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Abstract

This thesis begins with an introductory chapter that outlines the inferential
challenges of high-dimensional time series models with parameter changes, mul-
tiple dependent variables, numerous predictors, and substantial computational
complexity, and motivates the methodological contributions that follow.

The first objective is to evaluate a conventional Bayesian estimation approach
in modelling the real effects of credit market disruption through a measure of
financial distress, the financial external premium, which may vary over time.
For this purpose, we specify an eight-variable structural vector autoregressive
model with time-varying parameters and stochastic volatility (TVP-VAR-SV).
We use the model to examine the nature and evolving features of the links between
macroeconomic and financial variables in the U.S. economy.

The second objective is to develop a Bayesian pairwise composite likelihood
method to address a high-dimensional inference problem in time series models
with parameter changes, many dependent variables, and computational complex-
ity, in order to conduct structural analysis. While a larger macroeconomic and
financial dataset could be analyzed using a suitable TVP-VAR-SV model, the
computational burden of such a model becomes prohibitive in high dimensions.
To address this, the method replaces the full likelihood function with a product
of pairwise marginal likelihoods and then combines the results to make inference
from the composite model. To efficiently aggregate information across bivari-

ate models, we introduce the Direct Averaging Method, a novel approach that
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provides a computationally tractable approximation to the multivariate struc-
ture without requiring simulation from the joint model. An empirical study of
time-varying pairwise composite impulse responses demonstrates the impact of an
unexpected financial shock on fifty quarterly U.S. macroeconomic and financial
variables, yielding economically meaningful results.

The third objective is to develop a Bayesian dynamic graphical model approach
to overcome a high-dimensional sparse inference problem in TVP-VAR models
with volatility discounting, many predictors, and computational complexity, in
order to conduct forecasting analysis. The approach incorporates pairwise condi-
tional independence structures in both the coefficient states and the off-diagonal
elements of the covariance states. The Bayesian dynamic graphical framework
improves forecast combinations of multiple quarterly U.S. macroeconomic and

financial variables.
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Chapter 1

Introduction

Contemporary inferential problems in macroeconomics and finance with ever-
increasing comprehensive time series indices have recently given rise to high-
dimensional models that may capture the interaction between economies’ real
and financial sectors. Multidimensional indices are helpful for analysing business
cycle dynamics and are particularly important for comparing monetary policy
behaviour across very different causes and economic effects of financial crises.
High-dimensional multivariate models accounting for parameter changes over
time are particularly interesting in this context. Those models involve a vast
number of unknown time-varying parameters. However, standard time series
modelling has been insufficient in quantifying time-varying relationships between
the macroeconomy and the financial sector when large datasets are available. Our
inferential goal is to develop innovative Bayesian estimation methods for high-
dimensional state space models. In particular, we address two key challenges in
high-dimensional time series modelling: (i) high-dimensional inference problems
and (ii) high-dimensional sparse inference problems, both posed by models with
parameter changes, many dependent variables, many predictors, and substantial
computational complexity. An initial empirical study motivates these challenges

by examining the effects of credit market disruptions in a TVP-VAR-SV model.



1.1 Bayesian analysis of high-dimensional state
space models

Following the seminal work of [Sims| (1980), vector autoregressive (VAR) mod-
els have been recognised as a well-established macroeconometric framework. Since
then, VARs have provided “a coherent and credible approach to data description,
forecasting, structural inference and policy analysis” as noted by Stock and Wat-
son| (2001). Extending over the VAR models with constant parameters, a general
methodology with evolving features in parameters was developed by |Cogley and
Sargent| (2002) and later extended by |Cogley and Sargent| (2005) and a class of
model incorporating multivariate stochastic volatility was proposed by |Primiceri
(2005). However, typically the estimation of the latter model has been carried
out by using a conventional Bayesian approach based on small datasets.

This class of models belongs to a special case of state space systems with two
features of particular economic importance. First, the parameters are allowed
to vary smoothly over time, enabling us to trace how relationships between the
real and financial sectors evolve across different economic environments, such as
expansions, recessions, and periods of financial distress. Second, by allowing the
error covariance matrices to vary over time, the model captures changes in volatil-
ity and nonlinear dynamics, which are essential for understanding fluctuations in
uncertainty, risk transmission, and the amplification of shocks in the economy.

To evaluate the conventional Bayesian estimation approach, we specify an
eight-variable structural vector autoregressive model with time-varying parame-
ters and stochastic volatility (TVP-VAR-SV model). Our focus is on the impact
of the financial distress to the real economy. We do so by extending the study by
Gilchrist and Zakrajsek| (2012) who construct a proxy measure of external finance
premium and use a structural VAR model that uses this measure as a variable.

However, their analysis lacks examining the evolving features of the coefficients



and the volatilities. In this spirit, we extend their study by evaluating the TVP-
VAR-SV model and conduct structural analysis and formal model assessment. In
the second chapter, we investigate how a surprise innovation in credit spreads af-
fects real economic activity. We use the model to examine the nature and evolving
features of the links between the macroeconomic and financial variables. Exper-
imental results on a quarterly U.S. dataset, including impulse response analysis
and formal model comparisons with alternative models, validate our assumptions

on time-varying coefficient and covariance states.

1.2 Pairwise composite likelihood methods for

TVP-VAR-SV model

A high-dimensional inference problem may arise when the posterior density is
demanding to simulate with large datasets as noted by [Koop (2013). In a conven-
tional Bayesian analysis, we devote a considerable time in designing and assessing
simulation methods based on Markov chain Monte Carlo (MCMC) algorithms as
an option to approximate or simulate the posterior density. However, MCMC
algorithms are proved to be inefficient, in particular, when a multivariate time
series model with time-varying parameters include a large number of dependent
variables and time-varying parameters.

Our primary objective is to resolve the computational complexity of this class
of model with the conventional wisdom of Bayesian analysis in a statistically
parsimonious way. A methodologically appealing approach is to split a high-
dimensional likelihood function to low dimensional computationally feasible like-
lihood components using composite likelihood method that was first developed
by |Besag| (1974) under the term pseudo likelihood approach. Afterwards, |Lindsay
(1988) proposed composite likelihood method that was based on logarithms of

marginal or conditional densities. Bayesian estimation based on composite like-



lihoods in macroeconometrics is an area of research has been partially explored
with two examples so far including (Chan et al.| (2020) and |Canova and Matthes
(2021)).

We use a class of composite likelihood formed by pairwise likelihoods con-
structed from bivariate marginal densities. More precisely, we adapt a special
case of pairwise likelihood methods that was proposed by [Verbeke and Molen-
berghs (2005) and Fieuws and Verbeke| (2006)) in a novel way to be applied for
the first time in the context of TVP-VAR-SV models.

In contrast to most composite likelihood approaches that assume common
parameters across components, our method allows for distinct pair-specific pa-
rameters. The proposed approach combines the pairwise composite likelihood
framework with a novel aggregation scheme, the Direct Averaging Method (DAM).
The main idea is to avoid the computational burden of sampling from the poste-
rior of the full joint TVP-VAR-SV model by instead fitting all bivariate models
separately. In the first step, we simulate from the bivariate posterior distribu-
tions associated with each bivariate model. In the second step, we apply the
DAM to map and aggregate the pair-specific parameter estimates into a coher-
ent set of pairwise composite parameters for the high-dimensional system. This
local parameterization, together with DAM, allows us to decouple the estima-
tion of bivariate components from the global aggregation step, thereby providing
a computationally feasible approximation to joint inference in high-dimensional
settings.

We evaluate the empirical merits of the Bayesian PCL method. Our evidence
is based on a fifty-variable PCL-TVP-VAR-SV model as a combination of 1225
submodels applied to quarterly U.S. macroeconomic and financial data spanning
from 1959Q1 to 2018Q1. Time-varying pairwise composite impulse responses
show the effects of a surprise increase in credit spreads on 50 variables with

encouraging results.



1.3 Dynamic graphical models for TVP-VAR-

VD model

Another high-dimensional problem in time series models containing time-
varying parameters and time-varying covariance matrix may arise when the model
has many predictors with minimal effect on the model, but it is unclear which
predictors are relatively more important as noted by |Koop| (2017)). This problem
is known as high-dimensional sparse inference problem.

Gaussian graphical models have been used to shed light on the relative im-
portance of predictors. The key ideas of graphical models build on foundational
theory in [Lauritzen (1996) and Whittaker| (2008) that define a rather broad
framework with multivariate Gaussian graphical models. However, most graphi-
cal models either do not consider time-variation features in temporal coefficients
combining a lagged variable and a current variable, and time-variation in co-
variance coefficients combining two current variable or allow for a fully arbitrary
mean. We propose a dynamic graphical model framework that allows combin-
ing traditional graphical models described in Whittaker| (2008]), Chapter 10, and
recently introduced dynamic dependence networks in |Zhao et al. (2016)).

In chapter 4, we propose a Bayesian dynamic graphical model approach in-
corporating pairwise conditional independence structures in both the coefficient
states and the off-diagonal elements of the covariance states, ordered recursively.
We achieve this by developing an efficient Bayesian graphical variable selection
method that can be applied recursively equation-by-equation in parallel using
a Gray code algorithm. Then we perform Bayesian model averaging of the top
selected models with high posterior probabilities to forecast ten quarterly U.S.
macroeconomic and financial variables over a pseudo-out-of-sample forecast pe-
riod 1984:Q2-2022:QQ3. Comparing out-of-sample forecast performances shows

that the joint model with BMA outperforms the joint model with highest poste-



rior probability over the most considered horizons.

1.4 Contribution to knowledge

The main contribution of this thesis is to develop a Bayesian pairwise compos-
ite likelihood method to address the high-dimensional inference problem posed by
models with parameter changes, many dependent variables, and computational
complexities, and a Bayesian dynamic graphical model approach to overcome
the high-dimensional sparse inference problem posed by models with parameter
changes, many predictors, and computational complexities.

In chapter 2, we analyse the predictive ability of credit spread as a financial
distress indicator on the real economy within a VAR model with time-varying
temporal coefficients, time-varying contemporaneous relations and time-varying
volatilities. With this highly flexible framework and extension, decision makers
are able to dynamically assess effects on the real economy and financial sector
of a surprise increase of the identified financial shocks, which emphasize evolving
features in the business cycle dynamics with a financial accelerator present.

In Chapter 3, we develop a novel class of pairwise composite likelihood ap-
proach that departs significantly from existing methods. This approach intro-
duces the DAM, an innovative aggregation mechanism that combines parameter
estimates from all bivariate models into a coherent set of pairwise composite pa-
rameters for the high-dimensional system. Together, these components form a
new class of estimation techniques for the high-dimensional TVP-VAR-SV model,
applied here for the first time in the field of macroeconometrics. The proposed
framework not only addresses the computational challenges of the full likelihood
estimation but also offers substantial potential in methodology, and empirical
application. In particular, it enables the analysis of responses of a broad range

of macroeconomic and financial variables to financial shocks within a composite



framework that is both scalable and interpretable.

In chapter 4, we extend a traditional graphical model and recently introduced
a dynamic graphical model approach to account for pairwise conditional inde-
pendence uncertainties on the time-varying temporal coefficients in addition to
the uncertainties on the independence structures of the time-varying covariance
matrix using a Gray code algorithm. Our Bayesian dynamic graphical frame-
work improves forecast combinations and provides insight into the unobservable

structures of multiple macroeconomic and financial variables.



Chapter 2

Bayesian vector autoregressive
model with time-varying
parameters and stochastic
volatility in identification of
financial shocks

2.1 Introduction

There is a growing consensus that as a source of financial distress, widening of
credit spreads, form a reliable class of financial indicators in predicting real eco-
nomic activity emphasized by Bernanke| (2018)) and |Gertler and Gilchrist| (2018]).
However, a standard time series modelling has been insufficient in quantifying a
time-varying relationship between the tightness in the financial conditions and its
transmission into the real economy on a high-dimensional setup. In this context,
we examine the nature and evolving features of the links between the macroecon-
omy and the financial sector. Our goal is to assess the extent to which the re-
sponse of macroeconomic and financial variables to a financial shock is consistent
with the financial accelerator mechanism within a model featuring time-varying
parameters and stochastic volatility.

The credit spread, first introduced by Bernanke and Gertler| (1989) as a proxy

for the external finance premium, plays a central role in the financial accelerator



mechanism. According to this framework, the external finance premium exhibits
a countercyclical pattern: it rises when borrowers’ net worth deteriorates during
economic contractions and falls when net worth improves in expansions. Within
the financial accelerator, shocks to the external finance premium amplify eco-
nomic fluctuations, leading to sharp contractions in real activity and declines in
asset prices, as emphasized by |Bernanke and Gertler (1989), Kiyotaki and Moore
(1997)), and Bernanke et al.| (1999).

Our study links to modern literature on analysing the effects of financial in-
dicators on the real economy, e.g. |Gilchrist et al.| (2009), Helbling et al.| (2011)),
Gilchrist and Zakrajsek (2012), Stock and Watson, (2012), (Gilchrist et al.| (2014)),
and Boivin et al.[(2020). By exploring the interaction between the macroeconomy
and the financial market, |Gilchrist and Zakrajsek (2012) constructed a proxy mea-
sure of the external finance premium and used a structural vector autoregressive
model (VAR model) that uses this measure as an endogenous variable. However,
their analysis lacks examining the evolving features of the coefficients and the
volatilities. In this spirit, we extend their work by making the assumption that
the transmission of a financial shock into the real economy has been evolving
over time.ﬂ This motivates our analysis of possible time variations in coefficients,
time variations in contemporaneous relations, and time variations in volatilities.
Two research questions then arise as to whether the sources of financial and real
relationships come from financial shocks and as to whether the financial and real
relationships evolve over time.

For this purpose, we specify an eight-variable structural vector autoregres-
sive model with time-varying parameters and stochastic volatility (TVP-VAR-
SV) model to examine the nature and evolving features of the links between the
macroeconomic and financial variables in the U.S. economy. The eight-variable

TVP-VAR-SV model consists of quarterly U.S. data for consumption, investment,

'We use the term “financial shock” to emphasize a shock to the credit spread, a measure of
the external finance premium.
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GDP growth, GDP deflator, corporate bond spread, stock market returns (S&P
500), the ten-year Treasury yield, and the Federal funds rate.

From a methodological stand point, our work is inspired by a class of VAR
model with evolving parameters and multivariate stochastic volatility that was
developed by Primiceri (2005]). Several authors used the TVP-VAR-SV model to
capture the time variation features of macroeconomic and financial time series
in alternative contexts including (Gall and Gambetti| (2015), Prieto et al.| (2016)),
and |Gambetti and Musso| (2017)).

Our key findings are as follows. First, shocks in the financial market lead to a
severe economic contraction and slow recoveries, with some detectable differences
with the financial accelerator framework. Shocks to the credit spreads appear
to cause a much stronger effect on the real economic activity during the Great
Recession. This is supported by the associated contraction in real economic
activity especially during the Great Recession as the responses to the financial
shock exceed the average.

Second, the resulting economic downturn leads to an ambiguous response
of inflation over time. In line with the financial accelerator effect, there is an
appreciation of disinflation until late 1980s. However, after then a persistent
increase in inflation takes place. With the adverse economic effects, the Federal
Reserve reduced the Federal funds rate. There is ambiguity about the response
of the stock market returns, which experiences a significant drop in recent years.

Third, a model comparison assessment with a discrete set of competing models
shows that using four competing models and assessing pairwise Bayes factor,
the TVP-VAR-SV model is supported by the data and the prior information.
However, most of the support of the TVP-VAR-SV model fit seems to come from
allowing time variations in the volatilities.

Fourth, Bayes factors can miss out small amounts of time variation features in

parameters in high-dimensional TVP-VAR-SV models. In this regard, we assess
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the TVP-VAR-SV model fit by a model comparison using a hybrid approach to
analyse whether some equations in our eight-variable TVP-VAR-SV model have
time-varying parameters or not. Indeed, the results of comparing 1 + N(N +
1)/2 = 37 models with N = 8 show that some equations may have time-varying
parameter features and some other may miss those features.

The rest of the chapter is structured as follows. Section 2.2 describes the
TVP-VAR-SV model design and specifications. Section 2.3 describes the identifi-
cation scheme and the selected proxies of the credit spreads and the term spread.
Section 2.4 shows the main empirical findings based on a baseline eight—variable
TVP-VAR-SV model, explores robustness to alternative measures of corporate
credit spreads, and performs model assessment with two alternative formal model
comparison methods using Bayes factors. A summary is provided in Section 2.5.
Finally, Section 2.6 provides an appendix for estimating a constant coefficient
and constant volatility VAR model, a summary of MCMC algorithm for TVP-

VAR-SV model and a data appendix.

2.2 The Model

In this section, we introduce the TVP-VAR-SV model, and complete model

specification by choosing prior distributions for all parameters of interest.

2.2.1 Structural TVP-VAR-SV model

Let y; denote an N x 1 vector of time series variables. For each cross-sectional
variable 2 = 1: N, t =1 :T denotes the time series observations. The dynamics

of y; follows a structural vector autoregressive process with model order p,

p
Ay = Aoy + Z A yior +uy, (2.1)

k=1
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where Ay, is an (/N x1) is a vector of time-varying intercepts, Ay, = (A1, ..., Ayy)
are (N x N') matrices of the time-varying parameters with k = 1,..., p, and u; are
the structural disturbances with diagonal covariance matrix. The reduced form
representation of the structural VAR model in Equation (2.1) can be written in

a special case state space system as follows

yi =X3; + €, (2.2)

By =081+ nf, (2.3)

where x; = In®(1,y}_y,...,y;_,) isan Nx LN matrix and 3, = vec([Bo,1, ..., B,4]")
is LN x 1 vector with By ; = At_lAkvt, k=0,...,p,and L = 1+ Np. We assume
the state coefficients, 3,, evolve in time according to a random walk and the
evolution error terms are assumed to be a zero-mean process with state evolution
variance matrix, ) ~ N'(0,X5). € is an (N x 1) vector of reduced form distur-
bances assumed to be a zero-mean process with time-varying covariance matrix,
e ~ N(0,3.;), and the reduced from disturbances, €;, are obtained from the

structural shocks by a linear transformation as

€ = Py, (2.4)

where E(wu)) = Iy and E(uu,_,) =0forall t and k =1,2,3,....
Let’s define X, ; as a positive definite symmetric (N x N) matrix, which has

the following representation

26,1‘, - AtDtA; (25)

A necessary condition to offer a unique solution to the system ¥.; = A;D;A}
requires an order condition for identification. The order condition implies that A,

and D; have N(N + 1)/2 distinct elements, which is equivalent to the elements
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of ¥.;. If D; is diagonal, it requires N elements, meaning that A; can have
maximum N(N — 1)/2 free elements, as described by Hamilton (1994). This
leads to specify A, as a lower triangular matrix with 1’s along the principal

diagonal. We define a; as the parameters of the lower triangular elements of Ay,

and define dy = (dy4,...,dit,...,dnys)".

1 0 0
Q 1
A, = 2Lt , and
anit --- ONN—1g 1
diy O 0
0o .
Dt - 9
0 ... 0 dny

where the «; j; elements are real-valued and the d;; are positive.ﬂ

In this framework, volatility is captured by the time-varying standard devia-
tions of the reduced-form disturbances, governed by the square roots of the diag-
onal elements of D;, which result from the time variation in the transformation
applied to the structural shocks. Let o; denote the vector of standard deviations,
i.e., the square roots of the diagonal elements of D;. Hence, the elements of the

time-varying covariance matrix are specified as random walks

o = oy + 1 (2.6)

2This decomposition follows Primiceri| (2005) and |Gali and Gambetti (2015). It is equivalent
to the more common representation X.; = A; 'D.(A; ")’ (e.g., [Hamilton| (1994)), but differs
by a reparameterisation: here A; is defined as the lower-triangular Cholesky factor with unit
diagonal, while D; collects the time-varying variances.
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hy =h, , + 77?7 (2.7)

where h; = logo;, E(n®) = 0 and E(n?) =0, E(nfn)®) = £, and E(ninl") =
S, and 7§ ~ N(0, ) and 7 ~ N0, 5.

2.2.2 Priors and initial values

To complete the model specifications, we calibrate the values of prior hy-
perparameters by applying a “training sample prior”. This prior choice reflects
the belief that there is absence of information to select a prior distribution but
presence of a large number of observations as in [Primiceri| (2005)).

To calibrate the prior distributions for 3,, ap, and hy, we estimate a time
invariant version of the model in Equation (2.2) based on an initial training
sample of 40 observations. The priors for the initial states 3,, o, and hy are

Normal with parameters (p,, Xo) and are defined as

/60 NN(BOaTﬁ X Pﬁo)a
O ~ N(d077-o¢ X 1304())7 (28)

ho NN(ro,Th X IN),

where 73, 7,, and 7, are scale factors, p, may represent any of the parameters
BO, Qg or flo, and 3y may refer to any of the parameters 73 x 1550, Ta X 15&O or
Th X Pho. The matrices, 30, 34,0, and X, o, follow inverse Wishart distributions

with parameters (U, v). Then, 3z is defined as
S50 ~ DWxapn (3, X (N(Np+ 1) + 1) x Pay, (N(Np+ 1) +1)),  (2.9)

with scale matrix Uy = 522[3 X vg X f’go, and prior degrees of freedom v =
(N(Np+1)+1).

We calibrate the elements of ¥, by assuming block-diagonal with blocks
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corresponding to the equations of the system. In other words, for the lower
triangular matrix A, the blocks have size S = {(1x1),(2x2),...,[(N—=1)x (N —

1)]}, where S; denotes the ith block of S that follow inverse Wishart distributions

S1 ~ IWi(K%, % 2 x Psy,,2),
SQ ~ IWQ(K/%Q X 3 X ].5&31,&32, 3),
(2.10)

SNfl ~ IWNfl(K%N_ X N X ]‘SOAZNI ..... dNN_NN)?

1

where &; ; refers to elements of blocks of the ey for i # j.
Finally, the variances of the stochastic volatility innovations follow inverse

Wishart distribution of the form
Yho ~ IWnN(K3, x (N +1) x Iy, (N +1)). (2.11)

To sum up, the priors for the eight-variable TVP-VAR-SV model are specified as

follows



2.3
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N(By,9 x PBO)>
N (@, 9 x Pg,),
N(hg,1 x Iy),
IWpno4m)(0.01% X 137 x P | 137),
IWn(0.01% x 9 x Iy, 9),

IW1(0.001 X 2 x Pay, o), 2),

IW5(0.001 X 3 X Pag, o .a50):3);
IW3(0.001 x 4 X P oy 0.b049.0),605.004)5
IW4(0.001 X 5 X Pag, .a52.0,055.0:8500)5 D)
IW5(0.001 x 6 x P,

&61,0,0662,0,04663,0,064,0,04465,0) 7 6)a

IWﬁ(0.00l X T X P(

&71,0,8072,0,84073,0,8074,0,875,0,8076,0) 9 7)7

IW7(0.001 X 8 X P(

Gi81,0,0082,0,0083,0,0084,0,0685,0,0086,0,(687,0) 9 8)

Identification and proxies to external finance

premium

In this section, we discuss a recursive identification scheme and consider al-

ternative proxies to the external finance premium.

2.3.1 Identification

A way to achieve identification of the financial shocks is to assume that the

structural innovations u, in Equation (2.4) can be obtained from the reduced form

disturbances €; by orthogonalising the reduced form errors, this follows |Kilian and

Liitkepohl| (2017). We accomplish this task by defining a lower triangular N x N
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matrix P, P} = 3 ;, such that P, is the Cholesky decomposition of X, ;. It follows
from Equation (2.5) that one possible solution to the problem is P, = A; lDi/ 2,
We compute the impulse responses as described in |Gali and Gambetti (2015).
As mentioned by Kilian and Liitkepohl (2017), the recursive condition in P;
requires ordering of variables based on economic theory. Furthermore, we assume
that the transmission channel of the financial shocks is in line with the financial
accelerator mechanism. Thus, an unexpected increase in credit spreads leads to an
immediate reaction of the financial sector to the surprise news while movements
in real economic activities and prices occur only within a period. This is an
example of a recursive identification scheme on a TVP-VAR-SV model
We construct an eight—variable TVP-VAR-SV model that includes both macroe-

conomic and financial variables. The eight variables in this specification are,
consumption, investment, GDP growth, GDP deflator, corporate bond spread
(A-spread), stock market returns (S&P 500), the ten-year Treasury yield, and
the Federal funds rate. The identifying assumption implied by this recursive
ordering is that shocks to the A—spread affect consumption, investment, GDP
growth, and inflation within a period, while the stock returns, the ten-year Trea-
sury yield, and the Federal funds rate can react contemporaneously to such a
financial disturbance. The TVP-VAR-SV model is estimated over the full sample

period, using 2 lags of each variable.

2.3.2 Proxies of external finance premium

We consider a series of proxies to the external finance premium. Namely,
default risk premium, the excess bond premium, and the GZ-spread. We also use

the term spread as an alternative indicator.

3Impulse responses are normalised to ensure comparability across shocks. The normalisation
procedure follows the approach described in detail in Section 3.3.3.
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Default risk premium

Our benchmark measure is A—spread (the difference between BAA corporate
bond yields and AAA corporate bond yields). As alternatives, we also consider
the 10—year A—spread (the difference between AAA corporate bond yields and
10—year Treasury bond yields) and the 10—year B—spread (the difference between
BAA corporate bond yields and 10-year Treasury bond yields). We take those
measures as proxies to the external finance premium, i.e. measures of indicators
of financial distress. We can see their sensitivities to episodes of recessions in the

U.S. economy in Figure 2.1.

Excess bond premium and the GZ-spread

Other measures of the external finance premium include the excess bond pre-
mium and the GZ spread, widely used indicators of financial market tightness
developed by |Gilchrist and Zakrajsekl (2012)). They construct a credit spread
index from a panel of bond prices and show that it has strong predictive power
for real economic activity. This index is decomposed into a predicted component
reflecting expected default risk and a residual component capturing the excess

bond premium.

The term spread

There is extensive evidence on the predictive power of the term spread (the
slope of the yield curve) for fluctuations in real economic activity and inflation.
Although different proxies are used in the literature, the most common definition
is the difference between the ten-year Treasury bond yield and the three-month
Treasury bill yield.

The term spread has proven useful in forecasting real economic activity, as
shown by Hamilton and Kim| (2002) and Andrew et al.| (2006). In a compre-

hensive review, |Stock and Watson| (2003) also emphasize its ability to predict
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U.S. economic growth and inflation. As illustrated in Figure 2.1, the term spread
typically declines to low or even negative values before recessions, which explains
its role as a leading indicator of downturns. Accordingly, we consider the term
spread as an alternative financial indicator to assess its effect on real economic
activity and whether this relationship changes over time.

Figure 2.1 also displays alternative measures of the external finance premium.
The GZ spread, for example, rises sharply during recessions and peaked above 6%
in the Great Recession. More generally, all credit spreads move countercyclically,
increasing in economic downturns, whereas the inverted term spread tends to rise
before downturns occur.

To compare the relative information content of these indicators, we extend
the analysis by adding them one at a time to a six-variable TVP-VAR-SV model.
In this specification, gy, includes GDP growth, the GDP deflator, the unemploy-
ment rate, the A-spread, stock market returns, and the federal funds rate. The
recursive ordering assumes that shocks to the A-spread affect output, inflation,
and unemployment contemporaneously, while stock returns and the federal funds
rate can also respond immediately to such shocks. In alternative specifications,
we replace the A-spread with the 10-year A-spread, the 10-year B-spread, the GZ
spread, the excess bond premium, or the term spread as financial shocks. Data

definitions and sources are provided in the Data Appendix.
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Figure 2.1: The figure depicts the selected credit spreads and the term spread.
Quarterly time series plots span from 1973:Q2 to 2016:Q3. The shaded vertical
bars represent the National Bureau of Economic Research’s recession dates in the
U.S. economy.

2.4 Empirical Results

In this section, we report the consequences of a surprise innovation to the
credit spread on the real economic activity. All data are obtained from the Fred

database of the Federal Reserve Bank of St Louis except the GZ-spread and the

excess bond premium of |Gilchrist and Zakrajsek (2012), which are obtained from

the authors’ website. The time span for some variables starts in 1959:Q1 and ends
in 2018:Q1 and for the variables, GZ-spread, excess bond premium, and term
spread, it starts in 1973:Q2 and ends in 2016:Q3E| The TVP-VAR-SV models are
estimated over the full sample period, using two lags of each endogenous variable

and 10,000 Markov chain Monte Carlo (MCMC) algorithm replications.

4The Data appendix provides a complete listing of all variables.
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2.4.1 Results from the recursive identification scheme

Figures 2.2 through Figure 2.9 plot the impulse responses of the endogenous
variables to a financial shock to the A—spread. An unexpected increase of in
the A-spread causes a reduction in the real economic activity, with consumption,
investment and output decreasing over the next quarters. In response to this
adverse financial shock, the macroeconomic implications are severe; the decrease
in the investment outweighs the sharp drop in the real GDP growth, which is
about 3 percentage point.

However, the resulting economic downturn leads to an ambiguous response of
inflation over time. In line with the financial accelerator effect, there is an appre-
ciation of disinflation until late 198()SE] However, after then there is a persistent
increase in inflation. In response to these adverse macroeconomic effects of the
financial shock, the Federal Reserve reduced the Federal funds rate as depicted
by the time-varying impulse response of the relevant variable in Figure 2.9 that
occurs about one quarter after the initial impact of the shock. There is ambiguity
about the response of the stock market returns, which experiences a significant

drop in recent years.

SBernanke| (2003 defines disinflation as “a decline in the rate of inflation”.
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Figure 2.6: The figure depicts the impulse response of A-Spread to the identified
shock of the A-Spread estimated from an eight—variable structural TVP-VAR-SV
model.
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Figure 2.7: The figure depicts the impulse response of Stock Returns to the

identified shock of the A-Spread estimated from an eight—variable structural TVP-
VAR-SV model.
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2.4.2 Stochastic volatility

We present the posterior median, 5-th and 95-th percentiles of the time-
varying standard deviation of residuals of consumption, investment, GDP growth,
GDP deflator, A-spread, S&P 500 stock returns, ten-year Treasury yield, and Fed-
eral funds rate in Figure 2.10. In most cases, there is evidence of a considerable
time variation in the standard deviation of the innovations with spikes appearing
during different episodes of business cycle dynamics.

The first column and the third row of Figure 2.10 displays the time-varying
standard deviation of the A-spread shocks. The periods between 1981:Q3- 1982:Q4
and 2007:Q4-2009:Q2, which are periods of contractions, present a higher variance
of A-spread shocks. Another interesting fact from the analysis of the stochastic
volatilities is related to time-varying standard deviations of the ten-year Treasury
yield and the Federal funds rate. The former is displayed in the first column and
the fourth row and the latter is presented in the second column and the fourth
row of Figure 2.10. The variances of these variables peak between 1979 and 1983.
The result for the Federal funds rate is in line with the findings of Primiceri
(2005)).

Overall, the evidence supports the use of stochastic volatility specifications.
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Figure 2.10: The figure depicts posterior median, 5-th and 95-th percentiles of
the standard deviation of residuals of Consumption, Investment, GDP Growth,
GDP Deflator, A-spread, S&P 500 Stock Returns, Ten-Year Treasury Yield, and
Federal Funds Rate equations.

2.4.3 The effect of alternative financial shocks

To investigate the sensitivity of responses of real economic activity to finan-
cial shocks, we document the responses of the growth rate of GDP to a sur-
prise increase in the A—spread, the 10-year A—spread, the 10—year B—spread, the
GZ-spread, the excess bond premium, and the term spread. We consider alter-
native credit spreads by adding one at a time to a six-variable TVP-VAR-SV
model. In other words, y; contains only one of the credit spreads at a time and
other macroeconomic and financial series.

The posterior median of the impulse responses of the growth rate of real GDP
over the whole sample period appear in most cases are quite similar. For exam-
ple, a positive financial shock to the A—spread, 10—-year A-spread and 10-year
B-spread (panel (a), (b) and (c) in Figure 2.11) seems to have a large negative
impact on real GDP growth. There is a sharp drop in output growth that be-

gins after several quarters. Figure 2.11, panels (d) and (e) display the impulse
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responses of output growth that shows a persistent negative decline after the
widening of the GZ—spread and the excess bond premium.

Panel (f) of Figure 2.11 shows the changing response of output growth, which
generally rises on impact in response to a term spread shock. Until the early
1990s that rise is persistent. By contrast, starting in the early 1990s, the initial
rise is rapidly reversed with GDP growth rising above their initial value until

early 2000s.
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Impulse Responses of Real GDP Growth to Selected Financial Shocks
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Figure 2.11: The figure shows the median of the impulse responses of real GDP
growth to the identified shock of the A-Spread, 10-Year B-Spread, 10—Year
A-Spread, GZ-Spread, Excess Bond Premium, and Term Spread. For each case,
a six-variable structural TVP-VAR-SV model has been estimated.
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2.4.4 Model comparisons

We perform a formal Bayesian model assessment by comparing alternative
VAR models. We propose a discrete set of four competing models and compute
Bayes factor, which is defined as a ratio of marginal likelihood of a model relative
to the marginal likelihood of a second model, |Chan and Eisenstat| (2018a)). Those
four labelled models are M;: TVP-VAR-SV model, Ms: TVP-VAR model with
time-varying parameters and constant volatilities, a M3: VAR-SV with constant
parameters and time-varying volatilities, and M,: VAR model with constant
parameters and volatilities. In this case, if we compare two competing models,

M; and My, the ratio of their posterior probabilities is

M M
p(Mily:) = p(M) x Bayes factor(My; My),

p(Maly:)  p(My)

where p(M;)/p(M,) are the prior odds and the Bayes factor of the data is defined
as p(y:| M) /p(y:|My). If we set the prior odds equal to one, then the Bayes factor
is equal to the posterior odds. Table 2.1 and Table 2.2 report the logarithms of
marginal likelihoods and standard deviations under two alternative specifications
of the TVP-VAR-SV model and other competing VAR modelsf| Firstly, the
Bayes factor of the data of the TVP-VAR-SV over the constant parameter VAR
in Table 2.1, is p(y:|M1)/p(y:|My) = exp(—1744.10 — (—1980.60)). Then, the
posterior odds are p(M|y;)/p(M,ly:) = 5.1 x 10'°2. From this experiment we
conclude that the TVP-VAR-SV is supported by the data. However, we may ask
the question whether the relative strength of the model M; over the model M,
comes from allowing the time-varying parameters or the time-varying volatilities?
To answer this question we compare M, and M, models in Table 2.1. We obtain
a posterior odds ratio 6.3 x 10~°*, which does not favor the TVP-VAR over the

VAR model. Hence, we can conclude that the support of the stochastic volatility

6We calculate the marginal likelihoods and the standard deviations reported in Table 2.1
and 2.2 using the computational algorithms written by |(Chan and Eisenstat| (2018a)).
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seems to outperform the time-varying parameters in the VAR model fit. Those
results are in line with the findings of |Chan and Eisenstat| (2018a) who use a

three-variable alternative VAR models. Similar results follow from Table 2.2.

Logarithms of marginal likelihoods for eight-variable VAR(2) models

Model TVP-VAR-SV TVP-VAR VAR-SV VAR
Log-ML —1744.10 —2103.10  —1596.20 —1980.60
Standard errors (0.61) (0.60) (0.14) (0.05)

Table 2.1: The logarithms of the marginal likelihood estimates and standard
deviations (in parenthesis) are calculated using 10000 posterior draws after a
burn-in period of 0.1 x 10000 draws. The eight variables used in the estima-
tion are consumption, investment, GDP growth, GDP deflator, A-spread, stock

returns, ten-year- Treasury yield, and Federal funds rate for a period spanning
from 1959:Q1 to 2018:Q1.

Logarithms of marginal likelihoods for six-variable VAR(2) models

Model TVP-VAR-SV TVP-VAR VAR-SV VAR
Log-ML —1382.50 —1612.00 —1322.20 —1591.90
Standard errors (0.61) (0.43) (0.11) (0.01)

Table 2.2: The logarithms of the marginal likelihood estimates and standard
deviations (in parenthesis) are calculated using 10000 posterior draws after a
burn-in period of 0.1 x 10000 draws. The six variables used in the estimation are
GDP growth, GDP deflator, unemployment rate, A-spread, stock returns, and
Federal funds rate for a period spanning from 1973:Q2 to 2016:Q3.

An overview of the use of Bayes factors for comparing models can be found
in Koop| (2003)), |Gelman et al.| (2013), Kroese and Chan| (2014) and for the use
of Bayes factors with TVP-VAR-SV models see (Chan and Eisenstat| (2018a)).

2.4.5 Model comparison using a hybrid approach

The model comparison of the previous section shows that there is a strong
support for stochastic volatility. However, any conclusions of a constant pa-
rameter model can be misleading. Multiple sources of evidence show that the

Bayes factors can miss out small amounts of time variation in parameters in
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high-dimensional models. For instance, if most equations have constant parame-
ters but one or two do not, Bayes factors can miss it. Hence, we go ahead with
the TVP-VAR-SV model in our empirical analysis. However, note that the time
variation in the impulse responses could be due to stochastic volatility and not
time-varying parameters in the VAR coefficients.

The framework of Chan and Eisenstat| (2018b) can be used to analyse whether
some equations in our benchmark eight-variable TVP-VAR-SV model have con-
stant parameters and some have time-varying parameters. Unlike |Chan and
Eisenstat| (2018b) who use all subsets of models, we adapt an alternative ap-
proach. We begin with a null model containing all the constant parameter VAR
equations, and then iteratively add the time-varying parameter VAR equations,
one-at-a-time. We restrict the search to include only 1+ N (N +1)/2 = 37 models
if N = 8, and so can be applied in our setting where N is relatively large to apply
the full subset selection[]

The results of the estimates of marginal likelihoods and standard deviations
are reported in Table 2.3E| Zero (one) binary numbers in Table 2.3 indicate
constant parameters (time-varying parameters) in the relevant equations.

In general, we find that the VAR model with constant parameters and stochas-
tic volatility performs well when compared to alternative hybrid specifications
of the parameters and the full TVP-VAR-SV model. Adding one time-varying
parameter specification at-a-time reveals that equations of consumption, GDP
growth and stock returns performs well when time variation is allowed in param-
eters. On the other hand, allowing time variation in the equations of investment,
inflation, A-spread, ten-year-Treasury yield, and Federal funds rate does not re-

veal dramatic improvements in model fit.

"The full subset selection of (Chan and Eisenstat| (2018b) leads to 2V = 256 with N = 8.
It is computationally infeasible to solve the full subset selection with 256 eight-variable TVP-
VAR-SV models. We leave investigating the full subset selection problem to future.

8We calculate the marginal likelihoods and the standard deviations reported in Table 2.3
using the computational algorithms written by (Chan and Eisenstat| (2018b]).



33

When pairs of parameters are allowed to vary over time, the performance of the
VAR models depends on the performance of individual parameters. For example,
if a VAR model with parameters of pair of variables are allowed to vary over
time performs well when compared to the VAR model with constant parameters,
this must be due to the performance of each parameter individually. This can
be seen from the performance of the VAR models with equations of consumption
and GDP growth, consumption and stock returns, and GDP growth and stock
returns when the parameters are allowed to vary over time. Those VAR models
outperform the all-constant parameters VAR model.

An interesting fact of our results is that there is no evidence of support of
time variation in the equation of inflation, which contrasts the findings of |Chan

and Eisenstat| (2018b) and Karlsson and Osterholm| (2023).
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Eight-variable hybrid TVP-VAR-SV models

Choice | y1r Y2r Yst Yar Yst You Y7 Ysu Log ML SE

1 0 0 0 0 0 0 0 0 —1,571.50 (0.63)
2 1 0 0 0 0 0 0 0 -—1,565.50 (0.73)
3 0 1 0 0 0 0 0 0 —1,57820 (0.41)
4 0 0 1 0 0 0 0 0 —1,570.90 (0.56)
> 0 0 0 1 0 0 0 0 —1,577.30 (0.53)
6 0 0 0 0 1 0 0 0 —1,592.20 (0.50)
7 0 0 0 0 0 1 0 0 —1,567.20 (0.54)
8 0 0 0 0 0 0 1 0 —1,606.90 (0.78)
9 0 0 0 0 0 0 0 1 —1,627.60 (0.48)
10 1 1 0 0 0 0 0 0 —1,572.80 (0.68)
11 1 0 1 0 0 0 0 0 —1,566.50 (0.52)
12 1 0 0 1 0 0 0 0 —1,574.80 (0.91)
13 1 0 0 0 1 0 0 0 —1,586.30 (0.78)
14 1 0 0 0 0 1 0 0 —1,564.10 (0.53)
15 1 0 0 0 0 0 1 0 —1,602.40 (0.47)
16 1 0 0 0 0 0 0 1 —1,623.00 (0.61)
17 0 1 1 0 0 0 0 0 —1,577.10 (0.53)
18 0 1 0 1 0 0 0 0 —1,584.90 (0.71)
19 0 1 0 0 1 0 0 0 —1,599.60 (0.71)
20 0 1 0 0 0 1 0 0 —1,574.80 (0.54)
21 0 1 0 0 0 0 1 0 —1,614.20 (0.85)
22 0 1 0 0 0 0 0 1 —1,634.80 (0.35)
23 0 0 1 1 0 0 0 0 —1,577.00 (0.59)
24 0 0 1 0 1 0 0 0 —1,590.50 (0.56)
25 0 0 1 0 0 1 0 0 —1,567.60 (0.42)
26 0 0 1 0 0 0 1 0 —1,605.70 (0.55)
27 0 0 1 0 0 0 0 1 —1,626.40 (0.42)
28 0 0 0 1 1 0 0 0 —1,599.40 (0.85)
29 0 0 0 1 0 1 0 0 —1,574.00 (0.92)
30 0 0 0 1 0 0 1 0 —1,614.60 (0.47)
31 0 0 0 1 0 0 0 1 —1,634.50 (0.29)
32 0 0 0 0 1 1 0 0 —1,587.40 (0.72)
33 0 0 0 0 1 0 1 0 —1,627.50 (0.62)
34 0 0 0 0 1 0 0 1 —1,648.60 (0.54)
35 0 0 0 0 0 1 1 0 —1,602.70 (0.67)
36 0 0 0 0 0 1 0 1 —1,624.20 (0.34)
37 1 1 1 1 1 1 1 1 —1,710.20 (0.87)

Table 2.3: The models are estimated using 10000 posterior draws after a burn-in
period of 0.1 x 10000 draws. The logarithms of the marginal likelihood estimates
and standard errors (in parenthesis) are calculated using 10000 replications. Zero
(one) stands for constant parameters (time-varying parameters) in the relevant
equations. The eight variables used in the estimation are y;; = consumption,
Yo = investment, y3, = GDP growth, y,, = GDP deflator, y5, = A-spread,
Yo, = stock returns, y7, = ten-year-Treasury yield, and ys; = Federal funds rate
for a period spanning from 1959:Q1 to 2018:Q1.
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2.5 Summary

We examined the nature and the evolving features of the real economic ac-
tivity, the prices and the financial indicators in response to the financial shocks
using several specifications of a Bayesian TVP-VAR-SV model. We identified the
shocks by imposing a recursive identification scheme on the impact responses of
multiple macroeconomic and financial indicators.

The evolution of the impulse responses over time for different horizons suggests
that potential time variation can be detected in several cases. Financial shocks
appear to having a substantial effect on the real economic activity during the
Great Recession. This is supported by the associated contraction in real economic
activity especially during the Great Recession as the responses to the financial
shock exceed the average.

Our assumptions that allow for the time-varying vector autoregressive coeffi-
cient states, the time-varying covariance states, and the time-varying volatilities
yield a more realistic picture of the effects of financial shocks on the real eco-
nomic activity and provide a useful resource in understanding the evolution of
transmission of these shocks into the real economy. Supported by the financial
accelerator framework, the results show that a surprise increase of a measure
of the external finance premium generates economically meaningful results with
some detectable differences; a decrease in real consumption, real investment, and

real output. However, it creates a puzzle in inflation and stock market returns.
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2.6 Appendix

2.6.1 A constant coeflicient VAR model

We first calibrate the prior hyperparameters of 3, oy, and hy by estimating a
time invariant version of the model in Equation (2.2) based on an initial training
sample of 40 observations using the method of ordinary least squares (OLS). Let’s

consider writing Equation (2.2) in a compact form as
y=(Ir®X)B+e, (2.12)

where we define y as an N7 x 1 vector, X = (x1,...,X7)" as a T x L matrix by set-
ting L = (1+Np) and rearranging x; = (1,y;_y,...,y;,), B = vec([Bo, ..., B,])
as an LN x 1 vector, € is an (NT x 1) vector of reduced form disturbances as-
sumed to be a zero-mean process with covariance matrix €, ~ N (0, X, @ Ir). We
may write the covariance matrix as ¥, = A"'DA’"!,

The OLS estimates and the covariance matrix of the slope coefficient vector
may be obtained by B, = [Iy & (X'X)™'X'ly and P; = & (X'X)~". The OLS
estimates of the elements of ¢y are obtained by regressing €;; on —€;,;_;; and
obtaining the estimated variance 15'@0. Finally, the elements of hy are generated by
the logarithm of the diagonal elements of 2(1)/ > = D'2 and the implied variances

are calculated as Iy.

2.6.2 The FFBS algorithm

Bayesian inference for the state space representation in Equations (2.2), (2.3),
(2.6), and (2.7) are based on the joint posterior density (3, &, h, 8]y) of all states
8= By ---,Br), = (ap,...,ar), and h = (hyg, ..., hy), and the hyperparam-
eters @ = (X3, X,, Xp). We estimate the model by simulating the distribution of

states and hyperparameters. We proceed by applying a particular Gibbs Sampler
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to the system in Equation (2.3) obtained as

p(51:T|a1:T, h;.7, Yir, 9) = p(ﬁT‘alzTy hy.r, Yuir, 9)
T-1

X H p(/gt|/8t+1a T, hl:Ta Y, 0) (213)
t=1

Equation (2.13) provides an efficient way to sample 3,., for a linear Normal
state space model with forward filtering and backward sampling (FFBS) algo-
rithm that was proposed by |Carter and Kohn (1994) and named as the FFBS al-
gorithm by [Frithwirth-Schnatter (1994). The FFBS algorithm samples the whole
state vector B3,. from the joint probability density given the sample y;.7 and the
relevant hyperparameters in 6.

Forward filtering

1. Sampling 3,:

The Kalman filter consists of the following equations which proceed sequen-
tially in time starting from initial values Bo and 1530. Consider the posterior

density of the state 3,_; given the information up to time ¢ — 1 is
/Bt—1|at*17 htfla Yiit-1, 0~ N<mt71, thl)-

Then the following statements hold

1. The one-step-ahead predictive distribution of 3, conditional on e, h;, and

yi.t—1 is Normal with parameters

a; = E(By|a, by, yi:-1,0) = my_y, (2.14)

Rt = V(/Bt‘ata ht7 Yiit-1, 9) = thl + 25 (215)

2. The one-step-ahead predictive distribution of y; conditional on yi.;_1 is
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Normal with parameters

f, :E(Ytb’l:t—l) = Xy, (2-16)

Qt = V(Yt’yl:tfl) = XthX; + Ee,t- (217)

3. The filtering distribution of @, conditional on o, h;, and y;.; is Normal,

with parameters

m; = E(/Bt|at7 ht7 Yiu, 0) = & + Kt(Yt - Xtat>7 (218)

Ct - V(/Bt|at7 ht7 Y, 0) - Rt - KtXth, (219)

where K, = R;x,Q; ' is Kalman gain.
Backward smoothing
At the end of sampling, the forward filtering delivers the mean and the vari-

ance for B, of the form

p(5T|Oé1:T,h1:T,Y1;T79) ~ N(mT,CT>-

The backward sampling step computes the remaining terms in Equation (2.13).
Because the state space model in Equations (2.2), (2.3) are linear and Normal, the
distribution of B, given y;.r and that of 3, given 3, and y,, fort =T-1,...,1

are also Normal. Conditional on generating B;, we can compute 3, from

p(ﬁt’ﬁt-‘,—hal:T7h1:T7y1:T70) ~ N<gt7Gt)7

with moments

g: = my + By(fi1 — my),
(2.20)

G,=C,—BR,. B,
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where B; = Cth_Jrll.
2. Sampling o :

To sample a; elements of the lower triangular matrix A;, let’s denote
A;1<Yt -x0,) = A;Iyt = Hi/Qet. (2.21)

Then, we may write the following equation for each row of a lower triangular

matrix fori =2: N

Uit = —Y1:i—1,40 ¢ + 04 1€t (2.22)

where 0,; and ¢;; represent the ith elements of o, and €;, respectively and
Vii-1t = (U14y---,0i—1+). Conditional on B, and hy, Equation (2.22), is the
measurement equation of a state space model where the state is defined in Equa-
tion (2.6) with components of the state a;;. We apply the FFBS algorithm and
draw o, from N (a,-,t‘tﬂ, V?,ﬂ . +1), where the smoothing mean and the variance
are denoted as

QG gle+1 = E(ai,t’ai,tH, Y, 51;1’, hy.r, 9),
(2.23)

(07 J—
Vi,t|t+1 = V(s

QGt+1, Yt 51;T7 h;.7, 9)-

3. Sampling h,:

Sampling the volatilities is not straightforward as the stochastic volatility is
a nonlinear state space model. The challenge arises because the joint conditional
density of p(hy.r|yi4, Br, ar, X, 34, Xj) is not Normal. We use auxiliary mix-
ture sampling algorithm to estimate the stcohastic volatility. This estimation
method was developed by [Kim et al.| (1998) and was implemented by [Primiceri
(2005)), |Gali and Gambetti (2015)), and for a book length see Kroese and Chan

(2014). Let’s start implementing this approach by transforming y; in order to

9For details, see West and Harrison| (1997) Chapter 15, Kim and Nelson| (1999) Chapter 8
and Blake and Mumtagz| (2012) Chapter 3.
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obtain a measurement that is linear in h;

yi = (yi —x8,) = ™y, (2.24)

where eMv; = n? and v; ~ N(0,1). Squaring both sides of Equation (2.24) and

taking the logarithm, we obtain the following form
vy, = 2h; + vj, (2.25)

where y* = logy;?, h; = logo; and v} = logw?. Hence, Equation (2.25) to-
gether with Equation (2.7) represent a state space model. However, the issue
with the above representation is that the error term v; does not have a Nor-
mal distribution. The auxiliary mixture sampling finds a Normal mixture that

approximates the pdf of the v}

f(v)) = Z w;p(vy; Hp i o-i,i)v (2.26)

i=1

where ¢(y; p, 0?) is the Normal density with mean g and variance o2, w; are the
mixture probabilities for the ith component and n is the number of components.
We can define an auxiliary random variable s, € {1,...,n} , which can be used

as a mixture component indicator
(Uf|spe = 1) ~ N(Mh,i — 1.2704, U%,i),
Pr(sp: = 1) = w;.

Hence, the desired linear Normal model can be defined conditional on the
component indicator sy as (vf[sy.) ~ N (dy, 37), where df = p;, ; — 1.2704 and

Y=oy, fort =1:T. p,; and o, have fixed values represented as a seven
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component Normal mixture in Table 4 of Kim et al.| (1998). Then it follows that
(¥7"[she> e) ~ N (2hy + df, 337), (2.27)

for t = 1 : T. Then, we can use the FFBS algorithm and draw h; from

N (hyjq1, Vﬁt +1), where the smoothing mean and the variance are denoted as

ht\t+1 = E(ht’ht+17y1:ta/61:T> 1.7, Sh,1:T, 9),

(2.28)
V?\t-{-l = V(ht‘ht+17Y1:tw61:T7 1.7, Sh,1:T, 0)-
4. Sampling s,
We can sample s, ; as follows
T
F(suly™,0) = [T Flsnely;* he), (2.29)
t=1

where each s, can be sampled independently for ¢ = 1 : 7. We can compute
Pr(sp: = ily;*, h) for i =1:7 as
w;o(y;*: 2h, + wy,; — 1.2704, 0'?”)

Pr(sy: = ily;*, hy) = ) 2.30
( h,t |Yt t) ZZ:I wl¢(y:*7 2ht + l’l‘h,i - 127047 o-i27,,7,) ( )

5. Sampling 3;

Sampling the hyperparameter g as

T
P(Zply10 Brrs 0rr i, B, i) ~ IW(Ugy+ Y (ve—x18,) (yi—x18,), vs+T).

t=1
6. Sampling X,
Sampling the hyperparameter 3, blockwise S forn=1: N —1

T
p(Sly1e, Brp, ey hir, Xg, 3y) ~ IW(Uao+Z(ai,j,t_ai,j,t71)(ai,j,t_ai,j,tflya Va+T)-

t=1
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7. Sampling ¥,

Sampling the hyperparameter X, as
T
P(Znlyre, Bir, crr, Xa, Bp) ~ IW(UhO + Z(ht —hey)(hy —hyy) v, + T)~
t=1

2.6.3 Data appendix

The quarterly time series variables used in the TVP-VAR-SV models are
taken from the FRED database of the Federal Reserve Bank of St Louis spanning
from 1959Q1 to 2018Q1. The columns of Table 2.4, denote the series numbers,
Tcode denotes the data transformations based on McCracken and Ngf (2020) and
Gilchrist and Zakrajsek| (2012)), series denotes the FRED mnemonic except for
GZS and EBP, and description denotes a brief definition of the series.

A—Spread is defined as Moody’s BAA corporate bond yield minus Moody’s
AAA corporate bond yield, the 10-year B-spread is Moody’s BAA corporate
bond yield minus 10—year Treasury bond yield, the 10—year A—spread is Moody’s
AAA corporate bond yield minus 10—year Treasury bond yield, the GZ—spread
and excess bond premium are the spreads of (Gilchrist and Zakrajsek (2012)), and
the Term Spread is defined as the difference between the 10-year Treasury bond
yield and the 3-month Treasury bill as suggested by Stock and Watson| (2003).
The time span for the variables, GZ-spread, excess bond premium, and term
spread, starts in 1973:QQ2 and ends in 2016:Q3.

The modified Tcode, 1*, stands for no transformation of the series.
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Time series used in the TVP-VAR-SV models

ID Series Tcode Description

1 PCECC96 5 Real Personal Consumption Expenditures

2 GPDIC1 5) Real Gross Domestic Product

3 GDPC1 5 Real Gross Private Domestic Investment

4 GDPCTPI 6 Gross Domestic Product: Chain-type Price Index
5 AAA 1* Moody’s Seasoned AAA Corporate Bond Yield
6 BAA 1* Moody’s Seasoned BAA Corporate Bond Yield
7 S&P 500 5 S&P’s Common Stock Price Index: Composite
8 GS10 1* 10-Year Treasury Constant Maturity Rate

9 FEDFUNDS 1* Effective Federal Funds Rate

10 UNRATE 2 Civilian Unemployment Rate

11 TB3MS 1* 3-Month Treasury Bill

12 GZS 1* GZ-spread

13 EBP 1* Excess bond premium

Table 2.4: The quarterly time series variables used in the TVP-VAR-SV models.
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Chapter 3

Bayesian pairwise composite
likelihood method for large
vector autoregressive models
with time-varying parameters
and stochastic volatility

3.1 Introduction

A vector autoregressive model with time-varying parameters and stochastic
volatility (TVP-VAR-SV model) is a popular member of a family of time series
models in examining the complexity of macroeconomic phenomena. Estimation
of this beautiful model is typically carried out by using a conventional Bayesian
approach based on small datasets in a class of models that have been used in
a range of papers, including |Cogley and Sargent| (2005)), [Primiceri| (2005)), Koop
et al.| (2009), Koop and Korobilis| (2010), |Gali and Gambetti (2015)), |Prieto et al.
(2016)), Gambetti and Musso| (2017) and (Chan and Eisenstat| (2018a). Estimating
models with large number of variables is challenging since they include a large
number of parameters relative to the number of observations. When estimating
high-dimensional complex models with large datasets, the full likelihood function
and the full posterior density may become impractical to compute. Our primary

objective is to resolve the computational complexity of the TVP-VAR-SV models
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using large datasets in a parsimonious way.

We contribute to this field by developing an innovative Bayesian inferential
framework to address the high-dimensional inference problem posed by the TVP-
VAR-SV model, which features parameter changes, many dependent variables,
and substantial computational complexity. Although the full likelihood is analyt-
ically known, its evaluation becomes impractical in high dimensions. To overcome
this challenge, we construct a Pairwise Composite Likelihood (PCL) by combining
pairwise likelihood functions, each based on bivariate densities from a collection
of bivariate TVP-VAR-SV models. These bivariate models are estimated inde-
pendently via Gibbs sampler, enabling parallel computation and scalability.

A central innovation of this chapter is the introduction of the Direct Averag-
ing Method (DAM), which systematically aggregates parameter draws from the
bivariate posteriors into estimates for the joint pairwise composite model. This
is achieved through a structured mapping that accounts for the multiple appear-
ances of each variable across the bivariate models via a matrix-weighting scheme.
The resulting approximation effectively replaces the intractable joint likelihood
with a product of lower-dimensional components, while preserving key dynamic
features of the data. A critical research question addressed by DAM is ensuring
that the aggregation of pairwise contributions yields accurate and interpretable
pairwise composite estimates, while maintaining computational tractability in
high-dimensional settings.

Composite likelihood methods share some theoretical properties with the the-
ory of misspecified models. Thus, a wealth of literature has proposed many
composite likelihoods under various different names[f] All of these can be seen as

special cases of the composite likelihoods defined by Lindsay| (1988). He defined

!Those are pseudo likelihood by [Besag| (1974)) for spatial data and [Verbeke and Molenberghs
(2005)) for longitudinal data, partial likelihood by |Cox| (1975)) for proportional hazards model,
the mth-order likelihood by |Azzalini| (1983)), pairwise likelihood by |Cox and Reid| (2004)), split-
data likelihood by [Vandekerkhove| (2005)), and quasi-likelihood by [Hjort and Varin| (2008) and
Pakel et al.| (2014).
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composite likelihood as a likelihood obtained by the sum of low-dimensional log
likelihood functions. Those component likelihoods are based on either marginal
or conditional density functions.

Bayesian estimation using composite likelihood methods is an area of research
that has been partially explored. Examples include |Pauli et al| (2011]), [Ribatet
et al. (2012), Friel (2012), Roche| (2016), |Chan et al. (2020) and |Canova and
Matthes) (2021]).

We evaluate the empirical performance of the Bayesian pairwise composite
likelihood method by studying the changing dynamics in a TVP-VAR-SV model
with key U.S. macroeconomic variables. In particular, we study the macroe-
conomic consequences of shocks to the corporate bond spread by adding the
corporate bond spread to a pairwise composite likelihood TVP-VAR-SV (PCL-
TVP-VAR-SV) model that includes N = 50 endogenous variables. The frame-
work provides a practical way to make inference about the joint fifty-variable
PCL-TVP-VAR-SV model combined from a set of (]2V ) = 1225 bivariate mod-
elsE] Time-varying pairwise composite impulse responses show the effects of a
surprise increase in the corporate bond spread on fifty variables, with sensible
and economically meaningful results.

The remainder of the chapter is structured as follows. Section 3.2 presents
a specialized version of the pairwise composite likelihood approach tailored for
time series analysis. Section 3.3 outlines both componentwise and joint mod-
elling strategies within the TVP-VAR-SV framework. Section 3.4 introduces the
proposed Direct Averaging Method for aggregating pairwise estimates into pair-
wise composite parameter structures. Section 3.5 reports empirical findings based
on pairwise composite impulse response analysis. Section 3.6 concludes with a
summary of the main results and their implications. The Appendix provides ad-

ditional algorithmic details, extended empirical results, and a data description.

2The (]Z ) = k'(Nle)' denotes the binomial coefficient for counting the number of k£ combi-
nations of a set with NV distinct cross-sectional variables, where k =2 and N > k.
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3.2 Bayesian pairwise composite likelihood

We use a class of pairwise composite likelihood approach formed by pairwise
likelihoods constructed from bivariate marginal densities. More precisely, we
adapt a special case of pairwise likelihood methods proposed by [Verbeke and
Molenberghs| (2005) and Fieuws and Verbeke (2006) in a novel way to be applied

for the first time in the context of TVP-VAR-SV models.

3.2.1 Pairwise composite model

Let y; denote a N x 1 vector of time series variables. For each cross-sectional
variable j = 1: N, ¢t =1 : T denotes the time series observations. Suppose the
system consists of multiple state parameters 8; = (3,, ay, h;)’ that are indexed by
time and that 8 = (84,...,87), @ = (ay,...,ar)’, and h = (hy,... hy) on a
parameter space ©. A key assumption is that an observation density conditional
on state parameters p(y¢|xy; B;, @y, hy) is correctly specified for all ¢ = 1,...,T.
The vector x; contains lagged values of y; with £ = 1 : p and p defining the order
of the VAR(p) model, and the vectors of parameters, 3,, a;, and h;, appear in
the density for every time ¢t. Then, the full likelihood function of this system may

be obtained as
T

L(Ba «, h7 Y, X) - Hp(Yt|Xt7 ﬂta Oy, ht)7

t=1
for the contribution of all variables to the full joint likelihood.

Assuming the joint probability density function p(y¢|xs; B;, @, hy) is correctly
specified, suppose it is a challenge to specify the full N dimensional distribution
at time ¢ but that it is possible to specify all two dimensional distributions.
Let a combination of the N dimensional random vectors taken k at a time, be
any subset of k£ elements. Assuming £ = 2, take 2 elements at a time and
randomly select (]2V ) all ‘pairs of data’ in the cross section. Thus, each pair of

y; and y; is an (V; x T') matrix, with V; = 2 and tth elements y;, and y;,. Let
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Vi ={ (Wit v20) Wi yse)'s - oy (Un—1t, Yn,e)'} denote a set of all pairs of variables
to be modelled componentwise, with ¢ = 1,...,N —1 and j = (i + 1),...,N.
To simplify notation, we may write y,; for a pair of variables with ¢ =1,..., M,
where M = (];7) For instance, y1; = (y14,y2+). Then, the pairwise composite

posterior density can be obtained as

M T
(Bcaawh |y ( zt7ai,t7hi,t)>

X H p(ﬁi,o) Hp(/@zt|/61tl))

i=1 t=1

iu

I . (3.1)
X H p(a@o ’/31;,0) H P(ai,t|ai,t—1 ) IBi,t))
i=1 t=1

S

T
X Hp(hi,[)’ﬁi,()a Qo) Hp(ht’hi,tfla Bis ai,t)) )

i=1 t=1

where the pairwise composite likelihood constructed from bivariate marginal den-

sities is a function of 3,, ., and h. defined as

M T
LC(/Bm O, h67 Y> = H Hp(yz,ta IBi7t’ ai,t7 hi,t)a (32)
i=1 t=1
and the composite log likelihood
M T
(Bcaaca cay Zzlogp Yththaazta zt) (33)
i=1 t=1

where we drop the conditioning argument x; for notational simplicity, and 3., =
(5172,1:’ B Nt) Qe = (‘11,2,t7 cee OﬁN—LN,t)/, and hc,t = (hl,z,t, . ,hN—l,N,t)/
are the vectors combining all the M pair-specific parameter vectors. Pair-specific
parameters 3, ,, a;;, and h;; are assumed to be subsets of 8.;, a.s, and h.g,

respectively, related to the bivariate distribution of Y;, = (Y, Yj.)".
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3.2.2 Mapping bivariate parameters to pairwise compos-

ite parameters

One complication of the pairwise composite likelihood method is the uneven
frequency with which parameters appear. Each dependent variable appears in
N —1 bivariate models, and thus certain parameters occur only once, while others
appear N — 1 times.

The stacked parameters 3, ;, ., and h.; obtained from the bivariate models
are not, in general, equal to the pairwise composite parameters 3,, oy, and h;.
Elements of 8, may correspond to multiple entries in 3.;, depending on how
often they are identified across submodels. Elements of oy, in contrast, are often
uniquely identified from a single submodel. The log-volatilities h; generally ap-
pear multiple times across submodels due to the repeated inclusion of individual
series.

To construct the full set of time-varying pairwise composite parameters, we
define a linear mapping from the bivariate parameter vector to the pairwise com-

posite parameter vector

Ht — 906775, (34)

where 0., collects all parameters from the bivariate models, and €2 is a block-
diagonal matrix that encodes the appropriate selection and averaging scheme to
construct joint pairwise composite parameters.

This weighting scheme differs from traditional Bayesian model averaging,
where weights are probabilistic and sum to one. Instead, the weights here are
deterministic, inspired by the approach of Verbeke and Molenberghs| (2005), re-
flecting the combinatorial structure of pairwise decomposition in the PCL-TVP-
VAR-SV model. While our weighting scheme results in weights that sum to one
within each (N —1)-dimensional marginal structure, it fundamentally differs from

probabilistic model averaging. The weights are not derived from posterior model
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probabilities, but rather from the deterministic frequency with which each pa-
rameter appears across the M bivariate models. This distinction is crucial as our
approach does not attempt to average over model uncertainty in the Bayesian
sense, but rather to correct for structural overlap inherent in the pairwise com-

posite likelihood framework.

3.2.3 Theoretical review

Several key questions arise: first, how should we treat asymptotics of the pos-
terior distribution of the pairwise composite parameters? Is a pairwise composite
posterior estimate (the posterior mean) asymptotically approximate a pairwise
composite maximum likelihood estimate? How can we overcome the problem that
there is a one-to-many matches between the joint and the pairwise composite pa-
rameters? And how can we deal with the fact that the parameter space © is not
necessarily finite dimensional? To answer these questions, we need to describe the
inferential validity of the pairwise composite likelihood approach from a Bayesian
perspective. Currently, a general theory to the Bayesian inference in time series
models using the pairwise composite posterior distribution is not available, so a
careful treatment of every problem is essential.

The validity of the pairwise composite posterior distribution can be based on
asymptotic results. When performing Bayesian analysis, Central Limit Theorem
(C.L.T.) can justify approximations for large sample sizes. A rather general
behaviour of the posterior distribution can be analysed through the C.L.T. and
the asymptotic theory. We prefer to discuss concepts in a somewhat informal
way and motivate key results.

It was shown by Kent (1982)), Lindsay| (1988), White (1994) and |Verbeke
and Molenberghs (2005) that some general results on consistency and asymptotic

normality of composite likelihood estimate exist for fixed N and T" — oo to obtain
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the limiting distribution
VT[0. - 6. L N(0,G1(8.)), (3.5)

where 0, is the maximum composite likelihood estimate (MCLE) and G(8,) =
H'(6.)J(0.)H'(6.) is the Godambe information matrix, |(Godambe| (1960)), or
the so-called sandwich information matrix. H(0.) = E[—Vu.(0.,y)] is defined as
sensitivity matrix and J(0.) = var{u.(0.,y)| is defined as variability matrix with
uc(0,,y) is the pairwise composite score function. For a detailed discussion, see
Varin| (2008) and [Varin et al. (2011). A natural question is whether a pairwise
composite posterior summary is asymptotically close to above frequentist sum-
mary. Under appropriate regularity conditions, the C.L.T. of probability theory
can be described in a Bayesian language to show the pairwise composite posterior

distribution

VT[E(O.]y) - 0.] % N(0,G7(6.)). (3.6)

where E(6.|y) is the mean of the pairwise composite posterior. This property
shows that as the sample size increases, the Bayesian pairwise composite posterior
estimate is approximately the same as the MCLE. |Wakefield (2013) adds that if
model misspecification is present, its effect on both inferential tools is the same.
However, this strong statement should be used with caution. There is an effect of
the prior in these results; the prior may not vanish, for a discussion, see DasGupta
(2008), Chapter 20. As Wakefield (2013) notes, “While sandwich estimation can
be used to correct the variance estimate for the maximum likelihood estimate,
there is no such simple solution for the posterior mean, or other Bayesian sum-
maries.” Previous attempts at Bayesian composite likelihood include using a
constant weight so as to best adjust the composite posterior variance matrix to
the asymptotic variance matrix of the MCLE [Pauli et al.| (2011), or performing

an adjustment method [Ribatet et al.| (2012). Both of these methods share the
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fact that they are applied within a Markov chain Mote Carlo (MCMC) algo-
rithm. (Canova and Matthes| (2021) follow the approach developed by Ribatet
et al. (2012) and conclude that it produces estimates with good finite sample
properties.

Note, however, that in those examples of the composite likelihood method,
there is a one-to-one parameterisation in the different parts of the composite
likelihood function, whereas in our example the set of parameters in 6, is con-
sidered to be a combination of pair-specific parameters. Another drawback of
the approaches in |[Pauli et al| (2011) and Ribatet et al,| (2012) is that they do
not assume the weights of different components of the composite likelihood func-
tion sum to one which contrasts with the Bayesian notion. To overcome the
problem that there is a one-to-many matches between the joint parameters 6
and the pairwise composite parameters 6., we follow Verbeke and Molenberghs
(2005), chapter 25 and obtain a single estimate of @ by averaging all the matching
pair-specific parameters in 8.. Then, the asymptotic distribution can be written

as

VT[E(8]y) — 6] % N(0,2G1(6,)0). (3.7)

Hence, under very mild regularity conditions, we assume that the basic asymp-
totic theory of an approximate pairwise composite posterior distribution may hold
with an asymptotic multivariate Normal distribution for parameters using a gen-
eral framework of the composite likelihood (under the term pseudo likelihood)
theory presented in |Verbeke and Molenberghs (2005)), Chapters 9. An additional
condition, in the context of time series, is that the pairwise composite posterior
mean converges to @ at a usual rate, assuming the data are stationary time series
as described by |Cox and Reid, (2004).

In this setup, we deal with a very large number of unknown parameters. To
approach this problem, we follows DasGupta (2008), Chapter 34, and assume

that a parameter space © in finite-dimension is available and the dimension
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depends on T'. We may let @ = @, — oo as T — 00, where T is the time series
dimension. Our interest is to answer the question of how to achieve consistency
and asymptotic normality of the pairwise composite posterior when the number
of parameters goes to infinity with the number of observations. One theoretical
question left for future study is that in an infinite dimensional parameter space,
we need to know whether the pairwise composite posterior converges near the
truth. To be precise, we must ensure that the pairwise composite posterior mean
is consistent, that is, it converges to the true value of the parameters when the
number of parameters increases with the number of observations. We also need to
establish asymptotic properties of the approximate pairwise composite posterior,
that is, the approximate pairwise composite posterior distribution, under some
appropriate regularity conditions for time series models, converges asymptotically
to the Normal distribution.

It is important to clarify the role of the pairwise composite likelihood ap-
proach in the proposed methodology. The estimates obtained from individual
bivariate models are not assumed to recover the parameters of the unrestricted
joint model. Rather, the composite likelihood approach uses these marginal con-
tributions as building blocks in a pseudo-likelihood that approximates the full
likelihood. Under the assumption that the full joint model is correctly specified,
each bivariate submodel corresponds to a valid marginal distribution, and the
resulting composite likelihood estimator targets the true joint parameter vector
(Lindsay]| (1988) and [Varin| (2008))). When this assumption does not hold, the es-
timator converges to a pseudo-true value that best approximates the joint model
under the composite likelihood criterion. We acknowledge that this procedure
does not yield the unrestricted joint density or an unrestricted VAR specification
but provides a practical and theoretically grounded approximation that remains

computationally feasible in high-dimensional settings.
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3.3 Bivariate and composite models

In this section we outline the bivariate TVP-VAR-SV models and the pairwise
composite PCL-TVP-VAR-SV model. We fit all bivariate models containing all

the M pair-specific parameters to construct the joint PCL-TVP-VAR-SV model.

3.3.1 The bivariate models

For each component model 7 = 1,..., M, the ith bivariate VAR process can

be written in a form of measurement equation of a state space model as follows

Vit = Xitf, + €it, (3.8)

and 3, , is the ith component state evolution equation following a random walk

process as

Bi:= /Bi,t—l + nf,t’ (3.9)

)

where y;; is an N; x 1 vector, X;; = Iy, ® (1, ¥}, 1,---,¥isp) is an N; x L;N;
matrix, €;; is an N; x 1 vector of reduced form disturbances assumed to be
a zero-mean process with time-varying covariance matrix €;; ~ N(0, 3,;:) and
nft ~ N(0,%;3). Bir = vec([Bioy, .., Bipy]’) is an LiN; x 1 vector of pair-
specific parameters, with the model order p is being preselected for £ =0,...,p
and L; = (1 4+ N;p). Let’s define X;; as a positive definite symmetric N; x N;

matrix, which has the following representation
Y= Az’,tDi,tA;,t- (3.10)

To establish a unique solution to the system in Equation (3.10), we further
assume A, ; is a lower triangular matrix with elements «;; ; below the diagonal and
1s along the principal diagonal, and D, ; is a diagonal matrix. In this framework,

volatility is captured by the time-varying standard deviations of the reduced-form
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disturbances, governed by the square roots of the diagonal elements of D, ;, which
result from the time variation in the transformation applied to the structural
shocks. Let o;; denote the vector of standard deviations, i.e., the square roots of
the diagonal elements of D, ;. Hence, the elements of the time-varying covariance

matrix are specified as random walks

Qi =1 +m5, and
(3.11)

h
h;y =h;; 1 +n,,

where h;; = logo,,, E(n;?ft) = 0 and E(nﬁt) = 0, E(nf‘tnﬁ) = 3,, and
E(ntmly) = Zin, and g, ~ N(0,%;,) and 0}, ~ N(0,5;,).

3.3.2 The pairwise composite model

Let’s define the pairwise composite parameters as 0, = (8,, o, hy, 3p, X, 2p),
and the stacked bivariate parameters as 0., = (Bqt, o hey, 305,30, Ecﬁ).

The pairwise composite model of interest, the PCL-TVP-VAR-SV, is given
by

yi = X3 + €, (3.12)

where €; ~ N(0,X;), and the pairwise composite time-varying covariance matrix
is decomposed as

Et - AtDt (At)/ . (313)

The parameter vector 6, consists of time-varying VAR coefficients 3,, the
nonzero elements of the lower-triangular contemporaneous matrix A;, and log-
volatilities h,. These quantities are not estimated jointly but instead are re-
constructed from M bivariate models using the pairwise composite likelihood
method. This approach creates the stacked parameter vectors 8, ;, s, he. To
reconcile the stacked bivariate parameters into a coherent set of pairwise com-

posite parameters, we use the linear mapping as described in Section 3.2.2.
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3.3.3 Identification and pairwise composite impulse re-

sponses

We identify the pairwise composite (joint) structural shocks u; from the pair-
wise composite reduced form disturbances €; by assuming a linear transformation
€ = Piuy, where E(wu)) = Iy and E(wu),_,) =0 for all ¢t and k = 1,2,3,....
Let’s define 3, as a positive definite symmetric N x N matrix, which has the
representation of Equation (3.13). To establish a solution to the system in Equa-
tion (3.13), we define P, as an N x N lower triangular matrix with positive main
diagonal elements such that P,P} = %;, where P, is the Cholesky decomposition
of ,. Then, P, = A,D}’*.

We may carry out dynamic impulse response analysis based on the pairwise
composite likelihood method. A central question in the analysis of pairwise com-
posite structural impulse responses is that how much sensible the results are
when compared to the results from a conventional estimation approach? We
try to measure the expected dynamic responses of future realisations of y;.;, for
h=1,..., H to a pairwise composite structural shock at time ¢. Then, we may
write the joint model in Equation (3.12) in companion form following [Kilian and

Liitkepohl (2017), and (Gall and Gambetti (2015) as

yi = p; + By + €,

where y; = (v, -+, ¥ipi1)s i = (B, 0,...,0), € = (€,0,...,0); and the

companion matrix

B
B; = !

IN(p—l) 0N(p—l),N

Then, a dynamic response to a time ¢ shock is denoted as

OYith
O¢,

= [B:h]N,N = Zyp,
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for h=1,..., H and [B;"]y x denotes the first N x N matrix and Z;o = I. Our
interest is in the dynamic responses of each element in y; to a financial shock
(impulse response) in u{ at time ¢,

OYt4n _ Oyi+n O€
ou! o€, du]

=Z7,,P" = Cy,

for h = 1,...,H and P£40) represents the fortieth column of P; assuming the

financial variable is ordered on the fortieth column of y,.

Normalisation of the pairwise composite impulse responses

Since the stochastic volatility introduces time variation in the magnitude of
the financial shocks, the raw impulse responses Cj,; reflect not only the trans-
mission of shocks but also the time-varying standard deviation of the identified
shock. To ensure comparability over time, we apply a normalisation step, given

by

where C((fz is the scalar contemporaneous impact of the identified shock on the
system (i.e., the first element in the impulse response function, which reflects the
direct effect of the shock at time ¢). This is not an element-wise division in the
typical sense (i.e., not a Hadamard element-wise division where each element of
a matrix is divided by a corresponding element in another matrix). Instead, it is
a column-wise normalisation where each element of the impulse response vector
is divided by a single scalar value.

Following (Gali and Gambetti (2015), we normalise the impulse responses by
dividing them by the contemporaneous effect of the identified financial shock.
This ensures that the responses are expressed in terms of a unit shock rather
than a time-varying standard deviation shock. While this normalisation removes

the direct influence of stochastic volatility on the scale of the impulse responses,
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the stochastic volatility component still influences the dynamics of the model
through time-varying coefficients and the covariance matrix. This normalisation
step ensures that the impulse responses are expressed consistently, making it
easier to visually interpret the dynamic effects over time, especially in the 3D

graphs.

3.3.4 Priors and initial values used in the empirical study

To complete the model specifications, consider independent priors over ¢ =
1,..., M component bivariate state parameters and hyperparameters 3, ,, o,
h;o, X3, ¥ and X; ;. To calibrate the priors for the state parameters, we
estimate M time invariant VAR models on an initial training sample of size
T;o = 40. The priors for the initial component states 51,07 a;o and h; are

Normal with parameters (; o, 3;0) and are defined as

Bz‘,o ~ N(Bi,m T8 X vﬂi,o)v
O~ N(OA‘i,Ua Ta X vai,o)a

hi?g ~ N(ﬁi,07 Th X Vhi,o)v

where 73, 7,, and 7, are scale factors. Furthermore, we assume that the prior
hyperparameters of the component covariance matrices for the state equations

follow inverse Wishart with parameters (U, o, v;) for 3, , Xq,, and Xy,

25i,0 ~ IWNi(Nip-i-l)(’%iﬁ X (Nl(Nlp + 1) + 1) X vﬁi,m (Nl(Nlp + 1) + 1))7

Yoo ~ IWn(Ni—1)/2(Kia X (n; +1) X Vai,o, (ni + 1)),

Shio ~ IWn, (ki x (N +1) X Vi, o, (N + 1)),

where v; is the degrees of freedom, 7 is the scale factor, n;+ 1 defines the number
of elements on each row of the lower triangular elements of A;; forn; =1: N;—1.

For the empirical exercise, we set the scale factors as 73 = N; +1, 7, = N; +1
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and 7, = 1, and set the scale factors for k; 3 = 1.0 x 1073, Kio = 1.0 X 1072 and

Kip = 1.0 x 1072,

3.4 Direct Averaging Method

The model is estimated using a two-step simulation approach based on Markov
chain Monte Carlo (MCMC) methods: the Gibbs sampler and a second-stage pro-
cedure we refer to as the Direct Averaging Method. The rationale for this two-step
structure is that the first step, which operates on a collection of bivariate sub-
models, does not directly yield draws from the joint pairwise composite posterior,
which is our target density. Instead, it provides draws from M bivariate poste-
rior densities. The second step combines these draws into approximations of the
target posterior density, and can be interpreted as a computationally convenient
approximation to a Metropolis-Hastings (MH) algorithm in which all proposals
are implicitly accepted with probability one.

In the first step, we estimate each bivariate TVP-VAR-SV model using the
efficient MCMC method of (Carter and Kohn| (1994)), implemented via forward
filtering and backward sampling (FFBS) as described in |[Frithwirth-Schnatter
(1994), and applied to this context in [Primiceri (2005). Specifically, we run a
seven-block Gibbs sampler for each of the M bivariate submodels in parallel, pro-
ducing R posterior draws for each set of bivariate parameters 6, fori =1,..., M
submodels.

The second step aggregates the draws from all submodels to approximate
moments and other summaries of the pairwise composite parameter vector 6.
The idea is to compute each element of 8; by averaging over the submodel draws
in which it appears. In practice, for a parameter like 3,;,, which only appears
in submodels involving the first variable, we average only over those draws that

include it yielding R x (N — 1) draws instead of the full R x M.
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This aggregation can be interpreted as an approximation to a MH algorithm,
where the submodel posteriors collectively form a proposal distribution for the
joint parameter space. Crucially, in this interpretation, the proposed values are
implicitly accepted with probability one. That is, instead of explicitly computing
MH acceptance ratios, we treat the draws as if they were accepted and average
them to estimate posterior quantities. This simplification is valid under the as-
sumption that the bivariate submodels provide consistent marginal information
about the composite parameters, and that parameter sharing across submodels
is appropriately handled by the averaging scheme.

We refer to this approach as the DAM, following similar motivations in [Ver-
beke and Molenberghs (2005) and Fieuws and Verbeke (2006). While it does
not involve a formal MH acceptance step, it retains the spirit of MH by com-
bining local draws into pairwise composite posterior approximations through a
deterministic transformation.

Formally, we organize the pairwise composite parameters into three compo-
nents: the time-varying VAR coefficient states 3,, the off-diagonal elements of
the Cholesky factor a;, and the log-volatilities h;. The mapping matrix is corre-

spondingly defined as

Q; 0 0
Q=10 Q, 0| (3.14)
0 0 Qb

The mapping matrix €2 serves as a structured linear operator that transforms
the vector of collected bivariate parameters into the pairwise composite parame-
ter vector of the joint model. Each block of €2 is responsible for one parameter
group: €2z maps the bivariate coefficient states to the pairwise composite coef-
ficient states, €2, constructs the pairwise composite covariance states, and €2,
aggregates bivariate volatility states into the pairwise composite volatility states.

The specific structure of each block reflects the frequency and position of variables
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across bivariate models and determines how pair-specific estimates are combined
under the DAM. Detailed descriptions for building these blocks are provided in

subsequent section

3.4.1 Averaging coefficient states

Let’s define the set of all unique bivariate combinations of the N variables as
P = {(i,j) eEN?:1<i<j< N} ., with number of models M.

For each pair (i,j) € P, we estimate a bivariate VAR(p) model that includes
an intercept in each equation. In the bivariate system, each equation includes N;p
lag coefficients and one intercept, giving N;p + 1 total parameters per equation.
Therefore, the full coefficient vector for the bivariate model has dimension K =
N;(N;p+1).

We denote the coefficient vector from the bivariate model for pair (i, j) at time
t as Bgi’j ) ¢ RE , and stack these vectors for all pairs into a vector 8., € R&e,
where K, = KM.

The objective is to map these bivariate estimates into a single, pairwise com-
posite parameter vector representing approximately the pairwise composite N-
dimensional VAR(p) system, which includes all NV variables and their Np lagged
values along with an intercept for each equation. The total number of coeffi-
cients in the full system is K’ = N(Np+ 1). Let’s define the pairwise composite
coefficient vector as 3, € RX".

We construct a sparse selection-and-averaging matrix 25 € RE*Ke guch that

IBt = Q/B ’ IBC,ta

where 3, contains both overlapping and uniquely identified parameters of the

composite system. Since the pairwise decomposition is designed so that each pa-
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rameter may appear in up to /N — 1 submodels, {25 contains entries such as ﬁ
or 1 per row, and zeros elsewhere, depending on the frequency of occurrence.
This aggregation ensures internal consistency and avoids duplication across over-
lapping parameter estimates.

The mapping structure (23 is fixed and deterministic, depending solely on the
inclusion pattern of each coefficient across bivariate models. It enforces an aver-

aging rule that ensures the pairwise composite model parameters are identified

and stable across time, based on the disaggregated bivariate estimates.

3.4.2 Averaging covariance states

In time-varying covariance decompositions, a lower-triangular Cholesky factor

N(N-1)

A, € RV*N s used to capture contemporaneous dependencies. The L = 5

time-varying off-diagonal elements collected in the vector oy € R*. Each element
af’j ) (for ¢ > j) is estimated from the unique bivariate model involving variables
(4,7), in the ordering implied by the Cholesky decomposition. Since each of these
parameters appears only once across bivariate decompositions, no averaging is
necessary. We define the composite vector o, which collects the relevant off-
diagonal coefficients from all bivariate models in accordance with the recursive

RLXL

ordering. The mapping matrix €2, € is simply the identity

oy = Qa Oty with Qa = IL,

where a; € R® contains the uniquely identified parameters of the full system.
Since each structural parameter is estimated from exactly one submodel, €2,
typically contains a single ‘1’ per row and zeros elsewhere — acting effectively as
a selector matrix. This implies that the vector «; is a direct extraction from the

bivariate estimates, requiring no transformation beyond consistent indexing.
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3.4.3 Averaging volatility states

We now describe how the pairwise composite vector of log-volatilities h; €
RY is constructed from bivariate estimates. Suppose we have N variables and
consider all M bivariate models indexed by pairs (7,j) € P, where each model
collects the log-volatilities from each bivariate covariance matrix into a vector
h., € RMM,

We define a weighting matrix €, € RY¥*¥iM  where each row corresponds
to a variable, and collects its associated log-volatility estimates across bivariate

1

models. The entries of §2;, are binary weights scaled by 5, since each log-

volatility appears in exactly N — 1 bivariate models
h; = Q- hey,

where h; contains the overlapping log-volatility parameters of the full system.
The matrix €2, typically contains entries like ﬁ per row and zeros elsewhere,
depending on the number of times each log-volatility is observed.

The structure of €2, is deterministic and depends only on the inclusion pattern
of variables in the bivariate subsets. This operation performs a simple average
of the available log-volatility estimates from the bivariate models to produce a
coherent pairwise composite vector of time-varying log-volatilities.

The matrices €23, €2,, and €2, are all highly sparse. Most of their entries are
zero since each joint parameter typically appears in only a few bivariate models.
This sparsity is a key computational advantage. In practice, {2 can be stored
and applied using sparse matrix formats, yielding significant gains in memory
efficiency and computational speed, particularly for large systems (i.e., large N).

In summary, the DAM relies on three core mapping procedures that transform
bivariate estimates into pairwise composite parameters. Specifically, these map-

pings construct: (i) the pairwise composite coefficient vector 3, from all bivariate
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coefficient estimates, (ii) the pairwise composite vector of Cholesky parameters a;
from the corresponding off-diagonal elements of the lower triangular factor, and
(iii) the pairwise composite log-volatility vector h; from bivariate log-volatility
estimates.

For completeness and reproducibility, detailed pseudocode for these three al-
gorithms is provided in the Appendix: Algorithm 1 maps bivariate VAR coeffi-
cients to the pairwise composite VAR coefficient vector, Algorithm 2 maps bi-
variate Cholesky parameters to the pairwise composite covariance structure, and
Algorithm 3 maps pairwise log-volatilities to the pairwise composite log-volatility

vector.

3.4.4 Advantages and considerations of the Direct Aver-
aging Method

The DAM offers several key advantages that make it an attractive inferential
framework. First and foremost, it is simple and computationally efficient. Unlike
a full joint estimation method, which requires intensive sampling and optimiza-
tion, direct averaging bypasses these computational burdens by leveraging exist-
ing posterior draws from bivariate models. This makes it significantly faster and
easier to implement, particularly in high-dimensional models where full Bayesian
inference is often infeasible.

Another major advantage is that the method provides a quick and direct point
estimate for each parameter in the full joint model. Instead of requiring additional
iterations, accept-reject steps, or complex sampling algorithms, this approach
allows researchers to obtain a single, well-defined estimate for each parameter by
averaging across bivariate posterior draws. This simplicity ensures transparency
and interpretability while still capturing the key statistical relationships present
in the data.

Despite these advantages, there are certain considerations to acknowledge
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when using the DAM. One key consideration when using the DAM is the lack
of formal uncertainty quantification. Since this approach aggregates independent
bivariate posterior draws, it does not explicitly estimate the full joint posterior
uncertainty. However, this limitation can be effectively addressed by computing
the impulse responses of the PCL-TVP-VAR-SV model using the joint pairwise
composite parameters obtained from the DAM and quantifying the uncertainty
by Monte Carlo simulation method.

To assess the robustness of these estimates, we employ Monte Carlo simulation
to compute joint pairwise composite impulse responses, which allows us to capture
the underlying uncertainty in the dynamic relationships between variables. By
repeatedly simulating the model’s response to shocks using parameter draws from
the averaged estimates, we can construct confidence bands around the impulse
responses, providing an intuitive measure of the uncertainty in the full composite
model. This approach ensures that the method remains statistically rigorous
while benefiting from its computational efficiency.

Additionally, in highly nonlinear settings, where the joint posterior may ex-
hibit complex dependencies, averaging across bivariate models without further
updates could introduce potential model misspecification. However, in many
practical applications—especially in macroeconomic and financial modelling, this
approach remains a computationally efficient and well, supported alternative to
full joint estimation. The method is grounded in established composite likeli-
hood theory (Verbeke and Molenberghs (2005) and Fieuws and Verbeke| (2006])),
ensuring that the resulting estimates retain desirable statistical properties.

Overall, the DAM strikes a balance between efficiency and accuracy. It pro-
vides a fast, transparent, and computationally feasible alternative to full MH al-
gorithm, making it particularly useful for high-dimensional models. While there
are certain trade-offs in terms of uncertainty quantification and introducing model

misspecification, empirical results demonstrate that it performs well in practice.
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Given these strengths, this approach represents a pragmatic and well-justified
alternative for parameter estimation in complex models, such as TVP-VAR-SV

models.

3.5 Empirical results

In this section, we study the macroeconomic consequences of a shock to the
corporate bond spread using the PCL-TVP-VAR-SV model that includes 50
macroeconomic and financial variables. Our identification strategy is inspired
by that proposed by |Gilchrist and Zakrajsek (2012). As extensions to their work,
we consider including a larger number of variables to address the omitted vari-
able problem of low-dimensional VAR models and allow time-varying parameters
and stochastic volatility in our novel setup. The implied identification assump-
tion allows for financial conditions to react contemporaneously to the corporate
bond spread shock while the economic activities response within a period. This is
an example of a recursive identification scheme that implies a recursive ordering
of variables. Furthermore, we split the variables into two groups: slow moving
variables, i.e. macroeconomic series, and fast moving variables, i.e. financial se-
ries. We order the variables in a similar fashion as described by Bernanke et al.
(2005), Banbura et al. (2010), |Gilchrist and Zakrajsek| (2012) and Stock and
Watson! (2016)). For instance, a shock to the corporate bond spread is assumed
to affect real economic activity within a period, while the financial variables can
react contemporaneously to such a financial disturbance.

Our data comprises a broad set of quarterly U.S. macroeconomic and financial
variables spanning from 1959:Q1 to 2018:Q2. The variables in the slow moving
group can be classified into six broad categories: National Income and Product
Accounts (NIPA), prices, industrial production, sales, labour market, earnings

and productivity, and financial indicators representing fast moving variables can
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be classified into three broad categories: interest rates, money and credit, and
exchange rates[’

We work with a PCL-TVP-VAR-SV with 50 variables and transform the ma-
jority of variables to stationarity using the benchmark transformation code of
McCracken and Ng (2020) and transform the corporate bond spread, the effec-
tive Federal funds rate and 10-Year Treasury Constant Maturity Rate as rec-
ommended by |Gilchrist and Zakrajsek (2012). The Data appendix in Section
7.5 provides a complete listing and definition of the variables. The results are
based on taking 10,000 draws from each component bivariate posterior. 10% of
10,000 draws from each component bivariate posterior are burn-in draws which
are dropped from the analysis. The time-varying pairwise composite impulse

responses are calculated using the compositional form of the joint model.

3.5.1 Time-varying pairwise composite impulse responses

Figure 3.1 through Figure 3.5 depict the pairwise composite impulse responses
of all the variables in our specification to the financial shock, defined as worsening
business credit conditions (identified via the widening of corporate bond spreads).
An unanticipated increase in the corporate bond spread causes a decline in real
economic activity, with consumption, investment, output, exports, imports, and
business sector output all decline sharply as shown in Figure 3.1. On the other
hand, government consumption and investment rises slightly on impact but then
falls after a quarter. Real disposable personal income has a modest declining
pattern after the initial impact of the shock.

Figure 3.2 shows the impact of the shock on the variables under the classifica-
tion of industrial production. The industrial production falls slightly on impact,

but then bottoms out within the first 10 quarters. Similarly, the effects of the

3Board of Governors of the Federal Reserve System defines the industrial production index
as real output (percentage of real output in a base year 2012). We include two variables from
the sales category, i.e. real manufacturing and trade industries sales and real retail and food
services sales, deflated by core personal consumption expenditures.
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shock on the variables under the classification of the labour market is provided
in Figure 3.2 through Figure 3.4. The impact of the shock to the corporate bond
spread on the unemployment rate is stronger starting from mid-2009.

In response to these adverse macroeconomic effects of the financial shock, the
Federal Reserve eased monetary policy as shown in Figure 3.5. While the Federal
funds rate is prevented from declining immediately, by assumption, it does fall
in the subsequent quarters. There is ambiguity about the response of S&P500
stock market returns, which generally increase on impact. By contrast, starting
in the early 2000s, the initial rise is rapidly reversed with stock market returns
declining quickly below their initial value. 3-month and 6-month Treasury bill
rates fall on impact and in years following the financial shock. Note that as
interest rates declines, the demand for monetary aggregate M1 increases, while
M2 show a modest rise.

Some of these responses, in particular those involving real economic activity
and interest rates, are in line with those of (Gilchrist and Zakrajsek (2012), who
have assumed that macroeconomic variables could respond on impact to corpo-
rate bond spread shocks within a period, and financial variables could respond
contemporaneously using constant parameter VAR model involving a small num-
ber of variables. However, although the associated slowdown in the economy
lead to a decline in inflation until late 1980s, this pattern discontinues after that
period with inflation rising toward zero, i.e. the period including the Great Re-
cession. This contrasts the results of |Gilchrist and Zakrajsek (2012)). They make
a different finding that the economic slowdown implies a continuing disinflation
over time. We also compare our results to the findings of Boivin et al. (2020)
who have estimated a large factor-augmented VAR model using U.S. data. They
have found that price indices show modest changes on impact to a credit spread
shock and a gradual decline afterwards. The findings of Prieto et al.| (2016]),

on the other hand, tend to contrast the main results of |Gilchrist and Zakrajsek
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(2012)) and Boivin et al.| (2020), however, they make a similar finding in line to
the results in this study.

To benchmark the performance of the PCL-TVP-VAR-SV model, a com-
parative analysis is conducted using a conventional six-variable TVP-VAR-SV
model estimated on a subset of key macroeconomic and financial indicators: GDP
growth, inflation, unemployment rate, corporate bond spread, stock market re-
turns, and the Federal funds rate. This specification adopts a recursive identi-
fication scheme, under which shocks to the corporate bond spread are allowed
to contemporaneously affect real economic activity and inflation, while financial
variables can respond within the same period. The comparison, detailed in the
Appendix, highlights the added value of the high-dimensional pairwise composite
likelihood framework in capturing richer dynamics without sacrificing computa-

tional feasibility.
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Macroeconomic implications of a shock to corporate bond spread
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Figure 3.1: The figure depicts the pairwise composite impulse responses of Con-
sumption, Investment, Output, Prices, Government Consumption Expenditures
and Investment, Exports, Imports, Disposable Personal Income, Nonfarm Busi-
ness Sector Output, and Business Sector Output to the identified shock of the Cor-
porate Bond Spread estimated from a fifty—variable PCL-TVP-VAR-SV model.
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Macroeconomic implications of a shock to corporate bond spread
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Figure 3.2: The figure depicts the pairwise composite impulse responses of Indus-
trial Production Index, Industrial Production Durable Materials, Industrial Pro-
duction Nondurable Materials, Industrial Production Durable Consumer Goods,
Industrial Production Nondurable Consumer Goods, Capacity Utilization, All
Employees of Total Nonfarm, All Employees of Total Private Industries, All Em-
ployees in Manufacturing, and All Employees in Education and Health Services to
the identified shock of the Corporate Bond Spread estimated from a fifty—variable
PCL-TVP-VAR-SV model.
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Figure 3.3: The figure depicts the pairwise composite impulse responses of All
Employees in Financial Activities, All Employees in Information Services, Civilian
Employment, Civilian Labor Force Participation Rate, Civilian Unemployment
Rate, Unemployment Rate less than 27 weeks, Unemployment Rate for more than
27 weeks, Civilians Unemployed Less Than 5 Week, Civilians Unemployed for 5
to 14 Weeks, and Business Sector for Hours of All Persons to the identified shock
of the Corporate Bond Spread estimated from a fifty—variable PCL-TVP-VAR-
SV model.
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Figure 3.4: The figure depicts the pairwise composite impulse responses of Man-
ufacturing Sector for Hours of All Persons, Manufacturing and Trade Industries
Sales, Retail and Food Services Sales, Personal Consumption Expenditures, Con-
sumer Price Index for All Urban Consumers, Producer Price Index for All Com-
modities, Compensation Per Hour in Business Sector, Output Per Hour in Non-
farm Business Sector, Output Per Hour in Business Sector, and Corporate Bond
Spread to the identified shock of the Corporate Bond Spread estimated from a

fifty—variable PCL-TVP-VAR-SV model.
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Figure 3.5: The figure depicts the pairwise composite impulse responses of S&P
Returns, Ten-Year Treasury Yield, Federal Funds Rate, 3-Month Treasury Bill, 6-
Month Treasury Bill, 1-Year Treasury Constant Maturity Rate, M1 Money Stock,
M2 Money Stock, U.S. / U.K. Foreign Exchange Rate, and Canada / U.S. Foreign
Exchange Rate to the identified shock of the Corporate Bond Spread estimated
from a fifty—variable PCL-TVP-VAR-SV model.
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3.5.2 Comparing impulse responses of PCL-TVP-VAR-

SV and TVP-VAR-SV models

We compare the results from a PCL-TVP-VAR-SV model to those obtained
from a simple approach, i.e. a TVP-VAR-SV model with a small number of vari-
ables. Hence, we consider a six-variable TVP-VAR-SV model. The six variables
in this specification are, GDP growth, inflation, unemployment rate, corporate
bond spread, stock market returns, and the Federal funds rate. The identifying
assumption implied by this recursive ordering is that shocks to the corporate bond
spread affect economic activity, inflation and unemployment rate within a period,
while the stock returns and the Federal funds rate can react contemporaneously
to such a financial disturbance.

Figure 3.6 and Figure 3.8 (reported in the Appendix) display the impulse
responses of GDP growth, inflation, unemployment rate, corporate bond spread,
S&P stock returns, and Federal funds rate to the identified shock to the corporate
bond spread estimated from a six—variable PCL-TVP-VAR-SV and TVP-VAR-
SV models, respectively, for a representative time 2010Q4. The date 2010:Q4
is chosen to represent a period after the Great Recession. In these figures the
posterior median is shown by the red line and the blue lines are the 16th and 84th
percentiles. A shock to the corporate bond spread causes a decline in the GDP
growth over the next quarter. The effect of the shock leads to a fall in inflation
in the short run and a rise afterwards. Unemployment rate rises on impact. The
response pattern for the stock returns is also seen to rise in the short run, but
ends up declining towards zero.

Figure 3.7 and Figure 3.9 depict the dynamic impulse responses of all six
variables to the identified shock of the corporate bond spread estimated from a
six—variable PCL-TVP-VAR-SV and TVP-VAR-SV models, respectively. Obvi-
ously, in both figures, the initial decline reverses with the inflation rising over

time. Similarly, the effect of a shock to the corporate bond spread on the stock
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returns is ambiguous; the initial rise is reversed with a decline for the period
covering the Great Recession.

In summary, the PCL-TVP-VAR-SV model delivers sensible and economically
meaningful results comparable to those obtained from the standard TVP-VAR-
SV model. Nevertheless, some differences are detectable. For example, the initial
impact of the shock on inflation shows almost no change in Figure 3.9. On the
other hand, the initial response of inflation displays a sharp decline in Figure
3.7. Furthermore, there are some differences in the magnitude values of the
percentage points of impulse responses delivered from each inferential tool. We

leave investigating those differences to future.

3.6 Summary

This chapter develops a practical and computationally tractable estimation
strategy based on the Direct Averaging Method, which leverages bivariate models
estimated via Gibbs sampler. The method provides a scalable solution for the
high-dimensional TVP-VAR-SV models, avoiding the computational burden of
full multivariate estimation by aggregating partial posteriors.

We evaluate the empirical performance of the Bayesian pairwise composite
likelihood method using quarterly U.S. macroeconomic and financial data. The
estimated PCL-TVP-VAR-SV model reveals that an unexpected increase in the
corporate bond spread induces a notable slowdown in real economic activity and
a decline in interest rates. However, the model also generates puzzling responses
in inflation and stock market returns, suggesting areas for further refinement.

The pairwise composite approach is especially appealing in settings where
full multivariate estimation is infeasible. A sufficient condition for its use is that
estimation of each bivariate TVP-VAR-SV model is computationally manageable.

Nonetheless, implementing the FFBS algorithm across M models in parallel for
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N > 50 presents memory bottlenecks, due to the need to store the full posterior
draws of B,.;, a.; and h.; over all models, time periods, and MCMC iterations.
Future work should explore strategies to reduce memory usage.

Although the impulse responses we obtain are economically plausible, ques-
tions remain regarding their magnitudes. Understanding the factors driving these
results, and whether they reflect model limitations or data properties, is a key
priority for further analysis.

We interpret DAM as a computational approximation to a MH algorithm,
where parameter draws from each bivariate model are implicitly accepted with
probability one. While this perspective is intuitively appealing, a formal deriva-
tion of the second-step MH procedure, including a proper acceptance ratio, re-

mains open. Future research will aim to establish these conditions.

3.7 Appendix

3.7.1 First Step: The FFBS algorithm
Prior hyperparameters and initial values

We first proceed by obtaining the ordinary least squares (OLS) estimates of
the prior hyperparameter values of 3, ,, @, and h;y by estimating the model
y: = (In, ® X;)B; + €; based on an initial training sample of 40 observations,
where we define y; as an N;T x 1 vector, X; = (X;1,...,X;7) as a T x L;
matrix by setting L; = (1 + N;p) and rearranging x;; = (L, ¥, 1, ¥isp);
B; = vec([Bip,...,B;,|") asan L;N; x 1 vector, €; is an (N;T'x 1) vector of reduced
form disturbances assumed to be a zero-mean process with covariance matrix
€+~ N(0,%; . ®I ). Wemay write the covariance matrix as ¥; . = A;IHZ-A;-_I.

We set B, = [In, ® (X/X;) "' X!]y; and Vg, = ;0 ® (X/X;)"! as the OLS

coefficient vector and the covariance matrix, respectively. The OLS estimates of
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the elements &; o are generated by regressing €; ;; on —€;1.;_1; for j =2 : N;, and
the implied estimated variance is \Af%o. Let 3. = A7 H;A/™! be the estimated
covariance matrix of €;, from the time invariant VAR model, where we apply
the same decomposition as in Equation (3.13). Then, we may set fli,o equal to

and

the logarithms of the square root elements on the diagonal of IA{Z1 /2= 2%2

Viio = In,.

Sampling bivariate coefficient states

Assume that initial prior information is given by y;o at t = 0, at any future
time ¢ the available information set is y;1+ = {¥is+ ¥i1e—1}, where y;; is the
observed value of the pairs of series at time t.

The FFBS algorithm is implemented as follows

Forward filtering

For each model © = 1 : M, consider the posterior distribution of the state

B -1 given the information up to time ¢ — 1 is

Bi,t71|ai,t—1a hi,t—ly Yiiit-1, 3~ N(mi,t—ly Ci,t—l)-

Then the following statements hold

1. The one-step-ahead predictive distribution of ﬁi’t conditional on a4, h;,

and y; 14—1 is Gaussian with parameters

At :E(/Bi,t|ai,tahi,t7yi,1:t—1aEi) = My, (3.15)

Ri: = V(Bileis i, yine—1,2:) = Cir + Zip. (3.16)

2. The one-step-ahead predictive distribution of y;, conditional on y; 1.1 is
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Gaussian with parameters

fi,t =FK (Yi,t

Qi,t = V(Yi,t

Yili-1) = Xigig, (3.17)

Vitt—1) = Xi,tRi,tXQ,t+Ei,t- (3.18)

3. The filtering distribution of 3, , conditional on @y, h;;, and y; 1. is Gaus-
sian, with parameters

m;; = (Bt hi, yine, 2i) = ais + Ki(yie — Xigaig), (3.19)

)

Cip =V(Biglous, hig, yine, 3i) = Rip — KigxiiRiy, (3.20)

Where Kz"t - Ri,tX;,tQ;tl'
Backward sampling

At the end of forward filtering, the mean and the variance for 8, , of the form

p(ﬁi7t|ai,1:T7hi,l:T7Yi,1:taZi) ~ N(mz‘,mci,t).

The backward sampling updates the conditional means and the variances to
reflect the additional information about ﬁi,t contained in f3; ;1. Because the state
space model in Equations (3.8) and (3.9) are linear and Gaussian, the distribution
of B;; given y; 14 and that of 3,, given 8,,,, and y; 1, for t =T —1,...,1 are

also Gaussian. Once 3, is generated, we generate 3, , from

p(/Bi,t|/6i,t+1aaz’,1:Tahi,l:T;Yi,l:tazi) ~ N(gi,taGi,t)u
with moments

gir=m;; + B (8, —m,;,),
! (3.21)

/
Gy =C;; — Bi:Ri+1B;4,
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where B, ; = Ci7tRi_,t1+1‘

Sampling bivariate covariance states

To sample «;; elements of the lower triangular matrix a;,, let’s denote
_ A 1/2
Ai,tl (yi,t - Xi,tﬁi,t) = Ai,t1Yi,t = Hzé €it- (3-22)

Then, we may write the following equation for each row of the lower triangular

matrix A/, ! for each j = 2 : N; and for each bivariate model i = 1: M as
Yijt = Yilj—1,4Qjt + Oiji€ijt, (3.23)

where 0 ;; and €; ;; are model ith, jth elements of ¥, ; and €;,, respectively and
Yirg—1t = (Yidts - Vij—1.t)-

Conditional on 3, and h;;, Equation (3.23), is the measurement equation of
a state space model where the state is defined in the first line of Equation (3.11)

with components of the state o j;. Using the FFBS algorithm, we can draw

p(ai,j,t|ai,j,t+17IBi,lzTahz’,l:TuYi,l:tyEi) ~ N(gi,a,t,Gi,a,t),
with moments

Siat=M;qt+ Bi,a,t(ﬁi,a,t+1 - mi,oc,t)v
(3.24)

’
Gi,oa,t = Ci,a,t - Bi,a,tRi,oa,t-i—lB‘

7,0,t)

—1
Where Bi’azt = Ci»a7tR’L‘,a,t+1'
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Sampling bivariate volatility states

Let’s start implementing this approach by transforming y;; in order to obtain

a measurement that is linear in h;;

yzt = (Yz‘,t — Xi,tﬁz‘,t) = €hi’t’vi7t, (3.25)

where eMtv;, = nf, and v;; ~ N(0,1). Squaring both sides of Equation (3.25)

and taking the logarithm, we obtain the following form
Yir = 2hi; + U], (3.26)

where y;} = log Y?,t and v}, = log v?,t. Hence, Equation (3.26) together with
second line of Equation (3.11) represent a state space model. However, the issue
with the above representation is that the error term v, does not have a Gaus-
sian distribution. The auxiliary mixture sampling finds a Gaussian mixture that

approximates the pdf of the v},

7
p(v;'k,t) ~ Zwi,ngb('v:,t; /J’h,i,n - 12704a o-i,i,n)7 (327)
n=1

2
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where @(y;; p;, 0?) is the Gaussian density with mean p; and variance o2, w;.,
are the mixture probabilities for the nth component and 7 is the number of
components. We can define an auxiliary random variable s,,; € {1,...,7} ,

which can be used as a mixture component indicator

(V] [shie =n) ~ N (py, — 1.2704,07 ),

Pr(Sh%t = n) = Wi p-

)

Hence, the desired linear Gaussian model can be defined conditional on the

component indicator s as (v;,|sni:) ~ N(dj,, 357,), where d;, = p,;,,—1.2704

1,t) <1,
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and X7, = o}, , foreach t =1:T. p,,; , and o, have fixed values represented
as a seven component Gaussian mixture in Table 4 of Kim et al.| (1998). Then it
follows that

(¥7 il sni hie) ~ N (2hiy +dfy, 35,), (3.28)

foreacht=1:1T.

Using the FFBS algorithm, we can draw h;; conditional on 3, ; and a;; from

p(hi,t|hi,t+17/6i,1;Taai,l:T7Yi,1:taSh,i,tyzi) ~ N(gi,h,taGi,h,t)a
with moments

Cine =Mype+ Bini(Bipi1 — Ming),

(3.29)
Gine = Cins — Bi,h,tRi,h,tJrlB;,h,ta
where B; 1, = Ci’h’tR;ﬁ’tH.
Sampling s;, ;¢
For each 7 = 1: M, we can sample s, as follows
T
plsnaly;™ hi) = [ plsnielys hiy), (3.30)
t=1

where each sj,;; can be sampled independently for ¢ = 1 : 7. We can compute

Pr(spr = n|y;*;, h;;)forn=1:7as

Wi nd(yit; 2hie + gy, 5, — 1.2704, Ui%,i,n)
Zzzl W nd(yis; 2hie + pay,;, — 1.2704, U%L,i,n)'

Pr(spie = nlyi; hiy) = (3.31)
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Sampling 3; 5

Sampling the hyperparameter 3; 5 as

P(Ei,ﬁb’i,lm /Bi,l:Ta ;1.7 hir, i, Ei,h)

T
~ TW (Uﬂi,o + Z(Yi,t - Xg,tﬁi,t)(Yi,t - X;,tlgi,ty? Vip + T)‘

t=1
Sampling 3, ,

Sampling the hyperparameter 3J; , blockwise with a single block for n; =1 :
N; — 1

P(Ez‘,ab’i,l:t, Bi,lm ;1.7 hir, g, Ei,h)
T
~IW(U,,, + Z(ai,j,t — o)y — i) via +T).

t=1

Sampling ¥, ;,

Sampling the hyperparameter ¥;  as

p(zz’,hb’i,l:ta 5@1:% Q1.7 Bia, Ei,h)

T
~ IW(th + Z(hz‘,t —h;; )by —hi ) vin + T)-
=1

3.7.2 Second Step: The Direct Averaging Method

To implement the proposed Bayesian pairwise composite likelihood method,
a sequence of mapping algorithms is developed to recover parameter vectors from
the posterior draws of bivariate models. These include: (i) a mapping algorithm
for aggregating bivariate VAR coefficients into the full vector of VAR parameters,
(ii) an algorithm for assembling the Cholesky parameter vector that characterizes

the lower-triangular structure of the time-varying covariance matrix, and (iii) a
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procedure for constructing the log-volatility vector from bivariate log-volatility
estimates. Each algorithm ensures that the composite information extracted from
the bivariate models is consistently aligned with the model structure.

In Algorithm 1, we implement a structured mapping procedure that consoli-
dates the time-varying coefficients from all bivariate VAR(p) models into a single
parameter vector [3,5’”’ for the full N-dimensional VAR system. Specifically, for
each MCMC drawr =1,..., Rand time point t = 1,...,T, we stack the bivariate
coefficient vectors 55“ ") € RE into a composite vector BS? € R¥<. A sparse, de-
terministic mapping matrix 23 € RE*Ke then transforms this composite vector

into the parameter vector:

8 = 2,80

This matrix encodes the selection and averaging structure across overlapping
bivariate models, ensuring that parameters appearing in multiple systems are
aggregated consistently, typically using uniform weights of 1/(N — 1). This step
preserves internal consistency, avoids duplication, and ensures valid identification
of the model’s coefficients.

Contemporaneous dependencies are captured by a lower-triangular Cholesky
matrix A, € R¥*N with time-varying off-diagonal elements o!”" for i > j in
Algorithm 3. These elements are uniquely estimated from the bivariate models

(r)

c,t

involving each pair (7, j), and stacked into a composite vector a,; € RY according
to a fixed recursive ordering. Since each %(;)t appears only once across the bivari-
ate systems, no averaging is required. The vector is recovered via the identity

mapping:

where I is the identity matrix of appropriate dimension. This mapping is
purely notational and relies only on consistent indexing across MCMC draws and

time points.
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For each bivariate model (i, j) € P, we estimate a time-varying log-volatility

.. .. .. /
vector h{"") = (hgff’) h(z’”)) € RV across all t = 1,...,T and MCMC iter-

» 109t
ations r = 1,..., R in Algorithm 2. These vectors are stacked into a composite
vector hﬁ? € RMiM  To recover the volatility vector hi’") € RY, we apply a fixed

sparse mapping matrix €, € R¥*NiM guch that

h{” =, -hY).

c,t

Each row of €2, averages log-volatility estimates for a given variable across its
N — 1 pairwise appearances. This mapping ensures coherent aggregation across

the system. The procedure is repeated across all time steps and MCMC draws.
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Algorithm 1 Mapping bivariate coefficient states to pairwise composite coeffi-
clent states

1: Input:
e Posterior draws ﬂti’j’T) € RE for all pairs (4,7), time t = 1,...,T, and
iterations r=1,..., R

e Fixed mapping matrix Q5 € R¥ "*Ke determined by the inclusion struc-
ture of coefficients in bivariate models

2: Define:
K = N;(N;p+1), K':N(Np—l—l), and M

3: For each MCMC iteration and time step:
4: for r=1to R do
5: fort=1to T do

6: Initialize stacked coefficient vector ﬁﬁ? € RE-

7: Step 1: Stack bivariate coefficients

8: Set block index m = 0

9: fort=1to N —1do

10: for j=i+1to N do

11: Insert BE” ") into block m of 53"2

12: Increment m < m + 1

13: end for

14: end for

15: Step 2: Map to pairwise composite coefficients

=058l eRY

16: end for
17: end for
18: Output: Posterior draws {ﬁy)}il fort =1,...,T, or posterior means:

. 1 &
By = R Zﬁy)
r=1
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Algorithm 2 Mapping bivariate covariance states to pairwise composite covari-
ance states

1: Input:
e Posterior draws ") € R from bivariate model for (,7) where i > j,
for time t =1,...,T, and iterations r =1,..., R

e Recursive ordering over N variables

2: Define:

A={(ij):1<j<i<N}, L=——

3: For each MCMUC iteration and time step:
4: for r =1to R do

5: for t=1to T do

6: Initialize empty vector ag) € RE

7: Set index £ =0

8: for i =2 to N do

9: forj=1toi—-1do

10: Extract scalar o™ from bivariate model (i

11: Set (agt))g — o)

12: Increment ¢ < ¢+ 1

13: end for

14: end for

15: Step 2: Map to pairwise composite vector
oV =1 aért) e RY

16: end for

17: end for

18: Output: Posterior draws {a”}2 | for t = 1,

1 R
r=1

N(N —

1)

J)

..., ', or posterior means:
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Algorithm 3 Mapping bivariate volatility states to pairwise composite volatility
states
1: Input:

e Posterior draws hff""’” € RY for all pairs (4, ), time t = 1,...,T, and
iterations r=1,..., R

e Fixed mapping matrix ), € R¥*¥NiM which maps stacked bivariate
volatilities to the log-volatility vector

2: Define:
Ni=2, M, P={(,j)eN":1<i<j<N}

3: For each MCMC iteration and time step:
4: for r=1to R do
5: fort=1to T do

6: Initialize stacked log-volatility vector h((ft) € RN:M

T: Step 1: Stack bivariate volatilities

8: Set block index m =0

9: fort=1to N —1do

10: for j=i+1to N do

11: Insert hii’j ™ into block m of hgt)

12: Increment m < m +1

13: end for

14: end for

15: Step 2: Map to pairwise composite volatilities

h{” =, -h{) e RY

c,t

16: end for
17: end for
18: Output: Posterior draws {hgr)}le fort =1,...,T, or posterior means:

1 R
c (r)
ht_E;ht
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3.7.3 Comparing impulse responses of PCL-TVP-VAR-

SV and TVP-VAR-SV models

Macroeconomic implications of a shock to corporate bond spread

Tupulse respouse of GDP Growth, 2010:Q4

T \l\

A5

Tupulse response of Inflation, 2010:04

A5

A 1 A1

] b 9 1 1§ ] b y 1 1§

Tupulse respose of Unemployment Rate, 2010:Q4 Tupulse response of Corporate Bond Spread, 2010:Q4

1 1 1 1 12 1 1 1 1

Tipulse response of S&P Returns, 201004
1 T

A

M

Figure 3.6: The figure depicts the pairwise composite impulse responses of GDP
Growth, Inflation, Unemployment Rate, Corporate Bond Spread, S&P Returns,
and Federal Funds Rate to the identified shock to the Corporate Bond Spread
estimated from a six—variable PCL-TVP-VAR-SV model for a representative time
2010Q4. In this figure the posterior median is the red line and the blue lines are
the 16th and 84th percentiles.
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Macroeconomic implications of a shock to corporate bond spread
GDP Growth Inflation
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Figure 3.7: The figure depicts the pairwise composite impulse responses of GDP
Growth, Inflation, Unemployment Rate, Corporate Bond Spread, S&P Returns,
and Federal Funds Rate to the identified shock of the Corporate Bond Spread
estimated from a six—variable PCL-TVP-VAR-SV model.
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Figure 3.8: The figure depicts the impulse responses of GDP Growth, Inflation,
Unemployment Rate, Corporate Bond Spread, S&P Returns, and Federal Funds
Rate to the identified shock to the Corporate Bond Spread estimated from a
six—variable TVP-VAR-SV model for a representative time 2010Q4. In this figure
the posterior median is the red line and the blue lines are the 16th and 84th

percentiles.

1
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Macroeconomic implications of a shock to corporate bond spread
GDP Growth Inflation
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Figure 3.9: The figure depicts the impulse responses of GDP Growth, Inflation,
Unemployment Rate, Corporate Bond Spread, S&P Returns, and Federal Funds
Rate to the identified shock of the Corporate Bond Spread estimated from a
six—variable TVP-VAR-SV model.
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3.7.4 Data appendix

The quarterly time series variables used in the PCL-TVP-VAR-SV model are
taken from the FRED database of the Federal Reserve Bank of St Louis spanning
from 1959Q1 to 2018Q1. The columns of Table 3.1 denote the series numbers,
Tcode denotes the data transformations based on McCracken and Ngj (2020)) and
Gilchrist and Zakrajsek| (2012), series denotes the FRED mnemonic except for
CBS*, and description denotes a brief definition of the series.

The series CBS*, is a modified version of two series from FRED database,
defined as the difference between Moody’s Seasoned Baa Corporate Bond Yield
and Moody’s Seasoned Aaa Corporate Bond Yield. The modified Tcode, 1%,
stands for no transformation of the series CBS*. The Effective Federal Funds

Rate and the 10-Year Treasury Constant Maturity Rate are not transformed.
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Time series used in the PCL-TVP-VAR-SV model with N =50

ID Series Tcode Description S/F
1 PCECC96 5 Real Personal Consumption Expenditures Slow
2 GDPC1 5 Real Gross Private Domestic Investment, 3 decimal Slow
3 GPDIC1 5 Real Gross Domestic Product, 3 Decimal Slow
4 GDPCTPI 6 Gross Domestic Product: Chain-type Price Index Slow
5 GCEC1 5 Real Government Consumption Expenditures & Gross Investment  Slow
6 EXPGSC1 5 Real Exports of Goods & Services, 3 Decimal Slow
7 IMPGSC1 5 Real Imports of Goods & Services, 3 Decimal Slow
8 DPIC96 5 Real Disposable Personal Income Slow
9 OUTNFB 5 Nonfarm Business Sector: Real Output Slow
10 OUTBS 5 Business Sector: Real Output Slow
11 INDPRO 5 Industrial Production Index Slow
12 IPDMAT 5 Industrial Production: Durable Materials Slow
13 IPNMAT 5 Industrial Production: Nondurable Materials Slow
14 IPDCONGD 5 Industrial Production: Durable Consumer Goods Slow
15 IPNCONGD 5 Industrial Production: Nondurable Consumer Goods Slow
16 CUMFNS 1 Capacity Utilization: Manufacturing (SIC) Slow
17 PAYEMS 5 All Employees: Total nonfarm Slow
18  USPRIV 5 All Employees: Total Private Industries Slow
19 MANEMP 5 All Employees: Manufacturing Slow
20 USEHS 5 All Employees: Education & Health Services Slow
21 USFIRE 5 All Employees: Financial Activities Slow
22 USINFO 5 All Employees: Information Services Slow
23 CE160V 5 Civilian Employment Slow
24  CIVPART 2 Civilian Labor Force Participation Rate Slow
25 UNRATE 2 Civilian Unemployment Rate Slow
26 UNRATESTx 2 Unemployment Rate less than 27 weeks Slow
27 UNRATELTx 2 Unemployment Rate for more than 27 weeks Slow
28 UEMPLT5 5 Number of Civilians Unemployed - Less Than 5 Week Slow
29 UEMP5TO14 5 Number of Civilians Unemployed for 5 to 14 Weeks Slow
30 HOABS 5 Business Sector: Hours of All Persons Slow
31 HOANBS 5 Manufacturing Sector: Hours of All Persons Slow
32 CMRMTSPLx 5 Real Manufacturing and Trade Industries Sales Slow
33 RSAFSx 5 Real Retail and Food Services Sales, deflated by Core PCE Slow
34 PCECTPI 6 Personal Consumption Expenditures: Chain-type Price Index Slow
35 CPIAUCSL 6 Consumer Price Index for All Urban Consumers: All Items Slow
36 PPIACO 6 Producer Price Index for All Commodities Slow
37 RCPHBS 5 Business Sector: Real Compensation Per Hour Slow
38 OPHNFB 5 Nonfarm Business Sector: Real Output Per Hour of All Persons Slow
39 OPHPBS 5 Business Sector: Real Output Per Hour of All Persons Slow
40 CS* 1* Baa-Aaa corporate credit spread Fast

41  S&P 500 5 S&P’s Common Stock Price Index: Composite Fast

42 GS10 1* 10-Year Treasury Constant Maturity Rate Fast

43 FEDFUNDS 1* Effective Federal Funds Rate Fast

44  TB3MS 2 3-Month Treasury Bill: Secondary Market Rate Fast

45 TB6MS 2 6-Month Treasury Bill: Secondary Market Rate Fast

46  GS1 2 1-Year Treasury Constant Maturity Rate Fast

47  MIREAL 5 Real M1 Money Stock, deflated by CPI Fast

48 M2REAL 5 Real M2 Money Stock, deflated by CPI Fast

49  EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate Fast

50 EXCAUSx 5 Canada / U.S. Foreign Exchange Rate Fast

Table 3.1: The quarterly time series variables used in the PCL-TVP-VAR-SV
model
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Chapter 4

Bayesian dynamic graphical
models for high-dimensional
vector autoregressions with
time-varying parameters and
volatility discounting

4.1 Introduction

Graphical models use pairwise conditional independence structures of a set of
random variables to form sparsity features on the precision matrix of a multivari-
ate Gaussian process, Lauritzen| (1996) and |Whittaker| (2008)). On the other hand,
a graphical model can be constructed in a multiple regression model by assuming
pairwise conditional independence structures formed with sparsity features on
regression coefficients, Whittaker| (2008)). However, most graphical models either
do not take into account time variation features on the coefficients and the co-
variance matrix of the model’s disturbances or allow for a completely arbitrary
mean. In this study, we propose a special case of graphical models, a Bayesian
dynamic graphical model (BDGM) that characterises the relationships among
variables by a directed graph, that is, the relationships among the variables are
one directional. We consider a vector autoregressive model with time-varying pa-

rameters and volatility discounting (TVP-VAR-VD model) that allows a sparse
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representation of dynamic state parameters and evolving covariance matrix ele-
ments within a BDGM framework[[] The concept of studying the sparsity features
on the state parameters of vector autoregressive models with time-varying param-
eters (TVP-VAR) has been explored in a number of papers, among others, see
Korobilig| (2013) and Koop and Korobilis (2013)). Moreover, imposing zeros on
the inverse of covariance matrices in VAR and other dynamic models using graph-
ical models is quite common in statistics, (Carvalho and West| (2007)), Nakajima,
and West| (2015)), |Ahelegbey et al.| (2016)), [Zhao et al.| (2016), Gruber and West
(2016)), |Gruber and West| (2017)), and for a discussion see |West| (2020). We com-
bine those literature by studying sparsity features on both the state parameters
and the inverse of covariance matrix using a BDGM approach.

We propose a BDGM approach that has an important property of splitting
a complex and high-dimensional macroeconometric problem into locally sparse
manageable components. The pairwise conditional independence structure is
the key mechanism underlying the local model specifications and computations.
Hence, feasible local computations can be performed rather than a joint high-
dimensional one. In this regard, we consider splitting a joint multivariate dynamic
linear model (multivariate DLM) into a componentwise multiple dynamic linear
regression model (multiple regression DLM) and then combine those components
to make inference from the joint model. More specifically, we split the multivari-
ate TVP-VAR-VD model that falls within the multivariate DLM framework into
a multiple regression on past and current values of predictors that falls within
the multiple regression DLM framework. A key research question in building a
joint TVP-VAR-VD model from component multiple regression DLMs using the

BDGM approach concerns the selection of subset of predictors to include.

IBDGMs share many inferential tools with dynamic Bayesian networks that have been widely
used in the literature on machine learning and artificial intelligence, including [Koller and Fried-
man| (2009)), Murphy| (2012)) and [Russell and Norvig| (2010). In the dynamic Bayesian networks,
the parameters are assumed to be constant, as noted by Murphy| (2012). We prefer to use the
term BDGM to distinguish our approach by relaxing this assumption and allowing for time-
varying state parameters and volatilities.
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The main contribution of this chapter is to resolve a high-dimensional sparse
inference problem posed by parameter changes, many predictors and computa-
tional complexity with an extended version of graphical modelling on multiple
regression models proposed by Whittaker (2008]) and on multiregression dynamic
models of Zhao et al.| (2016)). More precisely, we incorporate the conditional inde-
pendence structure in the time-varying coefficient states to quantify the dynam-
ics among autoregressive and cross-lagged values of the variables and the current
values of the variables as an extension to the general ideas of graphical multiple
regression models in [Whittaker| (2008), and in the time-varying covariance states
to quantify the contemporaneous relationships among the variables inspired from
Zhao et al. (2016) within a BDGM framework. Two sets of variables as pre-
dictors are considered, namely, dynamic autoregressive and cross-lagged values
of the time series and current values of the time series. We achieve this frame-
work by developing an efficient Bayesian graphical variable selection method that
focuses on selecting from a set of dynamic and contemporaneous predictors to
identify a set of locally good multiple regression DLMs in terms of posterior
model probabilities. This approach can be applied recursively in parallel to find
local pairwise independence structures among both the dynamic and the contem-
poraneous predictors using a Gray code algorithm. Then we perform a Bayesian
model averaging on a range of good models with high posterior probabilities to
forecast key macroeconomic and financial variables of interest.

We demonstrate the applicability of the BDGM approach on a real dataset
comprising of ten quarterly U.S. macroeconomic and financial time series in an
attempt to understand which subset of the dynamic and the contemporaneous
predictors should be used in a compositional forecasting model. We compare
results using the proposed Bayesian graphical variable selection on a set of 16, 356
distinct models in parallel. Our key findings are as follows.

First, the results of posterior model probabilities over the space of all com-
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peting models show that there is a considerable model uncertainty within the
best selected models for each series. As the number of the dynamic and the con-
temporaneous predictors increases in the recursive model, the model uncertainty
increases too.

Second, we perform a sensitivity analysis by comparing median probability
models and highest posterior probability models over the space of all competing
models. The results show that the median probability model can be an important
tool in assessing the effect of the dynamic and the contemporaneous predictors.

Third, out-of-sample forecast exercise shows that the joint model with Bayesian
model averaging outperforms the joint model with the highest posterior probabil-
ity for the variables consumption, investment, GDP growth, GDP deflator, indus-
trial production, and unemployment rate over the majority of considered horizons.
Other combinations of financial variables, such as corporate bond spread, S&P
500 stock returns, 10-year Treasury maturity rate, and Federal funds rate tend
to improve predictions at longer forecast horizons.

The plan of this chapter is as follow. In Section 4.2 we define and motivate
the BDGM framework to identify subsets of predictors and the number of graph-
ical models. In Section 4.3 we show the component multiple regression DLMs,
the joint TVP-VAR-VD model, and graph representation of the joint TVP-VAR-
VD model. In Section 4.4, we summarize our Bayesian inferential tool based on
Kalman filter algorithm. Section 4.5 reports the details of the Bayesian graphical
variable selection approach. We report the empirical results for a range of data
analysis in Section 4.6, such as exploratory data analysis, dynamic and contempo-
raneous pairwise dependence structures and out-of-sample forecast performance.
A summary is present in Section 4.7. Finally, the Appendix provides the details

of the Kalman filter algorithm, the joint model, more results, and data appendix.
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4.2 Bayesian dynamic graphical Models

Let y; denote an N x 1 vector of time series and y;; is a scalar with ith
cross-sectional and tth time series element. For each cross-sectional variable ¢ =
1:N,t=1:T denotes the time series observations. Let y, represent all prior
information set and yi.; = {y1.1_1,¥y:} all available relevant information set at
any time t. Given all the previous information at ¢ — 1, computing the joint
one-step-ahead predictive density for the observed data y; can be performed as a

product of a set of conditional probability density functions

N
p(Yt|Y1:t—1) = p(?/1,t|}’1:t—1) Hp(yi,t Yi—tit—1:t—py Yii—1,t, Y1:t—1)7 (4-1)
=2
where p is the model order for k = 1,...,p. In this setup, we have two types of

dynamic lagged effects and one type of contemporaneous effects between pairs of
variables, that is, dynamic autoregressive effects from v, ;_, to y;;, dynamic cross-
lagged effects from y;;_, to y;+ and contemporaneous effects from y;, and y; ; with
i # j. In terminology of graph theory, if y;, is a predictor of y,, v, is said to
be parent of y;;. A cycle is defined as any directed path that starts and ends
at the same variable. A graph which contains only directed path and does not
have any cycles, is called a directed acyclic graph, |Murphy| (2012). The Bayesian
dynamic graphical model is an example of a directed acyclic graph. Each y; ; has a
conditional probability density function p(y;¢|Fpagi)e) = P(Yit|Fpa@i)e, Y12-1) that
quantifies the effect of parents on the variable, where Fpoiy: = (Xap(i),t» Yep(i)t)'
with a partition of Xg()¢ = {Yim1,t—1:t—p> Yit—1:4—p} A Yep(i)e = {Y1,ts- - - Yie16}-
We refer to two set of parents in Equation (4.1), dynamic parents with index
dp(i) and contemporaneous parents with index c¢p(i). Hence, the joint parental

set is partitioned pa(i) = {dp(i),cp(i)} and Equation (4.1) can be equivalently
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written as

N
p(Yt|y1:t71) = p(yl,t’Fpa(l),t) Hp(yi,t‘Fpa(i),t>7 (4-2)

1=2

where dp(i) is a subset of {i — 1,4} and ¢p(i) is a subset of {1,...,i — 1}, written
as dp(i) C {i —1:4} and ep(i) C {1 :49— 1}. We explain the reason behind this

indexing in the next section.

4.2.1 The parental set

Suppose each univariate series y;; is governed by a multiple regression DLM
with a two-set of predictors, i.e., the autoregressive and the cross-lagged variables
and the current values of the variables. It is just known that the order of the
process does not exceed p and otherwise no prior knowledge of possible sparsity
(absence of dynamic and contemporaneous effects) is available. To simplify the
problem, we include only lower bidiagonal elements of the dynamic parents as
predictorsﬂ For each ¢ = 2 : N, the lower bidiagonal elements of a vector
autoregressive process of order one and a triangular system, even if we do not
take into account the intercept terms, there exist ¢ — 1 : ¢ bidiagonal dynamic and
1—1 contemporaneous coefficients. Note that the set with i—1 : ¢ distinct elements
always consists of two elements except for the first variable, which contains one
element (if the model order is one). Then, for simplicity, we may replace the
elements of the set {i — 1 : i} with 2. In this case, (?) and (") subset with r

T

elements can be chosen. Hence, there is a total of

2+ii<i> =2+ (N —1)2? (4.3)

2If we consider the full set of dynamic parents, this requires performing graphical variable
selection over 2VP for each series. This property is infeasible to handle the system with many
variables.
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and o
ii('f) — 9N 1, (4.4)

subset models.

Our dynamic graphical model with dynamic and contemporaneous parents is
a specification of the conditional density function f(y;¢|Fpa(i); y14—1) for each
series that incorporates a subset of the dynamic pairwise conditional indepen-
dence structures y; ;L@ +|(Tap(i) e Yep(iy), Where dp(i) = {i —1 : i} \ {j} and
ep(i) ={1,... 71— 1} \ {¢} with “\” meaning “excludes”, and the contemporane-
ous pairwise conditional independence structures y; ; LLy; +|(Xap(i). > Yep(i),¢ ), Where
ep(d) = {1,....i— 13\ {i,j}.

Including the lag operator in the structure, this corresponds to perform graph-

ical variable selection over a power set
N
P(S) =20+ 2%Fi-l = or 4 9%(2N — 2), (4.5)
i=2

in parallel| In this case, all possible 27 + 2%(2V — 2) model specifications can
be evaluated using 2?P7~1 subspace of models for each series in parallel and
variable selection is equivalent to graphical model selection conducted on both
the elements of a bidiagonal matrix and the elements of a strictly lower triangular

covariance matrix.

3If we consider the full multivariate model, the total number of independence under con-
sideration would be (N'EN”) = (1;[) + N2%p+ (I\Qp), including the examination of (]\gp) indepen-
dence among the dynamic vector autoregressive elements (which we ignore here). By defini-
tion, this equation holds true using the multinomial theorem for a lower factorial polynomial
(N)2 = N(N — 1)/2 similar to umbral calculus as stated in Weisstein| (2003)), page 237. The

total number of graphical models in this setup is 9(3)+N*P_ nference in this multivariate model
is obviously infeasible.
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4.3 The Model

The model design consists of three steps. We show the component multiple
regression DLMs, the joint TVP-VAR-VD model followed by the graph represen-
tation of the TVP-VAR-VD model.

4.3.1 Component multiple regression DLM

For each i = 1 : N, the dynamics of y;, follow a univariate multiple regression
DLM and elements of a triangular system that incorporate autoregressive effects,
cross-lagged effects and contemporaneous effects,

Yie = F o 10it + Vi,
pel?) (4.6)

= X&p(i),tﬁi,t + }’f;p(i),t%,t + Vig,  Vig ~ N(0,1/Aip),

with the state coefficients changing slowly over time according to random walk
0ir =011 +twiy, wip~ N(0, W), (4.7)

where the state coefficients 0;, are defined as column vectors, and the obser-
vational error terms v;; and the evolution error terms w,; are assumed to be
independent for all series 7, independent over time such that v;, and v; are
independent, w;; and w; s are independent with ¢ # j and for all ¢ and s.

We may partition the regression vectors and the state vectors as

Xdp(i), Bi
Frai= | "9 and 6, =|""], (4.8)

pa(z) it
Yep(i)t Yit

)

where Xgy1)0 = (Y1,0-10-p)" and for i = 20 N, Xapi)e = Yicr0-1:0-p © Yist—1:0-p)’
denote the dynamic parental series defined as column vectors. For i = 2 : N,

Yep(ist = (Yits---,¥i—14) is the contemporaneous parental series with y,1): =
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{0} being an empty set, Yep2)t = Y1 and fori = 3 : N, y ), is defined as column
vectors, and Fpq1): = Xap1) = (Y1,-14—p)"- The dimension of the time-varying
coefficients =, , is P, = |cp(i)|. The dimension of the time-varying coefficients
B, is Pig = |dp(i)|. The joint dimension of the coefficients is P 3, = P; 3+ P,
where for ¢ = 1 it is p and for each series 1 =2 : N it is 2p + 7 — 1.

Suppose that A;; is unknown and is subject to random changes over time.
Following |West and Harrison| (1997)), Prado and West| (2010) and [Zhao et al.
(2016), the stochastic variation in the precision A;; can be modelled via a form

of multiplicative Beta-Gamma random walk with volatility discounting

7 )\Z —
A = M’ (4.9)
Pi

where the precision A;; have a Gamma distribution and innovations «;; follow a
Beta distribution for some discount factors ¢; € (0, 1].

Furthermore, we assume that the component state evolution variance matrices
W, for t = 1,...,T are unknown. A reliable model specification requires the
component evolution variance matrix W, to be controlled due to its effects on
the time-variation in 6;,. This can be achieved by a component discount factor

d; € (0, 1], which follows |West and Harrison| (1997).

4.3.2 Joint TVP-VAR-VD model

The model in Equation (4.6) through the partitioned form of the regression
vectors and the state vectors can be written as a joint TVP-VAR-VD model as

follows

P
(I -Ty)y: = Z B yi—r + €, (4.10)
k=1

where By, is an N x N matrix of the time-varying parameters at time ¢ and at

lag k for K =1 : p. The matrix By, contains only the lower bidiagonal elements



104

of the time-varying parameters, which can be represented as

biig: O o 0 0
ba1 gt boogke O : 0
Bi: = 0 bsaps bssiy : 0 ) (4.11)
0 i bN—lN—l,k,t 0
0 - 0 bNN-1kt ONNEt

To establish a unique solution to the system, we further assume I'; is a strictly
lower triangular matrix with elements -, , below the diagonal and Os along the

principal diagonal, that is

0 0 0
0 :
I, = o , and (4.12)
N1t .- YNN-1;¢ O
Ae O 0
0
At: 3 (413)
0 ... 0 Any

where the v; ;; elements are real-valued and the \;; are positive-valued. Recall
that a model is recursive if the relationships among variables in y; are one direc-
tional. A recursive model corresponds to an acyclic graph if T'; is defined as a
strictly lower triangular matrix. In addition, defining A; as a diagonal matrix is
similar to a Gaussian directed graphical model as noted by Murphy| (2012]).

Furthermore, the model in Equation (4.10) can be written jointly in a compact
form as

yvi=Bx; + Ty + e, €~ N(0, A;1>7 (4.14)
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where B, is an N x Np matrix, x; is an Np x 1 vector, I'; is an N X N matrix,
€ is an N x 1 vector, and A; = diag(Aiy, ..., An). The matrices B; and T
contain the direct dynamic and the direct contemporaneous effect coefficients,
respectively.

When working with graphical models, we may convert the joint structure to a
reduced form. Solving for y; in Equation (4.14), the reduced form for the model
is

Yt = (I — I‘t>71tht + (I — Ft)ilﬁt, (415)

where Y~ N((I - Ft)_lBtXt, Et> with

Q=3"'=1-T)A(-T)). (4.16)

4.3.3 Graph representation of the joint TVP-VAR-VD

model

We may define the dynamic dependence structure by an indicator matrix Ep 4,

such that &5, = 1 if j € dp(i), otherwise 54 = 0

.11,k 0 . 0 0
Sk Epozk O : 0

Epk = 0 Epzon Ep33k : 0 ;
0 o EBN—1IN—1k 0

0 . 0 s NN—1k EBNNK
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and define the contemporaneous dependence structure by an indicator matrix &,

such that &, ,; = 1 if j € ¢p(7), otherwise &, ;; =0

0 0 . 0
— 57,21 0
B, = ,
vt oo Ean-1 O

then, we may write the graph representation of the model in Equation (4.14) as

y: = (EB o Bt)xt + (E«, © Ft)Yt + €4, (4-17)

and the reduced form model becomes

(1l

yi=(I-E,0T,)  (EgoB)x; + (I-E, 0T} e, (4.18)

where the operator o corresponds to the element by element multiplication.

To summarize, in a multivariate TVP-VAR-VD model, the contemporaneous
conditional independence structures correspond to zeros in ;' and the dynamic
conditional independence structure corresponds to zeros in X, (I —T';)~'B,. On
the other hand, in the multiple regression DLM, the conditional independence
(for each i) refers simply to zeros in the coefficient states, 3;, and ~,,. For
details on DLM models in the context we use here, see |Zhao et al.| (2016)), [West
and Harrison| (1997), Chapters 4, 6 and 12 and Prado and West| (2010)), Chapter
4, and for details on graphical models in multivariate and multiple regression

models see [Whittaker (2008), Chapter 10.



107

4.4 Bayesian inference

Under Bayesian paradigm, our inferential problem can be solved by com-
puting the component posterior distributions of the state parameters and the
component predictive distributions of the observed data. Parallel computations
follow a sequential updating and an online forecasting steps of the locally struc-
tured multiple regression DLMs. Inference is based on sequential updating of the

component DLM structures by running N Kalman filter algorithm in parallel.

4.4.1 The Kalman filter algorithm

As a first step, the Kalman filter algorithm aims to sequentially compute the
component posterior distribution p(8;;, A;+|y1.:) of the states 8,, and A, given
observation yi; up to time ¢ together with an observation relation p(y;+|y1.t—1)
in i =1: N parallel steps.

Let the posterior of the component state vector 8;,_; for information up to

time ¢t — 1 has a Normal distribution

(ei,tflp\i,tfla Y1:t—1) ~ N<mi,t717 Ci,tfl)a

with parameters m;; 1 and C,,_;. The prior for the component state vector 8,

has a Normal distribution
(ei,tp\i,t? Y1:t—1) ~ N(ai,t> Ri,t)a

with parameters a;; and R;; and the one-step-ahead predictive distribution of

each observation

(yi,t\Fpa(i),t, Y1:t71) ~ T(fi,t; Qi,t>7

is a Student T distribution with parameters f;; and g; ;.
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The filtering density of 8, given y;., is a Normal distribution

(gi,tMi,ta Y1:t) ~ N(mi,t7 Ci,t)v

with parameters m;; and C, ;.

Another key step is to decide on the stochastic evolution of the precision.
A formal description of the variance discounting can be found in [Uhlig (1994)
and West and Harrison (1997)). At time ¢ — 1, the precision \;;_; have Gamma

distribution with posterior

(>\z’,t—1 |Y1;t—1) ~ g(ni,t—l/Q, di,t—1/2)a

and parameters n;;—1/2 and d;¢—1/2, where d; ;1 = 115,41, Nit—1 1S the de-
grees of freedom and s;,_; is the variance of the observations. Proceeding to time
t, let’s introduce the variance discount factor ¢;. Based on the posterior at the
previous time ¢ — 1, suppose that \;; is obtained from \;;_; by some random walk

model as in Equation (4.9). The implied prior at time ¢ is a Gamma distribution

(A

Y1:t71) ~ g(@ini,tfl/za Soidi,tfl/Q)a

the prior for «;, have a Beta distribution

(Oéz',tb’ufl) ~ Be(%ni,tq/l (1 - wi)ni,t71/2)7

and the filtering density of \;; given y;., is a Gamma distribution

()\i,t’yl:t) ~ g(ni,t/27 di,t/2)-

The implication from the discount factor, ¢;, is that as the value of ¢; gets

larger, the random disturbance to the observational variance gets smaller at each
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time, Prado and West| (2010). Hence, the multiplicative random walk model in
Equation (4.9) may be applied to model stochastic volatility in the observation
precision over time, [West and Harrison| (1997) and [Prado and West| (2010)).
Another unknown element of the DLM is the evolution variance matrix W; ;.
By definition, the posterior of the state vector has a variance matrix P;;, =
V(0it-1|y14-1) = Cis—1 at time ¢t — 1. Proceeding to time ¢, the prior of the
state vector has a variance matrix R;; = V(0;4|y1.4-1) = Pi+ + W;;. This
process describes the relationship between the state vectors 8;,_; and 6;; due
to the increase in uncertainty in moving from P;; to R;; = P, + W, ;. [West
and Harrison| (1997)), Section 6.3, recommend to set R;; = P;;/d; for a discount

factor 9; € (0,1]. Hence, the evolution variance matrix for each i is

where the discount factor d; associated with the series i component model controls

the evolution variance matrix.

4.4.2 The compositional form of the joint model

To construct a joint model from the prediction and filtering (updating) steps
of the Kalman filter algorithm, we compute the compositional form of the joint
density function following [West and Harrison (1997), Chapter 9 and Zhao et al.
(2016). To predict y; at time ¢, we assume that for each ¢ = 1 : N, the dynamic
and the contemporaneous parental predictors, Fpqe): = (Xap(i)t> Yep(i)t) s are un-
certain with a density function p(Fpa@)|y1:t—1). Then, the compositional joint

predictive density of y; can be computed as

N
P(ye|y1:e-1) :/"'/Hp(yi,t|Fpa(i),tay1:t—1)p(Fpa(i),t|y1:t—1)dea(i),ta
=1
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where p(vi¢|Fpagi)t: Y1:4—1) is the one-step-ahead predictive Student T distribu-

tion. The joint predictive moments, the mean vector and the variance matrix

f, = E(}’tb’l:t—l); and Q;= V(Ytb’1;t—1)7

are calculated in a compositional form for each i = 1 : N, where the elements
of the vector f; and the elements of the matrix Q; are obtained by a plug-in
rule following the methods developed by Zhao et al,| (2016). The elements of
the vector f; and the elements of the matrix Q; are plugged-in by updating the
values of f;, and ¢;, to take into account the uncertainty of the dynamic and the
contemporaneous parental predictors. Hence, the values of f;; and ¢;+ that are
obtained from the initial Kalman filter algorithm are not the same as the values
that are used in the compositional form of the model. For all i = 1 : N, the
Student T distribution has the form (y;¢|Fpa(i): Y1) ~ Tni(firs Git), on nyy
degrees of freedom, mean f;; and scale ¢; ;. If n;y > 1, E(yit|Fpa@i)tr Yia-1) = fi-
In addition, if n;; > 2, V(Y| Fpai) e, Y1:t—1) = %q” We show the functional
forms of the updated values of f;, and ¢;; in the Appendix, Section 4.8.3.

The next step is to derive the h-step-ahead forecast density for the state
vectors p(0; i4n, Air+n|y1:+) and the h-step-ahead predictive density p(ysin|y1:t)-
We compute iterated forecasts for horizons between 1 and h. For the multi-step-
ahead forecast, analytical solutions do not exist. Consequently, we evaluate the
h-step-ahead of the posteriors of the states and the predictive density using Monte
Carlo simulations.

The compositional form of the recursive model has the following patterns.
We first sample the Normal-Gamma posterior p(61 4, A1 ¢|y1.+) at time ¢ to obtain
samples from p(6; 411, A1 +1|y1:¢) and p(y1 4+1|y1.) at time £+ 1. In the next step,
we move on series ¢ — 1 to sample from p(y1.-14+1|y1:¢). By this recursive process,

we can generate full Monte Carlo samples from p(yy1]y1.¢) and can proceed
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to generate full Monte Carlo samples from p(y;i1.444|y1:). For full details and

functional forms see Appendix, Section 4.8.1 through 4.8.3.

4.5 Bayesian graphical variable selection

In this section, we outline a practical approach to graphical variable search

and selection, model selection and implied model averaging.

4.5.1 The model space

A large of number of papers has emphasized the challenging task of Bayesian
variable selection when comparing a large number of models, key references in-
clude Madigan and Raftery (1994)), [Hoeting et al.| (1999), Berger and Molina
(2005)) and Heaton and Scott| (2010). We have already introduced a source of
uncertainty in our modelling approach, i.e., the uncertainty of the unknown spar-
sity features of the dynamic and the contemporaneous parental predictors. We
approach a practical way to specify a probability model p(M) over the space of
all models by denoting component model probabilities p(M;) over a subspace of
models. Let’s assume we have a set of M = {Mj, ..., My} models over the space
of all competing models, with M; = Mjq.1x, and K7 = 2P and for eacht =2: N,
M; = M.k, and K; = 2?27~ denote the subspace of models based on groupings
of dynamic dp(i) and contemporaneous parents cp(i) treated as predictors. To
implement a Bayesian graphical variable selection procedure for a recursively or-
dered variables described in Section 4.2 and 4.3, we propose an efficient variable
search and selection algorithm for finding best and a range of good multiple re-
gression DLMs. This procedure is able to compute posterior model probabilities
over the space of all models by visiting the subspace of models in parallel.

We achieve this approach by ordering the graphical models in a Gray cyclic

binary code order inspired from |Cameron (1994) and [Murphy| (2012) and based
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on an algorithm proposed by Boothroyd| (1964). The Gray code algorithm shows
a logical vector within the Gray cyclic binary code and has a beautiful interpre-
tation in graph theory, Cameron| (1994), Section 11.6. The algorithm starts from
a null model and follows a path of vectors, which differ by dimension 1 x p if
i=1and 1 x (2p+i—1)if ¢ > 2. The process changes one element of the
vector to form the next by adding or removing a single variable. For example,
if + = 1 and p = 2, the number of graphical models is 27 = 4 for a dimension
of parental predictors 1 x p, the Gray cyclic binary code vector representation
would be {0,0},{1,0},{1,1},{0,1}[] The corresponding family of all models in

the model subspace M; is
My = { M 0,0y, M1,1,0, M1,a,1y, Maony )

where M (o) refers to the null model. The component model M, (o) is an alter-
native hypothesis that dp(1) = y;,—; indicating a non-zero effect of the dynamic
predictor yi 1, Mi 1,1 is an alternative hypothesis that dp(1) = (yi¢—1,y1,-2)
defining non-zero effects of both dynamic predictors, and M (1) is an alterna-
tive hypothesis that dp(1) = y; ;-2 pointing out a non-zero effect of the dynamic
predictor th_Q.H

We may analyse the models in the model subspaces for i = 1 : N. Assuming
N =10 and p = 2, the candidate models M; are shown as a set of | M;| models over
the subspace of models, and the cardinality of the parental sets are given in Table
4.1. The first row in Table 4.1 shows the order of models in the model subspaces.
The second row evaluates the set of candidate models to be enumerated. Potential

number of elements of the dynamic and contemporaneous parental sets.

4The Gray code representation {0,0},{1,0},{1,1},{0, 1} is analogous to a Hamiltonian circuit
in a hypercube graph representing the 2P vector of binary variables for the number of elements
p. A Hamiltonian circuit in a hypercube graph is a sequence of vector of binary variables that
each vector varies in one position from the preceding vector, and the last vector varies from the
first in one position, see Theorem 11.6.1 in |(Cameron| (1994).

SWe use a notation inspired from [Barbieri and Berger| (2004) and [Miiller et al. (2010) in
defining the model space and subspace.
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Model subspaces and parental sets
Order M1 M2 M3 M4 M5 M6 M7 Mg Mg MIO
|MZ| 4 32 64 128 256 512 1024 2048 4096 &8192
ldp(i)| 2 4 4 4 4 4 4 4 4 4
lep(7)| 1 2 3 4 5 6 7 8 9

Table 4.1: The table shows order of models in the model subspaces, number of
potential models to be enumerated, number of potential dynamic and contempo-
raneous parents.

4.5.2 A collection of priors for vector of binary indicator

variables

A question arises, how to elicit the prior probabilities for the graphical models
themselves? In high-dimensional problems, there is a consensus surrounding the
use of “variable selection prior” with the elements of each of row vectors of Ep
and Z, are assumed to arise as a sequence of Bernoulli trials. Our aim is to dis-
cover models with high posterior probability. Thus, we focus on a nontraditional
search algorithm that finds models with high posterior probabilityﬂ We list the
models and their posterior model probabilities over the space of all competing
models for each series ¢ in parallel and compute the score for each one as the
logarithm of the posterior probabilities.

In our Bayesian graphical variable selection, each row of Ep; and E, are
themselves defined as random vector of binary indicator variables. We define the
prior for each row of the binary indicator matrix Epj such that the columns of

the Xgp(;),c are included in the multiple regression DLM if {5;;x = 1 and excluded

6 A nontraditional search algorithm refers to an approach that does not rely on using Markov
chain Monte Carlo (MCMC) algorithms, such as the Gibbs Sampler or the Metropolis-Hastings
algorithm. In a discrete state space, MCMC algorithms have proved to be inefficient. For a
review see [Heaton and Scott| (2010) and for more details Murphy| (2012).
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if £5i;% = 0. Then, for each i = 2 : N, we assume ¥; ;—j or y;,—j is parent of y;,

L it yisn — Yir OF Witk — Yir
§p.ijk = (4.19)

0, otherwise,

The number of dynamic parents that are included in the model, is given by

Dgi = Z &p,id ks (4.20)

j=i—1

where Dg; < |Rap@)|-

As noted by [Madigan and Raftery| (1994)), [Hoeting et al.| (1999), Cripps et al.
(2005), and Zhao et al| (2016), a prior probability choice for the size of the
graph on each dynamic parental series inclusion indictor may be a Bernoulli prior

probability of the form

p(&pa) = [ Ber(§pajulm) = 7P (1 — m)fanol=Pos, (4.21)

j=i—1

where we may interpret 7 as the probability that any two variables have a pairwise

dependence structure with a maximum possible number of dependence |Rgp |-
In a similar fashion, the prior for each row of the binary indicator matrix =,

such that the columns of the y.,;); are included in the multiple regression DLM

if &,;; = 1 and excluded if £, ;; = 0 as

Lo by — yis
&yif = (4.22)

0, otherwise,

For each i = 2 : N, the number of contemporaneous parental series that are
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included in the model, is given by
i—1
Dyi =Y & (4.23)
j=1

where D, ; <i— 1.
The prior for the size of the graph on each contemporaneous parental series

inclusion indictor is a Bernoulli prior of the form
i—1
p(&) = H Ber(&, i|m) = 7P (1 — m) =t P, (4.24)
j=1

Those two steps can be performed in one step for both the dynamic and

contemporaneous parental series and for each p, if i =1

p
P(&i) = [ ] Ber(€onlm) = mPor (1 —mpp Do,

j=1
otherwise,
2p+i—1
p(fﬂ,'y,i) = H Ber(€ﬁ777ij|ﬂ) = WDB’V’i(l — 7T)2p+i717D5"”', (425)
j=1

o . 2pti—1
where if i = 1, Dg . = Z?:l £8,y,i5 otherwise, Dy i = Zjitl €875 and Dg
is the number of dynamic and contemporaneous parents that are included in the

model. In addition, if i =1, Dg,; < p otherwise, Dg,; < 2p+i — 1.

4.5.3 Priors and initial values for parameters

Analysing DLMs componentwise requires prior distributions to be specified for
each individual component model by assuming independence between components
as noted by |West and Harrison| (1997). At an initial time ¢ = 0, the state vectors

0,0 and )\, o are assumed to follow a Normal and a Gamma initial distributions,
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respectively. The specified moments are

(Oi,O|YO) ~ N(ai,o

mi’o, Ci,g), (426)

(Aiolyo) ~ G(Niolnip, dip). (4.27)

Following [Koop and Korobilis (2013)) and Zhao et al.| (2016), for each i =
1 : N, we set the prior hyperparameters for m;y = (0,...,0)" and the initial
values of m,; at time ¢t = 0 are set to m;y. The prior hyperparameters for the
state covariance matrices C;, = I and the initial values of C;; at time t = 0
is equal to C;o. The prior hyperparameters of the degrees of freedom is set to
nio = (1—08;)"'=pifi =1, otherwise n; o = (1—0;) "' —(2p+i—1), and similarly
dio=(1—01)'—pifi=1, otherwise d;g = (1—0;)"' — (2p+i—1) leading to a
prior hyperparameter value of the estimate of the observational variance s; o = 1.[]
And the implied sequence W, for t = 1,...,T are identified given d;, and C,.
The discount factors for the residual volatilities ¢; and the discount factors for
the variance of the states 9; are evaluated over a grid of values that we describe

in Section 4.6.

4.5.4 Predictive likelihood functions

The predictive likelihood function of the joint model defined in terms of the
observed predictive density can be decomposed as the product of predictive like-

lihood functions of the M; models at each point in time over t = 1 : T as

N

PYely1i—1) = Pt Fpaqry.e Y1) [ [ P
=2

Fpa(i),t y Y1:it—1 )

"The value of the hyperparameter ; is set to the value in Table 4.3.
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where the predictive likelihood is defined as a univariate Student T distribution

of the predictive density p(yi¢|Fpaq), Y1:4-1)

9 —(nge—1+1)/2
L, — l(ni—1 +1)/2] 14 (Yii — fir) (4.28)
N LC[nit—1/2]\/Mit—1Giz Nit-1qit ’
and
(yi,t|Fpa(i)a yl:t—l) ~ 7711‘,1571 (fi,ta qi,t)- (429)
fort=1,...,T.

4.5.5 Posterior over the model space

The posterior probability p(M|y;.) over the space of all models M can be
decomposed as a product of component posterior probabilities p(M;|y;1.1) over

the subspace of models M; as

p(Mly1a) o< [ [ p(Milyiae), (4.30)

i=1

where foreachi=1: Nandt=1:T,if1=1

P(M;|Yie) o< D(Yit|Fpagi) e Yie1)mPA (1 — )P~ Pis

otherwise
P(M;|Yia:e) o D(Yit|Fpagiy,es Yigo1)wlue (1 — )P Hi-1=Pis, (4.31)

4.5.6 Bayesian model selection

We have now identified the various elements of the Bayesian graphical variable
selection problem, i.e. the full model space M and the subspace of models M;,

the two components of the prior probabilities, the priors for the vector of binary
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indicator variables and the priors for the parameters, the predictive likelihood
function of each model and the posteriors over the model space. In a procedure
of identifying models in terms of posterior probabilities, we assume the model is
another unknown parameter and obtain the posterior probabilities of the models
under considerations. First, we define the marginal predictive density of the data

as

p(yi,t Y1:t71) = /p(yi,t‘Fpa(i)a Hi,ta Ai,t)p(ai,n Ai,t’Yl:tfl)dOi,td)\i,t (4-32)

as the one-step-ahead predictive density for the observations.
Now let’s write the number of models for each series explicitly and denote M
as any arbitrary choice of a sub-model of series 7. Then, the relative posterior

probability for model M;;, compared to all candidate models M; is given by

p(yi,t|Fpa(i) y y1:t—1)p(Mi )
S P(Wia P pagi)-Y1e—1)p(Mig)

p(Mir|yine) = ; (4.33)

where M; = {1 : K} is defined as the set of all models over a subspace of models
in M; with a maximum number of models K; and M;; is any arbitrary model in
this set.

Next, to select the best models or a range of good models, we rank the can-

didate models based on their posterior model probabilities in Equation (4.33).

4.5.7 Bayesian model averaging

Evaluating a large number of multiple regression DLMs over the space of all
models M from models for the subspaces M; may not be practical. We integrate
the variable search and selection components of previous section in a Bayesian
model averaging approach. At this point, we truncate the space over the models

and look at only the models that have a posterior model probability higher than
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the threshold 0.005. Let the model M;; be selected with a known probability

Dij = Pr[Mij|Y1:t]a

where j =1: J; and J; < K;. The form of the density of p(6;,|y1.) is a mixture
of J; Normal distributions and p(\; +|y1.¢) is a mixture of J; Gamma distributions

given by following equations, respectively

Ji
P(Oisly1e) = Z I (0 mije, Cijo)pij (4.34)
j=1
and
Ji
p(Aitlyre) = Z fa(Nijei g, dija)pig (4.35)
j=1

with moments

J;
m;; = Z m;;:pij,
j=1
Ji
Ci= Z[Cij,t + (my, — my;) (Mg — my;,) pij, (4.36)

=1
Ji

-1 _ —1

Sit = E Si4,tPijs
Jj=1

where the number of components are fixed for all t =1 : 7.
The component densities have Student T distribution, which yields the fol-

lowing equation for a Student T finite mixture

J;
p(yi,t|Fpa(i),t7 Yit-1) = Z I, (Yits Mijits fijs Gijt)Dij- (4.37)
j=1



120

Given a nonnegative integer IV, defining the cross-sectional dimension of the data,
a nonnegative integer T'; defining the time series dimension of the data, hyperpa-
rameter values reported in Table 4.2 and hyperparameter values of parameters,
a vector of macroeconomic and financial variables y;, and a vector of lagged val-
ues the variables (y;_1,¥:—2), a pseudocode for the Gray code algorithm and the
Kalman filter algorithm that runs in parallel can be summarised as follows

4.5.8 A pseudocode to describe a parallel search algo-

rithm

Start a loop that runs in parallel fori =1,... N
1. Let M, denote the null sub-model, which contains no predictors.
2. If i =1, for j=1: K,

(a) Apply the Gray code algorithm and fit all 27 models.

(b) Apply the Kalman filter algorithm over all model space as described in
the Appendix, Section 4.8.2.

(c) Compute the score as the logarithm of Equation (4.31).

otherwise for j =1: K;

(a) Apply the Gray code algorithm and fit all 2277~ models.

(b) Apply the Kalman filter algorithm over all model space.

(¢) Compute the score as the logarithm of Equation (4.31).
3. Either select a single best model or perform a Bayesian model averaging by
evaluating best models among those 27 and 2?P**~! models. Here best is defined
as having posterior probabilities as in Equation (4.33) exceeding the threshold
0.005.

4.6 Empirical Results

We assess the efficacy of the proposed graphical variable selection, the implied
model selection and the model averaging approaches by measuring how well the

resulting models predict future observations.
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4.6.1 Data

Our data comprises a set of quarterly U.S. macroeconomic and financial time
series data that are taken from the FRED database of the Federal Reserve Bank
of St Louis spanning from 1959Q1 to 2022Q3. The variables are consumption,
investment, GDP growth, GDP deflator, industrial production, unemployment
rate, corporate bond spread, S&P 500 stock returns, 10-year Treasury rate, and
Federal funds rate.

We work with ten variables and transform the majority of variables to sta-
tionarity using the benchmark transformation code of McCracken and Ngj (2020)).

The Data appendix, Section 4.8.5, provides a complete listing of the variables.

4.6.2 Exploratory analysis

We perform exploratory analysis in order to discover the best approaches in
selecting the discount factors, the model order p, and the graphical models. We
try to answer three questions in order to proceed for our actual analysis. First,
how to select the possible range of values for the discount factors? Second, how
to choose the optimal values of the discount factors and the model order p for
each series? Third, how to select a graphical model? To answer these questions,
Table 4.2 provides some insight into various prior hyperparameter values to guide
us in the model specification. The first two rows are commonly used possible grid
of values for the discount factors ¢; and ¢;. The third quantity, 7, is based on
the value of the prior probability of graph structures, the prespecified threshold
value, 0.005, is for evaluating the posterior model probabilities, and the model

order p is considered over a lower bound and an upper bound values.

Range of values of series specific discount factors

Our first task is to choose the values of the discount factors §; and ¢;. As

West and Harrison| (1997)) and [Prado and West| (2010) note, the variability of
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Prior hyperparameters

Hyperparameter Value Hyperparameter Value

D,, {0.974: 0.004 : 0.998} | = 0.5

Dy, {0.974 : 0.004 : 0.998} | Threshold 0.005
k=1:p [1,2]

Table 4.2: The table shows a grid of values of prior hyperparameters of discount
factors, value of the prior probability of graph structures, a threshold to evaluate
high posterior probabilities, and the model order p.

the state coefficients can be controlled by the discount factors close to one. On
the other hand, low values of the discount factors lead to high variability in the
coefficient states. In practice, it is common to use d;, p; > .9, |Prado and West
(2010). Thus, the range of values of the discount factors are evaluated over a grid
of values as shown in Table 4.2. We evaluate every combination of D,, and Dy,

for each series. This leads to a total combination of D, 5, = 49.

Optimal values of discount factors and model order

Second, we choose optimal values of the discount factors, ¢; and ¢;, and the
model order p by maximizing the logarithm of the predictive likelihood functions.
This is because we assume a simple noninformative uniform prior distribution for
the hyperparameters of the model order p and discount factors, p(d;, p;,p) o 1,
which reduces the posterior inference problem to maximizing the logarithm of
the predictive likelihood functions. We assume that the true model order p is
unknown but a lower bound and an upper bound for the order is known. We set
the lower bound to 1 and the upper bound to 2.|§| For each + = 1 : N, we choose

the values of d;, ¢;, and p that maximize the function

8To ensure parsimonious models, the order of VAR (p) models with time-varying parameters
and stochastic volatility is commonly fixed to 2, for instance, see |Cogley and Sargent| (2005]),
Primiceri (2005), and |Koop and Korobilis| (2010).
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lOg L((sl? @i, P; y) = log[p<yi,1:T‘y07 52'7 Spwp)]?
(4.38)
10g[P(yz‘,t|Y1:t—1, di, i, p)],

I
-

where p(y;¢|y14—1) are the one-step-head univariate Student T predictive densi-
ties.

Table 4.3 displays the results for the optimal model order p, the optimal values
of the discount factors and the logarithm of the predictive likelihoods for each
series in the model space. In this experiment, for each series ¢ = 1 : N, the
algorithm explores 98 different combinations of 9;, ¢;, and p over the subspace
of models. Hence, in total N x 98 models are explored. Let’s first consider the
inference about p. Models of the variables consumption and investment identify
the order p = 2 as optimal. On the other hand, models of the variables GDP
growth, GDP deflator, industrial production, unemployment rate, corporate bond
spread, S&P 500 stock returns, 10-year Treasury rate, and Federal funds rate
favour the order p = 1.

Obviously, the optimal values of ¢ is constant for all series. By contrast to
©;, the optimal values of §; for the variables consumption and investment is 0.990
with an optimal lag order 2 and all other variables choose 0.986 as the optimal
value for ¢; with the optimal lag order 1. This raises the question of whether the
optimal value of the discount factors ¢; is sensitive to the model order.

To summarise, models of two orders are explored to identify the chosen order
p. Similarly, the optimal values of the discount factors for the precision \;; and
the state variance matrices W, 4, are chosen by exploring several values. Our
actual analysis is based on the discount factors at the optimal values reported in
Table 4.3. However, we fix the value of the model order to p = 2 for all series to

explore the support of these results in the variable selection experiment.
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Optimal model order p, discount factors and sum of L.P.L.
Series P ) % L.P.L. Series P o ©® L.P.L.

PCECC9 2 0.990 0.974 -347.344 | UNRATE 1 0.986 0.974 -209.895
GPDIC1 2 0990 0974 -318.572 | CS 1 0986 0974 -184.588
GDPC1 1 0986 0974 -128.969 | S&P 500 1 0.986 0.974 -332.989
1 1
1 1

GDPCTPI 0.986 0.974 -342.515 | GS10 0.986 0.974 -352.916
INDPRO 0.986 0.974 -188.296 | FEDFR 0.986 0.974 -310.682

Table 4.3: The table shows the optimal values of the model order p, the discount
factors and the logarithms of predictive likelihoods (L.P.L.). The range of values
of the discount factors are evaluated over a grid of values in D, = {0.974 : 0.004 :
0.998} and Ds = {0.974 : 0.004 : 0.998}. Series descriptions are reported in the
Data appendix.

Selecting graphical models

Third, applying a graphical variable selection approach with uncertainty over
the number of parental series for each i, requires variable selection to be applied
for each series as 2P + ZZ]\LQ 22pTi=1  We decide to apply the variable selection
approach over the parental series only, i.e., the number of graphical models for
each i would be 2¢ + 32V 220+~ 1 with the model order fixed to p = 2 and the
discount factors would be preselected based on the values reported in Table 4.3.
For a feasible computational approach in terms of time complexity of solving a
problem, setting N = 10, leads to over 8,000 possible models My and over 16,000
possible model M.y. A prior probability on the graph structure 7 = 0.5 is chosen
and models with posterior probabilities less than a threshold, 0.005, are removed.

To illustrate the use of the variable selection of this section, we calculate the
posterior model probabilities for each ¢ = 1 : N. Table 4.4 through Table 4.13
present the series specific models that receive over .5% posterior model proba-
bility in descending order. The pattern of the dynamic and contemporaneous
dependence structures takes values in the discrete space as 1’s and the pattern
of the independence structures are shown by 0’s. The dimension of the vector
of dynamic parents range from 1 x p and 1 x 2p and they refer to the dynamic

parents in a lower bidiagonal order, that is, the first variable in the recursive or-
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der has its first and second own-lags as dynamic parents and each other variable
has a potential of first and second cross-lags of a preceding variable and first and
second own-lags as parents. On the other hand, the dimension of the vector of
the contemporaneous parents are presented for each i = 2 : N, as 1 x (i — 1),
representing the current values of variables in the same order that are reported
in the Data appendix. For example, consumption = 1, investment = 2, GDP
growth = 3, GDP deflator = 4, industrial production = 5, unemployment rate
= 6, corporate bond spread = 7, S&P 500 stock returns = 8, 10-year Treasury
rate = 9, and Federal funds rate = 10.

The preferred models for the variables consumption, investment and GDP
growth are shown in Table 4.4. 3 out of 4 models are among the best models for
consumption. It appears that first and second own-lags of consumption have much
predictive power. Dynamic parents of the variable investment are first and second
own-lags of investment and first and second cross-lags of the variable consump-
tion. 7 out of 32 models are much confident that first cross-lag of consumption
as a dynamic parent of the variable investment must be included in the model.
Those models also support the inclusion of the current value of consumption as
a contemporaneous parent of investment. The most likely 11 models for the vari-
able GDP growth show that none of the variables from the dynamic parental set
dominates the dependence structures. In addition, the model with the highest
posterior probability represents 41% of the total posterior probability, indicating
zero effects of the dynamic predictors. On the other hand, all models support the
inclusion of the contemporaneous parents, consumption and investment, in the
model featuring the variable GDP growth as a dependent variable. In total, 128
different models are visited for the variable GDP deflator as shown in Table 4.5.
In this example, 29 models are chosen and all models support the inclusion of the
first own-lag of the variable GDP deflator as a dynamic parent. Table 4.6 displays

the results for the variable industrial production with a potential of 8 dynamic
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and contemporaneous predictors. All chosen 12 models are confident that own
first-lag of the variable industrial production and contemporaneous values of the
variables consumption and investment must be included in the model. The re-
sults of the variable unemployment rate in Table 4.7 indicate considerable model
uncertainty with the highest posterior model probability explaining only 15% of
the total posterior probability. Those models are confident that the first-own
lag of unemployment rate as a dynamic parent, and consumption and industrial
production as contemporaneous parents must be included in the model.

For the variable corporate bond spread, Table 4.8 and Table 4.9 show the pos-
terior model probabilities of 43 out of 1024 models. There is a considerable model
uncertainty over the model space with the highest posterior model probability ac-
counting for only 8% of the total posterior probability. We present the results
for the variable S&P 500 stock returns in Table 4.10 with the search algorithm
exploring all 2048 models. All models supports the inclusion of the first cross-lag
of the variable corporate bond spread and the majority of models are confident
that the first own-lag must be included in the model. The contemporaneous par-
ent, corporate bond spread, has a predictive power on the variable S&P 500 stock
returns, which is supported by all 38 models. Table 4.11 reports best models for
the variable 10-year Treasury maturity rate with high model uncertainty across
the model space and with few variables having explanatory power excluding the
first own-lag as a dynamic parent. Finally, the results for variable Federal funds
rate are reported in Table 4.12 and 4.13. 40 out of 8,192 models are supported
by the method. The first own-lag of the variable Federal funds rate as a dynamic
parent and the current value of the variable 10-year Treasury maturity rate have
much predictive ability on the variable Federal funds rate.

To summarize, we have illustrated the inferential potential of a Bayesian vari-
able selection problem. The results show that there is a considerable model

uncertainty within the best selected models for each series. As the number of
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predictors increases, the model uncertainty increases too. Inference based on a
single best model with the highest posterior model probability would be ambigu-

ous.
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Range of good multiple regression DLMs exploring all possible 22 = 4 models

Consumption
Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.857 My 1,1 3
2 0.112 M 19 2
3 0.031 M (0,1 4
Range of good multiple regression DLMs exploring all possible 2° = 32 models
Investment
Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.763 My (1,0,0,0) My 1y 31
2 0.090 M27(171’070) M27(1) 30
3 0.064 My (1,0,1,0) My 1) 26
4 0.057 My (1,0,0,1) My 1) 18
5 0.010 My (1,1,0,1) My 1) 19
6 0.009 My (1,1,1,0) My 1) 27
7 0.006 My (1011 My 1y 23
Range of good multiple regression DLMs exploring all possible 2° = 64 models
GDP Growth
Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.406 M3 0,0,0,0) M3 (1,1 33
2 0.325 M3 (1,0,0,0) M3 (1,1 34
3 0.094 M3z 1,100 M3 (1,1 35
4 0.049 M3 0,0,1,0) M3 (1,1 40
5 0.034 M3 0,1,0,0) M3 1,1 36
6 0.029 M3z 1,0,1,0) M3 (1,1 39
7 0.017 M3z 0,0,0,1) M3 (1,1 48
8 0.013 M3z (1,0,0,1) M3 (1,1 47
9 0.008 M3 (1,1,1,0) M3 11 38
10 0.007 M3 0,0,1,1) M3 1,1 41
11 0.005 M3 (1,1,0,1) M3 1,1 46

Table 4.4: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series consumption, investment and GDP
growth, excluded (included) dynamic and contemporaneous parents are shown
by zero (one) independence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 27 = 128 models
GDP Deflator

Choice P.M.P. Dynamic Parents Contem. Parents Model index
T 0157 Moo My (1,1.0) 45
2 0.128 My 0,1,0,1) My 0,1,0) 52
3 0102 My 101 My (1,1,1) 84
4 0.071 My (0,1,0,0) My (1,10 36
5 0.068 My (0,1,0,0) My 0,1,0) 01
6 0.044 My 0,1,0,1) My 0.1.0) [
7 0.044 My 0,1,0,0) My, 1,1,1) 93
8 0.039 My 0,1,0,1) My 0,0,1) 116
9 0.036 My 0,1,0,1) My 1,0,0) 20
10 0.027 My 0,1,0,1) My, 1,0, 109
11 0.026 My (0,100 My 0,1,0) 08
12 0.025 My 11, My 1,1,0) 44
13 0.024 My 0,1,1,1) My, 85
14 0.021  Mya10.) My 1,1,0) 46
15 0.015 My (0,1,1,1) My 0,10 53
16 0.015 My 1,101 My 1,1,1) 83
17 0.014  Mya10.) My 0,1,0) o1
18 0.013 My (0,1,0,0) My (0,0,1) 125
19 0.013 My 1,101 My (10,0 19
20 0.009 My (0,1,0,0) My (1,00 29
21 0.008 My (0,1,0,0) My, 1,0,1) 100
22 0.008 My 0,1,1,1) My (10,0 21
23 0.008 My 0,1,1,1) My 01,1 76
24 0.007 My (1,1,0,0) My 1,1,0) 35
25 0.007 My 1101 My 01,1 s
2% 0.006 My 1101 My 00,1 115
27 0.006 My (1,1,0,1) My (1,0,1) 110
28 0.005 My 0,1,1,1) My 0,0,1) 117
29 0.005 My (11,00 My 0,10 62

Table 4.5: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series GDP deflator, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 2% = 256 models
Industrial Production

Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.394  M; ,(0,1,0,0) (1,1,0,0) 36
2 0.295 M; ,(0,1,0,0) (1,1,0,1) 221
3 0.051 My 1100 (1,1,0,0) 35
4 0.047 M5 0,1,0,1) (1,1,0,0) 45
5 0.042 M5 0,1,0,0) (1 1,1,0) 93
6 0.032 M; ,(0,1,0,0) (1 1,1,1) 164
7 0.030 M5 0,1,0,1) Ms (1,101 212
8 0027 Msi100) 5 (1,10,1) 222
9 0.021 M5 0,1,1,0) 5 ,(1,1,0,0) 37
10 0015 Ms 110 5 (1,1,0,1) 220
11 0010  Ms 01 Ms 1,1,0,0) 46
12 0.005  Ms (1,100 5,(1,1,1,0) 9

Table 4.6: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series industrial production, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 29 = 512 models
Unemployment Rate

Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.150 Mg 11001) Ms,(1,1,00,1) 467
2 0.110 Mg 1100) M (1,00,0,1) 494
3 0.066 Mg (0,1,1,0) Me,(1,0,0,0,1) 485
4 0.062 Mg ,(1,1,1,0) M ,(1,0,0,0,1) 486
5 0.059 Mg (1,1,1,0) Mg (1,1,00,1) 475
6 0.057 Mg 0,1,0,1) Mg (1,1,0,0,1) 468
7 0.049 Mg 0,1,0,1) M, (1,0,0,0,1) 493
8 0.046 Mg (9,1,1,0) M (1,1,0,0,1) 476
9 0.033 Mg (0.1,0.0) M 1,0,00,1) 484
10 0.029 Mg 1,1.01) Mg (1,1,1,0,1) 430
11 0027 Mgaaon Mg (101,01 403
12 0.026 M0 M (1,0,00,1) 483
13 0.026 Mg 0,100 M (1,1,0,0,1) 477
14 0025 Mg,00) Me (1,1,00,1) 478
15 0.020 Mg 1,1,1,1) Me (1,1,0,0,1) 470
16 0.019 Mg (0,1,1,1) Mg ,(1,1,0,0,1) 469
17 0.019 Mg (0,1,1,1) Mg ,(1,0,0,0,1) 492
18 0.016 Mg 11,11 6,(1,0,0,0,1) 491
19 0.016 Mg (0,1,1,0) 6,(1,0,1,0,1) 412
20 0.016 Mg ,(1,1,1,0) 6,(1,0,1,0,1) 411
21 0.011 Mg 01,0, 6,(1,0,1,0,1) 404
22 0.011 Mg 0,1,0,1) Me (1,1,1,0,1) 429
23 0.009 Mg (1,1.1,0) Me (1,1,1,0,1) 422
24 0.009 Mg ,(0,1,0,0) Mg ,(1,0,1,0,1) 413
25 0.007 Mg 1100 6,(1,0,1,0,1) 414
26 0.007 Mg (0,1.,1,0) Mg (1,1,1,0,1) 421

Table 4.7: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series unemployment rate, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 2'9 = 1024 models

Corporate Bond Spread

Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.077 (0,1,0 1) (0 0,0,0,1,0) 500
2 0.062 (o 1,0,1) (0 0,0,1,1,0) 269
3 0.048 (0 1,0,0) (0 0,0,0,1,0) 509
4 0.047 (0 1,0,1) (1 0,0,0,1,0) 493
5 0.033 (0,1 0,1) (1 0,0,1,1,0) 276
6 0.032 (0,1 0,0) 7 ,(0,0,0,1,1,0) 260
7 0.030 (0,1 0,1) 7 ,(0,1,0,0,1,0) 461
8 0.026 (0,1 0,0) My ,(1,0,0,0,1,0) 484
9 0.026 M7 0,1,0,0) 7,(1,0,0,1,1,0) 285
10 0.026 M7 (0,1,0,1) 7,(0,0,0,0,1,1) 525
11 0.025 (0,170 1) 7 ,(0,0,0,1,1,1) 756
12 0.025 (0,1,0 1) 7 ,(0,1,0,1,1,0) 308
13 0.024 (0,1,0 0) 7 ,(0,1,0,0,1,0) 452
14 0.021 (0,170 0) 7 ,(0,0,0,0,1,1) 516
15 0.019 (0,1,0 0) 7 0,0,0,1,1,1) 765
16 0.019 (0 1,0,0) 7 (0,1,0,0,1,1) 573
17 0.018 (0 1,0,1) 7 ,(1,0,0,0,1,1) 532
18 0.017 (o 1,0,1) 7 ,(0,1,0,1,1,1) 77
19 0.017 (071 0,0) 7 ,(0,1,0,1,1,1) 708
20 0.017 (0,1 0,1) 7 ,(0,1,0,0,1,1) 564
21 0015 Mz 1,00 Mz(0,1,0,1,1,0) 317

Table 4.8: The table reports models with posterior model probabilities (P.M.P.)

higher than a threshold of 0.005 for series corporate bond spread, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 219 = 1024 models

Corporate Bons Spread (continued)

Choice P.M.P. Dynamic Parents Contem. Parents Model index
22 0.015 My 9,101 M7 (1,0,0,0,0,1) 1005
23 0013 My Mz,(1,0,1,0,1,0) 404
24 0.012 M7 0,1,0,) M7 (1,0,0,1,1,1) 749
25 0.009 Mz 01,01 M7 (1,1,0,0,1,0) 468
26 0.009 Mz 01,01 M7 (1,0,0,1,0,1) 788
27 0.009 Mz 01,01 M7 (0,0,1,0,1,0) 397
28 0.009 My 910.1) M7,(1,0,1,1,1,0) 365
29 0.009 Mz 01,01 M7 (1,0,1,0,0,1) 916
30 0.009 Mz (01,00 M7 (1,0,0,0,1,1) 541
31 0.008 My (1.100) M7 (0,0,0,1,1,1) 766
32 0.008 My100) Mz (1,0,0,1,1,1) 740
33 0.008 Mz (0,1,0,0) M7 (1,0,1,0,1,0) 413
34 0.008 M, ,(0,1,0,1) M- ,(1,0,1,0,1,1) 621
35 0.007 Mz 100 Mz (1,0,1,1,1,0) 356
36 0.007 My Mz (1,1,0,1,1,0) 301
37 0.006 My 100 Mz (0,1,0,1,1,1) 707
38 0.006 Mz (0,1,0,0) M7 (1,1,0,0,1,0) 477
39 0.006 Mz (01,01 Mz 0,0,1,1,1,0) 372
40 0.006 Mz (0,1.,0,0) M7 (1,1,0,1,1,0) 292
41 0.006 M7 (0,1,0,1) M7 ,(0,0,1,0,1,1) 628
42 0.005 Mz (01,01 M7 1,1,00,1,1) 557
43 0.005 Mz 01,01 M7 0,0,1,0,0,1) 909

Table 4.9: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series corporate bond spread, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-

dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 21 = 2048 models
S&P 500 Stock Returns

Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.132 Mg 1100 Mg (0,1,1,0,1,0,1) 1603
2 0.092 Mg 1100 Ms,0,1,1,00,0,1) 1982
3 0.054 Mg (1,1,0,0) M5,(0,0,1,0,1,0,1) 1662
4 0.052 Mg (1,1,0,0) Mz (1,0,1,0,1,0,1) 1635
5 0.039 Mg (1,1,1,0) Mg 0,1,1,0,1,0,1) 1606
6 0.037 Mg (1,1,1,0) M5.0,0,1,0,1,0,1) 1659
7 0.033 Mg (1,1,0,0) Mz 0,1,1,0,0,1,1) 1091
8 0.031 Mg (1,1,1,0) My ,(0,1,1,0,0,0,1) 1979
9 0.028 Mg (1,1,1,0 Ms,(1,0,0,0,0,0,1) 2022
10 0.027 Mg (1,110 Mg (1,0,1,0,1,0,1) 1638
11 002 Moo Mg (1,0,00,1,0,1) 1566
12 0.023 Mg (1.100) Ms,(1,0,0,0,0,0,1) 2019
13 0019 Moo Mg (1,1,1,0,1,0,1) 1630
14 0.016 Mg (1,1,0,0) Mg (1,0,0,0,0,1,1) 1054
15 0.013 Mg (1,1.1,0) Ms,(1,0,0,0,1,0,1) 1563
16 0013  Mg00 Mg (0,1,1,0,1,1,1) 1470
17 0012 M0 Mg (1,1,1,000,1) 1955
18 0.011 Mg 1,1,0,1) M5,0,1,1,0,1,0,1) 1614
19 0.010 Mg 11,10 M5.0,0,1,0,0,0,1) 1926
20 0010 Mg100) Mg (1,1,00,1,0.1) 1571
21 0010 Mg 0. Ms (0,1,1,0,0,0,1) 1971
22 0.009 Mg (1,1,1,0) Mz 0,1,1,0,0,1,1) 1094
23 0.009 Mg (1,1,0,0) Mg (1,0,1,0,0,1,1) 1123
24 0.009 Mg (1,00, M5 0,1,1,0,0,0,1) 1983
25 0.008 Mg (1,1,0,0) M5 0,0,1,0,0,1,1) 1150
26 0.008 Mg (1.1,1,0) Ms,(1,0,1,0,0,0,1) 1947
27 0.008 Mg (11,10 Ms,(1,0,0,0,0,1,1) 1051
28 0.007 Mg 1100 Ms.(1,0,1,01,1,1) 1438
29 0.007 Mg 1,100 M 0,0,1,0,1,1,1) 1411
30 0.007 Mg (1.1,00) Msg,(1,1,0,0,0,0,1) 2014
31 0.007 Mg (1.1,00) Ms,(0,0,0,0,0,0,1) 2046
32 0.006 Mg (1,1.1,0) M5 0,0,1,0,0,1,1) 1147
33 0.006 Mg (1,1,1,0) Mg (1,1,1,0,1,0,1) 1627
34 0.006 Mg (11,01 M5.0,0,1,0,1,0,1) 1651
35 0.006 Mg (1,1,0,0) 8,(1,0,1,0,0,0,1) 1950
36 0.006 Mg 100 8,(0,1,1,1,1,0,1) 1726
37 0.006 Mg (1,1,0,0) 8,(0,0,1,0,0,0,1) 1923
38 0.005 Mg (1,1,1,0) Mg (1,1,0,0,1,0,1) 1574

Table 4.10: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series S&P 500 stock returns, excluded (in-
cluded) dynamic and contemporaneous parents are shown by zero (one) indepen-
dence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 2'2 = 4096 models

10-Year Treasury Maturity Rate

Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.089 My (0,1,1,0) 9,(0,0,0,1,1,0,0,0) 261
2 0.065 My (0,1,0,0) 9 ,(0,0,0,1,1,0,0,0) 260
3 0.050 My (0,1,1,0) 9 ,(0,0,0,0,1,0,0,0) 508
4 0.039 My (0,1,0,0) 9 ,(0,0,0,0,1,0,0,0) 509
5 0.022 My (0,1,0,0) 9 ,(0,0,0,0,1,0,0,1) 3588
6 0.021 My (0,1,1,0) 9 ,(0,0,0,0,1,0,0,1) 3589
7 0.018 My (0,1,1,0) 9 ,(0,0,0,1,1,0,0,1) 3836
8 0.018 My (0,1,1,0) 9 ,(0,0,0,1,0,1,0,0) 773
9 0.018 Mg (1,1,1,0) 9 ,(0,0,0,1,1,0,0,0) 262
10 0.017 Mg (0,1,0,0) 9 ,(0,0,0,1,1,0,0,1) 3837
11 0.015 Mg (0,1,1,0) 9 ,(0,0,1,1,1,0,0,0) 380
12 0.015 Mg 0,1,1,0) 9 ,(0,1,0,1,1,0,0,0) 316
13 0.014 My 0,1,1,0) 9 ,(0,1,0,1,0,0,0,0) 197
14 0.014 My 0,1,0,0) My,0,1,0,1,0,0,0,0) 196
15 0.012 My (9,1,1,0) Mj,0,0,0,1,1,0,1,0) 1788
16 0.011 My 0,1,0,0) 9 ,(0,0,0,1,0,1,0,0) 772
17 0.010 My (0,1,0,0) 9 ,(0,1,0,1,1,0,0,0) 317
18 0.010 My (0,1,1,0) 9 ,(0,1,0,0,1,0,0,0) 453
19 0.010 My (0,1,1,0) 9 ,(0,0,0,1,1,1,0,0) 764
20 0.010 My (0,1,1,0) 9 ,(1,0,0,1,1,0,0,0) 284
21 0.009 My 0,1,0,1) 9 ,(0,0,0,1,1,0,0,0) 269
22 0.009 My (0,1,0,0) 9 ,(0,0,1,1,0,0,0,0) 132
23 0.009 M, ,(0,1,0,0) 9 ,(0,0,1,1,1,0,0,0) 381
24 0.009 Mg (0,1,1,0) 9 ,(0,0,0,0,1,0,1,0) 1541
25 0.008 Mg (1,1,1,0) 9 ,(0,0,0,1,0,1,0,0) 774
26 0.008 Mg (0,1,1,1) 9 ,(0,0,0,1,1,0,0,0) 268
27 0.008 Mg (1,1,1,0) 9 ,(0,0,0,0,1,0,0,0) 507
28 0.007 Mg (0,1,1,0) Mj,0,0,1,0,1,0,0,0) 389
29 0.007 My (0,1,0,1) Mj,0,0,0,0,1,0,0,0) 500
30 0.007 Mg (0,1,0,0) M9 ,(0,1,0,0,1,0,0,0) 452
31 0.007 My (0,1,1,0) 9 ,(0,0,1,1,0,0,0,0) 133
32 0.006 Mg 0,1,1,1) (0 0,0,0,1,0,0,0) 501
33 0.005 My (0,1,0,0) My (1,0,0,1,1,0,0,0) 285

Table 4.11: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series 10-year Treasury maturity rate, ex-
cluded (included) dynamic and contemporaneous parents are shown by zero (one)

independence (dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 213 = 8192 models

Federal Funds Rate

Choice P.M.P. Dynamic Parents Contem. Parents Model index
1 0.114 Mg, (0,1,0,0) Mi0,(0,0,0,0,1,0,0,0,1) 7684
2 0.059 Mg (1,1,0,0) M10,(0,0,0,0,1,0,0,0,1) 7683
3 0.059 Mg (0,1,1,0) Mi0,(0,0,0,0,1,0,0,0,1) 7685
4 0.0561 Mg (1,1,1,0) M10,(0,0,0,0,1,0,0,0,1) 7686
5 0.045  Myg,(0,1,0,0) Mi0,(0,0,0,0,1,1,0,0,1) 7677
6 0.032 Mg (1,1,0,0) M10,(0,0,0,0,1,1,0,0,1) 7678
7 0.026  Myg,(0,1,0,1) M10,(0,0,0,0,1,0,0,0,1) 7693
8 0.024 Mlo,(o,l,o,o) Mg ,(0,0,0,1,1,0,0,0,1) 7933
9 0.017 My (1,1,1,0) Mi0,(0,0,0,0,1,1,0,0,1) 7675
10 0.016 M1o,(o,1,0,0) My ,(1,0,0,0,1,0,0,0,1) 7709
11 0.015  Myg,(0,1,0,0) Mi0,(0,1,0,0,1,0,0,0,1) 7741
12 0.014 M1o ,(0,1,1,0) Mi0,(0,0,0,0,1,1,0,0,1) 7676
13 0.013 0,(0,1,0,0) M ,(0,0,1,0,1,0,0,0,1) 7805
14 0.013 MlO ,(0,1,0,1) Mi0,(0,0,0,0,1,1,0,0,1) 7668
15 0.012 0,(1,0,0,0) M10,(0,0,0,0,1,1,0,0,1) 7679
16 0.012 M1o ,(1,1,1,0) Mi0,(0,1,0,0,1,0,0,0,1) 7739
17 0.012 Mg, (1,1,0,1) M10,(0,0,0,0,1,0,0,0,1) 7694
18 0.012 Mg, 0,1,1,0) Mi0,(0,1,0,0,1,0,0,0,1) 7740
19 0.011 Mg (1,1,0,0) MlO ,(0,0,0,0,0,1,0,0,1) 7171
20 0.011 Mg (0,1,1,0) 0,(0,0,0,1,1,0,0,0,1) 7932

Table 4.12: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series Federal funds rate, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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Range of good multiple regression DLMs exploring all possible 213 = 8192 models

Federal Funds Rate (Continued)

Choice P.M.P. Dynamic Parents Contem. Parents Model index
21 0.009 M (0,1,1,0) Mi0,(0,0,1,0,1,0,0,0,1) 7804
22 0.009 Mg (0,1,0,0) Mi0,(0,0,0,0,0,1,0,0,1) 7172
23 0.008  Mip,(1,0,0,0) Mi0,(0,0,0,0,1,0,0,0,1) 7682
24 0.008  Myg,(0,1,1,0) Mi0,(1,0,0,0,1,0,0,0,1) 7708
25 0.008  Mig,(1,1,0,0) Mi0,(0,1,0,0,1,0,0,0,1) 7742
26 0.008 Mg (1,1,0,1) Mi0,(0,0,0,0,1,1,0,0,1) 7667
27 0.007  Myg,(0,1,0,0) Mi0,(0,0,0,1,1,1,0,0,1) 7428
28 0.007  Myg,(0,1,0,0) M10 ,(0,0,0,0,1,0,0,1,1) 4605
29 0.007  Myg,(1,1,0,0) 10,(0,0,0,1,1,0,0,0,1) 7934
30 0.007  Myg,(0,1,0,0) M10 ,(0,1,0,0,1,1,0,0,1) 7620
31 0.006 Mg (1,1,0,0) Mi0,(1,0,0,0,1,0,0,0,1) 7710
32 0.006 M1o ,(1,1,1,0) Mi0,(0,0,1,0,1,0,0,0,1) 7803
33 0.006 0,(1,1,1,0) M10,(0,0,0,0,0,1,0,0,1) 7174
34 0.006 MlO ,(1,1,0,0) M10 ,(0,1,0,0,0,1,0,0,1) 7230
35 0.006 Mg (1,1,1,0) 0,(0,0,0,1,1,0,0,0,1) 7931
36 0.005 Mg (1,1,1,0) M10 ,(0,1,0,0,1,1,0,0,1) 7622
37 0.005 Mg (0,1,0,0) Mi0,00,0,1,0,1,1,0,0,1) 7556
38 0.005  Mig,(1,1,0,0) Mi0,(0,0,1,0,1,0,0,0,1) 7806
39 0.005  Mig,(1,1,0,0) Mi0,(0,1,0,0,1,1,0,0,1) 7619
40 0.005 My (1,1,1,0) Mi0,(1,0,0,0,1,0,0,0,1) 7707

Table 4.13: The table reports models with posterior model probabilities (P.M.P.)
higher than a threshold of 0.005 for series Federal funds rate, excluded (included)
dynamic and contemporaneous parents are shown by zero (one) independence
(dependence) structures, and model indices.
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4.6.3 Dynamic and contemporaneous pairwise dependence

structures

The results of the previous section show that most of the models over the
model space have small posterior probabilities. As detailed in Barbieri and Berger
(2004)) and |Heaton and Scott| (2010), a more useful summary of the posterior dis-
tributions is the median probability model. We define the median probability
model as the model that includes the dynamic and the contemporaneous predic-
tors having posterior inclusion probability of at least 0.5. In this case, we may
perform a sensitivity analysis and compute the posterior inclusion probabilities
of the individual dynamic and contemporaneous predictors. Those probabilities
corresponds to search for features of the Bayesian dynamic graphical model, such
as the presence or absence of an individual dynamic effect from the variable y; ;1
or y;.— at time ¢ — & to the variable y;; at time ¢, and an individual contempo-
raneous effect from the variable y; ; to the variable y;, with the same time index
and i # j.

Figure 4.1 displays image plots of posterior inclusion probabilities p(§sjx =
1|y1.¢) for the dynamic parental series and posterior inclusion probabilities p(&, ;; =
1|y;4) for the contemporaneous parental series computed over the full model
space. The scale moves from 0 (white) to 1 (black) with some intermediate
shades of grey. In this setup, we have (p + 2p(N — 1)) = 38 dynamic autoregres-
sive and cross-lagged effects and (];f ) = 45 contemporaneous effects at each point
in time t[]

There are a few interesting facts from the analysis of the median probability
models displayed in Figure 4.1. First, the results show that only 16 out of 38
dynamic parents are included in the model. Likewise, only 18 out 45 contem-

poraneous parents are included in the model. Second, only one out of ten series

9Remember that unlike the state parameters, which are allowed to change in time, the graph
structure is fixed in time.
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has the median probability model that do not coincide with the highest posterior
probability model. For instance, the median probability model of the variable
unemployment rate, the sixth variable in the recursive order, does not coincide
with highest posterior probability model displayed in Table 4.7.

Visiting the equation including the variable GDP growth as dependent vari-
able, the median probability model and the highest posterior probability model
displayed in Table 4.4 tend to agree with each other. The median probability
model in the model subspace M3, based on the groupings of the dynamic parents
dp(3) is Ms (0,00,0) and on the groupings of the contemporanecous parents cp(3)
is M3 1,1). An interesting characteristic of this outcome is that the null model
with zero subgroup dynamic effect corresponds to the highest posterior probabil-
ity model. The variable corporate bond spread discovers the first and the second
own-lags as good predictors. The corresponding highest posterior probability
model and the median model based on the groupings of the dynamic parents
is M7 0,1,0,1). Likewise, the highest posterior probability model and the median
model based on the groupings of the contemporaneous parents is M7 (9,0,0,0,1,0);
which favours only the inclusion of the variable industrial production. Another
interesting observation from Figure 4.1 is related to the variable S&P 500 stock
returns with the first cross-lag of the variable corporate bond spread and the
first own-lag of the S&P 500 stock returns having predictive power on the vari-
able S&P 500 stock returns. This corresponds to the median probability model
Ms (1,1,0,0), which favours the inclusion of two variables from the dynamic parental
set dp(8). The inclusion probabilities also show that the variables, investment,
GDP growth, industrial production, and corporate bons spread, from the con-
temporaneous parental set should be included in the model Mg 1,1,0,1,0,1)- The
median probability model for the variable Federal funds rate, the last variable
in the recursive order, based on the groupings of the dynamic parents dp(10)

is Mio,(0,1,00) and on the groupings of the contemporaneous parents cp(10) is
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Mi0,(0,0,0,0,1,0,0,0,1)- Clearly, the median probability model M, coincides with the

model, defined as that having highest posterior probability in Table 4.12.
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Dynamic and contemporaneous pairwise dependence structures
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Figure 4.1: Image plots of dynamic and contemporaneous pairwise dependence
structures. In each plot, the black (white) colour indicates strong (weak) evi-
dence of dependence. The variables are y;; = consumption, y,; = investment,
ys+ = GDP growth, y,;, = GDP deflator, ys; = industrial production, ys; =
unemployment rate, y;; = corporate bond spread, ys; = S&P 500 stock returns,
Yo+ = 10-year Treasury rate and y;o; = Federal funds rate.
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4.6.4 QOut-of-sample forecast results

In this section, we evaluate the pseudo out-of-sample forecast performance of
the joint model using Bayesian model averaging (joint model with BMA) versus
the performance measured by basing predictive inference from a single best model
(i.e. a model with highest posterior probability). At this point, we evaluate the
range of good models M over a set of truncated candidate | M| models and look at
only the models that have a posterior model probability higher than the threshold

0.005, which can be partitioned as in Table 4.14

Truncated model subspace
Order M1 M2 M3 M4 M5 M(; M7 Mg Mg M10
Truncated |[M;| 3 7 11 29 12 26 43 38 33 40

Table 4.14: The table shows order of models and the truncated model subspace.

We do so by comparing the root mean squared forecast error (RMSFE) and
the mean absolute forecast error (MAFE) statistics over the pseudo out-of-sample
forecast period 1984:Q2—2022:Q3.E The former is defined as the size of the fore-
cast error that is more sensitive to occasionally large errors when compared with
the mean and the latter is a measure of the expected size of the forecast error.
Hence, we can compare the RMSFE and MAFE to determine whether the fore-
cast contains occasionally large errors. We present iterated forecasts for horizons
between one and eight quarters. For the multi-step-ahead forecast, analytical so-
lutions do not exist. Consequently, we evaluate the h-step-ahead predictive mean
and variance using Monte Carlo simulations for a sample size 10,000. The aim
of this forecasting exercise is to assess the gains from using graphical variable
selection with implied model averaging over the forecast performance resulting
from a single best model with the highest posterior probability. As a measure

of overall forecast performance, we use ten variables of interest, consumption,

1OWe calculate the RMSFE and MAFE as in [Korobilis| (2013).
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investment, GDP growth, GDP deflator, industrial production, unemployment
rate, corporate bond spread, S&P 500 stock returns, 10-year Treasury maturity
rate and Federal funds rate.

Table 4.15 and Table 4.16 present RMSFEs and MAFEs for each of ten vari-
ables of interest, eight different forecast horizons and two different forecast met-
rics. The numbers in Table 4.15 are ratios of the RMSFE for the joint model with
BMA divided by the RMSFE of the joint model with highest posterior probabil-
ity. Ratio values smaller than one suggest better performance of the joint model
with BMA relative to the joint model with the highest posterior probability.

In general, we find that the joint model with BMA to yield forecast perfor-
mance improvements over the joint model having the highest posterior probability
for the majority of forecast horizons and for all variables.

Looking at the relative RMSFEs for the variable consumption, we find forecast
performance improvement of the joint model with BMA in terms of achieving
lower RMSFE than the joint model with the highest posterior probability. In
particular, the joint model with the highest posterior probability at eight-quarter
horizon predicts much worse. The outcomes for the variables investment and
GDP growth are slightly different than those for other variables. On one hand,
the relative RMSFEs are very low at one-quarter and eight-quarter horizons.
This may reflect the fact that the RMSFEs obtained from a single best model
with highest posterior probability are too high. Investment and GDP growth are
second and third in the recursive predictive path and is, as a consequence, more
difficult to predict than the other variables. On the other hand, the difference
in RMFSE between the joint model with BMA that averages over several good
models and the joint model with highest posterior probability model, RMSFEs
coming from the latter class of models remained higher as shown in Table 4.19.
Interpreting the results for the variables GDP growth, GDP deflator, industrial

production, unemployment rate, corporate bond spread, S&P 500 stock returns,
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10-year Treasury maturity rate and Federal funds rate jointly, we see that is there
a high instability in the RMSFEs obtained from the joint models with the highest
posterior probability at eight-quarter horizon reported in Table 4.19 leading to
very low values of the relative RMSFEs displayed in Table 4.15.

Comparing the RMSFE and the MAFE generated from both competing mod-
els can guide us on depicting the presence of any unusual forecast error size. As
the difference between those quantities widens, the inconsistency of the forecast
error size increases. The results displayed in Tables 4.17-4.18 and 4.19-4.20 do
not show such large differences.

The dissatisfying results generated from the joint model with the highest pos-
terior probability may have several reasons. First, for computational feasibility of
the graphical variable selection approach, we imposed restrictions on the recursive
models with only lower bidiagonal elements of the dynamic predictors to be in-
cluded in or excluded from the model. The underlying model specification may be
an issue. Second, the prior specification on the component parameter space and
on the model space are crucial in this setup. The priors of the parameter space
influence the predictive likelihoods and the posterior model probabilities. Simi-
larly, the posterior model probabilities may be strongly influenced by the prior
model probabilities. For instance, as a robustness test (not reported here), we
tried alternative prior hyperparameter values for the degrees of freedom, n; o, and
found that the RMSFE values are highly sensitive to different values of n; o. Like-
wise, alternative prior hyperparameter values for m generated unstable posterior
weights. At this point, any certain conclusions on the unimpressive out-of-sample

forecast performance of the joint single best model can be misleading.
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RMSFE of joint model with BMA relative to highest posterior probability model
F. Horizon h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Variables RMSFE
PCECC96 1.0033 0.9997 1.0013 0.9858 1.0023 0.8315 0.9442 0.6260
GPDIC1 0.2481 0.7717 0.6976 0.7594 0.7559 0.7465 0.7299 0.7312
GDPC1 0.4506 0.9215 0.5705 0.8663 0.4818 0.6738 0.1937 0.3176

GDPCTPI 0.9547 0.9270 0.9365 0.6258 0.9789 0.2645 0.7562 0.0697
INDPRO 0.8901 0.9490 0.7148 0.4668 0.6222 0.1116 0.4891 0.0206
UNRATE 0.9925 0.9838 0.9292 0.7725 0.7224 0.3106 0.2136 0.0910

CS 1.0009 0.9974 1.0036 0.9688 0.9772 0.7368 0.4794 0.2024
S&P 500 1.0017 1.0001 1.0003 0.9928 0.9437 1.0009 0.7832 0.3207
GS10 0.9980 1.0015 0.9932 1.0013 0.9861 0.8697 1.0027 0.1417

FEDFUNDS | 0.9999 1.0029 0.9956 0.9988 0.8768 0.7513 0.2962 0.1928

Table 4.15: The table reports out-of-sample forecast performance of the joint
model with BMA relative to the model with the highest posterior probability,
by computing the relative RMSFEs of ten macroeconomic and financial variables
over the sample period 1984:Q2 - 2022:Q3.

MAFE of joint model with BMA relative to highest posterior probability model
F. Horizon h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=38

Variables MAFE
PCECC96 1.0187 0.9938 1.0074 0.9220 1.0109 0.5107 0.7771 0.3488
GPDIC1 0.1741 0.6837 0.5928 0.6684 0.6623 0.6520 0.6303 0.6330
GDPC1 0.2281 0.7770 0.3097 0.6575 0.2486 0.3991 0.0933 0.1552
GDPCTPI 0.9162 0.8946 0.8929 0.5090 0.9558 0.1874 0.6579 0.0532
INDPRO 0.7931 0.7413 0.4997 0.2602 0.3951 0.0618 0.2809 0.0161
UNRATE 1.0233 0.8027 0.6650 0.3624 0.3199 0.1325 0.0710 0.0707
CS 1.0055 0.9864 1.0247 0.9024 1.0602 0.5872 0.3451 0.1375
S&P 500 1.0092 1.0003 1.0021 0.9748 0.8601 1.0055 0.6381 0.2392
GS10 0.9983 1.0012 0.9937 1.0011 0.9855 0.8876 1.0010 0.1165
FEDFUNDS | 1.0000 0.9856 0.9937 0.9345 0.7592 0.5682 0.1969 0.1532

Table 4.16: The table reports out-of-sample forecast performance of the joint
model with BMA relative to the model with the highest posterior probability, by
computing the relative MAFESs of ten macroeconomic and financial variables over
the sample period 1984:Q2 - 2022:QQ3.

4.7 Summary

The methodology proposed in this chapter outlined a Bayesian dynamic graph-

ical model approach for estimating a high-dimensional TVP-VAR-VD model.
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This enabled the multivariate TVP-VAR-VD model to split into simpler multiple
regression DLM components by allowing local computations equation-by-equation
instead of a high-dimensional alternative. We proposed a nontraditional search
algorithm that explored the model space to find high posterior probability graphs
by using a Gray code algorithm. This corresponds to apply a graphical variable
selection approach that followed by a Bayesian model selection and a Bayesian
model averaging to explore complex and high-dimensional model spaces.

In specifying the TVP-VAR-VD model, we restricted the model parameters,
defining 3, to be a bidiagonal matrix, specified the pattern of the coefficients in
the matrix I'; as a strictly lower triangular matrix and A; as a diagonal matrix.
The recursive condition of the component multiple regression DLMs and the
elements of the triangular system that incorporate autoregressive effects, cross-
lagged effects and contemporaneous effects was sufficient for model identification
implying the identification of all parameters.

Evaluating the performance of our modelling approach using ten quarterly
U.S. macroeconomic and financial time series showed that there is a considerable
model uncertainty within the range of good competing models for each series. The
increase in the component model uncertainty was proportional to the number of
the dynamic and the contemporaneous predictors. As a result, we compared the
median probability models and the highest posterior probability models over the
space of all competing models, which displayed almost identical results.

In addition, two competing models are used to obtain forecasts at one to eight
quarter horizons for the variables consumption, investment, GDP growth, GDP
deflator, industrial production, unemployment rate, corporate bond spread, S&P
500 stock returns, 10-year Treasury maturity rate and Federal funds rate. We
can conclude that the joint model with the highest posterior probability do not
perform significantly better than the joint model with BMA given that the joint

model with BMA almost has the lowest RMSFE over the majority of forecast
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horizons and all variables.



148

4.8 Appendix

4.8.1 Prediction and filtering steps for the component

models

We apply the Kalman filter algorithm in a similar fashion as described in
Zhao et al.| (2016). Continuing from Section 4.4.1, the following statements hold
for computing the predictive densities for the state parameters and the precision
parameters in ¢ = 1 : N parallel steps.

i) The one-step-ahead predictive density of 6, given y;.,_; is a Normal dis-

tribution and of \;; given y;,_1 is a Gamma distribution, respectively
(ei,t|/\i,t7 Y1;t—1) ~ N<ai,t7 Ri,t)7

(it

Y1:t—1) ~ g(%‘nz’,t—l/za %‘dz‘,t—1/2)7

with parameters

A = E(ei,t|y1:t—1) =M1,

Ri,t = V<0i,t|y1:t—1) = Ci,t—1/5i>
(4.39)

di,t—l =N t—1Sit—1,

Sit—1 = di,t—l/ni,t—la

where s;;_; is the point estimate of the observational variance 1/X; ;.
ii) The one-step-ahead predictive density of y;; given the parental set Fpq)

and yi.,_1 is a Student T distribution

(yi,t\Fpa(z’),t, }’1:t71) ~ T(fi,ta Qi,t>7
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with parameters

fi,t = E(yi,t|Fpa(i),t7 Y1:t—1) = F;a(z‘),tai,tv

(4.40)
qit = V(yi,t‘Fpa(i),b Yl:t—l) = F;,a(i),tRz;tFpa(i),t + Sii—1.
Let’s partition a;; and R,;; as follow
a; 5t
ai,t = )
ai;y,t
and
Rig: Ripys
Ri,t _ B By ,
Ri,'yﬁ,t Ri,'y,t
then, we obtain
fit = Xy Bis + Yep(iy Vit
p(i),t11, p(i)t 4, (4.41)

Qit = yz;p(i)7tRi,'y,tYCp(i),t + 2y/cp(i)7tR’i,ﬁ’y,thp(i),t + X/dp(i),tRz‘,ﬁ,thp(i),t + Sit-

iii) The filtering densities of 6, given y;. is a Normal distribution and of A; ;

given yi, is a Gamma distribution

<0i,t‘)\i,t7 Y1:t) ~ N(mi,t7 Ci,t>7

()\i,tb’l:t) ~ g(ni,t/27 di,t/z)a
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with parameters

m;; = E(0;|y1.) = a;; + K e,

Cit=V(0:y

Yl;t) = Si,t/si,t—l (Ri,t - Kz;tK;,tC]i,t)»

Ki,t = Ri,tFpa(i),t/Qi,tv

€it = Yit — f’i,ta (4-42)
Nig = Pinig—1+ 1,

diy = pidip—1 + Si,tfle?,t/%,ta

Sit = Sit—1 T Si,tq/nz’,t(ei,t/%‘,t - 1)7

where K, is the Kalman gain, the state adaptive coefficient vector.

4.8.2 h-step ahead forecast

Distributions for future values of the state vectors and future observations are
available at any time t for each of the N univariate series. Conditional on y;.;, the
h—step-ahead forecast distribution for the state vectors and the corresponding

h—step-ahead predictive distribution are

(ez’,t-i-h; )\i,t+h|y1:t) ~ Ng(ai,t(h>> Ri,t<h)7 ni,t(h)a di,t(h))a (4~43)

(yi,t+h’Fpa(i),t+h7 yl:t) ~ 7:01-712',1 (fi,t—i—h(Fpa(i),t-‘rh)a Qi,t-l-h(Fpa(i),t—l—h))? (444)

where the moments of the distributions of the state vectors are obtained sequen-

tially from time t as

a;(h) = aj (h — 1),
Rii(h) = Ris(h —1) + Wi, (4.45)

nz’,t(h) = @il g,
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for h =1,2,..., with initial values a; ;(0) = m;;, W,,(0) = C,;/(1/9; — 1), hence
R;:(0) = C,;/¢;. Similarly, the moments of the h—step-ahead forecast predictive

distribution are

fit(h) = Fpuiy irnie(h),

Qi,t(h) = F;;a(i)7t+hRi,t(h)Fpa(i),t—&-h + Sit—1-

(4.46)

4.8.3 The joint model

Continuing from Section 4.4.2, let’s assume that for each i = 1 : N, the mean

and the variance matrix for Fq;), exist and have the forms

hpa(i),t = E[Fpa(i),tb’l:tfl],
Hpa(i)ﬂf = V[Fpa(z‘),tb’l:tq],

respectively. To compute the conditional Student T distribution of y;,, we set

the degrees of freedom n;; > 1 and denote the mean

E[yi,tb’l:tfl] = E{E[yi,t|Fpa(i),t7 Y1:t71] |Y1:t71}7

= E[F;a(i),tai,t‘YI:tfl]; (4.47)

. !/
- hpa(i),taivt'
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Setting n,;; > 2, the conditional variance of y;; is

V[yi,t ’}’1:7:71] = E{V[yi,t ’Fpa(i),ta Y1:t71] bﬁ:tfl}

+ V{E[yi,t‘Fpa(i),t, Y1:t71] |Y1:t71}

n;,

= E| Gitlyre—1] + V[ fielyre-l,

nzt—2

= n {Sl t + E[Fpa(z) tRZ tFpa () |Y1 t— 1]} (448)
it

+ V[F;a(i),tai,tlylstfl]y

n.
= Mig — 9 [Szt + h’ pa(i), tRz thpa(z) t]

+ trace{ R Hpa(i) ¢ }] + a5 Hpa(i) @it

where the two terms in the last equation in the squared brackets are from the

property of the expected value of a quadratic form

E[F’

pa

(i)7tRi,tFpa(i),t

Yit-1] = EftraceF pua i Ri i Fpo) V101,
= trace B [Fpa(i) Rt F (i) 1[y1:6-1],
= traceRy ¢ E[F pai) 1 F pagiy 1| Y101,
= traceR; [V (Fpa(i)i) + E(Fpagi) ) E(Fpaiiye)'],
= traceR; ;V (Fpq(i)) + traceR; 1 E(Fpa(i).0) E(Fpagiy )
= traceR; ;V (Fpa(i)) + trace E(Fpaiy) Rit B (Fpagiy),
= traceR; ,V (Fpa(i)t) + E(Fpa(i)t) Rit E(Fpai )
= trace{ R Hpa(i), } + pui) Rithpaiy o
(4.49)

Using the partitioned vector a;; and matrix R;;, we get the following results

Fori= 1:N
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ifi=1
. f— / .
fip = Xap(i),tAi,B,t
Nt /
it = (Si,tq + Xdp(i),tRi,ﬁ,thp(i),t)7
Nt — 2
otherwise

o /
Jit = Xapiy 120,86 + Depi) 180yt

2R

Qit = (Si,t—l + h; ),tRi,y,thcp(i),t

cp(i

Mgt — 2 (4.50)
+ trace(Ri 5 Hep(i) 1) + 200 R gy hep(in

+ Xiip(i),tRi,B,thp(i),t) + h;;p(i%tRi,'y,thcp(i),t-

The off-diagonal elements of the covariance matrix C(y;+, ¥1.4-1,|y1:4-1) may

be calculated as

(yi,t,}’l:i—l,tb’l:t—l) = Ql:i—l,talzi—l,%ta (4~51)

and we end the process.

Finally, we plug-in the values obtained from Equation (4.50) and (4.51) into
the joint mean f;, and Q; as appropriate. Those steps may be repeated for the h-
step-ahead forecast exercise. For brevity, only the steps using the one-step-ahead

forecast model are reported (see Zhao et al.| (2016)) for details).

4.8.4 More Results
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RMSFE of joint model with BMA
F. Horizon h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Variables RMSFE
PCECC96 1.1413 1.1437 1.1480 1.1505 1.1520 1.1532 1.1559 1.1945
GPDIC1 0.8345 0.8345 0.8372 0.8383 0.8381 0.8409 0.8432 0.8460
GDPC1 1.0327 1.0339 1.0389 1.0410 1.0462 1.0488 1.0594 1.0584

GDPCTPI 0.9156 0.9178 0.9208 0.9241 0.9255 0.9367 0.9335 1.1521
INDPRO 0.9428 0.9450 0.9498 0.9485 0.9552 0.9534 0.9655 1.1820
UNRATE 1.2256 1.2300 1.2338 1.2399 1.2424 1.2677 1.2575 1.6854

CS 0.8415 0.8411 0.8392 0.8410 0.8389 0.8410 0.8349 0.8433
S&P 500 1.0248 1.027v7 1.0229 1.0218 1.0248 1.0291 1.0185 1.0268
GS10 0.8742 0.8711 0.8473 0.8328 0.8346 0.8359 0.8405 0.8161

FEDFUNDS | 0.5135 0.5147 0.5158 0.5099 0.5074 0.5087 0.5106 0.5516

Table 4.17: The table reports out-of-sample forecast performance of the joint
model with BMA, by computing the RMSFEs of ten macroeconomic and financial
variables over the sample period 1984:Q2 - 2022:Q3.

MAFE of joint model with BMA
F. Horizon h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=38

Variables MAFE
PCECC96 0.4904 0.4886 0.4924 0.4908 0.4879 0.4839 0.4826 0.5717
GPDIC1 0.5684 0.5664 0.5688 0.5682 0.5661 0.5689 0.5701 0.5726
GDPC1 0.4807 0.4814 0.4851 0.4853 0.4893 0.4902 0.5021 0.4978

GDPCTPI 0.6309 0.6306 0.6354 0.6351 0.6375 0.6424 0.6466 0.8776
INDPRO 0.4869 0.4911 0.4930 0.4965 0.4943 0.5247 0.4961 0.9270
UNRATE 0.4103 0.4171 0.4111 0.4363 0.4076 0.5312 0.4088 1.3068

CS 0.5732 0.5717 0.5669 0.5685 0.5591 0.5662 0.5275 0.5638
S&P 500 0.7161 0.7183 0.7113 0.7091 0.7106 0.7181 0.7010 0.7257
GS10 0.6905 0.6867 0.6737 0.6640 0.6647 0.6679 0.6725 0.6642

FEDFUNDS | 0.3270 0.3276 0.3277 0.3234 0.3195 0.3343 0.3242 0.4314

Table 4.18: The table reports out-of-sample forecast performance of the joint
model BMA, by computing the MAFEs of ten macroeconomic and financial vari-
ables over the sample period 1984:Q2 - 2022:QQ3.
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RMSFE of joint model with highest posterior probability

F. Horizon h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Variables RMSFE
PCECC96 1.1376 1.1441 1.1465 1.1671 1.1494 1.3870 1.2243 1.9081
GPDIC1 3.3630 1.0814 1.2002 1.1039 1.1087 1.1265 1.1552 1.1569
GDPC1 2.2920 1.1220 1.8210 1.2016 2.1716 1.5565 5.4695 3.3323

GDPCTPI 0.9591 0.9900 0.9833 1.4766 0.9455 3.5415 1.2344 16.5360
INDPRO 1.0593 0.9958 1.3287 2.0320 1.5353 8.5434 1.9741 57.5167
UNRATE 1.2349 1.2503 1.3277 1.6050 1.7197 4.0817 5.8884 18.5261

CS 0.8407 0.8433 0.8361 0.8681 0.8584 1.1414 1.7416 4.1661
S&P 500 1.0231 1.0276 1.0225 1.0292 1.0859 1.0282 1.3004 3.2013
GS10 0.8759 0.8698 0.8531 0.8316 0.8464 0.9610 0.8382 5.7599

FEDFUNDS | 0.5135 0.5132 0.5181 0.5105 0.5787 0.6771 1.7236 2.8615

Table 4.19: The table reports out-of-sample forecast performance of the joint
model with the highest posterior probability, by computing the RMSFEs of ten
macroeconomic and financial variables over the sample period 1984:Q2 - 2022:Q3.

MAFE of joint model with highest posterior probability

F. Horizon h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Variables MAFE
PCECC96 0.4814 0.4917 0.4888 0.5323 0.4827 0.9474 0.6211 1.6389
GPDIC1 3.2641 0.8285 0.9596 0.8501 0.8547 0.8726 0.9044 0.9046
GDPC1 2.1075 0.6195 1.5663 0.7381 1.9683 1.2282 5.3817 3.2075

GDPCTPI 0.6886 0.7049 0.7116 1.2477 0.6670 3.4279 0.9829 16.5096
INDPRO 0.6139 0.6624 0.9866 1.9077 1.2512 8.4901 1.7659 57.5087
UNRATE 0.4009 0.5196 0.6181 1.2039 1.2740 4.0094 b5.7541 18.4836

CS 0.5701 0.5796 0.5532 0.6299 0.5274 0.9642 1.5286 4.1001
S&P 500 0.7096 0.7181 0.7098 0.7274 0.8262 0.7142 1.0986 3.0341
GS10 0.6917 0.6859 0.6779 0.6633 0.6745 0.7524 0.6718 5.7022

FEDFUNDS | 0.3270 0.3324 0.3298 0.3460 0.4208 0.5883 1.6466 2.8157

Table 4.20: The table reports out-of-sample forecast performance of the joint
model with the highest posterior probability, by computing the MAFEs of ten
macroeconomic and financial variables over the sample period 1984:Q2 - 2022:Q3.
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4.8.5 Data appendix

The quarterly time series variables used in the TVP-VAR-VD models are
taken from the FRED database of the Federal Reserve Bank of St Louis spanning
from 1959Q1 to 2022Q3. The columns of Table 4.21, denote the series numbers,
Tcode denotes the data transformations based on McCracken and Ngl (2020),
series denotes the FRED mnemonic, and description denotes a brief definition of
the series.

Corporate bond spread is defined as Moody’s Baa corporate bond yield mi-
nus Moody’s Aaa corporate bond yield. The modified Tcode, 1*, stands for no

transformation of the series.

Time series used in the TVP-VAR-VD model
ID Series Tcode Description

1 PCECC96 5 Real Personal Consumption Expenditures

2  GPDIC1 5 Real Gross Private Domestic Investment

3 GDPC1 5 Real Gross Domestic Product

4  GDPCTPI 6 Gross Domestic Product: Chain-type Price Index

5 INDPRO 5 Industrial Production Index

6 UNRATE 2 Civilian Unemployment Rate

7 CS 1* Moody’s Seasoned Baa-Aaa Corporate Bond Spread
8 S&P 500 5 S&P’s Common Stock Price Index: Composite

9 GS10 2 10-Year Treasury Constant Maturity Rate

10 FEDFUNDS 2 Effective Federal Funds Rate

Table 4.21: The quarterly time series variables used in the TVP-VAR-VD models.
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Chapter 5

Discussion

We have drawn on ideas of high-dimensional inference problems from pairwise
composite likelihood and high-dimensional sparse inference problems from dy-
namic graphical models on addressing the challenges of modern empirical macroe-
conomics. We offer some suggestions about future directions that seem promising
for further research in the identification of financial shocks, theory, application
and computation of composite likelihood methods and dynamic graphical models

within the Bayesian inferential paradigm.

Chapter 2 The first objective was to understand the real effects of credit mar-
ket disruption through a measure of financial distress, the financial external pre-
mium, which allowed to vary over time. Although our focus was on the trans-
mission of the financial shocks into the real economy in one directional setup,
identification of financial shocks is a challenging task due to simultaneity prob-
lem, as noted by (Gertler and Gilchrist| (2019). Extending the analysis to consider
aspects of the simultaneity problem using a TVP-VAR-SV model is an important

direction for future research.

Chapter 3 The second objective was to address the high-dimensional inference

problem of the TVP-VAR-SV model through a novel Bayesian pairwise composite
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likelihood approach. This method becomes particularly relevant when estimating
the full multivariate TVP-VAR-SV model is computationally infeasible. A suffi-
cient condition for using the Bayesian pairwise composite likelihood approach is
that parameter estimation for each bivariate TVP-VAR-SV model remains com-
putationally tractable. However, implementing the FFBS algorithm across (JQV)
parallel steps for N > 50 posed severe memory challenges, as it required storing
every element of the stacked parameters 3, ;, h.;, and .y fori =1,.. ., (];] ) mod-
els, over r = 1,..., R MCMC iterations (after burn-in), and for all t = 1,...,T
time periods. Developing algorithms that reduce this space complexity represents
a promising direction for future research in Bayesian estimation using composite
likelihoods.

Another avenue for improvement concerns the weighting of pairwise likelihood
components. Future work will explore optimal weighting schemes to better cap-
ture the contribution of each pairwise component to model assessment. As noted
by [Verbeke and Molenberghs| (2005), when random (non-constant) weights are
used in the pairwise score functions, it is unclear whether the expected value of
the weighted pairwise score remains zero, raising important theoretical consider-
ations.

Additionally, we observed an issue related to the magnitude of composite
impulse responses. Although the responses are economically plausible, further
investigation is needed to address this magnitude discrepancy.

Finally, the Direct Averaging Method introduced in this thesis was interpreted
as a computational approximation to a MH algorithm, where parameter draws
from each bivariate model are implicitly accepted with probability one. While
this interpretation is conceptually appealing, deriving the formal MH acceptance
ratio in the second step remains an open problem, and future research will aim

to establish these theoretical conditions.
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Chapter 4 The third objective was to establish a feasible computational algo-
rithm for the problem of variable selection using the Bayesian dynamic graphical
model approach. Although the proposed Bayesian dynamic graphical model ap-
proach enables the multivariate TVP-VAR-VD model to split into simpler multi-
ple regression DLM components, the problem of selecting the good models from
among the 2F 4 2% (2N — 2) possibilities is not trivial. We have applied a non-
traditional search approach in parallel to sets of component univariate DLMs.
Nevertheless, the implied model selection and model averaging that proceeded
the variable selection step cannot be applied with a very large number of vari-
ables.

Another potential concern is that we have ordered the variables as though
the macroeconomic variables comes before the financial variables, which may re-
flect economic reasoning and theory, as have been emphasized in previous studies
Banbura et al|(2010) and |Gilchrist and Zakrajsek (2012). In a forecasting exer-
cise, as noted by [West| (2020), ordering of variables may be redundant because
the results are affected from the precision matrices and the multiple regression
DLM components. A future research may investigate ordering free algorithms.

Furthermore, the posterior probabilities over the model space have shown
appreciable sensitivity to two components of the prior probabilities, that is, the
prior for the graphical models and the prior for the dynamic parameters in the
component multiple regression DLMs. We may investigate Bayesian variable
selection approaches that encourage posterior probabilities over the model space

less sensitive to the prior specification.
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