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Abstract

Scheduling is employed in everyday life, ranging from meetings to manu-

facturing and operations among other activities. One instance of scheduling in a

complex real-life setting is space mission operations scheduling, i.e. instructing a

satellite to perform fitting tasks during predefined time periods with a varied fre-

quency to achieve its mission goals. Mission operations scheduling is pivotal to

the success of any space mission, choreographing every task carefully, accounting

for technological and environmental limitations and constraints along with mission

goals.

It remains standard practice to this day, to generate operations schedules manu-

ally, i.e. to collect requirements from individual stakeholders, collate them into a

timeline, compare against feasibility and available satellite resources, and find po-

tential conflicts. Conflict resolution is done by hand, checked by a simulator and

uplinked to the satellite weekly. This process is time consuming, bears risks and

can be considered sub-optimal. A pertinent question arises: can we automate the

process of satellite mission operations scheduling? And if we can, what method

should be used to generate the schedules? In an attempt to address this question, a

comparison of algorithms was deemed suitable in order to explore their suitability

for this particular application.

The problem of mission operations scheduling was initially studied through literature

and numerous interviews with experts. A framework was developed to approximate

a generic Low Earth Orbit satellite, its environment and its mission requirements.

Optimisation algorithms were chosen from different categories such as single-point
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stochastic without memory (Simulated Annealing, Random Search), multi-point

stochastic with memory (Genetic Algorithm, Ant Colony System, Differential Evol-

ution) and were run both with and without Local Search. The aforementioned

algorithmic set was initially tuned using a single 89-minute Low Earth Orbit of a

scientific mission to Mars. It was then applied to scheduling operations during one

high altitude Low Earth Orbit (2.4hrs) of an experimental mission. It was then

applied to a realistic test-case inspired by the European Space Agency PROBA-2

mission, comprising a 1 day schedule and subsequently a 7 day schedule – equal to

a Short Term Plan as defined by the European Space Agency.

The schedule fitness – corresponding to the Hamming distance between mission re-

quirements and generated schedule – are presented along with the execution time of

each run. Algorithmic performance is discussed and put at the disposal of mission

operations experts for consideration.
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“For the beginning is thought to be more than
half of the whole, and many of the questions
we ask are cleared up by it.”

– Aristotle, Ethica Nicomachea I.7

1
Introduction

1.1 Space mission operations

Since the dawn of the space era in October 1957, a plethora of space missions
(manned or otherwise) have been launched into space. According to NASA (Na-
tional Aeronautics and Space Administration) more than 8000 missions have been
launched [Bell and Grayzeck, 2013] at the time of writing this thesis for Earth ob-
servation, meteorology, telecommunications, technology demonstration, commercial
applications, manned spaceflight, planetary observation, moon observation and mil-
itary surveillance. Unmanned satellites are operated from the ground, instructing
the spacecraft how to perform every single task at any given moment. Manned
spacecraft receive considerable and vital support from the ground too, for the mis-
sion flow to be uninterrupted and efficient. Overall, mission operations are pivotal
for any mission’s success.
Spacecraft design and mission objectives can render mission operations difficult.
Limited resources combined with the inability to intervene in case of a malfunction,
and intricate orbital manoeuvres form a challenge. While the first unmanned satel-
lite, Sputnik-1, was a simple radio transmitter (undoubtedly a true technological
feat of that time), subsequent satellites have become sophisticated observatories,
telecommunications relays and scientific laboratories able to analyse or collect and
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return samples of interstellar material back to Earth. Space mission technological
complexity has increased rapidly since 1957, presenting a need for reliability, auto-
mation and optimisation of mission operations.
A vital part of mission operations is planning and scheduling. The noun schedule
according to Collins Dictionary1 is defined as: “A plan for carrying out a process or
procedure, giving lists of intended events and times”. Similarly, the scientific defini-
tion of scheduling refers to assigning resources to tasks in order to complete all tasks
given constraints and requirements [Błażewicz et al., 2007]. Resources can refer to
time, cost, personnel, room availability, consumable resource availability such as
energy and so on. Tasks map out steps that need to be taken for a process to be
completed. They call for different resources, depending on the nature of each task.
And, occasionally they exhibit randomness and interdependence, occurring unpre-
dictably while requiring certain tasks to precede others. Process scheduling contains
a large set of different problems with some common characteristics such as depend-
encies, resource constraints, sometimes resource availability uncertainty and so on.
Depending on the process aim, scheduling can be optimised for time or produc-
tion output, taking into account parameters affecting the problem such as physical
volume, production and testing time, curing time, temperature restrictions and so
on. In the spacecraft mission operations capacity, scheduling2 translates to utilising
spacecraft resources as best as possible to maximise scientific – or commercial –
return, given constraints imposed by technological and environmental parameters.
Depending on mission objectives, tasks (frequently called “activities” in satellite op-
erations) are assigned to particular temporal points throughout a mission time-line,
provided that resources suffice to execute this schedule. Normally, scientific mission
operations scheduling comprises the “science planning” part and the “control” part.
Science planning refers to collecting and serving all science observation requests,
resolving potential conflicts and respecting mission constraints. Control planning
refers to activities moderating the satellite attitude, communications, data flow,
power generation, energy storage & consumption and so on.
Based on the traditional mission operations approach, a satellite’s operations sched-
ule is normally formed manually for three temporal horizons (trimester, monthly,
weekly), where each satellite payload team composes a plan of expected activities
for their respective instrument. Operations engineers check all science activity plans

1http://www.collinsdictionary.com/dictionary/english/schedule
2used interchangeably with the term “planning” in space-related bibliography. When presenting

our experimental work, we will use the term “scheduling” to agree with Computer Science termin-
ology. When referring to space mission operations we will be using the term “planning” according
to space engineering terminology
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for potential constraint violations and merge them with control operations, to devise
the final operations schedule [Rabideau et al., 2004; Teixeira de Sousa et al., 2006;
Wertz and Larson, 1999; Zender, 2012 - 15; Cruzen et al., 2011].
Scheduling a space mission is normally a lengthy, complex process. Numerous it-
erations between scheduling personnel and geographically dispersed scientific teams
may be required to revise a schedule and resolve possible conflicts originating from
mission constraints. Distributed teams handling science and control planning need
to collaborate seamlessly and iteratively, to define a schedule that covers all scientific
aims and technological needs for each part of a mission. A relatively coarse Long
Term Plan (LTP) is devised initially, spanning three months of operations. The LTP
is then progressively refined to a week-long Short Term Plan (STP), containing a
detailed list of all activities to be performed at every time instance. Every two days,
the latest STP is further refined before being sent to the satellite for execution.
The process is repeated for as long as a mission is active. What makes operations
scheduling more challenging and highly iterative is the lack of accurate models per
spacecraft, that can be used to test and simulate human generated schedules [Cesta
et al., 2009].
As Computer Science grew in the 20th century, with the help of increasingly capable
hardware and advancements in operational research, automation and optimisation
techniques became more widely available to a diverse set of communities, including
space engineering and mission operations.

1.2 Automatic near-optimal mission operations schedul-
ing

A number of optimisation solutions have been attempted as early as 1980, with
NASA developing experimental science scheduling systems for the Space Shuttle [Dupnick
and Wiggins, 1980a; Chien et al., 1999] and the Hubble Space Telescope (HST) [John-
ston and Miller, 1994; Johnson et al., 1993]. Such solutions aimed at tackling increas-
ingly complex and costly operations. For instance the Space Shuttle was designed
to be a reusable launch vehicle able to transport large enough payloads that would
comprise either independent missions or modules of a larger mission e.g. a space
station. Each launch cost on average 1.5 billion 2010 US dollars3 with NASA as-
piring to launch up to 9 missions annually. Thus careful scheduling of each launch
year and eliminating redundancies was pivotal to minimise costs.
An instance of complex satellite mission operations is the HST, which shows the

3http://www.space.com/11358-nasa-space-shuttle-program-cost-30-years.html
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extent of scheduling effort that goes into a space mission. Operated manually since
1990, HST receives approximately 1000 observation proposals annually out of which
200 are accepted. The accepted proposals represent roughly 20000 individual ob-
servations that need to be scheduled. According to the Space Telescope Science
Institute (STScI)4 “scheduling of the viewing time falls to staff at STScI. [. . . ] tech-
nicians must schedule each observation down to a fraction of a second. Observation
information such as which instrument to use, what filter to use, and how long the
exposure should be must be converted into a detailed technical list of second-by-second
instructions”. Operating the HST costs about $98 million annually5 constituting an
intricate and expensive mission.
As computational capability has been rapidly increasing, space agencies and re-
searchers have been experimenting with scheduling systems, allowing them to in-
crease their productivity and scientific output while decreasing experts’ workload.
Such solutions can offer the spacecraft operations community tools to reduce costs,
improve their mission performance and alleviate humans from complex, cumbersome
and repetitive tasks. More recent instances include the NASA ASPEN [Fukunaga
et al., 1997] framework operating on the basis of Greedy search or Iterative Repair,
the ESA (European Space Agency) APSI (Advanced Planning and Scheduling Initi-
ative) [VEGA et al., December 2006 - December 2008] framework employing Greedy
search, Tabu search or Genetic Algorithm-based search applied to the European
missions VEX (Venus Express) and MEX (Mars Express). Such endeavours show
that there is no single best strategy able to solve effectively all problems within the
domain of operations scheduling. Therefore, some significant effort is required for
analysing each problem and choosing a specific approach [Verfaillie, 2013].
Satellite mission operations scheduling lends itself to large search spaces, since the
number of tasks and schedule duration can vary widely, as can schedule time res-
olution (time-unit grain). While smaller sized problems can be successfully tackled
using complete search algorithms used in Constraint Programming for instance, it
is practically impossible to apply similar techniques to larger problems. Naturally,
practitioners turned towards approximation algorithms to tackle such problems ef-
fectively [Policella, 2013].
A typical mission operations schedule contains temporal and resource constraints.
Temporal constraints contain target visibility windows, task durations, no overlap
between particular tasks, precedences etc. Resource constraints usually refer to
on-board memory and available power, acceptable temperature per instrument and

4http://hubblesite.org/the_telescope/team_hubble/
5http://www.space.com/20799-hubble-space-telescope-23-years.html
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total operating duration among others. There are some logical constraints as well,
such as that data cannot be downloaded unless relevant observations have been per-
formed or that to perform a particular observation, the appropriate instrument must
first be turned ON. On top of constraints considerations, there are features that
need to be accounted for such as: observations’ priority (weight) based on their im-
portance, probability of observations’ success based on parameters such as weather,
observation angle affecting quality etc. Finally, observations should be scheduled in
a fair manner, not exhibiting selection bias towards one instrument over others. In
terms of problem size, an average daily operations schedule contains a few hundred
pending user requests, a few thousand candidate observations and a few hundred
successful observations to be downloaded [Verfaillie, 2013]. Satellite mission opera-
tions scheduling is a complex enough procedure that could benefit from optimisation
efforts like the aforementioned. Algorithmically speaking, such scheduling problems
are challenging enough, requiring attention to restrictions imposed by the problem
itself (e.g. constraints, requirements) and its reduction (e.g. search space, fitness
function).
This is where approximation methods (in our case, predominantly metaheuristics)
come in useful, for tackling larger scale and possibly less well defined problems in
reasonable time [Luke, 2013]. To understand better why metaheuristics are con-
sidered a promising tool for this job, let’s take a step back for a moment and view
optimisation from a more general viewpoint.
Overall the term optimisation refers to the process of finding the best possible solu-
tion to a problem. Once we formalise the problem in question, we employ strategies
to tackle it. Then we verify our blueprint and computationally validate that it
returns a globally optimal solution. Optimisation algorithms are divided into two
categories, those searching solutions in a real-valued search space and those per-
forming their search in a discrete search space. Discrete search spaces are found in
combinatorial optimisation problems. A combinatorial problem is considered solved
when a solution presents the globally optimum objective function value. Some typ-
ical combinatorial problems are the Travelling Salesman Problem (TSP), the QAP
(Quadratic Assignment Problem) or scheduling and timetabling problems. Com-
binatorial optimisation algorithms can be classified in two main categories, namely
complete and approximate algorithms. A combinatorial optimisation problem of
finite size is guaranteed to be solved to optimality in a bound time by any complete
method. One needs to be aware though that when combinatorial problems are NP-
hard [Garey and Johnson, 1979] and provided that P ̸= NP , no polynomial time
algorithm exists resulting in exponential computation time in the worst case. In
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practice this trait can lead to unrealistic computation times. For that reason, ap-
proximate methods have been receiving increasing attention since the 1970s. They
offer a good trade-off between global optimality and practically feasible computa-
tion time. According to Blum et al. [Blum and Roli, 2003], two main approximate
method strategies are normally employed, constructive methods and local search. Al-
gorithms working constructively begin by generating solutions from scratch, adding
one element at a time to the solution, until the solution is considered complete.
They normally perform faster than other approximation algorithm variants, but are
not always as effective since they construct a solution by choosing locally optimal
elements. On the other hand, local search algorithms begin by constructing an ini-
tial solution using some strategy e.g. randomly, and then work iteratively towards
replacing the solution with a better one in the search neighbourhood. It is also
possible to combine both methods, improving our search capability towards finding
global optima.

1.3 Thesis contributions

The main research question driving this thesis was: Can the process of generating
satellite mission operations schedules be automated?

What has this thesis attempted to achieve: To attempt addressing this re-
search question, we focused on four main points.

1. Initially, we enquired into the possibility to numerically model with sufficient
accuracy a generic satellite’s state, so that proposed operations can be simu-
lated. It turns out it is possible to approximate, with satisfactory fidelity, gen-
eral satellite functions. This includes on-board satellite characteristics such as
power consumption, generation and energy storage as well as orbital dynam-
ics such as state vectors (position and velocity per time unit). This allows for
simulating a satellite mission to a satisfactory level of detail for our purposes.

2. Following this, a question that arises is if it is possible to construct an al-
gorithm that can generate satellite operations schedules, based on information
received from the aforementioned computational model. While the problem at
hand is a scheduling one, it can be considered idiosyncratic. Therefore, given
the lack of prior knowledge of which algorithm will do best or even be suitable,
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it is advisable to compare different existing algorithms – as has been demon-
strated in Computer Science literature for decades.

3. This leads to a subsequent twofold question: can more than one algorithm be
applied for solving this problem? If so, which algorithm performs better?. To
address this question, a small test case was put together, based on a high or-
bit LEO satellite. Experimenting with different algorithms showed that more
than one algorithm can tackle this problem, with a varying degree of success.
Quantitative analysis allowed us to infer which algorithm can generate fitter
schedules and how processing time differs between algorithms.

4. Naturally, the final question to ask is how do the algorithms tested scale up
to a realistic satellite operations scheduling test case? In order to answer this
question, the challenging task of collecting information and data from ESA
and the industry was undertaken. Extensive discussions with satellite mission
operations experts from ESA and the industry took place, allowing us to form
a realistic test case scenario based on a real LEO Earth Observation mission.
We then applied our algorithmic set on it, to observe if and how operations
schedule generation may differ.

What this thesis does not aim to do: This thesis is not aimed at performing a
comprehensive comparison of approximation algorithms in general, or for this partic-
ular application. Neither does it offer a complete solution towards satellite mission
operations scheduling. The idea of fully automating the process of building satellite
mission schedules is still work in progress for the space operations community at
large. It has been investigated since the early 1980s if not earlier, with prominent
examples such as the Space Shuttle and HST being strong cases for investing more
effort towards this direction.
More recently, with the advent of small-scale satellite swarms, automating many
aspects of satellite operations including the very important scheduling component
is becoming a pressing priority, both for space agencies but importantly for private
enterprises, which strive to maximise return on investment.

7



1.4 What renders this problem difficult

By definition a satellite contains constrained continuously changing resources on-
board, while serving as an orbiting observatory (science missions) or relay platform
(telecommunications). At LEO for instance, a satellite like the ISS (International
Space Station) orbits the Earth at approx. 400km6 above mean sea level, with
a speed of approximately 27610km/h (7.67m/s) [Battin, 2008]. Such high speeds
combined with the Earth’s rotation mean that visibility windows’ occurrence and
duration for targets of interest continuously change. Similarly, power generation
and energy storage or usage vary.
Furthermore, unexpected events occur occasionally. For example, a spontaneously
occurring Solar Coronal Mass Ejection heading towards the Earth can incapacit-
ate satellites if not put in safe mode [CCSDS, 2001, 2004] promptly. Recovering
satellite functionality afterwards requires a different scheduling sequence depending
on possible technical faults and resource availability changes (telecoms, battery and
power generator health). Similarly, if such a Solar event does not pose a threat to
the satellite it is scientifically useful to observe it, requiring extra observation tasks
to be promptly inserted in the mission schedule.
Other unprecedented events such as technical faults, may also require changing op-
eration activities to meet newly imposed constraints e.g. following a solar array
connection fault, MEX entered Martian orbit with 30% less power generation cap-
ability on average, aside from the expected solar array degradation.
Satellite mission operations comprise a dynamic constrained problem that superfi-
cially resembles other well studied scheduling problems like timetabling, but cannot
be categorised as one without simplifications. At every time-step, we experience
variation in resources. For instance battery energy availability decreases during ec-
lipse periods and power output fluctuates depending on sunlight’s angle of incidence
on solar arrays combined with satellite controlled spin rate or uncontrolled tumbling.

1.5 Structure of this thesis

The structure of the remaining thesis chapters is as follows: Chapter 2 contains
bibliographical information forming the foundations of this thesis. An overview of
selected literature on algorithmic comparison attempts for engineering applications
is presented, as well as a survey of publications on satellite operations scheduling
optimisation. The chapter concludes by summarising relevant bibliography on this

6Annual mean ISS orbit height http://heavens-above.com/IssHeight.aspx
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subject.
Chapter 3 describes the computational model used in the course of this thesis to test
our set of algorithms. A modular system was developed, approximating a generic
Earth Observation satellite, its resource capabilities, its subsystems & payloads and
target visibility occurrences based on the satellite’s orbital parameters. Mission ob-
jectives were passed to the framework, generating resource demand and availability
at every time-unit. To conclude the chapter, we summarise the structure of this
framework that approximates satellite functionality.
Chapter 4 summarises our approach towards formalising the real life engineering
problem of satellite mission operations scheduling. A set of scientific and control
tasks need to be scheduled during feasible and useful time windows, which fre-
quently change depending on mission requirements or technical and environmental
constraints. This chapter then presents a preliminary comparison of the aforemen-
tioned set of algorithms on a small scale test case, acting as a preamble of each al-
gorithm’s performance on this particular problem expression. We test all algorithms
in their regular form and also combined with LS to observe the amount of fitness
improvement that is achieved. A summary of findings from this preliminary com-
parison concludes Chapter 4.
Chapter 5 comprises a real-life inspired test case, illustrating how well can each
algorithm scale up. All algorithms are put to the test generating operations for two
different temporal horizons, namely 1 day and 7 day long operations schedules with
a resolution of 30 seconds per time-step. We note how has algorithmic performance
changed, possibly rendering some algorithms more scalable than others. Further-
more, we note that combinatorial explosion restricts the problem size to moderate
instances, rendering the problem expression itself less scalable. We finally summar-
ise our findings to conclude this chapter.
Finally chapter 6 summarises our work and touches upon possible future directions.
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“An algorithm must be seen to be believed.”

– Donald E. Knuth, Computer Scientist

2
Optimising satellite operations scheduling

2.1 Overview of algorithmic applications

According to the Merriam-Webster dictionary, the adjective heuristic translates as
“using experience to learn and improve”. The word derives from the ancient Greek
word ευρίσκω which translates into “search”. The term metaheuristic – first coined
by F. Glover in 1986 [Glover and Sörensen, 2015] – contains the prefix meta- which
translates as “beyond” in the sense of high-level. As Glover and Sörensen define the
term in their contribution at the Encyclopedia of Operations Research and Man-
agement Science: “A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic op-
timization algorithms” [Gass and Fu, 2013]. Being approximate search methods,
metaheuristics are designed to find a satisfactory solution within a short enough
computational time span, unlike exact methods that guarantee to find the optimal
solution within a finite (but often practically impossible) amount of time. Exact
methods’ computational time increases exponentially with problem size when ex-
ploring a NP-hard problem search space [Glover and Sörensen, 2015]. Therefore,
metaheuristics are a good choice when a satisfactory solution is required in a relat-
ively short computational time.
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Figure 2.1: Different classifications of metaheuristics, by Johann Dréo and Caner
Candan, distributed under a CC BY-SA 3.0 license.

Metaheuristics are classified in different algorithmic families, depending on
some key characteristics, offering researchers a number of options to tackle prob-
lems effectively. As seen in Fig. 2.1, metaheuristics can be categorised based on
their population, process inspiration, memory and other attributes. The main me-
taheuristics’ classification criteria according to Blum et al. [Blum and Roli, 2003]
usually refer to the following attributes:

1. Process origin. An algorithm’s concept origin (natural or artificial) is one
way to classify it. This classification is not always applicable or meaningful
due to the presence of hybrid algorithms relying on both natural and arti-
ficial strategies. Nature-inspired algorithms draw inspiration from biological
processes (e.g. Genetic Algorithm), animal flock or insect dynamics (e.g. Ant
Colony System), microorganism behaviour (e.g. Bacteria Foraging Optimisa-
tion) and others. Non-nature inspired algorithms rely on semi-random numer-
ical methods (e.g. Tabu Search, Iterative Local Search).

2. Population. Another criterion used for an algorithm’s classification is its search
agent population. Single point search methods, also known as trajectory meth-
ods, produce a single solution at a time describing a trajectory within the
search space landscape. Population-based methods scatter a number of search
agents around the search space, forming multiple solutions and frequently ex-
changing information in the process.

11



3. Objective function usage. Depending on the way an algorithm makes use of the
objective function, we can classify algorithms into dynamic and static objective
function ones. An objective function is kept “as is” by the algorithm during its
search (static), utilising other mechanisms to escape local optima and share
information (e.g. Ant Colony System local and global pheromone processes
respectively). When experience accumulated during the algorithm’s search
is incorporated into the objective function and/or the algorithm attempts to
surpass local optima, the objective function is altered rendering it dynamic
(e.g. Guided Local Search).

4. Neighbourhood structure. The majority of metaheuristics operate on a single
neighbourhood structure, maintaining a fixed fitness landscape topology dur-
ing an optimisation run. In an attempt to diversify an algorithm’s search,
an algorithm can utilise a set of neighbouring structures (e.g. Variable Neigh-
bourhood Search) switching between different fitness landscapes.

5. Memory usage. A further classification criterion used is whether an algorithm
makes use of its search history or not. Memory-less algorithms define their next
action based on the current state of the search process (e.g. Random Walk).
Algorithms with memory utilise past experience, taking into account previous
findings before committing to the next step (e.g. Differential Evolution).

Diversity, while useful as a way of providing different vantage points, can also cause
confusion in computational intelligence. Since metaheuristics approach a problem
stochastically using different strategies, it is safe to assume that not all algorithms
could tackle a given problem equally well. Quoting Braun et al. [Braun et al., 2001],
whose paper is considered seminal on the subject of algorithmic comparison: “Se-
lecting the best heuristic to use in a given environment, however, remains a difficult
problem, because comparisons are often clouded by different underlying assumptions
in the original study of each heuristic.”.
It is this fact, the difficulty of deciding the best algorithm for a particular prob-
lem, that motivated our decision to compare many algorithms for the problem at
hand. The scientific community researching satellite mission operations has gener-
ated genuinely interesting knowledge, identifying the need and meriting the utilisa-
tion of optimisation methods for planning and scheduling. Nevertheless, the very
same dilemma arises as to which is the best algorithm to use for a mission operations
scheduling application. And the answer to this dilemma has not yet been addressed
adequately by the space engineering community, since we find only few mentions of
algorithmic comparison [Globus et al., 2003; Barbulescu et al., 2002; Zufferey et al.,

12



2008; Barbulescu et al., 2004; Wei-Cheng et al., 2005].
Before presenting relevant literature on the subject of satellite mission operations
scheduling, we find it interesting to present a general overview of comparative studies
on applying optimisation algorithms to various types of engineering problems.

2.2 Description of algorithms compared in this thesis

In this thesis, algorithms from different categories within the framework of meta-
heuristics mainly, were utilised to address the same discrete optimisation real-life
problem. Namely, scheduling the operations taking place on-board a generic small-
scale satellite. Alphabetically, the algorithms used were Ant Colony System, Dif-
ferential Evolution, Genetic Algorithm, Greedy Search, Repeated Random Search
and Simulated Annealing. All of them are well known and have been used for solv-
ing discrete optimisation problems including scheduling applications in the space
domain.

2.2.1 Ant Colony System

Ant Colony System (ACS) [Dorigo and Gambardella, 1997; Dorigo and Stützle,
2004; Bonabeau et al., 1999; Brownlee, 2011] – an improvement over the original
Ant System [Dorigo et al., 1996] – is a nature-inspired population metaheuristic with
memory, utilising the synergistic example found in insect populations such as ant
colonies. First published in the IEEE Transactions on Evolutionary Computation,
ACS was applied on the Euclidean TSP (Travelling Salesman Problem), a classic
combinatorial optimisation benchmark1.
In nature ants work collectively, searching for food in a predominantly random fash-
ion and relaying information to the rest of the colony through pheromone deposition.
Pheromone evaporates over time, thus less frequently visited paths become less at-
tractive. Shorter paths tend to be visited more frequently. Therefore, pheromone
on those paths becomes more prevalent, since it takes less time for an ant to com-
plete a full return trip, rendering it a more attractive route for the ants to follow.
It is this basic communications system that allows ant colonies to find the shortest
path possible between a food source and the colony nest. Inspired by this process,
ACS is a population metaheuristic allowing for a self-organising set of agents to
explore the search space in a random way, while exchanging information through

1A TSP comprises a set of n cities to be visited exactly once with a minimal cost (shortest path
possible). The final path is the most efficient closed one (starts and ends on the same city) [Weis-
stein, 2013]
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pheromone deposition / evaporation and accounting for distance from target in their
decision process. Initially, agents perform a random search, with a small probability
of exploiting known information (strongest pheromone trail and shortest distance
from target). Once a colony has finished its search, the best solution of the current
iteration receives pheromone reinforcement inversely proportional to the Euclidean
length of this tour, while pheromone found in the rest of the search space decreases
by a small amount (pheromone evaporation). Once the simulation stopping cri-
terion is met, a global best solution – which contains the highest concentration of
pheromone – is returned as the optimal solution.

2.2.2 Differential Evolution

Differential Evolution (DE) [Storn and Price, 1997; Price et al., 2005; Brownlee,
2011] – originally published in the Journal of Global Optimization – is a population
metaheuristic with memory, utilising the concept of weighted vector differences to
explore the search space concurrently and converge to a global optimum. It is de-
signed with four main criteria in mind: 1) it is a stochastic direct search method,
allowing for non-linear, multimodal, non-differentiable cost functions, 2) it is de-
signed with parallelism in mind, allowing for agents to perform a parallel search
within the problem’s search space in order to accelerate the convergence to a global
optimum, 3) it contains a minimum number of control variables, rendering the tech-
nique easier to use, 4) it demonstrates good convergence consistently on independent
trials according to Storn et al. [Storn and Price, 1997]. Initially, a population of
candidate solution vectors is selected randomly. Every pair of vectors, each repres-
enting one possible solution, is recombined (mutation) and a third vector is produced
from the weighted difference of each pair of parent vectors. The resulting vector is
then mixed with (crossover) another predetermined vector (target vector). If the
resulting vector yields better fitness than the target vector, it is selected to replace
the target vector in the next iteration. The process is repeated until the simulation’s
stopping criteria are met, with the result approximating a globally optimal solution.

2.2.3 Genetic Algorithm

Genetic Algorithm (GA) [Mitchell, 1998, 1995; Gendreau and Potvin, 2010; Brown-
lee, 2011] is a population metaheuristic with memory, applying the concept of ad-
aptation found in evolutionary biology to promote “survival of the fittest”. Loosely
inspired by natural evolution, GA employs the notion of parents passing their ge-
netic material to their offspring following the process of crossover. Genetic variation
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happens through random mutation. Typically, in the first generation each parent is
represented through a randomly generated solution vector (chromosome). A pair of
parents are selected at random and one or multiple pivot points (single locus or mul-
tiple loci) are chosen to divide each parent’s chromosome. A crossover process then
takes place, whereby the first parent donates half of their chromosome information
to one offspring individual, with the other half of that offspring’s genetic material
originating from the second parent. This process generates in total two offspring
per pair of parents, containing a combination of their parents’ genetic material. A
mutation operation then takes place, slightly altering each offspring genetic mater-
ial with a low probability. The fitness of each offspring individual is calculated and
through a selection mechanism, a new generation takes place with new parents be-
ing selected to produce the next generation of offspring. Through this mechanism,
fitter individuals survive for numerous generations and prevail over the rest of the
population, thus providing an approximation of the globally optimal solution.

2.2.4 Local Search

Local Search (LS) [Gendreau and Potvin, 2010; Brownlee, 2011; Luke, 2013] forms
the foundation of most methods employing heuristic search. It is a simple strategy
working its way fast through large discrete search spaces, sampling in the broader
neighbourhood of candidate solutions and refining solutions to approach local op-
tima. Normally, LS commits resources early on, allocating a locally best solution
per step, incrementally attempting to form a globally optimal solution. At first, the
algorithm generates a full solution using a predefined strategy e.g. random, greedy
search etc. Next, it moves to a neighbouring solution and evaluates the effect of
this move on the solution fitness. A neighbouring relation is described based on the
search space, and it is possible to have more than one neighbourhood (2-opt, 3-opt
or more generally k-opt).
This process is performed for a number of iterations, a time limit or until the solu-
tion is considered globally optimal (e.g. when a precise mathematical expression of
the problem landscape is known).

2.2.5 Repeated Random Search

Random Search [Karnopp, 1963; Gendreau and Potvin, 2010; Brownlee, 2011; Luke,
2013] is a direct search method that does not rely on derivatives. It generates a ran-
dom candidate solution vector using a uniform probability distribution, performing
undirected exploration of the search space.
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Random Search can be one shot, comprising a starting solution for another method.
E.g. using Random Search, the initial population of a Swarm Intelligence algorithm
can be generated. However, it can also be a repeated technique (Repeated Ran-
dom Search), generating a multitude of solutions and keeping the fittest one. For
instance, Repeated Random Search can act as a benchmark compared to other al-
gorithms. Furthermore, on small enough search spaces, it could potentially generate
a satisfactory solution.

2.2.6 Simulated Annealing

Simulated Annealing (SA) [Kirkpatrick et al., 1983; Dowsland, 2012; Gendreau and
Potvin, 2010; Bertsimas and Tsitsiklis, 1993; Brownlee, 2011; Skiena, 2008] is a me-
taheuristic inspired by the physical process of annealing, a heat treatment method
used in metallurgy to increase material ductility and promote material homogen-
eity. A metallic sample is heated above a certain temperature threshold and then
gradually cooled down in a controlled fashion, to eradicate dislocations, rendering
it more malleable.
Initially, a random solution is formed and its fitness is calculated. A neighbouring
solution is selected and its fitness is compared to the initial one. If the new solution
has superior fitness, it is accepted. Otherwise, the lower fitness solution is accepted
with a probability calculated by the Boltzmann distribution2 that is higher when the
system temperature is high, and lowers as the temperature decreases. This means
that solutions of lower fitness can be accepted especially during the early stages of
optimisation, allowing for escaping local optima and encouraging exploration of the
search space.
It is worth noting that prominent researchers such as S. Skiena consider SA to be
“the most reliable method to apply in practice” [Skiena, 2008].

2.2.7 Summarising algorithmic control parameters

The main control parameters found in the above algorithmic set are, alphabetically:

ACS : Ant colony size, stopping criterion, exploration vs. exploitation prob-
ability, initial pheromone level, pheromone amplification weight, heuristic amplific-
ation weight.

2p(δE) = e( −δE
kT

) with δE is an increase in energy, k is the Boltzmann constant and T the current
system temperature.
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DE : Population size, stopping criterion, crossover probability, amplification
factor, exploration strategy.

GA: Population size, stopping criterion, crossover probability, mutation prob-
ability, selection strategy, crossover strategy.

LS : Stopping criterion.

Repeated Random Search: Stopping criterion.

SA: Initial temperature, cooling schedule, stopping criterion.

2.3 Applications of metaheuristics on satellite opera-
tions

This section contains selected literature on applying metaheuristics to address space-
craft operations scheduling. Publications included focus on unmanned missions, or
operations taking place before a manned mission was launched (Space Shuttle servi-
cing). The criteria we applied for including the following literature were a) to gain
insights from past applications of metaheuristics which might be useful here, b) to
review the state of the art in applying metaheuristics to space operations problems.
In the space industry, numerous publications have attempted to support mission
operations through the use of Artificial Intelligence using real-life missions as test
cases. Existing literature deals with both planning and scheduling in the area of
mission operations. While planning refers to the process of synthesising single steps
into a coherent plan to achieve a target, scheduling deals with the temporal and
resource information related to that plan. It is not common to find pure planning or
pure scheduling problems in space applications, they are rarely separable [Fratini,
2013], thus both problems have been studied in an integrated way [R-Moreno et al.,
2008; Policella, 2013].
We will therefore continue to refer to our research problem as “scheduling”, suppor-
ted by bibliography that makes reference to both planning and scheduling in space
applications. Operations are normally divided into three temporal duration periods;
short term, medium term and long term planning, STP, MTP (Medium Term Plan)
and LTP (Long Term Plan) respectively [Cesta et al., 2008, 2009, 2011]. Normally
the scheduling process starts by devising a high-level LTP corresponding to three or
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six months of operations, whereby science targets are decided and allocated to this
temporal period. Planning experts then focus on monthly activities representing
the mission’s MTP and finally devise an STP i.e. a detailed weekly schedule, with
a second week scheduled for contingency. Finally, the mission’s schedule is further
refined and checked every two days to produce the commands that will be sent to
the spacecraft for execution [Cesta et al., 2009, 2011].
Two of the most established research groups on advanced satellite operations are
ESA’s AMCTO (Advanced Mission Concepts and Technologies Office)3 and NASA’s
AIG (Artificial Intelligence Group)4, with the French Aerospace Lab – ONERA
(Office National d’Etudes et Recherches Aérospatiales)5 and the Italian Institute of
Cognitive Sciences and Technologies – ISTC-CNR (Institute of Cognitive Sciences
and Technologies – Consiglio Nazionale delle Ricerche)6 making significant contribu-
tions to the spacecraft mission operations community. The AMCTO’s contribution
since 2009 has focused around APSI7, a research project with a twofold goal. On the
one hand, APSI strives to improve the cost-effectiveness and flexibility of mission
planning through development of a new software framework that was tested and
validated on a number of case studies. On the other hand the project aims to bridge
the gap between space mission operations and AI (Artificial Intelligence) according
to AMCTO’s mission statement.

2.3.1 ESA AMCTO research

ESA AMCTO initially focused on the LTP studying three ESA missions, namely
MEX, INTEGRAL and XMM-Newton, with diverse mission scopes. The MEX-LTP,
a multi-objective problem in nature, was reduced to a single-objective problem by
aggregating various objectives in a common expression preserving the semantics of
each individual objective. A tool called MrSPOCK [Cesta et al., 2009, 2011; Steel
et al., 2009] was developed, aiming at achieving a higher scientific return by prealloc-
ating maintenance tasks optimally [Donati, 2010]. The challenge faced in MEX-LTP
was to reduce the time spent iterating between two separate teams, namely the sci-
ence planning team and the mission planning team, as well as optimising objectives
defined according to mission planner needs. The science planning team collects all
science requests from Principal Investigators of the MEX mission payloads, compares

3http://www.esa.int/Our_Activities/Operations/Overview
4http://www-aig.jpl.nasa.gov/
5http://www.onera.fr/
6http://www.istc.cnr.it/
7http://www.esa.int/Our_Activities/Operations/APSI_br_Advanced_Planning_

Scheduling_Initiative
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them against constraints, iterates with payload teams to resolve any conflicts such
as resource violations and passes the final science plan to mission planners. Mission
planners in turn merge both science and platform operations into one timeline, check
against constraints, communicate any conflicts and try to resolve them successfully
before generating the overall mission plan and satellite commands to be uplinked.
MrSPOCK utilises a simple GA as the basis of its solver, with a greedy counterpart
acting as a decoder of the binary solution into the common format used throughout
the software tool. According to Cesta et al. the choice of algorithm was made
based on the multi-objective nature of the problem at hand. While choosing an
evolutionary algorithm to tackle a difficult problem agrees with Computer Scient-
ists’ intuition, the reasoning behind using GA for MrSPOCK does not provide an
objective metric as to why this particular algorithm was used. Since the problem
was reduced to a single-objective one and given a carefully thought problem expres-
sion, the same single-objective optimisation problem could be tackled using different
metaheuristics.
Following MrSPOCK, two more tools were developed by the same team to achieve
increased flexibility in astronomical mission science scheduling, constituting the pro-
cess faster and easier while generating optimal robust schedules. In order to serve the
needs of LTP observations for the INTEGRAL (INTErnational Gamma-Ray Astro-
physics Laboratory) mission, the AIMS (APSI Integral Mission Scheduler) [Pralet
and Verfaillie, 2009] tool was developed. Likewise, in order to serve long-term obser-
vational needs of the XMM (X-ray Multi Mirror)-Newton mission, the AIMS legacy
was used and enriched accordingly to reflect mission objectives, in a platform named
XMAS (Xmm Mission Apsi Scheduler) [Castellini and Lavagna, 2009].
AIMS was designed to schedule observations automatically for the time span of a
year normally, meeting observations requests submitted by scientists around the
world. Each request could take more than one observation period to be completed
and depending on the request observations could be periodic, urgently requested or
spread over a period of time. A target allocation committee would normally select
observation requests and assign priorities on each request such that the majority of
observations are considered complete by the end of a particular observation period.
The objective of this process was to perform as much of each observation as possible,
as well as feasible requirements and constraints such as the existence of narrow ob-
servation windows and non-overlapping observations.
AIMS employed a local search algorithm. A pre-selection of a subset of local moves
would initially take place as a means of decreasing the set of possible local moves
available per step, which – if considered in full – would render search very slow and
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impair global algorithm performance. The pre-selection process combined heuristic
and random choices among observation requests to create each subset of possible
local moves. A tabu list was used as a mechanism of avoiding local optima, excluding
a specific number of previously taken steps. To ensure diversity of possible solutions
the algorithm would be restarted after a number of consecutive steps leading to
no significant improvement. Pralet and Verfaillie justify the choice of local search
in AIMS based on the size of their problem instances which “precludes the use of
complete optimal algorithms, such as systematic tree search” [Pralet and Verfaillie,
2009].
The term “systematic tree search” can be vague but likely refers to graph traversal,
an exhaustive search strategy normally. Pralet et al. correctly underline the preclu-
sion of exhaustive techniques due to problem instance size, arguing that utilising a
local search algorithm with tabu search and restart options allows for efficient ob-
servation scheduling optimisation. Nevertheless, while local search is a powerful and
a well used strategy, it is one of many techniques in the heuristic or approximation
algorithm domain designed to tackle combinatorial optimisation problems. Thus
choosing local search does not seem to be objectively justified.
Related work supported by AMCTO researchers includes managing multiple Earth
observation spacecraft. Spacecraft entities can be seen as multi-agent systems, since
they frequently form constellations. Examples of constellations include: i) multiple
spacecraft scattered around slightly different orbits to achieve a wider field of view
of events/provide telecommunication and navigation capabilities etc., ii) clusters
i.e. close formations of spacecraft in order to achieve a particular scientific target
for instance ultra high resolution measurements of physical quantities such as grav-
itational fields, iii) swarms i.e. multiple small spacecraft scattered around slightly
different orbits to achieve a wider field of view predominantly used for EO (Earth
Observation). The problem of operating those satellites in a satisfactory manner
such as to maximise their return, rendering their mission a success, becomes a
multi-agent organisation problem. It is therefore intuitive to examine multi-agent
techniques that could possibly tackle such a problem automatically and optimally.
Iacopino et al. [Iacopino et al., 2011; Iacopino, 2012; Iacopino and Palmer, 2013;
Iacopino et al., 2013] studied the multiple spacecraft problem for EO, opting for
a stigmergy-based solution found in insect populations such as ants. Utilising the
ACO (Ant Colony Optimisation) principles, treating a spacecraft constellation as a
self-organised multi-agent system. In their 2011 publication [Iacopino et al., 2011],
Iacopino et al. recognise the division of self-organised multi-agent systems in four
main categories, namely “agent cooperation using negotiation paradigm, agent learn-
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ing by means of reinforcement, simple direct interactions or indirect interactions like
the stigmergy paradigm”. They choose to use the paradigm of simple direct interac-
tions as a promising method, supporting this choice through the claim that it has
been demonstrated to achieve complex system behaviours.
While stigmergy is by all means a powerful strategy, proven to solve complex prob-
lems very well, it is not the only multi-agent method that has been demonstrated
to achieve complex dynamics. Examples such as Differential Evolution and Genetic
Algorithm, both well studied powerful multi-agent self-organising systems, can also
be considered well suited for the task. It would be interesting to see a comparison
in that sort of work, further supporting the researcher’s position.

2.3.2 NASA centres’ research

The NASA AIG started working on the concept of automated planning and schedul-
ing for space mission operations in 1999, where they first introduced their exper-
imental system ASPEN. The initial goal of ASPEN was to demonstrate that by
encoding flight rules, modelling spacecraft and their operations it is possible to
generate low-level spacecraft commands corresponding to high-level science and en-
gineering goals. Introducing automation paves the way for smaller operations teams
thus cutting down operations costs [Chien and Rabideau, 1997; Rabideau et al.,
1999]. ASPEN’s solver is based on iterative repair, a technique earlier used by
Zweben et al. [Zweben et al., 1993] in 1993 to assist in the coordination of Space
Shuttle ground processing which was a constrained complex scheduling problem.
Throughout the repair process, the algorithm can alter a schedule using ten pos-
sible ways: it can move an activity, add a new activity instance, delete an activity,
abstract an activity, make a reservation of an activity, cancel a reservation, connect
a temporal constraint, disconnect a constraint or change a parameter value. Decid-
ing which of those methods to use depends on the type of conflict at hand [Rabideau
et al., 1999]. That way, an initial schedule containing conflicts or a partially formed
schedule can be shaped in such a way that conflicts are resolved given mission re-
quirements and constraints.
Further ASPEN applications include the ASPEN-RSSC (ASPEN-Rosetta Science
ground segment Scheduling Component) [Chien et al., 2014] assisting operations of
the Rosetta mission that has been studying comet 67P/Churyumov-Gerasimenko
since August 2014, as well as ASPEN assisting operations of the Dawn mission
that studied asteroid Vesta in 2011 before proceeding to dwarf-planet Ceres in May
2015 [Rabideau et al., 2014].
While ASPEN introduced the concept of conflict resolution in near-real time, allow-
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ing for greater flexibility and improved practice in mission operations, there is no
mention of optimisation in the process. Thus the problem of achieving the highest
possible return from an expensive and rapidly expendable observatory has not been
explicitly addressed through this work, allowing enough room for improvement.
Spacecraft are very expensive objects built to meet a number of requirements that
render a mission successful. Focusing on conflict resolution without explicitly ac-
counting for optimising operations leads to a convenient but not complete solution,
allowing for more room for improvement as a means of maximising return on a large
investment.
Astronomical applications have been very interesting for researchers in the field
of space mission operations scheduling, due to the number of scientific observation
requests that need to be scheduled yearly, with each request comprising multiple ob-
servations to be completed due to scientific or technical constraints. The STScI has
developed and used SPIKE [Johnston and Miller, 1994; Giuliano, 2014, 2013] since
1988, a system initially used for long-term scheduling of the HST and later applied
to another six orbital astronomical observatories and three ground-based ones. The
SPIKE scheduler is based on multistart stochastic repair, a heuristic repair-based
technique incorporating three main steps: stochastic initial guess, repair, deconflict.
Initial guess is based on the heuristic of “most-constrained activities first served”
before assigning other activities. A repair heuristic is then applied, moving activ-
ities to times where conflict occurrences are minimum. Finally, a deconflict step
takes place removing lower priority activities, lower preference or higher number
of constraint conflict instances. Any remaining gaps in the processed conflict-free
schedule are filled using a best-first search over a pool of unscheduled activities.
Bearing in mind that in astronomical observation time boundaries are fixed, the
aim is to maximise the quantity and quality of observations within that time-frame.
The solution fitness is calculated as the sum of total minimum activity duration
plus the total gap time. When rescheduling is required, two mechanisms assist in
successfully rescheduling a conflict-free time-line, namely, task locking and conflict-
cause analysis. In task locking, selected tasks are kept fixed on the time-line whereas
conflict-cause analysis allows the user to force tasks into the schedule and manually
resolve conflicts e.g. through moving conflicting tasks in the pool of unscheduled
tasks.
SPIKE has proven robust enough to be used for decades in the domain of science
operations scheduling for astronomical missions. It provides automation of conflict
resolution through a smart heuristic multi-step strategy. Nevertheless, it does not
seem to address science operations optimisation. It therefore allows room for im-
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provement in order to increase solution quality and make the most of each orbital
or ground based observatory.
NASA introduced the Space Shuttle in the late 70s, injecting operational complex-
ity due to mission frequency and ambitious targets set. Space research missions,
satellite launch and servicing missions and space station construction missions are
some examples of what the Space Shuttle was designed for. One of the earliest in-
stances of optimisation applied to space mission planning and scheduling is SAMPLE
(Scheduling Algorithm for Mission Planning and Logistics Evaluation) [Chang and
Williams, 1976; Dupnick and Wiggins, 1980b] introduced in 1976, a program that
could calculate the minimum of Space Shuttle flights needed to transport a set of
specified payloads without expensive redundancies as stated by traditional systems
engineering. The solver behind SAMPLE is a simple greedy algorithm, which is a
sensible choice for two main reasons: First, at the time SAMPLE was developed,
computer processing power and memory availability were significantly restricted.
As an example, SAMPLE was implemented on a UNIVAC 1110 with EXEC 8 op-
erating system, constrained to a maximum search space of 100 payloads and 2000
mission combinations due to memory restrictions. Second, at that time more com-
plex metaheuristics were still at their very infancy, but even if they were already well
developed it would have been a difficult task to implement them on 70s hardware.
Various planning and scheduling systems were developed for handling Space Shuttle
operations, due to the diversity and complexity of its missions scopes. Two inter-
esting examples include a scheduling system for HST servicing missions [Johnson
et al., 1993] and a scheduling system for KSC (Kennedy Space Center) payload op-
erations [Pierce, 1987]. Johnson et al. [Johnson et al., 1993] used a system called
SM/PART (Servicing Mission Planning and Replanning Tool) originally developed
by AlliedSignal Inc. (now Honeywell International Inc.) in 1987 on behalf of NASA.
SM/PART uses PARR (Planning And Resource Reasoning) [McLean et al., 1992]
as the system’s conflict resolution and avoidance engine designed to provide support
to scheduling experts. SM/PART introduced automation of the process of building
integrated time-lines and command plans for ground personnel working on HST ser-
vicing missions. There is no further explanation as to how does the PARR engine
works, with both papers consistently using the term “automation” when describing
the system’s functionality. This leads us to assume that PARR provided a set of
heuristics to allow for automated conflict tracking and resolution or avoidance.
Space Shuttle payload installation is divided into horizontal and vertical, with the
former taking place in a building further from the launchpad while the latter taking
part while the vehicle was on the launchpad. Pierce et al. [Pierce, 1987] presen-
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ted EMPRESS (Expert Mission Planning and REplanning Scheduling System) as
a solution to assist long range horizontal payload mission planning and scheduling
for space shuttle flight payloads at NASA’s KSC. Developed by MITRE Corp. in
conjunction with NASA KSC personnel in 1986, EMPRESS automatically gener-
ated all processes that should be performed in the O&C (Operations and Checkout)
building at KSC. EMPRESS determines resource conflicts and allows for interactive
conflict resolution as well as maintaining and enforcing constraints when tasks are
rescheduled or removed. Unfortunately relevant literature only mentions utilisation
of AI powering this expert system, with no further information as to what kind of
algorithms are used, search space structure, objective function definition etc.
In order to assist with Space Shuttle ground processing, Zweben et al. [Zweben et al.,
1993] introduced the GERRY system used for scheduling each Space Shuttle’s in-
spection, repair and refurbishment. GERRY is based on constraint-based iterative
repair which works by generating a complete schedule, with the possibility of flaws
being present, and then improving it in an iterative manner given constraints and
requirements. At the time of writing, GERRY was used in daily support of Space
Shuttle Columbia. The authors empirically show that some problem knowledge can
greatly improve convergence speed of an iterative repair-based system, yet too much
knowledge hinders performance contrary to human intuition. They conclude that
simple random shuffling of tasks violating constraints produces reasonable results
on problems of moderate size and difficulty. Lookahead techniques seem to work
well on smaller yet difficult problems, nevertheless they are not effective on larger
problems. They hope that with the help of machine learning, it will be possible to
dynamically switch between different heuristics thus improving solution fitness.

2.3.3 Various groups’ research

Earth Observation has also attracted attention from the optimisation community,
with particular attention to downlink and ground station scheduling i.e. opportunit-
ies for downloading observation data without interfering with the satellite’s primary
mission milestones or ground station facilities oversubscription. Pralet et al. [Pralet
et al., 2012] worked on allocating downlink windows for multiple satellites perform-
ing ship surveillance. Surveillance satellite data need to be delivered to users in
near-real time for them to be meaningful, therefore timing is very important. Bear-
ing in mind that EO satellites only have contact with any given ground station for
10 minutes on average, it can be challenging to downlink large amounts of data.
To make matters more complicated, ground station visibility varies with latitude
and satellite inclination, occurring with a frequency of approximately two hours or
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more. Furthermore, not all satellite services utilise all ground stations visible at any
given point, since contracts need to be put in place and a fee is charged per satellite
downlink session. The problem at hand therefore poses the challenges of conflict
resolution and downlink window optimisation. The solution proposed by Pralet et
al. comprises a mathematical formulation describing the problem, a problem decom-
position method for reducing problem complexity and an attempt to optimise the
result using MIP (Mixed Integer Programming) methods. The authors mention the
possibility of utilising Local Search to solve this problem, but offer no experimental
data as a comparison to their original MIP solution. Furthermore, while it is obvious
that a great deal of effort has been put towards expressing this scheduling problem
as faithfully as possible, this expression will most probably have to be significantly
altered for somewhat different observation needs. MIP methods are very powerful
but require a faithful detailed representation of any given problem, with the solu-
tion being of inferior quality in case the problem expression is not well formed. This
leaves room for discussion and consideration of approximation methods, allowing us
to generate good solutions from less well defined problems.
In an attempt to address a similar problem, Sun et al. [Sun and Chester, 2010]
worked on optimising ground station scheduling using GA. The problem expression
is significantly simplified and weight has been given to the design of algorithmic
components that allow GA to solve the problem effectively. Multiple fitness func-
tions have been used, each tackling a different objective, aggregating them in a
single fitness function expressing all objectives collectively. It is interesting to note
that the problem expression is significantly simpler than the one found in Pralet
et al. [Pralet et al., 2012], with Sun et al. focusing on the algorithm selection and
evolution criteria instead. The advantage to this method is that the problem itself
can be less strictly defined, allowing the algorithm to find good solutions through
natural evolution despite a less faithful mathematical representation of the problem
at hand. Sun at al. have demonstrated that GA (with reasonable customisation)
can tackle the ground station scheduling problem effectively, but there is no clear
explanation as to they decided to utilise GA in the first place. GA is a well studied
technique, allowing people to rely and expand on previous literature, but it is one of
many approximation methods that have been studied well enough and shown prom-
ising behaviour. It would be interesting to see more than one method being utilised
in this work, as a means of not only further exploring the field of metaheuristics but
also comparing the effect of the same metrics (e.g. fitness function) in solving the
same problem through different techniques.
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2.3.4 Attempts of historical interest

Historically speaking, mathematical optimisation has existed for approximately four
centuries with Newton, Fermat and their contemporaries manually optimising ana-
lytical expressions. Computationally speaking, optimisation has been a much younger
discipline spanning a few decades. In space mission planning and scheduling, the
introduction of new technologies was driven by the increasingly demanding opera-
tional needs of space programs. The following literature is included out of historical
rather than contemporary interest, presenting attempts on utilising earlier AI tech-
nology for benefiting operations scheduling applications.
Based on the above overview, it is clear that a diverse set of approaches has been util-
ised to solve a common problem encountered in mission operations, namely schedul-
ing operations on the ground or on-board spacecraft. Some instances of systems
developed to tackle similar problems in the domain of satellite mission operations
can be found in Table 2.1. Approaching a constrained complex problem from differ-
ent angles has the advantage of discovering different challenges, problem traits and
possible solutions to address this problem. It also creates many parallel strands of
research though, which do not always contribute to each other. Different teams build
different frameworks that perform similar functions and researchers partially repeat
previous work under slightly different assumptions. In an attempt to make a signi-
ficant contribution to the current body of knowledge, research work is supplemented
by inventions such as new languages and new data formats which do come with the
cost of an increased learning curve, increased system complexity, lack of inter com-
patibility and result in a lack of standardisation among others. Furthermore, the
community of space operations seems to lack a common problem definition that can
act as a benchmark to be utilised by researchers in the field, rendering experiments
heterogeneous, making their comparison very challenging.
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Table 2.1: Non-exhaustive list of timeline based systems [Chien, 2013]

Tool Year Availability
APSI 2009 N/A

ASPEN 1999 Available for external licensing but not export
EUROPA 2007 NASA Open Source Agreement

GMV flexplan 2006 Proprietary
Mexar2 2005 N/A
MUSE 2009 N/A

Pinta/Plato 2000 N/A
SKeyP 2009 N/A
SPIFe 2011 N/A
SPIKE 1988 STScI source licence option

During this research, we discovered a number of different frameworks de-
veloped by experienced teams working for ESA and NASA, some of them included
in Table 2.1. However we were unable to gain access to any of them to use as a found-
ation of our research. For instance both AIG and AMCTO have implemented their
own framework approximating satellite functions, based on non-publicly available
data provided by NASA and ESA missions respectively. None of those frameworks
is available for release as open-source (AIG software is available as open-source only
to American nationals, pending request, with ITAR (International Traffic in Arms
Regulations)8 rules applying), freeware or otherwise though, despite both organ-
isations being public institutions supported by American and European tax money
respectively. Apart from our overview on the algorithmic content and scientific con-
tribution of those publications, we conclude that sharing a widely accepted platform
or benchmark representative of the problem at hand will greatly assist toward en-
riching current bibliography and building on top of previous research to generate
better solutions in shorter time frames. Contemporary hardware technology and
scientific knowledge allow us to achieve automation and optimisation of mission op-
erations, enabling human experts to focus on innovative, conceptual and creative
thinking instead of repetitive problems that can be tackled through technology. For
that reason, implementing novel technology in current mission operations should be
a mainstream activity instead of experimental research work. And that can only be
achieved with collaborative work under similar assumptions with a common aim.

8https://www.pmddtc.state.gov/regulations_laws/itar.html
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2.4 Tuning algorithm parameters

A pertinent question that arises before using an algorithm for experimentation or
production, is how does a practitioner set up control parameters, to ensure good
algorithmic performance. Literature mentioning algorithmic parameter tuning con-
tains articles on manually tuning particular algorithms e.g. ACO [Levine and Duca-
telle, 2004] or proposing a framework for automated parameter tuning such as Para-
mILS9 applied to a particular category of problems like SAT (SATisfiability problem)
among others.
Manual parameter tuning has been a common practice in empirical studies, testing
each parameter’s influence one at a time while keeping the rest fixed (sensitivity
analysis) [Santner et al., 2003]. Repeating this process to gather a statistical sample
per setup, one can infer a satisfactory parameter set that allows their tuned al-
gorithm to perform well [Morris, 1991; Barr et al., 1995]. This is the method that
was applied for tuning our algorithmic set, selecting sensible initial values from a
range around the values recommended by each method’s authors and running each
parameter setup 10 times. The parameter setup with the highest fitness median was
selected for performing our scheduling experiments. More details can be found in
Chapter 4.
Interestingly, Arcuri et al. [Arcuri and Fraser, 2013] in their engineering-oriented
article conclude: “Using default values is a reasonable and justified choice, whereas
parameter tuning is a long and expensive process that might or might not pay off in
the end.”, considering the balance between tuning effort and algorithmic perform-
ance improvement in a production or research setting.
It is also interesting to see how automated algorithm parameter tuning has been
established as a distinct research subject. Selected bibliography follows, for future
reference.
The University of Freiburg ML4AAD (Machine Learning for Automated Algorithm
Design) group leads research efforts on this topic, following pioneering work9 from
the UBC (University of British Columbia) BETA (Bioinformatics and Empirical &
Theoretical Algorithmics Laboratory) in the late 2000s summarised in [Hoos, 2012].
ML4AAD recognise that algorithm parameter tuning is an optimisation problem
in itself, publishing a culmination of their experience on the subject [Eggensperger
et al., 2017] in mid-2017. Starting from mid-2015, researchers on the topic of al-
gorithm configuration and selection have formed the COSEAL (COnfiguration and
SElection of ALgorithms) international research group10, establishing algorithmic

9http://www.cs.ubc.ca/labs/beta/Projects/ParamILS
10http://www.coseal.net/
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parameter configuration and selection as a distinct research domain.
Through ML4AAD work, we find a review of algorithm configuration literature11,
with the first reference on algorithm configuration dating back to 2002 [Birattari
et al., 2002a] configuring metaheuristics for solving the TSP and subsequently in-
fluential work published by Hutter et al. [Hutter et al., 2009] in 2009 using a SAT
problem as their test case. Bibliography mentions GGA (Gender-Based Genetic
Algorithm) [Ansótegui et al., 2009], a variant of GA published in 2009, shown to
outperform the Hutter et al. ParamILS method on solving the SAT. In 2010, a
software framework for configuring multi-objective ACO algorithms [López-Ibáñez
and Stützle, 2010] was proposed for this specific family of algorithms.
A second method of algorithmic configuration was proposed by the ML4AAD in
2011 [Hutter et al., 2011], publicly releasing beta code in 2013 and rewriting it in
late 201612, tuning a local search algorithm and tree search for solving the SAT and
MIP and some AI Planning instances. In 2013, an attempt to optimise planning
systems [Vallati et al., 2013] was published using international planning competition
instances13. The main research focus of ML4AAD and COSEA shifted towards Ma-
chine Learning ever since, see for instance [Eggensperger et al., 2014; Hutter et al.,
2013, 2014; Feurer et al., 2014; Falkner et al., 2015; Lindauer and Hutter, 2017].
Outwith the aforementioned research groups, we find proposed approaches per-
taining to Evolutionary Algorithm tuning such as Sequential Parameter Optim-
isation [Bartz-Beielstein et al., 2005] applied to PSO or tuning Evolutionary Al-
gorithm [Lobo et al., 2007; Eiben and Smit]. Researchers have also studied the
effect of using continuous optimisation algorithms to tune swarm intelligence al-
gorithms like ACO and PSO [Yuan et al., 2012], testing the concept of using an
algorithm to tune itself [Yang et al., 2013] and proposing a generic parameter sweep
method [Pinel et al., 2012].
Overall we notice that in the last few years, more researchers have recognised the
challenge algorithm parameter tuning poses, proposing solutions that potentially
increase performance while decreasing configuration effort, time and complexity.
There is still a lot of work to be done on this front though, to establish such para-
meter tuning methods as a de facto standard.

11http://aclib.net/acbib/
12https://github.com/automl/SMAC3/releases/tag/0.1.0
13http://www.plg.inf.uc3m.es/ipc2011-learning/
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2.5 Comparative studies on optimising real-life prob-
lems

For decades computational optimisation has been researched and applied in numer-
ous disciplines, attempting to solve difficult real-life and theoretical problems. We
hereby present in chronological order a collection of relevant selected literature on
comparison of optimisation techniques applied in practical problems.
Some of the earliest literature examples attempting to compare optimisation meth-
ods come from M. J. Box [Box, 1965, 1966]. In his articles Box compares different
algorithms applied to practical constrained optimisation problems. The choice of
optimisation algorithms is driven by availability, bearing in mind that in the 1960s
software development was considerably more cumbersome than today, with the au-
thor comparing Rosenbrock’s optimisation method [Rosenbrock, 1960b] with a con-
strained optimisation version of Simplex method [Wright, 2010] from Spendley at
al. [Spendley et al., 1962] in his 1965 [Box, 1965] paper. Box concludes that modific-
ations of parameters for Rosenbrock’s, Complex and Simplex methods respectively
do not yield significant improvements. He observes that Rosenbrock’s method is sig-
nificantly better at solving unconstrained optimisation problems. Finally the author
notes that gradient methods are more efficient than direct-search ones for solving
unconstrained problems and expresses the hope that comparison of recently emerged
optimisation techniques will take place in the near future.
In 1966, Box publishes another comparison article [Box, 1966] whereby eight un-
constrained optimisation algorithms are put to the test, solving highly non-linear
problems of up to twenty independent variables. The author extends this work by
considering constrained optimisation (only inequality constraints considered) which
can be formed such that no explicit constraints appear and thus can be tackled
by unconstrained optimisation strategies. Four of the methods studied in Box’s
1966 article are direct-search methods not requiring calculation of derivatives, two
of them are gradient-based and the final two relying on “the residuals for each equa-
tion instead of merely the sum of their squares” as mentioned by the author.
Fast forward thirty years, we find another NASA-funded comparison of iterative
and evolutionary optimisation algorithms by S. Baluja [Baluja, 1995]. Seven iterat-
ive and evolutionary-based methods were used to solve problems from six different
classes in an empirical comparison of optimisation heuristics. Quoting the author
“One of the goals of this study is to use the algorithms with as little problem-
specific knowledge as possible” as problem-specific knowledge is not always readily
available in the space domain. Iterative methods could tackle problems with little
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problem-specific knowledge availability. A main aim of Baluja’s 1995 empirical
study was to prove this point. The methods compared in [Baluja, 1995] are three
variants of MRSH (Multiple-Restart Stochastic Hillclimbing), two variants of PBIL
(Population-Based Incremental Learning) and two variants of GA. Twenty seven
problem variants were solved with each of the aforementioned methods, from the
problem classes of Travelling Salesman Problem, job-shop scheduling, knapsack, bin
packing, neural network weight optimisation and numerical function optimisation.
Problems were encoded either in standard binary code or in Gray code14 and al-
gorithm control parameters were selected empirically. The comparison proves PBIL
to be superior to the other two algorithmic categories in 22 out of 27 problems.
In the late 1990s Chun et al. [Chun et al., 1998] performed a comparison of three
heuristic algorithms on a number of numerical problems, aiming at taking an in-
formed decision before attempting to optimise the design of a surface permanent
magnet synchronous motor. A modified version of IA (Immune Algorithm) (MIA),
GA and ES (Evolutionary Strategy) were the algorithms of choice, solving five well
studied numerical problems before utilising the best performing one to an engineer-
ing application. The problems used for testing algorithmic accuracy and capability
are a sphere15 model, a Rosenbrock function16 , a step function, a sinc17 function
and a multimodal function18. Chun et al. utilising computer science to the benefit
of engineering design, correctly proceeded to testing before using, choosing a set
of powerful and well rounded benchmarks. They found MIA more able to tackle
complex shape problems such as sinc or multimodal functions. ES proved more able
in tackling smooth shaped functions such as Rosenbrock’s. Considering that the
aim of that study is the optimal design of a permanent magnet synchronous motor,
the authors chose MIA for their design since the motor’s efficiency curve presents
complexity similar to a sinc function. Chun et al. conclude that MIA performs bet-
ter in most cases except from smooth shaped functions, thus it is safe to consider it
capable of tackling a wider range of complex optimisation problems.

14Also known as “reflected binary code”, Gray code was patented by Frank Gray in 1947, rep-
resenting a binary system where two successive values differ by only one bit. It was originally used
to prevent false output from electro-mechanical switches.

15A convex, smooth, quadratic function comprising an excellent test for algorithm convergence.
16A non-convex function used as a benchmark for optimisation algorithms. It’s expressed by

f(x, y) = (α − x)2 + β(y − x2)2. The global minimum lies within a long, narrow parabolic-shaped
flat valley, making it easy to trace the valley but difficult to converge to a global optimum.

17Unnormalised sinc i.e. sinus cardinalis is defined as sinc(x) = sin(x)
x

. The normalised version of
the function sinc(x) = sin(πx)

(πx) is the Fourier transform of the rectangular function with no scaling.
It is used in reconstructing signals from uniformly spaced samples of that signal.

18Multimodal functions contain multiple good solutions or global optima. Such functions can
usually be solved successfully by Evolutionary Algorithms
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The original inventors of PSO (Particle Swarm Optimisation) Eberhart et al. [Eber-
hart and Shi, 1998] published an article in 1998 comparing GA with PSO. The
authors – coming from an Engineering background – state that the main goals of
this comparison are to provide an insight into each algorithm’s working and sug-
gest ways that could improve performance through interchanging features between
the two paradigms. This work stimulated a discussion as to how can elements of
GA be incorporated to PSO successfully, enhancing the algorithm’s efficiency and
effectiveness. Inspired by this discussion, a new PSO feature has been adopted and
used routinely by the authors – namely inertia weight – demonstrating the merit of
hybridising implementations to improve algorithmic convergence and performance.
The authors encourage the continued study and improvement of evolutionary com-
putation methods, utilising benchmarks and importantly practical applications to
compare between methods.
It is interesting to see that in 1998 a number of application-oriented comparison art-
icles were published, with GA being a prominent algorithm in all those comparisons.
Sexton et al. [Sexton et al., 1998] performed a comparison of GA and backpropaga-
tion convergence to optimise an ANN (Artificial Neural Network). The authors
mention the propensity of their contemporaries to utilise local search algorithms
such as backpropagation to train their ANNs, which may lead to entrapment in
local optima and inconsistent or unpredictable performance. Sexton et al. first sup-
port this claim through experimental results and then demonstrate the merit of
using a global optimisation algorithm. A Monte Carlo comparison on seven test
functions was performed, with the GA demonstrating a significantly lower average
error than backpropagation. The authors conclude that a well designed objective
function utilised by a global optimisation algorithm can achieve a good trade-off,
leading to a balanced ANN providing a more robust solution.
In 2001 Braun et al. [Braun et al., 2001] published seminal work on the subject
of algorithmic comparison on load-balancing heterogeneous distributed computing
systems, the predecessor of modern cloud computing. The authors looked into how
eleven heuristics perform on optimally mapping (matching and scheduling) large
groups of tasks onto machines comprising a distributed heterogeneous computing
environment. This study presented a basis for comparison and understanding under
which conditions do some techniques outperform others from the set of algorithms
used in this article. Furthermore, the authors add that their study can be used as
a starting point for choosing heuristics to be applied in different scenarios.
In 2003 another comparison is published, this time from bioinformatics researchers.
Moles et al. [Moles et al., 2003] recognise the difficulty of parameter estimation
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of nonlinear dynamic biochemical systems, known as inverse problem. Frequently,
such problems turn out to be ill-conditioned and multimodal, hindering conver-
gence of gradient-based methods. For that reason, a nonlinear biochemical dynamic
model is used as benchmark to test seven global optimisation methods from the
deterministic and adaptive stochastic domain. Namely, the methods used are MAT-
LAB’s GBLSOLVE [Holmström, 1999] an iterative constrained deterministic op-
timisation algorithm, MCS (Multilevel Coordinate Search) [Huyer and Neumaier,
1999] a deterministic optimisation algorithm incorporating global search with local
search enhancement, ICRS (Improved Controlled Repeated Random Search) [Banga
and Long, 1987] a sequential adaptive random search method, DE [Storn and Price,
1997] a population-based stochastic optimisation method, uES (unconstrained Evol-
ution Strategy) based on Schwefel’s work [Schwefel, 1995] comprising an evolution-
ary optimisation method, SRES (Stochastic Ranking Evolutionary Strategy) [Run-
arsson and Yao, 2000] an evolutionary optimisation method incorporating stochastic
ranking based on bubble-sort and finally CMA-ES (Covariance Mix Adaptation-
Evolution Strategy) [Hansen and Ostermeier, 1997] an evolutionary algorithm in-
cluding an intermediate recombination step through derandomised covariance mat-
rix adaptation. The benchmark used calls for the estimation of 36 kinetic parameters
of a nonlinear biochemical dynamic model that describes the variation of metabol-
ite concentrations over time. Moles et al. conclude that out of the aforementioned
methods, Evolutionary Strategy-based algorithms demonstrate the best results with
SRES being the best performing technique and uES following closely. Based on their
findings, they make the informed assumption that evolutionary algorithms can be
the most promising stochastic optimisation method especially when tackling large
problems.
In their extensive 2003 article Blum et al. [Blum and Roli, 2003] made an inter-
esting conceptual comparison of metaheuristics considered most important at the
time, recognising the merit of applying combinatorial optimisation in the indus-
trial world. They do not clarify though the selection criteria used to define which
algorithms were considered important at the time. The authors examined EC (Evol-
utionary Computation), ACO, SA, TS (Tabu Search), ILS (Iterative Local Search),
VNS (Variable Neighbourhood Search) and GRASP (Greedy Randomised Adaptive
Search Procedure). The aforementioned algorithms employ the generic principles
of intensification and diversification, expressed somewhat differently depending on
the particular algorithmic strategy used. Intensification and diversification are the
main drivers behind most metaheuristics, allowing the algorithms to focus on pro-
spective good solutions and yet explore other candidate solutions too as a means
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of escaping local optima and converging closer to a global optimum. In this work,
Blum et al. attempt to put intensification and diversification components in relation
with each other, with algorithmic components being characterised by the functions
they depend on e.g. objective function, randomisation, and how they affect the al-
gorithms’ search. They mention the possibility of identifying “subtasks” within an
algorithm’s search in their future work, where some algorithmic strategies exhibit
better performance than others. The authors conclude that such knowledge will
enable them to produce hybrid metaheuristic algorithms with a considerable per-
formance improvement over pure metaheuristic methods, as seen in aspects of real
life too.
Wetter et al. [Wetter and Wright, 2004] performed a comparison of different types
of optimisation algorithms – deterministic and stochastic, gradient-based and non
hill-climbing – for solving six different expressions of a building energy analysis
problem. Namely the optimisation techniques used in this comparative study were:
Hooke-Jeeves, two versions of Nelder-Mead simplex algorithm, Genetic Algorithm,
Particle Swarm Optimisation, a hybrid particle swarm Hooke-Jeeves algorithm and
the Armijo gradient algorithm. The authors do not mention the reasons behind
choosing those particular algorithms, nevertheless their choice covers a wide range
of techniques which leads us to believe that they attempted to cover as much of
the optimisation spectrum as possible. Two main simulation models were used, one
of them posing discontinuities in 2% of the fitness landscape while the other one
has a continuous fitness landscape, allowing for a demonstration of each algorithm’s
restrictions based on the underlying strategy used. As expected, hill-climbing based
algorithms such as Armijo or Nelder-Mead failed to converge close to or exactly
at a global optimum, underlying the importance of knowing the fitness landscape
upfront before utilising such techniques. Wetter et al. conclude that the best con-
vergence was achieved using hybrid methods, namely the hybrid particle swarm and
Hooke-Jeeves algorithm that allows for tackling discontinuities. They also add that
whenever designers have enough margins to accept less accurate solutions, utilising
a simple GA is a good tradeoff to make. Finally, they do not recommend the usage
of Nelder-Mead or Armijo gradient algorithms due to their poor performance on
those problems.
Another comparison of evolutionary-based optimisation algorithms with industrial
practitioners in mind is published in 2005 by Elbeltagi et al. [Elbeltagi et al., 2005]
without explicitly stating what was the aim of this comparison. GA, MA (Memetic
Algorithm), PSO, ACO (the authors do not specify which particular ACO algorithm
they use) and SFL (Shuffled Frog Leaping) were used to solve two continuous and
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one discrete optimisation problem. F8 19 also referred to as Griewank’s function
and F1020 comprise the continuous cases solved, whereas a TCT (Time-Cost Trade-
off) construction management problem including 18 activities is used as a discrete
benchmark. The authors initially set up algorithm parameters as proposed in relev-
ant literature. They then performed a small scale parameter sweep, monitoring how
each parameter change affects every algorithm’s performance before deciding the
best setup per algorithm. Elbeltagi et al. conclude that PSO was the best perform-
ing algorithm overall, producing the best solution and maintaining a high success
rate while being the second fastest algorithm in processing time.
Motivated by another engineering problem Panda et al. [Panda and Padhy, 2008]
perform a comparison of GA and PSO, using a flexible AC transmission system con-
troller design as their test case. The authors attribute their choice of algorithms on
popularity and compare algorithmic performance to conclude on the effectiveness of
each technique. Panda et al. infer that both algorithms can be successfully used for
optimising a transmission system controller, with PSO demonstrating better per-
formance (convergence achieved in fewer generations) despite the algorithm posing
a higher computational time. Finally they underline the importance of choosing
control parameters and objective function expression appropriately to ensure a suc-
cessful optimisation run.
In 2011, we see another algorithmic comparison study for an engineering application.
Namely, Shi et al. [Shi et al., 2011] compared EGA (Elitism Genetic Algorithm) with
PSO for distributed power generation planning, without detailing the motivation be-
hind this choice. However, in their article they did mention that in previous relevant
studies, GA was used and EGA performed better in comparison. They concluded
that EGA performed somewhat better than PSO. Optimising the location and unit
capacity within distributed generation micro-grids comprises a multi-objective prob-
lem, accounting for the cost of investment and power losses. The objectives were
to optimise the feeder network and the siting and sizing of distributed generation,
based on wind and photovoltaic power generation whose capacity and position are
uncertain.
One more comparison between GA and PSO for an engineering application was per-

19A scalable, non-linear objective function expressed as: f(xi|i=1,N ) = 1 +
N∑

i=1

x2
i

4000 −

N∏
i=1

(cos(xi/
√

i). The first term (sum of fractions) creates a parabolic shape whereas the latter

(product of cosine) creates waves over the parabolic surface.
20A non-linear multi-variable function, F10 is expressed as: f10(x, y) = (x2+y2)0.25·[sin2(50(x2+

y2)0.1) + 1].
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formed by Roberge et al. [Roberge et al., 2013] in 2013. The aim was to calculate
feasible near-optimal trajectories for fixed-wing UAVs (Unmanned Aerial Vehicle) in
a complicated 3D environment, while taking into consideration the dynamic char-
acteristics of the aircraft. A multi-objective function was utilised, incorporating in-
tegral flight trajectory characteristics. Length, altitude, danger zones to be avoided,
power required per trajectory, trajectories leading to collision, fuel required per tra-
jectory and smooth circular trajectory arcs were all taken into consideration when
generating a new path. Performing quantitative analysis, the authors found that
GA produces superior UAV flight trajectories over PSO generated ones.
Hamdy et al. [Hamdy et al.] compared a number of stochastic optimisation al-
gorithms for generating an optimal integrated design of a zero energy building. Seven
multi-objective approximation algorithms were selected on the basis of popularity
according to past literature on the topic. Namely, the algorithms used in this study
were: a controlled non-dominated sorting Genetic Algorithm with a passive archive
(an NSGA-II variant), a Multi-Objective Particle Swarm Optimisation (MOPSO),
a two-phase optimisation GA (PR_GA), an epsilon dominance Multi-Objective
Evolutionary Algorithm (evMOGA), an Elitist Non-dominated Sorting Evolution
Strategy (ENSES), a multi-objective Differential Evolution algorithm (spMODE-
II), and a Multi-Objective Dragonfly Algorithm (MODA). The objectives to be
minimised were the building’s primary energy consumption and life-cycle cost. The
authors conclude that PR_GA consistently exhibits better performance, based on
the combination of all the criteria used (execution time, convergence to benchmark
optimal, diversity of solutions in Pareto set, number of Pareto optimal solutions,
contribution of optimal solutions in Pareto front).
More recently, we find one more algorithmic comparison in the realm of applied
sciences. Karagöz et al. [Karagöz and Yildiz, 2017] looked into optimising thin-
walled tube structures, to improve car crash performance by simulating structure
geometry and forming effects. The optimisation objectives comprised maximising
energy absorption and minimising structure weight. Nine algorithms were com-
pared, chosen on the basis of their recent appearance in relevant literature. In
particular, PSO, Cuckoo search, Gravitational Search Algorithm (GSA), Hybrid
Gravitational Search Algorithm-Nelder Mead (HGSANM), League Championship
Algorithm (LCA), Firefly algorithm, Bat algorithm, Interior Search Algorithm (ISA)
and Imperialist Competitive Algorithm (ICA) were used. The authors conclude that
HGSANM generated the most lightweight and potent structure.
Overall, we find a relatively sparse yet interesting corpus of comparisons of al-
gorithms’ implementations, parametrised for real world applications. This can be
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considered a positive step towards utilising an appropriate algorithm for each indi-
vidual application.

2.6 Statistical analysis

In quantitative research, while examining two samples it is usual to perform a stat-
istical hypothesis test (for a useful overview, see Appendix G) for assessing if pop-
ulations’ central tendencies are different. The usual null hypothesis H0 is that the
samples at hand share the same mean (for normally distributed data, otherwise
median) µ1 = µ2 = µ3 · · · = µn and the alternative hypothesis H1 being that at
least one mean (or median) is different. The variables to be analysed are typically
classified as independent or dependent. An independent variable (also known as a
predictor, explanatory, or exposure variable) is one that we think may cause a change
in a dependent variable (also known as an outcome or response variable) [McDonald,
2014].
Usually tests assume normality of distribution, and examine sample means to reject
or not the hypothesis that all samples share the same mean. A frequently used stat-
istical analysis of two dependent/matched samples of one independent variable is
the paired t-test for normally distributed samples. Two ordinal or interval samples
can usually be statistically analysed using the non-parametric equivalent of the t-
test, namely the Wilcoxon signed ranks test that does not assume normality of
samples’ distribution [National Institute of Standards and Technology, 2008; Mc-
Donald, 2014].
When examining more than two normally distributed samples, ANOVA (Analysis of
Variance) [Daniel, 1990; Corder and Foreman, 2011] (also known as one-way ANOVA
when examining samples of one independent variable) is used. If the samples ex-
amined are not normally distributed, non-parametric ANOVA tests are employed.
One method frequently utilised to test two or more independent samples is the
Kruskal-Wallis test [Kruskal and Wallis, 1952]. When multiple test attempts are
applied (repeated measures), the consistency of the test outcome is usually detected
using the Friedman test [Kanji, 2006; Marshall and Marquier, 2014; Lund Research
Ltd., 2012].
The Friedman test is the non-parametric alternative to the one-way ANOVA with
repeated measures, i.e. detecting differences among multiple test attempts. It is
employed for testing for differences between samples when the measured dependent
variable is ordinal, investigating the significance of the differences in response for
K treatments applied to n subjects. Before using this test, the practitioner needs
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to check if four assumptions are met. Namely, a) one sample is measured on three
or more different occasions, b) each sample is randomly selected from the popu-
lation, c) our dependent variable should be measured at the ordinal or continuous
level, d) samples do not need to be normally distributed [Lund Research Ltd., 2012].
Since the aforementioned assumptions are met, such a non-parametric one-criterion
ANOVA test can allow us to infer whether there is an overall significant difference
between at least one of the algorithms we employed and the rest of our algorithmic
set.
Once a statistical analysis of more than two samples has been performed and a
significant difference (p < 0.05) has been found, a post hoc analysis is required to
indicate which samples are significantly different from one another. A wide range
of multiple comparison tests are available, with a basic rule being that we should
apply one test only in our experiment [Kim, 2015; Keppel and Wickens, 2004]. Ne-
menyi [Nemenyi, 1963] is a robust and less conservative post-hoc test used by default
in the R software environment, following testing for statistical significance with the
Friedman test [Marshall and Marquier, 2014]. It performs pairwise multiple com-
parisons, to indicate which pairs do present a significant difference in the metric we
are measuring (here, schedule fitness).

2.7 Conclusions

In this chapter, we presented literature on stochastic algorithm applications, as well
as relevant literature on the subject of optimal satellite mission operations schedul-
ing and algorithmic parameter tuning. A set of algorithms was chosen from different
categories such as natural selection or swarm intelligence, with or without memory
etc. based on their popularity or absence in relevant literature on satellite mis-
sion operations scheduling. Interestingly enough, literature on mission operations
scheduling dates back to the late 1980s [Dupnick and Wiggins, 1980a] despite the
lack of ample processing power at the time. This fact underlines the need for op-
timisation and automation of satellite operations scheduling due to the increasingly
complex mission requirements and satellite technology.
Diverse approaches have been used throughout the last 30 years, with stochastic
algorithms being widely applied during the last two decades. It was clear from early
on that each mission varies in operational and technological requirements, making
it difficult to analytically describe a mission and apply exact optimisation methods.
Therefore, approximation methods started being used not long after they emerged.
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Literature shows that different problem sub-sets within the set of mission operations
scheduling were attempted to be solved, such as long term astronomical observa-
tions, short term Earth observation, short and long term planetary observation on
Mars, Venus and other celestial bodies.
Numerous research teams have applied stochastic algorithms in real problems in
space mission operations with good levels of success, nevertheless the reasoning be-
hind using one algorithm over another is not clear or strongly supported in the
majority of related literature. We therefore find a gap in relevant literature, where
practitioners only utilise a single algorithm for solving this important real world
problem. Inspired by other multi-algorithm comparison studies, we hereby apply
various algorithms for tackling the problem of satellite mission operations schedul-
ing.
In the next chapter we will describe our satellite mission operations framework struc-
ture, designed to approximate a satellite mission including its orbital characteristics
per time unit, its mission requirements over time, systems and payloads comprising
our generic Earth Observation satellite, and how all the framework generated in-
formation is passed to a given optimisation algorithm. A space mission is dynamic,
rendering the satellite mission operations scheduling problem challenging due to
little a-priori knowledge available.
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“Simplicity does not precede complexity, but
follows it.”

– Alan Perlis, Computer Scientist

3
Satellite Mission Operations Subsystem

In this chapter, we describe the motivation behind modelling satellites and how we
approximated a typical small-scale satellite for experimentation.

3.1 The history of this project

This research project’s initial aim was to perform robust design optimisation of space
missions. The general idea pertained to viewing a satellite’s subsystems and its mis-
sion aims as a complete entity whose design characteristics and mission operations
can be optimised for multiple objectives. Namely, the physical design objective was
to minimise the satellite’s power consumption by minimising its individual subsys-
tems’ respective power requirements. This could be achieved by tuning all subsystem
parameters that can be controlled by a human designer (design parameters). Envir-
onmental parameters could also be somewhat tuned, by changing for instance the
satellite’s orbit and attitude, respecting mission constraints.
At the same time, the mission would be considered optimal if the maximum of
feasible mission operations aims was met. In order to accomplish this, mission
operations scheduling had to be introduced as an optimisation objective, maxim-
ising the intersection between mission requirements and operations scheduling. To
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achieve this, aside from modelling the satellite’s hardware, orbit and environment,
mission goals had to be set and translated into requirements. Required targets’
visibility had to be propagated for the time span of interest, power generation had
to be calculated for every time unit and power consumption was computed based
on mission requirements.
In 2013, this research project’s focus converged to automated optimal mission op-
erations scheduling. Below, we present the software modules developed for the
purposes of experimentation, attempting to maximise feasible mission operations
by optimising a mission’s operations scheduling component.

3.2 Modelling satellites

In general, an engineering system could be modelled in different ways, depending on
information availability and system complexity. Space technology is usually closely
tied to Defence applications, with stricter regulations constricting the amount of
information and data that can be shared publicly.
Ideally, in order to achieve space mission operations optimality, a high fidelity satel-
lite model should be developed to reflect the hardware, software and environment
of the mission at hand. While propagating the mission’s orbit is possible, it is not
straightforward to faithfully model the hardware itself or the dynamic space envir-
onment. With the exception of CubeSats1, satellites are bespoke, varying in volume,
weight and technology. On top of that, data is securely held in company premises
and are normally not shared with external parties. It would therefore be considered
expensive and impractical to attempt to model every mission in detail, unless there
is a strong scientific motive and respective funding to support such a project.
Naturally, one might ask if it would be possible to build a general satellite model that
can represent and simulate an entire category of satellites. Again, such a project
would lead to insurmountable obstacles, with the most prominent one being that
satellite design is usually based on recommendations but not standards. Attempting
to generalise a satellite category can lead to quite a wide range, thus a less useful
categorisation. For instance, mini satellites weigh between 100kg and 500kg (classi-
fication is done on the basis of mass). Space systems engineering handbooks attempt
to introduce a general picture of how satellite subsystems vary, based on publicly
available past mission data sheets and specifications. Such references are used both
for education purposes and preliminary design of future missions. However, relying

1CubeSats comprise a nanosatellite of standard weight and dimensions, called “U” for Unit. A
1U CubeSat measures 10cm x 10cm x 10cm and weighs less than 1.33kg. Larger CubeSats can be
1U, 2U, 3U or 6U, with their maximum weight being 1.33kg per U [NASA, 2017].
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on such information acts as a high-level generalisation and approximation of a wide
range of past missions. Therefore, attempting to develop a general satellite model
with high fidelity is a very challenging task.
A sensible compromise is to combine space systems engineering experience, with
publicly available information drawn from a real mission of interest. That way, an
approximation of a satellite can be developed, being realistic enough for experiment-
ation while remaining feasible to implement within a constrained time frame and
budget. Space systems engineering information is employed to represent the core
functionalities and expected environmental conditions of a type of satellite e.g. a sci-
entific LEO mission. Then, some technical documentation and reports – which have
recently started becoming available in space agencies’ information repositories – can
be used to complement space systems engineering references. Importantly, speaking
with mission operations experts is integral for gaining a better understanding on
particular missions and receive specific mission information.
This combined approach is the method we applied, in order to approximate an Earth
Observation LEO mission that is inspired by the European PROBA-2 (Project for
On-Board Autonomy-2) mission. At first, information was gathered from various
space systems engineering sources and technical publications documents and a set
of generic satellite subsystem approximation models were implemented. This piece
of work contributed to publications [Vasile et al., 2011; Komninou et al., 2012a,b;
Vasile et al., 2012] and subsequently was awarded an ESA ITI (Innovation Triangle
Initiative)2 grant. Appendix C contains the latest draft available to the author, of
the relevant Stage A ESA ITI report. Then, we established communication with
the PROBA-2 Science Operations team, who provided us with a set of high level
requirements on science planning automation. Those requisites reflected the manual
science planning performed at the Royal Observatory of Belgium, which is the Sci-
ence Operations Centre (SOC) for the PROBA-2 mission. Appendix B gives an
overview of PROBA-2 mission requirements, forming the basis of our experimental
test cases. Had our collaboration with PROBA-2 experts continued, our software
framework would be further developed to simulate the PROBA-2 satellite’s func-
tionality, mission and environment.
Utilising relevant literature and personal communications with space engineers, we
developed modular software approximating main functionalities that characterise a
small-scale Earth Observation satellite. The main systems included in this satellite
model are a TTC (Tracking, Telemetry and Commanding) system, an ADS (Atti-
tude Determination Subsystem), a CDH (Command and Data Handling) system,

2https://iti.esa.int/iti/index.jsp

42

http://www.esteco.com/corporate/esa-iti-development-robust-design-optimisation-space-missions
https://iti.esa.int/iti/index.jsp


an EPS (Electrical Power Subsystem), two cameras and three generic instruments.
The model is deterministic, a reasonable assumption to make due to the reliability
of satellites.

3.2.1 Modelling the satellite’s orbit

When approximating a satellite mission, naturally the first step is to model its state
for a time span of interest. Propagating its orbit allows us to infer integral mission
characteristics that need to be used later on. Examples include targets’ visibility or
environmental parameters like incident solar radiation over time. Such attributes
set the foundations on which the mission approximation will be based on. Calculat-
ing for instance a target’s visibility opportunities and length per orbital pass, allows
us to compute this task’s contribution to the mission’s power requirement for this
time period. Likewise, computing when the satellite will pass above a magnetic field
anomaly, will allow for including the appropriate timing and type of action to be
taken in the mission’s schedule.
To be able to deduce terrestrial targets’ visibility windows for a continuously mov-
ing artificial satellite orbiting Earth, ESA recommended us to use the observation
geometry system being developed by and used at NASA and ESA, named NAIF
(Navigation and Ancillary Information Facility) SPICE3. SPICE calculates among
others a satellite’s state (its position and velocity) at any given moment, its field of
view, position of the Sun and other stellar/planetary objects of interest.
At first SPICE reads a set of kernel files describing the satellite’s orientation, eph-
emeris4, each system’s or payload’s field of view and so on. Its output returns
visibility occurrences (time and duration) of targets of interests for a given discrete
time horizon with a chosen time resolution.
Each system accepts a number of inputs relevant to its functionality and outputs
the main metric, power consumption. This output is used for calculating scheduling

3An acronym of the five main types of information contained in a typical data file named “ker-
nel”, namely:
S- Spacecraft ephemeris, given as a function of time.
P- Planet, satellite, comet, or asteroid ephemerides, or more generally, location of any target body,
given as a function of time.
I- Instrument description kernel, containing descriptive data peculiar to a particular scientific in-
strument, such as field-of-view size, shape and orientation parameters.
C- Pointing kernel, containing a transformation, traditionally called the "C-matrix" which provides
time-tagged pointing (orientation) angles for a spacecraft bus or a spacecraft structure upon which
science instruments are mounted. A C-kernel may also include angular rate data for that structure.
E- Events kernel, summarizing mission activities - both planned and unanticipated.

4An ephemeris gives the positions of naturally occurring astronomical objects as well as artificial
satellites in a point of reference at a given time
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capacity based on individual system and payload power consumptions. A set of
predefined inputs was selected based on literature, leading to approximating small-
scale Earth Observation satellite functionalities and thus individual systems’ power
consumption.

3.2.2 Overall framework structure

The system is modular as shown in Fig. 3.1, with components working in synergy to
produce information about the mission status throughout the time frame in ques-
tion. Mission information generated is then passed to the optimiser for schedule
generation. The optimiser module searches for the best solution possible given the
mission requirements and resource constraints set, using either a time-constrained
or an iteration-constrained search. It returns a numerical result in the form of a
binary matrix and a Gantt-like chart visual representation including power availab-
ility and tasks scheduled throughout every time step as seen in Figure 3.2.

Figure 3.1: Subsystem structure

In particular, this experimental framework comprises the following modules
(author attribution and license given when appropriate):
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- An Observation Geometry Subsystem for Planetary Science Missions is used
for calculating the satellite orbit and lighting conditions5. Gregorian calendar
dates are converted to MJD (Modified Julian Date)6

- A target visibility module is used for calculating passages through all targets
of interest in mission5

- A set of satellite models approximating electric characteristics of the ADS,
CDH, EPS, TTC7

- A set of payload “black box” models approximating satellite payloads’ power
consumption

- An optimisation algorithm8 forming an optimised schedule based on mission
requirements and constraints

- A mission timeline module outputting a binary matrix (1 = system/instrument
ON, 0 = system/instrument OFF) and a Gantt-like chart visualisation of the
resulting schedule

3.2.3 The optimisation problem

The combination of irregular satellite scientific operation requirements with the
continual orbital motion of a satellite renders this optimisation problem dynamic.
Scientific operation requirements change as new PI (Principle Investigator) requests
are frequently submitted at varying times to the Mission Manager. Combined with
the fact that power generation depends on orbital characteristics, satellite attitude,
power generator health among others renders the overall problem description fluid,
presenting a changing landscape per time unit.
As an example of how science operations comprise a dynamic problem instance,
in Appendix D we present the first month9 of MEX’s real mission data following

5Author: NASA JPL under the NASA Open Source Agreement
6Author: LuxSpace sàrl under the BSD 2-Clause "Simplified" License. MJD is a more convenient

form of the Julian date (JD), in which the zero point is 1858 November 17. The Modified Julian
Date was introduced by Smithsonian Astrophysical Observatory in 1957. It is defined as JD -
2400000.5. The Julian Date represents an integer illustrating a whole solar day count starting
from 12.00 Greenwich Mean Time. JD number 0 is assigned to 12.00 January 1st 4713 B.C Julian
calendar (November 24th 4714 B.C Gregorian calendar) [United States Naval Observatory, 2008].

7TTC authored in part by A. Beaton, used with permission
8Author attribution given in Chapter 4
9During that month it was discovered that Mars’ South Polar ice cap contains wa-

ter. http://www.esa.int/Our_Activities/Space_Science/Mars_Express/Mars_Express_sees_
its_first_water_scientific_results
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Figure 3.2: Example of an optimised 2.4 hour schedule Gantt-like chart

insertion into Martian orbit. The Earth and Sun distances with respect to the
spacecraft change over time, just like Solar eclipse and Earth occultation10 occur-
rences and durations do. The Earth’s distance and occultation duration from Mars
affect telecommunications’ power consumption (reflected in our TTC model) and
visibility windows that direct downlink operations’ scheduling (reflected in our mis-
sion requirements module). Likewise Solar distance and eclipse durations affect
the spacecraft’s power generation11 (reflected in our EPS model), usage and energy
storage12 profiles. Combined with irregularly dispersed scientific observations, it is
evident that scheduling a scientific space mission is constrained and dynamic.

3.2.4 Geometry and target visibility

In order to calculate the mission’s orbital characteristics per time-step (an example
shown in Fig. 3.3), the SPICE [Acton, 1996] toolkit is used applying up-to-date

10To conceal (an apparently smaller celestial body) from view by passing or being in front of it
e.g.
the Moon occults Mars during daylight on March 22. https://en.oxforddictionaries.com/
definition/occult

11Electric power is the rate of transfer of electrical energy (J/s) within an electric circuit, per
time unit.

12Battery energy capacity is the total energy available when the battery is discharged at a certain
discharge current, calculated by multiplying the discharge power (W) by the discharge time (h).
https://web.mit.edu/evt/info.html
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NORAD (North American Aerospace Defense Command) elements13. SPICE com-
prises a set of individual software packages that read through mission kernels and
generate satellite state vectors, target visibility occurrences, satellite orientation,
satellite systems’ and payloads’ field of view among others. Such information allows
mission planners to forecast the next available opportunities for scientific observa-
tion, data download and housekeeping operations among others.

Figure 3.3: An average PROBA-2 orbit, visualised using JAT Orbit Viewer [Gaylor
et al., 2002]

SPICE normally accepts generic kernels14 as inputs i.e. data files that apply
to a wide range of missions. Mission-specific kernels15 are also used for particular
mission calculations. Generic kernels include:
The planetary, satellite, comet and asteroid ephemeris files produced by the NASA
JPL (Jet Propulsion Laboratory) are known as SPKs (SPice Kernels). SPKs allow
for computing the position of the satellite in question and the natural bodies sur-
rounding it. It calculates ephemeris data (position and velocity per time instant)

13NORAD elements are found at: http://www.celestrak.com/NORAD/elements/engineering.
txt

14Generic kernels can be downloaded from: https://naif.jpl.nasa.gov/naif/data_generic.
html

15PROBA-2 kernels available at: http://proba2.sidc.be/aux/data/spice/kernels/
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from the mission’s ancillary files. This allows for the prediction of the satellite’s po-
sition and velocity at any given time instant as well as the position of the celestial
body it orbits e.g. the Earth and any other bodies of interest like the Sun.
The leapseconds kernel (LSK) is used to adjust mission time such that calculation
time is close to the mean solar time16. Such occasional adjustments are necessary
due to the Earth’s rotation presenting irregularities creating a differential between
atomic clock time and Earth rotation.
The planetary constants kernel (text PCK) contains constants used to model the ori-
entation, size and shape of the Sun, planets, natural satellites, and selected comets
and asteroids. The orientation models express the direction of the pole and location
of the prime meridian of a body as a function of time. Likewise, the high-precision
lunar orientation kernel (binary PCK) contains information to model the orienta-
tion, size and shape of the Moon.
The Earth station topocentric locations (SPK) and reference frames (FK) kernels
include topographic information of every target of interest. Targets of interest are
decided based on mission aims. Ground stations, morphological features and other
targets of interest are defined based on their geodesic coordinates according to the
World Geodetic Subsystem 84 [National Imagery and Mapping Agency, 2000], the
same coordinate system used by the Global Positioning Subsystem. SPICE utilises
that information to calculate the frequency and duration of each target’s visibility.
Detailed documentation and tutorials for using the SPICE toolkit are found at
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/.

3.2.5 Representing mission requirements in our framework

Based on the mission scope, a set of requirements are decided and a number of
constraints inevitably arise. The aim of the mission imposes specific requirements
such as target observation, telecommunication through specific ground stations, en-
vironmental constraints like magnetic field anomalies and so on. Since satellites are
highly resource- / mission- / environment-constrained systems by definition, limited
resources such as power availability, battery energy storage and satellite orientation
(directly influencing power generation) per time-step impose hard constraints over
the mission.
Such constraints are incorporated into mission requirements, to ensure compliance
with technical specifications. For instance, a requirement may request a measure-

16Solar time is the measure of time based on the Sun’s position in the sky. Apparent solar time
refers to sundial time while mean solar time refers to atomic clock time
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ment such as multispectral Earth imaging to be periodically taken with specific
cadence e.g. 2 minutes until further notice. This task should not be executed when
the satellite passes through the SAA, due to increased ionising radiationinterfering
with equipment and risking damage. Thus, during this passage, the original require-
ment like the one seen in Fig.3.4 is amended to abide by that technical constraint.
In this Figure, we see a binary matrix representing the mission’s requirement for 3
subsystems and 3 payloads, spanning 10 time steps (t1 · · · t10). Here, 1 signifies that
a subsystem or payload will execute some task during that particular time-step. 0
indicates that there is no need for the subsystem or instrument to operate during
that time. We then see a power consumption matrix, which reflects each subsys-
tem’s or payload’s power consumption whenever this is in operation. We then find
the satellite’s power availability, generated and stored by the EPS, which acts as
our hard constraint. Soft constraints are considered those where a satellite subsys-
tem/payload operates when not required, provided that the power constraint is not
violated. Capturing requirements and constraints in such a way, allows for them to
be easily used by our framework.
The framework accepts requirements as vectors containing a start time, duration
and frequency in MJD format for each system or payload on-board. This forms a
landscape encompassing all currently required tasks, shaping what an ideal mission
operations schedule would look like. Each task comes with a vector of information
regarding its power consumption per time unit of operation.

To present a realistic enough test case, we spoke to science mission operations
experts from ESA, EUMETSAT, STFC and private companies, as well as satellite
systems engineers from ADS, who kindly offered us their insights. Based on inform-
ation from different missions (see Appendices B and C) and inspired by PROBA-
2 [Science Center (P2SC), 2009; Kramer, 2002; Zender, 2012 - 15], we built a set
of requirements in our formulation reflecting mission operations corresponding to
a generic PROBA-2-like Earth Observation mission. It should be noted that time
count starts from the exact time of the launch as per SPICE convention, thus all
time intervals occur precisely after launch like SPICE documentation suggests. For
instance, monthly calibration for 30 minutes occurs exactly a month after launch for
30 minutes, daily observations twice a day occur +11 hours after launch for their
predefined duration and again +23 hours later. In particular the requirements this
mission has to abide by can be found below.
Aside from including traditional satellite infrastructure, such as attitude determin-
ation, data processing, power handling, telecommunications, cameras etc. we have
also included 4 generic models. These models represent experimental equipment for
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1 1 0 0 0 0 0 1 1 0
0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1 1
1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1
0

Mission requirement
Subsystem1
Subsystem2
Subsystem3

Payload1
Payload2
Payload3

Power consumption
Subsystem1
Subsystem2
Subsystem3

Payload1
Payload2
Payload3

Power availability
EPS

consumption 50 W
consumption 80 W

avg. power generated ~200W
avg. power generated <160W
fully charged battery 200Whr

partially discharged battery <150Whr

Figure 3.4: Generic mission requirements example, taken from our framework

engineering or scientific applications. Namely, Subsystem 1 can be an experimental
propulsion or attitude control system like a solar sail, an inflatable structure, a new
generation momentum wheel and so on. Instruments 1 - 3 can represent experiments
such as radiation measurement, magnetosphere mapping, in-orbit astronomical ob-
servations among others.

Launch date:

- 2009 11 02 01:20:00.000 UTC

Simulation start - end interval: (randomly chosen)

- Start: 2013 MAR 13 00:00:00.001 UTC

- End: 2013 MAR 19 23:59:59.999 UTC
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Subsystem requirements:

ADC:

- Determine and control satellite attitude every 3.5 minutes In reality, this may
vary irregularly depending on space weather and satellite pointing require-
ments, however this attitude variation has not been modelled.

CDH:

- Consider data handling always on. (in reality, engineers distinguish between
idle, peak consumption and nominal. Due to the lack of concrete data, we
didn’t model this load variation.)

EPS:

- Generate power per time unit during daytime, provide energy during eclipse
while decreasing stored battery energy according to power consumption per
time-step.

TTC:

- Downlink data whenever visibility window for REDU17 or SvalSat18 ground
station spans more than 9 minutes. Visibility windows are derived using
SPICE for a chosen operations’ timespan based on orbital characteristics and
dates of interest.

Subsystem 1:

- Subsystem 1 operates 5 hours per day at the start of each day.

Payload requirements:

Camera 1:

- Image acquisition every 2minutes

- Camera reboot and software reload once a week for 20 minutes

- Camera calibration every two weeks for 50 minutes
17http://www.esa.int/Our_Activities/Operations/Estrack/Redu_station
18https://www.ksat.no/en/
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- No calibration performed when flying over the SAA (South Atlantic Anom-
aly)19

Camera 1 performs periodic tasks usually, apart from the SAA constraint which
occurs at a predictable but not always regular interval.

Camera 2:

- Camera calibration every two weeks for 540 minutes

- From November to February annually, acquire data once daily

- Unit calibration monthly for 270 minutes

- Occultation observation campaigns may be scheduled when predicted to occur
(occurs irregularly)

- Solar flare observation campaigns may be scheduled at any point that the
probability for a high-energy flare is higher than a predefined threshold. This
is modelled as observations in our mission requirements, assuming knowledge
of solar flare events.

Instrument 1:

- Experiment 1A observation twice a day for 480 minutes

- Experiment 1B observation twice a day for 360 minutes

- Experiment 1C observation twice a day for 480 minutes

Instrument 2:

- Experiment 2A observation three times a day for 360 minutes

- Experiment 2B observation twice a day for 300 minutes

- Experiment 2C observation three times a day for 240 minutes

- Experiment 2D observation twice a day for 540 minutes

- Experiment 2E observation twice a day for 540 minutes
19The South Atlantic Anomaly refers to a region over the South Atlantic ocean whereby the

inner Van Allen belt extends as low as 200km above mean sea level, causing electric interference
to subystems and sensors as well as affecting humans’ optic nerves. Van Allen belts comprise
energetic charged particles (the inner belt is dominated by protons, the outer one by electrons
mainly) deriving from solar wind or cosmic radiation, held in place due to the Earth’s magnetic
field
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Instrument 3:

- Experiment 3A observation twice a day for 270 minutes

- Experiment 3B observation three times a day for 300 minutes

- Experiment 3C observation twice a day for 420 minutes

- Experiment 3D observation twice a day for 420 minutes

The above requirements were derived from personal communication [Zender, 2012 -
15], multiple on site visits and a technical note we were entrusted with from PROBA-
2 mission operations engineers (see Appendix B). Requirements were complemented
with prior knowledge, experience and classified documentation from the ESA ESEO
satellite that we had access to while taking part in the ESEO mission20.
ADS and Subsystem 1 exhibit periodicity in operation, and CDH a constant be-
haviour in this model, as we did not have adequate data to approximate real-life
behaviour. However ADS presents variable power consumption subject to orbital
velocity and radius from the planet’s centre of mass. EPS and TTC present vari-
ation in their operation that is related to both the satellite’s orbital characteristics
and mission requirements as seen in Tables F.3 and F.4.
Instruments 1 - 3 contain periodic tasks spanning longer periods of time due to the
nature of each observation e.g. ADS-B21 monitoring, AIS22 monitoring, astronom-
ical observations and others.
Further to observations, mission requirements contain housekeeping tasks too such
as data downlink, attitude control etc. An important housekeeping task is to down-
link as much stored observation data as possible to minimise information loss. Thus,
every time the satellite passes above an available ground station, it downlinks data
and receives new commands as long as the current visibility window spans longer
than 9 minutes, to allow for meaningful communications. Visibility windows occur
at different times depending on the orbit type, altitude, inclination and so on.
Determining and correcting the satellite attitude is also important, to enable in-
struments on-board to aim at or away from a particular target with good accuracy.
For instance, aiming at a geological characteristic requires precision especially for
narrow angle cameras. Likewise, aiming instruments away from the Sun to avoid

20ESA ESEO was launched on Dec 3rd 2018 https://directory.eoportal.org/web/eoportal/
satellite-missions/e/eseo

21Automatic Dependent Surveillance - Broadcast (ADS-B) is a technology that allows aircraft
to determine their position through satellite navigation and periodically transmit their bearing,
altitude, identification code and others, to manage airspace efficiently

22Automatic Identification Subsystem (AIS) is a technology used to track and identify ships,
supplementing marine radar information, to achieve collision avoidance in water transport
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damaging their sensors also requires relative accuracy. Attitude determination is
performed every 3.5 minutes, providing a good level of control over the satellite’s
orientation. Computer processing and power generation are always activated since
they form the basis of all satellite functions.
In all three test cases we employed throuthout this thesis, this resulted in an array
of n tasks and T timeslots, containing n · T binary values. The small test case
spanning 2.4 hours per orbit, was inspired by the ESA technology demonstration
mission LISA Pathfinder’s orbit injection sequence23 and ESA ESEO’s Phase B1
hardware design. Each time-step was 120 seconds long, resulting in T = 72 time-
steps with n = 6 tasks to schedule. The larger 1-day and 7-days long (STP) cases
were inspired by the ESA technology demonstration mission PROBA-2’s mission
profile, i.e. its orbit, mission requirements and hardware. Both larger schedules
utilised 30 second long time-steps, resulting in T = 2880 and T = 20160 time-steps
respectively. The 1- and 7-days cases contained n = 25 tasks to schedule, with the
7-days case amounting to 504000 array elements (25 · 20160).
The problem consists of two parts: i) determining whether or not the mission re-
quirements are feasible, given the aforementioned constraints, ii) if the mission re-
quirements are infeasible, suggesting an alternative schedule that presents as much
of the original mission requirements as possible.

3.2.6 Subsystem and payload models

High-level models were developed and used to approximate satellite functions and
instrument representation to derive power consumption and availability per time
instant. Each model accepts specific input values reflecting the satellite’s technical
specifications and environment, and all models output an estimate of their power
consumption. The EPS outputs the power generated per time instant as well as the
battery energy capacity.
Subsystem models24 require two types of variables, design and environmental as seen
in Appendix C. The former correspond to numerical values engineers can decide on
(within feasible intervals given technical requirements and constraints) whereas the
latter correspond to numerical values occurring from a satellite’s orbit, ephemeris,
planetary environment e.g. magnetic field and others.
Most subsystem models were based on system engineering tables authored by NASA,
USAF (US Air Force) and industry engineers. Those tables were derived from pre-

23See eoPortal’s LISA Pathfinder entry, Figure 18 and Appendix C
24Satellite subystem models’ code is available at https://www.bitbucket.org/satschedopt/

satschedopt/Satsystems/
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vious missions’ statistical information published in technical reports & engineering
books, found in this thesis’ bibliography, that are used in the space industry and
academia. Performance range has been derived statistically from past missions of
different sizes and scopes, representing a heterogeneous and realistic sample per sub-
system equipment type. Such information is utilised by space agencies and compan-
ies during the first stages of mission design (Phase A & B) to perform approximate
budget calculations of satellite subsystem characteristics.

Validation Validation of subsystems was performed predominantly through real
mission data and empirically, ensuring that inputs and outputs correspond to real-
istic approximations of ESA LISA Pathfinder25. On the one hand tabular data were
used from engineering literature, combined with ESA ESEO design data and LISA
Pathfinder publications and ESA ESEO design documentation. On the other hand
experience was drawn from engineering experts at ESA in close collaboration with
Prof Massimiliano Vasile and Dr Edmondo Minisci of Mechanical & Aerospace De-
partment at Strathclyde who closely monitored, steered the development of those
subsystem models and validated their output.
Tabular data were linearly spaced within each metric’s specified range and linear
interpolation was used to calculate a subsystem’s power consumption (or generation
in the EPS case) corresponding to design inputs specified by the user.
As mentioned above, the subsystems included in this generic Earth Observation
satellite are the following:

Attitude Determination The ADS was modelled mainly based on bibliograph-
ical system engineering data included in Table 3.1. A typical ADS comprises a
number of sensors contributing to attitude determination, with calculation capab-
ility taking place either in the satellite’s main processing unit or a separate ADS
processing unit. If the subsystem contains attitude control too, passive or active
control modules such as magnetotorquers or thrusters are included in budget calcu-
lations.

25http://sci.esa.int/lisa-pathfinder/
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Table 3.1: ADS: Estimating power in early phases of a project [Wertz and Larson,
1999]

Sensor Typical Performance Range Mass (kg) Power (W)

Internal
Measurement

Unit

Gyro drift rate = 0.003deg/hr

to 1deg/hr

Linearity = 1 to 5e−6 g/g2

over 20− 60g

1 to 15 10 to 200

Sun Sensors Accuracy = 0.005deg to 3deg 0.1 to 2 0 to 3

Star Sensors
Attitude accuracy = 1 arc sec

to 1 arc min

0.0003deg to 0.01deg

2 to 5 5 to 20

Horizon Sensors Attitude accuracy 0.1deg to 1deg 1 to 4 5 to 10
Magnetometer Attitude accuracy = 0.5deg to

3deg

0.3 to 1.2 < 1

The ADS we used contains two sensors of each type mentioned in Table 3.1, with per-
formance characteristics stated in Table F.1. Quantities depending on orbit or other
environmental characteristics, are denoted as variables. For attitude determination,
the subsystem contains a pair of Star sensors, Horizon sensors, Magnetometers,
Gyroscopes and Accelerometers.

Command and Data Handling The CDH design is based on system engineering
data included in Table 3.2.
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Table 3.2: Early phase estimation of power [Brown, 2002]

Equipment Mass (kg) Power (W)
Equipment relatively independent of data rates

Telecommunication interface
Data-flow control

Signal conditioning
Command processing

Spacecraft clock

30 20

Computer 2 10
Science data processor 15 2 + 1W/instrument

Engineering data processor 10 5
Data storage 0.25kg/Gbit 1W/Gbit

To ensure robustness, our model’s CDH subsystem comprises two processing units
corresponding to a total of two processors, two telecommunication interfaces, data
flow control units, signal conditioning modules and so on. Two data recorder units
are included in the subsystem, with a total storage of 12 Gbits. The setup paramet-
ers are appended in Table F.2.

Electrical Power Subsystem Information on EPS design is more widely avail-
able [Patel, 2004; Hyder, 2000], allowing us to design the model of this subsystem
using both statistical data and analytical expressions. A typical Earth Observation
EPS comprises a power generator and an energy storage unit, along with some basic
robust logic unit to ensure efficient power generation and safe energy storage and
distribution.

Power generation: We chose solar arrays for our power generator, which is the
standard choice for all inner solar system missions. At first the average total power
requirement needs to be calculated using Eq. 3.1.

Ptotal =

(
Pe te

Xe

)
+
(

Pd td

Xd

)
td

[W ] (3.1)

where Pe, te and Xe refer to the average power demand during eclipse, the
average duration of each eclipse and the average energy transmission efficiency dur-
ing an eclipse respectively. Likewise, Pd, td and Xd refer to the daylight counterparts
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of the above.
Once the Ptotal has been calculated, the designer has to choose the type of solar cells
to utilise for the satellite power generator. Solar cell efficiency depends on solar cell
material chemistry, which also affects characteristics like voltage and current output
as well as degradation over time. Figure A.1 in Appendix A depicts the state of
the art solar cell technology. For our subsystem we chose six commonly used solar
cell types found below. In our model, solar cell characteristics’ values are linearly
interpolated.

Table 3.3: Solar cell types and characteristics [Wertz and Larson, 1999]

CdTe p c-Si u c-Si 3j GaAs conc. 3j GaAs multij
Voltage (V) 0.740 0.530 0.430 2.290 2.680 2.260
Current (A) 0.028 8.080 0.774 0.525 6.760 1.750

Efficiency (%) 16.5 20.3 24.7 29.9 38.5 40.7
Degradation (%/y) 1.0 3.7 3.7 0.5 0.5 0.5

Once a solar cell type is chosen, the array size is calculated based on cell
degradation over time. A satellite should be able to serve its power requirements
even at the end of its useful life. Thus power generator sizing is calculated based on
power demand at the end of the mission based on Eq. 3.2

Peol = Pbol Ld[W ] given: Ld = (1−D)Tm (3.2)

where Peol and Pbol is the mission power requirement at the mission’s end
of life and beginning of life respectively. Ld represents the degradation rate, with
D being the inherent degradation percentage and TM refers to the primary mission
lifetime in years.
Once Peol is calculated, it is straightforward to roughly size the power generator.
The bus voltage is divided by the chosen solar cell type voltage to derive the length
of each array string. Likewise bus current is divided by the respective current output
to calculate the required number of strings. Multiplying the array string length with
the number of strings allows us to calculate the expected solar array power output.
Battery storage: Battery sizing depends on Pe (power consumption during eclipse)
and te (time of eclipse) which allow the designer to derive the satellite energy storage
requirement. The product of Pe and te signifies the minimum battery energy Ebat

and Ebat/ηbat (with ηbat being the battery efficiency) returns the required battery
pack energy.
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Table 3.4: Battery cell types and characteristics [Patel, 2004]

NiCd NiH2 NiMH LiFePO4 LiIon LiPoly
Energy density (Wh/kg) 60 75 80 110 150 200

Voltage (V) 1.25 1.25 1.25 3.3 3.6 3.5
Efficiency ηbat = ηout/ηin (%) 0.85 0.86 0.87 0.90 0.95 0.998

Our EPS model receives the te and td eclipse and daylight durations per orbit from
the SPICE geometry system mentioned above. Individual subsystem and payload
power consumptions per mission day are summed based on whether they take place
during daylight Pd or eclipse Pe. Daylight energy efficiency transfer Xd was assumed
to be 0.85 while the efficiency during eclipse Xe was set to 0.65. The satellite’s
main bus runs at 28V, driving the number of solar cell strings in series. Likewise,
the maximum bus current rating drives the number of parallel strings. The power
generator comprised triple junction Gallium-Arsenide (3j GaAs) solar cells, the
mission duration TM was set to 5 years and the energy storage comprised Lithium
Iron Phosphate (LiFePO4) cells. The tabulated set of parameters used in our test
case can be found at Table F.3.

Tracking, Telemetry and Commanding TTC subsystems can vary depending
on a satellite’s communication needs. Normally a TTC comprises a link module rep-
resenting telecommunications elements such as signal modulation, antenna type etc.
as well as an amplifier module representing the power amplification infrastructure
to boost signal power over background noise. Systems engineering books like [Wertz
and Larson, 1999] provide informative communications architecture facts.
To calculate a TTC subsystem’s power consumption we need to work somewhat
backwards. First the downlink frequency needs to be decided based on a number of
factors that are beyond the scope of this manuscript. Based on the frequency and
other parameters like the maximum distance from a target, the required transmission
power and bit rate, the designer can calculate the transmitter gain and consequently
the RF power output described in Eq. 3.4. Table 3.5 contains a set of parameters cal-
culated for VORSAT, a European student nanosatellite project [Rodrigues Capela,
2012].
The main metric that needs to be calculated is the transmitter gain Gt according to
Eq. 3.3 [Roddy, 2006], depending on the subsystem’s antenna characteristics. From
that gain we can derive the RF power output in Watts, to size the TTC subsys-
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tem [Wertz and Larson, 1999].

Table 3.5: Link budget for downlink at 2.45GHz [Rodrigues Capela, 2012]
Feature Value

Maximum distance 1160 (km)
Transmission power 25 (dBmW)
Transmission loss 1 (dB)

Transmission antenna gain 4.5 (dB)
Equivalent Isotropically Radiated Power (EIRP) 30.5 (dBmW)

Free space loss 161.47 (dB)
Atmospheric absorption 1 (dB)

Polarisation loss 3 (dB)
Antenna misalignment loss 1 (dB)

Propagation loss 166.47 (dB)
Satellite antenna gain 35 (dB)

Subsystem noise temperature 110.11 (K)
Figure of merit 14.59 (dB/K)

Boltzmann constant -228.6 (dB/K/Hz
Received power (Pr) to noise density (N0) (Pr/N0) 77.22 (dBHz)

Bit rate 9600 (bit/s)
Received energy-per-bit (Eb) to noise density (Eb/N0) 37.4 (dB

Bit Error Rate 10−5

Eb/N0 @ 10−5 9.6 (dB)
Downlink margin 27.8 (dB)

In particular, the metrics required for calculating the transmitter gain are
the antenna diameter dt, the antenna efficiency ηt accounting for imperfections or
losses and the communications’ band wavelength λ.

Gt = 10log10

(
ηt

(
π dt

λ

)2
)

[dB] (3.3)

Using Eq. 3.3 and Table 3.5 RF power output PRF is calculated as

PRF = 10(EIRP −Gt/10)[W ] (3.4)

Based on the above, we can calculate the transmitter power consumption
from Figure 3.5 allowing us to approximately model the mission TTC.
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Figure 3.5: Satellite Transmitter Power and Mass vs RF Power Output [Wertz and
Larson, 1999]

The TTC model we used is loosely based on nanosatellite Low Earth Orbit missions.
The downlink transmission frequency is set at 2.45GHz (UHF band), with a corres-
ponding wavelength λ of approximately 122mm. We utilise a parabolic high gain
antenna of 1.5m in diameter dt and an efficiency ηt of 0.6. Table 3.5 contains details
such as the subsystem’s EIRP (Equivalent Isotropically Radiated Power) among
others and the total subsystem power consumption is calculated from Fig. 3.5. Our
TTC model’s inputs can be found at Table F.4.

3.2.7 Optimisation module

Approximate methods are used when computational problems are too hard to solve
exactly. Approximation algorithms have been extensively used on NP-hard [Garey
and Johnson, 1979] problems since the early days of their development, where exact
algorithms’ time complexity scales exponentially, rendering even smaller instances
of hard problems challenging.
In order to optimise a given problem, one needs to form an illustrative representa-
tion that reflects the problem’s nature, its requirements and constraints. There are
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different ways of elucidating a problem, depending on what we want to achieve. For
instance, finer detail is required for studying the response per millisecond of a fast
transient phenomenon. Furthermore, depending on the problem at hand informa-
tion can be represented as integers, real numbers or binary values.
During this modelling effort, it was decided that a binary matrix representation
can encapsulate satellite mission operations scheduling, similar to the way space
operations engineers apply it in practice. This design choice simplifies information
representation in our problem, maintaining a satisfactory time resolution. Since the
satellite mission operations scheduling problem varies per mission and is not form-
alised, lending itself to a wide range of interpretations, it is not straightforward to
represent it analytically. Each task activation state is therefore represented by a
boolean value, true equals activation and false indicates no task execution.
The input to this module comprises an array describing the mission requirement
itself (see Section 3.2.5), the mission requirement’s power consumption and the
satellite’s power availability per time-step. The module outputs a feasible solution,
expressed as a binary matrix of size n · T corresponding to all n instruments’ and
subsystems’ activation states for all time-steps T . The feasible solution represents
the modification of the mission requirements to achieve feasibility.
Algorithms included in the optimisation module, attempt to maximise the number
of scientific and control activities to be scheduled per time unit. Meeting the exact
mission requirements and thus scheduling all requested tasks would be ideal. Prac-
tically though, this is not always possible. Usually it is considerably challenging to
objectively decide which instrument can be considered more important. Decisions
may be based on subjective arguments, vague mission scope definitions, simple lin-
guistic misinterpretations in international settings etc.26. This is all ignored here.
We employed the metric of Hamming distance for calculating generated schedules’
fitness. In essence, the aim is to maximise similarity between the mission require-
ment array and the algorithmically generated operations schedule array, minimising
their Hamming distance.

Search space

Based on the number of subsystems and instrumentation included in the satellite a
two dimensional binary search space of size 2nT is generated, with n representing

26Conversing with science operations experts, they unanimously agreed that task prioritisation
discussions rarely reach a consensus, often causing tension between and among teams. Furthermore,
when experts were asked to estimate mission aims for their mission to be considered a success, they
could not specifically quantify aims. Thus, it is important to bring neutrality to this process and
maximise scientific return, by considering all activities equally important.
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Figure 3.6: Search space structure for 3 tasks. Each column contains 2n state com-
binations per time-step t. The resulting final solution vector is "001|111|111|101".

the tasks to be scheduled and T the total number of time-steps characterising the
schedule span. The problem can be visualised using a trellis diagram27 [MacKay,
2003] with columns signifying discrete time-steps and rows containing all possible
perturbations of tasks’ activation states. Fig. 3.6 shows an example of the search
space structure for three tasks to be scheduled for four time-steps.
The cardinality of the schedule’s total time-steps T depends on the schedule’s tem-
poral duration strategy (short/medium/long term) and required level of control
(fine-grain vs coarse-grain schedule). When using SPICE satellite operations, ex-
perts need to define the time-step duration e.g. 30 seconds, which is used for gener-
ating the mission operations search space. Care should therefore be taken towards
maintaining a balance of good orbital approximation and satisfactory mission oper-
ations’ time resolution.

27Such diagrams were used in the trellis modulation scheme, a method to efficiently transmit
information over band-limited channels like copper telephone lines.
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3.3 Conclusions

In this chapter, we described the framework we developed to model a satellite’s
environment, its infrastructure including scientific payload and its mission require-
ments, feeding all relevant information to an optimisation module to generate a
mission operations schedule. To achieve this we utilised a systems engineering ap-
proach, treating each subsystem as a generic unit consisting of key modules. For
instance a telecommunications subsystem comprises an antenna, a link module and
an amplification module. Subsystems accept inputs that vary with orbital posi-
tion, lighting conditions and other mission parameters, outputting variable power
requirements. Mission requirements were translated into a binary matrix, which in
turn was passed on to our satellite framework to generate a mission profile. A set
of algorithms were then used to optimise the mission operations schedule.
The scenario used was representative of an Earth Observation mission, with the
modelled generic satellite incorporating five basic subsystems and five scientific in-
struments. Initially the satellite’s orbital characteristics were derived through an
observation geometry system. The satellite’s infrastructure was developed, com-
prising an attitude determination system (ADS), a command and data handling
(CDH) subsystem, an electrical power system (EPS), a tracking telemetry and com-
manding (TTC) subsystem, a generic subsystem and five observation instruments
including two cameras and three generic instruments. Statistical information and
some analytical expressions were used to model satellite infrastructure. Instrument-
ation was modelled as a set of black boxes, since instrument characteristics vary
significantly thus being challenging to categorise. Validation for the models was
performed empirically using a combination of real satellite data as well as previous
experience from past ESA missions and experts on the field.
In the next chapter we will introduce a more formal description of the problem
at hand and solve a small scale instance inspired by ESA ESEO and ESA LISA
Pathfinder, to compare algorithmic performance on an even basis for a variety of
optimisation algorithms. Do all algorithms solve the same problem equally well?
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“It is better to solve one problem five different
ways, than to solve five problems one way.”

– George Pólya, Mathematician

4
Comparing algorithms for satellite operations

scheduling

Approximation algorithms are broadly used for solving real-life complex problems,
potentially growing exponentially. The real-life based space engineering problem at
hand, is expressed as a binary array where 0 = instrument or subsystem OFF, 1
= instrument or subsystem ON. Considering that we have a total of n tasks to
schedule, for a span of T time-steps, the search space grows at a rate of 2nT with
the exponent being the product of two likely large values. The rapid growth of this
engineering problem size, renders it a good candidate on which to apply approxim-
ation methods, assuming that no sufficiently good polynomial time algorithm can
be found to solve it. To test whether a polynomial time algorithm would be able
to tackle this problem satisfactorily, we applied a simple greedy algorithm (see Sec-
tion 4.1.10).
More formally, the problem can be stated as:

“Form a candidate solution array V – aiming at maximising its similarity
with mission requirements array S – that represents the activation states
of n tasks for a span of T time-steps. Set Vi,t = 1 to activate task
i ∈ {1, · · · , n} during time-step t ∈ {1, · · · , T}, else Vi,t = 0. For all
time-steps the available power At must be respected.”
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In other words,

Form V, with Vi,t =

1 if task i is selected at time-step t

0 otherwise

Such that: H(V, S) is minimised

(4.1)
where, H(V, S) signifies the Hamming distance between arrays V and S i.e. the
number of bit substitutions required for V to become identical with S.
Every candidate vector V should satisfy the constraint of power availability per
time-step At, i.e.

(
n∑

i=1
Ci,t · Vi,t) ≤ At, ∀t ∈ {1, · · · , T} (4.2)

where Ci,t is the power consumption of task i at time t and Vi,t the task i’s activation
status, at time t. The objective is to maximise the amount of required activated
tasks per time-step, resulting in the highest useful operation time possible per in-
strument or subsystem (for a fitness calculation example, see Figure 4.1). By useful,
we define the period where it is both expected and possible for a certain task to be
performed, in accordance with mission requirements S. As mentioned above, the
hard constraint is to remain within the power availability per time-step At.
In this work, we employed three tactics for comparison: i) a greedy approach, ii) a
sequential (optimising each time-step independently) strategy and iii) a full length
schedule optimisation one. Approaching this scheduling problem through the greedy
lens, we stumble across the issue of premature allocation. That is, since a greedy
algorithm is short-sighted, it’s very probable that it will allocate too many resources
too soon. And in a system with restricted resources, such as a satellite’s battery
employed during eclipse times, this can have negative consequences towards seeing
through the mission.
Similarly, when examining the schedule timeline on a step by step basis, optimising
each step without taking the bigger picture into account leads to comparable issues
attributed to a myopic view of the problem. While a solution may look fit enough on
a per time-step basis, it could e.g. deplete the satellite’s battery before the expected
end of an eclipse period.
On the other hand, attempting to optimise the full schedule and keeping a more
long-sighted view of the problem allows for a more holistic viewpoint, that might
result in a more well balanced solution. This approach though comes at a cost,
namely a vast search space needs to be tackled so that a globally near-optimal solu-
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tion can be found.
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0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1 1
1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0

1 1 0 0 0 0 0 1 1 0
0 0 0 1 1 0 1 1 1 1
0 0 0 1 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0 0

1 0 2 0 0 1 0 0 2 0
5 6 4 6 6 5 6 6 4 6

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 1
0

Mission requirement
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Payload1
Payload2
Payload3

Current solution
Subsystem1
Subsystem2
Subsystem3

Payload1
Payload2
Payload3

Fitness
H(Vt, St)

f(Vt)

f(V ) = nT − H(V, S)

Figure 4.1: Fitness calculation example

Given that utilising approximation algorithms to solve the aforementioned
problem is a reasonable solution, a pertinent question arises: i) Do all optimisation
algorithms perform equally well, independent of the given problem expression and
size? ii) How can a practitioner informedly choose one algorithm over others?

4.1 Observing algorithmic behaviour

To address the question above, practitioners need to quantify algorithmic potential,
comparing how different algorithms perform when tackling the same problem, and
which algorithm presents fitter solutions, given the present problem expression.
Before applying an algorithm on a specific problem, we need to set it up so that it
performs to its full capacity. One way of achieving that is by performing sensitivity
analysis.
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4.1.1 One-step-At-a-Time sampling design

A general term used to describe the process of designing computational experiments
is “sensitivity analysis”, or “factor screening”. When one needs to perform sensitivity
analysis of an expensive simulation, applying OAT (One-step-At-a-Time) sampling
design can be useful [Santner et al., 2003]. OAT, also known as Morris method, can
be used as a preliminary experiment on systems with multiple input variables or
parameters in order to analyse the influence of each input parameter on the output.
The aim is to understand which input variables have a substantial influence on the
output, while keeping the number of runs proportional (as opposed to exponential)
to the number of inputs [Morris, 1991].
The basic principle behind this experimental design method is to observe elementary
effects, i.e. those changes in an output attributed to changes in a particular input.
Assuming that we have input values xj , j = {1, 2, · · · , k} affecting output y, an
elementary effect would be calculated as: randomly choose a value for xj and check
the response of y, choose a value of xj + ∆ and recalculate y. This comprises one
elementary effect.

4.1.2 Problem instance employed for algorithmic parameter tuning

To analyse our algorithms’ control parameters response, we applied the OAT method
using a single instance: an 89-minute long LEO revolution of Phobos-Grunt con-
taining 4 tasks and 44 time-steps. Phobos-Grunt was a Russian mission designed to
land on the Martian moon Phobos and return a sample to Earth. This instance was
formed by the author of this thesis, by first shaping the spacecraft’s early orbit us-
ing its TLE1 (Two-Line Element set). Then, four Estrack [Estrack ground stations,
2017] ground stations were chosen (Malindi (Kenya), Raisting (Germany), Perth
(Australia), Kourou (French Guyana)) that are generally used by NASA and ESA
for interplanetary missions. Also, four subsystems were included to approximate
the core of the mission. Namely, ADS, PROP, TTC and one payload. A random
date after the mission’s launch date was chosen, and a single orbit was propagated
forward. Depending on the orbit start and stop times, ground stations’ visibility
was calculated to indicate telecommunication windows for the TTC. Similarly, day-
light, night time duration and solar incidence angles were calculated for inferring the

1Two Line Element Set (TLE):
PHOBOS-GRUNT
1 37872U 11065A 12015.69171186 .10804850 13050-4 36619-4 0 9996
2 37872 051.4132 350.1235 0009680 342.5577 017.5128 16.57963948 10968
Reference: https://www.n2yo.com/satellite/?s=37872
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EPS’ power generation. ADC and PROP were engaged together every 7 time-steps
throughout the simulation, starting from the 5th time-step of the initial orbit. The
payload was employed for a random number of time-steps between 1 and 15, being
turned off at the last time-step before eclipse.
The use of a single test instance for algorithm parameter tuning is attributed to the
scarcity of available information on the topic. While one can access useful high-level
space systems engineering books and some relevant public technical reports, the in-
formation included in them is usually too generic to constitute the basis of real-life
test cases. Research conducted by space agencies or private space companies may
occasionally use real space data, however access to that data is restricted for internal
use only given appropriate security clearance. We can attest to this, since multiple
visits to the European Space Agency and private space companies did not allow us
to access mission data and detailed information, thus we had to be pragmatic.
Usually, a variety of instances from the same problem type are applied for tuning
algorithmic parameters. That way, it is ensured that the algorithm is not only tuned
for one specific instance of the problem at hand. Thus we ought to warn practi-
tioners of the risk involved in utilising a single test instance, and encourage the
space operations community to publicly share data for motivating further relevant
research with improved outcomes.

4.1.3 How we tuned our algorithmic set

Generally, OAT can be applied by keeping an algorithm’s parameters fixed except
from the first parameter of choice, vary that parameter and notice the influence it
has on the algorithm’s output. Then, utilising the input value that returned the
best output, the second parameter will be varied to infer its influence to the output.
Continuing this process until all parameters have been analysed one at a time, will
allow the practitioner to deduce a set of parameters that will allow the algorithm
to perform better.
A sample of 10 runs was collected per set of parameter settings for each algorithm,
calculating the median schedule fitness f . We then plotted the median fitness per
control parameter level e.g. f(Imax), Imax = {25, 50, 75, · · · , 750} to infer the best
performing parameter value. A boxplot per parameter was also generated, for an
intuitive understanding of that parameter’s influence to the schedule fitness.
We applied OAT for tuning our set of algorithms as follows. Let’s take ACS (section
4.1.6) as an example: the parameters examined were the iterations number Imax, the
number of ants NP , the weight β of heuristic information η, the probability q0 of ex-
ploring the search space over exploiting known search space information, the initial
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pheromone level τ0 and the global pheromone evaporation constant ρ. Initially vary-
ing Imax, and keeping all other parameters fixed, we set Imax = {25, 50, 75, · · · , 750}
with a step of 25. The rest of the tuning parameters were set to an arbitrary but
sensible level depending on their utility (e.g. ρ is a percentage ranging [0, 1] but
normally is kept low to avoid evaporating pheromone rapidly, β is an exponent
acting as a weight thus it’s usually a small positive integer value etc. ). Plotting
f(Imax) helped us pick the best iterations value. Updating the algorithm parameter
set accordingly, we then varied NP , using a constant as a binding between NP and
Imax to keep the computational effort constant for fairness of comparison. After
plotting f(NP ) and updating NP and Imax accordingly, we varied β. Once the
highest f(β) was found, we proceeded to varying q0. Finally, after updating q0 to
the value returning the best fitness f(q0)+ we fluctuated τ0 to infer its influence and
finally we varied ρ which concluded our ACS OAT.

Note on solution representation Since some of the algorithms of choice rep-
resent solutions using real numbers whereas others (e.g. GA) utilise binary values, a
common representation of these solutions needed to be utilised. We chose to utilise
the binary domain since it is flexible enough to represent natural or real numbers
while simple enough to represent states, such as ON and OFF. Thus all non-binary
based algorithms normalised their solution vector values to the [0, 1] interval under
the assumption that if x ≤ 0.5→ x = 0 else x > 0.5→ x = 1.

4.1.4 One-At-a-Time analysis on our algorithms

Ant Colony System

Our ACS (see section 4.1.6) has 6 controls, since the pheromone weight α is typically
kept as 1 [Dorigo and Gambardella, 1997], local pheromone update was not necessary
in a non Hamiltonian-cycle path [Komninou et al., 2011] and we used one colony per
run. Namely, the parameters analysed were the number of iterations Imax, number
of ants NP , heuristic information weight β, exploration vs exploitation probability
q0, global pheromone evaporation constant ρ and initial pheromone level τ0.
We first fixed all tuning parameters but one, to a reasonable value (NP = 2, β =
1, q0 = 0.5, ρ = 0.01, τ0 = 10), and analysed the influence of Imax to the generated
schedule fitness using a step of 25 iterations. Once we established the best Imax seen
in Figure 4.2a, we established the following rule to promote computational effort
fairness: NP · Imax = C. Where C, the total number of evaluations per run, is a
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constant (here C = 1200, using NP = 2 times Imax = 600 which returned the highest
fitness). Connecting these two controls allows us to perform a fair comparison of
setups, by keeping the total number of evaluations constant. With this binding in
place, we analysed the influence of NP with a step of 2 ants. Apparently, when
less population members are allowed to explore for more iterations, the algorithm
converges closer to a global optimum.
Adopting the new best Imax and NP , we went on to analyse the influence of β

(Figure 4.4a) to the output, with a step of 1. Then, q0 was examined (see Figure 4.5a)
with a step of 0.1 and finally ρ (step size 0.01) and τ0 (step size 1) were examined
as seen in Figure 4.6a and 4.7a. The tuned setup comprises Imax = 600, NP =
2, β = 3, q0 = 0.5, ρ = 0.02, τ0 = 4.
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(a) Fitness f as a function of number of iterations Imax

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.2: Influence of number of iterations Imax on schedule median fitness f
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(a) Fitness f as a function of number of ants NP

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.3: Influence of colony’s number of ants NP on schedule median fitness f
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(a) Fitness f as a function of heuristic value weight β

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.4: Influence of number of heuristic value weight β on schedule median
fitness f
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(a) Fitness f as a function of exploration vs exploitation probability q0

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.5: Influence of exploration vs exploitation probability q0 on schedule median
fitness f
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(a) Fitness f as a function of global pheromone evaporation ρ

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.6: Influence of global pheromone evaporation ρ on schedule median fitness
f
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(a) Fitness f as a function of initial global pheromone level τ0

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.7: Influence of initial global pheromone level τ0 on schedule median fitness
f
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Differential Evolution

DE (section 4.1.7) control parameters comprise the number of iterations Imax, num-
ber of population members NP , amplification factor F , crossover probability pcr

and the choice of search strategy used [Price et al., 2005].
The strategies utilised in this experiment were:

1. DE/rand/1

2. DE/local-to-best/1

3. DE/best/1 with jitter

4. DE/rand/1 with per-vector-dither

5. DE/rand/1 with per-generation-dither

6. DE/rand/1 either-or-algorithm

Here, dither refers to selecting F ∈ [0.5, 1.0] randomly per vector (strategy no. 4) or
per generation (strategy no. 5), as it was found to “improve convergence behaviour
significantly, especially for noisy objective functions” [Price and Storn, 1997]. Jitter
is known in engineering as the deviation from true periodicity, given a periodic
signal. In this case, it acts as low-level random noise applied to amplification factor
F . Either-or-algorithm refers to randomly applying either the classical mutation rule
as stated in Algorithm 2 or the F-K-Rule [Price et al., 2005] i.e. K = 0.5(F + 1).
All parameters were fixed, except Imax (NP = 100, F = 0.85, pcr = 0.9, strategy =
4). Using a step of 25 iterations, we examined the algorithm’s output response
when increasing Imax as seen in Figure 4.8a. We then used the NP · Imax = C

binding, with C = 5000 i.e. NP = 50 times the initial Imax value we applied, for
inferring the best population size with fair comparison in mind. Tethering these
two values, we examined the influence of NP on the algorithm’s output, factorising
C to ensure that Imax will be an integer. It appears that NP = 40 (Imax = 125)
returns the highest fitness, according to Figure 4.9a. Using those values, we then
examined the influence of the amplification factor F (Figure 4.10), with a step of
0.1. Finally, we examined the effect that pcr has (step 0.1) seen in Figure 4.11 and
how the choice of strategy influences the output (Figure 4.12). DE’s tuned setup is
Imax = 125, NP = 40, F = 0.7, pcr = 0.3, strategy = 4.
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(a) Fitness f as a function of maximum generations Imax

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.8: Influence of maximum generations Imax on schedule median fitness f
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(a) Fitness f as a function of number of population members NP

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.9: Influence of number of population members NP on schedule median
fitness f
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(a) Fitness f as a function of amplification factor F

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.10: Influence of vector amplification factor F on schedule median fitness f
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(a) Fitness f as a function of crossover rate pcr

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.11: Influence of crossover rate pcr on schedule median fitness f

82



(a) Fitness f as a function of search strategy

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.12: Influence of search strategy on schedule median fitness f
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Genetic Algorithm

The GA parameters (see section 4.1.8) that control our algorithm’s behaviour are
the number of generations Imax, number of population members NP , crossover
probability pcr, mutation per bit probability pm and use of σ-scaling or not.
Keeping the rest of the parameters fixed, we first investigated the influence of Imax

(NP = 50, pcr = 0.9, pm = 0.003, σ-scaling on) using a step of 20 iterations
(Figure 4.13a). Following this, we bound NP · Imax = C (C = 5000, the product
of NP = 50 that we initially used, times Imax = 100 which happens to return the
highest fitness) to deduce the best population size, with fair computational effort in
mind. Factoring C for generating integer Imax values, NP = 50 – with Imax = 100
– is a pair of values leading to closer convergence to a global optimum as seen in
Figure 4.14a. Utilising these values, pcr influence is then examined using a step of
0.1 (Figure 4.15a). We then observe the influence of pm with a step of 0.001 per bit,
seen in Figure 4.16a. Finally, we notice the impact of σ-scaling in Figure 4.17a. The
final parameters’ setup for GA is: Imax = 100, NP = 50, pcr = 0.9, pm = 0.003
per bit and σ-scaling on.
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(a) Fitness f as a function of number of generations Imax

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.13: Influence of number of generations Imax on schedule median fitness f
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(a) Fitness f as a function of number of population members NP

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.14: Influence of number of population members NP on schedule median
fitness f
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(a) Fitness f as a function of crossover probability pcr

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.15: Influence of crossover probability pcr on schedule median fitness f
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(a) Fitness f as a function of mutation probability pm

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.16: Influence of mutation probability pm on schedule median fitness f
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(a) Fitness f as a function of using σ-scaling

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.17: Influence of σ-scaling on schedule median fitness f
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Simulated Annealing

Traditionally, SA uses 4 control parameters. Namely, the maximum number of itera-
tions Imax per temperature level, a cooling schedule control (here, rate of change α),
an initial system temperature tempinit and the final system temperature tempmin.
Our SA (section 4.1.11) contains a fifth control parameter, dmax, which specifies
the maximum percentage of solution tweaking per iteration, chosen randomly per
iteration. Tweaking a solution will therefore range between 1 bit and dmax % bits
of the solution length.
We first started by observing the influence of Imax per temperature level (Fig-
ure 4.18a), with a step of 10 iterations, keeping every other parameter fixed (α =
0.95, tempinit = 3, tempmin = 0.1, dmax = 0.05). Fixing the iterations limit ac-
cording to the first experiment, we analyse the effect of α to the output, using
a step of 0.05. Once the best rate of change of system temperature is decided,
we observe if tempinit influences SA’s output (step size 0.5). Finally, we exam-
ine the influence of tempmin with a step of 0.1 and with this result in mind we
notice the influence of dmqx with a step of 0.1. The best performing SA setup is
Imax = 110, α = 0.95, tempinit = 3, tempmin = 0.1, dmax = 0.05.
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(a) Fitness f as a function of maximum iterations Imax per temperature level

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.18: Influence of maximum iterations Imax per temperature level, on sched-
ule median fitness f
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(a) Fitness f as a function of cooling rate α

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.19: Influence of cooling rate α on schedule median fitness f
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(a) Fitness f as a function of initial system temperature level tempinit

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.20: Influence of initial system temperature level tempinit on schedule me-
dian fitness f
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(a) Fitness f as a function of minimum system temperature level tempmin

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.21: Influence of minimum system temperature level tempmin on schedule
median fitness f
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(a) Fitness f as a function of maximum solution tweak percentage dmax

(b) Boxplot of fitness f with whiskers from minimum to maximum

Figure 4.22: Influence of maximum solution tweak percentage dmax on schedule
median fitness f
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4.1.5 Algorithms used

The metaheuristics’ family taxonomy contains local-search, constructive and population-
based algorithms [Glover and Sörensen, 2015; Brownlee, 2011]. Local-search meth-
ods iteratively perturb a given solution using various strategies attempting to con-
verge to global optima, taking small steps around search space “neighbourhoods”
to improve a candidate solution. Constructive algorithms form solutions element-
wise, choosing the best possible element per step based on a set of fitness met-
rics. Population-based methods operate by forming populations of initial solutions
through a given mechanism e.g. randomly and then combining existing population
members in an attempt to converge to a global optimum.
Our system’s optimisation module contains representative algorithms from the afore-
mentioned taxonomy, comparing their performance on an even basis. Namely the
algorithms to be put to the test are ACS, DE, GA, Random Search and SA. Those
algorithms form a representative sample of available techniques inspired by stig-
mergy, weighted vector differences, evolutionary biology and metallurgy covering a
variety of optimisation strategies.
All algorithms generate their initial population or start solution randomly, when
such a step is required. Every algorithm was tested both individually and combined
with a local search (see Algorithm 8) to observe potential fitness improvement and
execution time variation.
Below we describe the implementation of each algorithm, expressing our code al-
gorithmically. For consistency, we have used the same notation when possible.
Namely, I = iterations/generations, NP = number of members in population, V

= solution candidate, D = length of solution candidate, p or P = probability, f(·)
= fitness function, T = total number of time-steps and S = mission requirement
bit-string.
The test case we utilised contains elements from two missions. Namely, it was
inspired by the small European student satellite ESEO preliminary mission pro-
file, with the calculated orbit2 resembling the initial stages of the LISA Pathfinder
scientific mission. Six tasks corresponding to ADS, CDH, TTC, PROP and two
generic payloads were included. Starting from launch, which signifies t = 0, ADS
with PROP were engaged for two minutes (1 time-step) starting from time-step 5
with a cadence of 7 steps. CDH was always on and TTC was used whenever a
ground station from the aforementioned set (Malindi, Raisting, Perth, Kourou) was

2Launch date: 15th of November 2010, 12.00:00 UTC, semi-major axis α = 9105.6 km, eccent-
ricity e = 0.2444, inclination i = 34.9398 deg., right ascension RA = 110.4872 deg., argument of
periapsis ω = 90 deg., mean anomaly M = 130.42 deg.
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visible for more than 5 minutes. Payload 1 was turned on for a random amount
of time-steps in the interval [1, 15] until the last time-step before eclipse. Payload
2 was engaged at a random time-step within an eclipse and kept running for the
following 13 time-steps. Similar to the OAT experiment, the EPS calculated power
availability and battery energy based on the orbital characteristics. The total test
case schedule length was 2.4 hours, corresponding to roughly 1 orbit, amounting to
72 time-steps.

4.1.6 Ant Colony System

The algorithm below describes how we implemented ACS (Algorithm 1). Our ACS
was written by the author of this thesis, after closely following the original ACO
framework3 written by Thomas Stützle in C and licenced under the GNU General
Public License. Our code was tested and verified using a randomly selected TSP
problem (verified against Stützle’s ACS corresponding solution), and a Euclidean
2D plane problem and 3D space problem (verified by generating the shortest path
between two opposite corners). It was then applied to satellite harness routing op-
timisation [Komninou et al., 2011] initially, and subsequently to satellite operations
scheduling.
By design, ACS is a graph traversal algorithm. This posed the challenge of hav-
ing to interpret our scheduling problem using graph concepts such as edges (tour
segments) and nodes (cities). To achieve this, we made some assumptions. In par-
ticular: a) ants’ movements represent a step forward in time, not space i.e. city i

corresponds to time-step t and city j sits on t + 1, b) all ants start their tour by
selecting the first time-step of the mission requirement St1 , c) when ant k visits
time-step t, it determines t’s set of neighbouring solutions Jt by calculating which of
those neighbours l, ∀l ∈ Jt represent feasible solutions respecting power availability
At+1, d) ant k’s calculation of the heuristic values ηtl, correspond to the fitness of all
potential next steps l within the feasible neighbourhood Jt, e) the global pheromone
matrix τ is updated by depositing the quotient of the global best fitness divided
by the greedy fitness4 f(V +)

f(Vgreedy) on all edges comprising the global best tour V +,
f) the global pheromone matrix is updated at the end of each iteration, with the
global best tour V + receiving pheromone reinforcement equalling f(V +)

f(Vgreedy) , g) The
3http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgz
4Greedy fitness Vgreedy gives an idea of how large V + is expected to be. It is used as a scaling

factor, to keep pheromone amplification relatively comparable. Greedy fitness was calculated as
follows: for each time-step, cumulatively sum up required tasks’ power consumption. When the
power constraint is violated, turn off the least power draining task and continue doing so until
the power constraint is met. Repeat this process for all time-steps. Sum up individual time-steps’
fitness to calculate f(Vgreedy)
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global pheromone matrix is a square matrix of size τ vector_lenght×vector_lenght since
it’s a graph distance matrix5 [Weisstein; Felsenstein, 2003]. The reason for utilising
a distance matrix in ACS, is because “when [the algorithm] is applied to asymmetric
instances it is possible that τ(r, s) ̸= τ(s, r)” [Dorigo and Gambardella, 1997].

5A graph distance matrix, also known as all-pairs shortest path matrix, is the square matrix
(d(ij)) consisting of all graph distances from vertex vi to vertex vj . The graph’s mean distance is
the mean of all distances (in a connected graph). The graph diameter is defined as the maximum
value of all distance matrix elements.
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Algorithm 1 Ant Colony System algorithm
1: Initialise Imax, NP, q0 ∈ [0, 1), β, τ0 {q0 = exploration vs exploitation prob-

ability, β = weight, τ0 = initial pheromone level, ρ = pheromone evaporation
rate}

2: Lay out τ0 pheromone on all edges of global pheromone matrix τ

3: for I = 1 : Imax do
4: for k = 1 : NP do
5: for t = 1 : T − 1 do
6: Calculate VI,k,t as follows:
7: if t = 1 then
8: VI,k,t = St {If this is the first time-step, set VI,k,t to Mission Require-

ment St}
9: else if t = T − 1 then

10: VI,k,T = ST {If this is the penultimate time-step, set final solution step
VI,k,T to Mission Requirement ST }

11: if rand [0, 1) ≤ q0 then
12: Exploitation step VI,k,t = arg max(τtl · ηβ

tl) ∀l ∈ Jt {Jt is ant k’s
feasible neighbourhood (i.e. feasible task allocations for t + 1) of ant k when
being at time-step t}

13: else

14: Transition probability

 pt,t+1 = τt,t+1·ηβ
t,t+1∑

l∈Jt

τtl·ηβ
tl

, if t + 1 ∈ Jt}

15:

16: Exploration step VI,k,t = rouletteWheel(pt,t+1) {Fitness proportionate
selection}

17: Evaluate solution fitness f(VI,k)

18: Find best-so-far V bst = arg max(f(VI,k)), k ∈ {1..NP}
19: if I = 1 then
20: V + = V bst

21: else
22: V + = arg max(f(V +), f(V bst))

23: τi,j ← (1 − ρ) · τi,j + ∆τi,j ∀(i, j) ∈ V + {Global pheromone update on V +.
∆τi,j = f(V +)

f(Vgreedy) , Vgreedy = using Mission Requirement, turn off lowest con-
sumption tasks per time-step until power constraint is met}

24: return V +
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The main control parameters for Ant Colony System include the colony’s
number of ants NP , each run’s number of iterations Imax, the exploration vs. ex-
ploitation tendency governed by probability q0, the global pheromone initial value
τ0, the use of global pheromone update and its rate of evaporation ρ and the ampli-
fication β of the heuristic value used. Finally the algorithm’s selection strategy can
also affect its performance, with roulette wheel selection being the method normally
used.
The number of ants NP in a colony determines how widely will the search space be
explored. Ants need to be given enough time to perform their search, thus a balance
needs to be kept between the number of iterations Imax and the number of ants.
In multi-objective optimisation, more than one colony could be used, with the total
number of colonies corresponding to the number of objectives to solve for. Explor-
ation vs exploitation of information also needs to be carefully balanced since little
exploration may lead to stagnation while little exploitation may lead to a virtually
random search. Pheromone evaporation rate ρ should allow ants enough time to
explore the search space before rendering it less favourable thus excluding it from
ant search. Finally, amplification factors α and β specify how much influence does
heuristic information hold over pheromone (reflecting ant experience).
The best performing setup was: Imax = 600, NP = 2, β = 3, q0 = 0.5, ρ =
0.02, τ0 = 4.

4.1.7 Differential Evolution

Differential Evolution (DE) (Code authors: Rainer Storn, Ken Price, Arnold Neu-
maier, Jim Van Zandt from the University of California, Berkeley and released
under the GNU General Public License) was tested and verified for performing con-
strained optimisation using Rosenbrock’s function [Rosenbrock, 1960a] with bound
constraints.
DE incorporates different search strategies of the form DE/x/y/z. Where x spe-
cifies which vector will be mutated (rand or best), y is the number of difference
vectors used, z states the crossover scheme (bin = binomial or exp = exponential
as described by Storn et al. [Storn and Price, 1997], with binomial being the most
competitive scheme [Das and Suganthan, 2011]).
In DE, we represented a mission operations schedule as a vector of length n · T ,
which corresponds to one population member. Generated solution vectors are al-
ways checked and corrected for feasibility, by cumulatively summing the power con-
sumption of each scheduled task according to the mission requirements, until the
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power availability ceiling is met. The remaining required tasks are not included.

Algorithm 2 Differential Evolution algorithm

1: Initialise Imax, F , pcr, NP , D {F = amplification of differential variation (
−→
V b−−→

V c), pcr = crossover constant, D = vector dimensions i.e. length}
2: for j = 1 : NP do
3: Initialise target vector

−→
V 1,j as D-length vector of random real numbers (0, 1)

4: for i = 1 : Imax do
5: for j = 1 : NP do {Calculate mutant vectors}
6: Randomly choose 3 population members

−→
V i,a,

−→
V i,b,

−→
V i,c s.t.

−→
V i,a ̸=

−→
V i,b ̸=−→

V i,c ̸=
−→
V i,j

7: Calculate mutant vector −→v i+1,j =
−→
V i,a + F · (−→V i,b −

−→
V i,c) for each target

vector
8: for j = 1 : NP do {Crossover – Calculate trial vectors}
9: for k = 1 : D do

10: if rand[0, 1) ≤ pcr or k = rand[1, D] then
11: crossover = 1
12: else
13: crossover = 0

14: Form trial vector −→u i+1,j,k =

vi+1, j, k if crossover = 1

Vi, j, k otherwise

15: for j = 1 : NP do {Selection}
16: if f(−→u i+1,j) > f(

−→
V i,j) then

17:
−→
V i+1,j = −→u i+1,j

18: else
19:

−→
V i+1,j →

−→
V i,j

20: return −→V +

Differential Evolution can be controlled through its number of population
members NP , the total number of iterations Imax per run, the vectors’ crossover
probability pcr, the vectors’ difference weight F as well as the algorithmic search
strategy. Typically DE utilises DE/1/rand/bin as a standard strategy, selecting a
random vector to mutate, one difference vector and a binomial crossover scheme.
The number of parameter vectors NP involved decides how wide of a search the
algorithm performs, given enough time to explore i.e. enough iterations Imax. The
probability pcr governs how frequently will population members share their experi-
ence through crossover. Vectors’ difference weight F amplifies the vector difference,
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acting as a step size when exploring the search space. Finally the standard DE
strategy selects vectors randomly to generate new – possibly fitter – vectors using
binomial crossover, a scheme that seems to behave more predictably [Zaharie, 2007].
The setup allowing DE to perform best was: Imax = 125, NP = 40, F = 0.7, pcr =
0.3, strategy = 4 (corresponding to DE/1/rand/bin). It is worth noting that K.
Price and R. Storn – the original authors of this algorithm – give some useful prac-
tical setup advice in DE’s homepage [Price and Storn, 1997]. They encourage practi-
tioners to try some classical settings first, with their advice being based on empirical
findings using real-world problems. For example, setting the number of population
NP to 10 times the solution vector length D, setting the difference weight F = 0.8
and the probability of crossover pcr = 0.9.

4.1.8 Genetic Algorithm

The Genetic Algorithm (Code author: Keki Burjorjee [Burjorjee, 2009], Brandeis
University, released under the Apache License 2.0) version we used, as described
in Algorithm 3, was verified on its ability to perform maximisation using a Royal
Road6 fitness function [Mitchell, 1998]. We then introduced our problem including
its power constraint and verified that the constraint was respected. The present
GA code implements the specification of a simple GA found in Mitchell’s influen-
tial book with two main differences; i) To avoid selection bias, SUS (Stochastic
Universal Sampling) [Baker, 1987] was used in place of FPS (Fitness Proportional
Selection). SUS differs from FPS in that instead of spinning a “roulette wheel” N

times for selecting N parents, we spin the wheel once but generate N equally spaced
pointers used to select N parents. ii) To moderate selection pressure throughout
the algorithm’s run, σ-scaling was applied. The scaling function below, was used to
adjust fitness f(Vi) for chromosome i during generation I:

f(Vi) =

1 + f(Vi)−f(V )
s·σ(f(V )) if σ(f(V )) ̸= 0

1 if σ(f(V )) = 0
(4.3)

where f(Vi) is the fitness value of chromosome i, f(V ) is the population’s mean
fitness, s is the scaling factor and σ(f(V )) is the standard deviation of the popu-
lation fitnesses at current generation I. The current population fitness’ standard
deviation is used to scale fitness values, in order to maintain somewhat constant

6According to Mitchell: “[To investigate recombination in detail we] designed a class of fitness
landscapes, called Royal Road functions, that were meant to capture the essence of building blocks
in an idealized form.”
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selection pressure during the optimisation process. Chromosomes with fitness below
s · σ(f(V )) are assigned a very low fitness. At the beginning of a run, the popu-
lation’s fitnesses standard deviation is typically high, with fitter chromosomes not
being many standard deviations above the mean. As the run progresses, the popu-
lation is more converged and the standard deviation is lower. Fitter individuals will
stand out more, allowing evolution to continue [Hancock, 1994].
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Algorithm 3 Genetic Algorithm
1: Initialise Imax, NP, pcr, pm {Imax = maximum number of generations, NP

= population size (it must be even, due to algorithm design), pcr = crossover
probability, pm = probability of mutation}

2: Generate random population array V comprising NP , D-long chromosomes
{D = n · T , the number of tasks n times the number of time-steps T}

3: while I ≤ Imax do
4: for i = 1 : NP do
5: Evaluate candidate solution fitness, f(Vi)
6: Apply σ-scaling on f(Vi) {Increase selection pressure}

7: Select NP/2 number of chromosomes parents1 from V , using SUS {Selection
of one half of each mating pair}

8: parents2 = V − parents1 {Other half of each pair. Used for selection
“without replacement”, each chromosome is selected once}

9: V cand = [ ]
10: for i = 1 : NP/2 do {Crossover}
11: if rand[0, 1) ≤ pcr then
12: Randomly select crossover locus loc = rand[2, ∥parents1∥)
13: child1i = parents1i[1 : loc/2] + parents2i[loc/2 + 1 : end] {First off-

spring}
14: child2i = parents2i[1 : loc/2] + parents1i[loc/2 + 1 : end] {Second

offspring}

15: for j = 1 : D do {Mutation}
16: if rand[0, 1) ≤ pm then
17: child1i,j = not child1i,j

18: if rand[0, 1) ≤ pm then
19: child2i,j = not child2i,j

20: V cand = V cand + [child1, child2] {Merge children into a single candidate
population}

21: for i = 1 : NP do {Evaluate candidate chromosomes’ fitness}
22: if f(V candi) > f(Vi) then {Replace old population with fitter offspring}
23: Vi = V candi

24: return V + =0

The processes found in a Genetic Algorithm are governed mainly by the fol-
lowing control parameters: the number of chromosomes NP forming a population,
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the number of generations Imax per run, the crossover probability pcr, the mutation
probability pm introducing randomness during offspring generation, the crossover
scheme used for producing offspring such as single point crossover, and finally the
method for selecting parents per generation e.g. roulette wheel selection.
The available chromosomal pool NP determines how much diversity exists in the
initial population. A randomly generated population may be diverse but not ne-
cessarily fit enough. Braun et al. [Braun et al., 2001] argue that providing a relat-
ively fit initial population may improve offspring fitness after a moderate number
of generations Imax. Mutating offspring occasionally may enhance diversity, pos-
sibly inserting genes that improve performance. However, more frequent mutations
can lead to the opposite result. The crossover scheme applied, may affect fitness by
shuffling genome sequences in a more flexible manner. Parent selection is important,
as premature convergence to a seemingly fitter parental pool may exclude chromo-
somes that can otherwise contribute to successful evolution. Therefore, maintaining
selection pressure through σ-scaling, is important for contributing to offspring vari-
ation.
Following OAT sampling described above, we found that the tuning parameters
leading to best performance were: Imax = 100, NP = 50, pcr = 0.9, pm = 0.003
per bit and σ-scaling on.

4.1.9 sequential Genetic Algorithm

sGA (sequential Genetic Algorithm) is algorithmically identical to Algorithm 3.
The core change is the search space passed to sGA, where sGA is now seeking for
an optimal solution per time-step instead of tackling the full schedule timespan at
once. When a solution has been generated for every time-step constituting a mission
operations schedule, the final schedule is assembled by aggregating all individual
solutions.
By dividing the problem’s search space into sub-problems, we aim at observing
the differences in fitness and processing time between a traditional GA and this
sequential version, applied on a constrained problem like satellite mission operations
scheduling.
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Algorithm 4 sequential Genetic Algorithm
1: Initialise Imax, NP, pcr, pm, T {Imax = maximum number of generations, NP

= population size (it must be even, due to algorithm design), pcr = crossover
probability, pm = probability of mutation, T = number of time-steps reflecting
schedule timespan}

2: for t = 1 : T do {For every time-step}
3: Generate random population array V comprising NP , D-long chromosomes

{D = n · T , the number of tasks n times the number of time-steps T}
4: while I ≤ Imax do
5: for i = 1 : NP do
6: Evaluate candidate solution fitness, f(Vi)
7: Apply σ-scaling on f(Vi) {Increase selection pressure}

8: Select NP/2 number of chromosomes parents1 from V , using SUS {Selec-
tion of one half of each mating pair}

9: parents2 = V − parents1 {Other half of each pair. Used for selection
“without replacement”, each chromosome is selected once}

10: V cand = [ ]
11: for i = 1 : NP/2 do {Crossover}
12: if rand[0, 1) ≤ pcr then
13: Randomly select crossover locus loc = rand[2, ∥parents1∥)
14: child1i = parents1i[1 : loc/2] + parents2i[loc/2 + 1 : end] {First

offspring}
15: child2i = parents2i[1 : loc/2] + parents1i[loc/2 + 1 : end] {Second

offspring}

16: for j = 1 : D do {Mutation}
17: if rand[0, 1) ≤ pm then
18: child1i,j = not child1i,j

19: if rand[0, 1) ≤ pm then
20: child2i,j = not child2i,j

21: V cand = V cand+[child1, child2] {Merge children into a single candidate
population}

22: for i = 1 : NP do {Evaluate candidate chromosomes’ fitness}
23: if f(V candi) > f(Vi) then {Replace old population with fitter offspring}
24: Vi = V candi

25: V seqt = V {Aggregate individual sub-schedules V in V seqt ∀ t ∈ {1 · · ·T}}

26: V + = V seq

27: return V +
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The algorithmic setup is identical to GA. We used the same parameters for
sGA. Time-constrained runs form an exception. In order to complete an 8 hour
run, we divided 28800 – the number of seconds in 8 hours – with the number of
time-steps That is, sGA will spend 400 seconds optimising each of the 72 time-steps
comprising our 2.4 hours instance.

4.1.10 Greedy algorithm

Greedy was verified against our problem’s constraints, adhering to power availability
At per time-unit t. It is a simple unsophisticated algorithm that poses interest
though, since it allows us to see how well can our problem be tackled by a simple
Greedy approach.

Algorithm 5 Greedy algorithm
1: Set candidate solution V equal to mission requirement MR

2: for t = 1 : T do {For every time-step t in schedule}
3: for k = 1 : n do {For every task n in schedule}
4: if MR(k, t) = 0 then
5: V (k, t) = 0
6: else if P (Vt) ≤ At then {If current power consumption P (Vt) is less than

or equal to available power At}
7: V (k, t) = 1
8: else
9: V (k, t) = 0

10: return V

4.1.11 Simulated Annealing

A materials science-based stochastic optimisation algorithm described in Chapter 2.1,
the Simulated Annealing (Code author: Joachim Vandekerckhove, University of
California, Irvine, released under the 2-Clause BSD License) version below, was
tested and verified to ensure it works in accordance with our problem’s constraints.
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Algorithm 6 Simulated Annealing algorithm
1: Initialise tempinit, Imax, tempmin, α {tempinit = initial system temperature,

Imax = maximum number of iterations per temperature level, tempmin = min-
imum system temperature, 0.0 < α < 1.0 = scale factor}

2: Generate initial bit string V0 at random
3: while temp > tempmin do
4: I = 0
5: temp = tempinit

6: while I ≤ Imax do
7: VI+1 = Tweak(VI) {Perturb solution. VI is changed randomly from 1-bit

to 5% of the vector’s overall length.}
8: VI+1 = Trim(VI+1) {If VI+1 violates the power constraint, cumulatively

sum all scheduled tasks’ power consumption, and trim the ones coming after
power availability has been reached.}

9: Evaluate new solution fitness f(VI+1)
10: Evaluate old solution fitness f(VI)
11: if f(VI+1) > f(VI) then
12: Accept VI+1 as new solution
13: else if rand[0, 1) < exp(−f(VI+1)−f(VI)

k·temp ) then
14: Accept VI+1 as new solution

15: Decrease system temperature temp = α · temp

16: return V +

Simulated Annealing and its sequential variant contain three main controls.
The algorithm’s cooling schedule (here α · temp) governing the current temperature
“temp” per time instant, the minimum tempmin and initial tempinit temperatures
respectively. Finally, the current solution selection probability exp( −∆f

k·temp) contains
the Boltzmann constant k that is used for scaling when fitness values have a larger
magnitude. The algorithm can be iteration-constrained in every temperature level,
setting an iteration limit Imax.
Simulated Annealing initially performs a random search, whereby the cooling rate
within a temperature range (tempinit, tempmin) determines how fast will the al-
gorithm start shifting towards pure hill-climbing. Selection probability p = exp( −∆f

k·temp)
contributes towards avoiding local optima by generating a solution acceptance prob-
ability (even if it has inferior fitness), which decreases with time as the “annealing”
process progresses.
SA can be implemented either with multiple iterations performed per temperature
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level [Skiena, 2008], or with a single iteration performed per temperature [Brown-
lee, 2011]. Skiena suggests that neither of those methods provide a clear advantage,
as long as the total number of iterations performed is comparable. We opted for
performing multiple iterations per temperature level.
Our OAT experiment showed that Imax = 110, α = 0.95, tempinit = 3, tempmin =
0.1, dmax = 0.05 lead to best performance.

4.1.12 sequential Simulated Annealing

sSA (sequential Simulated Annealing) is roughly identical with Algorithm 7. The
only difference is the search space passed to sSA, which is considerably smaller in
size, attempting to “divide and conquer”. The algorithm therefore seeks for a global
optimum per time-step, with a search space size of 2n binary state perturbations
for n tasks. Once all time-steps have been optimised, the final schedule of length
T is reconstituted from all individual solution column vectors into a final solution
matrix sized n · T .
That way we aim to compare the performance of a traditional SA approach with
that of a step-wise SA approach in terms of fitness and execution time. If sSA
presents fitter solutions, then dividing the search space into significantly smaller
quanta and aggregating the individual results may be a viable approach to consider
when performing search optimisation on large search spaces.
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Algorithm 7 sequential Simulated Annealing algorithm
1: Initialise tempinit, Imax, tempmin, α {tempinit = initial system temperature,

Imax = maximum number of iterations per temperature level, tempmin = min-
imum system temperature, 0.0 < α < 1.0 = scale factor}

2: for t = 1 : T do {For every time-step}
3: Generate initial bit string V0 at random
4: while temp > tempmin do
5: I = 0
6: temp = tempinit

7: while I ≤ Imax do
8: VI+1 = Tweak(VI) {Perturb solution. VI is changed randomly from 1-bit

to 5% of the vector’s overall length.}
9: VI+1 = Trim(VI+1) {If VI+1 violates the power constraint, cumulatively

sum all scheduled tasks’ power consumption, and trim the ones coming after
power availability has been reached.}

10: Evaluate new solution fitness f(VI+1)
11: Evaluate old solution fitness f(VI)
12: if f(VI+1) > f(VI) then
13: Accept VI+1 as new solution V

14: else if rand[0, 1) < exp(−f(VI+1)−f(VI)
k·temp ) then

15: Accept VI+1 as new solution V

16: Decrease system temperature temp = α · temp

17: V seqt = V {Collect individual sub-schedules V in V seqt ∀ t ∈ {1 · · ·T}}

18: V + = V seq

19: return V +

The algorithmic setup remains the same as SA. As with sGA, in the time-
constrained case sSA spends 400 seconds per time-step.

4.1.13 Local Search

This naïve LS algorithm attempted to complement the approximation methods we
utilised, somewhat encouraging solution improvement. It was tested and verified
to perform constrained optimisation on our problem. The algorithm generates a
random feasible solution Vt per time-step and compares it to the existing solution
V bst

t generated by any of the algorithms in our experimental set. If f(Vt) > f(V bst
t ),

V bst
t is substituted by Vt. Otherwise, if both solutions are equally fit, one of the two

110



is chosen randomly.

Algorithm 8 Local Search algorithm
1: for n = 1 : npass do
2: for t = 1 : T do
3: Randomly generate feasible bit string Vt {Vt is of length n, which is the

number of tasks to be scheduled per time-step.}
4: if f(Vt) > f(V bst

t ) then {Compare fitness of Vt with the solution generated
by optimisation algorithm V bst

t }
5: V bst

t = Vt

6: else if f(Vt) = f(V bst
t ) then

7: V bst
t = rand(Vt, V bst

t )

8: return V +

Local Search requires one adjustment, the number of passes npass it performs
in an attempt to improve V bst. One pass corresponds to applying LS to all time-steps
{1 · · ·T} of the schedule. It is expected that the higher the npass, the higher the
probability of schedule fitness improvement, as long as the user’s time constraint
permits it. We set npass = 1, attempting to keep processing time low, since the
scheduling optimisation process would be scaled up 70-fold (7 days of operations).

4.1.14 Random Search

This describes a Random Search as seen in Algorithm 9 performing a fully stochastic
exploration of the problem’s search space.

Algorithm 9 Random search algorithm
1: for I = 1 : Imax do
2: Form solution vector VI at random
3: Evaluate solution fitness f(VI)

4: return V +

Random search is a simple algorithm with minimal controls to set. Deciding
the number of iterations Imax and possibly introducing more than one search agent
NP for parallel processing, are the main parameters governing the algorithm’s func-
tionality.
Normally, Random search can produce better results when allowed enough time to
explore. A high number of iterations Imax will most likely return fitter output. Like-
wise, if more than one search population members are used, they will most likely
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search a larger portion of the search space, possibly finding a global optimum.
Random Search does not employ more sophisticated mechanisms such as crossover
and mutation or stigmergy, rendering it computationally faster. To give the al-
gorithm a fairer opportunity to explore the search space, we set the number of
iterations Imax to 60000, bringing the processing time to roughly 30 seconds.

4.2 Quantifying algorithmic performance

A comparison of all algorithms’ performance in terms of fitness and execution time
was made. All algorithms were tested under the same assumptions, with each test
repeated for 50 runs for the same fixed number of iterations per run. Each meta-
heuristic was also tested using a time constraint, with each run spanning 8 hours.
Time-constrained tests were repeated for 10 runs per algorithm, due to hardware
restrictions. The reason for performing both iteration- and time- constrained runs
was to establish and measure the gain achieved from running a given algorithm for
a longer period of time. The chosen time constraint duration was one working day
i.e. 8 hours.

4.2.1 Fitness and execution times

In this test case, six tasks need to be scheduled for a time period of 2.4 hours, with
a resolution of 120 seconds per time-step, equalling 72 time-steps. The theoretical
maximum fitness that can be achieved is n · T i.e. the product of the number of
tasks to be scheduled times the number of time-steps considered. Realistically, the
feasible maximum fitness is expected to be lower due to resource constraints. In this
test case, the maximum theoretical fitness is 432. The 2.4 hours experiment – also
called “small instance” – results are summarised in Table 4.1.
The hardware setup used for all experiments in this thesis comprised a 64-bit Intel
Core i7 8-core @ 3.4GHz processor with 16Gb RAM running Ubuntu 12.02. The
codebase was developed in MATLAB©, to maintain compatibility with Strathclyde’s
ASCL (Advanced Space Concepts Laboratory) codebase, where the author of this
thesis set the foundations of this work. Post-processing was performed using Jupy-
ter Notebook [Kluyver et al., 2018], SciPy [Jones et al., 2001], Matplotlib [Hunter,
2007] and statistical analysis was performed with R [R Core Team, 2019].

In all the experiments contained in Tables 4.1, 4.2 and 4.3, there was one
measurement variable (schedule fitness) and one nominal variable (algorithm). The
former is considered a dependent variable, which is not normally distributed. The
latter is an independent variable indicating the algorithm used per experiment. In
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Table 4.1: Median algorithmic execution time (sec) and fitness. Best performance
in bold.

Algorithm Time (sec) Fitness
ACS 142.7 348.0
DE 16.53 322.0
GA 97.66 368.5
GREEDY 0.04 240.0
sGA 395.75 374.0
Rand 27.42 265.0
SA 3.06 355.5
sSA 1.97 374.0

Table 4.2: Median algorithmic execution time (sec) and fitness when paired with
Local Search. Best performance in bold.

Algorithm Time (sec) Fitness
ACS +LS 145.3 349.5
DE +LS 16.46 328.0
GA +LS 120.8 370.0
GREEDY +LS 0.06 262.0
sGA +LS 435.94 374.0
Rand +LS 28.24 284.0
SA +LS 3.09 358.0
sSA +LS 1.96 374.0

this instance, we have several measurements of the same dependent variable taken
using different algorithms. The normality assumption of repeated measures ANOVA
has not been met, thus we will apply the Friedman test. If our statistical analysis is
significant i.e. it rejects the null hypothesis that all sample medians are the same,
and since there are more than three samples compared, we will perform a post-hoc
test [Lund Research Ltd., 2012; Marshall and Marquier, 2014].
A Friedman test for significance was performed on the iteration-constrained cases
(Tables 4.1 and 4.2) and a separate one on the 8 hour time-constrained case (Table 4.3).
In the iteration-constrained cases summarised in Figure 4.23, the Friedman test in-
dicated that there are differences between the median ranks among the sixteen
experiments we conducted, χ2(15, N = 50) = 738.49, p < 0.001. A Nemenyi post-
hoc test showed that schedules generated by sGA and sGA +LS are significantly
fitter than other algorithms’ schedules, with the exception of sSA and sSA +LS. We
also see that GREEDY and GREEDY +LS generated the least fit schedules in this
experiment, but not significantly less fit than RAND and RAND +LS. For the full
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Table 4.3: Median algorithmic fitness for an 8 hour time-constrained run. Best
performance in bold.

Algorithm Fitness
ACS 8hrs +LS 372.0
DE 8hrs +LS 366.5
GA 8hrs +LS 377.0
sGA 8hrs +LS 374.0
Rand 8hrs +LS 293.0
SA 8hrs +LS 372.0
sSA 8hrs +LS 374.0

post-hoc test results, see Appendix G.

Figure 4.23: Boxplots with whiskers from minimum to maximum of fitness for all
iteration-constrained algorithms

Testing the time-constrained case (summary in Figure 4.24) for significance,
the Friedman test showed that there are differences between the seven experiments’
median ranks, χ2(6, N = 10) = 50, p < 0.001. Performing a Nemenyi post-hoc ana-
lysis, we see that schedules created by GA were significantly fitter than ACS, DE
and RAND ones. And also that RAND generated schedules were significantly less
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fit than SA, sGA and sSA.
We notice that longer runs generally lead to better fitness with one exception. When
an algorithm tackles the problem on a time-step basis, like sSA and sGA do, they
both converge to an equally fit global optimum irrespective of the time spent explor-
ing. Complementing our algorithmic set with a naïve Local Search did occasionally
somewhat improve solution fitness.
Our experiments showed that when GA is allowed to run for 8 hours and accompan-
ied by LS, it converges closer to the global optimum but not significantly closer than
SA 8hrs +LS, sGA 8hrs +LS and sSA 8hrs +LS. Overall, we notice that allowing
algorithms to run for longer does present small improvements but not considerable
given the 8 hour time limit – which was not always welcomed by mission operations
scheduling experts anyway.

Figure 4.24: Boxplots with whiskers from minimum to maximum of fitness for all
time-constrained algorithms with Local Search

It is possibly the evolutionary mechanism behind GA (selection, crossover,
mutation) combined with the problem size, that allow the algorithm to naturally
converge to fitter offspring when given enough generations and a large enough pop-
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ulation. When allowed to evolve for a longer period of time (time-constrained run),
the algorithm returns a slightly fitter solution. Given the length of time GA has
been allowed to explore, the observed improvement is minimal leading us to think
that long time-constrained runs are not much more beneficial for a moderately sized
problem like this one.
sGA, utilising the aforementioned mechanisms and tackling a smaller search space,
seems to converge to a solution of identical fitness irrespective of the run’s ending
criterion (iterations, time) or use of LS or not. This perhaps implies that when an
algorithm has a more short-sighted focus on this problem instance, it can potentially
converge to a global optimum. Interestingly, we notice that sSA also converges to an
equally fit solution. Which might be attributed to the sequential myopic approach,
irrespective of the algorithm’s strategy employed.
Note that applying a simple GREEDY approach did not yield fit enough schedules,
even when compared to RAND. While there are more powerful Greedy techniques
such as Squeeky Wheel Optimisation [Clements and Joslin, 2011] which has been
successfully applied to fibre-optic production line scheduling, we believe that the
landscape of our problem does not lend itself to a Greedy approach. Likewise, util-
ising RAND is clearly not a viable solution for such a dynamic and challenging
problem.
DE being a continuous optimisation method by design, employing evolutionary con-
cepts like mutation and crossover, performed roughly on par with most algorithms
except from ACS and significantly better than RAND.
ACS is an algorithm originally designed for graph traversal, relying on swarm intelli-
gence and stigmergy for information sharing. For that reason, its adaptation to this
domain was somewhat graceless. Nevertheless it generated relatively fit schedules
overall, but not significantly better than the ones constructed by DE and SA.
Finally, SA relying on metal annealing combines local search with hill-climbing in
moderation, but does not rely on gradients. It generated fit schedules overall but
not significantly fitter than GA.
Overall, we notice that the sequential approach is consistent and does very well
when we want to generate a solution quickly. If the practitioner wants to find a
better solution for this problem instance, GA (8hrs) +LS is the best choice.

4.3 Conclusions

In this chapter we introduced the problem this thesis is attempting to address and
the tools used for solving it. A formulation of this engineering problem, shaped after
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interacting with industry, was described. Algorithmic behaviour, when constructing
the same satellite schedule, was observed on the basis of generated schedule fitness
and execution time elapsed. For comparing our results, we utilised the Median for
central tendency, IQR for dispersion, non-parametric statistical analysis and post-
hoc testing for discerning the best performing algorithm(s).
A quantitative experiment was set up comprising a number of iteration- and time-
constrained test cases. Namely: 50 runs of pure algorithms ACS, DE, GA, RAND,
SA, sSA, sGA (with GREEDY used for comparison) and 50 runs of the aforemen-
tioned algorithms combined with a naïve Local Search (choosing randomly between
equally fit solutions) ACS +LS, DE +LS, GA +LS, RAND +LS, SA +LS, sSA +LS,
sGA +LS (GREEDY +LS for comparison) ran for a specific number of iterations.
Also 10 runs (due to hardware constraints) of ACS (8hrs) +LS, DE (8hrs) +LS,
GA (8hrs) +LS, Rand (8hrs) +LS, SA (8hrs) +LS, sSA (8hrs) +LS and sGA (8hrs)
+LS with all iterative algorithms ran for 8 hours.
We observed that time-constrained multi-agent metaheuristics performed best usu-
ally, but only by a small fitness margin, followed by iteration-constrained multi-
agent sequentially applied metaheuristics coupled with Local Search and finally pure
multi-agent metaheuristics. Algorithmic setup was discussed, mentioning how many
parameters does the practitioner need to take into consideration and their influence
in algorithmic performance.
In the next chapter we will run the above algorithmic set on a larger search space
representing a real-life inspired scenario, to observe how does each algorithm scale
up to this larger case. Do they all tackle larger search spaces comparably well? Will
their behaviour change at all?
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“I never am really satisfied that I understand
anything; because, understand it well as I may,
my comprehension can only be an infinitesimal
fraction of all I want to understand about the
many connections and relations which occur
to me, how the matter in question was first
thought of or arrived at, etc., etc.”

– Augusta Ada King, Mathematician

5
Earth Observation operations test case

In the previous chapter we observed how various algorithms tackled a schedul-
ing problem of moderate size using three different approaches. Namely, iteration-
constrained algorithms coupled with Local Search or solo and time-constrained al-
gorithms coupled with Local Search. Statistical analysis allowed us to make infer-
ences on algorithmic fitness performance for this problem instance, also observing
how execution time varies. The mechanisms powering every method in our al-
gorithmic set of choice are unalike, with some relying on random choice and others
relying on shared experience for instance. Consequently, different strategies ap-
proached a given problem from a different angle.
Most of the bibliography referenced in this thesis supports the choice of an algorithm
over others to a variable degree, usually citing the seminal work that introduced a
novel algorithm to the Artificial Intelligence community along with an argument as
to why this algorithm is fit for addressing the problem. Normally, original publica-
tions illustrating the workings of a new algorithm contain some form of quantitative
analysis to demonstrate the potential of this strategy. It is quite common – and
sensible – to see algorithmic quantitative analysis performed using standard moder-
ately sized benchmarks of familiar shape and size, with a known global optimum (or
optima if the function is multi-modal). Nonetheless, it is less common to find pub-
lications analysing and comparing algorithmic performance for mission operations
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scheduling. We observe this in relevant literature, some examples include ESA’s
MrSPOCK [Cesta et al., 2011] applying GA, AIMS [Pralet and Verfaillie, 2009] em-
ploying local search, STScI’s SPIKE [Giuliano, 2014] using a multistart stochastic
repair heuristic, NASA’s SAMPLE [Dupnick and Wiggins, 1980b] applying a greedy
algorithm, and individual researchers such as Sun and Chester [Sun and Chester,
2010] utilising GA to address their scheduling problem. We notice that one trend
emerging is the infrequency of comparison and analysis of algorithms for solving
mission operations problems. Inevitably, a pertinent question arises: do algorithms
applied to mission operations scheduling, that work well for smaller instances, also
work for larger real world instances?
Attempting to address this question, we applied the algorithmic set used in Chapter 4
onto a larger realistic Short Term Plan inspired by Earth Observation mission oper-
ations. This chapter examines each algorithm’s performance when solving an oper-
ations scheduling problem of realistic length, addressing the question of algorithmic
scalability.

5.1 Algorithmic scalability

Eight algorithms were put to the test, solving two scheduling scenarios on a desktop
computer of average performance1. Due to time and hardware constraints, each al-
gorithm per problem instance was run 5 times. Little fitness variance was exhibited.
We applied two operations’ time spans, a 7 days long mission operations schedule
reflecting the generally used Short Term Plan, and a 1 day schedule acting as an
intermediate step between the 2.4 hours instance and the 7 days one. In both prob-
lem instances all algorithms were run for 8 hours, corresponding to one working day
or an overnight calculation duration.
A set of 25 tasks were considered per time-step, with each time-step representing 30
seconds of schedule time, presenting a good trade-off between temporal resolution
and problem size. The 1 day long schedule solution vector spans 72000 bits (25
tasks times 2880 time-steps) while a 7 day long schedule vector spans 504000 bits
(25 tasks times 20160 time-steps). Each time-step in our search space comprises
about 33.5 million nodes (225), representing all possible bit strings corresponding to
setting the 25 tasks at hand. This translates to a practically infinite search space,
due to combinatorial explosion.
As mentioned in Chapter 4, an OAT sampling experiment was performed for al-
gorithmic parameter tuning, quantifying each control parameter’s influence over

1An 8-core Intel CoreTM i7 CPU @3.4GHz with 16Gb RAM running Ubuntu 12.04
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every algorithm’s output fitness. Once a satisfactory setup per algorithm was es-
tablished, it was used consistently throughout all tests of Chapters 4 and 5 for
uniformity of comparison.

5.1.1 Realistic Short Term Plan

The Solar System Science Operations Division of ESA’s Research and Science Sup-
port Department shared with us a technical note (Appendix B), describing at a high
level the process of the PROBA-2 Earth Observation mission’s science operations.
This document, supplemented with facts from the informative eoPortal PROBA-2
article [Kramer, 2002], allowed us to approximate the mission’s technology and ob-
jectives.

Figure 5.1: Artist’s view of the deployed
PROBA-2 spacecraft (image credit: ESA)

Using the mission’s continually updated
ancillary data [Science Center (P2SC),
2009], the launch date was set as well as
the starting and ending operations dates
of interest. PROBA-2 was launched
on November 2nd 2009, 01:20:00 UTC.
This is t = 0 for each schedule gener-
ated. Every other activity recorded in
the schedule is added to the time-line
based on the launch date. In practice
there is a delay between satellite launch
and operational phase commencement,
including preparation and tests to en-
sure the satellite’s orbit and health.
Since this phase varies depending on
each mission, we did not include it in this work. Our Short Term Plan instances
of choice span the 13 - 14th of March 2013 as well as the week of 13 - 19th of
March 2013. The chosen ground stations for controlling and communicating with the
satellite are ESA Redu [Redu Space Services, 2007] and Kongsberg SvalSat [Kongs-
berg Satellite Services, 1997]. Using SPICE [Acton, 1996] (initially introduced in
Chapter 3), visibility windows per ground station are generated. A constraint of
9 minutes minimum visibility duration per ground station was applied to ensure
ground station visibility windows are adequately long to host meaningful commu-
nications. Once valid ground station visibility windows are established, they are
passed to the mission requirements vector. During those windows, the TTC system
is utilised for communications and commanding.
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Figure 5.2: Partial eclipse taken in UV by PROBA-2’s SWAP, recording the Sun’s
turbulent surface and its swirling corona (image credit: ESA, Royal Observatory of
Belgium)

The mission requirements vector is then complemented by all system and payload
requirements found in Chapter 3, inspired by PROBA-2. At the same time, the
satellite’s orbital characteristics and incident solar radiation allow for a power pro-
file to be determined for the given time frame. Once all mission requirements have
been set and resource availability has been calculated, the optimiser has to its dis-
posal all the information it needs to generate a schedule.
Overall the aforementioned problem instances contain most building blocks found in
scientific space missions, such as number and frequency of tasks involved, length of
schedule, time resolution, resource availability and resource constraints. Whenever
it wasn’t possible to gain access to more PROBA-2 specific mission details, inform-
ation gaps were filled in by using general Earth Observation mission facts from
space engineering handbooks and technical reports. For example, the PROBA2
TTC amplifier noise was not readily available in published technical reports, thus
we consulted a handbook on satellite communications [Roddy, 2006] for a repres-
entative value. Similarly, PROBA2 ADC gyroscope drift rate was taken from a
seminal space systems engineering handbook [Wertz and Larson, 1999], and also a
generally useful space engineering resource we consulted is NASA’s technical reports
server [National Aeronautics and Space Administration, 2014].
As described in Chapter 3.2.3, the current chapter’s problem instances contain more
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tasks, the time-step grain is finer and the satellite’s orbit differs in inclination and
periodicity. In comparison, the problem instance used in Chapter 4 comprises fewer
tasks, a coarser time-step grain, a longer orbit period and different ground stations.

5.1.2 Algorithmic setup

All algorithmic tuning parameters remain the same as in Chapter 4, excluding the
sequential versions i.e. sGA and sSA. They form an exception, since time spent per
time-step depends on the overall length of the schedule. If sGA was to be run with
the parameters chosen in Chapter 4.1.3, it would run for 22.7 seconds per time-step
– roughly 127.1 hours (5.2 days) for a 7 days schedule – which exceeds the 2 day
schedule refinement cycle applied to STP operations. Similarly, sSA would run for
0.2 seconds per time-step – 1.1 hours for a 7 day schedule – which is well below
the 8 hours limit we have set. Since we wanted to compare the performance of all
algorithms over an 8 hour run, some modification was needed.
In this chapter, the instances examined have a length of 2880 and 20160 time-steps
for the 1 day and the 7 days case respectively. In order to complete an 8 hour run,
we divided 28800 – which is the number of seconds in 8 hours – with the number
of time-steps. That is, in the 1 day test case sequential algorithms will run for 10
seconds per time-step, and in the 7 days case those algorithms will run for 1.43
seconds per time step. Care should be taken when applying sequential optimisation
techniques on finer grained and longer schedules, as less time will need to be spent
optimising each time-step.

5.2 Observing algorithmic scalability

Using the above setup, we quantitatively analysed each algorithm’s behaviour.
Table 5.1 containing the 1 day schedule fitness and Table 5.2 including the 7 days
schedule fitness summarise each algorithm’s median fitness over 5 runs per case,
providing a small sample to draw conclusions from while keeping the required com-
putational effort feasible for our desktop setup.
As mentioned previously in Chapter 2.1, we utilised the median µ as the measure of
central tendency and the interquartile range iqr as the measure of dispersion, since
our resulting statistical distributions were not guaranteed to be Gaussian due to the
dynamic nature2 of our search space.
During this process, it became obvious that one of our algorithms of choice could

2Satellite scheduling presents an element of unpredictability, since requirements can change per
orbit, potentially rendering the problem search space multi-modal, discontinuous etc.
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not scale up due to an intrinsic design characteristic. ACS, originally designed as
a graph traversal algorithm, initialises a global pheromone matrix (known as a dis-
tance matrix in graph theory) at the very beginning of the algorithmic run. If the
graph contains N elements, the distance matrix will be of size N2. Taking as an
example a moderate test case of 1 day of satellite operations, with 25 tasks to be
scheduled over 2880 time-steps, the global pheromone matrix becomes prohibitively
large. That is, almost 100 billion (96636764160) bits.

Single day schedule generation

Table 5.1: Algorithmic fitness for the 1 day mission operations schedule. Best
performance per category in bold.

Algorithm Fitness
DE +LS 1 day 51125.0
GA +LS 1 day 48209.0
sGA +LS 1 day 70996.0
RAND +LS 1 day 46420.0
SA +LS 1 day 51712.0
sSA +LS 1 day 71242.0
GREEDY +LS 1 day 66784.5

Applying the Friedman test on the 1 day case showed that at least one al-
gorithm presents significantly different fitness from the rest, χ2(6, N = 5) = 30, p <
0.001. By observation of boxplots in Figure 5.3, we see that both sSA and sGA are
strong contenders in the 1 day instance, with sSA returning the highest fitness value
for this instance as seen in Table 5.1. By observation of the boxplots in Figure 5.3,
and using GREEDY for comparison, we see that the algorithm does not converge
close enough to a global optimum but it does better than DE, GA and SA. This
is perhaps an indication that the size of the problem, given our problem formu-
lation, is becoming too large for those metaheuristics without applying significant
modification. We notice though that the sequential versions of GA (sGA) and SA
(sSA) perform best, since the solution vector size they evolve is considerably more
manageable. RAND generates the least fit solution, which is to be expected from a
simplistic random approach.
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Figure 5.3: Boxplots with whiskers from minimum to maximum of fitness for 1
day-long operations

Week long schedule generation

Table 5.2: Algorithmic fitness for the 7 days mission operations schedule. Best
performance per category in bold.

Algorithm Fitness
DE +LS 7days 332198.0
GA +LS 7 days 324978.0
sGA +LS 7 days 454621.0
RAND +LS 7 days 319947.0
SA +LS 7 days 327989.0
sSA +LS 7 days 495370.0
GREEDY +LS 7 days 377666.0 .0

Testing the 7 days case for statistical significance using the Friedman test,
we find that at least one algorithmic fitness median differs from the rest, χ2(6, N
= 5) = 30, p < 0.001. By observation of the boxplots in Figure 5.4 below, we
see that sSA produced a fitter schedule. In this instance, we notice that the sGA
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generated schedule fitness is no longer as close to the sSA’s solution fitness. Also, we
see GREEDY presenting a fairly inferior solution but still fitter than DE, GA, SA
and RAND. As mentioned above, we reckon that this can be attributed to the sheer
size of our search space, which is difficult to tackle effectively without significant
modifications. Unsurprisingly, RAND produced the least fit schedule.

Figure 5.4: Boxplot with whiskers from minimum to maximum of fitness for 7 day-
long operations
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5.3 Conclusions

In this chapter, we looked at how our algorithm set scales when tackling a large
instance of the problem at hand. We employed the same algorithmic set, as seen in
Chapter 4, to generate mission operation schedules for a 1 day mission duration and
a week’s worth of satellite operations – which corresponds to a Short Term Plan.
Algorithms were run for a time limit of 8 hours, using the same parameters as in
the previous chapter with the exception of sequential algorithms. Depending on the
problem instance, sSA and sGA were ran for an appropriate duration per time-step
that cumulatively sums up to 8 hours per run.
It became obvious from the start that ACS was not able to tackle large search
spaces. The reason was its intrinsic feature of global pheromone update on a dis-
tance matrix with a span equal to the square of the total number of bits of the
original solution length. Furthermore, we observed that a simple Greedy approach
produces a relatively fit solution in short elapsed time, but cannot optimise this
solution any further. We also noticed that a simple Random approach is too naïve
for generating a noteworthy operations schedule, especially for larger lengths of time
e.g. 7 days.
Metaheuristics – applied in their standard form – consistently presented poor per-
formance both in the 1 day and 7 days instances, likely because of the extensive
size of each case’s search space given the current problem expression. In the 1 day
schedule instance, we see that SA and DE present comparable solution fitness with
GA generating less fit schedules and Rand generating the least fit result. Greedy
generated a reasonably fit solution. However, the strongest contenders are both
sequential algorithms used i.e. sSA and sGA, both of which generated the fittest
solutions for this instance.
Comparably, in the 7 days instance we notice a similar trend. Namely, Random
Search generates the least fit solution, DE and SA present a solution with some-
what higher fitness but only marginally. Greedy generates a solution of mediocre
fitness. In this case we see that sGA cannot keep up with sSA, since sGA is not
given enough time to converge for a 25 bit chromosome, rendering sSA the algorithm
generating the highest fitness schedules.
In the following and final chapter we will summarise our contributions, offering an
overview of what was the problem, how we attempted to tackle it and what are our
findings.
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“Education is what remains after we forget
what we’re taught”

– Albert Einstein

6
Conclusions

To summarise

This work revolved around four points: i) study small scale satellites, and study
the mission operations scheduling problem, ii) make an attempt at formalising the
problem, iii) apply a set of search algorithms in an effort to optimise schedules,
and iv) observe if and how well do these algorithms scale up for solving real-sized
problems.
Throughout this process, we noticed how important are design decisions such as the
problem expression, algorithmic setup, fitness function definition and search space
size. It was also evident that undertaking applied research adds to the challenge, as
the problem at hand is tangled and less well defined, reflecting the intricacies of an
engineering problem from the aerospace and defence domain.
From an applied Computer Scientist’s point of view, we see approximation methods
as a collection of potent tools that empower practitioners to achieve increased ef-
ficiency in diverse engineering applications such as operations scheduling, physical
design, manufacturing among others. However, time and effort need to be invested
in algorithmic experimentation in order to find the most well fitting algorithm for
the problem at hand, before committing to one.
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6.1 Conclusions

This thesis attempts to address three questions in logical order: a) What is the
problem, b) how did we attempt to address it, c) what did we discern through our
experimental work. We hereby address those questions:

6.1.1 What is the problem?

Following a satellite launch, operations and their scheduling component are what
ensures mission success. The satellite needs to be commanded, frequently with sub-
second accuracy, to perform specific tasks during appropriate time periods. This
is a challenging task, given the rigid technological constraints imposed combined
with a satellite’s perpetual motion and the physical constraints this brings. There-
fore, in order to successfully run a space mission, a set of distributed teams need
to effectively communicate their subsystems’ or payloads’ mission requirements to
the satellite’s operations centre. There, requirements are laid out into a common
timeline, compared against constraints and the job of the operations scheduling ex-
perts begins.
Operations engineers normally have to devise three types of what is called a plan
in Space Engineering, what we call a schedule in Computer Science. They start
from a higher level 3-6 month long schedule (LTP), describing roughly what the
next mission steps are going to include. This schedule is then somewhat elaborated,
describing in more detail the objectives of the upcoming month (MTP). Finally, a
week-long schedule is constructed in as much detail as possible (STP), tested for
conflicts and uplinked to the satellite for execution.
Interestingly, thus far operations scheduling has been mainly performed using office
productivity tools such as Microsoft Project and Excel, occasionally complemen-
ted by in-house variants of a Project-like interface. There is a corpus of research
on the topic of automating and optimising satellite operations scheduling, outlined
in Chapter 2.1. Prominent researchers from Space Agencies, national Aerospace
laboratories and research institutions have attempted to address this problem using
various algorithmic methods. Nevertheless, the choice of algorithm is rarely ad-
equately supported by evidence in this particular problem domain. By comparing
a number of algorithms on a small satellite mission operations scheduling instance
in Chapter 4, we inferred which algorithm performs best for the given problem ex-
pression. A corollary question that arose was how well do those algorithms scale
up, for solving a real-life sized problem instance. Chapter 5 attempts to answer this
question, by observing each algorithm’s response and indicating the best contender.
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6.1.2 How was it addressed

In order to decide which algorithm would work better for this engineering applic-
ation, a practitioner needs to compare a set of techniques from different classes to
maximise the chance of utilising an appropriate technique for the present test case.
We tried to address this question by using eight algorithms from different categories,
used with a naïve Local Search and without it. This algorithmic set was applied
to a small problem instance, using an iteration constraint derived from performing
sensitivity analysis per algorithm, and a time constraint amounting to one work
day. Algorithm selection was done based on method popularity such as GA or al-
gorithmic class e.g. swarm intelligence.
Initially, a low fidelity numerical model of a small satellite was developed, approxim-
ating a typical small (roughly 100kg) LEO satellite’s main functions. Those include
orbit propagation, target visibility, telecommunications, power generation and con-
sumption, data processing, attitude control and some generic scientific instruments.
The satellite model outputs mission requirements and constraints, which are in turn
passed to each algorithm for schedule generation.
Then, three LEO timelines of varying lengths were generated. Namely, a smaller
instance corresponding to 2.4 hours of operations with a grain of 120 seconds per
time-step and 6 tasks to schedule, as seen in Chapter 4. As well as more realistic in-
stances spanning 1 day and 7 days of operations, with 30 seconds per time-step and
25 tasks to schedule, as used in Chapter 5. A fourth instance spanning 89 minutes
with 120 seconds per time-step grain and 4 tasks was put together, for algorithmic
tuning purposes. Note that the risk of overfitting the current algorithmic setup
to this particular problem instance is real, since it was very difficult to find more
instances for tuning purposes. A compromise had to be reached between fitness
and execution time, in an attempt to balance performance with scalability. Thus,
algorithms were tuned to perform satisfactorily but not necessarily optimally.
Finally, we employed ACS, DE, GA, SA, Random Search, a simple Greedy algorithm
and a sequential variant of GA (sGA) and SA (sSA) with and without a simple Local
Search. Sequential algorithms are generally identical to their original version with
one exception. The search space passed to them corresponds to a single time-step
instead of the full schedule timeline, thus an optimisation run comprises optimising
each time-step separately. The sum of the fitness of each individual time-step’s
solution makes up the total schedule fitness.
Each individual experiment of the 2.4 hours instance was run 50 times with and
without Local Search using an iteration constraint, and 10 times with Local Search
using an 8 hour time constraint. For longer timelines (1 day, 7 days) a sample of 5
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runs was generated per algorithm, where all algorithms were run for 8 hours with
Local Search. To infer which algorithm is the strongest contender in Chapter 4, we
tested for significance using the Friedman method and performed a post-hoc test.
In Chapter 5, we applied the Friedman test to test for significance. Since the sample
size was smaller, by observation of the boxplots we inferred the best candidate.

6.1.3 Findings

In the small instance spanning 2.4 hours, studied in Chapter 4, we notice that in the
iteration-constrained experiments sequential methods generated significantly fitter
schedules. We also see that the least fit schedules were constructed by GREEDY
and RAND. Furthermore, a slight increase in fitness is usually observed when LS is
applied, indicating a small positive contribution.
When algorithms are allowed to run for 8 hours, a small increase in fitness is ob-
served, but not in the sequential algorithms’ case. Sequential algorithms seem to
converge to the same global optimum irrespective of the time they are allowed to
run for. Overall, GA 8hrs +LS generated significantly fitter solutions than ACS
8hrs +LS and DE 8hrs +LS while RAND 8hrs +LS generated the least fit solutions
out of our algorithmic set. This could be attributed to GA’s global overview of the
problem, compared to sequential algorithms that have a more narrow per time-step
view. So if one wants to maximise the probability of optimality, they should be
prepared to run the algorithm for longer.
Scaling up to larger instances, examined in Chapter 5, we observe a somewhat differ-
ent landscape. When attempting to solve the 1 day scheduling instance, we see that
non-sequential methods such as GA, DE or SA struggle to converge closer to a good
optimum, while GREEDY performs better, contrary to Chapter 4 where GA 8hrs
+LS was the strongest contender and GREEDY the weakest. However, sequential
algorithms have the lead, with sSA returning the highest fitness by a small margin,
in the 1 day schedule generation experiment.
Solving the 7 day schedule instance, which represents a real life STP time-span, the
ranking changes again. This time, sGA 8hrs +LS generates less fit solutions leaving
a larger gap between itself and sSA 8hrs +LS which generates the fittest schedule.
GREEDY can no longer keep up with the problem size, exhibiting a discernible fit-
ness decrease. The rest of our algorithmic set present substandard solutions, since
the problem size – and hence the search space for these algorithms – has grown
considerably.
Generally, we see that LS somewhat contributes to improving the fitness of a smaller
instance (Chapter 4), but is not useful in the larger instances of Chapter 5. For a
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Local Search to potentially contribute to larger instances, a more tailored approach
will be needed, to address the problem’s size and idiosyncrasies.
An important lesson learned has been the significance of investing more time to de-
velop a problem expression that will encapsulate well enough the problem at hand,
possibly reducing it into a well-known problem from the combinatorial optimisation
domain. This would generate a smaller, more manageable search space, leading to
more efficient and effective computation.
Finally, developing a descriptive enough fitness function for this real-life case poses
a challenge, as the problem is convoluted reflecting the intricacies of an engineering
application from the aerospace and defence domain.

6.1.4 Future work

This work can be expanded in different directions depending on each practitioner’s
interests. We are particularly interested in applying approximation methods to large
real-life scheduling problems in the space domain but other engineering areas too,
thus we would like to expand this work in three dimensions:
On the one hand we would like to see the development of a more complete fitness
function for the problem at hand, incorporating many of the important decision
criteria used in real-life mission operations such as cost minimisation, on-board
memory maximisation, best target observation opportunity etc. Developing such
a fitness function can be a lengthy process incorporating technical knowledge and
management principles as well as a statistically significant sample of human ex-
perts expressing their views and practices. It might be useful to consider Machine
Learning techniques combined with past mission data which will allow us to learn
objectively from previous experience and generate a satisfactory problem expression.
Furthermore, utilisation of formal Knowledge Engineering practices would comple-
ment the process well, allowing us to achieve a well rounded result.
On the other hand we’d like to extend this work to include more approximation al-
gorithms, enriching it to provide a reference for this constrained scheduling problem
expression. Given the nature and size of this problem, we believe that approximation
methods can tackle effectively both the dynamic nature of mission operations and
the size of an average schedule if allowed to utilise enough resources. Since satellite
mission operations constitutes a particular niche, we believe that with enough care
taken towards the development of a flexible enough generalised complex operations
problem expression, this work will be applicable to a wider area of scheduling ap-
plications such as logistics or transport for instance. Likewise, a flexible enough
fitness function can incorporate problem agnostic elements such as cost, capacity,
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precedence among others, which are commonly found in different processes.
The third dimension is the use of meta-optimisation [Grefenstette, 1986; Birattari
et al., 2002b; Nannen and Eiben, 2006] to improve the performance of all approxima-
tion methods included in this thesis. This will allow us to quantify the improvement
achieved through automating algorithmic control parameter selection, compare it
with the computational and cognitive effort expended and conclude whether meta-
optimisation renders large enough performance gains to support the extra resources
required for this process.
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Figure A.1: Timeline of solar cell energy conversion efficiencies
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Figure A.2: Solar cell I-V characteristics [Shepard et al., 1972]. Notice that operat-
ing temperature (see Figure A.3), distance from the Sun and angle of incidence as
well as air mass (AM0) influence its power output.
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Figure A.3: ATS-6 solar panel temperature profile [Lavigna and Hornbuckle, 1977]
for a 23.53hr Geosynchronous Orbit.
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Figure A.4: ATS-6 measured solar array power output [Lavigna and Hornbuckle,
1977]. Notice power output degradation over time.
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A. Introduction

PROBA2 is a small satellite in sun-synchronous Earth orbit since November 2009. The Mission Operations 
Centre (MOC) is located at the Redu Ground Station in Redu, Belgium. The  PROBA2 Science Centre 
(P2SC) is co-located with the Solar Influence Data Centre (SIDC), located at the Royal Observatory of 
Belgium, Brussels, Belgium.

The mission uses S-band up- and downlink using one of the S-band antennae in Redu and one S-band 

antenna in Svalbard, operated by Kongsberg Satellite Services AS (KSAT).

B. Scope

This document describes the activities around the science planning executed at the Royal Observatory of 
Belgium: it gives the process from the constraints and the science ideas to the final commanding of the 
instruments SWAP and LYRA. From these activities, potential system requirements for a further automation 
of the science planning tools are derived.

C. S-band Pass Planning

The S-band antenna in Redu is only visible above the horizon during a few orbits on a day for a reasonable 
duration. The angle upon the horizon, above which a good communication is guaranteed, is typically 10 
degrees (tbc) and the duration acceptable shall be at least 9 minutes (tbc).

The Svalbard S-band antenna is visible each orbit for the PROBA2 satellite. As each pass has to be paid, the 
passes are selected carefully with a two weeks horizon every week (so, every week there is a two weeks 
planning, of which the first week is fixed and the second week might be updated – if necessary – in the next 
planning in the week afterwards). ESA has purchased on a average 5 passes per day from KSAT.

The passes are selected such that the overall downlink volume is maximized. Of course, data must exist on-
board to fit to the downlink estimations.

To compute the geometrical parameters (visibility, angles, duration) there might be several capabilities; one 
would be the usage of the SPICE toolkit from the NAIF team at JPL. SPICE kernels are available.

PASS-01 Pass selection The tool shall select the Redu S-band passes and the Svalbard S-band 
passes such that the overall transmission volume is maximized.

PASS-02 Pass 
configuration

The tool shall allow the parameterization of all variable parameters, e.g. 
the angle upon the horizon, the minimal duration of a pass, the minimal 
and maximal number of passes per day per station.

PASS-03 Pass constraints The tool shall accept pass availability constraints, especially that there 
are periods in which no passes of a station are available, e.g. when 
already scheduled for other satellites.
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D. SWAP Planning

The SWAP Instrument Operations Sheet is typically prepared once a week (example in ANNEX 1). The plan 
does include calibration requests, scientific requests, adaptations for other instruments (e.g. the weekly ESP 
jump), it takes care of Large Angle Rotations (LARs), eclipses during the eclipse season, etc. 

 The SWAP imager when in imaging mode makes an image every n seconds. This is called the 
imaging cadence n, e.g. 120 seconds cadence.

 Weekly ESP jump: once a week, the ESP instrument is operated for 20 minutes. During the ESP 
operations, SWAP shall not start an image acquisition. As a consequence, the operator select two 
instances of neighborhood LARs, ensures that the SWAP imaging stops well before the LAR and 
restarts well after the LAR. The operator does this using the TABLE functionality on-board PROBA2; 
basically the operator requests a 10 second integration time using a 30 minute cadence and then 
changes the cadence before the first image is acquired after the LAR.

 None of the following calibration campaigns shall be executed when flying over the South Atlantic 
Anomaly.

 Every two weeks, a LED calibration routine is executed. The calibration takes about 50 minutes and 
typically looks like the following example: (details to come)

 From November to February every year, the satellite is exposed to eclipses. This means that the 
tangential altitude (take the nearest line from the line of sight from the satellite to the sun to the 
earth) is approaching 0 meters and goes into negative for visual eclipses. When the tangential 
altitude is between 0 and 400 (tbc) meters, then the LYRA and SWAP instruments are exposed to a 
reduction of EUV light and acquire less photons on the detectors. As the SWAP team is not 
interested to obtain images during the occultations, the imager is programmed such that no images 

2013.02.26T04:00:00.000 idle 
2013.02.26T04:00:10.000 acquisition_configuration correlated_double_sampling 3 0 0 1023 1023 59 1 led_a_on 60 30 12bits 0.02617 0.02617 
2013.02.26T04:00:20.000 data_management off 10 off off 10 3600 off 0 off float 128 8 off off 255 off 
2013.02.26T04:00:53.000 specific_acquisition 
2013.02.26T04:02:30.000 data_management off 10 off off 0 0 off 0 on float 128 8 off off 0 off 
2013.02.26T04:07:30.000 acquisition_configuration correlated_double_sampling 3 0 0 1023 1023 59 1 led_b_on 60 30 12bits 0.02617 0.02617 
2013.02.26T04:12:30.000 acquisition_configuration correlated_double_sampling 3 0 0 1023 1023 59 1 led_off 60 30 12bits 0.02617 0.02617 
2013.02.26T04:17:30.000 acquisition_configuration correlated_double_sampling 10 0 0 1023 1023 59 1 led_off 30 30 12bits 0.02617 0.02617 
2013.02.26T04:27:40.000 data_management on 10 off fixed 10 3600 jpeg 3 on float 128 8 off off 255 off 
2013.02.26T04:27:50.000 acquisition_configuration correlated_double_sampling 10 0 0 1023 1023 59 1 led_a_on 100 30 12bits 0.0 0.0 
2013.02.26T04:28:40.000 data_management off 10 off off 10 3600 off 0 off float 128 8 off off 0 off 
2013.02.26T04:28:50.000 acquisition_configuration correlated_double_sampling 10 0 0 1023 1023 59 1 led_off 100 30 12bits 0.0 0.0 
2013.02.26T04:52:10.000 data_management on 10 off fixed 10 3600 jpeg 0 on float 128 8 off off 255 off
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are acquired between a pair of tangential altitudes, e.g. 400 meters. That means when ever the 
tangential altitude is less then 400 meters, no images are obtained.

 Once upon a while, the satellite is going into SAFE mode. Then the imager has to be ‘reset’ and 
restarted. See example.

 The SWAP imager has on-board a large image buffer. This buffer is configurable, but since a long 
time fixed to be able to store onboard 280 images. An image is 1kx1k in size and is compressed with 
a compression rate up to 2.7 (tbc). During a  10 minute downlink, one can typically transfer 
45Mbytes of data, that corresponds to about 60 images (JZ to check all numbers!). In case the 
image buffer is full, the images with the lowest priorities are overwritten. Priorities are set from 
ground within the SWAP commanding.

 Off-pointing campaigns

SWAP-01 ESP Support The tool shall schedule a timeslot for the 20 minutes operations of ESP 
once a week (currently Thursday a.m.) taking care of the LARs.

SWAP-02 LED calibration The tool shall schedule every two weeks a LED calibration campaign. 
The execution day of the LED calibration campaign shall be configurable. 

SWAP-03 SAA The tool shall take into account the position of the satellite and not plan 
any calibration campaign when over the South Atlantic Anomaly.

SWAP-04 Occultations The tool shall take into account the tangential altitude of the SWAP 
imager line of sight and avoid the imaging when less than settable 
tangential altitude.

SWAP-05 SAFE mode The tool shall  initialize the SWAP imager after returning from satellite 
SAFE mode.

SWAP-06 Cadence The tool shall ensure that the maximum cadence possible is used.

E. LYRA Planning

The LYRA Instrument Operations Sheet is typically prepared once a week (example in ANNEX 2). The plan 
does include calibration requests, occultation/eclipse campaigns, etc.

2013.02.18T13:45:00.000 data_management on 10 off fixed 10 3600 jpeg 0 on float 128 8 off off 255 off
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 Every two weeks a LED calibration campaign is executed using unit1 and unit3. The campaign takes 
about 9 hours. One does not have to take the LARs into account. See example.

 Once upon  a time a ASIC reload is executed (is done via Flight Control Procedures by MOC when 
told by P2SC via email). Before and after the ASIC reload a 2 hour period of dark current is 
sometimes requested. See example.

 From November to February every year, the satellite is exposed to eclipses. This means that the 
tangential altitude (take the nearest line from the line of sight from the satellite to the sun to the 
earth) is approaching 0 meters and goes into negative for visual eclipses. When the tangential 
altitude is between 0 and 400 (tbc) meters, then the LYRA and SWAP instruments are exposed to a 
reduction of EUV light and acquire less photons on the detectors. For LYRA, this period is used to 
obtain data from unit1 or unit3 on each day of the week or on one day of the week. (see example)

2013.02.27T09:00:00.000 set_cover 2 close 
2013.02.27T09:01:00.000 acquisition 50ms unit_2 unit_1 100 off 0 
2013.02.27T09:02:00.000 acquisition 50ms unit_2 unit_1 200000 off 0 
2013.02.27T09:42:00.000 acquisition 50ms unit_2 unit_1 200000 vis 255 
2013.02.27T11:22:00.000 acquisition 50ms unit_2 unit_1 200000 uv 255 
2013.02.27T13:02:00.000 acquisition 50ms unit_2 unit_1 200000 off 0 
2013.02.27T13:42:00.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.27T13:43:00.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.27T14:23:00.000 acquisition 50ms unit_2 unit_3 200000 vis 255 
2013.02.27T16:03:00.000 acquisition 50ms unit_2 unit_3 200000 uv 255 
2013.02.27T17:43:00.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.27T18:23:00.000 acquisition 50ms unit_2 off 100 off 0 
2013.02.27T18:24:00.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.27T18:25:00.000 set_cover 2 open

2013.02.26T02:37:00.000 set_cover 2 close 
2013.02.26T02:38:00.000 acquisition 50ms unit_2 unit_3 200000 off 0    ;;; ASIC reload at 03:38 
2013.02.26T04:38:00.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.26T04:39:00.000 set_cover 2 open 
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 Once upon a while, the satellite is going into SAFE mode. Then the imager has to be ‘reset’ and 
restarted. See example.

 Typically once a month, a comparison observation with Unit2/Unit1 and Unit2/Unit3 is acquired. This 
calibration campaign takes about 4 hours and 30minutes.

2013.02.21T08:57:32.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.21T08:58:32.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.21T09:02:32.000 set_cover 3 open                                      - occultation start
2013.02.21T09:39:53.000 set_cover 3 close                                       occultation end
2013.02.21T09:44:53.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.22T09:46:14.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.22T09:47:14.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.22T09:51:14.000 set_cover 3 open 
2013.02.22T10:27:33.000 set_cover 3 close 
2013.02.22T10:32:33.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.23T08:55:44.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.23T08:56:44.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.23T09:00:44.000 set_cover 3 open 
2013.02.23T09:35:59.000 set_cover 3 close 
2013.02.23T09:40:59.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.24T09:44:34.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.24T09:45:34.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.24T09:49:34.000 set_cover 3 open 
2013.02.24T10:23:32.000 set_cover 3 close

2013.02.18T13:45:00.000 warm_up 50ms unit_2 off 100 off 0 open close 
2013.02.18T13:52:00.000 set_heater ab 1 off 
2013.02.18T13:52:05.000 set_heater ab 2 off 
2013.02.18T13:52:10.000 set_heater ab 3 off 
2013.02.18T13:53:00.000 acquisition 50ms unit_2 off 200000 off 0

2013.02.15T05:00:00.000 acquisition 50ms unit_2 unit_1 100 off 0 
2013.02.15T05:01:00.000 acquisition 50ms unit_2 unit_1 200000 off 0 
2013.02.15T05:05:00.000 set_cover 1 open 
2013.02.15T05:55:00.000 set_cover 1 close 
2013.02.15T06:00:00.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.15T09:07:42.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.15T09:08:42.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.15T09:12:42.000 set_cover 3 open 
2013.02.15T09:32:42.000 set_cover 3 close 
2013.02.15T09:37:42.000 acquisition 50ms unit_2 off 200000 off 0
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 whenever there is an active region on the disk that is likely to produce large flares, the LYRA PI 
might request a flare hunting campaign with unit 1  or unit 3. See example

LYRA-01 LED calibration The tool shall schedule every two weeks a LED calibration campaign. 
The preferred execution day(s) shall be configurable.

LYRA-02 ASIC Dark 
current

The tool shall schedule dark current acquisitions whenever an ASIC 
reload is executed (tbc by PI)

LYRA-03 Occultation 
campaigns

The tool shall schedule occultation campaigns. Unit used and repetition 
frequency shall be parameters.

LYRA-04 SAFE mode The tool shall  initialize the LYRA radiometer after returning from satellite 
SAFE mode.

LYRA-05 Calibration 
campaign

The tool shall execute a unit calibration campaign on a frequency to be 
parameterized, e.g. once a month on a specify day, every two weeks on a 
specify day, …

LYRA-06 Flare hunting The tool shall schedule a flare hunting campaign whenever the SIDC 
declares the probability of a X-flare larger than x %.

LYRA-07 Campaign 
exclusion

The tool shall never schedule the following campaigns in parallel:

 flare hunting and LED calibration

 tbw

F. Planning Interactions

 Sometimes, occultation campaigns are executed with both SWAP and LYRA acquiring data through 
several occultation periods a day.

2013.01.11T18:10:00.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.01.11T18:11:00.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.01.11T18:15:00.000 set_cover 3 open 
2013.01.12T20:45:00.000 set_cover 3 close 
2013.01.12T20:50:00.000 acquisition 50ms unit_2 off 200000 off 0
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 Sometimes, campaigns with other satellites are executed. Then it must be possible to freeze a part 
of the science planning towards the timeline; actually give the command period as input.

COM-01 Occulation 
campaigns

The tool shall schedule occultation campaigns using both the SWAP and 
LYRA instrument.

COM-02 Other satellites The tool shall allow the settings of execution periods for both SWAP and 
LYRA in case observations are done with other spacecraft.

Twice a year, the SDO satellite undergoes eclipses. SWAP imaging shall 
take place at a higher cadence (60 sec, TBD) during these periods, non-
interrupted with other scientific  campaigns or calibration campaigns

 

 LYRA 
00313 
2013.02.25T10:21:26.000 
2013.02.26T00:00:00.000 
# generated on 2013-02-25T10:21:26Z by ios.xsl version 1.1 
2013.02.26T02:37:00.000 set_cover 2 close 
2013.02.26T02:38:00.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.26T04:38:00.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.26T04:39:00.000 set_cover 2 open 
2013.02.26T09:43:20.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.26T09:44:20.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.26T09:48:20.000 set_cover 3 open 
2013.02.26T10:19:07.000 set_cover 3 close 
2013.02.26T10:24:07.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.27T09:00:00.000 set_cover 2 close 
2013.02.27T09:01:00.000 acquisition 50ms unit_2 unit_1 100 off 0 
2013.02.27T09:02:00.000 acquisition 50ms unit_2 unit_1 200000 off 0 
2013.02.27T09:42:00.000 acquisition 50ms unit_2 unit_1 200000 vis 255 
2013.02.27T11:22:00.000 acquisition 50ms unit_2 unit_1 200000 uv 255 
2013.02.27T13:02:00.000 acquisition 50ms unit_2 unit_1 200000 off 0 
2013.02.27T13:42:00.000 acquisition 50ms unit_2 unit_3 100 off 0 
2013.02.27T13:43:00.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.27T14:23:00.000 acquisition 50ms unit_2 unit_3 200000 vis 255 
2013.02.27T16:03:00.000 acquisition 50ms unit_2 unit_3 200000 uv 255 
2013.02.27T17:43:00.000 acquisition 50ms unit_2 unit_3 200000 off 0 
2013.02.27T18:23:00.000 acquisition 50ms unit_2 off 100 off 0 
2013.02.27T18:24:00.000 acquisition 50ms unit_2 off 200000 off 0 
2013.02.27T18:25:00.000 set_cover 2 open

SWAP 
00456 
2013.02.25T10:29:08.000 
2013.02.26T00:00:00.000 
# generated on 2013-02-25T10:29:08Z by ios.xsl version 1.1 
2013.02.26T04:00:00.000 idle 
2013.02.26T04:00:10.000 acquisition_configuration correlated_double_sampling 3 0 0 1023 1023 59 1 
led_a_on 60 30 12bits 0.02617 0.02617 
2013.02.26T04:00:20.000 data_management off 10 off off 10 3600 off 0 off float 128 8 off off 255 off 
2013.02.26T04:00:53.000 specific_acquisition 
2013.02.26T04:02:30.000 data_management off 10 off off 0 0 off 0 on float 128 8 off off 0 off 
2013.02.26T04:07:30.000 acquisition_configuration correlated_double_sampling 3 0 0 1023 1023 59 1 
led_b_on 60 30 12bits 0.02617 0.02617 
2013.02.26T04:12:30.000 acquisition_configuration correlated_double_sampling 3 0 0 1023 1023 59 1 
led_off 60 30 12bits 0.02617 0.02617 
2013.02.26T04:17:30.000 acquisition_configuration correlated_double_sampling 10 0 0 1023 1023 59 1 
led_off 30 30 12bits 0.02617 0.02617 
2013.02.26T04:27:40.000 data_management on 10 off fixed 10 3600 jpeg 3 on float 128 8 off off 255 off 
2013.02.26T04:27:50.000 acquisition_configuration correlated_double_sampling 10 0 0 1023 1023 59 1 
led_a_on 100 30 12bits 0.0 0.0 
2013.02.26T04:28:40.000 data_management off 10 off off 10 3600 off 0 off float 128 8 off off 0 off 
2013.02.26T04:28:50.000 acquisition_configuration correlated_double_sampling 10 0 0 1023 1023 59 1 
led_off 100 30 12bits 0.0 0.0 
2013.02.26T04:52:10.000 data_management on 10 off fixed 10 3600 jpeg 0 on float 128 8 off off 255 off 
2013.02.26T04:52:30.000 table_acquisition 1 9 
2013.02.28T09:46:00.000 table_acquisition 0 1 
2013.02.28T10:16:00.000 table_acquisition 1 9
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Annex 1:

ANNEX 2:



C
ESA/ITI Robust Design Optimisation of Space

Missions. Reduced Model Definition Report

Below is the most recent draft available to the thesis author. This document was
finalised by Dr. Minisci and Prof. Vasile and submitted to ESA in 2012, where the
Mechanical & Aerospace Engineering department of the University of Strathclyde
was awarded an ESA ITI1 grant.

1https://iti.esa.int/iti/index.jsp
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1. Test Case: LISA Pathfinder (LPF) 
 

 

 

 

1.1. Introduction 

 

LISA Pathfinder, the second of the European Space Agency’s Small Missions for Advanced Research in 

Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer 

Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This 

coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led 

to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight 

environment.  

LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre 

armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the 

measurement technology: the distance between the two test masses is measured using a laser interferometric 

technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA 

Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection 

metrology.  

LISA Pathfinder was first proposed in 1998 as ELITE (European LIsa TEchnology Experiment). This mission 

consisted of a single spacecraft in geostationary orbit with a differential acceleration goal of 10
−14

 ms
−2

 / √Hz over 

a frequency range of 1-100 mHz. This original proposal was refined and proposed to ESA in 2000 in response to 

the SMART-2 announcement of opportunity. At the time, the proposal called for a joint LISA and Darwin
1
 

pathfinder mission, consisting of two free-flying spacecraft, with three payloads (LISA Technology Package, 

Darwin Technology Package, and a US provided LISA Technology Package). The goal of the mission was to 

demonstrate drag-free control (for LISA) and formation flying (for Darwin). The mission was approved by the 

Science Programme Committee (SPC) in November 2000. After an initial industrial study, the mission was 

descoped to a single spacecraft (the Darwin Pathfinder was cancelled) and renamed LISA Pathfinder (LPF). At 

the time, LPF carried two payloads, the European built LISA Technology Package (LTP), and the US provided 

Disturbance Reduction System (DRS). Both payloads consisted of two inertial sensors, a laser metrology system, 

micro-Newton thrusters and drag free control software. However, the DRS was descoped and now consists of 

micro-Newton thrusters and a dedicated processor running the drag-free and attitude control software, and will 

use the LTP inertial sensors. 

                                                 
1 Darwin is a proposed mission consisting of a flotilla of four or five free-flying spacecraft that will search for Earth-like 

planets around other stars and analyse their atmospheres for the chemical signature of life. 



 

8 

 

LISA Pathfinder is due to be launched in 2011 on-board a dedicated small launch vehicle. The launcher selected 

is the new Arianespace VEGA launcher, which will launch LPF from the European spaceport of Kourou (French 

Guyana) into a parking orbit with perigee at 200 km, apogee at 1620 km, and an inclination to the equator of 5.3º 

. Since the VEGA launcher is still under development a back-up launch possibility is maintained with the Russian 

vehicle, Rockot, which could launch LISA Pathfinder from Plesetsk (Russia) into a parking orbit with perigee at 

200 km, apogee at 900 km and an inclination to the equator of 63º . After a series of apogee raising manoeuvres 

using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth 

Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilised using the 

micro-Newton thrusters, entering a 500,000 km by 800,000 km Lissajous orbit around L1. Following the initial 

on-orbit check-out and instrument calibration, the in-flight demonstration of the LISA technology will then take 

place. The nominal lifetime of the science operations is 180 days; this includes the LTP and DRS operations, and 

a period of operations when the LTP will control the DRS thrusters. 

 

1.2. Payload 

 

Unlike traditional observatory or planetary missions, the payload in LISA Pathfinder cannot be considered as a 

discrete piece of hardware carried by the spacecraft. Instead, during science operations the payload and spacecraft 

act as a single unit: the attitude control of the spacecraft is driven by the payload. The LISA Pathfinder spacecraft 

will carry two payloads, or test packages: the LISA Technology Package (LTP), provided by European institutes 

and industry, and the Disturbance Reduction System (DRS), provided by NASA. 

LISA technology package 

 

The LTP represents one arm of the LISA interferometer, in which the distance between the two test masses is 

Figure 1: LPF's orbital scheme - From launch to operation 
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reduced from 5 million kilometres to 35 centimetres. As in LISA, the test masses fulfil a double role: they serve 

as mirrors for the interferometer and as inertial references for the drag-free control system. The main role of the 

LTP is to house the test masses and to provide the position information of the test masses to the Drag-Free and 

Attitude Control System (DFACS).  

The LTP DFACS consists of an inertial sensor, a proportional micro-propulsion system and a control loop. The 

inertial sensor subsystem is designed such that a cubic test mass located at the centre is free from all external 

forces except inertial gravity. The two identical test masses, each one a 46 mm cube composed of Gold:Platinum 

alloy, are housed in individual evacuated enclosures. The displacement of the cubes with respect to their housing 

is measured by capacitive sensing in three dimensions. These position signals are ed in a feedback loop to 

command proportional micro-propulsion thrusters to enable the spacecraft to remain centred on the proof mass 

(see [P3] for further details). Field Emission Electric Propulsion (FEEP) thrusters will be used as the micro-

propulsion elements. 
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The LISA Technology Package is the European-provided payload onboard LISA Pathfinder. The instrument is 

being built by a consortium of European National Agencies and ESA (see table below for further information). 

The subsystems will be integrated and tested under the control of Astrium GmbH, Germany (the LISA Pathfinder 

Architect). The fully integrated technology package will then be integrated into the LISA Pathfinder spacecraft 

under the control of Astrium UK Ltd., the Industrial Prime Contractor. 

 

European contributions to the LISA Technology Package 

Country Institute/Industry Responsibility 

France APC Université Paris,  

with Oerlikon (CH) 

Laser Modulator 

Germany AEI, Hannover Co-PI, Interferometer design 

Astrium GmbH LTP Architect 

Tesat (D) / Max Planck  

Albert Einstein Institute 

Reference Laser Unit 

Italy University of Trento PI, Inertial Sensor Design 

Carlo Gavazzi Space Inertial Sensor Subsystem 

Thales Alenia Space Test Mass Electrode Housing 

The Netherlands SRON ISS Check Out Equipment 

Spain University of Barcelona Data Management Unit 

Data Diagnostic System 

Switzerland ETH Zurich/ Oerlikon (CH) ISS Front End Electronics 

United Kingdom University of Birmingham Phasemeter Assembly 

University of Glasgow Optical Bench Interferometer 

Imperial College London Charge Management System 

ESA Thales Alenia Space (IT) Caging Mechanism 

Astrium GmbH (DE) LTP Architect 

 

1.3. Disturbance Reduction System 

 

The Disturbance Reduction System (DRS) will validate system-level technologies required for use on 'drag-free' 

spacecrafts, that is, spacecrafts that are controlled to follow a trajectory determined only by external gravitational 

forces (a geodesic). The DRS eliminates other forces, such as solar radiation pressure, that would disturb the 

trajectory. 

The DRS is a NASA-supplied system, which contributes to the LISA Pathfinder mission goals and uses the 

European LTP as a gravitational sensor. The DRS actuator consists of two clusters of colloidal thrusters that use 

ionised droplets of a colloidal solution accelerated in an electric field to provide micro-propulsion, and drag-free 

control software residing on a dedicated computer. The DRS will use the sensor information from the LTP (test 

mass positions and attitude) to control the spacecraft position and attitude. 

1.4. Subsystems 

 

1.4.1. Structure 

 

The Science Spacecraft platform structure provides the mechanical support for the hardware of the other 
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spacecraft subsystems. The spacecraft has a shape of an octagonal prism. The outer diameter is 2.31 m and the 

height 0.96 m. One of the two bases is covered by a sunshield panel supporting an array of triple junction GaAs 

solar cells of 2.8 m
2
 , providing at end-of-life 650 W of power, while the other base interfaces with the propulsion 

module. A large central cylinder accommodates the LTP Core Assembly, while the rest of the payload equipment 

and the spacecraft units are mounted as far away as possible on shear walls connecting the central cylinder to the 

outer panel forming the octagonal structure. The cylinder and all structural panels are constructed from sandwich 

panels or shells with carbon fibre laminate skins bonded to aluminium honeycomb core. Aluminium items are 

limited to structural rings, cleats, inserts and minor brackets. 

1.4.2. Thermal Control 

 

The Thermal Control Subsystem must guarantee the very stable thermal environment required by the science 

measurements. Together with the stringent thermal stability required at LTP level, a stable thermal environment of 

10
−3

 K/ √Hz is also required at the LTP interface, in order to minimise the thermoelastic distortions. Passive 

means are used to control the upper temperatures of sensitive equipments, with electrical heaters to control the 

lower temperatures. The entire module is wrapped in Multi-Layer Insulation (MLI) except for designated radiator 

areas designed to reject to space the excessive heat. The minimum necessary heater power is applied in the cold 

cases so that the lower temperature of each unit is maintained towards the bottom of their allowable range. By 

using the full design temperature range of each unit in this way, the heater power requirement is minimised. 

Heater switching is not permitted during the nominal science operations as the transient variations in temperature 

that happen as heaters switch can interfere with the payload measurements. On the sensitive equipment, different 

combinations of trimming heaters are used to obtain the required temperatures. On the micropropulsion systems 

(both FEEP and CMNT) a high frequency pulse width modulation control of the heaters is used. Heat pipes are 

avoided as they too would interfere with the measurements due to gravitational disturbance caused by the transfer 

of mass through the pipes. 

 

1.4.3. Attitude and Orbit Control Subsystem 

 

The Science Module is a three-axis controlled spacecraft. Apart from the DFACS -described right below- an 

Attitude and Orbit Control Subsystem (AOCS) is needed in order to control the Launch Composite (when the 

propulsion module is attached to the science module) and for the on-station phases when the drag-free conditions 

cannot be maintained. The AOCS uses as sensors two Autonomous Star Trackers, two Digital Sun Sensors (DSS) 

for sun acquisition and in safe mode and two Fibre-Optic Gyroscopes Units, required for certain phases where the 

optical sensors are inoperable due to high rates or eclipse. They are also needed to provide high bandwidth data 

during the main engine burn. The AOCS actuators are 4 pairs of 10 N bi-propellant thrusters located on the 

propulsion module and three clusters of 4 FEEP thrusters each located on the sides of the science module. 

 

1.4.4. Drag-Free Attitude Control System 

 

The Drag-Free Attitude Control System (DFACS) is probably the single most important subsystem on board. The 

main objective of the DFACS is to control the spacecraft dynamics is such a way that the main requirement on the 

residual acceleration is met. Like any control system, DFACS makes use of sensors and actuators. The spacecraft 

attitude is sensed by means of a pair of star trackers with a measurement error of 32 arcsec/ √Hz.  
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With reference to Image 6, the test masses position (xi , yi , zi with i = 1, 2) and attitude (θi , ηi , φi with i = 1, 2) 

with respect to their housing inside the inertial sensor, are sensed through two different means: 

electrostatic readout based on capacitance electronic measurement with a measurement noise of 1.8 nm/ √Hz 

for x, y, z and 200 nrad/ √Hz for θ, η, φ over the measurement bandwidth. 

optical readout based on laser interferometric measurement, with a noise of 9 pm/ √Hz for x1 and x1 − x2 and 

20 nrad/ √Hz for η1 , φ1 , η1−2 , φ1−2 over the measurement bandwidth. 

 

The actuation on the spacecraft attitude is performed by the set of micropropulsion thrusters with a noise of 0.1 

μN/ √Hz.  

The forces and torques on the test masses are provided by the inertial sensor electrostatic actuation. During the 

science modes, the maximum differential acceleration noise allowed on the TM’s is 10
−14

 ms
−2

 / √Hz. 

The DFACS tasks is to control the 15 degrees of freedom (DOF) present on board (6 DOF per test mass and 3 

DOF for the attitude of the spacecraft) to fulfil the following objectives: 

 

to shield one test mass - the drag-free or free floating test mass - from external disturbances along its sensitive 

axis in the measurement bandwidth [1 mHz to 30 mHz]. The spacecraft is therefore controlled to follow the 

drag-free test mass, which is free to float in its housing, only subject to the forces that directly impact on the 

test mass (e.g. thermal radiation pressure, magnetic field interaction with TM), called internal forces fi and to 

the non contact coupling with the electrodes housing (e.g. due to electrostatic field and gravity gradient), 

called parasitic stiffness ωi
2
 . 

 

to measure by laser interferometer the differential acceleration between the drag-free test mass and the second 

test mass maintained centred in its housing using electrostatic capacitive forces. 

 

to keep the spacecraft pointed to the sun and the fixed communication antenna pointed to Earth. 

  

This is realised by careful selection of the drag-free degrees of freedom and frequency band separation.  

Figure 2: LTP Test Masses layout schematic and axis 

rotation angles notation 
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1.4.5. Micropropulsion: 

 

The LISA Pathfinder Micro-Propulsion Subsystem (MPS) is based on Field Emission Electric Propulsion (FEEP) 

technology. 

 

In field emission electrical propulsion, positive ions are directly extracted from liquid metals (for LISA 

Pathfinder, Caesium has been chosen as the liquid metal source, however a back-up option of using Indium is also 

being developed in Europe) and accelerated by means of electrostatic force in high vacuum. This function is 

carried out by applying a very high voltage to a suitable electrode configuration, which is able to create and 

enhance very high electrical fields (up to 10
9
 V/m). 

 

The FEEP working principle is given in Image 7. An additional external source of electrons, the neutraliser, needs 

to be included to maintain the balance of the overall electrical charge of the system (ions
+
 = e

−
 ). 

 

Figure 3: FEEP propulsion concept 
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The LISA Pathfinder MPS is composed of three main parts, called Micro Propulsion Assembly (MPA): each one 

consisting of one FEEP Cluster Assembly, one Power Control Unit (PCU) and one Neutraliser Assembly (NA). 

The FEEP Cluster Assembly (Image 8) consists of a self-contained unit of 4 FEEP Thruster Assemblies, which 

include propellant reservoir, mounted on a support structure. The four thrusters are devoted to provide thrust to 

the required vector directions and are commanded individually and work in hot redundancy. 

1.4.6. Communications system 

 

The communications subsystem works at X-band frequency (7230 MHz uplink and 8495 MHz downlink) and 

provides for commanding and housekeeping telemetry during LEOP, transfer and on-station and also transmits 

science data telemetry whilst on-station. For LEOP, some phases of transfer and during on-station anomalies, 

omni directional coverage is required. Two hemispherical antennas are used for the omnidirectional coverage 

allowing a maximum data rate of 60 ksymbols/s during LEOP and 1 ksymbols/s at L1. However to achieve the 

required telemetry data rate on-station at L1 distance, a medium gain horn antenna is used capable to transmit 120 

ksymbols/s. Two X-band transponders are present for redundancy, with coherent ranging. Additional 

amplification is required at the output of the transponders to achieve the required telemetry margins. 

1.4.7. On-Board Computer 

 

The On-Board Computer (OBC) is the central control unit for all on board data handling activities, the attitude 

and orbit control subsystem (AOCS), the DFACS and the management of the platform and payload equipments. 

Data Handling functions mainly constitute of command distribution, telemetry acquisition and timing facilities 

during all phases of the mission. Furthermore the OBC performs monitoring functions and depending the 

detection of failures provides safe system reconfiguration capabilities. The OBC consists of several independent 

redundant modules: two processor modules, each based on a single chip ERC32 central processing unit working 

at 22.5 MHz with 6MB RAM, 1.5 MB EEPROM and 64 KB PROM; two telecommand, telemetry and 

reconfiguration units containing 400 KB safeguard memory; four actuator and sensors interface modules and two 

mass memory units of 12.5 Gb.  

The OBC interfaces with the spacecraft units and the LTP through a MIL-bus 1553B, while the internal backplane 

link uses the Space-Wire standard. The OBC hosts the On-Board Software (OBSW) which performs all the 

spacecraft and most of the LTP functions.  

1.4.8. Power System 

 

The power subsystem provides a stable regulated bus, with voltage regulation at 28 VDC. During the technology 

demonstration phase the spacecraft will be sun pointing, therefore all electrical power can be generated by the 

solar array. Battery power is only required during launch and early operations (LEOP), for eclipse periods during 

the transfer, during slews to and from engine firing attitude, while firing the engine, and for any anomalies during 

the on-station phase. For a nominal mission the battery is only required during the initial phases of the mission, 

therefore because of its low mass, and simple management, a Li-ion battery providing 400 Wh is used. 

 

2. SpaceART subsystem model definition 

2.1. Introduction 
 

The Space ART (Advanced Research Team) of the University of Strathclyde is currently developing subsystem 

software models (using Matlab
® 

) of all the fundamental subsystems on board an unmanned spacecraft.  
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ACS (Attitude Control System), EPS (Electrical Power System)&HARN (Harness), TT&C (Telemetry Tracking 

& Commanding) system, S&M (Structures & Mechanisms) system, C&DH (Command & Data Handling) 

system, Thermal system and PROP (Propulsion) system are found in all different kinds of unmanned spacecrafts, 

thus considered fundamental for every mission. 

 

The SpaceART's current work aims at implementing a set of subsystem models which are able to produce results 

(model outputs) accurate enough to allow a designer to predict her/his subsystem's mass and power budget 

accurately enough for a pre-phase A study.  

 

Input parameters can be divided into the following categories:  

Design parameters  

Fixed parameters 

Uncertain parameters 

 

Design parameters are defined as input parameters which can be decided by the designer(s).   

Fixed parameters are defined as input parameters which are already known or given, therefore are considered 

constants through the design process. 

Uncertain parameters are defined as input parameters which cannot be deterministically defined. Such parameters 

can either be design or fixed ones which cannot be defined with absolute certainty. 

 

Each input triggers a specific function, thus retrieving essential data like sensor technical characteristics for 

example. The retrieved data is then processed using mathematical models simulating various aspects of the 

subsystem model in question. The outputs produced by the software model are able to predict the physical 

attributes of the subsystem the designer(s) is dealing with. As seen in the following chapters, the common outputs 

produced by all subsystem software models are  

the overall estimated mass  

the overall power consumption  

Data handling systems produce an extra output 

the overall data output or data rate output. 

Some output parameters will actually remain internal, meaning that they will be fed as inputs to other systems, 

thus contributing to sizing some or all interfacing systems.  

For example, every satellite subsystem model produces a power consumption output parameter among others. All 

subsystems' power consumption output parameters are fed to the EPS model, thus sizing its parameters (EPS 

weight, solar array area, solar cell connection topology, battery capacity). Therefore, the power consumption 

output of each individual system is consider an internal output. 

In all cases (excluding the C&DH), Veps and Ieps (EPS outputs) which appear as input parameters passed to each 

individual system, are logical interconnections displaying the connection between the EPS system and every other 

spacecraft system. 

In the C&DH system, Ieps is a sizing parameter of the C&DH Power Regulator block. 

 

2.2. UML models 

 

Unified Modelling Language (UML) is a standardized general-purpose modelling language in the field of 

software engineering. The standard is managed, and was created by, the Object Management Group. UML 
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includes a set of graphic notation techniques to create visual models of software-intensive systems. 

 

SpaceART used the advantages of UML to create the blueprint of each subsystem's software model that is 

currently under development. There is a total of 10 UML models available, depicting the aforementioned 

fundamental subsystems' software structure plus a model describing how all subsystem models are linked overall. 

 

In the remainder of this report, one can find the description of all the subsystem models developed within this 

study. At first we will present the overall system model with the links and connections among subsystems and a 

mathematical treatment of the integration between Thermal, Power and Propulsion. 

 



 

1
7

 

 S
at

el
li

te
 s

u
b

sy
st

em
s 

g
en

er
al

 o
v

er
v

ie
w

: 
 

  F
ig

u
re

 4
. 

O
ve

ra
ll

 s
ys

te
m

 m
o

d
el



 

18 

 

Figure 4 shows the general overview diagram depicting the subsystems' interconnections. The diagram 

contains 8 blocks inside the Satellite Subsystem area. The Satellite Subsystem area is what we consider the 

satellite design space. Everything that is outside that area is either a given input, or an environmental 

parameter or an output of the design process. In particular, in the following we will consider the ground 

segment and Mission Analysis (the orbit block) as external to the system design process. Most of the 

environmental parameters will come from the Orbit and Ground Station blocks.  

 This diagram aims in demonstrating the interconnection between various subsystems' inputs and outputs, 

leading to a complete generic spacecraft model. With a total of 90 input parameters (internal and external) 

and the mass, power consumption and data budget of each subsystem as outputs, this model is able to 

produce both a set of individual budgets as well as an overall budget of all spacecraft subsystems constituting 

the space segment. 

The inputs of each subsystem may either be external factors such as Environmental, Orbital, Ground station 

parameters or other subsystems' outputs for example the EPS Voltage and Current outputs are fed as inputs 

to all other subsystems and possible payloads. 

Like mentioned before, the outputs of each block i.e subsystem are the expected subsystem mass as well as 

the expected power consumption. In data handling systems an additional output is produced, representing the 

data rate or total data traffic of a subsystem. 
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3. Using LPF as test case for SpaceART general overview: 
 

The LPF model, developed here, contains eight subsystems each one represented by one of the SpaceART 

subsystem models. In particular the LPF satellite model contains:  

 

An AOCS system and a DFACS system both represented by the SpaceART ACS model. 

A Power system and harnessing both represented by the SpaceART EPS and HARN model. 

An OBC system represented by the SpaceART C&DH model  

A Structure system represented by the SpaceART S&M model 

A Communications system represented by the SpaceART TT&C model 

A Thermal control system represented by the SpaceART Thermal model 

A Propulsion (chemical) and two micropropulsion (electrical) systems, all represented by the SpaceART 

PROP model  

 

All LISA Pathfinder payloads' mass and power consumption will be added to the SpaceART general 

overview model's outputs in order to estimate the overall satellite mass and power consumption. 
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4. Subsystem Integration 
 

The mass of the spacecraft is made of the sum of the individual masses of all the subsystems. 

Therefore, if the mass of the subsystem was not interdependent, one could compute separately the 

mass of each subsystem. However, a number of subsystems are deeply interrelated and cannot be 

considered separately. This deep link would imply an iterative process over the value of the mass 

which can make the overall robust optimization more complicated.  

 

It was then decided to adopt a different approach. The mass of the spacecraft is divided in two 

components: a normalised one, called  and an absolute one, called  Each subsystem will 

produce a normalized and an absolute mass component, such that the overall mass of the spacecraft 

can be computed as follows (NOTE: this is an example only with thermal, power and propulsion 

system assuming an electric propulsion system).  

 

The mass of some subsystems depends on the overall mass of the spacecraft, like the mass of 

propellant for example: 
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The mass of the propulsion system is therefore: 
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The mass of the thermal control system is the sum of the mass of the radiator plus the sum of the 

mass of the thermal links (the mass of the heaters is neglected here). 

If one takes the hot case, gets: 

   1 1 2 2 3 31 0i e eQ W R T R T R T          (6) 

 4

3 3 0R R RA T R T      (7) 

from which the radiator is: 
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1 1 2 2 1 1 2 2
/4 4 4 4
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2

e c spe ei i
R s c

R R R R R R R R e

a IWQ R T R T Q R T R T
A m

T T T T



    

       
     (8) 

The mass of the thermal links is simply: 
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

  (9) 

Let’s now call 1 1 2 2d iK Q R T R T     such that: 

 
 

/4 4

1

2

e c spd
R s c

R R R R e

a IK
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T T



  


   (10) 

wih mass: 
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

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In the cold case we have: 

  

4

1 1 2 2

1 1 2 2 /

1

2

H i R R R

e c sp

i d s c

e

Q Q R T R T A T

a I
Q R T R T K m

 





         

 
       
 

 (12) 

And if one calls 
1 1 2 2e iK Q R T R T     the heat required in the cold case is: 

 
 

/

1

2

e c sp

H e d s c

e

a I
Q K K m





 
    

 
 (13) 

The mass of the power system is the mass of the solar arrays plus the one of the batteries: 

 

 

/

2

d e e H e d e e e eH
SA

d e d d e d d e d

c sp s cd e e eH

d e d e d e d

P W P Q T P P T W TQ
P

X X T X X T X X T

a I mP P T TQ

X X T X X T

 
      

    (14) 

The mass of the solar arrays is: 

  (15) 

 /

2

c sp s cSA d e e eH
SA

EOL d e d e d e d

a I mP P T TQ
m

P X X T X X T





 
    

 
 (16) 

The mass of the batteries comes from the total energy capacity: 

 
 e H e

B

B

P Q T
C

DOD


  (17) 

which gives: 

 e e H e
B B B

B B

PT Q T
m

DOD DOD
 

 
   (18) 

If one then adds the mass of the PPU and harness: 
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 
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 

 
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 
 (19) 

The total mass of the power system is therefore: 
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 (20) 

Which can be rewritten as: 
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 (21) 

Let’s now substitute the expression for QH: 
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Now if for every subsystem one calls  the components without ms/c and  the components 

multiplying ms/c one gets: 

 

 
/ /s c s cm m  (24) 

from which the mass of the spacecraft is: 

 
/

1
s cm





 (25) 

This equation states that for some combinations of parameters the mass of the spacecraft is not a 

real mass or it is infinite. 
 

 

In the remainder of this document, each subsystem model will be described in details, following the 

sequence: 

 ADS 

 ACS 

 C&DH 

 Structure and Mechanisms 

 Power+Harness 

 Propulsion 

 Thermal 

 TT&C 

 

For each one we will provide a general description, plus the adaptation to the case of LPF. 
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According to the ADS UML diagram in Figure 5, the ADS model consists of 2 blocks, each one 

representing a separate physical unit. There is a total of 8 external input parameters for the ADS. 

 

5.1. Sensors: 

  The Sensors inputs consist of: 

 

Accreq_gs - Required accuracy of sun or star sensors (deg) 

Accreq_las - Required accuracy of horizon sensor or magnetometers (deg) 

Ngs - Number of sun or star sensors  

Nlas - Number of horizon sensor or magnetometers 

The output parameters are: 

 

Msens – Sensors’ total mass in kilograms (kg) 

Psens – Sensors’ total power consumption in Watts (W) 

Ds – Sensors’ total data output in kilobytes (kb) 
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5.2. Inertial Measurement Unit (IMU):  

 

The IMU inputs consist of: 

 

DRreq - Required drift rate for gyros (deg/h) 

Ng - Number of gyroscopes 

ALreq - Required acceleration accuracy for accelerometers 

Na - Number of accelerometers  

 

The output parameters are: 

 

Mimu – IMU mass in kilograms (kg) 

Pimu – IMU power consumption in Watts (W) 

Dimu – IMU data output in kilobytes (kb) 

ADS’s external outputs:  

 

The ADS's external outputs are:  

 

Mads – Total ADS mass output i.e the sum of Msens+Mimu+Mpu (kg) 

Pads – Total ADS power consumption i.e the sum of Psens+Pimu+Ppu (W) 

Bads – Total ADS data output (kb) 

 



 

26 

 

5.3. SpaceART ADS model function 

%% Attitude Determination and Control System 
% 
% [Mads,Pads,Bads] = ads(x,ep,flag) 
% 
% 
%     DESCRIPTION 
%     Attitude Determination System (ADS) model. It computes 
%     the ADS mass, power consumption and data output based on the specified inputs found below. 
% 
%     INPUT 
%     x - All the design and uncertain parameters 
%        
%     ep - All the environmental parameters (i.e inputs which are fixed, that are neither design nor uncertain 
parameters) 
%       ep(1) = Required accuracy of sun or star sensors (deg) 
%       ep(2) = Required accuracy of horizont sensor or magnetometers (deg) 
%       ep(3) = Ngs - Number of sun or star sensors  
%       ep(4) = Nlas - Number of horizont sensor or magnetometers 
%       ep(5) = DRreq - Required drift rate for gyros (deg/h) 
%       ep(6) = Ng - Number of gyros 
%       ep(7) = ALreq - Required acceleration accuracy for accelerometers (g) 
%       ep(8) = Na - Number of accelerometers 
  
%     flag - Flag used to change between system types 
%      
% 
%     OUTPUT 
%     Mads - ADS mass (kg) 
%     Pads - ADS power consumption (W) 
%     Bads - ADS data output (kb) 
% 
%     FUNCTION CALLS 
% none 
% 
% 
%% REFERENCES 
% 
%       Based on: The ACS UML and UML description 
% [1] Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. Wertz, 
%     Microcosm Press & Kluwer Academic Publishers 
% [2] "Space System Design", lecture slides by Dr. Massimiliano Vasile 

 

 

%% Internal functions called 
[Msens,Psens,Ds] = Sensors(Accreq_gs,Accreq_las,Ngs,Nlas); 
 
[Mimu,Pimu,Dimu] = IMU(DRreq,Ng,ALreq,Na); 
 
 
%% Total Mass, Power, Data 
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Madcs = Msens+Mimu 
 
Padcs = Psens+Pimu 
 
Badcs = Ds+Dimu 

As seen above, the ads.m is divided into individual functions, each one representing a logical block of 

the UML model I.e a hardware unit of the actual physical system.  

 

5.4. SpaceART ADS model description 

5.4.1. Sensors 

[Msens,Psens,Ds] = Sensors(Accreq_gs,Accreq_las,Ngs,Nlas); 
 

The “Sensors” routine models the mass, power consumption and output data-rate mass of different types 

of sensors based on their respective accuracy. Two groups of sensors are considered: a) sensors of 

general applicability, which are sun and star sensors, and b) sensors which can be used only for low 

orbits, such as horizon sensors and magnetometers. For each group, a data-base is built on the basis of 

current products available on the market. A polynomial regression function is used to obtain the mass, 

the power consumption and the output data rate on the basis of required accuracies.  

In particular, a polynomial regression is performed on data shown in Table 1, to obtain the mass MGsens, 

the power consumption PGsens, and the output data-rate DGsens of general applicability sensors as a 

function of the required accuracy AreqGS. 

. 

 

In a similar manner, a polynomial regression is performed on data shown in Table 2, to obtain the mass 

MLOsens, the power consumption PLOsens, and the output data-rate DLOsens of low orbit sensors as a 

function of the required accuracy AreqLS. 

“polyfit” and “polyval” matlab functions are used to compute the polynomials’ coefficients and to 

obtain budgets as a function of the required accuracy, respectively. Third order polynomial is used for 

the general applicability sensors, and second order one for the low orbit sensors. 

 

Table 1 Characteristics of general applicability sensors 

Accuracy 

[deg]  
Mass [kg] 

Power 

Consumption [W] 
Data-rate [kb/s] 

5 0.188 0.01 2 

5 0.269 0.01 2 

0.1 0.035 0.728 4 

0.18 0.23 0.1 6 

0.02 0.12 0.25 9 

0.05 0.4 1.7 8 

0.05 0.12 0.5 8 

22/3600 1.42 3 16 

90/3600 0.375 2 15 

3/3600 3.16 11 30 

18/3600 1.1 2.5 17 
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15/3600 1.8 2.8 18 
 

 

Table 2 Characteristics of low orbit sensors 

Accuracy 

[deg]  
Mass [kg] 

Power 

Consumption [W] 
Data-rate [kb/s] 

0.2 0.5 1.5 3 

0.2 1.1 0.6 3 

0.1 0.65 0.7 4 

5 0.295 0.4 2 
 

The total sensors’ mass output Msens is calculated as 

 

 [ ]sens Gsens Gsens LOsens LOsensM M N M N kg   (26) 

 

 

where NGsens and NLOsens are the number of general applicability sensors and the number of low orbit 

sensors, respectively. The total sensors’ power consumption Psens is calculated as follows: 

 

 [ ]sens Gsens Gsens LOsens LOsensP P N P N W   (27) 

 and the total sensors’ data output Dsens is calculated as  

 

 [ / ]sens Gsens Gsens LOsens LOsensD D N D N kb s   (28) 

At the moment the databases and polynomial regression processes are part of the routine, but when the 

routine will be used for automatic design, the regression process will be performed once for all and 

polynomials’ coefficients will be directly hard-coded into the routine, in order to save computational 

time. In this case the absolute mass component  is equal to Msens and the normalized component is 0. 

 

5.4.1.1. Inertial Measurement Unit:  
 

[Mimu,Pimu,Dimu] = IMU(DRreq,Ng,ALreq,Na); 
 

The “IMU” routine models the mass, power consumption and output data-rate mass of the inertial 

measurement hardware, composed by gyroscopes and accelerometers, based on the accuracy of the 

components. Also in this case, a polynomial regression is performed on data shown in Table 3, to obtain 

the mass MGyro, the power consumption PGyro, and the output data-rate DGyro of gyro as a function of the 

required drift rate DRreq. 

A further polynomial regression is performed on data shown in Table 4, to obtain the mass Macc, the 

power consumption Pacc, and the output data-rate Dacc of low orbit sensors as a function of the required 

accuracy (linearity) Areq. 
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“polyfit” and “polyval” matlab functions are used, as well, to compute the polynomials’ coefficients and 

to obtain budgets as a function of the required accuracies, respectively. Second order polynomials are 

used both for gyros and accelerometers. 

 

Table 3 Characteristics of gyros 

Drift rate 

[deg/h]  
Mass [kg] 

Power 

Consumption [W] 
Data-rate [kb/s] 

0.009 2 12.5 9 

0.009 2.8 12.5 8 

0.002 2.6 13 10 

0.009 6.3 13 7 

1 1 10 4 

 

Table 4 Characteristics of low orbit sensors 

Linearity 

[g/g
2
]  

Mass [kg] 
Power 

Consumption [W] 
Data-rate [kb/s] 

2.00E-06 0.3 5 2.3 

3.00E-06 0.2 4 1.8 

5.00E-06 0.16 2 1.3 

5.00E-05 0.1 2 1 

 

The total mass of the IMU, Mimu is calculated as 

 

 [ ]imu Gyro g acc aM M N M N kg   (29) 

where Ng and Na are the number of gyros and the number of accelerometers, respectively. 

The total power consumption Pimu is  

 

 [ ]imu Gyro g acc aP P N P N W   (30) 

 and the total data output Dsens is obtained as  

 

 [ / ]sens Gsens Gsens LOsens LOsensD D N D N kb s   (31) 

Also in this case the databases and polynomial regression processes are currently part of the routine, and 

will be substituted by direct hard-coding the polynomials’ coefficients. 

 

5.5. Using LISA PathFinder (LPF) as test case for the SpaceART ADS 
model 

 

The LPF Attitude and Orbit Control Subsystem (AOCS) uses as sensors two Autonomous Star Trackers, 

two Digital Sun Sensors for Sun acquisition and in safe mode and two Fibre-Optic Gyroscopes Units, 

required for certain phases where the optical sensors are inoperable due to high rates or eclipse. They 

are also needed to provide high bandwidth data during the main engine burn. 
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5.5.1. SpaceART ADS model LPF implementation 

SpaceART is using the LPF as a test case in order to validate its ADS system model. Taking into 

account the mission facts and figures, each input can become a design, uncertain or fixed/environmental 

parameter depending on their definition respectively:  

 

Design parameters are defined as input parameters which can be decided by the designer(s), after 

taking into account several mission factors.  

Fixed parameters (including environmental parameters) are defined as input parameters which 

are already known or given, therefore are considered constants. 

Uncertain parameters are defined as input parameters which cannot be deterministically defined. 

Such parameters can either be design or fixed ones which cannot be defined with absolute 

certainty. 

 

Taking the above definitions into account, the SpaceART ADS model inputs are defined as follows: 

5.5.2. Sensors LPF implementation: 

The Sensors inputs consist of: 

 

Accreq_gs - Required accuracy of sun or star sensors (deg) → 
Fixed

 parameter 

Accreq_las - Required accuracy of horizon sensor or magnetometers (deg) → 
Fixed

 parameter 

Ngs - Number of sun or star sensors → 
Fixed

 parameter 

Nlas - Number of horizon sensors or magnetometers → 
Fixed

 parameter 

5.5.3. Inertial Measurement Unit (IMU) LPF implementation:  

 

The IMU inputs consist of: 

 

DRreq - Required drift rate for gyros (deg/h) → 
Fixed

 parameter 

Ng - Number of gyroscopes → 
Fixed

 parameter 

ALreq - Required acceleration accuracy for accelerometers → 
Fixed

 parameter 

Na - Number of accelerometers  → 
Fixed

 parameter 
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5.6. References:  

 

Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. Wertz, Microcosm Press & Kluwer Academic Publishers    
 

"Space System Design", lecture slides by Dr. Massimiliano Vasile 
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6.1. SpaceART ACS model description 

 

The ACS model implements three types of operations: disturbance compensation, slewing 

manoeuvre, wheel desaturation . Three actuators are sized to be used in all three situations: 

momentum wheels, thrusters, magneto torquers. Magneto torquers are not considered if the 

spacecraft is far from the central body or the central body has not magnetic field. 

 

The disturbance compensation model assumes that there are three types of disturbance acting on the 

spacecraft: solar pressure disturbance, magnetic filed disturbance, aerodynamic disturbance. 

The wheels are assumed to store the momentum induced by the disturbance and therefore need to be 

desaturated using thrusters. 

Magneto torquers are sized assuming a direct compensation of the disturbance. The thrusters are 

sized to desaturate the wheels and to be able to compensate for the disturbance. Currently the model 

implements only electric propulsion for the thrusters. Future versions will implement also other 

types of propulsion. 

The disturbances are introduced as part of the environmental parameters and calculated outside the 

ACS model. 

 

The integral of the momentum stored in the wheels: 

 
4

sp m a

p

acc

T T T
H



 
  (32) 

Angular momentum required for a slewing manoeuvre of an angle   in time t around an axis with 

moment of inertia I: 

 
1

2
s

I
h

t





 (33) 

The power required to actuate the wheels is estimated through a specific power coefficient wheels : 

 
wheels wheels pP H  (34) 

and the mass is estimated using a specific mass coefficient wheels: 

 wheels wheels wheelsM P  (35) 

 

The specific power required to actuate the wheels is estimated through a specific power coefficient 

wheels : 

 
wheels wheels gp h  (36) 

and the mass is estimated using a specific mass coefficient wheels: 

 
wheels wheels wheelsm p  (37) 

The wheels can operate with magnetotorquers or with thrusters. In the former case the dipole 

required to dump a stored angular momentum Hp in a magnetic field B is: 

 pH
D

B
  (38) 

with a required power: 

 bus
torque

DV
p

I
  (39) 

If the magneto torquers are used to compensate for a disturbance then the dipole is: 

 sp m aT T T
D

B

 
  (40) 

 bus
torque torque

DV
p p

I
   (41) 

 
torque eng torquem p  (42) 

the total mass and power of the magneto torquers are: 
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acs torque wheelsm m    (43) 

 
acs wheels torquep p p   (44) 

 0acsP   (45) 

 0acs   (46) 

If thrusters are used to desaturate and compensate then the thrust level to desaturate in a time t is: 

 p

dump

H
F

L t



 (47) 

with propellant mass: 

 
0

dump

p

sp

F t
M

I g


  (48) 

The thrust required to compensate for disturances is: 

 sp m aT T T
T

L

 
  (49) 

with propellant mass: 

 
0

orb
p p

sp

TP
M M

I g
   (50) 

If electric thrusters are used, then their power consumption and mass can be computed as follows : 

 
0

2

dump sp

eps

F I g
P


  (51) 

 
eng eng epsM P  (52) 

 eps

eps

P
M


  (53) 

 
tanks harn pM M  (54) 

 
tanksacs wheels eng pM M M M      (55) 

 
acs wheels epsP P P   (56) 

 0acsp   (57) 

 0acs   (58) 

 

6.2. SpaceART ACS function 
% 

%   [Psiacs,Phiacs,Pacs,pacs]=acs_norm(x,ep,flag) 

%   Computes the mass fraction and power of the attitude control system 

% 

% 

% 

%   INPUT 

% 

%       Isp=x(1)  - specific impulse of the thrusters (s) 

%       time=x(2)  -  required time to perform a manoeuvre (s) 

%       theta_accuracy=x(3) - required pointing accuracy (rad) 

%       theta=x(4) - required slew angle (rad) 

%       mu_eng=x(5) - specific mass of the thruster/torquers (kg/W) 

%       alpha=x(6) - specific power of the thrusters/torquers (W/kg) 

%       eta=x(7) - efficiency of the thrusters/torquers 

%       harn_fraction=x(8) - mass ratio of tanks and harness 

%       alpha_wheels=x(9)- specific power of wheels (W/(N*m*s) 

%       mu_wheels=x(10) - specific mass of wheels (kg/W) 

  

%       ep(1)=tg - gravity gradient disturbance (m^2/s^2) 

%       ep(2)=Tsp- solar radiation pressure disturbance (Nm) 

%       ep(3)=Tm - magnetic field disturbance (Nm) 

%       ep(4)=Ta - aerodynamic disturbance (Nm) 
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%       ep(5)=B  - magnetic field (Tesla) 

%       ep(6)=theta - slew manoeuvre angle (rad) 

%       ep(7)=Porb  - orbit period  (s) 

%       ep(8)=theta_accuracy -  required angular accuracy (rad) 

%       ep(9)=Vbus           - bus voltage (V) 

%       ep(10)=time          - time allowed to perform the slewing manouvre 

%       (s) 

%       ep(11)=I             - specific moment of inertia (m^2) 

%       flag                 - switch between magneto torquers and wheels 

% 

% 

%    OUTPUT 

%            Psiacs    - Psi mass function (normalised mass component) for the 

ACS 

%            Phiacs    - Phi mass function (absolute mass component) for the ACS 

%            Pacs      - Power requirement for the ACS 

%            pacs      - Specific power requirement for the ACS 

 

%% REFERENCES 

% 

%       Based on: The ACS UML and UML description    

% [1] Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R.  

% Wertz,      

%     Microcosm Press & Kluwer Academic Publishers  

 

 

6.3. SpaceART ACS model applied to the LPF AOCS case 

 

The ACS model applied to LPF is used to size the thrusters to compensate for disturbances. Given 

the current configuration of LPF, the sizing scenario is during the operational like around the 

Lagrangian point. The torques and disturbances are computed outside the satellite subsystem area in 

the orbit block and passed to the ACS subsystem block. 
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As seen above, the C&DH model consists of 6 blocks, each one representing a unit of the Command and 

Data Handling system. There is a total of 6 input parameters for the C&DH. 

 

7.1. Power Regulator (PR):  
The C&DH power regulator downgrades the spacecraft bus voltage to a compatible level for all the C&DH 

electronics.  

The Power Regulator inputs consist of 

 

Veps - EPS system voltage output in Volts (V) (EPS output)  

Ieps - EPS system current output in Amperes (A) (EPS output) → Fixed/Design parameter (see Chapter 

2, Introduction)  

Pcpu – the CPU power consumption in Watts (W) (CPU output) 

 

Using the provided inputs, the corresponding function uses three possible methods for calculating the 

corresponding output(s) depending on the available data. If enough data is available, the model uses 

analytical formulas for computing each output. Alternatively, regression/interpolation curves are used. If 

none of the aforementioned methods is available, discrete data is used for computing each output parameter. 

 

The output parameters are: 

 

Vr - Power Regulator voltage output in Volts (V) 

Mr - Power Regulator mass output in kilograms (kg) 

 

7.2. Central Processing Unit (CPU):  
The C&DH CPU processes the commands and handles the spacecraft data traffic, acting as the maestro 

behind all spacecraft processes.  

The CPU inputs consist of 

 

Mem - the amount of available memory of the C&DH in kilobytes (kg) → Design parameter 

Processor - the processor type → Design parameter 

D i/o – Data bus i/o interface → Design parameter 

Vr - Power Regulator voltage output in Volts (V) (PR output) → Design parameter 

Pd - Total payload data traffic measured in kilobytes (kb)  

 

Using the provided inputs, the corresponding function uses three possible methods for calculating the 

corresponding output(s) depending on the available data. If enough data is available, the model uses 

analytical formulas for computing each output. Alternatively, regression/interpolation curves are used. If 

none of the aforementioned methods is available, discrete data is used for computing each output parameter. 

The output parameters are: 

 

Pcpu – the CPU power consumption in Watts (W) 

Mcpu – the CPU mass in kilograms (kg) 

B – the total data traffic handled by the CPU in kilobytes (kb) 

The C&DH physical size computation is one more output the SpaceART considers adding to the software 

model. This will add up to the overall complexity of the model, which will also reflect on the development 

timeline. Nevertheless, it is considered an important addition which will lead to the C&DH model being a 

complete C&DH design tool. 
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7.3. SpaceART C&DH model function 
%%            Command and Data Handling (C&DH) model  
% 
%  
%       ooooooooooooooooooooooooooooooooooooo 
%       8                                .d88 
%       8  oooooooooooooooooooooooooooood8888 
%       8  8888888888888888888888888P"   8888    oooooooooooooooo 
%       8  8888888888888888888888P"      8888    8              8 
%       8  8888888888888888888P"         8888    8             d8 
%       8  8888888888888888P"            8888    8            d88 
%       8  8888888888888P"               8888    8           d888 
%       8  8888888888P"                  8888    8          d8888 
%       8  8888888P"                     8888    8         d88888 
%       8  8888P"                        8888    8        d888888 
%       8  8888oooooooooooooooooooooocgmm8888    8       d8888888 
%       8 .od88888888888888888888888888888888    8      d88888888 
%       8888888888888888888888888888888888888    8     d888888888 
%                                                8    d8888888888 
%          ooooooooooooooooooooooooooooooo       8   d88888888888 
%         d                       ...oood8b      8  d888888888888 
%        d              ...oood888888888888b     8 d8888888888888 
%       d     ...oood88888888888888888888888b    8d88888888888888 
%      dood8888888888888888888888888888888888b 
%  
% 
%     [Mcdh,Pcdh,Bcdh] = cdh (x,ep,flag) 
%      
%     DESCRIPTION 
%     Command and Data Handling system model. It computes 
%     the system's mass, power consumption and data output based on the  
%     specified inputs found below. 
% 
%     INPUT 
%    *x - All the design and uncertain parameters 
%      x(1) = spec_mass - Conductor specific mass (kg/m) 
%      x(2) = specific mass for data storage (kg/nbits) 
%      x(3) = no_cpu number of cpu’s 
%      x(4) = specific power for data storage (W/nbits) 
%      x(5) = data volume fraction 

%      x(6) = box mass fraction 

%    *ep - All the environmental parameters (i.e inputs which are fixed, that 

are neither design nor uncertain parameters) 
%      ep(1) = datarate - Chosen bus datarate (kbits/sec) 

%    *flag - Flag used to change between system types  
% 
%     OUTPUT 
%      Mcdh - C&DH system's mass (kg) 
%      Pcdh - C&DH system's power consumption (W) 
%      Bcdh - C&DH system's data output (kb) 
%       
% 
%     FUNCTION CALLS 
%          none 
% 
%     CHANGE LOG 
% 
%  Created by: Eirini Komninou - 13/12/2010  
%  Modified by:  
% 
%      REFERENCES 
%       Based on: The C&DH UML 
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% [1] Space Vehicle Design, 2nd ed, Michael D. Griffin, James R. French, AIAA 

education series, 2004 
% [2] Elements of Spacecraft Design, Charles D. Brown, AIAA education series, 

2002 
% [3] MIL-STD 1553B, 
% http://en.wikipedia.org/wiki/MIL-STD-1553#Physical_layer & MIL-HDBK-1553A 

section40-42 
% [4] IEEE-488, http://en.wikipedia.org/wiki/IEEE-488#Characteristics 
% [5] RS-422, http://en.wikipedia.org/wiki/RS-422 
% [6] RS-232, http://en.wikipedia.org/wiki/RS-232#Scope_of_the_standard & 

http://www.arcelect.com/rs232.htm 
% [7] IEEE-1394 (FireWire), http://en.wikipedia.org/wiki/IEEE_1394_interface 
% [8] Serial Communication Cable - Tyco electronics datasheet 
% [9] Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. 

Wertz,      
%     Microcosm Press & Kluwer Academic Publishers, 1999         
%_______________________________________________________________________________

___________________________________________ 

 

 

7.4. SpaceART C&DH model description 

7.4.1. Harness and CPU Sizing 

Given the max_datarate = [20 1000 8000 10000 400000] in kbit/s and the corresponding 

max_cable_length = [15.2 60.9 20 1216 4.5] in m, for the data harness, one can compute the 

required length for a given datarate by interpolating the data and expressing the required harness 

length as a function of the datarate: 
 

 ( )harnl f datarate  (59) 

The corresponding mass is then computed as follows: 

 _ 1.2data wire cab harnM l  (60) 

The specific cable mass cab refers to the conductor only therefore we add 20% extra mass for the 

wire jacket. 

 

Table 5. Look-up table for mass and power of the CPU as a function of number of instructions 

 Lower bound Upper bound 

ninstruction 200 300 

Mboard 0.3 0.5 

Pboard 5 10 

 

The mass and power of each individual CPU is obtained from linear interpolation of the data in a 

look-up table (see Table 5): 

 

_

_

(2) (1)
( (1))

(2) (1)

(2) (1)
( (1))

(2) (1)

board board
per cpu instructions instructions

instructions instructions

board board
per cpu instructions instructions

instructions instructions

M M
M n n

n n

P P
P n n

n n


 




 



 (61) 

The total CPU mass and power is then the individual mass and power times the number of CPU’s: 

 
_

_

cpu per cpu cpu

cpu per cpu cpu

M M n

P P n




 (62) 
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The mass of the data storage unit is given by the data volume to be stored vdata times a data storage 

specific mass data. Likewise the power associated to data storing is given by the data volume times 

the specific power data: 

 
_

_

data storage data data

data storage data data

M v

P v








 (63) 

In this implementation the data volume is a fraction data of the input datarate, while the number of 

instructions are (1-data) of the input datarate. 

The mass of the box containing the data storage and CPU is a fraction box of the mass of the CPU 

and data storage unit: 
  

 _( )box box data storage cpuM M M   (64) 

The mass of the power regulator is defined as: 

  0.02preg cpu storageM P P   (65) 

The total mass of the C&DH system is given by: 

 _ _cdh cpu data wire data storage box pregM M M M M M      (66) 

and the required power is: 

 cdh cpu storageP P P   (67) 

  

7.5. Using LPF as test case for SpaceART C&DH 
 

As described above, LPF contains one computer on board, the OBC. It is the central control unit for 

all on board data handling activities including the AOCS, the DFACS, platform management and 

payload equipments. 

7.5.1. LPF OBC 

The OBC utilizes:  

Two telecommand, telemetry and reconfiguration units, which will be represented by the CPU 

block of the SpaceART C&DH model, based on its technical specifications. 

Four actuator and sensors interface modules, which will be represented by the CPU block of the 

SpaceART C&DH model, based on its technical specifications. 

Two mass memory units, which will be represented by the CPU block of the SpaceART C&DH 

model, based on its technical specifications. 

One interface bus MIL-1553B, which will be represented by the Payload interface fixed input 

parameter of the SpaceART C&DH model, based on its technical specifications. 

All the interfaces with AOCS, Payload and TT&C will generate datarate that needs to be processed 

by the OBC. The datarate will enter as an input to the SpaceART C&DH model and will generate a 

power and mass output. 
. 
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As seen above, the Structures & Mechanisms (S&M) model consists of two subsystems i.e Structures 

containing 1 block and Mechanisms containing 2 blocks, each one representing a unit of the  S&M system. 

Overall there is a total of 4 input parameters for the S&M system. 

 

Structures: 

Materials: 

 

The Materials block represents the hardware used to construct a spacecraft's structure.  

The Materials inputs consist of 

 

D - Density of the structural material measured in kilograms per meter cubed (kg/m³) → Design 

parameter 

A - the spacecraft's structure area measured in square meters (m²) → Design parameter 

 

Using the provided inputs, the corresponding function uses three possible methods for calculating the 

corresponding output(s) depending on the available data. If enough data is available, the model uses 

analytical formulas for computing each output. Alternatively, regression/interpolation curves are used. If 

none of the aforementioned methods is available, discrete data is used for computing each output parameter. 

 

The output parameters are: 

 

M - Materials' mass in kilograms (kg) 
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Mechanisms:  

High-cyclic: 

 

The High-cyclic block represents mechanisms such as the antenna(s) pointing and tracking, the solar array(s) 

pointing and tracking, the attitude control reaction wheels and boom extensions.  

The High-cyclic inputs consist of 

 

ACS provides the current spacecraft attitude to all high-cyclic mechanisms (ACS output) 

SE1, SE2, SE3 - Environmental parameters specified by Orbit (Orbit output) 

Configuration - Provides the current spacecraft configuration → Fixed parameter  

Veps - EPS Voltage output in Volts (V) (EPS output)  

Ieps - EPS Current output in Amperes (A) (EPS output) 

 

Using the provided inputs, the corresponding function uses three possible methods for calculating the 

corresponding output(s) depending on the available data. If enough data is available, the model uses 

analytical formulas for computing each output. Alternatively, regression/interpolation curves are used. If 

none of the aforementioned methods is available, discrete data is used for computing each output parameter. 

 

The output parameters are: 

 

Mhcm – Hich-cyclic mechanisms' mass in kilograms (kg) 

Phcm – High-cyclic mechanisms' power consumption in Watts (W) 

Low-cyclic: 

 

The Low-cyclic block represents mechanisms such as the antenna(s) launch retention, the antenna(s) 

deployment mechanism(s), the solar array(s) retention, the solar array(s) deployment mechanism(s), 

contamination covers removal mechanisms, spacecraft-launch vehicle separation mechanisms. 

The Low-cyclic inputs consist of 

 

SE1, SE2, SE3 - Environmental parameters specified by Orbit (Orbit output) 

Configuration – Provides the current spacecraft configuration → Fixed parameter  

Veps - EPS Voltage output in Volts (V) (EPS output)  

Ieps - EPS Current output in Amperes (A) (EPS output) 

 

Using the provided inputs, the corresponding function uses three possible methods for calculating the 

corresponding output(s) depending on the available data. If enough data is available, the model uses 

analytical formulas for computing each output. Alternatively, regression/interpolation curves are used. If 

none of the aforementioned methods is available, discrete data is used for computing each output parameter. 

 

The output parameters are: 

 

Mlcm - Low-cyclic mechanisms mass in kilograms (kg) 

Plcm - Low-cyclic mechanisms power consumption in Watts (W) 
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The S&M system physical size computation is one more output the SpaceART considers adding to the 

software model. This will add up to the overall complexity of the model, which will also reflect on the 

development timeline. Nevertheless, it is considered an important addition which will lead to the S&M 

system model being a complete S&M system design tool.  
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Using LPF as test case for SpaceART S&M: 
 

As described above, LPF's backbone is its octagonal shaped structure consisting of combined materials for 

maintaining high mechanical strength while keeping the mass to a minimum. 

LPF Structure: 

The Structure module utilizes:  

 

Carbon fibre laminate skins bonded to aluminium honeycomb core consisting the satellite octagonal 

structure, which will be represented by the Materials block, based on the structure's materials technical 

specifications. 

LPF Mechanisms:  

The Mechanisms module utilizes: 

 

A LPF/launch vehicle separation mechanism, which will be represented by the Low-cyclic block, based 

on the mechanism's technical specifications. 

Since there are no corresponding modules on board LPF, the High-cyclic block can be omitted from the 

model, by setting its value to null.  

 

Taking the aforementioned data into account, the SpaceART S&M software model will produce outputs that 

can size the LPF 's Structure and mechanisms mass and power consumption respectively, with high accuracy.  
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According to the Power system UML diagram the Power system model consists of 3 blocks, each 

one representing a separate physical unit. There is a total of 19 external input parameters for the 

Power system. The initial input is “flag” which specifies which model characteristics will be used. 

The Power system receives inputs from external sources like the Environment block representing  

external environmental parameters that contribute to sizing parts of the EPS.  

 

The  model description in this section does not consider the integration with other subsystems 

but the Power subsystem alone. Therefore in this issue of the document it does not include the 

separation of the mass in absolute and normalized. 

9.1. Solar Array (SA) 

The Power system Solar Array unit generates electricity by making use of the photovoltaic 

phenomenon.  

The Solar Array inputs consist of: 

 

tsun – Orbital daylight time in hours (h) → Environmental/Orbital Parameter  

tecl – Orbital eclipse time in hours (h) → Environmental/Orbital Parameter  

theta – Worst case angle of incidence in degrees (º) → Environmental/Orbital Parameter  

G – Solar flux in Watts per square meter (W/m²) → Environmental/Orbital Parameter  

Preq – Power consumption during daylight in Watts (W)  

Pecl – Power consumption during eclipse in Watts (W)  

Xe – Energy transfer during eclipse in percentage (%)  

Xd – Energy transfer during daylight in percentage (%)  

SAt – Solar array efficiency in percentage (%)  

Id – Inherent degradation in percentage (%)   

Life – Satellite expected lifetime in years (yrs)  

Bus_Voltage – Spacecraft bus voltage in Volts (V)  

Spec_mass_panel – Solar panel specific mass in kilograms  per square meter (kg/m²) 

 

The output parameters are: 

 

Parray_total – Total solar array output during orbital daylight in Watts (W) 

Array – Solar array area in square meters (m²) 

Msolar_arrays – Solar array(s) mass in kilograms (kg) 

Varray – Solar array voltage output in Volts (V) 

Iarray_out – Solar array current output in Amperes (A) 

Ncells_total - Total number of solar cells 
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9.2. Power Control Unit (PCU) 

 

The Power Control Unit handles and distributes the power generated by the spacecraft's solar 

arrays.  

The PCU inputs consist of: 

 

npcu – PCU efficiency in percentage (%)  

Varray – Solar array Voltage output (V) → SA output (internal parameter) 

Parray_total – Total solar array power output during daylight (W) → SA output (internal 

parameter)  

a1 – PCU mass coefficient 

 

The output parameters are: 

 

Mpcu – PCU mass in kilograms (kg) 

Ppcu – PCU Power output in Watts (W) 

Vpcu – PCU Voltage output in Volts (V) 

Ipcu – PCU Current output in Amperes (A) 

 

 

9.3. Secondary Battery (SB) 

The Secondary Battery unit provides the spacecraft with power during eclipse time. The SB block 

includes the Power Regulator Unit (PRU). Depending on the Power system type (Sun regulated, 

Fully regulated, Peak Power Tracking), the PRU consists of a charge & a discharge regulator, or 

just a charge regulator depending on the type of the power system. 

The SB inputs consist of:  

 

Specific_en_dens – Secondary battery's specific energy density in Watthours per kilogram 

(Wh/kg)  

v_drop – Maximum permissible bus voltage drop in percentage (%)  

n_cycles – Number of cycles  

tsun – Orbital daylight time in hours (h) → Environmental/Orbital Parameter  

tecl – Orbital eclipse time in hours (h) → Environmental/Orbital Parameter  

Pecl – Power consumption during eclipse in Watts (W)  

Vpcu – PCU Voltage output in Volts (V)→ PCU output (internal parameter) 
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The output parameters are: 

 

Mbat_pack - Battery pack mass in kilograms (kg) 

Average_battery_pack_voltage - Average battery pack output voltage in Volts(V) 

Average_battery_pack_current - Average battery pack output current  in Amperes (A) 

 

 

9.4. Power system's external outputs 

 

The Power system's external outputs are:  

 

Mpow – Total Power mass I.e the sum of Msolar_arrays+Mpcu+Mbat_pack (kg) 

Ppow – Total power output I.e the sum of the power requirements of all the individual 

systems onboard the satellite (W) 

Bpow – Total Power data output (kb) 

Additionally the Power system provides an extra four auxiliary outputs: 

Varray – Solar array Voltage output (V)  

Iarray_out – Solar array current output in Amperes (A) 

Ncells_total - Total number of solar cells 

Array – Solar array area in square meters (m²) 
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9.5. SpaceART Power System model function 

%%            Power System model  
% 
% 
%     [Mpow,Ppow,Bpow,Varray,Iarray_out,Ncells_total,Aarray] = power_sys(x,ep,flag) 
%      
% 
%     DESCRIPTION 
%     Electrical Power System (Power) model. It computes 
%     the Power system mass, power output and data output based on the  
%     specified inputs found below. 
% 
% 
%     INPUT 
%    *x - All the design and uncertain parameters 
%        x(1) = SAt - solar cell efficiency (%)  
%        x(2) = Xe - Energy transfer during eclipse (%) 
%        x(3) = Xd - Energy transfer during daylight (%)  
%        x(4) = Id - Inherent degradation (%)  
%        x(5) = Spec_mass_panel array specific mass - (kg/m^2)  
%        x(6) = npcu - PCU efficiency (%)  
%        x(7) = a1 - PCU mass coefficient  
%        x(8) = Specific_en_dens - Secondary batteries specific energy density (Wh/kg)  
%        x(9) = v_drop - Maximum permissible bus voltage drop (%)  
%    *ep - All the environmental parameters (i.e inputs which are fixed, that are neither design nor uncertain  
%             parameters) 
%        ep(1) = tsun - Orbital daylight time (h)  
%        ep(2) = tecl - Orbital eclipse time (h)  
%        ep(3) = theta - Worst case angle of incidence (º)  
%        ep(4) = Bus_Voltage - Specified bus voltage (V)  
%        ep(5) = G - Solar flux (W/m²)  
%        ep(6) = Preq - Power consumption during daylight (W) 
%        ep(7) = Pecl - Power consumption during eclipse (W)  
%        ep(8) = Life - Expected satellite lifetime (yrs)  
%        ep(9) = n_cycles - Number of charge/discharge battery cycles  
%    *flag - Flag used to change between system types e.g from Power solar to Power nuclear 
% 
% 
%     OUTPUT 
%      Mpow - Power system's mass including solar array(s) mass (kg) 
%      Ppow - Power system's power output (W) 
%      Bpow - Power system's data output (kb) 
%   Non sizing OUTPUTS 
%      Aarray - Solar array area (m²) 
%      Varray - Solar array voltage output (V) 
%      Iarray_out - Solar array current output (A) 
%      Ncells_total - Number of cells in total 
%       
% 
%     FUNCTION CALLS 
%          none 
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% 
% 
%      REFERENCES 
%       Based on: The EPS UML and UML description 
% [1] Spacecraft Power Systems, Mukund R. Patel, CRC Press     
% [2] Spacecraft Systems Engineering 3rd ed. , P. Fortescue, J. Stark, G. Swinerd, Wiley 
% [3] Spacecraft Power Technologies, Anthony K. Hyder, Ronald L. Wiley, G. Halpert,    
%      Donna Jones Flood, S. Sabripour, World Scientific Publishing Company                
% [4] Space Vehicle Design, Michael D. Griffin, James R. French, AIAA    
% [5] Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. Wertz,      
%       Microcosm Press & Kluwer Academic Publishers       
% [6] Maximum Fast Charging Rates in Ni-Cd Batteries, Viera Pérez, J. C., Gonzalez, M., Campo, J. C., &  
%       Ferrero, F. J., Space Power, Proceedings of the Sixth European Conference held 6-10 May, 2002 in  
%       Porto, Portugal. Edited by A. Wilson. European Space Agency, ESA SP-502, 2002, p.565  
% [7] http://teva2.com/NiH2.html 
% [8] Guidelines on Lithium-ion Battery Use in Space Applications, Barbara McKissock, Patricia Loyselle,  
%       and Elisa Vogel, RP-08-75, NASA 
% [9] Recent developments in evaporated CdTe solar cells, G. Khrypunov,A. Romeo, F. Kurdesau, D.L.  
%      Batzner, H. Zogg, A.N. Tiwari, Solar Energy Materials & Solar Cells 90 (2006) 664–677 
 

 

%% Internal functions called 
[Parray_total,Aarray,Msolar_arrays,Varray,Iarray_out,Ncells_total] = 
Solar_arrays(Preq,Pecl,tsun,tecl,Xe,Xd,G,SAt,Id,theta,Life,Bus_Voltage,Spec_mass_panel) 
 
[Mpcu,Ppcu,Ipcu,Vpcu] = PCU (npcu,Varray,Parray_total,a1) 
 
[Mbat_pack,Average_battery_pack_voltage,Average_battery_pack_current] = Sec_batteries 
(Specific_en_dens,v_drop,Vpcu,Pecl,tecl,tsun,n_cycles) 
  
 
%% Total Mass, Power, Data 
Mpow = Msolar_arrays + Mpcu + Mbat_pack 
Ppow = Ppcu 
Bpow = 0 
 
 

As seen above, the power_sys.m is divided into individual functions, each one representing a 

logical block of the UML model I.e a hardware unit of the actual physical system.  

 

9.6. SpaceART Power System model description  

9.6.1. Solar Arrays  

[Parray_total,Aarray,Msolar_arrays,Varray,Iarray_out,Ncells_total] = 
Solar_arrays(Preq,Pecl,tsun,tecl,Xe,Xd,G,SAt,Id,theta,Life,Bus_Voltage,Spec_mass_panel) 
 

The “Solar_ arrays” function models the solar array physical and electrical characteristics based on 

a number of inputs like the total required power on-board, the satellite bus voltage and so on. Using 

analytical mathematical expressions, the function outputs physical and electrical characteristics of 



 

52 

 

the solar array(s). Initially, the solar array power output per orbit requirement Psa is calculated as 

follows  

 

  

e e d d

e d

sa

d

PT P T
+

X X
P = W

T

   
   
     (68) 

     

where  Pe – Power consumption during eclipse (W), Te – Orbital eclipse time (h), Xe – Energy 

transfer during eclipse, Pd – Power consumption during daylight (W), Td – Orbital daylight time (h), 

Xd – Energy transfer during daylight. 

The BOL (Beginning of Life) power output per unit area PBOL is then calculated as follows 

 

  oP = SAt G W  (69) 

  cosBOL o dP = P I θ W  (70) 

      

where Po – Ideal power output per unit area, SAt – Solar cell efficiency,  G – Solar flux (W/m²),  

Id – Inherent degradation, θ – Worst case angle of incidence (rad).  

 

In order for the model to calculate the EOL (End of Life) power output per unit area, a solar array 

degradation over satellite lifetime factor Ld is calculated as follows 

 

  1
Life

dL = D  (71) 

where D – Array degradation per year, Life – Expected satellite lifetime (yrs).  

 

Once the satellite lifetime factor Ld is computed, the power output during EOL PEOL can be 

calculated based on the power output per unit area PBOL as follows 

 

  EOL BOL dP = P L W  (72) 

The calculations described above are essential for calculating the solar array area Asa as follows 

 

 2sa
sa

EOL

P
A = m

P
    (73) 

 

where Psa – Solar array power output per orbit requirement (W) and PEOL – Power output during 

EOL (W) deriving from Eq. (70) and Eq. (72) respectively.  

 

The Solar Array mass Msa is then calculated based on the solar array area Asa as follows  

 

  sa saM = A SM kg  (74) 

where Asa – Solar array area (m²) deriving from Eq. (73), SM – Specific mass of panel (kg/m²). 
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Finally the function calculates the number of cells connected in series forming a string, the number 

of strings connected in parallel forming an array and the total number of cells based on the bus 

voltage and power requirements inputs.  

Analytically: The designer inputs the selected bus voltage level Vbus as well as a selected solar cell 

efficiency Sat. Taking into account that the solar array output voltage level should be higher than 

the selected bus voltage level, the solar array voltage Vsa is calculated as follows 

 sa bus VbusV V f  (75) 

where Vbus – Satellite bus voltage level (V), fVbus – 1.2 . As seen in Eq. (75) the bus voltage level is 

raised by 20% in order to achieve a satisfactory solar array voltage level, since the bus losses 

(voltage drop) as well as the secondary battery's nominal charge voltage need to be taken into 

account. The SAt input defines the type of solar cell that will be used including its intrinsic 

characteristics, utilizing the data included in Table 1. 

Table 6: Solar cell intrinsic characteristics 

 CdTe p c-Si2 u c-Si3 3j4 GaAs Concentrator 3j GaAs Multijunction cells 

Vmp (V) 0.74 0.53 0.43 2.29 2.68 2.26 

Jmp  (A) 0.028 8.08 0.774 0.525 6.76 1.75 

ηcell (%) 16.5 20.3 24.7 29.9 38.5 40.7 

Dcell (%) 1 3.75 3.75 5 5 5 

 

where Vmp – solar cell voltage output at maximum power point (V), Jmp – solar cell current output at 

maximum power point (A), ηcell – solar cell efficiency, Dcell – solar cell degradation per year. Using 

Piecewise cubic Hermite interpolation which seems to produce the most accurate results, the 

function derives the maximum power point Voltage Vmp and maximum power point Current Jmp 

based on the choice of solar array efficiency SAt assuming that the Power system is a PPT (Peak 

Power Tracking) one.  

 

The Vmp and Jmp values are then used in order to derive the number of cells in series required per 

string Ncells/string as follows 

 

 /
sa

cells string

mp

V
N =

V
 (76) 

where Vmp – Maximum power point Voltage (V), Vsa – Solar array voltage (V). Then the number of 

strings connected in parallel per circuit Nstrings  -assuming that each array is considered an individual 

circuit- is calculated as follows 

 

 sa
sa

sa

P
I =

V
 (77) 

 sa
strings

mp

I
N =

J
 (78) 

                                                 
2 Polycrystalline Silicon 
3 Monocrystalline Silicon 
4 Triple junction 
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where Isa – the solar array current output (A), Psa – Solar array power output per orbit requirement 

(W) deriving from Eq. (68), Vsa – Solar array voltage (V) deriving from Eq. (75). Finally, the 

number of cells required in total per solar array is calculated as follows 

 

 /total cells strings stringsN = N N  (79) 

where Ncells/string – Number of cells in series required per string deriving from Eq. (76),  

Nstrings – Number of strings connected in parallel per circuit deriving from Eq. (78). 

 
 

9.6.2. Power Control Unit 

 

[Mpcu,Ppcu,Ipcu,Vpcu] = PCU (npcu,Varray,Parray_total,a1) 
 

The “PCU” function models the power control unit physical and electrical characteristics based on a 

number of inputs like the PCU efficiency, the total solar array power output and so on. Using 

analytical mathematical expressions the function outputs the electrical and physical characteristics 

like the PCU power output Ppcu I.e the power that the PCU handles, the voltage Vpcu and current Ipcu 

output as well as the PCU mass Mpcu.  

 

Initially the “PCU” function calculates the PCU Voltage output Vpcu based on a 5% maximum 

voltage drop that can occur between the Solar array circuit and the PCU due to losses from resistive 

loads like wiring as follows 

  pcu sa VsaV =V f V  (80) 

where Vsa – Solar array voltage (V) deriving from Eq. (75), fVsa. Space grade PCUs have an 

efficiency of at least 95% depending on the technology and materials used according to 

bibliography. Therefore the PCU power output (Ppcu) is calculated as follows 

  pcu sa pcuP = P η W  (81) 

where Psa – Solar array power output per orbit requirement (W) deriving from Eq. (1), ηpcu – PCU 

efficiency. The current output Ipcu is then calculated as follows 

  pcu

pcu

pcu

P
I = A

V
 (82) 

 

where Ppcu – PCU power output (W) deriving from Eq. (81), Vpcu – PCU Voltage output (V) 

deriving from Eq. (80) Finally the PCU mass Mpcu is calculated as a fraction of the PCU power 

output: 

  pcu pcuM = aP kg  (83) 

where a is a PCU mass coefficient. 

 

9.6.2.1. Secondary battery 

 

[Mbat_pack,Average_battery_pack_voltage,Average_battery_pack_current] = Sec_batteries 
(Specific_en_dens,v_drop,Vpcu,Pecl,tecl,tsun,n_cycles) 
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The “Sec_batteries” function models the battery pack, the unit supplying the satellite with power 

during any eclipse periods that will occur throughout an orbit. 

Based on a satellite's eclipse and sunlight times, the power consumption during eclipse and sunlight 

and so on, the “Sec_batteries” function models the physical and electrical characteristics of the 

battery pack outputting the battery pack mass Mbat_pack, as well as the average battery pack voltage 

and current.  

 

Initially the designer inputs the chosen specific energy density Specific_en_dens which defines the 

particular battery chemistry to be used including its intrinsic characteristics, utilizing the data 

included in Table 7. 

 

Table 7: Secondary battery cells' intrinsic characteristics 

 NiCd NiH2 NiMH LiIon LiPoly 

Ed (Wh/kg) 60  75 80 150 200 

Vcell (V) 1.25 1.25 1.25 3.6 3.5 

ηbatt (%) 85 86 87 95 99.8 

q  145.8 176.3 TBD TBD TBD 

 

 

where Ed  is the available energy density (Wh/kg) , Vcell  is the voltage per cell (V), ηbatt is the 

battery energy efficiency, q is the y-intercept. 

 

By interpolating the data in Table 2 the function derives the corresponding battery energy efficiency 

ηbatt as well as the corresponding discharge voltage per battery cell 
V

cell. Furthermore, using a simple 

linear relationship in logarithmic scale, the depth of discharge DOD is calculated based on the 

parameter q and the number of cycles Ncycles.   

 

After deriving the value of Vcell based on the selection of a Specific_en_dens value, the model 

calculates the minimum permissible bus voltage Vminp as follows 

    1minp pcu dropV =V v V  (84) 

where Vpcu – PCU Voltage output (V) deriving from Eq. (80), vdrop – Maximum allowable voltage 

drop. 

Furthermore, the model sets the minimum battery cell voltage at the end of discharge at EOL Vcellmin 

as follows 

    1minp pcu dropV =V v V  (85) 

where Vcell - Voltage per cell (V), fVcell = 0.8. 
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Utilizing Eq. (86), the function calculates the number of cells connected in series Cellseries that will 

set the battery cells' connection topology as follows 

 

 
minp

series

cellmin

V
Cell =

V
 (86) 

where Vminp – Minimum permissible bus voltage (V) deriving from Eq. (85), Vcellmin – Minimum 

battery cell voltage at the end of discharge at EOL (V) deriving from Eq. (86). If the number of 

cells in series not an integer, the function rounds up the number to the nearest higher integer.  

The function then calculates the depth of discharge DOD of the chosen type of battery as follows:
 

Using the number of charge/discharge cycles input Ncycles and the y-intercept q values found in 

Table 2, a linear interpolation is performed between the lines of “lin-log”Figure 10.   

The next step is to calculate the minimum battery pack energy Eminpack, providing the model with the 

minimum energy the batteries should have in order for the satellite to operate nominally even 

during the very end of the eclipse period.  Eminpack  is calculated as follows 

  minpack e eE = PT Wh  (87) 

where Pe – Power consumption during eclipse (W), Te – Orbital eclipse time (h).  Based on Eminpack 

deriving from Eq. (87), the minimum battery capacity Cmin can then be calculated as follows  

 

  minpack

min

cell series

E
C = Ah

V Cell
 (88) 

 

where Eminpack – Minimum battery pack energy (Wh) deriving from Eq. (87),  Vcell - Voltage per cell 

(V), Cellseries – Number of cells connected in series deriving from Eq.(86). 

 

The required battery capacity is then calculated as follows 

  minC
C = Ah

DOD
 (89) 

 

 

Figure 10: Number of Cycles versus Depth Of Discharge 
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where Cmin – minimum battery capacity (Ah) deriving from Eq. (88), DOD – Depth of discharge. 

The required battery pack energy E is calculated utilizing Eminpack as follows 

  minpack

batt

E
E = Wh

η
 (90) 

 

where  Eminpack – Minimum battery pack energy (Wh) deriving from Eq. (87), ηbatt – battery energy 

efficiency taken from Table 7. 

The average battery pack voltage Vpack is calculated as follows 

 

  cell seriesVpack =V Cells V  (91) 

where Vcell - Voltage per cell (V), Cellseries - Number of cells connected in series deriving from Eq. 

(86). The average battery pack current is calculated after calculating the required power for 

charging the battery pack Pcharge as follows 

  charge

d

E
P = W

T
 (92) 

where E – Required battery pack energy (Wh) deriving from Eq. (90), Td – Orbital daylight time (h) 

Utilizing Eq. (92), the average battery pack current is calculated:  

  chargeP
Ipack = A

Vpack
 (93) 

where Pcharge – Required power for charging the battery pack (W) deriving from Eq. (92), Vpack – 

average battery pack voltage (V) deriving from Eq. (91). Finally the mass of the battery cells Mcells 

is calculated as follows 

  
_ _

cells

E
M = kg

Specific en dens
 (94) 

where E – Required battery pack energy (Wh) deriving from Eq. (90), Specific_en_dens – Chosen 

specific energy density (Wh/kg). Finally the battery pack mass Mpack is considered equal to the mass 

of the battery cells Mcells: 

  pack cellsM = M kg  (95) 
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10. Using LISA PathFinder (LPF) as test case for the SpaceART 

Power system model 
 

As described above, LPF has a fully regulated DC electrical power system. Power is generated from 

one body mounted solar array consisting of triple junction GaAs cells. A secondary battery for 

energy storage is used in various mission phases. 

 

10.1. LPF Power System 

The Power System utilizes:  

 

One body mounted solar array, which will be represented by the Solar Array block of the 

SpaceART Power system model, based on its technical specifications. 

One secondary battery, which will be represented by the Secondary Battery block of the 

SpaceART Power system model, based on its technical specifications. 

 

The Power Control Unit block represents the power electronics on board the LPF Power System, 

handling and distributing power depending on each subsystem's power requirement. The Pwr_req 

block represents the sum of power requirements of all the individual subsystems on board. 

Taking the aforementioned data into account, the SpaceART Power system software model will 

produce outputs that can size the LPF Power System's mass, power consumption and data output 

with high accuracy.  

 

10.2. SpaceART Power system model LPF implementation 

 

SpaceART is using the LPF as a test case in order to validate its Power system model. Taking into 

account the mission facts and figures, each input can become a design, uncertain or 

fixed/environmental parameter depending on their definition respectively:  

 

Design parameters are defined as input parameters which can be decided by the designer(s), 

after taking into account several mission factors.  

Fixed parameters (including environmental parameters) are defined as input parameters 

which are already known or given, therefore are considered constants. 

Uncertain parameters are defined as input parameters which cannot be deterministically 

defined. Such parameters can either be design or fixed ones which cannot be defined with 

absolute certainty. 

 

Taking the above definitions into account, the SpaceART Power system model inputs are defined as 

follows: 
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10.2.1. Solar Array (SA) LPF implementation 

 

The Solar Array inputs consist of: 

tsun – Orbital daylight time in hours (h) → Environmental/Orbital Parameter  

tecl – Orbital eclipse time in hours (h) → Environmental/Orbital Parameter  

theta – Worst case angle of incidence in degrees (rad) → Environmental/Orbital Parameter  

G – Solar flux in Watts per square meter (W/m²) → Environmental/Orbital Parameter  

Preq – Power consumption during daylight in Watts (W) → Environmental Parameter 

Pecl – Power consumption during eclipse in Watts (W) → Environmental Parameter 

Xe – Energy transfer during eclipse in percentage → Uncertain parameter 

Xd – Energy transfer during daylight in percentage → Uncertain parameter 

SAt – Solar array efficiency in percentage → Design parameter 

Id – Inherent degradation in percentage  → Uncertain parameter 

Life – Satellite expected lifetime in years (yrs) → Environmental Parameter 

Bus_Voltage – Spacecraft bus voltage in Volts (V) → Fixed parameter 

Spec_mass_panel – Solar panel specific mass in kilograms per sq. m (kg/m²) → Design 

parameter 

10.2.2. Power Control Unit (PCU) LPF implementation 

 

The PCU inputs consist of: 

 

npcu – PCU efficiency in percentage (%) → Uncertain parameter 

Varray – Solar array Voltage output (V) → SA output (internal parameter) 

Parray_total – Total solar array power output during daylight (W) → SA output (internal 

parameter)  

a1 – PCU mass coefficient → Design parameter 

10.2.3. Secondary Battery (SB) LPF implementation 

 

The SB inputs consist of:  

Specific_en_dens – Secondary battery's specific energy density in Watthours per kilogram 

(Wh/kg) → 
Design

 parameter 

v_drop – Maximum permissible bus voltage drop in percentage (%) → 
Design

 parameter 

n_cycles – Number of cycles → Environmental/Orbital Parameter 

tsun – Orbital daylight time in hours (h) → Environmental/Orbital Parameter  

tecl – Orbital eclipse time in hours (h) → Environmental/Orbital Parameter  

Pecl – Power consumption during eclipse in Watts (W) → Environmental Parameter 

Vpcu – PCU Voltage output in Volts (V)→ PCU output (internal parameter) 
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The Harness receives inputs from external sources like the Power system (represented as one block for 

simplicity) that contribute to sizing the Harness system.  

 

11.1. Harness: 

The Harness unit represents all the galvanic connections between systems, used for transferring power 

and signals between the satellite's hardware units. 

The Harness inputs consist of:  

 

sizing_parameter – Parameter used for sizing the harness with respect to the overall power it handles  

Ppow – Power system power output in Watts (W) → Power system external output  

 

The output parameters are: 

 

Mharn – Harness mass in kilograms (kg)  

Pharn – Harness power output in Watts (W) 

Bharn – Harness data output in kilobytes (kb)  

11.2. SpaceART Harness System model function 

%% Harness system 

%  

% [Mharn,Pharn,Bharn] = harn (x,ep,flag) 

% 

%     DESCRIPTION 

%     Sizes the spacecraft harness mass utilizing the Power system output (simple model) 

% 

%     INPUT 

%    *x - All the design and uncertain parameters 

%        x(10) = sizing_parameter - Parameter sizing the HARN mass as a percentage of the total solar  

%                  array output power (%) 

%    *ep - All the environmental parameters (i.e inputs which are fixed, that are neither design nor  

%    uncertain parameters) 

%        ep(10) = Ppow - Power system power output 

%    *flag - Flag used to change between system types e.g from Harn simple to Harn advanced model 

% 

%     OUTPUT 

% Mharn - Harness mass (kg) 

% Pharn - Harness power output (W) 

% Bharn - Harness data output (kb) 

% 

%     FUNCTION CALLS 

%          none 

% 

%      REFERENCES 

% [1] Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. Wertz,      

%      Microcosm Press & Kluwer Academic Publishers 
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11.3. SpaceART Harness System model description 

 

As seen above, the harn.m contains one function, represented by a logical block of the UML model I.e a 

hardware unit of the actual physical system.  

The “Harn” function models the physical and electrical characteristics of the harness system based on a 

number of inputs like the Power system power output and so on. Using analytical mathematical 

expressions, the function outputs physical and electrical characteristics of the harness. Initially the 

model calculates the Harness overall mass Mharn as a fraction of the overall power it handles, as follows: 

  harn powM = SPP kg  (96) 

where SP – Sizing parameter (%), Ppow – Power system power output (W) deriving from Eq. (81) since 

Ppow = Ppcu.. The Harness power output Pharn is calculated after taking into account power losses due to 

Ohmic resistance, thermal dissipation and so on as follows:  

 

  harn Ppow powP = f P W  (97) 

 

where fPpow – 0.98,  Ppow – Power system power output (W) deriving from Eq. (81) since Ppow = Ppcu. The 

Harness data output Bharn is calculated after summing all the data outputs of each individual system 

respectively, as follows:  

 
harn a

a=systems

B = B  (98) 

where a – Every electronics based system onboard the satellite (Power, TT&C, C&DH, ADCS etc), Ba 

– Data output of each individual system onboard the satellite (kb). 

  

11.4. SpaceART Harness system model LPF implementation 

 

SpaceART is using the LPF as a test case in order to validate its Harness model. Taking into account the 

mission facts and figures, each input can become a design, uncertain or fixed/environmental parameter 

depending on their definition respectively:  

 

Design parameters are defined as input parameters which can be decided by the designer(s), after 

taking into account several mission factors.  

Fixed parameters (including environmental parameters) are defined as input parameters which 

are already known or given, therefore are considered constants. 

Uncertain parameters are defined as input parameters which cannot be deterministically defined. 

Such parameters can either be design or fixed ones which cannot be defined with absolute 

certainty. 

Taking the above definitions into account, the SpaceART Harness system simple model inputs are 

defined as follows: 

The Harness inputs consist of:  

sizing_parameter – Parameter used for sizing the harness with respect to the overall power it handles 

→ Uncertain parameter 

Ppow – Power system power output in Watts (W) → Power system external output  
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The PROP model consists of 3 blocks, each one representing a unit of the Propulsion system. There are a 

total of 7 input parameters for the PROP system plus a flag which is used to select the type of propulsion 

model (only one model is currently available). 

12.1. Engine 

The Engine block represents the engine(s) used for thrusting the spacecraft. The Engine inputs are: 

alpha_e - Engine's specific power measured in Watts per kilogram (W/kg)  

η_e - Engine efficiency measured in percentage  

ac - Control acceleration measured in meters per second squared (m/s²) (Orbit output) 

eng- Specific mass of the engine (kg/W) 

 The output parameters are: 

 

meng – specific engine mass 

mppu- specific mass of the PPU 

peng – specific engine power consumption in W/kg 

theeng – specific engine thermal power output in W/kg 

12.2. Propellant 

The Propellant block represents the propellant properties used in a spacecraft, depending on the type of 

engines and the mission facts.  

The Orbit block feeds the Propellant block with specific information used for sizing the Propellant mass.  

The Propellant inputs consist of 

Isp - Engine's specific impulse measured in seconds (s)  

ΔV – Total change in velocity (m/s)  

The output parameters are: 

mp – specific propellant mass  

 

12.3. Tanks and Pipes 

The tanks and pipes block represents all containers used for storing and distributing propellant on board the 

spacecraft. The tanks and pipes inputs are:  

mp – specific propellant mass  

t – mass fraction of the tanks and pipes  

The output parameters are: 

mt – specific mass of tanks and pipes 

 

 

The total specific mass of the propulsion system is Psiprop= mt+meng+mp+mppu with the associated 

specific power peng and thermal power theeng. 
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12.4. SpaceART PROP model function 

 
% 

% [Phiprop,Psiprop, Pprop,Theprop] = prop_model_norm(x,ep,flag) 

% Propulsion system model 

% 

%   INPUT: 

%   Isp     = Specific Impulse (s) 

%   alpha   = Specific Power (W/kg) 

%   eta     = engine Efficiency  

%   ep(1)   = Dv (m/s)   

%   ep(2)   = ac control acceleration (m/s^2) 

%   ep(3)   = percentage of the propellant that corresponds to 

tanks and 

%   pipes 

%   ep(4)   = specific mass of the engine (kg/W) 

%   flag    = switch between chemical and electric propulsion 

% 

%   OUTPUT: 

%   Phiprop,Psiprop,   = Propulsion Mass functions (kg) 

%   Pprop   = Power (W) 

%   Theprop = thermal power rejected by the engine (W) 

% 
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12.5. SpaceART Propulsion System Model Description 

The mass and power of the propulsion system are not computed in absolute terms but with respect 

to the total mass of the spacecraft, therefore, in the following, we refer to specific mass and specific 

power. The total specific mass is composed of the specific mass of the propellant, the specific mass 

of the power unit, the specific mass of tanks and pipes, the specific mass of the engines. The power 

consumption depends on the engine efficiency  , the specific impulse 
spI  and the control 

acceleration 
ca . It is assumed that the control acceleration comes from the orbit design. The specific 

power required to operate the engine can be expressed as: 

 
2

c sp

eng

a I
p


  (99) 

The specific mass of the engine is therefore given by: 

 
eng eng engm p  (100) 

and the specific mass of the power processing unit (PPU) is given by: 

 

 /ppu eng engm p   (101) 

The specific mass of propellant is a function of the total v, again derived from the orbit: 

 01 sp

v

g I

propm e




   (102) 

The mass of tanks and pipes is computed as a fraction of the mass of propellant, although the mass 

of the pipes is actually dependent on the configuration: 

 
tank tank propm m  (103) 

The total specific mass of the propulsion system (or mass function) is therefore given by: 

 
pro eng prop tank ppum m m m      (104) 

and the associated specific power is: 

 
pro engp p  (105) 

 

12.6. Using LPF as test case for SpaceART PROP 
 

The Propulsion module for LPF currently considers only the SEP micropropulsion unit on board LPF.  

 

12.6.1. SpaceART PROP model applied to the LPF micropropulsion 
case. 

The design, uncertain and environmental parameters for the LPF case are as follows: 

 

12.6.1.1. Engine 

The Engine block represents the engine(s) used for thrusting the spacecraft. The Engine inputs are: 

alpha_e - Engine's specific power measured in Watts per kilogram (W/kg) - Design  

η_e - Engine efficiency measured in percentage - Uncertain 

ac - Control acceleration measured in meters per second squared (m/s²) (Orbit output)- Environment 
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eng- Specific mass of the engine (kg/W) – Design 

 The output parameters are: 

 

meng – specific engine mass 

peng – specific engine power consumption in W/kg 

theeng – specific engine thermal power output in W/kg 

12.6.1.2. Propellant: 

The Propellant block represents the propellant properties used in a spacecraft, depending on the type of 

engines and the mission facts.  

The Orbit block feeds the Propellant block with specific information used for sizing the Propellant mass.  

The Propellant inputs consist of 

Isp - Engine's specific impulse measured in seconds (s) - Design 

ΔV – Total change in velocity (m/s) – Environment  

The output parameters are: 

mp – specific propellant mass  

 

12.6.1.3. Tanks and Pipes 

The tanks and pipes block represents all containers used for storing and distributing propellant on board the 

spacecraft. The tanks and pipes inputs are:  

mp – specific propellant mass  

t – mass fraction of the tanks and pipes - uncertain 

The output parameters are: 

mt – specific mass of tanks and pipes 
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As seen above, the Thermal system contains the Thermal network block and two modules -a hot and a cold 

one- representing both thermal cases used for designing a Thermal system. The Cold case contains 3 blocks 

whereas the Hot case 2 blocks. There is a total of 14 input parameters for the Thermal system. 

13.1. Thermal network 

The Thermal network block represents the thermal resistance network equivalent inside the spacecraft. 

13.1.1. Cold Case 

The cold-case block input parameters are: 

Qi (COLD) – The heat generated by all the subsystems (W)  

Ti_inf – lower required temperature inside the spacecraft (K) 

T1_inf,T2_inf – lower limit on the temperature of the external surfaces (K) 

Its  outputs are 

Pt – Thermal system heaters' power consumption (W) 

13.1.2. Hot Case  

The hot-case input parameters are: 

Q_i (HOT) – The heat generated by all the subsystems except for propulsion and attitude control (W) 

ρR – Specific radiator mass in kilograms per square meter (kg/m²)  

k – the materials' conductivity measured in Watts per meter Kelvin (W/(m*K))  

ε1, ε2 – the emissivity of the external surfaces 

εR – the emissivity of the radiator 

1, 2 – the absorptivity of the external surfaces 

T1_sup,T2_sup – upper limit on the temperature of the external surfaces (K) 

TR – temperature of the radiator (K) 

Ti_sup – upper required temperature inside the spacecraft (K) 

A,A2 – areas of the external surfaces (m
2
) 

Ak1,Ak2,Ak3 – cross section areas of the thermal links (m
2
) 

we – specific dissipated power from the propulsion system (W/kg) 

Q_i – sum of all the internal sources of heat except for propulsion and attitude control (W) 

r_S - distance from the Sun in AU 

r - distance from the planet in km 

R_P - radius of the planet in km 

alb – albedo 

q_IR - areal infrared radiation from the planet (W/m
2
) 

Its outputs size the radiators. 

13.1.3. Radiators 

The Radiators block represents the hardware used for radiating excessive heat into space. It is sized from the 

Qin=Qout output. Its sole output is 

Mt – Thermal system mass for the Hot case, measured in kilograms (kg) 

Ml – mass of the thermal links (kg) 



 

73 

 

13.2. SpaceART Thermal System model function 

% 

%  [Phithe,Psithe,P_the]=thermal(x,ep,flag) 

% 

%  Thermal model with 4 nodes. 

% 

%               Qi 

%  Q_Sun   ->o---o---o-> AR*sigma*eps*TR^4 

%                | 

%                o 

%                ^ 

%                | Q_IR+Q_ALB 

% 

%  It computes the required radiator size and heater power 

%  to maintain the internal temperature within the prescribed 

limits 

% 

%   INPUT: 

% 

%   Design/Uncertain 

% 

%   k=x(1)             : thermal conductivity of the thermal links 

(W/mK) 

%   Ak1=x(2)           : cross section area of the thermal link 1 

(m^2) 

%   Ak2=x(3)           : cross section area of the thermal link 2 

(m^2) 

%   Ak3=x(4)           : cross section area of the thermal link 3 

(m^2) 

%   eps(1)=x(5)        : emissivity of external surface A1 

%   eps(2)=x(6)        : emissivity of external surface A2 

%   eps(3)=x(7)        : emissivity of radiator surface AR 

%   alpha(1)=x(8)      : absorptivity of external surface A1 

%   alpha(2)=x(9)      : absorptivity of external surface A2 

%   Ti_sup=x(10)      : hot case desired temperature of internal 

components (K) 

%   Ti_inf=x(11)       : cold case desired temperature of internal 

components(K) 

% 

%   Environmental 

% 

%   Q_i=ep(1)          : internal heat 

%   r_S=ep(2)          : distance from the Sun in AU 

%   r=ep(3)            : distance from the planet in km 

%   R_P=ep(4)          : radius of the planet in km 

%   alb=ep(5)          : albedo 

%   rho_R=ep(6)        : areal density of the radiator 

%   q_IR=ep(7)         : areal infrared radiation from the planet 

%   T1_limits=ep(8:9)  : upper and lower limits on the temperature 

of A1 

%   T2_limits=ep(10:11): upper and lower limits on the temperature 

of A2 
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%   A1=ep(12)          : external area A1 

%   A2=ep(13)          : external area A2 

%   we=ep(14)          : specific dissipated power from the engine 

% 

%   OUTPUT 

% 

%    Phithe,Psithe: mass functions of the thermal system 

%    P_the: power of the heaters 

%    T_cold : temperatures in the cold case 

%    T_hot : temperatures in the hot case 

 

 

13.3. Thermal System Model  Description 

The thermal control system is modeled with an equivalent Oppenheim network with four nodes and 

considering steady state conditions. 

 

 

 

 

 

 

 

 

Figure 14. Equivalent thermal network 

 

The external input heat comes from the faces exposed to the Sun and to the celestial body around 

which the spacecraft is orbiting. Therefore, one can have three contributions: direct Sun radiation 

QSUN, reflected Sun radiation QALB, infrared radiation from the celestial body surface QIR. 

 

 in SUN ALB IRQ Q Q Q    (106) 

with: 

 0
1 1 12

cosSUN

SUN

S
Q A

r
   (107) 

 
2

2 2 22 2
cosB

ALB

B

R
Q A a

R r
  


 (108) 

 
2

2 2 22 2
cosB

IR IR

B

R
Q q A

R r
 


 (109) 

 

The two input nodes radiate towards outer space part of the incoming radiation: 

 

 4

1 1 1 1Q A T   (110) 

 4

2 2 2 2Q A T   (111) 

 

The heat that is not rejected through radiation is transferred to the internal node, therefore the input 

nodes steady state equations are: 

R2 TR Ti T1 

Qout 

Qi+QH
 QSUN

 

R1 

R3 

T2 

QALB+QIR
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 4

1 1 1 1 1( ) 0SUN iQ A T R T T      (112) 

 4

2 2 2 2 2( ) 0IR ALB iQ Q A T R T T       (113) 

 

The internal node represents all internal components that require a careful thermal control (batteries, 

electronics, tanks, etc.). It receives part of the heat coming from the external input node and the heat 

internally generated Qi. If the temperature is too low, an electric heating system generating QH is 

actively maintaining the temperature in the desired range. If the temperature is too high, the internal 

node dissipates through a thermal link R2 with a radiator with area AR. The steady state equation at 

the node is: 

 
1 1 2 2 3( ) ( ) ( ) 0i H i i i RQ Q R T T R T T R T T         (114) 

 

The radiator is assumed to always face deep space, therefore its steady state equilibrium equation is: 

 

 4

2( ) 0i R R R RR T T A T    (115) 

 

The thermal model is currently based on the assumption that the spacecraft always encounters a hot 

case during the mission and that it might encounter a cold in which the heaters are required. 

Therefore, the first step computes the area of the radiator that is required to maintain the three nodes 

at the required temperature. 

The thermal links R1, R2 and R3 are computed from the thermal conductivity, the cross section areas 

Ak1,Ak2 and Ak3, and the length of the longest edge of the spacecraft ledge. The thermal path length 

is assumed to be maximum half of the edge of the spacecraft, therefore: 

 
2

   1,..,3k i
i

edge

kA
R i

l
   (116) 

The size of the external surfaces is assumed to come from the configuration block and the edge is 

computed as the square root of the area. The temperatures T1 and T2 are obtained by solving the 

quartic equations (112) and (113). 

If the temperature T1, respectively T2, is above the upper limit, it is set to the upper limit and a Qsup 

is added to Eq. (112) such that: 

 4

1 1 1 1 1 sup1( )SUN iQ A T R T T Q      (117) 

likewise for Eq. (113) one has: 

 4

2 2 2 2 2 sup2( )IR ALB iQ Q A T R T T Q       (118) 

If the temperature T1, respectively T2, is below the lower limit, it is set to the lower limit and a Qinf 

is added to Eq. (112) such that: 

 4

1 1 1 1 1 inf 1( )SUN iQ A T R T T Q      (119) 

likewise for Eq. (113) one has: 

 4

2 2 2 2 2 inf 2( )IR ALB iQ Q A T R T T Q       (120) 

 

Qsup1 and Qsup2 imply a direct link to the radiator, therefore additional thermal links are introduced 

with masses given by: 

 

2

sup1

sup1

1

2

sup2

sup2

2

=
( - )

=
( - )

edge material

R

edge material

R

Q l
m

k T T

Q l
m

k T T




 (121) 

 

By combining Eq. (114) and (115) one gets the area of the radiator: 

 1 1 2 2 sup1 sup2

4

( ) ( )i i i

R

R R

Q R T T R T T Q Q
A

T

     
  (122) 
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If the area of the radiator is zero or negative the thermal link R3 is set to 0 and a heating power is 

added to Eq. (114). 

Once the radiator for the hot case is defined, the analysis of the cold case yields the sizing of the 

required power for the heaters. In fact, in the cold case one can assume that there is no direct Sun 

light or reflected radiation. Therefore, Eqs. (112) and (113) reduce to: 

 

 4

1 1 1 1 1( ) 0iA T R T T      (123) 

 4

2 2 2 2 2( ) 0IR iQ A T R T T      (124) 

 

Eqs. (123) and (124) are quartic equations in T1 and T2 and assuming the desired value for the 

internal temperature, one can find four complex conjugate solutions for each equation. Only the real 

positive solutions are retained and in particular the ones with a temperature higher than Ti. 

Similarly, Eq. (115) can be solved for TR. In this case the positive, real temperature lower than Ti is 

considered. Finally, the required heating power QH is computed from Eq. (114): 

 

 
1 1 2 2 3( ) ( ) ( )H i i i i RQ Q R T T R T T R T T         (125) 

The heating power is sized based on the larger one between Qinf1+Qinf2 and QH. The total mass of 

the thermal system is the sum of the radiator mass and the thermal links: 

 
23

sup1 sup2

i edge

H R R material

i

R l
m A m m

k
      (126) 

 

 

 

 

13.4. Using LPF as test case for SpaceART Thermal 
 

LPF thermal control system consists of MLI blankets, radiators and electric heaters, which guarantee a very 

stable environment inside the spacecraft. 

13.4.1. LPF Thermal control system 

The Thermal control module utilizes:  

Radiators used for radiating any excess heat into space, which will be represented by the Radiators block 

in both Hot and Cold cases.   

Electrical heaters used for keeping the ambient temperature within the lower electronics allowable range, 

which will be represented by the Heaters block. 

13.4.2. Cold Case 

The cold-case block input parameters are: 

Q_i (COLD) – The heat generated by all the subsystems except for the propulsion and attitude control 

systems (W)  - environmental 

Ti_lower – lower required temperature inside the spacecraft (K) - design 

T1_low,T2_low – lower limit on the temperature of the external surfaces (K) - environmental 

Its  outputs are 

Pt – Thermal system heaters' power consumption (W) 

13.4.3. Hot Case  

The hot-case input parameters are: 
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Q_i (HOT) – The heat generated by all the subsystems (W) - environmental 

ρR – Specific radiator mass in kilograms per square meter (kg/m²) - design 

k – the materials' conductivity measured in Watts per meter Kelvin (W/(m*K)) - design 

ε1, ε2 – the emissivity of the external surfaces- uncertain 

εR – the emissivity of the radiator- design 

1, 2 – the absorptivity of the external surfaces- uncertain 

TR – temperature of the radiator (K) - design 

T1_up,T2_up – upper limit on the temperature of the external surfaces (K) - environmental 

Ti_upper – upper required temperature inside the spacecraft (K) - design 

A,A2 – areas of the external surfaces (m
2
) - environmental 

Ak1,Ak2,Ak3 – cross section areas of the thermal links (m
2
) - design 

we – specific dissipated power from the propulsion system (W/kg) - environmental 

r_S - distance from the Sun in AU- environmental 

r - distance from the planet in km- environmental 

R_P - radius of the planet in km- environmental 

alb – albedo- environmental 

q_IR - areal infrared radiation from the planet (W/m
2
) - environmental 

 

Its outputs size the radiators. 

13.4.4. Radiators 

The Radiators block represents the hardware used for radiating excessive heat into space. It is sized from the 

Qin=Qout output. Its sole output is 

Mt – Thermal system mass for the Hot case, measured in kilograms (kg) 

Ml – mass of the thermal links (kg) 

.  



 

7
8

 

 1
4

. 
T

T
&

C
 s

u
b

s
y
s

te
m

 m
o

d
e

l:
 U

M
L

 d
ia

g
ra

m
 

 
 

 
 

 
 

 
 

 
 

 

 

F
ig

u
re

 1
5

T
T

&
C

 s
ys

te
m

 U
M

L
 d

ia
g

ra
m

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  



 

79 

 

According to the TT&C system UML diagram the TT&C system model consists of 2 blocks, each 

one representing a separate unit. There is a total of 28 external input parameters for the TT&C 

system. The additional input “flag” specifies which model characteristics will be used. The TT&C 

system receives inputs from external sources like the Ground segment block , the Orbit block and 

the Command & Data Handling (C&DH) block representing  external parameters that contribute to 

sizing parts of the TT&C.  

14.1. Link 

The TT&C system Link module defines the communication link architecture and design based on 

specific external inputs. The Link inputs consist of: 

 

BER – Specified Bit Error Rate 

Mod – Modulation selection 

B – Total amount of data in kilobytes (kb) → C&DH output (internal parameter) 

Ta – Ground station access time in seconds (s) → Environmental/Orbital Parameter 

r – Distance from ground station in kilometres (km)  → Environmental/Orbital Parameter 

f – Frequency in Hertz (Hz) 

Gr – Ground station receiver gain in decibels (dB) 

theta_f – Faraday rotation in degrees (º) → Environmental/Orbital Parameter 

Gh – Ground station altitude (km) → Environmental/Orbital Parameter 

e – Horizon elevation (º) → Environmental/Orbital Parameter 

G – Low noise amplifier gain (Receiver) → Environmental Parameter 

L – Cable loss (Receiver) (dB) → Environmental Parameter 

G_t – Low noise amplifier gain (Transmitter) (dB) → Environmental Parameter 

Lt – Cable loss (Transmitter) (dB) → Environmental Parameter 

Te – Amplifier noise (Receiver) (k)  

F – Receiver noise figure (dB) 

Tet – Amplifier noise (Transmitter) (k) 

Ft – Transmitter noise figure (dB) 

T_ant_t – Antenna noise temperature (k) 

nt – Antenna efficiency (%) 

Gt – Antenna gain (dB) 

 

The output parameters are: 

Mant – Antenna mass in kilograms (kg) 

EbNo – Received energy per bit to noise density ratio (dB) 

plink – Required link power in Watts (W) 

T_data – Total amount of data to be transmitted in kilobytes (kb) 

Tant – Antenna type selection  
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14.2. Amp 

The TT&C Amp module sizes the amplifier unit based on both internal and external inputs. 

The Amp inputs consist of: 

 

T – Amplifier type selection 

plink – Required link power in Watts (W) → Link internal output  

CMR - Amplifier casing mass ratio  

 

The output parameters are: 

 

Mamp – Amplifier mass in kilograms (kg) 

M_case – Electronics' casing mass in kilograms (kg) 

Pamp – Amplifier power consumption in Watts (W) 

 

14.3. TT&C system's external outputs 

 

The TT&C system's external outputs are:  

 

Mttc – TT&C total mass I.e the sum of Mant+Mamp+M_case (kg) 

Pttc – TT&C total power consumption I.e the Pamp (W) 

Bttc – TT&C total data output I.e T_data (kb) 

Additionally the TT&C system provides an extra auxiliary output: 

EbNo – Received energy per bit to noise density ratio (dB) 

Tant - Type of antenna 
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14.4. SpaceART TT&C System model function 

  

%% Telemetry, Tracking & Commanding system 
% 
%     DESCRIPTION 
%     Sizes the TT&C system based on Downlink Parameters 
%     This model assumes worst case losses 
% 
% 
%   [Mttc Pttc Bttc EbNo Tant] = ttc(x,ep,flag) 
% 
% 
%   INPUT 
%    *x - All the design and uncertain parameters 
%       x(1) = f - Frequency (MHz) 
%       x(2) = Mod - Modulation 
%       x(3) = T - Amplifier type 
%       x(4) = nt - Antenna efficiency 
%       x(5) = Gt - Antenna gain (dB) 
%       x(6) = CMR - Amplifier casing mass ratio 
%  
%    *ep - All the environmental parameters (i.e inputs which are fixed, that are neither design nor uncertain 
parameters) 
%       ep(1) = theta_f - Farraday Rotation (Deg) 
%       ep(2) = Gr - Ground Station Antenna Gain (dB) 
%       ep(3) = r - Distance from Ground Station (km) 
%       ep(4) = Ta - Access Time (s) *(Target acquisition time should be 
%                    included)* 
%       ep(5) = B - Total Amount of Data (kb) (C&DH output) 
%       ep(6) = BER - Bit Error Rate 
%       ep(7) = Gh - Ground station altitude (km) 
%       ep(8) = e - Horizon elevation (Deg) 
%       ep(9) = G - Low noise amplifier gain [dB] (Receiver) 
%       ep(10) = L - Cable loss [dB] (Receiver) 
%       ep(11) = Te - Amplifier noise (K) (Receiver) 
%       ep(12) = F - Receiver Noise Figure (Receiver) 
%       ep(13) = G_t - Low noise amplifier gain [dB] 
%       ep(14) = Lt - Cable loss [dB] (Transmitter) 
%       ep(15) = Tet - Amplifier noise (Transmitter) (K) 
%       ep(16) = Ft - Receiver Noise Figure (Transmitter) 
%       ep(17) = T_ant_t - Antenna Noise Temperature (K) (Transmitter) 
%        
%    *flag - Flag used to change between system types e.g from TTC DPSK modulation to TTC FSK 
modulation 
% 
%   OUTPUT 
%       Mttc - TT&C system mass (kg) 
%       Pttc - TT&C system power consumption (W) 
%       Bttc - TT&C system data output (kb) 
%       EbNo - Received energy per bit to noise density ratio (dB) 
%       Tant - Type of antenna 
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% 
%     FUNCTION CALLS 
%          none 
% 
%     REFERENCES 
% [1] Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. Wertz, 
%     Microcosm Press & Kluwer Academic Publishers 
% [2] Antenna Theory Analysis and Design 3rd ed. , Constantine A. Balanis, Wiley-Interscience publications 
% [3] Satellite Communications 3rd ed. , Dennis Roddy, McGraw-Hill 
% [4] Tutorial on Basic Link Budget Analysis, intersil(TM), Application Note 9804, Jum Zyren, Al Petrick, June 
1998 
% [5] www.atmmicrowave.com/wave-horn.html 
% [6] http://www2.rfsworld.com/RFS_Edition3/pdfs/Microwave_Solid_Antennas_267-322.pdf 
% [7] Satellite Technology, Principles and Applications, 2nd ed. , Anil K. 
%     Maini, Varsha Agrawal, John Wiley & Sons Ltd., 
 

%% Internal functions called 
[EbNo,Mant,plink,T_data,Tant] = link(BER,Mod,B,Ta,r,f,Gr,theta_f,Gh,e,G,L,G_t,Lt,Te,F,Tet,Ft,T_ant_t,nt,Gt) 
 
[Mamp,M_case,Pamp] = amp(plink,T,CMR) 
 
 
%% Total Mass, Power, Data 
Mttc = M_case + Mamp + Mant 
 
Pttc = Pamp 
 
Bttc = T_data 
 
 

As seen above, the ttc.m is divided into individual functions, each one representing a logical block 

of the UML model.  



 

83 

 

14.5. SpaceART TT&C System model description 

14.5.1. Link 

[EbNo,Mant,plink,T_data,Tant] = link(BER,Mod,B,Ta,r,f,Gr,theta_f,Gh,e,G,L,G_t,Lt,Te,F,Tet,Ft,T_ant_t,nt,Gt) 
 

The “Link” function models the communication link characteristics based on specific inputs like the 

Bit Error Rate (BER), modulation (Mod), and ground station antenna gain (Gr). It outputs the mass 

of the antenna that can be used (Mant), the total amount of data to be transmitted (T_data) as well 

as the required link power (plink), the received energy per bit to noise density ratio (EbNo), and the 

type of antenna. Initially, the received energy per bit to noise density ratio (EbNo) is calculated, 

utilizing the information included in Figure 2. Using spline interpolation, the corresponding EbNo 

output is set based on the Modulation (Mod) and Bit Error Rate (BER) external inputs.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The total amount of data to be transmitted Tdata is calculated as follows 

 

  310 bdataT = B   (127) 

 

where B – Total amount of data (kb) passed from the C&DH (Command & Data Handling) system 

to the TT&C. After inputting the access time (Ta) in seconds, then the required data rate Rt is 

calculated based on Eq.(127) as follows 

 
 

 1010 log data
t

a aq

T
R = dB

T –T

 
 
 
 

 (128) 

where Tdata – The total amount of data to be transmitted (kb) deriving from Eq.(127), Ta – Access 

time (s), Taq – Target acquisition time (s) 

 

Figure 16 Bit Error Probability as a function of 

Eb/No 
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The Signal to Noise Ratio SNratio is then calculated in order to derive the Carrier to Noise Ratio 

CNratio as follows 

  ratioSN EbNo  = dB  (129) 

and         

  ratio ratioCN SN t= +R dB  (130) 

where EbNo – Received energy per bit to noise density ratio (dB) deriving from Figure 2, Rt – 

Required data rate deriving from Eq.(128). 

The overall losses are then calculated using a series of mathematical equations. Firstly, the free 

space losses FSL are calculated. The user inputs ground station distance r as well as the frequency f 

in order for the model to calculate FSL as follows 

  10 10FS 32.4 20 log 20 log dBL = + r+ f  (131) 

where r – Distance from ground station (km), f – Frequency (MHz). The Orbit block outputs the 

environmental parameter θf (Faraday rotation) which is passed as an external TT&C input leading 

to the calculation of the polarisation mismatch (Ionospheric) losses PL as follows: 

    1020 log cos dBL fP = – θ  (132) 

 

where θf – Faraday rotation (degrees). The atmospheric losses AL are set based on the corresponding 

ground station altitude external input Gh using Table 8 below 

 

Table 8: Atmospheric losses' change with ground station altitude 

Gh (km) AL (dB) 

 -2 to 2 0.04 

 2.1 to 6 0.025 

 6.1 to 10 0.008 

 10.1 to 14 0.004 

 14.1 to 18 0.001 

 

Furthermore since the horizon elevation also affects the atmospheric losses, the atmospheric losses  

including the horizon elevation increase ALH are calculated based on the horizon elevation external 

input e as follows  

  LH dB
sin

LA
A =

e
 (133) 

where e – horizon elevation (degrees), AL – Atmospheric losses (dB) deriving from Table 8. 

Based on the horizon elevation input e, the Rain absorption losses RaL are then calculated by 

utilizing the data included in Figure 17. 
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Furthermore the worst case losses for the Feeder loss FL, the Antenna misalignment loss AML and 

the Implementation loss IL are taken into account as follows  

Table 9: Worst case losses 

FL  [dB] AML [dB] IL  [dB] 

2 0.5 2 

 

Summing up all the individual losses provides the total losses LTOTAL for the given system as 

follows: 

  TOTAL FS AM dBL L L LH L aL LL = +F + + A +P +R +I  (134) 

 

where FSL – Free space losses (dB) deriving from Eq. (131),  FL – Feeder loss (dB) deriving from 

Table 9, AML – Antenna misalignment loss (dB) deriving from Table 9, ALH – Atmospheric losses  

including the horizon elevation increase (dB) deriving from Eq. (133), PL – Polarisation mismatch 

(Ionospheric) losses (dB) deriving from Eq.(132), RaL – Rain absorption losses (dB) deriving from 

Figure 17, IL – Implementation loss (dB) deriving from Table 9. 

Following the losses calculations, the system noise calculations are introduced. By interpolating a 

number of inputs, namely possible horizon elevations ranging from 1 to 90 degrees, possible 

frequencies ranging from 0.1 to 20 GHz and antenna temperatures ranging from 2 to 8000 Kelvin 

based on Figure 18, the Link function calculates the antenna noise temperature ANtemp.  

 

 

Figure 17 Rain absorption losses depending on the horizon elevation 
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ANtemp is then utilized in order to derive the receiver noise figure RNfig as follows: 

 
       

 
/10 /10 /10

fig temp /10 /10

10 –1 10 10 –1
RN AN

10 10

L L F

o o

e G G

k k
= +T + + K  (135) 

  

where ANtemp – Antenna noise temperature (K), Te – Amplifier noise (K), L – Cable loss (dB), G – 

Low noise amplifier gain (dB), F – Receiver noise figure (dB) ,  ko = 290 (K). Then the transmitter 

noise calculations are introduced. The first calculation refers to the system noise temperature Stemp 

based on the following equation: 

  temp tempT

/10 /10 /10
10 –1 10 10 –1

AT
/10 /10

10 10

L L F
T T T

o o

eT
G G

T T

k k

S = +T + + K

        
        
        

 (136) 

where ATtempT – Antenna noise temperature (K), TeT – Amplifier noise (K), LT – Cable loss (dB), GT 

– Low noise amplifier gain (dB), FT – Receiver noise figure (dB), ko = 290 (K). The rain noise Nrain 

is then calculated as follows 

  rain RA/10

1
1–

10
oN = k K

 
 
 

 (137) 

where RA – Rain absorption (dB), ko = 290 (K). The total system noise (TSnoise) is then calculated as 

follows: 

    noise 10 figTS 10log RN dBtemp rain= +S + N  (138) 

where RNfig – Receiver noise figure (K) deriving from Eq. (9),  Stemp – System temperature (K) 

deriving from Eq. (10), Nrain – Rain noise (K) deriving from Eq. (11).  The receiving system 

performance (G/T) is then calculated as follows 

 1

noise/ Gr–TS dBKG T =     (139) 

Figure 18: Irreducible noise temperature of an ideal ground-based 

antenna 
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where Gr - Ground station receiver gain (dB), TSnoise – Total system noise (dB). The Equivalent 

Isotropic Radiated Power (EIRP) is calculated as follows: 

  ratioEIRP CN / dBWTOTAL= G T +L k   (140) 

 

where CNratio – Carrier to Noise Ratio (dBHz),  G/T – Receiving system performance (dBK
-1

), 

LTOTAL – Total losses (dB) deriving from Eq.(134),  k = 228.6 (dB).  

Following the transmitter noise calculations, the antenna design is introduced. Currently the 

function models the aperture antennas, such as horns and parabolic antennas, which share a 

common behaviour and a similar expression. The antenna type is chosen on the basis of the required 

antenna gain, which is a design parameter. It is well know that the best aperture antenna for gains ≤ 

20 dB belongs to the horn type set, therefore for gains ≤ 20 dB the horn type is selected and the 

mass of the antenna is computed as follows. 

The antenna characteristic length (m) (it is the diameter of the normal conical section for conical 

horns, and an equivalent diameter for pyramidal horns) is 

 

0.5

1010
tG

ant

eff

c
D

n n

 
 
 
 
 

 (141) 

where neff – antenna efficiency (%), c =  8103  (m/s), n = 
610f  (Hz), then the lateral surface of 

the horn, SLAT [m
2
], is computed as a conical surface 

 

 
2

2

2
4

antD ant
LAT horn

D
S L   (142) 

and the mass, Mant,horn [kg], is 

 ,ant horn LAT AM S   (143) 

where L – the length of the horn antenna, it can be assumed 2 Dant from available data, and ρA – the 

surface density [kg/m
2
], which has a mean value of approximately 15 (from available data). In 

analogous manner, if the gain of the antenna is > 20 dB, the parabola antenna is selected, the 

diameter of the antenna is computed by the Eq. (141), and, in this case, the mass of the antenna, 

Mant,par [kg], is: 

 
2

, 4
antD

ant par AM    (144) 

where ρA – the surface density [kg/m
2
], has a typical value of 10, for parabolas as well. When more 

types of antenna will be modeled, the optimal ranges of working gains will probably be 

overlapping. In this case the code will chose the type of antenna on the basis of the mass: the 

antenna type requiring less mass will be chosen. 

Following the antenna design calculations, the required RF link power is calculated. At first, the 

required power Pld is calculated in dBW as follows 

  Ld EIRP–G dBWtP =  (145) 

where EIRP – Equivalent Isotropic Radiated Power (dBW) deriving from Eq.(140), Gt is a design 

parameter that defines the selected antenna gain (dB). The conversion of PLd to Watts PL is done as 

follows: 

 
 

 Ld
/10

10
P

linkp = W  (146) 

where PLd – Required power (dBW) deriving from Eq.(145).  
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14.5.2. Amp 

[Mamp,M_case,Pamp] = amp(plink,T,CMR) 
 
The Amp function calculates the mass Mamp, the power output Pamp as well as the mass of the case 

Mcase of the Amplifier of the TT&C system, utilizing inputs such as the required power plink internal 

input deriving from Eq. (146),  the type of amplifier T and so on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By interpolating the data included in Figure 19, the function derives the Mamp and Pamp values based 

on the required power plink as well as the chosen amplifier type (T). With T  [0, 1], it is possible to 

derive Mamp and Pamp for any kind of amplifier, whose characteristics are between TWTA type (T = 

0) and solid state type (T = 1). Finally, the casing mass Mcase is computed as a fraction of the 

amplifier mass:  

  case kgampM = M CMR  (147) 

where CMR is the ratio between the mass of the case and the amplifier mass. 

 

 

Figure 19: Satellite Transmitter Power and Mass vs RF 

Power Output 
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14.6. Using LISA PathFinder (LPF) as test case for the SpaceART 
TT&C system model: 

 

The
 
LPF communications subsystem works at X-band frequency, utilizing two hemispherical 

antennas (for omni directional coverage during LEOP and transfer stages mainly) as well as a 

medium gain horn antenna for L1 communications. 

14.6.1. SpaceART TT&C system model LPF implementation 

SpaceART is using the LPF as a test case in order to validate its TT&C system model. Taking into 

account the mission facts and figures, each input can become a design, uncertain or 

fixed/environmental parameter depending on their definition respectively:  

 

Design parameters are defined as input parameters which can be decided by the designer(s), 

after taking into account several mission factors.  

Fixed parameters (including environmental parameters) are defined as input parameters which 

are already known or given, therefore are considered constants. 

Uncertain parameters are defined as input parameters which cannot be deterministically defined. 

Such parameters can either be design or fixed ones which cannot be defined with absolute 

certainty. 

 

Taking the above definitions into account, the SpaceART TT&C system model inputs are defined 

as follows: 

14.6.2. Link LPF implementation 

 

The Link inputs consist of: 

 

BER – Specified Bit Error Rate → Fixed parameter 

Mod – Modulation selection → 
Design

 parameter 

B – Total amount of data in kilobytes (kb) → C&DH output (internal parameter) 

Ta – Ground station access time in seconds (s) → Environmental/Orbital Parameter 

r – Distance from ground station in kilometres (km)  → Environmental/Orbital Parameter 

f – Frequency in Hertz (Hz) → 
Design

 parameter 

Gr – Ground station receiver gain in decibels (dB) → Environmental Parameter 

theta_f – Faraday rotation in degrees (º) → Environmental/Orbital Parameter 

Gh – Ground station altitude (km) → Environmental/Orbital Parameter 

e – Horizon elevation (º) → Environmental/Orbital Parameter 

G – Low noise amplifier gain (Receiver) → Environmental Parameter 

L – Cable loss (Receiver) (dB) → Fixed Parameter 

G_t – Low noise amplifier gain (Transmitter) (dB) → Fixed Parameter 
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Lt – Cable loss (Transmitter) (dB) → Fixed Parameter 

Te – Amplifier noise (Receiver) (k) → Fixed parameter 

F – Receiver noise figure (dB) → Fixed parameter 

Tet – Amplifier noise (Transmitter) (k) → Fixed parameter 

Ft – Transmitter noise figure (dB) → Fixed parameter 

T_ant_t – Antenna noise temperature (k) → Fixed parameter 

nt – Antenna efficiency (%)→Uncertain parameter 

Gt – Antenna gain (dB) → 
Design

 parameter 

 

14.6.3. Amp LPF implementation 

 

The Amp inputs consist of: 

 

T – Amplifier type selection → 
Design

 parameter 

plink – Required link power in Watts (W) → Link internal output  

CMR - Amplifier casing mass ratio → Uncertain parameter 

 

14.6.4. References 

 

Space Mission Analysis and Design 3rd ed. , Wiley J. Larson, James R. Wertz, Microcosm 

Press & Kluwer Academic Publishers  

Antenna Theory Analysis and Design 3rd ed. , Constantine A. Balanis, Wiley-Interscience 

publications 

Satellite Communications 3rd ed. , Dennis Roddy, McGraw-Hill 

Tutorial on Basic Link Budget Analysis, intersil ™, Application Note 9804, Jum Zyren, Al 

Petrick, June 1998 

www.atmmicrowave.com/wave-horn.html 

http://www2.rfsworld.com/RFS_Edition3/pdfs/Microwave_Solid_Antennas_267-322.pdf 

 



D
Mars science mission data

Figure D.1 is indicative of the dynamic nature of a schedule. In this graphic we see
basic science operations of 4 instruments for 4 days during a particular time period
(20-24 November 2016). Science and housekeeping operations differ depending on
the time period, science requests and orbital attitude required.
In Figures D.2, D.3 we notice the variation in Earth / Sun distance from the space-
craft per time unit, which affects its power consumption (longer distance equals
to higher TTC consumption) and generation (solar array output varies with dis-
tance and solar radiation angle of incidence) respectively. Similarly, eclipse dura-
tion (stored energy must suffice for the eclipse duration plus a safety margin) and
Earth occultation (telecommunications not possible, mass storage must suffice at
least until next telecommunications window plus safety margin) from the Martian
disk.
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Figure D.1: ExoMars science orbit 1; A graphic summarising when the TGO
instruments were operating during the 20 - 24 November orbit (image credit:
ESA/Roscosmos/ExoMars/BIRA)
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https://directory.eoportal.org/web/eoportal/satellite-missions/e/exomars


Figure D.2: MEX distance from Sun and Earth per orbit for the span of a month.
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Figure D.3: MEX Solar eclipses and Earth occultations per orbit for a month.
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E
PROBA-2 ground station visibility

Notice the variation occurring in two weekly ground station visibilities for differ-
ent calendar periods. A similar kind of variation occurs on all types of scientific
operations for instance topographic multi-spectral imaging, laser altimetry and so
on.
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Figure E.1: PROBA-2 ground stations’ visibility for the third week of March
2013. [Science Center (P2SC), 2009]
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Figure E.2: PROBA-2 ground stations’ visibility for the third week of April
2013. [Science Center (P2SC), 2009]
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F
Subystem models’ setup parameters
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G
Statistical analysis

G.1 Choosing the Correct Statistical Test

The UCLA Institute for Digital Research and Education (IDRE) has published
general guidelines for choosing a statistical analysis [Leeper, 2011]. It is a helpful
aid in choosing which analysis can be used, depending on the experiment at hand.
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G.2 Post-hoc analysis

G.2.1 Chapter 4

Using the Friedman test, we inferred that in the iteration-constrained runs and the
cases run for 8 hours, at least one algorithm has a different median from the rest.
We therefore rejected the null hypothesis H0 that all groups come from the same
distribution, sharing the same median. To find which algorithm(s) are significantly
different in fitness for the iteration-constrained case, we present the corresponding
post-hoc analysis below. The time-constrained case comprises a small sample size,
thus we infer results by observation of boxplots in Figure 4.24.

Table G.2: Nemenyi post-hoc test (pt. 1) of iteration-constrained runs. Significant
results in bold

Algorithm ACS ACS +LS GA GA +LS sGA sGA +LS RAND RAND +LS
ACS +LS 1.00000 - - - - - - -
GA 0.00380 0.00812 - - - - - -
GA +LS 0.00073 0.00170 1.00000 - - - - -
sGA 1.4e-10 5.4e-10 0.17608 0.39512 - - - -
sGA +LS 3.2e-10 1.2e-09 0.23165 0.47975 1.00000 - - -
RAND 6.3e-05 2.3e-05 2.0e-13 1.3e-13 < 2e-16 < 2e-16 - -
RAND +LS 0.02002 0.00995 7.0e-13 2.1e-13 1.4e-13 1.5e-13 0.99553 -
SA 0.91838 0.96753 0.59994 0.32404 1.3e-05 2.3e-05 1.2e-09 4.7e-06
SA +LS 0.77199 0.87608 0.80428 0.53566 6.0e-05 0.00011 1.5e-10 8.5e-07
sSA 9.9e-12 4.1e-11 0.06547 0.18540 1.00000 1.00000 < 2e-16 4.6e-14
sSA +LS 9.9e-12 4.1e-11 0.06547 0.18540 1.00000 1.00000 < 2e-16 4.6e-14
DE 0.61589 0.47186 1.5e-08 1.1e-09 1.4e-13 1.6e-13 0.33084 0.99210
DE +LS 0.88546 0.78519 2.3e-07 2.0e-08 1.1e-13 1.2e-13 0.12015 0.91083
GREEDY 9.0e-10 2.4e-10 1.4e-13 < 2e-16 < 2e-16 < 2e-16 0.90283 0.11343
GREEDY +LS 3.7e-06 1.2e-06 1.1e-13 1.9e-13 < 2e-16 < 2e-16 1.00000 0.90283

Table G.3: Nemenyi post-hoc test (pt. 2) of iteration-constrained runs. Significant
results in bold

Algorithm SA SA +LS sSA sSA +LS DE DE +LS GREEDY
ACS +LS - - - - - - -
GA - - - - - - -
GA +LS - - - - - - -
sGA - - - - - - -
sGA +LS - - - - - - -
RAND - - - - - - -
RAND +LS - - - - - - -
SA - - - - - - -
SA +LS 1.00000 - - - - - -
sSA 1.7e-06 8.9e-06 - - - - -
sSA +LS 1.7e-06 8.9e-06 1.00000 - - - -
DE 0.00415 0.00118 1.7e-13 1.7e-13 - - -
DE +LS 0.02157 0.00718 1.6e-13 1.6e-13 1.00000 - -
GREEDY 1.4e-13 1.1e-13 < 2e-16 < 2e-16 0.00063 7.8e-05 -
GREEDY +LS 2.8e-11 3.0e-12 < 2e-16 < 2e-16 0.09222 0.02323 0.99553
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