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SUMMARY 

Initially the fundamental equations are derived from 

the physical system which provide a basis to draw the equivalent 

circuit diagram. Then the previous analytical and numerical works 

on transient current and ferroresonance phenomena are reviewed and 

the aim of the present investigation is given in Chapter 1. 

In order to reduce the number of circuit parameters, the 

parameters are generalized making use of the "standard coefficients". 

Thus, in Chapter 2 the differential equations obtained in Chapter 1 

axe put into new forms. 

Since there are a number of methods of representing the 

B/H characteristics the possibilities are compared at the beginning 

of Chapter 3 to choose the most suitable one. To estimate the 

coefficients of the functions representing the characteristics the 

experimental B/H pattern is required. Therefore, the method used 

to obtain these characteristics is explained. 

The main purpose of Chapter 3 is actually to calculate 

the transient current. So analytical and numerical techniques are 

developed. 

In Chapter 4 fundamental ferroresonance is investigated. 

To visualize the jump phenomena a graphical solution is presented 

and used to predict the jump points. To achieve more accurate 

results, additional terms are included in the expressions of flux 

linkages. 

Subharmonic ferroresonance is, in fact, a part of 

ferroresonance but, since its nature differs from fundamental 

ferroresonance, it is studied separately in Chapter 5. In this 

chapter, using the Preisach model and experimental series method 
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for the B/H representation, the hysteresis effect on subharmonic 

ferroresonance is examined. By an analytical method the stability 

of this phenomenon is investigated. 

Although there is "analysis" and "comparisons" sections 

at the end of each chapter, general conclusions are drawn and some 

suggestions are made for the future work in Chapter 6ý 

All the explanatory figures are located in the text 

side and the experimental and computed figures are presented in 

a separate "diagrams" section. 

I 
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LIST OF PRINCIPAL SYMBOLS 

A Cross-sectional area 
B Flux density 

C Capacitance 

H Magnetic field strength 
I RMS current 
i Instantaneous current 
L Length 

R Leakage inductance 

M Mutual inductance 

N Turns 
d 

p dt 

q Instantaneous charge 

R Resistance 

t Time 

V RMS voltage 

v Instantaneous voltage 

X Reactance 

Z Impedance 

a Switching angle 

fý Flux 

Flux linkages 

u Permeability 

SUBSCRIPTS 

A Primary winding quantities 

a Secondary winding quantities 

m Magnetising 
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CHAPTER 1 

INTRODUCTION 

The early experimental investigations on transient and 

ferroresonance phenomena led the investigators to find out the 

fundamental principles underlying the phenomena. But, besides 

understanding the principles, a prediction of these phenomena 

which require a mathematical analysis as well as experiments to 

define some parameters of the system were also in question. 

From this standpoint, the basic point for the prediction 

is to represent the devices which will be used by an adequate 

mathematical model. Such a model for a single phase shell type 

transformer, whose physical model is shown in Fig. 1.1, and 

constructional details are given in Appendix Al may be derived in two 

paxts. 

1.1 Electric Circuit Equations 

From the consideration of the magnetic flux paths shown in 

Fig, 1.2 the following voltage equations for each coil can be written. 

vA = RA iA + Ao 

va = Ra is + a. 

piA+NA . PO 

pia + Na 
0 PA 1.1 

Since the B/H characteristic is normally given the flux 0 should be 

expressed in terms of B and H. This can be established by using the 

magnetic circuit equations. 

1.2 Magnetic Circuit Equations 

The flux associated with the coil on any limb consists of 

two components, one of them links with other coils on the other limbs, 

which is defined as mutual flux and corresponds to the mutual 

inductance. The other component has a path mainly in air, so it is 

-1- 



defined as leakage flux, and the corresponding leakage inductance is 

taken as being constant, whereas mutual inductance is a function of 

magnetising current. In reality, the leakage flux is not constant 

because of passing through the core. It, therefore, varies with 

the voltage applied to the coil. 

Now, if the Ampere Turns rule is applied to the path 4 in 

Fig. 1 . 2, 

Ný iA + Na is = L. H 

where 

L= 2L2+2L, ß 

the average length of flux path in metres. 

The flux equation for the junction (1) in Fig. 1.2 is 

1.2 

0_ 01 + 02 1.3 
since the magnetic circuit is completely symmetrical and the relation 

between cross sectional areas is 

A=2 A1 1.4 

The flux density B is the same in all limbs. Therefore we can use 

the B/H characteristic obtained from the central limb for the other 

limbs and yokes. 

Substituting the relations obtained from magnetic circuit 

0=2 0i 
and 

01 = BA 

into the equation 1.3 we can get 

0=B. A 

In this equation B is a function of field strength H. So, 

differentiating flux 0 with respect to time yields 

P0=A. u. pH 1.5 
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where 
dB 

dH 

is the differential permeability or the slope of the B/H characteristic. 

Combining equations 1.1,1.2 and 1.5, and referring all 

the secondary quantities to the primaxy turns Ng, the following set 

of simultaneous differential and algebraic equations are obtained. 

vA= RA iA + xA . piA +M (i 
M) .p 

im 

va = Ra is + Q, a . pia +M (im) 
"p 

im 

lM = iA + is 

where 
NA2 A 

M (im) =L ýim 

is the mutual inductance which is function of magnetising current 

defined by 

L 
NA 

1.6 

In regard to equations 1.6 an equivalent circuit as in Figure 1.3 may 

be given for the transformer. When the secondary side of the 

transformer is open circuited (ia = 0), as will be considered in this 

investigation, the performance equations of the transformer become 

vA = RA" lA +R A' P1A +M mý ' P' 

va =M (im) 
. pim 

lm = lA 1,7 

Now, in order to write the equations of the series resonance circuit 

shown in Figure 1 
. 
49 the resistance and inductance of the circuit are 

added to the resistance and leakage inductance of the transformer 

respectively provided that they are linear. Hence 
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vA= RA . iA + 

va =M (im) 
. Pim 

vc - i$dt + 

iA 0 P'A +M (im) 
. pim + vc 

vý (0+) 

im = iA 1,8 

It is clear that to solve either equations 1,7 (as in the 

transient problem) or equations 1.8 (as in the ferroresonance 

problem) the relation M=f (im), in other words, B=f 
_(H) 

must 

be known. 

1.3 Previous Work 

It is convenient to classify the previous work on transient 

current and ferroresonance as analytical work and numerical work. 

1.3.1 Previous Analytical Work on Transient Currents 

The first systematical experimental investigation on 

transient current was made by Turner, In the paper published in 

1931 he gave the factors affecting transient current experimentally. 

Blume et a12 made the first attempt to calculate the 

transient current and they suggested some method to reduce it. In 

the text book of Blume et a13, the exciting current and transient 

current are studied in detail. 

Since the protection equipment in a system must be capable 

of carrying the transient current its shape is also important as well 

as its peak values in order to select the fuses and relays. So, 

Specht4 gave a method to determine the shape of the transient current 

in single phase transformer using "The Experience Factors". He 

tried to improve the results obtained from a linear approximation. 

Although the error for the first peak in the calculated results is 

+ 27% it is about + 17% for the later peaks. It was assumed that 

there was no current flowing till flux reaches its saturation value. 
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That is to say, the B/H characteristic is represented as in Fig. 1,5. 

B B 

O 
Bsi 

1.9 

0.13 
O 

ý, 
O 

HH O 
Experimental 

Logarithmic 

Fig. 1.5 Fig. 1.6 

Holcomb5, Drozdov et a1 
6 

used a method similar to Specht, 

but Holcomb's method produces more accurate results and needs less 

time for the calculation. 

Malyshev7 represents the B/H characteristic by a Logarithmic 

relation as in Fig. 1.6 and, neglecting the leakage inductance of the 

system, he reduces the voltage equation 1.7 to the well-known 

"Bernouilli Equation". The analytic expression of the B/H relation 

used is 

B= c1 Log10 (c2 H) 1.9 

Sarkar et a18 apply Kron's tensorial method to analyse the 

transient currents of a loaded transformer, neglecting the magnetising 

current and using the Laplace transformation. 

1.3.2 Previous Analytical Work on Ferroresonance 

Although Martienssen9 also has done experimental work on 

ferroresonance, especially on jumping phenomena, the first systematic 

experimental investigation on ferroresonance was performed by 

Rouelle10. He described all the factors affecting jumping phenomena 
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Duffing11 gave a method for the solution of the equation, 

so called "Duffing Equation", 

F cos wt = p2 X+ k1 X+ k2 X3 1,10 

where F, kl, k2 are constants. 

Although Duffing gives this equation for the mechanical 

oscillations, neglecting the leakage inductance, the voltage 

equations 1.8 can also be put into the above form if the B/H charact- 

eristic is represented by a single-valued power series. 

H= c1 B+ c3 B3 1.11 

where cl, c3 are constants. 

Odessey et a112 and Thomson13 use the volt-ampere 

characteristic instead of B/H to describe the critical point (only 

jumping-up conditions). They mainly use two independent relations, 

namely the volt-ampere characteristic of the transformer and the 

voltage equations 1.8 in terms of gfundamental harmonic'. 

Rudenberg14 describes the jumping-up point by a graphical 

construction but using volt-ampere characteristic and the voltage 

equations 1.8 in terms of fundamental harmonic again. 

Keller15 displays six different methods of solution including 

perturbation and Galarking methods for the discrete non-linear 

problems in electrical engineering, but in a second paper Keller16 

employs a method similar to perturbation to solve equations 1.8. 

Hayashi17 investigates the forced oscillations with non- 

linear restoring forces and analyses their stability by means of 

integral curves. He uses a cubical form given by equation 1.11 

for the B/H representation. 

In a second and third paper of Hayashi18'19 the stability 

problem of fundamental and subharmonic oscillations are discussed by 

the variational method. The principle of the method is to reduce 
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a differential equation 

p2X +2S. pX + c1X+ c2X3 =f (t) 1.12 

to an equation of Hill9s type. 

In a fourth paper20 of Hayashi, a method of representing 

the B/H hysteresis loop is proposed to examine the influence of 

hysteresis on non-linear resonance and the energy losses. The B/H 

loop is represented by an ellipse and magnetisation curve by a 

cubical form as in equation 1.11. The following figure illustrates 

how to get a loop according to this method. 

H1 

H2 

Fig. 1,7 

2 

c3B3 

c dB H2 
("c5Bm ) dt 

Bm = Max value of B 

c1, c3, c4, c5: constants 

Ku219 
22 

develops the "phase plane method" to apply to 

circuits with non-linear elements such as non-linear capacitance 

and non-linear inductance. He examines the differential equation 

in the form of equation 1.12 from the topologic point of view, i. e. 

instead of solving directly by inserting new variables 

_ 
dx 

_ 
dV dV Y- dt '9 dt and V dx 

He derives 

g=f (t) 
- 28V - c1 X- c2X3 1.13 

So, for given initial conditions Xo, to, V0, the corresponding 

acceleration g is calculated from equation 1.13. Then choosing an 

increment AX ( AX = X1 - x) the new set of variables are found 

B 
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so that 
g 

AV = V1 - Vo = (v) eX or V1 = Vo + (vg) ex 
00 

AX AX At = t1 - to = AV or t1= to + eV 

and acceleration g, is obtained by substituting X1, V1, tj into 

equation 1.13. Thus, proceeding in this way, further points are 

obtained. Then plotting v and g against X and analysing the graphs, 

some qualitative information about ferroresonant conditions is 

obtained. 

Huey et x123, Swift24'25 and Kumar et al 
26 

view the 

ferroresonance problem as a control-system problem and apply the 

"Describing Function Technique". According to this technique the 

flux linkage is supposed to have the following form: 

T=A cos (wt + a) +B cos wt 1,14 

and the "Describing Function" is defined as 

K_ Fundamental of output phasor 
Input phasor 

The relation i= f(j ) is converted to a block which has a gain of K. 

Thus, the block diagram of series resonance circuit is 

VA(s) 
G- 

1+q 
Cs, 

Km G(s) =1+ 
RCs 

Qs- Gs2 

Fig. 1.8 

Go and G(s) in this block diagram are found from voltage equation 1.8 

neglecting leakage induction ce and applying Laplace transformation. 

By Nyguist criteria the stability of system is then studied. 

They also use a cubical form as in equation 1.11 for the 

relation i=f (T). 

Baycura27 offers a qualitative explanation of the 

unsymmetrical mode of ferroresonance and an approximate solution 
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using "The Reversion Method of Series". In order to apply this 

technique he puts the voltage-equation 1.1 in the form of 

a1 T+ a2 T3 =k f(t) a1 p 1.15 

where a1 and a2 are functions of operator p= dt and ka constant, 

f(t) a given function of time. 

Reversion method 
28 

assumes that the form of solution of 

the differential equation 1.15 is 

ýº(t - kAl +k2A2+k3A3+ _____ 1.16 

The unknown coefficients A,, A2, An are determined by substituting 

equation 1.16 into 1.15 and equating coefficients of equal powers of 

k. Consequently, the problem of solving the non-linear differential 

equations becomes a problem of solving a set of linear differential 

equations. 

To put the voltage equation 1.8 into the form as in 

equation 1.15 a cubical relation is taken for i= f(x). 

On subharmonic resonance, the first systematical experimental 

work belongs to Fallou29, Rouelle1° determined the effects of 

frequency variation on subharmonic resonance and gave a test circuit 

by which it was easy to initiate the subharmonic resonance. 

Travis30, Angellc31 (analytically) and Spitzer32 

(experimentally) determine the initial conditions. 

Hayashi19, Wright33 and Shenlffian34 give stability criteria 

by means of Hilles equations. 

Norimatsu et a135 introducea method of prevention of 

subharmonic resonance. 

1.3.3 - 

In all the calculation methods given by the authors 

Previous Numerical Work on Transient Current 

mentioned in the preceding section the analytical technique was 

employed and did not produce accurate results because the representation 
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of the B/H characteristics could not be given by a function which 

yields a differential equation capable of solution. But, since 1960, 

the developments in computers and computing technique allow the use 

of numerical method to solve differential equations. Thus, a wealth 

of methods of representing the magnetisation curve and B/H loop by 

complicated functions has arisen. For example, MacFadyen36 represents 

the magnetisation characteristic by an exponential series such as 

B1(H) =uoH+E c2i-1 (1 - exp (-c2i 
. H)) 1.17 

i=1 

and produces very accurate results. Without computer, it is impossible 

to solve the differential equation containing such a representation 

analytically. 

Since this expression fails to represent the region around � 

the origin MacFa&yen makes use of 

AB =c7, H. exp (-c8 
, 

H, c9 ) /ý 1.18 

for the difference. 

AB = B1 (H) -B experimental 

Thus, the whole expression is 

B (H) = Bý (H) - oB 1.19 

and differential permeability 

(H) d B1 (H) doB 

dH dH 

or v 
3 

(H) = uo + c2i-1 ' c2i ' exp (-c2i'H) 
2i-1 

- c7. cexp. (-c8. Hc9) . 
(1 - c8 cQ H c) 1.20 

. 11 

where c1, .... c9 axe coefficients to be determined and uo 

the final slope of experimental B/H characteristic. 

"T Teape37 presents another method representing the whole B/H 

loop in addition to magnetisation characteristic using the same idea, 
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i. e, the exponential series. In this method the basic idea is to 

shift the particular part of magnetisation curve to produce a loop. 

This method is also capable of expressing the minor loops. 

MacFadyen and Teape both study the transient current in 

single phase and three phase transformers at the loaded and unloaded 

conditions by their representation methods. 

Yamashita et a138 investigate the transient phenomenon by 

signal flow graphs, and represent the transformer in the experiments 

by a simulator, and B/H loop and magnetisation characteristic by 

straight line segments. 

1.3.4 Previous Numerical Work on Ferroresonance 

Teape37 studies the ferroresonance phenomena using his own 

B/H representation method and, in the three-phase case, a model which 

allows for inter-phase leakage flux thereby catering for unbalance 

during transient conditions. 

Reducing all the different combination of circuit to a single 

phase form, Germay et a139 analyse the ferroresonance phenomena on 

high-voltage power system applying Preisach Theory. 

1,3,5 Preisach Theory 

In the Preisach Theory40'41'42 the magnetic material is 

considered to be an assembly of dipoles, each of which exhibits a 

square-loop hysteresis characteristic determined by two independent 

parameters Hm and Hc. m represents the fields of neighbouring 

dipoles and He the coercivity. It is assumed that the dipoles are 

distributed statistically in the magnetic material. So, defining 

the distribution function 

Y (m9 Hý ý 

Preisach gives 
B- u0 H+ 2 Bs y 

(Hm, Hc). d He d Hm 1.21 
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for the calculation of the flux density. The essential principles 

and basic theory are detailed in Appendix A3. 

Felltkeller et a143 used the analytical expression 

(H, H)=exp(-((m2 + 
gc2 

Ymc a) 
(b) )) 

(a, b constants) 

for the distribution function. But they noticed that this 

expression has two maxima, for the soft material. However, 

Girke et a144 experimentally showed that some soft material also has 

one or two maxima. 

On the other hand, introducing new variables 

H1 =m He 

H2 =Hm+ He 

which are independent from each other. 

H1 +H2 
(Hj, H2) 

2 

A new distribution function 

H2 - H1 

2 

is derived. Biorci and Pescetti45 separate this new function into 

independent functions with one variable so that 

Y (Hýý H2) = Yl 
(H1) 7Y2 (H2) 

Germay et ai 
6 define Y1 and Y2 numerically from the 

1.22 

experimental B/H characteristic. An example is given in Appendix A3. 

Couison47 has given the following expression for y 

2Bs .. (H Hm -= .Eccc 
(c1i )n 

exp(-c H) . exp(-c2. IHmN 
mc i=1 li 2i 3i ni 1i c 

1.23 

where m: number of terms to be used 

cli, C2i, c3i and n coefficients. 

For a hard magnetic material, Coulson found that one term gives an 
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acceptable representation but soft magnetic materials require 

additional terms. 

1.4 Purpose of the Present Investigation 

In power system engineering it is well known that the 

energy transportation can be economized by increasing the impressed 

voltage of the transmission line, and the power factor of the 

distribution system can be improved by a group of condensers. But, 

increasing the voltage of the system consisting of generator, 

transmission line and transformer may cause the operating conditions 

to reach critical points at which abnormal phenomena, such as 

ferroresonance and subharmonic resonance, may occur. Similar 

phenomena are observed in distribution systems. 

In order to protect the system from these abnormal 

phenomena protection equipment, such as fuses, relays, are installed. 

But these equipments should permit the transient current due to 

switching of the supply. That means the designer should have some 

information about the amount of transient current and corresponding 

time. 

Thus, it is seen that there are mainly two problems. 

One the abnormal phenomena and conditions referred to above, and the 

other the normal transient current. 

As given in the sections on previous work, some authors 

investigate these phenomena purely experimentally - for example, 

references 1,9,10,29. Some of them take the problems from the 

purely mathematical points of view, as in references 15,17,21,22. 

However, in references such as 24,25,36,37 and 39 the theory is 

accompanied by experiments, and comparisons are made. 
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It is the purpose of the present investigation to explore 

alternative analytical solutions and stability criteria for these 

phenomena. The possibility of applying Preisach theory as the 

basis for allowing for magnetic non-linearities will be given 

particular attention. By using the normalised loop, the perform- 

ance equations will be generalised, thus more general solutions 

will be sought. Finally, comparisons will be made between 

computed and experimental results for single-phase systems. 
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CHAPTER 2 

2. GENERALIZATION OF THE PARAMETERS 

In order to study the response of the circuit to any 

change in the circuit parameters, the performance equations of the 

circuit need to be examined. If the circuit to be studied is 

composed of many parameters it is rather difficult to exhibit the 

effects of the change in each parameter" However, using 

mathematical rules it is not only possible to reduce the number of 

parameters and to generalize them, but also much computing time may 

be saved. 

Plotting the results thus obtained, and analysing the 

graphs, some general information about response of the circuit may 

be derived. Therefore, first the normalized loop will be considered. 

2.1 Normalized Loop 

If the H axis in Figure 2,1a is divided by He and B axis 

by Bs the Figure lb is obtained. From now on this loop is to be 

called the "Normalized Loop" and the coefficients to be used in the 

representation of it "Standard Coefficients". 

H 
oc 

BS 

a) 

4 

v/ 

h 

Normalized loop 

Fig. 2,1 
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If the normalized loop is expressed by 

b=f (hý 
2.1 

then the corresponding actual loop becomes 

B= Bs 
"f 

(h) 2.2 

where 

bB 
B 2.3 

s 

hH2.4 

H c 

The differential permeability can be derived from equation 2.2 so 

that 

_ 
dB 

_B 
df h dh 

dH s' dh dH 

or 

u Bs 
=g f' (h) 2.5 

C 
Thus, knowing only the saturation flux density Bs and coercive 

force Hc, and using the standard coefficients given by Coulson47, 

tabulated in Table 2.1, it is possible to transfer the actual loop 

to a normalized loop. Of course, the loop or magnetisation 

characteristic obtained by using the standard coefficients will not 

be as accurate as the one obtained using the actual coefficients 

estimated over the actual loop. But, as will be seen in sections 

of the later chapters where results are compared, the accuracy is 

not too bad. 

Since f(h), the function representing the non-linearity 

and hysteresis, is now independent from the material, the results 

of the performance equations only depend on parameters which include 

$s' H 
Co 
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Coefficients 

Terms First Second Third 
(cli) (c ) (c ) 

2i 3i 

First 
(n--12) 14 14 0.599 

Second 
(n=0) 0.34 1 0.415 

Third 
(n = 0) 1.1 0.26 0.478 

Fourth 
- 3 (n = 0) 10 5.9 10 0.254 

chi, c2i, c3i are the 

coefficients of the 

equation 1.23. 

Table 2.1 Standard Coefficients 

2.2 Generalized Parameter for the Transient Current 

For the numerical prediction of the transient current in 

the single phase transformer with secondary open circuited, the 

equations 1.6 are utilized. But for µ(H), the differential 

permeability, either the actual loop representation or normalized 

loop representation can be used. If the normalized loop is 

employed, the main voltage equation 

/2-, Vs in (wt + a) = Ri. +Q 
di 

+N dt d 

becomes 
k fl. Vsin(ut+a)= R'N"H"+ 

+ N. A. dt 

by substituting i= N 
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Using the relation 2,4 and 2.5 we get the following 

equation 

. L. HC sin(wt + a) = 
R. L. HC 

'h+C 
dh 

+ 
A. N"Bs (h) 1L 2.6 

/---- ý -- dt 
YL ý"N" V ý. N. 

dt 
J. V. 

Inserting the new parameters 

T= wt + (X 

dT = wdt 

F- 
R"L. Hc 

1 
V. N 

L. HC 
P2 

V. N. 

w. A. N. BS 
P3 = /2 V 

The new form of the voltage equation is 

sin r= Pý . h(ýr) + CP2 +p. dt f° (h) ] 2.7 3 
Thus we have reduced nine parameters such as the 

construction parameters N, A, L. the material parameters Bs, H, 

the circuit parameters R, i and supply parameters w, V to only 

three parameters P1, P2, P3 which are, from now on, to be called 

the "Generalized Parameters". 

It must be noticed that P1, P2 and P3 are independent from 

each other because each one has one independent actual parameter. 

Another point to be observed is that T is not in time 

dimension any longer; its dimension is degree. 

Since there is no analytical solution of equation 2.7 

due to representing f(h) by very complicated functions, it is only 

solved by numerical technique. 

Once the results are produced by changing the parameters 

P1' P2' P3 for one transformer, then the transient current for 
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another transformer can be easily found by just calculating the 

parameters P 1, P 2, P3 from the actual parameters of the new 

transformer. That means there is no need to run the programme 

for the new transformer. 

2.3 Generalized Parameters for Ferroresonance Circuit 

With the same idea explained in the foregoing section we 

can derive the generalized form of the performance equations of the 

ferroresonance circuit. 

From equation 1.8 

JVsin(wt+a)=Ri+ 
", 

d+N 
+g 

dQ 
=i2,8 dt 

into the above Substituting the relations 2.4,2.5 and i= LN H. 

equation we have the equation 

sin wt + a) 
R. L. Hc 

. 
h 

L. Hc dh 
+ 

A. N. Bs 
+ fI (h) dh 

+g 
V. N. 2VN. f. 2 fV. dt 0 

dQ 
_ 

L. Hc g 2.9 
dt -N 

By the transformations 

T= wt +a 

dT= wdt 

qLL. HC. 
Q 

P-R. 
L. Hc 

1 V2- V. 

WA Z"$c 
P"2 = 

w. A. N. Bs 
3 V. V. 

P 
L. HC 

= 
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The equations 2.8 become 

sin r= P1 h(T )+ EP 
2+ P3 fl(h) 

dT=h CT 
dT 

a-t 
T-+Pq CT ) 

4 

2.10 

Thus ten parameters consisting of R, p , C, N, A, L, Hc, Bs, w and 

V are reduced to four parameters P1, P2, P3 and P4. Again we call 

these the "Generalized Parameters" for ferroresonance circuit. 

It must be remembered that we cannot neglect any 

generalized parameter because of it being smaller than any of the 

actual parameters whereas external resistance or leakage inductance 

may be neglected for the steady-state operating case because they 

are small in such a circuit. The main reason for this is that the 

generalized parameters are composed of more than one actual 

parameter. For instance, even if R is small Pý cannot be neglected, 

because for small V, P1 will have a high value. 

Within a restricted region it is observed that the current, 

or flux, inferroresonance circuits has two values corresponding to 

one value of voltage. This is also true if o or C are considered as 

the variables in place of voltage. Therefore, although we have 

reduced the number of parameters, this characteristic feature of the 

current is still valid in the equation 2.10 with the generalized 

parameters. 

It is obvious that the effects of new parameters on 

performance are totally different from that of the actual 

parameters' effects. 
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cxaPrI. a 

3. TRANSIENT CURRENT 

3.1 Numerical Solution 

In the application of the mathematical model of the 

system the equations 1.6 and 1.7 require the differential 

permeability - p(H). 

In the numerical calculations there are mainly two 

possible ways to get the differential permeability. These are: 

A) storing a number of (B, H) points experimentally 

obtained and making use of the mathematical fact 

that 

dB B Bn+1 Bn 

dE AHH n+l n 

where n is the number of points and AH must be very small. 

B) representation of the B/H characteristic by 

continuous curves using the stored experimental 

points and one of the curve fitting methods. 

In the first way which leads to the linear interpolation, 

each point on the B/H characteristic will have two different 

differential permeabilities, that is, if u were plotted against H 

there would be some discontinuities just due to the method. 

On the other hand, as is well known, the solution of any 

differential equation by a numerical technique'is strictly dependent 

on the initial value of the variable to be solved. In other words, 

the initial value must be unique and correct. Otherwise, any 

incorrect initial value will affect the next step in the calculation 

and consequently the results will be wrong. v1 

Now, in the light of this fact it is quite possible to 
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have some unstable solutions during the process if the fi, 
-Ist way 

is followed. Therefore, the continuous expressions for the 

representation of B/H characteristic will be chosen to get the 

differential permeability. 

3.1.1 Selection of the Method Representing the 
B/H Characteristic 

Although there are many methods of representing the B/H 

characteristic by continuous functions, a number of them have been 

compared36 with each other and it has been proved that these methods 

are not able to represent this characteristic accurately. 

In fact, the comparison should be carried out depending 

on the purpose of using these representations. If it is preferable 

to use the analytical techniques, the present mathematics may not be 

sufficient to solve either the transient current or the ferro- 

resonance problem using the expressions given by Macfadyen36, 

Teape37, Coulson47, even the polynomial form of higher order such 

as 

B= a0 + a1 H+.. +an Hn 

or 

H= b0 + bI B+.,. + bn Bn , 3.1 

or 

Frohlich formula 

B 
Bs. H 

H 3.2 
c1 + c2 H0 -+ 

But, if a numerical technique will be employed, in this case, the 

computing time for the comparison should be considered as well as 

the accuracy of the methods. 

In the present investigation, for the numerical 

calculations, the Frohlich formula, which requires less computing 

time compared to other methods, and Macfadyen's exponential 
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expression, which is the best in accuracy, will be used for the 

representation of the magnetisation characteristic. 

In order to observe the effects of hysteresis on the 

calculation, the Preisach Theory will be applied. 

Since Frohlich formula requires only two coefficients 

(see Equation 3.2) it is relatively simple in form and these 

coefficients c1, c2 can even be evaluated by hand just taking two 

experimental points (B1, H1), (B2, H2), But, for a set of data 

points c1 and c2 can be defined by the least square method. By 

this method the error between the fitted curve and experimental 

curve is minimized 

As will be seen from expressions 1.19 and 1.20 there are 

nine coefficients to be determined in Macfadyen's exponential 

series, These coefficients may also be evaluated by least-square 

method, But Macfadyen used the iteration method given in 

Appendix A2, illustrated in Figures 3,1,3.2 and 3.3, which is 

relatively simple and saves more computing time. 

The method of calculating B and u developed by Coulson47 

from Preisach Theory, the estimation of the coefficients in Appendix 

A3, and related illustrative diagrams in Figures 3.4,3.5,3.6,3.7, 

3.8 and 3,9 are given in detail. 

3.1.2 Reason for and Method of Obtaining the 

Experimental B/H Characteristic 

As it is understood from the above discussions, in any 

case, any representation method requires an experimental B/H curve 

and B/H loop to get the data points for the evaluations 
-of 

the 

coefficients. 

Thome B/H characteristic was obtained in two stages using 
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two systems as in Figures 3.10 and 3.11. The region up to the 

saturation point (Be, Hs) was obtained by the former system and the 

remainder, which is a straight line, by. the later system. 

Before the experiment is carried out two requirements 

need to be fulfilled. These are calibration and demagnetisation. 

A. Calibration of Equipment 

Since 
'=N. A. B. 

y=k. Y' = k. N. A. B. 

k= Gain of Integrator 

and N, A are known, for a given value of B the input voltage to the 

Y- terminal is calculated. By the same manner, from equations 

i= (L. H) IN 

v-R 
Rsh. L 

x shei =N0H 

Rsh = Shunt Resistance 

x, the input voltage to x terminal, can be calculated for a given 

value of H and known values of Rsh, L, N. Thus, by means of the 

above relations, the plotter and oscilloscope are calibrated. 

B. Demagnetisation of the Transformer 

Any residual flux density in the transformer core will 

cause an unsymmetrical form of B/H characteristic and, consequently, 

affect the accuracy of the coefficients. Therefore, the core is 

demagnetised before obtaining the whole B/H characteristic, either 

by applying an A. C or D. C voltage. In the former case, the 

applied voltage is gradually reduced from saturation level to zero 

flux density. In the latter case, the D. C voltage is also 

gradually reduced from saturation level to zero but by constructing 

loops within loops. The latter method is more reliable but it is 
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a lengthy and laborious process. 

It is important to notice that at the moment the 

transformer is energised to obtain B/H characteristic, the capacitor 

of the integrator should have no initial charge, otherwise the 

characteristic will not be perfectly symmetrical. 

After calibration and demagnetisation, the set is ready 

for obtaining the B/H characteristic. So, applying D. C voltages, 

the magnetisation characteristic (Fig. 3.12), the loops (Fig. 3.13 

and 3.14) axe obtained, and applying A. C voltages the straight 

line section of the B/H characteristic (Fig. 3.15) is obtained. 

It should be observed that for the estimation of the 

coefficients only the outermost loop is required. 

3.1.3 Comparison of the Methods Chosen 

Since the Frohlich formula fits the upper region of 

magnetisation characteristic satisfactorily but fails for the lower 

region, it is suitable for transient current calculation but not for 

the steady-state solution. On the other hand, the exponential series 

fits perfectly at each point. That is to say, it gives good results 

for the steady-state current as well as transient current. 

The Preisach Theory does not fit as well as the 

exponential series, especially in the region about the origin. As 

will be seen from Figures 3.4 and 3.5, this method gives a 

characteristic abruptly rising about the origin. This is a very 

important feature of this method because it will force us to use 

smaller time steplength for this region. 

One of the vital features of the various representation 

methods for the numerical calculation is that they give different 

values of differential permeability at the origin (H = 0). 
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Therefore, let us consider the expressions of the slope functions 

at this point. 

From Equation 3.2 for Frohlich formula 

u (0) = 
Bs 

+ uo cl>> Bs 3.3 
c1 

From Appendix A3 for Preisach model 

11 (0) = ui (o) = ua 3.4 

From Equation 1.20 for exponential series 

V(0) =uo+ c1 02+ c3 c4 + c5 c6 - c7 3.5 

Since the exponential series represents the characteristic very 

well its slope should be correct. So, comparing Equations 3.3 and 

3.4 with Equation 3.5, it is seen that the Preisach Theory gives a 

low value. In fact, the analytical expression of the distribution 

function given by Coulson is not satisfactory at the origin. 

Now, if we write the derivative of the current with 

respect to time from Equation 1.7 

di 
_ 

VA RA' iA 

dt =Q+M iA 

or 
di 
dt 

V sin (Wt + a) - RA, iA 

Q+ N2, A. u(H) 
L 

Since i=0, H=0 at t=0 the above relation becomes 

V sin a di 
_m3.6 dt 

9, + N2, A, u (0) 
L 

From this relation it is clear that for a small value of u 
(0) the 

derivative of the current will be large. Consequently, this 

incorrect initial value results in incorrect solution because the 

first step of the method of numerical solution (Runge-Kutta) is 
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directly equal to this derivative and other steps are functions of 

the first step. 

It is not the purpose of this investigation to deal with 

the B/H representation. Therefore, instead of improving the B/H 

model, we will overcome the above difficulty by supposing that there 

is very small current flowing in the circuit at the instant t=0. 

Thus, the slope will become bigger than uo. For example, for the 

initial condition t=0, i=0, a=4, Br = 0, V= 250 V, the first 

peak of current is Ip, ) 130 A which is very far removed from the 

experimental one. But, if the initial current i=0.03 A is taken 

at the same condition, the first peak becomes Ipl - 79 A which 
/ 

is closer to the experimental value. 

Now, if an error statement is described as below 

k BE. - BC. 

Error = i=1 BE1 100'% 
k 

i=1 

where BE : experimental flux density 

BC : computed flux density 

i: number of points used 

3.7 

Using the least-square technique for the estimation of 

the coefficients and the 6000 - Honeywell Computer, the following 

table of comparison is obtained. But, for this, the coefficients 

of the Preisach model have been estimated using only magnetisation 

curve and rema t flux density (see Appendix A3 for detail). 

All the coefficients computed for the sample transformer 

are given in Appendix Al. 
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Computing Time Error for the 
for coefficients same number of (in second) points (%) 

Frohlich 
Formula 0.0366 27.57 

Exponential 
Series 2,71 2.32 

Preisach 
Theory 1.5 9.07 

TABLE 3.1 

3.1.4 The Selection of the Time Steplength 

For the numerical solution of the differential equation 

the four-step Runge-Kutta method will be used. 

Since there is no iteration process in this method the 

approach to the solution depends on the nature of the function to be 

solved, and to the time steplength to be selected. 

The other method of solution, predictor-corrector method 

includes a process of iteration. Therefore, by the iteration more 

accurate results may be produced but, unfortunately, this method 

requires two initial values for each of dependent and independent 

variables while Runge-Kutta needs only one. Furthermore, predictor- 

corrector consumes more computing time compared to the former method. 

For the time steplength there is no explicit method given 

for the right size but it can be chosen by trial and error. However, 

we can write the factors affecting steplength in our calculation. 

A) The variation of the current by time. If the 

current is varying very quickly by time the steplength should be 

small. If not, it can be enlarged. 

-28- 



B) The B/i representation. If this characteristic is 

rising abruptly from one step to another as in Coulson2s model 

(around the origin) the steplength must be small, otherwise 

corresponding slope will be very different from one point. to another 

which will result in larger values. For that reason, in the 

numerical calculations we choose dt = 0.05 ms for lower region and 

dt = 0.2 ms for upper region of B/H characteristic. If dt = 0.02 ms 

is taken for the lower region as well, the result will be larger. 

For the purpose of comparison, we can give the following 

tabls; 3.2 and 3.3 obtained using the 6000 - Honeywell computer. 

First table is for Preisach model, second for exponential series 

method. 
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Computed Steplength (ms) 
Experimental 

Current 
(A) 

0.1 0.05, * 

0.1 
0.2 0.051 

0.2 

Current 
(A) 

First peak 109.13 103.74 134,0 103.71 102 

Second peak 33,44 32.36 36,75 32,18 33 

ird peak 16.8 16,62 17,09 16,36 17 

teak---state 7,8 7,8 7,8 7,8 8 

ob Time 
(in sec. ) 

31.31 45.12 15.64 36.55 - 

Table 2 

First peak 03,04 103,04 103,00 103,01 102 

Second peak 31,98 31,90 30.94 31.94 33 

Third peak 17.04 16,80 21,66 16.77 17 

Steady-state 8.2 8,2 8,2 8,2 8 

Job Time 
(in sec, 

21.57 28.32 10,72 20,38 - 

i Table 3.3 

The first steplength for the region < 0.17 
The second one for the region < 0.17 

Job time is measured over the time period t=0.2 sec. 

V= 250V, a=0, Br = 0, R=1.649 Q=0.00265, f= 50 Hz 
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As it is seen from these tables, the change in steplength does not 

considerably affect the results if the exponential series 

representation is used. But, if Coulson's representation is 

employed, attention should be paid to choosing the time steplength 

as, in this case, the first peak of the current strictly depends 

on it. 

Comments on the programme for the computer, 

establishment of initial flux density by Preisach Theory and other 

related matters are given in Appendix A.. 

3.2 Analytical Solution 

In the analytical calculations it is necessary to 

represent the B/H characteristic by continuous functions, then 

differentiating this with respect to H, the required differential 

permeability (slope function) - u(H) is found. But, as is mentioned 

before, it is impossible to make an analytical calculation using the 

expressions given by Macfadyen, Teape and Coulson, even the higher 

order polynomial forms as in Equations 3.1. Therefore, the 

function representing the B/H characteristic should be simple in 

form and should be able to put the performance equations in readily , 

solvable form. 

Before becoming involved in analytical expressions, let 

us analyse the effect of the circuit resistance on transient current 

by numerical programme. 

3.2.1 Effect of Resistance on Transient Current 

In the open circuited condition, the voltage drop due to 

the primary resistance is usually small compared to the voltage across 

the transformer's terminals. Therefore this voltage drop, RA 1A' 

can be neglected until the current flowing in primary circuit reaches 
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a certain limit. 

On the other hand, froE our accurate numerical 

calculation we know that the current and corresponding time for 

any point (Bl, Hi) on the B/H plane, near the point (Bs, H, ) are 

T, = 5.55 ms 11= 22.74A 

and the first peak of current 

Tp = 8.35 ms 

with R=1.64, 

If R=0istaken 

Tý = 5.55 ms 

TP = 9.95 ins 

Ip = 102-54A 

V= 250V, a=o, Br = 0. 

I1 = 25.01A 

'p = 197.95A 

Now, if we take R=0 for the region 0, H< Hl, then R=1.64 for the 

region H1 H, we find 

T, = 5.55 ms 11= 25.26A 

Tp = 8.35 Ip = 104.98A 

So, it is seen that the resistance has a large effect on peak 

current and corresponding time, but has not a perceptible effect 

within limits which will now be indicated. The whole B/H 

characteristic can be split into two parts as shown in Fig. 3.16. 

The voltage drop due to resistance can be neglected until the 

saturation point (Bs, Hs) and included in calculations after this 

point. 

3,2.2 Representation of the Rising Curves 

In the following analytical expression to be derived the 

B/H characteristic will be represented by Frohlich formula given by 

Equation 3.2. But, in order to take into account the initial flux 

density we add an extra term to the Frohlich formula. 
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Fig. 3.16 

Thus, the new form of Frohlich formula becomes 

Bs. H 
B=c8 

+c 2N 
+ uoH+Bo 3.8 

and slope function 

dB c1 Bs 
3.9 u= äg =2+10 (c1 +c2H) 

where 

for the rising curve (1) (magnetisation curve) Bo =0 

for the rising curve (2) (positive residual condition) Bo= +Br 

for the rising curve (3) (negative residual condition) Bo= -Br 

uo : the final slope of the B/H characteristic c1, c2 

the coefficients to be determined. 

It is noticed that for all these three curves the same expression is 

given for the slope function (Equation 3,9), but, of course, the 

coefficients will have different values in each case. 
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T'he coefficients can be defined by hand selecting two 

points from each experimental curve. 

So for g1 _ 14000, B1 = 2.09, 

H2 = 500 ' B2 = 1.41 

The coefficients of curve (1 

c1 = 223.6 

ý2 = 1.03 

for 
H1 = 14004, B1 = 2.09, 

H2 = 500, B2 = 1.459 

The coefficients of curve (2) 

c1 1131.29 

c2 = 1.928 

for 
Hý 14000, 

B2 = 500, 

B, = 2.099 

B2 = 1.37, 

B6=2.08 

B=0 
0 

BS = 2.08 

Bo = +0.95 

BS = 2.09 

Bo = -0.95 
The coefficients of the curve (3) 

c1 = 98.16 

c2 = 0.7 

However, it is not necessary to have three experimental curves if the 

second point is selected nearer to the first point, which must be 

around the saturation point (Bs, Hs). The same flux density can be 

used for three curves. That means if the magnetisation curve and the 

residual condition of core are known, the coefficients can be 

calculated choosing two points from this magnetisation curve. 

Above the saturation point Equation 3.8 becomes 

B= Bs +uoH+Bo 3.10 

because for high value of H the limit of the first term of Equation 

3.8 is equal to Bso 

-34- 



The corresponding slope function is 

p= 11 0 

3.2.3 

region 

Derivation of the Analytical Expressions 

3.11 

Since we neglect the voltage drop on resistance in the 

0<11< H 
--s 

from the performance Equation 1.1 we have 

Vm sin (wt + a) 
N2-Y, 

dt +LuH dt 

Sib stituting the Equation 3.9 and the relation Ni = LH into the above 

equation and denoting 

N2A k1 -Lý1 Bs 

k2=c1 

we get 

02. N k3 = r- 

k N2AuQ- 
4Z 

k 

m sin (wt + a) dt =[ 
12+ 

k4I di 
(k2 + k3 i 

Integrating both sides within the integration limits 

0t<t 

0 ý< 
ii 

we find the relation 
V 

-m [cos wt + a) -cos a]k+ki+ 
k1 

1 3.12 
Wk3 k2+k 3 

i) 4k3 k2 

When the current reaches a value of 
L. H 

IS= Ns 
3.13 

which corresponds to the saturation point, the corresponding time as 

obtained from Equations 3.12 and 3.13 will be 
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W 
k1 k1 

arc cos C- 
V 

Ek_ (k +k I +kI +--1 
m23s4s k2k3 J +cos(a)J -a 

Ts = 
W 3.14 

From the trigonometry we know that the argument of the 

inverse function "arc cos" in the expression of Ts must be 

-1 ARGUMENT 4+1. 

So, if the argument is equated to " -1" we find 
kk 

+k Is+k1 J cos a= +Y k kA, 17 4 
m32s 2k3 

and 
wT+a=n s 3.15 

Hence the switching angle corresponding to this argument is 
kk 

a= arc cos -1 +Vk k1 s +k 17 +k41s+ k1 3.16 
M. 323s 2k3 

In order to discover the physical meaning of this angle we should 

return to the first derivative of the current. So, the early 

expression of this derivative, for a peak current equal to 

saturation current Is, must be equal to zero, i. e. 

di 
dtli=l 

P1 
t=T 

p 
or 

Vm sin (wTs + a) 
=0 

k 
[2+ k4ý 
(k2+k3I ) 

Hence, since 

k1, k2, k3, k491s jL 0 

the angle of sin function above must be equal to it, i. e. 

wT +a= lt 
s 

Thus we see that this equation is exactly the same as the equation 
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3,15 so the interpretation of the expression 3.16 is that as is the 

switching angle at which the first peak of the transient current 

being equal to Ip1 _IS occurs. The corresponding instant 

ý-a 
T=S3.17 SW 

A comparison will be made when we plot the peak current against 

switching angle a at the different residual conditions by numerical 

solution of performance equation. 

By this analysis we have established an accurate relation 

between the saturation current Is and switching angle a at the 

various residual conditions. Thus, one can determine within which 

limits of switching angle the largest positive peak currents appear. 

As soon as the current exceeds Is the performance equation becomes 

N2 A 
in 

sin(w t+ a) _z dt +L ý' gdt 
+Ri 

Again, substituting the relation Ni = LH and Equation 3.11 into this 

equation we obtain the differential equation 

m sin Lw (t + T5) +aI= Qt. 
ät 

+Ri 

where N2 Au 
0 +Q 91 

t 

The solution of this differential equation with the initial values 

t=0, i (0) = Is 

is v 
i(t) = kß. exp(- 

R 

It 
t) +Z sin(wt + 

where 

z= 
42 

+ (w Q t)2 
wQ t 8= aretan (-7 ) 

w. Ts+a-8 

V 
ký = Is - Zm sin (ß) 

3.18 
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Any peak value of current, and the corresponding time, can be found 

by taking the first derivative of the current function i(t) with 

respect to time and equating to zero, i. e, from Equation 3,18 

di RR 
dt ký exp (- -, 

9, t it 

denoting 
W. 9,. v 

m 
_ ýg - T. R. kol 

(V 
tý + cos (wt +ßJ=O 

and remembering that kc is always negative we get 

exp (- 
ýR t) --K, cos (wt +ß ) 3,19 
t 

To solve the time t from this equation we plot both sides in the same 

plane against time as illustrated in Figure 3.17. 

t 

Fig. 3.17 

Thus, the solution point t= tm is easily obtained graphically. 

Then the peak value of current, from the expression 3.15 is 

Ip =i (tm) 3,20 

and the total time from the instant at which the circuit is switched 
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on to the instant of the peak point is 

T=T +t psm 
For 

3.21 

N= 2A, 0.0 ,L=0.4059 ,A=0.0024774 , 
V= 250 'W= 314 x=1.64 ,. =0.00265 
cc =0 BS = 2.08 , Hs = 14000 , Br 0 

c1 = 224 , c2 = 1.037 

The performance equation 1.7 is solved both by numerical method and 

analytical method, as described above. The results are shown in 

the following table 

Ts Is Tp IP Experimental 

(ms) (A) (ms) (A) Ip 
(A) 

Numerical 
Solution 5.6 23,67 8.35 102.54 

102,0 

Analytical 
Solution 5,51 23.67 8.37 105.5 

=09 BT- =0, V= 250V 

Table 3.4 

3.3 Comparisons and Analysis of The Results 

In order to compare the results of different computational 

techniques, it is necessary to produce experimental results for 

various conditions. Therefore, we will now give brief information 

about what technique was used to get the transient current, and how 

the parameters were measured. 

3,31 Experimental Requirements 

A. - Transformer Parameters 

First d, c. values of winding resistance, using a 
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Kelvin-double bridge, then leakage inductance by means of a 

conventional short circuit test, were obtained. The results are 

given in Appendix Al. 

Bý - External Impedance 

The first peak of transient current is considerably 

affected by the impedance of the circuit and so, in addition to the 

internal impedance of the transformer, the external impedance of the 

circuit used has to be taken into account. 

Figure 3.18 shows the circuit to record the transient 

current. Referring to Thevenin's theorem the external circuit shown 

in this figure can be reduced to an equivalent circuit which consists 

of an open-circuit voltage Ee and equivalent impedance Ze provided 

that the supply transformer and its source and supply are assumed to 

be lineax elements. So the function VL = f(IZ) shown on the same 

figure is plotted by measuring the voltage across the load and the 

load current. 

For two different resistive loads and fixed voltage Ee 

Re 
Ee2 (1 - (I2/I 2) 

+ V1 2 (I2/I1)2 - V2 2 

=1 
1,2V2I2-2V1 11 (12/11)2 

and 
\Ee2 

- (v1 + I1 Re)2 

For further detail regarding the derivation of these 

relations refer to reference 37. 

Since the switching angle selector cannot work at the 

high current for very long, its impedance was found separately and 

plotted in Figure 3.19. 

Teape37 expresses this characteristic by 
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a 
V= (b + Ti -I) 

Hence the impedance of switching angle selector is 

R=b+ IaI i 

External resistance and reactance values, and the coefficients a 

and b, are given in Appendix Al. 

C. - Recording of the Transient Current 

In the experiments a Tektronix 5013 storage oscilloscope 

was used to take transient patterns and recorded by means of a 

polaroid camera. Before recording the patterns, first the 

transformer is put into the required residual condition by demag- 

netisation using the d. c, circuit shown in Figure 3.10. Then the 

switching angle selector is adjusted to the required angle, and for 

various voltages applied the transient patterns were produced. 

In Figure 3.20 the experimental and computed transient 

patterns are given and in Figure 3.21 the corresponding experimental 

and computed B/H patterns are shown. 

3.3.2 Analysis of the Results 

In order to observe the hysteresis effect on transient 

current two programmes have been made. In one the magnetisation 

curve is taken for the whole B/H characteristic, and in the other one 

the B/H loop is represented by Preisach model. The results are 

tabulated in Table 3.5. It is observed that there is no perceptible 

effect of hysteresis on the first three positive peaks. This is as 

expected because the corresponding field strengths all fall on the 

straight line section of the B/H characteristic. On the other hand, 

the residual flux, as will be seen from Figure 3.20, has a significant 

effect on the first peak of current. In the table 3.5 the effects 
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of tý_e various residual conditions on first three positive peaks 

are Liven. 

In fact, the effects of residual flux depend on the 

switching angle. For instance, if the circuit is switched on when 

the flux produced by the applied voltage is in the same direction 

as the residual flux in the core, so that they will add, the 

combination of these fluxes will give the maximum transient current. 

In Figure 3.22 the computed and experimental first peaks 

of the transient current are plotted against switching angle a at the 

different residual flux densities. Up to a= 900 the largest peak 

is positive and occurs at the positive residual flux density. But, 

for the bigger angles, the largest peak is negative and occurs when 

is negative. 

In order to define the switching angle as from this 

figure and to compare with the analytic one, a horizontal line is 

drawn so that the peak current will be equal to the saturation 

current Is = 23.67A. Thus, we can tabulate as9s obtained from the 

numerical results and these obtained by analytical solution as shown 

in table 3.6. 
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Br = -0.95 Br =0 Br = 0.95 

From Figure 
3.22 48.7 79.5 111 ° 

From Expression 
3.16 48ý 80.8 110 

Table 3.6 as at the various 
residual conditions V= 250 V 

Numerical Analytical Experimental 

a= 0 a='A4 a=0 a='A4 a=0 a="/4 

= 0.95 Br 137 120 139.2 120.8 137 122 

=0 r 103.7 79.7 105.5 80,7 102 82,5 

Br = -0.95 57 28.9 60.3 27.2 55 33 

Table 3.7 

Effect of switching angle on peak 

transient current at the different 

residual conditions. V= 250 V. 
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In Table 3.7 the experimental, computed and analytical 

results are introduced to see the accuracy of the analytical method. 

On the other hand, the analytical method proposed produces 

accurate results only under the condition 

i>I 
-s, 

0 Sac <a 
s 

If the switching angle is bigger than as, then the current will be 

less than Is and must be calculated directly from the Equation 3.12. 

As indicated in Table 3.5 the results of the generalized 

parametric method explained in Chapter 2 are generally in good 

agreement with the experimental results. But this method gives 

about 37% error for steady-state current whereas the exponential 

series method gives 2.5%, Preisach model 5/. 

Figures 3.23,3.249 3.25,3.26,3.279 3.289 3.29 and 3.30 

show the variation of the first peak and steady-state value of the 

generalized-dependent variable h (see Equation 2.4) with the 

generalized parameters. 

Analysing these figures the following conclusions can be 

drawn: 

A) In the region 
o< P3 < 0,5 

there is no significant variation in hp1's (first peak of h) 

obtained from the various residual conditions. It seems this is a 

general rule because for the different values of P1 and P2 this 

property of h is not affected. 

B) In the region 

0.5 <_ P3 <_ 2.5 

there is considerable variation in hp1's. For instance, at 
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p3 = 2.5 for Br = 0, Br = -1 hp1 is almost zero but hp, for 

Br = +1 has still large value. 

C) Generally, for all values of P2 and P3, hp, tends to zero 

for Br =0 at P1 = 3.0, and for Br = -1 at P1 = 2. 

D) In the region 

0< P3 <1 

the steady-state peak value of h, i. e. hsP is very dependent on 

P2 and P3, 

It is interesting to point out that in this region there 

is not mulch difference between the steady-state value and the transient 

value. That means the oscillations are very stable. 

E) In the region 

i P3 

the steady-state peak value hsp is not significantly affected by 

parameters P1, P2 and P3 

Fý In the region 

05, _< P3 <1 

the variation of hsp from one step to another is very large. 

3.3.3 Comparisons 

For the calculation of the first peak Blume et al2'3 

method gives about 30% error between calculated and test results, 

Specht4 method 27% and Holcomb 9'%. 

On the other hand, the accuracy of the method presented 

by Malyshev7 for the first peak is variable. Because the expression 

1.9 (given in Chapter 1) representing B/H curve agrees with the 

experimental curve within region 

0.13 <B<1.9 

so this method gives accurate results within this region but not 
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over the region B>1.9. Tn the transient current ca:, e, as is 

well known, B is much bigger than 1.9. Therefore, this method fails 

for high value of B. 

The common point of Specht's and Holcomb2s methods is 

that there is no current flowing until the saturation point (Bs, Hs) 

beyond which the permeability of the core is : 'assumed to be constant. 

That means they are taking the B/H characteristic as in Figure 1.5 

Assumption of no current flowing until saturation 

cannot be valid, especially for the medium and small size transformer, 

because, as mentioned before, the current and the time corresponding 

to the saturation point (Bs, Hs) are 

Ts = 5.6 ms Is = 23.6 A 

and the first peak current and corresponding time 

Tp = 8.35 ms I= 102 A 
P 

By the comparison of Ts to Tp, Is to Ip it is realised that Is is 

not a negligible amount. 

The analytical method developed in this investigation 

enables us to get an accuracy of 3% error without neglecting the 

current IS. 

The most important contribution of this method is that 

knowing only magnetisation characteristic and residual conditions 

of core, the initial flux density can be taken into account by the 

presentation of the function B=f (H). It must be noticed that by 

the representation H=f (B) it is easy to take into account the 

initial flux in solving the differential equations 1,1 but not by 

B= f (H). 

This method can be extended to establish the other peak 

values as well. 
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From the analysis of the results it is seen i. Iiat the 

Preisach model provides high accuracy (see Table 3.5) and enables 

us to take into account the hysteresis effects, but it requires 

laborious work to estimate the coefficients and to set up the B/H 

model in the computer programme. 

This model also explains the crossing-over phenomena 

as given in detail in Appendix A3, and produces results closer to 

experimental ones as shown in Figure 3.2.1. 

The generalized parametric method is not as accurate as 

the normal method but it enables us to have a compact solution to 

the transient phenomena. However, at high voltages this method is 

quite accurate but only the first peaks (see Table 3.5 for comparison). 
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C1LA]rE 

FUNDAMMAL FERRORESONANCE. 

4 
.1 

Definitions 

In order to avoid any ambiguity and misunderstanding in 

notations which will be used in this chapter it is necessary to give 

definitions. 

Resonance: It is associated with a linear circuit 

condition whereby the inductive and capacitive impedance components 

of a circuit are balanced. Since, at this condition, the voltage 

drop due to the inductive impedance is compensated by the voltage 

drop due to the capacitive impedance, the total impedance to the 

supply is only the resistance of the circuit which is very small in 

many cases in practice. Therefore the current continually rises 

and reaches a large value. 

At the resonance condition the stored energy makes an 

oscillation between the magnetic and electric field of c and C 

respectively. That is, during the half period energy is stored in 

the field of the capacitor and during the next half period energy is 

stored in the field of the inductor. 

Ferroresonance: This is a resonance condition occurring 

in a circuit containing an iron core, i. e. a nonlinear inductive 

element and has several different modes, as explained below. 

Fundamental Ferroresonance: This is a kind of ferro- 

resonance phenomenon where the quantities such as flux in the core, 

current flowing in the circuit, consist essentially of a component 

at supply frequency. That is, the predominant components of these 

quantities are at the supply frequency. 
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Subharm ri c Reson., nce: This is also a kind of ferro- 

resonance phenomenon but, in this case, the quantities mentioned 

above contain a large component (i. e. predominant component) whose 

frequency is lower than the supply frequency. 

Unsymmetrical Mode of Ferroresonance: This is, in fact, 

a case of fundamental ferroresonance occurring with higher voltages 

applied but the current and flux have an unsymmetrical waveform. 

That is, the waveforms of these quantities in a half period are not 

similar and equal to the one appearing in the next half period. 

In this case, the current and flux contain a number of 

harmonics but still the predominant component is at the supply 

frequency. 

Jump Phenomenon: In a ferroresonant circuit at some 

certain conditions, which are called "the critical conditions", an 

infinitesimal change in the driving signal amplitude, or frequency, 

or in one of the circuit parameters, causes the current and flux to 

take new values. In other words, a transition from the previous 

value to the new one takes place with a jump. 

In the case of fundamental ferroresonance there are three 

kinds of jump phenomena480 These are: 

A) the t'ansition from the inductive to capacitive state. 

It can be illustrated by the following figure 4.1a. 
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I 
P 

I. 
ju 

V. 
ou 

a 

v 

jd 

I 
P 

jd 

b 

Subscript ju indicates the jump-up 

Subscript jd indicates the jump-down 

Figure 4.1 

I.. 
jc 

I. 
JL 

V 

B) the transition occuring with the high values of applied 

voltage in the capacitive state. 

C) the transition from the capacitive to inductive state as 

illustrated by Figure 4.1b. 

Thus, it is seen that the entire I/V characteristic 

consists of two parts as shown in Figure 4.1c. The upper part 

V 

corresponds to the capacitive state, the lower one to the inductive 

state. 

In this present irrý, estigation we will especially be 

dealing with the f irst and third kinds of jump phenomena and related 

critical conditions since they axe more important than the second 

kind in practice. 

It is observed that the transition does not always take 

place with a jump. As will be examined in detail later, this 

characteristic feature of transition depends on the circuit resistance. 

T 
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For instance, for hieber values of the r-esistame the transition 

has a continuous nature. 

In the case of subharmonic resonance, the jump-up 

phenomenon takes place as soon as the circuit is switched, That 

is, the existence of subharmonic resonance depends on the initial 

conditions such as the switching angle, applied voltage, the capaci- 

tance of circuit, initial flux (residual flux) in the core. But 

the jump-down phenomenon is only the function of the condition of 

the circuit at the present time. 

4.2 Differences between Resonance and Fe=oresonance 

In order -to compare these two similar phenomena, let us 

consider the series resonance circuit consisting of supply, resistor, 

capacitor and inductor. In both cases the resistance and capacitance 

of the circuit axe linear but the inductance in the resonance circuit 

is a linear element; in the f erroresonance circuit it is a nonlinear 

element due to being a function of the current. 

In a resonance circuit at the resonance condition the 

current theoretically goes to infinity and the resonance occurs only 

when the supply frequency w is equal to the natural frequency of the 

circuit defined by wn =1Q. C 

On the other hand, the current never takes an infinite 

value in a ferroresonance circuit and within a certain region, as 

seen from the Figure 4.1c, it has two distinct values for a given 

voltage applied. 

Fe=oresonance phenomena is not only dependent on the 

supply frequency but also dependent on the applied voltage while 

ordinaxy resonance is only a function of the supply frequency. 
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Another salient difference between these two phenomena 

is the jump phenomenon which occurs only in the ferroresonance circuit. 

4.3 Laboratory Model 

Besides the single phase ferroresonance circuits there 

axe a number of three phase ferroresonance circuits which can be 

reduced to a single phase form, or can be resolved into three single- 

phase points. Two examples of such circuits are shown in Figures 

4.2 and 4-3. Germay et a, 
39 

classifies all these three-phase 

circuits and reduces them to a single phase configuration. 

On the other hand, Swift 24 
suggests that the series 

circuit is ideal for the investigation of the f erroresonance phenomena 

rather than the parallel circuit. Therefore, we will use a single 

phase series circuit as shown in Figure 1 .4 for laboratory experiments 

to study ferroresonance phenomena. 

The technique used to measure all the parameters and 

chaxacteristics which axe required for the solution of the performance 

equations 1.8 and to record the experimental results is exactly the 

same as for the transient current. 

4.4 Numerical Solution for Fundamental Ferroresonance 

Unfortunately, there is no analytical method to analyse 

the transient state during the transition, the hysteresis eff ect and 
20 . accurate prediction of the jump conditions. Only Hayashi gives 

a method of representing the B/H loop in the analytical calculation. 

But this method'may be valid for only steady-state cases because he 

uses a symmetrical ellipse (see Fig. 1-7). 

We will employ the exponential series method and the 

Preisach model to represent the magnetisation curve and B/H loop 
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respectively in equation 1.8. Thi)s, using two representati-ons, we 

can observe the hysteresis ef f ect and the transition at- all : 3tates, 

at all conditions. But in this case, as we have explained in 

Chapter 3, we can solve these equations only by a numerical method, 

not an analytical method. 

We will iise the Runge-Kutta method (f our steps) as a 

numerical method, and choose dt = 0.05 msec for the lower region, 

dt = 0.2 msec for the upper region of the B/H characteristic as 

time step lengths. 

The details of the progranme for the numerical solution 

by the computer axe given in Appendix A4. 

The results produced by this numerical solution will be 

analysed and compared with the experimental results at the end of 

this chapter. 

To observe the effect of hysteresis losses and resistance 

on fundamental ferroresonance and subharmonic resonance phenomena, 

especially at jump-down points, the following steps must be carried 

out in the numerical programme. 

a) FiTst, programme must follow the inductive state characteristic 

shown in FigLLre 4.1 by increasing the voltage from zero to the 

junp-up point as in the experiment. 

Second, af ter jump-up phenomenon has taken place the voltage 

nrast be decreased to the value required. 

If this process is applied to both programmes involving magnetisation 

curve and loop representation it is seen that for zero external 

resistance in the programme involving magnetisation curve represent- 

ation the jump down never happens, but in the other one it does. 

Thus, the effect of hysteresis losses on jump-down point is confirmed. 
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4.5 Analytical Solution 

In a ferroresonance circuit, if the transition takes place 

with a jump the waveform of the flux linkage T in the inductive state 

is totally different to the one in the capacitive state. The 

following figLLres a and b display the waveform Of T in inductive and 

capacitive states respectively. 

t 

w(t) 
'v(t)- (t)+r (t) i3 Ai 1(t) 

ý3(t) 
zn 

t 

C 

Figure 4.4 

Both the figLires 4.4a, and 4.4b can be expressed by means of Fourier 

series, but it is f ound that the first two odd terms of this series 

are sufficient to reconstruct the experimental waveform Of T as 

illustrated in Figure 4.4c. These two terms 

'yj (t) = 
/2- 

1 sin (wt + Q, )00 4.1 

T3 M = V/72 3 sin Owt +9 3) Is 0 4.2 

provide a basis for analytical expressions which will be developed. 

4.5.1 The Derivation of the Analytical Expressions 

From the above relation, as specified in Figure 4.4c, the 

resultant flu x li", ý, age is 

Y(t) =T3M004.3 
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On the other hand, the ma8netisation curve expcril-, iontally obtained 

will be represented by a cubical polynomial 

H=a1B+a3 B3 
00 4.4 

where a1 and a3 designate the coefficients to be determined. 

, we will modify this polynomial to get the current-flux linkage 

relationship. So, substituting the relations 

H (N. iL 

BX/A 

and T N. X 

into the above polynomial we obtain the relation 

cT+cT3 3 
where 2 

cl= (a,. L) (N 
. A) 

C3= (a 
3* L) (N4. A3) 

Here, 

4.5 

Thus, we have the following equations for the series ferroresonance 

circuit shown in Figure 1.8. 

ý/27 V. sin(wt) = Ri(t) + 9, pi(t) +1 i(t)dt +pT (t) 
C 

i(t) = C, T (t) +c3T 
3(t) 

T (t) =T1 (t) +T 3(t) 

From these equations, using the harmonic balance rule we derive the 

following system of equations with complex coefficients (see 

Appendix A5 for detail) for fundamental f erroresonance. 

z1+ Ti 4.6 

z 3* 13+ i3w T34.7 

where 11 and 13 axe function of Ti and T 3* For their expressions 

in terms of T and T refer to the appendix A5. 
13 

If the equations 4.6 and 4.7 are examined closely it will 

be seen that by this method we can take into account all the circuit 

parameters. 
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We have made only two approximations, one for the 

representation of B/H characteristic by a clabical polynomial which 

is not suitable for higher values of H and B, and one for the 

reconstraction of the waveform, of flux linkage, but the former is 

more influential on results to be produced. Therefore, if there 

axe large differences between -the experimental and calculated -results 

it must be due to the representation of B/H characteristic. 

4.5.2 A Method for the Solution of the System of 

Equations with Complex Coefficients 

Equations 4.6 and 4.7 might be solved by Newton- 

Raphson49 9 50 
method dividimg these into the real and imaginary parts. 

But, in this case, we would have four equations with four unknowns 

such as Tlt T 3' 919 Q3" Of course it would not only be a 

complicated problem but also it would take a lot of computing time. 

Using the complex form leads to only two unknowns such as T1 and T 3* 

But the solution of T1 and T 3 from these equations still requires the 

derivatives 

DF 3F 3G 3G 

-99-I ýT 1a3ýT1 DF 

where 

jw Ti - 0a 4.8 

G=Z3*13+ j3w T3 00 
4.9 

Replacing the derivatives by finite differences Brown5l produces a 

method based on Taylorls theorem. This method is very useful when 

the computer is employed for the calculations since it saves time, but 

the accuracy is not as good as that of the ordinaxy method. 

According to this method 
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TF ("l + AT, AT, 

9T1 2 AT1 

3F TF ý3 + 'Y3 
2 3T3 AT3 

3G + AT AT, T 

3T1 2A T 

ýG ? 'T ( -IF 
19 1 -.? I: T (T 

19 IF AT ý3 ý3 

--I-3 3T3 2 AT 3 

Thus knowing the initial values of 'Ti and T3' and choosing 

appropriate AT, and AT 3 we can calculate all derivatives required, 

and F and G. Hence by the Newton rule 

-TF 
3T1 aT3 

3?,: ý Z2ý DIP 3 --G 
DT1 8T 3 

DT1 and DT 3 can be evaluated so'the new values of T1 and T3 are 

T1=T 10 + DT 1 

30+3 

Where T 10 and T 30 axe the initial values of T1 and T3 respectively. 

For the next step of calculations these new values will be taken as 

initial values for and T 3* By an iteration process the 

calculations are repeated till DT 1 and DT 3 become reasonably small. 

Now, at this stage, the problem is to find out a set of 

initia, l values. For the fundamental resonance we have to give two 

different initial values to each variable. For instance, it has been 

observed that in the capacitive state initial values 
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yv99=+ 
n/2 10 w 10 

Y 30 = 0.1 .T028 30 =+ n/2 

and inductive state 

T= 10. V 
9 910 =- n/2 10 w 

ly 30 = 0" %9 g30 -n/2 

yield stable and accurate results. 

4.5.3 The Stability of the Fundamental Fe=oreso--qance 

The solution of the equations 4.6 and 4.7 by the method 

proposed above reveals that the third harmonic T3 does not have a 

considerable contribution to the resultant flux linkage T around the 

region specif ied by the jump-up and jump-down points in Figu-re 4-1c- 

For instance, for 

C= 20 PF Y, = 2.65 mH R=1.64Q V= 100 volt 

before jump up T30.005 
- 

T1 

after jump up T3o. o6 . T, 

Therefore, neglecting the third harmonic we have only one equation 

with complex coefficients which is 

V= 21 0 ii + jWT 1 
splitting this into real and imaginaxy paxts then taking the square 

of both sides we arrive at the equation 

AT 16+BT14+CT12+D=04.10 

where 

sin ý, 

Cos ý1 

c3 - 
Z1 

2 
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F12 

2F ill D 

D12+E12 

-V 

From equation 4- 10, if V=f (Pl) is sketched, the following Figure 4.5 

is obtained 

Jd 

Sss 

S2 
ju 

si 
si 

Fic=-e 4 
.51jd2 

ju V 

Now let us analyse the values OfTj co=esponding to given 

values of V. 

A) For V= V1, i. e. on the vertical line (1) 

Q1 <0 (inductive case), T1 has only one real root 

B) For V= V 3' i. e. on the vertical line (3) 

9 >0 (capacitive case)q T, has only one real root 

C) For V= V2' i. e. on the vertical line (2) 

at s, Gi <0 (inductive case) 

s 91 >0 (capacitive case) 3 
s Q1 <0 (unstable case) 2 

This last case corresponds to the transitional state which is an 

unstable state. 
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For V -= V2T1 has Pirce real roots. 

Since at s2 the slope 
dV 

is negative this unstable point cý-: -n easily dT, 

be distinguished from the other points s1 and s3 which are on t, -Le 

same vertical line. Thus the slope 
dV be used as a stability dT 

criterion. That is: 

a) 
dV 

0 corresponds to the stable state dT 

b) dV 0 corresponds to the unstable state dT 

C) 
dV 

0 corresponds to the criti,, al state dT - 

On the other hand, using the transformation 

Y=T12 

the above polynomial can be reduced to 

Ay 3+ BY 2+ CY +D04.11 
dV 

and the stability criterion 0 now becomes 

dD >0 
dY `ý 

For the purpose of using the standard graphs we will introduce 

52 the following transformations 

Xy+B 3A 

3AC -B2 P 9Aý' 

2B3 BC D 

54A 6A 2A. 

Thus the equation 4.11 is brought into the standard cubic form 

X3 + 3PX + 2Q =0 

or X3 = -3PX - 2Q, 004.12 

This last equation implies that the solution points sought axe the 

intersections of the standard cubic graph z1= X3 by the straight 

line z2 = -3PX -2Q as illustrated in Figure 4.6a. In fact, by 
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successive tra:! --, sfc)--, -: 7. i2tions we have converted the Fipure 4.5 to the 

Figure 4.6a which does require only the slope of the straight line, 

i. e. -3P to define the solution points. 

Z 

Figu-re 4.6 b 

Sol if P is known then drawing a straight line with a slope of -3P and 

shifting it on the standard cubic graph we can find different solution 

points such as s 1' s2' s 3' 
d1) 

The expression of the stability criterl%-, F. L. L ly >< 0 in terms of new 

variable X and new parameters P and Q is 

x2+P0 
i. e. 

dz 1 dz 2 
dX dX 

So if at the solution point 

dz 1 
dz 2 

a) > this point corresponds to a stable state. 

dz 1 dz 
b) -<-9 this point corresponds to an unstable state. dX dX 

dz 1 
dz 2 this point corresponds to the critical state. C) -ý -) F ": -- dX 

7'2--ýý-3px -2Q 

-PQ. 
x- ju 

ju 

"O; --ýT, 

72 

4x 
--l;: 

-? Q jd 

1 
jd 

00ý 

Inductive Yrýt-'hle Capacitive 
region region region 
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By these criteria it is scon that the poi-nts s, ,s on the Figure '-'. 'a 
3 

give a-stable solution, but s2 corresponds to the transitional sta-'. e, 

i. e. unstable state. 

The points satisfying the criterion 
dz 1 dz 2 

can easily be dX dX 

established just by drawing a straight line with a slope of -3P such 

that this straight line will be a tangent to the standard cubic 
3 function zx Thus the points T, X ju ýx jd' Q, 

ju Jd axe 

obtained as shown in Figure 4.6b (where ju and jd designate the 

ju. mp-up and jump-down respectively). 

These values can also be defined analytically so that 

from dz dz 2 
dX dX 

x2= 

Since P is assumed to be known 

x 
jd + 

and 

ju -/-P 

Since T is a real value X jd and X 
ou must be real. 

P must always be negative. 

Thus (X3 + 3P X 
ju - -- 

ju 
"ju 2 

4.13 

4.14 

In other words, 

4.15 

(X3 d- LId+ 3P XJ d) j "j 2 
4016 

By an inverse transformation the critical value of flux linkages 

corresponding to jumping points can be calculated 

from yx-B4.17 jd jd 3A 

and 
Y. X. -B4.18 ju ju 3A 
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Hence the co3_ýresponding flux linkages 

Tju Vyju 4.19 

T jd Vryjd 66 
4.20 

The critical RMS values of the applied voltage corresponding jump-up 

and jump-down points can either be calculated from the expressions of 

Qju and Q jd or from 

V 
ou -A. y3 -B. Y2 -C Y. 4.21 v 

ju ju ju 

and 2 v jd A* y3 d -B. Yd -C Yj d 4.22 ii 

In order to calculate the phase angle of the flux linkages 

corresponding to the critical points we will substitute 

T 
out 

TJ d' Vju. and V 
Jd 

into the real part of equation 4.6 Hence 

-DT. 
+FT3 

+ arc cos 
le ju V ju 

ju v 
ju 

and 
Dj. T+FT3 jd 10 'jd 9 jd + arc cos v 

Jd 

Thus at the jump-up point 

T(t) = Vr2- T ju sin (wt +9 ju) 

T 
M. = ý/27 T 

Ju 

and at the jump-down point 

(t) = V42_ T jd* sin (A +Q jd) 

TM= VT Y jd 

4.23 

4.24 

4.25 

4.26 

where TM designates the magnitude of the resultant flux linkages. 

If the third haxmonic is not neglected then 

T (t) = V/2- ET 
1 sin (-A + Qj) +T 3' sin Owt +93 
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From inspecti-on of Fio. x. re 4.4c 

Tm -z 
/2- (T 

1+T34.27 

Since the current and flux linkages achieve their ma. imum values in 

the same time the peak value of c= ent becomes equal to 

IcT+c T3 p1M3m 

or substituting the expression of ym above 

Ip= V-27 [cl (y, +y3)+2. c 3* +T 3 
)33 4.28 

For single harmonic T :: - 0) 
3, 

I=/+2. cT34.29 p 
(cl T131 

Hence the peak values of current corresponding to jump-up and 

jump-down points can be obtained by the expressions for T. and T. 
Ou Jd* 
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4.6 Ursyiornotrical Mode of Ferroresonance 

After transition from inductive state to capa. citive state 

further increases in the applied voltage constitute a strong, stable 

second harmonic in the current and flux waveform in addition to the 

first and third harmonic. 

As mentioned before, the transition from the stable 

symmetrical capacitive state to this stable unsymmetrical capacitive 

state again occurs by a small jump-up phenomenon, and therefore a 

transient state is observed. We will discuss these in the analysis 

section of this chapter. 

In this mode of fundamental fe=oresonance the B/H loop 

includes an unusual portion of loop which is called 'Minor Loop'. 

The minor loop is attributed to the history of the 

magnetisation of the core material during a cycle of its behaviour 

in that circuit 
27. Thia, loop sometimes appears in the second 

quad-rant, as shown in the following Figure 4.7a, and sometimes in the 

fourth quadrant as in the Figure 4.7b. The reason for this must be 

sought in the phase difference of the second harmonic because this 

haxmonic creates this mode of ferroresonance. 

H 

a 

Figure 4.7 

b 
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The ,, i-z, e of the m-inor loop depends on the vollage applied Pnd the 

capacitance of the circuit. 

Since this mode presents a significant second harmonic 

the analytical method developed in the foregoing section taking into 

account only the fundamental and third harmonic requires to be modified. 

But we will study this phenomenon by a numerical solution using both 

the Preisach representation and the generalized parametric method. 

4.7 Analysis of the Results 

Since the ammeters are able to give exact readings only at 

the rated frequency, they cannot be used to read rms values of the 

c-urrent which contains many harmonics. Therefore, in the experiments 

the peak values of the current are recorded at the various rms values 

of the applied voltage, various values of resistance and capacitance 

-using an oscilloscope, and plotted against rms val-ues of the voltage 

in Figures 4.8,4.99 4.10 and 4.11. From inspection of these 

Figures the following experimental conclusions can be drawn: 

1) Any change in capacitance has a considerable effect 

on jump-up conditions but very slight effect on jump-down conditions 

at the small value of resistance. If the resistance of circuit is 

increased, this change becomes effective at jump-down conditions as 

well. 

2) On the contrary, the jump-down conditions are 

affected by resistance very much while the jump-up conditions axe 

only affected slightly. 

The locus of jump-down and jump-up points is roughly 

an ellipse. This ellipse is inclined to the right hand side and 

becomes smaller in size with increases in the value of resistance. 
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The left hand side of this ellipse actually consists of two parts. 

The lower part has negative slope and the iýpper part has positive 

slope. So, during -the jump-down from this "upper side to inductive 

state sometimes subhaxmonic oscillations of orders 
111 
71 39 ý have 

been observed. But, unfortunately, the same condition was not found 

to be possible in the numerical programme although attempts were made 

to include this. 

There is such a value of resistance at which the 

transition from inductive state to capacitive state does not take 

place with a jump any longer, i. e. there is no d-iscontinuity in the 

chaxacteristic as in Figure 4.11. (for C= 40, pF). 

For given circuit parameters R, f, C, supply parameters 

w, V, and magnetisation characteristic, the corresponding flux 

linkages can be calculated such that first P, Q in the equation 4.12 

are calculated then this equation is solved for X. By the inverse 

transformation T1 and E) 1 axe defined. The critical values of T 

and Ey the rms values of the applied voltage V corresponding to 

these critical values (i. e. T 
JU 9T Jd9 

0 
JU9 

0 
Jd 9 VJu' VJd ) are 

calculated through the equations 4.19,4.209 4.219 4.229 4.23 and 4.24. 

'The Figare 4.12 and 4.13 show the function T1= f(V) and 01= f(V) 

where T1 and V are the rms values of T1 (t) and v(t) respectively. 

All these quantities can also be calculated thrO-agh the standard 

Uaph, as shown in Figuxe 4.14. 

From inspection of the FigLLre 4.12 it is noticed that for 

the small value of the resistance the jump-down occurs at a very smal 1 

value of the applied voltage. Increases in the value of resistance 

do not have an eff ect on the jump-up points practically but they 

considerably affect the jump-down points. Thus, this characteristic 
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feature confinas the experimental results Civen in Figures 4.7,4.89 

4.9,4.10 and 4.11. 

As specified in the Figure 4.12 and mentioned before, 

there is such a value for resistance for which the characteristic 

f(V) has no discontinuity. This value of resistance can be 

defined through the Figure 4.14. 

consider the following Figure 4.15. 

Before defining it, let us 

(D 
"RD 

-1 1 
l(D---3-x 
10 

Capacitive State 
Either Capacitive or Inductive State 

Inductive State 

re /1 .1 

So, from consideration of these figares it is clear that only when 

p< 09 z1= X3 and z2= -3PX -2Q have the same tangent at two 

d-isti. nct points, one of which corresponds to the jump-up and the 

other one to the jump-down condition. When P=0, z, and z2 have 
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only one tangent point which is the ori&i-n (X 
7-- 0). This is the 

boundaxy condition because if P is now made positive then, as will 

be seen from the third f igure above, there will not be any tangent 

point of z1 and z 2* Therefore2 from the second figure 

dz dz 2 
-@F -iT :z 

or 

hence pB2_ 3AC 0 
9A 2 

or B2 3AC 

Substituting the expressions of A, B, C given in the section 4.5.3 

of this chapter we obtain 

1) 12_ 3E1 2= 

Taking the factor D1+ VI"31 E1=0 of the above equation and using the 

expression of D and E1 we arrive at 

cz+w. sin El +V3 (w-cos 0 

Since sin 1z 

Cos 

wc 
22 z1=S+ X12 

The above equation becomes 

c1R2+ V/3- wR+c1x12+wX0 

Hence the value of resistance - corr2sponding to P=0 is 

4cl (cl X12 +w Xj) -v/3 -w+ 
Aw 

- 4c 
cr 2c1 

- 70 - 



Tl, usq if the i-esistance of the circuit under consideration is 

A) R<R 
cr 

P<0 the jump phenomena exist but 

depend on the value of the voltage 

applied. 

B) R=R 
cr -ý- P=0 the boundary condition, i. e. the 

continuous transition starts. 

C) R>R 
cr -* P>0 there are no jump phenomena at all 

value of the applied voltage. 

For w= 314, c, = 0.0248, C31.212, t=2.65 
mH, and 

C= 30 PF9 Rcr is found to be 60Q 
, i. e. in this case for R> 60ýi 

there is no jump. To compare tqis with the experimental result refer 

to Figure 4.11. For R>R 
cr 

if the applied voltage is increased 

the phase angle shifts from third quadrant to second quadrant, i. e. 

in a clockwise direction as illustrated in the following Figare 4.16. 

7 
v= vi 

Tj 

R=R, > Rcr 

a 

Figure 4.16 

Tj 

2V V2 

R=R1> Rcr 

But V2 >> V 

b 

When the voltage is further increased, a value is reached for which 

0 the phase angle will be greater than -180 . 
That means, for higher 

values of voltage, the operation state moves from inductive state to 

capacitive state continually. The same results are observed from 
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Figure 4.12 as expected. 

In order to observe the effect of third harmonic of 

flux linkages on the total flux linkages and on the peak value of 

the current the Table 4.1 and Table 4.2 below are introduced for 

c10.0248 

c 1.212 3 

R 1.64Q 
t 

2.65 mH 

C 20 PF 

For single harmonic: 

TM= /72 T1 

I= /2 (c, T, + 2c 3T1 
3) 

For two harmonics: 

T 
M, = vF2 

T, +T3 

Ip= /2- Ec, T1+T3+2c3T1+T3 )3 

In capacitive state. 

Calculation Experimental 

V(V) T, (Wb Tm (Wb Ip (A) Ik (A) 

120 1.19 1.68 5.81 8.35 

100 1.17 1.65 5.53 7.55 

50 1.11 1.57 4.27 5.65 

10 1.105 1.48 4. 
_ 

0.06 

Table 
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Calculation---- 
--TEEx-perimental 

V(V) T, (Wbý T3 (Wb ) Tm (Wb I (A) I (A) 
IpIp 

120 1.17 o. o688 1.76 6.65 8.35 
100 1.16 0.0667 1.735 6.38 7.55 
50 1.08 0.0538 1.61 5.11 5.65 
10 1.04 0.0454 1.54 4.46 0.06 

While jump-down takes place in experiment it does not 
exist in the analytical solution at this value of resistance. 

Table 4.2 

By the comparison of these two tables it is seen that the contribution 

of the third harmonic to the current is more than to the total flux 

linkages. 

Figure 4.17a shows the transient current pattern in 

fundamental ferroresonance. This transient corresponds to the 

transition from inductive state to capacitive state. The phase and 

value of the ma imum peak in this transient does change with the phase 

angle between current and voltage. For instance, the maximum peak is 

negative at zero degree while it occurs on the positive side at 180 

deg-cees. Of course, the phase angle has no effect on the peak. 

value of the curre4t in ferroresonance circuit. 

The other salient f eature of this transient characteristic 

is the occurence of a small loop (minor loop) after a cycle is 

completed. In the numerical calculation this small loop causes the 

incorrect results, if we do not select appropriate step-length. For 

example, with a large step-length we may not use the appropriate B and 

p functions. For instance, the use of v4 (Hq HP) after 112 (Hq HP) 

without using p3 (HyHP) maY Produce incorrect results. 
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Although there is only one small loop in the Figiire 4.17a 

its existence depends on the applied voltage. With higher voltages 

it always occurs. 

Rnploying the Pýreisach Theory to represent the B/H loop in mc --J, -- 
the numerical calculation the B/H loopf i (t) and the voltage across 

the transformer terminals are plotted in Figure 4.18 with the 

corresponding experimental qllantities. 

We have also used the magnetisation curve representation 

to observe the hysteresis effect on the fundamental ferroresonance. 

For this purpose the procedure given before in this chapter must be 

followed to get the capacitive state. Thus we have four different 

solution methods (two numerical and two analytical) for the same 

problem. The results produced by these methods are shown in 

Figure 4.19. From inspection of this figure the following is observed. 

1) The analytical methods give greater error for the higher 

values of the applied voltage. The only reason for this is the 

representation of the magnetisation curve because of the fact that the 

cubical polinomial used is not sufficient to represent the upper 

region of this characteristic accurately. Jump-down occurs only 

when the applied voltage is zero at the small value of resistance in 

the analytical solutions. 

2) Although the numerical calculation involving the 

representation of the magnetisation curve yields more accurate 

results still the jump-down takes place only when the applied voltage 

is zero, as in the previous case, while the jump-down occurs before 

the applied voltage reaches zero value if the hysteresis effect is 

taken into account using the B/H loop representation in the 

numerical calculation. Thus it is proved that the hysteresis 
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losses only slightly affect the jwr,. P--up condition but have a 

significant effect on jump-down condition. 

Since increase in the supply voltage causes the circuit 

to have ferroresonance conditions, in practice this voltage and 

jump-up condition axe more important than the jump-down conditions. 

On the other hand, both of the analytical methods proposed are 

sufficient to predict the jump-up condition. 

In Figure 4.8 the peak values of the current computed are 

plotted against the rms value of the supply voltage with the 

experimental results. Generallyq the error between computed and 

experimental results is about 10% but the error between computed 

and experimental voltage at the jump-up points is less than 4%. 

Since about twenty minutes axe required to compute one IP/V 

loop with the 1904S ICL Computer, the computed results corresponding 

to the experimental results given in Figures 4.9,4.10 and 4.11 were 

not produced. 

Since the Preisach model is also capable of producing the 

minor loops it can be applied to study the unsymmetrical mode of 

ferroresonance as well. In fact, if the supply voltage is increased 

in the computer programme after obtaining the symmetrical mode we 

get into the unsymmetrical mode of ferroresonance as in the 

experiments. The computed and experimental results produced axe 

shown in Figure 4.20. The computed B/H loop is narrower than the 

experimental one. It may be due to the effect of eddy currents, 

because they are not included in the computation. At high voltage 

and small capacitance the size of the minor loop is large but at high 

voltage and high capacitance the size is getting smaller. 

It is important to notice that at the high voltage the 
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resistance and leakage inductance of the circuit increase. 

Therefore, the values of these quantities used in the calculation 

of the symmetrical ferroresonance cannot be usedg i. e. these must 

be remeasured. 

To see the accuracy of the generalized parametric method 

proposed to study the ferroresonance phenomena we will change the 

ap lied voltage at the f ixed values of capacitance, resistance and Ip 

leaka, ge inductance, then calculate the corresponding generalized 

parameters. Thns, the value of each parameter also changes in 

keeping with the voltage. 

Hence for 

. 
649 9 P. = 2.65 mll .C= 20 PF 

junp-up takes place at 

110 vI Pi 
=8- 57 E -04 

P24.35 E -04 

P32.56 

P4 0.166 

and the corresponding peak value of the current is 

Ip=7.87 A 

Now, for the same condition jump-down takes place at 

V= 21.5 V9 Pi = 4.1 E -03 

p2=2.08 E -03 

p3:: ": 12.3 

P4 = 0.797 

and the peak value of current is 

1.1 A 
p 

The compaxison of these results with those given in Figure 4.19 

reveals that the accuracy of this method is not as good as the 
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accu-racy of the normal numerical methods. In spite of this dis- 

advantagelusing this method we can draw some general conclusions and 

we can have a compact solution. Therefore, in the FigLLres 4.21, 

4.229 4.239 4.249 4.25 and 4.26 the absolute values of the peak of hP 
(see Chapter 2) axe plotted against P3 retaining the other parameters 
p 

1' P2' P4 constant. 

Two modes of the fundamental ferroresonance can clearly be 

seen from these figares. For example, in Figure 4.21 for 

3.25 <. P3<5 

the operation state is inductive. At P3 : '-- 3.1 the jump-up takes 

place. For 

P3 :ý 
the operation state is capacitive. Within this region the fundamental 

ferroresonance current, or h has a symmetrical waveform. but at 

0.9 3 '-- 
by a small jump the wisymmetrical mode starts. 

Increasing the generalized parameter P3 from zero the third 

jump, i. e. jump-down from capacitive state to inductive state, can 

also be observed but due to the problem of computing time, instead, 

different plots similar to Figure 4.21 have been obtained to observe 

the jump-up condition at the various values of the parameters. So, 

from the analysis of these figures, we conclude the following. 

A) An increase of 100% in P4 results in a decrease of 

54% in the average value of IhPI and causes the jump-up point 

to shift towards the higher values of P 3* For the small value of 

p4 11 hI has a more stable nature. 

B) An increase of 1000/6 in P1 results in a decrease of 

11.3% in the average value of IhpI and causes the jump-up point to 
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shift backwards to the lower values of P 3* 
C) In general, for the distinct values of P 1' P2' P4 the 

jump-up takes place in the region 

0.3 <P3<, 0.35 

4.8 Com-paxisons 

Odessey et a112 suggests a method semi-graphical, semi- 

analytical to define the critical conditions (jump conditions). 

Sol a solution follows from two independent relationships for the 

voltage VT across the transformer terminals on the primary side, 

when the secondaxy size is on open circuit. These are the volt- 

ampere characteristic of the transformer 

vT= 

and the circuit equation 

VTV 
ý2) 21 V (IR 

T WC 

Where 
V rms value of the applied voltage 

I: rms value of the cu=ent 

In these two relations they assume that V and I are sinusoidal T 

quantities; in other words, they take only the fundamental harmonic 

(which has the same frequency as the supply) of the current into 

consideration and neglect the other harmonics. 

Since they do not use the B/H characteristic of the core the 

analytical expressions given do not contain the leakage inductance 

and the construction parameters, such as cross-sectional area and 

avera, ge length of the core and number of turns. Therefore, the 

effects of these quantities on critical conditions cannot be studied 

by this method. They deal with only the jump-up condition, not 

jump-down condition. 
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'Fi-. omsc, nl3 also treats the problem vectorially and expresses 

the reactance and apparent resistance in terms of effective current. 

Thus, he does not use any graphs. But he still assumes the current 

to be sinusoidal and therefore the leakage inductance and the 

construction parameters do not appear in the . expressions. 

Rudenberg14 also describes the jump-up condition by a purely 

graphical solution using the two distinct expressions of V given T 
above. From the practical, point of view this is a relatively 

simple and accurate method. 

Hayashi17,18,19y20 investigates the same problem purely 

mathematically. In reference 20 he uses an ellipse to represent 

the B/H loop, but it is only applicable to the symmetrical modes. 

In reference 23,24,25 the flux linkages T is assumed to 

be in the form 

T=A cos (wt + a) +B cos wt 

In other words, T has not any harmonic except the fundanental 

harmonic. This assumption may be valid for the lower region of the 

capacitive state, but at the higher values of voltage T has a third 

haxmonic as well as the first (fundamental) harmonic. In the 

unsymmetrical mode of fe=oresonance the second haxmonic also becomes 

effective. 

In this present investigation two different expressions axe 

proposed to use for T. These axe 

sin (wt + 91) 

sin (wt + Qj) T sin Owt + Q3) 

Applying -the former one enables us to use a standard graph by which 

both the jump-up and jump-down conditions can be visualized and 

determined easily. Using the latter one, we can produce more 
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accurate results compared to the former case. In both cases the 

leakage inductance and the construction parameters are included in 

the calculation. 

Generally, the methods in which the B/H characteristic is 

used instead of volt-ampere characteristic allow us to take more 

paxameters associated with the system into consideration, and 

therefore they are more flexible but require more mathematics, while 

graphical and semigraphical methods are more practical. 

There is no doubt that by the numerical solution more 

accurate results are produced because less assumptions are made, and 

more accurate representations of the B/H characteristic are used. 

Therefore, numerical sol-ations are also carried out. In order to 

exhibit the accuracy of the numerical method as compaxed to analytical 

method, Figure 4.19 has been constructed. 

Teape37 studied -the ferroresonance phenomena numerically 

but not in detail. On the other hand, Germay et a139 also analyses 

these phenomena numerically using the Preisach model, but they use 

numerical values f or the distribution function I rather than an 

analytical expression. Since the new paxameters H1 and H2 are 

establishedq the calculation of these brings additional difficulties 

ana requires more computing time. 

The generalized parametric method is not so accurate butq as 

mentioned before, it provides a general knowledge about jump-up 

conditions and modes of fe=oresonance. 
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CHATTER 

, 
SUBHARMONIC FERRORESONANCE_ 

In a circuit as in Figure 1 
.4 the current could have two 

sustained values for the same value of the applied voltage and the 

same circuit parameters if certain initial conditions were fulfilled. 

The higher value of the current thus obtained has a 

frequency which is a submultiple of the supply frequency. Such a 

phenomena is called "Subharmonic Ferroresonance". The current 

achieves its higher value by a jump-up but this jump-up takes place 

only when the circuit is switched on under certain conditions; in 

other words the initiation of the subhaxmonic resonance depends on 

the switching conditions, which are: 

1. The initial flux linkages of the transformer 

2. The initial capacitor charge 

The switching angle (i. e. the applied voltage at 

the instant of energizing the circuit) 

Once the sustained subharmonic resonance is initiated then the 

continuation of this phenomenon depends on the value of the circuit 

paxameters. As illustrated in the following Figare 5.1 there axe two 

limiting conditions at which the SUIDharmonic resonance disappears, and 

the current returns to its normal value by jumping down. 
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T 

j d., -ý 

jdl 

Fig. 5.1 

Although subharmonic resonance is an experimentally 

known phenomenon since early years 
10929 

the recently increasing 

use of series capacitors to overcome the inductive voltage drop and 

to improve the power factor in distribution systems has revived 

interest in the phenomenon. Therefore, a number of investigations 

which have been reviewed in Chapter 1 have been carried out. 

In this chapter we will deal mainly with the -1 order of 3 

subhaxmonic resonance presenting three different methods. These are: 

19 The analytical method which allows study of sustained 

subharmonic resonance. This enables us to take into 

account all the parameters of the circuit except hysteresis 

and eddy cu=ent effects because the magnetisation curve 

is considered in the calculation. 

2. The numerical method in which the exponential series is 

employed for the representation of the magnetisation curve. 

I 
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3-, o The namerical method involving the Preisach model to 

represent the B/H loop. 

In the case of the second and third methods we can 

observe the effect of hysteresis losses on subharmonic resonance. 

In the third method, apart from eddy current losses, 

all the other parameters related with the system under the 

consideration axe included, i. e. there is no simplifying assumption. 

The procednre to be followed for the numerical solution 

and experiments is the same as for fundamental ferroresonance. 

Therefore, by an alteration in the initial conditions, the computer 

programme designed for the numerical calculation of the fundamental 

ferroresonance can be utilized for the subharmonic case. The result 

produced by these two numerical methods will be analysed at the end 

of this chapter. 

For the relevant computer progra-mme refer to the 

A -M jppendix A4. 

5.1 AnalytiCal Solution for Sustained S-abhaxmonic 

Ferroresonance 

The waveform of the flux linkages in the sustained 

subharmonic case is as in the following Figure 5.2a. 
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(t)=T 
17 i(t)+qj 

M 

applied voltage 

Fig. 5.2 

b 

This waveform. can be composed of two distinct forms, as shown in 

Figure 5.2b. One of them-has the same frequency as the supply 

voltage and the other one only one third fraction of the first. Thus 

the equations 4.1 Y 4.29 4.3 and 4.5 given in Chapter 4 can be employed 

in this case as well; b-at this time the voltage wavef orm v(t) must 

be expressed by 

v(t) = v12- .V sin Owt) 

So, as detailed in Appendix A59 we arrive at the following system of 

equations with complex coefficients for sustained subharmonic 

resonance. 
5.1 

V=23i3+i 3co -, y 3 
5.2 

These two nonlinear equations will be solved by the method proposed 

in Chapter 4 but F and G axe, in this case, 

TF= Ell, +JwTl 

z313+ i3w T3- 
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5.1.1 Establishment Qf the Initial Conditions 

From examination of Figure 5.2a, there are two maxima and 

one minimum of V in each side of the time axis. These are strictly 

functions of the phase angles 91 and Q 3' For instance, if 01=9 

these two maxima become equal to each other. On the other hand, 

Q1 and 03 axe functions of the applied voltage as are T, ana T 3* 

So, for the convergent solution of T1, T 3' 91 and Q3 from equations 

5.1 and 5.2 we must establish some approximate values for these 

unknown variables. For that we will refer to the equations 5 .1 and 

5.2 such that if 

=CT2- 3( -1 *)2-+6-, 
y TT*) 1111+2TTT3133 

is substituted in the equation 5 .1 and then divided into the real and 

imaginaxy paxts (see Appendix A5 for detail) we find 

2 
2 

(3 
3+ 2D 

2. 
+5.3 

where 
Al = (3 T32+ 2D, ) 2_ 4F 1 

5.4 

F1=4T34+4T32D1+D12+ El 2 

D Ec +W sin E2 1 zi 3c3 

E 
2w 

Cos El 3c3 zi 

From the imaginary Part Of equation 5.1 we also have 

sin (9 - 391) - 
3w 

- cos El 5.5 
3 3c 3z1T1T3 

On the other hand, by the same manner, substituting the expression, 

2_* * 

I3d13+2(3 3 +611 3 

into the equation 5.29 then dividing it into real and imaginarY Paxts 

we obtained the relation 
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cos (39 +)= 
(A 

2+ 
1ý32A2A3 

where 
D3+3T3+6 Ti 

T13 
T3 

2V 
c3z3T3 

A4= 

(c + 
ý-w 

sin C)2 z33c3 

6w 
Cos ý c3z33 

5.6 

Since 61 and 93 axe always negative and the impedance due to the 

circuit capacitance is greater than the impedance due to the leakage 

inductance 

ýl y 

Therefore 
(39, + E3 )<0 

That means the cosine ratio must be between zero and minus one, i. e. 

04235.7 
2A2A3 

Now, for given values of Z1, Z 39 C19 c 3' w and V3 if we 

take v 
TFM 3: 

we can calculate T1 from equation 5.3 and check the condition 5.7. 

In cws--e 5.7 is not satisfied then by changing the multiplier FM starting 

with FM =1 this procedure is repeated. When the iteration is 
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completed FM, 3 are then known. Now, only Q1 and 9 are 

required. But from equation 5.6 

A2+A12 (A 
22+A2 Ecos- 2AA3+35.8 

and from equation 5.5 

9 sin 
2w 

- cOs E+ 3Q 3 3c 3 zily i ly 315.9 
So, 91 and Q3 axe finally known. 

Thus, knowing only V and given values of Z, IZ 3' C19 c3 and w we can 

calculate the appropriate initial values for T1, T3,91 and 0 3* 
With these initial values the solution of equations 5.1 and 5.2 is 

convergent. But there. are such values of T3 for which A1 is negative 

and consequently T1 has complex conjugate roots. Since such roots do 

not physica. 11y exist, this condition co=esponds to the unstable state. 

Therefore, in the next stage we will deal with the stability of 

subhaxmonic resonance. 

5.1.2 The Stability Analysis of the Subhaxmonic Oscillation 

From consideration of equation 5.3 it is seen that the 

character of V1 depends strictly on A1. Therefore, we will first 

study this equation for different values of &j. 

I-09 The Critical Condition 

When A, is equal to zero T, 
2) 

becomes 

2+ 2D, ) 

2 

or 3y2 5.10 

For a selected value of D1 the equation above gives an ellipse on the 

( T19 T3) plane as in Figure 5-3a. But the paxts of this ellipse on 

the second, third and fourth quadrant do not physically exist because 
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T1 and T3 axe always positive and real. So our solution do--ý--in 

will be only the first quadrant. In FigLires 5-3a and 5-3b the 

shaded area indicates the physical boundaxies. 

Y- 

V ý2D 1 a- 
- 

31 7- 

v -1 

Fig 
- 5.3 

3 

'P 
1 

b 

D 

1 

Dli <D 1 D' 

or 

> R" 

For the various values of D1 we get a family of ellipses as shown in 

Figure 5-3b. So that T, and T3 are positive and real, D1 must be 

negative, as will be seen from Figure 5-3a, i. e. 

W2 
D [cl + sin C11 0 5.11 3c3 

Hence, if c1 and c3 are positive then the two conditions 

1. ý1 

2. Cl ý 

must be satisfied. 

sin I Ell 

Since ) 
tan R 

WC 

for the first condition 
1 

ý-C 
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or 
1 

Now, the question is at which conditions will A1 become 

zero. In order to establish this we will examine the expression for 

A ill Equating A1 to zero we have 

3 
)192 -01 + Vr 

14 5.12 

where 
A2= 16D 12 112 E125.13 

For various values of A 
2' 

T3 has different characteristics. Therefore 

we will discuss the roots of T3 for various values of A2 

A2= 

If equation 5.13 is equated to zero we obtain 

16 D12_ 112 E12=0 

or 

D1+ V7-1 El =05.14 

Substituting the expression of D, and E1 into the above equation and 

rearranging it we axrive at 

Since 

ww 

cl+yl- sin El+v/7 COSE 

JR 2+ X12 

1 WC 
X1 

sin E, zi 

R 
Cos z 

We can express the resistance R in terms of X, by the above equation 

but we will denote this resistance by Rc (critical resistance) to 
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distinguish it from other values of resistance. 

following equation 

is 

R+ /T w 

R= C 

Thus R, from the 
c 

-77 w+Aw2_4 cl (cl X, 2+w 

2c1 5.15 

Now we can examine the effect of the circuit resistance on T1 and 

3 For instance, if R=Rc then A2=0, and consequently 

2 2D 1 
5.16 3c 7 

t1 =0 

and 
T_2 

4D 1 
5.17 1c 7 

So, in a circuit having critical resistance Rc if T3 has a value 

greater or less than T 3c the unstable state occurs. That means, in 

this case we have only one solution point on the solution domain, as 

shown in Figure 5.4. 

IF I 

If 1c 

T3c '3 
Shaded area shows the unstable region 

Fig. 5.4 

b. ý'2 0 

If the value of the circuit resistance is greater than the 
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cri ica resistance then A2 becomes negative, and therefore 

has complex conjugate rootsq no real roots. 

resonance does not exist. 

A 

That means subharmonic 

If the value of the circuit resistance is less than the 

critical resistance then A2 becomes positive, and correspondingly 

T32 has two distinct roots so that 

32) min 
-4D 

5.18 14 

-01 +A2 

3 14 5.19 

Since from either (T32 )min Or ( T3 
2 )max A1 will be zero, from 

equation 5.10 

(T 
12)max T2 23 irin 

(T 21(T2 
1) min 23 ma 

- 5.20 

-D15.21 

So the limiting values of T1 and T3 which correspond to the jump- 

down points, have been found. It should be remembered that these 

points axe on the ellipse defined by the equation 5- 10. 

After producing sustained subhaxmonic resonance if we 

increase the applied voltage, T3 will also increase until the upper 

limit T 3max is reached. At this point T1 has its minimum value, i. e. 

T 1min' Now, if we increase the voltage a little more then T3 

becomes Ueater than T 3max and consequently 

A1 

Similaxly, T3 can get its minimum value (Y3 )Mn by decreasing the 

applied voltage. A little further decrease in the voltage results 
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in 
'P3 

T j/T3 plane. 

3min and A1<0. 

In figure 5.5 the "-'nit points have been shown on the 

1)1 

max 

T 
lmin 

Fig - 5.5 

II - 

v 
3min T 3max 
Shaded area shows the unstable region 

We have already seen that for T<T and T. >y 3 3min 3 3Tn-q-x 

A1 becomes negative and T1 has complex conjugate roots. In other words 

subhaxmonic resonance dgain does not exist. 

III - 

In this case, so long as A2>, - 0 subhaxmonic resonance 

exists and the relationship between T, and T3 is expressed by equztion 

5.3 which is in a general polynomial form. We will call this curve 

"th e solution curve". The following figLlrffl 5.6a and 5.6b show the 

function T1=f (T 
3) and A1=f (T 
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41 
1 

Yll 
1 max 

lm, qx 

Tt 
lmin 

it 
T lmin 

Solution curve 

"IN 

Rt 

I 'I I-III it' , 
IF 3min 'y3minT3max y 3max 

RC >RI> R" 
Shaded area shows the unstable region 

Fig. 5.6 

A. 

5.1.3 The Approximate Calculation of the Voltages 

Co=esponding to the Critical Resistance R 

and Limit Points 

3 

From the practical standpoint having some knowledge about 

the applied voltage corresponding to the critical resistance Rc and 

limit points (jump-down points) is more important than knowing the 

critical and limit values of flux linkages T, and T 3' Therefore, 

here we will try to establish relationships for these particular 

supply voltages. 

For various values of voltage the computational results 

obtained from the solution of equations 5.1 and 5.2 give a value 
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between -0.97 and -0.99 for the limits given bY 5.7. Therefore we 

can equate approximately this value to -1. 

A2 (A A 

--4 2A2A3 

Reaxranging this we have 

+V1 12 
2 A3A2A+A4 

or substituting'the expressions of A,, A2, A 

That is 

and A4 

z3T3C3 T13 222 V2T (D 
3+3T3+6T, +E35.22 

L-- - 
From this expression the voltages corresponding to the critical 

resistance and limit points axe found. 

Example For c1 0.0248 

c3 1.212 

w 314/3 
C 22 pF 

t 2.65 MH 

From Equation 5.15 R 145Q c 

Hence the critical values of flux linkages 

T ic = 0.274 Wb-- 

T = 0.182 Wb 
3c _ 

and from equation 5.22 the critical voltage 

VC = 51.2 V. 

Now, for a chosen value R= 100Q <Rc 

T 3max = 0.235 Wb T 3min = 0.07 Ab ^ 

Tlmin = 0.19 Wb T 1max 0.335., Wb 

Vmax = 67 V VmIn 24 V 

Either for ( ýmax 9T imin) Or for ('3min' T imax A1 is zero but 

for a value such as 

T ýmax or T3<T 3min 

A1 becomes negative, i. e. the subharmonic ferroresonance does not exist. 
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5.2 Analysis of the Results 

The analytical method has been based on the assumption 

of constant circuit resistance, i. e. the resistance of the circuit 

does not vary with the current. In the physical system it is the 

function of the current due to the iron losses. Therefore, when 

point B in Figure 5.7a below moves along CA on the current-voltage 

plane the corresponding point B on the Tj/T 3 plane in Figure 5.7b 

I_ (A) 

'jdl . ju - jctz 

T1 

- 5c 3 
Shaded area shows the unstable region. 

Fig. 5.7 

will move along CIA' instead of CA. Thus, evenýif there is no 

actua. 1 resistance, due to the iron losses the physical system has an 

Ilapparent resistance'113. This resistance becomes bigger when the 

supply voltage is decreased and it is defined by the ratio 

p(w) 
I (A) 
rins 

That is, if the active power drawn from the supply, and the rms value 

of the current axe measured by moving-iron type instruments 9 the 

apparent resistance can be calculated. For the capacitance 

C= 22 PF the sustained subharmonic f erroresonance disappears when 
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53v. 

are 

Just before jump-down takes place the measured values 

4.8 W, 0.18 A. 

Hence the apparent resistance R= 148.15Q On the other hand, 

the calculated critical resistance and voltage were 

Rc-= 145Q and VC = 51.2 V 

which correspond to the point C' on Figure 5.7b. 

In addition to the eff ect of iron losses on the lower 

jump-down point these losses also affect the waveform. of the cu=ent 

whereas they do not have a considerable effect in the case of 

fundamental ferroresonance. To demonstrate this we solve the 

equations 1.8 numerically employing two computer programmes as 

mentioned at the beginning of this chapter. The results produced 

. are shown in Figare 5.8 together with the corresponding experimental 

results. As will be seen, from this figure the Preisach model gives 

very small errors. The current waveform in Figure 5.8c certainly 

contains a subharmonic component. It is also seen, however, that 

the cyclic pattern does not repeat itself accurately since it is 

impossible to stabilise the prolonged computation while highly 

accurate B/H representation is used. 

In FigLzre 5.9 computed and experimental B/H patterns are 

presented. The computed pattern in this figare is narrower then the 

experimental one. The only reason for this discrepancy is the eddy 

current effect which is not included in numerical calculations. 

As in the fundamental f erroresonance phenomenon, in this 

case the voltage across the transformer terminals is also higher than 

the applied voltage. The computed and experimental transformer 

voltage wavef orms are shown in Figu-re 5.9. 

In order to confirm the results reached in the analytical 
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method proposed T1= f(T 3) and A, =fý3) a-re plotted in Figure 

5.10 and 5.11 for the different values of the resistance for the 

sample transformer. 

As is clearly seen from Figu-re 5.12,5.13 and 5.14 by 

increasing the voltage the main harmonic flux T3 increases linearly 

while the third harmonic T1 decreases nordinearly. Therefore, 

in the estimation of the initial value of T3 

FMq V 

3w 
was used. 

The current waveform in Figure 5.12 produced by the 

analytical method is not similar to the experimental one given in 

Figure 5.8. This is not an unexpected result under the assumptions 

made in the method. 

As illustrated in Figure 5.15 the subharmonic ferro- 

resonance is initiated at the conditions 

C= 22 'PF 9V=65V and Vc = 10 V 

Then, if the capacitance is changed around 22 PF the sustained 

subhaxmonic ferroresonance is sbable but if the capacitance is 

changed considerably, in either direction, from 22 PF the resonance 

disappears. 

5.3 Coirrpaxisons 

The analytical method developed and used is very helpful 

in the explanation of the stability, and the effect of the iron 

losses on the continuation of the sustained subhaxmonic ferroresonance. 

On the other handq its accuracy is not as high as that of the 

numerical methods. In fact, the accuracy of the analytical method 

is a function of the coefficients cly c3 used in the representation 

of the magnetisation curve. So, in order to see how the accuracy 
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depends on these coefficients, the following table is given. 

pmax 

0 0.453 
0.1 0.442 

0.1 0.15 0.437 
0.2 0.432 

1 0.5 10.426 

pmax 

0 0.25 
0.1 0.238 

1.0 0.15 0.233 
0.2 0.228 
0.25 1 00219 

*I 
pma 

indicates the maximum peak value of the 

current and its experimental value is 0.52 A. 

TABLE 5.1 

In the analytical calculation in this chapter the 

coefficients employed are the same as those used in the case of 

fundamental ferroresonance. 

To compare the results obtained from analytical and two 

numerical methods I 
pmax 

is plotted against the rms value of the 

applied voltage as in Figure 5.16 together with the experimental 

results. An interesting result observed from this figare is that 

Ip., has a maximum. This figure also reveals the accuracy of 

the Preisach model. 

In his analytical calculation Travis3o assumes that there 

is no current flowing until the saturation point is reached and then 

the magnetisation characteristic is a straight line, as Specht4 and 

Holcomb5 do in their analytical calculation of the transient current. 

He treats the circuit as a nondissipative system. Both these 

- assumptions axe not valid because it is proved by numerical and 

analytical methods in this chapter that the iron losses and circuit 

resistance affects phenomenon critically. 
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Hayashi 
19 

, Wright33 and Sherý=-an34 give similar method 

f or the analytical calculation of the sustained subharmonic resonance. 

But, in all these works, the leakage inductance is not included in 

the calculation which leads to simplifications but either for high 

value of leakage inductance or high value of capacitance the 

impedance due to this leak2ge inductance can not be neglected. 

Also, in the reference 19 and 34 there is no experimental verification 

made. 

Teape37 introduced a few characteristic features of the 

phenomenon numerically but did not make any attempt at either an 

ana, lytical solution or a detailed numerical analysis. However, the 

results produced by his own B/H representation method axe in good 

agreement with the experimental results. 

Germay et a, 
39 

studies the subhaxmonic ferroresonance 

applying the Preisach model but, as mentioned before, they use 

numerical distribution function which may cause some problem of 

computing time. 
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CHAPTER 

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

6.1 General Conclusions 

In the analytical method developes in Chapter 3 by the 

modification of the Frohlich formula the various residual conditions 

of the iron core are represented in the analytical calculations of 

the first peak value of the transient current. 

By this method neither the saturation current415,6 nor 
the residual conditions of the core7 axe neglected. Besides this, 

the nonlinear differential equation of the system under consideration 

is reduced to a nonlinear ordinary equation which can either be 

solved by a numerical method or by a graphical construction. 

The results produced by this method for the range of the switching 

angle 
0 0a 

axe very accurate, the error between experimental and these results 

being less than 3% (see Table 3-7). 

Since a is a function of the residual flux densities 
s 

(see Table 3.6) the accuracy is also a function of the residual 

flux densities. But for 

a> 

the agreement is not as good as before. 

In addition to the representation of the B/H loop the 

Preisach model can be employed to represent the magnetisation 

curve as well. But, 
- 

for the magnetisation curve this method is 

not as accurate as the exponential series representation method. 

(refer to pages 229 23,25-28 and Table 
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So the Preisach model for the B/H loop, the exponential series 

method for the magnetisation curve have been used in the numerical 

calculations of the transient current and ferroresonance phenomena. 

Thusy comparing the Produced results it is possible to observe the 

hysteresis effect on these phenomena and the accuracy of the 

Preisach model. 

The results obtained for the transient current reveal 

that the effect of the hysteresis losses is not perceptible (see 

table 3-5). Therefore, if the computer facilities are available 

the exponential series representation method is preferable because 

less computing time is required. But, as is in many cases in 

practice, suitable computer facilities are not always available 

and analytical formula is preferable. The analytical method is, 

therefore, the only satisfactory way for the calculation of the 

transient current. 

In the case of ferroresonance phenomena (both 

fundamental and subhaxmonic ferroresonance) the hysteresis losses 

become more important because they not only affect the peak values 

but also the waveforms and jump points, and hence the stability of 

the phenomenon (see Figures 4.199 5.89 5.16). So in order to 

observe this effect it is essential to represent the 13/H loop in 

the numerical calculations. But, even if the hysteresis losses 

axe taken into consideration, there is some discrepancy between 

experimental and computed results. For instance, the computed 

B/H loops in Figures 4.2o and 5.9 are narrower than the experimental 

ones. The only likely reason for this is the eddy current losses 

which axe not included in the calculations. 

Again, since it is more practical, an analytical method 
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is developed for the ferroresonance phenomena. In the application 

of this method to the fundamental f erroresonance (in Chapter 4) it 

is divided into two parts. In the first part only the fundamental 

haxmonic T1 of the flux linkages, and in the second paxt both the 

fimdamental T1 and third harmonic T3 are considered. The first 

part leads to more practical results and a graphical solution 

which is a very useful tool to visualize the jump phenomena and 

to predict the jump-up and jump-down points (see Fig-are 4.14). 

The second part produces more accurate results but is relatively 

complicated. Using the complex variable techniques four equations 

are reduced to two equations with complex coefficients. 

The accuracy of the analytical method depends on the 

applied voltage and the coefficients used in the representation of 
A the magnetisation curve (H =c1B+c3 Foy the comparison 

refer to Fig. 4.19. 

The transient state in fundamental f erroresonance and 

unsymmetrical state of ferroresonance have been investigated using 

numerical computing techniques. 

Using the same analytical technique given in Chapter 

the stability of the sustained subhaxmonic ferroresonance has been 

investigated in Chapte: r 5. It is observed that, although this 

analytical method is very good in explaining the stability of the 

phenomenon (see Figures 5.4,5.59 5.6 and 5.14) and the effect of 

the circuit resistance (see Figures 5.6,5.109 5.14), it does not 

produce very accurate results (see Figure 5.16). The reason for 

this lies in the estimation of the coefficients c1 and c 3* Since 

they are obtained by selecting two points on the experimental 

magnetisation curve their values depend on the selection of these 

- 103 - 



two points. Table 5.1 shows how the variations in the 

coefficients affect the accuracy of the method. 

The generalized parametric method established in 

Chapter 2 is applied to the transient and fundamental ferroresonance 

phenomena. But it has been noticed that the accuracy in the case 

of transient current calculation is better than that in the case of 

fundamental ferroresonance. For instance, in the calculation of 

the first few peak values of the transient current (see Table 3-5) 

the error between computed and experimental results is about 1%. 

But the error in fundamental f erroresonance calculation is about 

30% (refer to page 76 and Figure 4.19) . the reason being that the 

normalized B/H loop in Chapter 2 does not fit accurately the 

actua, l B/H loop. In spite of these disadvantages it provides us 

with a compact solution to the circuit and it makes it possible to 

draw a general conclusion about the response of the circuit to the 

change in parameters of the circuit (see Figares 3.23,3.249 4.21, 

4.22). 

6.2 Suggestions for Further Work 

The analytical method for the calculation of the first 

peak value of the transient current established in Chapter 3 can 

be used to calculate further peak values at the various circuit and 

residual conditions. It can also be applied to three phase 

transformers. Thus, much computing time may be saved and more 

practical formulae may be obtained. 

computer programme for the Preisach model has been 

designed for the numerical calculations in the single phase system. 

By a little modification to this programme three phase systems 

could be investigated. Since it is possible to establish the 
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previous conditions of the iron core by Preisach model, the 

problem of initiating the subharmonic ferroresonance can be also 
investigated in detail. 

The analytical method established for the fundamental 

and subharmonic ferroresonance is a general method. Therefore, 

this method of calculation can be used as a basis for the analytical 

calculations in three phase systems. 

By the generalized parametric method the transient 

current, especially the first few peaks, can be predicted accurately. 

So, if there were ready-made tables or graphs the peak values of the 

transient current may be calculated without requiring any computer. 

The same purpose can be caxried out for the f erroresonance phenomena. 

All the calculations in this investigation require an 

experimental magnetisation curve and outermost loop. There is no 

problem in obtaining these characteristics in the case of small and 

medium size transformers. But in the case of large size transformer 

it may be impossible to get them. Therefore, if a relationship 

between the B/H characteristics of the material used in the 

construction of the transformer and the B/H characteristics of the 

transformer can be established then the problem mentioned above may 

be solved. 
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APPMIX Al 

TRANSFORFIR DESIGN DETAIL 

Nominal Rating 500 V. A. 

Voltage Ratio 240/125 

Rated Frequency 50 Hz 

Primary Turns 446 

Secondary Turns 240 

Stacking Factor 0.96 

In Fig. 

L1 

L2 

L3 

L4 

L5 

L6 

L 

A 

A1 

-2 (L 
1L 

: 13.96 cm 

: 7.605 cm 

: 2.54 cm 

0 » 5.08 cm 

: 17.75 cm 

: 16.5 ein 

: 0.4059 

24.774 cm 
2 

12.387 cm 
2 
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, 
MRASURED_PARAMERS 

, 
For 250 V winding: 

Winding resistance 

Leakage inductance 

For 125 V winding: 

Winding resistance 

Leakage inductance 

'Ebcte: ma, l primaxy resistance 

External primaxy inductance 

Inmedance of switching angle 
selector 

1.630 

: 4.4 mH 

:1 . 03Q 

: 1.27 mH 

: 0.580 

:1 . 38 mH 

0.03 + 0.89 Q li I 
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COEFFICIENTS FOR THE REPRESENTHIONS 

From experimental characteristic 

Br0.958 T 

Bs2.08 T 

Hs 14000 (A. T)/m 

Hc 45 (A. T)/m 

110 7.5 E- 06 

doefficients for the exponential series representation 

c 0.692 E+ 00 

c2=0.210 E- 01 

c 
3 0.767 E + 00 

c4 0.358 E - 02 

c5 0.536 E + 00 

c6 0.233 E - 03 

c7 0- 149 E - 01 

c8 0.752 E - 03 

0.201 E+ 01 

Coefficients for the loop representation 

cl = 0.311 c4=0.00296 c7=0.0543 

c2= cl c5=0.0296 c8=0.00543 

c30.619 C6 = 0.320 c9=0.513 

Coefficients for the c-abical 

0.0248 

ýrnomial i=fI 

1.212 

cio0.26 

C11 0.000267 

c 0.532 12 
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APPMIX 2 

DETERMINATION OF THF COEFFICIENTS FOR THE 
EXPONENTIAL SERIES REPRESENTATION 

In order to evaluate the coefficients in Equation 1.17 

the iteration method is employed. 

Since each term has two coefficients there axe altogether 

six unImown coefficients for three terms exponential series. So it 

is necessary to select six points from the experimental curve. 

Now, let two points (B 
11111 

) and (B 
2H2) be considered. 

Subtracting the contribution of the linear term (VI 
0 

H) from each 

point so that 
r 

B 
ml =B1P0H1 

B 
m2 =B2- 11 

OOH 2 

and equating these modified Bs to the first term of the series 

B 
mi = cl (1 - exp (-C2 

*H, 
)) - 

B 
m2 - c, -- (1 - exp(-c3,. H 2)) 

V 
the following ratio is found 

yB mi 
(1- exp(-c 2* H1. )) 

B 
m2 

(1 - exp(-c 2* H 2)) 

Since the value of Y is known we can find the coefficient c2 using 

the Newt on-Raphson Is method. ' Then, substituting c2 into the 

expression of B 
ml or B 

M2 C, is calculated. Thus, the first term is 

defined but it satisfies only the points (B,, Hl) as shown in Fig-3-1. 

To improve the fitting a second exponential term is added 

to the first one. Therefore, another two points (B 
3' H3) and 

(B 
4' Hd on the experimental curve are selected. 

Hencev the modified B's 

13 
m3 

B3 POOH 3 
BB @H ýn4 4o4 
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Let the equations 

DB 
m3 

B 
m3 - cl. (1 - exp (-c2 H 3)) 

DBm4 Bmý - cl. (1 - exp (-c2, H 4)) 
equate to 

IDB exp(-c m3 Y4"3ý 
DB 

m4 cY exp(-c VH 4» 
So the ratio function is 

IDB 
m3 

(1 - exp(-c 4* H3)) 
Y DB 

M4 
(1 - exp(-c 11; H J),., 

Since c are already known, B "ý B DB IDBm4 and Y can easily VC2 mY m4' m3 
be calculated. Then from the last relation c4 is solved and 

substituting this into the expression of DB 
m3 or DB 

m4 c3 is found. 

It is seen that the fitted curve obtained using two 

exponential series satisfies the points (B 
3' H3) and (B 

4 9H 4) perfectly 

but lies below the points (B 
5' H5), (B 

6' H6) and above the points 

(B,, H, ), (B 
2H2) as shown in the second figure of Figure 3-1. 

The addition of the third exponential term also 

requires two experimental points for the definition of its 

coefficients c 5' '060 So, selecting the points (B 
59 H5) and (B 69 H 6)7 

following the above procedure 

Y 
(1 - exp (-c6 

OH9)) 
(1 - exp (-06 

OH 6)) 

Thus C6 and c5 axe found. But this time, this series composed of 

three terms perfectly fits at the points (B 
5' H5) and (B 

6' H6) but lies 

above the other points. In order to get an accurate representation 

an iteration loop consisting of three steps is constructed. 

First step 

From the above initial approximation c 3' c 4' c5 and C6 
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are known. So, an improved estimation for c VC2 can be made in 

this step, so that 

also 

hence 

DB 
mi =B mi -c 3* 

(1 - exp(-c 4* Hj)) -c 5* 
(1 - exp (-c6. H, )) 

DB 
m2 =B m2 -c3" (1 - exp(-c 4* H 2)) -c5, (1 - exp (-c6*H2))ý' 

DB 
mi = cl. (l - exp (-c 

29 Hj)) 

DB 
m2 = cl. (l - exp (-c 

2* H 2)) 

y 
IDB 

mi 
(1 - exp(-c 2* Hj)) 

DB 
m2 

(1 - exp(-c 2" H2)T 

Thus new values of c1 and c2 axe defined. 

B. Second step 

Using new c 1' C2 and approximate values of c 5' C6 

BB 
m3 =B m3 - cl. (l - exp (-c2, H3)) -C5, (1 - exp (-06 

*113)) 

IDB 
m4 -B m4 - cl. (l - exp (-c2, H4)) -c5, (l - exp(-c6, H4)) 

and equating these to 

DB 
m3 c 3* 

(1 - exp(-c 4" H 3)) 

DB 
m4 C 3" 

(1 - exp(-c 4*H4)) 

and solving the ratio function 

DB 
m3 

exp(-c 4* H 3)) 
DB 

m4 exp (-c4, H 4)) 

The improved values of c3 and c4 axe obtained. 

C. Third step 

For the improved values of c 5' c6 the new values of - 

c19c 2' c 3' and c4 axe substituted in the following equations. v'ý' 

DBin5 = %5 -c1*(1- exp (-C 
2*H 5)) -CY (1 - exp (-c 

4"H 5)) 

]D%6 = %6 - c1. (1 - exp(-c2 H 6)) -c3, (1 - exp(-c 4* H 6)) 
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DB -" c (1 
- exp(-c 60 H 

m5 ": 5" 5)) 

DB -' c (1 - exp (-c6*116)) 
m6 ` 5' 

y 
DB 

m5 
(1 - exp (-c6 H 5)) 

DB 
m6 

(1 - exp (-C6 H 6)) 

If these relations axe solved. for c5 and c6 the first iteration loop 

is completed. 

The iteration is repeated over these three steps until 

the error on the six points reaches an acceptable level. 

It is very important to point out that under certain 

circumstances the initial approximations to the coefficients could 

result in the expression of DB 
m 

being negative and this causes an 

unstable solution, but this is overcome by using the absolute values 

of DB Is. 

The other important points which must be observed when 

a program is made axe: 

A) The first point to be selected must be the point 

(H 
11 33 defined as in Figure 3.2. a. Otherwise, if it is selected 

arbitrarily the difference curve may have the form as in Figure 3.2. b 

which is difficult to represent. 

13) The sixth point to be selected must be the real 

saturation point (B 
s qHS) at which the straight line section of the 

B/H characteristic starts. If the point below the saturation point 

is selectedg the fitted curve will always be below the experimental 

curve. 

C) Since the Newton-Raphson method is used to solve 

nonlinear equations the initial values must exist. It is observed 

by trial and error that 
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c5c -5- c=5 20 =H 40 =H 6o H 246 

give a reasonable result (where H29H4 and H6 are the abscissa of 

the selected points). These are the maximm values for these 

coefficients. If the solution in any iteration section is 

divergent then the initial value of the section is made small. 

So a convergent solution is approached. 

D) If the solution is still divergent the selected 

points for this section should be made closer to each other. 

In order to define the coefficients of Equation 1.18 

the diff erence curve A B(H) in Figure 3.3 is analysed. As it is 

noticed, this curve has a maxima at H =HM it is zero at the 

origin and tends to zero at H=H ill Using these facts we derive 

the relation 

d (A B) 0 
dH 

IH 

H 
m 

hence 

cgo HMC9 

Taking two points from the difference - data points 

substituting into the expression of A B, c 7' c8 and c9 axe evaluated. 
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APPENDIX A3 

PREISACH THEORY FMAMENTALs 

According to the general magnetic material theory the 

induction (the magnetic flux density) in the magnetic material is 

expressed by 

= 

This expression is extended in terms of magnetic polarization (or 

ma, gnetisation) so that 
1 

11 
0 

where p0 is the permeability of the air. 

If either the relative permeability vr or differential permeability 

v is known the magnetisation is 
I= 

(11 r- 1). ý 
where 

p= p0" p. 

This additional induction v01 is just due to all the 

small magnetic dipoles supposed to exist in the magnetic materia, 
40 

0 
-I. 

In practice neither 'I nor p axe known because both of them are the 

fimction of the field strength H. Therefore a number of theories 

have been developed to explain the behaviour of the dipoles under the 

field applied and to establish an analytical relation between I and H. 

In 1907 Weiss4l suggested that each magnetic material 

consists of elementary domains in which I is uniform in direction 

and size, its absolute value being equal everywhere to an upper 

limit called the saturating magnetisation Is 41 
The direction of the 
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magnetisation is different from one domain to the next but it is 
distributed statistically as illustrated in the following figure. 

ee-ýýl 'o, 
X 

/I 

/w -) 
fI% 

Ar 

Fig. A3.1 

+ 

ri S 

If there is no external field (H 0) applied to the 

material, the'resultant magnetisation will be zero. Figure A3.2 

shows two adjacent Weiss domains taken from a uniform medium. 

it 1 
1=1 L=- 

S 
______ 

a 

Fig. A3.2 

0 

ý1' 
týt i 

1=1 C=-] . S 
__ 

b 

f -0. 

t ttt 
++ 

1=I 

C 

H 
max 

Now, if a field H is applied to this sample the wall 

between two domains will move and if H is continually increased a 

value will be reached at which the material completely consists of 

a monodomain containing only unique directed dipoles as in Figure 

A3.2c. 

The displacement of the wall changes direction when H 

decreases and reverses, i. e. it is possible to recreate the inverse 

Weiss domains but, according to this theory, the inverse field mast 

be greater than a critical threshold Ht to change the direction of I 
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This chaxacteristic thus gives the "Remanent Magnetisation" (see 

the figure below). 

I 

Fig. AM Fig. AM 

Preisach42 studied the interaction of the two elementaxy 

adjacent dipoles and gave a model representing the effects of all 

other dipoles, and of the external field on the given dipole. 

In this model Preisach assumed that each dipole 

corresponds to one rectangular hysteresis loop as shown in Figure 

A3.4, having two parameters, one of which, hc, represents coercivity 

and the othe: rq hm. represnts the field of neighbouring dipoles. 

So, from Figuxe AM it is easily seen that the 'applied field H 

must be greater than the threshold value (h 
m+hC) 

to be in state of 

positive magnetisation +Is or must be less than the other threshold 

value (h 
m-hc). 

For a value of H between (h 
m -he) and (h 

m+ 
he) 

the diPole is either in the state of +Is or - I., i. e. the state 

of dipole depends on its initial state. For this reason Preisach 

made another assumption to make cleax the initial state of the c1poles 

so that all the dipoles chaxacterized by hm >H have been left in the 

state (- Is) and all the dipoles hM<H have been left in the state 

(+ Is) by - demagnetisation. By this assumption, in the hm/hc plane 
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(Preisach Diagram) all the dipoles having +Is lie on the quad-rant 

hc>0, hm>0 and all the other dipoles having -Is on the 

quadrant hc>0, hm>0 as in Figure A3.5. 

h hm H hmiho hm mH 
HPt- 

Im- 
+ 

a 

Fig. A3.5 

C 

Now, application of an increasing field to this sample 

will cause a change in the state of the dipoles in the first 

quadrant. At this point, a question arises. How many dipoles 

have changed their state? So, to find out the number of dipoles 

changing state under the field 

Hh +h mc 

Preisach gives the following definition for the number of dipoles 

dn Y (h 
,h) dh dh 

mcmc 

Hence the individual magnetisation 
f 

is 0 dn IsfY (h 
m jh c) 

dh 
m 

dh 
c 

RR 

But the resultant magnetisation (under the field there axe two 

dipoles having the same direction) 

21SfY (h 
131 9hc) dh 

M 
dh 

C 
R 

Where - dn: number of dipoles Per unit volume of material 

_�_-Ic__i_ 
4 

1- *+ -4- 
4- +-+ + 

hm -hc 

F+ 21. + hm +hc 

+Hr 
4 

A3 .1 
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(h 
mhc): 

distribution function of dipoles 

R Integration region (in this case the 
axea of the triangle in Figure A3.5b) 

If H reverses there will be a decrease in the number 

of dipoles which axe in 1+2 and in the first quad-rant. 

Since we are concerned with the number of dipoles whose 

states diff er from their original states, the region R2 in Fig-axe A3.5c 

is taken for the integration. Hovever, as will be explained 

later, R1 will be taken for the sake of the simplicity in calculation. 

In the application of this theory to power engineering 

studies the magnetisation I is not very meaningful so without 

affecting the principal idea Equation A3.1 may be written in terms 

of induction so that 

BI 
s0s 

Hence 

B -P H+ 
00 

becomes 

2B (hmyh 
c) 

dh 
c 

dh 
m 

A3.2 

Somme Characteristic Features of the Preisach Theory 

Although the Preisach theory is more complicated than 

other methods used to represent the B/E chaxacteristic, it gives a 

number of important properties of hysteresis cycles. These axe: 

A. Occurence of the Cross-Overs in the -B/H Plane 

As it apparently occurs in inrush current cases, 

sometimes the B/H trajectory crosses the previous trajectory. 

Whereas the other methods of the representation are not able to give 

an explanation of this fact, the Preisach model explains it. 
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In order to present this explanation, let us consider 

the B/H characteristic and corresponding Preisach diagram shown in 

the following Figure A3.6. 

)6 
hm 

'FIPJ 

Hl 

-HP 2 

4_ 

AF 
t- 4- h 

HP 
2 -4- -+- 4- 

Fig. A3.6 

For the point H= H19 as will be seen from B/H plane, 

the value of -the induction B2 is greater than the previous one, B 10 

That means the trajectory now being considered crosses over the 

previous trajectory. Now if the corresponding Preisach diagram is 

examined it is noticed that at H= H1, the integration region of the 

distribution function is BOAB for B1 and BOAB plus ADEFA for B 2* 

That means the integration region for B2 is greater than that for B 10 

Consequently the integration of the distribution function over the 

greater region yields a greater value, greater induction. 

B. Ydnor Loops 

In the case of steady-state subharmonic resonance and 

unsymmetrical ferroresonance phenomenon, some minor loops appear. 

The figuxe A3.7 shows such a loop and corresponding Preisach diagram. 
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h 

H1 =h m +b 
c 

H +h mc 
=h -h m 2c 

V4-1ý4- 

i- - 
H2 4- 

0 Hf. 
+- ±-t--+- v 

±-±-4-±- ±- 

Fig. A31.7 

If H is increased starting from P2 the trajectory 

returns to the point P1 when H=H ill On the Preisach diagram it is 

also observed that when H=H1 the line H=h+h coincides with 

the line H, =hM+hc 41 That is to say, the inner diagram (see the 

Figure above) corresponding to the minor loopq closes. 

If H is still rising the line H=hm+hc continues 

moving up. 

C. Return -to -the Magnet sation Curve 

At the jumping condition, after a transient stateg the 

current takes its steady-state value. During this transient the 

second peak of the current is much bigger than the first peak which 

is the largest previous peak and corresponding B, H are on the 

magnetisation curve. It is possible to prove this situation by 

constructing the Preisach diagrams given in Figure A3.8 
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B h 

\HP 
I=h m +h 

c 

Fig. A3.8 

-h^ 

hm - hc 

-1- 4- -t- 
+ -f I- 

h 

2 21 + -+ 
+ +4 4-- 

HP, I- 

7H= 
+hm 

hc H+++ -4- + 
+++ -1- 4- 

h 

Since for H= -EP, (EP 
1 is the laxgest previous peak) 

all the dipoles lyi ng on the region R1 under the line EP 1= h+h 

will return to their original state (to 
-'ve state) and all the 

dipoles lying on the region R2 above the line H=hm-hc will change 

state (to 
-'ve state from + 've). The diagram, then, is equivalent 

to the third in Figure A3.8, which is given for the magnetisation 

chaxacteristic. 

1.3-5.2 Representation of The Distribution Function 

The basic problem in the Preisach theory is to find out 

a proper distribution function y which characterizes the magnetic 

material. 

Felltkeller et a, 143 used the analytical expression. 
hh 

y (h 
,h exp -12 )+() ') ) 

mcab 

where a, b axe constants to be determined. 

They noticed that this expression has two maxima for the 

soft material. But Girke et a, 
44 

experimentally showed that some 
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soft material has one or two maxima. 

Introdncing new vaxiables 

hm- 

H2=hmh 

which are independent from each other, a new distribution function 
H1+H2H-H 

1\ y (Hl 
,H2y(292 ---1 

is obtained. Biorci and Pescetti45 separate this new function into 

independent functions with one variable so that 

y (Hl 
9H 2) Y, (Hl) Y2 (H2) 

So, for the magnetisation curve 

dB2 
Y2 (H2) 

fH1 min 

2H lma 
yj (Hl dH, 

and for the branch of the outermost loop descending from Hs to -H s 
(see following Figure 1.17) 

H 

yj (Hl) 

H 2min 

Y2 (H 
2)dH2 

By the small variations AHj, AH 
2' 

AB19 AB 
2 the above 

integro-differential, equations are replaced by sums since yj and Y2 

are assumed to be constant within each interval. 

Germay et al 
46 

solve these integro-differential equations 

for Y1 and Y2 by substituting A H, 9AH 2' AB, and AB 2 obtained from 

the experimental outermost loop as illustrated in Figure A3.9. 

- 130 - 



2 
(6) 

ý-Bs, -Hs) 

Fig. A3.9 

For the example in Figure A3.9 in the shaded axea, ABCDA 

H2 and corresponding 72 do not change. Thus, the corresponding 

incremental induction 

A (2)= (2 2) AH, (2)- B2 AH2 )Y2( [. 12 
Yl(2)+AH, (3)yl(3)+AH, (4)yl(4)+ýAH, (5)yl(5 

and in the shaded area CDFC AH19 yj axe constant, so 

AB1(6) = AH1(6). -Y, (6) AH Y2 (3)) ("12 
2(3) 

ý 

Thus, numerical Y functions are derived directly from the magnetisation 

curve and descending branch of the loop. By the y functions, curve 

and loop are reconstructed. 

Coulson47 has given the following expression for 

2B, 
s 0 

Y(h ,hmcc 

(cl, hc)n 
(-C h ). exp(-c 

Ih 1) 
)=E 

n' ill, c 2i m mc j=1 
1i 2i 3i 0 

where m: number of terms to be used 

n, c li' c2i' c3i : coefficients 
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In this present investigattion the first four terms of 

Coulsonts expression have been employed to calculate the flux 

density and differential permeability by Preisach theory. 

The terms are: 

First Term (n = 12): In this term c1=C2 is taken to simplify 

the estimation of the coefficients. So the first term 

c12c3 
(cl hc 

1 
)12 

exp (--cl hc) exp (-c 
19 

Ih 
mi 121. 

Second Term 

c4c5c6 exp (-c 
4hc). exp (-c 

5 Ih 
mI) 

Third Term (n = 0) 

c7c8c9 exp (-c 
7hc). exp (-c 

8 
Ih 

mI) 
Fourth Term 

c 10 c 11 c 12 exp (-clo he) . exp (-ell Ih 
mI) 

The Calculation of the Flux Density and 
Differential Permeability by Preisach Theory 

Analysis of the Preisach diagrams in FigLire 3.4 suggests 

that there axe mainly two types of diagrams. But, since Coulson47 

uses the absolute value of hm he gives three types of diagram as 

shown in Figure 3.5 

In the case of transient current or occurrence of minor 

loops there are another two abnormal B/H characteristics, so another 

two Preisach diagrams, as in Figure 3.6. 

All the available Preisach diagrams are given in 

Figure 3.7 

An interesting property of this theory is that there is 

no need to take very complicated forms of integration region such as 

R in the first figure Of Figure 3.8. so long as the values of H and 
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B corresponding to the Preisach diagrams already completed, are stored. 

In fact, this is the reason for dividing the actual Preisach diagrams 

into the subdiagram . For instance, in the first figure of 

Figure 3.8 the flux density B corresponds to the integration of the 

distribution function over the region R. 

B is equal to 

B= B1 - AB 

But, if B1 is stored, 

where AB will be called the "Complementary function" because the 

corresponding region R2 is the complement of R. So the integration 

region R 2' which has a considerably simple form compared to R, is 

taken. 

Generalizing the idea of s-abdividing the diagrams, the 

general f orm of complementary function becomes 

AB = 2. B 

and resultant induction 

fY (hc, h dlý dh 
mcm 

Rn 

B=p0H+. E (DIR 
. Bi) 

i=l 
where 

n: Number of previous peak 

DIR. AB 

DIR: Direction of the trajectory which is + tve 

for the rising trajectory and - Ive for the 

descending trajectory. 

B Already stored values being measured from 

peak to peak. 

AB: Present value of B being measured from last 

peak to the point being calculated 

Rn is have the form of one of those given in Figuxe 3.7 

This formulation will be used in the programme for the 

calculation of the flux density. 
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Derivation of the First Function -AB, (H) 

If the magnetic material to be used previously has no 

residual flux density when a field is applied, the Preisach 

dia, grams will be as in Figure 3-5a and the complementaxy function 

required can be derived taking the integration over the shaded area. 
So within the limits 

hm:!! h 

0 ! r, hc :jH 

by the integration of the distribution function for the first term 

(n = 12, cl = c2) 

cf n+l 
(cl. 

where 

x1 fn (X) exp (-X) 

and for the second term (n = 0) 

AB [l +-ý5- exp (-c 
12 -z c6 c 4-c 5 40 

c4- exp (-c 
5* 4-C5 

The third and fourth terms are similax to AB 12 but only the 

coefficients are different. So the resultant complementary function 

=ýIB1, +AB 12 + AB 13 + AB 14 

Derivation of the Second Function - AB, (H, HP 
C- 

Figure 3.5b shows a portion of the B-H trajectory which 

is rising from a previous peak point (EP, BP), and the corresponding 

Preisach diagram. As specified in the figure, the boundaries of 

the integration are 

HP +h<h<H-h cmc 

hc H- HP 
2 
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Hence 

AB 21 -2 n+l . exp (c, H) 
.f n+l 

(cl 
- 

(H - HP) ) 

for the first term (n=12) and 

AB 22 ý-- c6 [c4 
+C 5. 

exp (c5 H) -c 
4-C5 - exp (c 

5 HP) 

2c4c5 
22 

c4 -c5 

for the second term. 

exp ( (c +c ). Ep 
- (c c 452 4- 52 

Since the third and fourth terms axe similar to the 

second term, the resultant function 

AB 2 
(H 

9 11P) = t, B 21 + AB 22 + AB 23 + AB 24 

It must be remembered that this function is valid for only 

HP <H<0 

Derivation of the Third Function - AB 3 
(Hý HP) 

This function also has a previous peak value and the 

integration region is the same as B2, but it is valid, as shown in 

Figure 3.5c, for only 
TTV < 
. L. LJL. 

-HP 

Thus, the 
. 

first term (n = 12) 
(c, H)n+l 

=c[2. f (clH exp (--c, H) AB 31 3n)- n-+-1-7: - 

ex-p(c, H) 
+2 n+l - (f 

n+l 
(cl (H-HP)) -fn 

(2c, H)) 

and the second term (n--O) 
2 

AB 32 ý c6 [ 2+ 
c2c2 

exp (-c 
4 H) T 

4- 5 

c 
4 

c4-c5 
2cc 

c4 -c5 2 

(exp (-c 
5 11) + exp (c 

5 HP)) 

exp -7» «c4+'5) Hp f 
- 
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The resultant function becomes 

AB3 (H 
9 HP) = AB 

31 +0 32 + 033 + AB 34 

Derivation of the Subfunctions of Differential Permeability -V 

So far as the current in the circuit is concerned, it 

is not necessaxy to use B- functions, but essentially the slope 

(differential permeability) functions are required. These functions 

axe available either by taking the derivatives of the B- functions : 

already obtained with respect to H or taking the integration of the 

Y- function only with respect of hc Of course, both must give 

the same result. 

A) Derivation of the First Function - pj(H) 

By taking the derivative of Bj(H) so that 
I/ 

p 
d( AB 

11) 
-c1c3 

(ci H) n+l 

exp (-c, H) -dH (n + l)! 

and 11 
d( AB 12) c4c5c6 (exp (-c H) - exp (-c H)) 

12 dH 
c 4-c5 

54 

hence d( AB11) d( AB 12 
) d( AB 13) d( AB 14) 

(H) =i+++ dH dH ' dH dH 
ro 

or vil(H) pl, + P12 + P13 + P14 + Po 

B) Derivation of the Second Function -p2 
(H7EP) 

Derivative of the second B- functions yields 

d( AB21) c1c3 exp (cjH). fn (cl (H - HP) 

21 dH 2n+1 

cccH 
d456 -c )e) 1 

11 22ý: -- dH 
(AB 

22) -c4 +C 5 
Eexp (c 

5 H) -exp «c 
4 +C 5245 

and resultant slope 

2 
(H 

I IIP) 
0+p 21 + 11 

22 +p 23 + 'p 
24 
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C) Derivation of the Third Function 
3 

(Hq HP) 

By a similar manner 

(C H) n+l 
BCcI T--l-T, exp (-c, H) 31 dH 31) 13 In +0 

exp (c 
1 H) 

(f (c, (H - HP)) -f (2c H)) 
2 n+l nn1 

1 
BCcc exp H) -T- . exp (-c H) ý'32 dH 32) 456c42 

-C 52 
-c4 c 4-c5 5 

1- 
exp ( (c +c 

Ilp 
- (C c)1! ] 

c4 +C 54 5) 2 4- 5 2) 

and 

ý'3 (H, HP) =p0+" 31 + ý'32 +" 33 +" 34 

Derivation of the Subfunctions of the Abnormal Characteristic 

The expressions given so far axe for the B/H 

characteristics which are only encountered in the steady-state 

operation. But, in the case of transient or occurrence of minor 

loops, there are another two types of subfunction to be expressed. 

Now, let us consider the first B/H characteristic in 

Figure 3.6. For 0 S. H '- -EP the required B and V cannot be 

found using the expressions in the foregoing sections because the 

integration limits are different. In this case the integration 

limits are 

HP +h :ihm :SH-hc 

0h :SH- 
HP 

c2 

but 
HP S0 and H> -HP 
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So, taking account of these conditions, the result of the 

integration 

HP-HC H-HP 

, AB =2Bs 
ry(h 

mhc) 
dh 

m 
dh 

c 
HP+H, 0 

is exactly the same as AB 3 
(-HPI 

-H 3) and the slope function for 

this new case 
H-HP 

P4 =2 Bs f y(H - hc, hc) dhc 

0 

Hence, for the first term (n = 12) 

c1c3 (cl (H2 EP )) n+l 
. 

exp (-c, H) 
41 (n+l)! 

and for the second term (n = 0) 

c4c 5c6 E exp (-c H) -exp ((c c) 
11 

-(c +c ) l! ) 1 ý'42 c 4-C5 4 4- 52452 

and thus the resultant slope function is 

4 
(H, HP) = 'p 

0+ 
ý' 
41 + 'ý'42 + 1'43 +p 44 * 

If the second chaxacteristic in the Figure 3.6 is 

analysed in the same manner, it is found that 

AB = AB 2( -IIP' 

and 
11 = 11 4 

(H, HP) 

These are valid for only the region 

IT 
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Determination of The Coefficients 

In the analysis of the transient currents and 

ferroresonance there is no need for the more accurate representation 

of R/H loop. Therefore, in the estimation of the coefficients the I- 

third and fourth terms have been taken in the following forms: 

c9 (1 - exp (-c 
8 

B4 7": c 12(l - exp (-cl, H)) 

Since a soft magnetic characteristic is considered the 

B/H loop appears very narrow. Therefore, the region of B/H 

characteristic above 13, in the first figure of Figure 3.9 could be 

represented by 

B3+B4 

On the other hand, c 12 can be estimated by drawing. If we draw 

an asymptotic line to the B/H curve from (B 
s 

Hs) we find the point 

A, B, C on the second figure of Figure 3.9. Hence 

mn 

BA c 12 = 0.532 

At the point (B =BsIHHs) the above relation becomes 

12 Hs. 

So for B. - Oe94t Bs = 2.08t Hs = 14000t ro = 0.75 E -05 

and c 12 = 0.532 this equation gives 

c9=0.513 

For the region B> Br the representing function is now 

B= 0.94 + 0.513 (1 - exp (-c,. H)) + 0.532(l - exp(-cl,. H)). 

Using points obtained from the experimental characteristic this 

equation is solved for cl, and c. by least-square method. 
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The above expressions given for B3 and B4 are valid 

as long as c7 >>C 8 and c 10 >>C 110 So c7 and c 10 can be any 

number satisfying these inequalities. However, the error may be 

minimized by changing c7 and cloo 

For the region below Br the sums of the saturation 

values of representing functions should be equal to Br, i. e. 

c3+ C69 
The first term of the expression of B has high saturation. For 

this, 0.619, which corresponds to the "knee" point (H m-- 60), is 

taken for c 3* Then 

06 --= Br-03=0.320. 

Since we now know the third and fourth terms, we can find the 

differences between the experimental points and the'fitted curve so 

that 

DB 1=B exper, - 
( 

Ub. H + third term + fourth term) 

If the attempt of fitting a curve -using only the first term f or DB 1 Is 

is made, the coefficient c (for the sake of simplicity c2 is taken 

equal to cl) can be evaluated by least-squaxe method. Of course, 

again there will be differences between fitted and experimental 

points. For example, only the first term will give a loop as in 

the third figure of Figure 3-9. It is seen that we get the point 

B1 instead of B. So. in order to overcome this difficulty, a second 

term is fitted to the points. 

DB 2=B exper. - (p 
0H+ 

first term + second term + fourth 
term) 

Taking- c5 >> c4 and using least-square technique c4 is estimated. 

By changing c5 the error is minimized. 
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, 
APPENDIX A4 

COMPUTER PROGRAMME FOR THE NUMERICAL SOLUTIONS 

As will be seen from Figure 1.3 and Figure 1.4 the only 
difference between these two circuit configLLrations is the capacitance. 

Therefore, a computer programme designed for the study of ferro- 

resonance can be employed to investigate the transient phenomenon 

as well just by omitting the capacitance. But a small section of 

programme must be added to take into account the effect of initial 

(residual) flux density on the transient current. Therefore we 

have two computer programmes which are slightly different from each 

other. These axe 

and 

TRANS 12 

FER 12 

In the following sections these programmes are presented in detail. 

I- "TRANS 1211 

This programme mainly consists of three sections as 

follows: 

1. Data Section: In this section the data such as coefficients 

for the representation of B/H loop or magnetisation curve, total 

resistance and leakage inductance of the system used are given (see 

Flow chaxts at the end of this Appendix). 

2. Establishment of the Residual Flux Densities: Since there are 

only two possible residual conditions such as Br>0 and Br<0 this 

section contains two subsections. 

2.1 Establishment of the Positive Residual Flux Density: 

The procedure of establishing the initial residual flux 

densities in the programme is performed exactly as in the experimental 

procedure. 
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In the experimental establishment first the transformer 

core is demagnetised (see Chapter 3) then by means of the system in 

, -- 
hothe current flowing through the transformer primary side Fierure 

is increased such that a positive flux density will be produced, so 

after reaching the saturation flux density Bs the current is 

reversed and decreased till it takes zero value. Thus a maximum 

positive residual flux density is obtained. 

Now, to establish a positive residual flux density in 

the programme we f irst call the subroutine programme 

WET LOOP (IT 
I H, B, DMG) 

or 
IT = 

HH 14000 A. T 
sm 

Thus this subroutine computes the value of B=Bs and DMU = 

(Since this will be examined in detail very soon we will not deal 

with it in this section). By this subroutine we, in fact, build up 

the following diagrams and store HP = HS9 NPK = 29 DIR = 1 (where 

NPK is the number of peaks and DIR is the pointer showing the 

direction of the magnetic trajectory) 

B 

F 

Fig. 

h 
m 

0 
I 
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Then by the subroutine PrOgramme$for 

IT 

H 

we compute B=Br and DMU =p and set up the following diagrams. 

"n 

Fiz. A-l 
. 

h 

H 

0 h 

But, now, since the magnetic trajectory changes the direction the 

conditions stored in memory become 

HP H 
s 

NPK 

DIR = -1 

and the residual condition of the core is 

B =+B r 
(H = 0) 

2.2 Establishment of the Negative Residual Flux Density: 

For a negative residual flux density an inverse procedure 

is performed, i. e. first the current is decreased till Breaches its 

negative saturation value -B s, 
then current is reversed and increased 

up to zero. Thus the flux density will take its maximum negative 

value -B 

Similarly, if the subroutine programme 

BHLOOP (IT, H, B, DMIJ) 
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is called for 

IT =0 

= -H 14000 A. T 
m 

it computes 
B -B 

and DMU 

In this case subroutine programme traces the diagrams in the 

following figure 

"D h 

3 

and stores HP = -H S9 
NPK = 2ý 

DIR = -1 

H 

Finally, if the same subroutine is called again but for 

IT 0 

H0 

the condition of magnetic trajectory becomes 

lip = -H s 
NPK =3 
DIR = +1 

BP -B s 
13 = -B r 

(H = 0) 

The diagrams corresponding to this final call are shown in Fig. A4.4. 
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h 

Irn 

ILr hc 

'*,, 
- 

HP = hm -h 

0 
TL + 

HP 
HP -HS 

If the effect of residual flux densities on transient 

current are not required this second section of TRANS 12 should be 

skipped over. 

3. The Solution of the Differential aLuations: At the beginning 

of this section the initial values of the dependent and independent 

variables are given. Then system equations 1.7 axe solved by 
A 0950. four-steps Runge-Kutta methoV'7 

According to this method first the differential equations 

to be solved are rearranged so that the first order derivatives with 

respect to time T will be on the left hand side, i. e. 

I 
dt 

I= [FX (NM) I 

where [I and NM designates the matrix f orm of equations and number 

of first order differential equations (in other words, number of 

time-dependent vaxiables X(NM) to be solved) respectively. 

Thus the right hand side of this form, i. e. LFX(NM)l 

simply means some expressions involving X, T but not any first 

order derivative. For given time-step length dt and initial 

conditions Exo(NM)J, To the state variables 
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EX(NM)] -= [X 
0 

(NM)] 

TT 
0 

axe substituted in the expressions of [Fx(Nm)], i. e. EFX(NM)1 is 

defined. Thus, at the first step of this method 

EFA(NM)1 [FX(NM)l 

is calculated. Similarly 

For second step: The state variables are 

EX(NM)3 = EX (NM)l + -1. dt. EFA(NM)1 
02 

TT+ dt 
02 

Hence calculating [FX(NM)l 

CFB(NM)l [FX(NM)l 

is found. 

For third step: The state variables are 

EX(NM)] = [X (NM)l + -1. dt. DT(NM)1 
02 

TT+ dt 
02 

Substituting these into the expression of M(NM)] 

CFC(NM)1 EFX(NM)l 

is defined. 

For fourth step: The state variables become 

EX(NM) I= EX 
0 

(NM)l + dt. EFC(NM)1 

TT+ dt 
0 

and again, calculating M (NM)l corresponding to these state 

variables, we find 

M(NM)l = EFX(NM)l 

Thus the new values of time-dependent variables EX(t)] are 

[XN (NM) I= EX (NM) + ýLt E EFA (NM) +2 FB (NM) +2 FC (NM) + 11 (NM) II 
06 

and the corresponding time is 

T=T+ dt 
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For the next step of calculation we just repeat the processes given 
above by the initial conditions 

[X 
0 

(NM) 3= EXN (NM) 1 

T0=TN 

Now, the question is the calculation of EFX(NM) If or given state 

variables EX(NM)l and T. For this purpose a subroutine programme 

FUNCT (IT, H, B) 

and a common statement 

COMMON FX(NM)p X(NM)q T 

are employed. So, as soon as calling this subroutine programme the 

state vaxiables 

EX (NM) I, T 

are sent to the subroutine programme and the value of 

F= 
L, v A. (NM) 

are solved and withdrawn from the prograinme. 

3.1 Subroutine "FUNCT": 

The differential equations of the system in matrixal 

form axe 

M) ] E4LLNM-) i IV 
s 

(NM)l EZR(NM, NM)l EX(NM)l + [ZL(NM, N L dt "J 

where 
EV 

sI: 
matrix of supply voltages 

rZRI : matrix of resistances 

EZLI : matrix of inductances 

X3 matrix of state variables 

dX E! 4J matrix of first order derivatives. 
dt 

Denoting 
EV(NM)l [Vs(NM)l EZR(NMNM)l EX(NM)l 

M (NM) -gLNM) 
dt 

and then reaxranging this inatrixal form we obtain 
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[V(NM)l = [ZL(NM, NM)l EFX(NM)l 

49- 50 Hence, using the Gauss-Sidel elimination method7" EFX(NM)3 is 

solved and sent back to the main programme through the common 

statement used. 

Since [ZLI requires the differential permeability P 

f irst H is calculated and then the subroutine programme 

BH LOOP (IT, H, B, DMU) 

is called at the beginning of this sp-broutine. 

3.2 Subroutine ITH LOOP" 

In the establishment of the residual flux densities and 

in the calculation of the differential permeability this subroutine 

programme is called. It is composed of several sections. We 

will study these in order. 

3.2.1 Section of Logical Statements 

As mentioned above there axe four steps in Runge-Kutta 

method. During the calculation of the differential permeability 

required for these steps there must not be any change in magnetic 

history and trajectoryg i. e. H, HP, NPK and DIR shown in the 

following figure must not change. 

B 
0- -- -- -- -- -- IT 

IT 

IT = 

H4 13 H2 Hl H 

A4. 'ý 

HP H 
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So putting an iteration pointer IT V, 
at the beginning of each Runge- 

Kutta step we can detect these steps in the subroutine progranme 

11BHLOOP11 and using logical statement to check the value of IT we can 

retain the values of H, HP, NPK and DIR. The present values of 

these quantities may change only when the new value of H corresponding 

to X (1), which denotes the current is required. In order to 

distinguish is case IT =0 is taken for the iteration pointer as 

in the establishment of the resid-aal flux densities. 

3.2.2 Generation of the New Peaks and Reduction of the 
Peak Number 

Comparing the present value of H with its previous value 

the direction of the magnetic trajectory, i. e. DIR, can be defined 

as +1 or -1 . DIR = +1 designates the rising trajectory, DIR = -1 

the descending trajectory. By the comparison of the present value 

of DIR with its previous value enables us to generate a new peak and 

to detect it (see the Figure A4.6 below). 

B 

Fi &. A, ý . 

DIR = -1 

NPK 

1 DIR =1 

NPK 

H7 H2 H 

NPK = NPK 

To explain the reduction in the peak number let us 

consider the following B/H loops and corresponding Preisach 

diagraff'. 

H2 >H1 -)- DIR =1ý DIR2 = DIR 

E H2 , DIR = -1 

]DIR j DIR2 -+ 
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F. 

I 

Fig. A-' 

h 

When the present trajectory descending from P4 coincides with P3 the 

straight line CT) on the Preisach diagram coincides with AB. That 

means the loop P3P4P3 is closed and corresponding triangle ECD 

becomes equal to ABE. Thus the previous peak value of H becomes 

HP2 instead of HP4. 

If we formulate what we have said to generalize the idea 

it is seen that when the present value of H on the rising curve 

(DIR = 1) is greater than the (NPK - 2)th peak or the present value 

of H on the descending curve (DIR = -1) is less than the (NPK 
- 2Xh 

peaký the new peak number becomes 

NPK = NPK -2 

where NPK on the right hand side is the old one. It is important 

to point out that along the first trajectory (e. g. along N 
2) and 

for the first peak NPK =2 is taken f or the number of peaks. 

3.2.3 Selection of the Proper Function to Calculate B and v 

Since the B/H plane is divided into regions and diff erent 

functions representing the B/H chaxacteristic are used in each region 
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(see appendix A3 and Figure 3-7) 9 it is essential to know all previous 

values of HP(NPK), and DIR, NPK as well as the present value of H 

to determine the region in which H falls. Thus, after determining 

the region the related functions are calledq then B and V are 

calculated. 

Althoug4 Preisach theory can be employed to represent the 

magnetisation curve, the exponential series will be used for this 

purpose to achieve more accurate results, to observe the eff ect of 

hysteresis on transient current accurately. 

BH LOOP (IT, H, B9 DMU) 

is replaced with 
13H GURVE (IT, Hý B9 DMU) 

Therefore the subroutine 

Of course, the coeff iciehts related to this representation are placed 

in the data section. 

This subroutine is very small compared to the subroutine 

for the loop because only one function is used. 

At the end of this Appendix "Flow Chaxts" are given for 

"TRANS 1211, subroutine IIFUNCTII and subroutine I'BH LOOP". 

II - "FER 12" 

In order to study the ferroresonance phenomena including 

subharmonic resonance this programme is utilized. 

There axe only two differences between this programme and 

"TRANS 12". The first is the number of the differential equation 

to be solved and, second, the matrix [ZL(NM, NM)l is different. Since 

the system contains two energy storing elements, two differential 

equations axe required to represent the system mathematically. 

Therefore NM =2 is taken for the number of cliff erential equations 

in this case. The matrix [ZL(NM, NM)l is also different because 
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the capacitance of the system will be placed in this matrix. 

The rest of this programme is exactly the same as the 

"TRANS 12". 

III - The Prograppes used for the Generalized Parametric Method 

For the transient current studies 

PARAM 1 

and for the ferroresonance phenomena 

PARAM 2 

are used and these axe simply reproduced from "TRANS 1211 and 

"FER 1211 respectively. But the standard coefficients (see 

Chapter 2) are placed in the data section and the matrices 

[ZR(NM, NM)l , 
[ZL(NM, NM)l 

axe reconstructed using the generalized parameters. 
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COMMON HP(100), BP(100) 

COMMON Po, C(394)9 CM(994) 
COMMON NPK, DIR 

COMMON FX(2), X(2), T 

COMMON NM, R, 9, C, A, L, N, cý, ALFA, VM 

DATA 

1) Coefficients for the representation of B/H 

characteristic M394)), modified coeffs. (CM(9.4)) 

2) Final slope po, Number of diff. equations NM 

3) The construction parameters A, L, N 

4) The circuit parameters R, C 

5) The supply parameters ALFA, w, VM 

Subroutine 

BH Loop 
(IT, H, B, DMU) 

Subroutine 

Funct(IT, H, B) 

Establishment of the initial (residual) 

flux density 

Solution of the differential equations 

/1" No 
T_<Tm 

Yes 

e 

_STOP 

END 

Fig. A4 .8 
Flow Chart of TRANS 12 

T= T+dt 
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DTPUT IT 

Subroutine 

BH Loop 

(IT, H, B, DMU) 

COMMON 

COMMON 

COMMON 

CODIMON 

COMMON 

HP(100), BP(100) 

11 09 C(39-ý)9 CM(994) 

NPK, DIR 

FX(2), X(2), T 

NM, R, , C, A, L, N, w, ALFA, VM 

Calculate 

H, EZR(NM, NM)], [ZL(NM, NM)lg Vs(NM), V(NM) 

Solve 

[V(NM)3 = [ZL(NMqNM)J 
. 

EFX(NM)1 

for FX (NM) 

RETURN 

Fig. A-, '. Flow Chart of Subroutine FUNCT 
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BH LOOP 

pages) 

Section of 

Logical st 

Generation 

new peaks 
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Reduction of 

peak number 

Selection of 

proper Functions 
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DIR*HP(NPK-J)) 

.u FiF Fl- ow Chart of Subroutine BE' OOP A4.10 
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In the Flow Chart of Subroutine BH Loop 

DIR : Direction of magnetic trajectory 

DIR = 1 for rising cuxves 
DIR = -1 for descending curves 

NPK : Number of peak. 

Subfunctions for the calculation of B 

DBF 1=AB, 
(H) 

DBF 2= AB 2 
(H 

I EEP) 

DBF 3=AB3 
(H 

ý HP) 

(f or the expression of ABts see the Appendix A3) 

Subfunctions for the calculation ofil 

110 

DBDH 

DBDH 2 

DBDH 3 

DBDH 4 
(Also for the e 

Final slope of B/H characteristic 

1 
(H) 

2 
(H, EP) 

3 
(H, BP) 

4 
(H, IEIP) 

xpression of P'sq see the Appendix A3) 

All these subfunctions are given immediately after subroutine BH Loop. 
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kPPENDIX A5 

THE DERIVATION OF THE EQUATIONS WITH COMPLEX COEFFICIENTS 

In both the fundamental f erroresonance case and 

s-abhaxmonic resonance case we are dealing with the equation 

V(t) Ri(t) + dt +" i(t)dt +000 cs dt 

where 
i(t) = C, TM+C3T3 (t) 

T(t) = T, (t) +T3 (t) 

T 1(t) = V/2- T1 sin (wt + 91 

T3 (t) =V T3 sin Owt +9 3) 

vM = V/2- V. sin (v wt) 

v =1 (Fundamental Ferroresonance) 

v 3 (Subhaxmonic Resonance) 

Using the mathematical fact that 

sin (a) = -L (exp (ja) - exp (-ja)) 
2j 

A5.1 

The equation A5.1 can be transformed to a new equation 

with complex coefficients. In fact, by this transformation each 

time-dependent quantity is replaced with two vectors having the same 

modulus, revolving with the same angulax velocity but in opposite 

directions as shown in Figure A5.1 below. 

Tl(t) tT 

(, )t --1,7-wt ,, 
3wýý-3wt 

%jf2 2 ýL2 - 
L2 

22 2 ýýl 
4f 

13 

Fig. A5 .1 
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Hence 

and 

di(t) Vý2: (jwy exp (j(, )t) + i3w IT exp (j3wt)) dt 2j 13 

i(t)dt = V12 (-L T exp (jwt) +jT 2j jw 1 i3w 3 exp (j3wt)) 

Now, if these relations axe substituted into the Equation A5.1 we 

obtain 

where 

V. exp(j-i wt) = (3 
111 

11+ jw il) exp (jwt) 

3+i 3w T- 3) exP (i3wt) 
.. 

zR+j 
X 

zR+j Owt 
3 3wc 

or in the polar form 

zz exp (jC, ) 

z3=z3 exp (jcd 

z= V/R2 +1 )2 1x 

z /R 2+ (3w9- -1)2 3 3wC 
(wq, -1) tan R 

wc 

1 

tan 
Owk 

3wC 
R 

By the haxmonic balance rule we can derive two 

distinct equations from the Equation A5.2 so that if v=1 

A. 5.2 

(fundamental f erroresonance case) the first term of the right hand 

side of this equation becomes equal to the left hand side and the 

second term to zero; if v= 3 (subhaxmonic resonance case) the first 

term becomes equal to zero and the second term equal to the left 

hand side. 
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Therefore, after applying the transf ormation, we have two equations 

which axe exactly the same instead of Equation A5.1. One is due to 

the vectors rotating in the positive direction (counter clockwise) 

and the other due to the vectors rotating in the negative direction 

(clockwise). So that the latter one is rejected we use 
'ý (V. exp(v wt)) + V(t) =" so* 

(the rejected term) 2j 

%E2 exp (jwt) + exp(j3wt)) + ... 
(the rejected 2j 3" term) 

where 

V. exp (j. 0) 

= T1. exp (j. 91) 

T3 : -- T 3" exp (j'Q3) 

Hence I 
d /-2* (jw T-1. exp Owt) + i3w. 
dt - 2j 'F3 expýj)wt)) 

and ý-2 (-sl exp (jwt) + -s exp (j3wt)) 
4i 3 

where 

+6 T3 Tl T3 'F3 

2 _* - _*_ -3 =3 113 Y3 +6 'y1 
- 

Substituting the new expression of T(t) into the expression of i(t) 

we get 

uf (I exp (jwt) +T exp(j3wt)) 
2j 103 

where 

=2 

'3 = C13+ 2 

I 
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THE DERIVATION OF THE ANALYTICAL RELATIONS 

In order to derive analytical relations for the sustained 

subhaxmonic resonance we will refer to the equation A5.2. 

If v=3 is taken in this eqnation by the harmonic 

balance rule we obtain the equations 

o= 1T1 
+ A5.3 

VZ313+ 3w T3 A5.4 

Substituting the expression of 11 into the above equation A5.3 and 

dividing both sides by 2171 we have the equation 

c+ 
ý' 

13 T2 
3(71*)2 

1+6T21+0 A5.5 12133 
T, 

Splitting this into the real and imaginary part we get 

c22 

c(3, y -3T, - 3Q, +6 Cos (2- El)=O 121 T3 cos(03 T3 Zi 2 

c3 
(-3 T, T3 sin( - 39 )) "0 1( .1- El) o 2 Q3 

1+z1 
sin 2 

Rearranging these such that 

Cos (9 N( .1-E, )) +T+2T Tl T3 3-1) -"": 
(cl + Cos 2 3c3 13 

sin (9 
3- 391) = 

2w 
kj .n(2-ýi) 3 c3 z12 

then squaring both sides and adding, finally we find 

14+3 IF 12T32+2T12D, +4T34+ 41F 32D1+D12+E12=0 
A5.6 

where 

(c, + Cos ( 
zi 7 El)) 3c3 

2w IE 
3z sin El) 
c3 
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From equation A5.6 the roots of T1 axe 

(T12)1,2 = 
-(3 'y 32+ 2D, ) 

where A, = (3 t2 + 21)1)2 _ 4F, 

F44+4T2D +D 
2 

+E 
2 

33111 
And from the imaginary part of equation A5.5 

c, 4-n (in 
- Cl )- 2w 

A5.7 

A5.8 

A0 #% ý e4 - 
&J-&. LA. \"%7 

3- 'Pull - 3c3 Z, T, T3 -CL., l * .7 

By the same manner, substituting the expression of 13 

into the equation A5.4 and dividing both sides by Z3T3 we arrive 

at the equation 

3 
2-w ýv 

=0A . 10 c+ 
c3 (3 7T+6 71 T- +05 1233 z3 Z 33 

If this is split into the real and imaginaxy paxts we find 

A Cos (3 91 -93)+A3 cos (ý 

and A4A2 sin (3 91 -93)+A3 sin ( ý3 

where 
AD3+3 'F3 

2+6T, 2 

T13 
A2 7- 

3 

A 2V 
3 c3 z3T3 

A4- 

(c 
1+ 

ý-w 
sin ý) z 3 

E 
6w 

Cos ý 
3c3z33 

Squaring both sides of equations A5.11 then adding we obtain 

A5 . 11 
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A12+A42- (A2 2+A32 

cos (39, + ý3 )=2A2A3 A5.12 
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L 

L3 L --A. - 

Fig. 1.1 Single phase shell type transformer construction 
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Oc 

VA 

va 

-4 

AL 7ý 

Fig. 1.2 Paths of fluxes in a concentric coil, shell type 

transformer 
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V 

0 

a 

0 

Fig. 1.3 Single phase transformer equivalent circuit 

I M) 

Fig. 1A Single phase series ferroresonance circuit 
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Experimental points 

BI = ol (1 
- exp -) -C2 

Evaluation of coefficients c1 and c2 

+ Experimental points 

BI = c, (1 
- exp (-C2 H)) +c3 exp (-c 

4 H)) 

Evaluation of coefficients c3 and c4 

'rý * 

+ Experimental points 

BI = C, exp (-C2 H)) + exp(-c,, H)) +c5(1-exp( -c6 H) 

Evaluation of coefficients c5 and c6 

Fig. -, ý. 1 
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B1 

-M 

H 

AB 

Fig. 3.2 

a 

Computed curve 

H 

E: Experimental curve 

AB : Difference curve 

b 

H 
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-la t rp ý 

AT 
m 

0. 

C: Computed curve 

Experimental ciu7e I 

AB : Difference cux-ve 

A TTI 
EI [ýý-'L 1 

Computed point 

, Ebcperimental carve 

Fig. 3.3 Difference curve 
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The characteristic of the elementary dipole 
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B1 

0 

JB 
Bi 

B2 

H2 Hi 
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B, 

B2 

01 H2-`0 H, 

Ei 

rýl- 
-L 

hm 

H, 
H, -hm +h 

00 H. -h 1c 

hm 

H, 

H2 

G 

h 
m 

H, = hm+ hc 

H2= hm- hc 

Hl hc 

1 H, = hm + hc 

0-- hm - hc 
2 
0 H, hc 

hm 

H, H, = hm+ hc 

H2 = hm- hc 

op- 

H2 c 

Fig. 3.4 Various B/H characteristics and corresponding 

Preisach diagrams 
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B 

h 

H 

H=hm + hc 
c 

B -AB- R 
0 

a. First type of B function (AB 
= Bj(H), 

p=U, (H) ) 

hm 

I 

3P-B 

0 

H 

F-P 

HP he 

HP=hm-hc 

H -: hm+hc 

AB -R 

Second type of B function (AB =B2 (H, HP), 

11 = 1'2 
(HHP) ) 

h 

Hp H-HP 
2 

H IT 

H=h +h mc 
BP 

HP= h -h 

-EP 

p 

AB- R 

c. Third type of B function (AB =B3 (H, HP)p 

li =P3 
(H, HP) ) 

Fig. 3 .5 
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HP 

H 

-HP 

H 

HP 

-HPj-, 

h 
HP m 

H 

FT 

h 

h 

H 

b 

Fig. 
--^). 

6 Abnormal B/H characteristics and 

corresponding Preisach diagrams 
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M' , hm 

,H h 

H_ 
AB =B1 (H) 

AB = -B, (-H) 

u1 (H) 
H 

H hc 

hM 
h 

hm 

c 
HP 

-B 2 
(-H, 

-HP) 
AB = B2 (H 

9 HP) (-H 
-HP) u 

HP = p2(HgHP) 

, 2 
hC 

HP _ 

h 
M. , AB B3 (H, HP) 

hm 
AB -B 3 

(-H, -HP) 
-HP 
H (H, HP) 

+HP 
3 11 IV P (-H, -HP) 3 llp h c H HP h c 

+HP -HP 

h 
m A. B = B (-HP, 

-H) 

h 
m 

AB =B (HP, H) 
H FOP 3 

-HP 4 
(H HP) "4 (-H, -HP) 

Hý H 
HP H h h 

c 
HP 

c 
-HP 

hm hm h 

H 
c 

HP 

A-B = B -1 -H) 2( lp' AB = -B, (HP, H) 
HP 

U= U4 (HEP) 
H = '4 (-Hp-HP) 

h 
c 

Fig. 3. 7 Main and sub-divided Preisach diagran 
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ý, B 
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B1 

&B 
+ 

mm 71 

-BP HP 
T-T) 

BR 
L 

R, R ý"9 R 
olý 2 

H hl c hc Hh ýc 

'HP HP 

B B1 AB 

BhmAhm hm 
Ih 

HP HP 
B, B,, 

-/ 
R B, ^. s R, AB I%wR 2 

Lu 6A 

B, 

AB HP HP h H EP 
LM -HP 'K 

h 

B1 

-Tip 
HH 

PH 

B B(-H) 

Bm 
hm hmhM 

IER HP HP, 
_. 

HP 1 

B -HP 
Hh hc Hl h 

cc AB HccV. 1. P2 
1. I1 -11- ), = 

HP, HP 7. 

-'HPf- 
HP2 /H 

HP 

2 IlPl 

HP2 HP, 3, 

-HP -HP1 

13 1R1 
]32'-A"* R2 AB ,R3 

B Bi B2 +&B 

Fig. 3.8 The calculation of flux density 

by Preisach theory. 
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EI 

B 

C- 

M. HS 

c12 
A, 

, 0000lý 
1 

IHs 

The estimation of c 12 by drawing 

H 

Fig. 3.9 

B-H LooP obtained from first term 

H 
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-. 0 

Oll 

k=1 . 07 sec -1 
X-Y plotter 

Fig. 3.10 System to measure the B/H characteristic 

SWA ic *--I 

4-1 

]E 
S 

Supply voltage 

VT Variable transformer 

SWA: Switching angle selector 

Storage oscilloscope 

Fig. 3.11 Transient recording-circuit diagram 

- 179 - 



- 

oý- 

1 

Fig. 3.12 Magnetisation characteristic of the 

sample transformer 
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Fig. 3.15 Rcperimental B/H Characteristics 
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RX 
SS 

-- 

e 

ReXeL 

-Mffi-"Pý 

( e%. O EeRL v (Load) 

IL (AMP) 

0 10 5 
R D. Aernal esistance e 
X External Reactance 

e 
Ee Open-Circuit Voltage 

RL: Variable Load 

Fig. 3.18 External circuit, equivalent circuit and 
characteristic of VL (I L) 
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Es: Supply Vol tage 

R 
sh : 

Shunt Resistance 

VT: Variable Transformer 



Fig. 3.19: Voltage/cu-rrent characteristic of the switching- 

angle selector 
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1(A) 

50 

20 

* 

20 

5 

1 

0.5 

0 

a 

b 

C 

Fig. 3.20 
Transient current patterns for 0.5 kVA, single-phase transformer, 
unloaded, 150 V supply, 00 switching angle. 

a. Maximum positive residual flux density (B 
r +0.958) 

b. Zero residual residual flux density (B 0) 
r 

0. Maximum negative residual flux density (B 
r -0-958) 

Left hand side computed, Right hand side recorded. 
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B(T) 

a 

b 

q) 

a 

P4.3.21 
Transient B/H pattern for the same transfo=er and conditions as Fig. 

a. Maximum positive residual flux density (B 
r= +0.958) 

b. Zero residual flux density (Jýr =0 . 0) 

C. Maximum negative residual flux density (-Rr = -0.958) 

Left hand side computed, Right hand side recorded. 

N) 
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Fig. 3.22 : Effect of residual condition 

on peak transient current 

variation with switching 

angl e o( 
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Figure 3.23 
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Variation of the first peak value 

of h with generalized parameters 
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Figure 3.24 Ibid 
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Figure 3.25 Jbid 
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Figure 3.26 lbid 
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Figure 3.27 Variation of steady-state peak value 

of h with generalized parameters 
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Figure 3.28 Ibid 
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Figure 3.29 Ibid 
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Figure 3.30 Ibid 
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Busbars 

A 

B 

mer 

RA 

TA 

I 

IC 0 
Capacitance between line and earth. 

C Capacitance between two lines. 

a. Actual system. 

b. Equivalent diagram for one phase. 

Fig. 4.2 Single phase, ferroresonance 
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Busbar 

cuit breaker Open isolator 

Pransformer 

a) 

V 

b) 

Open circuit breaker 
F-.. I 

q 
r 

0 

LC 
Phase-earth voltage of system. 

x S 

Capacitance between the interrupter head. 

C0Cs: Capacitance to earth. 

b: Equivalent diagram for one phase. 

1 -Z Ibid Fig. r., / 
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Figure 4.11 Ibid 
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Figure 4.12 Flux voltage characteristic of 

Fundamental Ferroresonance 
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Fig. 4.18 
Steady-state normal resonance, 0.5 kVA single-phase transformer. 

C= 22 pir ,V= 135 V. 

Computed B/H pattern 
Recorded B/H pattern 
Computed current waveform 

iv Recorded current waveform 
V Computed Transformer voltage waveform. 

Vi Recorded Transformer voltage waveform 
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Fig. 4.2o 
Steady-state assymmetric resonant mode, 0.5 M. 

Single-phase transformer. C= 10 )ýF. V= 275 V. 

i Computed B/H pattern 
i: i Recorded B/H pattern 

iiI Computed current waveform 
iv Recorded current waveform 

T Computed transformer voltage waveform 
Vi Recorded tranisformer voltage waveform 

- 209 - 

i 1(A) 



III 

5 

4 

3 

2 

1 

The value of P3 is decreased from P3 1- 

Figure 4.21 Variation of absolute value of hp 

with generalized parameters 
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Figure 4.25 Ibid 
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Steady-state subharmonic resonance in a 0.5 kVA, single-phase transformer. 
C= 22 PF. V= 70 V. 
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Fig. 5.10 Variation ofTj/%y 3 characteristic 

with the resistance of tL-e circuit 
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Fig. 5.11 Variation of A, /, y 3 characteristic 

with the resistance of the circuit. 
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Fig. 5.13 

Z=2.65 mH 
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