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Abstract

Statistical analysis can be overly reliant on naive assumptions of independence between

different data generating processes. This results in having greater uncertainty when

estimating underlying characteristics of processes as dependency creates an opportunity

to boost sample size by incorporating more data into the analysis. However, this

assumes that dependency has been appropriately specified, as mis-specified dependency

can provide misleading information from the data. The main aim of this research is to

investigate the impact of incorporating dependency into the data analysis.

Our motivation for this work is concerned with estimating the reliability of items and

as such we have restricted our investigation to study homogeneous Poisson processes

(HPP), which can be used to model the rate of occurrence of events such as failures.

In an HPP, dependency between rates can occur for numerous reasons. Whether it

is similarity in mechanical designs, failure occurrence due to a common management

culture or comparable failure count across machines for same failure modes. Multiple

types of dependencies are considered. Dependencies can take different forms, such as

simple linear dependency measured through the Pearson correlation, rank dependencies

which capture non-linear dependencies and tail dependencies where the strength of the

dependency may be stronger in extreme events as compared to more moderate one.

The estimation of the measure of dependency between correlated processes can be

challenging.

We develop the research grounded in a Bayes or empirical Bayes inferential frame-

work, where uncertainty in the actual rate of occurrence of a process is modelled with a

prior probability distribution. We consider prior distributions to belong to the Gamma

distribution given its flexibility and mathematical association with the Poisson process.
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For dependency modelling between processes we consider copulas which are a conve-

nient and flexible way of capturing a variety of different dependency characteristics

between distributions. We use a multivariate Poisson – Gamma probability model.

The Poisson process captures aleatory uncertainty, the inherent variability in the data.

Whereas the Gamma prior describes the epistemic uncertainty. By pooling processes

with correlated underlying mean rate we are able to incorporate data from these pro-

cesses into the inferential process and reduce the estimation error.

There are three key research themes investigated in this thesis.

First, to investigate the value in reducing estimation error by incorporating depen-

dency within the analysis via theoretical analysis and simulation experiments. We show

that correctly accounting for dependency can significantly reduce the estimation error.

The findings should inform analysts a priori as to whether it is worth pursuing a more

complex analysis for which the dependency parameter needs to be elicited.

Second, to examine the consequences of mis-specifying the degree and form of de-

pendency through controlled simulation experiments. We show the relative robustness

of different ways of modelling the dependency using copula and Bayesian methods. The

findings should inform analysts about the sensitivity of modelling choices.

Third, to show how we can operationalise different methods for representing depen-

dency through an industry case study. We show the consequences for a simple decision

problem associated with the provision of spare parts to maintain operation of the in-

dustry process when dependency between event rates of the machines is appropriately

modelled rather than being treated as independent processes.
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Chapter 1

Introduction

The research is motivated by the need to address risk and reliability decision analysis.

The management of arising challenges with the use of the Poisson-Gamma probability

models is in central focus. The Poisson-Gamma probability model is a popular choice

for such analysis due to its flexibility and ability to handle count data with excess

zeros. Research by Walls and Quigley (1999; 2011) aims to address the challenges in

risk and reliability analysis using Poisson-Gamma probability models, specifically in the

context of new product development and risk mitigation decision support. The model

encompassed interdependencies within a one-shot system in the stage of developers

advancing to the target engineering design. The new product is an updated version of

an existing design line, and the development team relied on data from previous design

versions, along with new test data, to inform certain aspects of the updated system.

A setting with the features of high-consequence, low-frequency events is undertaken

by Quigley et al. (2007). They aimed at developing empirical Bayes framework suitable

for the investigated and distinctive features modelled by subjecting the inputs to a

Poisson-Gamma model. The method suited the setting of estimating the frequency

for train derailments within the UK. The authors are targeting in their objectives the

reduction of risk to a reasonable possible level.

A new inference framework found in the Bayes linear Bayes model is expressed

by Quigley et al. (2013). The underpinning presumptions count with a homogeneous

Poisson process. The analysis is positioned in comparison to a full Bayesian model with

1



Chapter 1. Introduction

a multivariate gamma prior. The paper used an application on correlated occurrence

rates in supply chain for various users displaying how neglecting dependencies results

in biased estimates. It is shown that the new subjective inference method was more

accurate than the traditional approach that ignored the correlation between event rates.

Over the last 20 years (i.e. 2002–2022) a semi-structured literature review shows

that the Poisson-Gamma probability model has been adopted in different aspects of

reliability and risk analysis. For example, this model has been used in various appli-

cations, new estimation strategies have been developed and, for the multivariate case

consideration has been given to the way in which dependency between model parame-

ters has been approached. A summary follows.

In the area of reliability, the papers often extend the applications to other fields.

Bourezaz et al. (2020) examine the metric “time to interrupt” in reliability to represent

the monthly failure number in supercomputer components. The authors note that

the analysis can be used likewise for survival analysis with taking the metric “time

to death”. Chen et al. (2019) use the Poisson-Gamma model within a shock model

for reliability engineering with a complementary application on insurance claims. It is

examined under which conditions the number of shocks will cause the system to fail,

exceeding a threshold.

Risk related papers are often modelling zero-inflated problems, addressing risks of

missing out on payments, security breaches and claims in insurance. Which means that

there are more zeros observed than we would expect. Such excess zeros are causing

biased results in statistical models. A way of adjusting the modelling strategy and

obtain more accurate estimates to this condition is to use a zero-inflated model. There

are risks of bank failure, risk for agricultural lenders, risk connected to bond pricing

and traffic risks of car crashes. While building models, there can be focus on specific

modelling parts like tails and extreme events. See (Chen and Leong, 2022; Diers et al.,

2013; Gerhold et al., 2010; Hemrit and Ben Arab, 2012; Mouatassim, 2012; Wang et al.,

2015).

Homogeneous Poisson-Gamma models are used furthermore in other areas. Within

spare parts management authors predict future spare parts repairs, give risk-based

2



Chapter 1. Introduction

ranking to important spares and make use of zero-inflated unrepresented failure alarms

(Percy, 2004; Hassan et al., 2012) and including ageing (Allella et al., 2002). In the

area of food and nutrition are HPP used to describe microbial counts and affecting

food sampling strategies. Making comparisons between the use of the Poisson-gamma

and Poisson-lognormal in the microbial food counts. Authors research on within-batch

and between-batch variability characterized by comparably low concentrations of the

investigated microbial counts. These concentrations suit to be modelled using Poisson-

Gamma regression with random effects assuming that certain model parameters have a

random effect on the model. Meaning they are then being treated as random variables.

A deeper explanation gives (Green et al., 1960, p. 131): “When a sample exhausts the

population, the corresponding variable is fixed; when the sample is a small (i.e. negli-

gible) part of the population the corresponding variable is random.” That is especially

convenient for larger amounts of zero counts in the data. Some papers are combin-

ing other methods like deep learning with the Poisson-Gamma model (Cabras, 2021;

Gonzales-Barron and Butler, 2011; Gonzales-Barron et al., 2013). Tweedie distribu-

tions are a family of distributions that for the Tweedie power parameter 1 < p < 2,

where p ∈ R are occasionally named Poisson-Gamma distributions. Studies can be

conducted as an extension of the univariate dispersion Tweedie family. The Poisson-

Gamma model is applied within risk management in risk capital allocations. See (Abid

et al., 2020; Furman and Landsman, 2010; Hasan and Dunn, 2011).

Poisson-Gamma is an accepted modelling family in risk and reliability analysis for

certain types of problems, and although this thesis considers one model we are aware

that there exist other models, including in the Poisson family even though we have

chosen not to make them the subject of your research.

1.1 Modelling Dependency in Homogeneous Poisson Pro-

cesses

Earlier studies (Quigley et al., 2007; 2013) that motivated this research were concerned

with modelling the dependency between data generating processes; particularly for
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models that assumed underlying homogeneous Poisson processes (HPP) or Poisson-

Gamma probability models when full Bayesian or empirical Bayes inference was to

be accommodated. More generally, there has been wider consideration of modelling

dependency in the context of stochastic processes in risk and reliability analysis. We

first consider some of the wider issues associated with modelling dependency using

probability models.

With the growing need of correctly representing underlying dependencies in models,

parameters and rates, authors are developing advanced modelling frameworks withing

the reliability context. Having the data independently generated, but not observing

dependency in the underlying structure in their failure rates. In the context of rare

events, many critical data aspects may be missing. Enriching the information pool

with likewise data can show vital in supporting the modelling of the reliability of a

new design during development by extending the amount of data used for estimation

to obtain more accurate results. Described by (Quigley et al., 2013; Olatubosun and

Zhang, 2018; Khosravi et al., 2018; Wang et al., 2020).

A way of introducing a dependency structure offers the usage of copulas. Copulas

are useful in inducing structures into dependency. Work has been accomplished on

topic of copula dependency to model multivariate prior distributions and apply them

on count data (Caliendo et al., 2021; Park et al., 2021; Dimitriou, 2022), where copulas

were present mainly as part of a larger formula modelling the failure rate.

Using copulas relies on selecting a suitable copula structure with an implication of

risking a possible mis-specification, as the current state of art shows (Durrleman et al.,

2000; Trivedi and Zimmer, 2007; Acar et al., 2019; Park et al., 2021).

A wide class of applications (Pörn, 1990; Bunea et al., 2005) in the risk and relia-

bility context show that failures can be well approximated with a Poisson distribution.

Two-stage Bayesian models are often introduced by giving failure rates a prior dis-

tribution in order to enhance the complexity of the Poisson element. This work is

bounded to a homogeneous Poisson process (HPP). We consider the situation where

we have a collection of HPP, each with its own underlying rate, so denoting the rate

of the jth process with λj . We are considering in our case two parallel running pro-
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cesses λ1 and λ2. These rates observe correlation. λ1 represents the examined rate

and λ2 a rate that is similar (correlated) to λ1. So we have 2 rates between whom we

observe dependency. Moreover, a structure encompassed with a copula function. The

HPP events N1, N2 themselves are conditionally independent after taking account of

underlying failure rates, as illustrated on Figure 1.1. The copula aspect is changing the

degree of dependency for different percentiles of the marginal distribution of the prior

distribution. Engineering applications in the area have been published by (Dutfoy and

Lebrun, 2009; Achibi et al., 2012; Pan et al., 2018; Wang et al., 2020 Zhou et al., 2019).

Applications of road crash data are seen in (Savolainen et al., 2011; Wali et al., 2018;

Yasmin et al., 2018; Caliendo et al., 2021; Park et al., 2021).

Prior distribution

  

Figure 1.1: Diagram illustrating the dependency occurring between the rate parameters
of the Poisson distribution in a hierarchical Bayesian model.

Dependency between parameters in the area of risk and reliability may arise due to

various reasons. We may observe correlation within a model or moreover the proba-

bilistic parameters. This can be due to the fact that systems may be subjected to the

same environmental factors or show a similar inherent behaviour. Uncertainties can be

affected by the same correlation source. A possible way of modelling these underlying

dependencies in failure rates is with the use of multivariate prior distributions or by

using copulas.
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1.2 Value of Capturing Dependency in Probability

Modelling

Accounting for dependency will possibly prove valuable as will be evidenced during

this thesis. The value of dependence comes to light when compared with treating the

data generating processes as independent. This contributes to properly understand the

overall risk. In cases where complex relations and dependencies between variables, rates

or data are present, assuming independence does not have full justification. Practically,

it can be argued for example a diminishing effect of drugs (medicamentations) on bugs

(illnesses) due to dependency in the work on rates of bug-drug resistance, pointing out

systemic risk (Werner et al., 2017; 2021).

Savings can be quantified with considering dependency. 29% safety stock can be

saved in (Song, 2002) who researches inventory multi-item systems backorders within

the area of management science. The authors examine the influence of considering

common components within service and inventory. This paper further scrutinizes the

if constructing a common component will enhance inventory service. Nevertheless the

achieved savings, it is acknowledged that an all-including reduction in cost can be hard

to identify. Nevertheless, authors detail savings on safety stocks. A 27% in bias in

the estimation of Value at Risk in multivariate portfolios states Fantazzini (2009) in

finding that when mis-specifying a Student’s t-copula with a Normal copula, the bias

increases. If negative dependencies are present, the bias is much larger.

Notably, 6%, most commonly 3% is the underestimation in expected revenue from

the actual revenue a retailer observes in a multi-period clearance pricing problem by

Yahav and Shmueli (2012) with considering dependency for multivariate Poisson counts

with correlation seemingly between occurrence rates. Authors are considering the mul-

tivariate Normal, then the univariate Poisson and lastly the multivariate Poisson dis-

tributions.

Eliciting dependency is challenging. Whether it is eliciting linear correlation coeffi-

cient or rank correlation coefficients between multivariate quantities or tail probabilities,

conditional quantities and concordance measures. When experts face decision problems
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under uncertainty, they are interested in reducing uncertainty as much as possible. To

incorporate as much related data as possible in an appropriate manner will help to

achieve better estimates. Some processes as similar to each other, so the more similar

two processes are then the more representative their data are of each other. The degree

of similarity is in this sense the degree of dependency. Assuming independence is not

sensible. Therefore we need to take into account dependence. Historical data to access

dependencies can be unavailable or too expensive to acquire. Structured expert judg-

ment therefore sometimes offers the only sensible solution for eliciting uncertainties of

interest, including dependencies.

Dependency might be feature of the problem and there are models capable of repre-

senting this dependency. Earlier studies (Park et al., 2021; Quigley et al., 2013; Song,

2002; Werner et al., 2021; Yahav and Shmueli, 2012) show estimation accuracy gains

in modelling dependency when it exists. However, when building models for real prob-

lems, the demands of data collection increase when dependency might exist. There

remains issues to explore about the value of actually getting dependency data.

1.3 Aims and Objectives

The overall aim is to investigate the performance of an analytical approach based on

a multivariate Poisson-Gamma probability model with parameter dependency to learn

about the effects of choices on the way dependency is represented, the type of statistical

inference conducted, and the implications of mis-specifying the form or strength of the

dependency. The research is bounded to consider to the multivariate Poisson-Gamma

probability model to allow investigation of issues not yet reported in the literature.

The research is motivated by industry problem of accurately estimating the relia-

bility of a new variant engineering system design. Data about an existing system is

present and available to be drawn upon. Can we make effective use of all existing avail-

able data? The question is how? Additionally, we include some knowledge about the

assumed failure rate and its uncertainty around it in form of a prior distribution with

parameters, which can be elicited for example via expert judgement facilitating and

enhancing the analysis. To address the posed question, a suggested approach would
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involve a mechanism that includes the integration of all relevant usable data with the

utilization of a proposed prior distribution.

The described situation is not only observed by manufacturers, but also arises in

various circumstances. Whether it is measuring counts of accident types in road safety

data or looking at similar counts of failure occurrences of failure modes between two

machines. The similarity capturing the strength of the statistical dependency between

the target failure rate and the failure rate of a similar product is measured via the linear

correlation parameter. For a copula framework, we use rather the rank correlation.

Our research objectives are:

� R.O. 1: To investigate the estimation accuracy using empirical Bayes infer-

ence when there is correlation between the mean rates in a multivariate Poisson-

Gamma probability model.

Estimating failure rates using data implies we are without the knowledge of its true

underlying rate. Using empirical Bayes inference, we evaluate at which accuracy are

the estimates obtained.

� R.O. 2: To assess the changes in estimation accuracy when the correlation be-

tween the mean rates in a multivariate Poisson-Gamma probability model is mis-

specified.

Since eliciting dependencies can be challenging, we like to question ourselves about

what would happen if the expert assessments are subject to systematic bias. Would

it be of significant importance? We will investigate the magnitude of such an induced

error for various scenarios.

� R.O. 3: To examine the effect on estimation accuracy and precision when the

dependency in a multivariate Poisson-Gamma probability model is represented

using a copula, including when the copula family is mis-specified.

Wemay experience mis-specification of the dependency structure represented via copula

function.We might assume a strong correlation value on one tail dependence and weak

correlation on the other tail, so we choose the suitable copula. But what if we misjudge
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these dependencies and choose a certain copula, while the actual true underlying copula

is another?

� R.O. 4: To illustrate the application of methods to account for dependency in the

parameters of a Poisson-Gamma model using both empirical Bayes inference and

copulas through an industry case. Further:

1. To compare the relative performance of the different methods for this case.

2. To explore how the results of modelling might be translated to a decision-

making context.

For the considered case study, we utilize data provided by Siemens Analyse about

machine failure. Can we make use of similar counts of failure occurrences of failure

modes between two machines? Is it possible to apply the developed framework. Confirm

the underlying statistical assumption by performing relevant tests? The results would

enable us to make predictions about future events.

1.4 Thesis Structure

Chapter 2 is a modelling chapter aimed at establishing the foundation for the modelling

framework for our research. Poisson processes and homogeneous Poisson processes

(HPP) are introduced establishing groundwork in modelling assumptions for subsequent

analyses. The chapter introduces the reader with Bayesian inference. Alongside, derives

from it the relatively more novel and compared to the Bayesian analysis lesser-known

case of the empirical Bayesian inference. Notably, the copula theory is introduced as

a tool to capture dependencies within the prior distribution, thereby enhancing the

overall modelling framework flexibility. Lastly, the chapter culminates by discussing

estimation approaches with particular attention to the bias and mean squared error

(MSE) as metrics to gauge the efficacy and accuracy.

Within this thesis in Chapter 3 (peer-reviewed journal article), we examine whether

it is worthwhile eliciting subjective judgments to account for dependency in a multivari-

ate Poisson-Gamma probability model. We have conscientiously selected the Poisson-

Gamma model to account for on one side the inherent randomness in the form of
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aleatory uncertainty and on the other side for the knowledge-based uncertainty de-

scribed as epistemic uncertainty. The Poisson element captures aleatory uncertainty

and resembles a homogeneous Poisson process (HPP). A counting process characterized

by a mean rate. The gamma distribution brings epistemic uncertainty to the mean rate

of the Poisson distribution. It brings ambiguity around the parameter. Research sug-

gests it to be a suitable model for modelling under-dispersed and over-dispersed data.

The challenge of estimating reliability during product design motivated the choice of

model class. The work is motivated by modelling supports the reliability program of a

new product in development for a one-shot system. For this new product design family

were identified some similar elements from earlier designs. With the help of expert

knowledge, engineers are able to enrich the limited pool of available empirical data

with relevant rich historical information. For the multivariate Poisson-Gamma model,

we adopt an empirical Bayes methodology to present an estimator with improved ac-

curacy of failure rate estimation. Engineers are facing modern-day reliability problems

of different types. When working with similar failure-generating processes, they en-

counter small data samples, they need to be flexible and adjust to changing parameters

of assumed marginal distribution. Aditionally, there is a substantial need to capture

dependency precisely. As Dias et al. (2017, p. 124) points out, ignoring dependence

in data estimation overconfidence and inappropriate assumptions. To investigate the

estimation error, we take the route of a simulation study. Different parameters of the

marginal distribution, pool sizes and dependencies are being modelled. A simulation

study investigates the estimation error of this estimator for different degrees of depen-

dency and examines the impact of dependency being mis-specified when assessed by

subjective judgment. Our theoretical and simulation findings give analysts insights into

the value of eliciting dependency.

Chapter 4 investigates the impact of an incorrect choice of a copula on the error

estimate. We develop a Poisson – copula with Gamma marginals probability model.

We wish to consider situations with a strong or weak association in one of the tails. In

applications can be observed that in the joint cumulative distribution do the marginal

distribution have an increased/decreased association on a distribution tail. Applied,
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failure rates in the lower tail may be more (or less) correlated than failure rates in

the upper tail. To specify the structure of the dependence, we work with 4 widely

used copulas. For these we choose an assumed and a true copula. From 4 × 4 = 16

possible combinations, we identify 4 main combinations that matter. Looking at two

authoritative measures, namely the bias and MSE. For these we see, how changes occur

over percentiles (10th, 50th and 90th). Guidance is provided on suggested situations

when such a fallacy matters.

Chapter 5 shows how it is possible to improve the failure rate estimation of a

certain machine using additional data of a similar machine on data kindly provided by

Siemens Analyse. It is rationalized that similar counts are observed for same failure

causes. Aim to reduce the variability around the investigated estimates and provide

more certainty to decision makers. The underlying assumptions of working with a

homogeneous Poisson process are tested. The results and research is finally validated

by a K-fold cross-validation.

Chapter 6 summarizes the thesis and points out the highlights of each chapter. It

addresses and evaluates, how are the research objectives are met and is shedding light

on the contributions to knowledge of the thesis. The chapter points out limitations and

future work.
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Modelling Background

The purpose of this chapter is to provide material to set up the modelling family in

which we are conducting our research.

We shall describe homogeneous Poisson processes and pave the path to them by

earlier defining stochastic processes and counting processes. This gives a pretext to

introducing the Poisson model. The model is compared in the context of standard

frequentist estimation, Bayesian estimation. As a next step we introduce the empirical

Bayesian estimation and an interesting aspect of including partial dependency.

Variables that fluctuate randomly over time are called stochastic processes. They

are a collection of random variables indexed by time. They are indicating randomly

occurring events. Researchers encounter them in form of such as Markov processes,

Brownian motion, and Poisson processes. Stochastic processes can be used to describe

complex models such as fault detection models and fault removal processes shown in

(Walls and Quigley, 1999). Poisson processes have proved themselves well to model

failures or repairs in a given time frame. A stochastic process is a family of random

variables {Xθ}, indexed by a parameter θ, where θ belongs to some index Θ. A count-

ing process X(t) is a process in discrete or continuous time for which the possible

values of X(t) are the natural numbers (0, 1, 2, . . .) with the property that X(t) is a

non-decreasing function of t (Ross, 1995).
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2.1 Poisson Processes and HPP

One of the most used counting processes is the Poisson process (Baxora, 2021). Let us

imagine a starry sky. Stargazers enjoying the beauty of a clear view ponder, how to

describe the shining dots statistically. There is no clear pattern and points are scat-

tered without a visible regularity. These phenomena are well captured within Poisson

processes. From the starry sky moving towards a reliability context, we shall remove

one dimension and experience dots lined up on one axes, now representing time. This

would lead us to a one dimensional Poisson process with modelling instead of stars

failure occurrence. The Poisson process describes a counting process N(t), specifying

the total number of occurrences up to time t. The process is governed by the intensity

function λ(t), detailing the instantaneous rate of occurrences. The process is well suit-

able for statistically describing changes through time in the number of buses arriving at

a station, number of mutations in a DNA sequence and most importantly, the number

of failures in a machine. The number of occurrences is governed by a failure rate. A

counting process {N(t), t ∈ [0,∞)} is called a Poisson process with rate λ > 0 (fixed)

under defined circumstances.

The counting process is a homogeneous Poisson process (HPP) by Ross (2006,

p. 313), if having three features

1. N(0) = 0 .

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson distributed with mean

λt. That is, for all s, t ≥ 0:

P{N(t+ s)−N(s) = n} = e−λt (λt)
n

n!
, n = 0, 1, . . . (2.1)

2.1.1 Stationarity

Stationarity is an important assumption of stationarity made in formulating the homo-

geneous Poisson process (Gabbiani and Cox, 2010, p. 256).
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Definition 2.1.1 (strict-stationarity). A stochastic process X(t) by (Zhang, 2022,

p. 4) is strictly stationary if the sets of random variables X(t1 + τ), . . . , X(tk + τ)

and X(t1), . . . , X(tk) have identical joint probability distribution for any τ > 0 and

t1, t2, . . . , tk where k = 1, 2, . . .

Thus, a stochastic process is strict-sense stationary iff:

fX(t1+τ),X(t2+τ),...,X(tk+τ)(x1, x2, . . . , xk) = fX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk) (2.2)

for all k, all choices of n1, n2, . . . , nk and all time offsets τ .

Definition 2.1.2 (wide-stationarity). A stochastic process X(t) by Zhang (2022) is

wide-sense stationary, if

1. its mean is constant, i.e. E{X(t)} = µX ;

2. its second order moment is bounded, i.e., E{X(t)XT (t)} = E{|X(t)|2} <∞

3. its correlation function is time independent, i.e.,

CXX = E{[X(t)− µX ][X(t− τ)− µX ]T }

Speaking about stationarity, we shall consider wide-sense stationarity. If a stochas-

tic process is strict-sense stationary, then in addition is the process wide-sense station-

ary.

When modelling event data using a stochastic process then the tests for stationarity are

the ADF (Augmented Dickey Fuller) and KPSS (Kwiatkowski-Phillips-Schmidt-Shin)

test. The KPSS test is in the null hypothesis not rejecting stationarity, whereas the

ADF test can not accept the hypothesis of non-stationarity (Kwiatkowski et al., 1992).

2.2 Bayesian Inference

For the Bayesian method, we are assuming that the data originate from a distribution,

whose parameters are known to us. The method allows us to combine information
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contained in the data with that of an a priori guess represented with prior distribution

Bayesian methods offer an opportunity to make use of expert judgement on the value

of the parameter. The need arises to specify in first place the prior distribution. The

association of the prior with the data follows via application. As a result, we obtain

the posterior distribution. The updated assigned probabilities for distribution of the

underlying parameters. So that conclusions about the parameter distribution may be

drawn, by the Bayes Theorem. Let us at first define the conditional probability. It

described the probability of even A given event B has already occurred. It equals to

the probability of events A and B jointly occurring (A∧B) divided by the probability

of B.

Definition 2.2.1 (Conditional Probability).

P (A|B) =
P (B ∧A)
P (B)

(2.3)

The Bayes theorem takes the form:

Definition 2.2.2 (Bayes Theorem).

P (Ai|B) =
P (B ∧Ai)

P (B)

=
P (B|Ai)P (Ai)
n∑

i=1
P (B|Ai)P (Ai)

(2.4)

In Bayesian statistics, the Bayes Theorem provides a tool to update the probability

about an investigated parameter based on obtained new information. A1, . . . An repre-

sent exclusive and exhaustive events. Let us replace Ai with the parameter θ and B

with data x. The density of the posterior distribution is proportional to

f(θ|x)︸ ︷︷ ︸
Posterior

∝ f(x|θ)︸ ︷︷ ︸
Likelihood

× f(θ)︸︷︷︸
Prior

(2.5)

where f(x) is the normalising constant. With x denoting the observed data and θ the

investigated parameter. Using the Bayes Theorem, we can update the prior distribution
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with data. The likelihood distribution results in the posterior distribution describing

the investigated parameter θ after observing data x. The denominator of the Bayes

Theorem, which is the normalising constant f(x), is a numerical constant that can

numerically estimated and does not have any implications on the inference. It can be

omitted since not depending on θ. If new data becomes available, the posterior is used

as the new prior that will be updated.

The data, more precisely the likelihood distribution stands in the Bayes Theorem

as a term that updates the prior distribution.

f(x|θ) = L(θ) ∝ P (Data|θ) (2.6)

We suppose that data are observed. These data are assumed to originate from a

probabilistic distribution with a vector of parameters θ (Lawless, 2011, p. 49). The

likelihood function, as a function of θ, describes the probability of the data we have

observed. Often under assumption of total independence of observations (i.i.d), the

likelihood function is constructed as the product of individual distributions of data

probability distributions, a function of random samples X1, . . . , Xn.

P (Data|θ) =
n∏

i=1

f(xi|θ) (2.7)

The prior distribution is represented by f(θ). The distribution represents the knowl-

edge about the parameter before observing any data. Priors have different levels of

informativeness. This is the information contained in the prior distribution ranging

from considerable level of certainty to complete uncertainty, an uninformative prior.

An uninformative prior is often called a flat prior. The parameters that control the

prior are named hyperparameters. The assigning of hyperparameter values may be

based on a scientifically educated guess, expert judgement. (van de Schoot et al., 2021,

p. 2) urge to conduct a prior sensitivity analysis to examine what impact will different

values of the prior have on the posterior. Since the data are assumed to originate from

the prior data population, one might expect that the posterior will not diverge largely

from the prior. The likelihood will conform to the prior. However, a contrary outcome
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is not necessarily faulty as likelihood might be misjudged or we worked with biased

data (van de Schoot et al., 2021, p. 5). The outcome of the Bayes analysis is not just

a single value, but a full distribution, the posterior distribution.

We will assume the Gamma prior distribution π(λ), given in Equation 3.4. The

Gamma distribution is chosen especially for analytical convenience between the prior

and likelihood function. This means that the posterior is of the same distribution as

the prior distribution, but with different parameters. Another requirement is to choose

a non-negative distribution. Specific forms of the bivariate distributions (Equations

2.27 and 3.14) are chosen to enable capturing dependency in the prior distribution.

For the prediction of new values is used the predictive distribution (Gelman et al.,

1995). For the case, before any data is observed and only the prior is available, statis-

ticians work with the prior predictive distribution translated as:

p(y) =

∫
p(y, θ)dθ =

∫
p(θ)p(y|θ)dθ (2.8)

It is essentially a weighted average of the distributions that the data follow, where

the weights are provided by the prior distribution. After observing data (size k), the

posterior predictive distribution becomes available with the predicted variable y∗:

p(y∗|y) =
∫
p(y∗, θ|y)dθ

=

∫
p(y∗|θ, y)p(θ|y)dθ

=

∫
p(y∗|θ)p(θ|y)dθ

(2.9)
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2.3 Empirical Bayesian Inference

Estimate

Prior 
Distribution

Data 
Distribution Data Bayes

Theorem
Posterior 

Distribution

Figure 2.1: Empirical Bayes Process for obtaining the posterior distribution.

Between the classical frequentist and Bayes method lies the empirical Bayesian ap-

proach (EB). The empirical Bayesian method combines Bayesian and frequentist method.

The difference to the Bayesian method is in the data being the source of information

for determining the prior parameter, whereas in the Bayesian method the prior dis-

tribution is determined before the analysis possibly with the use of expert judgement.

The development of the empirical Bayes methodology dates back to Robinns in the

1950s as Efron (2019) mentions. For a comparison of the Bayes and empirical Bayes

methods Carlin and Louis (2010) details how these methods compare in theory and

practice. The empirical Bayes method is being used in many applications and further

developed (Zhang, 2003; Scott and Berger, 2010; Louis, 1991; Carlin and Louis, 2010;

Leng and Kendziorski, 2015; Corotis, 2015; Quigley and Walls, 2011; Mukhopadhyay

and Fletcher, 2018).

We are using the data to estimate the distribution parameters. After estimating the

prior parameters, the analysis considers prior as known and proceeds towards Bayesian

updating using the Bayes theorem. From the obtained posterior distribution of the

parameter space, we may wish to take a single quantity as a representative such as the

posterior mean. As in the way of the Bays method.

In Figure 2.1 is explained the process of obtaining the EB estimate. We assume data

are following a probability distribution, whose parameter is governed by a prior distri-

bution. We seek to estimate the prior parameters by pooling the data, i.e. the empirical
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prior distribution. After estimating the prior distribution by the Bayes Theorem, we

can conduct Bayesian updating to obtain the posterior distribution.

There are two main pathways for estimation. One the non-parameteric EB esti-

mation and the parametric EB estimation. In the thesis is applied only parametric

EB. The parametric EB requires to choose a (data-based) value of the prior parameter

and to specify the posterior distribution. The value of the prior parameter is typically

specified using MLE or MME estimation procedure. One of the main advantages is

that analysts are able to make inference about parameters that would be difficult set

by expert judgement. The non-parameteric approach assumes an unknown form of the

prior parameter.

Empirical Bayesian developments are well described by (Zhang, 2003 as cited in

Efron, 2019). As Efron and Hastie (2016) points out, empirical Bayes has various

usage. One of them is empirical Bayes hypothesis testing. Next to model selection

(Frost and Savarino, 1986), parameter estimation and prediction. Or another usage

is Robin’s formula based on Bayes formula as a non-parametric point estimate. The

estimation methods in the same way as in Carlin and Louis (2010) is divided into point

estimates and interval estimates, with the possibility to be applied in the Poisson-

Gamma model for reliability (Martz and Waller, 1982). As Efron (2019) points out, it

is possible to evaluate the accuracy of the empirical Bayes inference from an omnibus

perspective or an individual perspective, as Efron (2019) uses in this case finite Bayes

inference. Efron (2019) also praises the impact on statistical practice, but points out

the impediment in form of finding suitable data sets. Associated techniques to the

empirical Bayes method, besides the frequentist approach and Bayes approach, can be

seen as the Bayes linear methodology in Coolen et al. (2001) and Quigley et al. (2013),

or Oracle Bayes in Jiang and Zhang (2009). The developed methodology in Quigley

et al. (2007) aims to estimate rare events. The empirical Bayes methodology in this

case is discussed to improve the accuracy of the estimates in light of having little data

available. The methodology is useful especially when few data is available per hazard,

but a pool of similar hazards can be constructed to assist in the inference Quigley et al.

(2007).
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Empirical Bayes has applications in risk, finance, economics, genetics, sport analyt-

ics and more. The EB method is used for economic problems like GDP growth as in

Scott and Berger (2010), where the GDP growth regression is explained using various

geographical, social and political predictors. For accident data EB can model insur-

ance claims as in (Carlin and Louis, 2010). An application in pharmacy shows Louis

(1991), in genetics Leng and Kendziorski (2015). Different concepts of uncertainty in

mechanical and civil engineering can be found in Corotis (2015). Efron et al. (2001)

uses EB in genetics in genes identification. Quigley et al. (2007) shows applications

in technical risk analysis and Quigley et al. (2018) conducts an evaluation of suppliers

within a supply chain. Gelman and Stern (2006) predicts with EB the game outcomes

in sports. Frost and Savarino (1986) estimate risk and assemble portfolios. To conclude,

the empirical Bayes methodology is a valuable methodology for improving accuracy in

estimation generally and is particularly useful for risk reliability estimation.

2.4 Inference for the Multivariate Poisson - Dependency

Context - Copula

By Trivedi and Zimmer (2007, p. 3), “copulas are functions that connect multivariate

distributions to their one-dimensional margins”. Nelsen et al. (1999, p. 8) defines a

copula as follows in Definitions 2.4.1. Other type of definitions include a sub-copula

(Nelsen et al., 1999, p. 19), from Sklar’s theorem (Schweizer, 1991), or as a multivari-

ate distribution (Joe, 1997, p. 12). Copulas are offering great flexibility as they can

couple with no limits distributions together with complex dependence structures. The

marginal choice is indeed arbitrary. We may see copulas as parametrically specified joint

distributions that originate from given marginals (Trivedi and Zimmer, 2007, p. 7). De-

picting the researched copulas, Figure 2.2 shows symmetry in the dependence structure

for the Gaussian and Frank copula. The Gumbel copula shows increased dependence

in the right tail, whereas the Clayton copula performs an increased dependence in the

left tail.

Definition 2.4.1. A copula is a function C: [0, 1]2 → [0, 1] with the following proper-
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ties:

1. For every u, v in I,

C(u, 0) = 0 = C(0, v) (2.10)

and

C(u, 1) = u and C(1, v) = v (2.11)

2. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (2.12)

0 0.5 1

u1

0

0.5

1

u
2

Gaussian

0 0.5 1

u1

0

0.5

1
u
2

Frank

0 0.5 1

u1

0

0.5

1

u
2

Gumbel

0 0.5 1

u1

0

0.5

1

u
2

Clayton

Figure 2.2: Copula samples of the Gaussian, Frank, Gumbel and Clayton copula when
the dependence parameter is ρS = 0.9 with 1,000 generated samples.

Sklar’s theorem (Sklar, 1959) portrays and elucidates, how the marginal and a

copula are describing any multivariate distribution. By this, we justify the usage of
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copulas for multivariate distributions.

F (y1, . . . yd) = C(F1(y1), . . . , Fd(yd)) (2.13)

Implications from Sklar’s theorem are by Nelsen (2007b) in (Ghosh, 2010, p. 7) from

Equation 2.13 as follows:

1. We can define new families of multivariate distributions with requested specifica-

tions

2. We can study the copula and the marginal separately.

2.4.1 Archimedean Copulas

A widely popular class of copulas are the Archimedean copulas. Instead of a con-

struction by Sklar’s theorem, they are a Laplace transform (inverse) to a so-called

generator. The most wide used Archimedean copulas are the Frank, Gumbel and Clay-

ton copulas. Whereas the Gaussian would be an elliptical copula, a copula generated

by an elliptical distribution (Frahm et al., 2003, p. 277). “Archimedean copulas are

popular because they are easily derived and are capable of capturing wide ranges of

dependence.” (Trivedi and Zimmer, 2007, p. 41).

A copula C is called Archimedean if it can be written as

C(u1, . . . , ud|θ) = ψ[−1](ψ(u1; θ) + · · ·+ ψ(ud; θ)|θ) (2.14)

, ψ is the so-called generator and ψ[−1] the pseudo-inverse. For more classes are books

Joe (1997) and Nelsen (2007a) giving an overview and review.

2.4.2 Common Bivariate Copulas

We name some copulas that are present in the research as (Trivedi and Zimmer, 2007)

details.
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Gaussian copula

C(u1, u2|θ) = ΦG(Φ
−1(u1),Φ

−1(u2)|θ)

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
×
(
−(s2 − 2θst+ t2)

2(1− θ2)

)
dsdt

(2.15)

dependency θ within the interval (−1, 1). Allowing for both positive and negative

dependency. The Gaussian copula shows flexibility by permitting both positive and

negative dependency. It is a symmetric copula. Φ stands for the cdf of the standard

normal distribution and ΦG(u1, u2; θ) the bivariate standard normal distribution with

dependency parameter θ.

Frank copula

C(u1, u2|θ)− θ−1 log

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
(2.16)

Also negative dependency and symmetric alike to the Gaussian copula. Weak tail

dependencies characterise both tails. The strongest dependency is around the centre.

All values are permissible for the dependency parameter, θ ∈ (−∞,∞).

Gumbel copula

C(u1, u2|θ) = exp
(
−(ū1 + ū2)

1/θ
)

(2.17)

with ūj = − log(uj), with the dependence parameter θ ∈ [1,∞). Suggests a strong

right tail and comparable weak left tail. Only positive dependency is permitted.

Clayton

C(u1, u2|θ) = (u−θ
1 + u−θ

2 − 1)−1/θ (2.18)

With the parameter θ ∈ (0,∞), the copula is used to study cases, where strong left

tail dependencies are observed. Whereas the right tail dependencies are weak. The

generator of the copula is

ϕ(s; θ) = (1 + θs)−1/θ (2.19)
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The copula allows only positive dependency.

Special copulas (in the bivariate case d = 2) for dependency extremes are the indepen-

dency, co-monotonicity and counter-monotonicity copulas. The independence copula

is defined as

C ind(u1, . . . , ud) = u1 . . . ud (2.20)

The co-monotonicity with perfect positive dependence as

CM (u1, . . . , ud) =P (U ≤ u1, . . . , U ≤ ud) = P (Y ≤ min(u1, . . . , ud))

=min(u1, . . . , ud)
(2.21)

counter-monotonicity CCM with perfect negative dependence as

CCM (u1, u2) = P (U ≤ u1&1− U ≤ u2)

= P (1− u2 ≤ U ≤ u1) = max(u1 + u2 − 1, 0)
(2.22)

All the above copula converge in the limiting cases for dependency to the indepen-

dence copula, for full-dependency to the co-monotonicity copula and where is negative

dependency feasible to the counter-monotonicity copula (Ruppert, 2011, p. 178).

2.5 Multivariate Poisson with Copula in Prior Distribu-

tion

To model varying dependency structures in the prior distribution, we create a Poisson-

Gamma model with copula dependency in the prior rates (Chapters 5 and 6).

P (Ni = ni|Λi = λi) ∼ Poisson (λi) (2.23)

We assume that the data follow a Poisson distribution.

Λi ∼ Gamma (α, 1) (2.24)
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The rates originate from a gamma distribution.

G (λ;α, 1) =

λ∫
0

xα−1e−x

Γ (α)
dx (2.25)

With the according cdf.

F (λ1, λ2) ∼ Cθ (G (λ1;α, 1) , G (λ2;α, 1)) (2.26)

The distribution functions are now coupled with a copula, given the dependency pa-

rameter θ.

π (λ1, λ2) =
d2Cθ (G,G)

dλ1dλ2
(2.27)

The joint density function of λ1 and λ2 is derived from the copula via differentiation.

π (λ1, λ2|n1, n2) ∝ Poisson (n1;λ1)Poisson (n2;λ2)π (λ1, λ2) (2.28)

It is possible to formulate the density as the product of the data’s probability functions

with the copula density.

π (λ1, λ2|n1, n2) =
λ
n1
1 λ

n2
2 e−(λ1+λ2)

n1!n2!
π (λ1, λ2)

∞∫
0

∞∫
0

λ
n1
1 λ

n2
2 e−(λ1+λ2)

n1!n2!
π (λ1, λ2) dλ1dλ2

=
λn1
1 λ

n2
2 e

−(λ1+λ2)π (λ1, λ2)
∞∫
0

∞∫
0

λn1
1 λ

n2
2 e

−(λ1+λ2)π (λ1, λ2) dλ1dλ2

(2.29)

In detail.

E [Λi] =

∞∫
0

∞∫
0

λiλ
n1
1 λ

n2
2 e

−(λ1+λ2)π (λ1, λ2)

∞∫
0

∞∫
0

λn1
1 λ

n2
2 e

−(λ1+λ2)π (λ1, λ2) dλ1dλ2

(2.30)

The marginal distribution is derived from the joint distribution. The formulas can be

evaluated using Monte Carlo integration described in Section B.1.

To highlight:
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� The joint density f(y, x):

f(y, x) = c(FY (y), FX(x))fY (y)fX(x)

� The conditional density fY |X(y|X = x):

fY |X(y|X = x) = fY (y)c(FY (y), FY (x))

� The k-th moment E(Y k|X = x):

E(Y k|X = x) =

∫ ∞

−∞
ykc(FY (y), FX(x))dFY (y)

The theoretical MSE under mis-specification can be formally written by (Acar et al.,

2019, p. 11) as

MSE(λ1|cA, cT , N1, N2, ρ, α, β) =

= E0[{mW (λ1)− Λ1}|Λ2 = λ2]

=

∫ ∞

−∞

{∫ ∞

−∞
λ1 cW (FΛ1(λ1), FΛ1(λ2))f(λ1)dλ1 − λ1

}2

× cT (FΛ1(λ1), FΛ2(λ2)) f(λ1)dλ1

(2.31)

where mW (λ1) is the expectation under the assumed (working) copula. Examining

similar methods in mis-specification. Comparing Acar et al. (2019) to our results, we

look on the case, when the true copula equals the assumed to assure ourselves, that

the method provides the correct choice. Whereas Dupuis (2007, p. 385) uses quantile

differences, which are as well adopted in this research.

2.6 Classical Estimation Approaches

We define the bias as the expected difference between the estimate θ̂ minus the true

value θ.

bias = E
[
θ̂ − θ

]
(2.32)
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This order is important for the bias contrary to the MSE, where the order of the

true values and estimate is invariant. An estimator is said to be biased if its expected

value is not equal to the true value of the parameter. A biased estimator can lead to

incorrect conclusions about the estimated parameter.

The MSE (Mean Squared Error) is another standard measure of accuracy. It

provides insights on how far on average are the estimated values from the true values.

MSE = E
[(
θ̂ − θ

)]2
(2.33)

As a drawback is that the MSE is sensitive to outliers.

The MME (Methods of Moment Estimation) is estimating underlying model pa-

rameters. Setting sample moments equal to theoretical moments. A set of equation

is then solved for the desired parameter variables. But there are known disadvantages

like being sensitive to outliers (Arnold and Strauss, 1991). The k moment of a random

variable is

µk = E
(
Xk
)

(2.34)

The matching k sample moment is

mk =
1

n

n∑
i=1

xki (2.35)

The estimator is the solution of the equation µk = mk.

In the MLE (Maximum Likelihood Estimation), the data are assumed to follow

a distribution with a defined density. The joint density of the samples is forming

the likelihood function. For the model parameters, the maximum of the function is

found. The method has advantages like being assymptotically efficient, i.e. lowest

variance among all unbiased estimators. Among drawbacks we mention not always

being computationally easy and convenient for optimization Pratt (1976).

The common procedure is to take the logarithm of the likelihood, which reduces
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the computational complexity:

θ̂ = arg
θ

maxL(θ|x) = arg
θ

max log(L(θ|x)) = arg
θ

max l(θ|x) (2.36)

2.7 Summary

In this chapter we have described the theoretical properties of the homogeneous Pois-

son model as a simple stochastic process model. We have also described the three

approaches to inference which we adopt in later studies. Namely frequentist (classical

estimation), full Bayes and empirical Bayes.
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Chapter 3

Value of Expert Judgement

Elicitation of Dependency for

Multivariate Poisson-Gamma

Model

3.1 Introduction

We examine whether it is worthwhile accounting for the dependency in a multivariate

Poisson-Gamma probability model. More specifically, examine what is the benefit of

explicitly accounting for correlation in the model towards error reduction, and hence

towards estimation accuracy? Next, we examine what are the consequences of mis-

specifying correlation acquired via subjective expert judgement elicitation? We do not

seek to provide universal answers to this questions. Rather, we investigate this issue

for a particular multivariate probability model, a Poisson-Gamma model.

This model has underpinned analysis for real industry problems. For example, re-

cent modelling (involving two of the authors) to support decisions about the reliability

of a one-shot system during new product development. This was a new generation of

a product design family for which data from earlier design generations was deemed

relevant for some elements of the new system together with test data generated for the

29



Chapter 3. Value of Expert Judgement Elicitation of Dependency for Multivariate
Poisson-Gamma Model

new design throughout its development project. A correlation parameter represents

the dependency in the multivariate Poisson-Gamma probability model used for this

reliability estimation problem for the new design. The dependencies were elicited from

suitably qualified engineers using a structured process based on the method described

in Quigley and Walls (2018). This elicitation methodology maps the model parame-

ters to the engineering expertise then uses relevant data (say from related past design

elements and/or test) to quantify the dependency in view of the elicited judgements.

The elicitation approach, grounded in a specifically designed defensible protocol, was

resource intensive. It was also cognitively demanding for those expressing their subjec-

tive assessments despite having adopted an approach which asked engineers to express

their engineering, rather than probabilistic, expertise.

The chapter is structured as follows. First we present an estimator for the multi-

variate Poisson-Gamma model that pools data from correlated processes and should

result in reduced model estimation error. We develop this estimator through a com-

parative argument based on alternative inference approaches. We describe a simulation

study to investigate the accuracy of the proposed inference approach given the degree

of dependency (controlled through the correlation parameter) and the amount of data

(controlled by the number of processes in the pool). This study is extended to further

examine the impact of subjective mis-specification of the correlation parameter. We

conclude by reflecting on the limitations of our study, the implications of our findings

and provide suggestions for further work.

3.2 Model and Inference Framework

Our first objective is to develop an understanding of how pooling data from similar

processes can reduce estimation error. Specifically, we consider homogeneous Poisson

Processes (HPP) and we adopt an empirical Bayes framework to support the inference

under the assumption of Gamma marginal prior distributions. These are conjugate

to the Poisson and so are mathematically convenient as well as flexible. To motivate

the value of the proposed inferential framework for our multivariate Poisson-Gamma

model, we develop our reasoning through comparisons with standard methodological

30



Chapter 3. Value of Expert Judgement Elicitation of Dependency for Multivariate
Poisson-Gamma Model

approaches. After describing a classical inference approach, which provides a bench-

mark for later assessing estimation error, we present the Bayesian approach and show

the theoretical error reduction resulting by incorporating prior information. Since ex-

pressing subjective judgement in the form of a prior distribution can be challenging

and resource intensive to elicit Quigley and Walls (2021), we are motivated to present

an empirical Bayes approach where the Bayes mechanism is used but the prior distri-

bution is estimated by pooling data on similar processes. Finally in this section we

consider the pooling of data from multiple processes which are measurably correlated

in their underlying mean rates, such that data from other processes can be explicitly

incorporated into the inferential updating to reduce estimation error.

3.2.1 Classical Inference

Under classical inference we assume a probability model that measures the variation

in the data as a function of a parameter. We consider a Poisson distribution with

parameter λ which corresponds to the mean value of the distribution:

P (N = n;λ) =
λne−λ

n!
, n = 0, 1, 2, . . . (3.1)

A typical classical approach to estimation would be either to estimate λ through a

moment matching approach or a maximum likelihood approach. Assuming we have t

observations from the same stochastic process, where the observations are denoted by

nj , then the estimator is given by:

λ̂ =

t∑
j=1

nj

t
(3.2)

To assess the accuracy of such an estimator we treat the data as random variables

from the probability distribution and evaluate the Mean Square Error (MSE) which is
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given by:

MSEC = E


λ−

t∑
j=1

Nj

t


2
 =

λ

t
(3.3)

The MSEC for the classical estimator approaches 0 as the sample size increases.

3.2.2 Bayesian Inference

Under Bayesian inference we again assume the Poisson distribution but now consider

it as a conditional probability distribution assuming the true mean, denoted by λ, is

known. This mean is then modelled as a random variable where the uncertainty is

described by a prior distribution. Here we assume the prior distribution π(λ) belongs

to the Gamma distribution family. This Poisson-Gamma model is given by:

P (N = n|Λ = λ) =
λne−λ

n!
, n = 0, 1, 2, . . .

π(λ) =
βαλα−1e−βλ

Γ(α)
, α > 0, β > 0, λ > 0

(3.4)

Combining the Poisson and Gamma models, we obtain the predictive distribution which

is essentially a weighted average of Poisson distributions where the weights are provided

by the prior distribution. For this combination of Poisson data and Gamma prior, the

prior predictive distribution is in the form of a Negative Binomial distribution:

P (N = n) =

∞∫
0

λne−λ

n!

βαλα−1e−βλ

Γ(α)
dλ

=
Γ(α+ n)

Γ(α)n!

(
β

β + 1

)α( 1

β + 1

)n
(3.5)
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Similarly to the posterior predictive distribution after observing data taking the form

of:

P (N∗ = n∗|n
∼
) =

(k + β)
∑

ni+α

Γ(α+
∑
ni)Γ(n∗ + 1)

∞∫
0

λn
∗+

∑
ni+α−1e−(t+β+1)λdλ

=
Γ(n∗ + α+

∑
ni)

Γ(α+
∑
ni)n∗!

(
β + t

β + t+ 1

)α+
∑

ni
(

1

β + t+ 1

)n∗
(3.6)

Since Bayesian inference incorporates prior information on the process then the

mean prior, denoted by E[Λ], should be specified before observing any data, where:

E[Λ] =
α

β
. (3.7)

Once data have been observed on the process (such as the aforementioned t observa-

tions), the prior distribution can be updated using Bayes’ Theorem to give the following

posterior distribution:

π(λ|n
∼
) =

(β + t)
α+

t∑
j=1

nj

λ
α+

t∑
j=1

nj−1

e−(β+t)λ

Γ

(
α+

t∑
j=1

nj

) (3.8)

The associated posterior mean is:

E
[
Λ|n

∼

]
=

α+
t∑

j=1
nj

β + t
(3.9)

To facilitate comparison with the classical inference for the same model, we calculate the

MSE assuming a Bayesian framework by first averaging over the mean and subsequently
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over the data that will be realised to obtain:

MSEB =ENEΛ

[(
Λ− E[Λ|N

∼
]
)2 ∣∣∣∣N∼

]

=EN
∼


α+

t∑
j=1

Nj

(β + t)2

 =
α

β(β + t)

(3.10)

TheMSEB for the Bayesian estimator also approaches 0 as the sample size t increases.

Further, inspection of MSEB shows that it is less than E [Λ], which is to say that

prior to observing any data we anticipate that the MSEB will be smaller than the

expected value of the mean. Moreover, we anticipate that MSEB < MSEC since the

denominator of the former is β + t rather than just t as for the latter. This insight

is not surprising given more data are being introduced to the analysis in the form of

prior information. The data are reflected in the prior distribution since the parameters

of the prior distribution are estimated using moment method estimation (MME) as

shows Algorithm 15. As β increases, the smaller the variance of the prior distribution

(consistent with more precise judgement) and hence a smaller MSEB.

3.2.3 Empirical Bayes Inference

An empirical Bayes inference approach presumes we have a pool of Poisson processes,

each with their own λ all of which have been realised from the same probability distri-

bution, namely the prior distribution. Thus, by pooling the data associated with the

rates allows estimation of the prior distribution. Then Bayes’ Theorem can be applied

(as in a traditional Bayes approach) to provide a tailored posterior estimator for the

process of interest.

The empirical Bayes estimator for the Poisson-Gamma model is given by:

E[Λi|Ni = ni] =
α̂+ ni

β̂ + t
(3.11)

where the estimators of the prior distribution are denoted by
(
α̂, β̂

)
and we index the

mean values with subscript i to correspond to the ith process in a pool of m Poisson
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processes. The corresponding mean square error is given by:

MSEEB = ENi

EΛi


Λi −

α+
t∑

j=1
Nj

β + t


2 ∣∣∣∣∣Ni

∼




+ EN

E


α+

t∑
j=1

Nj

β + t
−
α̂+

t∑
j=1

Nj

β̂ + t


2 ∣∣∣∣∣N∼




=MSEB +MSEPE

(3.12)

TheMSEEB can be decomposed into two terms. The first term is theMSEB (Equation

3.10) and the second term is theMSEPE , which is the pool parameter estimation error.

This implies that MSEEB is affected by both the number of processes in the pool and

the number of observations in each process since MSEB only decreases as more data

are observed for process i and MSEPE decreases as the number of process in the pool

increases. Thus, an empirical Bayes estimator provides a means of reducing estimation

error since it allows the error to become closer to that of a Bayes estimator without

the need for a prior distribution. However, we note that the role of increased pool size

is to reduce MSEPE only and not MSEB.

3.2.4 Dependency between Processes

We now consider the situation of primary interest where we wish to include data that is

correlated with a process of interest with the aim of reducingMSEB. To accommodate

this we require a multivariate prior distribution to model the correlation between the

data generating processes. This multivariate prior model can be used within a Bayesian

approach if obtained by subjective judgement or within an empirical Bayes approach

if the parameters have been estimated from observations across a pool of processes.

As a motivating example, we could consider estimating the rate of occurrence of

major accidents at a specified location. By pooling data on major accidents across

multiple locations then an empirical Bayes estimator could be derived to improve the
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accuracy of the estimators. However, we can also include data on minor accidents

at each location where the rates are likely to be correlated with each other but not

necessarily perfectly. As such, the data from the minor accidents for the same location

can have a direct impact on reducing the MSEB due to its correlation with the major

accidents at that location.

Here we propose a framework that could be operationalised with a Bayesian or an

empirical Bayes approach to inference depending upon how the prior parameters have

been obtained. Let

ρ = corr(Λ1,Λ2) (3.13)

For ρ < 1 we assume the following bivariate Gamma distribution developed by

Minhajuddin et al. (2004) for which the marginal distributions for each process have a

Gamma prior:

π(λ1, λ2) =
βαλα−1

1 e−βλ1

Γ(α)

βαλα−1
2 e−βλ2

Γ(α)

× (1− ρ)α−2
0F1

[
[ ], [α];

(
β

1− ρ

)2

ρλ1λ2

] (3.14)

where

0F1

[
[ ], [r];

(
β

1− ρ

)2

ρλ1λ2

]

=

∞∑
k=0

((
β

1−ρ

)2
ρλ1λ2

)k

Γ(α+ k)k!

(3.15)

For ρ = 1, we assume the Gamma prior distribution π(λ), given in Equation 3.4.

The bivariate Gamma distribution in Equation 3.14 was first proposed as a multi-

variate prior for an HPP by Quigley et al. (2013) where many of the results we require

are derived. Here we state only those results which are key for our research. The
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posterior mean for this model which is given by:

E[Λi|n1, n2] =
ni + α+ E[K]

t+ β
1−ρ

(3.16)

where K is a discrete random variable whose probability distribution belongs to gener-

alised hypergeometric family of distributions (Patil and Joshi, 1968). This distribution

is expressed as:

P (K = k) =

Γ(α)Γ(n1 + α+ k)Γ(n2 + α+ k)

Γ(α+ k)Γ(n1 + α)Γ(n2 + α)

(
ρ
(

β
t(1−ρ)+β

)2)k

k!

2F1

[
[ni + α], [α]; ρ

(
β

t(1−ρ)+β

)2]
, k = 0, 1, 2, . . .

(3.17)

Further, (Quigley et al., 2013) show that:

lim
ρ→0

E[Λi|n1, n2] =
ni + α

t+ β
(3.18)

lim
ρ→1

E[Λi|n1, n2] =
n1 + n2 + α

2t+ β
(3.19)

These results indicate that as the correlation approaches 0, we obtain the Bayes

estimate for the multivariate Poisson-Gamma model. Also, as correlation approaches

1, we obtain the same estimate as we would derive if all 2t observations were observed

from the same Poisson process. While we can reason the effect of dependency under

perfect and no correlation, we are interested to understand the effects for varying

degrees of dependency.

Hence now that we have presented an estimator that, by pooling data from cor-

related processes, should reduce estimation error, we investigate the accuracy of this

method for changes in the degree of correlation and the size of the pool of processes.

37



Chapter 3. Value of Expert Judgement Elicitation of Dependency for Multivariate
Poisson-Gamma Model

3.3 Simulation Study for Estimation Error

We conduct a simulation study to investigate the MSE of the estimator obtained from

pool dependent data, where the parameters of the marginal distribution are estimated

from observations using an empirical Bayes approach but the correlation parameter is

specified through subjective judgement. This reflects the general modelling situation

where engineering experts identify relevant data sets and provide a measure of their

similarity between these data sets. Specifically this is the case for our motivating

industry problem when we estimated the reliability of a new variant engineering system

design.

After describing the simulation study design, we discuss the conditions that lead

to under dispersed data being generated in our simulations – under dispersion occurs

when the variance of the Negative Binomial distribution used to model the distribution

of the data in the pool is less that the corresponding mean. Then we present the

results from the simulation study and provide an expression that relates the MSE to

correlation and pool size.

3.3.1 Study Design

We assume the correlation between two processes has been specified by subjective

judgement but that the marginal Gamma distributions have been estimated with ob-

served data, hence an empirical Bayes inference approach is adopted, (e.g. following

Quigley and Walls (2018). We assume a pool of HPPs each with a pair of correlated

observations. The purpose of the study is to assess the impact of the correlation (ρ)

and pool size (m) upon the MSE of the estimator. As in the previous section, the rates

are assumed realised from a Gamma distribution. But, without loss of generalisation,

we set the scale parameter to be β = 1. Moreover, we assume the data are realised from

the HPP given their rates. To estimate the parameters of the marginal distribution,

(α, β), following (Quigley et al., 2007), we use a moment based approach to obtain the

following estimators:
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α̂ =
U2

W − U2

β̂ =
U

W − U2

(3.20)

where

U =

m∑
i=1

ni

m
and W =

m∑
i=1

n2i

m
− U (3.21)

A range of values is specified for the three parameters we wish to control in the sim-

ulation study – correlation, pool size and shape parameter of the marginal distribution

– as shown in Table 3.1.

Table 3.1: Parameter values controlled in the simulation study

Input parameter Specified Values

m 5, 10, 20, 30, 40, 50, 60

α 0.5, 1, 5, 10, 20, 30, 40, 50

ρ 0, 0.1, 0.2, 0.3, . . . , 0.7, 0.8, 0.9, 1

The algorithm for the study is as follows.
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Algorithm 1 Simplified simulation steps in code inner loop:

1: Set: α,m and ρ
2: for j = 1 : m do
3: Simulate: λ1j , λ2j ∼ Γ(α, 1; ρ)
4: Simulate: [N1j , N2j ] ∼ Poisson(λ1jt, λ2jt)
5: end for
6: Calculate: [α̂, β̂]

moment estimator←−−−−−−−−−−− [N1·
∼
, N2·

∼
]

7: if α̂ ≤ 0 or β̂ ≤ 0 then ▷ underdispersion

8: E[Λ1|·]←

2∑
i=1

m∑
j=1

Nij

2m
9: else

10: for j = 1 : m do
11: Calculate: E[Λ1j |N1j , N2j , α̂, β̂, ρ]
12: end for
13: end if
14: for j = 1 : m do
15: Calculate: E[Λ1j |N1j , N2j , α̂, β̂, ρ]− λ1 = e1j
16: end for

17: Calculate: MSE =

 m∑
j=1

e21j

m



We create an empirical Bayes simulation, where the rate parameter β = 1 is same,

but shape parameter α = 0.5, 1, 5, 10, 20, 30, 40, 50, pool size m = 5, 10, 20, . . . , 60,

correlation ρ = 0, 0.1, . . . , 0.9, 1 differs, as shows algorithm 1. We generate a pool of

m correlated pairs of samples from a multivariate gamma distribution (Minhajuddin

et al., 2004), Equation 3.14 in Step 3. From these, Poisson samples [N1i, N2i] are drawn.

Using the moment estimator (Quigley et al., 2007) in formula 3.20, we estimate the

gamma prior parameters α and β = 1, Code line 6. If the samples have underdispersion

(α̂, β̂ < 0), we will use the mean of Poisson samples N1• for estimating the posterior

mean E[Λ1i|ρA,v] in Equation 3.16. This means the mean of the pair [N1, N2] in Code

line 7 is the best estimate of the posterior mean. In the next Section 3.3.2 we expand

the discussion when we are likely to experience underdispersion.
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3.3.2 Treatment of Underdispersion

Since we use a Negative Binomial distribution for the data in the pool when sam-

pling from Poisson-Gamma model we risk encountering the problem of underdispersed

data, as discussed in Kokonendji et al. (2008). Underdispersion occurs if the variance

of the Negative Binomial distribution is smaller than its mean due to sampling and

compromises the moment estimator proposed by Quigley et al. (2007).

Figure 3.1 shows the probability of underdispersion given the choice of pool size and

shape parameter across all simulation combinations in our study. The plot shows that

the highest chance of underdispersion occurring is for our smallest combination of shape

parameter and pool size (α = 0.5, m = 5). We find an area of low underdispersion for

α ≥ 5, pool size ≥ 30 and our plot suggests that a smaller pool size matters more than

a small value of α. If underdispersion occurs then we have two options to address it;

either to discard the samples or to take the mean and use it as our best estimate. We

chose the latter option. If we would not discard the samples and resample instead, until

no underdispersion occurs, we would crop from the simulation a part of the DGP. The

full data generating process encompasses alongside these samples that pose challenges.
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Figure 3.1: Probability of underdispersion for simulation combinations of shape param-
eter and pool size.

3.4 The Linear Relationship Between the MSE and the

Prior Rate, Given Correlation and Pool Size

MSE =

I∑
i=1

J∑
j=1

aijα · 1ρ(i)1m(j) + ϵ (3.22)

log

(
MSE

MSE∞
− 1

)
=

I∑
i=1

J∑
j=1

(a0ij + a1ijm) · 1ρ(i)1α(j) + ϵ (3.23)

Our focus turns on the results of the simulation is the MSE for each correlation and

pool size. We observe in Figure 3.3 that the MSE is proportional to the prior rate α.

So how could we capture for each correlation value and each pool size the relation to

the MSE? This model is denoted in Formula 3.22. This relationship is well evaluated
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in regression (r2 = 99.98%, r2adj = 99.98%). If we model the coefficients against (Figure

3.2) the log pool size ln(m) and second power of the correlation ρ2, the coefficients

become visually linear towards these parameters. Figures 3.7 show the MSE of the

simulation against the prior rate α for different pool sizes.

Figure 3.2: Modelling regression coefficients as a visually flat surface to justify choice
of quadrature and logarithm. Z-axes contains the estimated coefficient from Equation
3.22 .

For the second set of Figures 3.4, we have the same MSE data but group them

accordingly to the pool size. The MSE shows to be linear (Figure 3.5) to the pool

size after the transformation in Equation 3.23 with a high degree of precision from

regressing this model (r2 = 94.46%, r2adj = 91.71%). We see that the curves in Figures

3.4 are approaching towards an asymptote. We calculated this asymptote for the case
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ρT = 0, 1 in Table 3.2. On this figures we apply the transformation

log

(
MSE

MSE∞
− 1

)
(3.24)

, where lim
m→∞

MSE =MSE∞. Since we don’t have MSE∞ for ρT ∈ {0, 0.5, 1}, we use

MSE∞ = MSEm=60 for all cases. Please note that the pool size reaches 50 instead

of 60 due to this implementation. After transformation, Figure 3.5 shows, what the

results look like.

We can observe for Figures 3.3, 3.4 and 3.5

1. With rising pool size, the MSE is decreasing.

2. As the true correlation increases, the MSE decreases.

3. The MSE seems proportional to the prior rate α (only in Figure 3.7).
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Figure 3.3: The mean squared error against the prior rate for fixed pool sizes of 10 and
60.
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Figure 3.4: The mean squared error against the pool size for fixed prior rate sizes of 20
and 50.
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Figure 3.6: Left: the added variable plot from for regression Formula 3.22. Right: the
added variable plot for the logarithmically transformed regression formula, Equation
3.23. The variables x0 and y0 are specified in Section B.2.1.
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α MSE∞,ρ=0 MSE∞,ρ=1

0.5 0.25 0.166667

1 1/2 1/3

5 5/2 5/3

10 5 10/3

20 10 20/3

30 15 30/3

40 20 40/3

50 25 50/3

Table 3.2: Limits for MSE in the case of no dependency and full dependency. The pool
size tends to infinity m→∞.

3.4.1 Overall MSE Results

We now consider the findings of the simulation study to examine the overall impact

of the shape parameter (α), pool size (m) and correlation (ρ) upon the MSE of the

estimator. First, we investigate the relationship between the MSE and the shape pa-

rameter (α). We find this relationship to be linear. For example, Figure 3.7 shows

the MSE as a function of α when the pool size is m = 20 and for six settings of the

true correlation (ρ) between zero and one. Although not shown here, similar patterns

are found for other input combinations. Evidence of a linear relationship between the

MSE and α is not surprising given the analytical results shown in Formulas 3.26 – 3.47

which allow comparison to the simulation study.
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Figure 3.7: Relationship between MSE and the prior shape parameter for pool size =
20 and selected values of the true correlation.

Next, we examine the relationship between the ratio of MSE/α with the corre-

lation and the pool size. Figure 3.8 shows the MSE values computed for simulation

combinations together with a model fitted to this relationship. After investigating a

variety of transformations to this relationship, we obtain the following expression for

the best-fitting model through a regression analysis:

MSE = α · (0.705451− 0.047799 ln(m)− 0.169848ρ2) (3.25)

Interestingly we find that the interaction terms between ρ and m do not contribute to

the model. Moreover, the impact of m and ρ are proportional to the value of the shape

parameter α.
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Figure 3.8: MSE at different values of shape parameter α for settings of pool size and
true correlation parameter with fitted model of the formMSE = α(c0 ln(m)+c1ρ

2+c2)

While this regression model is defensible only for the range of parameter values used

in the simulation study, we can build upon our earlier consideration of the inference

approaches to develop analytical results to provide the limit of the MSE from the

general formula grasping all listed cases.

MSE = E
[
(EρA [Λ|N1, N2]− Λ)2

]
=EN1,N2

[
EρT

[
EρA [Λ|N1, N2]

2

− 2ΛEρA [Λ|N1, N2] + Λ2
∣∣∣N1, N2

]] (3.26)
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leading to an overall general formula for the MSE

=EN1,N2

[
EρA [Λ|N1, N2]

2
]

− 2EN1,N2

[
EρA [Λ|N1, N2]EρT [Λ|N1, N2]

]
+ EN1,N2

[
EρT [Λ

2|N1, N2]
] (3.27)

To obtain specific formulas under the different assumption, we substitute into the For-

mula 3.27 the following terms branching the expression into all listed cases.

EρA=0[Λ|N1, N2] =
α+N1

β + 1
(3.28)

EρA=1[Λ|N1, N2] =
α+N1 +N2

β + 2
(3.29)

EρA=0[Λ
2|N1, N2] =

α+N1 + (α+N1)

(β + 1)2
(3.30)

EρA=1[Λ
2|N1, N2]

=
α+N1 +N2 + (α+N1 +N2)

2

(β + 2)2

(3.31)

with extending by its’ expectations

EρT=0[N1] = EρT=0[N2] =
α

β
(3.32)

EρT=1[N1] = EρT=1[N2] =
α

β
(3.33)

EρT=0[N
2
1 ] = EρT=0[N

2
2 ] =

α

β
+
α+ α2

β2
(3.34)

EρT=1[N
2
1 ] = EρT=1[N

2
2 ] =

α

β
+
α+ α2

β2
(3.35)

EρT=0[N1N2] =
α2

β2
(3.36)

EρT=1[N1N2] =
α+ α2

β2
(3.37)

The initiating case states that m tends to infinity and as ρ tends to one. Since an
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infinite pool size corresponds to the Bayesian estimator, and if the observations are

perfectly correlated, then this implies the sample size is doubled in relation to the case

of no correlation when processes are statistically independent. Thus we find:

lim
ρA→1,m→∞, ρT=1

MSE =
α

3
(3.38)

lim
ρA→0,m→∞, ρT=1

MSE =
α

2
(3.39)

The difference between these two limits, 0.17α, is consistent with the coefficient for

the correlation in the regression model (Equation 3.25). From Equation 3.25 can be

anticipated the value around

lim
ρ→0.5,m→∞

MSE = 0.456 α (3.40)

Further analysis reveals the following:

MSEρA=1, ρT=0 =
7α

9
(3.41)

Substituted by the moments into the expression for the MSE results from having

set the value β = 1 in the following:

MSEρA=0,ρT=1 =
α

β(β + 1)

=MSEρA=0,ρT=0

=MSEB

(3.42)

This form is as we would expect because we are ignoring the information from N2

as we are assuming independence. Therefore, incorporating data under the assumption

it is realised from the same HPP (i.e. ρA = 1) when in fact there is no correlation

(ρT = 0) can introduce considerable estimation error depending on the variability of

the pool of processes.

A lower value than for no dependency and higher than full dependency is obtained

from assuming ρA = 1 and having in fact neither full nor no dependency, but partial
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dependency.

lim
ρA=1, ρT=ρ

MSE =
α

9
(7− 4ρ) (3.43)

Assuming dependence when the rates are independent results in the following:

MSEρA=1,ρT=0 =
(β2 + 4β + 2)α

β2(β + 2)2
(3.44)

Assuming dependence when the rates are dependent results in the following:

MSEρA=1,ρT=1 =
α

β(β + 2)

=MSEB

(3.45)

The MSEB from Equation 3.10. Again this is as we would expect because we are

correctly using a Bayesian approach with 2 observations.

However, the regression model does not have the above limits. Consider the situa-

tion where pool size is m = 1, which is outside the range investigated in the simulation

study where the minimum is m = 5. When m = 1 an empirical Bayes approach is

not appropriate because there is no pool of processes from which to estimate the pool

variability. Under such circumstances where we have prior information, then we would

apply a classical approach as described earlier, which would have the following limits:

lim
ρ→1,m→1

MSE =
α

2
(3.46)

lim
ρ→0,m→1

MSE = α (3.47)

Therefore, extrapolating our regression model would underestimate the MSE when

processes are independent and overestimate the MSE when processes are perfectly

dependent.

For addressing the percentiles of the standardized errors in Table 3.3 can be com-

pared to the percentiles of the normal (z10 = 1.28, z05 = 1.645, z025 = 1.96, z01 = 2.33).

The distribution of the residues we can describe as right-screwed data as shown in the

histogram and the normal probability plot, Figure 3.9. We can see that the model
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coincides with Figures 3.7.

Table 3.3: The distribution of the standardized residuals of the regression model (Equa-
tion 3.25).

percentile count value

0.10% 1 -2.323150

1% 7 -1.786462

2.50% 16 -1.578797

5% 31 -1.429651

10% 62 -1.213216

90% 554 1.145075

95% 585 1.584439

97.5% 600 2.054588

99% 609 3.036317

99.9% 615 4.745185
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Figure 3.9: Residues of the regression model (Equation 3.25).

3.4.2 Dependency Mis-specification

Let us now investigate the implications of mis-specifying the correlation parameter. We

extend the simulation study to explore situations where we assume a correlation ρ = ρA

has been specified, say by an engineering expert’s subjective assessment when the true

correlation is actually ρ = ρT . In the study, we simulate data under the case ρ = ρT

then analyse it as if it was specified as ρ = ρA to mimic the parameter mis-specification.

We share a selection of results to illustrate key findings.

Figure 3.10 shows the relationship between the MSE and ρA for situations where

α = 50, m = 60 and ρT = 0, 0.5 and 1. Regardless of the true correlation, we find the

same MSE when no dependency is specified (ρA = 0). However when ρT = 0 and ρA
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increase towards 1 then there is a nonlinear growth in the MSE. Whereas for ρT = 1

there is an almost linear decrease in the MSE and for ρT = 0.5 there is relatively

little change in the MSE as ρA increases to 1. Similar patterns are found for other

combinations of pool size and shape parameter.

Figure 3.10: MSE when correlation is mis-specified, where ρA is assessed correlation,
under selected true correlations ρT and for case of α=50, m=60.

By assuming a true α value, we can examine the effects of mis-specifying the corre-

lation under either Bayesian inference or for the empirical Bayes asymptotic case when

the pool size m tends to infinity. Figure 3.11 shows the relationship between the ratio

MSE/α and ρA for ρT = 0, 0.5 and 1 for three settings of the prior shape parameter

α = 0.5, 10 and 50. We find that the limits agree with the findings discussed earlier

(Equations 3.38 and 3.39). That is, for ρA = 0 thenMSE/α = 0.5 and for ρA = ρT = 1

then MSE/α = 1/3. Figure 3.11 also shows the effects of varying α on MSE/α for

ρT = 0.
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Figure 3.11: MSE/α for assessed correlations, ρA under selected values for the true
correlations, ρT , and prior shape and scale parameters.

To experience, how modelling how maximum percentage changes increases vary de-

pendent on pool size and prior shape, we use the graphical representation in Figure

3.12. Colour coded by four cases of assumed and true dependency scenarios. Modelled

as such, we analyse that with increasing pool size irrespective of prior rate the per-

centage error increases. The more there is available data, the more certainty is present

about benefit of correct dependency estimation.
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Figure 3.12: The percentage MSE change for selected points of interest for four selected
cases of varying assumed and true underlying dependency.

3.4.3 Minimax Estimate

In case, we are reluctant to make any assumptions about the correlation parameter, we

arrive at the question: Which correlation value would be the most sensible, conservative

option to choose, for a given pool size and prior rate and any additional knowledge?

We suggest using a minimax estimate on both, the absolute (Figure 3.10) and the

relative measure (Figure 3.13). The minimax estimator is more suitable for the relative

measure.

ρsensible = arg
ρ∈[0,1]

minmax%∆MSE(m,α) (3.48)

, where %∆MSE(m,α) is denoting the curves in Figure 3.13. In plain words, we are

taking the lowest point of the roof the Figure 3.13, that is taking the lowers point of
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a curve, having no curve above. Looking e.g. at Figure 3.13, the question is, whether

we should be taking 0.6 or a slightly higher value, where the blue and black curves are

meeting? A proper interpolation technique would improve the quality of the curves.

We suggest looking at Figure 3.14 to use in most cases the value ρ = 0.6. In other

words, neither to assume dependency not independence.

0 0.2 0.4 0.6 0.8 1

A

0%

10%

20%

30%

40%

50%

60%

%
M

S
E

 c
h

a
n

g
e

T
 = 0

T
 = 0.5

T
 = 1

Figure 3.13: Relative measure of the case α = 50,m = 60, in close ration to Figures
3.10 and 3.11.

3.5 Summary

Our study has investigated the effect of incorporating data that is correlated with

the event process of interest to reduce estimation error. This requires the correlation

between processes to be assessed by subjective judgement, which under many circum-

stances can require a resource-intensive elicitation exercise. Our analysis has shown

that that the maximal possible reduction of the MSE is about 53.8% (Figure 3.13).
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Figure 3.14: The minimax estimate. Advising the value of ρA for given values of α,m
if the expert possesses no prior knowledge.

This means that if the analyst using the model invests in structured expert judgement

to obtain perfect assessments of the dependency between rates, then it is possible to

achieve an MSE that is more than half of the value of a maximally mis-specified de-

pendency parameter. Through our study, we have explicated the relationship between

correlation, pool size and MSE within the context of a particular probability model to

provide insight as to whether gains from MSE reduction are worth the cost of elicitation.

Empirical Bayes is a rich methodology offering the opportunity to gain the benefits

of error reduction enjoyed by the Bayesian methodology but without the same elicitation

burden for subjective assessment with its recognised associated biases. Empirical Bayes

relies on pooling relevant data together. It is well known that the more homogeneous

this data pool, then the stronger the inference in the sense that the estimation error will

be smaller. One way of homogenising the pool is to assess correlations between processes
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and so discriminate between degrees of similarity for the events of interest. For example,

in our motivating industry case, the events related to failures, the candidate pools were

formed by data on events experienced by earlier design generations or on tests for

the new system design, and the correlation was assessed by engineering experts via a

structured elicitation. However, regardless of how well this elicitation was constructed

and managed there still lurks the possibility that the dependency is mis-specified.

Our study has explored the impact of corrupting the inference through mis-specifying

the correlation. We have derived a formula to explicate the MSE in relation to the pa-

rameters of the marginal distribution under cases of assumed assessed and true corre-

lations. A more general derivation is shown in the Formulas 3.26 – 3.47. Such formulae

can inform analytical choices about the incorporation of data from perceived corre-

lated processes by aiding assessment of the consequences. For situations, where no

information about possible underlying dependency exists, the analyst is suggested to

assume a conservative estimate of the dependency parameter at 0.6. These findings

can guide practical choices about the elicitation method selected to support inference

about the reliability of a new system design or other applications where a multivariate

Poisson-Gamma model is appropriate.

Further, the methodological approach we have adopted to assess an understanding

of mis-specification could be applicable to examine the implications for estimation errors

for a wider class of probability models.

Is expert judgement elicitation worth the effort? Rather anti-climatically, our an-

swer is “it depends”. It depends on how accurate the results need to be so that the

value of elicitation can be assessed in relation to a fuller consideration of the costs and

benefits. Costs include not only the time and effort to plan and conduct an elicitation

but also the cognitive burden to those providing subjective assessments. For the partic-

ular context of our study, the value depends on the potential of the candidate correlated

processes. This potential is determined by both the correlation and the characteristics

of the marginal distribution, since the benefits of eliciting the dependency are found to

be proportional to the shape parameter in our study for a multivariate Poisson-Gamma

model.
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There are a number of limitations of our study even within the context of HPPs.

First, we had a specific form to our multivariate prior distribution. Second, we had

limiting data not allowing a full Bayesian solution to be found. Thirdly, we do not have

an information framework to evaluate, whether more precise assessments of correlation

are worth learning.

59



Chapter 4

Poisson Models with Copula

Priors

4.1 Introduction

The study presents a homogeneous Poisson process in a hierarchical Poisson-Gamma

model with copula dependency in the prior failure rate parameter, to examine the

consequences of mis-specifying the underlying copula family. Little focus has been

directed towards copula mis-specifications in hierarchical Bayesian models. Literature

on count data with copula dependency in the prior distribution is found in Section 1.1

We set up our model with dependency structure in the latent variable and look at

the copula combinations and percentiles when such copula structure mis-specifications

matter. We want to test these results on sparse Poisson data to show the possible

application of theory in praxis. We work specifically with a Poisson-Gamma model with

varying time and prior shape parameters aiming to comprehend relationships that are

affecting the Mean Squared Percentage Error (MSPE) as the precision and percentage

bias increase (%bias) estimation as the accuracy. As in theory straightforward, but

in practice mostly challenging. The moment estimator, then the percentile estimators.

All those parts of the simulation do not have analytical formulas. They need to be

approximated numerically.

The bias is constructed in the conducted simulation by comparing the percentile
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of the posterior using the correct true underlying copula relatively to the posterior

constructed adopting a proposed assumed copula. This is formulated as a %bias. We

measure likewise the square of this quantity, denoted as the MSPE (mean squared

percentage error). The implications are that copulas matter especially in the tails.

Next, that it is always better to assume a correct copula rather than a mis-specified

one. Lastly, the combinations that matter the most are having t = 10 with combining

the important pairing combinations. Literature on engineering applications and road

incident analysis is found in Section 1.1.

The paper structure is as follows. We provide a thorough description of the simu-

lation study and show the setup for technical insight. The work examines the results

and draws appropriate conclusions.

4.2 Copula Choice

Two variables representing rates can be more dependent in one tail and less dependent

in the other tail. That is, lower rates have one value of dependency and higher another

one. For such situations are copulas well suited.

One case is that lower rates are more correlated and higher rates less. Trivedi and

Zimmer (2007) describes the Clayton copula to have weak right tail with a strong left

tail. This makes the copula according to the author suitable for applications in risk.

The contrary case is a weak left tail, but a strong right tail. These characteristics

resembles the Gumbel copula. Another option is that both tails behave similarly. One

of the copula choices for our study is the Gaussian copula. It is the most widely used

copula, (Hawas and Cifuentes, 2017, p. 94). Especially for finance and insurance risk

problems (Fang and Madsen, 2013). For the case, where neither low nor high rates

are much correlated. Modelling variables loosely dependent in the upper and lower

percentiles, the Frank copula is a suitable choice.

Therefore, we have selected the Gaussian copula being an elliptical copula and 3

prominent Archimedean copulas, namely, the Frank, Gumbel and Clayton illustrated in

Figure 2.2 with ρS = 0.9. Yan et al. (2007) writes that the 2 most used copula families

(comprising of many copulas) are the elliptical copulas and the Archimedean copulas.
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These copulas have been studied in related research by (Acar et al., 2019; Corbella and

Stretch, 2013; Dorey and Joubert, 2005; Dupuis, 2007; Genest et al., 2006) and more.

For the purpose of studying left and right tail percentiles of the posterior distribution

the right and left tail behaviour of copulas plays a role. When comparing the copulas,

Dupuis (2007) and Venter (2002) argue the Gaussian copula to have a lighter right tail

than the Gumbel copula, however stronger than the Frank. The Gumbel copula stands

opposed to the Clayton copula with respect to tail dependences. It displays a weak

left tail and strong right tail dependence. The Frank copula is specified symmetrically,

as the Gaussian copula. In comparison to the Gaussian copula does the Frank copula

have a relatively weak tail dependence. So the Gaussian copula has heavier on both

tails than the Frank copula (Venter, 2002).

To summarise, in the left that the copulas have the lightest tail to the strongest in

the order of Frank, Gaussian, Gumbel, Clayton. The right tail is in the order Clayton,

Frank, Gaussian, Gumbel (Dupuis, 2007, p. 382). We work with two symmetric copulas,

the Gaussian and Frank.

4.3 Method

We create a simulation study for the investigation of the %bias and the MSPE of the

percentiles estimator. With the use of a full Bayesian model, we study the influence of

shape parameter of the marginal distribution (α), the exposure time of the HPP and

observed percentile (p). The HPP generates a pair with a unique dependency structure.

Data are generated given their specified rates. The parameter values we control in the

simulation as shown in Table 4.1. The percentile of the posterior distribution does not

have an analytical form and hence a Monte Carlo estimator has been used. Without

loss of generalisation, we set β = 1 to be the scale parameter. We choose the time

horizon t = 1 as yearly value, t = 5 used as a short time horizon in investment decision

and t = 10 accepted as an intermediate time horizon. The values of α are rationalised

by properties of the gamma distribution, which changes with the watershed value 1.

If the shape parameter is α < 1, the mode is zero, and if α ≥ 0 the mode is positive.
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Apart from the basic starting point 1, we choose one value bellow and the next natural

choice above. For the percentiles p, a lower bound for failure rate estimation, a most

likely value (p = 0.5) and an upper bound is examined. The values 0.1 and 0.9 and

often used percentiles for tail values. We wish to model the scenario of a moderate to

strong dependency value. This suggests the boundary value ρ = 0.75.

4.3.1 Algorithm Steps

For given loop in the algorithm, we take the next steps with a given value for α,

exposure time t, selected percentile of interest (p) and a generating copula structure of

form cop T with a fixed underlying dependency parameter. In each for loop, we select

a specific setting from all the available ones. For each unique setting 10,000 copula-

dependent pairs following a gamma distribution are simulated. From there, Poisson

samples [N1i, N2i] are drawn. For each pair [N1, N2] a Monte Carlo calculation of the

marginal percentile is performed. Given, we have calculated the true percentile, we can

move to the calculation of the assumed percentile under a given assumed copula cop A.

After we obtained all values, we can calculate the percentage error vector and from it

the bias and the MSE.

Table 4.1: In the simulation study used parameter values

Input parameter Specified Values

t 1, 5, 10

α 0.5, 1, 2

p 0.1, 0.5, 0.9

ρS 0.75
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Algorithm 2 Copula algorithm:

1: Set: α, t, cop A, cop T, p and ρS
2: for iq ← 1 to N do
3: for iα← 1 to Nα do
4: for cop T ← Gaussian to Clayton do
5: for it← 1 to Nt do
6: Simulate: [λ1j , λ2j ] ∼ Ccop T (G(αiα, 1), G(αiα, 1); ρS)
7: Simulate: [N1j , N2j ] ∼ Poisson(λ1j · tit, λ2j · tit)
8: Calculate: q

∼
p,cop t[Λ1|N∼ 1, N∼ 2, αiα, β, ρS ]

9: for cop A← Gaussian to Clayton do
10: Calculate: q

∼
p,cop A[Λ1|N∼ 1, N∼ 2, αiα, β, ρS ]

11: end for
12: end for
13: end for
14: end for
15: end for

16: Calculate:
qp,cop A[Λ1|N1, N2, α, β, ρS ]− qp,cop T [Λ1|N1, N2, α, β, ρS ]

qp,cop T [Λ1|N1, N2, α, β, ρS ]
= e1

17: Calculate %bias =

 n∑
i=1

e1i

n

 · 100% and MSPE =

 n∑
i=1

e21i

n

 · 100%

4.4 Analysis of Copula Mis-specification in a Simulation

Study

As anticipated, with the wrong copula the error increases. Therefore, it is best to

choose the right copula, which is underlying the data. This claim is supported by the

diagonal (Figures 4.4 and 4.5). The diagonal have errors of the smallest magnitude.

When choosing the wrong copula, we shall draw conclusions from the analysis in terms

of span decrease, symmetry, right tail bias decrease, some individual cases, important

pairing combinations and the MSPE. Following the analysis of the bias (Figure 4.4):

Span decrease: For some prior setting and time span, the results converge - the

dispersion decreases, when we move from the 10th percentile over the median to the

90th percentile across all copulas. The possible span of observed values is the largest in

the 10th percentile. In the 50th percentile less as the values close in. Focusing on the
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90th percentile observed values do not differ that much. This is especially visible from

the combinations Gaussian A-Frank T, Gaussian A-Clayton T, Frank A-Gaussian T,

Gumbel A-Frank T, Gumbel A -Clayton T, Clayton A-Frank T, Clayton A-Gumbel T.

Symmetry: We are able to observe some degree of symmetry. If we switch the as-

sumed copula with the true copula, the pattern in the chart (Figure 4.4) seems to switch

broadly upside down. This means, if an increase was observed moving across quantiles

in the %bias, then for the case of interchanging the true underlying copula with the

assumed copula, a decrease will be observed. The behaviour might be suggesting that

the combination of the copulas in combination with the underlying copula structures

plays an important role. The symmetrical claim is stronger for the area between the

50th and 90th percentile rather than the 10th and 50th. Up to the 50th is generally no

visible trend and from the 50th percentile, we observe an increase/decrease.

Some selected cases: Gaussian A-Frank T and Frank A-Gumbel T for t = 1, there

is a lack of noteworthy trends, the %bias is around 0. For other t’s in the Gaussian A-

Frank T jointly with the Gumbel A-Frank T, the bias is gradually decreasing across

percentiles in almost all cases. In t = 10 are the charts for Gaussian A,Frank T, Gum-

bel A,Frank T and Gumbel A-Gaussian T decreasing in the order (from the highest to

the smallest) of α = 0.5, α = 1, α = 2.

Important paring combinations: for the 10th percentile, a significant combina-

tion in large observed values is for t = 10 Gaussian A-Frank T, Gaussian A-Clayton T,

Gumbel A-Frank T and especially Gumbel A-Clayton T. This combination can be ex-

pected, since the Clayton copula has a strong left tail and the Gumbel has a weak

left tail. The cases can be followed in Figure 4.1, denoted by red boxes. In each

square are values for three prior settings. The cases are colour coded. The abso-

lute magnitude of the increase is separated into three categories < 3%, 3%− 10% and

> 10% highlighted with a fill of green orange and red. With a red border for all cells

containing a large increase. If an analyst does not know which copula of the 4 ex-

amined has been characterizing the generating process and would wish such a choice
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that maximal errors are possibly low. If we assume the worst case. Then the ana-

lyst would choose the Frank copula. Vice versa, if stating the question, which copula

would have the largest maximal errors, the Gumbel copula would qualify. The green

liming indicates the risk-averse of the Frank copula and orange liming the risky choice

of the Gumbel copula as shall be explained in the following paragraph. The red liming

shows combinations with highest increases. In particular, for Gausian A-Clayton T for

t = 5, 10 from the 10th to the 50th percentile and for all remaining cases, the bias will

decrease with increasing dependency. On half-way between medium and high impor-

tance situated the Gaussian A-Frank T. This is since for t = 10 in Figures 4.1 and

4.2 some values are above 10% and some bellow. Of medium importance are the cases

Frank A-Gaussian T, Frank A-Gumbel T, Frank A-Clayton T, Clayton A-Gaussian T

and Clayton A-Gumbel T.

The 10th percentile has the cases with the largest percentage increase, Gumbel A-

Clayton T (29%), Gaussia A-Clayton T (21%), Gumbel A-Frank T (17%). All at α =

1, t = 10, p = 0.1. For most cases, the maximal increase in the 10th percentile is

showing a higher mis-specification impact than the 90th percentile (Figures 4.4 and

4.5).

Risk Averse Choices: For the 10th percentile, let us assume, the analyst chooses

the Gaussian copula, the highest error can occur, if the underlying copula is Clay-

ton. Similarly for the Frank copula is the largest absolute error in the Gumbel copula

(7.634%). For the Gumbel copula in the Clayton copula (29.347%). If we assume a

Clayton copula, the largest error occurs under the true Gumbel (8.198%) followed by a

Gaussian copula (8.198%). Therefore, the safest choices for an analyst are Frank (green

box in Figure 4.1) and then Clayton, as indicated in the earlier paragraph. Because

the worst scenario will be a true Gumbel copula (orange box in Figure 4.1) followed by

a true Gaussian copula. The Frank copula does not introduce high dependency is the

left tail, whereas the Gumbel does.

Time aspect When the time t is changed, some features (titles of earlier paragraphs)

prevail and some are not so imperative any more. We highlight of 4 important combi-
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nations for t = 10, 3 important combinations for t = 5 and that Gaussian A-Clayton T,

Gumbel A-Frank T and Gumbel A-Clayton T case in Figure A.1. Again, we claim that

the safest choice for an analyst is the Frank A copula. The riskiest choice remains the

Gumbel A copula. Under t = 5 as the Figure A.2 shows, we can just advise to using

the risk aversive choice of Frank A copula.

MSPE: For the MSPE, as the percentile increases, the MSPE decreases. This is true

for all cases, except Gaussian A-Gumbel T, Frank A-Gumbel T. This decrease is larger

between the 10th and 50th percentile than between the 50th and 90th percentiles. Here

is the symmetry present in the way that if we mention one combination, the second

combination is likely to be mentioned. Between the 10th and the 50th percentile,

all cases experience an MSPE decrease. For specific cases, it is worth looking at the

Clayton A-Frank T combination. The MSPE decreased from the 10th percentile to the

median without almost any further decrease. In contrast the Gaussian A-Clayton T

case decreases in the same manner along the percentiles, being also among the largest

absolute decreases. That is to say a maximum of 28.88% reducing to 7.16%. Most other

cases are halving their descent at the median. The maximal absolute decrease of 60%

to 14.49% in the Gumbel A-Clayton T case. Followed in the third place by Gumbel A-

Frank T (24.67% to 6.31%). In some cases, the MSPE is almost proportional to α.

Gaussia A-Frank T, Frank A-Clayton T, Gumbel A-Gaussian T, Clayton A-Frank T,

Clayton A-Gumbel T.

Important MSPE paring combinations, risk averse choices and time as-

pect: The conclusions are identical to the bias. For t = 10 of importance in the

10th percentile Gaussian A-Frank T, Gaussian A-Clayton T, Gumbel A-Frank T and

especially Gumbel A-Clayton T following Figure 4.2. All other conclusions observed

by the %bias hold here, by the case of the MSPE. Including the risk averse choice of a

Frank copula (5.197%) and the risky pick of the Gumbel copula (57.545%).

Sensitivity on dependency In Figure A.5 the symmetry feature is present. That is

under ρS = 0.5. It is not that explicit as by ρS = 0.75, but still we can predict changes
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between the 50th and 90th percentile.

The symmetry is still present by ρS = 0.25, nevertheless not that much as earlier.

Some cases are already mismatching their assumed behaviour, Figure A.7.

For examining the span decrease under changing underlying dependency, we gener-

ally conclude that the less dependency is present the smaller the span decrease, when

moving from the 10th, over the 50th to the 90th percentile. The case Gaussian A-

Frank T is pretty much unchanged for ρS = 0.5 and ρS = 0.25. The very same can

be claimed about Frank A-Gaussian T. Gaussian A-Clayton T curves are gradually

flattening for ρS = 0.5, ρS = 0.25 as they move from the 10th over the 50th to the

90th percentile. So there is a span decrease happening for ρS = 0.5, but not any more

for ρS = 0.25. Gumbel- A-Frank T for ρS = 0.5 is still the decrease present and for

ρS = 0.25 it is gone and so by Gumbel A-Clayton T. By the case of Clayton A-Frank T

and Clayton A-Gumbel T does the lingering tendency of the decrease remain even at

ρS = 0.25.

In Figure 4.3 on the right-hand side for assumed copulas column-wise and true un-

derlying copulas row-wise, the characterised features from the results mainly for the

%bias. From preceding paragraphs this would be span decrease as 10-90 convergence,

the behaviour between the 50th and 90th percentile as 50-90 decrease or increase and

then large increases in the 10th percentile.
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Figure 4.1: Important combinations for percentage increases of the %bias in the 10th
percentile. Three values bellow each other in the cell are for α = [0.5, 1, 2] with t = 10.
The assumed copula is specifying the row and a true copula indicates the column.

Figure 4.2: The MSPE of the 10th percentile with colour coding comparable to Figure
4.1. The results for exposure time t = 1, 5 and shown in the Appendix in Figures A.4
and A.3.
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Figure 4.3: The main analysis points from Chapter 4.4 on the %bias.

4.5 Discussion

The work is characterized by mis-specification of the copula structure within the prior

marginal distributions. With respect to other research, might be the closest to our

research Park et al. (2021, p. 3), who create a dependent variable ν in the prior distri-

butions and is using only the Gaussian copula. Whereas we work with 3 more additional

copulas. In the area of dependency in the prior parameter for a hierarchical model with

Poisson count data. The authors observe the advantage of the method especially in

the variable fatal crashes, when compared to the univariate Poisson-Gamma mixture

model (Park et al., 2021, p. 7).

Similarly Caliendo et al. (2021) models the log of the failure rate log(λmi ) with a

model involving βm
j[i] that is coupled in a Gaussian copula. The authors draw conclu-

sions about the bivariate variables (severe and non-severe) with the use of independent

regressors such as daily traffic per lane or tunnel length.
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Figure 4.4: The simulation results for the %bias: (qA − qT )/qT

4.6 Summary

This chapter focused on the understanding of the mis-specification of copula functions.

We aspired to understand better how %bias and MSPE of the copula mis-specified

percentiles will be affected. We show in this work that with the knowledge of the prior

parameters, the knowledge of the dependence parameter and the specification of the

underlying copula, we are able to estimate the percentage error that occurs under the

mis-specification of the assumed copula.

The combination we judged as important in the left tail, namely the 10th per-

centile are the Gaussian A-Frank T, Gaussian A-Clayton T, Gumbel A-Frank T and
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Figure 4.5: The simulation results for the MSPE: ((qA − qT )/qT )2 · 100%

Gumbel A-Clayton T case. The Gumbel A-Clayton T combination has a strong justi-

fication in the Clayton copula having a strong left tail and the Frank a weak left tail.

If we do not have any information about the underlying copula, the safest choice for

the 10th percentile is to choose a Frank copula, followed by a Clayton copula. For the

10th percentile is a colour coded classification designed as shows Figure 4.1.

For an analyst, the safest choice is to select the Frank copula. Owing to the choice

selection under which the least error would occur and having an absolute maximum
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error of 7.634% for the %bias and 5.197% for the MSPE, which is the maximal mis-

specification we may obtain while the true copula would be Clayton. In second place

would be the Clayton copula (8.269% for %bias and 8.307% MSPE). With maximal

absolute errors under a true underlying Gumbel copula.
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Chapter 5

Accounting for Dependency

in Failure Estimation: A Case

Study of an Industrial Machine

5.1 Introduction

Spare part management plays a high-importance role across industries. Especially

in turbulent time like this with global supply chain disruptions. We want to show

that it is worthwhile including partially dependent data in an industrial setting for

the proposed case to achieve error reduction, when taking into account data from

processes with correlated failure rates. Forecasting models play a vital role in spare

parts management. Given the large value of funds and material that a spare parts

program can be requiring, precise prediction estimates are a valuable asset. The chapter

aims to forecast the number of needed stored spare parts for servicing equipment. To

show different scenarios under different applied estimation methods. With the main

focus on predicting future production stops, as well the number of failures for supporting

spare part management and decision makers.

Using data from industrial machines, we seek to improve estimation of failure rates;

for given failure causes by taking advantage of similarities between two machines. We

claim that the count of observed failures for a failure cause on one machine (Table
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5.1) is similar to the count of failures for the same failure cause on the other machine.

Precisely, their rates are similar. A copula based estimator will be applied and the

findings will advocate the support for its usage. We want to show that it is worthwhile

including partially dependent data in an industrial setting for the proposed case. The

data is parted into two. The training set, used to estimate the prediction, and the test

set, containing the actual data. We apply an inference method taking into account

correlated event rates that is based on the empirical Bayes method. In addition, we

implement a similar copula based method. Result are verified via cross-validation. The

failure rate estimation impacts decision making. A decision problem is shown, how more

accurate estimation leads to better management strategies. Real data with professional

support regarding data clarification was kindly provided by Siemens Analyse.

In the final cross-validation, we take the original dataset, divide it into 5 parts and

leave always one part out in order to predict it. This means dividing the dataset into 5

parts, using 4 parts for eliciting failure rates estimates, and comparing the predictions

with the actual data in the remaining fifth part. The process is repeated five time and

at the end averaged.

5.2 Description of Organisation and Data

The company is providing industrial partners with tools for four main areas. Increase

of production productivity, reduction of production costs, saving resources and invest-

ment and online overviews. Increase of production productivity focuses on analysis of

operating states, reduction of downtime, quick identification of problems in production.

Reduction of production costs details control of production cycles, increase production

quality, optimization of the production process. Saving resources and investment speci-

fies monitoring the service life of machines and tools, human resources load analysis and

energy monitoring. Online overviews provide automated reporting and applications for

overviewing online environments.

The company specialised in the field of condition monitoring. That is to monitor

the state of machine through a combination of sensors in real time with a focus on
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predictive maintenance. Meaning to provide better information of the state of con-

dition and to advise, when maintenance should be conducted. The aim of condition

monitoring for the company is detailed in six areas. OEE (overall equipment effective-

ness) & production analysis, predictive maintenance, preventive maintenance, cutting

tools, integration reporting and energy monitoring. OEE & production analysis is

concerned with analysis of operating conditions, manufactured pieces, comparison of

cycles and shifts and traceability of production. Especially their optimization. Pre-

ventive maintenance gives timely and realistic predictions of machines failures using

modern calculation methods. In order to solve failures on time, order spare parts and

reschedule production. Preventive maintenance analyses alarms on the machine, work-

loads, operating hours and is concerned with component and part exchanges. Cutting

tools examine the use of individual machine tools. The manual correction by using

tools to eliminate NOK pieces and machine breakdowns. Integration offers support for

systems like SAP, MES, ERP. Energy monitoring oversees the consumption of electric-

ity, compressed air, water and others.

This research aims to give a contribution to predictive maintenance and would be likely

to have implications is addition on preventive maintenance in form of narrowing the

strategies for stocking and re-planning scheduled maintenance check-ups.

5.3 Objectives

The purpose of the model is to estimate when failure may happen for a specific industrial

machine in light of data about a similar machine. This supports reliability concerns

about testing and analysis and also future development and decision planning. We wish

to decrease the estimation error in future failure rate prediction for improved cost and

reliability assessment.

We aim to improve future failure rate prediction. To create a good estimator that

remains positive, given that this estimator produces sometimes estimates being equal to

zeros, which is undesirable (Quigley et al., 2007, p. 619). The classical approach would

take the ratio of the number of failures divided by the exposure time to failure. Despite

having desirable asymptotic properties, as we suspect, if there are missing failures, the
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estimate equals 0. Characteristic for situations with few observations of failures in the

data available. For the failure rate estimation of failure causes of machine A is used the

data from machine A. Additionally, since rates of failure causes are dependent, data

from machine B. This is done in an appropriate fashion using copula based estimators

and the empirical Bayes estimator. In this way we include information generated from

similar failure rates of machine B in the estimation process of machine A. The similarity

of failure causes between machine A and machine B is well visible from Chart 5.2. The

narrative suggests if on one machine has a failure cause just a low failure occurrence,

then as well the failure occurrence on the other machine will be low. And vice versa,

if a failure cause will have a high failure rate on one machine then a similarly high

occurrence will be observed on the other machine as shows Table 5.1. For example, if

a specific electrical failure on one machine occurs let’s say more often, then as well it

will occur more often on the other machine. And if a given hydraulic failure occurs less

often on one machine, then it will be as well the case on the other machine.

The contribution would help to support the area of spares resourcing. There is need

to be enough parts provided, as there is need to have enough parts in stock, however it is

not desirable to have extensive “tied up capital in the inventory”, (Lincoln, 2000, p. 1).

We may ask ourselves how many spare parts should be ordered? Zahedi-Hosseini et al.

(2017) show that policies can be adopted using data and simulations. As Qarahasanlou

et al. (2018) point out, correct estimation is desired, in order to decrease business risk

and estimate business and production performance. Qarahasanlou et al. (2018, fig. 1)

highlights the concerned areas in the maintenance topic that are expected. Reaching

from resources, tools, spares to accessibility. From an OR perspective (Hu et al.,

2018) helps to reduce equipment downtime. The spares provisioning area is a complex

problem. de Almeida (2001) applies a multiattribute utility function to make trade-offs

between contract cost and system performance. To have a stocking strategy in place

proves especially crucial for essential parts, “the stocking strategy is dependent on time

and the actual occurrence of failures” (Geurts and Moonen, 1992, p. 43). The basis of

the stocking strategy consists of finding the optimal number of repairmen and spares

(Wang and Sivazlian, 1992).
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Our objectives are:

1. To illustrate the process of effectively modelling dependency using empirical Bayes

for a real industry data set.

2. To illustrate the effective modelling of dependency using a copula for this industry

case.

3. To examine the effects of ignoring or wrongly characterising dependency for this

industry case.

5.4 Data Description

The data entries originate from the machines used for the milling of blades that are

forming the core of energy-generating gas turbines or producing general mechanical

components. Specifically, from the PLC (Programmable Logic Controller) machine,

controllable via a PC touchpad (touchscreen) with SAP software operating the machine.

The operator himself has responsibility for the entries and signs into the machine with

her/his card for manual entries. The data can be characterized as logs. The records

are saved alerts about warning messages and mainly errors that resulted in a repair

action. This study is limited to the failures resulting in repair action and production

stop. We have many possible combinations that could be investigated to indicate

dependency in the underlying rates as explained in Chapter 5.5. With this respect

milling machines A and B show promising features as analysis will proceed. Mainly

by examining underlying correlation (Quigley et al., 2013, p. 2218) analysis reveals in

5.5 the underlying rates of the machines to exhibit dependency. The main 10 failure

causes are depicted in a Pareto chart in Figure 5.1. The data generating process is

further discussed in Section 5.5, where the underlying generating process and HPP of

the machines in visualizations of Figures 5.2 and 5.3 are explained.

The machines have in total 52 failure causes and are categorises by failure groups;

Cooling, Electronic failures, Hydraulics, Machine failures, Mechanics, Pneumatic sys-

tem, Electrical system. For each machine, we observe a “similar” count of failures
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for the failure causes being shown in Table 5.1. If on one machine are large failures,

then we can anticipate large failures on the other machine. And vice versa. The two

machines are summarized in the summary statistic in Table 5.2. We observe the data

over the time period 23-Oct-2020 to 26-Jan-2022 equal to 461 days equal to 1.263014

years. There are in total 32 failures on machine A and 36 failures on machine B. To

split the data into a training and validation set, we use failures that occurred before

14-Oct-2021 and exposure times that lead to these failures as training data and the

remaining data as a validation set that we will compare against.

Information is collected about the interaction activities between the operator and

the machine and also about maintenance activities. To repair a machine, an order is put

in place by an operator. Requesting a certain operation to be done. The repair activity

proceeds, while taking note of the workplace the machine is placed in. The equipment

is noted that is needed for a repair like for example a crane, if some heavy equipment

needs to be transported. Or simply just a hammer. Performing a certain operation

is described in a variable called operation. The duration of the repair operation is

noted. And so are noted the waiting times for the repair personnel to arrive and to put

a machine back into working condition. Leading to the total time from flagging the

failure to bringing the machine back into working condition. There are some workplaces

that are more expensive to operate than others and the record of the workplace will

help the management address the costs of the repairs. The machines in the investigated

study group are manufacturing two main products, mechanical equipment and blades.

Machine A focuses on mechanical equipment, whereas machine B focuses on blades.

Blades produced by machine B are used in power plants. Initially, water is heated

until temperatures mount to a threshold, where water is converted to (superheated)

steam. The most common heat sources are coal, nuclear, gas and sun. The speed of the

steam entering the turbine needs to be regulated with a governor preventing damage to

the turbine. The hot gas is pushing through the turbine blades giving them momentum

and making them spin. The blades are attached to the drive shaft, which causes the

generator to rotate and produce electricity.

Machine A and machine B are milling machines. A milling machine is a machine
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tool with a rotating cutter. Typically used to slot drill and form workpieces. The nozzle

moves around the workpiece and removes material similarly to a sculptor creating a

sculpture from a block of marble.

Figure 5.1: Proportion of main failure causes of machine A.

failure cause machine A machine B

Air / compressor 2 1

Automatic tool change 3 2
...

...
...

Spindles 0 1

Table 5.1: Count of failure causes of machine A & B.

Machine Min. 1st Quantile Median Mean 3rd Quantile Max

machine A 0 0 0 0.615385 1 4

machine B 0 0 0 0.692308 1 6

Table 5.2: Summary statistics of count of failure causes of machine A & B.
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5.5 Assumptions and Inference Framework

Modelling problem statement: In this modelling framework we make use of the

assumption that similar machines can expect a comparable mean failure rate across

their failure causes. To introduce the underlying assumed data generating process that

we will discuss, a bivariate Gamma distribution produces a pair of rates for a given

failure cause. One rate for each homogenised machine. These generate failure counts

following the assumed Poisson distribution. As tests show in Section 5.5.1 and 5.5.2

assuming a homogeneous Poisson process (HPP) is justified. These steps are repeated

for each failure cause as shown is Figure 5.2. The equipment is assumed operating

under normal similar conditions all the time.

Gamma ,  prior
distribution

machine 1 
Poisson 

Data: 
 

machine 2 
Poisson 

Data: 
 

failure cause 1

machine 1 
Poisson 

Data: 
 

machine 2 
Poisson 

Data: 
 

failure cause 2

machine 1 
Poisson 

Data: 
 

machine 2 
Poisson 

Data: 
 

failure cause 

Figure 5.2: Underlying data generating process for support of the modelling framework.

Input data: The input for the analysis represents a list of potential failure causes for

machine i that occurred or also did not occur. We index each fault type with a number

k. Examining the expected failure rate and count of fault type k of a machine over

the exposure time. The particular rate λik of the ik-th process can be expressed with

the conditional probability density for the realisations observed over the time window
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t expressed as:

[N1k, N2k] ∼ Poisson(λ1kt1, λ2kt2) (5.1)

the failure rates λik follow a prior distribution. Therefore N1k, N2k are conditionally

independent given λ1k, λ2k. The number of events N1k is a sum of observed failure

occurrence accumulated over time t on the given machine of considered type k How

failures occur is shown in Figure 5.3. Par example, after occurrence of the failure at

t1 that occurs on machine A of failure cause type k, t2 happens on machine B with

the same failure cause. And since these machines are having the same failure causes,

which we are investigating, we can pool them into one Poisson process, if we assume

the processes to be fully dependent.

HPP: For the study are events assumed to follow a homogeneous Poisson process

(HPP) tested in Section 5.5.1. The assumption of a homogeneous Process implies that

the machines do not age over the observed time period. The assumption implied, the

rate of occurrence of events being constant over time for a given failure cause. We

consider that the situation is represented by a collection of HPP. In theory possible, in

practice rather rare. Since everything (except software) is in the real world in the long

term ageing and therefore the homogeneous assumption does not hold. The assumption

of HPP might be more and less suitable dependent on which type of failure cause we

are looking at. We are unable to provide a practical check given the reasons at end

of Section 5.5.2. Taking as an example a car water pump with a constant failure rate

over the whole lifetime and a higher wear out phase (Bertsche, 2008, p. 27). Or an old

steam engine type component with a typical bathtub curve.

Homogenisation: Homogenisation by expert opinion adjusts the failure rate so that

failure rates between machines are comparable. hi > 0 are used as homogenisation

factors so that we assure to hold the assumption of identical marginals from a multi-

variate Gamma distribution. The homogenisation is to proportionally scale the rate

of occurrence controlled by the α, β parameters. We consider that the homogenisation

factors were elicited via expert judgement. See for further discussion (Quigley et al.,
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2011; Quigley et al., 2011, p. 2212).

Exposure Time: We are provided with time stamps on the occurrence of failures.

To recall, failure occurrences happen on the timeline from 23-Oct-2020 to 26-Jan-2022,

461 days being 1.263014 years. Our interest lies in the time exposure until the machine

fails. Figure 4.3 shows that a machine X(t) can be either in the state of operation

(1) or in the state of repair (0). At the end of each operation time window U1, U2, . . .

is a failure that starts the repair time window D1, D2, . . . The black dots at the end

of the operating time windows denote the occurrence of a failure and the transition

into repair mode. The repair restores the machine into an as-good-as-new state. There

is a 2 weeks production stop during Christmas. The total time is discounted by the

time in repair leading to the exposure time. The exposure time of machine A is t1 =

443.188426 days and t2 = 441.036469 days for machine B; out of the 461 days time

window.

Time

1

0

X(t)

U1 D1 U2 D2

Figure 5.3: Illustration of the HPP of a machine, the comparison of operational time
and time in repair.

Marginal distributions: The marginal distributions of the failure rates are assumed

to be gamma. The assumption of a gamma distribution is chosen for multiple reasons.

The choice for the Poisson data offers conjugate convenience. The distribution is easily

scalable and is flexible for the modelling of various shapes and forms. We follow the

established state of art of papers in the field, multiple studies claim this probability

structure as the current state of art (Lord, 2006; Quigley et al., 2007). Practically has
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the first parameter, the shape parameter α, the interpretation of an expected failure

count in the population pool, the second parameter, the rate parameter β, is then the

exposure time, over which we normalize. The marginal distributions are as follows:

π(λi) =

(
β
hi

)α
λα−1
i

Γ(α)
e
− β

hi
λi , λi > 0, α > 0, β > 0 (5.2)

With λi modelling the non-negative failure rate on the prior. β/hi stands for the rate

parameter, where hi represents the homogenisation factor.

Prior distribution: There are two considered forms of the prior distribution, the

multivariate gamma distribution with dependencies between rate. The rates originate

from:

1. A bivariate Gamma distribution developed by Minhajuddin et al. (2004) and

described in (Quigley et al., 2013, p. 2211)

2. A copula constructed bivariate Gamma distribution, in detail in Equation 2.29

with the pdf in Equation 2.29 using the Gaussian, Frank, Gumbel and Clayton

copula.

5.5.1 HPP Justification

We wish to test whether the occurrence of failures can be described with a HPP. This

will support the argument that the failure rate is constant over time. To test for a HPP,

we will test for the exposure time being exponentially distributed and the exposure

time being stationary according to Section 2.1. For both features, we use two tests per

feature. Examining machine A, machine B and the joint data set of machine A and B.

If the number of occurrences is described by the Poisson distribution, the length of

time between occurences is described with an exponential distribution as Cooper (2005)

notes. We can visually confirm this by looking at the time between failures distributed

in a histogram on Figure 5.4 imitating the density of the exponential distribution.

The average time to failure is for the combined machines 12.360369 days, machine A

13.675856 days and machine B 11.191046 days.
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Exponential distribution in the data: For machine A, the KS test can not reject

the null hypothesis (p=0.912193) that data originates from an exponential distribution,

side by side the Lilliefors test (p ≥ 0.5). For the joint data set of machine A and machine

B, the KS test can not reject the null hypothesis (p=0.085474) that data origin from an

exponential distribution. However, the Lilliefors test (p ≥ 0.013019) is less optimistic.

(a) Exposure time between
failures for machine A.

(b) Exposure time between
failures for machine B.

(c) Exposure time between
failures for both machines.

Figure 5.4: Three simple graphs supporting the exponential distribution argument.
Having the count of the y-axes and the x-axes in days.

A TTT-plot in Figure 5.5 is used (Kvaløy and Lindqvist, 1998, p. 16) and will

according to the authors have the plotted points near the diagonal if working with a

HPP.

0 0.5 1
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machine A
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x
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machine A & machine B

Figure 5.5: TTT plot for machine A and machine B.

Sk denotes the k-th arrival in the process 0 < S1 ≤ S2 ≤ . . . ≤ SN ≤ S.

T (Sk) is the time of occurrence of the Sk event. The TTT plot consists of the points

(k/N, T (Sk)/T (S)). The data for the joint two machines pass the Anderson-Darling
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test for trend (Kvaløy and Lindqvist, 1998, p. 18) with p = 0.049.

5.5.2 Stationarity Justification

By Section 2.1.1 are data assumed to be stationary, the mean is constant and its

autocorrelation function is only time dependent. This means that the curves in Figure

5.6 should have a constant mean and variance. Taking data about machine A, both

the KPSS test (p = 0.1) and ADF test (p = 0.00450867) indicate stationarity. Machine

B shows stationarity with KPSS (p = 0.1) and ADF (p = 0.001). The joint data set of

machine A and machine B proves also to be stationary with KPSS (p = 0.1) and ADF

(p = 0.001).
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Figure 5.6: The graphical representation of the individual exposure times until failure.
With on the x-axes the index of the individual subsequent time exposure and on the
y-axes the magnitude of the exposure time.

Failure cause processes: The research tests only for all failure causes given the small

data sets within each class. A single failure has in our case maximally 7 observations

being inappropriate for any used test.

86



Chapter 5. Accounting for Dependency
in Failure Estimation: A Case Study of an Industrial Machine

5.6 Method

For the calculation of the failure rate of failure causes, we consider multiple estimators.

To evaluate a proposed estimator λ̂P , we regard the data as random variables and cal-

culate the KPI measures Mean Squared Error (MSE) and Mean Absolute Difference

(MAD) with respect to the classical estimator. The proposed estimator λ̂P is a predic-

tion Fk using data from the training set to evaluate the squared prediction error, the

MSE. Done by evaluation to the actual data in the test set Yk.

The evaluation of the MSE is given by

MSE =

∑K
k=1 (Yk − Fk)

2

K
=

1

K

K∑
k=1

(
N1k

t1
− λ̂P

)2

(5.3)

similarly the MAD by

MAD =

∑K
k=1 |Yk − Fk|

K
=

1

K

K∑
k=1

∣∣∣∣N1k

t1
− λ̂P

∣∣∣∣ (5.4)

The explanation of the terms follows. Yk denotes actual observation whereas Fk stands

for the prediction of Yk. Let us assume the classical estimator for the first machine

and k-th failure cause used in (Schwarzenegger et al., 2021, eq. 2), in Formula 3.2.

From a considered Poisson distribution for each failure cause, in Formula 3.1. This

classical approach encompasses the computation of the ratio of the count of events

to the observation duration period, here the count for the machine A for a specific

failure cause. Such approach produces often and as in our case a large amount of

estimates equal to zero (Quigley et al., 2007, p. 619), being inappropriate for many

situations. Especially for rare observations and machines, where is not much data

available. So analysts tend to move towards more conservative methods. There are

methods for estimating failure rates without observing actual failure data. Welker and

Lipow (1974) base their method on the χ2 distribution. Whereas Bailey (1997) prefers

a median estimate assigning the value 0.5, where no failures are observed yet and the

failure rate estimate would be zero within the time window.

The rates in the classical estimator are not assumed to possess a prior distribution.
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We would ideally desire an estimator close to the classical estimator that includes

information about the overall data pool of all failures from the two machines. Next,

we would like to highlight the observed failure counts of the target examined machine

in each failure cause. Lastly, partially include failure counts of the target examined

machine in each failure cause. The summarised sources of information for the inference:

1. Prior information

2. Data about machine A

3. Data about machine B

This summary can be further decomposed into a broad description. If we take apart

the prior information and the partial inclusion of similar machines having included

assumed knowledge about the dependency structure, in an overview as:

(i) Overall failure level

(ii) Uncertainty around the overall failure level

(iii) Data about machine A

(iv) Data about machine A that is being enriched with data about machine B.

(v) The appropriate Gaussian, Frank or (Minhajuddin et al., 2004, p. 602) depen-

dency structure

5.6.1 The Proposed Estimators Justification

We shall now describe the proposed estimators λ̂P that will be evaluated via Equation

5.3 in Table 5.3 with respect to described environment to justify the suitability. Table

5.3 comprises of results sorted column-wise by the used parameters that are shown in

Table 5.5 with the exception of the dependency estimator that is fixed at ρ̂MME .

Empirical Bayes ρ = 1: The first estimator is the empirical with full dependency in

Formula 3.19. It combines data from both machines together with prior information.

The observed pair of failure counts and the prior knowledge. We assume in this case
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that data from machine A and machine B are indistinguishable. λi represents the i-

th failure cause for which machine A has n1 failures and machine B n2 failures. t1

the exposure of machine A, t2 the exposure of machine B and hi the homogenisation

factors. We may substitute α with α̂ as it is an estimate.

Empirical Bayes ρ = 0: The second estimator is very similar to the first estimator

with the difference that we assume no similarity between the two machines. The esti-

mation in Formula 3.18. We make use of the overall prior information. Then the data

observations for each failure cause. The performance of the MSE improves as compared

to the empirical estimator with full dependency.

Empirical Bayes ρ = ρ̂: The third estimator (Formula 3.16) is a combination of

the two previous ones. The classification may be an empirical Bayes estimator with

partial dependency. We assume that there is some degree of similarity between the

machines, specified by ρ̂. In Table 5.3 is applied the value of the correlation parameter

at ρ̂ = 0.321950, the moment estimator. It incorporates the knowledge about the prior

distribution. Then for each failure cause is produced a dedicated rate estimate based

on the observed count of occurrences in each cause. Only a part of the informational

value of machine B is included. The limiting cases ρ→ 0 and ρ→ 1 converge towards

the empirical Bayes cases with full/no dependency (Quigley et al., 2013, sec. 2.1).

Copula based estimator Gaussian, Frank, Gumbel and Clayton In the fourth

estimator, we combine prior information, value and its form between the marginal dis-

tributions, a Gaussian copula, Frank copula, Gumbel and Clayton. The Formula 2.30

shows similarities to the empirical Bayes estimator with partial dependency. In addi-

tion, judgments are made about the dependency structure. That is, deciding whether

the marginals will be more correlated in one or the other tail. Leading to selecting

an appropriate copula. We consider the same value as by the empirical Bayes estima-

tor from the previous paragraph. Whereas for the Gaussian copula is the dependency

estimate the exact copula parameter, for the Frank copula we approximate the rank

correlation with a linear correlation estimate. The copula estimates provide us with
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even better results than the empirical Bayes estimator with partial dependency as seen

in Table 5.3. The limiting cases ρ→ 0 and ρ→ 1 for the copulas converge towards the

independence, resp. co-monotonicity copula (Ruppert, 2011, pp. 178-179).

5.6.2 Parameter Estimation of Marginal Distribution Prior Rates

We produce two types of prior estimators. The moment estimator and the maximum

likelihood. Moment estimator (Quigley et al., 2007, p. 2218) provides us with point

estimates of α̂, β̂, ρ̂. The maximum likelihood estimator gives as well point estimates of

these variables. In addition, we construct with the interval method the 95th percentile

confidence region described in (Quigley et al., 2007). The interval estimates of the prior

parameters α̂, β̂ (Dias et al., 2017, p. 156) are obtained separately for all parameters.

Pairing the individual lower estimates of α̂, β̂ produces a conservative estimate of at

least the 95-th percentile. The dependency and prior parameters in their point and

interval estimates are listed in Table 5.5. How the MSE changes using the empirical

Bayes estimator with partial dependency for the machine A changes is shown in Figure

5.7. On the x-axes being the assumed dependency ρA. The points for 0 < ρA < 1

are being calculated with the empirical Bayes estimator with partial dependency. The

shape of the curve imitates a convex function. The estimates for ρA = 0 and ρA = 1

are obtained with the empirical Bayes estimate under no dependency, respectively full

dependency.
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Figure 5.7: MSE of machine A given machine B using empirical Bayes estimation with
full dependency, no dependency and partial dependency estimation. On the y-axes the
MSE obtained by Formula 5.3. On the x-axes the assumed dependency ρA.

(to multiply by 1E-5) MME MLE MLE lower MLE upper

Empirical Bayes ρ = 1 2.093767 2.098799 2.108671 2.127661
Empirical Bayes ρ = 0 2.122369 2.133366 2.156022 2.179553
Empirical Bayes ρ = ρ̂ 2.076769 2.079848 2.087128 2.128924
Copula estimate Gaussian 2.079697 2.085058 2.098107 2.112261
Copula estimate Frank 2.094549 2.045427 2.126419 2.146510
Copula estimate Gumbel 2.042552 2.045427 2.057802 2.093060
Copula estimate Clayton 2.105878 2.120270 2.146068 2.164637

Table 5.3: MSE results for machine A under parameters listed in Table 5.5 with a fixed
ρ̂ under the MME.
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(to multiply by 1E-5) MME MLE MLE lower MLE upper

Empirical Bayes ρ = 1 2.143223 2.149173 2.159995 2.178089
Empirical Bayes ρ = 0 2.106405 2.115268 2.137664 2.188715
Empirical Bayes ρ = ρ̂ 2.073333 2.075810 2.087141 2.147872
Copula estimate Gaussian 2.082635 2.085880 2.094941 2.135661
Copula estimate Frank 2.104919 2.110459 2.124484 2.171466
Copula estimate Gumbel 2.049516 2.053288 2.077132 2.126029
Copula estimate Clayton 2.106962 2.116141 2.135460 2.184820

Table 5.4: MAD results for machine A under parameters listed in Table 5.5 with a
fixed ρ̂ under the MME.

MME MLE MLE lower MLE upper

α̂ 0.519789 0.360426 0.198188 0.563273

β̂ 351.466657 318.697482 307.487216 755.972456
ρ̂ 0.321950 0.515458 - 0.902012

Table 5.5: Prior estimates of machine A & machine B consisting of point and interval
estimates. The values are for the methods of moments (MME), the maximum likeli-
hood method (MLE), the lower (MLE lower) and upper (MLE upper) bound for the
maximum likelihood method.

5.7 Analysis

Examining the results we observe:

� For the metric of the MSE are included estimators working with partial depen-

dency outperforming those who do not. Having the first two rows in Table 5.3 as

reference values, the remaining estimators outdo the case of omitting dependency

and very often case of considering full dependency. This is the case for parameters

obtained by the MME and MLE.

� These results hold also for the MAD metric. Excluding the Clayton based esti-

mator, but including next to the MME and MLE together with the MLE lower

and MLE upper parameters. However, the results remain valid for the parameter

values of MME, MLE and as well the interval estimates MLE lower and MLE

upper.
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� Both the MSE and MAD results indicate the use of the Gumbel based estimator

followed by the empirical Bayes estimator with partial dependency together with

the Gaussian based copula estimator.

� The MSE shows a 3.91% increase if using instead of a Gumbel the empirical Bayes

estimator with no dependency.

� The MAD shows a 4.57% increase if using instead of a Gumbel the empirical

Bayes estimator with full dependency.

� By not applying the Gaussian copula, but the empirical Bayes estimator with no

dependency, the MSE by 2.05% and the MAD by 2.90% with full dependency.

Similarly the partial dependency empirical Bayes estimators increases are 3.30%

for the MSE and 3.37% for the MAD.

� If we would consider a most suitable dependency parameter for the MSE, the

Gumbel based estimator under ρA = 0.253469 would have a 4.12% increase,

Gaussian 2.43% under ρA = 0.45102 and the empirical Bayes estimator 3.13%

under ρA = 0.666531. If comparing the ideal cases with the case of no dependency.

That is if using the case of no dependency instead of applying the ideal cases with

the most suitable dependency parameter.

From results in Chapter 4 are simulation results showings

� A 6.42% maximal MSPE increase if the generating process is Gumbel with ρS =

0.5 and the underlying structure is Clayton for the 10th percentile.

Chapter 3 shows

� A 16.93% increase if mistakenly assuming correlation ρA = 1 instead of the correct

ρA = 0.5. However, if the underlying structure would have a Gumbel copula

between failure rates, the increase would be just 8.85% under the same mistaken

dependency assumption.

From Chapter 4 it is risky to take the Gumbel copula, in case there would be an

underlying Gaussian structure. It would be safer to choose the partial dependency
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empirical Bayes estimator and Gaussian copula based estimator. The increases in the

MSPE are 2.05 % when using instead of the Gaussian copula based estimator the

empirical Bayes with no dependency and 2.20% with the partial dependency empirical

Bayes estimator compared with the empirical Bayes estimator with no dependency.

These values are in line with Yahav and Shmueli (2012) observing mostly a 3% difference

for correlated rates in multivariate Poisson counts.

Dependencies are important. From Chapter 4 examining copula mis-specifications we

can conclude what will be the true %biases and MSPEs when the underlying copula

structure is known. The closest examined case is the case with α = 0.5, β = 1, t = 1.

However, if we assume an underlying true dependency ρS = 0.75. For the %bias in

the 90th percentile, if we choose the Gaussian copula, the lowest possible absolute

value will be 1.15% for the Frank copula. The largest absolute value of 2.76% occurs

under choosing the Clayton copula, when the actual underlying true copula is Gumbel.

For the time horizon t = 5 the best and the worst choice switches with 5.72% by

choosing Gaussian and -1.76% choosing the Clayton. In the time horizon t = 10 the

choices remain the same with 7.12% for Gaussian and 2.87% for Clayton. In the 90th

percentile, are for all times (t = 1, t = 5, t = 10) the safest choice the Frank copula

and the riskiest choice the Gumbel copula. The values of the %bias are for the Frank

copula 1.39%, 7.71% and -5.44%. Compared to the Gumbel copula with 3.97%, 25.37%

and 29.35%.

The biggest differences for the 10th percentile of MSPE. As by the previous case, the

safest choice remains the Frank even at t = 10 copula and the riskiest choice the Gumbel

copula for all times. The Frank copula is ranging in values 2.50%, 5.20%, 2.43% and

the Gumbel copula 2.28%, 24.67% and 57.55%. More precisely, for t = 1 and ρS = 0.25

are these values for the Frank copula 3.01%, 2.35%, 2.14% and for the Gumbel copula

5.13%, 5.69%, 11.67%.

So we can support the argument that a safe choice is not the Gumbel copula and

that differences are sometimes just in single digits. Rather then in the 90th and 5th

percentile, the difference is in the 10th percentile. Further, it is important to consider

partial dependency between failure rates.
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5.8 Cross-Validation

To validate results, an evaluation of the prediction squared error Err (squared-error

loss) by (Hastie et al., 2009, p. 223) will be performed in form of a cross-validation

set up in Section B.2.2. Given that we have 32 observed failures in the machine A

36 failures in the machine B, we perform a K -fold cross validation to evaluate the

prediction error. We treat the data as panel data and divide the 461 available days

into five sets of 92 days. Take the observed failures in these days and the realized

exposure time. Then we keep always one set aside and use the other four to predict

this set. Hastie et al. (2009, p. 242) advice typical choices of K = 5, 10. We split the

data into five sets Ai, i ∈ {1, . . . , 5} (validation data). And estimate the squared error

loss by using the left out set Ai for the classical estimator C and all other sets ¬Ai

(training data) for the proposed estimator P as shows Equation 5.5. The training data

have more observed failures and a larger exposure time than the validation data. Both

prior parameters will be larger than those generated ones obtained from the validation

set, however the mean as their fraction of them (α/β) will be the same, adding to the

justification of the approach that estimates obtained from the validation data can be

used for prediction of the training data.

Hastie et al. (2009, p. 242) argue “cross-validation only estimates effectively the

average error”. We can confirm that the overall mean has the desired properties.

Err = E

(
λ̂C,Ai
∼

− λ̂P,¬Ai
∼

)2

(5.5)

When examining the results in Table 5.6, we compare the partial estimators mainly

towards the empirical Bayes estimator with no dependency. 3/5 sets (2nd, 4th and 5th)

have all partial dependency estimators performing satisfactory in terms of concluding

that considering dependency is better than omitting it. These are the second, fourth

and fifth sets. For the other two sets, the first and third have a good performing Clayton

estimator.

The left out set for validation Ai is constructed following Figure 5.3, let us assume,

we take for validation the time window beginning in the middle of the interval U1 and
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ending in the middle of the interval U2. Then the exposure time is all the exposure

between the beginning and end of the validating time window. The number of failures

are the observed failures in this time window.

(to multiply by 1E-5) 1st 2nd 3rd 4th 5th mean

Empirical Bayes ρ = 1 1.401967 1.820986 1.637668 1.433732 1.729563 1.604783
Empirical Bayes ρ = 0 1.117471 1.807235 1.660637 1.470667 1.688114 1.548825
Empirical Bayes ρ = ρ̂ 1.151788 1.759115 1.659922 1.439148 1.664188 1.534832
Copula estimate Gaussian 1.147046 1.741885 1.66394 1.462265 1.672010 1.537430
Copula estimate Frank 1.121289 1.752446 1.648675 1.448365 1.688451 1.531331
Copula estimate Gumbel 1.290728 1.714261 1.724079 1.552428 1.663897 1.589079
Copula estimate Clayton 1.115519 1.778378 1.628885 1.452949 1.685815 1.532309

Table 5.6: Cross-validation results.

5.9 Decision Problem

We apply the results on spares parts resourcing. To estimate what is the expected

number of parts that will fail. Let us consider that when an failure occurs resulting

in a repair action, the machine stops producing. The resulting costs for the company

in the repair action itself. The costs are as well and mainly in the opportunity costs,

which is the loss of profits represented by a production stop. We assign the following

costs for production stop given by a failure as £10,000. We designate £1,000 per failing

part for servicing and replacing in spare parts allocation.

Different methods give different failure rates and we compare the outcomes. The

estimate of number of failures for a year ahead t = 1 is obtained as the rounded outcome

of the failure rate multiplied by the time horizon, we are predicting ahead. That is one

year.

⌊λ̂P · t⌉ = N̂P (5.6)

Table 5.7 presents the number of estimated failures for a given estimator. Each

method assigns a specific anticipated count per failure cause (from 52 failure causes).

Given that we we concluded some methods to be better than other, we will be selecting

the preferred ones.
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Estimated Failures

Empirical Bayes ρ = 1 28
Empirical Bayes ρ = 0 16
Empirical Bayes ρ = ρ̂ 19
Copula estimate Gaussian 22
Copula estimate Frank 23
Copula estimate Gumbel 24
Copula estimate Clayton 16

Table 5.7: Estimated number of failures in a decision problem under a given estimator.

The differences in the number of productions stops as compared to the empirical

Bayes estimator with full dependency and no dependency are detailed in Table 5.8.

The preferred estimators will be as in the preceding case selected.

Empirical Bayes ρ = 0 Empirical Bayes ρ = 1

Empirical Bayes ρ = 1 12 0
Empirical Bayes ρ = 0 0 12
Empirical Bayes ρ = ρ̂ 3 9
Copula estimate Gaussian 6 6
Copula estimate Frank 7 5
Copula estimate Gumbel 8 6
Copula estimate Clayton 0 12

Table 5.8: The difference of estimated failures resulting in a production stop for esti-
mators considering dependency in comparison to estimators considering no dependency
and full dependency.

So if we use the Gaussian method that provides accordingly to the MSE and MAD

better values, we save £6,000 compared to Empirical Bayes ρ = 0 estimation method

and £6,000 in comparison to Empirical Bayes ρ = 1 in wrong spare parts allocation. If

we use the Empirical Bayes ρ = ρ̂method which is well advisable by the MSE and MAD,

the saving is £3,000 compared to Empirical Bayes ρ = 0 estimation method and £9,000

in comparison to Empirical Bayes ρ = 1 for mismatching spare parts allocation. The

difference in production stop given Copula estimate Gaussian by £60,000 (compared

to Empirical Bayes ρ = 0) and £90,000 (ρ = 1) and Empirical Bayes ρ = ρ̂ mismatches

by £30,000 (ρ = 0) and £90,000 (ρ = 1).

97



Chapter 5. Accounting for Dependency
in Failure Estimation: A Case Study of an Industrial Machine

5.10 Summary and Conclusion

We applied methods for the failure estimation of the machine A. In terms of the MSE,

it showed that it is better to assume dependency rather than omitting it.

The empirical Bayes methodology with partial dependency, Gaussian and Gumbel

copula approach perform well. Since choosing the Gumbel copula is slightly risky, we

prefer the remaining two. The results hold across the prior confidence regions.

In Table 5.3 we draw conclusions about the MSE and Table 5.4 about the MAD

when comparing the predicted failure rates with the actual observed rates. All partial

dependency estimators are better than no or full dependency. Especially, using the

Gumbel copula is better than using the empirical Bayes estimation with full depen-

dency. There are improvements by applying the empirical Bayes method with partial

dependency. Finally, the Gaussian copula based method leads to a very good perfor-

mance. A 5-fold-cross-validation is applied to verify the proposed method. We use

always 4 sets to predict the remaining 5th set. The results hold for 3 out of 5 sets and

for the overall mean.

We provided point and interval estimates for the prior parameters using the moment

estimator and the maximum likelihood estimator. The point estimates of α̂, β̂, ρ̂ in

Table 5.5 are as anticipated within the 95-th credible interval of these estimates.

We described the data to give the reader a picture of the generating process and

statistical features of the data set. The argument of a homogeneous Poisson process

and stationarity was supported with visual charts and tests. The examined machine

and the joint data of the machines pass the exponential test. Stationarity is indicated

by the separate and joint data about the machines.

The objectives in Section 5.3 are met in proposing a way to estimate failure rates

under partial dependency. We show the error reduction in the MSE for multiple esti-

mators using partial dependency. The most complex formulas with partial dependency

seem as a sensible middle way between full and no dependency. We incorporate in them

the three sources of information for calculating a given failure cause rate; the overall

population data, the specific target data and similar supporting data. The results are
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cross-validated to increase their validity.

The application shows that instead of omitting dependency if we include depen-

dency, we are able to assign better a total of £33,000 with Empirical Bayes ρ = ρ̂ and

£66,000 Copula estimate Gaussian.
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Conclusion and Future Work

This thesis mainly aimed to investigate the performance of an analytical approach based

on a multivariate Poisson-Gamma probability model with parameter dependency.

Our first contribution demonstrated a significant potential reduction in mean squared

error (MSE) by about half by employing structured expert judgement to accurately

assess rate dependencies. We presented a mathematical expression to evaluate the

impact of correct dependency assessment on the MSE and further guidance of challenges

that might be experienced. Based on examined scenarios, we concluded that it depends

whether it is actually worthwhile to consider and elicit dependency within the examined

probability model.

In the second contribution we experienced that mis-specification of the copula struc-

ture effected the error differently in its percentiles. The largest impacts were experi-

enced in the lower percentiles for the percentage bias as well the mean squared per-

centage error. Our findings indicate that the selection of an assumed underlying copula

structure, in conjunction with accurate knowledge of the true copula, plays a critical

role. We identified four combinations of these factors that hold particular importance

in determining the overall outcomes.

The third contribution combined gained knowledge from both preceding chapters.

By considering similarity between machine failure causes, we showed the advantage of

including dependency in failure rate estimation. We scrutinized the data with appro-

priate tests to indicate the suitability and applicability of employed methods. Fur-
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thermore, we emphasized the significance of considering potential risks that analysts

should be mindful of during the estimation process. The analysis showed that includ-

ing partial dependency decreases estimation error for this data set. The results were

cross-validated with a 5-fold cross-validation to ensure the robustness of the findings.

6.1 Research Objectives

R.O. 1: How was the estimation accuracy investigated using empirical Bayes inference

when there is correlation between the mean rates in a multivariate Poisson-Gamma

probability model?

The work in our first contribution shows that in the first place, the MSE displays

proportionality to the shape parameter. Using the logarithm of the pool size and

the square of the correlation parameter, we are able to demonstrate a good fit. In

alignment with our anticipation, the bigger the pool size is, the smaller the MSE. As

we obtain more data and the estimates become more precise. The larger the dependency

parameter, the smaller the MSE. We are able to anticipate also this relationship. Since

the more dependence we observe, the more data and information for estimation we may

include.

We find that

lim
ρ→1,m→∞

MSE =
α

3
(6.1)

lim
ρ→0,m→∞

MSE =
α

2
(6.2)

and we can anticipate the value around

lim
ρ→0.5,m→∞

MSE = 0.456 α (6.3)

R.O. 2: What were the changes in estimation accuracy when the correlation between

the mean rates in a multivariate Poisson-Gamma probability model is mis-specified?

Our research showed that we are able to reduce the MSE by up to 53.8% in the specific

case of ρT = 0, but elicited as ρA = 1 (α = 50,m = 60). This means that if the analyst
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using the model invests in structured expert judgement to obtain perfect assessments

of the dependency between rates, then it is possible to achieve an MSE that is more

than half of the value of a maximally mis-specified dependency parameter. Hence

we have provided the analyst who might use this reliability model in an application

to understand the consequences of dependency mis-specification and the factors that

drive the estimation error reduction when accounting for the correlation between event

rates. This information should help inform the analyst to decide whether accounting

for correlation in analysis is worth the effort.

R.O. 3: To examine the effect on estimation accuracy and precision when the depen-

dency in a multivariate Poisson-Gamma probability model is represented using a copula,

including when the copula family is mis-specified.

When assuming a data generating process with a copulas structure, we examine how

with mis-specification of the copula function, the bias and the MSE will be affected.

Given assumed dependency, we examine tendencies of mis-specification in the 10th, 50th

and 90th percentile. Out of 16 possible investigates combinations in a simulation, we are

identifying 4 combinations that do matter the most, Gumbel A-Frank T, Gaussian A-

Frank T, Gumbel A-Clayton T and Gaussian A-Clayton T. For our case study in the

last contribution, we show that by including partial dependency, especially using the

Gaussian and Frank copula, we achieve less uncertain estimators.

R.O. 4: How was the application of methods to account for dependency in the param-

eters of a Poisson-Gamma model illustrated using both empirical Bayes inference and

copulas through an industry case? Further:

1. How was the relative performance of the different methods for this case compared?

2. How were the results of modelling explored that might be translated to a decision-

making context?

For the final application, we conclude based on test the results and estimates are

consistent and unchanging throughout time (time invariant), since we are working with

a HPP. The data are devided into a training set and validation set. A final cross-

validation confirms the results and is performed on the total dataset. It shows that it
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is almost always better to assume partial dependency for this data. The best results

are obtained taking the Gumbel copula. However, we take rather a more conservative

approach due to possible mis-specifications and prefer the Gaussian copula, leading to

a possible saving of £66,000.

6.2 Limitations and Future Research

We acknowledge that we operate within several limitations. Relaxing those limita-

tions might give opportunities for future research. Within the thesis, we used just

Poisson data and Gamma priors. Exploring Poisson-Lognormal cases or other prior

distribution possibilities. This would offer fewer limitations in situations, where these

marginals would be more appropriate. In addition, the exact formulas for the MSE

for the limiting cases under full and no dependency between failure rates are available.

However, analytical exact formulas for partial dependency would be of great advan-

tage. Additionally, the research is limited to the bivariate case. A pair of rates that

has a given correlation. Future research may include the derivation of the estimators

for dependency and prior parameters using the copula predictive density. The quan-

tification of the individual contribution towards the posterior mean of the prior and

both Poisson observations in a copula constructed posterior to improve traceability. For

non-Gaussian copulas, where the linear correlation coefficient can not be used, suitable

methods could be incorporated for finding the dependency parameter. For the non-

bivariate case incorporate vine copulas and start exploring more complex structures.

Future research can extend to other copulas. Apply the method in relation to creating a

regressive model to take into account other variables like Park et al. (2021) or Caliendo

et al. (2021). Use multivariate Poisson-Lognormal mixture model and extend to other

copulas (Park et al., 2021). To include other marginals to model different severities

in crashes. It can be the use of zero-inflated models or the use of negative binomials

distribution of levels of severity.

Next, all methods are valid only for and operating under positive dependencies.

Negative dependencies are not considered. They could be started to be explored by

the Gaussian and Frank copulas, since their formulas permit negative dependencies.
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Fantazzini (2009) shows they can have a larger impact that positive values. Further,

we are interested in finding the for non-Gaussian copulas the rank correlation parameter

or an equivalent quantity. Dimitriou (2022, p. 57) developed prior parameter estimation

using data assuming a Clayton copula. This can be further developed for more copulas.

We are interested in the derivation of the estimators using the predictive density, as

done in Quigley et al. (2007, p. 622), for the copula dependency cases. In the study

are used data from accident analysis and industrial production. There are other fields,

like software development, where the research could be applied.
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Sensitivity on Copulas in

Bayesian Hierarchical Model

Figure A.1: Results of %bias alike to Figure 4.1 with the time of t = 5.
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Figure A.2: Results of %bias alike to Figure 4.1 with the time of t = 1.

Figure A.3: Results of MSPE alike to Figure 4.1 with the time of t = 5.
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Figure A.4: Results of MSPE alike to Figure 4.1 with the time of t = 1.

Sensitivity on dependency

Additional to Figure 4.4 and 4.5, is laid out results for the option of the dependency

ρS equalling 0.5 and 0.25.
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Figure A.5: The simulation results for the %bias for ρS = 0.5. %bias : (qA − qT )/qT ·
100%. Extending Figure 4.4.
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Figure A.6: The simulation results for the MSPE for ρS = 0.5. MSPE : ((qA −
qT )/qT )

2 · 100%. Extending Figure 4.5.
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Figure A.7: The simulation results for the %bias for ρS = 0.25. %bias : (qA− qT )/qT ·
100%. Extending Figure 4.4.
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Figure A.8: The simulation results for the MSPE for ρS = 0.25. MSPE : ((qA −
qT )/qT )

2 · 100%. Extending Figure 4.5.
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Appendix B

Technical Details for Used

Methods

B.1 Monte Carlo Integration

Since the posterior mean in Formula 2.30 does not have an analytical expression, an

estimation method need hence to be taken. We apply the Monte Carlo methods to

obtain estimates of the true value. By Givens and Hoeting (2012, p. 151) let µ =

E{h(X)} be the expectation of a function and f the density of X. Then using random

sampling X1, . . . ,Xn we can approximate

µ̂MC =
1

n

n∑
i=1

h(Xi)→
∫
h(x)f(x)dx = µ (B.1)

as n→∞ by the strong law of large numbers.

B.2 Assessing Models

A model is always an approximation of reality. To address the suitability of a model,

the most common measures for accessing the accuracy of model data are the r2, Bayes

factor and likelihood ratio test. For validation is used the leave-one-out validation,

k -fold cross validation or likelihood comparison (Hastie et al., 2009, ch. 7).
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B.2.1 Partial Variable Plot

The partial variable plot (in Chapter 3) by (Velleman and Welsch, 1981) is removing

by the Frisch–Waugh–Lovell theorem the model all variables with exception of the

constant term. Broadly speaking, the plot is showing the constant term after having

controlled for all other variables.

We create a new variable of all variables except the intercept: we have the plan

matrix X with the coefficient vector β, having 0 in the first column (the intercept).

Using s = norm(β), u = β/s, Xβ = (Xu)s. Xu is our new variable with coefficient

scalar s.

We select all variables, except the intercept x1 as follows:

yi = gy(x1i) + ryi

xi = gx(x1i) + rxi

gy is the fit of y against the intercept. gx is the fit of all variables, against the intercept.

We denote all variables except the intercept (xu) as previously.

ỹi = ȳ + ryi

(̃xu)i = (xu) + rxi

Matlab command plotAdded plots a scatter plot of ((̃xu)i, ỹi) and also as a fitted

line s(̃xu). s is the same coefficient as before. After all variables are removed, the final

adjusted variables are x0, y0.

B.2.2 Cross-Validation

To validate results (in Chapter 5), we evaluate the prediction squared error Err with a

K-fold cross-validation. The ideal case of validation as (Efron and Hastie, 2016, p. 213)

states would be to have an independent validation set (test set).

Let us define:
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� training set

dval = {(x0j , y0j), j = 1, 2, . . . , Nval} (B.2)

� prediction rule

ŷ = rd(x) for x ∈ X (B.3)

� discrepancy

D(y, ŷ) = (y − ŷ)2 (B.4)

is quantifying the prediction error

� validation set dval

dval = {(x0j , y0j), j = 1, 2, . . . , Nval} (B.5)

giving an unbiased Error estimate Err

Êrrval =
1

Nval

Nval∑
j=1

D(y0j , ŷ0j), ŷ0j = rd(x0j) (B.6)

The cross-validation is mimicking the Error-estimate with a cross-validation esti-

mate.

Êrrcv =
1

N

N∑
i=1

D(yi, ŷ(i)), ŷ(i) = rd(i)(xi) (B.7)

d(i) being the reduced training set, rd(x0j) the prediction rule constructed without the

omitted set.

If we would split of from the data a validation set, the number of observations

would fall below 30. Statistical test and theory prefer the number of samples being at

least 30 Montgomery and Runger (2013). The number, where the central limit theorem

is starting to work and where the t-distribution approximates a normal distribution.

There are 32 failures on one machine, 36 failures on the other. We assume homogeneity,

if in 5 cases we observe same or very similar results, we have better confidence.
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