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Abstract

This PhD project deals with the Modelling of Cascading Events in Power Systems and

their Online Identification with Machine Learning, considering the integration of Re-

newable Energy Sources. Cascading events involve highly complex dynamic phenomena

and in some cases can pose significant challenges to the stability and reliability of power

grids, leading even to blackouts. The intermittent nature of renewable generation intro-

duces additional complexities, as the system dynamic behavior following a contingency

becomes more unpredictable. Consequently, there is an increasing need for cascading

event identification methods that can effectively handle these emerging challenges and

ensure secure network operation.

Machine Learning methods can extract complex relationships from power system

data, by capturing the underlying dynamics, offering a promising tool for the accurate

and timely identification of the online system state. In addition, due to the extensive

installation of Phasor Measurement Units in modern power systems, it is possible to

acquire measurement data related to electrical system variables in close-to-real time.

The thesis first delves into the understanding of cascading events appearance, as

defined by the discrete action of protection devices, using detailed dynamic simulations

and considering uncertainties associated with network operating conditions, contingen-

cies and renewable generation. To address the online nature of the problem, supervised

machine learning methods that utilize measurement data are developed. Different con-

temporary machine learning approaches are investigated, to identify the most suitable

techniques for the detection of the appearance of cascading events, formulated as a

binary classification problem, and the prediction of the reason of the upcoming cas-

cading event, formulated as a multi-class classification problem. Furthermore, this
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thesis explores the challenges associated with the application of machine learning mod-

els on power system data, such as the online inference time, class imbalance, practical

considerations related to measurement data and investigates techniques for model ex-

plainability to enhance the trustworthiness of the developed models.

The contributions of this thesis lie in the development of machine learning-based

techniques for online identification of cascading events in power systems, enabling more

proactive and efficient situational awareness. These insights have the potential to sig-

nificantly enhance the resilience and stability of power grids, minimizing the risk of

large-scale blackouts and improving the overall reliability of the system.

Georgios Nakas is sponsored through Engineering & Physical Sciences Research

Council (EPSRC) Research Excellence Award (REA) and is supervised by Dr. Pana-

giotis Papadopoulos and Professor Graeme Burt.
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Chapter 1

Introduction

1.1 Introduction to Research and Motivation

In recent years, the global transition towards a sustainable energy future has witnessed

a remarkable surge in the integration of Renewable Energy Sources (RES), as well as

other power electronic interfaced devices, in numerous countries, including the UK.

This transformative shift towards sustainable energy solutions is driven by a global

effort to combat carbon emissions and mitigate the environmental impact of traditional

energy generation methods which heavily relied on fossil fuels. As a result, Synchronous

Generators (SGs) tend to be displaced by Converter Interfaced Generators (CIGs),

which possess different dynamic attributes.

This wider variation in power system operating conditions and different dynamic

behaviour can potentially lead to unforeseen dynamic interactions which might cause

the appearance of cascading events. Cascading events are low-probability, high-impact

events, the propagation of which can lead to load-shedding events, and in the worst case,

large-scale blackouts, disrupting the electricity supply and resulting into consequences

that can severely impact society [2]. The fast and precise online identification of such

events can provide vital information in exposing network vulnerabilities and designing

appropriate predictive measures or taking corrective measures with higher security to

avoid cascading events from spreading.

The variability and intermittent nature of RES introduce a level of unpredictability
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and complexity, leading to significantly different dynamic behaviour of the power sys-

tem that may vary in a both temporal and spatial manner. RES are usually distributed

across different geographical locations, and their power output can exhibit fluctuations

over time, leading to different generator dispatch patterns and system topologies. The

introduction of new technologies, such as the deployment of energy storage systems,

and the connection of Electric Vehicles (EVs) to distribution grids, bring more un-

certainty to the demand side as well. Combined with the presence of interconnected

networks with High Voltage Direct Current (HVDC) lines and fast evolving market reg-

ulations, the number of possible operational scenarios that require stability assessment

is constantly increasing.

In addition, some CIGs, such as Photovoltaic (PV) arrays, might not rely on me-

chanical generators for power conversion, and their response generated by power elec-

tronic devices demonstrates very fast and non-linear characteristics. This complex

dynamic behaviour appears even in the case of wind generators, where the mechanical

generators operate asynchronously with the network. Based on the aforementioned rea-

sons, the displacement of SGs by RES and the consequent reduction to system inertia

can cause challenges for maintaining power system stability.

The ability of an electrical power system to remain stable following a contingency

is referred to as power system stability [3]. The power system stability is classified into

categories, in order to identify the types of instability involved, and design targeted

preventive or corrective measures. According to the original power system stability

classification [3], the three instability types are the following:

• Rotor angle stability, which refers to the ability of the SGs in a power system to

remain in synchronism after being subjected to a disturbance.

• Voltage stability, which refers to the ability of a power system to maintain steady

voltages at all network buses after being subjected to a disturbance

• Frequency stability, which refers to the ability of a power system to maintain a

steady frequency following a severe disturbance that causes a significant imbalance

between generation and demand.
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The changes in power system operation that the introduction of CIGs has brought,

resulted in a departure from the previously established norms and behavior patterns.

The effect has been of such magnitude that it necessitated the re-establishment of power

system stability. For this reason, in [1] two additional categories have been introduced

to account for the faster dynamic response of RES:

• Converter-driven stability, which refers to the dynamic interactions of the control

systems of power electronic-based components.

• Resonance stability, which refers to subsynchronous resonance related to reso-

nance between series compensation and the mechanical oscillations of the gener-

ator shaft or to purely electrical resonance.

As any type of instability can occur independently of the other types, it is significant

to always consider the overall stability of the power system. The revised power system

stability classification is illustrated in Fig. 1.1.

Power System Stability

Rotor Angle
Stability

Transient Small-
Disturbance

Large-
Disturbance

Voltage
Stability

Frequency
Stability

Small-
Disturbance

Converter-
driven Stability

Resonance
Stability

Fast
Interaction

Slow
Interaction Electrical Torsional

Long TermShort Term Long TermShort Term

Figure 1.1: Revisited Power System Stability Classification [1].

In practice, the protection devices that are installed in power systems might activate

before instability limits are reached, as the thresholds and settings of these devices are

set with a margin of safety. The main objective of protection devices is to isolate

components that do not operate under safe operating conditions in order to leave the

unaffected parts of the system in normal operation. To achieve this, protection devices

monitor the electrical parameters of the network and activate protective measures,

such as circuit breakers. A component outage can cause further outages, leading to a

cascading event sequence. As the examination of previous blackouts in [4] has shown,
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in many cases a singe initial fault has caused a rapid succession of cascading events,

which ultimately resulted in large blackouts.

The analysis of historical transmission outage data in [5] has shown that the evo-

lution of cascading events propagation in time appears in two phases, a slow and a

fast phase, with the fast phase being in the order of minutes and faster by at least

one order of magnitude compared to the slow phase. The rapid evolution of cascading

events during the fast phase requires targeted and swift control actions, which is not

always possible by human operators. It is also worth noting that even though existing

regulations mandate the consideration of cascading events, practical frameworks for

effectively assessing cascading failures are still lacking in development [4]. This cre-

ates the need for more research in preventive and mitigation strategies regarding the

appearance and propagation of cascading events.

The extensive installation of Phasor Measurement Units (PMUs) in modern power

systems, has made it possible to provide data that hold valuable information about the

system dynamics, offering unprecedented visibility into its operational status. PMUs

are devices that can be installed at different locations of transmission systems and pro-

vide real-time measurements of electrical phasor quantities. The time measurements

are synchronized using a common time reference point, usually provided by the Global

Positioning System (GPS). These time synchronized measurements are referred to as

synchrophasors [6]. The main advantage of PMUs is that they can provide detailed in-

formation much faster than SCADA technologies [7], and therefore equip power system

utilities with enhanced monitoring and control capabilities. The utilization of real-time

measurement data provided by PMUs by data-driven methods has the potential to fa-

cilitate the fast prediction of imminent cascading events and enable corrective control

actions, all faster than with human system operators.

As for proper system monitoring PMUs are placed across various locations of a

power grid, they generate large volumes of data, in the format of multivariate time-

series measurements. The high-dimensional data, combined with the inherent complex-

ity and nonlinear temporal characteristics of power systems, create challenges for the

processing and extraction of relevant information from such large datasets, which can
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be computationally intensive. In addition, PMU data might contain noise and missing

values, making the utilization of such data a challenging task.

Artificial Intelligence (AI), and especially Machine Learning (ML), has been gain-

ing significant attention nowadays, as it is incorporated into practical application in

various domains, with electrical power systems being no exception. The integration

of such techniques in power systems has created new possibilities for intelligent situa-

tional awareness and enhanced overall system performance. ML algorithms can extract

valuable insights and learn patterns from vast amounts of data, uncovering predictions

from complex power system dynamics, which was not possible with previous tradi-

tional methods based on statistics and pre-defined rules. Furthermore, when deployed

in an online setting these models can provide predictions with a fast inference time,

enabling power system operators to make informed decisions and take control actions

with improved security.

For the aforementioned reasons, this thesis focuses on the following main points:

• Better understanding of the appearance of cascading events in modern power

systems with RES penetration and on the effective prediction of these events based

on ML techniques and measurement data. More specifically, this PhD project

aims to investigate the causes, the involved mechanisms, and the characteristics

of cascading events, in an effort to identify key factors that contribute to their

occurrence as well as potential network vulnerabilities. This deeper understanding

can facilitate the development of preventive measures that can be set in place and

prevent the occurrence of cascading events.

• The development of effective strategies to predict the appearance of cascading

events. To this end, contemporary ML algorithms are implemented in order to

effectively predict the cascading events that follow the first external contingency

during online application, by utilizing measurement data which can be acquired

by PMUs. The need for interpretability in black-box models applications is also

taken into consideration. A large number of detailed dynamic RMS simulations,

including the action of protection devices, and considering a wide range of sce-
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narios with different levels of renewable energy penetration and system loading,

are conducted to evaluate the performance and effectiveness of the proposed tech-

niques.

• The methods developed in this thesis can also be utilized for planning studies.

Instead of running long time domain simulations, the simulations can be per-

formed for a short time window and then the ML model can be used to predict

the outcome, reducing significantly the computational time needed.

• Ultimately, this thesis aims to provide a set of methods for the mitigation of

risks associated with cascading failures, that can contribute to the reliability and

secure operation of modern power systems, while meeting the increasing demands

of RES penetration.

1.2 Research Methodology

The research work presented in this thesis has been carried out in certain stages through

the course of this PhD program. The initial step was to perform a review of the exist-

ing methods that investigate the modelling of cascading events in power systems and

identify potential contributions. This literature review has revealed that most of the

existing methods have focused on the modelling of cascading events using static meth-

ods [8], [9]. However, recent studies have shown that dynamic simulations can provide

more details about the evolution of cascading events and the mechanisms involved, at

the expense of increased computational effort [10], [11]. Another important observation

has been that some of these methods do not consider the penetration of RES [12], which

is a critical factor that has to be accounted when investigating the secure operation of

modern power systems.

Furthermore, through a review of the existing methods for the online identification

of the dynamic system state following a contingency, it has been identified that most of

these methods focus on the online identification of either transient, voltage or frequency

instability events [13], [14], and not on the prediction of cascading events as defined

by the action of protection devices. As revealed from this review, ML-based model
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applications for online power system security using measurement data have shown very

promising results [15], [16].

Based on the previous identified research gaps, first studies focused on the mod-

elling of cascading events in a relatively small, but detailed, transmission network. To

capture the appearance of cascading events, the test system has been augmented with

protection devices and non-synchronous generators that represent the RES penetra-

tion. Dynamic RMS simulations have been performed to capture in detail the system

dynamic behaviour following the initial contingency. Each cascading event is charac-

terized by the reason of the event, the component that trips and the time of the event,

giving the sequence in which the cascading events appear.

The next step was to move to a larger test network, in order to be able to identify

more complicated cascading event patterns, and to identify the impact that power

system control mechanisms have on the appearance of cascading events. For this reason,

a larger test model was augmented with the action of protection devices, RES units

and the two control mechanisms examined, Automatic Generation Control (AGC) and

Load Tap Changers (LTCs). In a similar manner, dynamic RMS simulations have been

performed and a thorough analysis of the results has taken place.

Taking into account the insights from the previous steps, supervised ML-based

frameworks have been proposed for the prediction of cascading events before they ap-

pear. The available datasets as generated from the previous steps have been pre-

processed to represent typical PMU measurements. It should be noted that only sim-

ulated data have been used. The time-domain simulated measurements have been

interpolated using a typical PMU sampling rate. Experiments using data with added

noise and missing features, which can be challenges associated with PMU data, have

been conducted in order to highlight the suitability of the proposed framework for

real-life applications. Techniques to address the highly imbalanced datasets, the large

size of data and to reduce the inference time have been employed. Furthermore, ex-

plainability methods that can provide information about which power system features

are important for the ML models prediction are applied. The proposed frameworks

have been evaluated using commonly applied metrics for each task (e.g. regression,
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binary classification, multi-class classification) as identified from relevant literature,

paying also particular attention to the power systems application context (e.g. how

wind generation affects the model performance).

1.3 Thesis Contributions

The research work presented in this thesis focuses on the modelling of cascading events

using dynamic simulations, and on the online identification of cascading events using

measurement data. The key contributions of this thesis are outlined below:

• The development of a modelling approach and analysis for the characterization

of cascading events in power systems with RES and protection devices. A large

number of simulations is performed on a detailed dynamic system and the cascad-

ing event sequences that appear are identified and characterized by the time, the

components, and the reason of trippings involved. The effect that Automatic Gen-

eration Control (AGC), a frequency related mechanism, and Load Tap Changers

(LTC), a voltage related mechanism, have on the appearance of cascading events

is also identified.

• A methodology for interpretable predictions of the appearance of cascading events

using ML algorithms by utilizing the initial operating condition values during

steady-state grid operation. An explainable AI technique, SHapley Additive ex-

Planations (SHAP), is utilized to provide further insights about the decision-

making process of the ML models. This aims to enhance the trustworthiness of

these models and their widespread use in system monitoring and control opera-

tion.

• A framework for the online identification of the appearance of cascading event

utilizing time-series measurements that are available from PMUs. Deep Learning

models that can handle sequential data and have a fast inference time (in the range

of 42ms) are implemented in order to predict if a cascading event will appear or

not, while considering practical aspects related to PMUs, such as network delays,
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noisy signals and missing features.

• A method for the online identification of the reason of the cascading event that

follows in a sequence, utilizing moving time-windows. In this case, the specific

reason for the next cascading event in a sequence is predicted, which can pro-

vide more information to system operators. Techniques to address the highly

imbalanced dataset, reduce the inference time and the method application on a

different system topology are showcased.

1.4 Thesis Layout

An overview of the chapters contained in this thesis is presented below:

Chapter 2 presents a detailed literature review of research works focused on the

modelling of cascading events and on the existing methods for the online identification

of security assessment in power systems. The aim of this investigation is to find out

the state-of-the-art of cascading events modelling using dynamics, and to identify what

methods have been so far developed to predict the power system online state following

a disturbance. Furthermore, potential research gaps and opportunities for research

contributions in the context of cascading events are identified. The findings of this

analysis set the ground for the technical work presented in the following chapters.

Chapter 3 presents a framework for the modelling and characterization of cascading

events in power systems with renewable generation. The cascading event patterns that

appear are identified, and each cascading event is characterized by the power system

component that trips, the time of the event and the reason for tripping. The proposed

method is initially applied on a modified version of the Anderson-Fouad 9 bus model,

augmented with renewable generation and protection devices, the action of which can

capture tripping events related to transient, voltage and frequency stability. The se-

quence of cascading events is captured through RMS simulations, considering a wide

range of initial operating conditions. The cascading event patterns that appear are

thoroughly analyzed, based on how many times they appear, the components that are

involved and the type of instability that is involved. Additionally, it is investigated
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how these patterns change according to the amount of wind penetration and system

loading. Next, the impact of Load Tap Changers, a voltage related control mechanism,

and the impact of Automatic Generation Control, a frequency related mechanism, on

the appearance of cascading events is investigated. To achieve this, three scenarios with

and without considering the action of these mechanisms are defined and implemented.

The impact of the two control mechanisms is showcased on a larger network model,

a modified version of the IEEE-39 bus network that includes RES and protection de-

vices. The number and reason of cascading events, the average load loss and the time

between consecutive events are compared to quantify the impact of these mechanisms.

Furthermore, an analysis is conducted on the most common cascading event patterns

and how these differentiate across the defined scenarios.

Chapter 4 investigates the use of various ML models to predict: i) the probability

of cascading events by utilizing initial operating conditions, ii) the appearance or not

of cascading events as a binary classification by including also information about the

initial fault location. Furthermore, an Explainable AI (XAI) technique is utilized to

explain the predictions of the ML model with the best performance. A dataset from

the simulations carried out on the modified version of the IEEE-39 bus test system in

Chapter 3 is used, considering only the values of the initial conditions during steady-

state, before the application of the initiating three-phase fault. Without considering

the initial fault location, regression ML models are trained and evaluated on predicting

the probability of cascading events. Next, the initial fault location is added to the input

features as a discrete event, and the problem is formulated as binary classification, pre-

dicting if cascading events will appear in this case. A permutation feature importance

analysis and the SHAP XAI technique are performed on the best performing model in

order to gain more insights about its decision making process.

Chapter 5 introduces the use of time-series measurement data and ML models with

recurrent architecture to predict the appearance of cascading events in close-to-real

time. Particular focus has been given on the impact that the time window length has

on the prediction model performance. The evaluation metrics as calculated on the test

dataset are presented and discussed, investigating additionally how these change for
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individual operating conditions, in this case system loading and wind penetration. A

permutation feature importance analysis is also carried out in this chapter, to identify

which PMU time-series measurements have the biggest impact on the model predictions.

Taking into consideration practical applications, the model performance is evaluated

with limited availability of measurement data and added noise.

Chapter 6 provides a framework for the online identification of the reason of cascad-

ing event sequences in power systems, by utilizing deep learning models. The method-

ology presented in this chapter utilizes measurement data, as in Chapter 5, but the

problem in this case is formulated as a multi-class classification problem, with the aim

of predicting specifically the reason of the cascading events, and not only if a cascading

event will appear or not. What is more, the formulation considered in this chapter

utilizes moving time windows, to predict the reason of the next cascading event in a

sequence, as they appear in an online setting. The proposed methodology is applied on

the modified version of IEEE-39 bus, with the addition of distance protection relays. In

this study case, an efficient sampling technique is utilized to define the initial operating

conditions, in order to efficiently capture the input variability. The models evaluation

metrics are presented and analyzed, as well as the model performance per cascading

event sequence and on a different system topology.

Finally, Chapter 7 presents an overview of the research work that has been carried

out as part of this thesis and summarizes the key findings and contributions. Further-

more, potential areas of research for future work are highlighted.

1.5 Publications

The following publications have resulted from the research work that is included in this

thesis:

Journal Papers - Leading Author:

• G. A. Nakas, A. Dirik, P. N. Papadopoulos, A. R. R. Matavalam, O. Paul and

D. Tzelepis, ”Online Identification of Cascading Events in Power Systems With

Renewable Generation Using Measurement Data and Machine Learning,” in IEEE
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Access, vol. 11, pp. 72343-72356, 2023, doi: 10.1109/ACCESS.2023.3294472. [17]

Conference Papers - Leading Author:

• G. A. Nakas and P. N. Papadopoulos, ”Investigation of the Impact of Load Tap

Changers and Automatic Generation Control on Cascading Events,” 2021 IEEE

Madrid PowerTech, 2021, pp. 1-6, doi: 10.1109/PowerTech46648.2021.9494775.

[18]

• G. A. Nakas and P. N. Papadopoulos, ”Investigation of Cascading Events in Power

Systems with Renewable Generation,” 2020 IEEE PES Innovative Smart Grid

Technologies Europe (ISGT-Europe), 2020, pp. 211-216, doi: 10.1109/ISGT-

Europe47291.2020.9248818. [19]

Journal Papers - Co-author:

• A. S. C. Leavy, G. A. Nakas and P. N. Papadopoulos, ”A Method for Variance-

Based Sensitivity Analysis of Cascading Failures,” in IEEE Transactions on Power

Delivery, 2022, doi: 10.1109/TPWRD.2022.3199150. [20]

Journal Papers - Leading Author that have been submitted and are currently under

review:

• G. A. Nakas and P. N. Papadopoulos, ”Online Identification of Cascading Event

sequences in Power Systems using Deep Learning,” submitted to IEEE Systems.
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Literature Review

In this Chapter, a literature review is presented, outlining the main points from rep-

resentative studies that focus on two main sections: First literature related to current

methods of modelling cascading events in power systems is reviewed, followed by a

review of the main state-of-the-art methods used for the online identification of the

power system state following a contingency.

2.1 Modelling Cascading Events in Power Systems

In [4], the IEEE Task Force on Understanding, Prediction, Mitigation, and Restora-

tion of Cascading Failures analytically describes the state-of-the-art methodologies for

cascading event analysis, as well as the main challenges involved. It is highlighted

that cascading events can be impacted to a great extent by the system state, and the

action of the many power system mechanisms that can cause subsequent cascades. Fur-

thermore, recent changes in power systems operation, such as the uncertainty due to

wind generation and rapid evolving electricity market policies, can contribute to higher

risk of cascading events, creating the need for understanding better the appearance of

cascades. It is also noted that based on historical data, a lot of large blackouts com-

prised of cascading event sequences that originated from a single initial contingency.

Based on the results of this thorough review, the authors conclude that effective tools

for the assessment and mitigation of large cascading sequences have not yet been well
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developed.

The IEEE working group on cascading failures has presented in [2] the main ap-

proaches for the validation of cascading failure tools, as well as directions for future

work. It is emphasized that the analysis of cascading failures is a very challenging task,

because of the many complicated involved mechanisms and interactions during diverse

time scales. For this reason, it is of significant importance to include the accurate

modelling of such mechanisms in the test models used for cascading failure analysis.

More specifically, the modelling of protection devices, the accurate definition of the

initial network conditions and the SGs dispatch as defined by the generator cost, while

respecting power flow constraints, are key aspects that need to be considered. Further-

more, through cascading event studies, statistics and metrics regarding the patterns

of cascades that appear need to be provided. It is concluded that further research is

needed for the definition of the aspects and the level of detail that need to be modelled

in a test system for cascading event analysis.

In [8] a method for the identification of sequence of cascades that lead to catas-

trophic failures is presented. For each contingency a severity index is calculated, based

on voltage instability, active and reactive power margins, and frequency deviation.

The severity indices are created and evaluated using a load flow model that takes

into account frequency and voltage dependencies. Next, pattern recognition and fuzzy

estimation are utilized to identify the most probable failure sequences for various op-

erating conditions. The proposed method is showcased on the IEEE 39-bus system

and on the 390-bus Northern Region State Electricity Board (NREB) system, and the

results present an analysis of the identified collapse sequences. Some of the limitations

of this method is that transient phenomena are not considered, and that the method

can not identify the events with low risk, therefore not all the possible cascading event

sequences are taken into account.

Another approach using static simulations is described in [21]. A security-constrained

optimal power flow (SCOPF) problem is solved by balancing the pre-fault security cost

with the expected corrective actions cost and the cost of loss of energy due to the

possible outages. The proposed framework assesses both generation and transmission
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N-k contingencies and is applied on a 2-bus system. The results show that common

mode outage significantly impact the contingency probabilities, affecting subsequently

the security optimal level.

The framework introduced in [9] proposes a stochastic “Random Chemistry” algo-

rithm for the identification of sets of multiple contingencies that result in system failure.

The proposed stochastic algorithm initially considers a large set of contingencies that

cause cascading failures. Next, subsets of the original set are randomly picked up and

simulated until a smaller subset that causes cascading failures is found. This subset

then takes the place of the original set and the same procedure is repeated until the min-

imum number of contingencies that causes cascading failures is found. This framework

is showcased on the Polish transmission system with 2383 buses using DC power-flows.

According to the results, random search requires at least 85 times more simulations

compared to the random chemistry approach for the identification of cascades. In this

method, it is assumed that the multiple contingencies appear simultaneously, while

in reality they can occur in various timings. Furthermore, the utilized power system

simulator can capture only a subset of the mechanisms involved in cascading failures.

A different approach using the same simulator and case data as in [9] is presented

in [22], in which the results from many cascading simulations are used to create an

influence graph that provides information on how the cascades evolve in a particular

system. The cascading failures propagate locally on the generated influence graph,

which is different compared to the original network structure. Results show that the

cascading events do follow patterns, the identification of which is useful in reducing

the risk of large cascading blackouts. Furthermore, with the proposed method critical

components, the tripping of which can lead to blackouts, can be identified. Since this

is a statistical method, several assumptions have been made, such as the assumption

that multiple cascades propagate independently during a generation and assumptions

related to the model parameters and data size. The authors conclude that future work

is needed for the evaluation of these assumptions.

The method presented in [23] is based again on the generation of an influence

graph, combined with Markov chain, to provide information about the mitigation of
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cascades. In this case, the method is illustrated on historical line outage data. The

results showcase that the proposed method can accurately calculate the probability for

cascading sequences of different sizes and identify critical lines.

In [24], the statistics of cascades are estimated using branching processes. The

proposed methodology is evaluated on the IEEE-118 bus and NPGC 500 bus systems,

using DC and AC load flow OPA simulations. The simulated cascading outage data

are used to estimate the parameters of the branching process models, which can then

be used to estimate the distribution of lines tripped and the load shed. This way, the

propagation size can be estimated by performing fewer simulations.

The previous methods that focus on the modelling of cascading events are show-

cased using static simulations, which can capture only a set of the cascading event

mechanisms. The study in [25] proposes a model that combines DC power flows with

dynamic elements, allowing for more accurate representation of under-frequency load

shedding. While this method can increase the modelling detail, it still does not capture

phenomena like voltage collapse.

Dynamic simulations, although more computationally intensive, can provide more

details about the appearance of cascading events, compared to static methods. A

comparison between static and time domain simulations running on the same test

system and applying the same contingencies is presented in [10]. The results reveal a

good consistency in the early steps of the simulation, however the last evolutions are

not accurately caught by the static model because of the occurrence of fast instability

events.

A similar behaviour is observed in [11], where the authors present the COSMIC

dynamic model and compare it to a quasi-static model. The results showcase that both

models behave similarly during the first events of a cascading sequence, however the

later stages of the sequence are only captured by the dynamic model. In [26] a static

simulator is compared to a novel dynamic one, based on the simulations on the IEEE-39

bus, a-200 bus and a 2000-bus network model. Static simulations were found to un-

derestimate the power loss, especially on larger models. In addition, the more complex

transient behaviours observed in larger networks could not be captured by the static
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model. The authors further expand on their work in [27], and introduce a mitigation

measure for cascading failures by identifying critical lines through a sensitivity index

and limiting the power flow on these critical lines.

A search algorithm for identifying plausible harmful N−k contingencies is presented

in [12]. Starting from an initially defined list that contains contingency sequences, new

contingencies that may lead to cascades are identified, based on whether a contingency

sequence leads to cases of instability or new system steady-state. Dynamic simulations

are performed on the 32-bus IEEE Nordic Test System, with the addition of protection

devices, considering up to three contingencies. Examples of the identified cascading

event sequences that cause instability or non-viable system conditions, after applying

initial contingencies, are analytically described. The proposed method however con-

siders only conventional generation, not taking into account challenges associated with

RES penetration.

The importance of transient dynamical behaviour on the appearance of cascading

events is highlighted in [28], using the swing equation to represent system dynamics and

eventually investigating line failures and identifying the critical lines in the network.

The method in [29] introduces a risk-based security assessment to investigate the

reliability of power systems with high penetration of RES, focusing on transient insta-

bility events. The proposed method is applied on a synthetic test system with type-4

wind turbines that represent the network RES generation and protection devices. The

results show that this methodology can identify critical operating conditions, informa-

tion which can be subsequently used to re-define the standards for transient stability.

The overview of power system dynamics and protection devices presented in [30]

identifies that further research is needed in the area of modelling using dynamic models

to capture the fast cascading sequences, with adequate representation of protection

devices, which drive the cascading events appearance. Furthermore, the inclusion in

the simulations of RES models with tripping mechanisms, that are more sensitive to

instabilities, is a key factor.
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2.2 Online Identification of Instability Events in Power

Systems.

In modern power systems, the uncertainty that comes with the integration of renewable

generation makes it not feasible to address the problem of online dynamic security in

real-time by a brute-force approach, as it is not possible to perform timely dynamic

simulations for every possible pre-fault network operating condition, involving different

loading and wind penetration states. For this reason, intelligent approaches which have

the ability to predict uncertainty with the use of real-time measurement data are being

investigated to ensure the secure operation of modern power systems with increasing

renewable generation.

The computational platform developed within the iTesla Project for improving the

network operational security under load and renewable generation related uncertainty is

described in [13]. This platform, by incorporating ML techniques, can be used for online

static and dynamic security assessment and can also provide possible control actions in

order to avoid instability cases with the use of optimization tools. The application of

the proposed framework is showcased on a version of the French HV network, focusing

on the overload security problem. The results highlight the critical significance of

representing forecast uncertainty, as seemingly stable forecast network conditions can

actually lead to unstable cases that must be proactively addressed. The offline phase

of this platform is presented in [31], where a large amount of dynamic simulations,

for various operating conditions and contingencies, is performed and decision trees are

used to extract security rules.

In [32] the authors present an online transient stability assessment method for pre-

diction of cases with instability. The proposed method is based on the generation of

bitmaps consisting of trajectories acquired from PMUs of generators, which are used

to train and evaluate a convolutional neural network (CNN). The model can predict

stable, aperiodic unstable or oscillatory unstable cases. The proposed method is show-

cased on the New England 39-bus model and on the Western Electricity Coordinating

Council (WECC) 179-bus system, performing with 97.7% and 98.1% accuracy respec-
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tively, outperforming other ML classifiers, such as support vector machine, decision

tree and ensemble methods. Moreover, experiments with noisy PMU signals show

small reduction in model performance.

A similar approach using a CNN model is presented in [33], this time applied on

small-signal stability. The state of the power system is transformed into images, by

mapping the active power, reactive power and voltage (PQV), to RGB channels. The

dataset consists of simulations performed on the NESTA 162-bus system, split into 70%-

10%-20% for training, validation and test sets respectively. According to the results,

the model performs with an accuracy higher than 98%, and with an inference time over

255 times faster than traditional small-signal stability analysis.

A probabilistic framework for online identification of power system dynamic be-

haviour, considering the impact of RES penetration is presented in [14]. The proposed

methodology, based on decision trees and hierarchical clustering, identifies the unsta-

ble generator groups and the order in which these groups become unstable. Dynamic

simulations on the 68-bus IEEE model with the addition of renewable generation are

performed for the method application. The accuracy of the decision trees across all

the considered test cases is around 99%, however it can drop at 62% when they are

tested on a different system topology than the one they were trained with. Overall, it

is concluded that the penetration of RES can significantly affect the network dynamic

behaviour.

A data driven framework to address the problem of transient stability assessment

is presented in [34]. The original power system data are transformed into a low-

dimensional representation state using a deep belief network. The deep belief network

is fine-tuned by considering the power system topology and the expected classification

accuracy index during the learning process. Finally, the low-dimensional representation

space is input to a linear model for the classification of unstable and stable cases. The

method application is showcased on a real 1300-bus system in central China. Results

show that the proposed method outperforms a SVM model.

In [15] an online identification method for transient stability assessment using Long

Short-Term Memory (LSTM) network is proposed. The main difference from the pre-
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vious methods is that it allows the model to learn from temporal data dependencies,

therefore capturing more accurately the dynamic evolution of the system. Three differ-

ent study cases are considered, on a 10-machine, on a 162-bus and on a 145-bus network

model. The LSTM-based model achieves an almost perfect accuracy of at least 99.98%,

with an average response time of 1-2 cycles. Also, in this paper a sensitivity study of

the PMU measurements is carried out, using a sequential feature selection algorithm

to find the minimum number and the best locations of PMUs in the test system model.

A LSTM-based model with added spatial attention is also utilized in [16], for short-

term voltage stability assessment. The model learns from both temporal and spatial

information, without the need of prior knowledge about the specific network topology.

The proposed framework is evaluated on the Nordic test system and on a 2000-bus

network, performing with an accuracy of 98.20% and 98.64% respectively. The model

is also evaluated using noisy and missing PMU signals, which are shown to affect only

slightly the model performance.

An approach to online static security assessment using neural networks is presented

in [35]. In this study, two neural network models have been used to assess the system

security for variable operating conditions, including different loading states and N − 1

line contingencies. The dataset consists of load-flow results performed on the IEEE 30-

bus test system. The proposed neural networks, trained with these input data, predict

two performance indices related to active power and voltage.

A hybrid system composed of three components for transient stability prediction is

presented in [36]. A pre-processor splits the synchronous machines into groups, with

each group containing two generators. Each of these groups gets assigned to one neural

network, which is responsible for extracting the mapping function of each group. These

responses are combined by an interpreter which determines the status of the system in a

binary fashion, that is transient instability or stability. The proposed method is applied

on a 4-bus system and on the 39-bus New England system. The authors conclude that

this hybrid approach decreases the probable errors of the neural networks, resulting

in higher accuracy of the final response, and additionally it reduces the computational

burden.
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In [37] a method for detecting early stages of instabilities is proposed. Online

measurements are used to define the parameters of the dynamic equivalent model,

which includes an aggregated generator and controllers of each area. The dynamic

states of the equivalent generators are used to create a real-time transient stability

index, as a measure of the distance to instability. The results show good performance

of the proposed index, however it is tested only on very specific scenarios.

A different approach to transient stability assessment is presented in [38]. Instead of

utilizing ML techniques, this method approaches non-linear dynamics by an analytical

method, using energy functions, a specific form of Lyapunov functions. Unlike the

previous methods using energy functions, in this approach an algorithm is introduced to

choose the best suited function to specific contingency cases. The method is showcased

on a 2-bus, a 9-bus and a 39-bus system. A significant limitation of the proposed

framework is that it can not provide assessment when the system reaches a transiently

unstable state following a disturbance.

Another analytical method for transient stability is explored in [39]. In this study

the authors address the problem of transient stability under stochastic continuous dis-

turbances, which are brought to modern power systems due to sources of uncertain

nature, such as converter connected generators and electric vehicles. A probability

measure of instability is introduced using stochastic averaging, the performance of

which is superior compared to the Monte Carlo simulations, the common approach to

this problem. An assumption during the evaluation process of this method is that all

SGs are subjected to stochastic continuous disturbances with the same magnitude.

An early data-driven methodology for the prediction of blackouts in presented in

[40]. This study introduces a temporal induction algorithm, which is based on decision

trees and comprises of two steps, the definition of the tree structure, followed by the

pruning of the trees, in order to reduce complexity and avoid over-fitting. The proposed

method is evaluated only on the prediction of voltage collapse phenomena, however the

authors emphasize on the flexibility of ML methods.

To address the issue of the interpretability of ML black-box models, Explainable

AI techniques have been applied on the prediction of instabilities. The use of XAI to
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identify risks related to frequency stability is presented in [41]. A gradient boosting

model is used to predict the frequency status and the SHAP XAI technique is applied

to explain the ML model predictions. The proposed framework is demonstrated on

three European networks. According to the results, the use of XAI together with do-

main specific knowledge can reveal key features acting as frequency stability indicators.

Another explainable method that uses SHAP is presented in [42], this time applied on

small-signal stability, considering also the penetration of RES. A random forest regres-

sion model is implemented to predict the critical eigenvalues, and the SHAP method

is used to identify how the input features, that represent topological metrics, affect

the model prediction. The study concludes that the proposed XAI framework can pro-

vide insights about the prediction of small-signal stability by considering the network

topology.

An explainable method for stability assessment is introduced in [43]. In this method,

a neural network is trained to predict the voltage stability margin and the predictions

are explained using Shapley values. The proposed method is demonstrated on the

IEEE-39 bus network, without considering the presentation of RES. The interpretable

method presented is [44] is demonstrated on the same test system, and is focused on

transient stability. In this case, a deep belief network is utilized, the predictions of

which are explained using a local linearization method. A tree-regularization method

is investigated in [45], for the interpretability of a deep neural network that predicts

transient stability. An explainable method for transient stability that considers RES

penetration is introduced in [46], and utilizes a bayesian neural network and Gradient

SHAP.

An intepretable method for the estimation of the Critical Clearing Time is pre-

sented in [47]. Multiple decision tree regressor models are trained using power system

variables at specific network locations, capturing critical locational, physical and eco-

nomic aspects. The permutation feature importance technique is then used to identify

the most important variables for stability margin changes. Based on this information,

targeted interventions at specific locations can be performed. More detailed insights

about the same problem (Critical Clearing Time estimation), are provided in [48]. In
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this paper, the authors utilize neural network models and apply the SHAP method to

provide both local and global explanations.

2.3 Chapter Conclusions

As described above, various methods have been proposed so far for the investigation of

cascading events appearance in power systems. A significant percentage of them focuses

on static simulations, which can capture limited cascading failure mechanisms, such as

line over-loading and long-term voltage instability. The effect of renewable penetration

on cascading events using dynamic models has not yet been thoroughly studied, as in-

tegrating RES units into dynamic models adds significant complexity to the modelling

process, which needs to accurately capture the fast dynamics and interactions between

converter interfaced and conventional power system components. Dynamic simulations,

although more computationally challenging than static, can describe in more detail the

dynamic behaviour of the system after an initial contingency, capturing faster dynamic

phenomena related to transient, frequency and voltage instability. In addition, in order

to capture these cascading events and the effect of renewable penetration on system sta-

bility, it is necessary to develop dynamic models that include detailed implementations

of renewable generation, protection devices and system controls to represent as real-

istically as possible the behaviour of modern power systems. As the uncertainty that

comes with renewable penetration affects the operational states and system topology

in various ways, multiple operating conditions and possible contingencies have to be

considered in order to investigate different cascading event sequences that can possibly

appear and compromise network security. A set of carefully selected papers was chosen

to be reviewed in this Section, as each referenced work represents a strategic contri-

bution to the methodologies and findings on the modelling of cascading events. This

analysis significantly enriches the understanding of this complex phenomenon, while

also revealing the contribution of this Thesis on the modelling of cascading events

using dynamic models and RES penetration.

So far, methods trying to assess the online security of power systems have been

focusing on identifying only early stages of transient, frequency or voltage instability.
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ML methods have been widely used for addressing this problem, as the offline data

provided by static or dynamic simulations can be used to train such algorithms and

eventually predict the behaviour of the system in close-to-real time. As documented

by the methods evaluation, ML algorithms can effectively handle the complexity and

capture the non-linearity inherent in power systems, allowing for accurate and fast

predictions. Compared to analytical methods, data-driven methods can capture detail

to a greater extent, as analytical methods often require predefined assumptions. How-

ever, the scalability and adaptability, when faced with unseen system conditions, of ML

methods needs to be further investigated. The reviewed studies focus on the prediction

of early cases of instability, not accounting for the action of protection devices that

can cause sequences of cascading events. Even more, methods that aim to predict the

reason of the upcoming cascading events have not yet been investigated. This project

aims to utilize ML algorithms and measurement data, in order to predict not only cases

of instability, but the appearance and the reason of cascading events, as defined by the

discrete action of protection devices.

As it can be concluded from the previous review, the modelling, and subsequent

prediction, of cascading events in power systems with renewable generation is a very

challenging task, because of the complex interactions between the involved mechanisms

and the uncertainty in the dynamic behaviour of the system following an initial fault.

Recent rapid advancements in power systems operation necessitate the development of

accurate and robust methodological frameworks for the prevention of blackouts, which

has not yet been achieved. The above mentioned points and identified gaps drive the

main motivation for the technical research work presented in the following Chapters of

this thesis.
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Chapter 3

Modelling and Investigation of

Cascading Events in Power

Systems with Renewable

Generation

3.1 Introduction

3.1.1 Motivation

As highlighted by the previous Chapters, better understanding the nature of cascad-

ing events and the dynamics involved is of significant importance in securing against

and preventing blackouts. So far, in power systems dominated by synchronous gen-

eration, there have been several studies that examine cascading events. However, the

effect that RES penetration has on the appearance of cascading events has not been

adequately addressed. As the identification and investigation of cascading failures is

a very complicated problem because of the large number of possible contingencies and

their combinations, it is important to develop accurate methods and model realistic

test cases, that include data about generator cost, protection systems and power sys-

tem loading, amongst others, as more research towards this direction is needed [2], [4].
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Identifying and investigating cascading failures is a very challenging task, since

dynamics at various timescales as well as discrete actions of protection devices need

to be properly represented. In addition, a large number of possible initial operating

conditions (including different system loading and generation output as dictated by

economic dispatch) and contingencies need to be accounted for [2], [4].

Based on the analysis in 2, the appearance of cascading events in dynamic models

with RES penetration has not been thoroughly investigated, and even more how voltage

or frequency related mechanisms affect these events. In [49] the importance of a model

implementing the action of Load Tap Changers (LTCs) and Over-excitation Limiters

(OELs) that can capture longer voltage-related instability phenomena is discussed.

The LTCs change the ratio of the transformer, in order to keep the distribution voltage

within limits. In some cases that will increase the power losses and require more reactive

power injection. If the generators reactive power output capabilities reach the limits of

the OELs, that will create reactive power imbalance in the system leading to voltage

instability.

In order to realistically capture phenomena of frequency instability, it is significant

to implement the main system components that take part in the power system frequency

control. A sudden change in active power balance may lead to frequency deviation

from the nominal value. Primary frequency control depends mainly on the droops of

the synchronous machine governor, stabilizing the frequency of the system at a value

which may differ from the nominal one. In order to restore the nominal frequency,

secondary frequency control is used. In some systems this might require a manual

intervention by the system operator or this task is performed by Automatic Generation

Control (AGC). Thus, the simulation of the AGC operation [50] that considers the

different dynamic characteristics of the synchronous generators is important in order

to represent secondary frequency control mechanisms.

3.1.2 Contributions

This Chapter introduces a framework for the characterization and investigation of cas-

cading events in power systems using time domain dynamic simulations. The proposed
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framework aims at identifying and analysing the sequence in which these cascading

events occur, the power system components involved and the reason for failure (e.g.

voltage/frequency) while considering a wide range of possible operating conditions de-

fined by economic dispatch. Changes in observed cascading failure patterns for different

operating conditions are identified and investigated, taking also into consideration the

impact of renewable generation. Furthermore, an investigation of the impact that the

action of LTCs, a voltage related mechanism, and AGC, a frequency related mechanism,

have on the way that cascading events propagate in order to highlight the importance

of different modelling aspects on representing cascading failures is carried out. The

framework is demonstrated on a modified version of the Anderson-Fouad 9 bus model

and on a modified version of the IEEE-39 bus model, incorporating renewable gener-

ation and protection devices, capturing phenomena related to voltage, frequency and

transient instability. This information could be vital in exposing network vulnerabili-

ties and designing preventive as well as corrective measures to avoid cascading events

from spreading. In more detail, the contributions of this Chapter include:

• A detailed analysis of the cascading event patterns that appear, based on the

frequency of appearance, the power system components involved, and the rea-

sons for tripping. It is also investigated how the appearance of cascading events

changes for different wind penetration and system loading conditions.

• Identifying the components involved in the cascading events and their reasons

for tripping from a locational aspect perspective, aiming to point out the most

vulverable area of the system.

• Defining three scenarios with and without the action of LTCs and AGC and

comparing the number and reason of cascading events, the average load loss and

the time between consecutive events in order to identify the impact of these

mechanisms. This information could be vital in identifying the importance of the

inclusion of such mechanisms in dynamic modelling of cascading failures.

• Investigating how the number of cascading events and the average load loss are

impacted by the system loading for the defined scenarios. In addition, the most
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common cascading event patterns that appear and how these change across each

scenario are identified.

3.2 Modelling Approach

3.2.1 Procedure Overview

For the initial study conducted in this chapter, a brute force approach is followed to

simulate a wide range of possible operating conditions. This is performed by discretising

multiple variables such as system loading and wind penetration, as described later,

that also include stressed network situations. After considering the initial operating

conditions for load and wind generation, an Optimal Power Flow (OPF) problem is

solved in order to determine the dispatch of conventional generators and consequently

the amount of disconnection of conventional generation.

Dynamic RMS simulations are performed to capture the system response to an

applied contingency. In RMS models the network components are modelled in detail

using differential algebraic equations considering the fundamental frequency values.

The differential equations are solved iteratively in time using a pre-defined time step

and known initial parameter values.

Three phase faults on lines are considered as initiating events in this study. The

faults get cleared by the protection devices included in the model, and in some cases

lead to a cascading event sequence involving possible failures. The cascading events are

caused by tripping of components, due to intentional interventions of the protection de-

vices after the relevant limits are violated (e.g. under-/over- voltage or frequency). The

cascading events are then characterised by the component that is disconnected (cap-

turing locational aspects), the time of disconnection (capturing the sequence of events)

and the reason for disconnection (capturing the potential instability mechanism).

For the possible discretized operating conditions and contingencies that are consid-

ered, the patterns in which the cascading events occur are identified. These patterns

are characterised by metrics relative to frequency of appearance, whether they lead to

a viable or non-viable case, the reason of the first cascading event, the specific compo-
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nents that trip along with the reason for tripping, and how these metrics relate to the

amount of wind penetration and system loading. An overview of the methodology is

presented in Fig. 3.1.

Power System Dynamic model
• Augmented with RES and protection devices

Sampling of 

operating conditions
• Wind generation

• System loading

Sampling of initial 

contingency
• Three-phase fault on line

Run OPF
• Calculate SG disconnection

Characterisation of cascading events
• Component that trips

• Reason for tripping

• Time of the event

Run Dynamic RMS simulation
• Obtain cascading events sequence

Figure 3.1: Flowchart illustrating cascading events identification procedure.

The aim of this characterization and introduction of above mentioned metrics is to

identify vulnerabilities of the network, related to instability mechanisms and areas or

specific components that might lead to onset of cascades for the network under study.

In addition, describing a potential sequence of cascades in detail can offer insights

into strengthening the network to prevent cascades from occurring or designing special

protection schemes to stop them at their onset.

3.2.2 AC OPF and Conventional SG Disconnection

An AC OPF [51] is solved to determine the dispatch of the SGs using the inbuilt OPF

solver function in DIgSILENT PowerFactory. The objective of the OPF problem is the

minimisation of the total synchronous generation cost, while respecting constraints set
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by the active and reactive power limits of the generators, the maximum loading of the

lines and the bus voltage limits. The OPF problem objective is described by:

f = min
∑
g∈G

Cg(Pg) (3.1)

where Cg(Pg) is the individual cost function of generator g ∈ G, where G is the set

of generators in the network. The network constraints are given by:

Pmin,g ≤ Pg ≤ Pmax,g , g ∈ G (3.2)

Qmin,g ≤ Qg ≤ Qmax,g , g ∈ G (3.3)

p2l + q2l ≤ S2
max,l , l ϵ L (3.4)

Vmin,j ≤ Vg,i ≤ Vmin,i , j ϵ B (3.5)

where Equation 3.2 describes the constraints set by the active power limits of the

generators, Equation 3.3 describes the constraints set by the reactive power limits of

the generators, Equation 3.4 describes the constraints set by the maximum loading of

the lines, where L is the set of Lines in the system, and Equation 3.5 describes the

constraints set by bus voltage limits, where B is the set of Buses in the system.

Each SG in the system is allocated either a high, medium, or low cost establishing

a merit order among the SGs. SG1 is allocated a medium, SG2 a low and SG3 a high

incremental cost. According to the study in [52], this cost allocation for this system

leads to a lower Critical Clearing Time, meaning that the network is more stressed in

this configuration. The wind farms operate at 100% of their rated power, which is not

constant but is defined according to the wind generation output in each test case, as

described in Section 3.2.4. The cost function of each SG is described by:

Cg($/hr) = c0 + c1Pg + c2P
2
g (3.6)
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where c0($/hr), c1($/MWh), c2(MW 2h) are the cost coefficients.

The amount of conventional SG disconnection, and consequent inertia variation in

the network, as the wind and load varies, is also considered in a simple manner after

the OPF solution. Each generator is assumed to have 15% additional spare capacity

(headroom) on top of the operating point taken from the OPF solution, assuming this

does not violate its initial nominal capacity [53]. If the resulting nominal capacity is

larger than the initial nominal power of the generator (as described in [54]), then it is

set to the initial nominal value. In this case, there is no room for further disconnection

of conventional generation.

3.2.3 Modified version of the Anderson-Fouad 9 bus model

In order to perform a comprehensive cascading events study, there is need for detailed

representation of related fast and slow dynamics, protection device operation as well

as pre-fault operating conditions affected by cost of generation (in operation driven

by economic dispatch), variation of system load and intermittent renewable generation

[2]. For this purpose, a dynamic RMS model of a test network with high penetration

of RES, including protection devices was used to identify and characterise possible

cascading events. The original Anderson-Fouad 9 bus model has been modified to

represent dynamic phenomena related to voltage, frequency and transient stability

by implementing the actions of protection devices related to over-/under- voltage and

frequency, pole slip protection and distance protection. In addition, the model has been

modified with the addition of automatic voltage regulators, power system stabilizers,

over-excitation limiters, wind generator controllers, as well as tap changer actions and

governors to capture slower voltage related phenomena as well as primary frequency

response actions.

Dynamic RMS simulations are performed in order to model all the system dynamic

components in detail and accurately capture the system response to a contingency.

The power system differential-algebraic equations with known initial values are solved

iteratively in time, using the adaptive time step function of DIgSILENT PowerFactory,

with a maximum step size of 10−3s. The power flow equations are given by:
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Pi(t) =
N∑

n=1

|yi,n| |Vn(t)||Vi(t)| cos(δn(t)− δi(t) + ∠yi,n) (3.7)

Qi(t) = −
N∑

n=1

|yi,n| |Vn(t)||Vi(t)| sin(δn(t)− δi(t) + ∠yi,n) (3.8)

where yi,n is minus the admittance connecting buses i and n, and δi(t) is the voltage

phase.

Electromagnetic Transients (EMT) simulations offer more details than RMS, how-

ever both the computational effort and the modelling complexity are significantly in-

creased. For this reason, dynamic RMS simulations are chosen for this study, as a

balance between detailed modelling and computational effort. In addition, by using

RMS it is possible to capture dynamic phenomena evolving over longer periods of time

(up to 180s in this study).

The modified version of the Anderson-Fouad 9 bus model (Fig. 3.2) [52] developed

in DIgSILENT Powerfactory [55] is used for the initial modelling considerations and

results. The network nominal voltage is 230 kV, and the nominal frequency is 60Hz.

The network total active power demand is 315MW, and the loads are modelled as

balanced three-phase constant impedances in the RMS simulation.

The three synchronous generators (SGs) in the network are represented by full detail

four winding models (6th-order). The 6-th order model is described by the following

equations [56]:

The electrical model of d axis is given by:
T ′
d0 ·

dE′
q

dt = Ef − E′
q −

xd−x′
d

x′
d−x′′

d

(
Eq′ − E′′

q

)
T ′′
d0 ·

dE′′
q

dt = E′
q − E′′

q − (x′d − x′′d)id + T ′′
d0 ·

dE′
q

dt

uq = E′′
q − x′′d · id

(3.9)
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The electrical model of q axis is given by:
T ′
q0 ·

dE′
d

dt = −E′
d −

xq−x′
q

x′
q−x′′

q
(Ed′ − E′′

d )

T ′′
q0 ·

dE′′
d

dt = E′
d − E′′

d + (x′q − x′′q )iq + T ′′
q0 ·

dE′
d

dt

ud = E′′
d − x′′q · iq

(3.10)

The rotor motion is given by:


dδ
dt = ω − 1

mM · dω
dt = Tm − Te −D(ω − 1)

(3.11)

where E′′
d ,E

′′
q ,E

′
d,E

′
q are the voltages behind x′′d, x

′′
q , x

′
d, x

′
q, which are the substran-

sient and transient reactances of d/q axis, T ′′
d0, T

′′
q0, T

′
d0, T

′
q0 are the subtransient and

transient open circuit time constants of d/q axis, Ef is the field voltage, δ is the gener-

ator power angle, M is the inertia constant, D is the damping coefficient, and Tm, Te

are the mechanical and electrical torques respectively.

SG1, the reference machine of the system, is a hydro type machine equipped with a

governor (GOV) rated at 247.5MVA. SG2, which is rated at 192 MVA, and SG3, rated

at 128MVA, are coal type generators in voltage control mode (PV buses) equipped

with IEEE DC1C Automatic Voltage Regulator (AVR), Power System Stabilizer (PSS),

Governor (GOV), and Over-excitation Limiter (OEL). All generators have an operat-

ing region from 0.30 to 1p.u. active power loading. More details about the system

parameters can be found in [54].

The wind generators in this study are modeled using International Electrotechnical

Commission (IEC) type 4A wind turbines [57]. The installed capacity of wind genera-

tion is considered to be equal to 20% of the installed conventional generation of each

area, which is 247.5MVA, 192.0MVA and 128.0MVA for area 1, 2 and 3 respectively. A

windfarm is treated as an aggregate of individual 1MW operating in PQ control mode,

where the total output of the windfarm is the summation of each individual turbine’s

active power output.
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Figure 3.2: Modified version of the Anderson-Fouad 9 bus model.

Load Tap Changer

The loads are connected to distribution rating voltage buses and are modelled as bal-

anced three-phase constant impedance loads. The P and Q values of the loads are

given by:

P = P0

(
V

V0

)2

(3.12)

Q = Q0

(
V

V0

)2

(3.13)

where the subscript 0 indicates the initial operating condition.

The loads are connected to the network via step-down transformers, equipped with

Load Tap Changers (LTCs). The LTCs adjust the transformer ratios keeping the

distribution voltage within the deadband [0.99-1.01] p.u. When the distribution voltage

leaves this deadband, the LTC acts after an intentional delay of 10s. The LTCs adjust

the transformer ratios in the range [-6.5% to +6.5%] over 8 positions. For each step

the ratio varies by 1.63%. The RMS model to represent the LTCs is developed in

DIgSILENT PowerFactory using the inbuilt DSL language.
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Protection Devices

The following protection devices have been modelled in the network:

• SGs protection: The generators are equipped with an under-/over-speed protec-

tion relay [-6%/+4%], an under-voltage protection relay with Fault-Ride Through

(FRT) capabilities (ranging from 0 to 0.9 p.u. including multiple steps with dif-

ferent delays), and pole-slip protection.

• RES protection: The non-synchronous generators (NSGs) in the system are pro-

tected with an under-/over-voltage protection relay with FRT (ranging from 0.15

p.u. to 1.2 p.u. including various steps with different delays) and an under-/over-

frequency protection relay [-6%/+4%].

• Demand protection: An Under-Frequency Loading Scheme (UFLS) with four

stages was implemented for the disconnection of a percentage of demand at low

frequency. (from -3% to -4% of the nominal frequency, with each stage discon-

necting 10% of demand)

• Transmission line protection: Each line is protected by two distance protection

relays positioned at the line ends. The relays have two zones of protection: the

first one is set at 80% of the line’s reach and acts instantaneously and the second

one is set at 120% of the line’s reach with a 400ms delay. An inter-tripping scheme

between the relays has also been modelled.

All the protection devices have been implemented using standard models found in

the DIgSILENT PowerFactory library. The relays settings have been adopted from

the UK grid code to comply with the settings for protection devices connected in the

transmission system as referred in [58].

3.2.4 Test Cases

As the modern power systems operation is dependent to a large number of uncertain

parameters, it is important to take into consideration a large number of possible cases to

36



Chapter 3. Modelling and Investigation of Cascading Events in Power Systems with
Renewable Generation

investigate the system response to a contingency. In this study, a brute force approach

is followed, by discretizing pre-fault system operating conditions within a certain step,

including stressed network conditions and applying faults to different locations of all

lines in the system as initiating events. The effect of the fault location, the system

loading and the amount of wind penetration is investigated. The maximum wind

penetration amount per case is defined by the system loading, the operating range of

the synchronous generators and the nominal capacity of the installed wind generation.

The minimum active power dispatch of synchronous generators and the system loading

set the limit for the maximum possible wind generation as the wind and synchronous

generation output must equal the system loading and the network power losses. The

SG and RES network parameters are shown in Table 3.1.

Table 3.1: SG and RES Network Parameters.

SG Machine Rating

SG1 MVA SG2 MVA SG3 MVA

247.5 192.0 128.0

Minimum Active Power Dispatch
(30% of Machine Rating)

SG1 MW SG2 MW SG3 MW

74.25 57.6 38.4

Wind Generation Installed
Capacity

NSG1 MW NSG2 MW NSG3 MW

49.5 38.4 25.6

The system loading is assumed to range from 60% to 130% of the total network

demand (315MW, 115MVar) as described in [54], in 10% steps. The output of each of

the three wind generators in the network ranges from 0 to the maximum allowable in

10% steps. It should be noted that the wind generation output % value in all results

refers to the assumed wind installed capacity as described in Section 3.2.3 e.g. 100%

maximum total wind generation output means 100% out of the installed wind capacity,

that is there is still synchronous generation in the network. As shown in Table 3.2, in

this study 154026 cases in total were run. Three phase faults in three different locations

(10%, 50%, 90%) on each Line (1-6) are considered as initiating events. That gives 18
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Table 3.2: Number of Cascading Events and Patterns.

System Loading (%)
Maximum Total Wind
Generation Output (%)

Number of
Cases

60 17 1350

70 44 10944

80 72 21942

90 100 23958

100 100 23958

110 100 23958

120 100 23958

130 100 23958

Total Cases

154026

different cases for each given network operating condition.

The duration of the RMS simulations has been set to 180 s. The simulations have

been performed on a standard desktop computer (CPU Intel i7-8700 3.20 GHz, 16 GB

RAM) using the interface between Python and DIgSILENT PowerFactory [59]. More

specifically, for each running instance, a script in Python is developed that samples

the initial operating conditions, and then calls the DIgSILENT PowerFactory in engine

mode to perform the OPF. Following that, the result values of the OPF are transferred

to Python, where the SG disconnection is calculated. After sampling the initial con-

tingency, through a function call the DIgSILENT PowerFactory performs the dynamic

RMS simulation, and the results are extracted in .csv format. The statistical analysis

of the results is then carried out using Python. The described procedure is illustrated

in Fig. 3.3.

The approximate time that a single case simulation run takes is 6s. A parallel

processing approach has been implemented to speed up the process, by running multiple

(up to four in this study) simulated cases in parallel. It should be noted that due to

the large computational effort this brute force approach might be challenging for real

scale large networks. While this approach refers to planning phase where more time

is available for studies, still an importance or efficient sampling technique might need

to be adopted [60], [61], [62] or a screening technique as in [12]. An efficient sampling

technique is employed for the definition of the initial conditions in Chapter 6.
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Figure 3.3: Flowchart illustrating the interface between Python and DIgSILENT Pow-
erFactory utilized for the identification of cascading events.

3.3 Initial results on the modified version of the Anderson-

Fouad 9 bus model

3.3.1 Cascading Events Characterisation

In this study, cascading events have appeared in 31250 cases, out of the 154026 that

are simulated (20.3% of the simulated cases), 15031 (9.8%) of which have led to sys-

tem collapse. In this study, system collapse is defined as a full power system blackout.

These cascading events have appeared in 161 different patterns. Each pattern repre-

sents a unique cascading evet sequence. The cascading events are characterized by the

component that trips and the reason for tripping. Also, the time of each event gives

the sequence of cascading events. As shown in Table 3.3, all of the cases with cascading
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events have occurred for increased system loading, at 110, 120 and 130%. When the

system loading increases from 110 to 120%, 67 out of the 84 patterns that appear are

new, and when the loading increases from 120 to 130%, 69 out of the 143 patterns are

new. Higher system loading leads to more frequent appearance of cascading events and

an increase in the number of different patterns, as the network operates closer to its

limits.

Table 3.3: Number of Cases per parameter.

System
Loading
(%)

Number of
Cases with
Cascading
Events

Number of
Cases leading
to System
Collapse

Number of
Cascading

Event Patterns

Up to 100 0 0 0

110 1313 479 20

120 12066 4909 84

130 17871 9643 143

Total Number
of Cases

with Cascading Events

Total Number
of Cases leading

to System Collapse

Total Number
of Cascading

Event Patterns

31250 15031 161

3.3.2 Most common cascading events patterns

In Table 3.4 the most common cascading events patterns that have appeared are pre-

sented. The name of each cascading event is defined by the name of the component

that trips, followed by the reason of disconnection, where “UV”, “OV” correspond to

under-voltage and over-voltage, “US”, “OS” correspond to under-speed and over-speed

respectively, and “UF” corresponds to “under-frequency” (e.g.“G2-UV” means that

the synchronous machine “G2” is disconnected by the under-voltage protection relay).

The three most common patterns involve the disconnection of RES units only due to

under-voltage and do not cause any further trips of other components. The rest of the

patterns, involve the disconnection of synchronous generation due to under-voltage,

that leads to a drop in the frequency of the system, which causes the disconnection of

loads due to under-frequency and eventual disconnection of all the synchronous ma-

chines. Out of the 161 total patterns, 156 of them result in non-viable cases. It should
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be noted that in these 156 patterns G2 is the first SG that gets disconnected. This is

the machine with the lowest cost, and as a result from the solution of OPF, has the

highest loading.

To highlight how the characterisation of cascading events in the suggested way can

be helpful, a suggestion for this specific system is to improve voltage support close to

wind farms located mainly in area 2. This can be done either in planning timescale

by potentially adding devices (e.g. FACTS) or in operational timescales by ensuring

reactive support from nearby generators is available. Consequently, this could help stop

more serious cascading events from evolving that can lead to disconnection of loads.

Table 3.4: Most Common Cascading Events Patterns.

Times that this
pattern has appeared

Cascading Events patterns

9744 NSG2-UV

6046 NSG2-UV, NSG3-UV

399 NSG3-UV

371
NSG2-UV, NSG3-UV, NSG1-UV, G2-UV, Load C-UF,

Load B-UF, Load A-UF, G3-US, G1-US

349
NSG2-UV, NSG3-UV, G2-UV, Load C-UF, Load B-UF,

Load A-UF, G1-US, NSG1-UV, G3-UV

335
NSG2-UV, NSG3-UV, NSG1-UV, G2-UV, Load C-UF,

Load B-UF, Load A-UF, G1-US, G3-UV

3.3.3 Wind penetration impact

The number of protection devices that trip and the reason for tripping as function of

the total wind generation output for 130% system loading are presented in Fig. 3.4.

As it is shown, the number of tripping protection devices due to under-frequency is

higher than due to under-voltage regardless of the wind penetration. However, when

the wind penetration exceeds a threshold, it seems that the number of protection relays

that trip gets higher. In this case for 130% system loading, when the wind generation

output increases over 90%, it has been noticed that more protection devices trip mainly

due to under-frequency, and in a more frequent manner. This can be explained by

the disconnection of synchronous generation and the resulting lower inertia that the
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introduction of RES causes.

Figure 3.4: Number of protection devices that tripped and reason for tripping as func-
tion of wind penetration.

In an attempt to understand better the effect that wind penetration has on the

appearance of cascading events, an investigation on how many devices trip when there

is RES penetration at only one area at a time has been performed. When there is

wind generation only at Area 1, no protection devices trip. In Fig. 3.5 it can be

noticed that as the wind penetration at Area 2 and the system loading increase, the

number of protection devices that trip gets higher. More specifically, there seems to be

a threshold that changes with system loading, which when exceeded causes a significant

rise in protection device trippings. For example, for this network and for area 2 this

threshold is around 50% for 130% loading, 70% for 120% loading and almost 100% for

110% loading.

On the other hand, in Fig. 3.6 a very different behaviour is seen, highlighting the

complexity of the system dynamic behaviour and the need for systematic characterisa-

tion of possible cascading events. When there is wind penetration only at Area 3 no

protection devices trip when the system loading is 110%. When the system loading

is 120% there is a trend for protection device trips to reduce as penetration increases,

especially above 60%. As SG3 is being displaced by the renewable generation in Area
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Figure 3.5: Number of protection devices that tripped with wind penetration only at
Area 2.

3, the overall stability of the power system increases. It should also be noted that

SG3 is the machine with the smallest nominal rating, meaning that it can reach its

maximum nominal range for high system loading scenarios. For system loading 130%

protection device trips are generally high and are not affected by wind penetration in

area 3. Therefore the effect of wind penetration on the appearance of cascading events

is difficult to be predicted, it is dependent on the specific network topology and no

‘worst-case’ scenario can be safely assumed.

The results (for this specific system) suggest that a clear penetration threshold

where the possibility of cascading events increases cannot be defined in a straightfor-

ward manner, as the dynamic behaviour of the system regarding such events is very

complex. Therefore, the resulting rules from the suggested framework should be de-

fined in more detail (taking into consideration locational aspects as well as the specific

reasons for tripping of devices) rather than as simple thresholds.
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Figure 3.6: Number of protection devices that tripped with wind penetration only at
Area 3.

3.3.4 Locational Aspects, components involved and reasons for trip-

ping

The initiating fault location impact on cascading events is presented in Fig. 3.7. More

frequent appearance of cascading events occurs when the fault happens on the lines

that are closer to Area 2. In Fig. 3.8 the number of patterns that each component has

appeared in along with the reason for tripping are presented. The synchronous machine

G2 gets disconnected in all the cases due to under-voltage and appears in most patterns

(156 out of 161), whereas G1 and G3 get disconnected most of the times due to under-

speed (145 and 120 out of 161 respectively) and in less patterns due to under-voltage

(10 and 24 out of 161). The RES units NSG1, NSG2 and NSG3 get disconnected

in all the patterns that they appear in by the UV protection relays, with the NSG2

appearing in higher number of patterns (149 out of 161). It can be concluded that when

the initiating fault occurs close to Area 2 it has a high impact and that components in

that area appear in a high number of cascading events patterns due to disconnection

by under-voltage relays.
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Figure 3.7: Number of cascading events according to fault location.

Figure 3.8: Number of patterns that each protection device has appeared in.

3.3.5 Reason for first cascading event

The first cascading event in 143 out of the 161 patterns is the disconnection of NSG2,

in 17 the disconnection of NSG3 and in 1 the disconnection of G2, all due to under-

voltage. The time of occurrence of the first cascade and how that is affected by system

45



Chapter 3. Modelling and Investigation of Cascading Events in Power Systems with
Renewable Generation

loading is shown in Fig. 3.9. The first cascading event occurs earlier, as the system

loading increases. As it can be concluded, Area 2 is the most vulnerable area of the

system with voltage related issues appearing most commonly there. Area 1 appears

to be the most stable area as G1 is the machine with the highest inertia constant. In

this case, this information could be used in designing preventive measures to enhance

voltage stability in Areas 2 and 3.

Figure 3.9: Time of the first cascading event.

3.3.6 Example – Case Leading to Cascading Events and System Col-

lapse

An example of a cascading event that leads to system collapse is presented here. This

corresponds to the most common pattern resulting in non-viable system conditions.

The initial contingency (three-phase fault on 90% of Line 5-7 initiating the trip of the

line) causes unacceptably low voltages at a number of buses, causing the disconnection

of three NSGs by UV relays (Fig. 3.10). The first synchronous machine that gets

disconnected is G2, the machine with the lowest cost curve and the highest loading.

As the LTCs attempt to restore the distribution voltage (Fig. 3.11) [49], they force the

generators to increase their reactive power injection and as a result their field current.

The OELs limit the field current of the G2 and G3 and as G2 is the highest loading
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machine with no extra capacity, it loses its capability to control voltage, leading to its

terminal voltage drop and disconnection by the UV protection relay (Fig. 3.10). The

imbalance between generation and demand caused by the disconnection of G2 (and the

3 NSGs previously), leads to a sudden and large drop in the system frequency (Fig.

3.12). Finally, all four steps of the UFLS get activated, disconnecting 40% of demand

at each area, followed by the tripping of G3 and G1 by the under-speed relay, which

results in the final system collapse. This pattern of cascading events, including the

time of each event, is presented in detail in Table 3.5.

In this case, the system loading has been set at 120% and the output of the RES

units NSG1, NSG2, NSG2 set at 80%, 50%, 90% respectively.

Figure 3.10: Evolution of selected bus voltages.
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Figure 3.11: Voltage evolution and LTCs action at load buses.

Figure 3.12: Frequency evolution of selected buses at the time of disconnection.

3.4 Investigation of the Impact of Load Tap Changers and

Automatic Generation Control on Cascading Events

3.4.1 Procedure Overview

In order to identify the impact of LTCs and AGC on the appearance of cascading events,

the same simulations with and without the action of these mechanisms are performed

and compare the cascading event patterns that appear. In this study, dynamic RMS
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Table 3.5: Overview of a Cascading Events pattern.

Time of Event (s) Event Description

1 Three – Phase Fault on 90% of Line 5-7

1.07 Line 5-7 trips by Line Distance Protection Relays

122.26 NSG2 disconnected by UV Relay

141.30 NSG3 disconnected by UV Relay

152.80 NSG1 disconnected by UV Relay

155.61 G2 disconnected by UV Relay

156.34 40% of Load C disconnected by UF Relay

156.34 40% of Load A disconnected by UF Relay

156.34 40% of Load B disconnected by UF Relay

156.62 G3 disconnected by Under – Speed Relay

156.65 G1 disconnected by Under – Speed Relay

simulations are performed on a test system with RES penetration, including protection

devices to capture the cascading events that appear after an initial applied contingency.

An initial screening of a wide range of possible operating conditions is performed to

identify which set of pre-fault operating conditions and contingencies lead to the ap-

pearance of cascading events. For the same operating conditions, the simulations are

performed again, defining a scenario in which the LTCs are not considered and a sce-

nario enabling AGC, to investigate how this impacts the cascading event sequences

that appear.

Wind generation output and system loading values are discretized within a certain

step, taking into account also stressed network conditions. Following the sampling

of wind generation and system loading values, an AC OPF [51] problem is solved to

determine the dispatch and the amount of disconnection of the SGs, as described in

Section 3.2.2. Each SG is allocated a cost curve, as in [63]. In this case study, each

SG is assumed to consist of 4 identical machines which can be set on or out of service.

According to operating point of each SG, given by the solution obtained from the

OPF, the number of machines for each generator that are needed and assumed to be

connected is calculated.

In this study, three phase faults on lines are considered as an initial contingency.

The fault occurs at t=1s and gets cleared by disconnecting the faulted line after 70ms.

It should be noted that the initiating fault and line disconnection on the IEEE-39 bus
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model can lead to cases where parts of the system become islanded due to the set-up of

the test network. The cascading event sequences are consequently identified, describing

how the events evolve in the system. The base case consists of the system modelled as

described in detail Section 3.4.2 with LTCs activated and no AGC implemented. For the

operating conditions that after the initial contingency (i.e. a three-phase fault causing

the disconnection of a line) lead to at least one additional component to trip for the base

case, two scenarios are defined. In the first scenario, the LTCs are not modelled and

the simulations are repeated. In the second scenario, AGC is implemented in addition

to the base scenario (i.e. with LTCs modelled). For each scenario the number and

reason of cascading events, the average load loss and the time of events are presented

in a comparative analysis.

3.4.2 Modified version of the IEEE-39 bus model

A modified version of the IEEE-39 bus model, as shown in Fig. 3.13, is used in this

study to assess the impact of LTCs and AGC. The system is implemented using RMS

simulations in DIgSILENT PowerFactory. The ten synchronous generators (SGs) in

the network are represented by full detail four winding models (6th-order). equipped

with Automatic Voltage Regulator (AVR), Power System Stabilizer (PSS), Governor

(GOV), and Over-excitation Limiter (OEL). The network parameters can be found in

more detail in [64]. The three wind parks in this study are connected to three different

locations and are represented using International Electrotechnical Commission (IEC)

type 4A wind turbines [57]. The installed capacity of wind generation is considered

to be equal to 20% of the total installed conventional generation of the IEEE-39 bus

system base case.

The protection devices as described in Section 3.2.3 without the distance protection,

are implemented in the IEEE-39 bus system too. The distance protection scheme on

the IEEE-39 bus system is later on added in Chapter 6.
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Figure 3.13: Modified version of the IEEE-39 bus model.

Load Tap Changers (LTCs)

The loads are modelled as balanced three-phase constant impedance loads and are

connected to distribution voltage rated buses via step-down transformers. These trans-

formers are equipped with LTCs, which adjust the transformer ratios keeping the dis-

tribution voltage within the deadband [0.99-1.01] p.u. The LTCs adjust the trans-

former ratios in the range [-10% to +10%] over 33 positions (0.625% ratio variation per

step) [49] and act with an intentional delay of 10s. Without considering the action of

LTCs, the distribution voltage may not be kept within this deadband. The step-down

transformers tap positions will keep their initial value, as defined by the OPF solution.

In some cases, not changing the tap positions can preserve the voltage stability of the

network and prevent load shedding events [65]. On the other hand, as the loads are
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voltage dependent a change in the voltage will change the power absorbed, which may

in turn affect frequency.

Automatic Generation Control (AGC) in Power Systems

In order to realistically capture phenomena of frequency instability, it is significant to

implement the main system components that take part in the power system frequency

control. The power system frequency depends on the active power equilibrium of gen-

eration and demand. A sudden change in the power demand or generation leads to

active power imbalance and consequently to the frequency deviation from the nominal

value. The frequency deviation after the primary frequency control depends mainly on

the droops of the synchronous machine governors. So, the primary frequency control

can stabilize the frequency of the system at a value which differs from the nominal

one. In order to restore the nominal frequency the secondary frequency control is used.

The frequency is controlled by the generation power change that allows to reinstate

the active power balance. Thus, a realistic frequency control requires the simulation

of the AGC operation [66], that considers the different dynamic characteristics of the

synchronous generators which are part of the frequency control.

A simplified AGC dynamic model is used to simulate the secondary frequency con-

trol in the network. The real-time system frequency measurement, obtained from a PLL

at the bus connecting the generator to the network, is compared to the nominal ref-

erence frequency. Each generator acts independently, according to the local frequency

measurement. The deviation of frequency is processed through a PI controller that

transmits a signal to the governor adjusting the generator active power accordingly

(Fig. 3.14) [67]. The gains of the PI controller adjust the active power rate of change.

It is considered that synchronous generator G10, which represents a hydropower gen-

erator, a technology appropriate for fast acting varying power injection, contributes to

the AGC scheme of the network. The action time of the AGC is 30s after the start of

the simulation.

So, it is expected that in the scenario including the action of AGC, it will affect the

cases in which frequency related trips appear after the first 30s in the simulation and it
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will help to enhance the system frequency control and result in less trips and less load

loss from the UFLS protection scheme.

Figure 3.14: AGC Model Structure.

Example of the AGC operation

In this RMS example, a loss of load at t=1s is simulated to showcase the AGC response.

This loss of load creates an imbalance between generation and demand, increasing the

system frequency. In Fig. 3.15.a) without the use of AGC the governors action stabilize

the frequency of the system at a new value, different than the nominal value (60.074Hz).

As it is highlighted in Fig. 3.15.b), the use of AGC restores the frequency at the nominal

value (60Hz). The secondary frequency response gets activated at t=30s.
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Figure 3.15: a) Frequency evolution without AGC. b) Frequency evolution with AGC.

3.4.3 Test Cases

In this study for the IEEE-39 bus model, the initial operating conditions, wind pene-

tration and system loading, are sampled in a deterministic way, by discretizing these

values within a certain step. The system loading is assumed to range from 70% to

120% of the total network demand (as calculated in the base case) in 10% steps. For

each loading scenario, the wind generation output also varies. The output of each of

the three wind generators in the network ranges from 0 to the 100% (of the nominal

capacity of each wind generator) in 20% steps. For each system loading and wind

generation output operating condition the amount of synchronous generation in the

network is defined by the AC OPF solution.

In this study 44064 cases in total were simulated. Three phase faults in the middle

(50% length) of each line are considered as initiating events. That gives 34 different
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cases for each given network operating condition, multiplied by 6 different loading

scenarios and by 36 different RES output scenarios (6 output scenarios for each one of

the three WGs). For the cases that cascading events have appeared, the simulations

are performed again for the same initial operating conditions to investigate the effect of

a voltage related and a frequency related mechanism on the cascading event sequences

that have appeared. For this reason, the following scenarios have been defined:

• Base case: LTCs on and AGC off

• Scenario I: LTCs out of service.

• Scenario II: LTCs on and AGC implemented.

The duration of the RMS simulations has been set to 120s. The interface between

Python and DIgSILENT PowerFactory has been used to set up the dynamic simulations

running multiple simulated cases in parallel in order to speed up the process.

3.5 Results of the impact of LTCs and AGC on the ap-

pearance of Cascading Events on the modified version

of the IEEE-39 bus model

3.5.1 Scenario I: Not including Load Tap Changers

In the base scenario, cascading events appeared in 7131 cases, out of the 44064 that are

simulated (16.2% of the simulations). In this Scenario, the 7131 cases where cascading

events have been observed are simulated again, setting the LTCs out of service and

comparing the results to the base scenario. In Scenario I, 71922 cascading events (i.e.

counting as event every activation of a protection device) in total have appeared, a

higher number than in the original scenario (69175), in 2271 different sequences. As it

is shown in Fig. 3.16 fewer cases with only one event have appeared. Approximately

the same number of sequences with 10-40 events appear for both cases. A reduction in

the number of sequences with more than about 20 events is observed for both scenarios.
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When the LTCs are not in action more sequences with a high number of events (70-80)

have occurred.

Figure 3.16: Number of cascading events per sequence for Scenario I.

The time of the events can also provide vital information regarding the evolution of

cascading events. As it is shown in Fig. 3.17 during the early stages of the simulation

(0-20s) more cascading events appear when the LTCs are not included. During the later

stages (60s-120s) very few events are captured in Scenario I and fewer when compared

to the base case, i.e. fewer events tend to appear in the later stages of the cascade.

Both the mean value (0.95s) and the standard deviation (6.62s) of the time between

cascading events in Scenario I are smaller compared to the base scenario (2.12s and

10.45s respectively) suggesting that events happen in quicker succession as highlighted

in Table 3.6. This potentially leaves shorter time window for corrective measures that

could be taken to prevent cascading events from spreading.

The UFLS scheme implemented in the model can disconnect an amount of the

system load when the network frequency is low in order to restore the active power

balance. For each sequence, the percentage of load loss is calculated, by dividing the

amount of load that is disconnected to the total system loading at this case. In total
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Figure 3.17: Time of events for Scenario I.

there are more load trips in Scenario I (57309) than in the base scenario (55711) and the

total amount of load disconnection is higher. Fewer cases where observed in Scenario I

when compared to the base scenario for load loss around 1% and around 7%. However,

as highlighted in Fig. 3.18 in Scenario I more sequences have a large amount of load

loss (30%), resulting in a larger total amount of load that gets disconnected. These

additional sequences that resulted in a load loss of 30% in Scenario I, resulted in a load

loss of 0% or 5-15% in the base scenario.

Table 3.6: Number and time of cascading events.

Base Case Scenario I Scenario II

Number of sequences 2546 2271 2390

Total number of events 69175 71922 68236

Load events 55711 57309 54698

Mean/ Std Deviation
time between events (s)

2.12/ 10.45 0.95/ 5.62 1.61/ 8.61

3.5.2 Scenario II: Impact of Activating Automatic Generation Con-

trol

The 7131 cases in which cascading events have occurred are simulated again, this time

enabling the AGC implementation that provides secondary frequency response. The

AGC model gets activated at t=30s. In the base Scenario, cascading events after the

first 30s have appeared in 1597 cases, so the effect of AGC is expected to be seen in
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Figure 3.18: Load loss percentage for Scenario I.

these cases. The total number of trips for this scenario (68236) is smaller than in the

base Scenario (69175). As it is highlighted in Fig. 3.19 the number of sequences with

10-40 events are fewer with the AGC.

The time of the cascading events is presented in Fig. 3.20. Until t=30s the time of

the events for both scenarios remains the same, as the AGC gets activated after this

point. In general, with the action of AGC fewer cascades appear during the earlier

steps (30s-40s) and the last steps (80s-120s) of the simulation. More cascades appear

compared to the original scenario at approximately t=50s. As the number of trips

is in total smaller it can be concluded that secondary frequency response reduces the

number of trips during the latter steps of the simulation. The mean value of the time

between consecutive events, as shown in Table 3.6, is slightly shorter than in the original

scenario and with a smaller standard deviation.

In this scenario fewer cascading events (54698) are caused by the disconnection of

loads, and the total amount of load loss is also reduced compared to the original one.

As shown in Fig. 3.21 there are fewer sequences that cause a 5-10% load loss. This can

be attributed to a reduced number of under-frequency trips.
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Figure 3.19: Number of cascading events per sequence for Scenario II.

Figure 3.20: Time of events for Scenario II.

3.5.3 Reason for tripping and System Loading impact

In order to further investigate the impact of LTCs and AGC, the reason for tripping

of the cascading events is displayed in Fig. 3.22. In Scenario I, slightly more trips due

to voltage appear, and an increased number of trips due to frequency and transient

instability. When there are no LTCs there are 6858 trips that involve the disconnection

of SGs, while in the base scenario there are 6006 SG related trips. This increased num-
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Figure 3.21: Load loss percentage for Scenario II.

ber of synchronous generation trips (852 more trips) leads to more cases of frequency

instability, causing the disconnection of loads due to the UFLS scheme.

As expected in Scenario II, fewer trips occur due to under-frequency and under-

speed. As the primary frequency response relies on the action of governors to restore

the active power balance, the frequency may stabilise at a different value from the

nominal. A further cascading event can deteriorate the frequency of the system and

cause frequency related trips. The secondary frequency response, provided in this case

by AGC, leads the SG through the governor to stabilise the frequency of the system to

the nominal one, returning the power system operation to its secure state and reducing

the number of frequency instability phenomena. It should also be noted that the number

of trips due to voltage and pole slip in Scenario II (8236 and 1530 events, respectively)

does not seem to be significantly affected compared to the base scenario (8261 and 1445

events, respectively). A slight reduction is however observed.

The number of cascading events across the system loading and the mean value of

load loss for all scenarios are presented in Fig. 3.23.a) and Fig. 3.23.b) respectively. In

general, it appears that most cascading events appear at the system loading nominal
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Figure 3.22: Reason for tripping for all Scenarios.

value (100%) for all three scenarios, however the cases with the most impact (higher

load loss) appear at high system loading (110%-120%). In Scenario I, when the loading

value is low (70%-80%) and at the nominal value more cascading events appear than in

the original scenario and with a higher load loss. This increased number of trips (6585

events) appears due to more Under-Voltage, Under-Frequency and Pole-Slip events.

On the other hand, when the system loading is at 90% and at 110% fewer cascades

(1494 events) are captured when there are no LTCs, which are caused due to Under-

Voltage and Under-Frequency. At 120% system loading, it is observed that although in

Scenario I the number of events is slightly lower, the sequences of events have a higher

impact, as a larger amount of load trips due to the UFLS scheme when there are no

LTCs. Therefore, for this particular system and case study, the impact of including

LTCs can have both a positive and negative impact in the evolution of cascades due to

the complex interactions and dynamic phenomena.

In Scenario II, a reduced number of cascading events and reduced resulting load

loss is observed across all system loading values, due to fewer Under-Frequency trips as

expected from the action of AGC. Consequently, the use of AGC has a positive impact
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on the appearance of cascades in all cases.

Figure 3.23: Number of cascading events and average load loss according to System
Loading.

3.5.4 Cascading Events Patterns Comparison

In the base scenario, the cascading events have appeared in 2546 different sequences,

with some of them appearing multiple times. In Scenario I, 2271 sequences have ap-

peared and in Scenario II, 2390, so in both scenarios fewer sequences have appeared.

In Table 3.7. the most common cascading event sequences are presented, sorted by

times of appearance in the base scenario, and how many times these sequences appear

in Scenarios I and II. A unique ‘Id’ number is assigned to each sequence in order to

distinguish them. Each event is described by the component that trips and the rea-

son for tripping. The time of each cascading event gives the sequence in which the

events occur. For instance, the second most common sequence [(NSG-2-OverVoltage),

(G01-Poleslip)] describes a sequence where the first event is the disconnection of wind

generator NSG-2 due to Over-Voltage, followed by the disconnection of synchronous

generator G01 due to pole-slip.
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Table 3.7: Most Common Cascading Events Patterns

Times this pattern has appeared
Id Cascading Event patterns

Base Case Sc. I Sc. II

2219 1759 2221 1 [(NSG 2-OverVoltage)]

336 393 362 2
[(NSG 2-OverVoltage),

(G01-Poleslip)]

279 403 292 3
[(NSG 2-OverVoltage),

(NSG 1-OverVoltage), (G01-Poleslip)]

243 0 243 4
[(NSG 2-OverVoltage),

(G01-UnderSpeed), (NSG 3-UnderVoltage)]

196 238 196 5 [(G05-OverSpeed)]

The most common sequence appearing in all the scenarios includes only a single

event, the disconnection of NSG-2 due to Over-Voltage. This event is also the first

cascading event in the most common cascading sequences. In Scenario I, sequence ‘1’

appears fewer times than in the base case, and sequences ‘2’ and ‘3’, which include the

disconnection of NSG-2 followed by other events appear more frequently. Sequence ‘5’

appears more times in Scenario I as well. The disconnection of G05 due to Over-speed

is a common event because when the initial fault is applied on Line 16-19 a part of

the system becomes islanded. It should be noted that sequence ‘4’, which includes

the disconnection of G01 due to under-speed has not appeared in Scenario I. In this

scenario, sequence [(NSG-2-OverVoltage), (G01-Poleslip), (NSG-3-UnderVoltage)] has

appeared 249 times, indicating that the tripping of G01 after NSG-2 happens most

commonly due to poleslip instead of under-speed. In Scenario II the most common

patterns appear in general in the same manner as in the base scenario. Sequences

‘2’ and ‘3’ appear more times in Scenario II, as in some cases of the base scenario

the disconnection of G01 in these sequences causes further cascading events due to

under-frequency, which are prevented in Scenario II by the use of AGC.

3.6 Chapter Conclusions

In this chapter a framework for the characterisation of cascading events in power sys-

tems with renewable generation is proposed. It employs time domain dynamic sim-

ulations including protection device modelling and investigation of various operating
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conditions and contingencies to identify cascading events patterns. The specific compo-

nents that trip along with the reason for tripping are analysed. The impact of changes

in system loading, wind generation output and synchronous generation disconnection

(following an OPF solution) on cascading event patterns is systematically analysed.

This information could be vital in understanding network vulnerabilities in terms of

weak areas and instability mechanisms and attempt to avoid cascading events from

spreading. Additionally, the effect of LTCs, a voltage related mechanism, and AGC, a

frequency related one, on the evolution of cascading events in power systems with RES

penetration is investigated. The main aim is to suggest a way to identify the importance

and highlight potential impact from different level of modelling detail, i.e. including, or

not, certain mechanisms. The impact of LTCs and AGC on the dynamic behaviour of

the network is analysed by investigating the number and reason of cascading events, the

average load loss, the time between consecutive events and the most common cascading

event patterns. This investigation can provide significant information about how the

different mechanisms affect the power system reaction to a contingency.

The proposed framework is initially applied on a modified version of the Anderson-

Fouad 9 bus model, including RES units. The results highlight the most vulnerable

area of the system and the reason for most cascading events. A number of possible

cascades for the given network have been identified and characterized and changes in

the patterns with system loading and wind penetration have been investigated. The

results highlight the complexity of system dynamics as the impact of wind penetration

in different areas and at different loading can drastically affect the potential cascades

that might appear in the system in very different ways. The impact of LTCs and GC

on cascading events is showcased on a modified version of the IEEE-39 bus model.

The results from this specific test network showcase that not including LTCs in the

network model results in more frequent appearance of cascading events and greater

amount of load shedding. In the scenario that AGC is included, the frequency stability

in the network is enhanced and a reduced number of load disconnection events due to

under-frequency is observed.
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Explainable predictions of the

appearance of cascading events

using Initial Operating

Conditions and Machine

Learning

4.1 Introduction

4.1.1 Motivation

As it has become evident, the increasing penetration of RES at different locations of

a power system makes the system response to a contingency unpredictable. In cases

when network conditions activate protection devices, cascading events might appear,

the propagation of which can lead to large scale blackouts, with severe consequences on

society. As discussed in Chapter 2, ML approaches that focus on the prediction of cases

of instability can have a significant impact on improving power system security and

providing information to system operators about taking mitigation measures. However,

many of the ML models are considered as black-box models, with their internal workings
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to be difficult to be understood, especially by non-experts in this field.

This lack of understanding related to ML models can potentially lead to a lack of

trust in such applications in power systems, negatively affecting the introduction of ML

based models in practical scenarios. In industrial applications, it is not uncommon for

stakeholders to prefer models that have poorer performance, but are interpretable, over

models with higher performance that their internal workings can not be understood [68].

In critical domains where the actions of a ML model can affect society, such as the

operation of power systems, there is a need for trustworthy and accountable ML models.

Based on the above points, it is critical for system operators to be able to understand

on which grounds the ML model makes a prediction, and how the input features affect

the model output. That way, they can trust more this model’s decisions and the range

of applications can be further extended.

To address this issue, Explainable Artificial Intelligence (XAI) techniques have been

developed. The field of XAI attempts to develop methods that can provide explanations

about the decision-making process of ML models. As a result, XAI techniques can help

to overcome the trade-off between interpretability and performance, by providing ways

to explain the decision making process of accurate but complex black-box models [69].

For the aforementioned reasons, recent research studies have been focusing on the

potential of XAI applications for power systems [70]. Howevern, as the analysis in

Chapter 2 has revealed, the methods that utilize XAI techniques focus on stability

assessment, without considering the action of protection devices. So far, no XAI appli-

cations for the prediction of cascading events have been identified.

4.1.2 Contribution

The main contribution of this chapter is the use of supervised ML algorithms and

the SHAP XAI technique to predict the appearance of cascading events using initial

operating conditions and explain the predictions of these models. The key difference

from similar approaches is that in this case the explainability mechanisms are applied on

the problem of cascading events prediction. The dataset consists of dynamic simulations

that are performed on a test network with renewable penetration and protection devices,
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that capture the appearance of cascading events and not just cases of instability. More

specifically, the main contributions of this Chapter include:

• A ML-based method for the prediction of the probability of cascading events,

knowing only the initial operating conditions during steady-state available from

PMU measurements, which is formulated as a regression problem.

• A ML-based method for the prediction of the appearance of cascading events in

a particular simulation, considering also information about the line on which the

initial contingency appears, added to the input data of the model as a categorical

feature. In this case, the problem is formulated as a binary classification task

(predicting if a cascading event will appear or not).

• The identification of the the most important features when predicting cascading

events by applying a feature importance technique using the permutation method

to the best performing pre-trained ML model.

• The SHAP method, an XAI technique, is utilized to provide more detailed ex-

planations on how the model reaches a certain prediction given the input data,

aiming to improve the interpretability of the utilized model and enhance the trust

of system operators on ML model applications for the prediction of cascading

events.

4.2 Methodology

4.2.1 Detailed Procedure

The method presented in this chapter utilizes various ML algorithms for the prediction

of cascading events and consists of two different problem formulations. Initially, the

prediction of the probability of cascading events is formulated as a regression problem,

and the input data consist of the initial operating conditions, as measured during the

steady-state of the network, before the application of the initial fault. The dataset con-

sists of the measurements gathered from the IEEE-39 network simulations as detailed

in Chapter 3. Next, the network line on which the initial fault happens is added as a
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discreet event to the input data, and the problem is formulated as a binary classification

problem, meaning that the output of the model is if in this specific case a cascading

event will appear or not. In this study, a cascading event is considered a deterministic

event, resulting from the disconnection of a network component due to the intentional

action of protection devices.

A variety of linear and non-linear ML algorithms and ensemble methods are tested

and validated to determine the model that achieves the best performance. After train-

ing, the best performing model is evaluated on the unseen test dataset. To better

understand the model decision-making process, a permutation feature importance anal-

ysis is performed to identify the features that have the highest impact on the model

prediction. Finally, a SHAP analysis on the pre-trained model identifies the contribu-

tion that each feature has on the prediction of cascading events, providing explanations

about both individual predictions, as well as the whole set of predictions on the test

dataset. The main steps of the described procedure are showcased in Fig. 4.1.

SHAP
• Local/Global 

Explanations

Explainability

Regression
• 10-fold cross validation

• Hyper-parameter tuning

• Evaluation on test data

Permutation Feature 

Importance
• Most important features

ML Training/Evaluation

Binary 

classification
• 10-fold cross validation

• Hyper-parameter tuning

• Evaluation on test data

Dataset Generation

IEEE-39 Model
• Modified with RES 

and protection 

devices

Best performing 

model

RMS Simulation
• Initial operating 

conditions

• Line on which the 

fault happens

Pre-processing
• Scaling

• Probability of 

cascading events

Figure 4.1: Flowchart highlighting the main steps of the procedure.

4.2.2 Machine Learning methods

Machine learning is a method for developing models that can learn from data, without

being analytically programmed. Supervised machine learning is when the model is
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provided with labeled data for training, and the goal is to make predictions about new,

unseen data, known also as test data. These predictions are based on the patterns that

the model extracts from the training data. The labeled data consist of input-output

pairs, where the input is a set of features, and the output is a label or a target variable.

In regression tasks the goal is to predict a continuous value variable for a given input,

where in classification tasks the goal is to predict a categorical label for a given input.

According to the “No Free Lunch Theorem” [71] in machine learning, there is no

single universally best algorithm for all problems. Machine learning algorithms have

varying levels of complexity, making it challenging to predict beforehand which one

suits the problem of predicting cascading events better. For this reason, a wide range

of linear, non-linear and tree-based supervised machine learning algorithms are trained

and evaluated, in order to identify the algorithm that showcases the best performance.

The machine learning algorithms that have been chosen are suitable for tabular data

and can be applied to either regression or classification tasks.

The following machine learning methods have been investigated and applied in this

Chapter:

Linear Regression

Linear Regression is a statistical method used for modelling the relationship between a

dependent variable and one or more independent variables [72]. This method is based

on the assumption that the relationship between the variables is linear. In a linear

regression model, the output value is a continuous variable and it is modeled as a linear

combination of the input variables, with the coefficients representing the strength of

the relationship between each independent variable and the dependent variable. The

predicted value ŷ of the model is represented as:

ŷ(w, x) = w0 + w1x1 + ...+ wpxp (4.1)

The coefficients w1, ..., wp are estimated using a method such as least squares, which

minimizes the difference between the real values and the values predicted by the model.

The minimization problem is described by:
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min
w

||xw − y||22 (4.2)

where x = (x1, ..., xp) and w = (w1, ..., wp).

Lasso Regression

Lasso Regression (LR) is a type of linear regression that adds a regularization term to

the model to prevent overfitting, by adding a penalty term to the loss function of the

model [73]. The L1 regularization term is a penalty term that is proportional to the

absolute value of the coefficients. This results in some coefficients of the models being

equal to zero. With the added L1 regularization term Equation 4.2 gets transformed

into:

min
w

1

2nsamples
||xw − y||22 + α||w||1 (4.3)

where a is a constant value and ||w||1 is the L1-norm of the coefficient vector.

Elastic Net Regression

Elastic Net (EN) is another type of regression, that combines the L1 regularization term

of Lasso regression, with the L2 regularization term. L2 regularization adds a penalty

term to the loss function that is proportional to the square of the coefficients. This

combination of regularization terms helps Elastic Net to prevent overfitting and handle

more efficiently correlated variables in the dataset. Adding the L2 regularization term

to Equation 4.3 gives:

min
w

1

2nsamples
||xw − y||22 + αρ||w||1 +

α(1− ρ)

2
||w||22 (4.4)

where ||w||22 is the L2-norm of the coefficient vector and ρ a parameter that controls

the convex combination of L1 and L2.
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Logistic Regression

Logistic Regression (LR) is a similar statistical method to linear regression, only in

this case it is applied to classification tasks. The logistic function maps the linear

combination of the independent variables to a probability in the range of [0, 1]. The

algorithm uses the logistic function to model a binary dependent variable based on the

independent variables. The probability of the positive class is mathematically described

by:

p̂(x) =
1

1 + exp(−xw − w0)
(4.5)

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a method that can be used for classification

tasks. It is a linear method used for finding a linear combination of features that

separates two or more classes [74]. This is achieved by projecting a dataset into a lower-

dimensional space while maximizing the separation between classes. The dimensionality

reduction results in a new set of features that can be used for classification. The class

conditional distribution of the data for each class k is can be calculated by:

logP (y = k|x) = −1

2
(x− µk)

tΣ−1(x− µk) + logP (y = k) + Cst (4.6)

where Cst is a constant term that corresponds to P (x), in addition to other Gaussian

constant terms.

Naive Bayes

Naive Bayes (NB) is a probabilistic algorithm which can be used for classification

tasks. This method uses the Bayes Theorem in order to calculate the probability of

a given input to belong to a particular class, assuming that all the input features

are independent of each other [75]. The algorithm calculates the probabilities for each

class and selects the one with the highest probability as the prediction. The probability
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density of x given a class Ck can be calculated by:

P (x | Ck) =
1√
2πσ2

k

exp

(
−(x− µk)

2

2σ2
k

)
(4.7)

K-nearest neighbors algorithm

K-nearest neighbors algorithm (KNN) is a non-parametric supervised learning method

[76] which can be used for classification or regression problems. For classification prob-

lems, a class label is assigned based on the majority vote. This means that a data point

is classified by a plurality vote of its neighbors, with the data point being assigned to

the class that is most common among its k nearest neighbors. The parameter k is a pos-

itive integer, typically a small and odd number to avoid ties in classification problems.

In order to determine which data points are closest to a given data point, the distance

between the given point and the other data points is calculated, most commonly by

using the Euclidean distance. For points p, q in the n-dimensional Euclidean space, the

Euclidean distance is given by:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (4.8)

Decision Trees

Classification and Regression Trees (CART) is a term introduced in [77] that refers to

Decision Tree algorithms that can be used for classification or regression problems. The

representation of the CART model is a binary tree, where each root node represents

a single input variable and a split point on that variable. The leaf nodes of the tree

represent an output variable which is used to make a prediction. To determine the split

points, the values are lined up and different split points are tried and tested using a

cost function. The split that achieves the lowest cost is selected. All input features and

all possible split points are evaluated and chosen in a greedy manner. This means that

the optimal split point is chosen each time. A stopping procedure is needed to stop

splitting, as the splitting procedure moves its way down the tree. A common stopping

procedure is to use a minimum count on the number of training instances assigned to
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each leaf node. If the count is less than the minimum count then the node is taken as

a final leaf node.

Mathematically, the partitioning of data Qm with nm samples at node m into left

and right datasets is described by:

Qleft
m (θ) = {(x, y)|xj ≤ tm} (4.9)

Qright
m (θ) = Qm \Qleft

m (θ) (4.10)

where θ = (j, tm) is a candidate split of a feature j and threshold tm.

The quality of the candidate split of nodem is computed by minimizing the impurity

recursively until the maximum depth is reached (nm < minsamples):

θ∗ = argminθ

(
nleft
m

nm
loss(Qleft

m (θ)) +
nright
m

nm
loss(Qright

m (θ))

)
(4.11)

Support Vector Machines

Support vector machines (SVM) [78] is a supervised ML method that can be applied

to classification or regression problems. When applied on regression problems, the

algorithm is also mentioned as Support vector regression (SVR). The objective of the

SVM algorithm is to find a hyperplane in aN -dimensional space, whereN is the number

of features, that classifies the data points. This can be represented as a separating line

between two data classes in classification tasks. In regressions tasks, this line is used to

predict the continuous output. In order to find a hyperplane in the higher dimensional

space, kernel functions are used. The kernel functions are mathematical functions that

can take the input data and transform it to a higher dimensional space. Support

vectors are the data points that are closer to the hyperplane. These are the points

that influence the orientation and position of the hyperplane, and help to construct the

SVM model. The output of an SVM model is given by:

ŷ =
∑
i∈SV

yiαiK(xi, x) + b (4.12)
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where αi are the double coefficients and K(xi, x) is the kernel.

Ensemble Methods

Ensemble methods are ML models that construct a model from more than one base

models, like decision trees. The final result is a combination of the individual models

outputs. Boosting is a technique that involves incrementally building an ensemble by

training each new model instance to emphasize the training instances that previous

models classified incorrectly [79]. This is achieved by adapting the distribution of the

training data at each iteration so that the next model instance is more focused on the

data that is hard to classify. The prediction ŷ is given by:

ŷ =

M∑
m=1

hm(x) (4.13)

where hm are the individual estimators, also called weak learners, and M is the

number of estimators.

A gradient boosting algorithm is built in a greedy way, by minimizing the sum of

losses of the previous ensemble Fm−1. This is mathematically described by:

Fm(x) = Fm−1(x) + hm(x) (4.14)

hm = argmin
h

loss(yi, Fm−1(x) + h(x)), (4.15)

AdaBoost (Adaptive Boosting) is a simple boosting algorithm that assigns a weight

to each training sample and adjusts the weight at each iteration. A more advanced

boosting algorithm is Gradient Boosting, that uses gradient descent to minimize the

loss function and improve the accuracy of the model. XGBoost (Extreme Gradient

Boosting) is an optimized version of gradient boosting that utilizes a more regularized

formalization algorithm to control over-fitting [80].

Bagging, also known as bootstrap aggregation, is an ensemble method that builds

multiple decision trees by re-sampling from training data with replacement, and then
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voting the trees for a majority prediction [81].

Random Forests (RF) and Extra trees (Extremely Randomized Trees) are ML mod-

els related to bagging. The main difference is that Random forests sub-sample from the

input data with replacement [82], while Extra Trees use the whole data sample [83].

Another difference is that regarding the selection of split points for nodes, Random

Forest chooses the optimal split point depending on the selected feature subset, while

Extra Trees chooses the split point randomly. Once the split points are selected, both

algorithms choose the best split point between all the subset of features, so Extra trees

introduce some randomization but while still keeping the optimization principle.

These ensemble techniques can be used for either regression or classification type

problems. For regression problems, the final prediction is obtained by averaging the

predictions of all the consisting models and for classification problems the final predic-

tion is obtained by taking the majority vote.

It should be noted that deep learning methods have not been considered in this

specific chapter, as recent studies have shown that classical ML methods achieve more

easily good predictions, with less computational cost and hyper-parameter tuning, than

deep learning methods on tasks with tabular data [84], [85]. Tabular data refer to data

that are structured within a table and each sample is represented by a row, and its

features are represented among columns.

4.2.3 k-fold cross validation

The considered ML models in this study are trained and evaluated using a stratified

k-fold cross validation. In this approach, the whole dataset is split into a training and

a testing dataset. The training set is split into k smaller sets, with each set containing

the same percentage of safe cases and cases with cascading events. For each of the k

folds, the model is trained using k− 1 folds, and validated on the the remaining 1 fold

using a suitable evaluation metric, depending on the task. This process is performed k

times for each set, with a different part of the data used for training and validation each

time. This method is suitable when limited data are available, and helps to validate

the performance of the model on different data splits. In addition, it can be used to
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optimize the model hyper-parameters. The final model evaluation is performed on the

unseen test data. A schematic showcasing the method is presented in Fig. 4.2.

Fold 1

Training data Test data

Test data

All data

Final model evaluation →

Fold 2 Fold kFold 4Fold 3

Fold 1 Fold 2 Fold kFold 4Fold 3

Fold 1 Fold 2 Fold kFold 4Fold 3

Fold 1 Fold 2 Fold kFold 4Fold 3

Fold 1 Fold 2 Fold kFold 4Fold 3

Split 1

Split 2

Split 3

Split 4

Split k

Figure 4.2: Schematic of the k-cross fold validation.

4.2.4 Evaluation Metrics

Evaluation Metrics for the regression models

Mean Absolute Error (MAE) is a metric commonly used to evaluate the performance of

models trained for a regression task. This metric expresses the average of the absolute

errors, that measure the absolute difference between the predicted and the real value.

MAE uses the same scale as the data being measured, and is given by:

MAE = (
1

n
)

n∑
i=1

|yi − ŷi| (4.16)

Root Mean Squared Error (RMSE) is another commonly used metric for the evalu-

ation of regression models. This metric emphasizes more on larger errors than smaller

ones because the calculation involves taking the square root of the mean of the squared

differences between the predicted values and the actual values. RMSE is given by:
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RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − ŷi)2 (4.17)

Coefficient of Determination (R2) is a statistical measure used in regression analysis

that represents how well the regression line fits the observed data. R2 takes values in

the range of [0,1], with higher values indicating a better fit of the model to the data,

and is given by:

R2 = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳi)

(4.18)

In addition to these metrics, two more metrics that describe the maximum errors,

Maximum Over-Estimate (MOE) and Maximum Under-Estimate (MUE), are calcu-

lated. An over-estimation of the probability of cascading events gives a false view on

the operational status of the system, while under-estimating the probability of cas-

cading events can have detrimental consequences to the secure operation of the power

system. The described metrics are given by:

MOE = max(ŷi − yi) (4.19)

MUE = max(yi − ŷi) (4.20)

where in equations 4.16-4.20, n is the number of data samples, i is the particular

observation, yi is the actual value, ŷi is the predicted value and ȳi the mean of all

observations.

Evaluation Metrics for the binary classification models

Accuracy, Precision, Recall and F1 score are typical measures used in ML that capture

different aspects of the performance of a binary classifier [86].

Accuracy measures the number of correct predictions made by the model in relation

to the number of total predictions, and is given by:
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Accuracy (%) =
nTP + nTN

nTP + nFP + nTN + nFN
(4.21)

Precision describes the number of positive class predictions that actually belong to

the positive class. It is given by:

Precision (%) =
nTP

nTP + nFP
(4.22)

Recall represents the number of positive class predictions made out of all positive

samples, and is given by:

Recall (%) =
nTP

nTP + nFN
(4.23)

F1 score takes both Precision and Recall into consideration, and is defined as the

harmonic mean of these two metrics:

F1 Score (%) = 2 ∗ Precision ∗Recall

Precision+Recall
(4.24)

where nTP , nFP , nTN and nFN represent the number of true positive, false positive,

true negative and false negative predictions respectively.

These metrics can provide valuable information about the task of classifying whether

or not a cascading event will occur: Accuracy describes the percentage of correct pre-

dictions. Precision describes the percentage of the cases predicted to include cascading

events that is actually correct and Recall the percentage of actual cases with cascading

events that is predicted correctly. F1 Score is a metric that combines Precision and

Recall, and it is defined as the harmonic mean of these two metrics.

4.2.5 Permutation Feature Importance

A feature importance analysis is performed to investigate the effect of each feature

on model performance, with the goal of identifying the most important features and

consequently system variables corresponding to them. These features represent the

initial operating conditions that describe the measured electrical variables of the system
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and can be acquired by PMUs in practical applications. As in large real-life power

systems a certain number of PMUs is installed and in certain locations [87], it is of great

importance to investigate in which way and to what extent these measurements affect

the prediction of cascading events. This can also contribute to better understanding the

mechanisms involved behind cascading events by identifying important system variables

that might affect the appearance of cascades.

The concept of permutation feature importance is permuting randomly each time

a single feature, while keeping all the other features stable, and calculating the model

performance. A permutation of an important feature would cause a drop in model

performance, as described in [88]. For the feature importance analysis, each input

feature is randomly permuted one by one and the performance of the model with

the permuted input dataset on the test labels is compared to the performance of the

original model. As this method is applied on the pre-trained model, it does not require

training the model again, thus being computationally efficient. The permutation feature

importance for each feature j in the dataset is calculated by:

FIj = sor − sj,perm (4.25)

where sor is the score of the model with the original dataset, and sj,perm is the score

of the model when feature j is permuted.

4.2.6 SHAP- SHapley Additive exPlanations

SHAP (SHapley Additive exPlanations) is a post-hoc XAI method for the interpretation

of the predictions of ML models [89]. The way that SHAP provides explanations is by

assigning an importance value to each feature for an individual prediction. This is

achieved be calculating the average output for every possible combination of feature

values and comparing it to the output of the model with the inclusion of the specific

feature in question. The resulting difference represents the contribution of this feature

to the prediction given the presence or absence of other features. The estimated SHAP

value for a certain set of features, is the contribution of a feature to the difference

between the actual model prediction and the average model prediction. Due to their
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additive nature, the SHAP values for all features can be added together to obtain the

model prediction for this specific instance.

The SHAP method has a strong theoretical background which is based on the

calculation of Shapley values from game theory. Furthermore, the SHAP values for

individual predictions can be aggregated to provide global interpretation insights, which

are consistent to the local explanations. An overview of the application of SHAP

method for explaining the predictions of a ML model is presented in Fig. 4.3.

Shapley values, first introduced in [90], describe the importance of each player in a

cooperative game. In the context of ML, the “players” are the input features and the

“game” is the model prediction. Using SHAP, the contribution of each feature to the

model prediction can be quantified.

Figure 4.3: Explaining model predictions with SHAP.

The Shapley value ϕi, for the black-box model f at the input point x, can be

calculated by:

ϕi(f, x) =
∑
z′⊆x′

|z|! (M − |z′| − 1)!

M !

(
fx(z

′)− fx(z
′ \ i)

)
(4.26)

where |z′| is the number of non-zero entries in z′, z′ ⊆ x′ are all the |z′| vectors

where the non-zero entries are a subset of the non-zero entries in x′, z′\i denotes setting

z′i = 0 and M is the number of simplified inputs.
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In a ML context, calculating the exact Shapley would require retraining the model

on the missing features, which would be very challenging computationally. To overcome

this, SHAP expresses the explanation model as a conditional expectation function of the

original model. The SHAP values are calculated by setting fx(z
′) = E[f(z)|zS ], where

S is the set of non-zero indices in z′, and represent how to move from the base value

E[f(z)], which would be the output if no features are known, to the current output

f(x). In other words, the SHAP value attributed to a feature when conditioning on

that feature is the change in the average model prediction.

In order to calculate the exact SHAP values, it is needed to go through every possible

coalition of features, which grows exponentially to the number of features. Due to the

large computational effort that is needed, methods that combine SHAP with other XAI

techniques have been proposed in order to efficiently approximate the SHAP values.

KernelSHAP, proposed in [89], is a model-agnostic approximation that combines

LIME and SHAP, and calculates the SHAP values by using a weighted linear regression.

The key difference to the LIME method is the way that the linear regression model

is weighted. In LIME, the randomly sampled instances are weighted depending on

how close they are to the original sample [91]. KernelSHAP assigns the weights to

the sample instances according to the weight that this feature coalition would get in

Shapley value estimation.

TreeSHAP is a faster method for the calculation of SHAP values of tree-based

models, introduced in [92]. This method utilizes the tree structure and computes the

SHAP values in polynomial, instead of exponential, time. This is achieved by pushing

all the possible subsets of features down the tree at the same time. In addition, because

of the additive characteristic of Shapley values, the SHAP values of a tree ensemble

method can be calculated by aggregating the SHAP values of individual trees.

DeepSHAP is a method that combines SHAP and DeepLIFT [93], that can be used

to explain the predictions of deep learning models [89]. This method calculates the

SHAP values by utilizing the gradients of the network output with respect to the input

features. This is achieved by recursively passing the multipliers defined in DeepLIFT,

but in this case expressed in terms of SHAP values, backwards through the network.
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In this study, the TreeSHAP method is used to identify the effect attributes of the

initial operating conditions values on the prediction of cascading events. TreeSHAP

will be used to analyze specific model predictions (local explanation), but also provide

explanations across all the model predictions (global explanation). This information

would be particularly useful for better understanding how the model reaches a pre-

diction about the appearance of cascading events, and it would increase the trust of

system operators on using ML-based models in practical applications.

4.3 Using Machine Learning methods to predict cascad-

ing events

4.3.1 Predicting the probability of cascading events

Predicting the probability of cascading events can be formulated as a regression prob-

lem. In this case the output, which represents a probability, is a continuous vari-

able, and the input or independent variables, are the electrical system variables during

steady-state that can be provided by PMU measurements. For each unique operating

condition, the probability of cascading events is calculated by the percentage of the sim-

ulations that cascading events have appeared into, for this initial operating conditions

case. This is mathematically described by:

Pcasc,i =
ni,casc

nlines
× 100% (4.27)

where i is the index of an operating conditions case, ni,casc is the number of simu-

lations with cascading events for this operating condition, and nlines is the number of

lines in the network model.

An illustration that showcases the ML model application for the regression problem

is provided in Fig. 4.4.

82



Chapter 4. Explainable predictions of the appearance of cascading events using
Initial Operating Conditions and Machine Learning

Initial operating 

conditions

ML Model

Probability of 

cascading events

Input X

Output Y

Regression

Figure 4.4: Predicting the probability of cascading events as a regression problem.

4.3.2 Predicting the appearance of cascading events in individual

cases

Predicting the appearance or not of cascading events in a certain case can be formulated

as a binary classification problem. In this case, as 0 are labelled the cases with no

cascading events and as 1 the cases with cascading events. These labels are the output

of the model, and the input includes the initial operating conditions and additional

information about the line on which the initial applied fault happens. The ML model

application for the binary classification problem is highlighted in Fig. 4.5.
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Figure 4.5: Predicting the appearance of cascading events as a binary classification
problem.

4.3.3 Machine Learning methods application

In this study the ML models considered are applied using the k-fold validation, as

described in Section 4.2.3. The value of k is set to 10, as this value has been found

through experimentation to result in a estimate of model performance with low bias

and modest variance [94]. For the regression task, the average and standard deviation

of the MAE metric across the 10 folds are calculated for validation. Accordingly, for

the binary classification task the average and the standard deviation of accuracy are

calculated and compared.

The models are initially trained and validated using the default parameters. More

specifically, the number of the neighbours for the KNNmodel is set to 5, the Radial basis

function layer is used for the SVM with C = 1, the Gini index is used for the splitting

of the CART model, and the number of estimators (trees) for the ensemble tree-based
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models (Random Forest, Extra trees, AdaBoost, Gradient Boosting, XGBoost) is set

to 100. The goal of this step is to quantify the suitability of each algorithm for the

problem of predicting cascading events using measurement data from the steady-state

conditions. Next, the model that showcases the best performance is further tuned to

improve its performance by applying a grid-search optimization, as described in Section

4.4. All the ML models are implemented using the Scikit-learn Python library [95].

4.3.4 Study case and Dataset

The proposed framework is applied on a modified version of the IEEE-39 bus model,

which includes the action of protection devices and RES penetration. The modified

network model is described in detail in Section 3.4.2. The dataset consists of the

results of the dynamic RMS simulations performed for this network as defined in the

Base case of Section 3.4.3. Based on these test cases, 44064 simulations in total have

been performed, with cascading events appearing in 7131 simulations (16.2% of the

simulations). These simulations have been performed for 1296 different initial operating

conditions and three-phase faults on each of the 34 lines. When the line on which the

fault happens is not considered, and the problem is formed as a regression problem

with the output being the probability of cascading events, the dataset consists of the

1296 cases, split into 80% (1036 cases)-20% (260 cases), for the 10-fold cross-validation

and test set respectively.

When the fault location is added to the input features of the models, and the

problem is formed as a binary classification problem, then the dataset consists of all

the 44064 simulations (1296 different operating conditions × 34 lines). The whole

dataset is again split into 80% (35451 simulations) - 20% (8613 simulations), for the

10-fold cross-validation and test set respectively. It should be noted that the split

is performed in a stratified manner, meaning that the same percentage of cases with

cascading events and safe cases exists in both splits.

For each simulation 178 features that represent the electrical variables of the system

during steady-state are obtained over various network locations. These features include

the voltage and frequency of every bus element, and the current, active and reactive
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power of every line of the network. A pre-processing scaling step is applied on the

features, so that all the features values are in the range of [0,1] before being input to

the ML models. For the binary classification problem, if cascading events appear at a

simulation then it is labelled as 1, and if no cascading events appear then it is labelled

as 0.

4.4 Results

4.4.1 Predicting the probability of cascading events

After performing 10-fold cross validation, the Mean and Standard Deviation value of

MAE over the 10 folds of the ML models for predicting the probability of cascading

events are presented in Table 4.1. It should be noted that a smaller MAE score means

better performance. As it can be observed, the KNN algorithm achieves the lowest

MAE, in terms of mean and standard deviation, 2.09% and 0.20% respectively. The

two algorithms that also showcase a good, but slightly worse, performance are the

CART algorithm and Linear Regression (LR), despite the simplicity of this algorithm.

The LASSO and Elastic Net (EN) regression algorithms have the poorer performance

scores. The performance of the models is also illustrated using boxplots in Fig. 4.6.

Table 4.1: ML regression models 10-fold validation results.

Algorithm MAE Mean (%) MAE Standard Deviation (%)

LR 2.82 1.06

LASSO 6.07 0.42

EN 5.96 0.39

KNN 2.09 0.20

CART 2.38 0.36

SVR 3.07 0.28

Since the CART algorithm showcases a good performance, ensemble methods that

consist of multiple Decision Trees have been also trained and tested. In a similar

manner, the results of the ensemble methods after performing 10-fold cross validation

are presented in Table 4.2 and with boxplots in Fig. 4.7. The model that showcases the

best performance is the Extra Trees (ET) model, which performs with MAE mean of
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Figure 4.6: Boxplots illustrating the ML regression models 10-fold validation results.

1.66% and MAE standard deviation of 0.25%. The Gradient Boosting (GBM), Random

Forest (RF) and XGBoost (XGB) models have overall a similar performance, with the

XGB model having the largest MAE standard deviation of 0.29%. The AdaBoost (AB)

model has the worst performance of the ensemble methods, with a MAE mean of 2.92%

and MAE standard deviation of 0.29%. It can be concluded that the extra randomness

of the Extra Trees algorithm fits better the problem of predicting the probability of

cascading events.

Table 4.2: Ensemble regression models 10-fold validation results.

Ensemble Method MAE Mean (%) MAE Standard Deviation (%)

AB 2.92 0.27

GBM 1.77 0.20

RF 1.77 0.23

ET 1.66 0.25

XGB 1.81 0.29
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Figure 4.7: Boxplots illustrating the Ensemble regression models 10-fold validation
results.

For the algorithm with the best performance on the previous experiments, Extra

Trees, a grid search optimization is performed in order to improve the model perfor-

mance. The grid search is performed for number of estimators in [50, 100, 150, 200,

250, 300, 350, 400], using the same 10-fold cross validation as applied before. After

application, the number of trees is set to 200, as this leads to the lowest MAE score.

The best performing model, Extra Trees with 200 trees, is tested on the unseen by

the model test dataset. The evaluation results are presented in Table 4.3. The model

performs with a MAE score of 1.65% and a RMSE score of 2.57% on the test dataset.

It should be noted that the optimization in this case leads to an improvement in MAE

score of only 0.01%. Also, the R2 score of 0.95 indicates a good fit of the regression

model to the input data. However, the MOE and MUE metrics have significantly larger

values, of 9.57% and 14.10% respectively. The high MUE value of 14.10% is particularly

concerning, as under-estimating the probability of cascading events can potentially lead
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to severe consequences.

Table 4.3: Extra Trees model performance results on the test dataset.

MAE (%) RMSE (%) R2 MOE (%) MUE (%)

1.65 2.57 0.95 9.57 14.10

To better understand the model performance, a scatter plot illustrating the pre-

dicted model values against the actual values is presented in Fig. 4.8. The diagonal

red regression line shows where ideally all the points should be, as on this line the

predicted values match the actual values. As it can be observed, for smaller probabil-

ities of cascading events (10%-20%), the model tends to over-estimate the probability

of cascading events, as the prediction values are higher than the actual values. On the

other hand, when the probability of cascading events is higher (40%-60%), the model

under-estimates the probability value. Although fewer instances appear at this range,

predicting lower probability than the actual one could lead to a lack of trust on the

application of this model in real-life scenarios.

4.5 Predicting the appearance of cascading events in in-

dividual cases

Based on the previous results, the regression ML model can under-estimate the prob-

ability of cascading events. For this reason, the line on which the initial fault happens

is added as a categorical feature to the input features. In this case, the problem is

formulated as a binary classification problem, and the output of the ML model is if a

cascading event will appear or not, as described in Section 4.3.2.

After performing 10-fold cross validation, the ML models mean accuracy and stan-

dard deviation are presented in Table 4.4. For comparison purposes, the results are

also visualized using boxplots in Fig. 4.9. The KNN model has the best performance,

with mean accuracy of 98.20% and standard deviation of 0.22%. The CART model

has a slightly worse performance, with a slightly lower mean accuracy of 97.82% and

higher standard deviation of 0.29%. The Naive Bayes (NB) model showcases the worst

performance, with a mean accuracy of 80.67% over the 10 folds. According to the
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Figure 4.8: Model predictions compared to the actual values.

theoretical background of the Naive Bayes algorithm, it assumes that the features are

independent, which assumption in the case of power system features is not valid.

Table 4.4: ML classification models 10-fold validation results.

Algorithm Accuracy Mean (%) Accuracy Standard Deviation (%)

LR 95.51 0.30

LDA 91.23 0.40

KNN 98.20 0.22

CART 97.82 0.29

NB 80.67 0.94

SVM 97.11 0.30

As the CART algorithm showcases also in the binary classification problem a good

performance, the ensemble methods are trained and validated in the same way on

10-fold cross validation. Similarly, the mean and standard deviation of accuracy are

presented in Table 4.5, and using boxplots in Fig. 4.10. In this case, the XGBoost
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Figure 4.9: Boxplots illustrating the ML classification models 10-fold validation results.

(XGB) model has the highest mean accuracy of 98.68% and standard deviation of

0.20%, while the Extra Trees (ET) model has a slightly worse accuracy of 98.26%, but

lower standard deviation of 0.17%. According to the boxplots, the XGBoost model

showcases overall the best performance.

Table 4.5: Ensemble classification models 10-fold validation results.

Ensemble Method Accuracy Mean (%) Accuracy Standard Deviation (%)

AB 94.61 0.25

GBM 97.27 0.23

RF 97.63 0.20

ET 98.26 0.17

XGB 98.68 0.20

As the XGBoost is the best performing model, a grid search optimization is next

performed in order to improve the model performance. The grid search is performed

for number of estimators in [50,100,150,200,250,300,350,400], using the same 10-fold
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Figure 4.10: Boxplots illustrating the Ensemble classification models 10-fold validation
results.

cross validation. The number of estimators (trees) is set to 350, as this is the value

that leads to the highest accuracy.

The XGBoost model with 350 estimators is evaluated on the test dataset, and the

result metrics are presented in Table 4.6. The model achieves a 98.61% accuracy on the

test dataset, showcasing a precision score of 97.46%, and a lower recall score of 94.04%.

It should be noted that in this case recall is particularly important, as it represents the

proportion of the actual cases with cascading events that are predicted as cases with

cascading events.

To better understand the predictions of the classification model, the confusion ma-

trix is presented in Table 4.7. The XGBoost model correctly classifies 1341 instances

as cases with cascading events, however it mis-classifies 85 cases of cascading events as

safe cases. Furthermore, it classifies 35 safe cases as cases with cascading events (false

alarm).
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Table 4.6: Trained models and result metrics.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

XGB 98.61 97.46 94.04 95.72

Table 4.7: Confusion Matrix for the XGB model.

Actually Positive (1) Actually Negative (0)

Predicted Positive (1) 1341 35

Predicted Negative (0) 85 7152

4.5.1 Most important Features through Permutation Feature Impor-

tance

In order to identify which electrical system variables have the most influential effect

on the prediction of cascading events, a permutation feature importance analysis is

performed. This technique is applied on the best performing model, based on the

previous experiments, the XGBoost model for the binary classification task. The 10

features that when permuted lead to the biggest drop in accuracy, therefore are the

most influential, are presented in Fig. 4.11. The feature that when is permuted leads

to the biggest drop in accuracy, 23.5%, is the fault location. In other words, the line on

which the fault happens is the most important feature for the prediction of cascading

events. The second most important feature is the voltage magnitude of Bus NSG2.

The drop in accuracy that causes the permutation of this feature is 1.48%, which is

significantly lower than the effect of fault location. It should be noted that in this

particular network and study cases, the disconnection of wind-farm NSG2 due to Over-

voltage is the most common cascading event, so it is correctly identified by the model

as an important feature. The rest of the features when permuted lead to a drop in

accuracy of less than 0.5%.

4.5.2 Identifying the impact that initial operating conditions have on

the prediction of cascading events with SHAP

The previous permutation feature importance analysis helps to identify which features

the model identifies as most important, however it does not provide an indication about
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Figure 4.11: The 10 most important features according to Permutation Feature Impor-
tance.

how these features affect the model prediction. To address this, the SHAP values

are calculated, as described in Section 4.2.6. As the best performing classification

model is XGBoost, which is an ensemble method based on decision trees, the SHAP

TreeExplainer method is applied to calculate the SHAP values on the test data and

identify how the system steady-state measurements affect the prediction of cascading

events. After calculating the SHAP values, plots are provided and analyzed for both

local explanations, meaning individual model predictions, and global explanation, that

describe the model predictions across the whole test dataset.

Explaining a True Positive prediction with SHAP

The plot in Fig. 4.12 illustrates the SHAP values as calculated for a single True Positive

prediction. Each SHAP value can be interpreted as a force, that increases (red colour)

or decreases (blue colour) the probability of the appearance of cascading events, which

is in the range of [0,1]. The forces balance at the actual prediction value of the model,

starting from the baseline value E[x], which is the average of all model predictions.

The sum of all the SHAP values equals to the difference between the baseline value and
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the actual prediction value, as defined by the additive properties of SHAP values. The

features are sorted by the absolute SHAP value, which shows how much each feature

affects the model prediction. Here for presentation purposes the 20 most influential

features, including their actual value at this instance, are shown.

In this case the model correctly classifies this instance as a case with cascading

events. More specifically, in this instance a single cascading event appears, the dis-

connection of wind-farm NSG2 due to Over-voltage. The feature that has the highest

impact is the initial fault location, at Line 08-09, which pushes the base prediction

value E[x] = 17% by +66%. The increased voltage magnitude (1.038p.u.) on Bus

NSG2 increases the probability by 5%. In this case the Over-voltage relay on this bus

triggers the cascading event. The current magnitudes on Line 02-03 and Line 16-17

increase the predicted probability by 3% and 2% respectively. The rest of the features

have a smaller impact (less than 1% each) on the prediction of this particular instance.

Explaining a True Negative prediction with SHAP

The SHAP values as calculated for a True Negative prediction are presented in Fig.

4.13. In this case the model accurately classifies an actual case with no cascading events

as a safe case. The model prediction at this instance is f(x) = 0, so it predicts a 0%

probability of the appearance of cascading events. The initial applied fault location

on Line 07-08 lowers the base prediction value by 8%. In comparison to the previous

instance, the voltage magnitude on Bus NSG2 in this case is lower at 1.009p.u., and

decreases probability by 2%. Furthermore, the current magnitudes on Line 02-03 and

Line 16-17 decrease the predicted probability by 1% each. The sum of all the other

feature attributes decrease the base value by 5%.

Explaining a False Positive prediction with SHAP

Fig. 4.14 illustrates the SHAP values as calculated for a False Positive prediction. In

this instance the model falsely classifies a safe case as a case with cascading events. The

prediction of the model is 50.7%, only slightly higher than the threshold value of 50%

for the binary classification of an instance as 0 or 1. In this case the base prediction
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Figure 4.12: SHAP values for a True Positive prediction.

value is pushed higher by the fault location on Line 04-05, meaning that the model

considers a higher probability of cascading events because the initial fault appears on

this specific line. As the voltage magnitude on Bus NSG2 is 1.05p.u. and on Bus NSG1

is 1.033p.u., which are towards the upper limit, the base value is pushed higher by 4%

and 3% respectively. This information can be useful to stakeholders that intend to use

such models in real-life scenarios, as it enhances the accountability of the model and

provides indications on what causes the model to make a wrong prediction.
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Figure 4.13: SHAP values for a True Negative prediction.

Explaining a False Negative prediction with SHAP

In a similar manner, the SHAP values for a False Negative prediction are presented

in Fig. 4.15. In this case the model classifies incorrectly a case with cascading events

as a safe case. The single cascading event that appears in this case is the tripping of

wind-farm NSG2 due to Over-voltage. According to the calculated SHAP values for

this prediction, the voltage magnitude of 1.034p.u. on Bus NSG2 increases the base

value probability by 7%. However, the initial fault location on Line 26-29 decreases

the predicted probability also by 7%. Most of the rest of the feature values increase

the model prediction probability for the appearance of cascading events. The final
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Figure 4.14: SHAP values for a False Positive prediction.

prediction is 48.8%, only slightly lower than the threshold value of 50% for classifying

an instance as 0 or 1. This specific case highlights that although the initial fault

location feature has a high impact on the model prediction, it can mislead the predicted

probability.
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Figure 4.15: SHAP values for a False Negative prediction.

Global Explanation with SHAP

A SHAP summary plot can provide a global explanation about all the instances in

the test dataset. This helps to acquire an understanding on how the features affect

the model predictions globally, instead of individual instances. Each point on the

plot represents an instance and the respective SHAP value. The features are sorted

on the y-axis according to their importance. The colour represents the value of the

electrical system variable feature, ranging from low values (blue colour) to high values
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(red colour). The over-lapping points are positioned across the y-axis direction, giving

an indication of the distribution of the SHAP values per feature. This SHAP summary

plot can provide indications of the relationship between the value of the features and

the impact on the prediction of the appearance of cascading events.

The summary plot presented in Fig. 4.16 showcases the SHAP values for the 20

most important features across all the instances in the test dataset. The most important

feature is the fault location, followed by the voltage magnitude on Bus NSG2. As

previously mentioned, the tripping of wind farm NSG2 is the most common cascading

event for this test network and set of simulations. The rest of the features are related

to active power measurements on lines (6 features), current magnitudes on lines (6

features), voltage magnitudes on lines (3 features) and reactive power measurements

on lines (2 features). The colour range gives an indication on how the SHAP values are

attributed according to the feature values. However, it should be noted that a negative

measurement value (and a correspondingly low value after the scaling step) indicates

the opposite power flow direction.

By comparing the SHAP summary plot results to the permutation feature impor-

tance analysis presented in 4.5.2, it can be highlighted that both methods identify the

same two features, that is fault locations and Bus NSG2 voltage magnitude, as the

most important ones. Furthermore, the following five most important features as iden-

tified by permutation feature importance are also included in the SHAP summary plot,

but in a different order. It can be concluded that both methods identify similarly the

features that have the highest impact on the model prediction, however SHAP analysis

can provide more information on the model prediction process due to the calculation

of feature attributions.

4.6 Chapter Conclusions

This Chapter presents a framework for the prediction of cascading events and explaining

how the initial operating conditions during steady-state affect the ML model predic-

tions. The problem is first formulated as a regression problem, where the output is the
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Figure 4.16: Global explanation with SHAP summary plot.

probability of appearance of cascading events, without knowing the line on which the

initial fault happens. A wide range of linear and non-linear ML algorithms is trained

and validated through 10-fold validation. The framework is applied on a modified ver-

sion of the IEEE-39 bus system, augmented with wind farms that represent the network

RES generation and with protection devices. The best performing regression model is

an Extra Trees model that performs with a MAE score of 1.65% on the test dataset.

However, the MUE score of 14.1% might not be sufficient, as there is a significant risk

of under-evaluating the probability of cascading events. Next, the line on which the

initial fault happens as a discreet event is added to the input features and various ML

classification algorithms are trained and evaluated in a similar way. The model with
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the best performance is XGBoost, which performs with 98.61% accuracy on the test

dataset.

A permutation feature importance analysis is performed on the XGBoost model, to

identify the most important features for the prediction of the appearance of cascading

events. The most important feature as identified by this analysis is the fault location,

followed by the feature whose values cause the most common cascading event, the

voltage magnitude of Bus NSG2. To gain more insights about how each feature affects

the individual model predictions, the SHAP technique is implemented and applied.

Instances of both correct and incorrect model predictions are explained and analyzed

using SHAP plots. Furthermore, a global explanation SHAP plot reveals the most

important features across the whole test dataset. Providing explainable ML models

can enhance the trust of system operators on data-driven methods and lead to more

widespread use of ML based models in power systems practical applications.
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Chapter 5

Predicting the Onset of

Cascading Events using

Long-short Term Memory

Networks and Time-series

Measurement Data

5.1 Introduction

In modern power systems, the uncertainty that comes with the integration of RES

penetration, makes the online dynamic security problem a challenging task. The highly

complex, non-linear behaviour of electrical power systems is not yet well understood,

creating the need to re-establish stability definitions [1]. In some occasions, the complex

response of a system to a contingency can cause the appearance of cascading events,

compromising its secure operation. For this reason, intelligent approaches that are able

to predict unstable behaviour by using real-time measurement data, coming from PMUs

that are nowadays available, are being investigated to ensure the secure operation of

modern power systems with increasing renewable penetration.
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The accurate representation of protection devices is a key element in capturing

the cascading events that might appear in a system following a contingency [2], [4].

In some cases, protection devices might activate before actual instability limits are

reached. Their action can also cause subsequent events, leading to the appearance of

cascading event sequences. A method to predict this behaviour can provide valuable

information about the online system state, enabling system operators to take corrective

actions in order to prevent cascading events from spreading.

As the literature review presented in Chapter 2 has shown, most existing methods

mainly aim at identifying specific stability or security related phenomena and do not

investigate the possibility of cascading events. So far, methods predicting cascading

events have been focusing on static simulations. However, using dynamic models to

capture, and consequently predict cascading events can provide a more realistic real-life

representation of power systems operation. Combined with the need for dynamic simu-

lations, [2], [4] highlight the importance of representing protection devices in capturing

the evolution of cascading events, an approach the proposed method of this Chapter is

following. More importantly, [54], [96] highlight the fact that not including protection

devices in dynamic studies might result in inaccurate assessment of system behaviour.

So far, existing methods have been focusing on online dynamic security, or indi-

vidually on transient, small-signal or voltage security of power systems as defined by

stability limits. Compared to the work presented in Chapter 4, this methodology fo-

cuses more on the online application of the method, and on practical considerations

related to PMU measurements. Based on this, the model is trained and evaluated using

time-series measurement data, starting from the time of the initial fault clearing, as

opposed to data during steady-state (that was the input in Chapter 4). Moreover, the

line on which the initial fault happens is not specifically given as an input feature to

the model, but the model learns to identify it by the time-series data. The prediction

of cascading events has only been examined using data from static simulations. Based

on the literature review, an approach for the online identification of cascading events

defined by the activation of protection devices using time domain measurements has

not yet been proposed.
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5.1.1 Contributions

The main contribution of this chapter is the use of supervised machine learning and

measurement data from dynamic simulations to predict the appearance of cascading

events, as defined by the actions of protection devices. The accurate modelling of system

dynamics (capturing phenomena related to voltage, frequency and transient instability)

as well as the discrete action of protection devices are considered, which play a signif-

icant role in the realistic representation of the appearance of cascading events. This

approach for online identification of cascading events including the action of protection

devices makes the proposed method distinct to stability/security assessment methods

mentioned before, with the key reason being that the actual limit where an event might

propagate is more accurately represented. The method is applied on a power system

incorporating renewable generation, as the uncertainty that comes with it has shown

to affect the power system operation after a contingency. As the prediction takes place

in close to real-time, this information could be vital in taking corrective control actions

in time and preventing cascading events from spreading. Other contributions include:

• The investigation of the impact that the time window length, used for the online

prediction, has on the model performance.

• How the performance of the prediction model differentiates for individual oper-

ating conditions. As it is concluded from the results, the model performance can

vary for different system loading and wind penetration, which can offer useful

information to system operators, related to the level of confidence when using the

method.

• A feature importance analysis is also performed to identify which of the features

play a significant role in the prediction of the onset of blackouts. This can offer

interesting information on the parameters affecting cascading events as well as

identify the specific PMU measurements that have the highest impact on the

model performance, which can inform measurement infrastructure decisions.

• The model performance is evaluated considering limited availability of PMU mea-

surements and noisy data, which can be found in practical applications.
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5.2 Methodology

The proposed framework aims to the online identification of cascading events followed

by an initial disturbance. A schematic illustrating the main steps of the framework

online and offline stages, which are described in detail below, is presented in Fig. 5.1.

5.2.1 Detailed Procedure

The method presented in this chapter consists of two main stages: i) the offline gen-

eration of the dataset and the training of the appropriate supervised machine learning

model, and ii) the online binary classification using the pre-trained model to predict

the appearance of cascading events. A cascading event in this study is defined as the

trip of a component caused by the activation of protection device after (and in addition

to) the initial disturbance. During the offline stage, a number of dynamic RMS (Root

Mean Square) simulations for various initial operating conditions and contingencies is

performed, taking into consideration the increased uncertainty that comes with RES

penetration and the reduced network inertia caused by SG disconnection as dictated

by economic dispatch. The initial applied fault may cause the appearance of cascading

events, as dictated by the discrete action of protection devices that have been imple-

mented in the system. The time-series data obtained from the dynamic simulations are

pre-processed to represent a typical PMU sampling rate and are subsequently used for

training the model. For this method, Long-short term memory networks (LSTM) have

been used, because of their ability to store information and to learn from time series

dependencies. This approach is compared to the performance of a regular feed-forward

neural network, as a baseline model, and to the performance of a simple recurrent

neural network (RNN).

In practical applications, the time domain measurement data during the online

phase can be obtained from PMU measurements [97] and used as input to the pre-

trained machine learning model to predict the appearance of cascading events. Another

potential application of the proposed method is as a screening method for planning

studies. In this case, a simulation can be performed for only a short duration, and
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then the ML model can be utilized to evaluate if a cascading event will appear or not.

This way, the fast inference time of the ML model is taken into advantage, instead of

running computationally demanding detailed simulations for long timescales.
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Figure 5.1: Flowchart illustrating the steps of the proposed framework.
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It should be noted that in this study, measurement data from simulations have been

used for training and testing the method. The analysis of the model performance is

related to the window size and the performance for different loading and RES penetra-

tion levels. A feature importance analysis using the pre-trained model is then carried

out to identify the most important features. Taking into account practical applica-

tions, the model performance is evaluated considering limited availability and noise of

measurement data.
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Figure 5.2: Example of a cascading event and the method application.

5.2.2 Example of a Cascading Event and Method Application

An example of a cascading event and the application of the proposed method is shown

in Fig. 5.2. In this plot, the cause of a cascading event, the tripping of a wind generator

(NSG2) due to over-voltage simulated in the test network used in this study, and the

signal of the protection relay are presented. After the fault clearance (1.07s), as the

bus voltage recovers it causes the violation of the over-voltage protection limits (in this

case 1.1 p.u. for over 0.15s) that leads to the activation of the over-voltage relay and

the disconnection of the wind generator from the grid (2.19s). The tripping of this

wind generator may cause the violation of other protection device limits, causing the

tripping of more components and creating a sequence of cascading events. Predicting

the possibility of voltage instability in this case might not capture the tripping of this
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element and any subsequent events. This highlights the importance of capturing, and

subsequently being able to predict, the action of protection devices, and not just the

instability mechanisms involved.

Time domain features, that can be obtained from typical PMU measurements as

the voltage measurement presented in this plot, prior to the cascading event are used

to train the machine learning model. The online application of the proposed method

starts after the initial fault clearance, by utilizing the pre-trained model in order to

predict the appearance of the cascading event before the actual time of the event. In

this example, the method should be able to predict the appearance of the tripping of

the wind generator before the positive signal of the protection relay at 2.19s. This is

the time window during which the pre-trained model has to make the prediction. In

general, a shorter time window is beneficial, as an earlier prediction could provide more

time for any corrective actions that can be made before the appearance of the cascading

event. However, a longer time window, that consists of more time steps, could provide

more information about the evolution of the system response, possibly resulting in a

higher accuracy.

The action of Load Tap Changers (LTCs) and Over-excitation Limiters (OELs) has

been also implemented within the model, in order to capture longer phenomena related

to voltage instability [49]. The duration of the RMS simulations has been set to 120s

to capture both fast and slower evolving dynamic phenomena.

In large power systems there is a wide range of uncertainties including load vari-

ation and RES, that can affect the dynamic behaviour of the system. In this study,

the sampling of possible initial operating conditions is based on the discretization of

the operating range of the variables of interest, towards creating a large data-set of

operating scenarios and events. The parameters considered for this purpose are RES

output generation (for each RES unit), system loading and line fault location.

5.2.3 Dataset Generation

The dataset generation procedure is described in detail in Section 3.4.1. The time series

data of each simulation is obtained, with a total of 178 features describing the states in
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various power system locations over time. These features represent the measurements

that can be obtained from PMU devices found in real power systems and include the

voltage and frequency of every bus element, and the current, active and reactive power

of every line of the network. At the end of each simulation it is determined whether the

system remains secure or if any cascading events occur, and each simulation is labelled

as 0 or 1 respectively.

5.2.4 Preprocessing Data

In order to convert the dataset into the input format expected by the selected machine

learning model, a number of pre-processing steps are performed, consisting of feature

normalisation, time step interpolation and windowing. All features are normalized

to enable more efficient and high performance model training. Normalization is a

widely used pre-processing technique for data smoothing that aims to retain information

related to within feature variance, while ensuring that all features are on the same scale.

In this study, the scaling value for all quantities in per unit (p.u.) has been set to 1, and

for all the other quantities it has been set to 100. After application all the measurements

values are in the range of [-10,10].

After normalizing all features, we perform interpolation to ensure evenly sampled

time steps across all simulations. We use first order spline interpolation and set the time

interval δ to 0.01 seconds, a typical PMU sampling rate. The interpolation step both

ensures a smoother cost function by avoiding drastic changes in feature values across

two time steps and prevents performance drops in production, where model inference

takes place at fixed intervals.

5.3 Neural Network Models and Training

5.3.1 Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is a type of machine learning algorithm that is

inspired from biological neural networks, like human brains. A typical ANN is composed

of multiple, directly connected layers, that consist of interconnected neurons which can
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process and transmit information. These layers include an input layer, one or more

hidden layers, and an output layer. The input layer receives the input data, and each

subsequent layer processes and transforms the information, until the output layer, that

gives the model prediction. An ANN that consists of an input, a hidden, and an output

layer is illustrated in Fig. 5.3.

𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟

𝑥1

𝑥2

𝑥𝑛

𝐼𝑛𝑝𝑢𝑡 𝑋
𝑂𝑢𝑡𝑝𝑢𝑡 𝑌

Figure 5.3: Schematic diagram of an ANN

Each neuron of the ANN, receives input from the neurons of the previous layer,

and performs a mathematical operation. Subsequently, the output of this neuron is

transferred to the neurons of the next layer. The connections between the neurons have

certain weights, that are optimized during the ANN training process with the objective

of increasing the network performance. As the ANN gets deeper, which means that

the network has more hidden layers, it consists of more training parameters and can

represent more complex relationships between the input data ad the output value. The

output of a neuron is given by:

y = f

(
n∑

i=1

xiwi + b

)
(5.1)

where xi are the inputs of the previous layer to the neuron, wi are the weights associated
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with each input, n is the number of inputs to this neuron, and β denotes the bias

value that helps to adjust the output of the neuron. The f denotes the activation

function, which transforms the input to the desired output of the neuron. Usually, in

hidden layers the purpose of the activation function is to introduce non-linearity to the

relationship of the neurons.

A feed-forward neural network, also known as a Multi-layer Perceptron (MLP), is

a type of ANN in which the information flows in only one direction, from the input to

the output layer [98]. The training phase of a feed-forward ANN consists of two stages:

forward propagation and back propagation. During the forward propagation, the input

data are passed through the interconnected layers of the network and the output value

is generated. This process consists of passing the input data through the neurons of

the network, calculating the sum of the inputs multiplied by the weights, and passing

the value to the activation function. At the output layer, the prediction generated by

the network is compared to the true label, and the error is calculated, according to the

specified loss function. This is a deterministic process, meaning that for a given set of

inputs, the network will produce the same output.

Back propagation is the process during which the error that is calculated at the

end of the forward progation phase is propagated back through the network to update

the parameters of the model. Starting from the output layer, at each layer the partial

derivatives of the total error with respect to each weight are computed, which represent

their contribution to the total error. The gradient is then used to update the weights of

the connection. A typical optimization algorithm that is used at this step is the gradient

descent. The model with the updated weights is then used for the next iteration of

forward and back propagation. This training process is iteratively repeated until the

loss function converges to a specified value, or the number of iterations reaches a pre-

defined value.

5.3.2 Recurrent Neural Networks (RNN)

Recurrent neural networks, also known as RNNs, are a class of deep neural networks

designed to process sequential data, where the order of data points is important. To
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achieve this, these networks define a recurrent relationship over the input sequence [99].

Unlike feedforward ANNs, where the output depends only on the current input and the

network weights, the RNNs also use hidden state ht, which is a function of the current

input and the previous hidden state, ht−1. The transition function is given by:

ht = f (Uxt +Wht−1) (5.2)

where ht, ht−1 are the hidden states at time step t and t− 1 respectively, W and U

are weight matrices, xt is the input at time step t and f denotes the activation function.

The previous equation describes an RNN with a single layer. However, multiple

RNN layers can be stacked, to create a stacked RNN. In this case the hidden state hlt

at level l and timestep t, takes as input xl−1
t , from the previous level, and hlt−1, of the

previous time step. The Equation 5.2 is transformed to:

hlt = f
(
Uxl−1

t +Whlt−1

)
(5.3)

where l is the layer number.

Because of the recurrent relation, RNNs can have memory over time, as each hidden

state contains information about the previous steps. RNNs can be used to model a

many-to-one type problem, which means to take as an input a sequence of time steps

and classify it to a label. The recurrence relationship can be observed by unfolding

the structure of an RNN. In Fig. 5.4 an RNN that takes an input x, that consists

of n samples, and classifies it to an output y and its internal structure is presented.

The weight matrix U transforms the input x into hidden state h, the weight matrix W

transforms the hidden state of the previous timestep into the current hidden state, and

weight matrix V maps the hidden state h to the output.

RNNs are trained in a similar manner to feed-forward ANNs, using an extension

of backpropagation, the backpropagation through time. To compute the gradients, the

network is unfolded over time and each time step is considered as a hidden network layer.

The weights of the network are shared across time steps. During the backpropagatio,

the gradient loss is computed with respect to the network parameters and differentiation
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Figure 5.4: Schematic diagram of the RNN recurrence relation

through time. Then, the gradients are used to update the weights of the network using

an optimization algorithm, such as gradient descent.

However, RNNs can suffer from a significant problem: vanishing or exploding gra-

dients. The vanishing gradients problem refers to the phenomenon where the gradient

values decrease exponentially over a number of time steps, resulting to extremely small

values in the earlier states. As a result, the larger values of gradients from more recent

time steps become dominant, hindering the ability of the network to retain informa-

tion about earlier time steps. Exploding gradients refers to the opposite phenomenon,

when the gradients take very large values. As the gradients are multiplied during back-

propagation, if the resulted product is greater than 1, then the gradient values can

increase exponentially. This can result to updating the network weights in a way that

can decrease performance or lead to instability during training.

5.3.3 Long-Short Term Memory Networks (LSTM)

The LSTM networks [100], [101] are a kind of recurrent neural network that aims to

resolve the vanishing/exploding gradient problem. The key characteristic of LSTMs is

that they use a vector of memory cells clt ∈ Rn with input, output and forget gates

to maintain information for longer periods and regulate the flow of information. The

gates are defined by a sigmoid function and element-wise multiplication. The forget

gate decides whether parts of the existing cell state will be erased or not, and the input
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gate decides what new information will be added to the memory cell. This gives the

ability to LSTM to store more specific information in its cell state vector. The role of

the output gate is to decide what the output of the cell will be. In a similar manner to

the simple RNN, a LSTM network can be trained by back-propagation through time.

In this way, LSTMs can decide to overwrite the memory cell, retrieve it, or keep it

for the next time step, hence maintaining both long and short term memory depending

on the task and context. A schematic diagram of a memory cell is shown in Fig. 5.5.
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Figure 5.5: A schematic diagram of a LSTM memory cell.

RNNs, including LSTMs, can map one to many, many to many or many to one.
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For example, given an input sequence x = (x1, . . . , xT ) and target output sequence

y = (y1, . . . , yT ), the LSTM network unit activations can be calculated iteratively from

t = 1 to T with the following equations [102]:

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (5.4)

ft = σ (Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (5.5)

ct = ft ⊙ ct−1 + it ⊙ g (Wcxxt +Wcmmt−1 + bc) (5.6)

ot = σ (Woxxt +Wommt−1 +Wocct + bo) (5.7)

mt = ot ⊙ h (ct) (5.8)

yt = ϕ (Wymmt + by) (5.9)

where the W denote weight matrices, b denote bias vectors, σ denotes the sigmoid

function, and i, f , o and c are respectively the input gate, forget gate, output gate

and cell activation vectors, all of which are the same size as the cell output activation

vector m, ⊙ is the element-wise product of the vectors, g and h are the cell input and

cell output activation functions, tanh and ϕ are the hyperbolic tangent and softmax

activation functions respectively.

5.3.4 Using LSTMs to predict cascading events

Due to the particular properties of LSTMs explained previously, they offer a good fit

for the problem of predicting cascading events. LSTMs can handle time-series data

and their memory properties also fit well with the need to capture the evolution and

inter-dependencies of the system variables as they evolve in time, an important aspect

affecting cascading events. In order to predict the occurrence of cascading events, an

LSTM model is trained using the pre-processed data, described in Sections 5.2.3 and

5.2.4, as input. The input X of the model is a NF ×NT matrix, where NF is the number

of features and NT is the number of time steps included in the selected time-window

(input size). The time-window length is investigated in Section 5.5.1.

116



Chapter 5. Predicting the Onset of Cascading Events using Long-short Term
Memory Networks and Time-series Measurement Data

To pose the occurrence of a cascading failure as a binary classification problem, the

final layer consists of a single neuron that is fed into a sigmoid activation function to

output a value between 0 and 1, that represents the probability of a cascading event

occurring or not. The sigmoid activation function is given by:

σ(z) =
1

1 + e−z
(5.10)

The threshold is set to 0.5, if the output probability is higher than the threshold

then Y is set to 1 (a cascading event will occur), otherwise Y is set to 0 (no cascading

event). The binary cross entropy between the model predictions and real values (1 for

failure cases, 0 for non-failures) is chosen as the loss function. The binary cross entropy

is a typical loss function used for binary classification problems, and is given by:

BCEloss = −(y log(p) + (1− y) log(1− p)) (5.11)

where y is the actual label (0 or 1) and p is the predicted probability.

Each parameter’s contribution to the total loss is computed via back propagation

and batch gradient descent is performed to optimize the weights of the model pa-

rameters, as explained in more detail below. The structure of the proposed model is

presented in Fig. 5.6.

5.3.5 Model Training

To train the LSTM models, we use the pre-processed dataset as outlined in Section 5.2.4

and perform a stratified split using a ratio of 80-10-10% to create training, validation

and test sets. We use a single layer LSTM, where the number of hidden units/neurons

is set to 150. The size of the hidden units is chosen based on model performance after

performing a grid search for the following values: {50, 100, 150, 200, 250}. The Adam

optimizer is used and the binary cross entropy as the loss function, a common choice

for binary classification problems. To compare the performance of LSTM, we train

additionally a feedforward Multilayer Perceptron (MLP) and a simple RNN network.

The number of hidden units for the RNN is set after performing a similar grid search
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Figure 5.6: Structure of the LSTM model.

as for the LSTM model. As a baseline approach, the MLP consists of an input layer

with the number of neurons set equal to the number of input data points (number of

features × time steps) and a single hidden layer with 300 neurons, as set following a

grid search. The rectifier linear unit (ReLU) activation function is chosen for the MLP,

to capture the nonlinear behaviour. The ReLU activation function is given by:

Relu(z) = max(0, z) (5.12)
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Unlike vanilla gradient descent where the model parameters are updated at each

data sample, batch gradient descent is used to perform back propagation and param-

eter updates over batches of input data. Using batch gradient descent helps overcome

memory constraints and increases computational efficiency. At each optimization it-

eration, the model parameters are shifted in the opposite direction of their respective

gradients (with respect to loss) by a configurable step size, known as the learning rate.

Moreover, once all the batches are iterated, the dataset is shuffled and reiterated to

prevent getting stuck in local minimas and help the weights of the model parameters

to converge. Each complete iteration of the training dataset is called an epoch. Based

on the size of the dataset, the batch size is set to 64. Furthermore, we use the default

learning rate value of 0.001 and train the models for 10 epochs on a single GPU with

early stopping enabled (based on validation loss) to avoid over-fitting.

Because of the randomness introduced during the initialization of weights and dur-

ing the training of neural network algorithms, the same network trained on the same

data can produce different results [103]. To ensure reproducibility, we set the model

seed to 17 during the model training process. The feature importance and time win-

dow length experiments in Section 5.5 show that the implemented models perform well

regardless of the data split.

As observed in Fig. 5.7, where the evolution of the training and validation loss is

presented across the epochs, no over-fitting is observed and the model has converged

towards the end of training. Moreover, we observed that models tended to overfit after

10 epochs (training loss decreases while validation loss increases). Once the model is

trained, we perform inference on the test set and compare the predicted against the

true labels.

5.3.6 Evaluation Metrics

To evaluate the performance of the proposed LSTM binary classifier, the metrics pre-

sented in (4.21-4.24) are used. Accuracy, Precision, Recall and F1 score are typical

measures used in machine learning that capture different aspects of the performance

of a binary classifier [86]. The mathematical definition of these metrics are given in
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Figure 5.7: Train and Validation learning curves of the proposed LSTM model.

Section 4.2.4.

In this case, true positives are the correct predictions of cases with cascading events

and false positives are the cases with cascading events that are falsely predicted as

safe cases. True negatives are the safe cases (no cascading events) that are correctly

predicted, and false negatives are the safe cases that are incorrectly predicted as cases

with cascading events. The confusion matrix that presents these values in a table

format, is also examined.

We note that there is almost always a trade-off between recall and precision with

datasets of limited size. Models with high recall-low precision and low recall-high

precision performances can be interpreted as over-fitting and under-fitting respectively.

In this particular application, a false negative is more critical than a false positive

as missing a real failure event might lead to subsequent cascading events or even a

widespread blackout. Thus, a high Recall is more important in this case.

In some cases, the first failure of the cascading event occurs too early and this

makes it impossible to make a prediction within the selected time window. We define

these cases as missed cases. In order to identify the time window that leads to the best

performing model, a new accuracy metric, Accuracy′, is defined. This metric describes

the percentage of correct predictions that accounts for the missed cases:
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Accuracy′ (%) =
nTP + nTN

nTP + nFP + nTN + nFN + nMC
(5.13)

where nMC is the number of missed cases.

5.3.7 Permutation Feature Importance

A permutation feature importance analysis is performed to identify the most important

features according to the model prediction performance. In this case, these features

represent time domain measurements that describe the measured electrical variables of

the system, which in an online setting can be acquired by PMUs. To this extend, this

analysis can help to identify which PMUs provide the most important information for

the prediction of cases with cascading events.

The feature importance analysis is described in detail in Section 4.2.5. In this study,

the same technique is adapted to features that represent time series windows. More

specifically given a sequence of n timesteps, the time order of all features except the

feature to be permuted remains the same while the selected feature column is shuffled,

breaking the time-order. Since LSTMs are a type of RNNs that expect ordered time-

series as input, a permutation of an important feature would cause a drop in accuracy,

as described in [88].

5.4 Test System

5.4.1 Power Systems Dynamic Model

In this study, a modified version of the IEEE-39 bus model with RES units and pro-

tection devices is used, as described in Section 3.4.2.

5.4.2 Case studies

The dataset consists of the case studies as defined in the Base case of Section 3.4.3. In

total, 44064 cases have been simulated in this study, with cascading events appearing

in 7131 cases (16.2% of simulated cases). The percentage of cases with cascading

events is higher compared to practical applications, as the lines that are disconnected
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as initial contingencies in reality could be comprised of double circuits. So, each initial

contingency represents potentially the disconnection of two parallel circuits at a time.

Consequently, in some cases the disconnection of a line causes an area of the system

to become islanded, which leads to the appearance of cascading events. The reason for

stressing the power system operation is to be able to observe more cases of cascading

events and include these conditions in the training of the model for the following binary

classification.

The dataset as resulted from these cased studies is imbalanced as cases with cas-

cading events appear less commonly than safe cases. An imbalanced dataset can result

in binary classification models that have poor predictive performance, specifically for

the minority class. For this reason, a balanced dataset has been created, consisting of

7131 safe cases and 7131 cases with cascading events. The dataset is split in 12262

cases for training, 1000 cases for validation and 1000 cases for testing of the model.

5.5 Results

5.5.1 Time window selection

In this study, a fixed length observation window approach is utilised, by training and

testing the proposed model for various prediction times. In order to define this time

constant, the time of the first cascading event needs to be investigated, as this defines

the time window in which the prediction of whether a cascading event appears or not

has to be made, i.e. before the first cascading event actually happens. Fig. 5.8 shows

the time elapsed until the first cascading event occurs after the applied fault is cleared.

After investigation, the first cascading event takes place at 0.5s-2.5s after the fault

clearance in 98.8% of all cases. We observed that increasing the time window length

to 0.6s leads to a significantly higher number of missed cases (98 cases - 6.34% of total

cases). Hence, time windows longer than 0.5s are excluded from the model experiments.

To investigate the impact of time window length selection on Accuracy′, a single

layer LSTM model with 150 hidden units has been trained for 10 epochs for different

time window lengths and the results are presented in Fig. 5.9. Also, the number of the
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Figure 5.8: Time elapsed until first failure after fault clearance.

cases with cascades for which the first cascading event appears inside this time window

(referred to as missed cases) is presented in Fig. 5.9.c). It should be noted that these

missed cases have been excluded from the training and testing dataset, as the training

of the model should not include measurement data during or after cascading failures.

The results show that a time window of 0.1s results in the best Accuracy′, as driven

by the low number of missed cases (13). Moreover, we observe that the number of

false positives increase and the number of false negatives decrease as the time window

length increases, leading to a loss in precision. Hence, the model exhibits a tendency

to overfit when trained on data with window lengths of over 0.2s. We conclude that

learning short-term trends and dependencies are more important for the predictive and

generalization capabilities of the model.

5.5.2 Performance of online prediction

Following the previous analysis related to the time window selection, we use a time

window of 0.1s to perform an online prediction analysis. The LSTM model performance
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Figure 5.9: Impact of time window on online prediction.

is compared to the performance of a feed-forward MLP, as a baseline method, and a

simple RNN model, which is another type of recurrent network configuration. The

performance metrics of these models are presented Table 5.1. The metrics of the three

models are calculated using the same test set of 1000 cases, which is pre-processed as

described in Section 5.2.4 before being used as input to the trained models. The results

show that the LSTM model exhibits the highest Accuracy Recall and F1 score. The

MLP model shows a higher Precision than the LSTM model, but with a low Recall.

As it is concluded, the LSTM shows overall the highest performance, and the following

analysis is conducted for this model.

The confusion matrix (excluding missed cases) shown in Table 5.2 reveals that the
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trained LSTMmodel yields very low numbers of False Positives (17) and False Negatives

(27) out of 1000 unseen data samples. While the model precision is slightly higher than

recall, we find that the LSTM model has both high precision and accuracy (over 95 %)

with negligible error rates.

To further investigate the cause of false predictions, the boxplots of the Y output

value of the model are presented in Fig. 5.10. This value represents the probability

of whether a case includes cascading events or not that the LSTM model provides as

output. For the false positive predictions, it is observed that the values are in the range

of [0.5,1] and the median value is close to 0.8. For the false positive predictions, the

range of Y values and the median value (0.4) are closer to the threshold (0.5). This

indicates that the model predicts falsely a safe case as a case with cascading events

with higher confidence than a case with cascading events as a safe case.

The tripping of a system element may cause the appearance of subsequent events,

creating cascading event sequences of varying length. A summary of the cases with

cascading events is presented in Table 5.3 in order to identify what is the impact of the

correct or incorrect predictions on system security. The cases with cascading events

that the model predicts correctly (true positive), have a mean value of 3.16 trips per

sequence, and a mean value of 0.74% load loss. This percentage is calculated as the

amount of load that gets disconnected because of the UFLS scheme to the total amount

of system load at this case. In these cases, 239 SG units trip in total. These metrics

showcase that the model is able to accurately predict cases with cascading events that

have a high impact on system operation. All of the actual cases with cascading events

that are falsely predicted as safe cases (false negative), include only one cascading event,

the tripping of wind generator NSG2 due to over-voltage. So, as in this cases only one

cascading event appeared and no amount of load is shed, the false prediction does not

have a high impact on system operation.
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Table 5.1: Trained models and result metrics.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

MLP 92.6 97.3 87.6 92.2

RNN 93.8 94.3 93.2 93.8

LSTM 95.6 96.5 94.6 95.5

Table 5.2: Confusion Matrix for the LSTM model.

Actually Positive (1) Actually Negative (0)

Predicted Positive (1) 473 17

Predicted Negative (0) 27 483

Table 5.3: Cases with cascading events.

Number
of cases

Average
trips

Average Load
loss (%)

SG
trips

NSG
trips

True Positive 473 3.16 0.74 239 452

False Negative 27 1 0 0 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

False Negative

Y value

Figure 5.10: Boxplots of the model output Y for false predictions.

5.5.3 Impact of System Loading and Wind Generation on perfor-

mance

The way that initial operating conditions affect the model performance can provide

useful information about machine learning applications on power systems. In Table 5.4

the number of cases as correct or false predictions is presented for each system loading

state appearing in the test dataset. Moreover, the accuracy that the model achieved

at this system loading is also shown. In the test dataset there have been no case at
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90% loading, represented by XX values in the Table. It is observed that as the system

loading increases and reaches the nominal value (100%) the accuracy of the model

improves. For this loading value, only cases without cascading events have appeared in

the dataset, and the model predicts these cases more accurately.

Following a similar approach, an investigation on how the accuracy of the model

is affected by the wind generation output is also presented. The percentage of wind

generation can affect the amount of synchronous generation that is disconnected and

the network topology. This consequently might affect the predictive power of the model

due to changes in the appearance of particular cascading events, e.g. wind generator

NSG2 has been shown to cause several trips related to voltage in this particular network

and cases studied. The wind generation output percentage is expressed here as the per-

centage of the combined output of the three wind generators to the total nominal wind

generation capacity (e.g. 100% wind generation output means that in this simulation

the output of the three wind generators equals their nominal capacity). When the wind

generation is lower (6.7%-26.7%, bars no. 2-6 in Fig. 5.11. there is a higher number of

false predictions (41 cases in total). For these wind generation values, the appearance

of cases that include only the tripping of wind generator NSG2 due to over-voltage are

common, which the model falsely predicts as safe cases as explained previously. When

the wind generation is higher (40%-100%) the model achieves a very high accuracy. The

analysis in this Section highlights that machine learning model performance can vary

for different operating conditions of the system and this is something that should be

taken into consideration and could provide useful knowledge and potentially increased

confidence when applying machine learning based methods.

Table 5.4: Impact of system loading on prediction performance.

System loading [%] 70 80 90 100

Correct predictions 147 382 XX 427

False predictions 9 22 XX 13

Accuracy [%] 94.23 94.55 XX 97.05
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Figure 5.11: Wind generation impact on performance.

5.5.4 Feature Importance

After training and evaluating the model, a feature importance analysis using the per-

mutation technique as described in Section 5.3.7 is performed, in order to identify

which features, in this case representing PMU measurements, are mostly affecting the

model performance. Because of the nature of neural networks, each feature acquires an

individual weight and affects the training of the model differently.

In Fig. 5.12. the 20 features that when permuted result in the largest drop in

the accuracy of the model are presented. These are the features that have the highest

impact on the model performance, and therefore the most important ones. All but

one of the most important features correspond to PMU measurements of active (14

features) and reactive power (5 features) on lines. The most important feature, which

when permuted causes a 4.8% drop in the accuracy, is the active power measurement
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Figure 5.12: Permutation feature importance.

of Line 03-04, that connects two buses in the centre of the grid on which loads are

connected. When disconnected, this line changes the network topology leading to an

alternative flow of power. The second most important feature is the active power

measurement of Line 16-19, which when is disconnected creates an islanded part of

the system and causes the frequent appearance of cascading events. The only voltage

measurement included in these features is that of the wind generator NSG2 bus, the

tripping of which due to over-voltage is the most common appearing cascading event.
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5.5.5 Considering availability and noise of PMU measurements

In large real-life power systems, the increased number of buses makes it infeasible to

install PMUs at every bus of the system. For this reason, the performance of the model

when limited PMU measurements are available is investigated. The proposed LSTM

model is trained and evaluated using only the 10, 15 and 20 most influential features,

as these have resulted from the feature importance analysis. The results in Table 5.5

show that when 10 and 15 features are considered, the model performs with 84% and

90.9% accuracy respectively (12.1% and 4.9% reduction in accuracy compared to the

original LSTM model with 178 features). When the number of features is increased

to 20, all of the model performance metrics improve, performing with 94.4% accuracy

(1.26% reduction in accuracy). For this particular study it can be concluded that the

model performance is satisfactory when including only the 20 most influential features.

These 20 features can provide locational information about the buses at which the

PMUs should be installed.

In practical applications, the PMU measurements may contain noise introduced

by errors related to transducers and signal processing. The pre-trained LSTM model

with 178 features is tested using test data measurements with added noise signal. The

noise in PMU measurements is simulated by Additive white Gaussian noise (AWGN)

with a standard deviation of 0.002 p.u. [104]. The results show that the added noise

has no effect on the model performance, as the performance metrics, in Table 5.5, are

identical to those of the original LSTM model without added noise. This highlights the

robustness of the proposed method, as PMU measurements with noise do not affect its

performance.

Table 5.5: Performance considering limited availability and noise of PMU measure-
ments.

LSTM Accuracy (%) Precision (%) Recall (%) F1 Score (%)

/10 features 84 92.1 74.4 82.3

/15 features 90.9 90.2 91.8 90.9

/20 features 94.4 96.1 92.6 94.3

/w noise 95.6 96.5 94.6 95.5
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5.5.6 Computational time and Practical considerations

The simulations have been performed using the DIgSILENT Powerfactory RMS solver

with the adaptive time step option enabled. The approximate averaged running time

of one simulation without cascading events is 22s, and the running time of a simulation

with cascading events is 86s. The interface between Python and DIgSILENT Power-

factory has been used to set up the dynamic simulations running multiple simulated

cases in parallel in order to speed up the process of generating the described dataset.

The LSTM models are trained on a Nvidia Quadro RTX 6000 GPU, and the average

training time is 538s. These processes take place during the offline stage, where more

time is available.

During the online stage, the average time that a single prediction takes after per-

forming 1000 predictions on the GPU using the pre-trained model is 0.042s, which

highlights the fitness of the method for real-time prediction as a fast model response

at this stage is critical. Also, it showcases the ability of machine learning estimators to

respond significantly faster, compared to the running time of a time-domain simulation.

In a practical application, the dataset used in this study would comprise of measure-

ments gathered approximately over the span of a year. As new operating conditions

emerge, and new measurements become available the model can be fitted using the new

data. This way, the model weights get updated. In this study, the time required to

further train the model with 1000 unseen cases is 9.88s. So, in a practical application

the pre-trained model can be updated over shorter periods of time e.g. every month,

and be subsequently used for the online prediction.

5.6 Chapter Conclusions

This chapter introduces a framework for the online identification of cascading events

in power systems with renewable generation using measurement data and supervised

machine learning, namely LSTMs, a type of RNN. Dynamic RMS simulations on a

model with protection devices included have been performed, in order to capture cas-

cading events that appear, which are defined by the action of the protection devices.
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Simulation data are pre-processed to represent typical PMU data and are used to train

a LSTM based model. The pre-trained model is then used to predict online the appear-

ance of cascading events and various aspects of its performance are analysed, including

the time window selection, important features and how the performance is affected for

different operating conditions. The framework is applied on a modified version of the

IEEE-39 bus system, including wind generators and protection devices.

Results show that the proposed approach performs with a 95.6% accuracy within

a short fixed-time window (in the order of 0.1s) following the initial fault clearance,

showing improved performance compared to other neural network configurations (MLP

and RNN). The model has the ability to predict the appearance of cascading events

sequences, as opposed to only early instability violations that is a common approach

in existing online prediction methods. After further investigation, the performance of

the method appears to vary with the initial operating conditions, either improving or

deteriorating. Such behaviour should be taken into account in order to inform the con-

fidence to similar methods when considering real power system applications. Finally,

the results of the feature importance analysis highlight important system variables that

improve the model performance, with offering useful information in terms of monitoring

requirements as well as system variables that are related to the appearance of cascading

events. For this particular network, active and reactive power measurements of lines

have a high impact on the prediction of cascading events. Also, the monitored power

system variable that causes the most common cascading event is identified as an im-

portant feature. Tests considering limited available PMU measurements and noise in

signals have little impact on model performance, verifying that the suggested approach

is appropriate for practical applications.
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Chapter 6

Predicting the Reason of

Cascading Event sequences in

Power Systems using Deep

Learning

6.1 Introduction

6.1.1 Motivation

As the findings from the previous Chapter have highlighted, ML models that have

the ability to learn dependencies from time-series data can utilize measurement data

provided by PMUs and predict accurately and efficiently the appearance of cascading

events in power systems with RES. However, the framework introduced in the previous

Chapter is able to predict the appearance of cascading events in a binary fashion,

meaning it can predict if cascading events will appear or not, after an initial fault.

Following the appearance of a disturbance, a series of subsequent cascading events

in various timescales might appear, the propagation of which can lead to load shedding

or even blackouts [2]. In addition, in a cascading events sequence multiple types of

instabilities might be involved (e.g. a cascading event due to transient instability might
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be followed by a cascading event due to frequency instability), as Chapter 3, that focus

on the investigation of cascading events, has revealed. Taking the previous points

into account, the framework introduced in this Chapter aims to approach the online

identification of cascading events by a multi-class perspective, by predicting the reason

of the cascading event that follows in a sequence. This can provide system operators

with additional information to effectively implement targeted security measures in order

to halt the progression of cascading events or minimize their consequences.

The approach presented in this Chapter is focused on the fast phase of cascading

events sequences, during which, according to the analysis in [5], the fast succession of

events makes it impossible for system operators to take any manual measures for the

mitigation of cascading events. The proposed method aims to predict the reason of

cascading events using measurement data in real-time, providing valuable information

about the types of instabilities involved. This information can enable system operators

to take preventive or corrective actions in order to mitigate or avoid the impact of

cascading events.

The studies reviewed in Chapter 2 focus on predicting only a particular type of

instability. In addition, the action of protection devices is not accounted for, which in

reality might change the actual trajectory of state variables following a major distur-

bance and can even lead to subsequent trips. As it is highlighted in [96], including the

action of protection devices in dynamic studies is of significant importance to accurately

capture system behaviour. In [105] a method based on a Graph Convolution Network

(GCN) that contains information about spatio-temporal properties is proposed for the

prediction of cascading failures, in a dynamic network with renewable generation and

protection devices. However, the method focuses only on the prediction of the appear-

ance or not of cascading failures, and not on predicting the reason of cascading failure

that follows in a sequence.

6.1.2 Contribution

The main contribution of this chapter is the use of supervised deep learning methods to

predict the reason of upcoming cascading events as they appear in sequences capturing
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detailed dynamic behaviour (limited to the RMS framework). According to the existing

literature review, this is the first time that a method to predict the reason of upcoming

cascades is being proposed. More specifically the contributions of this chapter include:

• The detailed dynamic behaviour represented in the RMS framework is accounted

for, including mechanisms and controllers related to angle, voltage and frequency

stability and more importantly the action of protection devices. The impact of

renewable generation interfaced via converters is also captured. This leads to

a more accurate and detailed representation of the events leading to potential

load shedding or system collapse. The reason of cascading events that follow is

predicted, and not just if a cascading event will appear or not, which can give

to system operators more information about taking targeted corrective, or even

preventive measures to stop the evolution of cascading events or mitigate the

impact.

• The proposed method utilises Temporal Convolutional Networks (TCNs) com-

bined with a moving window approach to predict the evolution of the sequence

of cascading events. This is achieved by formulating the above as a multiclass

classification prediction problem for the reason of the upcoming event. The pre-

diction goes beyond to identify the reason of the violation, e.g. a trip related to

over-voltage or under-frequency by defining seven classes.

6.2 Online prediction of the reason of upcoming cascading

events

6.2.1 Detailed Procedure

The method proposed in this chapter aims to the prediction of the reason of cascading

event sequences in an online manner, as they progress. The main steps of the framework

are presented in Fig. 6.1. In this approach it is formulated as a multi-class classification

problem, consisting of an offline and online phase. During the offline phase, the dataset

generation and the training of the model take place. After using an efficient sampling
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Figure 6.1: Main steps of the proposed framework.

method for selecting the initial operating conditions, a number of dynamic Root Mean

Square (RMS) simulations is performed, taking into consideration different levels of

RES penetration and system loading. The initial applied contingency may cause the

appearance of cascading events, which in this study are dictated by the intentional ac-

tion of protection devices when the network conditions violate their limits. In this case,

the sequence in which these cascading events appear is obtained, and each cascading

event is characterized by the reason of tripping, the component that trips and the time

of the event.

The time-series data obtained from these dynamic simulations describe the electrical

system variables as they evolve in time. The time domain features are pre-processed to

represent typical PMU data and are formed into equal length moving time windows.

Each time window is labeled according to the reason of the cascading event that follows.

Then, the time windows and their labels are used for creating training, validation and
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testing datasets for the machine learning model.

During the online phase in a real-life scenario the time-series data can be obtained

from PMUs [97] and after forming them into time windows can be used as input to the

pre-trained model to predict the reason of the next cascading event in the sequence. In

this study, only simulated measurement data have been used for training and testing

the model. The models have been evaluated on the test dataset using the accuracy

metric and individual metrics for each class. Also, the performance of the model per

cascading sequences is analyzed.

6.2.2 Sampling of Initial Operating Conditions

In order to sample the initial operating conditions, in this study wind generation and

system loading, the technique of Latin Hypercube Sampling (LHS) [106] is used, as

opposed to the discretization with a certain step approach used in Section 3.4.3. A

square grid containing sample positions is a Latin square if there is only one sample in

each row and each column. LHS is the generalisation of this concept to a higher number

of dimensions. The sampling points are selected in such a way that the minimum

distance between them is maximized in the multidimensional space, resulting in an

effective coverage of the search space.

The advantage of this method is that LHS ensures that the set of samples is rep-

resentative of the input variability whereas random sampling returns a set of random

samples without any specific rule. The application of LHS in a two dimensional space,

for illustrative purposes, and a comparison to random sampling is shown in Fig. 6.2.

As it can be observed, compared to random sampling LHS can cover more effectively

the search space defined by the two parameters x1 and x2.

For power system stability/security studies, it is important to sample evenly all the

areas of the search space [107], [108]. In this case, LHS is applied on a n dimensional

space to ensure representative sampling points. The n − 1 dimensions represent the

output of each one of the network wind farms and one dimension represents the loading

of the system.
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Figure 6.2: Sampling on a two dimensional space using: a) Random sampling, b) LHS
sampling

6.2.3 Dataset Generation

After determining the initial operating conditions for renewable generation and system

loading using LHS, an AC OPF problem is solved to determine the dispatch of the SGs

and perform the dynamic RMS simulations, as described in Section 3.4.1. The time

series data of each simulation is obtained, with time domain features describing the

states in various power system locations over time, as in Section 5.2.3. If after the end

of each simulation cascading events appear, the cascading event sequence is obtained

and each cascading event is characterized by the component that trips, the reason of

the event and the time that the event appears.

6.2.4 Pre-processing Data

Following the dataset generation from the dynamic simulations we perform scaling,

time step interpolation and windowing on the time series data to ensure that the pre-

processed data are appropriate for machine learning applications and representative of

PMU measurements. After application of scaling in this study all the measurement

values are in between 0 and 1. The scaling transformation for each individual feature

138



Chapter 6. Predicting the Reason of Cascading Event sequences in Power Systems
using Deep Learning

XF is given by:

XFscaled = XF −min(XF )/(max(XF )−min(XF )) (6.1)

where min(XF ) and max(XF ) are the minimum and maximum values respectively of

individual feature XF across all time steps.

Next, we perform interpolation to ensure evenly sampled time steps across all data

samples, by applying first order spline interpolation, with the time interval δ set to 0.01

seconds.

After these pre-processing steps, the simulation time series data are divided in win-

dows in order to generate evenly sized data samples. A major advantage of windowing

is that it enables real-time predictions as model inference is performed on a small win-

dow, an important aspect due to the online nature of the proposed method that in a

realistic setting requires quick predictions. In this case, a windowing function with a

window length of 10 time steps is used. A diagram of the windowing process can be

seen in Fig. 6.3.

Each time window is assigned a label, according to the reason of the next cascading

event. As next cascading event it is defined the event in a sequence that appears after

the last time step of the time window. In the example in Fig. 6.3. the label of the first

time window, Label 1 is assigned according to the reason of the cascading event that

appears in t12. If cascading events appear later than the next time window then the

appropriate label is still set. If no cascading event appears after the time window then

the label equals to 0.

In this case, there are 7 possible cases of cascading event reasons, and each one

of them represents a class. These classes are defined as: No cascading event, Out-of-

step, Over-frequency, Over-voltage, Under-frequency, Under-voltage and Distance. The

classes are one-hot-encoded to bring them to a suitable format for machine learning

applications. One-hot-encoding is a common technique applied in machine learning

problems to convert categorical data to binary vectors [109]. Following dataset gen-

eration and pre-processing, the training/testing sets for the machine learning models

described in Section 6.3 are derived.
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Figure 6.3: Time windowing process.

6.3 Using Deep Learning to predict cascading event se-

quences

6.3.1 Deep Learning Models

For the specific problem of the prediction of the reason of upcoming cascading events,

machine learning models with appropriate architecture for sequential data and conse-

quently time series, are proposed. This makes it possible for the models to capture

the evolution and inter-dependencies of the network variables in time, which describe

the reasons of upcoming trips as part of a cascading sequence. A comparison between

possible appropriate architectures of RNNs, LSTMs and TCNs is provided, with TCNs

being proposed due to theoretical and performance related aspects elaborated below.

The proposed models are trained using the pre-processed data formed into time win-

dows as input. The input size of all the models considered is a NF ×NT matrix, where

NF is the number of features and NT is the number of time steps included in the

selected moving time-window.

The prediction of the reason of a cascading event is formulated as a multi-class

classification problem, where each time window is assigned a label based on the reason

for the upcoming cascading event. The time window is moving online as measurements

are obtained. For all the deep learning architectures considered in this study, the output

layer is a dense layer with 7 neurons with a softmax activation function. The softmax
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function outputs a value between 0 and 1 for each one of the 7 classes, that represents

the probability of the reason of the next cascading event. The class with the highest

probability is selected using the arguments of the maxima (argmax) as the final model

output. The output value is inverse one-hot encoded to convert it back to the reason

of cascading event.

6.3.2 Recurrent Neural Networks

RNNs are a type of deep learning neural network designed to model data with temporal

qualities where the order of data points is important. A detailed descriptions of RNNs

and LSTMs is presented in Section 5.3.2. In this study three different RNN architectures

are implemented and evaluated.

Stacked LSTMs consist of more than one layers with LSTM cells that are stacked

on each other. In this architecture, the output of a LSTM layer is fed as an input

to the next LSTM layer, with the final output of the model being obtained from the

last layer. Stacking multiple LSTM layers allows for higher complexity models that

can learn complex relationships of the input data, with each layer building on the

representations learned by the previous layer.

Bidirectional LSTM (BiLSTM) is a type of LSTM network where the input flows

in both directions. This network architecture consists of two LSTM layers, one pro-

cessing the input sequence in a forward direction and the other one processing the

input sequence in a backward direction. The output of the BiLSTM model is obtained

by concatenating the output of the forward and the backward direction LSTM layers.

Thus, it is capable of utilizing information from both directions of the sequence. In the

context of cascading events, this would be useful as the model would have information

about both directions of the time series measurement data. The forward hidden state

hft , that considers the input in ascending order (i.e. t = 1 to T), the backward hidden

state hbt , that considers the input in descending order (i.e. t = T to 1), and the output

yt are calculated by:

hft = tanh(W f
xhxt +W f

hhh
f
t−1 + bfh) (6.2)
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hbt = tanh(W b
xhxt +W b

hhh
b
t−1 + bbh) (6.3)

yt = W f
hyh

f
t +W b

hyh
b
t + by (6.4)

where W denote weight matrices and b denote bias vectors.

Gated recurrent units (GRUs) are a type of RNN that use a gating mechanism

to control the flow of information through the network [110]. The structure of GRU

cells is similar to that of LSTM cells, but with two gates: an update gate and a reset

gate. The update gate is a combined version of the forget and input gates of LSTM,

and decides which information to forget and which to include, while the reset gate

determines how much of the previous hidden state to retain. As a result, a GRU model

has fewer parameters than a LSTM and is more computationally efficient. The reset

gate rt, the update gate zt and the hidden state ht are given by:

rt = σ(Wxrxt +Whrht−1 + br) (6.5)

zt = σ(Wxzxt +Whzht−1 + bz) (6.6)

h̃t = tanh(xtWxh + (rt ⊙ ht−1)Whh + bh) (6.7)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (6.8)

where W denote weight matrices, b denote bias vectors and h̃t is the candidate

hidden state.

6.3.3 Temporal Convolutional Network

While RNN architectures (either LSTMs or GRUs) have shown promising results in

time series applications, including stability prediction in power systems [15], they are

usually very computationally intensive with a large number of parameters. Convolu-

tional networks have many applications on datasets containing images [111], but have

also been applied on sequences through the last decades. The Temporal Convolutional

network (TCN) is an architecture designed for sequence modelling [112]. This architec-

ture uses a 1-dimensional Convolutional network, where the size of each hidden layer
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is the same as the input size. The kernel is a matrix that slides over the input data

through 1 dimension, in this case the time, and it performs the dot product with this

region of input data. The output of this convolution process is calculated as the matrix

of dot products. More specifically, the 1 dimensional CNN takes as input a matrix with

dimensions NF ×NT where NF is the number of features and NT is the length of the

time window considered.

Similar to an RNN, the TCN model can be used to model a many-to-one type

problem, meaning it can get a sequence of data as an input and generate a label for

classification. The TCN uses a 1D fully-convolutional network (FCN), where the size of

each hidden layer is the same as the input size. FCN is a network that does not contain

any Dense layers, as in traditional CNNs. Dense layer is a regular neural network layer

with a deep connection, meaning that every neuron of this layer is connected to all the

neurons of the previous layer. Instead FCN contains 1 × 1 convolutions that perform

the task of the dense layers, which results in reduced complexity [113].

To ensure that there is no leakage from future time steps to the past, TCN uses

causal convolutions, which are convolutions that for the output at time t only data

points from time t and earlier in the previous layer are considered. The architecture of

the TCN can be expressed as: TCN = 1D FCN + causal convolutions.

The receptive field of CNNs is the region in the input space that a particular CNN’s

feature is affected by. Normally CNNs have many layers in order to extend the recep-

tive field, but at the expense of increasing the number of parameters. The proposed

architecture in this study employs dilated convolutions to extend the receptive field

while using fewer layers and consequently reducing the computational complexity. A

dilated convolution is a convolution where the filter is applied over an area larger

than its length. This is achieved by skipping input values with a certain step. For

a 1-dimensional sequence input x ∈ Rn and a filter f : {0, ..., k − 1}, the dilated

convolution F on an element s of the sequence is given by:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (6.9)

where d is the dilation factor, k is the filter size, and s − d · i is the direction of the
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past.

More than one layers of dilated causal convolutions with different dilation factors

can be stacked. Using a larger dilation the output at the top level can represent a wider

range of input points. A schematic of a dilated causal convolution with dilation factors

d = 1, 2, 4, 8 is presented in Fig. 6.4. A dilated convolution with dilation of 1 equals

to a regular convolution.

Input

Output

Hidden Layer

Dilation = 1

Hidden Layer

Hidden Layer

Dilation = 2

Dilation = 4

Dilation = 8

Figure 6.4: A stack of dilated causal convolutional layers.

The main advantage of TCNs compared to RNNs, is that because convolutions use

the same filter in each layer, the computations can be done in parallel, where in RNNs

the predictions for later timesteps must wait for the previous timesteps to complete.

As a result, an input sequence of time steps during the training or the evaluation phase

can be processed as a whole in TCN, where this is processed sequentially in RNN.

Also, due to the propagation path of TCNs, they do not suffer from the vanishing or

exploding gradients problem that can appear in vanilla RNNs.

In addition, some architectures of RNNs, like LSTMs, have multiple cell gates.

In order to store the partial results for these gates, they can utilize a lot of memory

space. In a TCN the filters are shared across a layer, and the backpropagation path

depends only on the depth of the network. In practice, as it is concluded in [112], gated
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RNNs can use up more memory than TCNs. The simplicity and lower computational

requirements of TCNs, along with the ability to capture dependencies in time efficiently,

are very useful characteristics for the particular problem of moving window prediction

of an upcoming cascading event.

6.3.4 Evaluation Metrics

The evaluation of the proposed models is performed on the same test dataset, consisting

of unseen data. Accuracy, Precision, Recall and F1 score are common metrics used in

machine learning classification problems that capture the performance of a model [86].

The overall Accuracy of the model, describes the percentage of correct predictions

of the reason of cascading events.

Accuracy (%) =
Number of correct predictions

Total number of predictions
(6.10)

In order not to rely only on an aggregated metric, the following metrics are calcu-

lated individually for each class, to identify possible challenges with the prediction of

certain classes [86]. Precisioni describes the percentage of correct predictions among

all the predictions for a particular class i ∈ {1, ..,K}, with K representing the number

of classes. Recalli is the percentage of cases of a particular class that are predicted as

belonging to that class. F1 Scorei is defined as the harmonic mean of Precisioni and

Recalli.

Precisioni (%) =
nTPi

nTPi + nFPi

(6.11)

Recalli (%) =
nTPi

nTPi + nFNi

(6.12)

F1 Scorei (%) = 2 ∗ Precisioni ∗Recalli
Precisioni +Recalli

(6.13)

where nTPi , nFPi , nTNi and nFNi is the number of true positive, false positive, true

negative and false negative predictions for each individual class respectively.
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The confusion matrix is also used to investigate the performance of the classification

algorithms. Each row of the confusion matrix represents the actual labels of each class,

while each column represents the predicted labels of each class. The nTPi are the values

where the actual value and predicted value are the same. The nFNi for a class is the

sum of values of the corresponding row for this class except for the nTPi value and nFPi

for a class is the sum of values of the corresponding column for this class except for the

nTPi value. The nTNi value for a class is calculated as the sum of values of all columns

and rows except the values of the corresponding rows and columns of the particular

class that is investigated.

In the context of cascading events reasons, true positives are the correct predictions

of the reason of cascading events and false positives are the predictions of any other

incorrect reason that are indicated as this reason. True negatives of a particular class

are the when the model correctly predicts a different reason, and false negatives of a

particular class are when the model incorrectly predicts a different reason from the

actual reason.

6.3.5 Focal loss function

Due to the nature of associated phenomena, some cascading events can appear more

frequently than others, according to the network vulnerabilities. This leads to a dif-

ferent number of samples for each reason of cascading events in the training dataset.

Due to the imbalance of the classes in the dataset, categorical focal loss is used as the

loss function during the training of all the models. Focal loss [114] is a loss function

designed to focus on hard to classify examples. The focal loss is defined as:

FL = −(1− py)
γlog(py) (6.14)

where y ∈ {0, 1, ..,K − 1} is an integer class label with K representing the number

of classes and py is the predicted probability vector. The focusing parameterγ is a

modulating factor that reduces the loss contribution from easy-to-classify examples.

By adjusting γ, more focus is given to hard to classify examples. When γ = 0, Focal

Loss is equivalent to the Categorical Crossentropy loss function. In this study γ = 2
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has shown to produce the best results.

It should be noted here that, other common techniques for imbalanced datasets,

like under-sampling, over-sampling, and generation of synthetic time data using Gen-

erative Adversarial Networks (GANs) for the minority class have been tested but in

this particular case have not improved the models performance. Under-sampling has

led to losing important information during training. Over-sampling and synthetic data

have not affected the performance. Also, using balanced class weight according to the

distribution of each class has deteriorated the model performance on the classes with

more samples, which in this case is important.

6.4 Test System and Application

6.4.1 Power Systems Dynamic Model

The proposed framework is showcased on a modified version of the IEEE-39 bus model

as described in Section 3.4.2. In this Chapter the network model has been augmented

with a distance protection scheme, which has been implemented by adding two distance

protection relays at the ends of each line. The distance protection has two zones of pro-

tection. The first zone is set at 80% of the line’s reach with no delay time. The second

zone of protection acts as a backup zone protection and it is set at 120% of the line’s

reach with a delay of 400ms. An inter-tripping Permissive Under-reaching Transfer

Trip (PUTT) scheme between the relays of the same line has also been modelled. This

inter-tripping scheme enables communication between the relays of the same line. This

feature is particularly useful when a fault happens near either end of the line, and one

relay identifies the fault as a first zone fault, and the other relay identifies it as second

zone fault. Through this scheme both relays send a signal to the circuit breakers to

disconnect the line with no delay. The implementation of the distance protection with

the PUTT scheme on a line is illustrated in Fig. 6.5.
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Figure 6.5: Distance protection on line with PUTT scheme.

6.4.2 Case studies

In this study 1470 LHS points have been selected from the 4-dimensional search space

that is defined by the system loading and the output of the three windfarms. The

loading of the system ranges from 80% to 120% of the total network demand, as it is

calculated in the base case. The output of each of the three wind farms ranges from 0

to 100% of the nominal capacity. This sampling approach ensures that representative

samples from equally divided areas of the search space are considered.

The initiating events in this case are three phase faults in the middle of each line

(34 total lines). That gives 34 different cases for each LHS point. In total, 49980

cases have been simulated in this study. In 306 cases (0.6%) the OPF problem has

not converged. with cascading events appearing in 19650 cases (39.3% of simulated

cases). It should be noted that all the lines of the network are assumed to be single

circuit lines, the disconnection of some of which following the fault causes the system to

become islanded and consequently causing appearance of cascading failures. In reality,

double circuit lines might exist in such cases so the applied initial contingency can be

assumed to be N-2. More elaborate techniques to sample for N-k contingencies can

also be applied when creating the training database [12], [9]. In addition, a similar

efficient sampling [62] or importance sampling [107] method can be deployed to define

the simulation cases in a larger network.

The average time that elapses between cascading events is 0.89s and the standard
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deviation of this time is 5.24s. The moving time window length has been set to 10 time

steps, which equals to 0.1s. A fast inference time is critical for system operators as

that could provide more reaction time for preventive measures. For this application,

the moving windows start after the clearing of the initial applied fault by the distance

protection relays, up to 10s, which is the time duration when most time windows with

cascading events (93.2%) appear in the dataset.

For the models application, the pre-processed time windows as described in Section

6.2.4 are used with a total of 180 time domain features. To create a dataset with equal

percentage of safe cases and cases with cascading events, a balanced dataset has been

created, consisting of 19650 safe cases and 19650 cases with cascading events, which

includes all the cases with cascading events and randomly selected safe cases to match

this number. The dataset is split in 31440 (80%) simulations for training, 3930 (10%)

simulations for validation and 3930 (10%) simulations for testing of the model. The

same percentage of safe and non-safe cases exists in the training, validation and test

datasets.

6.4.3 Model Parameters

In this study, the models that are used are a Stacked LSTM, with two layers of LSTM

cells as this configuration has shown to have the better performance compared to a

single layer LSTM, a Bidirectional LSTM, a GRU and a TCN. For the RNNs, the

batch size is set to 128 and the number of hidden neurons is set to 150. The batch size

and the size of the hidden units is chosen based on model performance after performing

a grid search for the following values for the batch size: {64, 128}, and for the hidden

neurons: {100, 150, 200}. According to the best performing parameters for the TCN,

it is comprised of 5 layers with dilation factors of: [1, 2, 4, 8, 16]. In addition, the

number of kernels has been set to 128, the kernel size to 3, and a dropout rate of 20%

to reduce over-fitting. To find the best performing parameters a grid search has been

performed for number of layers: {4, 5, 6}, number of kernels: {128, 256}, kernel size:

{2, 3} and dropout: {0, 20%}. Also, layer normalization is enabled.

The deep learning models are trained for 30 epochs with a learning rate of 0.001 and
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the Adam optimizer. To avoid over-fitting, early stopping based on validation loss is

enabled. The model with the best performing accuracy on the validation dataset across

the epochs is saved. To ensure reproducibility, we set the model seed to 17 during all

the models training.

6.5 Results

6.5.1 Performance for online identification of the reason of upcoming

cascading events

The performance of the deep learning models is evaluated on the same test dataset,

and the results are presented in Table 6.1. The total accuracy of each model, and

the individual metrics are expressed in (%). The number of samples of each class are

also included. It should be noted that ‘O-o-S’, ‘OF’, ‘OV’, ‘UF’ and ‘UV’ correspond

to Out-of-Step, Over-Frequency, Over-Voltage, Under-Frequency and Under-Voltage

respectively.

All the models showcase high total accuracy (>96.5%). The TCN model performs

slightly better, with a total accuracy of 97.4%. The two LSTM based models, the

Stacked LSTM and the Bidirectional LSTM, perform with a similar accuracy, 97% and

96.9% respectively. The GRU has the lowest total accuracy, at 96.6%. This can be

attributed to the fact that this is a simpler RNN model, compared to the LSTM.

Looking at the individual metrics for each class can provide more information about

how accurately the models identify each cascading event reason. When no cascading

event follows, which is the majority class, all the models showcase high performing

metrics. All models perform with a high recall of 99% for the ‘No event’ class. This

is very important for a system operator, as all the models can identify whether an

upcoming cascading event will occur with very high accuracy. The class of Out-of-Step

events is the minority class, with only a few samples (71) in the test dataset. Due to

this, the performance of the model on this class is lower. The GRU and TCN models

perform with higher F1 scores, with the TCN having a higher Precision (67%).

When predicting cascading events due to frequency violations, the TCN model per-
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forms best. More specifically, it performs with F1 scores of 96% and 95% for cascading

events due to Over-frequency and Under-frequency respectively. The Stacked LSTM

model showcases a high performance as well, with 96% F1 score for cases of Over-

frequency and 94% for cases of Under-frequency. The performance metrics for the

cases with voltage instability are lower. Again, the TCN model exhibits the highest

performance, with a F1 score of 92% for cases of Over-voltage and 83% for cases of

Under-voltage. In these cases of Under-voltage the Stacked LSTM model performs with

the lowest F1 score of 75% and a low recall of 67%.

Regarding the prediction of distance relays operation, the TCN and the Bidirec-

tional LSTM model perform with the highest F1 score of 91%. The TCN has a lower

Precision, but higher Recall score. It can be concluded that the TCN model showcases

generally better overall performance and slightly outperforms the Stacked LSTM, Bidi-

rectional LSTM and GRU model on most of the individual class metrics.

The learning curves of the models during the training and validation are shown in

Fig. 6.6. The categorical focal loss function is calculated during training and validation

at each epoch. All the models converge well during training, and after 30 epochs signs

of over-fitting appear, as the training loss decreases while the validation loss increases.

The model that converges faster and has the lowest loss during training and validation

is the TCN, which is also the model with the highest accuracy. The losses of the

GRU model are the highest, which contributes to the fact that it showcases the lowest

accuracy of these models on the test dataset.

6.5.2 Confusion matrix

In order to have a better understanding of how the model classifies the individual

classes, the confusion matrix of the TCN model, the model with the highest accuracy,

is presented in Table 6.2. Each row of the confusion matrix represents the actual labels

of each class, while each column represents the predicted labels of each class.

As it can be observed, 99.32% (270315 samples) of the cases with no cascading

events are predicted correctly. Of all the cases of trippings due to Out-of-Step, 39.44%

(28 samples) are misclassified as cases of Under-voltage and 29.58% (21 samples) are
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Table 6.1: Model evaluation metrics.

StackedLSTM

Accuracy 97.0%

Reason/Class Samples Precision (%) Recall (%) F1 (%)

No event 272174 98 99 99

Out-of-Step 71 52 17 26

OF 1781 96 95 96

OV 9726 90 88 89

UF 45789 96 93 94

UV 3648 86 67 75

Distance 20475 92 87 89

BiLSTM

Accuracy 96.9%

Reason/Class Samples Precision (%) Recall (%) F1 (%)

No event 272174 98 99 98

Out-of-Step 71 37 27 31

OF 1781 96 95 95

OV 9726 92 89 91

UF 45789 95 90 93

UV 3648 85 79 82

Distance 20475 94 88 91

GRU

Accuracy 96.6%

Reason/Class Samples Precision (%) Recall (%) F1 (%)

No event 272174 97 99 98

Out-of-Step 71 50 37 42

OF 1781 93 95 94

OV 9726 91 85 88

UF 45789 96 89 93

UV 3648 84 76 80

Distance 20475 91 88 89

TCN

Accuracy 97.4%

Reason/Class Samples Precision (%) Recall (%) F1 (%)

No event 272174 98 99 99

Out-of-Step 71 67 28 40

OF 1781 97 96 96

OV 9726 93 90 92

UF 45789 97 92 95

UV 3648 82 83 83

Distance 20475 93 89 91
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Figure 6.6: Learning curves of the models.

misclassified as cases of Distance protection activation. While the out of step class

is generally the most under-performing class, it is worth noting that all instances are

misclassified as a different relay protection operation but not as no event. After further

investigation, in these cases the system is highly disturbed with several cascading events

appearing and the events of Out-of-Step are preceeded by events of Distance or Under-

voltage or followed by events of Under-voltage.

For the Over-voltage class, 282 (2.9%) of the cases are incorrectly predicted as safe

cases. The disconnection of windfarm NSG-2 with no further events is common in

this particular system and case studies. The high number of events due to Under-
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frequency is caused by the UFLS scheme, which is activated in steps and disconnects a

percentage of loading in order to restore the system frequency when cases of frequency

instability are detected. For the Under-frequency class, 42280 (92.3%) of the cases are

identified correctly. Finally, for the Under-voltage class the model predicts accurately

3038 (83.39%) of the cases, and for the Distance relays operation class predicts correctly

18284 (89.3%) of the cases. These results indicate that identifying the individual reason

of cascading events is more challenging for the model than identifying the class of no

cascading events.

Table 6.2: Confusion Matrix.

Actual Predicted label
label No event 0-o-S OF OV UF UV Dist.

No event 270315 0 1 347 838 46 627

O-o-S 0 20 1 0 1 28 21

OF 1 3 1710 1 25 39 2

OV 282 1 3 8778 229 8 425

UF 2826 4 45 71 42280 403 160

UV 255 1 9 8 182 3038 155

Dist. 1743 1 2 222 93 130 18284

6.5.3 Predicting cascading event sequences

An example of the proposed method application that shows a cascading event sequence,

the moving time windows, and the output of the TCN model is presented in Fig.

6.7. The initial applied fault is a three-phase short-circuit on Line 16-19 at t=1s,

and it gets cleared by the disconnection of the faulted line at t=1.07s, triggered by

the distance protection relays. This line disconnection causes an area of the system to

become islanded, and triggers the first cascading event which is the disconnection of the

synchronous generator G4 at t=1.84s due to Over-speed (‘G4-OF’). The disconnection

of the synchronous generator causes the frequency of the system island to drop, and at

t=5.05s the first stage of UFLS at Load 20 is activated, disconnecting 10% of Load 20

(‘L20A-UF’), followed by the activation of the second stage of UFLS that disconnects an

additional 10% of Load 20, at t=5.21s (‘L20B-UF’). At t=1.07s the TCN model starts

receiving time measurements in moving time windows of 0.1s, and gives predictions
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about the reason of the cascading event that follows. The first prediction of the model

after applying reverse encoding is ‘OF’, which indicates correctly that a cascading event

due to Over-frequency follows. The model outputs for the following time windows have

the same value (‘OF’). At the time window that includes the time of the first event,

the model predicts correctly the reason of the next cascading event, which is Under-

frequency (‘UF’). Similarly, the model predicts the reason of the next cascading event,

which is again ‘UF’. This example showcases the accurate prediction of the reason of

cascading events involved in a particular sequence by the TCN model. For all the

cascading event sequences, the following analysis is performed.

TCN Output: [0 0 1 0 0 0 0] [0 0 0 0 1 0 0] [0 0 0 0 1 0 0]

OF UF UF

Moving time windows:

10 time steps

180 

features

Time window

Event 

2

Event 

1

Event 

3

Predicting 

Event 1

Predicting 

Event 2

Predicting 
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Figure 6.7: Predicting the reason of cascading events in a sequence.

The results discussed in Section 6.5.1 concern the whole test dataset and individual

cascading events, i.e. the classification of each relay operation is investigated with-

out taking into account what happens in the particular sequence of cascading events

following a disturbance. In practical applications, it is also important to assess the per-

formance of the models when predicting the reason of cascading events as they appear

in a sequence. In this case only the cases that contain cascading events are considered,
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Figure 6.8: Model accuracy per cascading event sequence.

as this is what challenges the models most.

For each case with cascading events in the test dataset, the moving time windows are

sequentially used as inputs to the models, and the overall accuracy for each cascading

events sequence is calculated. The accuracy Accs for each cascading events sequence s

is given by:

Accs(%) =
Ncpcasc,s
Ncasc,s

(6.15)

where Ncpcasc,s is the number of correct predictions for cascading sequence s, and

Ncasc,s is the total number of cascading events in this sequence.

156



Chapter 6. Predicting the Reason of Cascading Event sequences in Power Systems
using Deep Learning

In Fig. 6.8 the results of the models performance are presented with boxplots. The

performance of the BiLSTM, Stacked LSTM and GRU models is very similar, with the

median value close to 99% and the first quartile value close to 95.8%. The TCN model

has a better accuracy, with the median value close to 100%, the first quartile value close

to 98% and smaller standard deviation. This can be explained by the fact that TCN

showcases a better overall accuracy on the test dataset and higher performing metrics

at individual classes.

6.5.4 Computational time and Implementation considerations

In this Section, aspects related to the computational time of the method are analysed.

The computational time includes the time that is required for the dataset generation

and the training of the deep learning models, both of which take place during the of-

fline stage when more time is available, and the inference time which is critical, as it

takes place at the online stage and it needs to be close to real-time. For the dataset

generation, the adaptive time step option is used, in order to effectively reduce the

computational time. The approximate averaged running time of one simulation with-

out cascading events is 29s, and the running time of a simulation with cascading events

is 94s. The interface between Python and DIgSILENT Powerfactory has been used to

set up the dynamic simulations running 4 simulated cases in parallel in order to speed

up the process of generating the described dataset. According to the available compu-

tational resources and the size of the test network, the number of parallel simulations

can be adjusted proportionally. The deep learning models are implemented using Ten-

sorFlow [115], and are trained on a Nvidia Quadro RTX 6000 GPU. The training and

inference times of the models are presented in Table 6.2. Due to the ability to perform

computations in parallel, the training of the TCN model is faster than the training of

the RNN based models.

Compared to CPUs, GPUs have a higher number of computational cores. For

this reason, GPUs are better suited for parallel computations. In addition, GPUs are

structurally optimized to have a higher memory bandwidth, meaning that data transfer

between the processor and memory are performed more efficiently. On the other hand,
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CPUs are optimized for latency, meaning that they can process small memory portions

quickly, but slow down when they process larger amounts. This characteristic of GPUs

is particularly important for deep learning models, which require a large amount of

calculations to be performed in parallel.

During the online stage, the average time that a single prediction takes is critical, as

this would provide system operators with valuable time for corrective measures. After

performing 1000 predictions on the GPU the average time that is needed for a single

prediction including pre-processing the data and the inverse transformation of the one-

hot encoded label using the TCN model is 75ms, and it is faster compared to the other

models.

To increase computational performance and lower the inference time, the pre-trained

models are converted to the TensorFlow Lite format, which is smaller and more efficient.

This model format is represented using the FlatBuffers protocol, which is an efficient

serialization library designed for applications where performance is critical and allows

data to be directly accessed without an extra parsing/unpacking step [116]. It should

be noted that this conversion does not affect the prediction performance. In a similar

manner, 1000 predictions are performed, and the average time that is needed for a

single prediction using the TCN model is 1.09ms. As it is evident, deploying the

model using the TensorFlow Lite format helps to achieve significantly faster inference

times, compared to the standard TensorFlow format. It should be also noted that

the prediction time is significantly faster than the duration of one time window (0.1s),

considering also the maximum inference time (4.87ms), and that the system operator

can have a fast prediction on a continuous basis.

6.5.5 Testing the pre-trained model on a different network topology

Transfer Learning is a ML method where a pre-trained model on a task is used for a

different, but related task [117]. In other words, this technique focuses on transferring

knowledge gained from solving a problem to applying it to another similar problem.

This can be particularly useful when the amount of data available for training a ML

model are limited. Such cases might appear in power system applications, as the
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Table 6.3: Deep learning models computational time.

StackedLSTM BiLSTM GRU TCN

Training time (hrs)
12.2 12.1 11.4 9.6

TensorFlow format

Inference time (ms)
(over 1000 predictions)

Avg. 78 78 77 75

Min./Max. 70/84 69/84 66/81 63/81

TensorFlow Lite format

Inference time (ms)
(over 1000 predictions)

Avg. 1.15 1.15 1.12 1.09

Min./Max. 1.05/8.89 1.05/8.89 1.05/7.11 1.04/4.87

connection of new RES units to the grid can change the network topology.

In this case, a new system topology is considered, by adding a new wind farm

(NSG4) on Bus 26 of the modified IEEE-39 bus model (Fig. 6.9). The aim is to assess

the performance of the pre-trained TCN model on this version of the network. Using

again the LHS technique for the definition of the initial operating conditions, in this

case the power output of the 4 wind farms and system loading, 1000 dynamic RMS

simulations are performed. The performance of the TCN model for the prediction of

the reason of the next cascading event in this test dataset is presented in Table 6.4.

For this network, the TCN model performs with a 96.0% overall accuracy. Com-

pared to the performance of the TCN model for the original network (Table 6.1), the

accuracy of the model decreases by 1.44%. By investigating the performance on in-

dividual classes, the F1-Score of classes ‘No event’, ‘OF’, ‘UF’ and ‘UV’ remains the

same or decreases slightly (up to 1%), where the performance for classes ‘Out-of-Step’,

‘OV’ and ‘Distance’ is significantly lower. When more data from this network topology

become available, the model weights could be updated by fine-tuning the pre-trained

model. This can be achieved by further training the model on the new dataset, with

the aim of adjusting its parameters to make it better suited for the new task.
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Figure 6.9: Modified version of the IEEE-39 bus model with 4 wind farms.

Table 6.4: Model performance on a different network topology.

TCN

Accuracy 96.0%

Reason/Class Samples Precision (%) Recall (%) F1 (%)

No event 74108 98 98 98

Out-of-Step 79 87 16 28

OF 336 96 96 96

OV 1874 70 80 75

UF 7624 92 97 94

UV 1046 85 80 83

Distance 5831 86 75 80
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6.5.6 Application of the proposed method on a larger network model

In order to investigate the scalability of the proposed method, it is also applied on a

modified version of the IEEE 118-bus system. In this case, the network model has

been augmented with three wind farms equipped with under-/over-voltage protection

relays and under-/over-frequency protection relays. In addition, the model has been

augmented with under-/over-speed protection, under-voltage protection and out-of-

step protection relays for the SGs. An identical sampling methodology as described in

Section 6.2.2 is employed and 17511 dynamic RMS simulations using this model are

performed.

The best performing model, TCN, is trained and evaluated on the resulting dataset.

In this case, there are 4 output classes for the multi-class classification: No event, Over-

Frequency, Over-Voltage, and Under-Voltage. No Out-of-Step or Under-Frequency

events have been observed in this dataset. The model evaluation metrics on the test

dataset are presented in Table 6.5. Overall, the model performs with 99.4% accu-

racy. Looking at the individual classes, the model achieves 100% Precision and 100%

Recall scores for the No event class. The model performance is also high for class

Over-Frequency, performing with 100% Precision and 96% Recall. However, the model

performance for classes Over-Voltage and Under-Voltage is reduced, achieving a 71%

and 82% F1-score respectively. The overall performance of the TCN is better in this

case, highlighting the fact that the complexity of observed system dynamics is not nec-

essarily scaling up with the size of the network but can also depend on other aspects.

Consequently the learning problem posed might not necessarily be more difficult.

The online computational time that a single inference takes is calculated in a similar

manner as in 6.5.4. After performing 1000 predictions, the average time that a single

prediction of the TCN model takes is 1.51ms. Overall, this case study showcases the

ability of the proposed method to be adjusted and applied on larger system models,

while maintaining high predictive and computational performance.

161



Chapter 6. Predicting the Reason of Cascading Event sequences in Power Systems
using Deep Learning

Table 6.5: TCN Model evaluation on the IEEE 118-bus system.

TCN

Acc (%)

99.4

Reason/Class Samples Precision (%) Recall (%) F1 (%)

No event 31246 100 100 100

OF 56 100 96 98

OV 6 62 83 71

UV 564 83 80 82

6.6 Chapter Conclusions

This chapter presents a method for the online identification of cascading event sequences

in power systems. The proposed framework can identify in close to real-time the reason

of cascading events about to happen by utilising measurement data and supervised deep

learning techniques. The prediction is formulated as a multi-class classification problem

and captures detailed dynamic responses of the system. The following classes, corre-

sponding to different reasons of upcoming cascading events, are considered: No event,

Out-of-Step, Over-Frequency, Over-Voltage, Under-Frequency and Under-Voltage.

The deep learning models are trained using a dataset that consists of dynamic RMS

simulations performed on a model with renewable generation and protection devices, the

action of which defines the appearance of cascading events after an initial contingency.

The simulated data are formed into moving time windows and are pre-processed to

represent typical PMU data to be used for the training of the proposed deep learning

model. During the online phase the pre-trained model is used to predict the reason of

cascading events about to happen. Different deep learning techniques that can handle

time series data, appropriate for the formulated problem, have been examined and

compared. The use of TCNs is proposed because of their ability to perform calculations

in parallel using convolutions, as well as due to slightly improved performance and

faster training and inference times. Focal loss function is also proposed to be used

for dealing with the imbalanced multiclass dataset. The evaluation metrics of the

model performance are analysed, taking also into consideration the performance per

cascading event sequence. The method is applied on a modified version of the IEEE-39
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bus system, augmented with wind generation and protection devices.

The results highlight that the proposed TCN model performs with a 97.4% accu-

racy on the multi-class classification of the reason of cascading events with a moving

time window of 0.1s. The performance of the model is compared to other RNN con-

figurations, including a StackedLSTM, a BiLSTM and a GRU model. Compared to

the RNNs, the TCN model has the ability to predict the reason of cascading events

sequences with a slightly higher performance and with a faster inference time, which

is critical in online applications. However, after investigating the performance met-

rics for individual classes, it is revealed that the model showcases poorer performance

for the minority class (Out-of-step). Results on the larger model showcase that the

TCN model maintains high performance, highlighting therefore the scalability of the

proposed method.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Key Outcomes

Throughout this thesis, particular focus has been given on the fact that the increas-

ing penetration of RES and other converter interfaced devices in power systems along

with the uncertainty that comes with them, makes the operation of modern power sys-

tems challenging, especially with respect to the dynamic behaviour. More specifically,

because of the intermittent nature of RES, their power output can vary significantly,

affecting the system SG generation. In certain occasions, a contingency can endan-

ger the secure operation of the system, leading even to a system collapse with severe

impacts to society. As power systems are highly complex and non-linear dynamical sys-

tems, it is challenging and computationally intensive to assess their response to such

cascading events, which are low probability but high impact events. For this reason,

recent research focuses on re-establishing stability definitions [1].

Nowadays, PMUs that exist in modern power systems can provide real-time mea-

surement data about the grid operational status. For this reason, in recent literature,

data-driven approaches that utilize these measurements are investigated in order to

identify the system online security. In this thesis, ML techniques are employed to uti-

lize simulated data, that have been pre-processed to represent typical data that can be

acquired from PMUs, for the online identification of cascading events.

Chapter 2 presents a detailed literature review on relevant recent studies that focus
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on the modelling of cascading events and on the online identification of security in

power systems. The analysis of the studies that focus on the modelling of cascading

events has shown that most of these use static methods to investigate the appearance

of cascading events and how these propagate. However, studies [11], [10] have shown

that dynamic simulations can provide more information about cascading events than

static methods, at the expense of a larger computational effort. Furthermore, it is

important to consider the RES penetration, as it can significantly impact the dynamic

behaviour of the system following a contingency. The analysis of the studies focusing

on online security has revealed that ML based approaches can accurately predict the

network online state. Nevertheless, most of the methods predict only early cases of

either transient, voltage, frequency instability or dynamic security, and do not consider

the action of protection devices. In real power systems though, protection devices

might activate before actual instability limits are reached, and the trip of a component

(e.g. disconnection of a line), might cause subsequent cascading events. Thus, it is of

great importance to accurately represent the action of protection devices to capture

the cascading events that might appear in a system [2], [4].

Based on the previous remarks, in Chapter 3 a framework for the investigation

of cascading events in power systems using dynamic simulations and considering RES

penetration and the action of protection devices is presented. Each cascading event

is characterized by the component that trips, the reason for tripping, and the time of

the event, which provides the sequence in which cascading events appear. Using this

information, the most common cascading event patterns and how many times each

pattern appears are identified. For the initial method application, a modified version

of the Anderson-Fouad 9 bus model, augmented with the implementation of protection

devices and wind farms, is utilized. Furthermore, the SG disconnection because of

RES penetration and the dispatch of SG units as defined by their operational cost

through the AC OPF solution for each distinct operational scenario are considered. The

results highlight that the appearance of cascading events can vary across different wind

generation outputs and system loading conditions. In addition, the most vulnerable

area of the system (Area 2) is identified, by looking into the most common cascading
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event how it is related to locational aspects of the network.

Furthermore, this Chapter investigates the impact of AGC, a frequency related

mechanism, and LTC, a voltage related mechanism, on the appearance of cascading

events. To quantify the mechanisms impact, three distinct scenarios are defined. The

base scenario, which includes only the action of LTCs, Scenario I, where the LTCs are

deactivated, and Scenario II, where the action of both LTCs and AGC is considered.

The effect of LTCs and AGC is highlighted by comparing the number and reason of

cascading events, the average load loss, the time between consecutive events and the

most common cascading event patterns across the three scenarios. The impact of LTCs

and AGC on cascading events is showcased again with dynamic RMS simulations but

on a larger network, a modified version of the IEEE-39 bus model that also includes

RES penetration and protection devices. The results of this study highlight that in the

scenario where the LTCs are deactivated, there is a higher number of cascading events,

which has led to a greater total amount of load loss. The operation of AGC has shown

to enhance the frequency stability of the network, resulting in a decreased number of

UFLS activation events.

The investigation of the appearance of cascading events in the previous chapters has

highlighted that the impact of wind penetration for different operating conditions can

significantly affect the dynamic behaviour of the system in unpredictable ways, which

can not be defined in a straightforward manner. In Chapter 4 the use of ML models and

application of the SHAP XAI technique are explored, to develop a framework that can

predict the appearance of cascading events in power systems using the measurements of

the power systems during steady-state, providing also explanations about the decision-

making process of the models.

The dataset used for this study consists of the dynamic RMS simulations that were

carried out in the IEEE-39 bus model, as defined in the base case of the previous

Chapter. First, various ML algorithms are implemented to predict the probability of

cascading events, without considering the location of the initial contingency. After

evaluation, the best performing model for this task is the Extra Trees model, achieving

a 1.65% MAE score. However, it was revealed that the model can under-estimate
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the probability of cascading events, with a value of up to 14.1%. This has led to the

addition of information about the line on which the applied contingency appears to

the input features of the model, framing now the prediction of appearance of cascading

events in a specific simulation as a binary classification problem. After performing a

similar investigation, the model that showcases the best performance is an XGBoost

model, with 98.61% accuracy. The most important features for this model predictions

are identified through a permutation feature importance analysis. On top of that,

the SHAP XAI technique is applied, which can provide extra insights about how each

feature affects the model prediction through feature attribution. Individual instances

of both correct and incorrect predictions are provided and analyzed, as well as a global

explanation plot. Based on the results, the most important power systems feature

is the network line on which the initial fault is applied, followed by the feature that

refers to the measurement value that causes the most common cascading event for this

particular test system and study.

In Chapter 5 the time-series measurements that can be acquired from PMUs after a

contingency are utilized to predict the appearance of cascading events. The time-series

features in this study are used as inputs to a LSTM model, which is a type of RNN

network, that can learn form sequential data. After training, the model is evaluated on

the test dataset, including a detailed analysis into how the length of the time window

and the wind generation output and system loading affect the model performance.

Furthermore, a feature permutation importance analysis is carried out to identify the

most important features and practical aspects related to PMUs, like noisy signals and

limited availability, are taken into consideration.

The LSTM model achieves a 95.6% accuracy on the prediction of cascading events

appearance, outperforming baseline approaches that comprise of a MLP and RNN

model. The dataset consists of the results of the dynamic RMS simulations as performed

on the modified IEEE-39 bus model, with protection devices and RES units. The state

of the initial conditions, in this case wind generation output and system loading, appears

to have an impact on model performance. More specifically, for this particular test

system the performance of the model is higher when the system loading is at 100% of the
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base value and when the wind generation output has higher values. The permutation

feature importance analysis reveals that the time-domain features that have a higher

impact on model performance are the active and reactive power measurements on lines,

and also the measurement related to the most common appearing cascading event, the

voltage magnitude on Bus NSG2. The added noise on PMU signals has shown to have

no effect on model performance, while it has been identified that a smaller set of the

most important features can be used as input with a slight decrease in accuracy.

Chapter 6 expands on the work of the previous chapter, and presents a method

for identifying the reason of cascading event sequences in power systems in close-to-

real time, by utilizing PMU data. In this case, the aim is to not only predict if a

cascading event will appear or not, but also to predict the reason that causes the cas-

cading event. For this reason, the problem is formulated as a multi-class classification

problem and 7 classes are defined that correspond to different reasons of relay oper-

ations: No event, Out-of-Step, Over-Frequency, Over-Voltage, Under-Frequency and

Under-Voltage. Furthermore, in order to identify the reason of cascading events as

they appear in sequences, a dataset with moving time windows of 0.1s is formed and

utilized for the training and online inference of the models.

In this Chapter particular focus is given on the use of TCNs, as calculations with

convolutions can been performed in parallel, thus improving performance and achieving

faster training and inference times. In addition, as the resulting multi-class dataset is

highly imbalanced, the use of focal loss is proposed to penalize instances that are hard to

classify. The multi-class classification of cascading events is showcased on the modified

version of the IEEE-39 bus system, augmented with the action of distance protection

relays. The use of an efficient sampling technique, LHS, is applied to define the study

cases in order to achieve a more effective coverage of the search space, as defined by

the wind farms output generation and system loading.

The TCN model predicts with a 97.4% accuracy the reason of cascading events,

outperforming slightly a StackedLSTM, a BiLSTM and a GRU model. Compared to

the RNNs, the TCN model has the ability to predict the reason of cascading events

sequences with a slightly higher performance and with a faster inference time, which
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is critical in online applications. Furthermore, after investigation the TCN model has

also shown better performance than the RNN models when predicting the reason of

cascading events as they appear in a sequence.

The fast evolving decarbonization effort and the adaptation of electricity markets

functioning are expected to bring significant changes to the operation of power systems.

For this reason, there is an immediate need for sophisticated and robust methods that

can identify cascading events in an online manner, and can provide to system operators

information about the mitigation and prevention of cascading events propagation. The

ML-based methodological frameworks presented in this thesis can accurately predict

the appearance of cascading events, with the data generation process consisting of

detailed dynamic RMS network models with RES penetration that can capture the

action of protection devices. The fast inference time of the developed models and the

consideration of practical aspects related to PMU measurements verify the applicability

and robustness of the proposed methods for real-life online deployment.

7.2 Future Work

The research work carried out as part of the PhD project that is presented in this thesis

makes several contributions to the modelling and online identification of cascading

events in modern power systems, investigating the application of contemporary ML

algorithms. However, there have been identified some additional areas of research that

the presented work could be extended.

• Performing simulations on a larger network to investigate the cascading event

sequences that appear and consideration of N − k contingencies. Based on this

set of simulations, the application of the ML algorithms implemented in this

thesis should follow in order to verify the scalability of the proposed methods.

Potential challenges include the computational time of the simulations that would

be greater in a larger network and for N −k contingencies, and also the increased

number of features for the ML application.

• A larger test network would also increase the search space, so a more sophisticated
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method could be utilized for the definition of the initial operating conditions that

lead to the more frequent appearance of cascading events. This could lead to

the creation of a more balanced dataset for supervised ML models application.

Potential techniques that could be applied are Reinforcement Learning and Monte

Carlo Tree Search methods.

• The inclusion of information about past discrete events as input data to the ML

model for the prediction of the next event cascading event that follows. This

additional information could potentially increase the prediction performance and

reveal connections between the cascading events of a sequence.

• The application of alternative ML algorithms could be investigated in order to

try to increase the performance in the online identification of cascading events.

Physics-informed Neural Networks that can include information about the equa-

tions of a power system could potentially showcase interesting results.

• The test network could be augmented with the modelling of additional contempo-

rary technologies found in modern power systems. Such technologies could include

Photo-Voltaic parks, Battery Energy Storage Systems and Electric Vehicles. The

implementation of these elements would introduce additional uncertainty to the

test network and it would be interesting to investigate how this would affect the

appearance of cascading events. This process would increase the computational

time as the network model would become more complicated.

• Following the prediction of the cascading event that follows, another ML based

model could be trained to take corrective control actions in order to prevent or

mitigate the effects of the next cascading event. This role could be assigned to a

Reinforcement Learning agent that would interact with the environment, in this

case the power system simulator, and would be trained to take actions that return

the optimal reward.
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