynamics of many-body quantum states and probing methods,

2. adiabatic state preparation of specific magnetic ordered quantum states,

3. Quantum Fisher Information and metrology,

4. long-range interactions and the effects of disorder on spin dynamics.

The results are simulated for realistic parameters using numerical methods based on

Matrix Product States.

1.2 Thesis outline

This thesis is organised into three main parts. The first two parts contain all of the

theoretical background material (chapters 2 and 3) and numerical methods (chapter 4)

which are required to obtain and discuss the results which are presented in the subsequent

remaining part (chapters 5-7).

Chapter 2 provides an introduction to the field of ultracold atoms. Specifically, this

chapter introduces the procedures that allow experimentalists to trap and manipulate

atoms in optical lattices.

Chapter 3 completes this introduction with a description of the general Bose-Hubbard

model. Next, the model studied for the research projects in this thesis, the Bose-Hubbard

model for two-component of bosons, is introduced. From it, we derive the effective spin

models in the regime of strong interactions, basis for the study of specific quantum

magnetic states.

In the second part, chapter 4 is dedicated to presenting the different numerical tech-

niques for the simulation of quantum many-body systems used to obtain the research

results. We start by simulating the entire Hilbert space with the Exact Diagonalisation

method. We then focus on reduced Hilbert space techniques, in particular de Density

Matrix Renormalisation Group, and the use of Matrix Product States and Matrix Prod-

uct Operators. These methods will be used, in particular, for the out-of-equilibrium

dynamics studied in the following chapters. To simulate these dynamics, we present

different methods, principally algorithms based on the Time Evolving Block Decimation

Chapter 1
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and the Time Dependent Variational Principle. In addition, we describe the numerical

methods used for thermal state calculations, and for systems with long-range interac-

tions. Lastly we devote a section to open quantum systems and the evolution of the

master equation using quantum trajectories techniques.

The following three chapters describe the three research projects that compose the results

for this dissertation. Additionally, we include a conclusion chapter at the end where we

provide some final comments and outlook.

Chapter 5 presents results for a mean-field approach to prepare a XY-ferromagnet, and

compare it with the true ground state of the Hamiltonian. We then study the non-

equilibrium many-body dynamics, and evaluate thermalisation in the systems. Lastly,

we include an approach to probe the dynamics based on the study of the spin currents.

In Chapter 6 the possibility to adiabatically prepare magnetically ordered quantum

states is described. Additionally, we characterise specific states that are useful for

metrology in terms of their Quantum Fisher Information.

Chapter 7 studies the existence of different interaction regimes and their consequences in

the out-of-equilibrium dynamics of the systems. Furthermore, we investigate the effect

of adding disorder into the models.

The thesis concludes with a summary and outline of future directions for this work in

chapter 8.

Contributions during PhD

� Publications

1. A. Venegas-Gomez, A. S. Buyskikh, J. Schachenmayer, W. Ketterle, and A. J.

Daley, Dynamics of rotated spin states and magnetic ordering with two-component

bosonic atoms in optical lattices, published in Physical Review A [54].

The author of this thesis performed all of the calculations for the models, wrote

most of the article, and produced all of the plots. This is described in chapter 5.
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Chapter 2

Cold atoms in optical lattices

In the previous chapter we discussed how ultracold atoms in optical lattices provide a

platform to engineer specific Hamiltonians, and study phenomena in the field of strongly

correlated many-body physics. Experimentally this is possible thanks to the possibility

to tune the parameters according to the models to be simulated.

Most importantly, atoms in an optical lattice potential are particularly clean systems,

hence providing the closest idea to an ideal crystalline lattice, with a corresponding

band structure. This makes these systems excellent quantum simulators. Disorder can

be added by using a superlattice (arrays of double wells [57]) or a laser speckle pattern

[58], enabling new theoretical models to be studied.

In this chapter, we will outline the theoretical background of optical lattices in sec-

tion 2.1. We will give an overview of the band structure of atoms in the lattices, equiv-

alent to the energy bands of electrons in real solids, providing information about the

material’s features, such as whether they are insulators or conductors. In ultracold

atoms we are confined in the lowest energy band, and we can then derive the motion

of bosonic (fermionic) atoms in the lattice with the Bose-Hubbard (Hubbard) model,

as we do in section 2.2. In the last section, 2.3, we present some of the experimental

achievements and challenges in the field.

2.1 Optical Lattices

The idea of using standing light waves to confine atoms goes back to Letokhov [59] but

it was not until twenty years later that was experimentally achieved [60]. The interest

emerged at the end of the 90s when the idea of using cold atoms in optical lattices as a

toolbox to study strong correlated regimes was suggested by Jaksch et al. [22].
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The physics of cold atoms in optical lattices relies on the use of periodic potentials

created by external laser beams, which is described next.

2.1.1 Atoms interaction with a light field

We consider an electric field with angular frequency ωL as E(r, t) = E0(r)εe−iωLt +

E∗0 (r)ε∗eiωLt, where E0 contains the spatial dependence of the field and ε is the vector

of polarization. The interaction between an atom and an electric field is usually given

in the dipole approximation [61, 62], by

Ĥdip = d̂(r, t) · E(r, t), (2.1)

with d̂ the electric dipole moment.

The effect of this interaction in the atom, being in a non-degenerate ground state |g〉
with energy Eg, is considered by expanding the spectrum of the Hamiltonian by a set of

eigenstates {|n〉} with eigenenergies En. We compute the effects of a weak field on the

atomic ground state as a perturbation.

The first term of the expansion vanishes:

∆E(1)(r) = −〈0|d̂0(r)E0(r)ε|0〉 = 0. (2.2)

The second order term takes the form

∆E(2)(r) = α(ωL)|E0(r)|2, (2.3)

where α(ωL) is the atomic polarizability [63]

α(ωL) =
∑
n6=0

| 〈0|d̂0(r)ε(r)|n〉 |2
(

1

E0 − En + ~ωL
+

1

E0 − En − ~ωL

)
. (2.4)

Eq. 2.3 describes the Stark effect [64], or light shift, defined as a change in the energy

levels of an atom exposed to a laser light with frequency ωL.

We restrict now to the case where ωL is close to one of the atomic transitions, where we

neglect all other transitions. We denote this atomic transition ω0 as

ω0 =
Ee − Eg

~
, (2.5)
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where Eg and Ee are the energies for the ground state |g〉 and excited state |e〉, respec-

tively. We can then rewrite the polarizability as

α(ωL) =
1

~δ
| 〈g|d̂0(r)ε|e〉 |2, (2.6)

where

δ = ωL − ω0, (2.7)

is the laser detuning. In our two level system we refer to as red detuned with δ < 0 and

blue detuned with δ > 0 (see Fig. 2.1).

Figure 2.1: Schematic diagram of a two level atom with an atomic transition frequency
ω0 interacting with a standing wave of light with frequency ωL. The detuning of the
laser from resonance is δ. We show two lasers, one red detuned, and one blue detuned.

We introduce the Rabi frequency as

ΩRABI(r) =
〈g|d̂0(r)E0(r)ε|e〉

~
. (2.8)

Thus, the energy shit in Eq. 2.3 can be also described as

∆E(2)(r) =
~|ΩRABI(r)|2

4δ
∝ I(r)

δ
, (2.9)

with I(r) the intensity of the laser field. This implies that a neutral atom in the ground

state feels an optical potential proportional to the intensity of the laser, a fundamental

effect for the optical trapping and manipulation of neutral atoms:

Vopt(r) ∝ I(r)

δ
. (2.10)

To make a lattice potential, the electric field must be periodic in space, which can be

created by using several laser beams. When two counter-propagating laser beams of

the same frequency overlap, they will create an interference pattern. Hence, the lattice

potential will be

Vopt(x) = V0 sin2(kLx), (2.11)

with kL = 2π/λ, where λ is the wavelength of the laser light, and V0 is the depth of

the potential proportional to the laser intensity. The sign of δ will hence indicate if the
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2.1. Optical Lattices 13

atoms are trapped in the intensity maxima (the red detuned case), or repelled from the

intensity maxima (the blue detuned case).

The lattice spacing is defined as

aL =
λ

2
. (2.12)

In the limit of a deep lattice, the optical potential for the atom can be approximated by

a harmonic potential with trapping frequency

ωT = 2

√
V0ER

~
, (2.13)

and the recoil energy, indicating the kinetic energy imparted to an atom at rest when it

absorbs a photon of momentum ~kL, will be

ER =
~2k2

L

2m
, (2.14)

with m the atomic mass. This is the most natural energy scale in the lattice.

Additional lasers can generate potential in higher dimensions [65] as depicted in Fig. 2.2.

Figure 2.2: Optical lattices formed by counter-propagating laser beams, with the
arrows as the directions of the laser beams. The standing waves represent the resulting
periodic potential.

Spin dependent lattices

Different potentials for different spin states can be realised using spin-dependent optical

lattices, on an optical lattice with a wavelength close to the transition of an atom, with

a detuning of the order of the hyperfine splitting. In that configuration, the dipole force

felt by a given spin state is generally dependent on the light polarization. Basically, the

idea is to use counter-propagating laser beams with linear polarization forming an angle
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2.1. Optical Lattices 14

θ [66–68]. The two lattice potentials for the two spin states with polarisations σ+ and

σ− will be in a relative position to each other. By controlling the polarization of the

optical lattice, one can control the potential for each of the spin states. Such a technique

is often used to control interactions between atoms, without using Feshbach resonances.

2.1.2 Energy bands

We will now define the band structure for the optical lattice. We start considering the

Hamiltonian for a single atom of mass m and momentum p in a one-dimensional standing

wave (on time scales where spontaneous emission is negligible) as

Ĥ =
p̂2

2m
+ V0 sin2(kLx), (2.15)

with kL = 2π/λ = π/aL. The eigenstates of this Hamiltonian are called Bloch functions

(also called Bloch waves). In our quantum simulator, the link to solid-state physics is

that Bloch waves are often used to describe an electron in a crystal [69]. The Schrödinger

equation is [
p̂2

2m
+ V0 sin2(kLx)

]
Φ(n)
q (x) = E(n)

q Φ(n)
q (x), (2.16)

where the Bloch eigenstates will then be

Φ(n)
q (x) = eiqxu(n)

q (x), (2.17)

with u
(n)
q (x) having the same periodicity as the potential, where q is the quasimomen-

tum in the first Brillouin zone (−π/aL, π/aL], a quantum number representative of the

translational symmetry of the periodic potential [53]. The eigenenergies E
(n)
q will form

the spectrum of energy bands separated by the energy band gaps.

Bloch waves are delocalised in position space, and localised in quasimomentum space,

which means that they are relatively easy to compute in Fourier space. Depending on

the depth of the lattice, the particles in the lowest bands will be in the bound states of

the potential, whereas free particles will appear in the higher bands (E
(n)
q > V0).

It is particularly useful to give a local representation to the Bloch functions by using

Wannier functions, a complete set of orthogonal basis states. The Wannier functions

represent how much of the wavefunction of a particle is confined in one site, and are

given by the following relation to the Bloch functions:

wn(x− xi) =

√
aL

2π

ˆ π/aL

−π/aL

e−iqxi/~Φ(n)
q (x)dq, (2.18)
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2.2. The Bose-Hubbard model 15

where xi is the position on the lattice site i and aL the lattice spacing. As these functions

are localised on particular sites, they are useful to describe local interactions between

particles [70]. In the limit of very deep lattices, the Wannier functions can be very

well approximated, for the purposes of computing on-site properties of the system, by

harmonic oscillator wavefunctions with trapping frequency ωT (as in Eq. 2.13). By using

Wannier functions we will next derive the Bose-Hubbard model for ultracold atoms in

optical lattices.

2.2 The Bose-Hubbard model

We start with the many-body Hamiltonian describing bosons in a periodic potential, in

second quantization [70, 71]:

Ĥ =

ˆ +∞

−∞
d3rψ̂†(r)

[
~2

2m
∇2+V0 sin2(kLr)+VT(r)

]
ψ̂(r)+

g

2

ˆ +∞

−∞
d3rψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r),

(2.19)

where ψ̂(r) [ψ̂†(r)] is the bosonic field operator for the annihilation [creation] of a bosonic

particle at position r = (x, y, z). The first term denotes the kinetic energy and the

interaction with an external potential, which is formed by the periodic potential of the

laser fields and some extra potential VT(r) associated with external fields. The second

term contains the contact interaction where

g =
4π~2a

m
, (2.20)

is the coupling constant with a the scattering length, used to describe a pseudopotential

involving the interatomic potential. Here, where we have atom-atom interactions at

lower temperatures, only s-wave scattering is significant [63, 72]. The external potential

will be the periodic one created by the laser fields plus an extra non-uniform potential

associated with additional external fields VT.

From now on, and assuming the potential can be factorised as well, we consider only the

x component in the state function, thus ψ̂(x). Then, by working with sufficiently deep

lattices, the band gap to the excited band is ∆g ≈ ~ωT, and as long as the energy scales

are smaller than that value, we can keep only the lowest states [22]. That is, the model

is valid when the energy per atom for atom-atom interaction is small compared to ∆g.

We now expand the bosonic field operators in terms of the Wannier functions,

ψ̂(x) =
∑
i

b̂iw(x− xi), (2.21)
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with b̂i the bosonic anhilation operator of a particle at site i, obeying the corresponding

commutation relations

[b̂i, b̂j ] = [b̂†i , b̂
†
j ] = 0, ∀i, j, (2.22)

[b̂i, b̂
†
j ] = δi,j . (2.23)

Replacing the operators in the Hamiltonian, we obtain the generalised Bose-Hubbard

model

Ĥ = −
∑
〈i,j〉

Jij b̂
†
j b̂i +

U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i, (2.24)

where n̂ = b̂†i b̂i will count the number of bosons at a given lattice site i, and 〈i, j〉 denotes

nearest-neighbours site i and j.

The tunnelling matrix element or hopping, between adjacent sites i and j, is given by

Jij = −
ˆ +∞

−∞
w∗(x− xi)

(
− ~2

2m
∇2 + V0 sin2(kLx)

)
w(x− xj)dx, (2.25)

with w(x) the lowest-band Wannier functions.

U is the on-site interaction energy of having two atoms in one site:

U = g

ˆ +∞

−∞
dx|w(x)|4. (2.26)

The last term of Eq. 2.24 symbolises the external trapping potential, that is, gives a

site-dependent energy offset

εi =

ˆ +∞

−∞
dxw(x− xi)2VT(x). (2.27)

If we restrict the physics to the lowest band, with a very deep lattice potential, and

well-localised Wannier functions on each lattice site, we can approximate the model to a

tight-binding model from condensed matter physics, where a state at any given site only

couples to neighbouring sites. [69, 73], In this limit, only nearest neighbours tunnelling

matrix elements are retained, where the tunnelling term J depends on the overlap of

the localized wavefunctions.

In the next section we will describe the quantum phases in the context of bosons in

optical lattices in the limiting cases, where either the hopping or the interaction energy

will dominate.
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2.2.1 Superfluid to Mott Insulator transition

Being the energy for atom-atom interaction small compared to the energy spacing be-

tween the bands, we can treat the model as a competition between hopping (kinetic

energy) and interaction energy. In this case, we should expect quantum phase transi-

tions which are either localised or delocalised.

The phase diagram for the Bose-Hubbard model at zero temperature was first inves-

tigated by Fischer et al. [21], and the first proposal to realise a phase transition in

an optical lattice experimentally appeared almost ten years later by Jaksch et al. [22].

Finally, the first observation of this transition was first demonstrated by Greiner et al.

in 2002 [23], where they used time of flight experiments to measure a posteriori the oc-

cupation of the lattice sites, allowing for the determination of the phases of the atomic

system.

Next, we are going to give an overview of the two different quantum phases, which

depend on the ratio of U/J in the ground state of the system [53, 65, 74, 75]. This

ratio can be changed by varying the laser intensity, hence the depth of the lattice, or the

interactions by Feshbach resonances (i.e. where the effective interaction is a function

of the magnetic field) [24]. Furthermore, the number of atoms at each site, i.e. the

filling fraction of the lattice, is a crucial factor in determining the properties, that is,

the phase of the model. In the next two sections, we describe the two main phases of

the Bose-Hubbard model, appearing respectively for J � U and J � U .

(a) Mott Insulator phase (b) Superfluid phase

Figure 2.3: Mean-field picture of the two quantum phases in the Bose-Hubbard model.
(a) Mott Insulator phase in the limit of strong interactions, where the atoms are com-
pletely localized on lattice site, and the many-body wave function is given by a product
of on-site Fock states. (b) In the non-interacting limit, we have the superfluid phase,
where each atom is delocalized over the entire lattice, and the many-body wave function
is a product of delocalized single-particle states.

J � U : Superfluid (SF) phase

In this case, the hopping dominates the on-site interaction, and the many-body wave

function is a product of delocalized single-particle states, see Fig. 2.3(a), where each

atom is delocalised over the entire lattice, and in the limit U/J → 0, the state can be
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given by

|ψ〉SF ∝
( M∑
i=1

b̂†i

)N
|0〉 , (2.28)

where |0〉 is the vacuum, M the number of sites, and N the number of bosons in the

lattice. This state is locally a coherent state with Poisson statistics (a superposition of

different atom numbers). The superfluid state throughout the whole phase is compress-

ible, that is, there are large local number fluctuations, and a vanishing energy gap in

the thermodynamic limit (M,N →∞ with M/N held constant).

U � J : Mott Insulator (MI) phase

When the system is dominated by the interaction between particles, the wavefunctions

are localised with an integer average number of atoms n = N/M per lattice site, see

Fig. 2.3(b), and in the limit U/J → ∞, all phase coherence disappears. This state can

be written as

|ψ〉MI ∝
M∏
i=1

(
b̂†i

)n
|0〉 , (2.29)

which is a product of local Fock states, i.e. states with well-defined number of particles.

The Mott Insulator in general is incompressible, with an energy gap in the excitation

spectrum.

Phase transition

At zero temperature in 1D the quantum phase transition between the SF and the MI

is characterised by the decay of the off-diagonal elements of the single particle density

matrix 〈b̂†i b̂i+j〉. The SF phase exhibits divergent correlation lengths, as the off-diagonal

elements decay algebraically. The MI phase has finite correlation length, where the

off-diagonal elements decay exponentially.

In the last section of this chapter we describe how this phase transition was observed

experimentally. We also highlight some of the experimental techniques to detect atoms

in optical lattices, and how the results in the following chapters can be applied using

these techniques.
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2.3 Experiments with optical lattices: state of the art and

outlook

We have mentioned that the first time the quantum phase transition between the su-

perfluid and the Mott Insulator phase was observed was by Greiner et al. in 2002

[23]. They used time of flight experiments to measure momentum distributions. This

is a standard technique for probing atoms in optical lattices, to measure interference

between all waves from the lattice sites. The release of atoms from the lattice allows

measurement of momentum distributions [76].

Experimentally, the phase transition was observed by the measurement on the change

of coherence properties. In the SF phase the condensate will show sharp matter-wave

interference peaks when the quantum gas is released from the optical lattice, due to the

long-range phase coherence. In the MI phase, as the system is comprised of pure Fock

states of integer on-site density, no interference pattern is observed.

Next, the MI lobes were experimentally observed using atomic clocks shifts [77]. Later,

quantum gas microscopes were developed to further enhance the level of single-particle

and single-lattice site measurement and control in these systems. For the first time,

it was possible to combine single particle detection and control in strongly correlated

many-body systems. This allows precise in-situ measurements and dynamics study. A

quantum microscope works by fluorescence detection of atoms, illuminating the atoms

with near-resonant light and collecting the emitted photons with a microscope objective.

The possibility to image the Mott insulators lobes, as Jaksch predicted in [22], was finally

possible at the single-atom level [35, 78]. Until 2015, single-atom-resolved detection and

manipulation in optical lattices were realised for bosonic species only [34, 79], but from

2015 it was also possible to use fermions (see, for example, [80]).

Last but not least, it is important to mention that atoms in optical lattices can be

relatively well isolated from their environment, offering excellent platforms to probe

coherent dynamics, such as the observation of an effective light cone that bounds the

propagation speed of correlations in a quantum many-body system [81].

Although some experimental difficulties still remain, such as heating and lost of atoms

via dissipation [37], the way ahead of research of quantum many-body physics with

ultracold atoms in optical lattices looks very interesting.

Some of the ideas to extend these experimental techniques are tackled in this thesis,

such as:

Chapter 2



2.4. Summary 20

• the use of further atomic species: we focus on the Bose-Hubbard model for two

bosonic component (or species), which will be introduced in the next chapter;

• new cooling techniques: we present two different techniques to prepare states with

very low entropy (temperature), in chapters 5 and 6;

• different range of interactions: in chapter 7 we study models with short, interme-

diate, and long-range interactions.

2.4 Summary

In this chapter we have introduced the background theory for cold atoms in optical

lattices, starting with the description of the interaction of atoms with a light field. We

then derived the Bose-Hubbard model, by describing bosons in a periodic potential.

We have also described the two quantum phases of the model, the superfluid and the

Mott Insulator phase, and how the transition between these phases was first observed

experimentally.

Even though these models are particularly important for condensed matter physics [82],

there are other applications for optical lattices. The study of formation of molecules

[83, 84], or even gate operations for quantum computation [85–87] are just a couple of

examples.

We can realise different many-body Hamiltonians using ultracold atoms in optical lat-

tices. In the next chapter we present the methodology to obtain spin models out of a

Bose-Hubbard Hamiltonian. We explain how, in the limit of strong interactions, when

we have one or few atoms per lattice site, we can then implement spin models, by using

perturbation theory. We also describe how we can then study quantum magnetism in

quantum simulators. These are the crucial theoretical elements needed to obtain the

different research results in the following chapters of this thesis.
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Spin models with ultracold atoms

In the previous chapter, we have discussed how cold atoms in optical lattices offer an

excellence resource for quantum simulation, as they present the possibility to study

complex many-body physics with very controllable models. Spin systems realised with

cold atoms in optical lattices are an example of such models [88], and allow for the

investigation of complex many-body physics. One of these interesting physical phenom-

ena is quantum magnetism, lying at the core of condensed matter physics. In order to

study quantum magnetism, we model the magnetic ordering governed by specific spin

Hamiltonians.

Effective magnetic properties and phenomena in ultracold atoms in optical lattices are

driven by a short-range interaction process between spins called superexchange. On

one hand, superexchange interactions lead to a state-dependent energy shift which can

favour certain magnetically ordered states. This energy sets a time-scale for the dy-

namics. Also, it defines how fast the system can rearrange itself in order to react to

external perturbations (changes to the Hamiltonian). In general, this energy scale is

small, leading to very low entropies/temperatures being necessary to observe superex-

change. This is the crucial difficulty to experimentally realise sensitive phenomena on a

superexchange energy scale [89, 90].

We start this chapter with a general introduction to quantum magnetism in section 3.1,

and explain how cold atoms in optical lattices can realise spin models via the process

of superexchange. The Bose-Hubbard Hamiltonian for two components is discussed in

section 3.2, where we present how this can be mapped to the two effective spin models

which we will focus on in the rest of this thesis.
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3.1 Quantum Magnetism

In order to investigate quantum magnetism we study magnetic ordering governed by

specific spin Hamiltonians. Spin systems have a role as being excellent simple models to

explain complex physical phenomena. Starting with the idealised Ising model, spin mod-

els provide the framework to study different critical phenomena in many-body physics,

such as quantum phase transitions and collective quantum behaviour.

To describe strongly correlated systems and as one potential model for high-Tc super-

conductivity, the t-J model was derived in the 1980s [91], where in the limit of large

interactions, reduces to a Heisenberg spin model. This is an example of spin systems

being used as simplified models to capture the properties of real materials. Associated

with condensed matter and solid state physics, we are interested in long range antifer-

romagnetic ordering, as it is directly linked to cuprate ceramics and high temperature

superconductors.

Cold atom platforms can be used in this context. However, there are some differences

between condensed matter systems and an experiment with ultracold gases [92, 93].

Firstly, the electrons in real materials are fermions, but the collisions necessary to re-

thermalise atoms, and thus cooling down the system, are more likely between bosons,

making them the preferable options for some experiments, especially in magnetic spin

models where the exchange properties of the particles are unimportant. Secondly, ex-

periments in materials are carried out at constant temperature, via a thermal reservoir.

In ultracold atoms the systems are isolated from the environment, and changes in the

parameters (e.g. interactions, hopping) of the system induce changes on the gas tem-

perature. The invariant variable in these experiments is more often the entropy S of

the system, provided that the changes are made slowly so that excitations are avoided,

making the process adiabatic.

Nowadays, different Hamiltonians can be realised with both bosonic and fermionic

platforms. Bosonic systems favour ferromagnetic phases in the ground state, whereas

fermions tend to have antiferromagnetic ordering. Nonetheless, an advantage of bosons

over fermions in experimental platforms [89] is that lower entropies have been more

readily realised. Some recent experiments include the observation of antiferromagnetic

magnetic ordering in optical lattices with fermions [29–32], and the investigation of su-

perexchange mediated magnetization dynamics in pseudospin-1/2 bosons in a 2D lattice

[94]. We explain in the next section the concept of superexchange in more detail.
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3.1.1 Superexchange

We derived in the last chapter the generalised Bose-Hubbard model

Ĥ = −ζ
∑
〈i,j〉

b̂†j b̂i +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i. (3.1)

with tunnelling ζ and on-site interaction U .

To understand superexchange, we start with atoms localised in individual lattice sites

that can tunnel to the nearest-neighbour site. We then consider a virtual tunnelling to

the neighbour lattice site with tunnelling rate ζ. This adds an energy cost U due to

the on-site interaction by having the two atoms together on the same site. By energy

conservation, the atom tunnels back to the original lattice site (see Fig. 3.1 for a better

understanding of superexchange). The whole process results in a total energy element

JSE ∝ ζ2/U (the effective matrix element in perturbation theory) where JSE is this

critical energy or superexchange.

Figure 3.1: The process of superexchange is mediated by two virtual tunnelling events
between neighbouring sites in an optical lattice.

Typical experimental values are ζ ∼ 100Hz and U ∼ 0 − 10kHz. This sets the critical

temperatures to observe quantum magnetic ordering to the nanoKelvin regime. Su-

perexchange was first observed for cold atoms in isolated double well potentials in 2008

by Trotzky et al. [27].

Now that we understand how superexchange works, we can derive effective spin models.

This mapping will be done in the next section, where the core model for the results

in this thesis, being the Bose-Hubbard model for two different atomic species, will be

introduced.

3.2 Bose-Hubbard model for two bosonic components

A generalisation of Eq. 3.1, considering in particular the low energy model where atoms

are confined to the lowest Bloch band, the Bose-Hubbard model for two bosonic species
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A and B 1, trapped independently in an optical lattice, is [95–97]

Ĥ =− tA
∑
〈i,j〉

(â†i âj + â†j âi)− tB
∑
〈i,j〉

(b̂†i b̂j + b̂†j b̂i) + U
∑
i

n̂Ain̂Bi

+
1

2

∑
i,α=A,B

Vαn̂αi(n̂αi − 1)−
∑

i,α=A,B

µαn̂αi.
(3.2)

The first two terms denote the tunnelling energies tA and tB for the species A and B

respectively, where â†i , b̂
†
i , âi, b̂i are the bosonic creation and annihilation operators on site

i. The third term in the Hamiltonian designates the case where two atoms of different

species are on the same site, with U the inter-component on-site interaction, where n̂A

and n̂B are the number operators for the atomic species A and B, respectively. The

fourth term describes the intra-component on-site interaction, when atoms of the same

species seat on the same lattices site. The chemical potentials µA, µB will normally be

different. However, here they will be considered equal and fixed, as we will focus on the

case of equal populations. Lastly, 〈i, j〉 denotes nearest-neighbour sites.

Note that instead of two atomic species we could refer likewise to two different hyperfine

states of the same atomic species.

With the following simplifications:

• the tunnelling energies are the same for the two components: tA = tB = ζ;

• inter-component interaction is denoted as UAB;

• intra-component interactions are UA and UB, respectively;

• the chemical potential is negligible µα ' 0;

the Hamiltonian takes the form

Ĥ = −ζ
∑
〈i,j〉

(â†i âj + b̂†i b̂j) + UAB
∑
j

â†j âj b̂
†
j b̂j +

UA
2

∑
j

â†j â
†
j âj âj +

UB
2

∑
j

b̂†j b̂
†
j b̂j b̂j . (3.3)

In Fig. 3.2 the different terms of Eq. 3.3 are represented.

For strong interactions (UAB, UA, UB � ζ) the atoms become localized on individual

lattice sites (if we have integer filling), as it was explained in the last chapter when we

described the Mott Insulator regime. If the atoms are a mixture of two spin-components,

this is effectively a system of spins which are held to a lattice, interacting by superex-

change, as explained in the next section.

1components or species are interchangeable in the text.
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Figure 3.2: Bose-Hubbard model for two bosonic species in an optical lattice, where
ζ denotes the tunnelling rate, UAB the inter-component interaction, and UA, UB the
intra-component interactions.

3.2.1 From Bose-Hubbard to spin models

In the Mott Insulator regime where UAB, UA, UB � ζ, the Hamiltonian can be highly

simplified using second order perturbation theory in the tunnelling [96]. We consider a

particular integer occupation n on every site, that is, the filling factor introduced in the

previous chapter, in the lowest Bloch band. We also map the general spin operators in

terms of the bosonic creation and annihilation operators as

Ŝx,y,zj =
1

2

∑
β=A,B

ĉ†j,βσ̂
x,y,z
β ĉj,β, (3.4)

where ĉ†j,β=A,B, ĉj,β=A,B are the bosonic creation and annhilation operators for species A

and B, and σ̂x,y,z are the Pauli matrices [96]. Hence, we obtain, with the corresponding

operators species A and B, the different spin operators

Ŝzj =
1

2
(â†j âj − b̂

†
j b̂j), (3.5)

Ŝyj = − i

2
(â†j b̂j − b̂

†
j âj), (3.6)

Ŝxj =
1

2
(â†j b̂j + b̂†j âj). (3.7)

Next, we are considering two different cases, where either n = 2 on each lattice site, or

n = 1 on each lattice site.

n=2: Spin-1 model

We start with an integer filling with n = nA+nB = 2 atoms per site, with same number

of atoms of each species (n̂A = n̂B). We also consider UA = UB = U .

By applying second order perturbation theory in the tunnelling, we derived all of the

matrix elements for the effective Hamiltonian. All virtual tunnelling possibilities between

neighbouring sites in the optical lattice are taken into account (in Fig. 3.3 we sketch this

process for a better understanding).
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Figure 3.3: Hopping possibilities for the derivation of the effective spin-1 Heisenberg
model from the two-species Bose-Hubbard model with n = 2 atoms per lattice site.

The effective Hamiltonian results in an anisotropic spin-1 Heisenberg model

ĤSP1 = −J
∑
〈j,l〉

ŜjŜl + u
∑
l

(Ŝzl )2, (3.8)

with

J = 4
ζ2

UAB
, (3.9)

the superexchange term,

u = U − UAB, (3.10)

the anisotropy, and

Ŝj = (Ŝxj , Ŝ
y
j , Ŝ

z
j ), (3.11)

is a vector of the three spin-1 operators.

Hence, a model with two species of bosons with double occupation can be represented

as three different spin-1 states (|+1〉, |0〉, |−1〉) (see Fig. 3.4).

Figure 3.4: Spin-1 model: three states representation.

The lower energy states of the lattice for the spin (S=1) in the z-direction Sz = +1, 0,−1

are the three states:

â†l â
†
l |0〉 , (3.12)

â†l b̂
†
l |0〉 , (3.13)

b̂†l b̂
†
l |0〉 , (3.14)

respectively.
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n=1: Spin-1/2 model

In the case of total filling of one particle per site (n = 1, n̂A = n̂B), by applying second

order perturbation theory in the tunnelling, we derived all of the matrix elements for

the effective Hamiltonian as in Fig. 3.5.

Figure 3.5: Hopping possibilities for the derivation of the effective spin-1/2 Heisenberg
model from the two-species Bose-Hubbard model with n = 1 atom per lattice site.

In this case, spin |↑〉 represents the atomic species A and spin |↓〉 represents the atomic

species B, as in Fig. 3.6.

Figure 3.6: Spin-1/2 model: two-state representation. It is essential to mention that
we are talking about spin-1/2 bosons, coming from different hyperfine state levels of
integer spin.

The resulting effective Hamiltonian will be a spin-1/2 XXZ Heisenberg model

ĤSP1/2 = −Jxy
∑
〈j,l〉

(ŝxj ŝ
x
l + ŝyj ŝ

y
l ) + Jz

∑
〈j,l〉

ŝzj ŝ
z
l , (3.15)

where

Jz = 4
ζ2

UAB
− 4

ζ2

UA
− 4

ζ2

UB
, (3.16)

and

Jxy = 4
ζ2

UAB
. (3.17)

Here, ŝxj , ŝ
y
j , ŝ

z
j are the three spin-1/2 operators.

In the limit where UAB < UA = UB = U and ζ = 1, we have

Jxy =
4

UAB
, (3.18)
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and

Jz =
4

UAB
− 8

U
→ Jz < 0, (3.19)

and the effective Hamiltonian from Eq. 3.15 becomes (taking J = Jxy)

ĤSP1/2 = −J
∑
〈j,l〉

ŝj ŝl + ∆
∑
〈j,l〉

ŝzj ŝ
z
l , (3.20)

where

∆ = Jxy + Jz, (3.21)

denotes the coupling anisotropy in this XXZ Heisenberg model, and

ŝj = (ŝxj , ŝ
y
j , ŝ

z
j ), (3.22)

is a vector of the three spin-1/2 operators. We use this notation here to differentiate

from the spin-1 operators, as we will do in the rest of the thesis.

In the next section we will analyse the magnetic ground states of both Hamiltonians

depending on the value of the interactions, that is, the value of the anisotropies in the

spin models.

3.2.2 Ground state magnetic ordering

Here we include a mean-field picture of the ground state phases in different regimes for

the spin-1 and spin-1/2 model, depending on the value of the interactions.

The phase diagrams of the models are shown schematically in Fig. 3.7 depending on the

ratio of the anisotropies u,∆ and the superexchange J [95, 98, 99] .

(a) Spin-1

(b) Spin-1/2

Figure 3.7: Simplified mean field phase diagram in the spin picture, following [98]
results, for the Hamiltonians in Eq. 3.8(a) and Eq. 3.20(b), respectively.
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In Fig. 3.8 we sketch the magnetic ground state of the two models. For the spin-1

model Hamiltonian (Eq. 3.8), interactions of the same order (UAB ≈ U) lead to a XY-

ferromagnet in the ground state, induced by superexchange term, characterised by a

superposition of total spin in z Sz = +1, 0,−1 on each site. By having UAB > U , the

ground state is a z-ferromagnet, that is, all spins will point up (or down, depending

on the chosen basis). When UA = UB = U � UAB, hence, very low UAB compare to

u/J , the ground state state will show a spin insulator or spin Mott state configuration,

characterised by Sz = 0.

For the spin-1/2 Hamiltonian (Eq. 3.20), the ground state state will be an antiferro-

magnet when UAB is very low compared to U . The superposition of Sz = +1/2,−1/2

on each site indicates interactions of the same order (UAB ≈ U) leading again to a XY-

ferromagnet in the ground state. When UAB > U , the ground state is a z-ferromagnet.

(a) Spin-1 (b) Spin-1/2

Figure 3.8: Ground state magnetic phases for the spin models depending on the
interactions (mean-field picture). There are two cases not represented in the figure.
For the spin-1, having UAB > U , the ground state is a z-ferromagnet, that is, all spins
will point up (or down, depending on the chosen basis). For the spin-1/2, the ground
state state will be an antiferromagnet when UAB is very low compared to U .

In the Mott phase of two species of atoms, while the net density transport is still sup-

pressed, the counterflow (when the currents of the two species are equal in absolute values

and are in opposite directions) survives, and can be nondissipative (supercounterflow)

[96]. The XY-ferromagnetic Mott state can be then seen as a counterflow superfluid.

We will investigate this phase in the following chapters.

In both models, changing the interactions contributes to phase transitions. This is

important as we will study how to prepare specific magnetic ordering in both models

where we study different regimes depending on the anisotropy values of u/J and ∆/J ,

respectively.
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Experimentally, spin-dependent lattices can be used to adiabatically tune the system

from a spin Mott regime to an XY-ferromagnet. The interactions can be tuned by using

Feshbach resonances [24]. The detection of the magnetic states could be performed

by measuring population difference locally between the different spin states, or using

imaging techniques such as quantum microscopes or Bragg scattering [29, 100].

3.3 Summary

In this chapter we have described how quantum magnetism can be studied with ultracold

atoms in optical lattices. Furthermore, the concept of superexchange, which describes

magnetism induced by tunnelling and local interactions between particles, has been

explained.

The Bose-Hubbard model for two bosonic components has been introduced. We have

derived two different effective spin models from this Bose-Hubbard model, one for spin-1,

and one spin-1/2 XXZ Heisenberg Hamiltonian. These are the core models for all of the

research results presented in the next chapters.

The interactions produce particular magnetic ordering in the ground state of the models

in different parameter regimes. In the coming chapters we present different approaches

to prepare specific ground states. In chapter 5 we investigate the XY-ferromagnetic

(or counterflow spin superfluid) phase. We also study ways to probe these states by

analysing the out-of-equilibrium dynamics in the systems. Furthermore, we compute

thermal states for these systems, and analyse the spin currents. In chapter 6 we use

adiabatic ramps to prepare specific ground states (XY-ferromagnet and antiferromagnet)

of the corresponding spin Hamiltonians. However, before presenting these results, we

need to provide an overview of the numerical tools needed to investigate these quantum

many-body systems. This will be the focus of the next chapter.
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Chapter 4

Numerical Simulation

Nowadays, numerical simulations play a fundamental role in any theoretical research.

In cold atoms in optical lattices, our field of study, analytical solutions typically rely on

certain approximations that limit our ability to model realistic experimental scenarios.

We can use Exact Diagonalisation, described in 4.1, to simulate these kind of systems.

However, we have mentioned in previous chapters that in a system of M atoms, the

size of the Hilbert space will be proportional to dM , being d the local dimension of

the system. Exact Diagonalisation (ED) then has limitations in terms of memory and

computational time required for systems with more than M = 20 atoms. To handle this

many-body problem numerically, the Density Matrix Renormalisation Group (DMRG)

algorithm was introduced [39, 40]. The basic idea behind DMRG is to truncate the

Hilbert space by keeping the most important basis states, without a significant change

of the physical features. We provide an introduction to DMRG in section 4.2.

An efficient representation of the Hilbert space to be able to describe the system of

interest and access all its properties is based on Matrix Product States (MPS) and Matrix

Product Operators (MPOS). We extensively review these concepts in section 4.2.1. We

are going to widely use the MPS and MPO methods presented in this chapter to simulate

the dynamics of spin Hamiltonians in Chapters 5, 6 and 7.

One of the central questions for any quantum problem is to find the ground state of

the Hamiltonian, and study its properties. ln section 4.2.2 we present a variational

ansatz to find ground states. Following the properties of the ground state, we are

interested in evolving the quantum systems, and understanding dynamical phenomena.

Although there are numerous algorithms to study the dynamics of quantum systems,

we focus on those approaches using MPS and MPOs, as we can implement the kind of

spin models we investigate in 1D for experimental system sizes. Two of these methods

are Time-Evolving Block Decimation Algorithm (TEBD), in section 4.2.3.1, and Time
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Dependent Variational Principle (TDVP), in section 4.2.3.2. We use these algorithms

in the following chapters.

Furthermore, in section 4.2.4, we present the Ancilla method to simulate finite temper-

ature states, which is the method we use for the results presented in section 5.4.

Beyond the previous simplified closed model, we also provide a brief overview of open

quantum systems, that is, when the system interacts with its environment, and the

evolution of the system is governed by the master equation (section 4.3.1). We introduce

the quantum trajectory method in section 4.3.2, where the master equation is rewritten

as a stochastic average over individual trajectories. This is particularly useful in our

case when we consider dissipation in our lattice models, as we consider in section 6.4.4.

4.1 Exact Diagonalisation

The exact diagonalisation (ED) technique [53] relies on solving an eigenvalue problem.

When analysing our quantum system we often face tasks such as solving the Schrödinger

equation

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 , (4.1)

or finding the eigenvalues Ei and eigenvectors ψi (e.g. to compute the ground state) for

a given Hamiltonian

Ĥ |ψi〉 = Ei |ψi〉 . (4.2)

One way to attain larger system sizes with ED is to use symmetries, i.e., when there

is a set of operators {Oi} which commutes with the Hamiltonian. In this case the full

Hamiltonian can be reduced to the diagonalisation of smaller matrices defined by the

subspaces composed of the well-defined eigenvalues of the operators. To understand this

better, we can write the Hamiltonian in matrix form

Ĥ =


Ĥ11 . . . Ĥ1N

...
. . .

...

ĤN1 . . . ĤNN

 , (4.3)

where the matrix elements are Ĥij = 〈ψj |Ĥ|ψi〉. This matrix is usually sparse, with

typically only O(M) non-zero coefficients. But the sizes are still limited. This means

that large matrices can be stored in memory. The most popular algorithm for this kind

of problems is the Lanczos algorithm [101], which is very accessible because to calculate

the ground state energy only few iterations are needed. One of the drawbacks, however,

is that it does not work so well in the middle of the spectrum.
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Using the Lanczos method, we can also compute the time evolution of the Hamiltonian.

These techniques are based on Krylov-space methods. The Krylov space is a sub-space

of the full Hilbert space, and the low-lying states of a Hamiltonian of interest should

be well approximated within it. We evaluate the matrix exponential of a Hamiltonian

matrix using Krylov subspace projection.

Coming back to the Schrödinger equation in 4.1, the evolution of the state will be

|ψ(t)〉 = e−
i
~ Ĥt |ψ(0)〉 . (4.4)

where the evolution operator is (we set up ~ = 1 for simplicity)

ˆU(t) = eiĤt. (4.5)

We could think of evaluating explicitly this evolution at each time step, that is

|ψ(t+ ∆t)〉 = (1− iĤ∆t) |ψ(t)〉+O(∆t2). (4.6)

However, we need to renormalise at each time step, due to the large time step error,

and because the evolution operator ˆU(∆t) = (1 − iĤ∆t) is not unitary. There are

some methods with better robustness and scaling, such as the Crank-Nicholson methods,

which relies in an intermediate step, half-evolving the state forward and backward (more

details can be found in [102]).

Now, in order to use Krylov methods, we will Taylor expansion the evolution of the state

ˆU(t) = e−iĤt = 1 +
−iĤt

1!
+

(−iĤt)2

2!
+

(−iĤt)3

3!
+ ..., (4.7)

that is

|ψ(t)〉 = ˆU(t) |ψ(0)〉 = |ψ(0)〉+
−iĤt

1!
|ψ(0)〉+

(−iĤt)2

2!
|ψ(0)〉+ ..., (4.8)

and we truncate the evolution after n terms (normally for sparse matrices, n values are

much smaller than the dimension of Ĥ)

|ψ(t)〉 = |ψ(0)〉+α1(Ĥt) |ψ(0)〉+α2(Ĥt)2 |ψ(0)〉+ ...+αn(Ĥt)n |ψ(0)〉+O(tn+1), (4.9)

with coefficients

αn = −(i)n

n!
. (4.10)
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The truncated Krylov subspace is

K = (Ĥt, |ψ(0)〉) = {|ψ(0)〉 , (Ĥt) |ψ(0)〉 , (Ĥt)2 |ψ(0)〉 , ..., (Ĥt)n |ψ(0)〉}, (4.11)

spanned by non-orthonormal vectors (making the coefficients not certainly the best

coefficients). The algorithm relies on finding the optimal linear combination in the

Krylov subspace to represent the state.

The techniques described above are the key elements for matrix diagonalisation and time

evolution, in functions such as eig built in MATLAB R©, and expv from Expokit [103].

These are essential functions used for small systems results in the following chapters.

Unfortunately, in order to simulate many-body physics we need system sizes representing

what can be done in the experiments. For a system of M atoms in an optical lattice,

the total Hilbert space will increase exponentially with the number of atoms

dim(Ĥ) = dim{Ĥ1 ⊗ Ĥ2 ⊗ ...⊗ ĤM} = dM . (4.12)

We provide an idea why a standard diagonalisation where all matrix elements are stored

faces difficulties for a classical computer. Considering a system of N spins (bosons in

our models) in an optical lattice of M sites, the dimension of the Hilbert space is

dim(Ĥ) =
(N +M − 1)!

N !(M − 1)!
. (4.13)

From now on, we consider the case where N = M . Giving specific values, for a system

of size M = 12, the dim(Ĥ) ' 1352078, and for M = 24 dim(Ĥ) ' 16.12 × 1012,

respectively. In terms of memory, and a system with M = 12 spin-1/2 atoms, the

requested memory capacity will be 256Mb to store all complex numbers. For a system

size M = 24, more than 4000Tb are needed. To operate with such a high memory

requirement, ED is not sufficient, even if we use some symmetries and sparse matrices,

which means that we need other methods for the simulation of larger systems. We could

build a quantum computer, or we could employ Reduced Hilbert Space Techniques.

The latter will be the core of the next section, where different algorithms based on MPS

techniques will be presented.

4.2 Density Matrix Renormalisation Group (DMRG)

In certain systems, only a small subset of the possible states are actually important

for the calculation of most quantities of interest. In 2D and 3D this is only true for

small systems. In 1D, we are interested in ground states and low-lying excited states
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of many-body quantum systems, which belong to a low-entangled subset of the whole

Hilbert space. This means that we do not need to represent the full Hilbert space,

and that we should be able to truncate our Hilbert space by removing the long-range

entanglement that is not involved in the ground state nor in the time evolution of the

system. The effectiveness of these methods will be depending on how reliable this trun-

cation is. The renormalisation technique applied to one-dimensional quantum systems

was introduced in the 90s by White [39, 40], the Density Matrix Renormalisation Group

(DMRG). DMRG allows for the calculation of ground states of spin models in 1D at

zero temperature for all gapped Hamiltonians with finite-range interactions.

The area law

We have mentioned that we are interested in a subset of the full Hilbert space with

low entanglement. To understand the success of DMRG in 1D, we need to explain the

so-called area law, where the area of the boundary is independent of the system size,

and so is the entanglement entropy, where the Hamiltonian is local [104]. In Fig. 4.1

we sketch this idea of the subspace, within the Hilbert space, where our interest relies,

containing the ground states and the low-lying excited states of the Hamiltonians.

Figure 4.1: Sketch of the full Hilbert space and the small subset where states obey
the area law, including the ground state. By effectively representing these states, we
can reduce the size of the Hilbert space we need to compute, thus, reducing the memory
needed and increasing the efficiency of the simulations.

For ground states of short-ranged Hamiltonians with a gap to excited states the entan-

glement entropy is proportional to the size of the boundary. In 1D this boundary is

constant, hence the entanglement, meaning that it does not grow with system size, as in

Fig. 4.2(a). For 2D, the entanglement entropy grows with the size of the system, as in

Fig. 4.2(b). For this reason, the effectiveness of DMRG in 2D will fail even for relatively

small systems.
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(a) 1D (b) 2D

Figure 4.2: Area Law for a (a) one-dimensional and a (b) two-dimensional system of
atoms. The von Neumann entropy (or entanglement entropy) grows with the syze of
the boundary in 2D, while it remains constant for 1D. This is the success of DMRG
methods for the Hamiltonians of one-dimensional quantum systems.

The following step in the development of these powerful numerical tools was to find an

efficient representation for this low-entangled subspace. The idea of using Matrix Prod-

uct states to represent DMRG ground states was introduced by Ostlund and Rommer

[105, 106]. In the next section we describe Matrix Product States, based on tensor net-

works, including all of the ingredients we need to present the different algorithms we use

for the calculation of ground states, thermal states, and time evolution in our systems.

4.2.1 Matrix Product States (MPS)

We explained how the Hilbert space of a quantum mechanical many-body system grows

exponentially with system size. We also said that the one-dimensional relevant states

we want to investigate will have a entanglement entropy independent of system size.

An efficient representation of these low entanglement states is called Matrix Product

States (MPS). The optimal representation is the same as in DMRG: the eigenstates of

the reduced density matrix with the largest eigenvalues are retained. We now explain

why this is the case.

We represent a state in the complete Hilbert space, spanned in local basis {i}, of a

one-dimensional Hamiltonian of interest with dimension dM as

|ψ〉 =

d∑
i1,...,iM

Ci1,...,iM |i1, ..., iM 〉 . (4.14)

We now arrange these coefficients as

Ci1,...,iM = Ai1[1]A
i2
[1],[2]...A

iM−1

[M−1],[M ]A
iM
[M ], (4.15)

Chapter 4



4.2. Density Matrix Renormalisation Group (DMRG) 37

where each Aim is a matrix depending on the local state |i〉m. Thus, we obtain a generic

Matrix Product State

|ψ〉 =
∑
i1...iM

Ai1[1]A
i2
[1],[2]...A

iM−1

[M−1],[M ]A
iM
[M ] |i1, ..., iM 〉 . (4.16)

So far we have performed a rearrangement of terms, the power of the method will come

with the truncation. In order to understand how the truncation is performed, we need

to recall some concepts from linear algebra.

Singular Value Decomposition (SVD)

To perform the truncation, i.e. choosing the optimal state represented with fewer pa-

rameters, we use Single Value Decomposition (SVD) [42, 47, 107].

For any rectangular matrix M of dimensions m × n, with k = min(m,n) we can have

the following decomposition

M = USV †, (4.17)

where

• U has dimensions m× k, with orthonormal columns (left singular vectors), satis-

fying U †U = 1, and unitary when m ≤ n.

• S has dimensions k × k, and is diagonal. The values on the diagonal are real and

non-negative, and are called the singular values s. The number of positive s values,

and smaller than k, is called the Schmidt Rank.

• V † has dimensions k × n, with orthonormal rows (right singular vectors), where

V †V = 1. When m ≥ n, is also unitary.

The Schmidt Rank

We can relate this now to a bipartite quantum state residing in the Hilbert space Ĥ,

composed of two subspaces A (sites 1 through m) and B (sites m+ 1 through M), with

dimensions dA and dB, that is Ĥ = ĤA ⊗ ĤB. The quantum state can be denoted as

|ψAB〉 =

dA∑
i

dB∑
j

Ci,j |i〉A ⊗ |j〉B, (4.18)

with |i〉A and |j〉B being the subsystems orthonormal basis. We decompose Ci,j via

Singular Value Decomposition as

C = USV †, (4.19)
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or as

Ci,j =

DAB∑
k

Ui,kSk,kV
†
k,j , (4.20)

where S is a diagonal matrix of dimension dA × dB and singular values sk,k, and we

define DAB as the minimum of the two dimensions, thus DAB = min(dA, dB). Here

The Schmidt coefficients are λk ≡ sk,k and satisfy

∑
l

λ2
k = 1, (4.21)

where the number of non-zero λk defines the Schmidt rank, which quantifies the amount

of entanglement between subsystems A and B [42, 47, 107]. If there is more than one

non-zero Schmidt value, the two parts of the system are entangled. Another way to

quantify this bipartite entanglement is by calculating the von Neumann entropy of the

subsystems. We have for the subsystems

SvN (ρA) = −TrρA(log2 ρA) = −TrρB(log2 ρB) = SvN (ρB), (4.22)

where Tr denotes the trace, with ρA = TrB |ψ〉AB 〈ψ|AB and ρB = TrA |ψ〉AB 〈ψ|AB the

reduced density matrices of the subsystems A and B.

Hence the von Neumann entropy becomes

SvN = −
DAB∑
k

λ2
k(log2 λ

2
k). (4.23)

and will be 0 ≤ SvN ≤ log2(DAB). We can relate DAB with the bond dimension, that

is, the dimension of the common index between every two matrices A[i] in Eq. 4.16 .

DAB can be used to measure the entanglement of the system, and will be an important

parameter for all further analyses done with numerical simulations in this thesis. The

state |ψAB〉 from Eq. 4.18 can now be represented with the Schmidt coefficients as

|ψAB〉 =

DAB∑
k=1

λk|ΦA
k 〉 ⊗ |ΦB

k 〉, (4.24)

where

|ΦA
k 〉 ≡

dA∑
i=1

Ui,k |i〉A , (4.25)

and

|ΦB
k 〉 ≡

dB∑
j=1

Vk,j |j〉B , (4.26)
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are the Schmidt vectors from orthornormal basis in the subsystems A and B, and

Ui,k, Vk,j come from the SVD. The Matrix Product State that best represents a given

state can be built this way, by applying singular value decompositions (see Fig. 4.3),

based on the real positive singular values of the Schmidt coefficients.

Figure 4.3: Singular Value Decomposition of matrix A, where shaded regions denote
the relevant part in the systems.

The way it works is by building blocks, starting from a block with just one site, and add

site by site. With a maximum number D of states for a block description, assuming we

have the block A described above, we take a block of length m− 1, with basis {|am−1〉},
and add site m, having

|am〉 =
∑

am−1,im

〈am−1, im|am〉 |am〉 |am−1〉 |im〉 ≡
∑

am−1,im

Ai1am−1,am |am−1〉 |im〉 . (4.27)

Now we can iterate all of the coefficients to obtain

|am〉 =
∑
i1...im

(Ai1Ai2 ...Aim)1,am |i1, i2..., im〉 . (4.28)

We now have MdD2 coefficients, in comparison to the exponential coefficients dM , and

we can represent any MPS using tensor network graphical notation, where the bond

dimension D is the maximum linear dimension of any of the matrices Aim[m]. In Fig. 4.4

we represent the state as a product of matrices, a Matrix Product State. The error per

Figure 4.4: Tensor network representation of a Matrix Product State for the state
|ψ〉, where dM coefficients are now represented with d ·M matrices, where D is the
bond dimension. Each tensor has a number of indices (represented as legs). Closed
links mean contraction over those indices here, as we see on the right hand side of the
figure.

bond in the truncation comes from the Schmidt coefficients condition in Eq. 4.21 and it

will be

εk =

Dk∑
ik

(λ
[k]
ik

)2. (4.29)
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A Matrix Product State representation of states is not unique. There is a gauge freedom

[42, 47, 107] for MPS, both for the general state decomposition and the block procedure.

If we begin SVD building blocks from the left, adding blocks to the right, we will have

left-normalised matrices with ∑
im

Aim†Aim = 1, (4.30)

and if we start building blocks from the right, adding blocks to the left,

∑
im

BimBim† = 1, (4.31)

the matrices are similarly called right-normalised. This gauge freedom leads to the

mixed canonical forms of MPS, performing SVD from both the left and the right side,

and hence simplifying most of the algorithms. As an example, if we want to evaluate

the expectation value of a local operator Ôm on site m, all orthonormal tensors on the

left and on the right will produce identities after being contracted from the edges. The

expression with MPS is

〈ψ|Ô[m]|ψ〉 =

Dm∑
im,i′m=1

(A
[m]
i′m

)†Oim,i′mA
[m]
im
, (4.32)

with O the matrix representation of the operator in the basis |im〉.

Until now, in our description of the MPS we considered open boundary conditions,

where the bond dimensions at the boundaries Di1 = DiM = 1. If we want to use

periodic boundary conditions in our models, that is, we have all tensors connected in a

ring, then the representation of the MPS on a lattice with M sites will be

|ψPBC〉 =
D∑

i1,...iM=1

Tr(Ai1[1]...A
iM
[M ]) |i1, ..iM 〉 . (4.33)

Here, the condition for the bond dimensions at the boundaries D[1] = D[M ] is not valid

any longer.

Matrix Product Operators MPO

The generalisation of MPS to represent operators with tensor networks is called Matrix

Product Operator, or MPO [42, 47, 107, 108]. The most general MPO on m sites is

Ô =
∑
{i}

∑
{i′}

Ai1i
′
1Ai2i

′
2 ...AiM i

′
M |i1, ..., iM 〉 〈i′1, ..., i′M | . (4.34)
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Graphically, we can represent an MPO the same way we do with MPS, as a product

of local tensors, as depicted in Fig. 4.5(a). We also show the application of a Matrix

Product Operator to a Matrix Product State, with the corresponding contraction in

Fig. 4.5(b).

(a) MPO (b) MPO applied to MPS |ψ〉

Figure 4.5: (a) Tensor network representation of a Matrix Product Operator for the
operator Ô. (b) Application of a Matrix Product Operator to a Matrix Product State,
where all connected lines contract.

The use of MPOs is very effective for example to represent one-dimensional Hamiltoni-

ans, or for some time evolution algorithms, as we will see in the coming sections. Next,

we present how to find the ground state of a Hamiltonian using MPS.

4.2.2 Variational search for the ground state

We use Matrix Product States as a variational ansatz for the eigenstates of a Hamiltonian

expressed as a Matrix Product Operator [47]. The ground state is found by minimising

the energy of the system as

E = min|ψ〉
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , (4.35)

with respect to the parameters of |ψ〉. The way the algorithm works is by introducing a

Lagrange multiplier that we call Λ, that is, we need to find the minimum of the equation

〈ψ|Ĥ|ψ〉 − Λ 〈ψ|ψ〉 . (4.36)

Now we define the orthogonality center C [m] on site m, which we call the active site.

We start with the expectation value 〈ψ|Ĥ|ψ〉, and optimise it to the tensor on the site

m. To do so, we look for zeros to the derivative with respect to the tensor

∂

∂C [m]
(〈ψ|Ĥ|ψ〉 − Λ 〈ψ|ψ〉) = 0. (4.37)

In Fig. 4.6 we show graphically the algorithm on one site. After this site is optimised,

thus the minimum is found, then we do the same in the next site, and like that to all

sites, finding the global minimum after one or several sweeps throughout the system,

finding the ground state with energy Λ ≡ E0.
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Figure 4.6: Tensor network representation of the variational search for the ground
state of the Hamiltonian Ĥ. Lighter coloured sites are being optimised by the algorithm.

As a matter of fact, this is equivalent to an eigenvalue problem, as

ĤEFνm = ΛMEFνm, (4.38)

where ĤEF is the reshaped tensor after removal of the site m being optimised, and νm

is the reshaped vector of C [m]. To secure the algorithm works we ensure that at each

step we chose C [m] to be the eigenvector with the smallest eigenvalue of ĤEF (typically

computed using Lanczos method [101]).

Now we have all ingredients to represent states, operators, and perform operations with

them, for our systems. The essential operation we need next is the evolution in time

of our state. In the coming section, the two main algorithms used in this thesis will be

described.

4.2.3 Time evolution algorithms: TEBD, TDVP

There are different methods to compute the time evolution of ground states using MPS

and MPOs. We start with one of the first algorithms developed to evolve states in MPS

form. The basic idea is to decompose the Hamiltonian into two-site operators and apply

them systematically.

4.2.3.1 Time-Evolving Block Decimation Algorithm (TEBD)

The Time Evolving Block Decimation (TEBD) algorithm was developed by Vidal [43,

44], and unlike a time-dependent DMRG algorithm to reduce the number of coefficients

stored, the truncation of the Hilbert space in TEBD adapts this during the time evolution

[108]). In the basic form of the algorithm only nearest-neighbour terms are allowed.

Here we are going to focus on the finite-system TEBD algorithm. To avoid exponential

growth of the bond dimension in our MPS, we need to truncate and keep only the

largest Schmidt coefficients. To understand how TEBD works, we need to introduce the
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Suzuki-Trotter decomposition [109]. We start by expressing our Hamiltonian as a sum

over two-site Hamiltonians

ĤNN =
M−1∑
m

ĥm,m+1. (4.39)

The evolution operator will be (~ = 1)

ÛNN(∆T ) = e−iĤNN∆t ' e

−i

M−1∑
m

ĥm,m+1∆t

, (4.40)

and can be expressed as a product of individual nearest-neighbours gates

Ûm,m+1(∆T ) = e−iĤNN∆t =
∏
m

e−iĥm,m+1∆t +O(∆t2), (4.41)

with the error coming from the fact that the neighbours Hamiltonian do not commute

with each other.

As an example, if we use the first-order Trotter decomposition as in Eq. 4.39, we will

have

e(ĥm+ĥm+1)∆t ≈ e(ĥm∆t)e(ĥm+1∆t). (4.42)

If we evolve in time by ∆t, and then evolve backwards by ∆t, we do not return to the

initial state. To rectify this, we use the second order decomposition

e(ĥm+ĥm+1)∆t ≈ e(ĥm
∆t
2

)e(ĥm+1
∆t
2

). (4.43)

We can always decompose eĥm+ĥm+1∆t into a product of more exponential obtaining

higher order Trotter expansions.

The application of TEBD to our state will be done in the same way. Two neighbouring

sites are contracted on sites m and m+ 1. We continue applying to next sites back

and forth to have a second order Trotter expansion as in Eq. 4.43, depicted in Fig. 4.7.

The resulting tensor on neighbouring sites is then reshaped into a matrix of dimensions

dD
[m]
L ×dD

[m]
R m being L and R the left and right side, respectively. Then we perform the

truncation using SVD as it was explained in section 4.2.1 (see Fig. 4.8 for a representation

of a single step in the algorithm).

TEBD allows time dependent simulations of large 1D quantum systems, for a Hamilto-

nian with local operations. This means that we can use it for our spin-1 and spin-1/2

models, introduced in chapter 3, with nearest-neighbours interactions. The main sources
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Figure 4.7: TEBD algorithm using Suzuki-Trotter decomposition on neighbouring
sites.

Figure 4.8: Two neighbouring sites are contracted, resulting in a tensor that will be
reshaped to a matrix where SVD will be performed.

of error for this kind of methods come from the truncation of the Schmidt decomposi-

tion or from the Trotter expansion of the Hamiltonian, but both can be controlled and

monitored.

In the next sections we will present other methods to simulate time evolution of quantum

states and the application for thermal states calculations.

4.2.3.2 Time Dependent Variational Principle (TDVP)

An alternative algorithm to simulate time evolution is the Dirac-Frenkel Time-Dependent

Variational Principle (TDVP) method [48], developed to avoid the Trotter errors we en-

counter with TEBD, mainly truncation errors when selecting the largest Schmidt coeffi-

cients (Eq. 4.29). This method also provides a solution to other kind of problems, such as

thermal states, presented in the next section, and systems with long-range interactions.
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The TDVP algorithm relies on the manifold interpretation of uniform matrix product

states, and, in particular, the concept of a tangent space. We start with a MPS tensor

time dependent |ψ(A(t))〉, where A(t) is a time dependent parameter, and the state ψ

belongs to a manifold of the Hilbert space, the tangent space (see Fig. 4.9). On the

Figure 4.9: Sketch of the manifold where the time dependent MPS tensor lies, a
subspace of the Hilbert space.

other hand, the time evolution of such a state is given by the Schrödinger equation is

i
∂ |ψ(A(t))〉

∂t
= Ĥ |ψ(A(t))〉 . (4.44)

If contained in the manifold, the left-hand side is a tangent vector

i
∂ |ψ(A(t))〉

∂t
= |Φ(Ȧ; A)〉 , (4.45)

where Ȧ(t) is a highly non-linear differential equation for the MPS tensor

Ȧ(t) = f(A(t)), (4.46)

but the right-hand side is out of the manifold. This is corrected with TDVP, where we

project the time evolution into the tangent space

i~
∂ |ψ(A(t))〉

∂t
= P|ψ(A(t))〉Ĥ |ψ(A(t))〉 , (4.47)

thus

|Φ(Ȧ;A)〉 = −iP|ψ(A(t))〉Ĥ |ψ(A(t))〉 . (4.48)

Eventually, we want to find |Φ(Ȧ;A)〉 that minimises the function∥∥∥∥iP|ψ(A(t))〉Ĥ |ψ(A(t))〉 − |Φ(Ȧ;A)〉
∥∥∥∥, (4.49)

which surprisingly is very similar to the way we calculated ground states in section 4.2.2.
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The most successful application of TDVP is the idea of using a Trotter decomposi-

tion of the projector on the tangent space P|ψ(A(t))〉 defined as a MPO. Here, we use

imaginary-time evolution corresponding to a steepest-descent optimization scheme us-

ing the tangent-space gradient. This process is very similar to what was explained in

section 4.2.2. The Hamiltonian will be the effective Hamiltonian reshaped after removal

of the site m, and where we evolve the vector νm in time as

νm(t+ ∆t) = e−iĤEFF∆tνm(t). (4.50)

In Fig. 4.10 we sketch the whole process for a better understanding of how the algorithm

works.

Figure 4.10: Representation of the TDVP algorithm to evolve in imaginary time
evolution the reshaped vector νm from a local site m. This method relies in the same
principles as the variational search for the ground state explained in section 4.2.2.

We have now presented the background on MPS and MPOs, introduced a method to

find the ground state of the Hamiltonian, and described two different time evolution

algorithms with MPS and MPOs. Another example of time-dependent algorithm that

we used for some calculations is the application of Runge-Kutta-like method with MPS

[110]. However, we do not go into details as we found in some preliminary results, for

our particular problems, that with Runge-Kutta there was not satisfactory convergence

with the corresponding ED results. Next, we will apply TDVP to simulate thermal

states, which will be used for the results in section 5.4.2.

4.2.4 Finite temperature algorithm: The Ancilla method

The approach we use to calculate thermal states involves the evolution of initial infinite

temperature density matrix to finite temperatures by means of the Time-Dependent

Variational Principle (TDVP) method described in the previous section. It is called the

Ancilla method [47, 111] based on purification [45, 112].
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At finite temperature, the quantum system state is given by the thermal density matrix

ρ̂th =
e−βĤ

Z
, (4.51)

with Z the partition function. We start by defining the density matrix in MPO form.

At the initial point of the evolution the system is considered at infinite temperature, i.e.

its density matrix is proportional to the identity

ρ0 ∝ 1, (4.52)

where all states have equal probability of occupation. Then, the next step is to evolve

the density matrix to finite temperatures

ρ̂(β) ∝ e−βĤ. (4.53)

We use a purification technique to preserve positive semi-definiteness (all eigenvalues

have to be ≥ 0) of the density matrix (ρ̂(β) = ρ̂(β)†), and this technique rewrites ρ̂ as

ρ̂(β) ∝ e−βĤ/2ρ0e−βĤ/2. (4.54)

The purification technique relies in reshaping the density matrix (MPO) into a pure

state (MPS), and since

ρ̂0 = ρ̂2
0 = ρ̂0ρ̂

†
0, (4.55)

only one side of the above expression needs to be evolved, thus

ρ̄(β) ≡ e−βĤ/2√
Z

ρ̂0. (4.56)

We perform our numerical simulations by performing an evolution on β in the formula

from Eq. 4.51, with the state

|ψ(β)〉 = e−βĤ/2|ψ(0)〉. (4.57)

The evolution of the physical sites is realized via TDVP methods with imaginary time

evolution, as described in the previous section. In Fig. 4.11 we summarised the process

for this method. The thermal expectation value of an arbitrary operator Ô can be then

obtained as

〈Ô〉β =
tr[Ôρ̄(β)ρ̄†(β)]

tr[ρ̄(β)ρ̄†(β)]
. (4.58)

We have all elements to understand how the time evolution of a state can be done using

MPS and MPOs. In this section we have applied imaginary time evolution using the
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Figure 4.11: We reshape the density matrix (MPO) into a MPS and evolve in imag-
inary time evolution the contracted vector for each local site. Then we evolve using
Trotter gates to the next site. This method relies in the same method described in
section 4.2.3.2.

TDVP algorithm to evolve thermal states and calculate thermal expectation values. We

can also use TDVP methods in Hamiltonians with long-range interaction, as we will see

in Chapter 7.

Until now we have discussed numerical algorithms for closed quantum systems which

means that these systems are isolated from the environment. In reality, however, sys-

tems are not fully isolated, and we must consider its interaction with the environment.

Last section of this chapter is devoted to open quantum systems and a very successful

numerical tool to capture the physics of quantum systems in the presence of dissipation

into the environment, quantum trajectories.

4.3 Open quantum systems

When describing the coupling of a quantum system with its environment, we typically

consider the system much smaller than the environment. When we describe a global

system of our system and its environment, the Hamiltonian contains three terms

Ĥ = ĤSYS + ĤENV + ĤINT, (4.59)

where ĤSYS describes the quantum system, ĤENV the environment, and ĤINT the in-

teraction, that we assume to be a weak coupling between the two. In Fig. 4.12(a) we

show a diagram of an open quantum system.

We denote the state of our system, a pure state, as

|ψ〉 = |ψ〉SYS ⊗ |ψ〉ENV . (4.60)

We are interested in the dynamics of the quantum system, and therefore we trace out

the environment, obtaining the density matrix for the system

ρ̂SYS = TrENV(|ψ〉 〈ψ|), (4.61)
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(a) Open quantum system (b) MPO applied to MPS |ψ〉

Figure 4.12: (a) Full diagram of an open quantum system showing the different terms
in the Hamiltonian. (b) In a two level system, the interaction with the environment
occurs with an amplitude γ, with γ � ω0, being ω0 the atomic transition. In this
scheme, the external field is ωL and δ is the detuning.

which will become mixed. Next, we introduce the master equation to describe the

evolution of our open quantum system.

4.3.1 The Master Equation

Without going into the details of the derivation of the general master equation for open

quantum systems [49, 113], a summary of the approximations used in quantum optics

is provided:

• Rotating wave approximation (RWA): the non-conserving energy terms can be

neglected.

• Born approximation: The coupling between the system and the environment is

typically weak, loosely speaking: ‖ ĤINT ‖�‖ ĤENV ‖, ‖ ĤSYS ‖. Therefore, the

coupling is weak in comparison with the system and environment energy scales.

• Markov Approximation: The environment relaxes back to its thermodynamical

equilibrium and provides a response to the system before any other event takes

place in the system. Hence, the environment is unchanged in time.

The resulting markovian master equation in Lindblad form will be (here ρ̂ ≡ ρ̂SYS for

simplification)
d

dt
ρ̂ = − i

~
[Ĥ, ρ̂]− L[ρ̂], (4.62)

with L the Lindbladian operator with a set of “jump operators” acting on the system

coupling it with the environment. Expanding the Lindbladian operator we get

d

dt
ρ̂ = − i

~
[Ĥ, ρ̂]− 1

2

∑
m

γm[Ĉ†mĈmρ+ ρĈ†mĈm − 2ĈmρĈ
†
m], (4.63)
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with γm the dissipation rate on site m (although we could consider dissipation pro-

cesses affecting more than one site, here we study local processes), and Ĉ, Ĉ† the “jump

operators”.

The computation of the master equation is extremely heavy, as the density matrix has a

dimension dim(ρ̂) = dim(Ĥ)×dim(Ĥ). We use a method based on quantum trajectories

to overcome this issue, and it will be described next.

4.3.2 Quantum Trajectories and the quantum jump approach

The idea of quantum trajectories [50] is based on mapping the evolution of the open

quantum system into an stochastic process. These techniques involve rewriting the mas-

ter equation as a stochastic average over individual trajectories of pure states, evolved

in time numerically [51]. Thus, we do not evolve the density matrix using the master

equation, but instead we simulate probabilistic events (i.e. “quantum jumps”) by com-

puting a state |φ(t)〉 evolved under a non-Hermitian Hamiltonian. Firstly, we rewrite

Eq. 4.63 as (~ = 1)

d

dt
ρ̂ = −i(Ĥeffρ̂(t)− ρ̂(t)Ĥ†eff) +

∑
m

γmĈmρĈ
†
m, (4.64)

where the effective non Hermitian Hamiltonian for the dissipative system is

Ĥeff = Ĥ − i

2

∑
m

γmĈ
†
mĈm. (4.65)

We start constructing the stochastic process by expanding the master equation to first

order in a time step δt. We will then evolve individual trajectories of |φ(t)〉. To evaluate

the value of any observable, we will average over the trajectories.

Step 1: evolve the state |φ(t)〉 according to the effective Hamiltonian for a small time

δt:

|φ1(t+ δt)〉 = e−iĤeffδt |φ(t)〉 . (4.66)

In order to normalise the state (as Ĥeff is not hermitian), as δt is small

〈φ1(t+ δt)|φ1(t+ δt)〉 ≈ 〈φ(t)|(1 + iĤ†effδt)(1− iĤeffδt)|φ(t)〉
≈ 〈φ(t)|φ(t)〉 − iδt 〈φ(t)|Ĥeff − Ĥ†eff|φ(t)〉
= 1− δp,

(4.67)
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assuming the initial state |φ(t)〉 was normalised, and with

δp = iδt 〈φ(t)|Ĥeff − Ĥ†eff|φ(t)〉 = δt
∑
m

γm 〈φ(t)|Ĉ†mĈm|φ(t)〉 =
∑
m

δpm, (4.68)

where δpm is the probability that the action of Ĉm will take place at this time step.

Also, δt needs to be small enough so that e−iĤeffδt ≈ 1− iĤeffδt and δp� 1.

Step 2: The “Gedanken” experiment of a possible quantum jump, introducing the

stochastic aspect of the method.

Firstly, we choose a random number

0 ≤ ε ≤ 1, (4.69)

if δp ≥ ε (probability 1− δp, thus, mostly of the times): No jump occurs. We normalise

the state:

|φ(t+ δt)〉 =
|φ1(t+ δt)〉√

1− δp , (4.70)

if δp < ε (probability δp): A jump occurs.

|φ(t+ δt)〉 =
Ĉm |φ(t)〉√
δpm/γmδt

. (4.71)

Then we can proceed to the next time step and apply step 1 onto the state |φ(t+ δt)〉.

Now, having N � 1 copies |φn(t)〉 of the state |φ(t)〉, with a chosen random number for

each (εn ∈ [0, 1]), we will get N ′ times a jump and N − N ′ times no jump. Then, as

N −→∞,
N ′

N
−→ δp

1
= δp, (4.72)

that is, δp is the probability that a jump happens.

We repeat the steps above until we covered the whole time range t = nδt, and the

evolution is the quantum trajectory.

By doing the same procedure L times, we get L trajectories. and the result averaged

over all trajectories is exactly the evolution described by the master equation with the

corresponding reduced density operator

ρ̂(t) =
1

L

L∑
k=1

|φk(t)〉 〈φk(t)| . (4.73)
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4.4 Summary

In this chapter we have described the computational methods that we use to calculate

the main results provided in this thesis. We have seen that Exact Diagonalisation is

constrained to smaller systems. To attain larger system sizes we need to use power-

ful numerical techniques, and one of the most flexible and effective algorithms is the

Density Matrix Renormalisation Group (DMRG). The combination of DMRG with ten-

sor network representation using MPS and MPOs have made numerically possible the

computation of ground states and time evolution of one-dimensional quantum systems.

In the last years a lot of progress has been made to develop numerical tools to simu-

late quantum systems in higher dimensions, such as Projected Entangled Pairs States

(PEPS) [41] or Multi-scale Entanglement Renormalisation Ansatz (MERA) [114].

In chapter 5, we calculate the energy of the ground state of both the spin-1 and the

spin-1/2 model, and we compare it with the energy of a quenched state, in section 5.2.

We use the variational search method to evaluate these calculations in larger systems.

This approach is used to evaluate ground states also in chapter 6, both for the initial

and target states of the adiabatic ramps, and the evaluation of the Quantum Fisher

Information in section 6.4.

We evaluate the dynamics of these systems in chapter 5, where we use the TEBD

algorithm in section 5.3. Furthermore, in section 5.4, we also study finite temperature

states where we implement the Ancilla method based on imaginary time evolution and

TDVP. Another example of calculations done with the TDVP algorithm is the simulation

of spin currents to probe the quantum states at the end of chapter 5, in section 5.5.

Additionally, TDVP is also used to simulate systems with long-range interactions in

chapter 7.

Additionally, ED is normally sufficient for small systems. However, TEBD is imple-

mented for bigger number of atoms in most of the ramps evaluated in chapter 6. We

have also introduced the methodology of using quantum trajectories to evolve the master

equation in open quantum systems. This approach is used when we consider dissipation

in our systems, at the end of chapter 6, in section 6.4.4.
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Chapter 5

Engineering magnetic ordering of

rotated spin states and probing

dynamics in quantum simulators

In this chapter1 we explore the properties and dynamics of non-equilibrium states by

applying a rotation to the spins from a low-entropy initial state with all spins ini-

tially aligned. We want to study the XY-ferromagnet, to see how different it is from

a mean-field description when the spins are in the xy-plane. Furthermore, we want to

quantify how far this mean-field description is from the ground state as a function of

the anisotropy (consequence of inter-species interactions) in the effective spin models.

We compare the energy of the rotated state with that of the ground state, the correla-

tion length in a thermal state, and the out-of-equilibrium dynamics. We also evaluate

alternative ways to probe the state by investigating the behaviour of the spin current.

We start with all of the spins up and rotate them into the xy-plane, in the so-called

counterflow superfluid regime. When the anisotropy is 0, interactions are equal in all

directions. In these regimes sometimes we obtain a XX model that can be transformed to

non-interacting fermions. At a higher anisotropy the characteristics of the spin superfluid

will be more visible, and this is exactly our focus.

In the spin-1/2 model for ∆/J > 0, irrespective of the value, the system remains in the

ferromagnetic phase. However, in the case of the spin-1, the ferromagnetic phase exists

until a critical value of u/J , where we enter the spin-Mott phase. These phase diagrams

were discussed in section 3.2.1.

1This work is taken in part from the publication [54], but with additional data and some restructuring
of the presentation. The author of this thesis performed all of the calculations for the models and
produced all of the plots.
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In this chapter, we will first discuss the preparation of the spin-rotated states, and then

study their differences to true XY-ferromagnetic ground states in section 5.2. Secondly,

in 5.3, we study the dynamics of the system and analyze the dynamically prepared states,

as function of the anisotropies. In section 5.4 we compare the dynamically prepared

states to the corresponding thermal states and we analyse where thermalisation occurs

in the systems. Lastly, we discuss methods to probe these states by observing spin

currents of bosons in an optical lattice in section 5.5.

For all following sections, the Hamiltonians are the ones presented in chapter 3:

ĤSP1 = −J
∑
〈j,l〉

ŜjŜl + u
∑
l

(Ŝzl )2, (5.1)

for the spin-1, and

ĤSP1/2 = −J
∑
〈j,l〉

ŝj ŝl + ∆
∑
〈j,l〉

ŝzj ŝ
z
l , (5.2)

for the spin-1/2.

5.1 Preparation of spin rotated states

In a classical picture, the XY-ferromagnet could be prepared by beginning with all of

the spins aligned along the z-axis (|ψ0〉 = |↑↑↑↑↑↑↑ ...〉), and then rotating that state

locally towards the xy-plane, on every atom simultaneously.

We want to study the quantum case, defining the rotation operator as

R̂x =
∏
j

e−iπ
2
Ŝxj , (5.3)

so that the rotated state will be

|ψr〉 = R̂x |ψ0〉 , (5.4)

where all spins will point along the y-axis. This rotation operation is calculated anal-

ogously for the spin-1/2 with operator ŝxj . Fig. 5.1 illustrates the idea of this rotation

operation.

The goal is to evaluate how close the state obtained by this procedure is to the ground

state of the anisotropic model.
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Figure 5.1: In the Bloch Sphere, a rotation from the z-axis towards the xy-plane is

represented by the rotation operator R̂j = e−iŜ
x
j φ with φ = π

2 .

5.2 Comparison of the rotated state with the ground state

As notated in the introduction to this chapter, we would like to study a XY-ferromagnet,

to see how different it is from a mean-field when they are in the xy-plane. Furthermore,

we want to quantify how far this mean-field picture is from the ground state depending

on the values of the anisotropies u/J and ∆/J , respectively.

The energy difference between the rotate state |ψr〉 and the ground state of the system

is computed as ∆E = Er − EGS per spin of the two states, using MPS representation.

It is important to notice that the Hamiltonians (spin-1 and spin-1/2) are significantly

different and therefore their energy scales are difficult to compare directly. Fig. 5.2

shows ∆E for various values of the anisotropy (u/J and ∆/J) for spin-1 and spin-1/2,

respectively. There is no energy difference for a zero anisotropy (this is expected, as the

rotated state belongs to the highly degenerate ground state manifold), and the result

gives something very close to the ground state for small values of u/J,∆/J in each

case. The energy difference increases with the anisotropy. Furthermore, the difference

of energy per spin for a given anisotropy decreases until it converges to a constant for

sufficiently large lattice sizes. It is important to notice that the energy difference in

spin-1/2 is five times the one for the spin-1.

Naturally, the energy difference only gives us a first indication of similarities or differ-

ences between the rotated state and the ground states. In the next sections we will study

the evolution of the correlation functions, and the behaviour of spin currents induced in

the system.
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Figure 5.2: Energy difference per particle between the reference state (rotated state)
and the ground state of the Hamiltonian, for different systems sizes M and differ-
ent anisotropy u/J,∆/J , for the effective (a) spin-1 and (b) spin-1/2 models of two-
component bosons on an optical lattice. As the anisotropy increases, the energy dif-
ference increses, in both models. This is expected as for a zero anisotropy, the rotated
state belongs to the highly degenerate ground state manifold. [The bond dimension
used for the MPS calculations was D = 64, with open boundary conditions.]

5.3 Exploring properties of states by out-of-equilibrium

dynamics

One interesting question for probing the properties of the model in out-of-equilibrium

dynamics could be to evaluate the difference of a specific magnetic model to the mean-

field approximation of the same model. In the previous work done by Barmettler et al.

in [116], they start with a perfect Néel state evolving under a Heisenberg antiferromagnet

Hamiltonian. As a result of the dynamics, the magnetic ordering decays exponentially.

We now study the out-of-equilibrium dynamics after a preparation of |ψr〉 as in Eq 5.4,

in particular we will focus on the dynamics of spin-spin correlations in the system. The

quench dynamics in this system, in which all spins are initially prepared aligned along

the z-axis, followed by having a product state of spins rotated into the xy-plane (say,

|→〉), is an easily realisable experimental sequence. Then the dynamics are allowed to

proceed under the Hamiltonians 5.1 and 5.2.

We are able to compute the dynamics using exact diagonalisation for small chain lengths.

For larger systems there are different ways to compute the time evolution of a Hamilto-

nian. To handle this many-body problem numerically, a Density Matrix Renormalisation

Group (DMRG) code is implemented, by using Matrix Product States (MPS) represen-

tation. To keep the time-scale required for the numerical calculations manageable, we

truncate it by defining a maximum value bond dimension D. The method used here for

the time evolution is the Time Evolving Block Decimation (TEBD) algorithm, which

is a specific time-dependent DMRG method (for more details about this algorithm see
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section 4.2.3.1). For these calculations, the convergence in the MPS bond dimension

D and time step ∆t was tested to ensure accuracy of the calculations. All calculations

were performed with fourth order Trotter expansion of the time evolution operator. The

convergence studies for these results are summarised in Appendix A.

In figures 5.3 and 5.4 (for spin-1 and spin-1/2, respectively), we evaluate different spin-

spin correlations, as well as the bipartite entanglement entropy, that is, the half-chain

entanglement entropy, during the evolution, defined as

SvN(ρ̂M/2) = −Trρ̂M/2(log2 ρ̂M/2), (5.5)

where ρ̂M/2 = TrM/2 |ψ〉 〈ψ| is the reduced density matrix for the half of the system.

(a) 〈(Ŝxtotal)2〉 (b) 〈(Ŝztotal)2〉
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Figure 5.3: Spin-1 model: Evolution of different observables for M = 40 and different
values of the anisotropy u/J . (a) The 〈(Ŝxtotal)2〉 correlations increase with time, being

more noticeable at higher anisotropy values. (b) The total 〈(Ŝztotal)2〉 correlations only
show a small decrease at the end of the evolution, for u ≥ 0.2. (c) The value of
the 〈Ŝ+

M/2Ŝ
−
M/2+13〉 correlations show a decay with time, and more accentuated as the

anisotropy increases. (d) The von Neumann entropy per particle increases linearly with
time, showing a smooth monotonic increase. [Numerical parameters are Jdt = 0.1 and
D = 128.]
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(a) 〈(ŝxtotal)2〉 (b) 〈(ŝztotal)2〉
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Figure 5.4: Spin-1/2 model: Evolution of different observables for M = 40, and
different values of the anisotropy ∆/J . (a) The 〈(ŝxtotal)2〉 correlations increase with
time, and the steepness decreases with higher values of the anisotropy. (b) The total
〈(ŝztotal)2〉 correlations decrease at the end of the evolution, for ∆ ≥ 0.2J . (c) The
value of the 〈ŝ+

M/2ŝ
−
M/2+13〉 correlations show a decay with time, more noticeable as

the anisotropy increases. (d) The von Neumann entropy increases linearly with time
and anisotropy. The maximum value of the von Neumann entropy per particle remains
the same from ∆ = 0.4J with a value of S/M ' 0.125. [Numerical parameters are
Jdt = 0.1 and D = 256.]

For the 〈(Ŝxtotal)2〉 correlations, in the spin-1 model, we see an increase with both

anisotropy and time. For the spin-1/2 this increase is accentuated for small anisotropies

with time. The 〈(Ŝztotal)2〉 correlations decrease with time and anisotropy in both models.

We evaluate the S+Ŝ− from the middle of the system and taking away the boundaries,

hence the 〈Ŝ+
M
2

Ŝ−M
2

+13
〉. These correlations decay to only ≈ 50% of the initial value at

high anisotropy for the spin-1. However, for the spin-1/2 case, the correlations scramble

really quickly, faster for a higher ∆/J . This also corresponds with the previous results

where we looked at the energy difference, showing that the spin-1/2 is much farther

from the ground state with the anisotropy. The von Neumann entropy of the subsys-

tem increases linearly with time for both models. For the spin-1/2 we see the effect of
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the quasi-oscillations that grow with entanglement. This behaviour is explained as the

group velocity of quasiparticle excitations in the system will have a maximum giving

rise to the so called Lieb-Robinson bound [117], defining an effective light cone for spa-

tial correlations, outside of which the correlations are exponentially suppressed [118].

At larger system sizes (M ≥ 30) the boundary “echos” of this light cone appear later

and therefore the oscillations disappear, that is why we see this monotonic behaviour at

larger anisotropies.

Then we study how the correlations evolve with distance, in different snapshots in time.

We evaluate the correlation functions calculated as

Θj = |〈S+
i S
−
i+j〉| =

1

M − 2b− j

M−b−j∑
i=1+b

| 〈Ŝ+
i Ŝ
−
i+j〉 |, (5.6)

where i denotes the index of the site, j is the distance or number of sites, and b = M/5

is a number of sites at the boundary that we omit to reduce the open boundary effects.

The operation is calculated analogously for the spin-1/2 with operators ŝ+
i , ŝ

−
i+j .

Fig. 5.5 shows the correlation function as a function of distance at different times,

together with the correlations in the ground state for the time evolution of a lattice of 100

sites. In both models, the correlations decay faster in time with increasing anisotropy.

However, in the spin-1/2 this decrease of the correlations occurs much faster, and for

∆ = 0.8J the magnetic ordering vanishes very quickly. In the spin-1 case, for u = 0.2J

the decay of the correlations at tJ = 4 is minimal, indicating that for a small value of

the anisotropy u/J the magnetic order remains under time evolution. For u = 0.6J , in

contrast, the correlations decay faster with time, but still preserve the magnetic ordering

at long distances. In the spin-1/2 case, even for a small value of the anisotropy ∆/J = 0.2

we can see how the correlations decrease quickly on the time-scale of a few tunnelling

times. For ∆/J = 0.8, the spin-ordering vanishes rapidly to zero. From these results,

we realised that the effect of the out-of-equilibrium dynamics is much more accused for

the spin-1/2 model. Again, we consider this is due to the fact that the spin-1 model is

closer to the classical model than the spin-1/2 one.

5.4 Thermal states

Before presenting the results for the corresponding thermal states, we introduce some

general concepts from Statistical Mechanics, which are necessary to understand how the

correlation lengths and entropies in the models are calculated.
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(a) Spin-1 Model, u = 0.2J
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(b) Spin-1 Model, u = 0.6J
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(c) Spin-1/2 Model, ∆ = 0.2J
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(d) Spin-1/2 Model, ∆ = 0.2J

Figure 5.5: Comparison of the decay of the correlations with distance at different
snapshots in the time evolution (tJ = 0, tJ = 0.5, tJ = 1.2, tJ = 2.4, tJ = 4).
The black dash-dotted line indicates the value of the correlations for the ground state
(GS) of the corresponding Hamiltonian. Results are for the spin-1 (a,b) and spin-
1/2 (c,d) model, respectively. The different panels contrast the evolution for different
anisotropies. The dashed black lines indicate the algebraic decay of the correlations
in the ground state. The red dashed lines indicate a fit to the initial decay of the
corresponding thermal states with the correlation lengths calculated in Fig. 5.11. The
calculation were done for a system size M = 100, bond dimension for the MPS calcu-
lations D = 128, and open boundary conditions.

5.4.1 Background: Statistical Mechanics

For a closed system in contact with a heat bath at temperature T , the probability of

finding the system in a given micro-state of energy Ei is proportional to the Boltzmann

factor [119]

p(Ei) ∝ e
− Ei
kBT = e−βEi , (5.7)

with kB the Boltzmann constant, and β = 1/(kBT ).

The absolute probability can be found by normalising the Boltzmann factor over the

sum of all possible micro-states

p(Ei) =
e−βEi

Z
, (5.8)
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where Z is the partition function

Z =
∑
i

e−βEi , (5.9)

which describes the statistical properties of a system in thermodynamic equilibrium,

representing a particular statistical ensemble (with a particular free energy).

Individual states with lower energy will always have a higher probability of being occu-

pied than the ones with higher energy.

The entropy of the ensemble will be

S = −kB
∑
i

PilnPi, (5.10)

where Pi is simply the probability of the ensemble being in the ith microstate.

The maximum entropy possible in any system is at infinite temperature, when all states

are equally probable. In our spin-1/2 system, we have 2M states, hence this will occur

with probability 1
2M

at infinite temperature, thus

S = −
2M∑
i=1

PilnPi = −
2M∑
i=1

(
1

2M
)ln(

1

2M
) = M ln 2. (5.11)

Therefore, by calculating the entropy per spin, we know that the largest possible entropy

per spin is ln 2 = 0.6931 for spin-1/2. For the spin-1 model, we have 3M states, with

probability 1
3M

at infinite temperature and largest possible entropy per spin ln 3 = 1.0986

for spin-1.

When the distance r between spins is very small, the interaction between them can

generally induce correlations, such that for an ideal XY-ferromagnetic ground state we

expect algebraically decaying correlations. However, this effect will be destroyed by

thermal effects: at high temperatures, spin orientations become randomized, and we

generally expect correlations which exponentially decrease with increasing distance r,

〈Ŝ+
i Ŝ
−
i+j〉 ∝ e

− r
ξ(T ) , (5.12)

with ξ the correlation length, which tells us how fast the correlation function vanishes.

The operation is calculated analogously for the spin-1/2 with operators ŝ+
i , ŝ

−
i+r.

The density matrix is defined as

ρ̂ =
∑
i

Pi |ψ〉i 〈ψ|i . (5.13)
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At finite temperature, the state of a quantum system is given by the thermal density

matrix

ρ̂th =
e−βĤ

Z
. (5.14)

We can then calculate the correlations by using the relation

〈Ô〉 = tr(Ôρ̂th) =
∑
i

Pi 〈ψ|i Ô |ψ〉i , (5.15)

where Ô is an operator, in our case, the Ŝ+
i Ŝ
−
i+r correlations.

To calculate the entropy S we use the standard formula from statistical mechanics:

F = U − TS, (5.16)

where F is the free energy

F = −kBT lnZ, (5.17)

and U the internal energy

U = − ∂

∂β
lnZ. (5.18)

We investigate here the regimes where the correlation functions decay exponentially,

characterising a thermal state. In our analysis we study the correlation length ξ as a

function of the entropy (temperature) of the system, for different number of spins.

5.4.2 Results for thermal states

Our approach for calculating thermal states involves imaginary time evolution of ini-

tial infinite temperature density matrix to finite temperatures. Specifically, we use the

Ancilla Method described by Wall and Carr [47, 48] where we perform our numerical

simulations by using the Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

method [48, 120–122] , by giving β different values. The details of these methods are

described in sections 4.2.3.2 and 4.2.4.

We find that the Time-Dependent Variational Principle (TDVP) algorithm is the most

optimal integrator for time-propagation at finite temperatures in terms of the balance

between the speed and accuracy, however other methods might win in terms of accuracy,

for instance Runge-Kutta [102].

The accuracy of the method is verified by comparing the numerical calculations with

the exact solution (using exact diagonalisation methods) in the case of smaller systems.

For bigger system sizes the convergence of numerical results to the exact solution is

checked by increasing the bond dimension D. We verified the validity of all our results
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by comparing the convergence of this method with respect to the observables we are

interested in, and we confirm the convergence in the bond dimension by running mul-

tiple calculations with increasingly large D. The convergence study is summarised in

Appendix A.

In figures 5.6 and 5.7 we observe the behaviour of some observables during the tempera-

ture evolution, for a system size of M = 40, for spin-1 and spin-1/2 respectively. Again,

we evaluate the S+Ŝ− from the middle of the system and taking away the boundaries,

hence the 〈Ŝ+
M
2

Ŝ−M
2

+13
〉. For the spin-1 model, in Fig. 5.6(a) we see that with higher

anisotropies the correlations converge to the same value, when the temperature de-

creases. This could be explained as with higher anitropy in the spin-1 model we enter

into the spin-Mott regime. This is the opposite behaviour as with the spin-1/2 model,

where the initial correlations value decreased with the anisotropy, where we do not have

an insulating phase.

(a) Spin-spin correlations
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(b) Entropy per particle S/M

Figure 5.6: Spin-1: Different observables during the evolution in temperature (β),
for M = 40, and different anisotropy u. (a) At higher temperatures 〈Ŝ+

M/2Ŝ
−
M/2+13〉

correlations increase with u/J . (b) The entropy S per particle is increased with temper-
ature, converging asymptotically to its maximum as discussed in Eq. 5.19. [Numerical
parameters for the MPS calculations are D = 64 and βstep = 1.]

In figures 5.8 and 5.10 the correlation length ξ as a function of temperature and entropy

S per spin is depicted, for different values of u/J,∆/J , for the spin-1 and spin-1/2 model,

respectively. We can see that, as T −→ 0, the correlation length increases in both models.

For spin-1, the results in Fig. 5.8 are very similar to the case of M = 40, since for bigger

system sizes, we get a finite correlation length value, and at higher sizes we observe

that ξ does not change anymore. This behaviour is expected as we are working with

finite temperature, so long as the correlation length is substantially smaller than the

system size, and what finite temperature does is to provide an exponential decay of the
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(a) Spin-spin correlations
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Figure 5.7: Spin-1/2: Different observables during the evolution of temperature
(β), for M = 40, for various anisotropy values ∆/J . a) At higher temperatures
〈ŝ+
M/2ŝ

−
M/2+13〉 correlations decrease with ∆/J . Thus, having the opposite behaviour

as in the spin-1. (b) The entropy S per particle increases with temperature, converging
asymptotically to its maximum as discussed in Eq. 5.19. [Numerical parameters for the
MPS calculations are D = 64 and βstep = 1.]
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Figure 5.8: Spin-1: Correlation length ξ as a function of temperature T and entropy
S per spin, for M = 60 and different values of u/J , for open boundary conditions. The
insets provide a zoom as T −→ 0, for a better understanding of the convergence. As
u/J increases, higher values of ξ are obtained.

correlations. To have a better understanding, in Fig. 5.9 we evaluate the agreement for

different M but the same value of u/J .

5.4.3 Rotated states as thermal states

We investigate here the regimes where the correlation functions decay exponentially, and

we evaluate the correlation length and thermal entropy for the rotated state at different

values of the anisotropy.
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Figure 5.9: Spin-1: Correlation length ξ as a function of temperature T and entropy S
per spin, for different M and with u/J = 0.6, for open boundary conditions. The figures
show that for bigger system sizes we get a finite correlation length value, observing that
at higher sizes ξ does not change anymore. It is important to notice the convergence
for the maximum value of entropy (ln 3) per spin for all values of M and u/J . In our
spin-1 system, we have 3M states, hence this will occur with probability 1/3M at infinite
temperature.
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Figure 5.10: Spin-1/2: Correlation length ξ as a function of temperature T entropy
S per spin, for M = 40 and different values of ∆/J , for open boundary conditions. For
higher temperature/entropy there is convergence for all anisotropy values. However,
as ∆/J increases, the maximum correlation length derived by the exponential decay of
the correlations decreases. Similar behaviour is observed with the entropy.
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We compare the evolution of the state that looks like mean-field in the first place (rotated

state), and ask if we get something similar to the ground state or something more

analogous to the thermal state. We have seen in Fig. 5.5 the difference with the ground

state. For a thermal state, we can know the corresponding β that gives us the same

correlations.

In this section, we now compare the dynamically obtained states to a thermal state

ρ̂th ∝ exp(−βĤ) with an inverse temperature β = 1/T (kB ≡ 1) such that the energy of

the thermal state matches the energy of the rotated state. Considering all of the energy

above the ground state for the rotated state was thermalised, we compute the thermal

state that would be obtained. Having the energy of the rotated state, we compute a

thermal state at a temperature β such that the energy expectation value is the same,

〈E〉β = tr(ρ̂thĤ) = Er. (5.19)

and we can then obtain the corresponding density matrix ρ̂th.

We consider here the regimes where the correlation functions decay exponentially, and

we investigate the correlation length for the rotated state at different values of the

anisotropy. We can also quantify the amount of thermal entropy produced by being

non-adiabatic in the rotation, for each value of the anisotropy. In order to ensure we

are into an exponential regime, we fit the correlations into a semi-logarithmic plot a for

different temperature values and take only the ones where there is an exact fit outside

the boundaries. The properties of the thermal states corresponding to the energies of

the rotated states are summarized in Fig. 5.11.
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Figure 5.11: Properties of thermal states with identical energy as the rotated state
for both the spin-1 and spin-1/2 model. (a) Correlation length ξ obtained from an
exponential fit to the decay of 〈Ŝ+

i Ŝ
−
i+r〉 with r (Eq. 5.12). Shown is ξ as a function

of the anisotropies u/J and ∆/J . Here, M = 40, correlations calculated as in Eq. 5.6.
(b) Entropy per particle, S/(kBM), as function of the anisotropies, M = 40. The bond
dimension used for these MPS calculations was D = 64, with open boundaries.
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In both models the correlation length decreases with the anisotropy. For the spin-1

model, we find that a large correlation length is attained for smaller anisotropy, demon-

strating that for a thermal state (in the long-time limit) a state with significant corre-

lations may be stabilized for small u/J . In contrast, for the spin-1/2 case we find that

except for very small ∆/J the correlation lengths obtained are shorter.

Note that in the numerical method described above, the exponential instability towards

the ground state makes the thermal state unreliable for large β. Thus, in our calculation

for thermal states, the calculations become inaccurate in the low-temperature limit, here

limiting us to the regime of u & 0.2J for the spin-1 model. However, we see in Fig. 5.11

that the spin-1 model shows a long correlation length already at u = 0.2J , and it is

reasonable that for smaller u/J the correlation length will further drastically increase,

leading ultimately to an algebraic decay in the limit where the rotated state becomes

the true ground state.

5.4.4 Thermalisation dynamics

In general, we expect closed quantum systems to thermalise in the long-time limit.

This is meant in the sense that local observables in a small subsystem appear to be

described by a thermal density matrix ρ̂th ∝ exp(−βĤ), with the (inverse) temperature

set by the energy matching condition with the initial state, 〈ψ0| Ĥ |ψ0〉 = tr(ρ̂thĤ). In

general, this thermalisation behaviour is expected for Hamiltonians without simple/local

conserved degrees of freedom (integrable models) and in situations without disorder.

The mechanism behind such thermalisation can be explained, e.g., via the well-studied

eigenstate thermalisation hypothesis [123–127]. It states that the expectation value

of an observable 〈Ô〉 in an eigenstate |ψα〉 with energy Eα is equal to the thermal

(microcanonical ensemble) average of that observable with the same mean energy [128]:

〈ψα|Ô|ψα〉 = 〈Ô〉microc (Eα). (5.20)

While the ETH and quantum thermalisation appear to apply to a large class of closed

quantum systems, not all quantum systems thermalise, as in the limit of vanishing

anisotropies (u,∆→ 0) in our case, where the models become integrable.

Considering a subsystem which is a small fraction of the full closed system, then ther-

malisation means that at long times the state of this subsystem is as if it was in thermal

equilibrium in contact with a reservoir, provided by the remainder of the closed system

[129]. This feature of quantum systems to act as their own reservoirs is the key in equi-

librium quantum statistical mechanics. If the dynamics satisfy this property, we say the

system thermalises.
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Furthermore, for closed systems, the dynamics will be unitary. We consider thermalisa-

tion as the equilibration towards a state that is locally indistinguishable from a thermal

equilibrium state proportional to e−βĤ for some inverse temperature β > 0 [130]. For

initially prepared far-from-equilibrium states, this means that they evolve in time to a

state that appears locally as if it is in thermal equilibrium.

To identify regimes, in particular, where a system does not thermalise, we investigate

the behaviour of few-particle observables at long times. We then analyse whether the

few-particle observables are the same as in the thermal state.

In order to see if there is thermalisation, the difference between the subsystem at infinite

time and the corresponding thermal state shall be minimal, and being expressed as a

distance, should be close to zero:

D =

∥∥∥∥ |ρ̂S(t→∞)〉 − |ρ̂(β)〉
∥∥∥∥2

→ 0. (5.21)

To analyze in which regimes such thermalisation might or might not occur in our

system, we consider the time dependent expectation value of the correlations, here

〈Ôj〉 = 〈Ŝ+
i Ŝ
−
i+j〉 (analogously for the spin-1/2 with operators ŝ+

i , ŝ
−
i+j .). If the sys-

tem relaxes to a steady state, this state should be identical to the infinite-time average,

〈Ôj〉∞ = lim
T→∞

1

T

ˆ T

0
dt 〈ψ(t)| Ôj |ψ(t)〉 (5.22)

≈
∑
α

|cα|2 〈α| Ôj |α〉 , (5.23)

where for the last line we have expanded the time-dependent states into the Hamiltonian

eigenbasis with eigenvalues {Eα} and eigenstates {|α〉}, with

|ψ(t)〉 =
∑
α

cα |α〉 exp(−iÊαt), (5.24)

(here, ~ ≡ 1 and we assumed non-degenerate eigenstates) [131], denoting the expectation

value in a “diagonal ensemble”. We want to test if the correlations averaged over our

simulation times and the infinite time-average (given by the diagonal ensemble) can be

described by a thermal density matrix [132, 133].

In order to see if the thermalisation occurs, we compare the steady state with the thermal

state. If the relative difference is zero, we consider that the system does thermalise,

hence, that the ETH hypothesis is valid in those regimes. The relative difference between
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the steady state and the thermal state is calculated as:

∆ 〈Ôj〉∞ =

∣∣∣∣〈Ô〉t→∞ − 〈Ô〉th∣∣∣∣
〈Ô〉th

. (5.25)

Numerically it is difficult to simulate systems with large M to very long times, but

we can investigate the behaviour for small system sizes, where the whole spectrum can

be numerically computed, and then extrapolate to larger systems. We compute 〈Ôj〉
averaged over a time-scale t ∈ [0, t0], 〈Ôj〉t0 , and compare the result to a thermal state

with the energy of the initial state, ρ̂th, and we then evaluate

∆ 〈Ôj〉th =

∣∣∣∣〈Ôj〉t0 − tr(Ôj ρ̂th)

∣∣∣∣
|tr(Ôj ρ̂th)|

. (5.26)

The results are summarized in Fig. 5.12 (a-b) for spin-1 and spin-1/2.
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Figure 5.12: thermalisation behaviour of correlations for both the spin-1 (a) and
spin-1/2 (b) model. Shown are differences of long-time averages values with those of
expected thermal states of energy Er. Panels show results from a long-time average up
to t0 = 10, Eq. 5.26. A value of zero indicates dynamics towards a thermal state. As
observable we consider the correlations Ôj as in Eq. 5.6 with b = 2. The difference is
shown as function of the anisotropies and for various system sizes. All calculations are
done with exact diagonalisation methods and for periodic boundaries.

One of the first questions raised by the above results is the following: how can we be

sure that the average results in time are sufficient to simulate the behaviour at long

times?

We compared different time scales and see if there was convergence. Also we consid-

ered the average by ignoring small anisotropies, as we expect the effect of the small

anisotropies to be very weak.
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Furthermore, we compare the infinite time-average, i.e. the diagonal expectation value,

to the thermal one by computing

∆ 〈Ôd.e.〉 =

∣∣∣∣〈Ôj〉d.e. − tr(Ôj ρ̂th)

∣∣∣∣
|tr(Ôj ρ̂th)|

, (5.27)

by projecting into all of the eigenstates, where 〈Ôd.e.〉 = |Cn|2 〈ψn| Ôj |ψn〉. Thus, ob-

servables can be described as the diagonal ensemble when the effective density matrix

takes a diagonal form in the basis low-lying energy eigenstates. The diagonal ensemble

results are shown in Fig. 5.13.
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Figure 5.13: thermalisation behaviour of correlations for both the spin-1 (a) and
spin-1/2 (b) model. Shown are differences of diagonal expectation values with those of
expected thermal states of energy Er. Panels show the differences from the diagonal
ensemble, Eq. 5.27. A value of zero indicates dynamics towards a thermal state. As
observable we consider the correlations Ôj as in Eq. 5.6 with b = 2. The difference is
shown as function of the anisotropies and for various system sizes. All calculations are
done with exact diagonalisation methods and for periodic boundaries.

Strikingly, for anisotropies larger than 1, both the diagonal ensemble expectation value

and the finite time average differ clearly from thermal states in both models. For smaller

anisotropies, within finite size effects the states obtained have expectation values of the

chosen observables that are consistent with the thermal state. In all cases, we observe

that around ∆, u = 0.8J the lack of thermalisation starts to be clearly shown. We expect

that the lack of thermalisation for larger anisotropies is related to increasing interactions

between magnons, which will lead to integrability in 1D.
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5.5 Probing the states with spin currents

We study different ways to characterise (through measurements) the properties of the

states, finding those measurements that give qualitatively different signatures for differ-

ent parameter regimes, and also allow us to cleanly distinguish between the real ground

state and the rotated state.

We study new ways to probe the resulting state, by investigating the behaviour of spin

currents [134] in an optical lattice. To do so, we should be able to see a reaction of the

state and how it behaves if you try to excite it, and what we do is to move the lattice

in a spin-dependent way and see how the system responds.

If a finite current is induced to the system so that the quasi-momentum distribution is

shifted by a small amount, then we expect the resulting behaviour to depend on the

superfluidity of the state, so that the current will remain constant in the superfluid

regime. For an ideal, non-interacting, superfluid, we would expect no decay of the

current, but interactions will lead to a decay of the current once we exceed a critical

strength of the kick.

We begin with the initial state where all of the spin pointing along z, then we apply

the rotation towards the xy-plane, and then consider an acceleration applied in order to

produce a finite current [135].

In our case the following “kick” operator is applied to the rotated state

κ̂(Ω) =

M∏
l

e−iŜ
z
l lΩ, (5.28)

with Ω a quasi-momentum or “kick-strength”. Experimentally we can realise this by

applying a magnetic field gradient for a short time, which induces a spin current.

In our spin model the spin current Ĉ will have the form:

Ĉ =
1

M

∑
l

ĉl, (5.29)

with

ĉl = − 1

2i

(
Ŝ+
l Ŝ
−
l+1 − Ŝ−l Ŝ+

l+1

)
, (5.30)

which satisfies the continuity equation [136, 137]:

d

dt
Ŝzl =

[
iĤ, Ŝzl

]
= ĉl+1 − ĉl. (5.31)

The operation is calculated analogously for the spin-1/2 with operators ŝ+
l , ŝ

−
l+j , ŝ

z
l .
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In comparison to [135], where the infinite TEBD (iTEBD) algorithm [138] was used, in

our simulations we use finite TEBD. In our case we defined the “kick” operator as an

MPO and we performed the calculations with two different algorithms: Runge-Kutta

[110] and TDVP [48]. We found that preliminary results with Runge-Kutta do not

show good correspondence with ED results, and the current decay very fast even at

high dimensions. This could have been affected by the way we define the observable

in the algorithm, but a much more extensive study has to be done to understand how

the algorithm worked in this case. However, TDVP works with both open and periodic

boundary conditions, reproducing the results obtained from ED calculations on small

systems.

Note that in contrast to single particle current measurements [139], the spin-currents

correspond to relative momentum distributions of the two species, and correlations be-

tween this could be probed via noise correlation measurements [140, 141].

The stability of superfluid currents in a system of strongly interacting bosons in a lat-

tice has been studied before [142, 143], and depends on the magnitude of the quasi-

momentum, and the strength of the interactions. It will also depend on the dimension-

ality of the system, where for 1D there is a crossover, and in 3D a sharp discontinuity.

We expect here to see this behaviour for our one-dimensional systems, as a function of

the magnitude of the strength of the “kick” and the anisotropy u/J,∆/J for the spin-1

and spin-1/2 model respectively.

5.5.1 Study of the currents on the rotated state

The convergence study for all spin currents is summarised as part of Appendix A.

5.5.1.1 Initial state

For both of our models, we begin with the ground state of our Hamiltonian, and then

apply an acceleration in order to produce a finite current, as in 5.28.

Firstly, we consider the time immediately after the application of the “kick” t = 0+,

in Fig. 5.14, where we show the spin currents for different momenta Ω/π and various

values of the anisotropies u/J,∆/J , for periodic boundary conditions. The current is

proportional to the kick as 〈C〉 ∝ sin(Ωπ), which can be calculated from the quasi-

momentum distribution, as in [135].
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Figure 5.14: Spin current Ĉ after the “kick” is imparted on the ground state
(time=0+) for the (a) spin-1 and (b) spin-1/2 model, for M=40 and PBC. In both mod-
els, in the limit of non interactions, the current is exactly 〈C〉 = J sin(Ωπ) = 0. With
higher anisotropy values we have 〈C〉 ∝ u sin(Ωπ) for the spin-1 and 〈C〉 ∝ ∆

4 sin(Ωπ)

5.5.1.2 Time evolution of the spin currents

Now we want to study the current stability with time for our models. We should see

non-decaying currents when we are in the superfluid (XY-ferromagnetic) phase, up to

boundary effects.

In Fig. 5.15 the current evolution for the spin-1, for different anisotropy values and

“kick-strength”, up to a time TJ = 2, is depicted.

The currents are constant for small gradients and small value of the anisotropy and

slightly decaying as this increases. The change in the current behaviour in the crossover

can be clearly observed, as even for smaller momenta the currents decay.

In Fig. 5.16 we show the current evolution for the spin-1/2, for different anisotropy

values and “kick-strength”, up to a time TJ = 3.

In this case we are always in the XY-ferromagnetic phase, and only when we induce a

strong “kick” can we see the currents decay. For ∆ = 1J we see no decay of the currents

as this XX model can be mapped to non-interacting fermions. The small decay at longer

times is due to the fact that the most robust currents occur for larger anisotropy, where

there is a bigger difference between the rotated state and the ground state, with a faster

decay of the correlations.
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Figure 5.15: Spin-1: Time evolution of the spin current Ĉ for different values of the
anisotropy u/J and gradient Ω, for PBC.

5.5.1.3 Spin-spin correlations

In order to evaluate the out-of-equilibrium dynamics, in Fig. 5.17 we consider the spin-

spin correlations evolution for different momenta strength during the time evolution of

a lattice of 40 sites, for both models.

First of all we can see that as the anisotropy and the “kick-strength” increase the corre-

lations decay faster, for both models. However, this effect is again much more noticeable

in the spin-1/2 model.

5.5.2 Comparison with the ground state

In this section we are going to compare the results for both models, as well as the

differences in the current behaviour between the ground state and the rotated state.
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Figure 5.16: Spin-1/2: Time evolution of the spin current Ĉ for different values of
the anisotropy ∆/J and gradient Ω, with PBC.

5.5.2.1 Dynamical results

We compute the currents for spin-1/2 and spin-1, in each case considering the behaviour

of the current in the ground state and the rotated state. We perform calculations by

applying the “kick” operator as an MPO to a MPS representation of our state, and

computing the corresponding time evolution. We show the evolution of the currents for

different values of the anisotropies and momenta Ω/π in Fig. 5.18, for both spin-1 and

spin-1/2, and for the ground states (on the left hand side of the figure) and rotated states

(on the right hand side of the figure). We can clearly distinguish the crossovers between

the regimes where the currents are stable (superfluid phase, or XY-ferromagnetic phase)

and unstable.

To more clearly study the dependence of the stability of currents on the anisotropy

and Ω, in figures 5.19 to 5.21 we plot the relative difference between the current after

short time evolutions at different times during the evolution and at the beginning of the
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(a) Spin-1 (b) Spin-1/2

Figure 5.17: Decay of the spin-spin correlations with time for different anisotropies
and momenta strength for the (a) spin-1 and (b) spin-1/2 model, for M = 40.

evolution,

∆ 〈Ĉ〉 =

∣∣∣∣[〈Ĉ〉tJ − 〈ĈtJ=0+〉
∣∣∣∣

〈ĈtJ=0+〉
. (5.32)

We find that also when the “kick” is applied to the rotated states, we can clearly quantify

a crossover between two regimes of persistent and decaying currents, in both models.

For the spin-1 model in 1D, we expect a crossover between persistent currents in a spin

superfluid (XY-ferromagnet) regime, to a rapid decay as the system becomes strongly

anisotropic, in analogy to spin currents for bosons in a 1D Bose-Hubbard model [135,

142–144]. For infinitesimal “kick-strength” Ω → 0, we expect the currents to remain

constant in the XY-ferromagnetic phase regime, and start to decay once entering into

the spin-Mott phase. This can be seen along the vertical axis in Fig. 5.19 for the rotated

state. The currents remain constant for small values of the anisotropy small gradients,

and slightly decaying as u/J increases. The change in the current behaviour as we cross

the phase transition (u > 0.6J) can be clearly observed.

For a larger Ω, as we go towards the isotropic point, the current will still decay after a

certain critical Ω value is reached. This value decreases to zero as we go towards the

critical value of u/J to enter the spin-Mott phase. Again, as in the 1D case for currents

in a Bose-Hubbard model [135], this is not a sharp transition, but rather a gradual

crossover.

In contrast, for spin-1/2 in Fig. 5.20, we are always in the XY-ferromagnetic phase,

so we expect the currents to remain constant for any infinitesimal “kick-strength” Ω,

except exactly at the isotropic point. We know at the same time that the critical value

of Ω increases from zero with increasing anisotropy ∆/J , and we see that the value of Ω
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Figure 5.18: Spin current time-evolution after a momentum Ω is imposed onto the
state for different values of the anisotropies u/J and ∆/J in the spin-1 (a-d) and spin-
1/2 (e-h) case. The initial momentum is either small Ω = 0.1π [panels (a/b,e/f) for the
ground state and the rotated state, respectively] or large Ω = 0.4π [panels (b/d,g/h)
for the ground state and the rotated state, respectively]. The calculations were done
for a system size M = 40, with bond dimension for the MPS calculations D = 256, and
periodic boundary conditions.
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(a) tJ=0.5 (b) tJ=1

(c) tJ=1.5 (d) tJ=2

Figure 5.19: Spin-1 Model. Relative difference ∆ 〈C〉 between the spin current at
different time steps in the evolution, and at the beginning of the evolution, Eq. (5.32).
The figures show the time evolution after a quasi-momentum Ω of various strength
is imposed onto the rotated state for different anisotropy u/J . All calculations are
performed for M = 40, and with periodic boundaries. The bond dimension used for
these MPS calculations was D = 256.

above which we observe substantial decay of the current increases with increasing ∆/J .

For ∆ = J , we see essentially non-decaying currents at any time and “kick-strength”

from the ground state, which we expect as the model can be mapped to non-interacting

fermions.

A comparison between the ground state and the rotated state for both models at tJ = 1.5

is depicted in Fig. 5.21.
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(a) tJ=0.5 (b) tJ=1

(c) tJ=1.5 (d) tJ=2

Figure 5.20: Spin-1/2 Model. Relative difference ∆ 〈C〉 between the spin current at
different time steps in the evolution, and at the beginning of the evolution, Eq. (5.32).
The figures show the time evolution after a quasi-momentum Ω of various strength
is imposed onto the rotated state for different anisotropy ∆/J . All calculations are
performed for M = 40, and with periodic boundaries. The bond dimension used for
these MPS calculations was D = 256.
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(a) Spin-1, Ground state (b) Spin-1, Rotated state

(c) Spin-1/2, Ground state (d) Spin-1/2, Rotated state

Figure 5.21: Relative difference ∆ 〈C〉 between the spin current at tj = 1.5 and at
the beginning of the evolution, Eq. (5.32). The figures show the time evolution after
a quasi-momentum Ω of various strength is imposed onto the ground state (a,c) and
the rotated state (b,d) for different anisotropy u/J in the spin-1 model (a,b) and ∆/J
in the spin-1/2 (c,d). All calculations are performed for M = 40, and with periodic
boundaries. The bond dimension used for these MPS calculations was D = 256.
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5.5.2.2 Energy difference after “kick”

One of the questions we could ask to distinguish between the rotated state and the

ground state is the amount of energy that we are adding into the system by the “kick”

in both cases.

In Fig. 5.22 we show the absolute energy difference added to the system with the

“kick” operator between the rotated state and the ground state, for given values of

the anisotropy for the spin-1 and spin-1/2 in the XY-ferromagnetic phase.
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Figure 5.22: (a) Spin-1 model: Energy difference per spin after the “kick” between
the ground state and the rotate state, for different values of u/J and Ω/π, for M=40.
There is no energy difference with the “kick” for zero anisotropy, and small variations for
increasing anisotropies and different Ω/π values. (b) Spin-1/2 model: Energy difference
per spin after the “kick” between the ground state and the rotate state, for different
values of ∆/J and Ω/π, for M=40. Here the energy difference increases with the “kick-
strength”, except from Ω = 0.4π to Ω = 0.5π.

How could we measure this energy difference experimentally? By investigating the quasi-

momentum distribution we can see the redistribution after the “kick”, in both models

and for different parameter values.

We define the quasi-momentum bosonic operators related to the spin operators as

Ŝ+
j =

1√
M

∑
q

e−iqjŜ+
q , (5.33)

and

Ŝ−j =
1√
M

∑
q

e−iqjŜ−q , (5.34)

with q the quasi-momentum. The operation is calculated analogously for the spin-1/2

with operators ŝ+
j , ŝ

−
j .
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The quasi-momentum distribution is defined as

mq = 〈Ŝ+
q Ŝ
−
q 〉 , (5.35)

which is depicted in Fig. 5.23 for the two models. In each of the plots we can see the

quasi-momentum distribution mq right before and after the “kick”, and at the end of

the evolution for a time TJ = 10.
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Figure 5.23: The figures show the quasi-momentum distribution right before and
after the “kick”, and at the end of the evolution for a time TJ = 10, for various “kick-
strength” (Ω = 0.2π for odd columns and Ω = 0.5π for even columns) imposed onto
the ground state (a/c) and rotated state (b/d) for different anisotropies (u,∆ = 0.2J
odd rows, u,∆ = 0.5J even rows) for spin-1 (a/b) and spin-1/2 (c/d), respectively. All
calculations are performed for M = 6 for the spin-1 and M = 12 for spin-1/2, and with
periodic boundaries.

One of the main differences between the two spin models is that there is a higher quasi-

momentum value in the case of the spin-1. We can see that in all cases at time t = 0− the

quasi-momentum distribution is peaked around q = 0, as we expect from a superfluid
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state. The effect of the ‘kick” is to the broaden distribution at the end of the evolution,

which practically disappears for Ω = 0.5π in the spin-1 case.

5.5.3 Critical velocity and excitation spectrum

For the spin-1/2, or XXZ model, we study the excitation spectrum, in particular for the

XY-ferromagnetic or counterflow superfluid regime, where we want to show the effect of

the anisotropy in the critical velocity.

For a weakly interacting gas the critical velocity is linear. In a superfluid with an

elementary excitation spectrum the flow velocity at the point will follow the Landau

criterion as in Fig. 5.24.GORDON BAYM AND C. J. PETHICK PHYSICAL REVIEW A 86, 023602 (2012)

pp
c

c

vc p

ε

ε

FIG. 1. The assumed quasiparticle excitation spectrum as a
function of momentum. The slope of the dashed line is the Landau
critical velocity vc.

the critical velocity for repulsive interexcitation interactions
and small-amplitude modulation of the order parameter, the
equilibrium order parameter, the spatially varying density
induced by the additional components in the order parameter,
the supercurrent, and the decrease in the superfluid mass
density. We also qualitatively discuss the larger-amplitude
regime. In the final section we relate the present discussion
to solitons in Bose-Einstein condensates, to vortices below
the critical angular velocity for vortex formation, and to
supercritical currents in superconductors, as well as lay out
a few possible ways that one could realize nonzero Landau
critical velocities in cold atomic gases.

II. ORDER PARAMETER WITH FLOW

To examine the stability of the system we explore an order
parameter in the laboratory frame,

ψ(x) = eiqx[
√

n0 + Ue−ipcx − Veipcx], (6)

corresponding to a reduced number of particles in the initial
condensate of momentum q and with condensate components
of momentum q ± pc. The instability occurs, as we anticipate,
at pc > 0, corresponding to an excitation moving in the
negative x direction. We work at fixed average density n̄.
Such an order parameter for small U and V describes the
usual Bogoliubov excitations of the condensate. While U and
V can be generally complex, the most energetically favorable
situation corresponds to U and V being real, as will be apparent
once we calculate the energy corresponding to the state (6).
Without loss of generality, we take U ! 0 and U2 ! V2.

The number density is

n(x) = |ψ(x)|2 = n0 + U2 + V2

+ 2
√

n0(U − V) cos pcx − 2UV cos 2pcx, (7)

and the spatial average of the density is

n̄ = n0 + U2 + V2. (8)

Thus U2 + V2 is bounded above by n̄. In the following we
drop the bar over the n to simplify the notation. Similarly, the
average kinetic-energy density is

Eke = 1
2m

[n0q
2 + U2(q − pc)2 + V2(q + pc)2]

= 1
2m

[
nq2 + (U2 + V2)p2

c − 2(U2 − V2)qpc

]
. (9)

The average interaction-energy density is

Eint = 1
2"

∫
d3rd3r ′g(|$r − $r ′|)|ψ(x)|2|ψ(x ′)|2

= 1
2
g0n

2 + g1n0(U − V)2 + U2V2g2, (10)

where " is the system volume [6]. We note that only the
(U − V)2 term in the energy distinguishes the relative sign of
U and V , and this term, for given U and |V|, favors V having
the same sign as U . In addition the mass current,

mj = qn0 + (q − pc)U2 + (q + pc)V2

= qn − (U2 − V2)pc, (11)

is reduced from qn for pc > 0.
To analyze the stability of the system we write

U = ζ cosh(η/2), V = ζ sinh(η/2), (12)

where ζ ! 0 and 0 " η " ∞. Then the average number
density is

n = n0 + ζ 2 cosh η, (13)

which implies the bound ζ 2 cosh η " n. In terms of ζ and η
the average energy density is

E = Eke + Eint = 1
2
g0n

2 + q2

2m
n + E′, (14)

where

E′ = ζ 2
(

p2
c

2m
cosh η − pcq

m
+ g1ne−η

)

+ ζ 4
(

1
4
g2 sinh2 η − g1e

−η cosh η

)
. (15)

We suppress the two constant terms in Eq. (14), which play no
role, and work with the energy density E′.

Let us first ignore the ζ 4 terms; minimizing the first line in
(15) with respect to η at fixed ζ , we find [7]

e−η = (U − V)2

ζ 2
= p2

c

2mεc

, (16)

where

εc =
[

p2
c

2m

(
p2

c

2m
+ 2g1n

)]1/2

(17)

is the usual Bogoliubov expression for an excitation of
momentum pc. For g1 > 0, η is positive.

With this solution,

E′ = ζ 2
(
εc − qpc

m

)
. (18)

We see explicitly that for q < mvc, the Landau critical
momentum, the original superfluid flow is stable against small
excitation as expected, but for q > mvc the system is unstable
against developing a nonuniform condensate with ζ &= 0. The
instability sets in, as noted, for pc > 0, corresponding to an
excitation moving in the negative x direction. For ζ ' 1, the
system energy E′ is positive for all q < mvc. For q ! mvc,
however, the energy as a function of ζ decreases steadily from
zero, indicating a transition to a state of nonzero ζ .

023602-2

Figure 5.24: The slope of the dashed line is the critical velocity vc according to the
Landau criterion. Redrawn from [145].

To derive the excitation spectrum, we begin with our Hamiltonian:

Ĥ = −J
∑
〈i〉

(ŝxi ŝ
x
i+1 + ŝyi ŝ

y
i+1)− (J −∆)

∑
〈i〉

ŝzi ŝ
z
i+1, (5.36)

and then rewrite it in terms of ŝ+ and ŝ− operators (with {ŝ−i , ŝ+
i′
} = δii′ ) as

Ĥ = −J
4

∑
i

(
(ŝ+
i + ŝ−i

) (
ŝ+
i+1 + ŝ−i+1)− (ŝ+

i − ŝ−i )(ŝ+
i+1 − ŝ−i+1)

)
− (J −∆)

∑
i

(2ŝ+
i ŝ
−
i − 1)(2ŝ+

i+1ŝ
−
i+1 − 1)

= −J
2

∑
i

(
ŝ+
i ŝ
−
i+1 + ŝ−i ŝ

+
i+1

)
− (J −∆)

∑
i

ŝ+
i ŝ
−
i ŝ

+
i+1ŝ

−
i+1 + 4(J −∆)

∑
i

ŝ+
i ŝ
−
i − (J −∆).

= −J
2

∑
i

(
ŝ+
i ŝ
−
i+1 + ŝ−i ŝ

+
i+1

)
− (J −∆)

∑
i

ŝ+
i ŝ
−
i ŝ

+
i+1ŝ

−
i+1 + (J −∆)(N↑ − 1

4
),

(5.37)

Chapter 5



5.6. Summary and discussion 84

where N↑ = ŝ+
i ŝ
−
i .

We then define the Fourier transform

ŝ−l =

ˆ π/a

−π/a
dk eikalŝ−k ≡

∑
k

eikalŝ−k , (5.38)

and by taking into account Bogoliubov theory [146] in terms of the fermions operators,

the excitation spectrum can be calculated with the final Hamiltonian:

Ĥ = −(J −∆)
N↑

4
− J

∑
k

cos(k)ŝ+
k ŝ
−
k + (J −∆)

∑
k

cos(k)ŝ+
k ŝ
−
k

− (J −∆)

N↑

∑
k1+k2−k3−k4=0

cos(k1 − k4)ŝ+
k1
ŝ+
k2
ŝ−k3
ŝ−k4
.

(5.39)

More detailed analysis is performed in [147] for ferromagnetic XXZ-chains. A further

analysis could be done for the spin-1 model following a similar approach, investigating

the excitations as a function of the anisotropy.

5.6 Summary and discussion

We have studied a XY-ferromagnet, and how different the ground state is from a product

state of spins rotated into the xy-plane. We also quantified how far this product state is

as a function of the anisotropy in two different effective spin models (spin-1 and spin-1/2)

from the Hubbard Model for two bosonic components in an optical lattice.

We have compared both models, and by controlling the out-of-equilibrium dynamics, we

have probed that for the spin-1/2 case the correlations decrease rapidly in time, faster

for a higher anisotropy. Furthermore, correlation lengths and thermal entropies have

been calculated using Tensor Networks techniques for thermal states.

Lastly, to probe the states we have also evaluated the short time evolution of the spin

currents, for the ground state and the rotated state, and for both models. For spin-1/2

currents are more stable for higher anisotropy. At longer times, we begin to see decay

of currents for the rotated states that occur earlier than for the ground states, where

the influence of the correlation decay becomes significant in the dynamics. For the

spin-1 model, we observed a cross-over between regions where the currents were stable

(counterflow superfluid regime, or XY-ferromagnet) and unstable (towards a spin-Mott

state).

These techniques are directly relevant for ongoing experiments to investigate the dy-

namics of strongly-correlated models in optical lattices.
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An open question, which is not addressed here, is the robustness of these techniques to

classical noise on the lattice and spontaneous emission, which is significant in current

experiments. Also, an experimental approach in higher dimensions will be interesting

to provide an interesting basis for further investigation of spin superfluidity in multi-

component bosonic lattice models.
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Chapter 6

Adiabatic state preparation and

metrology with cold atoms in

optical lattices

In this chapter1 we study new techniques to engineer states with a very low entropy using

adiabatic state preparation, especially investigating the magnetically ordered quantum

states (XY-ferromagnet, antiferromagnet) that can be engineered using these techniques,

within the parameter regimes of current experiments. Tuning the inter-component inter-

actions via Feshbach resonances [24] or adjusting the relative positions of spin-dependent

lattices allows us to adiabatically connect different many-body states [144, 148–153].

External magnetic fields can be used in these systems to tune the interactions between

atoms [154, 155]. We study if it is possible to produce specific magnetic states by

appropriate time variation of these fields. Under various conditions we determine the

fidelity of magnetically ordered states that can be engineered.

The models that we study can give rise to entanglement that is useful for quantum

enhanced metrology. We characterise the states we can prepare in terms of their Quan-

tum Fisher Information (QFI) for collective measurements with Ramsey spectroscopy

[156–163]. Interferometry is the archetype for precision measurements, and for cases

where particles are not entangled, the measurement precision is bounded by the Stan-

dard Quantum Limit (SQL) or shot noise limit 1/
√
M , with M the number of particles.

There have been various experimental and theoretical proposals to beat the classical

precision limit using highly entangled states such as Dicke states or twin-Fock states

1This work is taken in part from a publication, to be submitted. The author of this thesis performed
all of the calculations for the models and produced all of the plots.
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[164–168]. We calculate the QFI of adiabatically prepared quantum states near a quan-

tum phase transition point in our models, discuss their usefulness for metrology, and

investigate their robustness to experimental noise.

We start this chapter with a general introduction to the concept of adiabatic state prepa-

ration in section 6.1. Next, we apply adiabatic ramps to prepare interesting magnetic

states, antiferromagnet in 6.2 and XY-ferromagnet in 6.3. The second half of the chap-

ter focusses on the application of these techniques to specific states that are useful for

metrology, in terms of their QFI, in section 6.4, where we study the characterisation and

preparation of specific magnetic states as well as the effect of dissipation.

6.1 Introduction to adiabatic state preparation

The concept of adiabaticity in quantum mechanics has allowed for the experimental

study of non-trivial many-body quantum states leading to profound insights into fun-

damental physics [169–171]. An example of an extensively implemented experimental

realisation is STIRAP (Stimulated Raman Adiabatic Passage) [172], which allows ef-

ficient and selective population transfer between two quantum states, via at least two

coherent electromagnetic (light) pulses.

The original form of the term adiabatic in quantum theory was coined in 1928 by Born

and Fock [173]. We will now explain the adiabatic concept and then derive the adiabatic

condition for a quantum system [174–176].

When the conditions on a quantum mechanical system are changed rapidly, the process

is considered diabatic (or non-adiabatic), meaning that the spatial probability density

remains unchanged. On the other hand, when the parameters of a quantum mechanical

system are changed very slowly, so that the system can readjust, this process is called

adiabatic evolution. At the beginning of the evolution the initial state corresponds to one

of the energy eigenstates, and at the end it corresponds to the same energy eigenstate,

but potentially a different physical state, as the Hamiltonian has been changed.

The Hamiltonian will depend on a parameter X(t) which is function of time (such as

Rabi frequencies or detunings, experimentally). The goal will be the integration of the

time dependent Schrödinger Equation (~ = 1) for a slow change of X(t):

i
d

dt
|ψ(t)〉 = Ĥ(X(t)) |ψ(t)〉 . (6.1)
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We now expand in the instantaneous eigenstates of the time-dependent Hamiltonian,

Ĥ(X(t)) |n(X(t))〉 = En(X(t)) |n(X(t))〉 , (6.2)

considering En(X(t)) the energy eigenvalues of the Hamiltonian. The state of the system

can be written as

|ψ(t)〉 =
∑
n

an(t) |n(X(t))〉 , (6.3)

with

an(t) = 〈n(X(t))|ψ(t)〉 . (6.4)

To generate the adiabatic wave function |ψ(t)〉, we solve the Schrödinger Equation (~ =

1) and substitute

i
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 ,

i
d

dt

∑
n

an(t) |n(X(t))〉 = Ĥ(t)
∑
n

an(t) |n(X(t))〉 ,

→ i
∑
n

(
d

dt
an(t) |n(X(t))〉+ an(t)

d

dt
|n(X(t))〉

)
= Ĥ(t)

∑
n

an(t) |n(X(t))〉 ,

→ 〈m(X(t))|
∑
n

i
d

dt
an(t) |n(X(t))〉 = 〈m(X(t))| Ĥ(t)

∑
n

an(t) |n(X(t))〉

− 〈m(X(t))|
∑
n

an(t)i
d

dt
|n(X(t))〉 .

(6.5)

Then,

i
d

dt
am(t) = Em(t)am(t)−

∑
n

〈m(X(t))| i d

dt
|n(X(t))〉 an(t). (6.6)

With m 6= n

〈m(X(t))| d

dt
|n(X(t))〉 =

〈m(X(t))| d
dtĤ(X(t)) |n(X(t))〉

En(t)− Em(t)
,

→ i
d

dt
am(t) =

(
Em(t)− 〈m(X(t))| i d

dt
|m(X(t))〉

)
am(t)

−
∑
m 6=n

〈m(X(t))| d
dtĤ(X(t)) |n(X(t))〉

En(t)− Em(t)
an(t).

(6.7)

For the adiabatic approximation, we drop the coupling terms, having then

i
d

dt
am(t) ≈

(
Em(t)− 〈m(X(t))| i d

dt
|n(X(t))〉

)
am(t), (6.8)
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and the condition to say that Ĥ(t) is changing very slowly will be∣∣∣∣ 〈m(X(t))| d

dt
Ĥ(X(t)) |n(X(t))〉

∣∣∣∣� ∣∣En(t)− Em(t)
∣∣, (6.9)

that is, as the Hamiltonian is modified, the system will remain in the same adiabatic

eigenstate, provided that we vary the Hamiltonian in this sense slowly on timescales

given by energy differences between the eigenstates.

There will be a finite probability of coupling to excited states depending on the separa-

tion of the eigenvalues. For a two-level system, this is now known as the Landau-Zener

tunnelling effect [169]. The adiabatic derivation for a multilevel system was derived

more than fifty years later in [170].ADIABATIC!STATE!PREPARATION!

A.!B.!Kuklov!and!B.!V.!Svistunov,!PRL!90,!100401!(2003)!

E.!Altman,!!W.!Hofsteeer,!E.!Demler!and!M.!D.!Lukin,!NJP!5,!113.1-113.19!(2003)!

J.!Schachenmayer,!D.!M.!Weld,!H.!Miyade,!G.!A.!Siviloglou,!W.!Keeerle!and!A.!J.!Daley,!PRA!92,!1041602(R)!(2015)!
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Figure 6.1: Adiabatic state preparation conceptual representation. We start with a
state easy to prepare and with a big energy gap between the ground state and the first
excited state. We let the Hamiltonian evolve in time slow enough that no excitation to
the excited states will occur, and try to reach the target state (generally a state with a
very small energy gap) with the highest fidelity.

As can be seen in Fig. 6.1, where an adiabatic ramp is represented, the gap between

the ground state and the first excited state should be maximised at the beginning, to

avoid any coupling to the excited states (e.g. a gapped state like a spin Mott). We are

normally interested in final states with small gap, that is why they are so difficult to

prepare.

It is critical to understand the scaling of the gap with the system size, in order to

determine an optimal path for a specific adiabatic evolution. Some references using

adiabatic state preparation in a similar context can be found for ultracold spinor atoms

loaded in optical superlattices [177], polar molecules or Rydberg atoms in deep optical

lattices [151], bosonic atoms in optical lattices [153, 178, 179], and fermionic atoms in

optical lattices [148, 149, 152].

As noted in the work, e.g. of Sørensen et al. in [150], it is not only possible to connect

ground states, but also gapped excited states via adiabatic state preparation. The time
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scale is set by the gap between energy states, irrespective of whether we are dealing with

the ground state or an excited state.

6.2 Antiferromagnetic state preparation using adiabatic

ramps

As we have mentioned previously in the description of our models, two-component

Hamiltonians can be realised by using two atomic species. However, experimentally

two different hyperfine states of the same atom could be employed instead.

We consider particles loaded into an optical lattice in the regime where the lattice is

sufficiently deep so that tunnelling can be neglected on experimental time scales.

In this section we are interested in creating an antiferromagnet in the case of attractive

interactions in the spin model [99], for example, with 7Li. In order to change the

anisotropy for Rb, we need to be able to control the interactions by shifting the two

different spin states apart (e.g. in a spin dependent-lattice), whereas for 7Li we can

already control the interactions (we can choose to work on a combination of states

that are not magnetically sensitive). The extreme tuneability of 7Li [180] opens up a

very interesting field of research, where attractive interactions are achieved by Feshbach

resonances (see Fig. 6.2).

Figure 6.2: The inter-atomic interaction can be widely varied with a magnetic Fesh-
bach resonance, via tunability of a magnetic field B, where a is the scattering length.

The target state will be the antiferromagnetic ground state of the following spin-1/2

XXZ Hamiltonian (~ = 1):

ĤAFM = J
∑
〈i,j〉

(ŝxi ŝ
x
j + ŝyi ŝ

y
j ) + (J + ∆)

∑
〈i,j〉

ŝzi ŝ
z
j . (6.10)

An antiferromagnet is a state which is not easy to prepare directly, because of the small

energy gap in the ground state. However, if we start with an initial state where all
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our spins are up (i.e. |ψ0〉 = |↑↑↑↑↑↑↑ ...〉), we could use adiabatic ramps to achieve

our target state. This initial state is very easy to prepare, as only optical pumping is

needed. In order to study whether this protocol can be realised, two different proposals

are investigated.

6.2.1 Model with a staggered magnetic field

The model Hamiltonian used for this simulation is:

ĤST = ĤAFM + ĤB + ĤΩ + ĤΓ, (6.11)

where

ĤB = −h
∑
i

ŝzi , (6.12)

with h a magnetic field in the z axis to ensure that in the initial state all spins are up

(i.e. |ψ0〉 = | ↑↑↑↑↑↑↑ ...〉),
ĤΩ = −Ω

2

∑
i

ŝxi , (6.13)

with Ω an anisotropy (weak magnetic field) in the x direction, and

ĤΓ = Γ
∑
i

(−1)iŝzi , (6.14)

with Γ a weak staggered magnetic field in z, following previous studies in [150, 152].

Hence, the total Hamiltonian will take the form:

ĤST = J
∑
〈i,j〉

(ŝxi ŝ
x
j + ŝyi ŝ

y
j )+ (J +∆)

∑
〈i,j〉

ŝzi ŝ
z
j −h

∑
i

ŝzi −
Ω

2

∑
i

ŝxi +Γ
∑
i

(−1)iŝzi . (6.15)

The initial values for the parameters in the Hamiltonian are h(0) ≈ 17J , Ω(0) = 3J ,

and Γ(0) ≈ 3J , and we apply the ramps for values of ∆/Jε[0.001, 1], and J = 1.

For an adiabatic ramp, the time evolution of the Hamiltonian is described as:

|ψ(t)〉 = e−
i
~ ĤSTt |ψ(0)〉 . (6.16)

We ramp the different additional terms (h,Ω,Γ) step by step, calculating the fidelity

between the ground state for the target state at t = T , or |ψtarg〉, and the final state of

the evolution |ψ(T )〉, defined as:

F = | 〈ψ(T )|ψtarg〉 |2. (6.17)
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The procedure of the total adiabatic ramp for this model consists of three parts.

Step 1: ramp h/J → 0, by sweeping the detuning of an RF coupling between the two

spins to zero.

This is an exponential ramp with a duration of T1J = 20.

Step 2: ramp Ω/J → 0. Here we will adiabatically turn off the efective magnetic field

in x, by sweeping the Rabi frequency to zero.

Evidently, the Hamiltonian for this second evolution does not have the term in h/J ,

as this term has been ramped to zero in the first step. Our initial state will be the

final state of the first ramp. This second time evolution is linear, and has a duration of

T2J = 7.5.

Step 3: ramp Γ/J → 0.

The Hamiltonian for this third evolution does not have the term in Ω/J , as this term

has been ramped to zero in the second step. Our initial state will be the final state of the

second ramp. The time evolution is also exponential, and has a duration of T3J = 10.

The results for the fidelity at the end of the last ramp, F3 = | 〈ψ(T3)|ψtarg〉 |2, are shown

in Fig. 6.3.

Γ
J

00.10.20.30.4

F
3

0.75

0.8

0.85

0.9

0.95
∆=0.001J
∆= 0.05J
∆=  0.1J
∆=  0.2J
∆= 0.45J
∆= 0.75J
∆=    1J

Figure 6.3: Fidelities, F3 = | 〈ψ(T3)|ψtarg〉 |2, between the ground state at the end
of the third ramp |ψtarg〉 and the final state of the evolution |ψ(T3)〉, for M = 8, and
different values of ∆/J .

The fact that high fidelities, in this case with smaller values of the anisotropy ∆/J ,

are attained proves satisfactorily that the true ground state of the Hamiltonian can be

achieved through an adiabatic path. Here we only study small system sizes using Exact

Diagonalisation.

We can also calculate the spin-spin correlations and investigate the magnetic ordering,

as in Fig. 6.4.
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Figure 6.4: Spin-spin correlations, for M = 8, and ∆/J = 0.001, with periodic
boundary conditions.

The 〈ŝ+
l ŝ
−
l+j〉 correlations are calculated at the initial state |ψ(0)〉 (algebraic decay of the

correlations), at the end of the first ramp |ψ(T1)〉, at the end of the second ramp |ψ(T2)〉,
at the target state |ψtarg〉, and at the end of the third ramp |ψ(T3)〉, for ∆/J = 0.001.

The antiferromagnetic behaviour can be observed in the figure, where the spins point in

different directions (alternating signs in the correlations) in the target state and in the

final state at the end of the evolution (with faster decay of the correlations than in the

target state).

An extension of this work would be to optimise the ramps and investigate the behaviour

for bigger systems.

6.2.2 Model with a tilted magnetic field

Next we would like to prepare an antiferromagnetic state with the following Hamiltonian:

ĤTILT = J
∑
〈i,j〉

(ŝxi ŝ
x
j + ŝyi ŝ

y
j ) + (J + ∆)

∑
〈i,j〉

ŝzi ŝ
z
j − h

∑
i

ŝzi −Ω
∑
i

ŝxi +W
∑
i

iŝzi . (6.18)

The difference with Eq. 6.15 is the magnetic field gradient in z (much easier to prepare

experimentally than a staggered field) where W/J denotes the gradient strength.

Similarly to the previous model, we start with all of the spins up and we ramp each of

the parameters to zero. The target state is again the ground state of Eq. 6.10.

Next, we will first study the ground-state properties of this model, with open boundary

conditions, which will give us a deep understanding of the energy gap for the dynamical

preparation process. We will then study the time dependence of this system starting
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from a many-body state where all of the spins are up, and investigate the adiabatic

preparation of antiferromagnetic states as the parameters are modified.

The question now is whether the parameters h/J , Ω/J andW/J can be time dependently

ramped to zero, or close to zero, getting a final antiferromagnetic state. For that, we

consider next trajectories in the Ω−W plane, for different values of h/J , to adiabatically

transfer the initial state to an antiferromagnetic state.

6.2.2.1 Study of the energy gap

Firstly, we evaluate viable paths for the adiabatic transfer based on the size of the energy

gap ∆E between the ground state and excited states. During the adiabatic ramps, ∆E

has to remain as large as possible to restrain couplings (non-adiabatic transitions) to

excited states of the effective model. The first step is to consider regions in the small

scale of values for Ω/J and W/J , with a very small h/J , where we should get our

antiferromagnetic target state in the ground state.

The next step is to identify the initial state, where we will have a paramagnet, as it is

caused by the alignment with the magnetic field in z. In Table. 6.1 we summarise the

choice of parameters in the initial and final steps of the adiabatic protocol.

Table 6.1: Summary of parameters regime for the initial and final state.

Parameter Initial state (paramag-
net, PM)

Target state (antiferromagnet,
AFM)

∆/J (anisotropy) Any ∆/J ∆ ' 0.5J (smaller ∆/J will lead
to smaller gaps). We consider a
final ramp in ∆/J to 0.

h/J (magnetic field in z) Large (h ≥ 30J) Small (h ∈ [0, 2.5J ])

Ω/J (weak field in x) Ω ≥ 4.5J Ω ∈ [0, 1J ]

W/J (field gradient in z) W ≥ 1J W ' 0J

Fig. 6.5 shows the energy gap ∆E between the ground and the first excited state, for the

Hamiltonian in Eq. 6.18, for a system size of M = 14, as a function of the parameters

Ω/J and W/J , for a fixed value of ∆ = 0.5J , and h = 0, respectively. We consider

our target state as the ground state for small Ω/J and W/J , with h/J between 0 and

2.5J , and ∆ = 0.5J (the final point of the third white line in Fig. 6.5).

6.2.2.2 Resulting ramps

In order to achieve an antiferromagnet at the end of the adiabatic passage, four different

ramps are necessary. The total procedure of the total adiabatic ramp is summarised

below.
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Figure 6.5: Energy gap ∆E between the ground state of the Hamiltonian and the first
excited state, for M = 14, ∆ = 0.5J , and h = 0, as a function of Ω/J and W/J . Lines
of constant energy gap (∆E = 0.05J, 0.1J, 0.2J) are marked in the plot. The white
arrows indicate the segments of an adiabatic passage providing an antiferromagnetic
ground state.

Step 1: ramp h/J → 0, at a constant Ω(0) = 5J and W (0) = 1.5J , with h(0) ' 50J .

After an extensive study for different kinds of ramps, an exponential ramp is the most

favourable one, with a total ramp time T1J = 20.

Step 2: Ω→ 0.4J , at a constant W (0) = 1.5J .

Our initial state will be the final state of the first ramp |ψ(T1)〉. This will be a quadratic

ramp with a total ramp time of T2J ' 200.

Step 3: W/J → 0, at a constant Ω = 0.4J .

Our initial state will be the final state of the second ramp |ψ(T2)〉. This ramp is also

exponential with a total ramp time of T3J ' 2000. This slow ramp is necessary due to

the small energy ramp in this region, as we identified in our study.

Step 4: Ω/J → 0.

Our initial state will be the final state of the third ramp |ψ(T3)〉. This ramp is linear,

with a duration of T4J = 400.

Furthermore, we investigate the results of an additional ramp in the anisotropy ∆/J .

Step 5: ∆/J → 0.

Our initial state will be the final state of the previous ramp |ψ(T4)〉. This final ramp is

also linear, with a total ramp time of T5J ' 700.
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We characterise the magnetic behaviour by evaluating the spin-spin correlations, in

Fig. 6.6, as the end of the final ramp, where the alternating signs in the correlations

show the antiferromagnetic ordering in the final state.

Figure 6.6: 〈ŝ+
M/2ŝ

−
M/2+j〉, 〈ŝzM/2ŝ

z
M/2+j〉, and 〈ŝxM/2ŝ

x
M/2+j〉 correlations, forM = 14,

at the end of the final ramp, where all parameters are ramped to 0. The antiferromag-
netic behaviour can be clearly observed.

As it has been demonstrated that the study works for small systems, next step is to

analyse larger systems, closer to the system sizes used in experiments. To handle this

many-body problem numerically, a DMRG could be implemented, by using Matrix Prod-

uct States (MPS) representation. Furthermore, it would be important to investigate

different approaches to be able to use ramps with a duration which could be realised in

practise in experimental platforms with cold atoms in optical lattices. For example, in

this case we also tried to ramp different parameters to 0 at the same time, and even all

parameters at once, but unfortunately, the fidelities reached were very low.

6.3 Study of an XY-ferromagnet

We consider we work with a system where we can change UAB relative to UA and UB.

One specific experimental implementation to prepare magnetic states is by using spin

dependent lattices. In this case, the two lattices are shifted relatively to each other

allowing the tuning of the inter-component interaction, by changing the overlap of the

spin-component’s wavefunction on a lattice site [65]. This is the case of Rubidium, where

we have combinations of hyperfine states that are magnetically sensitive.

In this section we study the preparation of XY-ferromagnetic states for the spin-1/2, by

using adiabatic ramps. Adiabatic state preparation was considered previously for the

spin-1 model in [153].
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6.3.1 Adiabatic ramps for the spin-1/2 model

In the previous chapter, the rotation was done instantaneously, but in reality there would

be a time involved. Experimentally, the symmetry break can be done by a transverse

magnetic field. In this section, an adiabatic process in which the spins are rotated

slowly in the presence of the interaction terms is evaluated. Experimentally, we suggest

to create a spin-1/2 model with 87Rb from a single component Mott insulator as a low

entropy starting point. The model Hamiltonian used for the calculations is the following

ĤXY = −J
∑
〈i,j〉

(ŝxi ŝ
x
j + ŝyi ŝ

y
j )− (J −∆)

∑
〈i,j〉

ŝzi ŝ
z
j − h

∑
i

ŝzi −
Ω

2

∑
i

ŝxi . (6.19)

For values of ∆ε[0.001, 1], and J=1, we apply:

a) magnetic field in the z-axis, h/J , to ensure that in the initial state all spins are up

(i.e. |ψ0〉 = | ↑↑↑↑↑↑↑ ...〉). Thus, the first step will be to adiabatically turn off this

effective magnetic field in z (by sweeping the detuning of an RF coupling between the

two spins to zero.

b) an anisotropy (very weak magnetic field) in the x direction, Ω. Here we will adia-

batically turn off the efective magnetic field in x, by sweeping the Rabi frequency to

zero.

The initial values for the parameters are h = 50J and Ω = 1.1J . The procedure of the

total adiabatic ramp consists then in two parts:

Step 1: ramp h/J → 0.

This ramp is linear and has a total time T1J = 500.

Step 2: ramp Ω/J → 0.

We start with the state value of the final state of the first ramp |ψ(T1)〉. This second time

evolution is also linear, and has been computed for different ramp durations. The results

are summarised in Fig. 6.7, for different anisotropy values, and a system of M = 20 spins,

calculated using Matrix Product State techniques.

Fig. 6.7 shows that at the end of the ramps fidelities closer to 1 are attained for ∆ > 0.5J .

In the next section we introduce the concept of Quantum Fisher Information in metrology

and how we can apply it to our models. We also considered alternative approaches to

have durations for the ramps within experimental parameters.
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Figure 6.7: Fidelities between the target state |ψtarg〉, the ground state at the end of
the second ramp, and the final state of the evolution |ψ(T2)〉, for M = 20, and different
values of ∆ and ramp times. The calculations were done with bond dimension for the
MPS calculations D = 128.

6.4 Spin models and metrology

We now show how the models can give rise to entanglement that is useful for quantum

enhanced metrology, and characterise the states we can prepare in terms of their QFI

for collective measurements with Ramsey spectroscopy.

6.4.1 Quantum Fisher Information

Arising from interferometry, the Quantum Fisher information determines the optimal

sensitivity (with the right measurement choice) of a state to a given transformation

Ĝ. It corresponds to the upper bound of the Fisher Information over all possible gen-

eralised quantum mechanical measurements, providing a tool to measure many-body

entanglement.

In order to provide a definition for it, the simplest way is to consider a more general

concept of Fisher information I, arising from the context of Quantum Estimation Theory

[181, 182]. Having a given state, described by a density operator ρ̂, we perform a

measurement generated by Ĝ, so that the state transforms as ρ̂(θ) = e−iθĜρ̂eiθĜ, with

the phase shift θ that we would like to measure. We can define an estimator θest(~µ)

which is a function of the outcomes ~µ = ~µ1, ..., ~µm with m the number of measurements

performed. The error associated with this estimator is subject to the Cramér-Rao bound

[183, 184]:

∆θest ≥ 1/
√
mI, (6.20)
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where ∆θest is the variance of our estimator, and the classical Fisher information is

I =
∑
µi

1

p(µi|θ)

(
∂p(µi|θ)
∂θ

)
, (6.21)

with p(µi|θ) the conditional probability of measuring the value µi with the phase shift

produced by the transformation in θ.

By maximizing I over the total set of m measurements we obtain the QFI IQ:

IQ[ρ̂, Ĝ] = 2
∑
k,k′

(αk − αk′)2

αk + αk′
|〈k|Ĝ|k′〉2, (6.22)

with ρ̂ =
∑
k

αk|k〉〈k| and the sum only including terms that fulfil αk + αk′ > 0.

Then, we can restate the Cramér-Rao bound as:

∆θ ≥ 1/
√
mI ≥ 1/

√
mIQ. (6.23)

In the models described in this work, where we have many spins, in order to describe an

ensemble of M spins, we can introduce the collective spin vector Ĵ = {Ĵx, Ĵy, Ĵz}, where

[184]

Ĵµ =
1

2

M∑
l=1

σ̂(l)
µ , (6.24)

with σ̂(l) the Pauli operator for the particle l and µ = x, y, z axis.

Figure 6.8: The final state completely symmetric in spin (or Dicke state), around the
equator of the Bloch sphere (representation for the spin-1/2 case), it is a good candidate
for interferometry beyond the shot noise limit.

Imposing the condition that our state lies in the equator of the Bloch Sphere (Fig. 6.8)

with Jz = 0, a possible transformation would be a coherent spin-flip from the xy-plane,

whose generator is basically a collective spin operator in x:

Ĝ = Ĵx =
1

2

M∑
l=1

σ̂(l)
x . (6.25)
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With pure states we only need to compute the variance of the expectation value of the

operator of our given transformation [183], and thus in our case

IQ = 4∆Ĝ = 4∆Ĵx. (6.26)

That is, we compute the QFI in our models as

IQ = 4(〈Ĵ2
x〉 − 〈Ĵx〉

2
) = 4

(∑
l,l′

〈Ŝxl Ŝxl′〉 −
∑
l

〈Ŝxl 〉
2
)
. (6.27)

The QFI is calculated analogously for the spin-1/2 with operator ŝxl .

In these schemes, the sensitivity on the phase estimation is restricted to the shot noise

limit, with ∆θ ≥ 1/
√
mM , being M the total number of spins. However, these can

be overcome by the introduction of entanglement in the system up to the Heisenberg

scaling with ∆θ ≥ 1/
√
mM , affecting the scaling of IQ, from IQ ∼M , in the shot noise

regime, to IQ ∼M2 for the Heisenberg scaling.

We use IQ as a tool to measure many-body entanglement. Thus, IQ will increase if the

system cannot be factorised and for a larger Hilbert space (larger M).

The expression for the maximum QFI that we expect for a given system size M will

then be, using angular momentum theory

IQmax =
J(J + 1)

2
, (6.28)

and for the respective models

IQSP12
max = M

(
M

2
+ 1

)
, (6.29)

and

IQSP1
max = 2M(M + 1). (6.30)

The question now is how close we are to IQmax in both models, and whether we have

indeed useful entanglement, and go beyond the shot noise limit.

6.4.2 Characterising the ground state: useful entanglement for metrol-

ogy

We know that final states completely symmetric in spin are good candidates for inter-

ferometry beyond the shot noise limit, and we want to show that these systems can be

prepared with bosons in optical lattices.
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As a tool to probe the final state, we evaluate the QFI for different values of the

anisotropies u/J,∆/J in the spin-1 and spin-1/2 model, with Hamiltonians

ĤSP1 = −J
∑
〈j,l〉

ŜjŜl + u
∑
l

(Ŝzl )2, (6.31)

for the spin-1, and

ĤSP1/2 = −J
∑
〈j,l〉

ŝj ŝl + ∆
∑
〈j,l〉

ŝzj ŝ
z
l , (6.32)

for the spin-1/2, respectively. We also study how IQ scales with the system size M . A

large IQ will justify a better accuracy, and thus less uncertainty in the characterisation

of the ground state.

For both models the QFI has been calculated for different anisotropy values (∆/J , u/J

in each case), in Fig. 6.9.
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Figure 6.9: Quantum Fisher Information IQ versus anisotropy for the ground state
of the Hamiltonian for the (a) spin-1 and (b) spin-1/2 model, for different number of
spins. As the anisotropy decreases we get closer to the maximum QFI value ((6.30),
dotted lines). The values are calculated for different system sizes by using MPS. The
bond dimension for the MPS calculations was D = 128 for M ≤ 200, and D = 256 for
bigger systems, with open boundary conditions.

For the spin-1/2 we are in the same regime when ∆/J > 0. However, for the spin-1

case, once we enter in the spin-Mott regime at u ' 0.62J , as the particles are localised,

increasing u/J decreases much more the value of IQ.

We have also evaluated the scaling by fitting the values of IQ for different system sizes

to a curve of the form

IQ ∝ A ·Mα + C, (6.33)

being α the scaling factor and A,C constants.
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In Fig. 6.10, we show that the fit obtained has very low errors for all systems, having

the highest final scaling factor α. We present here just the application to the spin-1/2

model, because the case for spin-1 is completely equivalent. We also take a small value

of the anisotropy ∆ = 0.01J , as we already know smaller anisotropy gets closer to the

Heisenberg scaling.
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Figure 6.10: Spin-1/2 Model. Fitting of the scaling function A · Mα + C for an
anisotropy ∆ = 0.01J . The data points are the black dots, and the fitting is light blue.

The results for both models are summarised in Fig. 6.11, where we show the scaling

with system size and the equivalent scaling parameter α. In the regime where we have

larger nearest-neighbours interactions (smaller anisotropy), we see a larger value of IQ,

getting closer to the classical picture. We also get closer to the Heisenberg scaling in

the limit of anisotropies u/J , ∆/J → 0. At larger anisotropies, we found less precision

and thus more uncertainty.

6.4.2.1 Case with negative interactions

In this section we investigate the QFI for the spin-1/2 case with negative interactions,

thus an antiferromagnet AFM in the ground state.

The results are shown in Fig. 6.12. As in the spin-Mott, we see that IQ is very small.

However, as we increase the ∆/J , we “turn-on” the interactions and that is why we see

a slight increase in IQ. Here there is no entanglement, and therefore the scaling with

system size will not give any useful information.

An open question remains to investigate other types of measurement, or transformation,

that could be made with antiferromagnetic states that are useful for metrology.

In the next sections we will focus on the study of regimes with high Quantum Fisher

Information, which implies useful entanglement for practical applications.
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Figure 6.11: Scaling of IQ for the ground state of the Hamiltonian for the (a,b) spin-1
and (c,d) spin-1/2 model. In (a,c) we show the resulting fitted curves of the QFI versus
system size, where we can see that the changing scaling factor α indicates a different
scaling for different anisotropy. The maximum QFI is depicted as black dashed lines.
In (b,d) we clearly see that as the anisotropy ∆/J, u/J → 0 the scaling is closer to the
Heisenberg scaling, that is, α → 2 and IQ ∼ M2. The bond dimension for the MPS
calculations was D = 128 for M ≤ 200, and D = 256 for bigger systems, with open
boundary conditions.

6.4.3 Adiabatic State Preparation

As we have seen earlier in the chapter, we can prepare our target states by starting with

low entropy states with a large energy gap ramps and then ramp to states with a much

smaller gap. However, it is critical to understand the scaling of the gap with the system

size, and thus it is convenient to find an optimal path for a specific adiabatic evolution.

Understanding the gap in many-body systems and the limit of adiabaticity has been a

remaining open question [185]. The use of different kinds of ramps in order to choose

the optimal one is a recurrent method, in order to achieve ramp times that are feasible

experimentally [186].

In order to have a successful ramp useful for metrology, we aim at a duration of the

experiment between 0.5 and 0.75 seconds. For our systems, where we have cold atoms
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Figure 6.12: (a) Quantum Fisher Information IQ for the antiferromagnetic ground
state of the Hamiltonian (spin-1/2 model) with negative interactions, vs different values
of the anisotropy ∆/J . (b) IQ versus system size, where we see the scaling is linear
(thus the parameter α will be closer to the shot noise limit). The bond dimension for
the MPS calculations was D = 128 for M ≤ 200, and D = 256 for bigger systems, with
open boundary conditions.

in optical lattices, typically the tunnelling for the atomic species used in the experiments

we are interested (K, Rb, and different for other species such as Cs) is of the order or

1− 5ms (t ' 1000Hz). In our model with a very low tunnelling in comparison with the

interactions (otherwise perturbation theory would not work) we are talking of a ratio of

around t ' 1/8 to 1/10 U .

The superexchange will be of the order of 10 ms, that is, we are considering ideal

theoretical times of tJ = 0.5 · 100 = 50. In the experiments, we expect small differences

with the theory. There are ways to be faster in the experiment (e.g. lighter atoms,

shallower lattice), but here we want to investigate theoretical approaches to reach those

experimental time scales.

This control is essential for the development of quantum technologies [187]. However,

it is not always easy to find a ramp sufficiently slow to maintain adiabaticity and at

the same time within experimental limitations. One approach is to use shortcuts to

adiabaticity, an alternative providing a trade-off between the speed of the ramp and

the energetic cost [188–190]. Unfortunately, the complexity of many-body physics with

many degrees of freedom can be difficult to control.

Another alternative is the use of optimal control techniques, which have been used in

chemistry and physics for a number of years [191, 192]. It is indeed this control at

the quantum scale, at the atomic and molecular level, where numerous groups have

targeted their efforts, [193–195], which pioneered new ways to apply time-dependent

density matrix renormalisation group algorithms to quantum simulations, [196], and/or

quantum trajectories, [197].
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In the next section we present some alternative optimisation methods, to obtain an

adiabatic ramp in realistic experimental times 2.

From now on, and in the rest of the chapter, we focus on the spin-1/2 model, as we

mentioned that adiabatic state preparation (without the Fisher Information) was con-

sidered previously for the spin-1 model in [153]. Further, despite having studied different

regimes, we concentrate now on the XY-ferromagnetic regime. Following other works

[179, 198], an alternative approach focuses on the adiabatic preparation and the study

of many-body dynamics for the generation of antiferromagnetically ordered states.

6.4.3.1 Ramp in ∆ 6= 0: Optimal Control

We investigate the preparation of the ground state of the spin-1/2 XXZ model with a

small number of spins, represented by the Hamiltonian in Eq. 3.15.

Beginning with all spins in a superposition of

∏
i

|↑〉i + |↓〉i√
2

, (6.34)

with a large coefficient of Ω/J (magnetic field in the x direction) in ŝx, we want to

decrease this coefficient to zero, at a fixed non-zero anisotropy ∆/J . Experimentally,

the effective magnetic field in x will be turned off adiabatically, by sweeping the Rabi

frequency to zero.

That is, we start with the following Hamiltonian:

Ĥ′SP1/2 = −J
∑
〈i,j〉

(ŝxi ŝ
x
j + ŝyi ŝ

y
j )− (J −∆)

∑
〈i,j〉

ŝzi ŝ
z
j − Ω

∑
i

ŝxi , (6.35)

and we want to ramp Ω→ 0 with a ramp time within experimental limitations.

We tried different ramps (linear, exponential, polynomial) but none of them worked in

a relatively short time, or times relevant for experiments, as we always got ramps of

TJ ≈ 200− 300.

The Hamiltonian can be expressed in terms of the eigenstates:

Ĥ′SP1/2 |φl〉 = El |φl〉 , (6.36)

considering El the energy eigenvalues of Ĥ.

2Part of the work in this section contributed to the publication [56].
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The non-adiabatic transitions states are the eigenstates of the instantaneous Hamilto-

nian:

|ψ〉 =
∑
l

Cl(t) |φl(t)〉 . (6.37)

From the adiabaticity condition, we say that if Ĥ′SP1/2(t) is changing very slowly such

that

| 〈φj(t)|
d

dt
Ĥ′SP1/2(t)) |φl(t)〉 | � |El(t)− Ej(t)|, (6.38)

then there will be no coupling between different energy eigenstates. As the Hamiltonian

is modified, the system will remain in the same state.

Now, considering the coefficients as

Cl(t) =
〈φj(t)| d

dtĤ′SP1/2(t) |φl(t)〉
El(t)− Ej(t)

, (6.39)

we want to find a function g(t) proportional to this energy gap ∆E.

We know that the energy gap is very small when Ω/J gets very small. The first thing is

to study the energy gap as a function of Ω/J , and we show this study for M = 20 using

Matrix Product States in Fig. 6.13.
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Figure 6.13: Energy gap ∆E between the ground state of the Hamiltonian and the
first excited state, for M = 20, ∆ = 0.8J and different values of Ω/J . The inset shows
the behaviour for smaller values of Ω/J . The smallest value of the gap here for Ω = 0
is ∆E = 0.057. For smaller anisotropy it gets even smaller, and for ∆ = 0.1J the gap
is ∆E = 0.0056.

Now that we know how the energy gap behaves, we want to find the control function

g(t) which will satisfy
d
dtg(t)

∆E
∼ constant, (6.40)

thus, ˆ g(t2)

g(t1)

1

∆g(t)
dg =

ˆ t2

t1

dt. (6.41)
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We start by mapping our energy gap and write a function such as

g(t+ dt) = g(t) + dt · C ·∆g(t), (6.42)

where C is a constant, satisfying

d

dt
g(t) = −C∆g(t), (6.43)

and with g(0) = 1 and g(TJ) = 0, we start running the function, from C = 1 until we

get a value of C where g(TJ = 0) ' 0.

We run the algorithm for different ramp times and different number of atoms, and we

summarise the results in Fig. 6.14. As we can see in the figure, we still need to use

longer ramps to attain high fidelities in systems of experimental system sizes.
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1

Figure 6.14: Fidelity achieved in the Ω/J ramp, for different system size M , and
different ramp times, using the optimised ramp g(t) proportional to the energy gap. All
these results are for ∆ = 2J . Eventually, even for bigger system sizes the reached fidelity
will be closer to 1, but the times will be extremely long, not attainable experimentally.

We then decided to used optimal control by evaluating a set of functions such that

g(t) =
∑
l

Clfl(t,Θl), (6.44)

with Θl a parameter and fl the optimal control functions, where we fixed the duration

of the evolution, i.e. the length of the ramp. To do this, we parameterise our time-

dependent ramp as Ω(t) = Ω0g(t) with an initial Ω0 = 10J . For our optimisation

the optimal control functions are based on Legendre polynomials, which are a type of

Fourier series that form a complete orthogonal system over the interval [−1, 1]. We use

a basis of 10 Legendre polynomials and the nonlinear optimisation function fmincon in

MATLAB R©.
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The figure of merit with which we quantify success in this case is the fidelity between

the ground state (target state) of Ĥ′SP1/2, or |ψtarg1〉, and the final state of the evolution

|ψ(T1)〉 at t = T1, defined as:

F = | 〈ψ(T1)|ψtarg1〉 |2. (6.45)

In the algorithm we specify the sensitivity of the result, implying that the final fidelity

must be greater than a certain value, and we specify F ≥ 0.9.

Firstly, we study the algorithm for small system and compare with the previous results.

We can see this comparison for small systems in Fig. 6.15, for two different values of

∆/J and a ramp duration of TJ = 50, and where we have:

- in purple results for a linear ramp,

- in orange results for a ramp proportional to the energy gap (as discussed above),

- in green results for this new approach using optimal control based on Legendre poly-

nomials.

Figure 6.15: Fidelity results for different kind of ramps for the spin-1/2 Hamiltonian
where we ramp Ω→ 0, for two different values of the anisotropy (a) ∆ = 0.8J and (b)
∆ = 2J , for different system sizes M , and ramp time of TJ = 50.

We see a clear improvement with the last optimisation algorithm, and next we will apply

it to bigger system sizes.

We call the optimal ramp gopt, and we show the results in Fig. 6.16 for different system

sizes and two anisotropy values ∆/J (high values in order to attain higher fidelities

with this protocol). It works so well because some excited states are populated during

the quick evolution and land exactly on the ground state at the final moment of time.

However, the cost of this is quite enormous, and we do not show the ramp for M = 20

and ∆ = 0.8J , as the time needed to find the optimal ramp exceeded our limitation.
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We believe the explanation is that it grows because the Hilbert space grows as well as

the number of solutions.
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Figure 6.16: Optimised ramps for the Hamiltonian in 6.35 where we ramp the mag-
netic field in the x direction Ω/J to 0, for two different values of the anisotropy (a)
∆ = 0.8J and (b) ∆ = 2J , for different system sizes M .

6.4.3.2 Ramp to ∆ = 0

We are interested in evaluating the perfect XY-ferromagnet in the presence of a very

small anisotropy ∆/J , as we know from section 6.4.2 that is the regime close to the

Heisenberg scaling, which is useful for metrology.

Here we ramp the anisotropy ∆/J and we evaluate the fidelity and the Quantum Fisher

Information IQ during the ramp. We start with the ground state |ψ0〉 of the Hamiltonian

in (3.15) with a specific value of ∆/J , which will be prepare following the protocol

described in the last section. We then ramp the anisotropy linearly, as ∆(t) = ∆ − βt,
from ∆/J at tJ = 0 to ∆T /J at time t = T , for different values of β, and different final

values of the anisotropy ∆T .

The fidelity between the target state |ψtarg〉 (the ground state of the Hamiltonian where

∆ = ∆T ) and the final state of the evolution |ψ(T )〉 will then be:

F∆T
= | 〈ψ(T )|ψtarg〉 |2. (6.46)

In Fig. 6.17 we evaluate the final fidelity for different ramp times and different system

sizes M , for two particular initial and final values of the anisotropy ∆T /J . In agreement

with the adiabatic theorem, the time scale required for the ramp to be adiabatic depends

on the size of the system. Furthermore, we identified how trying to reach lower final

anisotropies becomes much harder with the system size. However, for typical experi-

mental ramp times and system sizes we can still reach high fidelities up to a value of ∆T
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where we know from Fig. 6.9 the scaling is close to the Heisenberg limit, which means

we can still prepare these high entangled states useful for precision measurements with

high fidelity.

(a) F vs TJ , ∆ = 0.8J (b) F vs TJ , ∆ = 2J
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Figure 6.17: Fidelities between the ground state at the end of the ramp in the
anisotropy ∆/J for the spin-1/2 model. We consider two different initial anisotropy
values (a,c) ∆ = 0.8J and (b,d) ∆ = 2J . We also evaluate the ramps with two different
final values of ∆T /J (solid lines ∆T = 0.1J , dotted lines ∆T = 0.01J), for different
ramp times TJ and system sizes M . We can see that the highest value of the fidelity at
the end of the ramp happens with the largest ramp, being TJ = 100, following the adi-
abatic theorem. We also show how it is harder to target a lower ∆T , and how the final
fidelity decreases with system size. The calculations were done with bond dimension
for the MPS calculations D = 128, and open boundary conditions.

We also evaluate the QFI as in (6.27) (compared with its maximum value (6.30)) in

Fig. 6.18, where we identify that, contrary to the result with the fidelity, the final

anisotropy has an insignificant role on the behaviour of IQ with ramp time and system

size. However, we again see that the ramps are more robust with an initial fidelity

∆ = 0.8J . Thus, we believe the procedure of preparing the Hamiltonian with ∆ = 0.8J

in (6.35), followed by a ramp in ∆/J to a final value of ∆ = 0.1J , will prepare an

XY-ferromagnet with a high entangled ground state that can be used for measurement

schemes such as Ramsey spectroscopy.
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(a) QFI vs TJ , ∆ = 0.8J
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(b) QFI vs TJ , ∆ = 2J
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Figure 6.18: We evaluate the ratio of the QFI with its maximum value IQ/IQmax

at the end of the ramp in the anisotropy ∆/J for the spin-1/2 model. We consider
two different initial anisotropy values (a,c) ∆ = 0.8J and (b,d) ∆ = 2J . We consider
different system sizes M and different ramp times TJ . The flat lines are for a final
anisotropy value ∆T = 0.1J and the dotted lines for ∆T = 0.01J . The decrease of
the QFI with increasing system size is independent of the final value of ∆T /J , for a
specific ramp time TJ . The calculations were done with bond dimension for the MPS
calculations D = 128, and open boundary conditions.

In the next section we discuss the stability of the states when we add dissipation into

the system, which is key for any experimental realisation.

6.4.4 Effects of dissipation

We mentioned before that one of the challenges in using adiabatic state preparation is

the trade-off between the speed of the ramp and the energetic cost of natural heating,

being in the form of spontaneous dissipation in experiments with spin-dependent lattices

[199].
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We have seen in chapter 4 that for open quantum systems the resulting markovian

master equation in Lindblad form will be [113]

d

dt
ρ̂ = − i

~
[Ĥ, ρ̂]− Γ

2

∑
m

[Ĉ†mĈmρ̂+ ρ̂Ĉ†mĈm − 2Ĉmρ̂Ĉ
†
m], (6.47)

with Γ the dissipation rate.

In our case, the master equation will be

d

dt
ρ̂ = − i

~
[ĤSP1/2, ρ̂]− Γ

2

∑
i,κ=A,B

[
Ĉ†i,κĈi,κρ̂+ ρ̂Ĉ†i,κĈi,κ − 2Ĉi,κρ̂Ĉ

†
i,κ

]
, (6.48)

where the jump operators are the projectors on the |↑〉 and |↓〉 state

Ĉi,A =
1 + ŝz

2
,

Ĉi,B =
1− ŝz

2
,

(6.49)

on site i, for species A and B, respectively.

In order to solve this master equation numerically, we employ quantum trajectory tech-

niques, which involve rewriting the master equation as a stochastic average over indi-

vidual trajectories, which can be evolved in time numerically as pure states, as was

explained in section 4.3.2. The effective Hamiltonian for the spin-1/2 model with two

species will then have the form

Ĥeff = ĤSP1/2 −
i

2
Γ
∑
i

[
Ĉi,A + Ĉi,B

]
. (6.50)

In Fig. 6.19 we plot the fidelity and the QFI (calculated as before) at the end of the ramp

for different ramp times and different values of the dissipation Γ/J , within experimental

time ranges. Here we show just the results with initial anisotropy ∆ = 0.8J .

We show how there is a trade-off between using slow ramps to improve adiabaticity and

using faster ones to avoid dissipation. For large heating rates the final fidelities go to

zero. However, these effects are less highlighted in the QFI, which means that if we are

interested in high entangled states useful for metrology we can still prepare them in the

presence of dissipation.
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Figure 6.19: Averaged fidelities F [panels (a-b)] and Quantum Fisher Information
[panels (c-d)] at the end of the ramp in ∆ including dissipation, for initial and final
anisotropy ∆ = 0.8J and ∆T = 0.1J , respectively. (a) Averaged fidelities for different
system sizes, ramp times, and a value of the dissipation Γ = 5× 10−4J . (b) Averaged
fidelities for different dissipation rates and ramp times, for a ramp of size M = 32. (c)
IQ/IQmax shown for different system sizes, ramp times, and a value of the dissipation
Γ = 5 × 10−4J . (d) IQ/IQmax shown for different dissipation rates and ramp times,
for a ramp of size M = 32. These calculations were performed with 200 trajectories
(statistical error bars are shown on the plots) and a bond dimension for the MPS
calculations D = 128, with open boundary conditions.

6.5 Summary and Outlook

In this chapter we have demonstrated that high fidelities can be reached using adiabatic

ramp evolutions, making it possible to prepare desired states with specific magnetic

ordering. These techniques are directly relevant for ongoing experiments, and funda-

mentally interesting in terms of their non-equilibrium dynamics.

First, we introduced theoretically the concept of adiabatic state preparation and the

adiabatic theorem, and how the adiabaticity depends on the energy gap of our system,

and that this gap decreases with the size of the system. We then applied different

ramps to prepare specific magnetic states in the spin-1/2 model. We started with the

preparation of antiferromagnetic states for small systems by employing two different
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approaches, and we showed how we can reach high fidelities at the end of the ramp, by

comparing the evolved state with the target state. We also show the behaviour of the

correlations and how we can use it to characterise the magnetic order of our final state.

A further investigation with larger system sizes could be implemented using Matrix

Product States.

Furthermore, we study the preparation of XY-ferromagnetic states and show how the

times needed to reach high fidelities were outside the scope of experimental realisations.

Next, we explained how our models can give rise to entanglement that is useful for

quantum enhanced metrology. After an introduction to the concept of Quantum Fisher

Information QFI (IQ), we then used it to characterise the ground states of both the

spin-1 and the spin-1/2 model. We also compared with the maximum QFI value, where

we showed that in the limit of very small anisotropies we are very close to the Heisenberg

scaling where IQ ∼ M2, which is the maximum scaling possible, and the regime where

we could use our highly entangled states for metrology.

We then used optimisation techniques to find optimal ramps within experimental times,

focusing on the spin-1/2 model, and obtained high fidelities for bigger system sizes, and

with high QFI values. Finally, we studied the robustness of our models to experimental

noise, in the form of spontaneous emission, by using quantum trajectory techniques, and

demonstrated that there are regimes where the useful properties of these states survive

dissipation. This implies that the generation of entanglement should be generally more

robust to heating than by looking at the state fidelity.

As a perspective for further studies, it would be interesting to investigate of the effects

of other sources of noise and dissipation, and the implementation of actual experimental

data.
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Chapter 7

Spin dynamics in the presence of

long-range interactions and

disorder

The phenomenon of synchronisation has been investigated in a plethora of physical

topics, and in particular, in systems with long-range interactions [200, 201].

In this chapter, beginning from a state with all effective magnetic spins in the same

direction, we investigate the dynamics of the spin-spin correlations, and how they behave

in situations with different interaction ranges and for different total spin. We show in

some cases that this leads to synchronisation between the spins.

We start in section 7.1 considering the possibility of having different regimes of in-

teractions, from long-range to the nearest-neighbour regime, being able to classify the

behaviour of correlation spreading in the spin models into different patterns. We also

analyse any transition points from long to short-range interactions in the models by in-

vestigating the dynamics of the spin-spin correlations. Then, in section 7.2 we investigate

the stability of the correlations by adding a quenched disorder into the systems.

7.1 Long-Range Interactions

The experimental realisations with Rydberg atoms [202, 203], polar molecules [204], and

especially with ion traps [14, 205] in recent years have improved the way to control and

engineer platforms to study interactions that decrease following a power law. This opens

up a rich research field to investigate how dynamics change in the presence of long-range

interactions, making them attractive for quantum simulation.
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In previous chapters we focussed on models with only nearest-neighbours interactions.

Now, in addition, we consider the possibility of long-range interactions (LRI), where we

are able to classify the behaviour of correlation spreading in both spin-1 and spin-1/2

models into different regimes as a function of the decay exponent α, with power law

interactions decaying as 1/rα, where r is the separation distance between spins. The

models will then have the form

ĤSP1LRI
= −

∑
i>j

J

|i− j|α ŜiŜj + u
∑
i

(Ŝzi )2, (7.1)

for the spin-1 system and

ĤSP1/2LRI
= −

∑
i>j

J

|i− j|α (ŝxi ŝ
x
j + ŝyi ŝ

y
j )−

∑
i>j

J −∆

|i− j|α ŝ
z
i ŝ
z
j , (7.2)

for the spin-1/2 system.

In a quantum system with short-range interactions we expect the generic correlations to

propagate with a light cone with a finite velocity, known as the Lieb-Robinson bounds

[117], whereas we expect no sharp cone in the long-range interactions regime as the

propagation of entanglement is suppressed. One of the main questions is the behaviour

of the light cone with the propagation of correlators in the system, when we enter an

intermediate interaction regime [118, 206–208].

The values of α will indicate the range of the interactions where in a system of dimension

D:

(a) α > D + 1: regime of short-range interactions,

(b) α < D: regime of long-range interactions,

(c) Intermediate-range if D < α < D + 1.

In the next section we investigate the decay of the correlations as a function of time

and distance for different values of α for long-range interactions, and compare with the

behaviour with nearest-neighbour interactions.

7.1.1 Results

We study the same quench dynamics as in 5.1 where we start with all spins initially

prepared aligned along the z-axis, followed by having a product state of spins rotated

into the xy-plane, and then dynamically evolve under the Hamiltonians 7.1 and 7.2.
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We investigate how long-range interactions persist with time and whether there is a

transition point where the behaviour changes for different values of α.

For moderate times and bigger systems sizes we apply Time-Dependent Variational Prin-

ciple (TDVP) techniques with Matrix Product Operator representation of the Hamilto-

nian, discussed in section 4.2.3.2.

The correlations are calculated as in 7.3:

Θj = |〈S+
i S
−
i+j〉| =

1

M − 2b− j

M−b−j∑
i=1+b

| 〈Ŝ+
i Ŝ
−
i+j〉 |, (7.3)

where i denotes the index of the site, j is the distance or number of sites, and b = M/5

is a number of sites at the boundary that we omit to reduce the open boundary effects.

The correlations are calculated analogously for the spin-1/2 with operators ŝ+
i , ŝ

−
i+j .

In Fig. 7.1 we show the correlations as a function of distance, at the end of a time

evolution TJ = 3, for the spin-1 model, for different parameter values.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

(a) u = 0.2J
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Figure 7.1: Comparison of the decay of the correlations as a function of distance for
the spin-1 model with M = 80, for different α values at TJ = 3. The decay of the
correlations with time starts when entering in the regime of intermediate interactions
(α > 1). The spreading of the light cone is only visible when entering in a regime
of short-range interactions (α = 2). We can also see that only in this regime the
correlations decay as a function of distance, and that this behaviour is more pronounced
with a higher anisotropy. The MPS calculations were done with bond dimension D =
128 and open boundary conditions.

In Fig. 7.2 we study the decay of the correlations as a function of distance at the end of

the evolution (TJ = 3) for different values of α and nearest-neighbour interactions for

the spin-1/2 model.

The results are shown on a logarithmic scale for ∆ = 0.8J in 7.3, to analyse better

whether there is either an algebraic or exponential decay.
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(a) ∆ = 0.2J , M = 80
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Figure 7.2: Comparison of the decay of the correlations as a function of distance for
the spin-1/2 model with M = 80, for different α values at TJ = 3. There is a clear
change in the correlations behaviour in the intermediate range of interactions (α > 1).
In this case we can see different behaviour in each of the interactions regimes. For
long-range there is no decay of the correlations. In the intermediate regime we have
a power law decay, and an exponential decay of the correlations (vanishing with time)
for short-range interactions. The MPS calculations were done with bond dimension
D = 128 and open boundary conditions.
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Figure 7.3: Correlations as a function of distance for the spin-1/2 model at TJ = 3,
for different values of α and nearest-neighbour interactions in a semi-logarithmic scale,
and ∆ = 0.8J . We see a transition form a power law decay of the correlations to an
exponential decay in the short-range interactions regime. Size of the system M = 80.

We have seen how the correlations behave differently with respect to time and distance,

depending on the interaction regime. In figures 7.4 and 7.5 we summarise these results

for a fixed distance to evaluate the behaviour in time, for different values of α, for both

models.

As we mentioned before, one of the questions that arises is whether we can observe the

light cone of the correlations spreading with time and distance. In the previous figures
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(a) u = 0.2J (b) u = 0.6J

Figure 7.4: Spin-1: Comparison of the decay of the correlations with time for a fixed
distance, for two anisotropy values, in a system of M = 80 spins. The correlations
decay when entering in the intermediate regime of the interactions, and this effect is
much more pronounced for higher anisotropy. This decay is exponentially fast in the
short-range regime. The calculation for the MPS calculations were done with bond
dimension D = 128 and open boundary conditions.

(a) ∆ = 0.2J (b) ∆ = 0, 8J

Figure 7.5: Spin-1/2: Comparison of the decay of the correlations with time for a
fixed distance, for two anisotropy values, and a system size M = 80. The correlations
decay when entering in the intermediate regime of the interactions, and this effect is
much more pronounced for higher anisotropy. This decay is exponentially fast in the
short-range regime, for both models. The calculation for the MPS calculations were
done with bond dimension D = 128 and open boundary conditions.

we saw that the oscillations at smaller distances indicate the presence of a light cone,

and we analyse this in detail next.

For spin-1 we focus on a high value of the anisotropy u/J and show in plots in 7.6 the

appearance of the light cone in the short-range interactions regime. We observe that

at t = 0 the correlations have a value Θj = 1, due to the particular initial state (the

rotated state), and the choice of correlations.
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(a) α = 2 (b) α = 3

Figure 7.6: Correlations Θj with time and distance for the spin-1 model with M = 80
and u = 0.6J . In (a) with α = 2 the edge of the light cone is not as sharp as in (b)
with α = 3 where the light cone in the dynamics is clearly visible.

For spin-1/2 we divided our study for different anisotropy value. For ∆ = 0.2J we want

to see the emergence of the light cone in the short-range regime, as in 7.7.

(a) α = 2 (b) α = 3

Figure 7.7: Correlations Θj with time and distance for the spin-1/2 model with
M = 80 and ∆ = 0.2J . In (a) with α = 2 the spreading of the light cone at longer and
longer distances can be observed. For α = 3 in (b) besides the light cone, we observe
that at longer distances the plateau of synchronised spins as these spins were initially
correlated, and the magnetic order saturates with distance.

For ∆ = 0.8J the correlations vanished very quickly, but we can observe interesting

behaviour for smaller α in the intermediate regime in 7.8.

In a regime of intermediate and short-range interactions the correlations decay with

distance, faster with a higher anisotropy value. It is only in this regime where the

spreading of the light cone is visible. This light cone is the effect of the finite-range

interactions at the beginning. However, at longer distances there are fewer fluctuations

and that is why we see that the correlations decrease more slowly.
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(a) α = 1.5 (b) α = 2

Figure 7.8: Correlations Θj with time and distance for the spin-1/2 model with
M = 80 and ∆ = 0.8J . (a) With α = 1.5 there is no light cone and we can observe
the power law decay of the correlations with time. (b) In the regime with α = 2
the dynamics is much faster, clearly starting to show the exponential decay of the
correlations.

In this analysis we found a quantitative change around α = 1, entering the intermediate

regime of the correlations, and a qualitative difference around α = 2. In the next section

we analyse this transition in detail.

7.1.2 Transition studies in different regimes

We start by studying the transition at the end of the evolution (TJ = 3) around α = 2

for the spin-1 model in Fig. 7.9 where there is no such a strong decay of the correlations

as in the spin-1/2 case.

(a) u = 0.2J (b) u = 0.6J

Figure 7.9: Correlations as a function of distance at TJ = 3 and different α values
for the spin-1 (M = 40) model showing the transition around α = 1.8.
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We investigate the behaviour at the end of the evolution (TJ = 3) in the intermediate

regime for spin-1/2 model and a high anisotropy in Fig. 7.10, and the change around

α = 2 in Fig. 7.11, showing a clear transition around α = 1.8.

Figure 7.10: Correlations as a function of distance at TJ = 3 and different α values
for the spin-1/2 model (M = 80) showing a smooth transition around α = 1.

(a) ∆ = 0.2J (b) ∆ = 0.6J

Figure 7.11: Correlations as a function of distance at TJ = 3 and different α values
for the spin-1/2 model (M = 80) showing the transition around α = 1.8.

To summarise, we have seen that in the regime of long-range interactions the spins

are correlated. With intermediate and short-range interactions the magnetic ordering

saturates with distance and this synchronisation transition occurs faster for smaller

values of α.

In the next section, we study the same correlations in the presence of disorder in the

system. In this case, we consider quenched disorder, which is static in time, in the spin

component in the z-direction on each site.
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7.2 Presence of disorder

Disorder in many-body physics can be represented in various forms. The presence of

disorder in materials by lattice defects or impurities can affect the properties of a many-

body system [209]. Disordered potentials can give rise to Anderson localisation in non-

interacting particles and many-body localisation (MBL) in the case of a many-body

system of interacting particles [210, 211].

Dynamical behaviour of many-body physics in the presence of disorder has been studied

in a variety of models, such as polar molecules in 2D in [212, 213] with a mean-field

approach. In our case we considered random noise in the lattice, static in time. We

investigate the effect of this disorder in our 1D spin models.

We study how the interactions behave with time by adding disorder into the system.

The Hamiltonian after adding disorder in the spin-1 model will be

ĤSP1dis
= −

∑
i>j

J

|i− j|α ŜiŜj + u
∑
i

(Ŝzi )2 +
∑
i

κiŜ
z
i , (7.4)

and for the spin-1/2

ĤSP1/2dis
= −

∑
i>j

J

|i− j|α (ŝxi ŝ
x
j + ŝyi ŝ

y
j )−

∑
i>j

J −∆

|i− j|α ŝ
z
i ŝ
z
j +

∑
i

κiŝ
z
i , (7.5)

with noise κi being random at each site, and at each disorder iteration realisation. We

use an uniform distribution with

κiε[−1, 1] ∝ σ, (7.6)

where σ defines the strength of the disorder. We then take the average of these quantities

over a set of disorder realisations.

Experimentally, this kind of disorder could be realised by using an off-resonant pumping

laser through a diffuser to create a random intensity distribution. The generated speckle

pattern reflects a truly random potential [53, 214].

We investigate the decay of the correlations as a function of time and distance for

different values of α and different disorder strengths, and compare with the case where

there is no disorder. We focus on the long-range and intermediate regime, as with

short-range the decay of the correlations was already fast without any disorder.
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Figure 7.12: Spin-1: Correlations as a function of distance (at TJ = 3) for u = 0.2J
and different α, in the case of no disorder and adding disorder with different strength
σ. Size of the system M = 40. The effect of the disorder is clearly noticeable with
increasing strength. However, even with the strongest disorder there is no effect in the
long-range interactions regime. The calculation for the MPS calculations were done
with bond dimension D = 128 and open boundary conditions.

7.2.1 Results

As in the previous section, we investigate the correlations as in 7.3 for both models. We

want to study if the long-range interactions persist again with time or whether there is

any effect induced by the disorder. In this case, we consider values of α mostly in the

long-range and intermediate regime. We incremented the number of disorder realisations

until we get minimal mean statistical errors. All results shown are calculated with 100

disorder realisations.

We start with the case of the spin-1 model for two different anisotropy values, u = 0.2J

in Fig. 7.12 and u = 0.6J in 7.13. Similar behaviour occurs for both anisotropies, where

we see that even when adding weak disorder the correlations decay in the intermediate
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regime of the interactions, and this effect increases with the disorder strength. However,

at all disorder strengths we see that the long-range interactions persist.
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Figure 7.13: Spin-1: Correlations as a function of distance (at TJ = 3) for u = 0.6J
and different α, in the case of no disorder and adding disorder with different strength
σ. Size of the system M = 40. We see an increase in the decay of the correlations with
strong disorder, especially in the short-range regime. In the intermediate regime, some
finite sizes effects appear at longer distances. The calculation for the MPS calculations
were done with bond dimension D = 128 and open boundary conditions.

For the spin-1/2, in figures 7.14 and 7.15, we can distinguish a similar pattern as in the

spin-1.

We found that adding disorder into the system affects the correlations in the intermediate

and short-range interactions regime, for both models. This effect is also more pronounced

with a larger anisotropy value, being u/J for the spin-1 or ∆/J for the spin-1/2.

In the short-range interactions regime, even a very weak disorder (σ = 0.5J) will have

an effect on how the correlations decay as a function of distance. In the long-range inter-

actions regime, however, we find that there is no effect from the disorder, independently

of its strength.
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Figure 7.14: Spin-1/2: Correlations as a function of distance (at TJ = 3) for ∆ = 0.2J
and different α, in the case of no disorder and adding disorder with different strength
σ. Size of the system M = 40. We see an increase in the decay of the correlations with
strong disorder in the intermediate and short-range regime. For long and intermediate
interactions, some finite sizes effects appear at longer distances. The calculation for
the MPS calculations were done with bond dimension D = 128 and open boundary
conditions.

Nonetheless, we consider that at any regime, there should be a value of disorder strength

where we expect decay of the correlations, even in the long-range regime. One open

question, for when this value is found, is whether the transition will then be sharp or

more of a crossover. To see it clearly, a follow up study with a constant ratio M/σ with

different system sizes and periodic boundary conditions will be needed.

7.3 Summary and discussion

We have investigated the effect of having power-law decay of correlations in our models,

and how the correlations behave depending on the interactions regime, being long-range,
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Figure 7.15: Spin-1/2: Correlations as a function of distance (at TJ = 3) for ∆ = 0.6J
and different α, in the case of no disorder and adding disorder with different strength
σ. Size of the system M = 40. In this case the effect of the disorder in the intermediate
regime is even visible with weak disorder. The effect is stronger as α increases. The
calculation for the MPS calculations were done with bond dimension D = 128 and open
boundary conditions.

intermediate, and short-range, and compared it with the nearest-neighbour interactions

results previously evaluated in 5.3.

Likewise, we have identified the light-cone spreading with short range interactions. For

the intermediate regime the behaviour shows clearly no light-cone, but a further analyt-

ical study could tell us more about the spreading of correlations here.

Moreover, we have also evaluated the transition where the correlations start to be-

have qualitatively different in the intermediate regime, and we found a transition point

around α = 1.8 for both models, independently of the anisotropy. Again, an analytical

study with spin-wave theory (using Holstein-Primakoff approximation) [118, 215] will

add further insight.
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Furthermore, we evaluated the effect of a random disorder in the models, and investi-

gated the spin-spin correlations behaviour with different disorder strengths. In the short

and intermediate regime the disorder affects the correlations, decaying very quickly with

a strong disorder.

In the time evolutions considered in our simulations, we observed no disorder effect in

the long-range interactions regime. We consider a further analysis that could be done

to study a possible disorder strength threshold where the correlations will decay even in

the presence of long-range interactions.

Additionally, it would be interesting to extend this study consider the different types of

disorder in these kind of models.

There are some open questions where we envision additional considerations will be very

interesting. A better understanding of the spread of entanglement distributed by quasi-

particles in these models could be investigated by evaluating the von-Neumann entropy

in the systems [118, 216, 217].

Further studies of a range of quantum phenomena, including spin transport [218] and

thermalisation [206], and their experimental implementations, will help to engineer these

systems and probe new physics.
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Chapter 8

Conclusions & Outlook

Our journey along this thesis has come to an end. We have investigated different phe-

nomena including in and out-of-equilibrium dynamics in spin models of ultracold bosonic

atoms in optical lattices. The possibility to control and tune the parameters in the sys-

tems experimentally offers new possibilities to engineer and study strongly correlated

many-body systems, and in particular in our field of research, quantum magnetism.

In this thesis, we considered the time-dependent dynamics of magnetic models cor-

responding to two-component bosons in an optical lattice. By rotating a system of

interacting spins from a low-entropy initial state, we investigated how to probe these

states using time-dependent dynamics and evaluating the spin currents in the models.

Moreover, we studied situations with different interaction ranges and also explored how

disorder affects these systems.

We also investigated the correlation length of a XY-ferromagnet in a thermal state, as

a function of the entropy/temperature. This offers opportunities to study fundamental

properties away from equilibrium and to probe states of the spin models, as well as

providing tools to prepare states of lower temperature and entropy.

One of the challenges in working with these systems in the laboratory remains reach-

ing the low temperatures/entropies necessary to produce some particularly sensitive

interacting states. Investigating the magnetically ordered quantum states that can be

engineered, we study the techniques to prepare states with a very low entropy that can

be produced using adiabatic state preparation (potentially further enhanced by non-

adiabatic ramps determined using optimal control techniques), where some parameters

are varied time dependently. We explored these techniques in more detail, using numer-

ical methods in tensor networks with MPS and MPOs, and based around parameters of
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current experiments. We also showed how the same models can give rise to entangle-

ment that is useful for quantum enhanced metrology, and characterised the states we

can prepare in terms of their Quantum Fisher Information for collective measurements

with Ramsey spectroscopy.

Several directions could be taken following the work discussed in this thesis. First of

all, realising these ideas experimentally would be extremely interesting. Furthermore,

we propose several theoretical suggestions below.

It would be interesting to extend the study of the spin models in the different interactions

regimes (chapters 5 and 7) to include the presence of classical noise and spontaneous

emission. Any additional experimental values would help to understand the main dif-

ferences that could appear between the numerical solutions and those resulting from

imperfections in the experiments.

The finite-temperature calculations (chapter 5) for larger systems could be analysed via

Monte-Carlo techniques for very small temperatures. This would require a different kind

of numerical calculation expertise, but the answers could complete the thermalisation

studies in these systems.

We have studied the preparation of magnetic quantum states using adiabatic state prepa-

ration techniques in chapter 6. There are several lines of further studies that we propose.

For the study of antiferromagnetic states, which were only briefly touched upon here,

we consider that exploring this behaviour for larger system sizes using Matrix Product

States would be very interesting, and would connect to recent experiments in this area

[29–32]. Additionally, more research on alternative optimal control techniques could be

done. This field is extremely vast and numerous research studies could be practised

in this area. Likewise, studies for the spin-1 model in other magnetic regimes could

complete the results here and the ones explored in [153].

As was noted in chapter 7, a disorder strength threshold could be found in the presence

of long-range interactions, beyond which the spin-spin correlations will decay even in

the presence of long-range interactions. This could be a stimulating study to investi-

gate whether this would be a sharp transition or a crossover, complemented with the

considerations of different types of disorder. Further future investigations of the phase

diagrams [219] for the different models described with disorder will shed some light on

understanding the behaviour of these systems in terms of their magnetic properties.

Other quantum phenomena could be investigated in these many-body systems. The

presence of impurities, or further investigations on transport in these models could help

to understand and probe the non-equilibrium dynamics in quantum magnetic states

[220].
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Our findings are immediately relevant for ultracold atoms in optical lattices. However,

realising these models in other quantum simulation platforms could provide new in-

teresting physics, such as in ion traps [15] or, in the case of systems with long range

interactions, Rydberg atoms [221, 222] or ultracold molecules [84].

The study of these kind of models in higher dimensions would require complementary

tensor network techniques, such as PEPS [41] or MERA [114].

A great deal of research work could be still done, and we hope that future collabora-

tions between experimental and theoretical groups will provide answers to some of these

remaining questions and further expand the impact of this work in the field of strongly

correlated systems in many-body physics.
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Appendix A

Convergence studies

To handle a many-body problem numerically, we implement a Density Matrix Renor-

malization Group (DMRG) code, using Matrix Product States (MPS) representation.

For large system sizes, the convergence cannot be studied by comparing with the Exact

Diagonalisation (ED) results.

To keep the time-scale required for the numerical calculations manageable, we truncate

it by defining a maximum value bond dimension Dmax. This truncation is performed

by retaining only basis states related to a small weight in the expansion of a reduced

density matrix in terms of its eigenstates, for some part of the system.

Note: here we do not make the difference between spin-1 (Ŝxj , Ŝ
y
j , Ŝ

z
j ) and spin-1/2

(ŝxj , ŝ
y
j , ŝ

z
j ) operators.

A.1 Time evolution for a large number of spins

Here we include the convergence studies for section 5.3.

An exhaustive convergence analysis is done for a system size M = 40 for the time

evolution of our spin-1 and spin-1/2 models, by looking at the truncation parameters

bond dimension Dmax and time-step dt.

A.1.1 Spin-1 model time evolution

All plots in Figures A.1 and A.2 are normalized and calculated with Trotter error 4.

The insets are enlarged parts of the bigger graph, having the same axes.
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Figure A.1: Spin-1: Convergence plots for global quantities and local properties
(correlation functions and entropy), for M = 40 and u = 0.2J , as a function of dt and
Dmax. The insets provide a zoom at the end of the evolution, for a better understanding
of the convergence, having point markers as well as lines, to represent exactly the
values result of the simulations. (a) For 〈(Sxtotal)2〉 at tJ ≈ 7 there is a divergence
for the smallest Dmax. Only the end of the evolution we can distinguish the biggest
bond dimensions, with a divergence of less than 1%. (b) 〈(Sztotal)2〉 shows very early
discrepancies with smaller bond dimensions, decaying very fast. At around tJ = 6 the
divergence between Dmax=128 and Dmax=256 appears. Taking the value at the end
of the ramp, the discrepancies for these two bond dimensions for a time step dt=0.1 is
only about 0.02%. (c) The bipartite von Neumann entropy per particle increases with
time. The convergence for high bond dimensions is clearly visible. These studies are
relevant for plots in Fig. 5.3.

Regarding dt, there is no need to go to values smaller than 0.1. For the bond dimension,

a value of Dmax = 128 will be selected for the further calculations, as the convergence

is found for increasingly large Dmax with very small total differences.
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Figure A.2: Spin-1: Spatially dependent correlation functions, for M = 40 and
u = 0.2J , as a function of dt and Dmax. The insets provide a zoom for a better
understanding of the convergence, having point markers as well as lines, to represent
exactly the values result of the simulations. (a) The total value of the 〈S+S−〉 converges
at the end of the evolution. (b) In the spatially dependent correlations the divergence
for smaller bond dimensions starts around tJ = 6.5. For higher dimensions starts
around tJ = 9. These studies are relevant for plots in figures 5.3 and 5.5.
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A.1.2 Spin-1/2 model time evolution

All plots in Figures A.3 and A.4, are normalized and calculated with Trotter error 4.

The insets are enlarged parts of the bigger graph, having the same axes.
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Figure A.3: Spin-1/2: Convergence plots for global quantities and local properties
(correlation functions and entropy), for M = 40 and ∆ = 0.2J , as a function of dt and
Dmax. The insets provide a zoom at the end of the evolution, for a better understanding
of the convergence, having point markers as well as lines, to represent exactly the values
result of the simulations. (a) For 〈(Sxtotal)2〉 it is possible to distinguish a divergence
for smaller bond dimensions, starting around tJ = 5. (b) 〈(Sztotal)2〉 shows very early
discrepancies with smaller bond dimensions, decaying very fast. At around tJ = 5 the
divergence between Dmax=128 and Dmax=256 appears. Taking the value at the end
of the ramp, the discrepancies for these two bond dimensions for a time step dt=0.1
is only about 1%. (c) The bipartite von Neumann entropy per particle increases with
time. The divergence starts around tJ = 4 and at the end of the evolution only for
high bond dimension the system shows a convergence. These studies are relevant for
plots in Fig. 5.4.

Regarding dt, there is no need to go to values smaller than 0.1. For the bond dimension,

a value of Dmax = 256 will be selected for the further calculations, as the convergence

is found for increasingly large Dmax.
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Figure A.4: Spin-1/2: Spatially dependent correlation functions, for M = 40 and
∆ = 0.2J , as a function of dt and Dmax, with Trotter error 4. The insets provide a
zoom for a better understanding of the convergence, having point markers as well as
lines, to represent exactly the values result of the simulations. (a) The total value of
the 〈S+S−〉 converge at the end of the evolution only for higher bond dimensions. (b)
In the spatially dependent correlations the divergence even for higher dimensions starts
around tJ = 3.9. These studies are relevant for plots in figures 5.4 and 5.5.
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A.2 Finite temperature calculations

Here we include the convergence studies for section 5.4.2.

The convergence analysis is done for a system size M = 40 for the time-propagation

at finite temperatures in our spin-1 and spin-1/2 models, by looking at the truncation

parameters bond dimension Dmax and βstep, with β = 1
kBT

, being T the temperature.

Here we use Trotter error 2, since the time needed in CPU for Order 4 will be much

longer without a large difference expected.

A.2.1 Spin-1 model finite temperature calculations
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Figure A.5: Spin-1: Convergence studies for M = 40 and u = 0.3J , as a function of

Dmax and βstep. (a) maxj(
∑
j

〈S+
M/2S

−
M/2+j〉) correlations where just in the inset the

divergence for smaller Dmax is appreciated. (b) For the bipartite von Neumann entropy
S we find the same results, just showing differences at the end of the evolution. The
insets are enlarged parts of the bigger graph, having the same axes. These studies are
relevant for plots in figures 5.6, 5.8 and 5.9.

The convergence study for spin-1 is summarised in Fig. A.5. According to the results,

Dmax = 64 and βstep = 1 will be the values selected for the correlation length analysis.
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A.2.2 Spin-1/2 model finite temperature calculations

The convergence study for spin-1/2 is summarised in Fig. A.6. According to the results,

Dmax = 64 and βstep = 1 will be the values selected for the correlation length analysis.
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Figure A.6: Spin-1/2: Convergence studies for M = 40 and ∆ = 0.2J , as a function

of Dmax and βstep. (a) maxj(
∑
j

〈S+
M/2S

−
M/2+j〉) correlations, where just at the end

we see a divergence for smaller bond dimensions. (c) For the bipartite von Neumann
entropy S we find the same results, just showing differences in the inset. The insets are
enlarged parts of the bigger graph, having the same axes. These studies are relevant
for plots in figures 5.7 and 5.10.
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A.3 Spin currents

In this section we include the convergence studies for the spin currents study in sec-

tion 5.5.

The convergence analysis is done for a system size M = 20 for the time-propagation

of the spin currents Ĉ in our spin-1 and spin-1/2 models, by looking at the truncation

parameters bond dimension Dmax and time step dt.

In Fig. A.7 we show the values of the currents at tJ = 3 for different bond dimension

and time step, for both models.
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Figure A.7: Convergence study for currents in the (a) spin-1 and (b) spin-1/2 model,
for M=20 and periodic boundary conditions, as a function of dt and Dmax, with Trotter
error 4. Parameters values are u,∆ = 0.5J and Ω = 0.3π. These studies are relevant
for plots in figures 5.15 to 5.21.

As a result of this convergence study, the numerical parameters values chosen are Dmax =

256 and dt = 0.1.
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[11] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac. Ana-

logue quantum chemistry simulation. Nature, 574(7777):215–218, 2019.

[12] I. Buluta and F. Nori. Quantum simulators. Science, 326(5949):108–111, 2009.

[13] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys.,

86:153–185, Mar 2014.

[14] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics,

8(4):277–284, 2012.

[15] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig,

and J. J. Bollinger. Quantum spin dynamics and entanglement generation with

hundreds of trapped ions. Science, 352(6291):1297–1301, 2016.
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[98] J. Sólyom and T. A. L. Ziman. Ground-state properties of axially anisotropic

quantum heisenberg chains. Phys. Rev. B, 30:3980–3992, Oct 1984.

[99] W. Chen, K. Hida, and B. C. Sanctuary. Ground-state phase diagram of s = 1

XXZ chains with uniaxial single-ion-type anisotropy. Phys. Rev. B, 67:104401,

Mar 2003.

Chapter 8



Bibliography 149
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[105] S. Östlund and S. Rommer. Thermodynamic limit of density matrix renormaliza-

tion. Phys. Rev. Lett., 75:3537–3540, Nov 1995.

[106] S. Rommer and S. Östlund. Class of ansatz wave functions for one-dimensional

spin systems and their relation to the density matrix renormalization group. Phys.

Rev. B, 55:2164–2181, Jan 1997.
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[161] I. Frérot and T. Roscilde. Reconstructing the quantum critical fan of strongly

correlated systems using quantum correlations. Nature Communications, 10(1):

577, 2019.

[162] L. Lucchesi and M. L. Chiofalo. Many-body entanglement in short-range interact-

ing fermi gases for metrology. Phys. Rev. Lett., 123:060406, Aug 2019.
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