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Abstract

This thesis begins with an introductory chapter that outlines the inferential

challenges of high-dimensional time series models with parameter changes, mul-

tiple dependent variables, numerous predictors, and substantial computational

complexity, and motivates the methodological contributions that follow.

The first objective is to evaluate a conventional Bayesian estimation approach

in modelling the real effects of credit market disruption through a measure of

financial distress, the financial external premium, which may vary over time.

For this purpose, we specify an eight-variable structural vector autoregressive

model with time-varying parameters and stochastic volatility (TVP-VAR-SV).

We use the model to examine the nature and evolving features of the links between

macroeconomic and financial variables in the U.S. economy.

The second objective is to develop a Bayesian pairwise composite likelihood

method to address a high-dimensional inference problem in time series models

with parameter changes, many dependent variables, and computational complex-

ity, in order to conduct structural analysis. While a larger macroeconomic and

financial dataset could be analyzed using a suitable TVP-VAR-SV model, the

computational burden of such a model becomes prohibitive in high dimensions.

To address this, the method replaces the full likelihood function with a product

of pairwise marginal likelihoods and then combines the results to make inference

from the composite model. To efficiently aggregate information across bivari-

ate models, we introduce the Direct Averaging Method, a novel approach that
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provides a computationally tractable approximation to the multivariate struc-

ture without requiring simulation from the joint model. An empirical study of

time-varying pairwise composite impulse responses demonstrates the impact of an

unexpected financial shock on fifty quarterly U.S. macroeconomic and financial

variables, yielding economically meaningful results.

The third objective is to develop a Bayesian dynamic graphical model approach

to overcome a high-dimensional sparse inference problem in TVP-VAR models

with volatility discounting, many predictors, and computational complexity, in

order to conduct forecasting analysis. The approach incorporates pairwise condi-

tional independence structures in both the coefficient states and the off-diagonal

elements of the covariance states. The Bayesian dynamic graphical framework

improves forecast combinations of multiple quarterly U.S. macroeconomic and

financial variables.
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Chapter 1

Introduction

Contemporary inferential problems in macroeconomics and finance with ever-

increasing comprehensive time series indices have recently given rise to high-

dimensional models that may capture the interaction between economies’ real

and financial sectors. Multidimensional indices are helpful for analysing business

cycle dynamics and are particularly important for comparing monetary policy

behaviour across very different causes and economic effects of financial crises.

High-dimensional multivariate models accounting for parameter changes over

time are particularly interesting in this context. Those models involve a vast

number of unknown time-varying parameters. However, standard time series

modelling has been insufficient in quantifying time-varying relationships between

the macroeconomy and the financial sector when large datasets are available. Our

inferential goal is to develop innovative Bayesian estimation methods for high-

dimensional state space models. In particular, we address two key challenges in

high-dimensional time series modelling: (i) high-dimensional inference problems

and (ii) high-dimensional sparse inference problems, both posed by models with

parameter changes, many dependent variables, many predictors, and substantial

computational complexity. An initial empirical study motivates these challenges

by examining the effects of credit market disruptions in a TVP-VAR-SV model.
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1.1 Bayesian analysis of high-dimensional state

space models

Following the seminal work of Sims (1980), vector autoregressive (VAR) mod-

els have been recognised as a well-established macroeconometric framework. Since

then, VARs have provided “a coherent and credible approach to data description,

forecasting, structural inference and policy analysis” as noted by Stock and Wat-

son (2001). Extending over the VAR models with constant parameters, a general

methodology with evolving features in parameters was developed by Cogley and

Sargent (2002) and later extended by Cogley and Sargent (2005) and a class of

model incorporating multivariate stochastic volatility was proposed by Primiceri

(2005). However, typically the estimation of the latter model has been carried

out by using a conventional Bayesian approach based on small datasets.

This class of models belongs to a special case of state space systems with two

features of particular economic importance. First, the parameters are allowed

to vary smoothly over time, enabling us to trace how relationships between the

real and financial sectors evolve across different economic environments, such as

expansions, recessions, and periods of financial distress. Second, by allowing the

error covariance matrices to vary over time, the model captures changes in volatil-

ity and nonlinear dynamics, which are essential for understanding fluctuations in

uncertainty, risk transmission, and the amplification of shocks in the economy.

To evaluate the conventional Bayesian estimation approach, we specify an

eight-variable structural vector autoregressive model with time-varying parame-

ters and stochastic volatility (TVP-VAR-SV model). Our focus is on the impact

of the financial distress to the real economy. We do so by extending the study by

Gilchrist and Zakraǰsek (2012) who construct a proxy measure of external finance

premium and use a structural VAR model that uses this measure as a variable.

However, their analysis lacks examining the evolving features of the coefficients
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and the volatilities. In this spirit, we extend their study by evaluating the TVP-

VAR-SV model and conduct structural analysis and formal model assessment. In

the second chapter, we investigate how a surprise innovation in credit spreads af-

fects real economic activity. We use the model to examine the nature and evolving

features of the links between the macroeconomic and financial variables. Exper-

imental results on a quarterly U.S. dataset, including impulse response analysis

and formal model comparisons with alternative models, validate our assumptions

on time-varying coefficient and covariance states.

1.2 Pairwise composite likelihood methods for

TVP-VAR-SV model

A high-dimensional inference problem may arise when the posterior density is

demanding to simulate with large datasets as noted by Koop (2013). In a conven-

tional Bayesian analysis, we devote a considerable time in designing and assessing

simulation methods based on Markov chain Monte Carlo (MCMC) algorithms as

an option to approximate or simulate the posterior density. However, MCMC

algorithms are proved to be inefficient, in particular, when a multivariate time

series model with time-varying parameters include a large number of dependent

variables and time-varying parameters.

Our primary objective is to resolve the computational complexity of this class

of model with the conventional wisdom of Bayesian analysis in a statistically

parsimonious way. A methodologically appealing approach is to split a high-

dimensional likelihood function to low dimensional computationally feasible like-

lihood components using composite likelihood method that was first developed

by Besag (1974) under the term pseudo likelihood approach. Afterwards, Lindsay

(1988) proposed composite likelihood method that was based on logarithms of

marginal or conditional densities. Bayesian estimation based on composite like-
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lihoods in macroeconometrics is an area of research has been partially explored

with two examples so far including Chan et al. (2020) and Canova and Matthes

(2021).

We use a class of composite likelihood formed by pairwise likelihoods con-

structed from bivariate marginal densities. More precisely, we adapt a special

case of pairwise likelihood methods that was proposed by Verbeke and Molen-

berghs (2005) and Fieuws and Verbeke (2006) in a novel way to be applied for

the first time in the context of TVP-VAR-SV models.

In contrast to most composite likelihood approaches that assume common

parameters across components, our method allows for distinct pair-specific pa-

rameters. The proposed approach combines the pairwise composite likelihood

framework with a novel aggregation scheme, the Direct Averaging Method (DAM).

The main idea is to avoid the computational burden of sampling from the poste-

rior of the full joint TVP-VAR-SV model by instead fitting all bivariate models

separately. In the first step, we simulate from the bivariate posterior distribu-

tions associated with each bivariate model. In the second step, we apply the

DAM to map and aggregate the pair-specific parameter estimates into a coher-

ent set of pairwise composite parameters for the high-dimensional system. This

local parameterization, together with DAM, allows us to decouple the estima-

tion of bivariate components from the global aggregation step, thereby providing

a computationally feasible approximation to joint inference in high-dimensional

settings.

We evaluate the empirical merits of the Bayesian PCL method. Our evidence

is based on a fifty-variable PCL-TVP-VAR-SV model as a combination of 1225

submodels applied to quarterly U.S. macroeconomic and financial data spanning

from 1959Q1 to 2018Q1. Time-varying pairwise composite impulse responses

show the effects of a surprise increase in credit spreads on 50 variables with

encouraging results.
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1.3 Dynamic graphical models for TVP-VAR-

VD model

Another high-dimensional problem in time series models containing time-

varying parameters and time-varying covariance matrix may arise when the model

has many predictors with minimal effect on the model, but it is unclear which

predictors are relatively more important as noted by Koop (2017). This problem

is known as high-dimensional sparse inference problem.

Gaussian graphical models have been used to shed light on the relative im-

portance of predictors. The key ideas of graphical models build on foundational

theory in Lauritzen (1996) and Whittaker (2008) that define a rather broad

framework with multivariate Gaussian graphical models. However, most graphi-

cal models either do not consider time-variation features in temporal coefficients

combining a lagged variable and a current variable, and time-variation in co-

variance coefficients combining two current variable or allow for a fully arbitrary

mean. We propose a dynamic graphical model framework that allows combin-

ing traditional graphical models described in Whittaker (2008), Chapter 10, and

recently introduced dynamic dependence networks in Zhao et al. (2016).

In chapter 4, we propose a Bayesian dynamic graphical model approach in-

corporating pairwise conditional independence structures in both the coefficient

states and the off-diagonal elements of the covariance states, ordered recursively.

We achieve this by developing an efficient Bayesian graphical variable selection

method that can be applied recursively equation-by-equation in parallel using

a Gray code algorithm. Then we perform Bayesian model averaging of the top

selected models with high posterior probabilities to forecast ten quarterly U.S.

macroeconomic and financial variables over a pseudo-out-of-sample forecast pe-

riod 1984:Q2-2022:Q3. Comparing out-of-sample forecast performances shows

that the joint model with BMA outperforms the joint model with highest poste-
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rior probability over the most considered horizons.

1.4 Contribution to knowledge

The main contribution of this thesis is to develop a Bayesian pairwise compos-

ite likelihood method to address the high-dimensional inference problem posed by

models with parameter changes, many dependent variables, and computational

complexities, and a Bayesian dynamic graphical model approach to overcome

the high-dimensional sparse inference problem posed by models with parameter

changes, many predictors, and computational complexities.

In chapter 2, we analyse the predictive ability of credit spread as a financial

distress indicator on the real economy within a VAR model with time-varying

temporal coefficients, time-varying contemporaneous relations and time-varying

volatilities. With this highly flexible framework and extension, decision makers

are able to dynamically assess effects on the real economy and financial sector

of a surprise increase of the identified financial shocks, which emphasize evolving

features in the business cycle dynamics with a financial accelerator present.

In Chapter 3, we develop a novel class of pairwise composite likelihood ap-

proach that departs significantly from existing methods. This approach intro-

duces the DAM, an innovative aggregation mechanism that combines parameter

estimates from all bivariate models into a coherent set of pairwise composite pa-

rameters for the high-dimensional system. Together, these components form a

new class of estimation techniques for the high-dimensional TVP-VAR-SV model,

applied here for the first time in the field of macroeconometrics. The proposed

framework not only addresses the computational challenges of the full likelihood

estimation but also offers substantial potential in methodology, and empirical

application. In particular, it enables the analysis of responses of a broad range

of macroeconomic and financial variables to financial shocks within a composite
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framework that is both scalable and interpretable.

In chapter 4, we extend a traditional graphical model and recently introduced

a dynamic graphical model approach to account for pairwise conditional inde-

pendence uncertainties on the time-varying temporal coefficients in addition to

the uncertainties on the independence structures of the time-varying covariance

matrix using a Gray code algorithm. Our Bayesian dynamic graphical frame-

work improves forecast combinations and provides insight into the unobservable

structures of multiple macroeconomic and financial variables.



8

Chapter 2

Bayesian vector autoregressive
model with time-varying
parameters and stochastic
volatility in identification of
financial shocks

2.1 Introduction

There is a growing consensus that as a source of financial distress, widening of

credit spreads, form a reliable class of financial indicators in predicting real eco-

nomic activity emphasized by Bernanke (2018) and Gertler and Gilchrist (2018).

However, a standard time series modelling has been insufficient in quantifying a

time-varying relationship between the tightness in the financial conditions and its

transmission into the real economy on a high-dimensional setup. In this context,

we examine the nature and evolving features of the links between the macroecon-

omy and the financial sector. Our goal is to assess the extent to which the re-

sponse of macroeconomic and financial variables to a financial shock is consistent

with the financial accelerator mechanism within a model featuring time-varying

parameters and stochastic volatility.

The credit spread, first introduced by Bernanke and Gertler (1989) as a proxy

for the external finance premium, plays a central role in the financial accelerator
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mechanism. According to this framework, the external finance premium exhibits

a countercyclical pattern: it rises when borrowers’ net worth deteriorates during

economic contractions and falls when net worth improves in expansions. Within

the financial accelerator, shocks to the external finance premium amplify eco-

nomic fluctuations, leading to sharp contractions in real activity and declines in

asset prices, as emphasized by Bernanke and Gertler (1989), Kiyotaki and Moore

(1997), and Bernanke et al. (1999).

Our study links to modern literature on analysing the effects of financial in-

dicators on the real economy, e.g. Gilchrist et al. (2009), Helbling et al. (2011),

Gilchrist and Zakraǰsek (2012), Stock and Watson (2012), Gilchrist et al. (2014),

and Boivin et al. (2020). By exploring the interaction between the macroeconomy

and the financial market, Gilchrist and Zakraǰsek (2012) constructed a proxy mea-

sure of the external finance premium and used a structural vector autoregressive

model (VAR model) that uses this measure as an endogenous variable. However,

their analysis lacks examining the evolving features of the coefficients and the

volatilities. In this spirit, we extend their work by making the assumption that

the transmission of a financial shock into the real economy has been evolving

over time.1 This motivates our analysis of possible time variations in coefficients,

time variations in contemporaneous relations, and time variations in volatilities.

Two research questions then arise as to whether the sources of financial and real

relationships come from financial shocks and as to whether the financial and real

relationships evolve over time.

For this purpose, we specify an eight-variable structural vector autoregres-

sive model with time-varying parameters and stochastic volatility (TVP-VAR-

SV) model to examine the nature and evolving features of the links between the

macroeconomic and financial variables in the U.S. economy. The eight-variable

TVP-VAR-SV model consists of quarterly U.S. data for consumption, investment,

1We use the term “financial shock” to emphasize a shock to the credit spread, a measure of
the external finance premium.
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GDP growth, GDP deflator, corporate bond spread, stock market returns (S&P

500), the ten-year Treasury yield, and the Federal funds rate.

From a methodological stand point, our work is inspired by a class of VAR

model with evolving parameters and multivariate stochastic volatility that was

developed by Primiceri (2005). Several authors used the TVP-VAR-SV model to

capture the time variation features of macroeconomic and financial time series

in alternative contexts including Gaĺı and Gambetti (2015), Prieto et al. (2016),

and Gambetti and Musso (2017).

Our key findings are as follows. First, shocks in the financial market lead to a

severe economic contraction and slow recoveries, with some detectable differences

with the financial accelerator framework. Shocks to the credit spreads appear

to cause a much stronger effect on the real economic activity during the Great

Recession. This is supported by the associated contraction in real economic

activity especially during the Great Recession as the responses to the financial

shock exceed the average.

Second, the resulting economic downturn leads to an ambiguous response

of inflation over time. In line with the financial accelerator effect, there is an

appreciation of disinflation until late 1980s. However, after then a persistent

increase in inflation takes place. With the adverse economic effects, the Federal

Reserve reduced the Federal funds rate. There is ambiguity about the response

of the stock market returns, which experiences a significant drop in recent years.

Third, a model comparison assessment with a discrete set of competing models

shows that using four competing models and assessing pairwise Bayes factor,

the TVP-VAR-SV model is supported by the data and the prior information.

However, most of the support of the TVP-VAR-SV model fit seems to come from

allowing time variations in the volatilities.

Fourth, Bayes factors can miss out small amounts of time variation features in

parameters in high-dimensional TVP-VAR-SV models. In this regard, we assess
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the TVP-VAR-SV model fit by a model comparison using a hybrid approach to

analyse whether some equations in our eight-variable TVP-VAR-SV model have

time-varying parameters or not. Indeed, the results of comparing 1 + N(N +

1)/2 = 37 models with N = 8 show that some equations may have time-varying

parameter features and some other may miss those features.

The rest of the chapter is structured as follows. Section 2.2 describes the

TVP-VAR-SV model design and specifications. Section 2.3 describes the identifi-

cation scheme and the selected proxies of the credit spreads and the term spread.

Section 2.4 shows the main empirical findings based on a baseline eight–variable

TVP-VAR-SV model, explores robustness to alternative measures of corporate

credit spreads, and performs model assessment with two alternative formal model

comparison methods using Bayes factors. A summary is provided in Section 2.5.

Finally, Section 2.6 provides an appendix for estimating a constant coefficient

and constant volatility VAR model, a summary of MCMC algorithm for TVP-

VAR-SV model and a data appendix.

2.2 The Model

In this section, we introduce the TVP-VAR-SV model, and complete model

specification by choosing prior distributions for all parameters of interest.

2.2.1 Structural TVP-VAR-SV model

Let yt denote an N×1 vector of time series variables. For each cross-sectional

variable i = 1 : N , t = 1 : T denotes the time series observations. The dynamics

of yt follows a structural vector autoregressive process with model order p,

Atyt = A0,t +

p∑
k=1

Ak,tyt−k + ut, (2.1)
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whereA0,t is an (N×1) is a vector of time-varying intercepts,Ak,t = (A1,t, . . . ,Ap,t)

are (N×N) matrices of the time-varying parameters with k = 1, . . . , p, and ut are

the structural disturbances with diagonal covariance matrix. The reduced form

representation of the structural VAR model in Equation (2.1) can be written in

a special case state space system as follows

yt = xtβt + ϵt, (2.2)

βt = βt−1 + ηβ
t , (2.3)

where xt = IN⊗(1,y′
t−1, . . . ,y

′
t−p) is anN×LN matrix and βt = vec([B0,1, . . . ,Bp,t]

′)

is LN × 1 vector with Bk,t = A−1
t Ak,t, k = 0, . . . , p, and L = 1+Np. We assume

the state coefficients, βt, evolve in time according to a random walk and the

evolution error terms are assumed to be a zero-mean process with state evolution

variance matrix, ηβ
t ∼ N (0,Σβ). ϵt is an (N × 1) vector of reduced form distur-

bances assumed to be a zero-mean process with time-varying covariance matrix,

ϵt ∼ N (0,Σϵ,t), and the reduced from disturbances, ϵt, are obtained from the

structural shocks by a linear transformation as

ϵt ≡ Ptut, (2.4)

where E(utu
′
t) = IN and E(utu

′
t−k) = 0 for all t and k = 1, 2, 3, . . . .

Let’s define Σϵ,t as a positive definite symmetric (N ×N) matrix, which has

the following representation

Σϵ,t = AtDtA
′
t. (2.5)

A necessary condition to offer a unique solution to the system Σϵ,t = AtDtA
′
t

requires an order condition for identification. The order condition implies that At

and Dt have N(N + 1)/2 distinct elements, which is equivalent to the elements
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of Σϵ,t. If Dt is diagonal, it requires N elements, meaning that At can have

maximum N(N − 1)/2 free elements, as described by Hamilton (1994). This

leads to specify At as a lower triangular matrix with 1’s along the principal

diagonal. We define αt as the parameters of the lower triangular elements of At,

and define dt = (d1,t, . . . , di,t, . . . , dN,t)
′.

At =



1 0 . . . 0

α21,t 1
. . .

...

...
. . . . . .

...

αN1,t . . . αNN−1,t 1


, and

Dt =



d1,t 0 . . . 0

0
. . . . . .

...

...
. . . . . .

...

0 . . . 0 dN,t


,

where the αi,j,t elements are real-valued and the di,t are positive.2

In this framework, volatility is captured by the time-varying standard devia-

tions of the reduced-form disturbances, governed by the square roots of the diag-

onal elements of Dt, which result from the time variation in the transformation

applied to the structural shocks. Let σt denote the vector of standard deviations,

i.e., the square roots of the diagonal elements of Dt. Hence, the elements of the

time-varying covariance matrix are specified as random walks

αt = αt−1 + ηα
t , (2.6)

2This decomposition follows Primiceri (2005) and Gaĺı and Gambetti (2015). It is equivalent
to the more common representation Σϵ,t = A−1

t Dt(A
−1
t )′ (e.g., Hamilton (1994)), but differs

by a reparameterisation: here At is defined as the lower-triangular Cholesky factor with unit
diagonal, while Dt collects the time-varying variances.



14

ht = ht−1 + ηh
t , (2.7)

where ht = logσt, E(ηα
t ) = 0 and E(ηh

t ) = 0, E(ηα
t η

′α
t ) = Σα and E(ηh

t η
′h
t ) =

Σh, and ηα
t ∼ N (0,Σα) and ηh

t ∼ N (0,Σh).

2.2.2 Priors and initial values

To complete the model specifications, we calibrate the values of prior hy-

perparameters by applying a “training sample prior”. This prior choice reflects

the belief that there is absence of information to select a prior distribution but

presence of a large number of observations as in Primiceri (2005).

To calibrate the prior distributions for β0, α0, and h0, we estimate a time

invariant version of the model in Equation (2.2) based on an initial training

sample of 40 observations. The priors for the initial states β0, α0, and h0 are

Normal with parameters (µ0,Σ0) and are defined as

β0 ∼ N (β̂0, τβ × P̂β0),

α0 ∼ N (α̂0, τα × P̂α0),

h0 ∼ N (ĥ0, τh × IN),

(2.8)

where τβ, τα, and τh are scale factors, µ0 may represent any of the parameters

β̂0, α̂0 or ĥ0, and Σ0 may refer to any of the parameters τβ × P̂β0 , τα × P̂α0 or

τh× P̂h0 . The matrices, Σβ,0, Σα,0, and Σh,0, follow inverse Wishart distributions

with parameters (U0, ν). Then, Σβ,0 is defined as

Σβ,0 ∼ IWN(Np+1)(κ
2
Σβ
× (N(Np+ 1) + 1)× P̂β0 , (N(Np+ 1) + 1)), (2.9)

with scale matrix Uβ,0 = κ2
Σβ
× νβ × P̂β0 , and prior degrees of freedom νβ =

(N(Np+ 1) + 1).

We calibrate the elements of Σα,0 by assuming block-diagonal with blocks
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corresponding to the equations of the system. In other words, for the lower

triangular matrixAt, the blocks have size S = {(1×1), (2×2), . . . , [(N−1)×(N−

1)]}, where Si denotes the ith block of S that follow inverse Wishart distributions

S1 ∼ IW1(κ
2
S1
× 2× P̂α̂21 , 2),

S2 ∼ IW2(κ
2
S2
× 3× P̂α̂31,α̂32 , 3),

...

SN−1 ∼ IWN−1(κ
2
SN−1

×N × P̂α̂N1,...,α̂NN−1
, N),

(2.10)

where α̂i,j refers to elements of blocks of the α̂0 for i ̸= j.

Finally, the variances of the stochastic volatility innovations follow inverse

Wishart distribution of the form

Σh,0 ∼ IWN(κ
2
Σh
× (N + 1)× IN , (N + 1)). (2.11)

To sum up, the priors for the eight-variable TVP-VAR-SV model are specified as

follows
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β0 ∼ N (β̂0, 9×Pβ̂0
),

α0 ∼ N (α̂0, 9×Pα̂0),

h0 ∼ N (ĥ0, 1× IN),

Σβ,0 ∼ IW(pN2+N)(0.01
2 × 137× P̂β̂0

, 137),

Σh,0 ∼ IWN(0.01
2 × 9× IN , 9),

S1 ∼ IW1(0.001× 2×P(α̂21,0), 2),

S2 ∼ IW2(0.001× 3×P(α̂31,0,α̂32,0), 3),

S3 ∼ IW3(0.001× 4×P(α̂41,0,α̂42,0),α̂43,0 , 4),

S4 ∼ IW4(0.001× 5×P(α̂51,0,α̂52,0,α̂53,0,α̂54,0), 5),

S5 ∼ IW5(0.001× 6×P(α̂61,0,α̂62,0,α̂63,0,α̂64,0,α̂65,0), 6),

S6 ∼ IW6(0.001× 7×P(α̂71,0,α̂72,0,α̂73,0,α̂74,0,α̂75,0,α̂76,0), 7),

S7 ∼ IW7(0.001× 8×P(α̂81,0,α̂82,0,α̂83,0,α̂84,0,α̂85,0,α̂86,0,α̂87,0), 8).

2.3 Identification and proxies to external finance

premium

In this section, we discuss a recursive identification scheme and consider al-

ternative proxies to the external finance premium.

2.3.1 Identification

A way to achieve identification of the financial shocks is to assume that the

structural innovations ut in Equation (2.4) can be obtained from the reduced form

disturbances ϵt by orthogonalising the reduced form errors, this follows Kilian and

Lütkepohl (2017). We accomplish this task by defining a lower triangular N ×N
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matrix PtP
′
t = Σϵ,t, such that Pt is the Cholesky decomposition of Σϵ,t. It follows

from Equation (2.5) that one possible solution to the problem is Pt = A−1
t D

1/2
t .

We compute the impulse responses as described in Gaĺı and Gambetti (2015).

As mentioned by Kilian and Lütkepohl (2017), the recursive condition in Pt

requires ordering of variables based on economic theory. Furthermore, we assume

that the transmission channel of the financial shocks is in line with the financial

accelerator mechanism. Thus, an unexpected increase in credit spreads leads to an

immediate reaction of the financial sector to the surprise news while movements

in real economic activities and prices occur only within a period. This is an

example of a recursive identification scheme on a TVP-VAR-SV model.3

We construct an eight–variable TVP-VAR-SVmodel that includes both macroe-

conomic and financial variables. The eight variables in this specification are,

consumption, investment, GDP growth, GDP deflator, corporate bond spread

(A-spread), stock market returns (S&P 500), the ten-year Treasury yield, and

the Federal funds rate. The identifying assumption implied by this recursive

ordering is that shocks to the A–spread affect consumption, investment, GDP

growth, and inflation within a period, while the stock returns, the ten-year Trea-

sury yield, and the Federal funds rate can react contemporaneously to such a

financial disturbance. The TVP-VAR-SV model is estimated over the full sample

period, using 2 lags of each variable.

2.3.2 Proxies of external finance premium

We consider a series of proxies to the external finance premium. Namely,

default risk premium, the excess bond premium, and the GZ-spread. We also use

the term spread as an alternative indicator.

3Impulse responses are normalised to ensure comparability across shocks. The normalisation
procedure follows the approach described in detail in Section 3.3.3.
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Default risk premium

Our benchmark measure is A–spread (the difference between BAA corporate

bond yields and AAA corporate bond yields). As alternatives, we also consider

the 10–year A–spread (the difference between AAA corporate bond yields and

10–year Treasury bond yields) and the 10–year B–spread (the difference between

BAA corporate bond yields and 10–year Treasury bond yields). We take those

measures as proxies to the external finance premium, i.e. measures of indicators

of financial distress. We can see their sensitivities to episodes of recessions in the

U.S. economy in Figure 2.1.

Excess bond premium and the GZ-spread

Other measures of the external finance premium include the excess bond pre-

mium and the GZ spread, widely used indicators of financial market tightness

developed by Gilchrist and Zakraǰsek (2012). They construct a credit spread

index from a panel of bond prices and show that it has strong predictive power

for real economic activity. This index is decomposed into a predicted component

reflecting expected default risk and a residual component capturing the excess

bond premium.

The term spread

There is extensive evidence on the predictive power of the term spread (the

slope of the yield curve) for fluctuations in real economic activity and inflation.

Although different proxies are used in the literature, the most common definition

is the difference between the ten-year Treasury bond yield and the three-month

Treasury bill yield.

The term spread has proven useful in forecasting real economic activity, as

shown by Hamilton and Kim (2002) and Andrew et al. (2006). In a compre-

hensive review, Stock and Watson (2003) also emphasize its ability to predict
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U.S. economic growth and inflation. As illustrated in Figure 2.1, the term spread

typically declines to low or even negative values before recessions, which explains

its role as a leading indicator of downturns. Accordingly, we consider the term

spread as an alternative financial indicator to assess its effect on real economic

activity and whether this relationship changes over time.

Figure 2.1 also displays alternative measures of the external finance premium.

The GZ spread, for example, rises sharply during recessions and peaked above 6%

in the Great Recession. More generally, all credit spreads move countercyclically,

increasing in economic downturns, whereas the inverted term spread tends to rise

before downturns occur.

To compare the relative information content of these indicators, we extend

the analysis by adding them one at a time to a six-variable TVP-VAR-SV model.

In this specification, yt includes GDP growth, the GDP deflator, the unemploy-

ment rate, the A-spread, stock market returns, and the federal funds rate. The

recursive ordering assumes that shocks to the A-spread affect output, inflation,

and unemployment contemporaneously, while stock returns and the federal funds

rate can also respond immediately to such shocks. In alternative specifications,

we replace the A-spread with the 10-year A-spread, the 10-year B-spread, the GZ

spread, the excess bond premium, or the term spread as financial shocks. Data

definitions and sources are provided in the Data Appendix.
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Figure 2.1: The figure depicts the selected credit spreads and the term spread.
Quarterly time series plots span from 1973:Q2 to 2016:Q3. The shaded vertical
bars represent the National Bureau of Economic Research’s recession dates in the
U.S. economy.

2.4 Empirical Results

In this section, we report the consequences of a surprise innovation to the

credit spread on the real economic activity. All data are obtained from the Fred

database of the Federal Reserve Bank of St Louis except the GZ-spread and the

excess bond premium of Gilchrist and Zakraǰsek (2012), which are obtained from

the authors’ website. The time span for some variables starts in 1959:Q1 and ends

in 2018:Q1 and for the variables, GZ–spread, excess bond premium, and term

spread, it starts in 1973:Q2 and ends in 2016:Q3.4 The TVP-VAR-SV models are

estimated over the full sample period, using two lags of each endogenous variable

and 10,000 Markov chain Monte Carlo (MCMC) algorithm replications.

4The Data appendix provides a complete listing of all variables.
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2.4.1 Results from the recursive identification scheme

Figures 2.2 through Figure 2.9 plot the impulse responses of the endogenous

variables to a financial shock to the A–spread. An unexpected increase of in

the A-spread causes a reduction in the real economic activity, with consumption,

investment and output decreasing over the next quarters. In response to this

adverse financial shock, the macroeconomic implications are severe; the decrease

in the investment outweighs the sharp drop in the real GDP growth, which is

about 3 percentage point.

However, the resulting economic downturn leads to an ambiguous response of

inflation over time. In line with the financial accelerator effect, there is an appre-

ciation of disinflation until late 1980s.5 However, after then there is a persistent

increase in inflation. In response to these adverse macroeconomic effects of the

financial shock, the Federal Reserve reduced the Federal funds rate as depicted

by the time-varying impulse response of the relevant variable in Figure 2.9 that

occurs about one quarter after the initial impact of the shock. There is ambiguity

about the response of the stock market returns, which experiences a significant

drop in recent years.

5Bernanke (2003) defines disinflation as “a decline in the rate of inflation”.
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Figure 2.2: The figure depicts the impulse response of Real Consumption to
the identified shock of the A-spread estimated from an eight–variable structural
TVP-VAR-SV model.
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Figure 2.3: The figure depicts the impulse response of Real Investment to the
identified shock of the A-Spread estimated from an eight–variable structural TVP-
VAR-SV model.
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Figure 2.4: The figure depicts the impulse response of Real GDP Growth to
the identified shock of the A-Spread estimated from an eight–variable structural
TVP-VAR-SV model.
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Figure 2.5: The figure depicts the impulse response of GDP Deflator to the
identified shock of the A-Spread estimated from an eight–variable structural TVP-
VAR-SV model.
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Figure 2.6: The figure depicts the impulse response of A-Spread to the identified
shock of the A-Spread estimated from an eight–variable structural TVP-VAR-SV
model.

-30
30

-20

-10

202020

0

Quarters after the shock

10

2000

Time in years

20

10
1980

0 1960

Figure 2.7: The figure depicts the impulse response of Stock Returns to the
identified shock of the A-Spread estimated from an eight–variable structural TVP-
VAR-SV model.
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Figure 2.8: The figure depicts the impulse response of Ten-Year Treasury Yield
to the shock of the A-Spread estimated from an eight–variable structural TVP-
VAR-SV model.
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Figure 2.9: The figure depicts the impulse response of Federal Funds Rate to
the identified shock of the A-Spread estimated from an eight–variable structural
TVP-VAR-SV model.
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2.4.2 Stochastic volatility

We present the posterior median, 5-th and 95-th percentiles of the time-

varying standard deviation of residuals of consumption, investment, GDP growth,

GDP deflator, A-spread, S&P 500 stock returns, ten-year Treasury yield, and Fed-

eral funds rate in Figure 2.10. In most cases, there is evidence of a considerable

time variation in the standard deviation of the innovations with spikes appearing

during different episodes of business cycle dynamics.

The first column and the third row of Figure 2.10 displays the time-varying

standard deviation of the A-spread shocks. The periods between 1981:Q3- 1982:Q4

and 2007:Q4-2009:Q2, which are periods of contractions, present a higher variance

of A-spread shocks. Another interesting fact from the analysis of the stochastic

volatilities is related to time-varying standard deviations of the ten-year Treasury

yield and the Federal funds rate. The former is displayed in the first column and

the fourth row and the latter is presented in the second column and the fourth

row of Figure 2.10. The variances of these variables peak between 1979 and 1983.

The result for the Federal funds rate is in line with the findings of Primiceri

(2005).

Overall, the evidence supports the use of stochastic volatility specifications.
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Figure 2.10: The figure depicts posterior median, 5-th and 95-th percentiles of
the standard deviation of residuals of Consumption, Investment, GDP Growth,
GDP Deflator, A-spread, S&P 500 Stock Returns, Ten-Year Treasury Yield, and
Federal Funds Rate equations.

2.4.3 The effect of alternative financial shocks

To investigate the sensitivity of responses of real economic activity to finan-

cial shocks, we document the responses of the growth rate of GDP to a sur-

prise increase in the A–spread, the 10–year A–spread, the 10–year B–spread, the

GZ–spread, the excess bond premium, and the term spread. We consider alter-

native credit spreads by adding one at a time to a six-variable TVP-VAR-SV

model. In other words, yt contains only one of the credit spreads at a time and

other macroeconomic and financial series.

The posterior median of the impulse responses of the growth rate of real GDP

over the whole sample period appear in most cases are quite similar. For exam-

ple, a positive financial shock to the A–spread, 10–year A–spread and 10–year

B–spread (panel (a), (b) and (c) in Figure 2.11) seems to have a large negative

impact on real GDP growth. There is a sharp drop in output growth that be-

gins after several quarters. Figure 2.11, panels (d) and (e) display the impulse
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responses of output growth that shows a persistent negative decline after the

widening of the GZ–spread and the excess bond premium.

Panel (f) of Figure 2.11 shows the changing response of output growth, which

generally rises on impact in response to a term spread shock. Until the early

1990s that rise is persistent. By contrast, starting in the early 1990s, the initial

rise is rapidly reversed with GDP growth rising above their initial value until

early 2000s.
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Figure 2.11: The figure shows the median of the impulse responses of real GDP
growth to the identified shock of the A–Spread, 10–Year B–Spread, 10–Year
A–Spread, GZ–Spread, Excess Bond Premium, and Term Spread. For each case,
a six-variable structural TVP-VAR-SV model has been estimated.
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2.4.4 Model comparisons

We perform a formal Bayesian model assessment by comparing alternative

VAR models. We propose a discrete set of four competing models and compute

Bayes factor, which is defined as a ratio of marginal likelihood of a model relative

to the marginal likelihood of a second model, Chan and Eisenstat (2018a). Those

four labelled models are M1: TVP-VAR-SV model, M2: TVP-VAR model with

time-varying parameters and constant volatilities, a M3: VAR-SV with constant

parameters and time-varying volatilities, and M4: VAR model with constant

parameters and volatilities. In this case, if we compare two competing models,

M1 and M4, the ratio of their posterior probabilities is

p(M1|yt)

p(M4|yt)
=

p(M1)

p(M4)
× Bayes factor(M1;M4),

where p(M1)/p(M4) are the prior odds and the Bayes factor of the data is defined

as p(yt|M1)/p(yt|M4). If we set the prior odds equal to one, then the Bayes factor

is equal to the posterior odds. Table 2.1 and Table 2.2 report the logarithms of

marginal likelihoods and standard deviations under two alternative specifications

of the TVP-VAR-SV model and other competing VAR models.6 Firstly, the

Bayes factor of the data of the TVP-VAR-SV over the constant parameter VAR

in Table 2.1, is p(yt|M1)/p(yt|M4) = exp(−1744.10 − (−1980.60)). Then, the

posterior odds are p(M1|yt)/p(M4|yt) = 5.1 × 10102. From this experiment we

conclude that the TVP-VAR-SV is supported by the data. However, we may ask

the question whether the relative strength of the model M1 over the model M4

comes from allowing the time-varying parameters or the time-varying volatilities?

To answer this question we compare M2 and M4 models in Table 2.1. We obtain

a posterior odds ratio 6.3 × 10−54, which does not favor the TVP-VAR over the

VAR model. Hence, we can conclude that the support of the stochastic volatility

6We calculate the marginal likelihoods and the standard deviations reported in Table 2.1
and 2.2 using the computational algorithms written by Chan and Eisenstat (2018a).
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seems to outperform the time-varying parameters in the VAR model fit. Those

results are in line with the findings of Chan and Eisenstat (2018a) who use a

three-variable alternative VAR models. Similar results follow from Table 2.2.

Logarithms of marginal likelihoods for eight-variable VAR(2) models
Model TVP-VAR-SV TVP-VAR VAR-SV VAR
Log-ML −1744.10 −2103.10 −1596.20 −1980.60

Standard errors (0.61) (0.60) (0.14) (0.05)

Table 2.1: The logarithms of the marginal likelihood estimates and standard
deviations (in parenthesis) are calculated using 10000 posterior draws after a
burn-in period of 0.1 × 10000 draws. The eight variables used in the estima-
tion are consumption, investment, GDP growth, GDP deflator, A-spread, stock
returns, ten-year- Treasury yield, and Federal funds rate for a period spanning
from 1959:Q1 to 2018:Q1.

Logarithms of marginal likelihoods for six-variable VAR(2) models
Model TVP-VAR-SV TVP-VAR VAR-SV VAR
Log-ML −1382.50 −1612.00 −1322.20 −1591.90

Standard errors (0.61) (0.43) (0.11) (0.01)

Table 2.2: The logarithms of the marginal likelihood estimates and standard
deviations (in parenthesis) are calculated using 10000 posterior draws after a
burn-in period of 0.1× 10000 draws. The six variables used in the estimation are
GDP growth, GDP deflator, unemployment rate, A-spread, stock returns, and
Federal funds rate for a period spanning from 1973:Q2 to 2016:Q3.

An overview of the use of Bayes factors for comparing models can be found

in Koop (2003), Gelman et al. (2013), Kroese and Chan (2014) and for the use

of Bayes factors with TVP-VAR-SV models see Chan and Eisenstat (2018a).

2.4.5 Model comparison using a hybrid approach

The model comparison of the previous section shows that there is a strong

support for stochastic volatility. However, any conclusions of a constant pa-

rameter model can be misleading. Multiple sources of evidence show that the

Bayes factors can miss out small amounts of time variation in parameters in
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high-dimensional models. For instance, if most equations have constant parame-

ters but one or two do not, Bayes factors can miss it. Hence, we go ahead with

the TVP-VAR-SV model in our empirical analysis. However, note that the time

variation in the impulse responses could be due to stochastic volatility and not

time-varying parameters in the VAR coefficients.

The framework of Chan and Eisenstat (2018b) can be used to analyse whether

some equations in our benchmark eight-variable TVP-VAR-SV model have con-

stant parameters and some have time-varying parameters. Unlike Chan and

Eisenstat (2018b) who use all subsets of models, we adapt an alternative ap-

proach. We begin with a null model containing all the constant parameter VAR

equations, and then iteratively add the time-varying parameter VAR equations,

one-at-a-time. We restrict the search to include only 1+N(N+1)/2 = 37 models

if N = 8, and so can be applied in our setting where N is relatively large to apply

the full subset selection.7

The results of the estimates of marginal likelihoods and standard deviations

are reported in Table 2.3.8 Zero (one) binary numbers in Table 2.3 indicate

constant parameters (time-varying parameters) in the relevant equations.

In general, we find that the VAR model with constant parameters and stochas-

tic volatility performs well when compared to alternative hybrid specifications

of the parameters and the full TVP-VAR-SV model. Adding one time-varying

parameter specification at-a-time reveals that equations of consumption, GDP

growth and stock returns performs well when time variation is allowed in param-

eters. On the other hand, allowing time variation in the equations of investment,

inflation, A-spread, ten-year-Treasury yield, and Federal funds rate does not re-

veal dramatic improvements in model fit.

7The full subset selection of Chan and Eisenstat (2018b) leads to 2N = 256 with N = 8.
It is computationally infeasible to solve the full subset selection with 256 eight-variable TVP-
VAR-SV models. We leave investigating the full subset selection problem to future.

8We calculate the marginal likelihoods and the standard deviations reported in Table 2.3
using the computational algorithms written by Chan and Eisenstat (2018b).
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When pairs of parameters are allowed to vary over time, the performance of the

VAR models depends on the performance of individual parameters. For example,

if a VAR model with parameters of pair of variables are allowed to vary over

time performs well when compared to the VAR model with constant parameters,

this must be due to the performance of each parameter individually. This can

be seen from the performance of the VAR models with equations of consumption

and GDP growth, consumption and stock returns, and GDP growth and stock

returns when the parameters are allowed to vary over time. Those VAR models

outperform the all-constant parameters VAR model.

An interesting fact of our results is that there is no evidence of support of

time variation in the equation of inflation, which contrasts the findings of Chan

and Eisenstat (2018b) and Karlsson and Österholm (2023).
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Eight-variable hybrid TVP-VAR-SV models
Choice y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t Log ML SE
1 0 0 0 0 0 0 0 0 −1, 571.50 (0.63)
2 1 0 0 0 0 0 0 0 −1,565.50 (0.73)
3 0 1 0 0 0 0 0 0 −1, 578.20 (0.41)
4 0 0 1 0 0 0 0 0 −1,570.90 (0.56)
5 0 0 0 1 0 0 0 0 −1, 577.30 (0.53)
6 0 0 0 0 1 0 0 0 −1, 592.20 (0.50)
7 0 0 0 0 0 1 0 0 −1,567.20 (0.54)
8 0 0 0 0 0 0 1 0 −1, 606.90 (0.78)
9 0 0 0 0 0 0 0 1 −1, 627.60 (0.48)
10 1 1 0 0 0 0 0 0 −1, 572.80 (0.68)
11 1 0 1 0 0 0 0 0 −1,566.50 (0.52)
12 1 0 0 1 0 0 0 0 −1, 574.80 (0.91)
13 1 0 0 0 1 0 0 0 −1, 586.30 (0.78)
14 1 0 0 0 0 1 0 0 −1,564.10 (0.53)
15 1 0 0 0 0 0 1 0 −1, 602.40 (0.47)
16 1 0 0 0 0 0 0 1 −1, 623.00 (0.61)
17 0 1 1 0 0 0 0 0 −1, 577.10 (0.53)
18 0 1 0 1 0 0 0 0 −1, 584.90 (0.71)
19 0 1 0 0 1 0 0 0 −1, 599.60 (0.71)
20 0 1 0 0 0 1 0 0 −1, 574.80 (0.54)
21 0 1 0 0 0 0 1 0 −1, 614.20 (0.85)
22 0 1 0 0 0 0 0 1 −1, 634.80 (0.35)
23 0 0 1 1 0 0 0 0 −1, 577.00 (0.59)
24 0 0 1 0 1 0 0 0 −1, 590.50 (0.56)
25 0 0 1 0 0 1 0 0 −1,567.60 (0.42)
26 0 0 1 0 0 0 1 0 −1, 605.70 (0.55)
27 0 0 1 0 0 0 0 1 −1, 626.40 (0.42)
28 0 0 0 1 1 0 0 0 −1, 599.40 (0.85)
29 0 0 0 1 0 1 0 0 −1, 574.00 (0.92)
30 0 0 0 1 0 0 1 0 −1, 614.60 (0.47)
31 0 0 0 1 0 0 0 1 −1, 634.50 (0.29)
32 0 0 0 0 1 1 0 0 −1, 587.40 (0.72)
33 0 0 0 0 1 0 1 0 −1, 627.50 (0.62)
34 0 0 0 0 1 0 0 1 −1, 648.60 (0.54)
35 0 0 0 0 0 1 1 0 −1, 602.70 (0.67)
36 0 0 0 0 0 1 0 1 −1, 624.20 (0.34)
37 1 1 1 1 1 1 1 1 −1, 710.20 (0.87)

Table 2.3: The models are estimated using 10000 posterior draws after a burn-in
period of 0.1× 10000 draws. The logarithms of the marginal likelihood estimates
and standard errors (in parenthesis) are calculated using 10000 replications. Zero
(one) stands for constant parameters (time-varying parameters) in the relevant
equations. The eight variables used in the estimation are y1,t = consumption,
y2,t = investment, y3,t = GDP growth, y4,t = GDP deflator, y5,t = A-spread,
y6,t = stock returns, y7,t = ten-year-Treasury yield, and y8,t = Federal funds rate
for a period spanning from 1959:Q1 to 2018:Q1.
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2.5 Summary

We examined the nature and the evolving features of the real economic ac-

tivity, the prices and the financial indicators in response to the financial shocks

using several specifications of a Bayesian TVP-VAR-SV model. We identified the

shocks by imposing a recursive identification scheme on the impact responses of

multiple macroeconomic and financial indicators.

The evolution of the impulse responses over time for different horizons suggests

that potential time variation can be detected in several cases. Financial shocks

appear to having a substantial effect on the real economic activity during the

Great Recession. This is supported by the associated contraction in real economic

activity especially during the Great Recession as the responses to the financial

shock exceed the average.

Our assumptions that allow for the time-varying vector autoregressive coeffi-

cient states, the time-varying covariance states, and the time-varying volatilities

yield a more realistic picture of the effects of financial shocks on the real eco-

nomic activity and provide a useful resource in understanding the evolution of

transmission of these shocks into the real economy. Supported by the financial

accelerator framework, the results show that a surprise increase of a measure

of the external finance premium generates economically meaningful results with

some detectable differences; a decrease in real consumption, real investment, and

real output. However, it creates a puzzle in inflation and stock market returns.
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2.6 Appendix

2.6.1 A constant coefficient VAR model

We first calibrate the prior hyperparameters of β0, α0, and h0 by estimating a

time invariant version of the model in Equation (2.2) based on an initial training

sample of 40 observations using the method of ordinary least squares (OLS). Let’s

consider writing Equation (2.2) in a compact form as

y = (IN ⊗X)β + ϵ, (2.12)

where we define y as an NT×1 vector, X = (x1, . . . ,xT )
′ as a T×Lmatrix by set-

ting L = (1+Np) and rearranging xt = (1,y′
t−1, . . . ,y

′
t−p), β = vec([B0, . . . ,Bp]

′)

as an LN × 1 vector, ϵ is an (NT × 1) vector of reduced form disturbances as-

sumed to be a zero-mean process with covariance matrix ϵt ∼ N (0,Σϵ⊗ IT ). We

may write the covariance matrix as Σϵ = A−1DA′−1.

The OLS estimates and the covariance matrix of the slope coefficient vector

may be obtained by β̂0 = [IN⊗(X ′X)−1X ′]y and P̂β̂0
= Σ0⊗(X′X)−1. The OLS

estimates of the elements of α̂0 are obtained by regressing ϵ̂i,t on −ϵ̂1:i−1,t and

obtaining the estimated variance P̂α̂0 . Finally, the elements of ĥ0 are generated by

the logarithm of the diagonal elements of Σ
1/2
0 = D1/2 and the implied variances

are calculated as IN .

2.6.2 The FFBS algorithm

Bayesian inference for the state space representation in Equations (2.2), (2.3),

(2.6), and (2.7) are based on the joint posterior density (β,α,h,θ|y) of all states

β = (β0, . . . ,βT ), α = (α0, . . . ,αT ), and h = (h0, . . . ,hT ), and the hyperparam-

eters θ = (Σβ,Σα,Σh). We estimate the model by simulating the distribution of

states and hyperparameters. We proceed by applying a particular Gibbs Sampler
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to the system in Equation (2.3) obtained as

p(β1:T |α1:T ,h1:T ,y1:T ,θ) = p(βT |α1:T ,h1:T ,y1:T ,θ)

×
T−1∏
t=1

p(βt|βt+1,α1:T ,h1:T ,y1:t,θ). (2.13)

Equation (2.13) provides an efficient way to sample β1:T for a linear Normal

state space model with forward filtering and backward sampling (FFBS) algo-

rithm that was proposed by Carter and Kohn (1994) and named as the FFBS al-

gorithm by Frühwirth-Schnatter (1994). The FFBS algorithm samples the whole

state vector β1:T from the joint probability density given the sample y1:T and the

relevant hyperparameters in θ.

Forward filtering

1. Sampling βt:

The Kalman filter consists of the following equations which proceed sequen-

tially in time starting from initial values β̂0 and P̂β̂0
. Consider the posterior

density of the state βt−1 given the information up to time t− 1 is

βt−1|αt−1,ht−1,y1:t−1,θ ∼ N (mt−1,Ct−1).

Then the following statements hold

1. The one-step-ahead predictive distribution of βt conditional on αt, ht, and

y1:t−1 is Normal with parameters

at = E(βt|αt,ht,y1:t−1,θ) = mt−1, (2.14)

Rt = V (βt|αt,ht,y1:t−1,θ) = Ct−1 +Σβ. (2.15)

2. The one-step-ahead predictive distribution of yt conditional on y1:t−1 is
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Normal with parameters

ft = E(yt|y1:t−1) = xtat, (2.16)

Qt = V (yt|y1:t−1) = xtRtx
′
t +Σϵ,t. (2.17)

3. The filtering distribution of βt conditional on αt, ht, and y1:t is Normal,

with parameters

mt = E(βt|αt,ht,y1:t,θ) = at +Kt(yt − xtat), (2.18)

Ct = V (βt|αt,ht,y1:t,θ) = Rt −KtxtRt, (2.19)

where Kt = Rtx
′
tQ

−1
t is Kalman gain.

Backward smoothing

At the end of sampling, the forward filtering delivers the mean and the vari-

ance for βT of the form

p(βT |α1:T ,h1:T ,y1:T ,θ) ∼ N (mT ,CT ).

The backward sampling step computes the remaining terms in Equation (2.13).

Because the state space model in Equations (2.2), (2.3) are linear and Normal, the

distribution of βT given y1:T and that of βt given βt+1 and y1:t for t = T−1, . . . , 1

are also Normal. Conditional on generating βT , we can compute βt from

p(βt|βt+1,α1:T ,h1:T ,y1:T ,θ) ∼ N (gt,Gt),

with moments

gt = mt +Bt(βt+1 −mt),

Gt = Ct −BtRt+1B
′
t,

(2.20)
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where Bt = CtR
−1
t+1.

9

2. Sampling αt:

To sample αt elements of the lower triangular matrix At, let’s denote

A−1
t (yt − xβt) = A−1

t ŷt = H
1/2
t ϵt. (2.21)

Then, we may write the following equation for each row of a lower triangular

matrix for i = 2 : N

ŷi,t = −ŷ1:i−1,tαi,t + σi,tϵi,t, (2.22)

where σi,t and ϵi,t represent the ith elements of σt and ϵt, respectively and

ŷ1:i−1,t = (ŷ1,t, . . . , ŷi−1,t). Conditional on βT and hT , Equation (2.22), is the

measurement equation of a state space model where the state is defined in Equa-

tion (2.6) with components of the state αi,t. We apply the FFBS algorithm and

draw αi,t from N(αi,t|t+1,V
α
i,t|t+1), where the smoothing mean and the variance

are denoted as

αi,t|t+1 = E(αi,t|αi,t+1,y1:t,β1:T ,h1:T ,θ),

Vα
i,t|t+1 = V (αi,t|αi,t+1,y1:t,β1:T ,h1:T ,θ).

(2.23)

3. Sampling ht:

Sampling the volatilities is not straightforward as the stochastic volatility is

a nonlinear state space model. The challenge arises because the joint conditional

density of p(h1:T |y1:t,βT ,αT ,Σβ,Σα,Σh) is not Normal. We use auxiliary mix-

ture sampling algorithm to estimate the stcohastic volatility. This estimation

method was developed by Kim et al. (1998) and was implemented by Primiceri

(2005), Gaĺı and Gambetti (2015), and for a book length see Kroese and Chan

(2014). Let’s start implementing this approach by transforming yt in order to

9For details, see West and Harrison (1997) Chapter 15, Kim and Nelson (1999) Chapter 8
and Blake and Mumtaz (2012) Chapter 3.
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obtain a measurement that is linear in ht

y∗
t = (yt − xtβt) = ehtυt, (2.24)

where ehtυt = ηh
t and υt ∼ N (0, 1). Squaring both sides of Equation (2.24) and

taking the logarithm, we obtain the following form

y∗∗
t = 2ht + υ∗

t , (2.25)

where y∗∗
t = log y∗2

t , ht = logσt and υ∗
t = logυ2

t . Hence, Equation (2.25) to-

gether with Equation (2.7) represent a state space model. However, the issue

with the above representation is that the error term υ∗
t does not have a Nor-

mal distribution. The auxiliary mixture sampling finds a Normal mixture that

approximates the pdf of the υ∗
t

f(υ∗
t ) ≈

n∑
i=1

wiϕ(υ
∗
t ;µh,i,σ

2
h,i), (2.26)

where ϕ(y;µ,σ2) is the Normal density with mean µ and variance σ2, wi are the

mixture probabilities for the ith component and n is the number of components.

We can define an auxiliary random variable sh,t ∈ {1, . . . , n} , which can be used

as a mixture component indicator

(υ∗
t |sh,t = i) ∼ N (µh,i − 1.2704,σ2

h,i),

Pr(sh,t = i) = wi.

Hence, the desired linear Normal model can be defined conditional on the

component indicator sh,t as (υ
∗
t |sh,t) ∼ N (d∗

t ,Σ
∗
t ), where d∗

t = µh,i − 1.2704 and

Σ∗
t = σ2

h,i for t = 1 : T . µh,i and σh,i have fixed values represented as a seven
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component Normal mixture in Table 4 of Kim et al. (1998). Then it follows that

(y∗∗
t |sh,t,ht) ∼ N (2ht + d∗

t ,Σ
∗
t ), (2.27)

for t = 1 : T . Then, we can use the FFBS algorithm and draw ht from

N(ht|t+1,V
h
t|t+1), where the smoothing mean and the variance are denoted as

ht|t+1 = E(ht|ht+1,y1:t,β1:T ,α1:T , sh,1:T ,θ),

Vh
t|t+1 = V (ht|ht+1,y1:t,β1:T ,α1:T , sh,1:T ,θ).

(2.28)

4. Sampling sh,t

We can sample sh,t as follows

f(sh|y∗∗,h) =
T∏
t=1

f(sh,t|y∗∗
t ,ht), (2.29)

where each sh,t can be sampled independently for t = 1 : T . We can compute

Pr(sh,t = i|y∗∗
t ,ht) for i = 1 : 7 as

Pr(sh,t = i|y∗∗
t ,ht) =

wiϕ(y
∗∗
t ; 2ht + µh,i − 1.2704,σ2

h,i)∑7
i=1wiϕ(y∗∗

t ; 2ht + µh,i − 1.2704,σ2
h,i)

. (2.30)

5. Sampling Σβ

Sampling the hyperparameter Σβ as

p(Σβ|y1:t,β1:T ,α1:T ,h1:T ,Σα,Σh) ∼ IW
(
Uβ0+

T∑
t=1

(yt−x′
tβt)(yt−x′

tβt)
′, νβ+T

)
.

6. Sampling Σα

Sampling the hyperparameter Σα blockwise S for n = 1 : N − 1

p(S|y1:t,β1:T ,α1:T ,h1:T ,Σβ,Σh) ∼ IW
(
Uα0+

T∑
t=1

(αi,j,t−αi,j,t−1)(αi,j,t−αi,j,t−1)
′, να+T

)
.
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7. Sampling Σh

Sampling the hyperparameter Σh as

p(Σh|y1:t,β1:T ,α1:T ,Σα,Σh) ∼ IW
(
Uh0 +

T∑
t=1

(ht − ht−1)(ht − ht−1)
′, νh + T

)
.

2.6.3 Data appendix

The quarterly time series variables used in the TVP-VAR-SV models are

taken from the FRED database of the Federal Reserve Bank of St Louis spanning

from 1959Q1 to 2018Q1. The columns of Table 2.4, denote the series numbers,

Tcode denotes the data transformations based on McCracken and Ng (2020) and

Gilchrist and Zakraǰsek (2012), series denotes the FRED mnemonic except for

GZS and EBP, and description denotes a brief definition of the series.

A–Spread is defined as Moody’s BAA corporate bond yield minus Moody’s

AAA corporate bond yield, the 10–year B–spread is Moody’s BAA corporate

bond yield minus 10–year Treasury bond yield, the 10–year A–spread is Moody’s

AAA corporate bond yield minus 10–year Treasury bond yield, the GZ–spread

and excess bond premium are the spreads of Gilchrist and Zakraǰsek (2012), and

the Term Spread is defined as the difference between the 10–year Treasury bond

yield and the 3–month Treasury bill as suggested by Stock and Watson (2003).

The time span for the variables, GZ–spread, excess bond premium, and term

spread, starts in 1973:Q2 and ends in 2016:Q3.

The modified Tcode, 1∗, stands for no transformation of the series.
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Time series used in the TVP-VAR-SV models
ID Series Tcode Description
1 PCECC96 5 Real Personal Consumption Expenditures
2 GPDIC1 5 Real Gross Domestic Product
3 GDPC1 5 Real Gross Private Domestic Investment
4 GDPCTPI 6 Gross Domestic Product: Chain-type Price Index
5 AAA 1∗ Moody’s Seasoned AAA Corporate Bond Yield
6 BAA 1∗ Moody’s Seasoned BAA Corporate Bond Yield
7 S&P 500 5 S&P’s Common Stock Price Index: Composite
8 GS10 1∗ 10-Year Treasury Constant Maturity Rate
9 FEDFUNDS 1∗ Effective Federal Funds Rate
10 UNRATE 2 Civilian Unemployment Rate
11 TB3MS 1∗ 3-Month Treasury Bill
12 GZS 1∗ GZ-spread
13 EBP 1∗ Excess bond premium

Table 2.4: The quarterly time series variables used in the TVP-VAR-SV models.
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Chapter 3

Bayesian pairwise composite
likelihood method for large
vector autoregressive models
with time-varying parameters
and stochastic volatility

3.1 Introduction

A vector autoregressive model with time-varying parameters and stochastic

volatility (TVP-VAR-SV model) is a popular member of a family of time series

models in examining the complexity of macroeconomic phenomena. Estimation

of this beautiful model is typically carried out by using a conventional Bayesian

approach based on small datasets in a class of models that have been used in

a range of papers, including Cogley and Sargent (2005), Primiceri (2005), Koop

et al. (2009), Koop and Korobilis (2010), Gaĺı and Gambetti (2015), Prieto et al.

(2016), Gambetti and Musso (2017) and Chan and Eisenstat (2018a). Estimating

models with large number of variables is challenging since they include a large

number of parameters relative to the number of observations. When estimating

high-dimensional complex models with large datasets, the full likelihood function

and the full posterior density may become impractical to compute. Our primary

objective is to resolve the computational complexity of the TVP-VAR-SV models
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using large datasets in a parsimonious way.

We contribute to this field by developing an innovative Bayesian inferential

framework to address the high-dimensional inference problem posed by the TVP-

VAR-SV model, which features parameter changes, many dependent variables,

and substantial computational complexity. Although the full likelihood is analyt-

ically known, its evaluation becomes impractical in high dimensions. To overcome

this challenge, we construct a Pairwise Composite Likelihood (PCL) by combining

pairwise likelihood functions, each based on bivariate densities from a collection

of bivariate TVP-VAR-SV models. These bivariate models are estimated inde-

pendently via Gibbs sampler, enabling parallel computation and scalability.

A central innovation of this chapter is the introduction of the Direct Averag-

ing Method (DAM), which systematically aggregates parameter draws from the

bivariate posteriors into estimates for the joint pairwise composite model. This

is achieved through a structured mapping that accounts for the multiple appear-

ances of each variable across the bivariate models via a matrix-weighting scheme.

The resulting approximation effectively replaces the intractable joint likelihood

with a product of lower-dimensional components, while preserving key dynamic

features of the data. A critical research question addressed by DAM is ensuring

that the aggregation of pairwise contributions yields accurate and interpretable

pairwise composite estimates, while maintaining computational tractability in

high-dimensional settings.

Composite likelihood methods share some theoretical properties with the the-

ory of misspecified models. Thus, a wealth of literature has proposed many

composite likelihoods under various different names.1 All of these can be seen as

special cases of the composite likelihoods defined by Lindsay (1988). He defined

1Those are pseudo likelihood by Besag (1974) for spatial data and Verbeke and Molenberghs
(2005) for longitudinal data, partial likelihood by Cox (1975) for proportional hazards model,
the mth-order likelihood by Azzalini (1983), pairwise likelihood by Cox and Reid (2004), split-
data likelihood by Vandekerkhove (2005), and quasi-likelihood by Hjort and Varin (2008) and
Pakel et al. (2014).
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composite likelihood as a likelihood obtained by the sum of low-dimensional log

likelihood functions. Those component likelihoods are based on either marginal

or conditional density functions.

Bayesian estimation using composite likelihood methods is an area of research

that has been partially explored. Examples include Pauli et al. (2011), Ribatet

et al. (2012), Friel (2012), Roche (2016), Chan et al. (2020) and Canova and

Matthes (2021).

We evaluate the empirical performance of the Bayesian pairwise composite

likelihood method by studying the changing dynamics in a TVP-VAR-SV model

with key U.S. macroeconomic variables. In particular, we study the macroe-

conomic consequences of shocks to the corporate bond spread by adding the

corporate bond spread to a pairwise composite likelihood TVP-VAR-SV (PCL-

TVP-VAR-SV) model that includes N = 50 endogenous variables. The frame-

work provides a practical way to make inference about the joint fifty-variable

PCL-TVP-VAR-SV model combined from a set of
(
N
2

)
= 1225 bivariate mod-

els.2 Time-varying pairwise composite impulse responses show the effects of a

surprise increase in the corporate bond spread on fifty variables, with sensible

and economically meaningful results.

The remainder of the chapter is structured as follows. Section 3.2 presents

a specialized version of the pairwise composite likelihood approach tailored for

time series analysis. Section 3.3 outlines both componentwise and joint mod-

elling strategies within the TVP-VAR-SV framework. Section 3.4 introduces the

proposed Direct Averaging Method for aggregating pairwise estimates into pair-

wise composite parameter structures. Section 3.5 reports empirical findings based

on pairwise composite impulse response analysis. Section 3.6 concludes with a

summary of the main results and their implications. The Appendix provides ad-

ditional algorithmic details, extended empirical results, and a data description.

2The
(
N
k

)
= N !

k!(N−k)! denotes the binomial coefficient for counting the number of k combi-

nations of a set with N distinct cross-sectional variables, where k = 2 and N ≥ k.
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3.2 Bayesian pairwise composite likelihood

We use a class of pairwise composite likelihood approach formed by pairwise

likelihoods constructed from bivariate marginal densities. More precisely, we

adapt a special case of pairwise likelihood methods proposed by Verbeke and

Molenberghs (2005) and Fieuws and Verbeke (2006) in a novel way to be applied

for the first time in the context of TVP-VAR-SV models.

3.2.1 Pairwise composite model

Let yt denote a N × 1 vector of time series variables. For each cross-sectional

variable j = 1 : N , t = 1 : T denotes the time series observations. Suppose the

system consists of multiple state parameters θt = (βt,αt,ht)
′ that are indexed by

time and that β = (β1, . . . ,βT )
′, α = (α1, . . . ,αT )

′, and h = (h1, . . . ,hT )
′ on a

parameter space Θ. A key assumption is that an observation density conditional

on state parameters p(yt|xt;βt,αt,ht) is correctly specified for all t = 1, . . . , T .

The vector xt contains lagged values of yt with k = 1 : p and p defining the order

of the VAR(p) model, and the vectors of parameters, βt, αt, and ht, appear in

the density for every time t. Then, the full likelihood function of this system may

be obtained as

L(β,α,h;y,x) =
T∏
t=1

p(yt|xt;βt,αt,ht),

for the contribution of all variables to the full joint likelihood.

Assuming the joint probability density function p(yt|xt;βt,αt,ht) is correctly

specified, suppose it is a challenge to specify the full N dimensional distribution

at time t but that it is possible to specify all two dimensional distributions.

Let a combination of the N dimensional random vectors taken k at a time, be

any subset of k elements. Assuming k = 2, take 2 elements at a time and

randomly select
(
N
2

)
all ‘pairs of data’ in the cross section. Thus, each pair of

yi and yj is an (Ni × T ) matrix, with Ni = 2 and tth elements yi,t and yj,t. Let



48

yt = {(y1,t, y2,t)′, (y1,t, y3,t)′, . . . , (yN−1,t, yN,t)
′} denote a set of all pairs of variables

to be modelled componentwise, with i = 1, . . . , N − 1 and j = (i + 1), . . . , N .

To simplify notation, we may write yi,t for a pair of variables with i = 1, . . . ,M ,

where M =
(
N
2

)
. For instance, y1,t = (y1,t, y2,t)

′. Then, the pairwise composite

posterior density can be obtained as

p(βc,αc,hc|y) ∝

(
M∏
i=1

T∏
t=1

p(yi,t|βi,t,αi,t,hi,t)

)

×

(
M∏
i=1

p(βi,0)
T∏
t=1

p(βi,t|βi,t−1)

)

×

(
M∏
i=1

p(αi,0|βi,0)
T∏
t=1

p(αi,t|αi,t−1,βi,t)

)

×

(
M∏
i=1

p(hi,0|βi,0,αi,0)
T∏
t=1

p(ht|hi,t−1,βi,t,αi,t)

)
,

(3.1)

where the pairwise composite likelihood constructed from bivariate marginal den-

sities is a function of βc, αc, and hc defined as

Lc(βc,αc,hc;y) =
M∏
i=1

T∏
t=1

p(yi,t;βi,t,αi,t,hi,t), (3.2)

and the composite log likelihood

ℓc(βc,αc,hc;y) =
M∑
i=1

T∑
t=1

log p(yi,t;βi,t,αi,t,hi,t), (3.3)

where we drop the conditioning argument xt for notational simplicity, and βc,t =

(β1,2,t, . . . ,βN−1,N,t)
′, αc,t = (α1,2,t, . . . ,αN−1,N,t)

′, and hc,t = (h1,2,t, . . . ,hN−1,N,t)
′

are the vectors combining all the M pair-specific parameter vectors. Pair-specific

parameters βi,t, αi,t, and hi,t are assumed to be subsets of βc,t, αc,t, and hc,t,

respectively, related to the bivariate distribution of Yi,t = (Yi,t, Yj,t)
′.
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3.2.2 Mapping bivariate parameters to pairwise compos-

ite parameters

One complication of the pairwise composite likelihood method is the uneven

frequency with which parameters appear. Each dependent variable appears in

N−1 bivariate models, and thus certain parameters occur only once, while others

appear N − 1 times.

The stacked parameters βc,t, αc,t, and hc,t obtained from the bivariate models

are not, in general, equal to the pairwise composite parameters βt, αt, and ht.

Elements of βt may correspond to multiple entries in βc,t, depending on how

often they are identified across submodels. Elements of αt, in contrast, are often

uniquely identified from a single submodel. The log-volatilities ht generally ap-

pear multiple times across submodels due to the repeated inclusion of individual

series.

To construct the full set of time-varying pairwise composite parameters, we

define a linear mapping from the bivariate parameter vector to the pairwise com-

posite parameter vector

θt = Ωθc,t, (3.4)

where θc,t collects all parameters from the bivariate models, and Ω is a block-

diagonal matrix that encodes the appropriate selection and averaging scheme to

construct joint pairwise composite parameters.

This weighting scheme differs from traditional Bayesian model averaging,

where weights are probabilistic and sum to one. Instead, the weights here are

deterministic, inspired by the approach of Verbeke and Molenberghs (2005), re-

flecting the combinatorial structure of pairwise decomposition in the PCL-TVP-

VAR-SV model. While our weighting scheme results in weights that sum to one

within each (N−1)-dimensional marginal structure, it fundamentally differs from

probabilistic model averaging. The weights are not derived from posterior model
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probabilities, but rather from the deterministic frequency with which each pa-

rameter appears across the M bivariate models. This distinction is crucial as our

approach does not attempt to average over model uncertainty in the Bayesian

sense, but rather to correct for structural overlap inherent in the pairwise com-

posite likelihood framework.

3.2.3 Theoretical review

Several key questions arise: first, how should we treat asymptotics of the pos-

terior distribution of the pairwise composite parameters? Is a pairwise composite

posterior estimate (the posterior mean) asymptotically approximate a pairwise

composite maximum likelihood estimate? How can we overcome the problem that

there is a one-to-many matches between the joint and the pairwise composite pa-

rameters? And how can we deal with the fact that the parameter space Θ is not

necessarily finite dimensional? To answer these questions, we need to describe the

inferential validity of the pairwise composite likelihood approach from a Bayesian

perspective. Currently, a general theory to the Bayesian inference in time series

models using the pairwise composite posterior distribution is not available, so a

careful treatment of every problem is essential.

The validity of the pairwise composite posterior distribution can be based on

asymptotic results. When performing Bayesian analysis, Central Limit Theorem

(C.L.T.) can justify approximations for large sample sizes. A rather general

behaviour of the posterior distribution can be analysed through the C.L.T. and

the asymptotic theory. We prefer to discuss concepts in a somewhat informal

way and motivate key results.

It was shown by Kent (1982), Lindsay (1988), White (1994) and Verbeke

and Molenberghs (2005) that some general results on consistency and asymptotic

normality of composite likelihood estimate exist for fixed N and T →∞ to obtain
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the limiting distribution

√
T
[
θ̂c − θc

] d−→ N (0,G−1(θc)), (3.5)

where θ̂c is the maximum composite likelihood estimate (MCLE) and G(θc) =

H−1(θc)J(θc)H
′−1(θc) is the Godambe information matrix, Godambe (1960), or

the so-called sandwich information matrix. H(θc) = E[−∇uc(θc,y)] is defined as

sensitivity matrix and J(θc) = var[uc(θc,y)] is defined as variability matrix with

uc(θc,y) is the pairwise composite score function. For a detailed discussion, see

Varin (2008) and Varin et al. (2011). A natural question is whether a pairwise

composite posterior summary is asymptotically close to above frequentist sum-

mary. Under appropriate regularity conditions, the C.L.T. of probability theory

can be described in a Bayesian language to show the pairwise composite posterior

distribution
√
T
[
E(θc|y)− θc

] d−→ N (0,G−1(θc)), (3.6)

where E(θc|y) is the mean of the pairwise composite posterior. This property

shows that as the sample size increases, the Bayesian pairwise composite posterior

estimate is approximately the same as the MCLE. Wakefield (2013) adds that if

model misspecification is present, its effect on both inferential tools is the same.

However, this strong statement should be used with caution. There is an effect of

the prior in these results; the prior may not vanish, for a discussion, see DasGupta

(2008), Chapter 20. As Wakefield (2013) notes, “While sandwich estimation can

be used to correct the variance estimate for the maximum likelihood estimate,

there is no such simple solution for the posterior mean, or other Bayesian sum-

maries.” Previous attempts at Bayesian composite likelihood include using a

constant weight so as to best adjust the composite posterior variance matrix to

the asymptotic variance matrix of the MCLE Pauli et al. (2011), or performing

an adjustment method Ribatet et al. (2012). Both of these methods share the
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fact that they are applied within a Markov chain Mote Carlo (MCMC) algo-

rithm. Canova and Matthes (2021) follow the approach developed by Ribatet

et al. (2012) and conclude that it produces estimates with good finite sample

properties.

Note, however, that in those examples of the composite likelihood method,

there is a one-to-one parameterisation in the different parts of the composite

likelihood function, whereas in our example the set of parameters in θc is con-

sidered to be a combination of pair-specific parameters. Another drawback of

the approaches in Pauli et al. (2011) and Ribatet et al. (2012) is that they do

not assume the weights of different components of the composite likelihood func-

tion sum to one which contrasts with the Bayesian notion. To overcome the

problem that there is a one-to-many matches between the joint parameters θ

and the pairwise composite parameters θc, we follow Verbeke and Molenberghs

(2005), chapter 25 and obtain a single estimate of θ by averaging all the matching

pair-specific parameters in θc. Then, the asymptotic distribution can be written

as
√
T
[
E(θ|y)− θ

] d−→ N (0,ΩG−1(θc)Ω
′). (3.7)

Hence, under very mild regularity conditions, we assume that the basic asymp-

totic theory of an approximate pairwise composite posterior distribution may hold

with an asymptotic multivariate Normal distribution for parameters using a gen-

eral framework of the composite likelihood (under the term pseudo likelihood)

theory presented in Verbeke and Molenberghs (2005), Chapters 9. An additional

condition, in the context of time series, is that the pairwise composite posterior

mean converges to θ at a usual rate, assuming the data are stationary time series

as described by Cox and Reid (2004).

In this setup, we deal with a very large number of unknown parameters. To

approach this problem, we follows DasGupta (2008), Chapter 34, and assume

that a parameter space Θ in finite-dimension is available and the dimension
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depends on T . We may let Θ = Θt →∞ as T →∞, where T is the time series

dimension. Our interest is to answer the question of how to achieve consistency

and asymptotic normality of the pairwise composite posterior when the number

of parameters goes to infinity with the number of observations. One theoretical

question left for future study is that in an infinite dimensional parameter space,

we need to know whether the pairwise composite posterior converges near the

truth. To be precise, we must ensure that the pairwise composite posterior mean

is consistent, that is, it converges to the true value of the parameters when the

number of parameters increases with the number of observations. We also need to

establish asymptotic properties of the approximate pairwise composite posterior,

that is, the approximate pairwise composite posterior distribution, under some

appropriate regularity conditions for time series models, converges asymptotically

to the Normal distribution.

It is important to clarify the role of the pairwise composite likelihood ap-

proach in the proposed methodology. The estimates obtained from individual

bivariate models are not assumed to recover the parameters of the unrestricted

joint model. Rather, the composite likelihood approach uses these marginal con-

tributions as building blocks in a pseudo-likelihood that approximates the full

likelihood. Under the assumption that the full joint model is correctly specified,

each bivariate submodel corresponds to a valid marginal distribution, and the

resulting composite likelihood estimator targets the true joint parameter vector

(Lindsay (1988) and Varin (2008)). When this assumption does not hold, the es-

timator converges to a pseudo-true value that best approximates the joint model

under the composite likelihood criterion. We acknowledge that this procedure

does not yield the unrestricted joint density or an unrestricted VAR specification

but provides a practical and theoretically grounded approximation that remains

computationally feasible in high-dimensional settings.
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3.3 Bivariate and composite models

In this section we outline the bivariate TVP-VAR-SV models and the pairwise

composite PCL-TVP-VAR-SV model. We fit all bivariate models containing all

the M pair-specific parameters to construct the joint PCL-TVP-VAR-SV model.

3.3.1 The bivariate models

For each component model i = 1, . . . ,M , the ith bivariate VAR process can

be written in a form of measurement equation of a state space model as follows

yi,t = xi,tβi,t + ϵi,t, (3.8)

and βi,t is the ith component state evolution equation following a random walk

process as

βi,t = βi,t−1 + ηβ
i,t, (3.9)

where yi,t is an Ni × 1 vector, xi,t = INi
⊗ (1,y′

i,t−1, . . . ,y
′
i,t−p) is an Ni × LiNi

matrix, ϵi,t is an Ni × 1 vector of reduced form disturbances assumed to be

a zero-mean process with time-varying covariance matrix ϵi,t ∼ N (0,Σi,t) and

ηβ
i,t ∼ N (0,Σi,β). βi,t = vec([Bi,0,t, . . . ,Bi,p,t]

′) is an LiNi × 1 vector of pair-

specific parameters, with the model order p is being preselected for k = 0, . . . , p

and Li = (1 + Nip). Let’s define Σi,t as a positive definite symmetric Ni × Ni

matrix, which has the following representation

Σi,t = Ai,tDi,tA
′
i,t. (3.10)

To establish a unique solution to the system in Equation (3.10), we further

assumeAi,t is a lower triangular matrix with elements αji,t below the diagonal and

1s along the principal diagonal, and Di,t is a diagonal matrix. In this framework,

volatility is captured by the time-varying standard deviations of the reduced-form
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disturbances, governed by the square roots of the diagonal elements of Di,t, which

result from the time variation in the transformation applied to the structural

shocks. Let σi,t denote the vector of standard deviations, i.e., the square roots of

the diagonal elements of Di,t. Hence, the elements of the time-varying covariance

matrix are specified as random walks

αi,t = αi,t−1 + ηα
i,t, and

hi,t = hi,t−1 + ηh
i,t,

(3.11)

where hi,t = logσi,t, E(ηα
i,t) = 0 and E(ηh

i,t) = 0, E(ηα
i,tη

′α
i,t) = Σi,α and

E(ηh
i,tη

′h
i,t) = Σi,h, and ηα

i,t ∼ N (0,Σi,α) and ηh
i,t ∼ N (0,Σi,h).

3.3.2 The pairwise composite model

Let’s define the pairwise composite parameters as θt = (βt,αt,ht,Σβ,Σα,Σh),

and the stacked bivariate parameters as θc,t =
(
βc,t,αc,t,hc,t,Σc,β,Σc,α,Σc,h

)
.

The pairwise composite model of interest, the PCL-TVP-VAR-SV, is given

by

yt = xtβt + ϵt, (3.12)

where ϵt ∼ N (0,Σt), and the pairwise composite time-varying covariance matrix

is decomposed as

Σt = AtDt (At)
′ . (3.13)

The parameter vector θt consists of time-varying VAR coefficients βt, the

nonzero elements of the lower-triangular contemporaneous matrix At, and log-

volatilities ht. These quantities are not estimated jointly but instead are re-

constructed from M bivariate models using the pairwise composite likelihood

method. This approach creates the stacked parameter vectors βc,t,αc,t,hc,t. To

reconcile the stacked bivariate parameters into a coherent set of pairwise com-

posite parameters, we use the linear mapping as described in Section 3.2.2.
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3.3.3 Identification and pairwise composite impulse re-

sponses

We identify the pairwise composite (joint) structural shocks ut from the pair-

wise composite reduced form disturbances ϵt by assuming a linear transformation

ϵt ≡ Ptut, where E(utu
′
t) = IN and E(utu

′
t−k) = 0 for all t and k = 1, 2, 3, . . . .

Let’s define Σt as a positive definite symmetric N × N matrix, which has the

representation of Equation (3.13). To establish a solution to the system in Equa-

tion (3.13), we define Pt as an N ×N lower triangular matrix with positive main

diagonal elements such that PtP
′
t = Σt, where Pt is the Cholesky decomposition

of Σt. Then, Pt = AtD
1/2
t .

We may carry out dynamic impulse response analysis based on the pairwise

composite likelihood method. A central question in the analysis of pairwise com-

posite structural impulse responses is that how much sensible the results are

when compared to the results from a conventional estimation approach? We

try to measure the expected dynamic responses of future realisations of yt+h for

h = 1, . . . , H to a pairwise composite structural shock at time t. Then, we may

write the joint model in Equation (3.12) in companion form following Kilian and

Lütkepohl (2017), and Gaĺı and Gambetti (2015) as

y∗
t = µ∗

t +B∗
ty

∗
t−1 + ϵ∗t ,

where y∗
t ≡ (y′

t, . . . ,y
′
t−p+1)

′, µ∗
t ≡ (B′

0,t, 0, . . . , 0)
′, ϵ∗t ≡ (ϵ′t, 0, . . . , 0)

′, and the

companion matrix

B∗
t ≡

 Bt

IN(p−1) 0N(p−1),N

 .

Then, a dynamic response to a time t shock is denoted as

∂yt+h

∂ϵ′t
=
[
B∗h

t

]
N,N
≡ Zt,h,
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for h = 1, . . . , H and [B∗h
t ]N,N denotes the first N ×N matrix and Zt,0 ≡ I. Our

interest is in the dynamic responses of each element in yt to a financial shock

(impulse response) in uf
t at time t,

∂yt+h

∂uf
t

=
∂yt+h

∂ϵ′t

∂ϵt

∂uf
t

≡ Zt,hP
(40)
t ≡ Ct,h,

for h = 1, . . . , H and P
(40)
t represents the fortieth column of Pt assuming the

financial variable is ordered on the fortieth column of yt.

Normalisation of the pairwise composite impulse responses

Since the stochastic volatility introduces time variation in the magnitude of

the financial shocks, the raw impulse responses Ch,t reflect not only the trans-

mission of shocks but also the time-varying standard deviation of the identified

shock. To ensure comparability over time, we apply a normalisation step, given

by

Cnorm
h,t =

Ch,t

C
(j)
0,t

,

where C
(j)
0,t is the scalar contemporaneous impact of the identified shock on the

system (i.e., the first element in the impulse response function, which reflects the

direct effect of the shock at time t). This is not an element-wise division in the

typical sense (i.e., not a Hadamard element-wise division where each element of

a matrix is divided by a corresponding element in another matrix). Instead, it is

a column-wise normalisation where each element of the impulse response vector

is divided by a single scalar value.

Following Gaĺı and Gambetti (2015), we normalise the impulse responses by

dividing them by the contemporaneous effect of the identified financial shock.

This ensures that the responses are expressed in terms of a unit shock rather

than a time-varying standard deviation shock. While this normalisation removes

the direct influence of stochastic volatility on the scale of the impulse responses,
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the stochastic volatility component still influences the dynamics of the model

through time-varying coefficients and the covariance matrix. This normalisation

step ensures that the impulse responses are expressed consistently, making it

easier to visually interpret the dynamic effects over time, especially in the 3D

graphs.

3.3.4 Priors and initial values used in the empirical study

To complete the model specifications, consider independent priors over i =

1, . . . ,M component bivariate state parameters and hyperparameters βi,0, αi,0,

hi,0, Σi,β, Σi,α and Σi,h. To calibrate the priors for the state parameters, we

estimate M time invariant VAR models on an initial training sample of size

Ti,0 = 40. The priors for the initial component states βi,0, αi,0 and hi,0 are

Normal with parameters (µi,0,Σi,0) and are defined as

βi,0 ∼ N (β̂i,0, τβ × V̂βi,0
),

αi,0 ∼ N (α̂i,0, τα × V̂αi,0
),

hi,0 ∼ N (ĥi,0, τh × V̂hi,0
),

where τβ, τα, and τh are scale factors. Furthermore, we assume that the prior

hyperparameters of the component covariance matrices for the state equations

follow inverse Wishart with parameters (Ui,0, νi) for Σβi,0
, Σαi,0

and Σhi,0

Σβi,0
∼ IWNi(Nip+1)(κi,β × (Ni(Nip+ 1) + 1)× V̂βi,0

, (Ni(Nip+ 1) + 1)),

Σαi,0
∼ IWNi(Ni−1)/2(κi,α × (ni + 1)× V̂αi,0

, (ni + 1)),

Σhi,0
∼ IWNi

(κi,h × (Ni + 1)× V̂hi,0
, (Ni + 1)),

where νi is the degrees of freedom, κ2
i is the scale factor, ni+1 defines the number

of elements on each row of the lower triangular elements of Ai,t for ni = 1 : Ni−1.

For the empirical exercise, we set the scale factors as τβ = Ni+1, τα = Ni+1
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and τh = 1, and set the scale factors for κi,β = 1.0× 10−3, κi,α = 1.0× 10−2 and

κi,h = 1.0× 10−2.

3.4 Direct Averaging Method

The model is estimated using a two-step simulation approach based on Markov

chain Monte Carlo (MCMC) methods: the Gibbs sampler and a second-stage pro-

cedure we refer to as the Direct Averaging Method. The rationale for this two-step

structure is that the first step, which operates on a collection of bivariate sub-

models, does not directly yield draws from the joint pairwise composite posterior,

which is our target density. Instead, it provides draws from M bivariate poste-

rior densities. The second step combines these draws into approximations of the

target posterior density, and can be interpreted as a computationally convenient

approximation to a Metropolis-Hastings (MH) algorithm in which all proposals

are implicitly accepted with probability one.

In the first step, we estimate each bivariate TVP-VAR-SV model using the

efficient MCMC method of Carter and Kohn (1994), implemented via forward

filtering and backward sampling (FFBS) as described in Frühwirth-Schnatter

(1994), and applied to this context in Primiceri (2005). Specifically, we run a

seven-block Gibbs sampler for each of the M bivariate submodels in parallel, pro-

ducing R posterior draws for each set of bivariate parameters θi,t for i = 1, . . . ,M

submodels.

The second step aggregates the draws from all submodels to approximate

moments and other summaries of the pairwise composite parameter vector θt.

The idea is to compute each element of θt by averaging over the submodel draws

in which it appears. In practice, for a parameter like β11,t, which only appears

in submodels involving the first variable, we average only over those draws that

include it yielding R× (N − 1) draws instead of the full R×M .



60

This aggregation can be interpreted as an approximation to a MH algorithm,

where the submodel posteriors collectively form a proposal distribution for the

joint parameter space. Crucially, in this interpretation, the proposed values are

implicitly accepted with probability one. That is, instead of explicitly computing

MH acceptance ratios, we treat the draws as if they were accepted and average

them to estimate posterior quantities. This simplification is valid under the as-

sumption that the bivariate submodels provide consistent marginal information

about the composite parameters, and that parameter sharing across submodels

is appropriately handled by the averaging scheme.

We refer to this approach as the DAM, following similar motivations in Ver-

beke and Molenberghs (2005) and Fieuws and Verbeke (2006). While it does

not involve a formal MH acceptance step, it retains the spirit of MH by com-

bining local draws into pairwise composite posterior approximations through a

deterministic transformation.

Formally, we organize the pairwise composite parameters into three compo-

nents: the time-varying VAR coefficient states βt, the off-diagonal elements of

the Cholesky factor αt, and the log-volatilities ht. The mapping matrix is corre-

spondingly defined as

Ω =


Ωβ 0 0

0 Ωα 0

0 0 Ωh

 . (3.14)

The mapping matrix Ω serves as a structured linear operator that transforms

the vector of collected bivariate parameters into the pairwise composite parame-

ter vector of the joint model. Each block of Ω is responsible for one parameter

group: Ωβ maps the bivariate coefficient states to the pairwise composite coef-

ficient states, Ωα constructs the pairwise composite covariance states, and Ωh

aggregates bivariate volatility states into the pairwise composite volatility states.

The specific structure of each block reflects the frequency and position of variables
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across bivariate models and determines how pair-specific estimates are combined

under the DAM. Detailed descriptions for building these blocks are provided in

subsequent section

3.4.1 Averaging coefficient states

Let’s define the set of all unique bivariate combinations of the N variables as

P =
{
(i, j) ∈ N2 : 1 ≤ i < j ≤ N

}
, with number of models M.

For each pair (i, j) ∈ P , we estimate a bivariate VAR(p) model that includes

an intercept in each equation. In the bivariate system, each equation includes Nip

lag coefficients and one intercept, giving Nip + 1 total parameters per equation.

Therefore, the full coefficient vector for the bivariate model has dimension K =

Ni(Nip+ 1).

We denote the coefficient vector from the bivariate model for pair (i, j) at time

t as β
(i,j)
t ∈ RK , and stack these vectors for all pairs into a vector βc,t ∈ RKc ,

where Kc = KM .

The objective is to map these bivariate estimates into a single, pairwise com-

posite parameter vector representing approximately the pairwise composite N -

dimensional VAR(p) system, which includes all N variables and their Np lagged

values along with an intercept for each equation. The total number of coeffi-

cients in the full system is K ′ = N(Np+ 1). Let’s define the pairwise composite

coefficient vector as βt ∈ RK′
.

We construct a sparse selection-and-averaging matrix Ωβ ∈ RK′×Kc such that

βt = Ωβ · βc,t,

where βt contains both overlapping and uniquely identified parameters of the

composite system. Since the pairwise decomposition is designed so that each pa-
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rameter may appear in up to N −1 submodels, Ωβ contains entries such as 1
(N−1)

or 1 per row, and zeros elsewhere, depending on the frequency of occurrence.

This aggregation ensures internal consistency and avoids duplication across over-

lapping parameter estimates.

The mapping structure Ωβ is fixed and deterministic, depending solely on the

inclusion pattern of each coefficient across bivariate models. It enforces an aver-

aging rule that ensures the pairwise composite model parameters are identified

and stable across time, based on the disaggregated bivariate estimates.

3.4.2 Averaging covariance states

In time-varying covariance decompositions, a lower-triangular Cholesky factor

At ∈ RN×N is used to capture contemporaneous dependencies. The L = N(N−1)
2

time-varying off-diagonal elements collected in the vector αt ∈ RL. Each element

α
(i,j)
t (for i > j) is estimated from the unique bivariate model involving variables

(i, j), in the ordering implied by the Cholesky decomposition. Since each of these

parameters appears only once across bivariate decompositions, no averaging is

necessary. We define the composite vector αc,t, which collects the relevant off-

diagonal coefficients from all bivariate models in accordance with the recursive

ordering. The mapping matrix Ωα ∈ RL×L is simply the identity

αt = Ωα ·αc,t, with Ωα = IL,

where αt ∈ RL contains the uniquely identified parameters of the full system.

Since each structural parameter is estimated from exactly one submodel, Ωα

typically contains a single ‘1’ per row and zeros elsewhere — acting effectively as

a selector matrix. This implies that the vector αt is a direct extraction from the

bivariate estimates, requiring no transformation beyond consistent indexing.
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3.4.3 Averaging volatility states

We now describe how the pairwise composite vector of log-volatilities ht ∈

RN is constructed from bivariate estimates. Suppose we have N variables and

consider all M bivariate models indexed by pairs (i, j) ∈ P , where each model

collects the log-volatilities from each bivariate covariance matrix into a vector

hc,t ∈ RNiM .

We define a weighting matrix Ωh ∈ RN×NiM , where each row corresponds

to a variable, and collects its associated log-volatility estimates across bivariate

models. The entries of Ωh are binary weights scaled by 1
N−1

, since each log-

volatility appears in exactly N − 1 bivariate models

ht = Ωh · hc,t,

where ht contains the overlapping log-volatility parameters of the full system.

The matrix Ωh typically contains entries like 1
(N−1)

per row and zeros elsewhere,

depending on the number of times each log-volatility is observed.

The structure ofΩh is deterministic and depends only on the inclusion pattern

of variables in the bivariate subsets. This operation performs a simple average

of the available log-volatility estimates from the bivariate models to produce a

coherent pairwise composite vector of time-varying log-volatilities.

The matrices Ωβ, Ωα, and Ωh are all highly sparse. Most of their entries are

zero since each joint parameter typically appears in only a few bivariate models.

This sparsity is a key computational advantage. In practice, Ω can be stored

and applied using sparse matrix formats, yielding significant gains in memory

efficiency and computational speed, particularly for large systems (i.e., large N).

In summary, the DAM relies on three core mapping procedures that transform

bivariate estimates into pairwise composite parameters. Specifically, these map-

pings construct: (i) the pairwise composite coefficient vector βt from all bivariate
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coefficient estimates, (ii) the pairwise composite vector of Cholesky parameters αt

from the corresponding off-diagonal elements of the lower triangular factor, and

(iii) the pairwise composite log-volatility vector ht from bivariate log-volatility

estimates.

For completeness and reproducibility, detailed pseudocode for these three al-

gorithms is provided in the Appendix: Algorithm 1 maps bivariate VAR coeffi-

cients to the pairwise composite VAR coefficient vector, Algorithm 2 maps bi-

variate Cholesky parameters to the pairwise composite covariance structure, and

Algorithm 3 maps pairwise log-volatilities to the pairwise composite log-volatility

vector.

3.4.4 Advantages and considerations of the Direct Aver-

aging Method

The DAM offers several key advantages that make it an attractive inferential

framework. First and foremost, it is simple and computationally efficient. Unlike

a full joint estimation method, which requires intensive sampling and optimiza-

tion, direct averaging bypasses these computational burdens by leveraging exist-

ing posterior draws from bivariate models. This makes it significantly faster and

easier to implement, particularly in high-dimensional models where full Bayesian

inference is often infeasible.

Another major advantage is that the method provides a quick and direct point

estimate for each parameter in the full joint model. Instead of requiring additional

iterations, accept-reject steps, or complex sampling algorithms, this approach

allows researchers to obtain a single, well-defined estimate for each parameter by

averaging across bivariate posterior draws. This simplicity ensures transparency

and interpretability while still capturing the key statistical relationships present

in the data.

Despite these advantages, there are certain considerations to acknowledge
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when using the DAM. One key consideration when using the DAM is the lack

of formal uncertainty quantification. Since this approach aggregates independent

bivariate posterior draws, it does not explicitly estimate the full joint posterior

uncertainty. However, this limitation can be effectively addressed by computing

the impulse responses of the PCL-TVP-VAR-SV model using the joint pairwise

composite parameters obtained from the DAM and quantifying the uncertainty

by Monte Carlo simulation method.

To assess the robustness of these estimates, we employ Monte Carlo simulation

to compute joint pairwise composite impulse responses, which allows us to capture

the underlying uncertainty in the dynamic relationships between variables. By

repeatedly simulating the model’s response to shocks using parameter draws from

the averaged estimates, we can construct confidence bands around the impulse

responses, providing an intuitive measure of the uncertainty in the full composite

model. This approach ensures that the method remains statistically rigorous

while benefiting from its computational efficiency.

Additionally, in highly nonlinear settings, where the joint posterior may ex-

hibit complex dependencies, averaging across bivariate models without further

updates could introduce potential model misspecification. However, in many

practical applications—especially in macroeconomic and financial modelling, this

approach remains a computationally efficient and well, supported alternative to

full joint estimation. The method is grounded in established composite likeli-

hood theory (Verbeke and Molenberghs (2005) and Fieuws and Verbeke (2006)),

ensuring that the resulting estimates retain desirable statistical properties.

Overall, the DAM strikes a balance between efficiency and accuracy. It pro-

vides a fast, transparent, and computationally feasible alternative to full MH al-

gorithm, making it particularly useful for high-dimensional models. While there

are certain trade-offs in terms of uncertainty quantification and introducing model

misspecification, empirical results demonstrate that it performs well in practice.
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Given these strengths, this approach represents a pragmatic and well-justified

alternative for parameter estimation in complex models, such as TVP-VAR-SV

models.

3.5 Empirical results

In this section, we study the macroeconomic consequences of a shock to the

corporate bond spread using the PCL-TVP-VAR-SV model that includes 50

macroeconomic and financial variables. Our identification strategy is inspired

by that proposed by Gilchrist and Zakraǰsek (2012). As extensions to their work,

we consider including a larger number of variables to address the omitted vari-

able problem of low-dimensional VAR models and allow time-varying parameters

and stochastic volatility in our novel setup. The implied identification assump-

tion allows for financial conditions to react contemporaneously to the corporate

bond spread shock while the economic activities response within a period. This is

an example of a recursive identification scheme that implies a recursive ordering

of variables. Furthermore, we split the variables into two groups: slow moving

variables, i.e. macroeconomic series, and fast moving variables, i.e. financial se-

ries. We order the variables in a similar fashion as described by Bernanke et al.

(2005), Bańbura et al. (2010), Gilchrist and Zakraǰsek (2012) and Stock and

Watson (2016). For instance, a shock to the corporate bond spread is assumed

to affect real economic activity within a period, while the financial variables can

react contemporaneously to such a financial disturbance.

Our data comprises a broad set of quarterly U.S. macroeconomic and financial

variables spanning from 1959:Q1 to 2018:Q2. The variables in the slow moving

group can be classified into six broad categories: National Income and Product

Accounts (NIPA), prices, industrial production, sales, labour market, earnings

and productivity, and financial indicators representing fast moving variables can
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be classified into three broad categories: interest rates, money and credit, and

exchange rates.3

We work with a PCL-TVP-VAR-SV with 50 variables and transform the ma-

jority of variables to stationarity using the benchmark transformation code of

McCracken and Ng (2020) and transform the corporate bond spread, the effec-

tive Federal funds rate and 10-Year Treasury Constant Maturity Rate as rec-

ommended by Gilchrist and Zakraǰsek (2012). The Data appendix in Section

7.5 provides a complete listing and definition of the variables. The results are

based on taking 10,000 draws from each component bivariate posterior. 10% of

10,000 draws from each component bivariate posterior are burn-in draws which

are dropped from the analysis. The time-varying pairwise composite impulse

responses are calculated using the compositional form of the joint model.

3.5.1 Time-varying pairwise composite impulse responses

Figure 3.1 through Figure 3.5 depict the pairwise composite impulse responses

of all the variables in our specification to the financial shock, defined as worsening

business credit conditions (identified via the widening of corporate bond spreads).

An unanticipated increase in the corporate bond spread causes a decline in real

economic activity, with consumption, investment, output, exports, imports, and

business sector output all decline sharply as shown in Figure 3.1. On the other

hand, government consumption and investment rises slightly on impact but then

falls after a quarter. Real disposable personal income has a modest declining

pattern after the initial impact of the shock.

Figure 3.2 shows the impact of the shock on the variables under the classifica-

tion of industrial production. The industrial production falls slightly on impact,

but then bottoms out within the first 10 quarters. Similarly, the effects of the

3Board of Governors of the Federal Reserve System defines the industrial production index
as real output (percentage of real output in a base year 2012). We include two variables from
the sales category, i.e. real manufacturing and trade industries sales and real retail and food
services sales, deflated by core personal consumption expenditures.
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shock on the variables under the classification of the labour market is provided

in Figure 3.2 through Figure 3.4. The impact of the shock to the corporate bond

spread on the unemployment rate is stronger starting from mid-2009.

In response to these adverse macroeconomic effects of the financial shock, the

Federal Reserve eased monetary policy as shown in Figure 3.5. While the Federal

funds rate is prevented from declining immediately, by assumption, it does fall

in the subsequent quarters. There is ambiguity about the response of S&P500

stock market returns, which generally increase on impact. By contrast, starting

in the early 2000s, the initial rise is rapidly reversed with stock market returns

declining quickly below their initial value. 3-month and 6-month Treasury bill

rates fall on impact and in years following the financial shock. Note that as

interest rates declines, the demand for monetary aggregate M1 increases, while

M2 show a modest rise.

Some of these responses, in particular those involving real economic activity

and interest rates, are in line with those of Gilchrist and Zakraǰsek (2012), who

have assumed that macroeconomic variables could respond on impact to corpo-

rate bond spread shocks within a period, and financial variables could respond

contemporaneously using constant parameter VAR model involving a small num-

ber of variables. However, although the associated slowdown in the economy

lead to a decline in inflation until late 1980s, this pattern discontinues after that

period with inflation rising toward zero, i.e. the period including the Great Re-

cession. This contrasts the results of Gilchrist and Zakraǰsek (2012). They make

a different finding that the economic slowdown implies a continuing disinflation

over time. We also compare our results to the findings of Boivin et al. (2020)

who have estimated a large factor-augmented VAR model using U.S. data. They

have found that price indices show modest changes on impact to a credit spread

shock and a gradual decline afterwards. The findings of Prieto et al. (2016),

on the other hand, tend to contrast the main results of Gilchrist and Zakraǰsek
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(2012) and Boivin et al. (2020), however, they make a similar finding in line to

the results in this study.

To benchmark the performance of the PCL-TVP-VAR-SV model, a com-

parative analysis is conducted using a conventional six-variable TVP-VAR-SV

model estimated on a subset of key macroeconomic and financial indicators: GDP

growth, inflation, unemployment rate, corporate bond spread, stock market re-

turns, and the Federal funds rate. This specification adopts a recursive identi-

fication scheme, under which shocks to the corporate bond spread are allowed

to contemporaneously affect real economic activity and inflation, while financial

variables can respond within the same period. The comparison, detailed in the

Appendix, highlights the added value of the high-dimensional pairwise composite

likelihood framework in capturing richer dynamics without sacrificing computa-

tional feasibility.
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Figure 3.1: The figure depicts the pairwise composite impulse responses of Con-
sumption, Investment, Output, Prices, Government Consumption Expenditures
and Investment, Exports, Imports, Disposable Personal Income, Nonfarm Busi-
ness Sector Output, and Business Sector Output to the identified shock of the Cor-
porate Bond Spread estimated from a fifty–variable PCL-TVP-VAR-SV model.
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Figure 3.2: The figure depicts the pairwise composite impulse responses of Indus-
trial Production Index, Industrial Production Durable Materials, Industrial Pro-
duction Nondurable Materials, Industrial Production Durable Consumer Goods,
Industrial Production Nondurable Consumer Goods, Capacity Utilization, All
Employees of Total Nonfarm, All Employees of Total Private Industries, All Em-
ployees in Manufacturing, and All Employees in Education and Health Services to
the identified shock of the Corporate Bond Spread estimated from a fifty–variable
PCL-TVP-VAR-SV model.
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Figure 3.3: The figure depicts the pairwise composite impulse responses of All
Employees in Financial Activities, All Employees in Information Services, Civilian
Employment, Civilian Labor Force Participation Rate, Civilian Unemployment
Rate, Unemployment Rate less than 27 weeks, Unemployment Rate for more than
27 weeks, Civilians Unemployed Less Than 5 Week, Civilians Unemployed for 5
to 14 Weeks, and Business Sector for Hours of All Persons to the identified shock
of the Corporate Bond Spread estimated from a fifty–variable PCL-TVP-VAR-
SV model.



73

Figure 3.4: The figure depicts the pairwise composite impulse responses of Man-
ufacturing Sector for Hours of All Persons, Manufacturing and Trade Industries
Sales, Retail and Food Services Sales, Personal Consumption Expenditures, Con-
sumer Price Index for All Urban Consumers, Producer Price Index for All Com-
modities, Compensation Per Hour in Business Sector, Output Per Hour in Non-
farm Business Sector, Output Per Hour in Business Sector, and Corporate Bond
Spread to the identified shock of the Corporate Bond Spread estimated from a
fifty–variable PCL-TVP-VAR-SV model.
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Figure 3.5: The figure depicts the pairwise composite impulse responses of S&P
Returns, Ten-Year Treasury Yield, Federal Funds Rate, 3-Month Treasury Bill, 6-
Month Treasury Bill, 1-Year Treasury Constant Maturity Rate, M1 Money Stock,
M2 Money Stock, U.S. / U.K. Foreign Exchange Rate, and Canada / U.S. Foreign
Exchange Rate to the identified shock of the Corporate Bond Spread estimated
from a fifty–variable PCL-TVP-VAR-SV model.
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3.5.2 Comparing impulse responses of PCL-TVP-VAR-

SV and TVP-VAR-SV models

We compare the results from a PCL-TVP-VAR-SV model to those obtained

from a simple approach, i.e. a TVP-VAR-SV model with a small number of vari-

ables. Hence, we consider a six-variable TVP-VAR-SV model. The six variables

in this specification are, GDP growth, inflation, unemployment rate, corporate

bond spread, stock market returns, and the Federal funds rate. The identifying

assumption implied by this recursive ordering is that shocks to the corporate bond

spread affect economic activity, inflation and unemployment rate within a period,

while the stock returns and the Federal funds rate can react contemporaneously

to such a financial disturbance.

Figure 3.6 and Figure 3.8 (reported in the Appendix) display the impulse

responses of GDP growth, inflation, unemployment rate, corporate bond spread,

S&P stock returns, and Federal funds rate to the identified shock to the corporate

bond spread estimated from a six–variable PCL-TVP-VAR-SV and TVP-VAR-

SV models, respectively, for a representative time 2010Q4. The date 2010:Q4

is chosen to represent a period after the Great Recession. In these figures the

posterior median is shown by the red line and the blue lines are the 16th and 84th

percentiles. A shock to the corporate bond spread causes a decline in the GDP

growth over the next quarter. The effect of the shock leads to a fall in inflation

in the short run and a rise afterwards. Unemployment rate rises on impact. The

response pattern for the stock returns is also seen to rise in the short run, but

ends up declining towards zero.

Figure 3.7 and Figure 3.9 depict the dynamic impulse responses of all six

variables to the identified shock of the corporate bond spread estimated from a

six–variable PCL-TVP-VAR-SV and TVP-VAR-SV models, respectively. Obvi-

ously, in both figures, the initial decline reverses with the inflation rising over

time. Similarly, the effect of a shock to the corporate bond spread on the stock
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returns is ambiguous; the initial rise is reversed with a decline for the period

covering the Great Recession.

In summary, the PCL-TVP-VAR-SV model delivers sensible and economically

meaningful results comparable to those obtained from the standard TVP-VAR-

SV model. Nevertheless, some differences are detectable. For example, the initial

impact of the shock on inflation shows almost no change in Figure 3.9. On the

other hand, the initial response of inflation displays a sharp decline in Figure

3.7. Furthermore, there are some differences in the magnitude values of the

percentage points of impulse responses delivered from each inferential tool. We

leave investigating those differences to future.

3.6 Summary

This chapter develops a practical and computationally tractable estimation

strategy based on the Direct Averaging Method, which leverages bivariate models

estimated via Gibbs sampler. The method provides a scalable solution for the

high-dimensional TVP-VAR-SV models, avoiding the computational burden of

full multivariate estimation by aggregating partial posteriors.

We evaluate the empirical performance of the Bayesian pairwise composite

likelihood method using quarterly U.S. macroeconomic and financial data. The

estimated PCL-TVP-VAR-SV model reveals that an unexpected increase in the

corporate bond spread induces a notable slowdown in real economic activity and

a decline in interest rates. However, the model also generates puzzling responses

in inflation and stock market returns, suggesting areas for further refinement.

The pairwise composite approach is especially appealing in settings where

full multivariate estimation is infeasible. A sufficient condition for its use is that

estimation of each bivariate TVP-VAR-SV model is computationally manageable.

Nonetheless, implementing the FFBS algorithm across M models in parallel for
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N > 50 presents memory bottlenecks, due to the need to store the full posterior

draws of βc,t, αc,t and hc,t over all models, time periods, and MCMC iterations.

Future work should explore strategies to reduce memory usage.

Although the impulse responses we obtain are economically plausible, ques-

tions remain regarding their magnitudes. Understanding the factors driving these

results, and whether they reflect model limitations or data properties, is a key

priority for further analysis.

We interpret DAM as a computational approximation to a MH algorithm,

where parameter draws from each bivariate model are implicitly accepted with

probability one. While this perspective is intuitively appealing, a formal deriva-

tion of the second-step MH procedure, including a proper acceptance ratio, re-

mains open. Future research will aim to establish these conditions.

3.7 Appendix

3.7.1 First Step: The FFBS algorithm

Prior hyperparameters and initial values

We first proceed by obtaining the ordinary least squares (OLS) estimates of

the prior hyperparameter values of βi,0, αi,0, and hi,0 by estimating the model

yi = (INi
⊗ Xi)βi + ϵi based on an initial training sample of 40 observations,

where we define yi as an NiT × 1 vector, Xi = (xi,1, . . . ,xi,T )
′ as a T × Li

matrix by setting Li = (1 + Nip) and rearranging xi,t = (1,y′
i,t−1, . . . ,y

′
i,t−p),

βi = vec([Bi,0, . . . ,Bi,p]
′) as an LiNi×1 vector, ϵi is an (NiT×1) vector of reduced

form disturbances assumed to be a zero-mean process with covariance matrix

ϵi,t ∼ N (0,Σi,ϵ⊗Ii,T ). We may write the covariance matrix asΣi,ϵ = A−1
i HiA

′−1
i .

We set β̂i,0 = [INi
⊗ (X′

iXi)
−1X′

i]yi and V̂βi,0
= Σi,0 ⊗ (X′

iXi)
−1 as the OLS

coefficient vector and the covariance matrix, respectively. The OLS estimates of
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the elements α̂i,0 are generated by regressing ϵ̂i,j,t on −ϵ̂i,1:j−1,t for j = 2 : Ni, and

the implied estimated variance is V̂αi,0
. Let Σ̂i,ϵ = Â−1

i ĤiÂ
′−1
i be the estimated

covariance matrix of ϵi,t from the time invariant VAR model, where we apply

the same decomposition as in Equation (3.13). Then, we may set ĥi,0 equal to

the logarithms of the square root elements on the diagonal of Ĥ
1/2
i = Σ

1/2
i,0 and

V̂hi,0
= INi

.

Sampling bivariate coefficient states

Assume that initial prior information is given by yi,0 at t = 0, at any future

time t the available information set is yi,1:t = {yi,t,yi,1:t−1}, where yi,t is the

observed value of the pairs of series at time t.

The FFBS algorithm is implemented as follows

Forward filtering

For each model i = 1 : M , consider the posterior distribution of the state

βi,t−1 given the information up to time t− 1 is

βi,t−1|αi,t−1,hi,t−1,yi,1:t−1,Σi ∼ N (mi,t−1,Ci,t−1).

Then the following statements hold

1. The one-step-ahead predictive distribution of βi,t conditional on αi,t, hi,t,

and yi,1:t−1 is Gaussian with parameters

ai,t = E(βi,t|αi,t,hi,t,yi,1:t−1,Σi) = mi,t−1, (3.15)

Ri,t = V (βi,t|αi,t,hi,t,yi,1:t−1,Σi) = Ci,t−1 +Σi,β. (3.16)

2. The one-step-ahead predictive distribution of yi,t conditional on yi,1:t−1 is
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Gaussian with parameters

fi,t = E(yi,t|yi,1:t−1) = xi,tai,t, (3.17)

Qi,t = V (yi,t|yi,1:t−1) = xi,tRi,tx
′
i,t +Σi,t. (3.18)

3. The filtering distribution of βi,t conditional on αi,t, hi,t, and yi,1:t is Gaus-

sian, with parameters

mi,t = E(βi,t|αi,t,hi,t,yi,1:t,Σi) = ai,t +Ki,t(yi,t − xi,tai,t), (3.19)

Ci,t = V (βi,t|αi,t,hi,t,yi,1:t,Σi) = Ri,t −Ki,txi,tRi,t, (3.20)

where Ki,t = Ri,tx
′
i,tQ

−1
i,t .

Backward sampling

At the end of forward filtering, the mean and the variance for βi,t of the form

p(βi,t|αi,1:T ,hi,1:T ,yi,1:t,Σi) ∼ N (mi,t,Ci,t).

The backward sampling updates the conditional means and the variances to

reflect the additional information about βi,t contained in βi,t+1. Because the state

space model in Equations (3.8) and (3.9) are linear and Gaussian, the distribution

of βi,t given yi,1:t and that of βi,t given βi,t+1 and yi,1:t for t = T − 1, . . . , 1 are

also Gaussian. Once βi,t is generated, we generate βi,t from

p(βi,t|βi,t+1,αi,1:T ,hi,1:T ,yi,1:t,Σi) ∼ N (gi,t,Gi,t),

with moments

gi,t = mi,t +Bi,t(βt+1 −mi,t),

Gi,t = Ci,t −Bi,tRi,t+1B
′
i,t,

(3.21)
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where Bi,t = Ci,tR
−1
i,t+1.

Sampling bivariate covariance states

To sample αi,t elements of the lower triangular matrix ai,t, let’s denote

A−1
i,t (yi,t − xi,tβi,t) = A−1

i,t ŷi,t = H
1/2
i,t ϵi,t. (3.22)

Then, we may write the following equation for each row of the lower triangular

matrix A−1
i,t for each j = 2 : Ni and for each bivariate model i = 1 : M as

ŷi,j,t = ŷi,1:j−1,tαi,j,t + σi,j,tϵi,j,t, (3.23)

where σi,j,t and ϵi,j,t are model ith, j th elements of Σi,t and ϵi,t, respectively and

ŷi,1:j−1,t = (ŷi,1,t, . . . , ŷi,j−1,t).

Conditional on βi,t and hi,t, Equation (3.23), is the measurement equation of

a state space model where the state is defined in the first line of Equation (3.11)

with components of the state αi,j,t. Using the FFBS algorithm, we can draw

p(αi,j,t|αi,j,t+1,βi,1:T ,hi,1:T ,yi,1:t,Σi) ∼ N (gi,α,t,Gi,α,t),

with moments

gi,α,t = mi,α,t +Bi,α,t(βi,α,t+1 −mi,α,t),

Gi,α,t = Ci,α,t −Bi,α,tRi,α,t+1B
′
i,α,t,

(3.24)

where Bi,α,t = Ci,α,tR
−1
i,α,t+1.
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Sampling bivariate volatility states

Let’s start implementing this approach by transforming yi,t in order to obtain

a measurement that is linear in hi,t

y∗
i,t = (yi,t − xi,tβi,t) = ehi,tυi,t, (3.25)

where ehi,tυi,t = ηh
i,t and υi,t ∼ N (0, 1). Squaring both sides of Equation (3.25)

and taking the logarithm, we obtain the following form

y∗∗
i,t = 2hi,t + υ∗

i,t, (3.26)

where y∗∗
i,t = log y2

i,t and υ∗
i,t = logυ2

i,t. Hence, Equation (3.26) together with

second line of Equation (3.11) represent a state space model. However, the issue

with the above representation is that the error term υ∗
i,t does not have a Gaus-

sian distribution. The auxiliary mixture sampling finds a Gaussian mixture that

approximates the pdf of the υ∗
i,t

p(υ∗
i,t) ≈

7∑
n=1

wi,nϕ(υ
∗
i,t;µh,i,n − 1.2704,σ2

h,i,n), (3.27)

where ϕ(yi;µi,σ
2
i ) is the Gaussian density with mean µi and variance σ2

i , wi,n

are the mixture probabilities for the nth component and 7 is the number of

components. We can define an auxiliary random variable sh,i,t ∈ {1, . . . , 7} ,

which can be used as a mixture component indicator

(υ∗
i,t|sh,i,t = n) ∼ N (µh,i,n − 1.2704,σ2

h,i,n),

Pr(sh,i,t = n) = wi,n.

Hence, the desired linear Gaussian model can be defined conditional on the

component indicator sh,i,t as (υ
∗
i,t|sh,i,t) ∼ N (d∗

i,t,Σ
∗
i,t), where d

∗
i,t = µh,i,n−1.2704
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and Σ∗
i,t = σ2

h,i,n for each t = 1 : T . µh,i,n and σh,i,n have fixed values represented

as a seven component Gaussian mixture in Table 4 of Kim et al. (1998). Then it

follows that

(y∗∗
i,t|sh,i,t,hi,t) ∼ N (2hi,t + d∗

i,t,Σ
∗
i,t), (3.28)

for each t = 1 : T .

Using the FFBS algorithm, we can draw hi,t conditional on βi,t and αi,t from

p(hi,t|hi,t+1,βi,1:T ,αi,1:T ,yi,1:t, sh,i,t,Σi) ∼ N (gi,h,t,Gi,h,t),

with moments

gi,h,t = mi,h,t +Bi,h,t(βi,h,t+1 −mi,h,t),

Gi,h,t = Ci,h,t −Bi,h,tRi,h,t+1B
′
i,h,t,

(3.29)

where Bi,h,t = Ci,h,tR
−1
i,h,t+1.

Sampling sh,i,t

For each i = 1 : M , we can sample sh,i,t as follows

p(sh,i|y∗∗
i ,hi) =

T∏
t=1

p(sh,i,t|y∗∗
i,t,hi,t), (3.30)

where each sh,i,t can be sampled independently for t = 1 : T . We can compute

Pr(sh,i,t = n|y∗∗
i,t,hi,t) for n = 1 : 7 as

Pr(sh,i,t = n|y∗∗
i,t,hi,t) =

wi,nϕ(y
∗∗
i,t; 2hi,t + µh,i,n − 1.2704,σ2

h,i,n)∑7
n=1wi,nϕ(y∗∗

i,t; 2hi,t + µh,i,n − 1.2704,σ2
h,i,n)

. (3.31)
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Sampling Σi,β

Sampling the hyperparameter Σi,β as

p(Σi,β|yi,1:t,βi,1:T ,αi,1:T ,hi,1:T ,Σi,α,Σi,h)

∼ IW
(
Uβi,0

+
T∑
t=1

(yi,t − x′
i,tβi,t)(yi,t − x′

i,tβi,t)
′, νi,β + T

)
.

Sampling Σi,α

Sampling the hyperparameter Σi,α blockwise with a single block for ni = 1 :

Ni − 1

p(Σi,α|yi,1:t,βi,1:T ,αi,1:T ,hi,1:T ,Σi,β,Σi,h)

∼ IW
(
Uαi,0

+
T∑
t=1

(αi,j,t −αi,j,t−1)(αi,j,t −αi,j,t−1)
′, νi,α + T

)
.

Sampling Σi,h

Sampling the hyperparameter Σi,h as

p(Σi,h|yi,1:t,βi,1:T ,αi,1:T ,Σi,α,Σi,h)

∼ IW
(
Uhi,0

+
T∑
t=1

(hi,t − hi,t−1)(hi,t − hi,t−1)
′, νi,h + T

)
.

3.7.2 Second Step: The Direct Averaging Method

To implement the proposed Bayesian pairwise composite likelihood method,

a sequence of mapping algorithms is developed to recover parameter vectors from

the posterior draws of bivariate models. These include: (i) a mapping algorithm

for aggregating bivariate VAR coefficients into the full vector of VAR parameters,

(ii) an algorithm for assembling the Cholesky parameter vector that characterizes

the lower-triangular structure of the time-varying covariance matrix, and (iii) a
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procedure for constructing the log-volatility vector from bivariate log-volatility

estimates. Each algorithm ensures that the composite information extracted from

the bivariate models is consistently aligned with the model structure.

In Algorithm 1, we implement a structured mapping procedure that consoli-

dates the time-varying coefficients from all bivariate VAR(p) models into a single

parameter vector β
(r)
t for the full N -dimensional VAR system. Specifically, for

each MCMC draw r = 1, . . . , R and time point t = 1, . . . , T , we stack the bivariate

coefficient vectors β
(i,j,r)
t ∈ RK into a composite vector β

(r)
c,t ∈ RKc . A sparse, de-

terministic mapping matrix Ωβ ∈ RK′×Kc then transforms this composite vector

into the parameter vector:

β
(r)
t = Ωβ · β(r)

c,t .

This matrix encodes the selection and averaging structure across overlapping

bivariate models, ensuring that parameters appearing in multiple systems are

aggregated consistently, typically using uniform weights of 1/(N − 1). This step

preserves internal consistency, avoids duplication, and ensures valid identification

of the model’s coefficients.

Contemporaneous dependencies are captured by a lower-triangular Cholesky

matrix At ∈ RN×N with time-varying off-diagonal elements α
(i,j,r)
t for i > j in

Algorithm 3. These elements are uniquely estimated from the bivariate models

involving each pair (i, j), and stacked into a composite vector α
(r)
c,t ∈ RL according

to a fixed recursive ordering. Since each α
(r)
ij,t appears only once across the bivari-

ate systems, no averaging is required. The vector is recovered via the identity

mapping:

α
(r)
t = I ·α(r)

c,t = α
(r)
c,t ,

where I is the identity matrix of appropriate dimension. This mapping is

purely notational and relies only on consistent indexing across MCMC draws and

time points.
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For each bivariate model (i, j) ∈ P , we estimate a time-varying log-volatility

vector h
(i,j,r)
t =

(
h
(i,j,r)
i,t , h

(i,j,r)
j,t

)′
∈ RNi across all t = 1, . . . , T and MCMC iter-

ations r = 1, . . . , R in Algorithm 2. These vectors are stacked into a composite

vector h
(r)
c,t ∈ RNiM . To recover the volatility vector h

(r)
t ∈ RN , we apply a fixed

sparse mapping matrix Ωh ∈ RN×NiM such that

h
(r)
t = Ωh · h(r)

c,t .

Each row of Ωh averages log-volatility estimates for a given variable across its

N − 1 pairwise appearances. This mapping ensures coherent aggregation across

the system. The procedure is repeated across all time steps and MCMC draws.
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Algorithm 1 Mapping bivariate coefficient states to pairwise composite coeffi-
cient states
1: Input:

� Posterior draws β
(i,j,r)
t ∈ RK for all pairs (i, j), time t = 1, . . . , T , and

iterations r = 1, . . . , R

� Fixed mapping matrix Ωβ ∈ RK′×Kc , determined by the inclusion struc-
ture of coefficients in bivariate models

2: Define:
K = Ni(Nip+ 1), K ′ = N(Np+ 1), and M

3: For each MCMC iteration and time step:
4: for r = 1 to R do
5: for t = 1 to T do
6: Initialize stacked coefficient vector β

(r)
c,t ∈ RKc

7: Step 1: Stack bivariate coefficients
8: Set block index m = 0
9: for i = 1 to N − 1 do
10: for j = i+ 1 to N do
11: Insert β

(i,j,r)
t into block m of β

(r)
c,t

12: Increment m← m+ 1
13: end for
14: end for
15: Step 2: Map to pairwise composite coefficients

β
(r)
t = Ωβ · β(r)

c,t ∈ RK′

16: end for
17: end for
18: Output: Posterior draws {β(r)

t }Rr=1 for t = 1, . . . , T , or posterior means:

β̂t =
1

R

R∑
r=1

β
(r)
t
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Algorithm 2 Mapping bivariate covariance states to pairwise composite covari-
ance states
1: Input:

� Posterior draws α
(i,j,r)
t ∈ R from bivariate model for (i, j) where i > j,

for time t = 1, . . . , T , and iterations r = 1, . . . , R

� Recursive ordering over N variables

2: Define:

A = {(i, j) : 1 ≤ j < i ≤ N}, L =
N(N − 1)

2

3: For each MCMC iteration and time step:
4: for r = 1 to R do
5: for t = 1 to T do
6: Initialize empty vector α

(r)
c,t ∈ RL

7: Set index ℓ = 0
8: for i = 2 to N do
9: for j = 1 to i− 1 do
10: Extract scalar α

(i,j,r)
t from bivariate model (i, j)

11: Set (α
(r)
c,t )ℓ ← α

(i,j,r)
t

12: Increment ℓ← ℓ+ 1
13: end for
14: end for
15: Step 2: Map to pairwise composite vector

α
(r)
t = IL ·α(r)

c,t ∈ RL

16: end for
17: end for
18: Output: Posterior draws {α(r)

t }Rr=1 for t = 1, . . . , T , or posterior means:

α̂t =
1

R

R∑
r=1

α
(r)
t
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Algorithm 3 Mapping bivariate volatility states to pairwise composite volatility
states
1: Input:

� Posterior draws h
(i,j,r)
t ∈ RNi for all pairs (i, j), time t = 1, . . . , T , and

iterations r = 1, . . . , R

� Fixed mapping matrix Ωh ∈ RN×NiM , which maps stacked bivariate
volatilities to the log-volatility vector

2: Define:
Ni = 2, M, P = {(i, j) ∈ N2 : 1 ≤ i < j ≤ N}

3: For each MCMC iteration and time step:
4: for r = 1 to R do
5: for t = 1 to T do
6: Initialize stacked log-volatility vector h

(r)
c,t ∈ RNiM

7: Step 1: Stack bivariate volatilities
8: Set block index m = 0
9: for i = 1 to N − 1 do
10: for j = i+ 1 to N do
11: Insert h

(i,j,r)
t into block m of h

(r)
c,t

12: Increment m← m+ 1
13: end for
14: end for
15: Step 2: Map to pairwise composite volatilities

h
(r)
t = Ωh · h(r)

c,t ∈ RN

16: end for
17: end for
18: Output: Posterior draws {h(r)

t }Rr=1 for t = 1, . . . , T , or posterior means:

ĥt =
1

R

R∑
r=1

h
(r)
t
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3.7.3 Comparing impulse responses of PCL-TVP-VAR-

SV and TVP-VAR-SV models
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Macroeconomic implications of a shock to corporate bond spread

Figure 3.6: The figure depicts the pairwise composite impulse responses of GDP
Growth, Inflation, Unemployment Rate, Corporate Bond Spread, S&P Returns,
and Federal Funds Rate to the identified shock to the Corporate Bond Spread
estimated from a six–variable PCL-TVP-VAR-SV model for a representative time
2010Q4. In this figure the posterior median is the red line and the blue lines are
the 16th and 84th percentiles.
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Figure 3.7: The figure depicts the pairwise composite impulse responses of GDP
Growth, Inflation, Unemployment Rate, Corporate Bond Spread, S&P Returns,
and Federal Funds Rate to the identified shock of the Corporate Bond Spread
estimated from a six–variable PCL-TVP-VAR-SV model.
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Macroeconomic implications of a shock to corporate bond spread

Figure 3.8: The figure depicts the impulse responses of GDP Growth, Inflation,
Unemployment Rate, Corporate Bond Spread, S&P Returns, and Federal Funds
Rate to the identified shock to the Corporate Bond Spread estimated from a
six–variable TVP-VAR-SV model for a representative time 2010Q4. In this figure
the posterior median is the red line and the blue lines are the 16th and 84th
percentiles.
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Figure 3.9: The figure depicts the impulse responses of GDP Growth, Inflation,
Unemployment Rate, Corporate Bond Spread, S&P Returns, and Federal Funds
Rate to the identified shock of the Corporate Bond Spread estimated from a
six–variable TVP-VAR-SV model.
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3.7.4 Data appendix

The quarterly time series variables used in the PCL-TVP-VAR-SV model are

taken from the FRED database of the Federal Reserve Bank of St Louis spanning

from 1959Q1 to 2018Q1. The columns of Table 3.1 denote the series numbers,

Tcode denotes the data transformations based on McCracken and Ng (2020) and

Gilchrist and Zakraǰsek (2012), series denotes the FRED mnemonic except for

CBS∗, and description denotes a brief definition of the series.

The series CBS∗, is a modified version of two series from FRED database,

defined as the difference between Moody’s Seasoned Baa Corporate Bond Yield

and Moody’s Seasoned Aaa Corporate Bond Yield. The modified Tcode, 1∗,

stands for no transformation of the series CBS∗. The Effective Federal Funds

Rate and the 10-Year Treasury Constant Maturity Rate are not transformed.
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Time series used in the PCL-TVP-VAR-SV model with N = 50
ID Series Tcode Description S / F
1 PCECC96 5 Real Personal Consumption Expenditures Slow
2 GDPC1 5 Real Gross Private Domestic Investment, 3 decimal Slow
3 GPDIC1 5 Real Gross Domestic Product, 3 Decimal Slow
4 GDPCTPI 6 Gross Domestic Product: Chain-type Price Index Slow
5 GCEC1 5 Real Government Consumption Expenditures & Gross Investment Slow
6 EXPGSC1 5 Real Exports of Goods & Services, 3 Decimal Slow
7 IMPGSC1 5 Real Imports of Goods & Services, 3 Decimal Slow
8 DPIC96 5 Real Disposable Personal Income Slow
9 OUTNFB 5 Nonfarm Business Sector: Real Output Slow
10 OUTBS 5 Business Sector: Real Output Slow
11 INDPRO 5 Industrial Production Index Slow
12 IPDMAT 5 Industrial Production: Durable Materials Slow
13 IPNMAT 5 Industrial Production: Nondurable Materials Slow
14 IPDCONGD 5 Industrial Production: Durable Consumer Goods Slow
15 IPNCONGD 5 Industrial Production: Nondurable Consumer Goods Slow
16 CUMFNS 1 Capacity Utilization: Manufacturing (SIC) Slow
17 PAYEMS 5 All Employees: Total nonfarm Slow
18 USPRIV 5 All Employees: Total Private Industries Slow
19 MANEMP 5 All Employees: Manufacturing Slow
20 USEHS 5 All Employees: Education & Health Services Slow
21 USFIRE 5 All Employees: Financial Activities Slow
22 USINFO 5 All Employees: Information Services Slow
23 CE16OV 5 Civilian Employment Slow
24 CIVPART 2 Civilian Labor Force Participation Rate Slow
25 UNRATE 2 Civilian Unemployment Rate Slow
26 UNRATESTx 2 Unemployment Rate less than 27 weeks Slow
27 UNRATELTx 2 Unemployment Rate for more than 27 weeks Slow
28 UEMPLT5 5 Number of Civilians Unemployed - Less Than 5 Week Slow
29 UEMP5TO14 5 Number of Civilians Unemployed for 5 to 14 Weeks Slow
30 HOABS 5 Business Sector: Hours of All Persons Slow
31 HOANBS 5 Manufacturing Sector: Hours of All Persons Slow
32 CMRMTSPLx 5 Real Manufacturing and Trade Industries Sales Slow
33 RSAFSx 5 Real Retail and Food Services Sales, deflated by Core PCE Slow
34 PCECTPI 6 Personal Consumption Expenditures: Chain-type Price Index Slow
35 CPIAUCSL 6 Consumer Price Index for All Urban Consumers: All Items Slow
36 PPIACO 6 Producer Price Index for All Commodities Slow
37 RCPHBS 5 Business Sector: Real Compensation Per Hour Slow
38 OPHNFB 5 Nonfarm Business Sector: Real Output Per Hour of All Persons Slow
39 OPHPBS 5 Business Sector: Real Output Per Hour of All Persons Slow
40 CS∗ 1∗ Baa-Aaa corporate credit spread Fast
41 S&P 500 5 S&P’s Common Stock Price Index: Composite Fast
42 GS10 1∗ 10-Year Treasury Constant Maturity Rate Fast
43 FEDFUNDS 1∗ Effective Federal Funds Rate Fast
44 TB3MS 2 3-Month Treasury Bill: Secondary Market Rate Fast
45 TB6MS 2 6-Month Treasury Bill: Secondary Market Rate Fast
46 GS1 2 1-Year Treasury Constant Maturity Rate Fast
47 M1REAL 5 Real M1 Money Stock, deflated by CPI Fast
48 M2REAL 5 Real M2 Money Stock, deflated by CPI Fast
49 EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate Fast
50 EXCAUSx 5 Canada / U.S. Foreign Exchange Rate Fast

Table 3.1: The quarterly time series variables used in the PCL-TVP-VAR-SV
model
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Chapter 4

Bayesian dynamic graphical
models for high-dimensional
vector autoregressions with
time-varying parameters and
volatility discounting

4.1 Introduction

Graphical models use pairwise conditional independence structures of a set of

random variables to form sparsity features on the precision matrix of a multivari-

ate Gaussian process, Lauritzen (1996) and Whittaker (2008). On the other hand,

a graphical model can be constructed in a multiple regression model by assuming

pairwise conditional independence structures formed with sparsity features on

regression coefficients, Whittaker (2008). However, most graphical models either

do not take into account time variation features on the coefficients and the co-

variance matrix of the model’s disturbances or allow for a completely arbitrary

mean. In this study, we propose a special case of graphical models, a Bayesian

dynamic graphical model (BDGM) that characterises the relationships among

variables by a directed graph, that is, the relationships among the variables are

one directional. We consider a vector autoregressive model with time-varying pa-

rameters and volatility discounting (TVP-VAR-VD model) that allows a sparse
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representation of dynamic state parameters and evolving covariance matrix ele-

ments within a BDGM framework.1 The concept of studying the sparsity features

on the state parameters of vector autoregressive models with time-varying param-

eters (TVP-VAR) has been explored in a number of papers, among others, see

Korobilis (2013) and Koop and Korobilis (2013). Moreover, imposing zeros on

the inverse of covariance matrices in VAR and other dynamic models using graph-

ical models is quite common in statistics, Carvalho and West (2007), Nakajima

and West (2015), Ahelegbey et al. (2016), Zhao et al. (2016), Gruber and West

(2016), Gruber and West (2017), and for a discussion see West (2020). We com-

bine those literature by studying sparsity features on both the state parameters

and the inverse of covariance matrix using a BDGM approach.

We propose a BDGM approach that has an important property of splitting

a complex and high-dimensional macroeconometric problem into locally sparse

manageable components. The pairwise conditional independence structure is

the key mechanism underlying the local model specifications and computations.

Hence, feasible local computations can be performed rather than a joint high-

dimensional one. In this regard, we consider splitting a joint multivariate dynamic

linear model (multivariate DLM) into a componentwise multiple dynamic linear

regression model (multiple regression DLM) and then combine those components

to make inference from the joint model. More specifically, we split the multivari-

ate TVP-VAR-VD model that falls within the multivariate DLM framework into

a multiple regression on past and current values of predictors that falls within

the multiple regression DLM framework. A key research question in building a

joint TVP-VAR-VD model from component multiple regression DLMs using the

BDGM approach concerns the selection of subset of predictors to include.

1BDGMs share many inferential tools with dynamic Bayesian networks that have been widely
used in the literature on machine learning and artificial intelligence, including Koller and Fried-
man (2009), Murphy (2012) and Russell and Norvig (2010). In the dynamic Bayesian networks,
the parameters are assumed to be constant, as noted by Murphy (2012). We prefer to use the
term BDGM to distinguish our approach by relaxing this assumption and allowing for time-
varying state parameters and volatilities.
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The main contribution of this chapter is to resolve a high-dimensional sparse

inference problem posed by parameter changes, many predictors and computa-

tional complexity with an extended version of graphical modelling on multiple

regression models proposed by Whittaker (2008) and on multiregression dynamic

models of Zhao et al. (2016). More precisely, we incorporate the conditional inde-

pendence structure in the time-varying coefficient states to quantify the dynam-

ics among autoregressive and cross-lagged values of the variables and the current

values of the variables as an extension to the general ideas of graphical multiple

regression models in Whittaker (2008), and in the time-varying covariance states

to quantify the contemporaneous relationships among the variables inspired from

Zhao et al. (2016) within a BDGM framework. Two sets of variables as pre-

dictors are considered, namely, dynamic autoregressive and cross-lagged values

of the time series and current values of the time series. We achieve this frame-

work by developing an efficient Bayesian graphical variable selection method that

focuses on selecting from a set of dynamic and contemporaneous predictors to

identify a set of locally good multiple regression DLMs in terms of posterior

model probabilities. This approach can be applied recursively in parallel to find

local pairwise independence structures among both the dynamic and the contem-

poraneous predictors using a Gray code algorithm. Then we perform a Bayesian

model averaging on a range of good models with high posterior probabilities to

forecast key macroeconomic and financial variables of interest.

We demonstrate the applicability of the BDGM approach on a real dataset

comprising of ten quarterly U.S. macroeconomic and financial time series in an

attempt to understand which subset of the dynamic and the contemporaneous

predictors should be used in a compositional forecasting model. We compare

results using the proposed Bayesian graphical variable selection on a set of 16, 356

distinct models in parallel. Our key findings are as follows.

First, the results of posterior model probabilities over the space of all com-
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peting models show that there is a considerable model uncertainty within the

best selected models for each series. As the number of the dynamic and the con-

temporaneous predictors increases in the recursive model, the model uncertainty

increases too.

Second, we perform a sensitivity analysis by comparing median probability

models and highest posterior probability models over the space of all competing

models. The results show that the median probability model can be an important

tool in assessing the effect of the dynamic and the contemporaneous predictors.

Third, out-of-sample forecast exercise shows that the joint model with Bayesian

model averaging outperforms the joint model with the highest posterior probabil-

ity for the variables consumption, investment, GDP growth, GDP deflator, indus-

trial production, and unemployment rate over the majority of considered horizons.

Other combinations of financial variables, such as corporate bond spread, S&P

500 stock returns, 10-year Treasury maturity rate, and Federal funds rate tend

to improve predictions at longer forecast horizons.

The plan of this chapter is as follow. In Section 4.2 we define and motivate

the BDGM framework to identify subsets of predictors and the number of graph-

ical models. In Section 4.3 we show the component multiple regression DLMs,

the joint TVP-VAR-VD model, and graph representation of the joint TVP-VAR-

VD model. In Section 4.4, we summarize our Bayesian inferential tool based on

Kalman filter algorithm. Section 4.5 reports the details of the Bayesian graphical

variable selection approach. We report the empirical results for a range of data

analysis in Section 4.6, such as exploratory data analysis, dynamic and contempo-

raneous pairwise dependence structures and out-of-sample forecast performance.

A summary is present in Section 4.7. Finally, the Appendix provides the details

of the Kalman filter algorithm, the joint model, more results, and data appendix.
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4.2 Bayesian dynamic graphical Models

Let yt denote an N × 1 vector of time series and yi,t is a scalar with ith

cross-sectional and tth time series element. For each cross-sectional variable i =

1 : N , t = 1 : T denotes the time series observations. Let y0 represent all prior

information set and y1:t = {y1:t−1,yt} all available relevant information set at

any time t. Given all the previous information at t − 1, computing the joint

one-step-ahead predictive density for the observed data yt can be performed as a

product of a set of conditional probability density functions

p(yt|y1:t−1) = p(y1,t|y1:t−1)
N∏
i=2

p(yi,t|yi−1:i,t−1:t−p,y1:i−1,t,y1:t−1), (4.1)

where p is the model order for k = 1, . . . , p. In this setup, we have two types of

dynamic lagged effects and one type of contemporaneous effects between pairs of

variables, that is, dynamic autoregressive effects from yi,t−k to yi,t, dynamic cross-

lagged effects from yj,t−k to yi,t and contemporaneous effects from yj,t and yi,t with

i ̸= j. In terminology of graph theory, if yj,t is a predictor of yi,t, yj,t is said to

be parent of yi,t. A cycle is defined as any directed path that starts and ends

at the same variable. A graph which contains only directed path and does not

have any cycles, is called a directed acyclic graph, Murphy (2012). The Bayesian

dynamic graphical model is an example of a directed acyclic graph. Each yi,t has a

conditional probability density function p(yi,t|Fpa(i),t) = p(yi,t|Fpa(i),t,y1:t−1) that

quantifies the effect of parents on the variable, where Fpa(i),t = (xdp(i),t,ycp(i),t)
′

with a partition of xdp(i),t = {yi−1,t−1:t−p, yi,t−1:t−p} and ycp(i),t = {y1,t, . . . , yi−1,t}.

We refer to two set of parents in Equation (4.1), dynamic parents with index

dp(i) and contemporaneous parents with index cp(i). Hence, the joint parental

set is partitioned pa(i) = {dp(i), cp(i)} and Equation (4.1) can be equivalently
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written as

p(yt|y1:t−1) = p(y1,t|Fpa(1),t)
N∏
i=2

p(yi,t|Fpa(i),t), (4.2)

where dp(i) is a subset of {i− 1, i} and cp(i) is a subset of {1, . . . , i− 1}, written

as dp(i) ⊆ {i− 1 : i} and cp(i) ⊆ {1 : i− 1}. We explain the reason behind this

indexing in the next section.

4.2.1 The parental set

Suppose each univariate series yi,t is governed by a multiple regression DLM

with a two-set of predictors, i.e., the autoregressive and the cross-lagged variables

and the current values of the variables. It is just known that the order of the

process does not exceed p and otherwise no prior knowledge of possible sparsity

(absence of dynamic and contemporaneous effects) is available. To simplify the

problem, we include only lower bidiagonal elements of the dynamic parents as

predictors.2 For each i = 2 : N , the lower bidiagonal elements of a vector

autoregressive process of order one and a triangular system, even if we do not

take into account the intercept terms, there exist i−1 : i bidiagonal dynamic and

i−1 contemporaneous coefficients. Note that the set with i−1 : i distinct elements

always consists of two elements except for the first variable, which contains one

element (if the model order is one). Then, for simplicity, we may replace the

elements of the set {i − 1 : i} with 2. In this case,
(
2
r

)
and

(
i−1
r

)
subset with r

elements can be chosen. Hence, there is a total of

2 +
N∑
i=2

2∑
r=0

(
2

r

)
= 2 + (N − 1)22 (4.3)

2If we consider the full set of dynamic parents, this requires performing graphical variable
selection over 2Np for each series. This property is infeasible to handle the system with many
variables.
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and
N∑
i=1

i−1∑
r=0

(
i− 1

r

)
= 2N − 1, (4.4)

subset models.

Our dynamic graphical model with dynamic and contemporaneous parents is

a specification of the conditional density function f(yi,t|Fpa(i),t,y1:t−1) for each

series that incorporates a subset of the dynamic pairwise conditional indepen-

dence structures yi,t⊥⊥xj,t|(xdp(i),t, ycp(i),t), where dp(i) = {i − 1 : i} \ {j} and

cp(i) = {1, . . . i− 1} \ {i} with “\” meaning “excludes”, and the contemporane-

ous pairwise conditional independence structures yi,t⊥⊥yj,t|(xdp(i),t,ycp(i),t), where

cp(i) = {1, . . . , i− 1} \ {i, j}.

Including the lag operator in the structure, this corresponds to perform graph-

ical variable selection over a power set

P(S) = 2p +
N∑
i=2

22p+i−1 = 2p + 22p(2N − 2), (4.5)

in parallel.3 In this case, all possible 2p + 22p(2N − 2) model specifications can

be evaluated using 22p+i−1 subspace of models for each series in parallel and

variable selection is equivalent to graphical model selection conducted on both

the elements of a bidiagonal matrix and the elements of a strictly lower triangular

covariance matrix.

3If we consider the full multivariate model, the total number of independence under con-
sideration would be

(
N+Np

2

)
=
(
N
2

)
+N2p+

(
Np
2

)
, including the examination of

(
Np
2

)
indepen-

dence among the dynamic vector autoregressive elements (which we ignore here). By defini-
tion, this equation holds true using the multinomial theorem for a lower factorial polynomial
(N)2 = N(N − 1)/2 similar to umbral calculus as stated in Weisstein (2003), page 237. The

total number of graphical models in this setup is 2(
N
2 )+N2p. Inference in this multivariate model

is obviously infeasible.
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4.3 The Model

The model design consists of three steps. We show the component multiple

regression DLMs, the joint TVP-VAR-VD model followed by the graph represen-

tation of the TVP-VAR-VD model.

4.3.1 Component multiple regression DLM

For each i = 1 : N , the dynamics of yi,t follow a univariate multiple regression

DLM and elements of a triangular system that incorporate autoregressive effects,

cross-lagged effects and contemporaneous effects,

yi,t = F′
pa(i),tθi,t + νi,t,

= x′
dp(i),tβi,t + y′

cp(i),tγi,t + νi,t, νi,t ∼ N (0, 1/λi,t),

(4.6)

with the state coefficients changing slowly over time according to random walk

θi,t = θi,t−1 + ωi,t, ωi,t ∼ N (0,Wi,t), (4.7)

where the state coefficients θi,t are defined as column vectors, and the obser-

vational error terms νi,t and the evolution error terms ωi,t are assumed to be

independent for all series i, independent over time such that νi,t and νj,s are

independent, ωi,t and ωj,s are independent with i ̸= j and for all t and s.

We may partition the regression vectors and the state vectors as

Fpa(i),t =

xdp(i),t

ycp(i),t

 and θi,t =

βi,t

γi,t

 , (4.8)

where xdp(1),t = (y1,t−1:t−p)
′ and for i = 2 : N , xdp(i),t = (yi−1,t−1:t−p : yi,t−1:t−p)

′

denote the dynamic parental series defined as column vectors. For i = 2 : N ,

ycp(i),t = (y1,t, . . . , yi−1,t)
′ is the contemporaneous parental series with ycp(1),t =
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{∅} being an empty set, ycp(2),t = y1,t and for i = 3 : N , ycp(i),t is defined as column

vectors, and Fpa(1),t = xdp(1),t = (y1,t−1:t−p)
′. The dimension of the time-varying

coefficients γi,t is Pi,γ = |cp(i)|. The dimension of the time-varying coefficients

βi,t is Pi,β = |dp(i)|. The joint dimension of the coefficients is Pi,β,γ = Pi,β +Pi,γ,

where for i = 1 it is p and for each series i = 2 : N it is 2p+ i− 1.

Suppose that λi,t is unknown and is subject to random changes over time.

Following West and Harrison (1997), Prado and West (2010) and Zhao et al.

(2016), the stochastic variation in the precision λi,t can be modelled via a form

of multiplicative Beta-Gamma random walk with volatility discounting

λi,t =
αi,tλi,t−1

φi

, (4.9)

where the precision λi,t have a Gamma distribution and innovations αi,t follow a

Beta distribution for some discount factors φi ∈ (0, 1].

Furthermore, we assume that the component state evolution variance matrices

Wi,t for t = 1, . . . , T are unknown. A reliable model specification requires the

component evolution variance matrix Wi,t to be controlled due to its effects on

the time-variation in θi,t. This can be achieved by a component discount factor

δi ∈ (0, 1], which follows West and Harrison (1997).

4.3.2 Joint TVP-VAR-VD model

The model in Equation (4.6) through the partitioned form of the regression

vectors and the state vectors can be written as a joint TVP-VAR-VD model as

follows

(I − Γt)yt =

p∑
k=1

Bk,tyt−k + ϵt, (4.10)

where Bk,t is an N ×N matrix of the time-varying parameters at time t and at

lag k for k = 1 : p. The matrix Bk,t contains only the lower bidiagonal elements
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of the time-varying parameters, which can be represented as

Bk,t =



b11,k,t 0 . . . 0 0

b21,k,t b22,k,t 0
... 0

0 b32,k,t b33,k,t
... 0

... 0
. . . bN−1N−1,k,t 0

0 . . . 0 bNN−1,k,t bNN,k,t


, (4.11)

To establish a unique solution to the system, we further assume Γt is a strictly

lower triangular matrix with elements γi,t below the diagonal and 0s along the

principal diagonal, that is

Γt =



0 0 . . . 0

γ21,t 0
. . .

...

...
. . . . . .

...

γN1,t . . . γNN−1,t 0


, and (4.12)

Λt =



λ1,t 0 . . . 0

0
. . . . . .

...

...
. . . . . .

...

0 . . . 0 λN,t


, (4.13)

where the γi,j,t elements are real-valued and the λi,t are positive-valued. Recall

that a model is recursive if the relationships among variables in yt are one direc-

tional. A recursive model corresponds to an acyclic graph if Γt is defined as a

strictly lower triangular matrix. In addition, defining Λt as a diagonal matrix is

similar to a Gaussian directed graphical model as noted by Murphy (2012).

Furthermore, the model in Equation (4.10) can be written jointly in a compact

form as

yt = Btxt + Γtyt + ϵt, ϵt ∼ N (0,Λ−1
t ), (4.14)
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where Bt is an N ×Np matrix, xt is an Np× 1 vector, Γt is an N ×N matrix,

ϵt is an N × 1 vector, and Λt = diag(λ1,t, . . . , λN,t). The matrices Bt and Γt

contain the direct dynamic and the direct contemporaneous effect coefficients,

respectively.

When working with graphical models, we may convert the joint structure to a

reduced form. Solving for yt in Equation (4.14), the reduced form for the model

is

yt = (I− Γt)
−1Btxt + (I− Γt)

−1ϵt, (4.15)

where yt ∼ N ((I− Γt)
−1Btxt,Σt) with

Ωt = Σ−1
t = (I− Γt)

′Λt(I− Γt). (4.16)

4.3.3 Graph representation of the joint TVP-VAR-VD

model

We may define the dynamic dependence structure by an indicator matrix ΞB,k,

such that ξβ,ij,k = 1 if j ∈ dp(i), otherwise ξβ,ij,k = 0

ΞB,k =



ξβ,11,k 0 . . . 0 0

ξβ,21,k ξβ,22,k 0
... 0

0 ξβ,32,k ξβ,33,k
... 0

... 0
. . . ξβ,N−1N−1,k 0

0 . . . 0 ξβ,NN−1,k ξβ,NN,k


,
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and define the contemporaneous dependence structure by an indicator matrix Ξγ,

such that ξγ,ij = 1 if j ∈ cp(i), otherwise ξγ,ij = 0

Ξγ =



0 0 . . . 0

ξγ,21 0
. . .

...

...
. . . . . .

...

ξγ,N1 . . . ξγ,NN−1 0


,

then, we may write the graph representation of the model in Equation (4.14) as

yt = (ΞB ◦Bt)xt + (Ξγ ◦ Γt)yt + ϵt, (4.17)

and the reduced form model becomes

yt = (I−Ξγ ◦ Γt)
−1(ΞB ◦Bt)xt + (I−Ξγ ◦ Γt)

−1ϵt, (4.18)

where the operator ◦ corresponds to the element by element multiplication.

To summarize, in a multivariate TVP-VAR-VD model, the contemporaneous

conditional independence structures correspond to zeros in Σ−1
t and the dynamic

conditional independence structure corresponds to zeros in Σ−1
t (I−Γt)

−1Bt. On

the other hand, in the multiple regression DLM, the conditional independence

(for each i) refers simply to zeros in the coefficient states, βi,t and γi,t. For

details on DLM models in the context we use here, see Zhao et al. (2016), West

and Harrison (1997), Chapters 4, 6 and 12 and Prado and West (2010), Chapter

4, and for details on graphical models in multivariate and multiple regression

models see Whittaker (2008), Chapter 10.
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4.4 Bayesian inference

Under Bayesian paradigm, our inferential problem can be solved by com-

puting the component posterior distributions of the state parameters and the

component predictive distributions of the observed data. Parallel computations

follow a sequential updating and an online forecasting steps of the locally struc-

tured multiple regression DLMs. Inference is based on sequential updating of the

component DLM structures by running N Kalman filter algorithm in parallel.

4.4.1 The Kalman filter algorithm

As a first step, the Kalman filter algorithm aims to sequentially compute the

component posterior distribution p(θi,t, λi,t|y1:t) of the states θi,t and λi,t given

observation y1:t up to time t together with an observation relation p(yi,t|y1:t−1)

in i = 1 : N parallel steps.

Let the posterior of the component state vector θi,t−1 for information up to

time t− 1 has a Normal distribution

(θi,t−1|λi,t−1,y1:t−1) ∼ N (mi,t−1,Ci,t−1),

with parameters mi,t−1 and Ci,t−1. The prior for the component state vector θi,t

has a Normal distribution

(θi,t|λi,t,y1:t−1) ∼ N (ai,t,Ri,t),

with parameters ai,t and Ri,t and the one-step-ahead predictive distribution of

each observation

(yi,t|Fpa(i),t,y1:t−1) ∼ T (fi,t, qi,t),

is a Student T distribution with parameters fi,t and qi,t.
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The filtering density of θi,t given y1:t is a Normal distribution

(θi,t|λi,t,y1:t) ∼ N (mi,t,Ci,t),

with parameters mi,t and Ci,t.

Another key step is to decide on the stochastic evolution of the precision.

A formal description of the variance discounting can be found in Uhlig (1994)

and West and Harrison (1997). At time t − 1, the precision λi,t−1 have Gamma

distribution with posterior

(λi,t−1|y1:t−1) ∼ G(ni,t−1/2, di,t−1/2),

and parameters ni,t−1/2 and di,t−1/2, where di,t−1 = ni,t−1si,t−1, ni,t−1 is the de-

grees of freedom and si,t−1 is the variance of the observations. Proceeding to time

t, let’s introduce the variance discount factor φi. Based on the posterior at the

previous time t−1, suppose that λi,t is obtained from λi,t−1 by some random walk

model as in Equation (4.9). The implied prior at time t is a Gamma distribution

(λi,t|y1:t−1) ∼ G(φini,t−1/2, φidi,t−1/2),

the prior for αi,t have a Beta distribution

(αi,t|y1:t−1) ∼ Be(φini,t−1/2, (1− φi)ni,t−1/2),

and the filtering density of λi,t given y1:t is a Gamma distribution

(λi,t|y1:t) ∼ G(ni,t/2, di,t/2).

The implication from the discount factor, φi,, is that as the value of φi gets

larger, the random disturbance to the observational variance gets smaller at each
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time, Prado and West (2010). Hence, the multiplicative random walk model in

Equation (4.9) may be applied to model stochastic volatility in the observation

precision over time, West and Harrison (1997) and Prado and West (2010).

Another unknown element of the DLM is the evolution variance matrix Wi,t.

By definition, the posterior of the state vector has a variance matrix Pi,t =

V (θi,t−1|y1:t−1) = Ci,t−1 at time t − 1. Proceeding to time t, the prior of the

state vector has a variance matrix Ri,t = V (θi,t|y1:t−1) = Pi,t + Wi,t. This

process describes the relationship between the state vectors θi,t−1 and θi,t due

to the increase in uncertainty in moving from Pi,t to Ri,t = Pi,t + Wi,t. West

and Harrison (1997), Section 6.3, recommend to set Ri,t = Pi,t/δi for a discount

factor δi ∈ (0, 1]. Hence, the evolution variance matrix for each i is

Wi,t =
1− δi
δi

Pi,t,

where the discount factor δi associated with the series i component model controls

the evolution variance matrix.

4.4.2 The compositional form of the joint model

To construct a joint model from the prediction and filtering (updating) steps

of the Kalman filter algorithm, we compute the compositional form of the joint

density function following West and Harrison (1997), Chapter 9 and Zhao et al.

(2016). To predict yt at time t, we assume that for each i = 1 : N , the dynamic

and the contemporaneous parental predictors, Fpa(i),t = (xdp(i),t,ycp(i),t)
′, are un-

certain with a density function p(Fpa(i),t|y1:t−1). Then, the compositional joint

predictive density of yt can be computed as

p(yt|y1:t−1) =

∫
· · ·
∫ N∏

i=1

p(yi,t|Fpa(i),t,y1:t−1)p(Fpa(i),t|y1:t−1)dFpa(i),t,
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where p(yi,t|Fpa(i),t,y1:t−1) is the one-step-ahead predictive Student T distribu-

tion. The joint predictive moments, the mean vector and the variance matrix

ft = E(yt|y1:t−1), and Qt = V (yt|y1:t−1),

are calculated in a compositional form for each i = 1 : N , where the elements

of the vector ft and the elements of the matrix Qt are obtained by a plug-in

rule following the methods developed by Zhao et al. (2016). The elements of

the vector ft and the elements of the matrix Qt are plugged-in by updating the

values of fi,t and qi,t to take into account the uncertainty of the dynamic and the

contemporaneous parental predictors. Hence, the values of fi,t and qi,t that are

obtained from the initial Kalman filter algorithm are not the same as the values

that are used in the compositional form of the model. For all i = 1 : N , the

Student T distribution has the form (yi,t|Fpa(i),t,y1:t−1) ∼ Tni,t
(fi,t, qi,t), on ni,t

degrees of freedom, mean fi,t and scale qi,t. If ni,t > 1, E(yi,t|Fpa(i),t,y1:t−1) = fi,t.

In addition, if ni,t > 2, V (yi,t|Fpa(i),t,y1:t−1) =
ni,t

ni,t−2
qi,t. We show the functional

forms of the updated values of fi,t and qi,t in the Appendix, Section 4.8.3.

The next step is to derive the h-step-ahead forecast density for the state

vectors p(θi,t+h, λi,t+h|y1:t) and the h-step-ahead predictive density p(yi,t+h|y1:t).

We compute iterated forecasts for horizons between 1 and h. For the multi-step-

ahead forecast, analytical solutions do not exist. Consequently, we evaluate the

h-step-ahead of the posteriors of the states and the predictive density using Monte

Carlo simulations.

The compositional form of the recursive model has the following patterns.

We first sample the Normal-Gamma posterior p(θ1,t, λ1,t|y1:t) at time t to obtain

samples from p(θ1,t+1, λ1,t+1|y1:t) and p(y1,t+1|y1:t) at time t+1. In the next step,

we move on series i−1 to sample from p(y1:i−1,t+1|y1:t). By this recursive process,

we can generate full Monte Carlo samples from p(yt+1|y1:t) and can proceed
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to generate full Monte Carlo samples from p(yt+1:t+h|y1:t). For full details and

functional forms see Appendix, Section 4.8.1 through 4.8.3.

4.5 Bayesian graphical variable selection

In this section, we outline a practical approach to graphical variable search

and selection, model selection and implied model averaging.

4.5.1 The model space

A large of number of papers has emphasized the challenging task of Bayesian

variable selection when comparing a large number of models, key references in-

clude Madigan and Raftery (1994), Hoeting et al. (1999), Berger and Molina

(2005) and Heaton and Scott (2010). We have already introduced a source of

uncertainty in our modelling approach, i.e., the uncertainty of the unknown spar-

sity features of the dynamic and the contemporaneous parental predictors. We

approach a practical way to specify a probability model p(M) over the space of

all models by denoting component model probabilities p(Mi) over a subspace of

models. Let’s assume we have a set of M = {M1, . . . ,MN} models over the space

of all competing models, with M1 = M11:1K1 and K1 = 2p and for each i = 2 : N ,

Mi = Mi1:iKi
and Ki = 22p+i−1 denote the subspace of models based on groupings

of dynamic dp(i) and contemporaneous parents cp(i) treated as predictors. To

implement a Bayesian graphical variable selection procedure for a recursively or-

dered variables described in Section 4.2 and 4.3, we propose an efficient variable

search and selection algorithm for finding best and a range of good multiple re-

gression DLMs. This procedure is able to compute posterior model probabilities

over the space of all models by visiting the subspace of models in parallel.

We achieve this approach by ordering the graphical models in a Gray cyclic

binary code order inspired from Cameron (1994) and Murphy (2012) and based
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on an algorithm proposed by Boothroyd (1964). The Gray code algorithm shows

a logical vector within the Gray cyclic binary code and has a beautiful interpre-

tation in graph theory, Cameron (1994), Section 11.6. The algorithm starts from

a null model and follows a path of vectors, which differ by dimension 1 × p if

i = 1 and 1 × (2p + i − 1) if i ≥ 2. The process changes one element of the

vector to form the next by adding or removing a single variable. For example,

if i = 1 and p = 2, the number of graphical models is 2p = 4 for a dimension

of parental predictors 1 × p, the Gray cyclic binary code vector representation

would be {0, 0},{1, 0},{1, 1},{0, 1}.4 The corresponding family of all models in

the model subspace M1 is

M1 ≡ {M1,(0,0),M1,(1,0),M1,(1,1),M1,(0,1)},

where M1,(0,0) refers to the null model. The component model M1,(1,0) is an alter-

native hypothesis that dp(1) = y1,t−1 indicating a non-zero effect of the dynamic

predictor y1,t−1, M1,(1,1) is an alternative hypothesis that dp(1) = (y1,t−1, y1,t−2)

defining non-zero effects of both dynamic predictors, and M1,(0,1) is an alterna-

tive hypothesis that dp(1) = y1,t−2 pointing out a non-zero effect of the dynamic

predictor y1,t−2.
5

We may analyse the models in the model subspaces for i = 1 : N . Assuming

N = 10 and p = 2, the candidate modelsMi are shown as a set of |Mi|models over

the subspace of models, and the cardinality of the parental sets are given in Table

4.1. The first row in Table 4.1 shows the order of models in the model subspaces.

The second row evaluates the set of candidate models to be enumerated. Potential

number of elements of the dynamic and contemporaneous parental sets.

4The Gray code representation {0, 0},{1, 0},{1, 1},{0, 1} is analogous to a Hamiltonian circuit
in a hypercube graph representing the 2p vector of binary variables for the number of elements
p. A Hamiltonian circuit in a hypercube graph is a sequence of vector of binary variables that
each vector varies in one position from the preceding vector, and the last vector varies from the
first in one position, see Theorem 11.6.1 in Cameron (1994).

5We use a notation inspired from Barbieri and Berger (2004) and Müller et al. (2010) in
defining the model space and subspace.
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Model subspaces and parental sets

Order M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

|Mi| 4 32 64 128 256 512 1024 2048 4096 8192
|dp(i)| 2 4 4 4 4 4 4 4 4 4
|cp(i)| 1 2 3 4 5 6 7 8 9

Table 4.1: The table shows order of models in the model subspaces, number of
potential models to be enumerated, number of potential dynamic and contempo-
raneous parents.

4.5.2 A collection of priors for vector of binary indicator

variables

A question arises, how to elicit the prior probabilities for the graphical models

themselves? In high-dimensional problems, there is a consensus surrounding the

use of “variable selection prior” with the elements of each of row vectors of ΞB,k

and Ξγ are assumed to arise as a sequence of Bernoulli trials. Our aim is to dis-

cover models with high posterior probability. Thus, we focus on a nontraditional

search algorithm that finds models with high posterior probability.6 We list the

models and their posterior model probabilities over the space of all competing

models for each series i in parallel and compute the score for each one as the

logarithm of the posterior probabilities.

In our Bayesian graphical variable selection, each row of ΞB,k and Ξγ are

themselves defined as random vector of binary indicator variables. We define the

prior for each row of the binary indicator matrix ΞB,k such that the columns of

the xdp(i),t are included in the multiple regression DLM if ξβ,ij,k = 1 and excluded

6A nontraditional search algorithm refers to an approach that does not rely on using Markov
chain Monte Carlo (MCMC) algorithms, such as the Gibbs Sampler or the Metropolis-Hastings
algorithm. In a discrete state space, MCMC algorithms have proved to be inefficient. For a
review see Heaton and Scott (2010) and for more details Murphy (2012).
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if ξβ,ij,k = 0. Then, for each i = 2 : N , we assume yi,t−k or yj,t−k is parent of yi,t

ξβ,ij,k =


1, if yi,t−k → yi,t or yj,t−k → yi,t

0, otherwise,

(4.19)

The number of dynamic parents that are included in the model, is given by

Dβ,i =
i∑

j=i−1

ξβ,ij,k, (4.20)

where Dβ,i ≤ |Rdp(i)|.

As noted by Madigan and Raftery (1994), Hoeting et al. (1999), Cripps et al.

(2005), and Zhao et al. (2016), a prior probability choice for the size of the

graph on each dynamic parental series inclusion indictor may be a Bernoulli prior

probability of the form

p(ξβ,i) =
i∏

j=i−1

Ber(ξβ,ij,k|π) = πDβ,i(1− π)|Rdp(i)|−Dβ,i , (4.21)

where we may interpret π as the probability that any two variables have a pairwise

dependence structure with a maximum possible number of dependence |Rdp(i)|.

In a similar fashion, the prior for each row of the binary indicator matrix Ξγ

such that the columns of the ycp(i),t are included in the multiple regression DLM

if ξγ,ij = 1 and excluded if ξγ,ij = 0 as

ξγ,ij =


1, if yj,t → yi,t

0, otherwise,

(4.22)

For each i = 2 : N , the number of contemporaneous parental series that are
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included in the model, is given by

Dγ,i =
i−1∑
j=1

ξγ,ij, (4.23)

where Dγ,i ≤ i− 1.

The prior for the size of the graph on each contemporaneous parental series

inclusion indictor is a Bernoulli prior of the form

p(ξγ,i) =
i−1∏
j=1

Ber(ξγ,ij|π) = πDγ,i(1− π)i−1−Dγ,i . (4.24)

Those two steps can be performed in one step for both the dynamic and

contemporaneous parental series and for each p, if i = 1

p(ξβ,γ,i) =

p∏
j=1

Ber(ξβ,γ,ij|π) = πDβ,γ,i(1− π)p−Dβ,γ,i ,

otherwise,

p(ξβ,γ,i) =

2p+i−1∏
j=1

Ber(ξβ,γ,ij|π) = πDβ,γ,i(1− π)2p+i−1−Dβ,γ,i , (4.25)

where if i = 1, Dβ,γ,i =
∑p

j=1 ξβ,γ,ij otherwise, Dβ,γ,i =
∑2p+i−1

j=1 ξβ,γ,ij and Dβ,γ,i

is the number of dynamic and contemporaneous parents that are included in the

model. In addition, if i = 1, Dβ,γ,i ≤ p otherwise, Dβ,γ,i ≤ 2p+ i− 1.

4.5.3 Priors and initial values for parameters

Analysing DLMs componentwise requires prior distributions to be specified for

each individual component model by assuming independence between components

as noted by West and Harrison (1997). At an initial time t = 0, the state vectors

θi,0 and λi,0 are assumed to follow a Normal and a Gamma initial distributions,
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respectively. The specified moments are

(θi,0|y0) ∼ N (θi,0|mi,0,Ci,0), (4.26)

(λi,0|y0) ∼ G(λi,0|ni,0, di,0). (4.27)

Following Koop and Korobilis (2013) and Zhao et al. (2016), for each i =

1 : N , we set the prior hyperparameters for mi,0 = (0, . . . , 0)′ and the initial

values of mi,t at time t = 0 are set to mi,0. The prior hyperparameters for the

state covariance matrices Ci,0 = I and the initial values of Ci,t at time t = 0

is equal to Ci,0. The prior hyperparameters of the degrees of freedom is set to

ni,0 = (1−δ1)−1−p if i = 1, otherwise ni,0 = (1−δ1)−1−(2p+i−1), and similarly

di,0 = (1− δ1)
−1− p if i = 1, otherwise di,0 = (1− δ1)

−1− (2p+ i− 1) leading to a

prior hyperparameter value of the estimate of the observational variance si,0 = 1.7

And the implied sequence Wi,t for t = 1, . . . , T are identified given δi and Ci,0.

The discount factors for the residual volatilities φi and the discount factors for

the variance of the states δi are evaluated over a grid of values that we describe

in Section 4.6.

4.5.4 Predictive likelihood functions

The predictive likelihood function of the joint model defined in terms of the

observed predictive density can be decomposed as the product of predictive like-

lihood functions of the Mi models at each point in time over t = 1 : T as

p(yt|y1:t−1) = p(y1,t|Fpa(1),t,y1:t−1)
N∏
i=2

p(yi,t|Fpa(i),t,y1:t−1)

7The value of the hyperparameter δ1 is set to the value in Table 4.3.
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where the predictive likelihood is defined as a univariate Student T distribution

of the predictive density p(yi,t|Fpa(i),y1:t−1)

Li,t =
Γ[(ni,t−1 + 1)/2]

Γ[ni,t−1/2]
√
ni,t−1qi,t

{
1 +

(yi,t − fi,t)
2

ni,t−1qi,t

}−(ni,t−1+1)/2

, (4.28)

and

(yi,t|Fpa(i),y1:t−1) ∼ Tni,t−1
(fi,t, qi,t). (4.29)

for t = 1, . . . , T .

4.5.5 Posterior over the model space

The posterior probability p(M |y1:t) over the space of all models M can be

decomposed as a product of component posterior probabilities p(Mi|yi,1:t) over

the subspace of models Mi as

p(M |y1:t) ∝
N∏
i=1

p(Mi|yi,1:t), (4.30)

where for each i = 1 : N and t = 1 : T , if i = 1

p(Mi|yi,1:t) ∝ p(yi,t|Fpa(i),t,y1:t−1)π
Di,β(1− π)p−Di,β ,

otherwise

p(Mi|yi,1:t) ∝ p(yi,t|Fpa(i),t,y1:t−1)π
Di,β,γ (1− π)2p+i−1−Di,β,γ . (4.31)

4.5.6 Bayesian model selection

We have now identified the various elements of the Bayesian graphical variable

selection problem, i.e. the full model space M and the subspace of models Mi,

the two components of the prior probabilities, the priors for the vector of binary
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indicator variables and the priors for the parameters, the predictive likelihood

function of each model and the posteriors over the model space. In a procedure

of identifying models in terms of posterior probabilities, we assume the model is

another unknown parameter and obtain the posterior probabilities of the models

under considerations. First, we define the marginal predictive density of the data

as

p(yi,t|y1:t−1) =

∫
p(yi,t|Fpa(i),θi,t, λi,t)p(θi,t, λi,t|y1:t−1)dθi,tdλi,t (4.32)

as the one-step-ahead predictive density for the observations.

Now let’s write the number of models for each series explicitly and denote Mik

as any arbitrary choice of a sub-model of series i. Then, the relative posterior

probability for model Mik compared to all candidate models Mi is given by

p(Mik|yi,1:t) =
p(yi,t|Fpa(i),y1:t−1)p(Mik)∑Ki

ℓ=1 p(yi,t|Fpa(i).y1:t−1)p(Miℓ)
, (4.33)

where Mi ≡ {1 : Ki} is defined as the set of all models over a subspace of models

in Mi with a maximum number of models Ki and Mik is any arbitrary model in

this set.

Next, to select the best models or a range of good models, we rank the can-

didate models based on their posterior model probabilities in Equation (4.33).

4.5.7 Bayesian model averaging

Evaluating a large number of multiple regression DLMs over the space of all

models M from models for the subspaces Mi may not be practical. We integrate

the variable search and selection components of previous section in a Bayesian

model averaging approach. At this point, we truncate the space over the models

and look at only the models that have a posterior model probability higher than
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the threshold 0.005. Let the model Mij be selected with a known probability

pij = Pr[Mij|y1:t],

where j = 1 : Ji and Ji < Ki. The form of the density of p(θi,t|y1:t) is a mixture

of Ji Normal distributions and p(λi,t|y1:t) is a mixture of Ji Gamma distributions

given by following equations, respectively

p(θi,t|y1:t) =

Ji∑
j=1

fN(θij,t;mij,t,Cij,t)pij (4.34)

and

p(λi,t|y1:t) =

Ji∑
j=1

fG(λij,t;nij,t, dij,t)pij (4.35)

with moments

mi,t =

Ji∑
j=1

mij,tpij,

Ci,t =

Ji∑
j=1

[Cij,t + (mi,t −mij,t)(mi,t −mij,t)
′]pij,

s−1
i,t =

Ji∑
j=1

s−1
ij,tpij,

(4.36)

where the number of components are fixed for all t = 1 : T .

The component densities have Student T distribution, which yields the fol-

lowing equation for a Student T finite mixture

p(yi,t|Fpa(i),t,y1:t−1) =

Ji∑
j=1

fTnt
(yi,t;nij,t, fij,t, qij,t)pij. (4.37)
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Given a nonnegative integer N , defining the cross-sectional dimension of the data,
a nonnegative integer T , defining the time series dimension of the data, hyperpa-
rameter values reported in Table 4.2 and hyperparameter values of parameters,
a vector of macroeconomic and financial variables yt, and a vector of lagged val-
ues the variables (yt−1,yt−2), a pseudocode for the Gray code algorithm and the
Kalman filter algorithm that runs in parallel can be summarised as follows

4.5.8 A pseudocode to describe a parallel search algo-

rithm

Start a loop that runs in parallel for i = 1, . . . , N

1. Let Mi,0 denote the null sub-model, which contains no predictors.

2. If i = 1, for j = 1 : K1

(a) Apply the Gray code algorithm and fit all 2p models.

(b) Apply the Kalman filter algorithm over all model space as described in

the Appendix, Section 4.8.2.

(c) Compute the score as the logarithm of Equation (4.31).

otherwise for j = 1 : Ki

(a) Apply the Gray code algorithm and fit all 22p+i−1 models.

(b) Apply the Kalman filter algorithm over all model space.

(c) Compute the score as the logarithm of Equation (4.31).

3. Either select a single best model or perform a Bayesian model averaging by

evaluating best models among those 2p and 22p+i−1 models. Here best is defined

as having posterior probabilities as in Equation (4.33) exceeding the threshold

0.005.

4.6 Empirical Results

We assess the efficacy of the proposed graphical variable selection, the implied

model selection and the model averaging approaches by measuring how well the

resulting models predict future observations.
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4.6.1 Data

Our data comprises a set of quarterly U.S. macroeconomic and financial time

series data that are taken from the FRED database of the Federal Reserve Bank

of St Louis spanning from 1959Q1 to 2022Q3. The variables are consumption,

investment, GDP growth, GDP deflator, industrial production, unemployment

rate, corporate bond spread, S&P 500 stock returns, 10-year Treasury rate, and

Federal funds rate.

We work with ten variables and transform the majority of variables to sta-

tionarity using the benchmark transformation code of McCracken and Ng (2020).

The Data appendix, Section 4.8.5, provides a complete listing of the variables.

4.6.2 Exploratory analysis

We perform exploratory analysis in order to discover the best approaches in

selecting the discount factors, the model order p, and the graphical models. We

try to answer three questions in order to proceed for our actual analysis. First,

how to select the possible range of values for the discount factors? Second, how

to choose the optimal values of the discount factors and the model order p for

each series? Third, how to select a graphical model? To answer these questions,

Table 4.2 provides some insight into various prior hyperparameter values to guide

us in the model specification. The first two rows are commonly used possible grid

of values for the discount factors φi and δi. The third quantity, π, is based on

the value of the prior probability of graph structures, the prespecified threshold

value, 0.005, is for evaluating the posterior model probabilities, and the model

order p is considered over a lower bound and an upper bound values.

Range of values of series specific discount factors

Our first task is to choose the values of the discount factors δi and φi. As

West and Harrison (1997) and Prado and West (2010) note, the variability of
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Prior hyperparameters
Hyperparameter Value Hyperparameter Value

Dφi
{0.974 : 0.004 : 0.998} π 0.5

Dδi {0.974 : 0.004 : 0.998} Threshold 0.005
k = 1 : p [1, 2]

Table 4.2: The table shows a grid of values of prior hyperparameters of discount
factors, value of the prior probability of graph structures, a threshold to evaluate
high posterior probabilities, and the model order p.

the state coefficients can be controlled by the discount factors close to one. On

the other hand, low values of the discount factors lead to high variability in the

coefficient states. In practice, it is common to use δi, φi ≥ .9, Prado and West

(2010). Thus, the range of values of the discount factors are evaluated over a grid

of values as shown in Table 4.2. We evaluate every combination of Dφi
and Dδi

for each series. This leads to a total combination of Dφi,δi = 49.

Optimal values of discount factors and model order

Second, we choose optimal values of the discount factors, δi and φi, and the

model order p by maximizing the logarithm of the predictive likelihood functions.

This is because we assume a simple noninformative uniform prior distribution for

the hyperparameters of the model order p and discount factors, p(δi, φi, p) ∝ 1,

which reduces the posterior inference problem to maximizing the logarithm of

the predictive likelihood functions. We assume that the true model order p is

unknown but a lower bound and an upper bound for the order is known. We set

the lower bound to 1 and the upper bound to 2.8 For each i = 1 : N , we choose

the values of δi, φi, and p that maximize the function

8To ensure parsimonious models, the order of VAR(p) models with time-varying parameters
and stochastic volatility is commonly fixed to 2, for instance, see Cogley and Sargent (2005),
Primiceri (2005), and Koop and Korobilis (2010).
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logL(δi, φi, p;y) ≡ log[p(yi,1:T |y0, δi, φi, p)],

=
T∑
t=1

log[p(yi,t|y1:t−1, δi, φi, p)],
(4.38)

where p(yi,t|y1:t−1) are the one-step-head univariate Student T predictive densi-

ties.

Table 4.3 displays the results for the optimal model order p, the optimal values

of the discount factors and the logarithm of the predictive likelihoods for each

series in the model space. In this experiment, for each series i = 1 : N , the

algorithm explores 98 different combinations of δi, φi, and p over the subspace

of models. Hence, in total N × 98 models are explored. Let’s first consider the

inference about p. Models of the variables consumption and investment identify

the order p = 2 as optimal. On the other hand, models of the variables GDP

growth, GDP deflator, industrial production, unemployment rate, corporate bond

spread, S&P 500 stock returns, 10-year Treasury rate, and Federal funds rate

favour the order p = 1.

Obviously, the optimal values of φ is constant for all series. By contrast to

φi, the optimal values of δi for the variables consumption and investment is 0.990

with an optimal lag order 2 and all other variables choose 0.986 as the optimal

value for δi with the optimal lag order 1. This raises the question of whether the

optimal value of the discount factors δi is sensitive to the model order.

To summarise, models of two orders are explored to identify the chosen order

p. Similarly, the optimal values of the discount factors for the precision λi,t and

the state variance matrices Wi,t, are chosen by exploring several values. Our

actual analysis is based on the discount factors at the optimal values reported in

Table 4.3. However, we fix the value of the model order to p = 2 for all series to

explore the support of these results in the variable selection experiment.
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Optimal model order p, discount factors and sum of L.P.L.

Series p δ φ L.P.L. Series p δ φ L.P.L.

PCECC96 2 0.990 0.974 -347.344 UNRATE 1 0.986 0.974 -209.895
GPDIC1 2 0.990 0.974 -318.572 CS 1 0.986 0.974 -184.588
GDPC1 1 0.986 0.974 -128.969 S&P 500 1 0.986 0.974 -332.989
GDPCTPI 1 0.986 0.974 -342.515 GS10 1 0.986 0.974 -352.916
INDPRO 1 0.986 0.974 -188.296 FEDFR 1 0.986 0.974 -310.682

Table 4.3: The table shows the optimal values of the model order p, the discount
factors and the logarithms of predictive likelihoods (L.P.L.). The range of values
of the discount factors are evaluated over a grid of values in Dφ = {0.974 : 0.004 :
0.998} and Dδ = {0.974 : 0.004 : 0.998}. Series descriptions are reported in the
Data appendix.

Selecting graphical models

Third, applying a graphical variable selection approach with uncertainty over

the number of parental series for each i, requires variable selection to be applied

for each series as 2p +
∑N

i=2 2
2p+i−1. We decide to apply the variable selection

approach over the parental series only, i.e., the number of graphical models for

each i would be 2p +
∑N

i=2 2
2p+i−1 with the model order fixed to p = 2 and the

discount factors would be preselected based on the values reported in Table 4.3.

For a feasible computational approach in terms of time complexity of solving a

problem, setting N = 10, leads to over 8, 000 possible models MN and over 16,000

possible model M1:N . A prior probability on the graph structure π = 0.5 is chosen

and models with posterior probabilities less than a threshold, 0.005, are removed.

To illustrate the use of the variable selection of this section, we calculate the

posterior model probabilities for each i = 1 : N . Table 4.4 through Table 4.13

present the series specific models that receive over .5% posterior model proba-

bility in descending order. The pattern of the dynamic and contemporaneous

dependence structures takes values in the discrete space as 1’s and the pattern

of the independence structures are shown by 0’s. The dimension of the vector

of dynamic parents range from 1 × p and 1 × 2p and they refer to the dynamic

parents in a lower bidiagonal order, that is, the first variable in the recursive or-
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der has its first and second own-lags as dynamic parents and each other variable

has a potential of first and second cross-lags of a preceding variable and first and

second own-lags as parents. On the other hand, the dimension of the vector of

the contemporaneous parents are presented for each i = 2 : N , as 1 × (i − 1),

representing the current values of variables in the same order that are reported

in the Data appendix. For example, consumption = 1, investment = 2, GDP

growth = 3, GDP deflator = 4, industrial production = 5, unemployment rate

= 6, corporate bond spread = 7, S&P 500 stock returns = 8, 10-year Treasury

rate = 9, and Federal funds rate = 10.

The preferred models for the variables consumption, investment and GDP

growth are shown in Table 4.4. 3 out of 4 models are among the best models for

consumption. It appears that first and second own-lags of consumption have much

predictive power. Dynamic parents of the variable investment are first and second

own-lags of investment and first and second cross-lags of the variable consump-

tion. 7 out of 32 models are much confident that first cross-lag of consumption

as a dynamic parent of the variable investment must be included in the model.

Those models also support the inclusion of the current value of consumption as

a contemporaneous parent of investment. The most likely 11 models for the vari-

able GDP growth show that none of the variables from the dynamic parental set

dominates the dependence structures. In addition, the model with the highest

posterior probability represents 41% of the total posterior probability, indicating

zero effects of the dynamic predictors. On the other hand, all models support the

inclusion of the contemporaneous parents, consumption and investment, in the

model featuring the variable GDP growth as a dependent variable. In total, 128

different models are visited for the variable GDP deflator as shown in Table 4.5.

In this example, 29 models are chosen and all models support the inclusion of the

first own-lag of the variable GDP deflator as a dynamic parent. Table 4.6 displays

the results for the variable industrial production with a potential of 8 dynamic
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and contemporaneous predictors. All chosen 12 models are confident that own

first-lag of the variable industrial production and contemporaneous values of the

variables consumption and investment must be included in the model. The re-

sults of the variable unemployment rate in Table 4.7 indicate considerable model

uncertainty with the highest posterior model probability explaining only 15% of

the total posterior probability. Those models are confident that the first-own

lag of unemployment rate as a dynamic parent, and consumption and industrial

production as contemporaneous parents must be included in the model.

For the variable corporate bond spread, Table 4.8 and Table 4.9 show the pos-

terior model probabilities of 43 out of 1024 models. There is a considerable model

uncertainty over the model space with the highest posterior model probability ac-

counting for only 8% of the total posterior probability. We present the results

for the variable S&P 500 stock returns in Table 4.10 with the search algorithm

exploring all 2048 models. All models supports the inclusion of the first cross-lag

of the variable corporate bond spread and the majority of models are confident

that the first own-lag must be included in the model. The contemporaneous par-

ent, corporate bond spread, has a predictive power on the variable S&P 500 stock

returns, which is supported by all 38 models. Table 4.11 reports best models for

the variable 10-year Treasury maturity rate with high model uncertainty across

the model space and with few variables having explanatory power excluding the

first own-lag as a dynamic parent. Finally, the results for variable Federal funds

rate are reported in Table 4.12 and 4.13. 40 out of 8,192 models are supported

by the method. The first own-lag of the variable Federal funds rate as a dynamic

parent and the current value of the variable 10-year Treasury maturity rate have

much predictive ability on the variable Federal funds rate.

To summarize, we have illustrated the inferential potential of a Bayesian vari-

able selection problem. The results show that there is a considerable model

uncertainty within the best selected models for each series. As the number of
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predictors increases, the model uncertainty increases too. Inference based on a

single best model with the highest posterior model probability would be ambigu-

ous.
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Range of good multiple regression DLMs exploring all possible 22 = 4 models

Consumption

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.857 M1,(1,1) 3

2 0.112 M1,(1,0) 2

3 0.031 M1,(0,1) 4

Range of good multiple regression DLMs exploring all possible 25 = 32 models

Investment

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.763 M2,(1,0,0,0) M2,(1) 31

2 0.090 M2,(1,1,0,0) M2,(1) 30

3 0.064 M2,(1,0,1,0) M2,(1) 26

4 0.057 M2,(1,0,0,1) M2,(1) 18

5 0.010 M2,(1,1,0,1) M2,(1) 19

6 0.009 M2,(1,1,1,0) M2,(1) 27

7 0.006 M2,(1,0,1,1) M2,(1) 23

Range of good multiple regression DLMs exploring all possible 26 = 64 models

GDP Growth

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.406 M3,(0,0,0,0) M3,(1,1) 33

2 0.325 M3,(1,0,0,0) M3,(1,1) 34

3 0.094 M3,(1,1,0,0) M3,(1,1) 35

4 0.049 M3,(0,0,1,0) M3,(1,1) 40

5 0.034 M3,(0,1,0,0) M3,(1,1) 36

6 0.029 M3,(1,0,1,0) M3,(1,1) 39

7 0.017 M3,(0,0,0,1) M3,(1,1) 48

8 0.013 M3,(1,0,0,1) M3,(1,1) 47

9 0.008 M3,(1,1,1,0) M3,(1,1) 38

10 0.007 M3,(0,0,1,1) M3,(1,1) 41

11 0.005 M3,(1,1,0,1) M3,(1,1) 46

Table 4.4: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series consumption, investment and GDP
growth, excluded (included) dynamic and contemporaneous parents are shown
by zero (one) independence (dependence) structures, and model indices.



129

Range of good multiple regression DLMs exploring all possible 27 = 128 models

GDP Deflator

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.157 M4,(0,1,0,1) M4,(1,1,0) 45

2 0.128 M4,(0,1,0,1) M4,(0,1,0) 52

3 0.102 M4,(0,1,0,1) M4,(1,1,1) 84

4 0.071 M4,(0,1,0,0) M4,(1,1,0) 36

5 0.068 M4,(0,1,0,0) M4,(0,1,0) 61

6 0.044 M4,(0,1,0,1) M4,(0,1,1) 77

7 0.044 M4,(0,1,0,0) M4,(1,1,1) 93

8 0.039 M4,(0,1,0,1) M4,(0,0,1) 116

9 0.036 M4,(0,1,0,1) M4,(1,0,0) 20

10 0.027 M4,(0,1,0,1) M4,(1,0,1) 109

11 0.026 M4,(0,1,0,0) M4,(0,1,1) 68

12 0.025 M4,(0,1,1,1) M4,(1,1,0) 44

13 0.024 M4,(0,1,1,1) M4,(1,1,1) 85

14 0.021 M4,(1,1,0,1) M4,(1,1,0) 46

15 0.015 M4,(0,1,1,1) M4,(0,1,0) 53

16 0.015 M4,(1,1,0,1) M4,(1,1,1) 83

17 0.014 M4,(1,1,0,1) M4,(0,1,0) 51

18 0.013 M4,(0,1,0,0) M4,(0,0,1) 125

19 0.013 M4,(1,1,0,1) M4,(1,0,0) 19

20 0.009 M4,(0,1,0,0) M4,(1,0,0) 29

21 0.008 M4,(0,1,0,0) M4,(1,0,1) 100

22 0.008 M4,(0,1,1,1) M4,(1,0,0) 21

23 0.008 M4,(0,1,1,1) M4,(0,1,1) 76

24 0.007 M4,(1,1,0,0) M4,(1,1,0) 35

25 0.007 M4,(1,1,0,1) M4,(0,1,1) 78

26 0.006 M4,(1,1,0,1) M4,(0,0,1) 115

27 0.006 M4,(1,1,0,1) M4,(1,0,1) 110

28 0.005 M4,(0,1,1,1) M4,(0,0,1) 117

29 0.005 M4,(1,1,0,0) M4,(0,1,0) 62

Table 4.5: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series GDP deflator, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 28 = 256 models

Industrial Production

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.394 M5,(0,1,0,0) M5,(1,1,0,0) 36

2 0.295 M5,(0,1,0,0) M5,(1,1,0,1) 221

3 0.051 M5,(1,1,0,0) M5,(1,1,0,0) 35

4 0.047 M5,(0,1,0,1) M5,(1,1,0,0) 45

5 0.042 M5,(0,1,0,0) M5,(1,1,1,0) 93

6 0.032 M5,(0,1,0,0) M5,(1,1,1,1) 164

7 0.030 M5,(0,1,0,1) M5,(1,1,0,1) 212

8 0.027 M5,(1,1,0,0) M5,(1,1,0,1) 222

9 0.021 M5,(0,1,1,0) M5,(1,1,0,0) 37

10 0.015 M5,(0,1,1,0) M5,(1,1,0,1) 220

11 0.010 M5,(1,1,0,1) M5,(1,1,0,0) 46

12 0.005 M5,(1,1,0,0) M5,(1,1,1,0) 94

Table 4.6: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series industrial production, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 29 = 512 models

Unemployment Rate

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.150 M6,(1,1,0,1) M6,(1,1,0,0,1) 467

2 0.110 M6,(1,1,0,1) M6,(1,0,0,0,1) 494

3 0.066 M6,(0,1,1,0) M6,(1,0,0,0,1) 485

4 0.062 M6,(1,1,1,0) M6,(1,0,0,0,1) 486

5 0.059 M6,(1,1,1,0) M6,(1,1,0,0,1) 475

6 0.057 M6,(0,1,0,1) M6,(1,1,0,0,1) 468

7 0.049 M6,(0,1,0,1) M6,(1,0,0,0,1) 493

8 0.046 M6,(0,1,1,0) M6,(1,1,0,0,1) 476

9 0.033 M6,(0,1,0,0) M6,(1,0,0,0,1) 484

10 0.029 M6,(1,1,0,1) M6,(1,1,1,0,1) 430

11 0.027 M6,(1,1,0,1) M6,(1,0,1,0,1) 403

12 0.026 M6,(1,1,0,0) M6,(1,0,0,0,1) 483

13 0.026 M6,(0,1,0,0) M6,(1,1,0,0,1) 477

14 0.025 M6,(1,1,0,0) M6,(1,1,0,0,1) 478

15 0.020 M6,(1,1,1,1) M6,(1,1,0,0,1) 470

16 0.019 M6,(0,1,1,1) M6,(1,1,0,0,1) 469

17 0.019 M6,(0,1,1,1) M6,(1,0,0,0,1) 492

18 0.016 M6,(1,1,1,1) M6,(1,0,0,0,1) 491

19 0.016 M6,(0,1,1,0) M6,(1,0,1,0,1) 412

20 0.016 M6,(1,1,1,0) M6,(1,0,1,0,1) 411

21 0.011 M6,(0,1,0,1) M6,(1,0,1,0,1) 404

22 0.011 M6,(0,1,0,1) M6,(1,1,1,0,1) 429

23 0.009 M6,(1,1,1,0) M6,(1,1,1,0,1) 422

24 0.009 M6,(0,1,0,0) M6,(1,0,1,0,1) 413

25 0.007 M6,(1,1,0,0) M6,(1,0,1,0,1) 414

26 0.007 M6,(0,1,1,0) M6,(1,1,1,0,1) 421

Table 4.7: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series unemployment rate, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 210 = 1024 models

Corporate Bond Spread

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.077 M7,(0,1,0,1) M7,(0,0,0,0,1,0) 500

2 0.062 M7,(0,1,0,1) M7,(0,0,0,1,1,0) 269

3 0.048 M7,(0,1,0,0) M7,(0,0,0,0,1,0) 509

4 0.047 M7,(0,1,0,1) M7,(1,0,0,0,1,0) 493

5 0.033 M7,(0,1,0,1) M7,(1,0,0,1,1,0) 276

6 0.032 M7,(0,1,0,0) M7,(0,0,0,1,1,0) 260

7 0.030 M7,(0,1,0,1) M7,(0,1,0,0,1,0) 461

8 0.026 M7,(0,1,0,0) M7,(1,0,0,0,1,0) 484

9 0.026 M7,(0,1,0,0) M7,(1,0,0,1,1,0) 285

10 0.026 M7,(0,1,0,1) M7,(0,0,0,0,1,1) 525

11 0.025 M7,(0,1,0,1) M7,(0,0,0,1,1,1) 756

12 0.025 M7,(0,1,0,1) M7,(0,1,0,1,1,0) 308

13 0.024 M7,(0,1,0,0) M7,(0,1,0,0,1,0) 452

14 0.021 M7,(0,1,0,0) M7,(0,0,0,0,1,1) 516

15 0.019 M7,(0,1,0,0) M7,(0,0,0,1,1,1) 765

16 0.019 M7,(0,1,0,0) M7,(0,1,0,0,1,1) 573

17 0.018 M7,(0,1,0,1) M7,(1,0,0,0,1,1) 532

18 0.017 M7,(0,1,0,1) M7,(0,1,0,1,1,1) 717

19 0.017 M7,(0,1,0,0) M7,(0,1,0,1,1,1) 708

20 0.017 M7,(0,1,0,1) M7,(0,1,0,0,1,1) 564

21 0.015 M7,(0,1,0,0) M7,(0,1,0,1,1,0) 317

Table 4.8: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series corporate bond spread, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 210 = 1024 models

Corporate Bons Spread (continued)

Choice P.M.P. Dynamic Parents Contem. Parents Model index

22 0.015 M7,(0,1,0,1) M7,(1,0,0,0,0,1) 1005

23 0.013 M7,(0,1,0,1) M7,(1,0,1,0,1,0) 404

24 0.012 M7,(0,1,0,1) M7,(1,0,0,1,1,1) 749

25 0.009 M7,(0,1,0,1) M7,(1,1,0,0,1,0) 468

26 0.009 M7,(0,1,0,1) M7,(1,0,0,1,0,1) 788

27 0.009 M7,(0,1,0,1) M7,(0,0,1,0,1,0) 397

28 0.009 M7,(0,1,0,1) M7,(1,0,1,1,1,0) 365

29 0.009 M7,(0,1,0,1) M7,(1,0,1,0,0,1) 916

30 0.009 M7,(0,1,0,0) M7,(1,0,0,0,1,1) 541

31 0.008 M7,(1,1,0,0) M7,(0,0,0,1,1,1) 766

32 0.008 M7,(0,1,0,0) M7,(1,0,0,1,1,1) 740

33 0.008 M7,(0,1,0,0) M7,(1,0,1,0,1,0) 413

34 0.008 M7,(0,1,0,1) M7,(1,0,1,0,1,1) 621

35 0.007 M7,(0,1,0,0) M7,(1,0,1,1,1,0) 356

36 0.007 M7,(0,1,0,1) M7,(1,1,0,1,1,0) 301

37 0.006 M7,(1,1,0,0) M7,(0,1,0,1,1,1) 707

38 0.006 M7,(0,1,0,0) M7,(1,1,0,0,1,0) 477

39 0.006 M7,(0,1,0,1) M7,(0,0,1,1,1,0) 372

40 0.006 M7,(0,1,0,0) M7,(1,1,0,1,1,0) 292

41 0.006 M7,(0,1,0,1) M7,(0,0,1,0,1,1) 628

42 0.005 M7,(0,1,0,1) M7,(1,1,0,0,1,1) 557

43 0.005 M7,(0,1,0,1) M7,(0,0,1,0,0,1) 909

Table 4.9: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series corporate bond spread, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 211 = 2048 models

S&P 500 Stock Returns

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.132 M8,(1,1,0,0) M8,(0,1,1,0,1,0,1) 1603

2 0.092 M8,(1,1,0,0) M8,(0,1,1,0,0,0,1) 1982

3 0.054 M8,(1,1,0,0) M8,(0,0,1,0,1,0,1) 1662

4 0.052 M8,(1,1,0,0) M8,(1,0,1,0,1,0,1) 1635

5 0.039 M8,(1,1,1,0) M8,(0,1,1,0,1,0,1) 1606

6 0.037 M8,(1,1,1,0) M8,(0,0,1,0,1,0,1) 1659

7 0.033 M8,(1,1,0,0) M8,(0,1,1,0,0,1,1) 1091

8 0.031 M8,(1,1,1,0) M8,(0,1,1,0,0,0,1) 1979

9 0.028 M8,(1,1,1,0) M8,(1,0,0,0,0,0,1) 2022

10 0.027 M8,(1,1,1,0) M8,(1,0,1,0,1,0,1) 1638

11 0.026 M8,(1,1,0,0) M8,(1,0,0,0,1,0,1) 1566

12 0.023 M8,(1,1,0,0) M8,(1,0,0,0,0,0,1) 2019

13 0.019 M8,(1,1,0,0) M8,(1,1,1,0,1,0,1) 1630

14 0.016 M8,(1,1,0,0) M8,(1,0,0,0,0,1,1) 1054

15 0.013 M8,(1,1,1,0) M8,(1,0,0,0,1,0,1) 1563

16 0.013 M8,(1,1,0,0) M8,(0,1,1,0,1,1,1) 1470

17 0.012 M8,(1,1,0,0) M8,(1,1,1,0,0,0,1) 1955

18 0.011 M8,(1,1,0,1) M8,(0,1,1,0,1,0,1) 1614

19 0.010 M8,(1,1,1,0) M8,(0,0,1,0,0,0,1) 1926

20 0.010 M8,(1,1,0,0) M8,(1,1,0,0,1,0,1) 1571

21 0.010 M8,(1,1,0,1) M8,(0,1,1,0,0,0,1) 1971

22 0.009 M8,(1,1,1,0) M8,(0,1,1,0,0,1,1) 1094

23 0.009 M8,(1,1,0,0) M8,(1,0,1,0,0,1,1) 1123

24 0.009 M8,(1,0,0,0) M8,(0,1,1,0,0,0,1) 1983

25 0.008 M8,(1,1,0,0) M8,(0,0,1,0,0,1,1) 1150

26 0.008 M8,(1,1,1,0) M8,(1,0,1,0,0,0,1) 1947

27 0.008 M8,(1,1,1,0) M8,(1,0,0,0,0,1,1) 1051

28 0.007 M8,(1,1,0,0) M8,(1,0,1,0,1,1,1) 1438

29 0.007 M8,(1,1,0,0) M8,(0,0,1,0,1,1,1) 1411

30 0.007 M8,(1,1,0,0) M8,(1,1,0,0,0,0,1) 2014

31 0.007 M8,(1,1,0,0) M8,(0,0,0,0,0,0,1) 2046

32 0.006 M8,(1,1,1,0) M8,(0,0,1,0,0,1,1) 1147

33 0.006 M8,(1,1,1,0) M8,(1,1,1,0,1,0,1) 1627

34 0.006 M8,(1,1,0,1) M8,(0,0,1,0,1,0,1) 1651

35 0.006 M8,(1,1,0,0) M8,(1,0,1,0,0,0,1) 1950

36 0.006 M8,(1,1,0,0) M8,(0,1,1,1,1,0,1) 1726

37 0.006 M8,(1,1,0,0) M8,(0,0,1,0,0,0,1) 1923

38 0.005 M8,(1,1,1,0) M8,(1,1,0,0,1,0,1) 1574

Table 4.10: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series S&P 500 stock returns, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 212 = 4096 models

10-Year Treasury Maturity Rate

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.089 M9,(0,1,1,0) M9,(0,0,0,1,1,0,0,0) 261

2 0.065 M9,(0,1,0,0) M9,(0,0,0,1,1,0,0,0) 260

3 0.050 M9,(0,1,1,0) M9,(0,0,0,0,1,0,0,0) 508

4 0.039 M9,(0,1,0,0) M9,(0,0,0,0,1,0,0,0) 509

5 0.022 M9,(0,1,0,0) M9,(0,0,0,0,1,0,0,1) 3588

6 0.021 M9,(0,1,1,0) M9,(0,0,0,0,1,0,0,1) 3589

7 0.018 M9,(0,1,1,0) M9,(0,0,0,1,1,0,0,1) 3836

8 0.018 M9,(0,1,1,0) M9,(0,0,0,1,0,1,0,0) 773

9 0.018 M9,(1,1,1,0) M9,(0,0,0,1,1,0,0,0) 262

10 0.017 M9,(0,1,0,0) M9,(0,0,0,1,1,0,0,1) 3837

11 0.015 M9,(0,1,1,0) M9,(0,0,1,1,1,0,0,0) 380

12 0.015 M9,(0,1,1,0) M9,(0,1,0,1,1,0,0,0) 316

13 0.014 M9,(0,1,1,0) M9,(0,1,0,1,0,0,0,0) 197

14 0.014 M9,(0,1,0,0) M9,(0,1,0,1,0,0,0,0) 196

15 0.012 M9,(0,1,1,0) M9,(0,0,0,1,1,0,1,0) 1788

16 0.011 M9,(0,1,0,0) M9,(0,0,0,1,0,1,0,0) 772

17 0.010 M9,(0,1,0,0) M9,(0,1,0,1,1,0,0,0) 317

18 0.010 M9,(0,1,1,0) M9,(0,1,0,0,1,0,0,0) 453

19 0.010 M9,(0,1,1,0) M9,(0,0,0,1,1,1,0,0) 764

20 0.010 M9,(0,1,1,0) M9,(1,0,0,1,1,0,0,0) 284

21 0.009 M9,(0,1,0,1) M9,(0,0,0,1,1,0,0,0) 269

22 0.009 M9,(0,1,0,0) M9,(0,0,1,1,0,0,0,0) 132

23 0.009 M9,(0,1,0,0) M9,(0,0,1,1,1,0,0,0) 381

24 0.009 M9,(0,1,1,0) M9,(0,0,0,0,1,0,1,0) 1541

25 0.008 M9,(1,1,1,0) M9,(0,0,0,1,0,1,0,0) 774

26 0.008 M9,(0,1,1,1) M9,(0,0,0,1,1,0,0,0) 268

27 0.008 M9,(1,1,1,0) M9,(0,0,0,0,1,0,0,0) 507

28 0.007 M9,(0,1,1,0) M9,(0,0,1,0,1,0,0,0) 389

29 0.007 M9,(0,1,0,1) M9,(0,0,0,0,1,0,0,0) 500

30 0.007 M9,(0,1,0,0) M9,(0,1,0,0,1,0,0,0) 452

31 0.007 M9,(0,1,1,0) M9,(0,0,1,1,0,0,0,0) 133

32 0.006 M9,(0,1,1,1) M9,(0,0,0,0,1,0,0,0) 501

33 0.005 M9,(0,1,0,0) M9,(1,0,0,1,1,0,0,0) 285

Table 4.11: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series 10-year Treasury maturity rate, ex-
cluded (included) dynamic and contemporaneous parents are shown by zero (one)
independence (dependence) structures, and model indices.



136

Range of good multiple regression DLMs exploring all possible 213 = 8192 models

Federal Funds Rate

Choice P.M.P. Dynamic Parents Contem. Parents Model index

1 0.114 M10,(0,1,0,0) M10,(0,0,0,0,1,0,0,0,1) 7684

2 0.059 M10,(1,1,0,0) M10,(0,0,0,0,1,0,0,0,1) 7683

3 0.059 M10,(0,1,1,0) M10,(0,0,0,0,1,0,0,0,1) 7685

4 0.051 M10,(1,1,1,0) M10,(0,0,0,0,1,0,0,0,1) 7686

5 0.045 M10,(0,1,0,0) M10,(0,0,0,0,1,1,0,0,1) 7677

6 0.032 M10,(1,1,0,0) M10,(0,0,0,0,1,1,0,0,1) 7678

7 0.026 M10,(0,1,0,1) M10,(0,0,0,0,1,0,0,0,1) 7693

8 0.024 M10,(0,1,0,0) M10,(0,0,0,1,1,0,0,0,1) 7933

9 0.017 M10,(1,1,1,0) M10,(0,0,0,0,1,1,0,0,1) 7675

10 0.016 M10,(0,1,0,0) M10,(1,0,0,0,1,0,0,0,1) 7709

11 0.015 M10,(0,1,0,0) M10,(0,1,0,0,1,0,0,0,1) 7741

12 0.014 M10,(0,1,1,0) M10,(0,0,0,0,1,1,0,0,1) 7676

13 0.013 M10,(0,1,0,0) M10,(0,0,1,0,1,0,0,0,1) 7805

14 0.013 M10,(0,1,0,1) M10,(0,0,0,0,1,1,0,0,1) 7668

15 0.012 M10,(1,0,0,0) M10,(0,0,0,0,1,1,0,0,1) 7679

16 0.012 M10,(1,1,1,0) M10,(0,1,0,0,1,0,0,0,1) 7739

17 0.012 M10,(1,1,0,1) M10,(0,0,0,0,1,0,0,0,1) 7694

18 0.012 M10,(0,1,1,0) M10,(0,1,0,0,1,0,0,0,1) 7740

19 0.011 M10,(1,1,0,0) M10,(0,0,0,0,0,1,0,0,1) 7171

20 0.011 M10,(0,1,1,0) M10,(0,0,0,1,1,0,0,0,1) 7932

Table 4.12: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series Federal funds rate, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.



137

Range of good multiple regression DLMs exploring all possible 213 = 8192 models

Federal Funds Rate (Continued)

Choice P.M.P. Dynamic Parents Contem. Parents Model index

21 0.009 M10,(0,1,1,0) M10,(0,0,1,0,1,0,0,0,1) 7804

22 0.009 M10,(0,1,0,0) M10,(0,0,0,0,0,1,0,0,1) 7172

23 0.008 M10,(1,0,0,0) M10,(0,0,0,0,1,0,0,0,1) 7682

24 0.008 M10,(0,1,1,0) M10,(1,0,0,0,1,0,0,0,1) 7708

25 0.008 M10,(1,1,0,0) M10,(0,1,0,0,1,0,0,0,1) 7742

26 0.008 M10,(1,1,0,1) M10,(0,0,0,0,1,1,0,0,1) 7667

27 0.007 M10,(0,1,0,0) M10,(0,0,0,1,1,1,0,0,1) 7428

28 0.007 M10,(0,1,0,0) M10,(0,0,0,0,1,0,0,1,1) 4605

29 0.007 M10,(1,1,0,0) M10,(0,0,0,1,1,0,0,0,1) 7934

30 0.007 M10,(0,1,0,0) M10,(0,1,0,0,1,1,0,0,1) 7620

31 0.006 M10,(1,1,0,0) M10,(1,0,0,0,1,0,0,0,1) 7710

32 0.006 M10,(1,1,1,0) M10,(0,0,1,0,1,0,0,0,1) 7803

33 0.006 M10,(1,1,1,0) M10,(0,0,0,0,0,1,0,0,1) 7174

34 0.006 M10,(1,1,0,0) M10,(0,1,0,0,0,1,0,0,1) 7230

35 0.006 M10,(1,1,1,0) M10,(0,0,0,1,1,0,0,0,1) 7931

36 0.005 M10,(1,1,1,0) M10,(0,1,0,0,1,1,0,0,1) 7622

37 0.005 M10,(0,1,0,0) M10,(0,0,1,0,1,1,0,0,1) 7556

38 0.005 M10,(1,1,0,0) M10,(0,0,1,0,1,0,0,0,1) 7806

39 0.005 M10,(1,1,0,0) M10,(0,1,0,0,1,1,0,0,1) 7619

40 0.005 M10,(1,1,1,0) M10,(1,0,0,0,1,0,0,0,1) 7707

Table 4.13: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series Federal funds rate, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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4.6.3 Dynamic and contemporaneous pairwise dependence

structures

The results of the previous section show that most of the models over the

model space have small posterior probabilities. As detailed in Barbieri and Berger

(2004) and Heaton and Scott (2010), a more useful summary of the posterior dis-

tributions is the median probability model. We define the median probability

model as the model that includes the dynamic and the contemporaneous predic-

tors having posterior inclusion probability of at least 0.5. In this case, we may

perform a sensitivity analysis and compute the posterior inclusion probabilities

of the individual dynamic and contemporaneous predictors. Those probabilities

corresponds to search for features of the Bayesian dynamic graphical model, such

as the presence or absence of an individual dynamic effect from the variable yi,t−k

or yj,t−k at time t− k to the variable yi,t at time t, and an individual contempo-

raneous effect from the variable yi,t to the variable yj,t with the same time index

and i ̸= j.

Figure 4.1 displays image plots of posterior inclusion probabilities p(ξβ,ij,k =

1|y1:t) for the dynamic parental series and posterior inclusion probabilities p(ξγ,ij =

1|y1:t) for the contemporaneous parental series computed over the full model

space. The scale moves from 0 (white) to 1 (black) with some intermediate

shades of grey. In this setup, we have
(
p+ 2p(N − 1)

)
= 38 dynamic autoregres-

sive and cross-lagged effects and
(
N
2

)
= 45 contemporaneous effects at each point

in time t.9

There are a few interesting facts from the analysis of the median probability

models displayed in Figure 4.1. First, the results show that only 16 out of 38

dynamic parents are included in the model. Likewise, only 18 out 45 contem-

poraneous parents are included in the model. Second, only one out of ten series

9Remember that unlike the state parameters, which are allowed to change in time, the graph
structure is fixed in time.
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has the median probability model that do not coincide with the highest posterior

probability model. For instance, the median probability model of the variable

unemployment rate, the sixth variable in the recursive order, does not coincide

with highest posterior probability model displayed in Table 4.7.

Visiting the equation including the variable GDP growth as dependent vari-

able, the median probability model and the highest posterior probability model

displayed in Table 4.4 tend to agree with each other. The median probability

model in the model subspace M3, based on the groupings of the dynamic parents

dp(3) is M3,(0,0,0,0) and on the groupings of the contemporaneous parents cp(3)

is M3,(1,1). An interesting characteristic of this outcome is that the null model

with zero subgroup dynamic effect corresponds to the highest posterior probabil-

ity model. The variable corporate bond spread discovers the first and the second

own-lags as good predictors. The corresponding highest posterior probability

model and the median model based on the groupings of the dynamic parents

is M7,(0,1,0,1). Likewise, the highest posterior probability model and the median

model based on the groupings of the contemporaneous parents is M7,(0,0,0,0,1,0),

which favours only the inclusion of the variable industrial production. Another

interesting observation from Figure 4.1 is related to the variable S&P 500 stock

returns with the first cross-lag of the variable corporate bond spread and the

first own-lag of the S&P 500 stock returns having predictive power on the vari-

able S&P 500 stock returns. This corresponds to the median probability model

M8,(1,1,0,0), which favours the inclusion of two variables from the dynamic parental

set dp(8). The inclusion probabilities also show that the variables, investment,

GDP growth, industrial production, and corporate bons spread, from the con-

temporaneous parental set should be included in the model M8,(0,1,1,0,1,0,1). The

median probability model for the variable Federal funds rate, the last variable

in the recursive order, based on the groupings of the dynamic parents dp(10)

is M10,(0,1,0,0) and on the groupings of the contemporaneous parents cp(10) is
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M10,(0,0,0,0,1,0,0,0,1). Clearly, the median probability model M10 coincides with the

model, defined as that having highest posterior probability in Table 4.12.
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Dynamic and contemporaneous pairwise dependence structures

Figure 4.1: Image plots of dynamic and contemporaneous pairwise dependence
structures. In each plot, the black (white) colour indicates strong (weak) evi-
dence of dependence. The variables are y1,t = consumption, y2,t = investment,
y3,t = GDP growth, y4,t = GDP deflator, y5,t = industrial production, y6,t =
unemployment rate, y7,t = corporate bond spread, y8,t = S&P 500 stock returns,
y9,t = 10-year Treasury rate and y10,t = Federal funds rate.
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4.6.4 Out-of-sample forecast results

In this section, we evaluate the pseudo out-of-sample forecast performance of

the joint model using Bayesian model averaging (joint model with BMA) versus

the performance measured by basing predictive inference from a single best model

(i.e. a model with highest posterior probability). At this point, we evaluate the

range of good models M over a set of truncated candidate |M | models and look at

only the models that have a posterior model probability higher than the threshold

0.005, which can be partitioned as in Table 4.14

Truncated model subspace

Order M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Truncated |Mi| 3 7 11 29 12 26 43 38 33 40

Table 4.14: The table shows order of models and the truncated model subspace.

We do so by comparing the root mean squared forecast error (RMSFE) and

the mean absolute forecast error (MAFE) statistics over the pseudo out-of-sample

forecast period 1984:Q2-2022:Q3.10 The former is defined as the size of the fore-

cast error that is more sensitive to occasionally large errors when compared with

the mean and the latter is a measure of the expected size of the forecast error.

Hence, we can compare the RMSFE and MAFE to determine whether the fore-

cast contains occasionally large errors. We present iterated forecasts for horizons

between one and eight quarters. For the multi-step-ahead forecast, analytical so-

lutions do not exist. Consequently, we evaluate the h-step-ahead predictive mean

and variance using Monte Carlo simulations for a sample size 10, 000. The aim

of this forecasting exercise is to assess the gains from using graphical variable

selection with implied model averaging over the forecast performance resulting

from a single best model with the highest posterior probability. As a measure

of overall forecast performance, we use ten variables of interest, consumption,

10We calculate the RMSFE and MAFE as in Korobilis (2013).
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investment, GDP growth, GDP deflator, industrial production, unemployment

rate, corporate bond spread, S&P 500 stock returns, 10-year Treasury maturity

rate and Federal funds rate.

Table 4.15 and Table 4.16 present RMSFEs and MAFEs for each of ten vari-

ables of interest, eight different forecast horizons and two different forecast met-

rics. The numbers in Table 4.15 are ratios of the RMSFE for the joint model with

BMA divided by the RMSFE of the joint model with highest posterior probabil-

ity. Ratio values smaller than one suggest better performance of the joint model

with BMA relative to the joint model with the highest posterior probability.

In general, we find that the joint model with BMA to yield forecast perfor-

mance improvements over the joint model having the highest posterior probability

for the majority of forecast horizons and for all variables.

Looking at the relative RMSFEs for the variable consumption, we find forecast

performance improvement of the joint model with BMA in terms of achieving

lower RMSFE than the joint model with the highest posterior probability. In

particular, the joint model with the highest posterior probability at eight-quarter

horizon predicts much worse. The outcomes for the variables investment and

GDP growth are slightly different than those for other variables. On one hand,

the relative RMSFEs are very low at one-quarter and eight-quarter horizons.

This may reflect the fact that the RMSFEs obtained from a single best model

with highest posterior probability are too high. Investment and GDP growth are

second and third in the recursive predictive path and is, as a consequence, more

difficult to predict than the other variables. On the other hand, the difference

in RMFSE between the joint model with BMA that averages over several good

models and the joint model with highest posterior probability model, RMSFEs

coming from the latter class of models remained higher as shown in Table 4.19.

Interpreting the results for the variables GDP growth, GDP deflator, industrial

production, unemployment rate, corporate bond spread, S&P 500 stock returns,
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10-year Treasury maturity rate and Federal funds rate jointly, we see that is there

a high instability in the RMSFEs obtained from the joint models with the highest

posterior probability at eight-quarter horizon reported in Table 4.19 leading to

very low values of the relative RMSFEs displayed in Table 4.15.

Comparing the RMSFE and the MAFE generated from both competing mod-

els can guide us on depicting the presence of any unusual forecast error size. As

the difference between those quantities widens, the inconsistency of the forecast

error size increases. The results displayed in Tables 4.17-4.18 and 4.19-4.20 do

not show such large differences.

The dissatisfying results generated from the joint model with the highest pos-

terior probability may have several reasons. First, for computational feasibility of

the graphical variable selection approach, we imposed restrictions on the recursive

models with only lower bidiagonal elements of the dynamic predictors to be in-

cluded in or excluded from the model. The underlying model specification may be

an issue. Second, the prior specification on the component parameter space and

on the model space are crucial in this setup. The priors of the parameter space

influence the predictive likelihoods and the posterior model probabilities. Simi-

larly, the posterior model probabilities may be strongly influenced by the prior

model probabilities. For instance, as a robustness test (not reported here), we

tried alternative prior hyperparameter values for the degrees of freedom, ni,0, and

found that the RMSFE values are highly sensitive to different values of ni,0. Like-

wise, alternative prior hyperparameter values for π generated unstable posterior

weights. At this point, any certain conclusions on the unimpressive out-of-sample

forecast performance of the joint single best model can be misleading.
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RMSFE of joint model with BMA relative to highest posterior probability model

F. Horizon h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Variables RMSFE

PCECC96 1.0033 0.9997 1.0013 0.9858 1.0023 0.8315 0.9442 0.6260
GPDIC1 0.2481 0.7717 0.6976 0.7594 0.7559 0.7465 0.7299 0.7312
GDPC1 0.4506 0.9215 0.5705 0.8663 0.4818 0.6738 0.1937 0.3176
GDPCTPI 0.9547 0.9270 0.9365 0.6258 0.9789 0.2645 0.7562 0.0697
INDPRO 0.8901 0.9490 0.7148 0.4668 0.6222 0.1116 0.4891 0.0206
UNRATE 0.9925 0.9838 0.9292 0.7725 0.7224 0.3106 0.2136 0.0910
CS 1.0009 0.9974 1.0036 0.9688 0.9772 0.7368 0.4794 0.2024
S&P 500 1.0017 1.0001 1.0003 0.9928 0.9437 1.0009 0.7832 0.3207
GS10 0.9980 1.0015 0.9932 1.0013 0.9861 0.8697 1.0027 0.1417
FEDFUNDS 0.9999 1.0029 0.9956 0.9988 0.8768 0.7513 0.2962 0.1928

Table 4.15: The table reports out-of-sample forecast performance of the joint
model with BMA relative to the model with the highest posterior probability,
by computing the relative RMSFEs of ten macroeconomic and financial variables
over the sample period 1984:Q2 - 2022:Q3.

MAFE of joint model with BMA relative to highest posterior probability model

F. Horizon h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Variables MAFE

PCECC96 1.0187 0.9938 1.0074 0.9220 1.0109 0.5107 0.7771 0.3488
GPDIC1 0.1741 0.6837 0.5928 0.6684 0.6623 0.6520 0.6303 0.6330
GDPC1 0.2281 0.7770 0.3097 0.6575 0.2486 0.3991 0.0933 0.1552
GDPCTPI 0.9162 0.8946 0.8929 0.5090 0.9558 0.1874 0.6579 0.0532
INDPRO 0.7931 0.7413 0.4997 0.2602 0.3951 0.0618 0.2809 0.0161
UNRATE 1.0233 0.8027 0.6650 0.3624 0.3199 0.1325 0.0710 0.0707
CS 1.0055 0.9864 1.0247 0.9024 1.0602 0.5872 0.3451 0.1375
S&P 500 1.0092 1.0003 1.0021 0.9748 0.8601 1.0055 0.6381 0.2392
GS10 0.9983 1.0012 0.9937 1.0011 0.9855 0.8876 1.0010 0.1165
FEDFUNDS 1.0000 0.9856 0.9937 0.9345 0.7592 0.5682 0.1969 0.1532

Table 4.16: The table reports out-of-sample forecast performance of the joint
model with BMA relative to the model with the highest posterior probability, by
computing the relative MAFEs of ten macroeconomic and financial variables over
the sample period 1984:Q2 - 2022:Q3.

4.7 Summary

The methodology proposed in this chapter outlined a Bayesian dynamic graph-

ical model approach for estimating a high-dimensional TVP-VAR-VD model.
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This enabled the multivariate TVP-VAR-VD model to split into simpler multiple

regression DLM components by allowing local computations equation-by-equation

instead of a high-dimensional alternative. We proposed a nontraditional search

algorithm that explored the model space to find high posterior probability graphs

by using a Gray code algorithm. This corresponds to apply a graphical variable

selection approach that followed by a Bayesian model selection and a Bayesian

model averaging to explore complex and high-dimensional model spaces.

In specifying the TVP-VAR-VD model, we restricted the model parameters,

defining βt to be a bidiagonal matrix, specified the pattern of the coefficients in

the matrix Γt as a strictly lower triangular matrix and Λt as a diagonal matrix.

The recursive condition of the component multiple regression DLMs and the

elements of the triangular system that incorporate autoregressive effects, cross-

lagged effects and contemporaneous effects was sufficient for model identification

implying the identification of all parameters.

Evaluating the performance of our modelling approach using ten quarterly

U.S. macroeconomic and financial time series showed that there is a considerable

model uncertainty within the range of good competing models for each series. The

increase in the component model uncertainty was proportional to the number of

the dynamic and the contemporaneous predictors. As a result, we compared the

median probability models and the highest posterior probability models over the

space of all competing models, which displayed almost identical results.

In addition, two competing models are used to obtain forecasts at one to eight

quarter horizons for the variables consumption, investment, GDP growth, GDP

deflator, industrial production, unemployment rate, corporate bond spread, S&P

500 stock returns, 10-year Treasury maturity rate and Federal funds rate. We

can conclude that the joint model with the highest posterior probability do not

perform significantly better than the joint model with BMA given that the joint

model with BMA almost has the lowest RMSFE over the majority of forecast
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horizons and all variables.
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4.8 Appendix

4.8.1 Prediction and filtering steps for the component

models

We apply the Kalman filter algorithm in a similar fashion as described in

Zhao et al. (2016). Continuing from Section 4.4.1, the following statements hold

for computing the predictive densities for the state parameters and the precision

parameters in i = 1 : N parallel steps.

i) The one-step-ahead predictive density of θi,t given y1:t−1 is a Normal dis-

tribution and of λi,t given y1:t−1 is a Gamma distribution, respectively

(θi,t|λi,t,y1:t−1) ∼ N (ai,t,Ri,t),

(λi,t|y1:t−1) ∼ G(φini,t−1/2, φidi,t−1/2),

with parameters

ai,t = E(θi,t|y1:t−1) = mi,t−1,

Ri,t = V (θi,t|y1:t−1) = Ci,t−1/δi,

di,t−1 = ni,t−1si,t−1,

si,t−1 = di,t−1/ni,t−1,

(4.39)

where si,t−1 is the point estimate of the observational variance 1/λi,t.

ii) The one-step-ahead predictive density of yi,t given the parental set Fpa(i),t

and y1:t−1 is a Student T distribution

(yi,t|Fpa(i),t,y1:t−1) ∼ T (fi,t, qi,t),
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with parameters

fi,t = E(yi,t|Fpa(i),t,y1:t−1) = F′
pa(i),tai,t,

qi,t = V (yi,t|Fpa(i),t,y1:t−1) = F′
pa(i),tRi,tFpa(i),t + si,t−1.

(4.40)

Let’s partition ai,t and Ri,t as follow

ai,t =

ai,β,t

ai,γ,t

 ,

and

Ri,t =

Ri,β,t Ri,βγ,t

Ri,γβ,t Ri,γ,t

 ,

then, we obtain

fi,t = x′
dp(i),tβi,t + y′

cp(i),tγi,t,

qi,t = y′
cp(i),tRi,γ,tycp(i),t + 2y′

cp(i),tRi,βγ,txdp(i),t + x′
dp(i),tRi,β,txdp(i),t + si,t.

(4.41)

iii) The filtering densities of θi,t given y1:t is a Normal distribution and of λi,t

given y1:t is a Gamma distribution

(θi,t|λi,t,y1:t) ∼ N (mi,t,Ci,t),

(λi,t|y1:t) ∼ G(ni,t/2, di,t/2),
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with parameters

mi,t = E(θi,t|y1:t) = ai,t +Ki,tei,t,

Ci,t = V (θi,t|y1:t) = si,t/si,t−1

(
Ri,t −Ki,tK

′
i,tqi,t

)
,

Ki,t = Ri,tFpa(i),t/qi,t,

ei,t = yi,t − fi,t,

ni,t = φini,t−1 + 1,

di,t = φidi,t−1 + si,t−1e
2
i,t/qi,t,

si,t = si,t−1 + si,t−1/ni,t

(
e2i,,t/qi,t − 1

)
,

(4.42)

where Ki,t is the Kalman gain, the state adaptive coefficient vector.

4.8.2 h-step ahead forecast

Distributions for future values of the state vectors and future observations are

available at any time t for each of the N univariate series. Conditional on y1:t, the

h−step-ahead forecast distribution for the state vectors and the corresponding

h−step-ahead predictive distribution are

(θi,t+h, λi,t+h|y1:t) ∼ NG(ai,t(h),Ri,t(h), ni,t(h), di,t(h)), (4.43)

(yi,t+h|Fpa(i),t+h,y1:t) ∼ Tφini,t
(fi,t+h(Fpa(i),t+h), qi,t+h(Fpa(i),t+h)), (4.44)

where the moments of the distributions of the state vectors are obtained sequen-

tially from time t as

ai,t(h) = ai,t(h− 1),

Ri,t(h) = Ri,t(h− 1) +Wi,t+h,

ni,t(h) = φini,t,

(4.45)



151

for h = 1, 2, . . . , with initial values ai,t(0) = mi,t, Wi,t(0) = Ci,t/(1/δi−1), hence

Ri,t(0) = Ci,t/δi. Similarly, the moments of the h−step-ahead forecast predictive

distribution are

fi,t(h) = F′
pa(i),t+hai,t(h),

qi,t(h) = F′
pa(i),t+hRi,t(h)Fpa(i),t+h + si,t−1.

(4.46)

4.8.3 The joint model

Continuing from Section 4.4.2, let’s assume that for each i = 1 : N , the mean

and the variance matrix for Fpa(i),t exist and have the forms

hpa(i),t = E[Fpa(i),t|y1:t−1],

Hpa(i),t = V [Fpa(i),t|y1:t−1],

respectively. To compute the conditional Student T distribution of yi,t, we set

the degrees of freedom ni,t > 1 and denote the mean

E[yi,t|y1:t−1] = E{E[yi,t|Fpa(i),t,y1:t−1]|y1:t−1},

= E[F′
pa(i),tai,t|y1:t−1],

= h′
pa(i),tai,t.

(4.47)
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Setting ni,t > 2, the conditional variance of yi,t is

V [yi,t|y1:t−1] = E{V [yi,t|Fpa(i),t,y1:t−1]|y1:t−1}

+ V {E[yi,t|Fpa(i),t,y1:t−1]|y1:t−1}

= E[
ni,t

ni,t − 2
qi,t|y1:t−1] + V [fi,t|y1:t−1],

=
ni,t

ni,t − 2
{si,t + E[F′

pa(i),tRi,tFpa(i),t|y1:t−1]}

+ V [F′
pa(i),tai,t|y1:t−1],

=
ni,t

ni,t − 2
[si,t + h′

pa(i),tRi,thpa(i),t]

+ trace{Ri,tHpa(i),t}] + a′
i,tHpa(i),tai,t,

(4.48)

where the two terms in the last equation in the squared brackets are from the

property of the expected value of a quadratic form

E[F′
pa(i),tRi,tFpa(i),t|y1:t−1] = E[traceFpa(i),tRi,tF

′
pa(i),t|y1:t−1],

= traceE[Fpa(i),tRi,tF
′
pa(i),t|y1:t−1],

= traceRi,tE[Fpa(i),tF
′
pa(i),t|y1:t−1],

= traceRi,t[V (Fpa(i),t) + E(Fpa(i),t)E(Fpa(i),t)
′],

= traceRi,tV (Fpa(i),t) + traceRi,tE(Fpa(i),t)E(Fpa(i),t)
′,

= traceRi,tV (Fpa(i),t) + traceE(Fpa(i),t)
′Ri,tE(Fpa(i),t),

= traceRi,tV (Fpa(i),t) + E(Fpa(i),t)
′Ri,tE(Fpa(i),t),

= trace{Ri,tHpa(i),t}+ h′
pa(i),tRi,thpa(i),t.

(4.49)

Using the partitioned vector ai,t and matrix Ri,t, we get the following results

For i = 1:N
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if i = 1

fi,t = x′
dp(i),tai,β,t

qi,t =
ni,t

ni,t − 2

(
si,t−1 + x′

dp(i),tRi,β,txdp(i),t

)
,

otherwise

fi,t = x′
dp(i),tai,β,t + h′

cp(i),tai,γ,t,

qi,t =
ni,t

ni,t − 2

(
si,t−1 + h′

cp(i),tRi,γ,thcp(i),t

+ trace(Ri,γ,tHcp(i),t) + 2x′
dp(i),tRi,βγ,thcp(i),t

+ x′
dp(i),tRi,β,txdp(i),t

)
+ h′

cp(i),tRi,γ,thcp(i),t.

(4.50)

The off-diagonal elements of the covariance matrix C(yi,t,y1:i−1,|y1:t−1) may

be calculated as

(yi,t,y1:i−1,t|y1:t−1) = Q1:i−1,ta1:i−1,γ,t, (4.51)

and we end the process.

Finally, we plug-in the values obtained from Equation (4.50) and (4.51) into

the joint mean ft and Qt as appropriate. Those steps may be repeated for the h-

step-ahead forecast exercise. For brevity, only the steps using the one-step-ahead

forecast model are reported (see Zhao et al. (2016) for details).

4.8.4 More Results
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RMSFE of joint model with BMA

F. Horizon h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Variables RMSFE

PCECC96 1.1413 1.1437 1.1480 1.1505 1.1520 1.1532 1.1559 1.1945
GPDIC1 0.8345 0.8345 0.8372 0.8383 0.8381 0.8409 0.8432 0.8460
GDPC1 1.0327 1.0339 1.0389 1.0410 1.0462 1.0488 1.0594 1.0584
GDPCTPI 0.9156 0.9178 0.9208 0.9241 0.9255 0.9367 0.9335 1.1521
INDPRO 0.9428 0.9450 0.9498 0.9485 0.9552 0.9534 0.9655 1.1820
UNRATE 1.2256 1.2300 1.2338 1.2399 1.2424 1.2677 1.2575 1.6854
CS 0.8415 0.8411 0.8392 0.8410 0.8389 0.8410 0.8349 0.8433
S&P 500 1.0248 1.0277 1.0229 1.0218 1.0248 1.0291 1.0185 1.0268
GS10 0.8742 0.8711 0.8473 0.8328 0.8346 0.8359 0.8405 0.8161
FEDFUNDS 0.5135 0.5147 0.5158 0.5099 0.5074 0.5087 0.5106 0.5516

Table 4.17: The table reports out-of-sample forecast performance of the joint
model with BMA, by computing the RMSFEs of ten macroeconomic and financial
variables over the sample period 1984:Q2 - 2022:Q3.

MAFE of joint model with BMA

F. Horizon h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Variables MAFE

PCECC96 0.4904 0.4886 0.4924 0.4908 0.4879 0.4839 0.4826 0.5717
GPDIC1 0.5684 0.5664 0.5688 0.5682 0.5661 0.5689 0.5701 0.5726
GDPC1 0.4807 0.4814 0.4851 0.4853 0.4893 0.4902 0.5021 0.4978
GDPCTPI 0.6309 0.6306 0.6354 0.6351 0.6375 0.6424 0.6466 0.8776
INDPRO 0.4869 0.4911 0.4930 0.4965 0.4943 0.5247 0.4961 0.9270
UNRATE 0.4103 0.4171 0.4111 0.4363 0.4076 0.5312 0.4088 1.3068
CS 0.5732 0.5717 0.5669 0.5685 0.5591 0.5662 0.5275 0.5638
S&P 500 0.7161 0.7183 0.7113 0.7091 0.7106 0.7181 0.7010 0.7257
GS10 0.6905 0.6867 0.6737 0.6640 0.6647 0.6679 0.6725 0.6642
FEDFUNDS 0.3270 0.3276 0.3277 0.3234 0.3195 0.3343 0.3242 0.4314

Table 4.18: The table reports out-of-sample forecast performance of the joint
model BMA, by computing the MAFEs of ten macroeconomic and financial vari-
ables over the sample period 1984:Q2 - 2022:Q3.



155

RMSFE of joint model with highest posterior probability

F. Horizon h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Variables RMSFE

PCECC96 1.1376 1.1441 1.1465 1.1671 1.1494 1.3870 1.2243 1.9081
GPDIC1 3.3630 1.0814 1.2002 1.1039 1.1087 1.1265 1.1552 1.1569
GDPC1 2.2920 1.1220 1.8210 1.2016 2.1716 1.5565 5.4695 3.3323
GDPCTPI 0.9591 0.9900 0.9833 1.4766 0.9455 3.5415 1.2344 16.5360
INDPRO 1.0593 0.9958 1.3287 2.0320 1.5353 8.5434 1.9741 57.5167
UNRATE 1.2349 1.2503 1.3277 1.6050 1.7197 4.0817 5.8884 18.5261
CS 0.8407 0.8433 0.8361 0.8681 0.8584 1.1414 1.7416 4.1661
S&P 500 1.0231 1.0276 1.0225 1.0292 1.0859 1.0282 1.3004 3.2013
GS10 0.8759 0.8698 0.8531 0.8316 0.8464 0.9610 0.8382 5.7599
FEDFUNDS 0.5135 0.5132 0.5181 0.5105 0.5787 0.6771 1.7236 2.8615

Table 4.19: The table reports out-of-sample forecast performance of the joint
model with the highest posterior probability, by computing the RMSFEs of ten
macroeconomic and financial variables over the sample period 1984:Q2 - 2022:Q3.

MAFE of joint model with highest posterior probability

F. Horizon h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Variables MAFE

PCECC96 0.4814 0.4917 0.4888 0.5323 0.4827 0.9474 0.6211 1.6389
GPDIC1 3.2641 0.8285 0.9596 0.8501 0.8547 0.8726 0.9044 0.9046
GDPC1 2.1075 0.6195 1.5663 0.7381 1.9683 1.2282 5.3817 3.2075
GDPCTPI 0.6886 0.7049 0.7116 1.2477 0.6670 3.4279 0.9829 16.5096
INDPRO 0.6139 0.6624 0.9866 1.9077 1.2512 8.4901 1.7659 57.5087
UNRATE 0.4009 0.5196 0.6181 1.2039 1.2740 4.0094 5.7541 18.4836
CS 0.5701 0.5796 0.5532 0.6299 0.5274 0.9642 1.5286 4.1001
S&P 500 0.7096 0.7181 0.7098 0.7274 0.8262 0.7142 1.0986 3.0341
GS10 0.6917 0.6859 0.6779 0.6633 0.6745 0.7524 0.6718 5.7022
FEDFUNDS 0.3270 0.3324 0.3298 0.3460 0.4208 0.5883 1.6466 2.8157

Table 4.20: The table reports out-of-sample forecast performance of the joint
model with the highest posterior probability, by computing the MAFEs of ten
macroeconomic and financial variables over the sample period 1984:Q2 - 2022:Q3.
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4.8.5 Data appendix

The quarterly time series variables used in the TVP-VAR-VD models are

taken from the FRED database of the Federal Reserve Bank of St Louis spanning

from 1959Q1 to 2022Q3. The columns of Table 4.21, denote the series numbers,

Tcode denotes the data transformations based on McCracken and Ng (2020),

series denotes the FRED mnemonic, and description denotes a brief definition of

the series.

Corporate bond spread is defined as Moody’s Baa corporate bond yield mi-

nus Moody’s Aaa corporate bond yield. The modified Tcode, 1∗, stands for no

transformation of the series.

Time series used in the TVP-VAR-VD model
ID Series Tcode Description
1 PCECC96 5 Real Personal Consumption Expenditures
2 GPDIC1 5 Real Gross Private Domestic Investment
3 GDPC1 5 Real Gross Domestic Product
4 GDPCTPI 6 Gross Domestic Product: Chain-type Price Index
5 INDPRO 5 Industrial Production Index
6 UNRATE 2 Civilian Unemployment Rate
7 CS 1∗ Moody’s Seasoned Baa-Aaa Corporate Bond Spread
8 S&P 500 5 S&P’s Common Stock Price Index: Composite
9 GS10 2 10-Year Treasury Constant Maturity Rate
10 FEDFUNDS 2 Effective Federal Funds Rate

Table 4.21: The quarterly time series variables used in the TVP-VAR-VD models.
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Chapter 5

Discussion

We have drawn on ideas of high-dimensional inference problems from pairwise

composite likelihood and high-dimensional sparse inference problems from dy-

namic graphical models on addressing the challenges of modern empirical macroe-

conomics. We offer some suggestions about future directions that seem promising

for further research in the identification of financial shocks, theory, application

and computation of composite likelihood methods and dynamic graphical models

within the Bayesian inferential paradigm.

Chapter 2 The first objective was to understand the real effects of credit mar-

ket disruption through a measure of financial distress, the financial external pre-

mium, which allowed to vary over time. Although our focus was on the trans-

mission of the financial shocks into the real economy in one directional setup,

identification of financial shocks is a challenging task due to simultaneity prob-

lem, as noted by Gertler and Gilchrist (2019). Extending the analysis to consider

aspects of the simultaneity problem using a TVP-VAR-SV model is an important

direction for future research.

Chapter 3 The second objective was to address the high-dimensional inference

problem of the TVP-VAR-SV model through a novel Bayesian pairwise composite
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likelihood approach. This method becomes particularly relevant when estimating

the full multivariate TVP-VAR-SV model is computationally infeasible. A suffi-

cient condition for using the Bayesian pairwise composite likelihood approach is

that parameter estimation for each bivariate TVP-VAR-SV model remains com-

putationally tractable. However, implementing the FFBS algorithm across
(
N
2

)
parallel steps for N > 50 posed severe memory challenges, as it required storing

every element of the stacked parameters βc,t, hc,t, and αc,t for i = 1, . . . ,
(
N
2

)
mod-

els, over r = 1, . . . , R MCMC iterations (after burn-in), and for all t = 1, . . . , T

time periods. Developing algorithms that reduce this space complexity represents

a promising direction for future research in Bayesian estimation using composite

likelihoods.

Another avenue for improvement concerns the weighting of pairwise likelihood

components. Future work will explore optimal weighting schemes to better cap-

ture the contribution of each pairwise component to model assessment. As noted

by Verbeke and Molenberghs (2005), when random (non-constant) weights are

used in the pairwise score functions, it is unclear whether the expected value of

the weighted pairwise score remains zero, raising important theoretical consider-

ations.

Additionally, we observed an issue related to the magnitude of composite

impulse responses. Although the responses are economically plausible, further

investigation is needed to address this magnitude discrepancy.

Finally, the Direct Averaging Method introduced in this thesis was interpreted

as a computational approximation to a MH algorithm, where parameter draws

from each bivariate model are implicitly accepted with probability one. While

this interpretation is conceptually appealing, deriving the formal MH acceptance

ratio in the second step remains an open problem, and future research will aim

to establish these theoretical conditions.
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Chapter 4 The third objective was to establish a feasible computational algo-

rithm for the problem of variable selection using the Bayesian dynamic graphical

model approach. Although the proposed Bayesian dynamic graphical model ap-

proach enables the multivariate TVP-VAR-VD model to split into simpler multi-

ple regression DLM components, the problem of selecting the good models from

among the 2p + 22p(2N − 2) possibilities is not trivial. We have applied a non-

traditional search approach in parallel to sets of component univariate DLMs.

Nevertheless, the implied model selection and model averaging that proceeded

the variable selection step cannot be applied with a very large number of vari-

ables.

Another potential concern is that we have ordered the variables as though

the macroeconomic variables comes before the financial variables, which may re-

flect economic reasoning and theory, as have been emphasized in previous studies

Bańbura et al. (2010) and Gilchrist and Zakraǰsek (2012). In a forecasting exer-

cise, as noted by West (2020), ordering of variables may be redundant because

the results are affected from the precision matrices and the multiple regression

DLM components. A future research may investigate ordering free algorithms.

Furthermore, the posterior probabilities over the model space have shown

appreciable sensitivity to two components of the prior probabilities, that is, the

prior for the graphical models and the prior for the dynamic parameters in the

component multiple regression DLMs. We may investigate Bayesian variable

selection approaches that encourage posterior probabilities over the model space

less sensitive to the prior specification.
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